
Manish Verma
Peter Marwedel

Advanced Memory
Optimization
Techniques
for Low-Power
Embedded Processors

Advanced Memory Optimization Techniques for
Low-Power Embedded Processors

Advanced Memory Optimization
Techniques for Low-Power
Embedded Processors

By

Manish Verma
Altera European Technology Center, High Wycombe, UK

and

Peter Marwedel
University of Dortmund, Germany

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-13 978-1-4020-5896-7 (HB)
ISBN-13 978-1-4020-5897-4 (e-book)

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springer.com

Printed on acid-free paper

All Rights Reserved
c© 2007 Springer

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the
Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work.

Dedicated to my father

Manish Verma

Acknowledgments

This work is the accomplishment of the efforts of several people without whom this work
would not have been possible. Numerous technical discussions with our colleagues, viz.
Heiko Falk, Robert Pyka, Jens Wagner and Lars Wehmeyer, at Department of Computer
Science XII, University of Dortmund have been a greatly helpfull in bringing the book
in its current shape. Special thanks goes to Mrs. Bauer for so effortlessly managing our
administrative requests.

Finally, we are deeply indebted to our families for their unflagging support, unconditional
love and countless sacrifices.

Dortmund, November 2006 Manish Verma
Peter Marwedel

vii

Contents

1 Introduction . 1
1.1 Design of Consumer Oriented Embedded Devices . 2

1.1.1 Memory Wall Problem . 2
1.1.2 Memory Hierarchies . 3
1.1.3 Software Optimization . 4

1.2 Contributions . 5
1.3 Outline . 6

2 Related Work . 9
2.1 Power and Energy Relationship . 9

2.1.1 Power Dissipation . 9
2.1.2 Energy Consumption . 11

2.2 Survey on Power and Energy Optimization Techniques 11
2.2.1 Power vs. Energy . 12
2.2.2 Processor Energy Optimization Techniques . 12
2.2.3 Memory Energy Optimization Techniques . 14

3 Memory Aware Compilation and Simulation Framework 17
3.1 Uni-Processor ARM . 19

3.1.1 Energy Model . 20
3.1.2 Compilation Framework . 22
3.1.3 Instruction Cache Optimization . 23
3.1.4 Simulation and Evaluation Framework . 24

3.2 Multi-Processor ARM . 26
3.2.1 Energy Model . 27
3.2.2 Compilation Framework . 27

3.3 M5 DSP . 29

4 Non-Overlayed Scratchpad Allocation Approaches
for Main / Scratchpad Memory Hierarchy . 31
4.1 Introduction . 31
4.2 Motivation . 33

ix

x Contents

4.3 Related Work . 35
4.4 Problem Formulation and Analysis . 36

4.4.1 Memory Objects . 36
4.4.2 Energy Model . 37
4.4.3 Problem Formulation . 38

4.5 Non-Overlayed Scratchpad Allocation . 39
4.5.1 Optimal Non-Overlayed Scratchpad Allocation 39
4.5.2 Fractional Scratchpad Allocation . 40

4.6 Experimental Results . 41
4.6.1 Uni-Processor ARM . 41
4.6.2 Multi-Processor ARM . 44
4.6.3 M5 DSP . 46

4.7 Summary . 47

5 Non-Overlayed Scratchpad Allocation Approaches for
Main / Scratchpad + Cache Memory Hierarchy . 49
5.1 Introduction . 49
5.2 Related Work . 51
5.3 Motivating Example . 54

5.3.1 Base Configuration . 54
5.3.2 Non-Overlayed Scratchpad Allocation Approach 55
5.3.3 Loop Cache Approach . 56
5.3.4 Cache Aware Scratchpad Allocation Approach 57

5.4 Problem Formulation and Analysis . 58
5.4.1 Architecture . 59
5.4.2 Memory Objects . 59
5.4.3 Cache Model (Conflict Graph) . 60
5.4.4 Energy Model . 61
5.4.5 Problem Formulation . 63

5.5 Cache Aware Scratchpad Allocation . 64
5.5.1 Optimal Cache Aware Scratchpad Allocation 65
5.5.2 Near-Optimal Cache Aware Scratchpad Allocation 67

5.6 Experimental Results . 68
5.6.1 Uni-Processor ARM . 68
5.6.2 Comparison of Scratchpad and Loop Cache Based Systems 78
5.6.3 Multi-Processor ARM . 80

5.7 Summary . 81

6 Scratchpad Overlay Approaches for Main / Scratchpad
Memory Hierarchy . 83
6.1 Introduction . 83
6.2 Motivating Example . 85
6.3 Related Work . 86
6.4 Problem Formulation and Analysis . 88

6.4.1 Preliminaries . 89
6.4.2 Memory Objects . 90

Contents xi

6.4.3 Liveness Analysis . 90
6.4.4 Energy Model . 95
6.4.5 Problem Formulation . 97

6.5 Scratchpad Overlay Approaches . 98
6.5.1 Optimal Memory Assignment . 98
6.5.2 Optimal Address Assignment . 105
6.5.3 Near-Optimal Address Assignment . 108

6.6 Experimental Results . 109
6.6.1 Uni-Processor ARM . 109
6.6.2 Multi-Processor ARM . 116
6.6.3 M5 DSP . 118

6.7 Summary . 119

7 Data Partitioning and Loop Nest Splitting . 121
7.1 Introduction . 121
7.2 Related Work . 123
7.3 Problem Formulation and Analysis . 126

7.3.1 Partitioning Candidate Array . 126
7.3.2 Splitting Point . 126
7.3.3 Memory Objects . 127
7.3.4 Energy Model . 127
7.3.5 Problem Formulation . 129

7.4 Data Partitioning . 130
7.4.1 Integer Linear Programming Formulation . 131

7.5 Loop Nest Splitting . 133
7.6 Experimental Results . 135
7.7 Summary . 139

8 Scratchpad Sharing Strategies for Multiprocess Applications 141
8.1 Introduction . 141
8.2 Motivating Example . 143
8.3 Related Work . 144
8.4 Preliminaries for Problem Formulation . 145

8.4.1 Notation . 145
8.4.2 System Variables . 146
8.4.3 Memory Objects . 147
8.4.4 Energy Model . 147

8.5 Scratchpad Non-Saving/Restoring Context Switch (Non-Saving)
Approach . 148
8.5.1 Problem Formulation . 148
8.5.2 Algorithm for Non-Saving Approach . 149

8.6 Scratchpad Saving/Restoring Context Switch (Saving) Approach 152
8.6.1 Problem Formulation . 153
8.6.2 Algorithm for Saving Approach . 154

8.7 Hybrid Scratchpad Saving/Restoring Context Switch (Hybrid) Approach . . 156
8.7.1 Problem Formulation . 156

xii Contents

8.7.2 Algorithm for Hybrid Approach . 158
8.8 Experimental Setup . 160
8.9 Experimental Results . 161
8.10 Summary . 166

9 Conclusions and Future Directions . 167
9.1 Research Contributions . 167
9.2 Future Directions . 170

A Theoretical Analysis for Scratchpad Sharing Strategies 171
A.1 Formal Definitions . 171
A.2 Correctness Proof . 171

List of Figures . 175

List of Tables . 179

References . 181

1

Introduction

In a relatively short span of time, computers have evolved from huge mainframes to small
and elegant desktop computers, and now to low-power, ultra-portable handheld devices.
With each passing generation, computers consisting of processors, memories and peripherals
became smaller and faster. For example, the first commercial computer UNIVAC I costed $1
million dollars, occupied 943 cubic feet space and could perform 1,905 operations per
second [94]. Now, a processor present in an electric shaver easily outperforms the early
mainframe computers.

The miniaturization is largely due to the efforts of engineers and scientists that made the
expeditious progress in the microelectronic technologies possible. According to Moore’s
Law [90], the advances in technology allow us to double the number of transistors on
a single silicon chip every 18 months. This has lead to an exponential increase in the
number of transistors on a chip, from 2,300 in an Intel 4004 to 42 millions in Intel Itanium
processor [55]. Moore’s Law has withstood for 40 years and is predicted to remain valid for
at least another decade [91].

Not only the miniaturization and dramatic performance improvement but also the signif-
icant drop in the price of processors, has lead to situation where they are being integrated into
products, such as cars, televisions and phones which are not usually associated with com-
puters. This new trend has also been called the disappearing computer, where the computer
does not actually disappear but it is everywhere [85].

Digital devices containing processors now constitute a major part of our daily lives.
A small list of such devices includes microwave ovens, television sets, mobile phones, digital
cameras, MP3 players and cars. Whenever a system comprises of information processing
digital devices to control or to augment its functionality, such a system is termed an embedded
system. Therefore, all the above listed devices can be also classified as embedded systems.
In fact, it should be no surprise to us that the number of operational embedded systems has
already surpassed the human population on this planet [1].

Although the number and the diversity of embedded systems is huge, they share a set of
common and important characteristics which are enumerated below:

(a) Most of the embedded systems perform a fixed and dedicated set of functions. For
example, the microprocessor which controls the fuel injection system in a car will
perform the same functions for its entire life-time.

1

2 1 Introduction

(b) Often, embedded systems work as reactive systems which are connected to the
physical world through sensors and react to the external stimuli.

(c) Embedded systems have to be dependable. For example, a car should have high
reliability and maintainability features while ensuring that fail-safe measures are
present for the safety of the passengers in the case of an emergency.

(d) Embedded systems have to satisfy varied, tight and at times conflicting constraints.
For example, a mobile phone, apart from acting as a phone, has to act as a digital
camera, a PDA, an MP3 player and also as a game console. In addition, it has to
satisfy QoS constraints, has to be light-weight, cost-effective and, most importantly,
has to have a long battery life time.

In the following, we describe issues concerning embedded devices belonging to consumer
electronics domain, as the techniques proposed in this work are devised primarily for these
devices.

1.1 Design of Consumer Oriented Embedded Devices

A significant portion of embedded systems is made up of devices which also belong the
domain of consumer electronics. The characteristic feature of these devices is that they come
in direct contact with users and therefore, demand a high degree of user satisfaction. Typical
examples include mobile phones, DVD players, game consoles, etc. In the past decade, an
explosive growth has been observed in the consumer electronics domain and it is predicted
to be the major force driving both the technological innovation and the economy [117].

However, the consumer electronic devices exist in a market with cut-throat competition,
low profit per piece values and low shelf life. Therefore, they have to satisfy stringent design
constraints such as performance, power/energy consumption, predictability, development
cost, unit cost, time-to-prototype and time-to-market [121]. The following are considered to
be the three most important objectives for consumer oriented devices as they have a direct
impact on the experience of the consumer.

(a) performance
(b) power (energy) efficiency
(c) predictability (real time responsiveness)

System designers optimize hardware components including the software running on the
devices in order to not only meet but to better the above objectives. The memory subsystem
has been identified to be the bottleneck of the system and therefore, it offers the maximum
potential for optimization.

1.1.1 Memory Wall Problem

Over the past 30 years, microprocessor speeds grew at a phenomenal rate of 50-100%
per year, whereas during the same period, the speed of typical DRAM memories grew at
a modest rate of about 7% per year [81]. Nowadays, the extremely fast microprocessors
spend a large number of cycles idle waiting for the requested data to arrive from the slow
memory. This has lead to the problem, also known as the memory wall problem, that the

1.1 Design of Consumer Oriented Embedded Devices 3

Processor
Energy
34.8%

Memory
Energy
65.2%

10.8%

10.3%

4.1%

54.1%

20.6%

Proc. Energy

SPM Energy

I-Cache Energy

D-Cache Energy

Main Mem. Energy

(a) Uni-Processor ARM (b) Multi-Processor ARM

Fig. 1.1. Energy Distribution for (a) Uni-Processor ARM (b) Multi-Processor ARM Based Setups

performance of the entire system is not governed by the speed of the processor but by the
speed of the memory [139].

In addition to being the performance bottleneck, the memory subsystem has been demon-
strated to be the energy bottleneck: several researchers [64, 140] have demonstrated that
the memory subsystem now accounts for 50-70% to the total power budget of the system.
We did extensive experiments to validate the above observation for our systems. Figure 1.1
summarizes the results of our experiments for uni-processor ARM [11] and multi-processor
ARM [18] based setups.

The values for uni-processor ARM based systems are computed by varying the param-
eters such as size and latency of the main memory and onchip memories i.e. instruction and
data caches and scratchpad memories, for all benchmarks presented in this book. For multi-
processor ARM based systems, the number of processors was also varied. In total, more
than 150 experiments were conducted to compute the average processor and memory energy
consumption values for each of the two systems. Highly accurate energy models, presented
in Chapter 3 for both systems, were used to compute the energy consumption values. From
the figure, we observe that the memory subsystem consumes 65.2% and 45.9% of the total
energy budget for uni-processor ARM and multi-processor ARM systems, respectively. The
main memory for the multi-processor ARM based system is an onchip SRAM memory as
opposed to offchip SRAM memory for the uni-processor system. Therefore, the memory
subsystem accounts for a smaller portion of the total energy budget for the multi-processor
system than for the uni-processor system.

It is well understood that there does not exists a silver bullet to solve the memory wall
problem. Therefore, in order to diminish the impact of the problem, it has been proposed to
create memory hierarchies by placing small and efficient memories close to the processor
and to optimize the application code such that the working context of the application is
always contained in the memories closest to the processor. In addition, if the silicon estate is
not a limiting factor, it has been proposed to replace the high speed processor in the system
by a number of simple and relatively lower speed processors.

1.1.2 Memory Hierarchies

Up till very recently, caches have been considered as a synonym for memory hierarchies and
in fact, they are still the standard memory to be used in general purpose processors. Their

4 1 Introduction

0

1

2

3

4

5

6

64 128 256 512 1k 2k 4k 8k

Memory Size [bytes]

E
n

er
g

y
p

er
A

cc
es

s
[n

J] Cache (4-way) Cache (2-way)

Cache (DM) SPM

Fig. 1.2. Energy per Access Values for Caches and Scratchpad Memories

main advantage is that they work autonomously and are highly efficient in managing their
contents to store the current working context of the application. However, in the embedded
systems domain where the applications that can execute on the processor are restricted, the
main advantage of the caches turns into a liability. They are known to have high energy
consumption [63], low performance and exaggerated worst case execution time (WCET)
bounds [86, 135].

On the other end of the spectrum are the recently proposed scratchpad memories or
tightly coupled memories. Unlike a cache, a scratchpad memory consists of just a data
memory array and an address decoding logic. The absence of the tag memory and the address
comparison logic from the scratchpad memory makes it both area and power efficient [16].
Figure 1.2 presents the energy per access values for scratchpads of varying size and for
caches of varying size and associativity. From the figure, it can be observed that the energy
per access value for a scratchpad memory is always less than those for caches of the same
size. In particular, the energy consumed by a 2k byte scratchpad memory is a mere quarter
of that consumed by a 2k byte 4-way set associative cache memory.

However, the scratchpad memories, unlike caches, require explicit support from the
software for their utilization. A careful assignment of instructions and data is a prerequisite
for an efficient utilization of the scratchpad memory. The good news is that the assignment
of instructions and data enables tighter WCET bounds on the system as the contents of the
scratchpad memory at runtime are already fixed at compile time. Despite the advantages
of scratchpad memories, a consistent compiler toolchain for their exploitation is missing.
Therefore, in this work, we present a coherent compilation and simulation framework along
with a set of optimizations for the exploitation of scratchpad based memory hierarchies.

1.1.3 Software Optimization

All the embedded devices execute some kind of firmware or software for information pro-
cessing. The three objectives of performance, power and predictability are directly depen-
dent on the software that is executing on that system. According to Information Technology
Roadmap for Semiconductors (ITRS) 2001, embedded software now accounts for 80% of
the total development cost of the system [60]. Traditionally, the software for embedded sys-
tems was programmed using the assembly language. However, with the software becoming

1.2 Contributions 5

increasingly complex and with tighter time-to-market constraints, the software development
is currently done using high-level languages.

Another important trend that has emerged over the last few years, both in the general
computing and the embedded systems domain, is that processors are being made increasingly
regular. The processors are being stripped of complex hardware components which tried to
improve the average case performance by predicting the runtime behavior of applications.
Instead, the job of improving the performance of the application is now entrusted to the opti-
mizing compiler. The best known example of the current trend is the CELL processor [53].

The paradigm shift to give an increasing control of hardware to software, has twofold
implications: Firstly, a simpler and a regular processor design implies that there is less
hardware in its critical path and therefore, higher processor speeds could be achieved at
lower power dissipation values. Secondly, the performance enhancing hardware components
always have a local view of the application. In contrast, optimizing compilers have a global
view of the application and therefore, they can perform global optimizations such that the
application executes more efficiently on the regular processor.

From the above discussion, it is clear that the onus lies on optimizing compilers to
provide consumers with high performance and energy efficient devices. It has been realized
that a regular processor running an optimized application will be far more efficient in all
parameters than an irregular processor running an unoptimized application. The following
section provides an overview of the contribution of the book towards the improvement of
consumer oriented embedded systems.

1.2 Contributions

In this work, we propose approaches to ease the challenges of performance, energy (power)
and predictability faced during the design of consumer oriented embedded devices. In
addition, the proposed approaches attenuate the effect of the memory wall problem observed
on the memory hierarchies of the following three orthogonal processor and system archi-
tectures:

(a) Uni-Processor ARM [11]
(b) Multi-Processor ARM System-on-a-Chip [18]
(c) M5 DSP [28]

Two of the three considered architectures, viz. Uni-Processor ARM and M5 DSP [33], are
already present in numerous consumer electronic devices.

A wide range of memory optimizations, progressively increasing in complexity of anal-
ysis and the architecture, are proposed, implemented and evaluated. The proposed optimiza-
tions transform the input application such that it efficiently utilizes the memory hierarchy
of the system. The goal of the memory optimizations is to minimize the total energy con-
sumption while ensuring a high predictability of the system. All the proposed approaches
determine the contents of the scratchpad memory at compile time and therefore, a worst
case execution time (WCET) analysis tool [2] can be used to obtain tight WCET bounds
for the scratchpad based system. However, we do not explicitly report WCET values in this
work. The author of [133] has demonstrated that one of our approaches for a scratchpad

6 1 Introduction

based memory hierarchy improved the WCET bounds by a factor of 8 when compared to a
cache based memory hierarchy.

An important feature of the presented optimizations which makes them unique from
the contemporaries is that they consider both the instruction segments and data variables
together for optimization. Therefore, they are able to optimize the total energy consumption
of the system. The known approaches to optimize the data do not thoroughly consider the
impact of the optimization on the instruction memory hierarchy or on the control flow of
the application. In [124], we demonstrated that one such optimization [23] results in worse
total energy consumption values compared to the scratchpad overlay based optimization
(cf. Chapter 6) for the uni-processor ARM based system.

In this work, we briefly demonstrate that the memory optimizations are NP-hard prob-
lems and therefore, we propose both optimal and near-optimal approaches. The proposed
optimizations are implemented within two compiler backends as well as source level trans-
formations. The benefit of the first approach is that they can use precise information about
the application available in the compiler backend to perform accurate optimizations. During
the course of research, we realized that access to optimizing compilers for each different
processor is becoming a limiting factor. Therefore, we developed memory optimizations
as “compiler-in-loop” source level transformations which enabled us to achieve the retar-
getability of the optimizations at the expense of a small loss of accuracy.

An important contribution of this book is the presentation of a coherent memory
hierarchy aware compilation and simulation framework. This is in contrast to some ad-hoc
frameworks used otherwise by the research community. Both the simulation and compi-
lation frameworks are configured from a single description of the memory hierarchy and
access the same set of accurate energy models for each architecture. Therefore, we are able
to efficiently explore the memory hierarchy design space and evaluate the proposed memory
optimizations using the framework.

1.3 Outline

The remainder of this book is organized as follows:

• Chapter 2 presents the background information on power and performance optimiza-
tions and gives a general overview of the related work in the domain covered by this
dissertation.

• Chapter 3 describes the memory aware compilation and simulation framework used to
evaluate the proposed memory optimizations.

• Chapter 4 presents a simple non-overlayed scratchpad allocation based memory opti-
mization for a memory hierarchy composed of an L1 scratchpad memory and a back-
ground main memory.

• Chapter 5 presents a complex non-overlayed scratchpad allocation based memory
optimization for a memory hierarchy consisting of an L1 scratchpad and cache memories
and a background main memory.

• Chapter 6 presents scratchpad overlay based memory optimization which allows the
contents of the scratchpad memory to be updated at runtime with the execution context
of the application. The optimization focuses on a memory hierarchy consisting of an L1
scratchpad memory and a background main memory.

1.3 Outline 7

• Chapter 7 presents a combined data partitioning and a loop nest splitting based mem-
ory optimization which divides application arrays into smaller partitions to enable an
improved scratchpad allocation. In addition, it uses the loop nest splitting approach to
optimize the control flow degraded by the data partitioning approach.

• Chapter 8 presents a set of three memory optimizations to share the scratchpad memory
among the processes of a multiprocess application.

• Chapter 9 concludes the dissertation and presents an outlook on the important future
directions.

2

Related Work

Due to the emergence of the handheld devices, power and energy consumption parameters
have become one of the most important design constraints. A large body of the research is
devoted for reducing the energy consumption of the system by optimizing each of its energy
consuming components. In this chapter, we will an introduction to the research on power and
energy optimizing techniques. The goal of this chapter is provide a brief overview, rather
than an in-depth tutorial. However, many references to the important works are provided
for the reader.

The rest of this chapter is organized as follows: In the following section, we describe the
relationship between power dissipation and energy consumption.Asurvey of the approaches
used to reduce the energy consumed by the processor and the memory hierarchy is presented
in Section 2.2.

2.1 Power and Energy Relationship

In order to design low power and energy-efficient systems, one has to understand the physical
phenomenon that lead to power dissipation or energy consumption. In the literature, they
are often used as synonyms, though there are underlying distinctions between them which
we would like to elucidate in the remainder of this section. Since most digital circuits are
currently implemented using CMOS technology, it is reasonable to describe the essential
equations governing power and energy consumption for this technology.

2.1.1 Power Dissipation

Electrical power can be defined as the product of the electrical current through times the
voltage at the terminals of a power consumer. It is measured in the unit Watt. In the following,
we analyze the electric power dissipated by a CMOS inverter (cf. Figure 2.1), though the
issues discussed are valid for any CMOS circuit.A typical CMOS circuit consists of a pMOS
and an nMOS transistor and a small capacitance. The power dissipated by any CMOS circuit
can be decomposed into its static and dynamic power components.

PCMOS = Pstatic +Pdynamic (2.1)

9

10 2 Related Work

IN OUT

Vdd

pMOS

nMOS
C

Isc

Ip

Gnd

Ilk

Ilk
In

Fig. 2.1. CMOS Inverter

In an ideal CMOS circuit, no static power is dissipated when the circuit is in a steady state,
as there is no open path from source (Vdd) to ground (Gnd). Since MOS (i.e. pMOS and
nMOS) transistors are never perfect insulators, there is always a small leakage current Ilk

(cf. Figure 2.1) that flows from Vdd to Gnd. The leakage current is inversely related to the
feature size and exponentially related to the threshold voltage Vt. For example, the leakage
current is approximately 10-20 pA per transistor for 130 nm process with 0.7 V threshold
voltage, whereas it exponentially increases to 10-20 nA per transistor when the threshold
voltage is reduced to 0.3 V [3].

Overall, the static power Pstatic dissipated due to leakage currents amounts to less than
5% of the total power dissipated at 0.25 µm. It has been observed that the leakage power
increases by about a factor of 7.5 for each technological generation and is expected to
account for a significant portion of the total power in deep sub-micron technologies [21].
Therefore, the leakage power component grows to 20-25% at 130 nm [3].

The dynamic component Pdynamic of the total power is dissipated during the switching
between logic levels and is due to charging and discharging of the capacitance and due to
a small short circuit current. For example, when the input signal for the CMOS inverter
(cf. Figure 2.1) switches from one level logic level to the opposite, then there will be a short
instance when both the pMOS and nMOS transistors are open. During that time instant a
small short circuit current Isc flows from Vdd to Gnd. Short circuit power can consume
up to 30% of the total power budget if the circuit is active and the transition times of the
transistors are substantially long. However, through a careful design to transition edges, the
short circuit power component can be kept below 10-15% [102].

The other component of the dynamic power is due to the charge and discharge cycle of
the output capacitance C. During a high-to-low transition, energy equal to CV 2

dd is drained
from Vdd through Ip, a part of which is stored in the capacitance C. During the reverse
low-to-high transition, the output capacitance is discharged through In. In CMOS circuits,
this component accounts for 70-90% of the total power dissipation [102].

From the above discussion, the power dissipated by a CMOS circuit can approximated
to be its dynamic power component and is represented as follows:

2.2 Survey on Power and Energy Optimization Techniques 11

Memory
Energy

Code
Optimization

Memory
Synthesis

Processor
Energy

Code
Optimization DVS/DPM

Total
Energy

Fig. 2.2. Classification of Energy Optimization Techniques (Excluding Approaches at the Process,
Device and Circuit Levels)

PCMOS ≈ Pdynamic ∼ αfCV 2
dd (2.2)

where, α is the switching activity and f is the clock frequency supplied to the CMOS circuit.
Therefore, the power dissipation in a CMOS circuit is proportional to the switching activity
α, clock frequency f , capacitive load C and the square of the supply voltage Vdd.

2.1.2 Energy Consumption

Every computation requires a specific interval of time T to be completed. Formally, the
energy consumed E by a system for the computation is the integral of the power dissipated
over that time interval T and is measured in the unit Joule.

E =
∫ T

0
P (t)dt =

∫ T

0
V ∗ I(t)dt (2.3)

The energy consumption decreases if the time T required to perform the computation
decreases and/or the power dissipation P (t) decreases. Assuming that the measured cur-
rent does not show a high degree of variation over the time interval T and considering
that the voltage is kept constant during this period, Equation 2.3 can be simplified to the
following form:

E ≈ V ∗ Iavg ∗T (2.4)

Equation 2.4 was used to determine the energy model (cf. Subsection 3.1.1) for the uni-
processor ARM based system. Physical measurements were carried out to measure the
average current Iavg drawn by the processor and the on-board memory present on the
evaluation board. In the following section, we present an introduction to power and energy
optimization techniques.

2.2 Survey on Power and Energy Optimization Techniques

Numerous researchers have proposed power and energy consumption models [77, 78, 114,
118] at various levels of granularity to model the power or energy consumption of a processor

12 2 Related Work

or a complete system.All these models confirm that the processor and the memory subsystem
are major contributors of the total power or the energy budget of the system with the
interconnect being the third largest contributor. Therefore, for the sake of simplicity, we have
classified the optimization techniques according to the component which is the optimization
target. Figure 2.2 presents the classification of the optimization techniques into those which
optimize the processor energy and which optimize the memory energy. In the remainder
of this section, we will concentrate on different optimization techniques but first we would
like to clarify if optimizing for power is also optimizing for energy and vice-versa.

2.2.1 Power vs. Energy

According to its definition (cf. Equation 2.2), power in a CMOS circuit is dissipated at a given
time instant. In contrast, energy (cf. Equation 2.3) is the sum of the power dissipated during
a given time period. A compiler optimization reduces energy consumption if it reduces the
power dissipation of the system and/or the execution time of the application. However, if an
optimization reduces the peak power but significantly increases the execution time of the
application, the power optimized application will not have optimized energy consumption.
In wake of the above discussion, we deduce that the answer to the question of relationship
between power and energy optimizations depends on a third parameter viz. the execution
time. Therefore, the answer could be either yes or no, depending on the execution time of
the optimized application.

There are optimization techniques whose objective is to minimize the power dissipa-
tion of a system. For example, approaches [72, 116] perform instruction scheduling to
minimize bit-level switching activity on the instruction bus and therefore, minimize its
power dissipation. The priority for scheduling an instruction is inversely proportional to
its Hamming distance from an already scheduled instruction. Mehta et al. [88] presented
a register labeling approach to minimize transitions in register names across consecu-
tive instructions. A different approach [84] smoothens the power dissipation profile of an
application through instruction scheduling and reordering to increase the usable energy in
a battery. All the above approaches also minimize the energy consumption of the system as
the execution time of the application is either reduced or kept constant. In the remainder
of this chapter, we will not distinguish between optimizations which minimize the power
dissipation or the energy consumption.

2.2.2 Processor Energy Optimization Techniques

We further classify the approaches which optimize the energy consumption of a processor
core into the following categories:

(a) Energy efficient code generation and optimization
(b) Dynamic voltage scaling (DVS) and dynamic power management (DPM)

Energy Efficient Code Generation and Optimization:
Most of the traditional compiler optimizations [93], e.g. common subexpression elimination,
constant folding, loop invariant code motion, loop unrolling, etc. reduce the number of exe-
cuted instructions (operations) and as a result reduce the energy consumption of the system.
Source level transformations such as strength reduction and data type replacement [107]

2.2 Survey on Power and Energy Optimization Techniques 13

are known to reduce the processor energy consumption. The strength reduction optimiza-
tion replaces a costlier operation with a equivalent but cheaper operation. For example, the
multiplication of a number by a constant of the type 2n can be replaced by an n bit left
shift operation because a shift operation is known to be cheaper than a multiplication. The
data type replacement optimization replaces, for example, a floating point data type with a
fixed point data type. Though, care must be taken that the replacement does not affect the
accuracy bound, usually represented as Signal-to-Noise Ratio (SNR), of the application.

In most of the optimizing compilers, the code generation step consists of the code
selection, instruction scheduling and register allocation step. Approaches [114, 118] use
instruction-level energy cost models to perform an energy optimal code selection. The ARM
processors feature two different bit-width instruction sets, viz 16-bit Thumb and 32-bitARM
mode instruction sets. The 16-bit wide instructions result in an energy efficient but slower
code, whereas the 32-bit wide instructions result in faster code. Authors in [71] use this
property to propose a code selector which can choose between 16-bit and 32-bit instruction
sets depending on the performance and energy requirements of the application.

The energy or power optimizing instruction scheduling is already described in the pre-
vious subsection. Numerous approaches [25, 42, 45, 70, 109] to perform register allocation
are known. The register allocation step is known to reduce the energy consumption of a pro-
cessor by efficiently utilizing its register file and therefore, reducing the number of accesses
to the slow memory. Authors of [42] proposed an Integer Linear Programming (ILP) based
approach for optimal register allocation, while the approach [70] performs optimal alloca-
tion for loops in the application code. The approach [109] presents a generalized version of
the well known graph coloring based register allocation approach [25].

Dynamic Voltage Scaling and Dynamic Power Management:
Due to the emergence of embedded processors with voltage scaling and power manage-
ment features, a number of approaches have been proposed which utilize these features
to minimize the energy consumption. Typically, such an optimization is applied after the
code generation step. These optimizations require a global view of all tasks in the system,
including their dependences, WCETs, deadlines etc.

From Equation 2.2, we know that the power dissipation of a CMOS circuit decreases
quadratically with the decrease in the supply voltage. The maximum clock frequency fmax

for a CMOS circuit also depends on the supply voltage Vdd using the following relation:

1
fmax

∼ Vdd

(Vdd −Vt)2
(2.5)

where Vt is the threshold voltage [102] in a CMOS transistor. The power dissipation
decreases faster than the speed of the circuit on reducing the supply voltage. Therefore,
we could reduce the energy consumption of the circuit by appropriately scaling the supply
voltage. A number of interesting approaches have been proposed which apply voltage scal-
ing to minimize the energy consumption and also ensure that each task just finishes at its
deadline.

Authors in [57] proposed a design time approach which statically assigns a maximum
of two voltage levels to each task running on a processor with discretely variable voltages.
However, an underlying assumption of the approach is that it requires a constant execution
time or a WCET bound for each task.

14 2 Related Work

A runtime voltage scaling approach [75] is proposed for tasks with variable execution
times. In this approach, each task is divided in regions corresponding to time slots of equal
length. At the end of each region’s execution, a re-evaluation of the execution state of the
task is done. If the elapsed execution time after a certain number of regions is smaller than
the allotted time slots, the supply voltage is reduced to slow down the processor. Authors
in [105] proposed an approach to insert system calls at those control decision points which
affect the execution path. At these points, a re-evaluation of the task execution state is done
in order to perform voltage scaling.

The above approaches can be classified as compiler-assisted voltage scaling approaches,
as each task is pre-processed off-line by inserting system calls for managing the supply
voltage. Another class of approaches [49, 105] which combine traditional task scheduling
algorithms, such as Rate Monotonic Scheduling (RMS) and Earliest Deadline First (EDF)
with dynamic voltage scheduling are also known.

Dynamic Power Management (DPM) is used to save energy in devices that can be
switched on and off under the operating system’s control. It has gained a considerable atten-
tion over the last few years both from the research community [20, 110] and the industry [56].
The DPM approaches can be classified into predictive schemes [20, 110] and stochastic op-
timum control schemes [19, 106]. Predictive schemes attempt to predict a device’s usage
behavior depending on its past usage patterns and accordingly change the power states of
the device. Stochastic schemes make probabilistic assumptions on the usage pattern and
exploit the nature of the probability distribution to formulate an optimization problem. The
optimization problem is then solved to obtain a solution for the DPM approach.

2.2.3 Memory Energy Optimization Techniques

The techniques to optimize the energy consumption of the memory subsystem can also be
classified into the following two broad categories:

(a) Code optimization techniques for a given memory hierarchy.
(b) Memory synthesis techniques for a given application.

The first set of approaches optimizes the application code for a given memory hierarchy,
whereas, the second set of approaches synthesizes application specific memory hierarchies.
Both sets of approaches are designed to minimize the energy consumption of the memory
subsystem.

Code Optimization Techniques:
Janet Fabri [38] presented one of the earliest approach on optimizing an application code
for a given memory hierarchy. The proposed approach overlays arrays in the application
such that the required memory space for their storage can be minimized.

Numerous approaches [24, 101, 119, 138], both in the general computing and the high-
performance computing domain, have been proposed to optimize an application according
to a given cache based memory hierarchy. The main objective of all the approaches is to
improve the locality of instruction fetches and data accesses through code and data layout
transformations.

Wolf et al. [138] evaluated the impact of several loop transformations such as data tiling,
interchange, reversal and skewing on locality of data accesses. Carr et al. [24] considered

2.2 Survey on Power and Energy Optimization Techniques 15

two additional transformations, viz. scalar replacement and unroll-and-jam, for data cache
optimization.

Authors of [101, 119] proposed approaches to reorganize the code layout in order
to improve locality of instruction fetches and therefore, improve the performance of the
instruction cache. The approach [101] uses a heuristic which groups basic blocks within
a function according to their execution counts. In contrast, the approach [119] formulates
the code reorganization problem to minimize the number cache misses as an ILP problem
which is then solved to obtain an optimal code layout.

Another set of approaches is known to optimize the application code for Flash memories
and multi-banked DRAM main memories. Flash memories are use to store the application
code because of their non-volatile nature. Authors in [98, 133] proposed approaches to
manage the contents of the Flash memory and also utilize its execute-in-place (XIP) features
to minimize the overall memory requirements. Authors in [95] proposed an approach to
manage data within different banks of the main memory such that the unused memory banks
could be moved to the power-down state to minimize the energy consumption. In contrast,
authors in [133] use the scratchpad to move the main memory into the power-down state
for a maximum time duration.

Numerous approaches [23, 65, 97, 115] which optimize the application code such that
it efficiently utilizes scratchpad based memory hierarchies have been proposed. We will not
discuss these approaches here, as they are extensively discussed in subsequent chapters on
memory optimization techniques.

Application Specific Memory Hierarchy Synthesis:
There exists an another class of approaches which generate memories and/or memory
hierarchies which are optimized for a given application. These approaches exploit the fact
that most embedded systems typically run a single application throughout their entire life
time. Therefore, a custom memory hierarchy could be generated to minimize the energy
consumption of these embedded systems.

Vahid et al. [48, 141] have extensively researched the generation of application specific
and configurable memories. They observed that typical embedded applications spend a large
fraction of their time executing a small number of tight loops. Therefore, they proposed a
small memory called a loop cache [48] to store the loop bodies of the loops found in appli-
cations. In addition, they proposed a novel cache memory called way-halting cache [141]
for the early detection of cache misses. The tag comparison logic of the proposed memory
includes a small fully-associative memory that quickly detects a mismatch in a particular
cache way and then halts further tag and data access to that way.

Authors in [27] proposed a software managed cache where a particular way of the cache
can be blocked at runtime through control instructions. The cache continues to operate in the
same fashion as before, except that the replacement policy is prohibited from replacing any
data line from the blocked way. Therefore, the cache can be configured to ensure predictable
accesses to time-critical parts of an application.

The generation of application specific memory hierarchies has been researched by [82]
and [99]. Approaches in [82] can generate only scratchpad based memory hierarchies,
whereas those in [99] can create a memory hierarchy from a set of available memory
modules such as caches, scratchpads and stream buffers.

3

Memory Aware Compilation and Simulation Framework

A coherent compilation and simulation framework is required in order to develop memory
optimizations and to evaluate their effectiveness for complex memory hierarchies. The three
most important properties of such a framework should be the following:

(a) configurability
(b) accuracy
(c) coherency

The framework should have a high degree of configurability to simulate complex multi-
level memory hierarchies having a wide range of configurable parameters. In addition, it
should have access to accurate energy and timing models for the components of the system
under optimization. The accurate models enable us to guarantee the effectiveness of the
optimizations for real-life memory hierarchies. The coherence between the compilation and
simulation frameworks is required as it facilitates a systematic exploration of the design-
space. Unfortunately, much of the research community still utilizes ad-hoc frameworks for
the design and analysis of memory optimizations.

In this chapter, we describe the memory aware compilation and simulation frame-
work [131] specifically developed to study memory optimization techniques. Figure 3.1
presents the workflow of the developed framework. The coherence property of the frame-
work emerges from the fact that both the compilation and simulation frameworks are config-
ured (cf. Figure 3.1) from a unified description of the memory hierarchy. The configurability
of the framework is evident from the fact that it supports optimization of complex
memory hierarchies found in three orthogonal processor and system architectures, viz. uni-
processor ARM [11], multi-processor ARM [18] and M5 DSP [28] based systems. The
accuracy of the framework is due to the fact that both compilation and simulation frame-
works have access to accurate energy and timing models for the three systems. For the
uni-processor ARM [9] based system, the framework features a measurement based energy
model [114] with an accuracy of 98%. The framework also includes accurate energy mod-
els from ST Microelectronics [111] and UMC [120] for multi-processor ARM and M5 DSP
based systems, respectively.

The compilation framework includes an energy optimizing compiler [37] for ARM
processors and a genetic algorithm based vectorizing compiler [79] for M5 DSPs. All the
memory optimizations proposed in this book are integrated within the backends of these

17

18 3 Memory Aware Compilation and Simulation Framework

Fig. 3.1. Memory Aware Compilation and Simulation Framework

compilers. Unlike most of the known memory optimizations, the proposed optimization
consider both application code segments and data variables for optimization. They transform
the application code such that it efficiently utilizes the given memory hierarchy.

The benefit of generating optimizing compilers is that the memory optimizations can
utilize precise information about the system and the application available in the compiler
backend to perform accurate optimizations. However, the limiting factor is that optimiz-
ing compilers are required for every different processor architecture. This prompted us to
develop a processor independent “compiler-in-loop” source level memory optimizer. The
optimizer collects application specific information from the compiler and then drives the
compiler to perform memory optimizations. Currently, the optimizer supports the GCC tool
chain [44], though it can be easily made compatible with other compilers. Consequently, the
optimizer can optimize memory hierarchies for a wide spectrum of processors supported by
the GCC tool chain.

The simulation framework includes processor simulators for ARM and M5 DSP and
a highly configurable memory hierarchy simulator [89]. In addition, it includes an energy
profiler which uses the energy model and the execution statistics obtained from the simulators
to compute the energy consumed by the system during the execution of the application. The
simulation framework also includes a multi-processor system simulator [18] which is a
SystemC based cycle true simulator of the complete multi-processor system. Currently,
it has limited support for multi-level memory hierarchies. Therefore, the integration of the
memory hierarchy simulator [89] and the multi-processor simulator is part of our immediate
future work.

The workflow of the compilation and simulation framework, common for all the three
system architectures, is as follows: The user supplies an application C source code and an
XML description of the memory hierarchy to the compilation framework. In addition, the
user selects one of the several available memory optimizations to be performed on the appli-
cation. If a multi-processor ARM based system is under consideration, the chosen memory

3.1 Uni-Processor ARM 19

optimization is applied as a source level transformation and the transformed application is
compiled using the GCC tool chain. Otherwise, the memory optimization is applied in the
backend of the corresponding compilers.

The compilation framework generates the optimized executable binary of the applica-
tion which is then passed to the simulation framework for the evaluation of the memory
optimization. For uni-processor ARM and M5 DSP based systems, the executable binary is
first executed on the processor simulator to generate the instruction trace. The instruction
trace is then passed through the memory hierarchy simulator which simulates the memory
hierarchy described in the XML file and collects the access statistics for all memories in
the hierarchy. The energy profiler collects these statistics from the processor and memory
hierarchy simulators and uses the accurate timing and energy models to compute the total
execution time and the total energy consumed by the system. On the other hand, the multi-
processor simulator simulates the entire system including the processors, memories, buses
and other components. In addition, it collects system statistics and reports the total energy
consumption of the system.

The remainder of the chapter is organized as follows: The following section describes
in-depth the energy model, the compilation and simulation frameworks for the uni-processor
ARM based systems. Sections 3.2 and 3.3 provide a similar description of the compila-
tion and simulation frameworks for multi-processor ARM and M5 DSP based systems,
respectively.

3.1 Uni-Processor ARM

The experiments for the uni-processor ARM based system are based on an ARM7TDMI
evaluation board (AT91EB01) [13]. The ARM7TDMI processor is a simple 32 bit RISC
processor which implements the ARM Instruction Set Architecture (ISA) version 4T [11].
It is the most widely used processor core in contemporary low power embedded devices.
Therefore, it was chosen as the target processor for evaluating the proposed memory aware
energy optimizations.

Control
Logic

Debug
Logic

Thumb
Decoder

32 bit ARM Datapath

Scratchpad
Memory (4 kB)

Bus Interface Unit

Coprocessor
Interface

ARM7TDMI

Fig. 3.2. ARM7TDMI Processor

ARM7TDMI
core

4 kBonchip
SPM

I/O system

512 kBSRAM
(main memory) Flash Rom

AT91EB01

I/O system

Fig. 3.3. ATMEL Evaluation Board

20 3 Memory Aware Compilation and Simulation Framework

Figure 3.2 depicts the block diagram of the ARM7TDMI processor core. The data-
path of the processor core features a 32 bit ALU, 16 registers, a hardware multiplier and
a barrel shifter. The processor has a single unified bus interface for accessing both data
and instructions. An important characteristic of the processor core is that it supports two
instruction modes, viz. ARM and Thumb. The ARM mode allows the 32 bit instructions to
exploit the complete functionality of the processor core, whereas Thumb mode instructions
are 16 bits wide and can utilize only a reduced functionality of the processor core. For
example, Thumb mode instructions can access only the first 8 of 16 registers available in
the core. The other important restriction is that predicated instructions enabling conditional
execution are not allowed in the Thumb mode.

The processor also includes a hardware decoder unit (cf. Thumb Decoder in Figure 3.2)
to internally convert 16 bit Thumb instructions to the corresponding 32 bit instructions.
The use of Thumb mode instructions is recommended for low power applications, as it
results in a high density code which leads to around 30% reduction in the energy dissipated
by instruction fetches [71]. The ARM mode instructions are used for performance critical
application code segments, as they can utilize the full functionality of the processor core.
The availability of predicated instructions in ARM mode reduces the number of pipeline
stalls which further improves the performance of the code. Our research compiler (ENCC)
generates only Thumb mode instructions because the focus of our research is primarily
directed towards energy optimizations.

In addition to the ARM7TMDI processor core, the evaluation board (AT91EB01) has
a 512 kB on-board SRAM which acts as the main memory, a Flash ROM for storing the
startup code and some external interfaces. Figure 3.3 presents the top-level diagram of the
evaluation board. The ARM7TDMI processor core features a 4 kB onchip SRAM memory,
commonly known as scratchpad memory. Extensive current measurements on the evaluation
board were performed to determine an instruction level energy model which is described in
the following subsection.

3.1.1 Energy Model

The energy model for the uni-processor ARM based system is based on the energy model
from Tiwari et al. [118] and was derived after performing numerous physical measurements
on the evaluation board. A detailed description of the energy model can be found in [112].

Tiwari et al. [118] proposed an instruction level energy model of an Intel 486DX2
processor. According to the model, the energy consumption of each instruction consists of
two components, namely base cost and inter-instruction cost. The base cost for an instruction
refers to the energy consumed by the instruction when it is executed in isolation on the
processor. Therefore, it is computed by executing a long sequence of the same instruction
and measuring the average energy consumed (or the average current drawn) by the processor
core. The inter-instruction cost refers to the amount of energy dissipated when the processor
switches from one instruction to another. The reason for this energy cost is that on an
instruction switch, extra current is drawn because some parts of the processor are switched
on while some other parts are switched off. Tiwari et al. also found that for RISC processors,
the inter-instruction cost is negligible, i.e. around 5% for all instructions.

The energy model [112] used in our setup extends the energy model as it incorporates the
energy consumed by the memory subsystem in addition to that consumed by the processor

3.1 Uni-Processor ARM 21

Instruction Instruction Data Energy Execution Time
Memory Memory (nJ) (CPU Cycles)

MOVE Main Memory Main Memory 32.5 2
Main Memory Scratchpad 32.5 2
Scratchpad Main Memory 5.1 1
Scratchpad Scratchpad 5.1 1

LOAD Main Memory Main Memory 113.0 7
Main Memory Scratchpad 49.5 4
Scratchpad Main Memory 76.3 6
Scratchpad Scratchpad 15.5 3

STORE Main Memory Main Memory 98.1 6
Main Memory Scratchpad 44.8 3
Scratchpad Main Memory 65.2 5
Scratchpad Scratchpad 11.5 2

Table 3.1. Snippet of Instruction Level Energy Model for Uni-Processor ARM System

core. According to the energy model, the energy E(inst) consumed by the system during
the execution of an instruction (inst) is represented as follows:

E(inst) = Ecpu instr(inst)+Ecpu data(inst)+Emem instr(inst)+Emem data(inst)
(3.1)

where Ecpu instr(inst) and Ecpu data(inst) represent the energy consumed by the pro-
cessor core during the execution of the instruction (inst). Similarly, the energy values
Emem instr(inst) and Emem data(inst) represent the energy consumed by the instruction
and the data memory, respectively.

The ARM7TDMI processor core features a scratchpad memory which could be utilized
for storing both data variables and instructions. Therefore, additional experiments were
carried by varying the location of variables and instructions in the memory hierarchy. An
energy model derived from these additional experiments is shown as follows:

E(inst, imem,dmem) = Eif (imem)+Eex(inst)+Eda(dmem) (3.2)

where E(inst, imem,dmem) returns the total energy consumed by the system during the
execution of the instruction (inst) fetched from the instruction memory (imem) and possibly
accessing data from the data memory (dmem). The validation of the energy model revealed
that it possesses a high degree of accuracy, as the average deviation of the values predicted
by the model and the measured values was found to be less than 1.7%.

A snippet of the energy model for MOVE, LOAD and STORE instructions is presented
in Table 3.1. The table returns the energy consumption of the system due to the execution
of an instruction depending upon the instruction and the data memory. It also returns the
execution time values for the instructions which are derived from the reference manual [11].
From the table, it can be observed that the energy and execution time values for MOVE
instruction are independent of the data memory, as the instruction makes no data access in
the memory. A reduction of 50% in the energy consumption values for LOAD and STORE
instructions can be observed when the scratchpad memory is used as the data memory.
It should also be noted that when both the instruction and data memories are mapped to
the scratchpad memory, the system consumes the least energy and time to execute the

22 3 Memory Aware Compilation and Simulation Framework

Memory Size Access Access Width Energy Per Access Time
(Bytes) Type (Bytes) Access (nJ) (CPU Cycles)

Main Memory 512k Read 1 15.5 2
Main Memory 512k Write 1 15.0 2
Main Memory 512k Read 2 24.0 2
Main Memory 512k Write 2 29.9 2
Main Memory 512k Read 4 49.3 4
Main Memory 512k Write 4 41.1 4

Scratchpad 4096 Read x 1.2 1
Scratchpad 4096 Write x 1.2 1

Table 3.2. Energy per Access and Access Time Values for Memories in Uni-Processor ARM System

instructions. This underscores the importance of the scratchpad memory in minimizing the
energy consumption of the system and the execution time of the application.

Table 3.2 summarizes the energy per access and access time values for the main memory
and the scratchpad memory. The energy values for the main memory are computed through
physical current measurements on the ARM7TDMI evaluation board. The scratchpad is
placed on the same chip as the processor core. Hence, the sum of the processor energy and
the scratchpad access energy can only be measured. Several test programs which utilized
the scratchpad memory were executed and their energy consumption was computed. This
energy data along with the linear equation of the energy model (cf. Equation 3.2) was used
to derive the energy per access values for the scratchpad memory.

Fig. 3.4. Energy Aware C Compiler (ENCC)

3.1.2 Compilation Framework

The compilation framework for a uni-processor ARM is based on the energy optimizing
C compiler ENCC [37]. As shown in the Figure 3.4, ENCC takes application source code
written in ANSI C [7] as input and generates an optimized assembly file containing Thumb
mode instructions. The assembly file is then assembled and linked using the standard tool
chain from ARM, and the executable binary of the application is generated.

In the first step, the source code of the application is scanned and parsed using the
LANCE2 [76] front-end which after lexical and syntactical analysis generates a LANCE2

3.1 Uni-Processor ARM 23

specific intermediate representation also known as IR-C. IR-C is a low-level representation
of the input source code where all instructions are represented in three address code format.
All high-level C constructs such as loops, nested if-statements and address arithmetic in the
input source code are replaced by primitive IR-C statements. Standard processor independent
compiler optimizations such as constant folding, copy propagation, loop invariant code
motion and dead code elimination [93] are performed on the IR-C.

The optimized IR-C is passed to the ENCC backend where it is represented as a forest
of data flow trees. The tree pattern matching based code selector uses the instruction level
energy model and converts the data flow trees into a sequence of Thumb mode instructions.
The code selector generates an energy optimal cover of the data flow trees as it considers the
energy value of an instruction to be its cost during the process of determining a cover. The
instruction-level energy model described in the previous subsection is used to obtain energy
consumption values or cost for the instructions. After the code selection step, the control
flow graph (CFG) which represents basic blocks as nodes and the possible execution flow
as edges, is generated.

The control flow graph is then optimized using standard processor dependent opti-
mizations, like register allocation1, instruction scheduling and peephole optimization. The
backend optimizer also includes a well known instruction cache optimization called trace
generation [101]. The instruction cache optimization provides the foundation for the mem-
ory optimizations proposed in the subsequent chapters and therefore, it is described seper-
ately in the following subsection.

In the last step, one of the several memory optimizations is applied and the assembly
code is generated which is then assembled and linked to generate the optimized executable
binary of the input application. The proposed memory optimizations utilize the energy model
and the description of the memory hierarchy to optimize the input application such that on
execution it efficiently utilizes the memory hierarchy.

3.1.3 Instruction Cache Optimization

Trace generation [101] is an optimization which is known to have a positive effect on the
performance of both the instruction cache and the processor. The goal of the trace generation
optimization is to create sequences of basic blocks called traces such that the number of
branches taken by the processor during the execution of the application is minimized.

Definition 3.1 (Trace). A trace is a sequence of basic blocks Bi · · ·Bj which satisfy the
property that if the execution control flow enters any basic block Bk : i ≤ k ≤ j−1 belonging
to the trace, then there must exist a path from Bk to Bj consisting of only fall-through edges,
i.e. the execution control flow must be able to reach basic block Bj from basic block Bk

without passing through a taken branch instruction.

A sequence of basic blocks which satisfies the above definition of a trace, has the fol-
lowing properties:

(a) Basic blocks Bi · · ·Bj belonging to a trace are sequentially placed in adjacent
memory locations.

1 Some researchers disagree on register allocation being classified as an optimization.

24 3 Memory Aware Compilation and Simulation Framework

(b) The last instruction of each trace is always an unconditional jump or a return
instruction.

(c) A trace, like a function, is an atomic unit of instructions which can be placed at any
location in the memory without modifying the application code.

The third property of traces is of particular importance to us, as it allows the proposed
memory optimizations to consider traces as objects of finest granularity for performing
memory optimizations. The problem of trace generation is formally defined as follows:

Problem 3.2 (Trace Generation). Given a weighted control flow graph G(N,E), the prob-
lem is to partition the graph G such that the sum of weights of all edges within the traces is
maximized.

The control flow of the application is transformed to generate traces such that each intra-
trace edge is a fall-through edge. In the case that intra-trace edge represents a conditional
taken branch, then the conditional expression is negated and the intra-trace edge is transform
to a fall-through edge.

The edge weight w(ei) of an edge ei ∈ E represents its execution frequency during
the execution of the application. The sum of execution frequencies of taken and non-taken
branch instruction is a constant for each run of application with the same input parameters.
Therefore, the maximization of the sum of intra-trace edge weights results in the minimiza-
tion of the sum of inter-trace edge weights which leads to the minimization of execution
frequencies of unconditional jumps and taken branches.

The trace generation optimization has twofold benefits. First, it enhances the locality of
instruction fetches by placing frequently accessed basic blocks in adjacent memory loca-
tions. As a result, it improves the performance of the instruction cache. Second, it improves
the performance of the processor’s pipeline by minimizing the number of taken branches.
In our setup, we restrict the trace generation problem to generate traces whose total size is
smaller than the size of the scratchpad memory.

The trace generation problem is known to be an NP-hard optimization problem [119].
Therefore, we propose a greedy algorithm which is similar to the algorithm for the maximum
size bounded spanning tree problem [30]. For the sake of brevity, we refrain from present-
ing the algorithm which can alternatively be found in [130]. Trace generation is a fairly
common optimization and has been used by a number of researchers to perform memory
optimizations [36, 103, 119] which are similar to those proposed in this dissertation.

3.1.4 Simulation and Evaluation Framework

The simulation and evaluation framework consists of a processor simulator, a memory
hierarchy simulator and a profiler. In the current setup, the processor simulator is the standard
simulator viz.ARMulator [12] available fromARM Ltd.ARMulator supports the simulation
of only the basic memory hierarchies. Therefore, we decided to implement a custom memory
hierarchy simulator (MEMSIM) with the focus on accuracy and configurability.

In the current workflow (cf. Figure 3.1), the processor simulator executes the applica-
tion binary considering a flat memory hierarchy and generates a file containing the trace
of executed instructions. The instruction trace is then fed into the memory simulator which
simulates the specified memory hierarchy. The profiler accesses the instruction trace, the

3.1 Uni-Processor ARM 25

Benchmark Code Size Data Size Description
(bytes) (bytes)

adpcm 804 4996 Encoder and decoder routines for Adaptive Differential Pulse
Code Modulation

edge detection 908 7792 Edge detection in a tomographic image
epic 12132 81884 A Huffman entropy coder based lossy image compression

histogram 704 133156 Global histogram equalization for 128x128 pixel image
mpeg4 1524 58048 mpeg4 decoder kernel
mpeg2 21896 32036 Entire mpeg2 decoder application

multisort 636 2020 A combination of sorting routines
dsp 2784 61272 A combination of various dsp routines (fir, fft, fast-idct, lattice-

init, lattice-small)
media 3280 75672 A combination of multi-media routines (adpcm, g721, mpeg4,

edge detection)

Table 3.3. Benchmark Programs for Uni-Processor ARM Based Systems

statistics from the memory simulator and the energy database to compute the system statis-
tics, e.g. the execution time in CPU cycles and the energy dissipation of the processor and the
memory hierarchy. In the following, we briefly describe the memory hierarchy simulator.

Memory Hierarchy Simulator:
In order to efficiently simulate different memory hierarchy configurations, a flexible memory
hierarchy simulator (MEMSIM) was developed. While a variety of cache simulators is
available, none of them seemed suitable for an in-depth exploration of the design space of
a memory hierarchy. In addition to scratchpad memories, the simulation of other memories
e.g. the loop caches, is required. This kind of flexibility is missing in previously published
memory simulation frameworks which tend to focus on one particular component of the
memory hierarchy.

The two important advantages of MEMSIM over other known memory simulators,
such as Dynero [34], are its cycle true simulation capability and configurability. Currently,
MEMSIM supports a number of different memories with different access characteristics,
such as caches, loop caches, scratchpads, DRAMs and Flash memories. These memories can
be connected in any manner to create a complex multilevel memory hierarchy. MEMSIM
takes the XMLdescription of the memory hierarchy and an instruction trace of an application
as input. It then simulates the movement of each address of the instruction trace within the
memory hierarchy in a cycle true manner.

A graphical user interface is provided so that the user can comfortably select the com-
ponents that should be simulated in the memory hierarchy. The GUI generates a description
of the memory hierarchy in the form of an XML file. Please refer to [133] for a complete
description of the memory hierarchy simulator.

Benchmark Suite:
The presentation of the compilation and simulation framework is not complete without the
description of the benchmarks that can be compiled and simulated. Our research compiler
ENCC has matured into a stable compiler supporting all ANSI-C data types and can compile

26 3 Memory Aware Compilation and Simulation Framework

and optimize applications from the Mediabench [87], MiBench [51] and UTDSP [73]
benchmark suites.

Table 3.3 summarizes the benchmarks that are used to evaluate the memory optimiza-
tions. The table also presents the code and data sizes along with a small description of
the benchmarks. It can be observed from the table that small and medium size real-life
applications are considered for optimization.

Bus (AMBA STBus)

Private

MEM

Private

MEM

Private

MEM

Shared

MEM
SEM

ARM

SPM

IRQ

ARM

SPM

ARM

SPM

Fig. 3.5. Multi-Processor ARM SoC

3.2 Multi-Processor ARM

The Multi-Processor ARM simulator shown in Figure 3.5 is a SystemC based cycle true
multiprocessor simulation framework. It is a full system simulation framework and allows
simulation of a configurable number of ARM processors, their local memories, a shared
main memory, hardware interrupt and semaphore modules and the bus interconnect. The
simulation framework can be configured to simulate an AMBA AHB bus [10] or an ST-Bus
a proprietary bus by STMicroelectronics, as the bus interconnect.

As shown in the figure, each ARM-based processing unit has its own private memory
which can be a unified cache or separate caches for data and instructions. A wide range
of parameters may be configured, including the size, associativity and the number of wait
states. Besides the cache, a scratchpad memory of configurable size can be attached to
each processing unit. The simulation framework represents a homogeneous multi-processor
system. Therefore, each processor is configured to have the same configuration of its local
memory as the other processors.

The multi-processor ARM simulation framework does not support a configurable mul-
tilevel memory hierarchy. The memory hierarchy consists of instruction and data caches,
scratchpads and the shared main memory. Currently, an effort is being made to integrate
MEMSIM into the multi-processor simulator.

3.2 Multi-Processor ARM 27

3.2.1 Energy Model

The multi-processorARM simulation framework includes energy models for the processors,
the local memories and the interconnect. These energy models compute the energy spent
by the corresponding component, depending on its internal state. The energy model for the
ARM processor differentiates between running or idle states of the processor and returns
0.055 nJ and 0.036 nJ as the energy consumption values for the processor states. The above
values were obtained from STMicroelectronics for an implementation of ARM7 on an
0.13 µm technology.Though the energy model is not as detailed as the previous measurement
based instruction level energy model, it is sufficiently accurate for a simpleARM7 processor.

The framework includes an empirical energy model for the memories created by the
memory generator from STMicroelectronics for the same 0.13 µm technology. In addition,
the framework includes energy models for the ST-Bus also obtained from STMicroelec-
tronics. However, no energy model is included for the AMBA-Bus. A detailed discussion
on the energy models for the multi-processor simulation framework can be found in [78].

Fig. 3.6. Source Level Memory Optimizer

3.2.2 Compilation Framework

The compilation framework for the multi-processor ARM based systems includes a source
level memory optimizer which is based on the ICD-C compilation framework [54] and
GCC’s cross compiler tool chain forARM processors. Figure 3.6 demonstrates the workflow
of the compilation framework. The application source code is passed through the ICD-C
front-end which after lexical and syntactical analysis generates a high-level intermediate
representation (ICD-IR) of the input source code. ICD-IR preserves the original high-level
constructs, such as loops, if-statements and is stored in the format of an abstract syntax tree
so that the original C source code of the application can be easily reconstructed.

The memory optimizer takes the abstract syntax tree, the memory hierarchy descrip-
tion and an application information file as input. It considers both the data variables and
application code fragments for optimization. The information regarding the size of data
variables can be computed at the source level but not for code fragments. Therefore, the
underlying compiler is used to generate this information for the application and is stored in
the application information file.

The memory optimizer accesses the accurate energy model and performs transforma-
tions on the abstract syntax trees of the application. On termination, the memory optimizer

28 3 Memory Aware Compilation and Simulation Framework

generates application source files one for each non-cacheable memory in the memory
hierarchy. Since the multi-processor ARM simulator does not support complex memory
hierarchies, it is sufficient to generate two source files, one for the shared main memory and
one for the local scratchpad memory.

The generated source files are then compiled and linked by the underlying GCC tool
chain to generate the final executable. In addition, the optimizer generates a linker script
which guides the linker to map the contents of the source files to the corresponding memories
in order to generate the final executable. The executable is then simulated using the multi-
processor ARM simulator, and detailed system statistics, i.e. total execution cycles, memory
accesses, energy consumption values for processors and memories are collected.

Fig. 3.7. Multi-Process Edge Detection Application

Multi-Process Edge Detection Benchmark:
The memory optimizations for the multi-processor ARM based system are evaluated for
the multi-process edge detection benchmark. The original benchmark was obtained from
[50] and was parallelized so that it can execute on a multi-processor system.

The multi-processor benchmark consists of an initiator process, a terminator process and
a variable number of compute processes to detect the edges in the input tomographic images.
The mapping of the processes to the processors is done manually and is depicted in Figure 3.7.
As can be seen from the figure, each process is mapped to a different processor. Therefore, a
minimum of three processors is required for executing the multi-process application. Each
processor is named according to the mapped process.

The multi-process application represents the producer-consumer paradigm. The initiator
process reads an input tomographic image from the stream of images and writes it to the
input buffer of a free compute process. The compute process then determines the edges
on the input image and writes the processed image onto its output buffers. The terminator
process then reads the image from the output buffer and then writes it to a backing store.
The synchronization between the initiator process and the compute processes is handled
by a pair of semaphores. Similarly, another of pair semaphores is used to maintain the
synchronization between the compute processes and the terminator process.

3.3 M5 DSP 29

Vector Engine Scalar Engine

Data
Paths

Register
File

Data
Memory

Program
Memory

AGU

Program
Control

Slice

Inter-
Connectivity

Fig. 3.8. Block Diagram of M5 DSP Fig. 3.9. Die Image of M5 DSP

3.3 M5 DSP

The M5 DSP [28] was designed with the objective to create a low power and high throughput
digital signal processor. It has a core power consumption of 23 mW and a peak performance
of 3.6 GFLOPS/s. The M5 DSP, depicted in Figures 3.8 and 3.9, consists of a fixed control
processing part (scalar engine) and a scalable signal processing part (vector engine). The
functionality of the data paths in the vector engine can be tailored to suit the application.

The vector engine consists of a variable number of slices where each slice comprises
of a register file and a data path. The interconnectivity unit (ICU) connects the slices with
each other and with the control part of the processor. All the slices are controlled using the
single instruction multiple data (SIMD) paradigm and are connected to a 64 kB data memory
featuring a read and a write port for each slice. The scalar engine consists of a program
control unit (PCU), address generation unit (AGU) and a program memory. The PCU
performs operations like jumps, branches and loops. It also features a zero-overhead loop
mechanism supporting two-level nested loops. The AGU generates addresses for accessing
the data memory.

The processor was synthesized for a standard-cell library by Virtual SiliconTM for the
130 nm 8-layer-metal UMC process using Synopsys Design CompilerTM. The resulting
layout of the M5 DSP is presented in Figure 3.9. The total die size was found to be 9.7 mm2

with data memory consuming 73% of the total die size.
In our setup, we inserted a small scratchpad memory in between the large data memory

and the register file. The scratchpad memory is used to store only data arrays found in
the applications. The energy consumption of the entire system could not be computed as
the instruction-level energy model for the M5 DSP is currently unavailable. An accurate
memory energy model from UMC is used to compute the energy consumption of the data
memory subsystem. However, due to copyright reasons, we are forbidden to report exact
energy values. Therefore, only normalized energy values for the data memory subsystem of
the M5 DSP will be reported in this work.

The compilation framework for the M5 DSP is similar to that for the uni-processor ARM
based system. The only significant difference between the two is that the compiler for the
M5 DSP uses a phase coupled code generator [80]. The code generation is divided into
four subtasks: code selection (CS), instruction scheduling (IS), register allocation (RA)

30 3 Memory Aware Compilation and Simulation Framework

and address code generation (ACG). Due to the strong inter-dependencies among these
subtasks, the code generator uses a genetic algorithm based phase-coupled approach to
generate highly optimized code for the M5 DSP. A genetic algorithm is preferred over
an Integer Linear Programming (ILP) based approach because of the non-linearity of the
optimization problems for the subtasks. Interested readers are referred to [79] for an in-depth
description of the compilation framework.

The proposed memory optimizations are integrated into the backend of the compiler
for M5 DSP. The generated code is compiled and linked to create an executable which is
then simulated on a cycle accurate processor and memory hierarchy simulator. Statistics
about the number and type of accesses to the background data memory and the scratchpad
memory are collected. These statistics and the energy model are used to compute the energy
dissipated by the data memory subsystem of the M5 DSP. The benchmarks for M5 DSP
based systems are obtained from the UTDSP [73] benchmark suite.

4

Non-Overlayed Scratchpad Allocation Approaches for
Main / Scratchpad Memory Hierarchy

In this first chapter on approaches to utilize the scratchpad memory, we propose two simple
approaches which analyze a given application and select a subset of code segments and
global variables for scratchpad allocation. The selected code segments and global variables
are allocated onto the scratchpad memory in a non-overlayed manner, i.e. they are mapped
to disjoint address regions on the scratchpad memory. The goal of the proposed approaches
is to minimize the total energy consumption of the system with a memory hierarchy con-
sisting of an L1 scratchpad and a background main memory. The chapter presents an ILP
based non-overlayed scratchpad allocation approach and a greedy algorithm based fractional
scratchpad allocation approach. The presented approaches are not entirely novel as similar
techniques are already known. They are presented in this chapter for the sake of complete-
ness, as the advanced scratchpad allocation approaches presented in the subsequent chapters
improve and extended these approaches.

The rest of the chapter is organized as follows: The following section provides an
introduction to the non-overlayed scratchpad allocation approaches, which is followed by
the presentation of a motivating example. Section 4.3 surveys the wealth of work related to
non-overlayed scratchpad allocation approaches. In Section 4.4, preliminaries are described
and based on that the scratchpad allocation problems are formally defined. Section 4.5
presents the approaches for non-overlayed scratchpad allocation. Experimental results to
evaluate the proposed approaches for uni-processor ARM, multi-processor ARM and M5
DSP based systems are presented in Section 4.6. Finally, Section 4.7 concludes the chapter
with a short summary.

4.1 Introduction

In earlier chapters, we discussed that a scratchpad memory is a simple SRAM memory
invariably placed onchip along with the processor core. An access to the scratchpad con-
sumes much less energy and CPU cycles than that to the main memory. However, unlike
the main memory the size of the scratchpad memory, due to price of the onchip real estate,
is limited to be a fraction of the total application size.

The goal of the non-overlayed scratchpad allocation (SA) problem is to map memory
objects (code segments and global variables) to the scratchpad memory such that the total

31

32 4 Non-Overlayed ScratchpadAllocationApproaches for Main / Scratchpad Memory Hierarchy

0x00 0x00FFFFFF

A[N]Scratchpad
Memory

0x00300000 0x00302000

Fig. 4.1. Processor Address Space Containing a Scratchpad Memory

energy consumption of the system executing the application is minimized. The mapping
should be done under the constraint that the aggregate size of memory objects mapped to the
scratchpad memory should be less than the size of the memory. The proposed approaches use
an accurate energy model which, based on the number and the type of accesses originating
from a memory object and the target memory, compute the energy consumed by the memory
object.

A closer look at the scratchpad allocation (SA) problem reveals that there exists an
exact mapping between the problem and the knapsack problem (KP) [43]. According to the
knapsack problem, the hitch-hiker has a knapsack of capacity W and has access to various
objects ok ∈ O each with a size wk and a perceived profit pk. Now, the problem of the hitch-
hiker is to choose a subset of objects Okp ⊆ O to fill the knapsack (

∑
ok∈Okp

wk ≤ W)

such that the total profit (
∑

ok∈Okp
pk) is maximized. Unfortunately, the knapsack problem

is known to be an NP-complete problem [43].
In most embedded systems, the scratchpad memory occupies a small region of the

processor’s address space. Figure 4.1 shows that in the considered uni-processor ARM7
setup, the scratchpad occupies a 4k address region ([0x00300000, 0x00302000]) from
the processor’s address space ([0x00000000, 0x00FFFFFF]).Any access to the 4k address
region is translated to a scratchpad access, whereas any other address access is mapped to the
main memory. We utilize this property to relax the scratchpad allocation problem such that
a maximum of one memory object can be fractionally allocated to the scratchpad memory.
We term the relaxed problem as the fractional scratchpad allocation (Frac. SA) problem.
Figure 4.1 depicts the scenario when an array A is partially allocated to the scratchpad
memory. It should be noted that this seamless scratchpad and main memory accesses may
not be available in all systems.

The Frac. SA problem demonstrates a few interesting properties. First, it is similar to the
fractional knapsack problem (FKP) [30], a variant of the KP, which allows the knapsack to
be filled with partial objects. Second, a greedy approach [30], which fills the knapsack with
objects in the descending order of their valence (profit per unit size pk/wk) and breaking
only the last object if it does not fit completely, finds the optimal solution for the fractional
knapsack problem. This implies that the greedy approach for FKP can be also use to solve
the Frac. SA problem, as it allows the factional allocation of a maximum of one memory
object.

Third, the total profit obtained by solving the fractional knapsack problem is larger than
or equal to the profit of the corresponding knapsack problem as the former is a relaxation of
the latter.An unsuspecting reader might imply that the solution to Frac. SAproblem achieves

4.2 Motivation 33

larger reduction in energy consumption than that to the SA problem. Unfortunately, this is
not always true for the scratchpad allocation problems as the memory objects do not have
homogenous valences (pk/wk), i.e. each element within a memory object is not accessed
an equal number of times. For example, consider the following loop nest:

for(i=0;i<N;i++) {
for(j=i;j<N;j++) {
A[j] = . . .; } }

The mapping of array A as the last object to the scratchpad (cf. Figure 4.1) will not result
in an optimal solution, as element A[N-1] is accessed far more times than element A[0].
The Frac. SA problem achieves better solutions than the SA problem if the fractionally
allocated memory object has uniform valence for each of its elements or is biased towards
the scratchpad allocated portion. The computation of a fine grained valence for each memory
object was not considered as it is not trivial and requires a significant computation overhead
for profiling. Nevertheless, we will demonstrate that the greedy approach for the Frac. SA
problem computes solutions which are very close to optimal solutions for the SA problem.
In the following section, we begin by describing a motivating example.

Gauss
Blur

Detect
Roots

Compute
Edges

in_image gb_image ce_image out_image

Fig. 4.2. Workflow of Edge Detection Application

Instruction Memory Data Memory

Function Size (bytes) Execution Count Array Size (bytes) Access Count

ReadImage 32 38,092 in image 5,120 9,400
GaussBlur 324 785,313 gb image 5,120 41,320
ComputeEdges 144 1,137,824 ed image 5,120 9,960
DetectRoots 224 964,147 out image 5,120 5,648
WriteImage 20 14,411 tmp image 5,120 50,720

Gauss 16 13,686
x offset 32 36,480
y offset 32 36,480

Total Inst 744 2,939,787 Total Data 30,800 203,694

Table 4.1. Execution and Access Counts for Functions and Arrays in Edge Detection Application

4.2 Motivation

We begin by deciding which fragments of the application should be considered as memory
objects or as candidates for allocation on the scratchpad memory. Should the set of memory
objects consist of only data elements or only instructions, or a combination of both? In
order to obtain the answer to the above question, we compiled the Edge Detection applica-
tion for an ARM7 processor using an energy optimizing research compiler (ENCC) [37].

34 4 Non-Overlayed ScratchpadAllocationApproaches for Main / Scratchpad Memory Hierarchy

Memory Size Access Width Energy per Access
(bytes) (bytes) (abstract units)

Scratchpad 512 2 2
Scratchpad 512 4 2
Main Memory 64k 2 10
Main Memory 64k 4 20

Table 4.2. Energy per Access Values for Scratchpad and Main Memory

Figure 4.2 presents the workflow of the Edge Detection application which determines edges
in a tomographic image. The profile information, gathered by profiling the generated appli-
cation binary, is presented in Table 4.1. The left side and the right side of the table present the
profile information for functions and arrays of the application, respectively. The execution
count for a function is the sum of the execution counts of every instruction in the function,
whereas the access count for an array is the sum of the access counts of each array element.

We make the following observations upon studying Table 4.1. First, the total instruction
size is much smaller than the total data size of the application, while the total execution
count for instructions is an order of magnitude larger than the total access count for data
arrays. This implies that instructions should belong to the set of memory objects as they
have high execution count and consume much less space.

Second, the access count per unit size for array Gauss is larger than the execution count
per unit size for function WriteImage. Similarly, the access counts per unit size for arrays
x offset and y offset are comparable to that of ReadImage and are larger than that of
WriteImage. This implies that arrays should also be included in the set of memory objects.
Moreover, all the access functions of the image arrays in the application are affine functions.
Hence, DTSE techniques [140] can be utilized to generate small slices for the image arrays
which can be assigned to the small scratchpads. We did not consider generating array slices
as DTSE techniques are orthogonal to our approach. However, they can be implemented as
pre-pass optimizations in our setup. Based on the above two observations, we conclude that
the set of memory objects should comprise of data elements as well as code segments.

After having decided that both code segments and global variables should be considered
as memory objects, we would like quantify the energy reduction that could be achieved
by allocating the memory objects onto the scratchpad memory. Let us assume that we
have a memory hierarchy consisting of a 512 bytes onchip scratchpad and a 64k bytes main
memory. Additionally, assume that we have a simple per access energy model (cf. Table 4.2)
for the memories. The code generated by the ENCC [37] compiler is Thumb-mode code
for the ARM processor, i.e. each instruction is 2 bytes or 16 bits wide. Therefore, the
energy consumed by the memory hierarchy when the scratchpad memory is not utilized is
2,939,787∗10+203,694∗20 = 33,471,750 units. The product of the number of instruction
fetches (2,939,787) (cf. last row of Table 4.1) and the energy per access (10) to the main
memory computes the energy consumed due the instruction fetches. Similarly, the energy
consumed due to the data accesses can be computed. The sum of the energy consumed due
to instruction fetches and data accesses is the energy consumed by the memory hierarchy.

Now, let us assume that we use the optimal SA approach, described in Subsection 4.5.1,
to allocate memory objects to the 512 bytes scratchpad memory. The approach selects both
functions and array variables for the allocation on the scratchpad memory. The selected func-
tions are ReadImage, ComputeEdges, DetectRoots and WriteImage, while the selected array

4.3 Related Work 35

variables are Gauss, x offset and y offset. Like previously, the energy consumed by
the memory hierarchy after the scratchpad allocation is computed to be 14,676,330 units.
It should be noted that by using a scratchpad memory having a size of just 1.6% of the total
application size of 30,800 + 744 = 31,544 bytes, we could reduce the energy consump-
tion of the memory hierarchy to (14,676,33/33,471,750) ∗ 100 = 43.84% of its original
value. For this example, the Frac. SA approach achieves a slightly better allocation. How-
ever, for the sake of brevity, we refrain from presenting the allocation due to Frac. SA
approach.

4.3 Related Work

Non-overlayed scratchpad allocation approaches [5, 6, 14, 29, 97, 115, 134] have been thor-
oughly researched by numerous research groups in the past decade. The proposed approaches
allocated either data variables or instruction segments or both onto one or many scratchpads.

Panda et al. [97] were the first ones to demonstrate the effectiveness of the scratchpad
memory in minimizing the energy consumption of the system. They considered a memory
hierarchy consisting of instruction and data caches and a scratchpad as the onchip memories
and a background main memory. The proposed approach [97] analyzes the application
characteristics, such as life-times, interference and access counts of variables and then
allocates array variables onto the scratchpad memory with the objective to minimize their
interference in the data cache.

The authors [14] proposed an approach to utilize the scratchpad for storing global vari-
ables as well as stack frames. They formulated the allocation problem as an integer linear
programming (ILP) problem and solved it to obtain an optimal allocation. Sjödin et al. [108]
proposed a similar approach to allocate only global variables onto the scratchpad. In contrast,
authors [29] utilized the scratchpad memory as a cheap alternative for storing spilled reg-
ister values. They demonstrated that the spilled register values cause a notable interference
in the data cache, and therefore justified that the spilled values should be moved to the
non-cacheable scratchpad memory.

The authors in [5] divided aggregate array variables into disjoint partitions based on
the footprints of their references. Profit values, based on the number of distinct accesses,
are assigned to the partitions, then a knapsack algorithm is used to perform non-overlayed
allocation of the array partitions on the scratchpad memory.

Angiolini et al. [6] proposed an approach to allocate only instruction segments onto the
scratchpad memory. The approach deviates from the previous approaches in the fact that it
modifies a given executable binary of the application for scratchpad allocation. Therefore,
the approach can even optimize those legacy applications for which source code is unavail-
able. On the downside, the approaches which modify application executables are known to
be very instruction set architecture (ISA) specific and error-prone as not all the information
could be stripped out of an executable.

The authors in [115] demonstrated that significant energy reductions could be achieved
by allocating both instruction segments and data variables onto the scratchpad. The authors
assigned the profit values to instruction segments and variables, based on an accurate energy
model [114] and the execution profile of the application. They formulated the scratchpad
allocation problem as a knapsack problem. The optimal solution to the problem achieved

36 4 Non-Overlayed ScratchpadAllocationApproaches for Main / Scratchpad Memory Hierarchy

the highest energy reductions among the contemporary approaches. An approach [126] to
allocate smaller array partitions extended the previous approach.

The authors in [134] presented an approach to allocate both instructions and variables
onto partitioned scratchpad memories in a non-overlayed manner. They formulated two
ILP versions viz. top-down and bottom-up, of the problem which are then solved using a
commercial ILP solver to achieve a 22% improvement compared to a single scratchpad
approach [115]. In the following section, we present the analysis and the definitions of the
non-overlayed scratchpad allocation problems.

4.4 Problem Formulation and Analysis

The proposed scratchpad allocation approaches allocate memory objects to the disjoint
address regions on the scratchpad memory with the objective to minimize the total energy
consumption of the system executing the given application. The approaches allocate memory
objects in a static manner, i.e. the address location for each memory object is fixed at
compile time which then remains invariant or static during the entire execution of the
application.

Before presenting the formal definition of the allocation problem, we first define the
components of a given application that are considered as memory objects. This is necessary
because the memory objects represent the finest granularity application fragments which are
considered for allocation onto the scratchpad memory. Moreover, the allocation approaches
are implemented for three different system architectures. In Subsection 4.4.2, we describe the
energy model used by the proposed allocation approaches to compute the energy dissipated
by a memory object. Finally, we formally define the allocation problems.

4.4.1 Memory Objects

The non-overlayed scratchpad approaches are implemented for a uni-processor ARM, a
multi-processor ARM and an M5 DSP based system. As described in Chapter 3, the app-
roaches for uni-processor ARM and M5 DSP based systems are available in the backend of
their respective compilers, whereas, for the multi-processor ARM based system, they are
developed as source-level transformations. The memory objects for a uni-processor ARM
based system consist of the following:

(a) Aggregate global variables (V) including scalar and non-scalar variables.
(b) Code segments including traces (T) and functions (F).

The following are the memory objects for the multi-processor ARM based system:

(a) Aggregate global variables (V) including scalar and non-scalar variables.
(b) Code segments including only functions (F).

The memory objects for the M5 DSP based system include only global array variables,
because for DSPs the energy consumed by the data memory is much larger than that
by the instruction memory. Table 4.3 summarizes the memory objects for each system
architecture.

4.4 Problem Formulation and Analysis 37

Memory Optimization System Architecture Memory Objects Explanation

Non-Overlayed Scratchpad
Allocation for MM / SPM
Hierarchy (Chapter 4)

Uni-processor ARM MO ⊆ V ∪T ∪F global variables, traces and
functions

M5 DSP MO ⊆ V global data arrays
Multi-processor ARM MO ⊆ V ∪F global variables and func-

tions

Table 4.3. Memory Objects for Non-Overlayed Scratchpad Allocation Approach

4.4.2 Energy Model

The energy function E(mo,mem) shown below returns the energy consumed by a memory
object when it is located in a memory mem.

E(mo,mem) =
{

Evar(mo,mem) if mo ∈ V
Einst(mo,mem) if mo ∈ T ∪F

(4.1)

The above equation represents the observed fact that the energy Einst(mo,mem) dissi-
pated during the execution of an instruction segment is different than the energy dissipated
Evar(mo,mem) due to an access to a variable. The energy dissipation function for variables
is presented in the following:

Evar(mo,mem) = nr(mo)∗Eread(mem)+nw(mo)∗Ewrite(mem) (4.2)

where nr(mo) and nw(mo) are the total number of read and write accesses to a memory
object mo ∈ V . Eread(mem) and Ewrite(mem) return the energy consumed by memory
mem on a read and a write access, respectively. These values can be determined from
memory datasheets available from vendors. Otherwise, they can be also derived from the
following instruction level energy model.

E(inst, imem,dmem) = Eif (imem)+Eex(inst)+Eda(dmem) (4.3)

The energy function E(inst, imem,dmem) returns the total energy dissipated by the system
during the execution of the instruction (inst) fetched from the instruction memory (imem)
and possibly accessing data from the data memory (dmem). An in-depth discussion of the
energy model in presented Chapter 3.

Eread(mem) =
[
E(load,MM,mem)−E(mov,MM,mem)

]
(4.4)

Ewrite(mem) =
[
E(store,MM,mem)−E(mov,MM,mem)

]
(4.5)

Using the Equation 4.3, the energy dissipated during a read access Eread(mem) (cf. Equa-
tion 4.4) to a variable in the memory (mem) can estimated to be the difference between
the energy consumption of a load instruction accessing the memory mem and that of a
register-move mov instruction. The energy dissipated during a write access Ewrite(mem)
can be computed in a similar manner.

Einst(mo,mem) = inst fetch(mo)∗ [Eif (mem)+Eex(inst)] (4.6)

= inst fetch(mo)∗E(mov,mem,MM) (4.7)

38 4 Non-Overlayed ScratchpadAllocationApproaches for Main / Scratchpad Memory Hierarchy

The above function computes the energy dissipated during the execution of a memory object
mo ∈ T ∪V belonging to the instruction segments. The product of the number of instruction
fetches inst fetch(mo) originating from the memory object mo and the average energy
dissipated during the execution of an instruction, estimates the energy Einst(mo,mem)
dissipated due to the execution a memory object. An average value is used because for ARM
processors all, except multiply and shift, instructions dissipate almost the same amount of
energy upon execution. The energy dissipated by a register-move mov instruction is used
as the average energy value in our model.

4.4.3 Problem Formulation

The formal definitions of the non-overlayed scratchpad allocation (SA) and fractional
scratchpad allocation (Frac. SA) problems are presented in the following:

Problem 4.1 (Scratchpad Allocation (SA)). Given the set of memory objects MO, the
energy model E(mo,mem), and a memory hierarchy consisting of a scratchpad memory
(SPM) and a main memory (MM). The problem is to determine a subset MOSPM ⊆ MO
of the set of memory objectsMO such that the allocation of memory objectsmoi ∈ MOSPM

to the scratchpad memory minimizes the total energy consumption of the system.

ETotal =
[∑

moi∈MOSPM

E(moi,SPM)
]

+
[∑

moi∈MO/MOSPM

E(moi,MM)
]

(4.8)

The minimization of the total energy consumption ETotal is to be performed under the
following scratchpad size constraint:

∑
moi∈MOSPM

size(moi) ≤ size(SPM) (4.9)

The minimization version of the SAproblem can be converted to a maximization problem
which closely resembles the knapsack problem. In order to convert the problem, we subtract
the objective function value ETotal from a high threshold value EThreshold and name the
difference as EProfit shown in the following:

EProfit = EThreshold −ETotal (4.10)

Next, we define EThreshold, shown below, as the energy consumed by the system when all
memory objects are allocated to the main memory.

EThreshold =
∑

moi∈MO

E(moi,MM) (4.11)

The above definition of EThreshold and the definition of ETotal (cf. Equation 4.8) are used
to reformulate EProfit as follows:

EProfit =
[∑

moi∈MO

E(moi,MM)
]

−
[∑

moi∈MOSPM

E(moi,SPM)
]

−
[∑

moi∈MO/MOSPM

E(moi,MM)
]

(4.12)

4.5 Non-Overlayed Scratchpad Allocation 39

=
[∑

moi∈MOSPM

E(moi,MM)−E(moi,SPM)
]

(4.13)

=
[∑

moi∈MOSPM

∆E(moi)
]

(4.14)

where ∆E(moi) represents the difference in energy consumption values for a memory
object moi when it is present in the main memory and in the scratchpad memory. The
profit function EProfit needs to be maximized in order to minimize the objective function
ETotal. The maximization problem resembles the knapsack problem which is known to be
an NP-complete problem [43].

Problem 4.2 (Fractional Scratchpad Allocation (Frac. SA)). Given the set of memory
objects MO, the energy model E(mo,mem), and a memory hierarchy consisting of a
scratchpad memory (SPM) and a main memory (MM). The problem is to determine a
subset MOSPM ⊆ MO of the set of memory objects MO such that the full or partial
allocation of memory objects moi ∈ MOSPM to the scratchpad memory maximizes the
total energy profit EProfit.

EProfit =

⎡
⎣ ∑

moi∈MOSPM

(
spmsize(moi)

size(moi)

)
∗∆E(moi)

⎤
⎦ (4.15)

where, spmsize(moi) represents the amount of space a memory object occupies on the
scratchpad memory. The maximization of the total energy profit EProfit is to be performed
under the following constraints:

(a) The aggregate space occupied by the memory objects on the scratchpad memory
should be less than the size of the memory.

∑
moi∈MOSPM

spmsize(moi) ≤ size(SPM) (4.16)

(b) A maximum of one memory object should be partially allocated on the scratchpad.

In the following section, we present the ILP based SAapproach and the greedy algorithm
based Frac. SA approach.

4.5 Non-Overlayed Scratchpad Allocation

The current section presents an integer linear programming (ILP) based optimal approach
to solve the SA problem and a greedy algorithm based fractional scratchpad allocation
approach. In the following, we start by presenting the ILP formulation of the SA problem.

4.5.1 Optimal Non-Overlayed Scratchpad Allocation

Let us define the following binary variable l(moi) to denote the location of the memory
object moi in the memory hierarchy.

40 4 Non-Overlayed ScratchpadAllocationApproaches for Main / Scratchpad Memory Hierarchy

l(moi) =
{

1 if memory object moi is present in the SPM
0 otherwise

(4.17)

We use the binary variable l(moi) to reformulate the objective function (cf. Equation 4.8)
of the SA problem as follows:

ETotal =
∑

moi∈MO

[l(moi)∗E(moi,SPM)+(1− l(moi))∗E(moi,MM)] (4.18)

The binary variable l(moi) is also used to reformulate the scratchpad size constraint
(cf. Equation 4.9) as shown below:

∑
moi∈MO

l(moi)∗size(moi) ≤ size(SPM) (4.19)

The ILP formulation solves the non-overlay scratchpad allocation (SA) problem, as it
determines the subset of memory objects (MOSPM = {moi|l(moi) = 1}) which minimizes
the total energy consumption of the system. A commercial ILP solver [32] is used to obtain
an optimal solution for the problem. Despite the fact that the knapsack problem is an NP-
complete problem, the solver required less than a second to compute the optimal solution for
each of the benchmarks. Next, we present the greedy algorithm based fractional scratchpad
allocation approach.

4.5.2 Fractional Scratchpad Allocation

Figure 4.3 presents the greedy algorithm to solve the fractional scratchpad allocation prob-
lem. First, the algorithm sorts the memory objects according to their valence V (moi) =
E(moi,MM)/size(moi) to compute a sorted list of memory objects SortedMO. Then,

FractionalScratchpadAllocation(MO, SPMSize)

1 /* sort memory objects according to valence V (moi) = E(moi,MM)
size(moi)

*/

2 SortedMO =SortAccordingValence(MO)
3 RemSPMSize = SPMSize /* default values */
4 PrevAddress = SPMBaseAddress
5 MOSPM = {}
6 while (RemSPMSize > 0) do
7 /* select the memory object with maximum valence */
8 moi = head(SortedMO)
12 RemSPMSize = RemSPMSize - size(moi)
16 /* add the memory object to the set MOSPM */
17 MOSPM = MOSPM

⋃
moi

18 AddressVector[i] = PrevAddress
19 PrevAddress += size(moi)
19 end-while
20 return MOSPM

Fig. 4.3. Greedy Algorithm for Fractional Scratchpad Allocation Problem

4.6 Experimental Results 41

Benchmark Code Size Data Size System
(bytes) (bytes) Architecture

adpcm 804 4996 uni-processor ARM
edge detection 908 7792 uni-processor ARM

histogram 704 133156 uni-processor ARM
mpeg4 1524 58048 uni-processor ARM

multisort 636 2020 uni-processor ARM
dsp 2784 61272 uni-processor ARM

media 3280 75672 uni-processor ARM
multi-process edge detection 4484 23820 multi-processor ARM

complex multiply 24576 M5 DSP
fir 3688 M5 DSP

fir2dim 3380 M5 DSP

Table 4.4. Benchmark Programs for the Evaluation of Non-Overlayed Scratchpad Allocation
Approaches

it removes a memory object moi from the head of the list SortedMO and assigns it to
the scratchpad memory. This process is repeated till the scratchpad space is completely
allocated to memory objects. The algorithm maintains the set of memory objects MOSPM

which are chosen for scratchpad allocation and an array (AddressVector) which stores their
starting addresses.

The algorithm requires O (|MO|log(|MO|)) time for sorting the list of memory objects
and O (|MO|) time to determine the set of memory objects MOSPM for allocation onto
the scratchpad memory. If the last memory object chosen for scratchpad allocation has
a constant valence for each of its elements, then the algorithm computes a lower energy
consuming scratchpad allocation than that computed by the ILP based approach. However,
the above premise in not valid for some of our benchmarks for which the algorithm computes
a slightly worse scratchpad allocation. We did not investigate theoretical approximation
bounds for the proposed greedy algorithm when memory objects have non-homogenous
valences. Though, for our set of benchmarks we found that the energy consumption values
due to the two approaches lie within 5% of each other. In the following section, we discuss
the experimental results obtained for the two approaches.

4.6 Experimental Results

The efficacy of the proposed scratchpad allocation approaches is evaluated for uni-processor
ARM, multi-processor ARM and M5 DSP based systems. The workflow employed to con-
duct the experiments is described in detail in Chapter 3. The benchmarks which are used to
evaluate the proposed approaches are summarized in Table 4.4. The table also reports code
and data sizes for the benchmarks. The energy values reported in this section are computed
using accurate energy models for each of systems. In the following, we start by presenting
the experimental results for the uni-processor ARM based system.

4.6.1 Uni-Processor ARM

The evaluation of the scratchpad allocation approaches for the uni-processor ARM based
system is organized as follows: First, the benefit of the scratchpad memories allocated using

42 4 Non-Overlayed ScratchpadAllocationApproaches for Main / Scratchpad Memory Hierarchy

the scratchpad allocation (SA) approach is evaluated. Then, a comparison of optimal and
fractional scratchpad allocation approaches is presented.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 64 128 200 256 300 400 512 1024
Scratchpad Size (bytes)

Energy (SA) Execution Time (SA)

(a) Edge Detection

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 128 200 256 300 400 512 1024
Scratchpad Size (bytes)

Energy (SA) Execution Time (SA)

(b) DSP

Fig. 4.4. Normalized Energy Consumption and Execution Time for Opt. SA Approach

Scratchpad Benefit:
Figure 4.4 presents the normalized total energy consumption and execution time values of the
edge detection and dsp benchmarks for varying scratchpad sizes. The optimal non-overlayed
scratchpad allocation (SA) approach is used to allocate memory objects onto the scratchpad
memories. The energy and execution time values are normalized against the corresponding
values for a system without a scratchpad memory. A few important observations can be
made from the figure.

First, the energy consumption as well the execution time values monotonically decrease
with the increase in the size of the scratchpad memory. This is because the larger the
scratchpad, the more memory objects are allocated and the less are the accesses to the slow
and energy inefficient main memory. On a closer look, it is observed that the energy and
execution values decrease in a stepwise manner. In Figure 4.4(b), the energy consumption
values remain the same for 100 bytes and 128 bytes scratchpad. This behavior emerges
due to granularity of the SA approach. For uni-processor ARM setup, the SA approach
allocates traces, functions and global variables to the scratchpad. Even though the approach
is sufficiently fine grained, it is unable to find a different allocation when increasing the
scratchpad size from 100 bytes to 128 bytes.

Second, it is observed that for each scratchpad size the normalized energy values are
lower than the corresponding execution time values. This implies that the utilization of
the scratchpad has more impact on reducing the total energy consumption of the sys-
tem than on reducing the execution time of the application. This observation is justified
because the difference in energy per access to the main memory and the scratchpad is
larger than the difference in their access times. Lastly, it is observed that significant energy
savings of more than 70% could be achieved by the introduction of a scratchpad in the
memory hierarchy of the system.

Comparison of the Scratchpad Allocation Approaches:
Next, we present a comparison of the ILPbased optimal non-overlayed scratchpad allocation
(SA) approach and the greedy algorithm based fractional scratchpad allocation (Frac. SA)
approach. Figures 4.5(a) and 4.5(b) present the comparison of the two approaches for edge

4.6 Experimental Results 43

0

1

2

3

4

5

6

7

8

9

10

11

0 64 128 200 256 300 400 512 1024
Scratchpad Size (Bytes)

T
o

ta
lE

n
er

g
y

C
o

n
su

m
p

ti
o

n
(m

J)

Energy (SA) Energy (Frac. SA)

(a) Edge Detection

0

20

40

60

80

100

120

140

0 100 128 200 256 300 400 512 1024
Scratchpad Size (bytes)

T
o

ta
lE

n
er

g
y

C
o

n
su

m
p

ti
o

n
(m

J)

Energy (SA) Energy (Frac. SA)

(b) DSP

Fig. 4.5. Energy Comparison of Scratchpad Allocation Approaches

detection and dsp benchmarks, respectively. The Frac. SA approach is allowed to allocate
one memory object across the boundary of the scratchpad such that it is partially present
in the scratchpad space and partially in the main memory space. Therefore, the approach
always utilizes the entire scratchpad space to allocate memory objects. This should result in
more energy efficient scratchpad allocations for the Frac. SA approach than those for the SA
approach. The expected behavior can be observed from Figure 4.5(a), as the energy values
for the Frac. SA approach are smaller than or equal to those for the SA approach.

However, as discussed earlier, the Frac. SA approach cannot always determine a better
allocation than the SA approach because the energy valence for each element within a
memory object is not always a constant. From Figure 4.5(b), we observe that at only three
points (100, 200 and 300 bytes) the Frac. SA approach achieves a more energy efficient
allocation than that of the SA approach. In contrast, the SA approach achieves energy
efficient allocations for all the other scratchpad sizes.

The other important observation is that the energy values for the Frac. SA are always
very close to those for the SA approach. A maximum difference of 2% is observed for the
dsp benchmark at 512 bytes scratchpad sizes. Therefore, if the system architecture permits
allocation of a memory object across the boundary of a scratchpad, then the Frac. SA
approach having a polynomial time complexity should be used to replace the SA approach.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

adpcm dsp edge

detection

histogram media mpeg multisort average

Energy (Frac. SA) Energy (SA) Exec. Time (Frac. SA) Exec. Time (SA)

Fig. 4.6. Overall Comparison of the Scratchpad Allocation Approaches

Next, a comparison of the two scratchpad allocation approaches over all benchmarks
is presented. Figure 4.6 presents the normalized average total energy consumption and

44 4 Non-Overlayed ScratchpadAllocationApproaches for Main / Scratchpad Memory Hierarchy

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

0 128 256 512 1024 2048 4096 8192 16384

(m
J)

Scratchpad Size (bytes)

T
o

ta
lE

n
er

g
y

C
o

n
su

m
p

tio
n

Energy (SA): 1 Compute Processor Energy (SA): 2 Compute Processors

Energy (SA): 3 Compute Processors Energy (SA): 4 Compute Processors

Fig. 4.7. Multi-Process Edge Detection: Energy Consumption for Varying Compute Processors and
Scratchpad Sizes (Cycle Latency=1 Master Cycle)

execution time values for the Frac. SA approach and the SA approach. The average energy
value for each benchmark is computed by averaging over all energy values obtained for
scratchpad memories of 128, 256, 512 and 1024 bytes. Subsequently, the value is normalized
against the energy value obtained for a system without a scratchpad. The same procedure
is used to compute the normalized averaged execution time values for the benchmarks.

The reduction in the average energy consumption due to the SA approach varies bet-
ween 61% for the multisort and 28% for the dsp benchmark. For the Frac. SA approach,
similar reductions in the average energy consumption of the benchmarks are observed.
From the figure, we observe that the average energy values for the Frac. SA approach are
smaller than those of the SA approach for edge detection, histogram, mpeg and multisort
benchmarks, whereas the opposite is observed for adpcm, dsp and media benchmarks. The
average energy savings across all the benchmarks is about 40% for both the allocation
approaches. A similar albeit smaller reduction in the execution times of the benchmarks is
also observed. The average reduction in the execution times due to the SA approach varies
between 39% for the multisort and 18% for the dsp benchmark. A reduction of 25% and 24%
in the average execution time is observed for the SA and Frac. SA approaches, respectively.

4.6.2 Multi-Processor ARM

In the current subsection, the ILP based non-overlayed scratchpad allocation (SA) approach
is evaluated for a multi-process edge detection benchmark. The multi-process benchmark
consists of an initiator process, a terminator process and a variable number of compute
processes. The benchmark is simulated on the homogenous multi-processor ARM based
system such that each process is mapped to a unique ARM processor. The processors in the
multi-procesor system are named according to the mapped process. Each processor has its
own local scratchpad memory, while all of them access a shared main memory. A detailed
description of the benchmark and the multi-processor system can be found in Section 3.2.

Figure 4.7 presents the total energy consumption values for the benchmark when the
number of the compute processors and the size of the local scratchpad memory is varied.
The SA approach analyzes each process executing on the processor and accordingly allocate

4.6 Experimental Results 45

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 128 256 512 1024 2048 4096 8192 16384
Scratchpad Size (bytes)

Energy (SA): 1 Cycle Latency

Energy (SA): 5 Cycle Latency

Energy (SA): 10 Cycle Latency

Energy (SA): 20 Cycle Latency

N
o

rm
al

iz
ed

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

Fig. 4.8. Multi-Process Edge Detection: Normalized Energy Consumption for Varying MemoryAccess
Times (#Compute Processors=2)

memory objects to its scratchpad memory. The Frac. SA approach could not be used, as the
multi-processor ARM based system does not support partial allocation of the scratchpad
memories.

Afew observations could be made from Figure 4.7. First, the total energy consumption of
the application shows a steep decrease when the number of compute processors is increased
from one to two. A further increase in the number of compute processors has miniscule
impact on reducing the energy consumption of the system. Therefore, we believe that two
compute processors are the ideal choice for the current benchmark.

The second observation is that the energy consumption of the system initially decreases
with the increase in the size of the scratchpad memories till it reaches the minimum value
at 2048 bytes. Thereafter, an increase in the scratchpad size also increases the energy con-
sumption of the system. The reason for the observation is that the per access energy to the
scratchpad memories increases exponentially with the increase in their sizes. Therefore,
once the most frequently accessed memory objects are allocated onto the scratchpad mem-
ory, any further increase in the scratchpad size contributes positively to energy consumption
of the system.

Next, we evaluate the impact of the SA approach on the energy consumption when
the latency to access the main memory is varied. The scratchpad memory has a zero cycle
latency, while cycle latencies of 1, 5, 10 and 20 master clock cycles are assumed for the main
memory. Figure 4.8 presents the normalized energy consumption values of the edge detection
benchmark executing on a multi-processor system containing two compute processors along
with one initiator and one terminator processor. The energy values are normalized against
the energy values of the system containing a zero byte scratchpad memory.

It is observed that the normalized energy values are smaller for the systems with a slower
main memory. This is because the slower the main memory, the longer the processor has to
wait for the requested data and the higher is the energy consumed by the processor. Even
though the energy consumed by the memory remains invariant, the total energy consumption
being the sum of processor and memory energy consumption increases. The SA approach
reduces the number of accesses to the main memory by allocating memory objects to the
scratchpad. The slower the main memory, the larger is the difference in their access times

46 4 Non-Overlayed ScratchpadAllocationApproaches for Main / Scratchpad Memory Hierarchy

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

64 128 256 512 1024 avg.
Scratchpad Size (bytes)

Energy (SA)

Energy (Frac. SA)

(a) FIR2DIM

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

64 128 256 512 1024 avg.
Scratchpad Size (bytes)

Energy (SA)

Energy (Frac. SA)

(b) Complex Multiply

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

64 128 256 512 1024 avg.
Scratchpad Size (bytes)

Energy (SA)

Energy (Frac. SA)

(c) FIR

Fig. 4.9. Normalized Energy Comparison of Scratchpad Allocation Approaches

and therefore, the larger is the reduction in the total energy consumption of the system. The
SA approach achieves a maximum total energy reduction of 71%, 84%, 87% and 88% for
main memories with 1, 5, 10 and 20 master clock latencies, respectively.

4.6.3 M5 DSP

The M5 DSP in its default configuration contains a large onchip group memory to hold the
data variables. The energy dissipation of the data memory hierarchy is improved by inserting
a small and energy efficient L1 scratchpad or group memory. The approaches presented
in this chapter and in the subsequent chapters reduce the energy dissipation through the
improved utilization of the L1 scratchpad memory. An accurate energy model from UMC
is used to compute the energy consumed by the data memory hierarchy. However, due to
copyright reasons, we are forbidden from reporting exact energy values. Therefore, we will
report normalized energy values for the data memory subsystem of the M5 DSP.

Figure 4.9 presents the comparison of normalized energy consumption values when
the L1 scratchpad is allocated using the SA approach or the Frac. SA approach. The unit
valued baseline represents the energy consumed by the default data memory subsytem of
M5 DSP. From the figure, we make a few observations. First, the normalized energy values
for the SA approach at 64 bytes (cf. Figures 4.9(b) and 4.9(c)) is the unit value because the
scratchpad space is too small to allocate any memory object. In contrast, the normalized
energy values for the Frac. SA allocation is smaller than the unit value as it allocates partial
memory objects onto the scratchpad. For fir2dim benchmark, 64 bytes are already sufficient
to achieve energy savings with both the approaches.

Second, as also observed in the previous figures, energy values for both the approaches
decrease monotonically with increase in the scratchpad size. Third, for the complex

4.7 Summary 47

multiply benchmark, the energy values for both approaches are equal for all scratchpad sizes
between 128 and 1024 bytes. This is because for all these sizes, the SA approach selects
the same memory objects for allocation as the Frac. SA approach and both the approaches
entirely utilize the scratchpad space. Last, the energy reductions for the SA approach at 1024
bytes scratchpad are 42%, 33% and 50% for fir2dim, complex multiply and fir benchmarks,
respectively. Similar energy reductions of 48%, 33% and 34% are observed for the same
benchmarks using the Frac. SA approach.

4.7 Summary

In this chapter, non-overlayed scratchpad allocation approaches to minimize the energy con-
sumption of the system were proposed. The problem of non-overlayed scratchpad allocation
was shown to be the NP-complete knapsack problem. An ILP based scratchpad allocation
approach and a greedy algorithm based fractional scratchpad allocation approach were pro-
posed. The fractional scratchpad allocation approach allocates memory objects such that a
maximum of one memory object can be partially present in the scratchpad and partially in
the main memory. It was demonstrated that under certain conditions the scratchpad alloca-
tions determined by the fractional approach are more energy efficient than those computed
by the ILP based approach.

The proposed approaches are evaluated for uni-processor ARM, multi-processor ARM
and M5 DSP based systems. It is reported that the approaches achieve significant reductions
of more than 70% in the total energy consumption of the system through the utilization of
the scratchpad memory. It is also observed that the fractional allocation approach achieves
very close to optimal allocations.

Some of the results presented in this chapter are published in [122, 123].

5

Non-Overlayed Scratchpad Allocation Approaches for
Main / Scratchpad + Cache Memory Hierarchy

The previous chapter presented scratchpad allocation approaches for systems containing
scratchpad memories as the only L1 memories in the memory hierarchy. However, a large
number of high-end embedded microprocessors contain instruction and data caches as well
as scratchpad memories as the L1 memories. The application of the previously presented
non-overlayed scratchpad allocation (SA) approach for this memory hierarchy leads to
unpredictable results as it does not model the behavior of caches. In this chapter, approaches
to perform optimal and near-optimal non-overlayed cache aware allocation of the scratchpad
memory are discussed. The approaches model the interaction of memory objects accessed
through the cache memory and then perform non-overlayed allocation of memory objects
onto the scratchpad memory.

The rest of this chapter is organized as follows: Section 5.1 gives a brief introduction
to the proposed allocation approaches and a survey of the related work is presented in
Section 5.2. Section 5.3 demonstrates the shortcomings of two previous approaches with
the help of a motivating example. Section 5.4 describes the memory objects, the conflict
graph based cache model, the energy model and formally defines the cache aware scratchpad
allocation (CASA) problem. Section 5.5 presents the description of the proposed optimal and
near-optimal approaches to solve the problem. In Section 5.6, the experimental results for
uni-processor and multi-processor ARM based systems are presented. Finally, the chapter
ends with a brief summary.

5.1 Introduction

Caches and scratchpad memories represent two contrasting memory architectures. Caches,
under the control of hardware logic, automatically exploit temporal and spatial locality
present in the program. Therefore, they need two additional hardware components, viz. the
tag memory and the address comparison logic, beside the data memory for their autonomous
operation [137]. The tag memory is required for storing information regarding the valid
addresses, while the comparison logic is used to distinguish between cache hits and misses.
These additional components dissipate a significant amount of energy per access to the cache
irrespective whether the access translates to a hit or a miss.

On the other end of the spectrum are the scratchpad memories, consisting of just
data memory and address decoding circuitry. Due to the absence of the tag memory and

49

50 5 Non-Overlayed Allocation for Main / Scratchpad + Cache Memory Hierarchy

Data
Cache

Instruction
Cache

Loop

Processor

Cache

Data
Cache

Instruction
Cache

Scratchpad

Processor Loop Cache
Controller

(a) (b)

Fig. 5.1. System Architecture: (a) Scratchpad (b) Loop Cache

the comparison hardware, scratchpad memories require considerably less energy than a
cache [16]. In addition, scratchpad memories require less onchip area. However unlike
caches, scratchpads require complex program analysis and explicit support from the com-
piler. In order to strike a balance between these contrasting approaches, most of the high-end
embedded microprocessors (e.g. ARM11 [9], ColdFire MCF5 [92]) include both onchip
caches and scratchpads.

In this chapter, we first assume a memory hierarchy as shown in Figure 5.1(a) and utilize
the scratchpad for storing instructions. The decision to store only instructions is motivated
by the following observations:

(a) For RISC architectures, the number of instruction fetches is much higher than the
number of data accesses.

(b) Instruction fetches demonstrate a high locality, hence a small scratchpad can be
used to serve a high number of instruction accesses.

(c) High-end microprocessors (e.g. ARM11 [9]) feature separate dedicated scratchpad
memories for data and instructions.

The previous scratchpad allocation approach assigns access frequency based benefits
to memory objects without considering their interaction with other memory objects in the
cache memory. Therefore, it fails to produce optimal results when applied to the current
memory architecture. In Section 5.3, we demonstrate with the aid of an example that the
previous approach may even lead to the problem of cache thrashing [52]. This argument
is further strengthened by observing a similar behavior, in Section 5.6 for two real-life
benchmarks.

In this chapter, the interaction of memory objects accessed through the cache memory is
modeled as a conflict graph. The nodes of the conflict graph represent the memory objects
present in the application, while the edges represent the conflict-miss relationship between
two memory objects. The misses in a cache memory can be classified into cold misses,
capacity misses and conflict misses [52]. The conflict graph is used to capture only the
conflict miss relationship among the memory objects.

The goal of the cache aware scratchpad allocation (CASA) problem is to minimize the
energy consumption of the application through the non-overlayed allocation of memory
objects onto the scratchpad memory while considering their conflict relationships in the
cache memory. As shown later, the problem of finding the best set of objects to be allo-
cated on the scratchpad memory can be formulated as a non-linear optimization problem.

5.2 Related Work 51

Under simplifying conditions, it can be reduced to either a Weighted Max-Cut [43] or a
Knapsack [43] problem, both of which are known to be NP-complete problems. An optimal
solution is obtained by formulating the CASA problem as an integer linear programming
(ILP) problem. For all our experiments, an insignificant compute time was required to solve
the ILP formulation. However, the problem with ILP formulations is that we do not know
which formulation will require an exponential compute time. Therefore, we also propose
a heuristic based approach with a polynomial time complexity to obtain a near-optimum
solution.

The chapter also presents a comparison of the scratchpads with preloaded loop caches [48],
as the utilization of the scratchpad in the current setup (see Figure 5.1) is similar to a loop
cache. Preloaded loop caches are architecturally more complex than scratchpads, but are
less flexible as they can be preloaded with only a limited number of loops/functions. The
goal of this study is to demonstrate that by using the proposed approaches, scratchpads can
outperform their complex counterparts.

5.2 Related Work

The work related to the optimization of the instruction memory hierarchy can be classified
into the three broad categories as shown below:

(a) Code reorganization approaches
(b) Hardware controlled instruction buffers
(c) Software controlled instruction buffers

Code Reorganization Approaches:
Application code placement approaches change the layout of the program code to reduce

the number of instruction cache misses. This in turn improves the CPI (cycles per instruction)
and the performance of the processor. The approaches perform the code layout transforma-
tions at different levels of granularity, from basic blocks [101, 119] to procedures [46].

The approach by Pettis et al. [101] is one of the earliest application code reorganization
techniques to improve the instruction cache performance. It groups frequently executed basic
blocks to create traces and then reorganizes traces within the function boundaries according
to the “closest is the best” strategy. Therefore, the most frequently executed traces are placed
close to each other at the top of the function, whereas the least frequently executed or never
executed traces are placed at the bottom of the function.

Tomiyama et al. [119] present one of the most complete profile-guided basic block
reordering techniques. Similar to the previous approach, the proposed approach generates
traces using the execution profile of the application and formulates the code reorganization
problem as an integer linear programming (ILP) problem with the objective to minimize the
number of instruction cache misses. One of the advantages of the approach [119] is that it
generates a globally optimized placement of the traces, as they are allowed to be placed even
across the function boundaries. However, as noted by the authors, the ILP solver requires a
substantial time to compute the optimal solution.

The authors in [46] propose a weighted graph coloring based approach to map procedures
to cache lines to reduce the number of instruction cache misses. The approach constructs
the call graph of the application and assigns execution frequency edge weights. It then

52 5 Non-Overlayed Allocation for Main / Scratchpad + Cache Memory Hierarchy

accesses the edges in the descending order of their weights and assigns colors or cache lines
to the nodes. The approach only eliminates the first-generation cache conflicts, which are
the conflicts between a node and its parents or the node and its children. This may be a
serious limitation, as cache conflicts between two unrelated nodes of the call graph occur
frequently in real-life benchmarks.

Hardware Controlled Instruction Buffers:
Numerous hardware controlled instruction buffers to reduce the energy dissipation of the

instruction memory hierarchy have been proposed in the literature. Here, we discuss two
representative instruction buffers, viz. filter caches and dynamically loaded loop caches.
A filter cache [68] is a small direct-mapped cache introduced between the processor and
the L1 instruction cache. On an instruction fetch, first the filter cache is accessed. If the
access results in a hit, the value is returned immediately, otherwise the L1 instruction cache
is accessed resulting in one cycle miss penalty. A 256 byte filter cache [68] was shown to
have a hit rate of 60-85% for Mediabench [87] benchmarks. Hence, it achieves more than
50% reduction in the energy dissipation at the expense of a 20% degraded performance of
the benchmarks.

Authors in [74] proposed the use of a small memory called dynamically loaded
loop caches to buffer the loop body. The dynamically loaded loop cache, as shown in
Figure 5.1(b), is present at the same horizontal level as the L1 instruction cache. Therefore,
it can be accessed in parallel to the instruction cache. The loop cache does not cache all the
instruction fetches made by the processor but caches only those instructions which belong
to a loop. The loop cache controller identifies loops at runtime whenever a short branch
backwards is taken, which happens at the end of the first iteration of the loop. During the
second iteration, the controller copies the loop body instructions to the loop cache. From
the third iteration onwards, the instructions are fetched from the energy-efficient loop cache
and not from the instruction cache.

The limitation of loop caches is that they cache only those loops which do not contain
control flow changing (e.g. branch) instructions in the loop body. The approach improves
upon the filter cache as the performance of the application is not degraded. This is because
the loop cache is filled non-intrusively and accessed only when a hit is guaranteed. Authors
in [74] report a 38% reduction in energy consumption for a 64 byte dynamically loaded loop
cache.

Software Controlled Instruction Buffers:
The software controlled instruction buffers refer to the instruction memories which

require either compile-time or runtime support from the software. The typical examples
of these buffers are preloaded loop caches [48] and scratchpad memories. Preloaded loop
caches (cf. Figure 5.1(b)) as well as scratchpad memories require both compile-time and
runtime support from the software.

The preloaded loop cache was proposed by Ross et al. [48] to overcome the limitations of
the dynamically loaded loop cache.Apreloaded loop cache can be statically loaded with pre-
identified code segments before the start of the application. Start and end address of the code
segments are stored in the controller, which on every instruction fetch determines whether
to access the loop cache or the instruction cache. Therefore, unlike their dynamically loaded
variants, preloaded loop caches can be loaded with complex loops as well as functions.

5.2 Related Work 53

In order to keep the energy consumed by the controller within bounds, only a small
number of memory objects (typically 2-6) can be preloaded. The property of being able to
store only a fixed number of memory objects in the preloaded loop cache is too restrictive
for large applications with several hot spots. Moreover, code segments are greedily chosen
according to their execution time valence (execution time per unit size). As described below
and also as shown in Subsection 5.4.4, execution time or frequency based models do not
accurately model energy dissipation of memory objects in a cache based memory hierarchy.

Most of the research on scratchpad allocation [14, 23, 66, 97] has focused on allocating
data elements onto the scratchpad. Authors in [14, 97] statically allocated global/local vari-
ables on the scratchpad, whereas authors in [23, 66] looked at the possibility of dynamically
copying the data elements from the main memory onto the scratchpad.

Approaches [103, 113, 115, 128] are among the few approaches that allocate code
segments onto the scratchpad. The approaches [103, 113] perform overlay based allocation
of the scratchpad memory for only code segments, while the approach [128] performs
scratchpad memory overlay for both code segments and data variables.Adetailed discussion
of the scratchpad overlay approaches is presented in Chapter 6. The approach in [115] and
the SA approach presented in Chapter 4 perform non-overlayed allocation of code segments
and data variables (memory objects) onto the scratchpad. Both the approaches assume
a memory hierarchy consisting of only scratchpad and main memory. Profit values are
assigned to the code segments and data variables according to their execution and access
counts, respectively. Then, the problem of finding the best of memory objects to be moved to
the scratchpad is formulated as an integer linear programming (ILP) problem. The problem
is solved optimally using a commercial ILP solver [32].

Even though the SA approach is sufficiently accurate for its memory hierarchy, it is
not suitable for the current setup, which includes caches in the memory hierarchy. The ass-
umption that execution counts are sufficient to represent energy consumption by a memory
object fails in the presence of a cache, where execution counts have to be decomposed into
cache hits and misses. The energy consumption of a cache miss is significantly larger than
that of a cache hit. Consequently, two memory objects can have the same execution counts,
yet have substantially different cache hit/miss ratio and hence the energy consumption.
Additionally, the previous approach does not maintain the conflict relationships between
memory objects during the code placement step. Memory objects are moved instead of
copying them from the main memory to the scratchpad. As a result, the program layout
is changed, which may cause a completely different cache access pattern and thus lead to
erratic results.

In the wake of the above discussion we enumerate the contributions of the work presented
in this chapter.

(a) It for the first time studies the combined effect of a scratchpad and an I-cache on
the memory system’s energy consumption.

(b) It demonstrates the inefficiencies of previous approaches when applied to the present
architecture and stresses the need for an advanced allocation approach.

(c) It demonstrates that scratchpad memories along with an allocation algorithm can
replace complex loop caches.

Please note that in the rest of this chapter, the energy consumption refers to the energy
consumption of the instruction memory subsystem and loop cache refers to preloaded loop

54 5 Non-Overlayed Allocation for Main / Scratchpad + Cache Memory Hierarchy

cache. In the following section, we present a motivating example demonstrating the inade-
quacies of the previous approaches and the efficacy of the proposed approach.

5.3 Motivating Example

We execute an example application on a system whose instruction memory hierarchy in
the base configuration consists of an instruction cache and a main memory. Later, we insert
a scratchpad or a preloaded loop cache and study the behavior of the instruction memory
hierarchy. The scratchpad is allocated using the non-overlayed SA approach as well as the
CASA approach, while the preloaded loop cache is allocated using Ross [48] approach.
For all the above scenarios, we assume that we are given a weighted control flow graph
(CFG), a layout of CFG nodes in the main memory and an execution trace of the example
application. Based on the given information, we analyze the behavior of the instruction
memory hierarchy and compute its energy consumption.

We would like to make a couple of simplifying assumptions before presenting the
motivating examples. First, the size of each basic block as well as that of each cache line is
assumed to be 1 word. Second, that moving a basic block within the memory hierarchy does
not modify the size of any other basic block. We would like to state that these assumptions
are added for the sake of clarity and that they apply only to the motivating examples. Next,
we describe the motivating example for the base configuration of the instruction memory
subsystem.

5.3.1 Base Configuration

Figure 5.2 shows a weighted control flow graph (CFG), main memory layout, an instruction
cache and an execution trace for an example application. The nodes of the CFG represent
the corresponding basic blocks, while the edges represent the possible flow of control during

B1

B7

B5

B8

B4

B2

B3

B6

0

1

2

3

4

5

6

7

B1
[1]

B2
[100]

B3
[10]

B8
[1]

B6
[90]

B4
[10]

B7
[100]

B5
[90]

1

10 90

9010

9010

99

1

0

1

2

3

Main
Memory

I-Cache

B1 ((B2 B5 B6 B7) (B2 B3 B4 B7)) B89 10

Fig. 5.2. Example: Base Configuration

5.3 Motivating Example 55

Memory
Access

Type
Symbol Energy

Cache Hit E Cache_hit 1.0
Cache Miss E Cache_miss 10.0
SPM Hit E SP_hit 0.5

Loop Cache Hit E LC_hit 0.5

Table 5.1. Energy Values for Different Memories

BB
I-Cache

Accesses
I-Cache
Misses

Energy

BB2 100 0 100
BB3 10 10 100
BB4 10 10 100
BB5 90 10 180
BB6 90 10 180
BB7 100 0 100
Total 400 40 760

Table 5.2. Energy Values for Base Configuration

the execution of the application. The nodes and edges of the CFG are weighted according
to the corresponding execution frequencies during a typical execution of the application.
The gray bar in the middle of the figure presents the layout of the application code in the
main memory as well as the absolute address of each basic block. The instruction cache, in
this setup, is a direct mapped cache of 4 words in size. The execution trace, shown at the
top of the figure, represents an example execution of the application at the granularity of
basic blocks.

The execution trace reveals that the right arm (i.e. B2, B5, B6, B7) of the loop is
executed 9 times before the left arm (i.e. B2, B3, B4, B7) is executed once. The executions
of the right arm followed by that of the left arm is repeated for 10 times before the end of the
execution. According to the main memory layout and the modulo addressing (i.e. 2 mod 4 ≡
6 mod 4 ≡ 2) employed by caches, we observe that nodes B3 and B5 will share the same
cache line, so does nodes B4 and B6.

During the program execution, nodes B3 and B4 will constantly replace nodes B5 and
B6 in the cache leading to an aggregate 40 cache misses. Table 5.1 presents the assumed
energy values for a cache hit and a cache miss as well as the energy per access values for a
scratchpad memory and a loop cache. Table 5.2 summarizes the access and the miss count
as well as the energy consumption of each basic block. The energy values and the access
and miss counts are used to compute the total energy consumption of the application which
amounts to 760 units.

5.3.2 Non-Overlayed Scratchpad Allocation Approach

Now, we introduce a scratchpad (cf. Figure 5.3) into the instruction memory hierarchy of the
system. The scratchpad is allocated using the previously presented non-overlayed scratchpad
allocation (SA) approach which that the energy consumption of a basic block depends solely
upon its execution frequency. Therefore, in order to minimize the energy consumption of
the system the approach selects the memory objects with the highest execution frequencies
to be moved onto the scratchpad.

For the unit sized scratchpad, the approach has to choose between node B2 or B7, as
both nodes have the highest execution frequencies among all the nodes. Figure 5.3 displays
the modified main memory layout when node B7 is moved to the scratchpad memory. From
the figure, we observe that in the modified memory layout, nodes B2 and B5 share the same
cache line. Therefore, during the execution, nodes B2 and B3 will constantly replace nodes
B5 and B6 in the cache, respectively. This results in a total of 200 conflict cache misses,

56 5 Non-Overlayed Allocation for Main / Scratchpad + Cache Memory Hierarchy

B1
[1]

B2
[100]

B3
[10]

B8
[1]

B6
[90]

B4
[10]

B7
[100]

B5
[90]

1

10 90

9010

9010

99

1

0

1

2

3

B7

Main
Memory

I-Cache

Scratchpad

B1 ((B2 B5 B6 B7) (B2 B3 B4 B7)) B89 10

B1

B8

B6

B5

B4

B2

B3

0

1

2

3

4

5

6

7

Fig. 5.3. Example: Non-Overlayed Scratchpad Allocation Approach

BB
I-Cache

Accesses
I-Cache
Misses

SPM
Accesses

Energy

BB2 100 90 0 910
BB3 10 10 0 100
BB4 10 0 0 10
BB5 90 90 0 900
BB6 90 10 0 180
BB7 0 0 100 50
Total 300 200 100 2150

Table 5.3. Energy Values for Scratchpad
(1 Word) Based System

BB
I-Cache

Accesses
I-Cache
Misses

SPM
Accesses

Energy

BB2 0 0 100 50
BB3 10 10 0 100
BB4 10 10 0 100
BB5 90 10 0 180
BB6 90 10 0 180
BB7 0 0 100 50
Total 200 40 200 660

Table 5.4. Energy Values for Scratchpad
(2 Words) Based System

up from 40 in the base configuration. Consequently, the energy consumption (cf. Table 5.3)
for the scratchpad based instruction memory hierarchy rises steeply to 2150 units, which is
about 3 times larger than that for the base configuration (760 units) of the system.

The reason for the exaggerated energy consumption is that the allocation approach did
not consider the instruction cache present in the hierarchy. The current situation in which
frequently executed basic blocks (B2 and B5) recurrently replace each other in the cache
is known as cache thrashing. For a 2 word sized scratchpad, the allocation approach maps
nodes B2 and B7 to the scratchpad. Though the number of scratchpad access doubles in
this case, the number of cache misses remains constant at 40. The energy consumption
(cf. Table 5.4) for the scratchpad based memory hierarchy is 660 units.

5.3.3 Loop Cache Approach

Next, we assume that a preloaded loop cache (cf. Figure 5.4) is present in the instruction
memory hierarchy of the system. The loop cache is restricted to accommodate only one loop
or function. According to the loop cache allocation strategy [48], only loops and functions

5.3 Motivating Example 57

B1
[1]

B2
[100]

B3
[10]

B8
[1]

B6
[90]

B4
[10]

B7
[100]

B5
[90]

1

10 90

9010

9010

99

1

B1

B7

B5

B8

B4

B2

B3

B6

0

1

2

3

4

5

6

7

B2

B3

0

1

2

3

B1 ((B2 B5 B6 B7) (B2 B3 B4 B7)) B89 10

I-Cache

Main
Memory

Loop
Cache

Fig. 5.4. Example: Loop Cache Approach

BB
I-Cache

Accesses
I-Cache
Misses

Loop Cache
Accesses

Energy

BB2 0 0 100 50
BB3 10 10 0 100
BB4 10 10 0 100
BB5 90 10 0 180
BB6 90 10 0 180
BB7 100 0 0 100
Total 300 40 100 710

Table 5.5. Energy Values for Loop Cache
(1 Word) Based System

BB
I-Cache

Accesses
I-Cache
Misses

Loop Cache
Accesses

Energy

BB2 0 0 100 50
BB3 0 0 10 5
BB4 10 10 0 100
BB5 90 0 0 90
BB6 90 10 0 180
BB7 100 0 0 100
Total 290 20 110 525

Table 5.6. Energy Values for Loop Cache
(2 Words) Based System

can be fully or partially allocated onto the loop cache. Moreover, allocation of loops or
functions can only begin from the starting basic block and can only be extended to the
next contiguous basic block in the memory. Finally, loops and functions which are to be
preloaded are copied instead of being moved to the loop cache. Thus, the program memory
layout remains invariant upon loop cache allocation.

The unit word sized loop cache is preloaded with node B2. The energy consumption of
the memory hierarchy (cf. Table 5.5) reduces to 710 units, while the number of cache misses
remain the same. In the next scenario, when a loop cache of size 2 words is present in the
system, nodes B2 and B3 are allocated onto the loop cache. Consequently, the number of
cache misses and the energy consumption reduces to 20 and 525 units, respectively.

5.3.4 Cache Aware Scratchpad Allocation Approach

We will now demonstrate the effectiveness of the proposed approach for an instruction
memory hierarchy containing a scratchpad and an instruction cache. The proposed approach
uses a precise energy model based on cache hits and misses. Therefore, it can identify
the most energy consuming basic blocks for scratchpad allocation. Moreover, it keeps the

58 5 Non-Overlayed Allocation for Main / Scratchpad + Cache Memory Hierarchy

B1
[1]

B2
[100]

B3
[10]

B8
[1]

B6
[90]

B4
[10]

B7
[100]

B5
[90]

1

10 90

9010

9010

99

1

0

1

2

3

Main
Memory

I-Cache

B1 ((B2 B5 B6 B7) (B2 B3 B4 B7)) B89 10

B1

B7

NOP

B8

B4

B2

B3

0

1

2

3

4

5

6

7

B5

B6

ScratchpadNOP

Fig. 5.5. Example: Cache Aware Scratchpad Allocation Approach

BB
I-Cache

Accesses
I-Cache
Misses

Scratchpad
Accesses

Energy

BB2 100 0 0 100
BB3 10 0 0 10
BB4 10 10 0 100
BB5 0 0 90 45
BB6 90 10 0 180
BB7 100 0 0 100
Total 310 20 90 535

Table 5.7. Energy Values for Scratchpad
(1 Word) Based System

BB
I-Cache

Accesses
I-Cache
Misses

Scratchpad
Accesses

Energy

BB2 100 0 0 100
BB3 10 0 0 10
BB4 10 0 0 10
BB5 0 0 90 45
BB6 0 0 90 45
BB7 100 0 0 100
Total 220 0 180 310

Table 5.8. Energy Values for Scratchpad
(2 Words) Based System

program memory layout invariant by copying basic blocks on the scratchpad and replacing
them in the main memory by NOP instructions.

For a unit word sized scratchpad, the proposed approach chooses the most energy con-
suming node (B6 or B5), refer Table 5.2, to be allocated onto the scratchpad. Table 5.7
demonstrates that the allocation of node B6 to the scratchpad reduces the number of caches
misses by half and also reduces the energy consumption to 535 units. For 2 word sized
scratchpad, both the nodes B5 and B6 are copied to the scratchpad. Consequently, the pro-
posed approach eliminates all cache misses and minimizes the energy consumption. The
energy consumption of the system is 310 units, the minimum compared with all the previ-
ously presented approaches.

5.4 Problem Formulation and Analysis

The cache aware scratchpad allocation approach computes the energy consumption of the
code segments using an accurate cache conscious energy model. It then maps code seg-
ments to the non-cacheable scratchpad region such that the aggregate energy consumption
of the instruction memory subsystem is minimized. The application code layout in the main

5.4 Problem Formulation and Analysis 59

memory is kept invariant by replacing the code segments mapped to the scratchpad memory
by NOP instructions. Therefore, it can be guaranteed that the number of cache misses will
not increase after the scratchpad allocation.

In the remainder of this section, we first describe the underlying architecture for which
the optimization technique is developed, followed by the description of memory objects.
The interaction of memory objects within the cache is represented using a conflict graph
(cf. Subsection 5.4.3), which forms the basis of the proposed energy model
(cf. Subsection 5.4.4) and the allocation approaches.

5.4.1 Architecture

For the current research work, we assume a Harvard architecture (cf. Figure 5.1(a)) with
the scratchpad at the same horizontal level as the L1 instruction cache. The scratchpad is
mapped to a region in the processor’s address space and acts as an alternative non-cacheable
location for fetching instructions. Instruction fetches which do not access the scratchpad are
accessed through the cache. Figure 5.1(b) demonstrates, the system architecture containing
a loop cache. It can be observed from Figure 5.1 that both the architectures are quite similar
to each other.

5.4.2 Memory Objects

A memory object is the smallest granularity object in the application through which the
memory optimizations are performed. It can be a code fragment (e.g. function) or a data
variable (e.g. global variable). For the uni-processor ARM based system, the cache aware
scratchpad allocation (CASA) approach assumes that the memory objects consist of traces
and functions. Due to the implementation constraints, for multi-processor ARM based sys-
tem, the memory objects are restricted to contain only functions present in the application.
Table 5.9 summarizes the memory objects for the CASA approach for different system
architectures.

Traces, like functions, are an atomic unit of instructions which can be placed any-
where in the memory without modifying the other memory objects. Moreover, traces allow
fine grained scratchpad allocation as they are smaller in size than functions and efficiently
envelop the hot-spots or tight loops in the application. The formal definition of a trace can
be found in Subsection 3.1.3 on page 23. Figure 5.6 illustrates the CFG of the example
(cf. Figure 5.2) at the granularity of traces which were restricted to a maximum size of
2 words. Figure 5.6 also presents the main memory layout and the execution trace of the

Memory Optimization System Architecture Memory Objects Explanation

Non-overlayed Scratchpad
Allocation for MM/SPM +
Cache Hierarchy
(Chapter 5)

Uni-processor ARM MO ⊆ T ∪F traces and functions

Multi-processor ARM MO ⊆ F functions

Table 5.9. Memory Objects for Non-Overlayed Scratchpad Allocation Approach

60 5 Non-Overlayed Allocation for Main / Scratchpad + Cache Memory Hierarchy

1

B6

B5
T2

B3

B4

T3

B8

T5

1

B1B1

T4T4

T1

T3

T4

T2

T5

0

1

2

3

4

5

6

7

T4 ((T1 T2 T1) (T1 T3 T1)) T59 10

10 9010 90

B2

T1
B7

Fig. 5.6. Example: Application after Trace Generation Step

example application at the granularity of traces. In the following subsection, we model the
interaction of memory objects within the cache memory by a conflict graph.

5.4.3 Cache Model (Conflict Graph)

The cache maps an instruction to a cache line according to the following function:

Map(address) = address mod
CacheSize

Associativity ∗WordsPerLine
(5.1)

where CacheSize and Associativity represent the size and the associativity of the cache,
respectively. The variable WordsPerLine refers to the size of the cache line in terms of
4 bytes or words. The above equation remains valid for all caches irrespective of their size,
associativity or replacement policy. A memory object is mapped to cache line(s) depending
upon its start address and size. Two memory objects potentially cause conflicts in the cache
if they are mapped to at least one common cache line. This relationship can be represented
by a conflict graph G (cf. Figure 5.7), which is defined as follows:

Definition 5.1 (Conflict Graph). The Conflict Graph G(N,E) is an edge and node
weighted directed graph with node set N = {n1, . . . ,nn} and is defined as follows:
(a) ni ∈ N node ni corresponds to the memory object moi ∈ MO.
(b) eij ∈ E directed edge eij from node ni to node nj is present if a cache line belonging

to memory object moi is replaced by memory object moj due to the cache
replacement policy.

(c) w(ni) weight of the node ni ∈ N represents the total number of instruction fetches
within memory object moi.

(d) w(eij) weight of the edge eij ∈ E represents the number of cache lines that needs to
be fetched if a cache miss of moi occurs due to moj .

5.4 Problem Formulation and Analysis 61

mo
{100}

1 mo
{100}

2

mo
{100}

3

mo
{100}

4 mo
{100}

5

10

10 10

5
55

5

Fig. 5.7. Conflict Graph

In other words, an edge eij ∈ E from node ni to node nj is present in the conflict graph
G if there occurs a cache miss of memory object moi is caused by memory object moj .
A conflict graph is built using both static and dynamic analysis of a program. A node is
created for every memory object identified in the program code. The address range of every
memory object is analyzed. For all pairs of memory objects which share a common cache
line, two directed edges are created, connecting the corresponding nodes in the conflict
graph. The weight of each node and each edge in the conflict graph is initialized to zero.

Dynamic profiling of the application is performed to compute the real weight of each
node and each edge. The total number of instruction fetches of a memory object moi is
attributed as the weight of the corresponding node ni. The number of conflict misses of
memory object moi caused due to memory object moj is attributed as the weight of the
directed edge eij from node ni to node nj . Finally, the graph is pruned to remove nodes
and edges with zero weights. In order to minimize the influence of the chosen input data set
on the conflict graph, average values generated by using several distinct input vectors can
be used.

The conflict graph as shown in Figure 5.7 is a directed graph because the con-
flict relationship is antisymmetric. The conflict graph has the advantage that it can pre-
cisely model a wide range of cache memories. Any cache with a fixed set of parameters
(e.g. associativity, size, replacement policy etc.) can be represented using a conflict graph.
This is because of the fact that all caches follow Equation 5.1 to assign memory objects to
cache lines and that weights are attributed to the edges based on dynamic profiling of the
application. Therefore, each edge correctly correlates a cache miss with the two conflicting
memory objects. The conflict graph G and the energy values of the cache memory are used
to compute the energy consumption of a memory object according to the energy model
presented in the following subsection.

5.4.4 Energy Model

As described in Chapter 3, the energy functionE(inst, imem,dmem), shown below, returns
the energy dissipated during the execution of instruction inst fetched from instruction
memory imem and possibly accessing data memory dmem.

E(inst, imem,dmem) = Eif (imem)+Eex(inst)+Eda(dmem) (5.2)

62 5 Non-Overlayed Allocation for Main / Scratchpad + Cache Memory Hierarchy

In this chapter, the focus of the optimization is to reduce the energy consumed by the
instruction memory hierarchy. Therefore, the energy dissipated by the memory hierarchy
during the execution of an instruction inst is reduced to the following:

E(inst, imem,dmem) = Eif (imem) (5.3)

The energy consumed by a memory object moi in the considered memory hierarchy con-
figuration can be presented as follows:

E(moi) =
{

E(moi,SPM) if MO moi is present on the scratchpad
E(moi,Cache) otherwise

(5.4)

where the energy dissipated by a memory object fetched through the cache memory
E(moi,Cache) is computed as shown below:

E(moi,Cache) = Hit(moi)∗ECache hit +Miss(moi)∗ECache miss (5.5)

where functions Hit(moi) and Miss(moi) return the number of cache hits and misses,
respectively while fetching the instructions of memory object moi. ECache hit is the energy
of a read hit and ECache miss is the energy of a read miss in the cache.

ECache hit = Eif (Cache) = Eread(Cache) (5.6)

ECache miss = 2∗Eread(Cache) +
linesize(Cache)∗ (Eread(MM)+Ewrite(Cache)) (5.7)

where Eread(Cache) and Ewrite(Cache) is the energy consumed by the cache memory
for a read or a write access, respectively. These values can be found in the data sheets
available from the memory vendors. A read hit translates to a single read access to the
cache. Therefore, the energy of a read hit ECache hit, as shown in Equation 5.6, is equal to
that of a read access Eread(Cache) to the cache.

In contrast, a read miss results in a read access to the cache, followed by a series of write
accesses to the cache to refill the cache line and finally another read access to the cache.
The first read access determines that the current read access results in a miss, whereas the
second read access represent the access required to send the data requested by the processor
once it has been brought into the cache. A cache line refill requires a series of read accesses
to the main memory and write access to cache memory, respectively, to read and write the
requested data. The energy consumed due to a cache miss is presented in Equation 5.7.

The total number of cache misses to a memory object moi can be decomposed as shown
below:

Miss(moi) =
∑

moj∈N(moi)

Miss(moi,moj) with (5.8)

N(moi) = {moj : ∀j nj ∈ N & eij ∈ E}
where Miss(moi,moj) denotes the number of cache misses of memory object moi caused
due to the conflicts with memory object moj . The neighbor set of memory object moi is
represented as N(moi) in the above equation. We know that the sum of the number of hits
and misses of a memory object moi is equal to the number of instruction fetches within the

5.4 Problem Formulation and Analysis 63

memory object which is also represented as the weight w(ni) of the corresponding node ni

in the conflict graph.

w(ni) = Hit(moi)+Miss(moi) (5.9)

For a given input data set, the number of instruction fetches within a memory object moi is
a constant and is independent of the memory hierarchy. Substituting the terms Miss(moi)
from Equation 5.8 and Hit(moi) from Equation 5.9 in Equation 5.5 and rearranging derives
the following equation:

E(moi,Cache) = w(ni)∗ECache hit + (5.10)∑
moj∈N(moi)

Miss(moi,moj)∗ (ECache miss −ECache hit)

The first term in the above equation is a constant while the second term, which is variable,
depends on the overall program code layout and the memory hierarchy. We would like to
point out that the approach [48] only considered just the constant term in its energy model
and thus, could not optimize for the overall memory energy consumption. The energy
consumed by a memory object moi when accessed from the scratchpad is shown in the
following energy equation:

E(moi,SPM) = w(ni)∗ESPM hit = w(ni)∗Eif (SPM) (5.11)

where ESPM hit = Eif (SPM) is the energy for performing an instruction fetch from the
scratchpad memory.

5.4.5 Problem Formulation

Problem 5.2 (Cache Aware Scratchpad Allocation (CASA)). Given the set of memory
objects MO, the instruction memory hierarchy consisting of a scratchpad memory, an
instruction cache and a main memory and a conflict graph G(N,E) representing the behavior
of the instruction cache. The problem is to determine a subset MOSPM ⊆ MO of the set
of memory objects MO such that the allocation of memory objects moi ∈ MOSPM to
the scratchpad memory minimizes the total energy consumption ETotal of the instruction
memory subsystem.

ETotal =
∑

moi∈MO

E(moi) (5.12)

The energy consumption function E(moi) of a memory object moi is formally defined in
the previous subsection. The minimization of the total energy consumption ETotal is to be
performed under the following scratchpad size constraint:

∑
moi∈MOSPM

size(moi) ≤ size(SPM) (5.13)

The above optimization problem is related to two NP-complete problems, viz.
Knapsack [43] and Weighted Max-Cut [43] problem. Let’s make the simplifying assump-
tion that the cache present in the system is large or high-associative enough to hold all the

64 5 Non-Overlayed Allocation for Main / Scratchpad + Cache Memory Hierarchy

memory objects such that not a single conflict cache miss occurs. The energy consumption
of a memory object under the above assumption becomes independent of other memory
objects and the CASA problem is reduced to a Knapsack problem with each node having
constant weights.

On the other hand, if we assume that the energy of an access to the scratchpad ESP hit

is equal to the energy of a cache hit ECache hit and that the conflict graph is an undirected
graph, the problem is reduced to the Bi-Criteria Max-Cut problem. In this problem, the
cost of the cut is defined as the sum of the weight of the nodes present in side the cut and
the weight of the edges crossing the cut. A simple transformation of the objective function
(cf. Equation 5.12) to the objective function of the Max-Cut problem can be easily con-
structed. The maximization of the objective function of the Max-Cut problem needs to
be performed while respecting the scratchpad size constraint. In the following section, we
present ILP based optimal and greedy heuristic based near-optimal approaches for solving
the cache aware scratchpad allocation problem.

Profile
Information

Trace
Generation

Memory
Objects

Conflict
Graph

Memory
Mapping

Conflict
Graph

Conflict
Graph

Scratchpad
Allocation

Energy
Model

Cache
ModelingCFG

Fig. 5.8. Workflow of Scratchpad Allocation Approaches

5.5 Cache Aware Scratchpad Allocation

The non-overlayed cache aware scratchpad allocation approaches presented in the following
subsections are based upon the workflow shown in Figure 5.8. The first step of the proposed
approaches is the memory object determination step. It uses the compiler optimization,
viz., trace generation, to identify traces from functions larger in size than a threshold value.
Functions along with traces are considered as memory objects in the proposed approaches.
In the first step, NOP instructions are also appended to the memory objects to align them to
the cache line boundaries. The alignment of memory objects is done as it helps in correctly
correlating a cache miss to the culprit memory object.

The second step analyzes the interaction of memory objects within the cache. The
interaction is represented as a conflict graph with nodes denoting the memory objects and
edges between nodes denoting the conflict relationship between the corresponding memory

5.5 Cache Aware Scratchpad Allocation 65

objects. In the third step, the energy model computes the energy consumption for each
memory object and attributes it to each node in the conflict graph. Finally, based upon the
conflict graph, the scratchpad allocation approach determines a mapping of memory objects
to the non-cacheable scratchpad memory in order to minimize the energy consumption of
the system.

The ILP based optimal allocation approach selects the memory objects to be mapped
to the scratchpad in a single step. In contrast, the greedy heuristic iterates over the conflict
graph, every time removing the most energy consuming memory object from the conflict
graph and mapping it onto the scratchpad memory. Next, we describe the ILP based optimal
approach for solving the CASA problem. After that, we present a greedy heuristic which
solves the CASA problem near-optimally with a polynomial runtime complexity.

5.5.1 Optimal Cache Aware Scratchpad Allocation

Once we have created the conflict graph G annotated with vertex and edge weights, the
energy consumption of memory objects can be computed. Now, the problem is to select a
subset of memory objects which minimizes the overall energy consumed by the instruction
memory hierarchy of the system. The subset should be bounded in size by the size of
the scratchpad memory. We define a couple of binary variables before presenting the ILP
formulation. The binary variable l(moi) denotes the location of memory object moi in the
memory hierarchy and is defined as follows:

l(moi) =
{

0 if memory object moi is present in the SPM
1 otherwise

(5.14)

The miss function Miss(moi,moj), presented below, returns the number of conflict cache
misses of memory object moi caused by memory object moj :

Miss(moi,moj) =
{

0 if memory object moj is present in the SPM
w(eij), otherwise

(5.15)

where w(eij) is the weight of the edge eij connecting node ni to node nj . The miss function
Miss(moi,moj) returns zero if memory object moj is present in the scratchpad, because
the memory objects present in the scratchpad do not conflict with those present in the cache.
The miss function is reformulated using the location variable l(moj) as:

Miss(moi,moj) = l(moj)∗w(eij) (5.16)

The location variable l(moi) is also used to reformulate the energy function E(moi)
(cf. Equation 5.4) which denotes the energy consumed by the memory object moi.

E(moi) = [1− l(moi)]∗E(moi,SPM)+ l(moi)∗E(moi,Cache) (5.17)

The energy functions E(moi,Cache) and E(moi,SPM) presented in Equation 5.10 and
Equation 5.11, respectively, are substituted into the above equation. After rearranging the
terms, the above equation representing the energy consumption is transformed to the fol-
lowing equation.

66 5 Non-Overlayed Allocation for Main / Scratchpad + Cache Memory Hierarchy

E(moi) = w(ni)∗ESP hit +w(ni)∗ [ECache hit −ESP hit]∗ l(moi)

+ [ECache miss −ECache hit]∗
⎡
⎣ ∑

moj∈N(moi)

l(moj)∗ l(moi)∗w(eij)

⎤
⎦

(5.18)

We find the last term is a quadratic degree term, since the number of misses of a memory
object moi not only depends on its location but also on the location of the conflicting
memory objects moj . In order to formulate a 0-1 Integer Linear Programming problem, we
need to linearize the above equation. This can be achieved by replacing the non-linear term
l(moi)∗ l(moj) of Equation 5.18 by an additional binary variable L(moi,moj):

E(moi) = w(ni)∗ESP hit +w(ni)∗ [ECache hit −ESP hit]∗ l(moi)

+ [ECache miss −ECache hit]∗
⎡
⎣ ∑

moj∈N(moi)

L(moi,moj)∗w(eij)

⎤
⎦
(5.19)

In order to prevent the linearizing variable L(moi,moj) from assuming arbitrary values,
the following linearization constraints are added to the set of constraints:

l(moi) − L(moi,moj) ≥ 0 (5.20)

l(moj) − L(moi,moj) ≥ 0 (5.21)

l(moi)+ l(moj) − 2∗L(moi,moj) ≤ 1 (5.22)

The objective function ETotal to be minimized, as shown in the following, denotes the total
energy consumed by the instruction memory subsystem.

ETotal =
∑

moi∈MO

E(moi) (5.23)

The objective function is to be minimized while maintaining the scratchpad size constraint.
∑

moi∈MO

[1− l(moi)]∗size(moi) ≤ size(SPM) (5.24)

The size of memory object size(moi) is computed without considering the appended NOP
instructions which are stripped away from the memory objects prior to allocating them to
the scratchpad. The underlying assumption in the problem formulation is that no new edges
in the conflict graph or no new conflict relationships are created when a memory object
is mapped to the non-cacheable scratchpad. This assumption can be partially fulfilled by
keeping the program memory layout invariant. However, the assumption may fail for graphs
with circular edge dependencies. For example, in Figure 5.7 memory objects mo1, mo2 and
mo3 have circular edge dependencies. Thus, the allocation of memory object mo3 to the
scratchpad may create a new edge from mo2 to mo1.

The above ILP formulation solves the cache aware scratchpad allocation (CASA) prob-
lem, as it determines the subset of memory objects (MOSPM = {moi|l(moi) = 0}) which
minimizes the energy consumption of the instruction memory subsystem. The number of

5.5 Cache Aware Scratchpad Allocation 67

CacheAwareScratchpadAllocation-Heuristic(G(N,E), SPMSize)
1 RemSPMSize = SPMSize /* default values */
2 MOSPM = {}
3 while (∃moi ∈ MO : size(moi) ≤ RemSPMSize) do
4 /* select the memory object with maximum energy consumption */
5 /* and which is smaller than the remaining scratchpad size */
6 select ni ∈ N such that size(moi) ≤ RemSPMSize and

E(moi) > E(mok) ∀nk ∈ N : size(mok) ≤ RemSPMSize
7 /* remove node ni from the graph G */
8 E = E −{eij |∀j : j ∈ N(ni)}−{eji|∀i : i ∈ N(nj)}
9 N = N −{ni}
10 RemSPMSize = RemSPMSize - size(moi)
11 /* add the memory object to the set of memory objects MOSPM */
12 MOSPM = MOSPM

⋃
moi

13 /* Recompute the energy consumption value for each node */
14 UpdateEnergyValue(G)
15 end-while
16 return MOSPM

Fig. 5.9. Greedy Heuristic for Cache Aware Scratchpad Allocation Problem

vertices |N | of the conflict graph G is equal to the number of memory objects, which is
bounded by the number of basic blocks in the program code. The number of linearizing
variables is equal to the number of edges |E| in the conflict graph G. Therefore, the number
of variables in the ILP formulation is equal to |N |+ |E| and is bounded by O(|N |2).

The actual runtime of the commercial ILP solver [32] was found to be less than a
second on a Sun Sparc 1300 MHz compute blade server for a conflict graph containing a
maximum of 455 vertices. However, we cannot guarantee that ILP based approach will scale
efficiently for benchmarks with large conflict graphs. Therefore, in the following subsection,
we describe a polynomial time heuristic for obtaining near-optimum solutions.

5.5.2 Near-Optimal Cache Aware Scratchpad Allocation

The proposed greedy heuristic takes as input the conflict graph G and the scratchpad size
and returns the set of memory objects MOSPM to be allocated onto the scratchpad memory.
The pseudo-code of the heuristic is presented in Figure 5.9.

The heuristic iterates over the conflict graph and for each node of the graph computes
the energy consumption of the corresponding memory object. The energy model (cf.
Subsection 5.4.4) uses the execution count and the conflict cache misses to compute the en-
ergy consumption of the memory objects. In each iteration, the heuristic selects the maximum
energy memory object which can fit in the available scratchpad memory and adds the mem-
ory object to the set of memory objects MOSPM marked for scratchpad allocation. It then
removes the corresponding node from the conflict graph and appropriately reduces the unal-
located (RemSPMSize) scratchpad size.At the end of each iteration the heuristic recomputes
and stores the energy consumption values for each memory object.

The heuristic iterates as long as there exists a memory object which can be placed on
the scratchpad without violating the scratchpad size constraint. On termination, the set of

68 5 Non-Overlayed Allocation for Main / Scratchpad + Cache Memory Hierarchy

Benchmark Code Size I-Cache Size System
(bytes) (bytes) Architecture

adpcm 944 128 B DM uni-processor ARM
epic 12 kB 1 kB DM uni-processor ARM
g721 4.7 kB 1 kB DM uni-processor ARM
media 4 kB 1 kB DM uni-processor ARM
mpeg2 21.4 kB 2 kB DM uni-processor ARM

multi-process edge detection 4484 4 kB DM multi-processor ARM

Table 5.10. Benchmark Programs for the Evaluation of CASA Approaches

memory objects MOSPM marked for scratchpad allocation is returned. The time complexity
of the heuristic is O(|N | ∗ (|N |+ |E|)). As shown in the following section, the heuristic
achieves close to optimal results for most of the experiments.

5.6 Experimental Results

In this section, the cache aware scratchpad allocation approaches are evaluated for a
uni-processor ARM and a multi-processor ARM based system. Table 5.10 presents the
benchmarks used for the evaluation of the approaches. It also presents the code size of
the benchmarks as well as the size of the instruction cache used in the experimental setup.
Experiments were conducted by varying the size of the scratchpad/loop cache as well as
the size and the associativity of the instruction cache present in the system. The size of the
instruction cache line, though, was kept constant at 16 bytes. The application is executed
and profiled to compute the number and the type of accesses to each memory in the hierar-
chy. Based on the profile information and the energy model, the energy consumption of the
system is computed.

The multi-processor ARM simulator allows us to compute the energy consumption
of the multi-processor system for different memory hierarchies, therefore, total energy
consumption values are reported. For the uni-processor ARM based setup, the simulator
(ARMulator [12]) is used to simulate the application with a flat memory hierarchy, whereas
the memory hierarchy simulator [89] is used to simulate the memory hierarchy consisting of
instruction and data caches, a scratchpad and a loop cache. The energy consumption of the
instruction memory subsystem and the number of CPU cycles spent during the execution
of the benchmarks are computed. A detailed description of the experimental setup can be
found in Chapter 3.

5.6.1 Uni-Processor ARM

The evaluation of the cache aware scratchpad allocation approaches for the uni-processor
ARM based system is presented in the following order:

(a) Benefits of a cache and a scratchpad memory based memory hierarchy for the mpeg
benchmark.

(b) Comparison of the scratchpad memory allocation approaches.

5.6 Experimental Results 69

0

3

6

9

12

15

18

21

1024 2048 4096 8192 16384
Cache Size (Bytes)

E
n

e
rg

y
C

o
n

s
u

m
p

ti
o

n
(m

J
)

Direct Mapped Cache 2-Way Cache 4-Way Cache

Fig. 5.10. MPEG: Instruction Memory Energy Consumption

(c) Determination of the optimal scratchpad memory size for the mpeg benchmark.
(d) Comparison of preloaded loop cache and scratchpad memory.

First, we present the benefits of an instruction cache and scratchpad based instruction mem-
ory hierarchy. To demonstrate the benefit of the current memory hierarchy, a comparison
of its energy consumption and that of the least energy consuming instruction cache based
memory hierarchy is presented. Second, we compare the optimal and near-optimal cache
aware scratchpad allocation approaches with the non-overlayed scratchpad allocation app-
roach proposed in Chapter 4. Third, we determine the most energy efficient instruction cache
and scratchpad based memory hierarchy for the mpeg benchmark. Last, a comparison of
the scratchpad allocated with the proposed optimal approach with the preloaded loop cache
is presented.

Benefit of Instruction Cache and Scratchpad Based Memory Hierarchy:
First, we determine the least energy consuming instruction cache based memory

hierarchy for the mpeg benchmark. Experiments are conducted by varying the size and
the associativity of the instruction cache present in the system. Figure 5.10 displays the
energy consumption of the instruction memory hierarchy as a function of the size for three
different set associative instruction caches.

We observe from the figure that for each associativity, the energy consumption of the
instruction memory subsystem monotonically decreases to the minimum point with the
increase in the size of the instruction cache. Thereafter, the energy consumption increases
with any further increase in the cache size. The reason for the increase in the energy con-
sumption is that large energy per access values for large caches offset the energy savings
achieved due to lower cache misses. The minimum energy points represent the most energy
efficient instruction cache size for each associativity. It can be observed that 2k, 4k and 8k
bytes caches result in the minimum energy consumption for 4-way, 2-way set associative
and direct mapped instruction cache based memory hierarchies, respectively. Moreover,
from Figure 5.10, we observe that the 8k byte direct mapped instruction cache forms the
least energy consuming instruction memory hierarchy for the mpeg benchmark.

Now, we assume that the instruction memory hierarchy consists of an instruction cache
and a scratchpad memory and conduct the experiments to determine the energy consumption
of the current memory hierarchy. The scratchpad memory is allocated using the optimal
cache aware scratchpad allocation approach presented in Subsection 5.5.1. Figure 5.11
shows the relative energy consumption of the memory hierarchies consisting of 512 or
1024 bytes scratchpads and instruction caches of various sizes and associativity. The energy

70 5 Non-Overlayed Allocation for Main / Scratchpad + Cache Memory Hierarchy

0%

20%

40%

60%

80%

100%

120%

140%

1kB (DM) 2kB (DM) 4kB (DM) 1kB (2-way) 2kB (2-way) 4kB (2-way) 1kB (4-way) 2kB (4-way)

I-Cache Configuration

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

(%
)

I-Cache + SP (512B) I-Cache + SP (1024B)

Fig. 5.11. MPEG: Comparison of Energy Consumption of I-Cache + Scratchpad with 8 kB DM I-Cache

consumption of the least energy consuming memory hierarchy, i.e. 8k bytes direct mapped
instruction cache, found previously is represented as the 100% baseline.

There are a couple of important observations to be made from the figure. First, in most
cases the energy consumption of the scratchpad and cache based memory hierarchy is lower
than the least energy consuming cache-only memory hierarchy. The exception cases occur
for small and high associative caches, as the energy consumption of the memory hierarchies
based on these caches is much higher than the least energy consumption values. For example,
the energy consumption of a 1k bytes 4-way set associative instruction cache based memory
hierarchy (cf. Figure 5.10) consumes more than 3 times as much energy as that consumed
by the least energy consuming memory hierarchy. Hence, even the addition of a scratchpad
to the hierarchy could not reduce their energy consumption below the 100% baseline.

Second, the energy consumption of the memory hierarchy consisting of a 1k bytes direct
mapped cache and a 1k bytes scratchpad relative to the least energy consuming memory
hierarchy is about 60%. Consequently, the efficacy of the considered memory hierarchy is
demonstrated by the fact that not only does it consume only 60% of the energy consumed
by the least energy consuming memory hierarchy but also accounts for a mere (2k bytes)
25% of its onchip size.

Comparison of Scratchpad Allocation Approaches:
We will start by demonstrating the negative implications of not modeling a cache by

the non-overlayed scratchpad allocation (SA) approach. Figure 5.12(a) displays the number
of instruction cache misses and the energy consumption of the epic benchmark using the
SA approach and the proposed optimal cache aware scratchpad allocation (Opt. CASA)
approach. In order to display both the cache misses and energy consumption values in
the same figure, they are presented as percentages of a 100% baseline. The baseline in
Figure 5.12(a) represents the number of cache misses and the energy consumption of an
instruction memory hierarchy without a scratchpad. The 100% baseline is independent of
the scratchpad size and is pegged at a constant value for all the experiments.

From Figure 5.12(a), we observe that the number of cache misses for the SA approach
demonstrate unpredictable behavior. At 128 bytes scratchpad, the cache misses are slightly
higher than the baseline, but are lower for 256 bytes. However at 512 bytes, a steep rise
in the number of cache misses is observed. This phenomenon of excessive increase in
cache misses is known as cache thrashing and it also substantially increases the energy
consumption of the system. On the other hand, for the Opt. CASA approach, cache misses
and energy consumption values monotonically decrease with the increase in scratchpad

5.6 Experimental Results 71

0%

25%

50%

75%

100%

125%

150%

175%

200%

225%

250%

128 256 512 1024
Scratchpad Size (Bytes)

I-Cache Miss (Opt. CASA) I-Cache Miss (SA)

I-Mem Energy (Opt. CASA) I-Mem Energy (SA)

(a) EPIC

0%

20%

40%

60%

80%

100%

120%

140%

128 256 512 1024
Scratchpad Size (Bytes)

I-Cache Miss (Opt. CASA) I-Cache Miss (SA)

I-Mem Energy (Opt. CASA) I-Mem Energy (SA)

(b) MPEG

Fig. 5.12. Cache Behavior: Comparison of Opt-CASA and SA Approaches

0%

20%

40%

60%

80%

100%

120%

140%

128 256 512 1024 avg.
Scratchpad Size (Bytes)

I-cache Access Scratchpad Access I-Cache Miss I-Mem Energy CPU Cycles

Fig. 5.13. EPIC: Comparison of Opt. CASA and SA Approaches

size. This characteristic behavior of our approach originates from the precise cache and
energy models.

Figure 5.12(b) shows a similar comparison of the allocation approaches, and the SA
approach again demonstrates an unpredictable behavior for the mpeg benchmark. The base-
line, again, represents the number of cache misses and the energy consumption of the mpeg
benchmark on a system without a scratchpad. The energy consumption for the SA approach
is higher than the baseline for scratchpad sizes of 128 bytes and 256 bytes. The high number
of cache misses due the SAapproach for both the benchmarks nullifies the energy reductions
achieved due to the utilization of an energy efficient scratchpad.

A detailed comparison of all the parameters of the instruction memory hierarchy is
presented to enable a better appreciation of the results: Figures 5.13 and 5.14 display
the energy consumption of the instruction memory hierarchy with all its respective para-
meters (i.e. scratchpad accesses, cache accesses and cache misses) for the epic and the mpeg
benchmarks, respectively, allocated using the Opt. CASA approach. The last column of the
figures displays the execution time of the two benchmarks in terms of CPU cycles. A direct
mapped instruction cache of size 1k and 2k bytes is assumed to be present in the system for
the epic and the mpeg benchmarks, respectively.

The results of the Opt. CASA are compared with the corresponding results of the SA
approach. Unlike the baseline of Figure 5.12(a), the 100% baseline in Figure 5.13 represents
the varying experimental values achieved by the SA approach for each scratchpad size.

72 5 Non-Overlayed Allocation for Main / Scratchpad + Cache Memory Hierarchy

0%

20%

40%

60%

80%

100%

120%

140%

160%

128 256 512 1024 avg.
Scratchpad Size (Bytes)

I-Cache Access Scratchpad Access I-Cache Miss I-Mem Energy CPU Cycles

Fig. 5.14. MPEG: Comparison of Opt. CASA and SA Approach

However, it enables a direct comparison of the Opt. CASA approach with the SA approach
for each scratchpad size. It should be noted that the cache misses and the energy consumption
of the system (cf. Figure 5.12(a)) for the Opt. CASA approach decreases monotonically with
the increase in the scratchpad size.

From Figures 5.13 and 5.14, it is interesting to note that in spite of the higher instruc-
tion cache accesses (see the first bar) and lower scratchpad accesses (see the second bar),
the Opt. CASA approach reduces energy consumption compared with the SA approach.
The reason for this behavior is that the SA approach reduces the energy consumption by
increasing the number of scratchpad accesses. In contrast, the Opt. CASA approach reduces
the energy consuming cache misses by assigning conflicting memory objects to the scratch-
pad memory. Since on every cache miss, the slow and power hungry main memory is
accessed, avoiding cache misses is beneficial both in terms of energy and performance.
Therefore, the Opt. CASA approach with substantially lower instruction cache misses is
able to over-compensate for higher cache access and results in reduced energy consumption
values. For the mpeg benchmark, the Opt. CASA approach achieves up to 80% reduction
in instruction cache misses and as a consequence achieves substantial energy reductions of
more than 60%. On the average, the Opt. CASA average conserves 31% and 42% energy
compared with the SA approach for the epic and the mpeg benchmarks, respectively. A
reduction of 14% in the CPU cycles is also reported for the mpeg benchmark. However, at
1024 bytes the reduction in energy consumption and the execution time using our algorithm
is minimal. This is due to the fact that a 1024 bytes scratchpad is large enough to hold all
important memory objects and as a consequence the solution sets of the SA approach as
well as the Opt. CASA approach are fairly similar. However, the SA approach modifies the
program layout, therefore, may also lead to erratic results.

Up to this point, we compared the scratchpad allocation algorithms for epic and mpeg
benchmarks for memory hierarchies consisting of direct mapped instruction caches of 1k
and 2k bytes, respectively. Now, we compare the Opt. CASAapproach with the SAapproach
for the mpeg benchmark and for systems with different instruction cache configurations.
The considered cache configurations include direct-mapped 1k and 4k bytes caches and
2-way and 4-way set associative caches of size 1k and 2k bytes.

Figures 5.15(a) and 5.15(b) illustrates the energy consumption of the mpeg benchmark
for memory hierarchies containing 1k bytes and 4k bytes of direct mapped instruction
caches, respectively. The proposed Opt. CASA approach always leads to a more energy

5.6 Experimental Results 73

0

2

4

6

8

10

12

14

16

0 128 256 512 1024 avg.

Scratchpad Size (Bytes)

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

(m
J)

Energy (Opt. CASA) Energy (SA)

(a) 1 kB DM I-cache

0

2

4

6

8

10

12

0 128 256 512 1024 avg.
Scratchpad Size (Bytes)

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

(m
J)

Energy (Opt. CASA) Energy (SA)

(b) 4 kB DM I-cache

Fig. 5.15. MPEG: Energy Comparison of Opt. CASA and SAApproaches for Direct Mapped I-Caches

0

2

4

6

8

10

12

14

16

0 128 256 512 1024 avg.
Scratchpad Size (Bytes)

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

(m
J)

Energy (Opt. CASA) Energy (SA)

(a) 1 kB 2-way I-cache

0

1

2

3

4

5

6

7

8

0 128 256 512 1024 avg.
Scratchpad Size (Bytes)

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

(m
J)

Energy (Opt. CASA) Energy (SA)

(b) 2 kB 2-way I-cache

Fig. 5.16. MPEG: Energy Comparison of Opt. CASA and SAApproaches for 2-Way Set-Associative
I-Caches

efficient allocation than that obtained by the SA approach. For the 4k bytes instruction
cache, the SA approach again causes the cache thrashing problem and results in energy
consumption values higher than those for a system without a scratchpad memory. On the
average, the Opt. CASA approach leads to an energy reduction of 35% over the SA approach
for a system with 1k byte direct mapped instruction cache. An even higher average energy
reduction of 41% is reported for the system with a 4k byte direct mapped instruction cache.

Figures 5.16(a) and 5.16(b) present the comparison of the proposed Opt. CASAapproach
and the SA approach for the systems with 1k and 2k bytes of 2-way set associative instruc-
tion cache, respectively. In Figure 5.16(b), the SA approach again displays an unpredictable
behavior, as it leads to an increase in cache misses for 128 byte scratchpad. The Opt. CASA
approach performs better than the SA approach, although the reduction in energy consump-
tion is less than that achieved for direct mapped instruction caches. This behavior is justified
as the 2-way set associative instruction caches result in a hit ratio of more than 99% for the
mpeg benchmark. Nevertheless, the algorithm achieves energy savings of upto 19% and
24% compared with the SA approach for 1k and 2k bytes instruction caches, respectively.

The last set of Figures 5.17(a) and 5.17(b) presents the comparison of the allocation
approaches for 1k and 2k bytes 4-way set associative instruction cache based memory
hierarchy, respectively. For high associative caches, the number of conflict cache misses is
substantially lower than that for low associative or direct mapped caches. Consequently, very
few conflict edges are present in the conflict graph used to model the behavior of memory
objects present in a cache. As discussed in Section 5.4, our allocation problem reduces to the

74 5 Non-Overlayed Allocation for Main / Scratchpad + Cache Memory Hierarchy

0

5

10

15

20

25

30

35

40

0 128 256 512 1024 avg.
Scratchpad Size (Bytes)

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

(m
J)

Energy (Opt. CASA) Energy (SA)

(a) 1 kB 4-way I-cache

0

2

4

6

8

10

12

14

16

18

20

0 128 256 512 1024 avg.
Scratchpad Size (Bytes)

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

(m
J)

Energy (Opt. CASA) Energy (SA)

(b) 2 kB 4-way I-cache

Fig. 5.17. MPEG: Energy Comparison of Opt. CASA and SAApproaches for 4-Way Set-Associative
I-Caches

Knapsack problem, which also forms the basis of the SA approach. Under these conditions,
the allocation of the memory objects achieved by the Opt. CASA approach is similar to
that achieved by the SA approach. This is also corroborated by energy consumption values
presented in Figure 5.17.

0

1

2

3

4

5

6

7

8

9

10

0 128 256 512 1024 avg.
Scratchpad Size (Bytes)

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

(m
J)

SPM (Opt. CASA) SPM (Near-Opt. CASA) SPM (SA)

(a) EPIC

0

2

4

6

8

10

12

14

0 128 256 512 1024 avg.
Scratchpad Size (Bytes)

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

(m
J)

SPM (Opt. CASA) SPM (Near-Opt. CASA) SPM (SA)

(b) MPEG

Fig. 5.18. Energy Comparison of Opt. CASA, Near-Opt. CASA and SA Approaches

Figures 5.18 and 5.19 present a comparison of the scratchpad allocation approaches
for the epic and mpeg benchmarks, respectively. Figure 5.18 displays the energy consumed
by the benchmarks while Figure 5.19 presents the execution time of the benchmarks when
optimized using the scratchpad allocation approaches. The scratchpad allocation approaches
include the optimal (Opt. CASA) and the near-optimal (Near-Opt. CASA) cache aware
scratchpad allocation approaches and the non-overlayed scratchpad allocation (SA) approach.

A few interesting points can be noted from the figures. Firstly, the Opt. CASA and
Near-Opt. CASA approaches result in a monotonically decreasing energy consumption and
execution time behavior of the benchmarks. However, the reduction in the energy consump-
tion is larger than that in execution time. The reason for this behavior is the difference in
energy per access to a main memory and a scratchpad is much larger than the difference
in the access times of the two memories. Table 3.2 on Page 22 summarizes the energy per
access and the access times of the two memories. Secondly, the energy consumption of
the benchmarks due to the Near-Opt. CASA approach is fairly close to the optimal energy
consumption achieved by the Opt. CASA approach.

5.6 Experimental Results 75

12000

12500

13000

13500

14000

14500

15000

15500

16000

0 128 256 512 1024 avg.
Scratchpad Size (Bytes)

E
xe

cu
ti

o
n

T
im

e
(C

P
U

C
yc

.x
10

00
) SPM (Opt. CASA) SPM (Near-Opt. CASA) SPM (SA)

(a) EPIC

7000

8000

9000

10000

11000

12000

13000

14000

0 128 256 512 1024 avg.
Scratchpad Size (Bytes)

E
xe

cu
ti

o
n

T
im

e
(C

P
U

C
yc

.x
10

00
) SPM (Opt. CASA) SPM (Near-Opt. CASA) SPM (SA)

(b) MPEG

Fig. 5.19. Execution Time Comparison of Opt. CASA, Near-Opt. CASA and SA Approaches

Thirdly, we observe that the execution time of the epic benchmark for the Near-
Opt. CASA approach is slightly better than the Opt. CASA approach at 256 bytes of
scratchpad. In contrast, the energy consumption of the benchmark due the Near-Opt. CASA
approach is larger than the Opt. CASA approach at the same scratchpad size. This reason
for this behavior is that the objective of the allocation approaches is to optimize the energy
consumption, while the performance of benchmarks is improved as a side effect. There-
fore, the energy optimal solution is not always the performance optimal solution. Finally,
we observe that the average energy consumption due to the Near-Opt. CASA approach is
about 30% and 47% better than that due to SA approach for epic and mpeg benchmark,
respectively.

Figure 5.20 summarizes the average energy consumption of various benchmarks for
instruction cache and scratchpad based systems. For the experiments, the size of the
instruction cache was chosen according to the code size of the benchmark. We expect that
for real-life embedded applications the code size is about 8-10 times larger than the in-
struction cache size. Consequently, the instruction cache size was set to 128, 1k, 1k, 1k and
2k bytes (cf. Table 5.10 on Page 68) for benchmarks adpcm, epic, g721, media and mpeg,
having program size of 1k, 4.7k, 12k, 4k and 21.4k bytes, respectively. The energy and
performance values, shown in the figure, are the average values obtained by varying the
scratchpad size in the range of 64 bytes and 1k bytes.

0%

20%

40%

60%

80%

100%

120%

140%

adpcm epic g721 media mpeg average

Energy (Opt. CASA) Energy (Near-Opt. CASA) Exec. Time (Opt. CASA) Exec. Time (Near-Opt. CASA)

Fig. 5.20. Overall Comparison of Opt. CASA, Near-Opt. CASA and SA Approaches

76 5 Non-Overlayed Allocation for Main / Scratchpad + Cache Memory Hierarchy

adpcm 804 944 7736 7876 17.41 1.81
epic 9268 12132 91152 94016 30.90 3.14
g721 4376 4556 7388 7568 4.11 2.44

media 3280 4808 78950 80478 46.59 1.94
mpeg 18284 21896 50320 53932 19.75 7.18

Benchmark
% inc.

(Code Size)
% inc.

(Appl. Size)

Code Size
(wo NOPs)

bytes

Code Size
(w NOPs)

bytes

Appl. Size
(wo NOPs)

bytes

Appl. Size
(w NOPs)

bytes

Table 5.11. Code and Application Sizes of Benchmarks without and with Appended NOP Instructions

For Figure 5.20, we make a few important observations. Firstly, the energy consumption
due to the Opt. CASA approach is lower than the SA approach for all but one benchmark.
The exception case occurs for the adpcm benchmark which contains two simple encode
and decode routines. The SA approach moves one of the traces of the benchmark to the
scratchpad and, thereby accidentally modifies the code layout such that the conflict caches
misses are minimized. On the other hand, the Opt. CASA approach does not change the
code layout and thus could not minimize the cache misses for this benchmark. Secondly,
the Near-Opt. CASA approach performs nearly as good as the optimal approach. On an
average, the Near-Opt. CASA approach is only 6% worse than the Opt. CASA approach.
Finally, the Opt. CASA and Near-Opt. CASA approaches achieve overall average energy
reductions, across all benchmarks and all scratchpad sizes, of 22% and 18%, respectively,
compared to the SA approach.

The cache aware scratchpad allocation approaches append NOP instructions to memory
objects such that the memory objects are aligned to cache line boundaries. The insertion
of NOP instructions causes an increase in the code size and the aggregate size (i.e. code
size + data size) of the application. Table 5.11 summarizes the code size and the aggregate
size of the benchmarks with and without the appended NOP instructions. The table also
presents the percentage increase in the sizes of benchmarks. The increase in the code size
of benchmarks range between 4% and 46%. The high increase in the code size does not
translate into a corresponding high increase in the aggregate application size, as the code
size accounts for a relatively small fraction of the aggregate application size. We observe
(cf. Table 5.11) a maximum increase of only 7% in the aggregate application size over all
benchmarks.

Determining the Optimal Scratchpad Size:
In the experiments presented so far, memory objects were allocated onto the given

memory hierarchy, consisting of a scratchpad memory and an instruction cache. Now, we
present the results of the experiments conducted to determine the optimal scratchpad size
for the mpeg benchmark. The experimental results also determine the set of Pareto-optimal
scratchpads for the mpeg benchmark. The experiments were conducted by increasing the
scratchpad size from 128 bytes upto 8k bytes and the energy consumption of the system was
computed. The scratchpad present in the memory hierarchy is allocated using the Opt. CASA
approach.

Figure 5.21(a) shows the energy consumption of the instruction memory hierarchy with
a direct-mapped instruction cache and a scratchpad memory of varying sizes. Additional
experiments were conducted by varying the size and the associativity of the instruction cache.

5.6 Experimental Results 77

0

1

2

3

4

5

6

7

128 256 512 1024 2048 4096 8192
Scratchpad Size (Bytes)

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

(m
J)

1kB DM I-Cache 2kB DM I-Cache 4kB DM I-Cache

(a) DM I-cache

0

1

2

3

4

5

6

7

8

9

128 256 512 1024 2048 4096 8192
Scratchpad Size (Bytes)

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

(m
J)

1kB 2-way I-Cache 2kB 2-way I-Cache 4kB 2-way I-Cache

(b) 2-way I-cache

0

1

2

3

4

5

6

7

8

9

10

11

128 256 512 1024 2048 4096 8192
Scratchpad Size (Bytes)

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

(m
J)

1kB 4-way I-Cache 2kB 4-way I-Cache 4kB 4-way I-Cache

(c) 4-way I-cache

Fig. 5.21. MPEG: Determining the Optimal Scratchpad Size

Figures 5.21(b) and 5.21(c) present the energy consumption of the systems consisting of a
2-way and a 4-way set associative instruction cache, respectively.

From Figure 5.21, we observe that the energy consumption of the memory hierarchy
decreases as we increase the scratchpad size until it reaches the minimum point. Any further
increase in the scratchpad size also increases the energy consumption of the hierarchy. As
shown in Figure 5.21(a), the minimum energy point occurs at 1k bytes of scratchpad memory
for a 4k bytes direct mapped instruction cache based system. However, for systems with 1k
bytes and 2k bytes direct mapped instruction cache, 2k bytes of scratchpad memory lead to
the minimum energy consumption.

For 2-way and 4-way set associative instruction cache based systems (cf. Figures 5.21(b)
and 5.21(c)), the minimum energy consumption occurs when 2k bytes of scratchpad memory
is present in the system. Scratchpad memories larger than the minimum energy configuration
scratchpad memory are an unattractive option compared to the instruction cache present
in the system. The high energy per access to the large scratchpad memory offsets the gains
that can be achieved by allocating more memory objects to the scratchpad. Consequently,
the approach allocates more memory objects to the instruction cache and less to the large
scratchpad memory.

The benefits of performing the above set of experiments are threefold. Firstly, we are
able to study the variation in the energy consumption of the system with the increase in
scratchpad size. It is interesting to observe that 2k bytes of scratchpad memory form the
minimum energy configuration in all but one cache configurations. However, the energy
consumption of the remaining configuration (1k bytes scratchpad and 4k bytes instruction
cache) is the global minimum energy consumption value.

78 5 Non-Overlayed Allocation for Main / Scratchpad + Cache Memory Hierarchy

Secondly, we are able to determine the range of scratchpad sizes which would be inter-
esting for a system designer to perform design-space exploration. For example, a memory
hierarchy composed of 2k bytes scratchpad and 2k bytes direct mapped cache is 20%
smaller but results in 20% more energy consumption than the globally minimum energy
consuming memory hierarchy. For the mpeg benchmark, the minimum energy consuming
scratchpad size is 1k bytes or 2k bytes. Consequently, scratchpad memories between 128
bytes and 1k or 2k bytes form the set of energy efficient (Pareto-optimal) scratchpad sizes,
which allow a trade-off between the onchip area and the energy consumption of the system.
Scratchpads larger than 2k bytes consume more onchip area and also result in increased
energy consumption of the system. Hence, they are not part of the energy efficient range of
scratchpad sizes. Finally, an iterative or a binary search based algorithm can be employed
for determining the optimal scratchpad size for a given instruction cache based memory
hierarchy.

5.6.2 Comparison of Scratchpad and Loop Cache Based Systems

Now, we compare the energy savings achieved by a scratchpad based system with those
achieved by a preloaded loop cache based system. The scratchpad is allocated using the
Opt. CASA approach while the preloaded loop cache is allocated using the Ross app-
roach [48]. The loop cache is bounded by the aggregate size and the number of memory
objects which can be allocated. In current setup, the loop cache controller is assumed to have
4 pairs of registers for storing the start and end addresses of memory objects. Therefore, a
maximum of 4 non-contiguous memory objects can be stored onto the loop cache.

We extended the Ross approach [48] to coalesce memory objects which occupy adjacent
locations in the main memory and are marked for allocation onto the loop cache. The
coalescing enabled us to store more memory objects onto the loop cache as the coalesced
memory object requires only a single pair of registers to store its start and end addresses.

Figures 5.22 and 5.23 display the energy consumption of the instruction memory hier-
archy and the CPU cycles for the epic and the mpeg benchmarks, respectively. The number
of scratchpad accesses, instruction cache accesses as well as the instruction cache misses
are also displayed in the figures. All results are shown as percentages of the corresponding
parameters of the Ross approach. Similar to Figure 5.13, the values of the 100% baseline
vary for each loop cache size. The size of the loop cache was assumed to be equal to the size

0%

20%

40%

60%

80%

100%

120%

140%

128 256 512 1024 avg.
Scratchpad Size (Bytes)

I-cache Access Scratchpad Access I-Cache Miss I-Mem Energy CPU Cycles

Fig. 5.22. EPIC: Comparison of (SPM) Opt. CASA and (Loop Cache) the Ross Approach

5.6 Experimental Results 79

0%

25%

50%

75%

100%

125%

150%

175%

200%

225%

250%

275%

300%

128 256 512 1024 avg.
Scratchpad / Loop Cache Size (Bytes)

I-Cache Access Scratchpad Access I-Cache Miss I-Mem Energy CPU cycles

Fig. 5.23. MPEG: Comparison of (SPM) Opt. CASA and (Loop Cache) the Ross Approach

0%

20%

40%

60%

80%

100%

120%

140%

adpcm epic g721 media mpeg average

Energy (Opt. CASA) Energy (Near-Opt. CASA) Exec. Time (Opt. CASA) Exec. Time (Near-Opt. CASA)

Fig. 5.24. Overall Comparison of (SPM) Opt. CASA, (SPM) Near-Opt. CASA and (Loop Cache) the
Ross Approach

of the scratchpad, even though a loop cache requires more onchip area than a scratchpad
due to the presence of a controller.

For small scratchpad/loop cache sizes (128 and 256 bytes), the number of accesses to
the loop cache is higher than that to scratchpad. However, as we increase the size, the loop
cache’s performance is restricted by the maximum number of pre-loadable memory objects.
The scratchpad, on the other hand, can be preloaded with any number of memory objects
as long as their aggregate size is less than the scratchpad size. Moreover, the number of
instruction cache misses is substantially lower for all sizes if a scratchpad allocated with
our technique is used instead of a loop cache. Consequently, on the average a scratchpad
based system reduces energy consumption by 24% and 52% compared with a loop cache
based system for the epic and the mpeg benchmarks, respectively. Average reductions of
6% and 18% in the execution time are also reported for the epic and the mpeg benchmarks,
respectively.

Finally, we present an overall comparison of the scratchpad based system with the loop
cache based system for all benchmarks. The scratchpad present in the system is allocated
using the Opt. CASA and Near-Opt. CASA approaches. Figure 5.24 displays the energy
consumption of scratchpad based systems relative to that of the loop cache based systems,
which is represented as the 100% baseline. Similar to Figure 5.20, the instruction cache size
for the current results is set to 128, 1k, 1k, 1k and 2k bytes (cf. Table 5.10) for benchmarks
adpcm, epic, g721, media and mpeg, respectively. The energy and performance values

80 5 Non-Overlayed Allocation for Main / Scratchpad + Cache Memory Hierarchy

(cf. Figure 5.24) are the average values obtained by varying the scratchpad size and the loop
cache size in the range of 64 bytes and 1k bytes.

We make a few observations from Figure 5.24. Firstly, except for the adpcm benchmark,
the scratchpad based memory hierarchies fare better in terms of energy consumption than
those based on the loop cache. The adpcm benchmark is a small benchmark with only two
frequently executed loops. The loop cache is able to store all the memory objects belonging
to these loops. The Opt. CASA approach identifies the same objects, whereas the greedy
heuristic based Near-Opt. CASA fails to identify the correct memory objects.

Secondly, the scratchpad based memory hierarchy consumes much less energy for bench-
marks with large code sizes (viz. mpeg, epic, media etc.) compared to that consumed by
the loop cache based memory hierarchy. The energy consumption of the prior for the mpeg
benchmark is about 40% of that of the latter. The reason for this behavior is that large bench-
marks contain several frequently accesses memory objects, all of which can be stored in the
scratchpad. Unlike the loop cache, the scratchpad memory does not impose any constraint
on the number of memory objects that can be stored. Additionally, the number of conflict
cache misses is higher for larger benchmarks. These misses are optimized by the proposed
allocation approaches, providing substantial energy savings compared to a loop cache based
system.

Finally, the overall average energy savings for the scratchpad based system with the
loop cache based system are about 30% and 20% for the Opt. CASA and Near-Opt. CASA
approaches, respectively. In the following subsection, we discuss the experimental results
for the multi-processor ARM based system.

5.6.3 Multi-Processor ARM

In this subsection, we present the evaluation of the Opt. CASA approach for the multi-
process edge detection benchmark. The benchmark is simulated on the multi-processorARM
simulation platform which allows simulation of a variable number of ARM processors as
well as that of a wide variety of memory hierarchies local to each processor. In the present
setup, the local memory hierarchy of each ARM processor consists of a 4k bytes direct
mapped instruction cache, a 16k bytes 4-way set associative data cache and a scratchpad
memory of varying sizes. The multi-processor edge detection benchmark consists of an
initiator process, a terminator process and a variable number of compute processes. Each
of the processes is mapped to an independent processor and therefore, the processors are
named according to the mapped process. The benchmark and simulation framework are
described in detail in Section 3.2.

Figure 5.25 presents the total energy consumption values of the system for the multi-
process edge detection benchmark when the number of compute processors and the size
of the scratchpad memory is varied. The energy consumption of the system without a
scratchpad is also shown in the figure. The scratchpad present in the system is allocated
using the Opt. CASA approach.

A few important observations can be made from Figure 5.25. Firstly, we observe that
increasing the number of compute processors from 1 to 2 leads to a substantial reduction
in the energy consumption of the system. However, any further increase in the number of
compute processor does not result in substantial energy reductions.

5.7 Summary 81

0

100

200

300

400

500

600

700

800

900

1000

0 128 256 512 1024 2048 4096 8192 16384

Scratchpad Size (Bytes)

E
n

er
g

y
C

o
n

su
m

p
tio

n
(m

J)

1 Compute Processor 2 Compute Processors 3 Compute Processors 4 Compute Processors

Fig. 5.25. Multi-Process Edge Detection: Energy Consumption for Varying Compute Processors and
Scratchpad Sizes (Cycle Latency = 1 Master Cycle)

Secondly, we observe that the energy consumption values for all processors decrease
with the increase in scratchpad size until they reach 512 bytes for 1 Compute Processor and
2k bytes for the 2, 3 or 4 compute processors based systems. These scratchpad sizes lead
to the minimum energy consumption for the system, any further increase in the scratchpad
size also increases the energy consumption of the system.

Thirdly, we observe that the energy consumption of the systems with large scratchpad
memories (e.g. 16k bytes) is equal to that of the system without a scratchpad. The reason
for this behavior is that large scratchpad memories consume high energy per access and
therefore, are an unattractive option compared to caches of smaller size for storing mem-
ory objects. The Opt. CASA approach does not allocate any memory object to 16k byte
scratchpads in the present setup. Finally, it is observed that a 2k bytes scratchpad achieves
a reduction of 25% in the total energy consumption of the system compared with a system
without a scratchpad.

5.7 Summary

The essence of this chapter is that equal emphasis should be given to both the novel memories
and also to the allocation algorithms which lead to their proper utilization. In this chapter, we
demonstrated that the addition of a scratchpad to an instruction cache leads to substantial
savings in the energy consumption and the execution time of the application for a uni-
processor ARM based system given that an appropriate allocation approach is used.

We reported energy and onchip area reductions of 40% and 75% over the least energy
consuming instruction cache configuration found for one benchmark. In addition, the cache
aware scratchpad allocation problem was modeled as a generic non-linear optimization
problem and was solved optimally using an ILP based approach as well as near-optimally
using a heuristic. The near-optimal solutions obtained by the heuristic were on an average
6.0% and 4.0% worse than the optimal solutions, in terms of energy consumption and
performance, respectively. The proposed cache aware scratchpad allocation approaches
reduce both then energy consumption of the system and the execution time of the applications
compared to the scratchpad allocation presented in the previous chapter. Average reductions

82 5 Non-Overlayed Allocation for Main / Scratchpad + Cache Memory Hierarchy

of 23.4% and 7.0% in energy consumption and execution time were reported for the ILP
based approach. We also determined the Pareto-optimal scratchpad sizes for one benchmark.

In addition, we demonstrated that the simple scratchpad memory allocated with the
presented approaches outperforms a preloaded loop cache. Average reductions of 29.4%
and 8.7% in energy consumption and execution time, respectively, were also reported. The
presented approaches were also used to allocate both instruction segments and data variables
onto the scratchpad memories of a multi-processor ARM based system. Our experiments
for the proposed approach report up to 25% reduction in the total energy consumption of
the multi-processor system.

The approaches presented in this chapter were published in [127], [129], and [130].

6

Scratchpad Overlay Approaches for Main / Scratchpad
Memory Hierarchy

In the previous two chapters, the proposed allocation approaches assigned an optimal set
of memory objects to disjoint address regions on the scratchpad memory. These memory
objects then remain assigned to their respective address regions for the entire execution
time of the application. In contrast, the allocation approaches presented in this chapter as-
sign memory objects to the address regions such that two or more memory objects may be
assigned to overlapping (non-disjoint) address regions if they are never used at the same
execution time instant. In other words, memory objects are overlayed on the scratchpad
memory if they have disjoint live-ranges. The current chapter presents the allocation ap-
proaches for a simple memory hierarchy consisting of an L1 scratchpad memory and a
background main memory.

In the following, a brief introduction to the scratchpad overlay approaches is presented,
followed by the presentation of a motivating example in Section 6.2. Section 6.3 presents
a survey of work related to register and memory allocation approaches. In Section 6.4, the
formal definition of the scratchpad overlay problem and the description of the preliminaries
is presented. Section 6.5 presents optimal and near-optimal solutions to the scratchpad
overlay problem. Experimental results to evaluate the scratchpad overlay approaches for
three different system architectures are presented in Section 6.6. Section 6.7 concludes the
chapter with a short summary.

6.1 Introduction

The scratchpad overlay approaches reduce the energy consumption of the system by over-
laying memory objects with non-conflicting live-ranges onto the scratchpad. In addition,
the approaches orchestrate the movement of memory objects within the memory hierarchy
through the insertion of spill instructions at appropriate locations in the application code.
Consider the application code fragment containing two equal sized arrays A and B, presented
in Figure 6.1. For the sake of simplicity, assume that the allocation approaches are restricted
to assign only arrays onto the scratchpad and that the scratchpad is large enough to contain
only one of the two array variables at the same time.

83

84 6 Scratchpad Overlay Approaches for Main / Scratchpad Memory Hierarchy

#define SIZE 10
1 for (i=0;i<SIZE;i++) {
2 for (j=0;j<SIZE;j++) {
3 A[i]= ...; }}
4 for (i=0;i<SIZE;i++) {
5 for (j=0;j<SIZE;j++) {
6 ... = A[i]; }}
7 for (i=0;i<SIZE;i++) {
8 for (j=0;j<SIZE;j++) {
9 B[i]= ...; }}
10 for (i=0;i<SIZE;i++) {
11 for (j=0;j<SIZE;j++) {
12 ... = B[i]; }}

#define SIZE 10
1 spill load(A);
2 for (i=0;i<SIZE;i++) {
3 for (j=0;j<SIZE;j++) {
4 A[i]= ...; }}
5 for (i=0;i<SIZE;i++) {
6 for (j=0;j<SIZE;j++) {
7 ... = A[i]; }}
8 spill store(A);
9 spill load(B);
10 for (i=0;i<SIZE;i++) {
11 for (j=0;j<SIZE;j++) {
12 B[i]= ...; }}
13 for (i=0;i<SIZE;i++) {
14 for (j=0;j<SIZE;j++) {
15 ... = B[i]; }}
16 spill store(B);

Fig. 6.1. Example and Overlayed Application Code Fragments

The non-overlayed scratchpad allocation approach presented in Chapter 4 will allocate
one of the two arrays on to the scratchpad. In contrast, the scratchpad overlay approach
will assign both arrays to the scratchpad, realizing that the two arrays have disjoint live-
ranges and are never accessed at the same time. For the example code fragment presented in
Figure 6.1, the live-range of array A spans from the statement on line 1 to the statement on
line 6. Similarly, the live-range of array B spans from the statement on line 7 to the statement
on line 12.

Figure 6.1 also presents the application code fragment modified by the overlay approach.
The spill load (spill store) routines copy the arrays to (from) the SPM from (to) the
main memory, respectively. The overlay approach achieves energy benefit through the im-
proved utilization of the scratchpad. On the other hand, it also incurs an energy overhead
due to execution of the spill routines. The approach reduces the overall energy consump-
tion of the system if the energy benefit is greater than the energy overhead due to spill
routines.

An important observation that should be made at this point is that the scratchpad overlay
problem is similar to the well known global register allocation problem [52]. Similar to the
scratchpad overlay problem, the register allocation problem assigns the compiler generated
symbolic variables to the registers in the register file of the processor while considering
the live-ranges of the variables. A detailed comparison of the two problems is presented in
Section 6.4.

In this chapter, optimal and near-optimal approaches to solve the scratchpad overlay
problem for a memory hierarchy composed of the scratchpad and the main memory. Opti-
mal Scratchpad Overlay (Opt. SO) and Near-Optimal Scratchpad Overlay (Near-Opt. SO)
approaches overlay instruction segments as well as global variables onto the scratchpad
memory. The approaches generate overlays [52] or memory objects from the application
code and divide the scratchpad overlay problem in two smaller problems.

6.2 Motivating Example 85

The goal of the first problem viz. Memory Assignment Problem is to determine the
assignment of memory objects to the scratchpad memory such that the energy consumption
of the system is minimized. The problem also determines spill locations which cause the
least energy overhead. Both Opt. SO and Near-Opt. SO approaches use an 0-1 ILP based
approach to determine the best set of memory objects assigned to the scratchpad memory.
The motivation for such an approach is based on the empirical observation that the optimal
solution to the ILP formulation of the memory assignment problem can be determined in
O(n1.3) time [8]. This observation was also corroborated with our experiments.

The second problem viz. Address Assignment Problem, computes the addresses of the
memory objects assigned to the scratchpad memory such that the scratchpad space is shared
by memory objects which are not accessed at the same execution time instance. The sec-
ond problem is solved optimally through an ILP formulation by the Opt. SO approach and
near-optimally through a first-fit heuristic by the Near-Opt. SO approach. The ILP formula-
tion of the address assignment problem requires considerable time to compute the solution
for large scratchpad sizes and large benchmarks. Therefore, the Near-Opt. SO approach
replaces the ILP formulation by a first-fit heuristic based approach. This is motivated by
the observation that the first-fit heuristic achieves close to optimal allocation for real-life
benchmarks [62]. For our set of benchmarks, the Near-Opt. SO approach achieved near
optimal results in negligible computation time. In the following section, we present the
benefit of overlaying the scratchpad memory with help of a real-life example.

6.2 Motivating Example

We start by presenting a motivating example to demonstrate that real-life applications consist
of multiple hot-spots. These hot-spots have non-conflicting live ranges and can be overlayed
on the scratchpad to reduce the energy consumption of the application. Figure 6.2 presents
the workflow of the Edge Detection application which determines edges in a tomographic
image. The application consists of three sequential steps called GaussBlur, ComputeEdges
and DetectRoots. Each of these steps processes a given input image and writes the resulting
image as output which is then passed to the next stage in the workflow.Adetailed description
of the application can be found on page 33 of Section 4.2.

The execution profile of the Edge Detection application is presented in Figure 6.3.
We have scaled down the input image to speedup the profiling of the application. A point
(x,y) in the figure represents that the xth executed instruction in the instruction trace
of the application was fetched from the address y in the memory. The dark regions in
Figure 6.3 correspond to the execution of the stages of the Edge Detection application. For
example, the largest region in the center of the figure corresponds to the execution of the
ComputeEdges stage of the application. From Figure 6.3, we observe that each stage of the
application is a hot-spot and that the stages do not interfere with each other. Hence, the

Gauss
Blur

Detect
Roots

Compute
Edges

in_image gb_image ce_image out_image

Fig. 6.2. Workflow of Edge Detection Application

86 6 Scratchpad Overlay Approaches for Main / Scratchpad Memory Hierarchy

 0x00500000

 0x00500080

 0x00500100

 0x00500180

 0x00500200

 0x00500280

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000

E
xe

cu
te

d
In

st
ru

ct
io

n
A

dd
re

ss
es

Execution Time

Fig. 6.3. Execution Profile of Edge Detection Application (without ReadImage and WriteImage
Routines)

contents of each stage, i.e. code segments and variables, can be overlayed onto the scratch-
pad. However, they need to copied on and off the scratchpad before entering and after leaving
the stages.

In Section 4.2 of Chapter 4, we demonstrated that the set of memory objects should
contain both code segments and variables in order to achieve the minimize the total energy
consumption. Therefore, in the present chapter as well we will consider both code segments
and traces as memory objects.

6.3 Related Work

Global Register Allocation is one of the most researched and fundamental topics in code
optimization and compiler construction [52]. A compiler initially generates code assuming
an infinite number of symbolic registers which have to be assigned to the limited number
of the processor’s real registers. Global register allocation attempts to find an assignment
of the symbolic registers to the processor’s real registers such that a maximum number of
symbolic registers is assigned to the real registers. The allocation problem was proven to be
NP-complete [43]. Most of the register allocators [22, 109] are based on the graph coloring
heuristic [25]. In the recent past, optimal approaches [42, 47] to solve the register alloca-
tion problem have been proposed. Although global register allocation is NP-complete for
arbitrary graphs, coloring of graphs found in real-life programs [31] has been demonstrated
to be easier. A study by the authors [47] empirically demonstrated that it takes O(n3) to
optimally solve the register allocation problem for real-life benchmarks.

Dynamic Storage Allocation (DSA) has been a fundamental part of operating systems
for allocating memory to applications [69].Applications either make requests for memory or

6.3 Related Work 87

release some of the already allocated memory. The job of the allocator is to satisfy requests
for memory from applications such that the total amount of memory required is minimized.
The DSA problem has also been proven to be NP-complete [43]. Several heuristic based
allocation approaches, e.g. first-fit, next-fit, best-fit have been proposed. The authors of [62]
present a good survey and comparison of the various approaches.

The research on scratchpad utilization for single process applications can be classified
into two broad categories viz. non-overlay and overlay based allocation techniques. In the
former, the scratchpad is loaded once at the start and its contents remain invariant during
the entire execution period of the application. In contrast, overlay based allocation tech-
niques partition the application into overlays [52]. These overlays are copied on and off the
scratchpad during the execution to capture the dynamic behavior of the application. A de-
tailed survey of non-overlayed scratchpad allocation techniques can be found in Section 4.3
and Section 5.2.

The scratchpad overlay approaches can be classified into two broad categories, the
approaches which overlay only data elements [23, 64, 96] and those which overlay only
instructions [6, 103, 115]. The approaches presented in this chapter overlay both variables
and instructions onto the scratchpad memory. First, we present a discussion on data-only
overlay approaches, followed by that on instruction-only overlay approaches. In the end,
a brief comparison of the approaches proposed in this chapter with the related work is
presented.

Authors [64] and [23] present two similar approaches for overlaying array tiles on the
scratchpad memory. Both approaches are able to optimize the application code for a multi-
level memory hierarchy. The approach [64] utilizes reuse vectors and reuse matrices to
determine the appropriate array tile sizes and to manage the movement of these array tiles
within the memory hierarchy. In addition, it can also generate a scratchpad based memory
hierarchy optimized for the input application. However, the approach does not consider
the overhead due to the copying of array tiles within the memory hierarchy. The other
disadvantage of the approach is that it independently optimizes each loop nest, therefore
can not overlay array tiles across loop nests.

The second approach [23] generates all potential tiles or copy-candidates from the ar-
rays present in the application. The approach generates a mapping of copy-candidates to
memories after taking into consideration their live-ranges, the benefits obtained by map-
ping them to different memories and the overhead caused due to the movement of these
copy-candidates within the memory hierarchy. The limitation of the approach presents a
data centric view of an application and the effect of the approach on instruction memory or
processor energy consumption is not evaluated.

Ozturk et al. [96] presented an interesting approach in which data compression is used to
create space on the scratchpad. Thus, upon the assignment of an array tile to the scratchpad,
the array tiles presently occupying the scratchpad space are either spilled to the main memory
or compressed and stored back on the scratchpad. The precondition to compression is that
the array tiles have to be decompressed prior to accessing them from the scratchpad. The
approach selects compression over spilling if the overhead due to decompressing the array
tile is smaller than accessing the uncompressed array tile from the main memory. However,
the main drawback with this approach is that the size of the compressed array tiles can not
be estimated at compile-time.

88 6 Scratchpad Overlay Approaches for Main / Scratchpad Memory Hierarchy

The first work on overlaying instruction segments onto the scratchpad is by Steinke
et al. [115]. The approach considered overlaying of frequently accessed code segments viz.
hot-spots and preselects certain points, e.g. loop-entry points in the application as potential
copy-points. An ILP based approach determines the mapping of hot-spots to the scratchpad
and also selects the copy-points required to copy the hot-spots onto the scratchpad.

Angiolini et al. [6] proposed a link-time approach to overlay code segments identified
from the application binary. The authors present a dynamic programming based pseudo-
polynomial time algorithm to determine the overlay of code segments. The advantages of the
approach are that code-segments can be selected at any arbitrary granularity and it can also
optimize proprietary applications for which the source code may be unavailable. However,
the executable patching tools are heavily dependent on the instruction set architecture of
the processor.

The approach [103] describes a heuristic based approach for overlaying instruction
segments onto the scratchpad memory. The approach [103] and the approaches presented
in this chapter are very similar in their analysis of instruction segments. The approaches
generate traces from the application code and analyze the inter-procedural control flow
graph of the application to overlay these traces onto the scratchpad memory. Therefore, the
approaches are able to determine spill locations across function boundaries causing the least
possible energy overhead.

A recent approach [35] proposes a memory architecture consisting of a scratchpad mem-
ory along with a dedicated memory management unit (MMU). In this setup, the processor
issues virtual addresses and the scratchpad memory is assigned to the physical address space.
The MMU stores the virtual-to-physical memory mappings for the application and maps
virtual address accesses to physical memory accesses. The MMU allocates the scratchpad
memory with 1 kB pages from code segments. In addition, the authors propose a profile
guided annotation strategy to mark the pages which should be copied to the scratchpad
memory at runtime.

The scratchpad overlay approaches presented in this chapter are the only approaches
which can overlay both instruction segments and data variables on to the scratchpad memory.
Unlike the other approaches, the presented approaches accurately model the energy benefits
due to overlaying and the energy overhead due to insertion of copy-routines. Experiments are
conducted to report the total energy consumption of the system, unlike the other approaches
which present a piecemeal view of the system.

The overlay approaches [23, 64, 96] are superior than the approaches proposed in this
chapter if they are restricted to overlaying only array variables. However, the proposed
overlay approaches are far better than the data centric overlay approaches in minimizing
the total energy consumption of the system. Nevertheless, an extension of the proposed
approaches to overlay array tiles along with instruction segments will definitely improve
their efficacy and is part of the future work. In the following section, the preliminaries are
described and the scratchpad overlay problem is formally defined.

6.4 Problem Formulation and Analysis

The objective of the scratchpad overlay problem is to minimize the energy consumption
of the application through the overlay of memory objects onto the scratchpad. Memory

6.4 Problem Formulation and Analysis 89

objects which are not required at the same time during the execution of the application are
overlayed or assigned to overlapping address regions on the scratchpad memory. During
the execution of the application, the memory objects are copied on and off the scratchpad
memory. Therefore, an additional objective of the problem is to determine locations in the
application code to insert copy routines such that the energy overhead due to the copy
routines is minimized.

The scratchpad overlay problem is similar to the global register allocation problem for
CISC microprocessors. Unlike RISC microprocessors, CISC microprocessors are relaxed
such that one or more operands of an instruction can be a memory location. This reduces
the pressure on the register file and also reduces the number of unnecessary load and store
instructions. The scratchpad memory in the current setup is similar to the register file of
a CISC microprocessor, as besides the main memory, the scratchpad memory acts as an
alternative location for storing and retrieving both instructions and data. The high cost of
accessing the main memory serves as a reason for the optimal utilization of the register file
or the scratchpad memory.

The scratchpad overlay problem is also different from the global register allocation
problem in a few small aspects. First, the register allocation problem requires all symbolic
registers to be unit sized, while the overlay problem assigns memory objects of different
sizes to the scratchpad memory. Second, the overlay problem allocates both instructions and
data variables onto the scratchpad, whereas the register allocation problem assigns symbolic
registers to the real register. In spite of the differences, the scratchpad overlay problem can
be considered as the weighted version of the global register allocation problem, which has
been proved NP-complete [8].

6.4.1 Preliminaries

As described earlier, the overlay problem is defined for a inter-procedural control flow
graph G(N,E), created by combining the local control flow graph LGi(Ni,Ei) of every
function fi constituting the application. Additional edges representing the call and the return
relationship between every caller and callee functions are added to the graph G(N,E). These
edges model the flow of control between the caller and the callee functions by connecting
their local control flow graphs.

Definition 6.1 (Inter-Procedural Control Flow Graph). The Inter-Procedural Control
Flow Graph (IPCFG) G(N,E) is the representation of the entire application. The graph
G(N,E), an edge and node weighted directed graph, is created by combining control flow
graph Gi(Ni,Ei) of every function fi constituting the application and is defined as follows:

(a) N node set is the union of node sets of all Gi(Ni,Ei)
N = N1 ∪N2 ∪·· ·∪Nn

(b) E set of inter-procedural control flow edges
E = E1 ∪E2 ∪·· ·∪En ∪ECALL ∪ERET

(c) eij ∈ ECALL a directed edge from the calling node ni of the caller function to the
source node sourcej of the called function

(d) eij ∈ ERET a directed edge from the sink node sinki of the called function to the
calling node nj of the caller function

90 6 Scratchpad Overlay Approaches for Main / Scratchpad Memory Hierarchy

(e) source source node of the entry routine (main function) is represented as the source
node of the flow graph G(N,E)

(f) sink sink node of the entry routine (main function) is represented as the sink node of
the flow graph G(N,E)

(g) w(n) weight of node n ∈ N which represents the execution count of the node
(h) w(e) weight of edge e ∈ E which represents the execution count of the edge

6.4.2 Memory Objects

The memory optimization approaches proposed in this chapter overlay both code segments
and variables onto the scratchpad memory in the system. The memory objects for the uni-
processor ARM based system consist of the following:

(a) Global variables (V) including scalar and non-scalar variables.
(b) Code segments including traces (T) and functions (F).

The following are the memory objects for the multi-processor ARM based system:

(a) Global variables (V) including scalar and non-scalar variables.
(b) Code segments including only functions (F).

The scratchpad overlay approach for the multi-processor ARM based system is im-
plemented as a source-level transformation. Therefore, the memory objects include code
segments at the coarse granularity of functions. For an M5 DSP based system, the overlay
approach optimizes the data memory hierarchy. Consequently, the memory objects consist
of only global data arrays found in DSP applications. Table 6.1 summarizes the memory
objects for the scratchpad overlay approach applied to the different system architectures.
The set of memory objects for the uni-processor ARM based system is the super-set of
memory objects for the other systems. Therefore, the scratchpad overlay approaches will
be described for the uni-processor ARM based system.

6.4.3 Liveness Analysis

Definition 6.2 (Liveness). A memory object mo is live at an edge e ∈ E of the control flow
graph G(N,E) if there exists a back path from the edge e to a node n ∈ N where the memory
object is defined without being redefined at any other node along the path. Live(mo) ⊆ E
represents the set of edges on which the memory object mo is live.

Informally, a memory object being live at a point implies that it will be required at some
point later during the execution of the application, so the analysis is called liveness analysis.

Memory Optimization System Architecture Memory Objects Explanation

Scratchpad Overlay for
MM / SPM Hierarchy
(Chapter 6)

Uni-processor ARM MO ⊆ V ∪T ∪F global variables, traces and
functions

M5 DSP MO ⊆ V global data arrays
Multi-processor ARM MO ⊆ V ∪F global variables and func-

tions

Table 6.1. Memory Objects for Scratchpad Overlay Approach

6.4 Problem Formulation and Analysis 91

A Live-Range Live(mo) ⊆ E of a memory object mo is a set of edges at which the memory
object is live.

Basic blocks present in the application code contain statements which refer (i.e. modify
or use) to the memory objects. This information, viz. reference R, is attached to the nodes
of the control flow graph of the application. The precondition to compute the live-range for
a memory object mo is that each reference R to the memory object should be classified as a
DEF, MOD or USE reference. The classification procedure, presented below, for references
to global variables is a little different than that to code segments.

A reference R = (mo, sr, sw, nrs, nws, class) is a 6-tuple or a sextuple and contains the
name of the memory object, the read (sr) and write (sw) subreferences, the number of dis-
tinct read (nrs) and write (nws) subreferences referred on each access and the classification
(class ∈ {DEF, MOD, USE}). A read sr and write sw subreference to a global variable V
is the set of scalar elements of the variable V read and written by the reference, respectively.
A pair of subreferences may be disjoint (i.e. refer to distinct scalar elements of variable V)
or conjoint (i.e. not disjoint). A scalar variable is assumed to be a non-scalar variable
consisting of a single element. A reference R is classified into one of the following
categories:

(a) DEF : if the write subreference sw definitely changes all the scalar elements of the
variable V (i.e. sw = V).

(b) MOD : if the write subreference sw changes some but not all scalar elements of the
variable V (i.e. sw ⊂ V).

(c) USE : if the subreference uses scalar elements of the variable V .

If a node has more than one reference to the same variable then the following priority order
is used to determine the appropriate classification.

DEF > MOD > USE

The priority order guarantees that the liveness of a variable is correctly preserved. Next, we
explain the classification of references to variables with the help of an example.

Example 6.3. Please refer to the example application code and its control flow graph pre-
sented in Figure 6.4. The example application processes two array variables A[SIZE] and
B[SIZE]. The nodes of the control flow graph contain references (R1, . . . ,R6) to array
variables A and B. Table 6.2 presents the attributes and the classification of the write subref-
erences. From the table, we observe that reference R1 = (A, sr1, sw1, 0, 1, DEF) is classified
as a DEF reference because the write subreference sw1 = {A[0], . . . ,A[SIZE −1]} = A
assigns values to all the scalar elements of variable A. Similarly, reference R2 = (B, sr2, sw2,
0, 1, DEF), defining variable B, is also classified as a DEF reference. The number of write
subreferences per access nws is 1 in both of the above scenarios.

Reference R3 = (A, sr3, sw3, 0, 1, MOD) is classified as a MOD reference, as the write
subreference sw3 = {A[0],A[2], . . .} ⊂ A assigns values to only the even elements of variable
A. Similarly, reference R4 is also classified as a MOD reference, the write subreference
sw4 = {B[1],B[3], . . .} ⊂ B modifies the odd elements of array B. The number of distinct
read and write subreferences per access is 1 for reference R4. Finally, references R5 and R6

92 6 Scratchpad Overlay Approaches for Main / Scratchpad Memory Hierarchy

#define SIZE 10
1 for (i=0;i<SIZE;i++) {
2 A[i]=i;
3 B[i]=i;
4 }
5 if (even) {
6 for (i=0;i<SIZE;i+=2) {
7 A[i]=2*i;
8 }
9 } else {
10 for (i=1;i<SIZE;i+=2) {
11 B[i]=B[i-1]+i;
12 }
13 }
14 for (i=0;i<SIZE;i++) {
15 sum=sum+A[i]*B[i];
16 }

A[i]=i;
B[i]=i;

A[i]=2*i; B[i]=B[i-1]+i;

sum +=A[i]*B[i];

for(i=0;
i<SIZE;i++)

for(i=0;
i<SIZE;i=+2)

for(i=1;
i<SIZE;i=+2)

for(i=0;
i<SIZE;i++)

if (even)

R1,
R2

R3 R4

R5,
R6

n1

n2

n3

n4

n5 n7

n6

n8

n9

Sink

Source

e1

e2

e3

e4

e5

e6

e7

e8 e9

e10

e11

Fig. 6.4. Example Application Code and the Corresponding Control Flow Graph

Reference Variable Write Subreference nrs nws Classification

R1 A sw1 = {A[0], . . . ,A[SIZE −1]} = A 0 1 DEF
R2 B sw2 = {B[0], . . . ,B[SIZE −1]} = B 0 1 DEF
R3 A sw3 = {A[0],A[2], . . .} ⊂ A 0 1 MOD
R4 B sw4 = {B[1],B[3], . . .} ⊂ B 1 1 MOD
R5 A sr5 = {A[0], . . . ,A[SIZE −1]} = A 1 0 USE
R6 B sr6 = {B[0], . . . ,B[SIZE −1]} = B 1 0 USE

Table 6.2. Attributes of References for Global Variables

are classified as USE references since read subreferences sr5 and sr6 utilize the values of
scalar elements of variables A and B, respectively.

Every basic block present in the application contains a single reference R = (mo, sr,
sw, nrs, nws, class) to the corresponding code segment i.e. trace and function. Please
refer to Section 3.1.3 for a formal definition of a trace. The read subreference sr to a code
segment is the set of instructions belonging to the basic block containing the reference R.
The classification procedure of references to code segments is much simpler than that for
global variables. The code segments reside in the read-only region of the application and the
processor only executes, or in other words uses, the instructions present in the code segments.
Therefore, all references to code segments are classified as USE references. Example 6.4
explains the classification of references to code segments.

6.4 Problem Formulation and Analysis 93

Example 6.4. Figure 6.5 presents the control flow graph of the example application code
presented in Example 6.3. Additionally, the figure displays the traces (T1, . . . ,T5) and the
references (R7, . . . ,R15).

A[i]=i;
B[i]=i;

A[i]=2*i; B[i]=B[i-1]+i;

sum +=A[i]*B[i];

for(i=0;
i<SIZE;i++)

for(i=0;
i<SIZE;i=+2)

for(i=1;
i<SIZE;i=+2)

for(i=0;
i<SIZE;i++)

if (even)

R8

R11 R13

R15

n1

n2

n3

n4

n5 n7

n6

n8

n9

R7

R9

R10 R12

R14

T1

T2

T3 T4

T5

Source

Sink

Fig. 6.5. Control Flow Graph Displaying Traces

Reference Trace Read Subreference nrs nws Classification

R7 T1 sr7 = inst(BB1) ⊂ inst(T1) |inst(BB1)| 0 USE
R9 T2 sr9 = inst(BB3) = inst(T2) |inst(BB3)| 0 USE

R10 T3 sr10 = inst(BB4) ⊂ inst(T3) |inst(BB4)| 0 USE
R12 T4 sr12 = inst(BB6) ⊂ inst(T4) |inst(BB6)| 0 USE
R13 T4 sr13 = inst(BB7) ⊂ inst(T4) |inst(BB7)| 0 USE
R14 T5 sr14 = inst(BB8) ⊂ inst(T5) |inst(BB8)| 0 USE

Table 6.3. Attributes of References for Traces

From the figure and Table 6.3, we observe that each node contains a single reference
to the enclosing trace. Node BB4 contains reference R10 = (T3, sr10, sw10, |inst(BB4)|,
0, USE) to trace T3 as the node BB4 is contained within trace T3. The read subreference
sr10 = inst(BB4) ⊂ inst(T3) is the set of instructions belonging to node BB4. The reference
R10 is classified as a USE reference as the instructions belonging to node BB4 are only
executed (or used) by the processor. Moreover, the number of distinct read subreferences
nrs for reference R10 is the number of instructions in node BB4 |inst(BB4)|. The number
of write subreferences for a reference to a code segment is always is 0.

94 6 Scratchpad Overlay Approaches for Main / Scratchpad Memory Hierarchy

In order to compute the liveness of a memory object mo, live-in and live-out attributes,
attached to the nodes of the control flow graph, are computed for the memory object. The
formal definition of live-in and live-out attributes is presented below.

Definition 6.5 (Live-In). Live-in attributeLiveIn(n) ⊆ MO for noden is the set of memory
objects mo which are live at any of the edges entering the node n.

Definition 6.6 (Live-Out). Live-out attribute LiveOut(n) ⊆ MO for node n is the set of
memory objects mo which are live at any of the edges exiting the node n.

The dataflow equations presented below are used to determine the live-in and live-out
attributes for all the nodes. Traditional dataflow analysis for scalar variables does not model
MOD attributes required for computing the live-in and live-out attributes involving non-
scalar variables. Thus, the standard dataflow equations [93] are extended to incorporate the
MOD attribute. The extended dataflow equations for node n are the following:

LiveIn(n) = USE(n)∪MOD(n)∪ (LiveOut(n)−DEF (n)) (6.1)

LiveOut(n) =
⋃

s∈Succ(n)

LiveIn(s) (6.2)

where USE(n) ⊆ MO is the set of memory objects with USE reference at node n.
Similarly, DEF(n) and MOD(n) are the set of memory objects with DEF-reference and
MOD-reference at node n, respectively. A backward iterative dataflow analysis algo-
rithm [93] was used to compute LiveIn(n) and LiveOut(n) for all nodes n of the control
flow graph.

The following corollary presents the relationship between the liveness of a memory
object mo at an edge e and the live-in and live-out attributes defined at the destination and
source nodes of the edge e, respectively.

Corollary 6.7. A memory object mo is live at an edge e iff the memory object mo is live-out
at the source node of the edge e and is live-in at the destination node of the edge e.

Example 6.8. Figure 6.6 displays the live-in and live-out attributes for the nodes present in
the control flow graph of the example application. The live-in attribute LiveIn(source) for
the source node and the live-out attribute LiveOut(sink) for the sink node of the control
flow graph are empty sets. This is because of the fact that no memory object can live before
the start of the application or live after the end of the application.

The backward dataflow analysis algorithm sets the live-in LiveIn(n9) = {A,B,T5}
of the node n9 in the first pass over the control flow graph. Similarly, live-in attributes of
nodes n7, n5 and n2 are set to {A,B,T4,T5}, {A,B,T3,T5} and {T1,T2,T3,T4,T5},
respectively, during the first pass of the dataflow analysis algorithm. The algorithm then
iterates over the control flow graph until all live-in and live-out attributes stabilize to a
constant value. Figure 6.6 shows the live-in and live-out attributes for the nodes after the
dataflow analysis algorithm has finished.

The corollary 6.7 and the above dataflow equations are used to compute the live-range
of the memory objects. The live-range of array A, live(A) = {e3,e4,e5,e6,e7,e8,e9,e10},
extends from the edge exiting the defining node until the edge entering the last use node.

6.4 Problem Formulation and Analysis 95

A[i]=i;
B[i]=i;

A[i]=2*i; B[i]=B[i-1]+i;

sum +=A[i]*B[i];

for(i=0;
i<SIZE;i++)

for(i=0;
i<SIZE;i=+2)

for(i=1;
i<SIZE;i=+2)

for(i=0;
i<SIZE;i++)

if (even)

n1

n2

n3

n4

n5 n7

n6

n8

n9

T1

T2

T3 T4

T5

Source

Sink

LiveOut ={A, B, T1, T2, T3, T4, T5}
LiveIn ={T1, T2, T3, T4, T5}

LiveOut ={A, B, T5}
LiveIn ={A, B, T4, T5}

LiveOut ={A, B, T5}
LiveIn ={A, B, T3, T5}

LiveOut ={ }
LiveIn ={A, B, T5}

LiveOut ={T1, T2, T3, T4, T5}
LiveIn ={ }

LiveOut ={ }
LiveIn ={ }

e3

e1

e2

e4

e5

e6

e7

e10

e11

Fig. 6.6. Control Flow Graph Displaying LiveIn and LiveOut Attributes

Variables/Traces Memory Object (mo) Live-Range live(mo)

A mo1 e3, e4, e5, e6, e7, e8, e9, e10
B mo2 e3, e4, e5, e6, e7, e8, e9, e10

T1 mo3 e1, e2
T2 mo4 e1, e2, e3
T3 mo5 e1, e2, e3, e4, e5
T4 mo6 e1, e2, e3, e6, e7
T5 mo7 e1, e2, e3, e4, e5, e6, e7, e8, e9, e10

Table 6.4. Live-Ranges of Memory Objects

Table 6.4 summarizes the mapping of variables and traces to memory objects and live-ranges
of memory objects.

6.4.4 Energy Model

As described in Chapter 3, the energy model [114] is used to compute the energy function
E(inst, imem,dmem) which returns the total energy dissipated by the system during the
execution of the instruction inst fetched from the instruction memory imem and possi-
bly accessing data from the data memory dmem. The components of the energy function
E(inst, imem,dmem) are presented as the following:

E(inst, imem,dmem) = Eif (imem)+Eex(inst)+Eda(dmem) (6.3)

Complete details regarding the above equation can be found in Subsection 3.1.1. These
energy values are used to compute the energy dissipation function E(mo,R,mem) of

96 6 Scratchpad Overlay Approaches for Main / Scratchpad Memory Hierarchy

the memory object mo. The energy function E(mo,R,mem), presented in the following,
returns the total system energy dissipated during a single execution of basic block represented
by IPCFG node n which contains reference R to the memory object mo.

E(mo,R,mem) =
{

Evar(mo,R,mem) if mo ∈ V
Einst(mo,R,mem) if mo ∈ T ∪F

(6.4)

The above equation implies that the total energy dissipated by accessing variables is dif-
ferent than that dissipated through the execution of instruction segments (e.g. traces and
functions). The energy functions Evar(mo,R,mem) and Einst(mo,R,mem) as shown in
the following, represent the energy dissipated for memory objects belonging to the set of
global variables V and to instruction segments T ∪F , respectively:

Evar(mo,R,mem) = nrs ∗ [E(load,MM,mem)−E(mov,MM,mem)]

+nws ∗ [E(store,MM,mem)−E(mov,MM,mem)] (6.5)

Einst(mo,R,mem) = nrs ∗ inst(mo)∗E(mov,mem,MM) (6.6)

where, nrs and nws are the number of distinct read and write subreferences to the mem-
ory object mo referred on each access or execution, respectively. The energy dissipated
due to reading of a variable is equal to the data read access energy Eda(mem). In our
energy model [114], it is assumed to be the difference in the energy dissipated by a load
and a register-move instruction. Similarly, the energy dissipated for writing a variable is
the difference in the energy dissipated by a store instruction and a register-move instruc-
tion. The total energy dissipated by a variable is the sum of the products of energy for
reading and writing the variable with the number of distinct reads nrs and writes nrs,
respectively. Energy dissipation due to the execution of a code segment is the product
of the number of instructions present in the code segment and the energy dissipation of
a register-move instruction. A single average energy value is used to represent the en-
ergy dissipation of all CPU instructions because for ARM processors they dissipate almost
equal energy.

The product of weight w(n) of the node n and the energy function E(mo,R,mem)
results in the total energy dissipated by the memory object mo through the reference R at
node n in the IPCFG.

E(mo,mem) =
∑
R

(w(n)∗E(mo,R,mem)) (6.7)

Spilling a memory object mo requires copying the memory object from the source
memory smem to the destination memory dmem. The spill energy function Espill(mo,
smem,dmem), presented in the following, computes the energy dissipated during the ex-
ecution of the spill routine.

Espill(mo,smem,dmem) = size(mo)∗ [E(load,MM,smem)−E(mov,MM,smem)]

+size(mo)∗ [E(store,MM,dmem)−E(mov,MM,dmem)]

+ inst(spill(size(mo)))∗E(mov,MM,MM) (6.8)

6.4 Problem Formulation and Analysis 97

where, inst(spill(size(mo))) returns the number of instructions of the spill routine that
are executed to spill a memory object mo of size size(mo). The first two parameters of the
above equation represent the energy dissipated due to reading and writing data values, while
the third parameter represents the energy dissipated in the processor for executing the spill
routine. The following subsection presents the formal definition of the scratchpad overlay
problem.

6.4.5 Problem Formulation

Problem 6.9 (Scratchpad Overlay (SO)). Given the set of memory objects MO, the con-
trol flow graph G(N,E) of the application, the live-range Live(moi) of each memory object
moi ∈ MO and two memories (SPM, MM) with known start and end address regions. The
problem is to assign a contiguous address range [ai

j ,a
i
j +size(moi)] to memory object moi

on edge ej ∈ E such that the total energy profit ETotal, which depends upon the address
range of memory object moi, is maximized.

ETotal =
∑

moi∈MO

∑
ej∈E

Eprofit

(
moi,ej ,a

i
j

)

−
∑

moi∈MO

∑
ej∈E

Espill(moi,ej ,MM,SPM)

−
∑

moi∈MO

∑
ej∈E

Espill(moi,ej ,SPM,MM) (6.9)

The energy profit function Eprofit : MO ×E ×N → R as well as the spill energy function
Espill : MO×E× [SPM ,MM]× [SPM ,MM] → R are formally defined in Subsection 6.4.4.
The maximization of the total energy profit ETotal is to be performed under the following
constraints:

(a) The address region [ai
j ,a

i
j + size(moi)] assigned to a memory object moi should

be contained within the address space of the corresponding memory.

StartSPM ≤ ai
j ≤ EndSPM −size(moi) XOR

StartMM ≤ ai
j ≤ EndMM −size(moi) (6.10)

(b) If the live-ranges of two memory objects moi and moj overlap, then the memory
objects should be assigned to disjoint address regions on the edges where the overlap
of live-ranges occur.

∀ek ∈ Live(moi)∩Live(moj) : [ai
k,ai

k +size(moi)]∩ [aj
k,aj

k +size(moj)] = ∅
(6.11)

(c) A memory object mo can be moved from one memory to another at any edge
e ∈ Live(mo) in its live range without destroying the semantics of the application.
A penalty in terms of energy Espill is incurred whenever a memory object is moved
at any edge e ∈ Live(mo).

The scratchpad overlay problem can be simplified by disallowing the spilling of memory
objects during their live-ranges. This can be achieved by setting the spill energy function

98 6 Scratchpad Overlay Approaches for Main / Scratchpad Memory Hierarchy

Espill(moi,ej ,src,dst) = ∞ to return a very high penalty value irrespective of the input
parameters. Such situations arise for systems where movement of data within the memories
is expensive or prohibited by design. Systems with flash memory based main memory serve
as an example of systems with the above restriction. The problem of scratchpad overlay
without spilling (SOWOS) is an NP-complete problem as a reduction of the optimal cost
chromatic partitioning (OCCP) problem to the SOWOS problem can be constructed. The
OCCP problem has been proven to be NP-complete [61] for a large class of graphs. Thus,
we deduce that the SO problem being the generalization of SOWOS problem is also an
NP-complete problem.

6.5 Scratchpad Overlay Approaches

In the previous section, the scratchpad overlay (SO) problem was formally presented and
also shown to be an NP-complete problem. Our initial experiments concluded that signifi-
cant computational effort is required to compute an optimal solution for the SO problem in
its current form. Therefore, we decided to break the SO problem into two smaller subprob-
lems viz. Memory Assignment Problem and Address Assignment Problem. The goal of the
memory assignment problem is to maximize the energy profit by an optimal assignment of
memory objects to the memories and by the determination of energy optimal locations for
the insertion of spill routines. The goal of the address assignment is to compute overlayed
addresses of the memory objects assigned to the scratchpad memory.

The Opt. SO approach computes the optimal solution for both the subproblems by
using ILP-based approach. Thus, the Opt. SO approach can compute an optimal solution
to the SO problem as long as it can determine a valid solution to the second subproblem.
However, it may fail to find a valid solution for the address assignment. Our experiments
so far have shown that it never failed to compute addresses for memory objects assigned
to the scratchpad. The Near-Opt. SO approach computes a near-optimal solution to the
SO problem. It uses an ILP-based approach to compute the optimal solution to the first
subproblem and uses a first-fit heuristic based approach to compute a near-optimal solution
for the second subproblem.

The scratchpad overlay problem is solved using the workflow shown in Figure 6.7. In the
first step, variables and code segments from the application code are identified as memory

4. Onchip Address
Assignment Step

(Optimal + Near-Optimal)

1. Memory Object
 Determination Step

2. Liveness Analysis
Step

3. Memory Assignment
Step

(Optimal)

Fig. 6.7. Workflow of the Scratchpad Overlay Approaches

6.5 Scratchpad Overlay Approaches 99

objects. Liveness analysis is performed in the second step to determine the live ranges of
these memory objects. In the third step, the optimal solution to the memory assignment is
computed. The final step, depending upon the overall approach, computes an optimal or a
near-optimal solution to the address assignment problem.

6.5.1 Optimal Memory Assignment

The memory assignment problem is formulated such that the decision to assign mem-
ory objects to the memories is taken at the edges rather than at the nodes of the IPCFG.
The edge based formulation enables the determination of the energy optimal points for
the spilling of memory objects to the different memories. Prior to presenting the ILP-
formulation of the memory assignment problem, we define the following flow-attribute
flowi

j ∈ Attribflow
⋃{NOFLOW} = {DEF ,MOD,USE,CONT ,NOFLOW} for every

memory object moi on each edge ej of the IPCFG.

flowi
j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

DEF if R = Reference(moi,Src(ej)) and R.class = DEF
MOD if R = Reference(moi,Dst(ej)) and R.class = MOD
USE if R = Reference(moi,Dst(ej)) and R.class = USE
CONT if e ∈ live(moi)
NOFLOW if e /∈ live(moi)

(6.12)

Flow-attributes represent the flow of liveness of a memory object on the edges of the
IPCFG. A flow-attribute flowi

j for a memory object moi on an edge ej is classified as a
DEF attribute if the reference R to the memory object on the source node of the edge is
classified as a DEF reference. Similarly, a flow attribute flowi

j is classified as a MOD or
a USE attribute if the reference R on the destination node of the edge ej is classified as
a MOD or a USE reference, respectively. If a memory object moi is live on an edge ej ,
then the flow-attribute flowi

j is classified as a CONT attribute, otherwise as a NOFLOW
attribute. If an edge potentially carries more than one flow attributes, then the following
priority order is used to determine the appropriate attribute.

DEF > MOD > USE > CONT > NOFLOW (6.13)

In addition to the flow attributes, spill-load attribute slij ∈ {LOAD,NOSPILL} and spill-
store attribute ssi

j ∈ {STORE,NOSPILL} are defined on the edges to model appropriate
spilling of memory objects. Prior to presenting the classification procedure of spill-load and
spill-store attributes, we would like to define merge and diverge nodes as follows:

Definition 6.10 (Merge Node). A merge node is a node whose in-degree is greater than
one, without counting the self-loop edges.

Definition 6.11 (Diverge Node). A diverge node is a node whose out-degree is greater than
one, without counting the self-loop edges.

We will start by presenting the classification of the spill-load attribute, followed by that
for the spill-store attribute. The spill-load attribute can be classified as a LOAD or as a

100 6 Scratchpad Overlay Approaches for Main / Scratchpad Memory Hierarchy

NOSPILL attribute. In order to generate optimal spill code, the following theorem is used
to classify a spill-load attribute:

Theorem 1 For energy optimal spill code generation, it is sufficient to classify the spill-
load attribute slij for memory object moi on edge ej ∈ E as a LOAD attribute if the edge
ej satisfies any of following two constraints:

(a) The flow attribute flowi
j for memory object moi on the edge ej is already classified

as a MOD, USE or CONT attribute.
(b) The memory object moi is live on the edge ei whose destination node is a merge

node.

The spill-load attribute slij is classified as a NOSPILL attribute if none of the above two
conditions is satisfied.

Proof. By contradiction. Assume that there exists an ek ∈ E whose spill-load attribute slik
is classified as a NOSPILL attribute by the theorem and that to generate energy optimal
spill code, memory object moi must be spill-loaded on the edge ek. From the edge ek

move in the direction of the next reference R to the memory object, until either an edge ej

whose spill-load attribute is classified as a LOAD attribute by the theorem is reached or a
diverge node is reached. Assume that edge ej whose spill-load attribute is classified as a
LOAD attribute is reached. The overhead, quantified in terms of energy dissipated by the
spill code, to generate the spill code to load the memory object moi at ej is the same as
that to generate the spill code at edge ek. Moreover, the generation of spill code at edge ej

reduces the time for which the memory object moi is assigned to the scratchpad and thereby
increases the scratchpad overlay opportunity. Therefore, the edge ej will be chosen instead
of the edge ek for generating the optimal spill code. Suppose that a diverge node is reached,
then the total energy overhead of generating spill code on every edge exiting the diverge
node is less than or equal to that of generating spill code at the edge ek. Therefore, we
classify the spill-load attributes on all the exiting edges as LOAD attributes and recursively
apply the proof to these edges. ��
The mathematical representation of spill-load attribute slij , as specified by Theorem 1, is
presented below:

slij =

⎧⎨
⎩

LOAD if flowi
j ∈ {MOD,USE,CONT} or

(ej ∈ live(moi) and Merge(Dst(ej)))
NOSPILL otherwise

(6.14)

The classification of the spill-load attribute slij as a LOAD attribute implies that the memory
object moi can be spill loaded or copied from the main memory to the scratchpad on the
edge ej . In contrast, a NOSPILL attribute implies that spill-loading of the memory object
moi at the edge ej will not result in an energy optimal solution. Similar to Theorem 1,
the following theorem is used to classify the spill-store ssi

j into a STORE attribute or a
NOSPILL attribute:

Theorem 2 For energy optimal spill code generation, it is sufficient to classify the spill-
store attribute ssi

j for memory object moi on edge ej ∈ E as a STORE attribute if the edge
ej satisfies any of following two constraints:

6.5 Scratchpad Overlay Approaches 101

(a) The flow attribute flowi
j for memory object moi on the edge ej is already classified

as a DEF attribute.
(b) The memory object moi is live on the edge ei whose source node is a diverge node.

The spill-store attribute ssi
j is classified as a NOSPILL attribute if none of the above two

conditions is satisfied.

Proof. By contradiction. Assume that there exists an ek ∈ E, whose spill-store attribute ssi
k

is classified as a NOSPILL attribute by the theorem and that to generate energy optimal spill
code, memory object moi must be spill-stored on the edge ek. From the edge ek move in
the direction of the previous reference R to the memory object moi, until either an edge
ej whose spill-store attribute is classified as a STORE attribute by the theorem is reached
or a merge node is reached. Suppose that edge ej whose spill-store attribute is classified as
a STORE attribute is reached. The energy overhead to generate the spill code to store the
memory object moi at ej is the same as that to generate the spill code at edge ek. Moreover,
the generation of spill store code at edge ej reduces the time for which the memory object
moi remains assigned to the scratchpad and thereby increases the opportunity for scratchpad
overlay. Therefore, the edge ej will be chosen instead of the edge ek for generating optimal
spill code. Assume that a merge node is reached, then the total overhead of generating spill
code at all the edges entering the merge node is less than or equal to that of generating spill
code at the edge ek. Therefore, we classify the spill-store attributes on all the entering edges
as STORE attributes and recursively apply the proof to these edges. ��

The classification of the spill-store attribute ssi
j as a STORE attribute implies that

memory object moi can be copied from the scratchpad to the main memory on edge ej . The
formal definition of spill-store attribute ssi

j is presented as the following:

ssi
j =

⎧⎨
⎩

STORE if flowi
j ∈ {DEF} or

(ej ∈ live(moi) and Diverge(Src(ej)))
NOSPILL otherwise

(6.15)

The following example, describes the classification procedure of flow and spill attributes
for the application code presented in Example 6.3.

Example 6.12. In this example, Equations 6.12, 6.14 and 6.15 are used to define flow and
spill attributes for global variable A (cf. Example 6.3) and trace T4 (cf. Example 6.4).
The analysis is performed on the control flow graph of the application code presented in
Example 6.3.

Table 6.5 presents the classification of flow, spill-load and spill-store attributes for vari-
able A and trace T4. For variable A, a NOFLOW flow-attribute and a NOSPILL spill-
attribute are defined on edges e1 and e2, as the variable is not live on these edges. The trace
T4 is live on the same edges and there are no references R to trace T4 on the nodes at the
ends of the edges. Therefore, the flow-attributes (flow6

1 and flow6
2) are classified as CONT

attributes. The spill-load attributes (sl61 and sl62) are classified as LOAD attributes, whereas,
the spill-store attributes (ss6

1 and ss6
2) are classified as NOSPILL attributes as none of the

conditions for STORE attribute, presented in Equation 6.15, are satisfied.

102 6 Scratchpad Overlay Approaches for Main / Scratchpad Memory Hierarchy

Attributes for variable A (mo1) Attributes for Trace T4 (mo6)
Edge Flow Load Spill Store Spill Flow Load Spill Store Spill

(ei) (flow1
i) (ls1

i) (ss1
i) (flow6

i) (ls6
i) (ss6

i)

e1 NOFLOW NOSPILL NOSPILL CONT LOAD NOSPILL
e2 NOFLOW NOSPILL NOSPILL CONT LOAD NOSPILL
e3 DEF NOSPILL STORE CONT LOAD NOSPILL
e5 MOD LOAD NOSPILL NOFLOW NOSPILL NOSPILL
e6 CONT LOAD STORE USE LOAD STORE
e8 CONT LOAD NOSPILL NOFLOW NOSPILL NOSPILL

e10 USE LOAD NOSPILL NOFLOW NOSPILL NOSPILL

Table 6.5. Definition of Flow and Spill Attributes for Global Variable A and Trace T4

Next, we define a couple of binary variables xi
j k and yi

j k representing the assignment
of memory object moi to the scratchpad and the spilling of the memory object moi on edge
ei, respectively. The binary variable xi

j k represents the flow of memory object moi on the
scratchpad and is defined as the following:

xi
j k =

⎧⎨
⎩

1 if moi is present on the scratchpad memory at edge ej and
flowi

j attribute is classified as atk ∈ Attribflow

0 otherwise
(6.16)

where moi ∈ MO, ej ∈ E and atk ∈ Attribflow. For example, if the value of binary variable
xi

j USE is 1, then memory object moi is present on the scratchpad on edge ej and is also
being used (USE) on the edge. The binary variable yi

j k to represent the spilling of memory
object moi on edge ej is defined as the following:

yi
j k =

⎧⎨
⎩

1 if operation corresponding to the spill attributes
atk ∈ LOAD,STORE is performed for moi at edge ej

0 otherwise
(6.17)

Similarly, if the value of yi
j LOAD is equal to 1, then the memory object moi is spill-loaded

onto the scratchpad at edge ej . Next, we describe the objective function and the constraints
comprising the proposed ILP formulation.

Objective Function:
The objective function represents the energy savings achieved by overlaying memory objects
onto the scratchpad. The function, as shown in the following, needs to be maximized in order
to minimize the energy consumption of the system:

E =
∑

moi∈MO

∑
ej∈E

⎧⎨
⎩

Eprofit(moi,ej ,atk) ∗ xi
j k

− Eload cost(moi,ej) ∗ yi
j LOAD

− Estore cost(moi,ej) ∗ yi
j STORE

⎫⎬
⎭ (6.18)

where, Eprofit(moi,ej ,atk) is the energy saving achieved by assuming that memory object
moi is present on the scratchpad at edge ej . Eload cost(moi,ej) and Estore cost(moi,ej)

6.5 Scratchpad Overlay Approaches 103

are the energy overheads of spilling memory object moi to and from the scratchpad at edge
ej , respectively. The energy savings function Eprofit(moi,ej ,atk) is computed using the
energy dissipation function E(mo,R,mem) defined in Subsection 6.4.4 and is shown as
follows:

Eprofit(moi,ej ,atk) = E(moi,Rj ,MM)−E(moi,Rj ,SPM) (6.19)

where, Rj is the reference to memory object moi at edge ej and is determined using
Equation 6.12. The spill overhead functions Eload cost(moi,ej) and Estore cost(moi,ej)
are computed as follows:

Eload cost(mo,e) = Espill(mo,e,SPM,MM) (6.20)

Estore cost(mo,e) = Espill(mo,e,MM,SPM) (6.21)

whereEspill(mo,src mem,dst mem) is the spill energy function (cf. Equation 6.8) defined
in Subsection 6.4.4.

ej

ek

i

i
j DEF

j STORE

,

i
k CONT

(a) DEF

i
k CONT

i

i
j USE

j LOAD

,

USE

ek

ej

CONT

(b) USE

i
k CONT

i

i
k CONT

k LOAD

,

ek

ej

CONT

CONT

(c) CONT

Fig. 6.8. Flow Constraints: (a) DEF (b) USE and (c) CONT Constraint

Constraints:
Constraints are added to the ILP-formulation to prevent the binary variables xi

j k and yi
j k

from assuming arbitrary values and to obtain a legitimate solution to the memory assignment
problem. We first explain the flow constraints that are added to maintain a legal flow of
liveness of memory objects. The following is a DEF-constraint which is added for all edges
with a DEF attribute:

xi
j DEF −xi

k CONT −yi
j STORE = 0 ∀moi ∈ MO (6.22)

In the above constraint, edge ej (refer Figure 6.8(a)) contains a DEF attribute while edge
ek is chosen such that the source node of edge ek is same as the target node of edge ej .
Informally, the DEF-constraint states that if a memory object moi is defined (DEF) on the
scratchpad on an edge ej , then it can continue (CONT) to remain assigned to the scratchpad

104 6 Scratchpad Overlay Approaches for Main / Scratchpad Memory Hierarchy

i
j1 k1 ,

i1
j1 LOAD

i
jn kn ,

i
jn LOAD

j1 jn

(a) Merge-Node Constraint

i

i
jn kn

jn STORE

,i

i
j1 k1

j1 STORE

,
j1 jn

(b) Diverge-Node Constraint

Fig. 6.9. Flow Constraints: (a) Merge-Node (b) Diverge-Node Constraint

on the following edge ek or it can be spill-stored (STORE) to the main memory on the edge
ej . Similarly, MOD-constraints and USE-constraints are added for edges ej with MOD and
USE attribute defined, respectively.

xi
j USE −xi

k CONT −yi
j LOAD = 0 ∀moi ∈ MO (6.23)

xi
j MOD −xi

k CONT −yi
j LOAD = 0 ∀moi ∈ MO (6.24)

In both the above constraints, edge ek (refer Figure 6.8(b)) is chosen such that the source
node of edge ej is same as the target node of edge ek. Informally, the USE-constraint states
that if a memory object moi is being used (USE) from the scratchpad on an edge ek, then
it was already present (CONT) on the scratchpad on the previous edge ej or it was spill
loaded (LOAD) on the edge ek. A similar explanation exists for the MOD-constraint. The
following constraint is added for edges with CONT attribute.

xi
j CONT −xi

k CONT −yi
j LOAD = 0 ∀moi ∈ MO (6.25)

Similar to the USE-constraint, edge ej (refer Figure 6.8(c)) contains a CONT attribute
while edge ek is a previous edge such that the source node of edge ej is the target node
of edge ek. The CONT constraint implies that if a memory object moi continues (CONT)
to remain assigned to the scratchpad on edge ek, then it was already continuing (CONT)
on a previous edge ej or it was spill loaded (LOAD) onto the scratchpad on the current
edge ek. The following flow constraints are added to ensure the legality of flow of liveness
on merge and diverge nodes. More importantly, they ensure an energy optimal spill code
placement. It should be clarified that the code for spill routines is always allocated on the
main memory. The following merge-node constraints are added for all merge nodes.

yi
j LOAD −xi

j k ≤ 0 ∀ej ∈ {ej1 · · ·ejn} atk ∈ {atk1 · · ·atkn} (6.26)

xi
j1 k1 = · · · = xi

jn kn s.t. atk1 · · ·atkn ∈ Attribflow ∀moi ∈ MO (6.27)

In the above constraints, edges ej1 · · ·ejn (refer Figure 6.9(a)) constitute all the edges en-
tering a merge node. The first constraint (Equation 6.26) ensures that if a memory object

6.5 Scratchpad Overlay Approaches 105

moi is spill loaded (LOAD) on an edge ej , then it must be assigned to the scratchpad on
the same edge. The second constraint (cf. Equation 6.27) ensures that if a memory object
moi is assigned to the scratchpad on one of the edges entering the merge node, then it must
be assigned to the scratchpad on each of the remaining edges. For all the diverge nodes, the
following constraints, viz. diverge-node constraints are added.

yi
j STORE −xi

j k ≤ 0 ∀ej ∈ {ej1 · · ·ejn} atk ∈ {atk1 · · ·atkn} (6.28)

xi
j1 k1 = · · · = xi

jn kn s.t. atk1 · · ·atkn ∈ Attribflow ∀moi ∈ MO (6.29)

As shown in Figure 6.9(b), edges ej1 · · ·ejn denote the edges emerging from a diverge
node. In order to maintain the legality of liveness flow, if a memory object moi is assigned
to the scratchpad on one of the edges exiting a diverge node, then it must be assigned to
the scratchpad or spill-stored (STORE) to main memory on each of the remaining edges.
Finally, we append the scratchpad size constraint which ensures that the aggregate size of
all memory objects assigned to the scratchpad memory on an edge should be less than the
scratchpad size. The following constraint is added to all edges where a memory object moi

is being defined (DEF) or spill-loaded (LOAD).
∑

moi ∈ MO

xi
j k ∗size(moi) ≤ size(SPM) ∀ej ∈ E (6.30)

A commercial ILP solver [32] is used to obtain an optimal assignment of memory
objects to the scratchpad memory which maximizes the energy savings while satisfying the
above constraints. The total number of binary variables used in the 0-1 ILP formulation
of the Memory Assignment Problem is O(|MO| ∗ |E|). The maximum and the average
runtimes of the ILP solver for all the experiments were found to be 1333.0 and 9.9 CPU
seconds on a Sun Sparc 1300 MHz machine, respectively. We have computed the assign-
ment of the memory objects onto the scratchpad memory. However, the scratchpad overlay
problem is solved only when the addresses of the memory objects assigned to the scratchpad
memory are computed. In the following section, we present the ILP formulation to compute
the addresses of memory objects.

6.5.2 Optimal Address Assignment

The previous step makes an implicit assumption that if the aggregate size of the memory
objects assigned to the scratchpad on each edge was less than the scratchpad size, then the
overlayed addresses for those memory objects can be computed. This assumption can fail
due to a bad address assignment strategy which causes the fragmentation of the scratch-
pad address space. As a result, memory objects cannot be assigned addresses, despite the
scratchpad size constraint being satisfied. The problem of address assignment is trivial if
all the memory objects are of the same size. However, the problem becomes NP-complete
when the memory objects are of different sizes [43]. The following example demonstrates
that a bad assignment can fragment the scratchpad space into smaller address regions.

Example 6.13. The problem is to assign memory address regions to 3 equal sized memory
objects mo1, mo2 and mo3. The size of each memory object is 20 bytes while the size of
the memory is 60 bytes.

106 6 Scratchpad Overlay Approaches for Main / Scratchpad Memory Hierarchy

0

20

40

60

mo1

mo2

Memory
Object

Address
Region

mo1

mo2

mo3

[10, 30]

[30, 50]

—

Fig. 6.10. Incorrect Address Assignment

0

20

40

60

mo1

mo2

mo3

Memory
Object

Address
Region

mo1

mo2

mo3

[0, 20]

[20, 40]

[40, 60]

Fig. 6.11. Correct Address Assignment

Figure 6.10 demonstrates a bad assignment of address regions to memory objects mo1
and mo2 which leads to the fragmentation of the memory address space. Memory objects
mo1 and mo2 are assigned the address region [10,30] and [30,50]. Thus, memory object
mo3 could not be assigned an address region, despite the memory being large enough to
hold all three memory objects together. A correct assignment of address regions to memory
objects is presented in Figure 6.11.

Every memory object moi on each edge ej is assigned an address region [ai
j ,a

i
j +

size(moi)] which is contained within the address space of the appropriate memory. The
integer variable ai

j represents the start address of the memory object moi at the edge ej and
it satisfies the following constraint:

StartSPM ≤ ai
j ≤ EndSPM −size(moi) XOR

StartMM ≤ ai
j ≤ EndMM −size(moi) (6.31)

The assumption that the main memory is always large enough to hold all memory objects in
disjoint address regions is used to simplify the above inequations. The assumption requires
setting the variables StartMM = EndSPM and EndMM = ∞ such that the main memory
is of infinite size and also does not overlap with the address space occupied by the scratchpad
memory. The simplified constraint for the integer variable ai

j is the following:

StartSPM ≤ ai
j ≤ EndSPM −size(moi) (6.32)

The next set of constraints is added to the ILP formulation to ensure that the address ranges
of no two memory objects (moi and moj) defined at the same edge ek overlap with each
other.

ai
k −aj

k ≥ size(moj) XOR (6.33)

aj
k −ai

k ≥ size(moi) (6.34)

The first constraint (cf. Equation 6.33) of the above set of constraints implies that on
edge ek the start address

(
ai

k

)
of the memory object moi is greater than the end address

(aj
k + size(moj)) of memory object moj . The second constraint (Equation 6.34) implies

6.5 Scratchpad Overlay Approaches 107

moj

moi

j
k

i
k

size(
m

o
)j

moi

moj

i
k

j
k

size(
m

o
)i

Fig. 6.12. Two Potential Placements of Memory Objects

the reversed placement of the memory objects. Figure 6.12 demonstrates the two possible
assignments of address regions of the memory objects in the scratchpad. The XOR operator
implies that only one of the two constraints can be satisfied at the same time. However,
the XOR operator can not be modeled using linear programming and therefore, a binary
variable ui j

k is added to linearize the above set of constraints.

ui j
k =

{
0 constraint (6.33) is to be satisfied
1 constraint (6.34) is to be satisfied

(6.35)

The following is the linearized form of the set of constraints (Equation 6.33 and
Equation 6.34) with L being a sufficiently large constant.

ai
k −aj

k +L∗ui j
k ≥ size(moj) ∀ek ∈ E (6.36)

aj
k −ai

k −L∗ui j
k ≥ size(moi)− L ∀ek ∈ E (6.37)

The above set of constraints is repeated for all pairs of memory objects which are assigned
to the scratchpad memory on edge ek. Subsequently, they are also repeated for all edges
ek ∈ E with more than one memory object assigned to the scratchpad memory. Next, a
constraint is added to restrict that the start address of a memory object moi is the same on
two edges ej and ek which are connected by a node.

ai
j −ai

k = 0 (6.38)

In the above constraint, edges ej and ek are chosen such that source node of edge ek is the
target node of edge ej . Any change in the offsets of the memory object moi on edges ej and
ek is captured using the following binary variable.

vi
j k =

{
1 if ai

j �= ai
k

0 otherwise
(6.39)

The unit value of the variable vi
j k would require a reorganization of the memory objects

present in the scratchpad at the node connecting edge ej and ek. The reorganization would
require additional instructions and cause energy overhead, not taken into account by the
memory assignment problem. Therefore, a unit value of the variable vi

j k would imply an

108 6 Scratchpad Overlay Approaches for Main / Scratchpad Memory Hierarchy

invalid solution to the address assignment problem. Equation 6.38 is transformed to the
following form after the insertion of the binary variable vi

j k.

ai
j −ai

k −L∗vi
j k = 0 ∀ej ,ek ∈ E (6.40)

The above constraint is repeated for all memory objects assigned to the scratchpad on both the
edges ej ,ek ∈ E and also for all such valid pair of edges. A valid solution is characterized by
the fact that the offsets of memory objects on all pairs of edges remain invariant. The address
assignment problem is a decision problem which has to be converted to an optimization
problem because the ILP solver [32] can only solve optimization problems. The summation
of the binary variable vi

j k for all valid pairs of edges and for all memory objects is denoted
as the objective function of the ILP formulation.

∑
i

∑
j

∑
k

vij
k (6.41)

For a valid solution, the value of the objective function should be zero which is achieved
by minimizing the objective function. The presented ILP formulation consists of both binary
and integer variables. The number of integer variables in the above formulation is O(|MO|∗
|E|) while the number of binary variables is O(|MO| ∗ |E|2).

The problem is solved using the branch and bound technique of the commercial ILP
solver [32], which can take substantial time for certain problem instances. For one instance,
the ILP solver failed to find the result in 3 weeks. If we exclude the three problem instances
for which the ILP solver took 35, 69 and 92 hours to compute the solution, the remaining
problem instances were solved in small amounts of time. The maximum and the average
runtime of the ILP solver is 7304 and 479 CPU seconds on a Sun Sparc 1300 MHz machine,
respectively. Nevertheless, the computation time needs to be reduced so that the overall
scratchpad overlay approach could be implemented within a compiler based framework. In
the following subsection, we describe a first-fit heuristic based near-optimal approach for
the solving the address assignment problem.

6.5.3 Near-Optimal Address Assignment

The First-Fit heuristic [43] based algorithm is used for assigning addresses to the memory
objects on each edge of the IPCFG. The heuristic is chosen ahead of the well known alter-
natives (e.g. next-fit, best-fit, segregated-list, binary-buddy) because the study [62] demon-
strated that it performs close to best-fit and is faster than best-fit for real-life workloads.

Figure 6.13 presents the pseudo-code for the first-fit based near-optimal address assign-
ment algorithm. The algorithm assigns the same address to a memory object if it has been
assigned an address on a previous edge. Otherwise, it uses first-fit heuristic to determine an
available address region for the memory object.

We implemented the variant of the first-fit heuristic which divides the scratchpad address
space into |MO| variable sized regions. In order to reduce unused address space, the start
boundary of an empty region is adjusted to the end address of its previous region which
is assigned to a memory object. The first-fit heuristic assigns a memory object the first
empty region which can accommodate the memory object. This might lead to the problem
of fragmentation as some scratchpad memory space may remain unused. However, the

6.6 Experimental Results 109

void AddressAssignment() {
1 for (k=1;k<=|MO|;k++) {
2 for (i=1;i<=|E|;i++) {
3 /* Is MO mok mapped to the SPM on edge ei? */

4 if (xi
DEF k || xi

LOAD k) {
5 /* Does MO mok already have a valid address? */
6 if (AddressVector[k]==INVALID) {
7 /* No, compute a valid address using first-fit heuristic. */
8 address = FirstFitAddress(i,k);
9 if (address == INVALID)
10 /* First-Fit couldn’t find an address, make mok offchip. */
11 SetMemoryObjectOffchip(k);
12 else
13 /* Assign the valid address to mok. */
14 AddressVector[k] = address;
15 }
16 } else if (xi

MOD k || xi
USE k|| xi

CONT k) {
17 /* Does MO mok already have a valid address? */
18 if (AddressVector[k]==INVALID)
19 /* Get Address from one of the previous edges. */
20 AddressVector[k] = AddressFromPreviousEdge(i,k);
21 } else
22 AddressVector[k] = INVALID;
23 }}

Fig. 6.13. First-Fit Heuristic Based Address Assignment Algorithm

study [62] pointed out that only minimal memory space is lost due to fragmentation by the
first-fit heuristic. This observation is also corroborated by our experiments.

The address assignment algorithm calls the first-fit heuristic on an edge only when a
memory object is either defined or loaded onto the scratchpad and the memory object has
not been assigned a valid address on the same edge. If the first-fit heuristic fails to assign an
address to the memory object, then the memory object is assigned to the main memory for
its entire lifetime. If a memory object is used, modified or continued on an edge and does
not have a valid address, then it is assigned an address from one of the immediately pre-
vious edges. The AddressFromPreviousEdge routine also checks if the addresses on all
the immediately previous edges to the current are equal, otherwise the error flag is set. Our
implementation of the first-fit heuristic has the runtime complexity of O(|E| ∗ |MO|). Con-
sequently, the runtime complexity of the address assignment algorithm is O(|E|2 ∗|MO|2).
The algorithm required negligible (less than 1 CPU sec.) time to compute solutions which
are very close to the optimal solutions for all our experiments. This fact has been validated
by the experimental results presented in the following section.

6.6 Experimental Results

The experiments were conducted for uni-processor ARM, multi-processor ARM and M5
DSP based systems according to their corresponding experimental workflows presented

110 6 Scratchpad Overlay Approaches for Main / Scratchpad Memory Hierarchy

Benchmark Code Size Data Size System
(bytes) (bytes) Architecture

adpcm 804 4996 uni-processor ARM
edge detection 908 7792 uni-processor ARM

histogram 704 133156 uni-processor ARM
mpeg4 1524 58048 uni-processor ARM

multisort 636 2020 uni-processor ARM
dsp 2784 61272 uni-processor ARM

media 3280 75672 uni-processor ARM
multi-process edge detection 4484 23820 multi-processor ARM

complex multiply 24576 M5 DSP
fir 3688 M5 DSP

fir2dim 3380 M5 DSP

Table 6.6. Benchmark Programs for the Evaluation of Scratchpad Overlay Approaches

in Chapter 3. The scratchpad overlay approaches for uni-processor ARM and M5 DSP
based are implemented as memory optimizations performed within the backends of the
corresponding compilers. In contrast, the overlay approaches for the multi-processor ARM
based system are implemented as pre-compiler source-level optimizations. Accurate energy
models for these systems are used to compute the energy consumption values presented in
this section. Table 6.6 presents the benchmarks along with their code and data sizes which
are used to evaluate the scratchpad overlay approaches for different system architectures.
In the following subsection, we start with the evaluation of the overlay approaches for the
uni-processor ARM based system.

6.6.1 Uni-Processor ARM

In this subsection, the evaluation of the scratchpad memory and the overlay approaches is
presented in the following order:

(a) Benefits of the scratchpad memory
(b) Comparison of the different scratchpad memory allocation approaches
(c) Comparison of the cache and the scratchpad memory

First, the benefit of the scratchpad in terms of both energy dissipation and execution time
is evaluated. Second, a comparison of the various scratchpad allocation approaches is pre-
sented. Finally, a comparison of cache and scratchpad memories of the same sizes for the
energy dissipation and the execution time metric is presented.

Scratchpad Benefit:
Figures 6.14(a) and 6.14(b) present the normalized energy consumption and execution time
values for systems with varying scratchpad sizes and executing the edge detection and dsp
benchmarks, respectively. The scratchpad is allocated using the Optimal Scratchpad Overlay
(Opt. SO) approach presented in the previous section. In order to quantify the benefit due
to a scratchpad memory, all energy consumption and execution time values are normalized
according to those values obtained for the system without a scratchpad.

6.6 Experimental Results 111

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 64 128 200 256 300 400 512 1024
Scratchpad Size (bytes)

Energy (Opt. SO) Execution Time (Opt. SO)

(a) Edge Detection

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 128 200 256 300 400 512 1024
Scratchpad Size (bytes)

Energy (Opt. SO) Execution Time (Opt. SO)

(b) DSP

Fig. 6.14. Normalized Energy Consumption and Execution Time for Opt. SO Approach

0

2000

4000

6000

8000

10000

12000

0 64 128 200 256 300 400 512 1024
Scratchpad Size (Bytes)

T
o

ta
lE

n
er

g
y

C
o

n
su

m
p

ti
o

n
(u

J)

Energy (SA) Energy (Near-Opt. SO) Energy (Opt. SO)

(a) Edge Detection

0

20

40

60

80

100

120

140

0 100 128 200 256 300 400 512 1024
Scratchpad Size (bytes)

T
o

ta
lE

n
er

g
y

C
o

n
su

m
p

ti
o

n
(m

J)
Energy (SA) Energy (Near-Opt. SO) Energy (Opt. SO)

(b) DSP

Fig. 6.15. Energy Comparison of Scratchpad Allocation Approaches

Both the figures clearly demonstrate the efficacy of including a scratchpad into the
memory hierarchy. For the edge detection benchmark, we observe that a 64 bytes scratchpad
(cf. Figure 6.14(a)) leads to 48% reduction in the energy dissipation of the system and to
32% reduction in the execution time of the benchmark compared to the system without
a scratchpad. For the same application, a 256 bytes scratchpad having a size of only 2%
compared to the total application size, leads to more than 70% reduction in terms of energy
dissipation. The dsp benchmark, being 9 times larger than the edge detection benchmark,
demonstrates similar benefits for the scratchpad based systems. A 1024 bytes scratchpad,
again accounting for 2% of the total application size, presents 48% reduction in energy
dissipation and 30% reduction in the execution time of the dsp benchmark.

Comparison of the Scratchpad Allocation Approaches:
A comparison of the scratchpad allocation techniques viz. Non-Overlayed Scratchpad

Allocation (SA), Optimal Scratchpad Overlay (Opt. SO) and Near-Optimal Scratchpad Over-
lay (Near-Opt. SO) for the edge detection and dsp benchmarks is presented in Figure 6.15(a)
and Figure 6.15(b), respectively. The figures present the total energy consumption of the
ARM based systems when the scratchpad is allocated using the different allocation tech-
niques. From Figures 6.15(a) and 6.15(b), we make the following observations:

First, we observe that the energy consumption values for the SAapproach monotonically
decrease with the increase in scratchpad size. The energy consumption values for Opt. SO

112 6 Scratchpad Overlay Approaches for Main / Scratchpad Memory Hierarchy

and Near-Opt. SO approaches decrease faster than those for the SA approach. The energy
values for the scratchpad overlay approaches (cf. Figure 6.15(a)) reach a threshold value
at 256 bytes and thereafter remain constant. For the SA approach, a larger scratchpad size
implies that more memory objects can be statically allocated onto the scratchpad and lower
the energy consumption. This justifies the monotonically decreasing energy values for the SA
approach. In contrast, the overlay approaches share the scratchpad among memory objects
with non-conflicting life-times and result in lower energy values than for the SA approach.
The energy consumption values become constant when no additional memory objects can
be overlayed on the scratchpad. For 1024 bytes scratchpad, all the allocation approaches
assign the same memory objects to the scratchpad and therefore result in the same energy
consumption values.

Second, we observe that the energy values for Near-Opt. SO and Opt. SO approaches
(cf. Figure 6.15(a)) at 256 bytes scratchpad is equal to that for the SA approach at 1024
bytes. Similarly, for the dsp benchmark (refer Figure 6.15(b)) the energy consumption for
the overlay approaches at 400 bytes of scratchpad is equal to that for the SA approach at
1024 bytes of scratchpad. We can, therefore, conclude that the scratchpad overlay approaches
efficiently utilize the scratchpad memory. Finally, from both the figures we observe that the
energy consumption values for the Near-Opt. SO are very close to those for the Opt. SO.
This implies that the proposed Near-Opt. SO approach performs fairly close to the Opt. SO
approach.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 64 128 256 512 1024

Scratchpad Size (bytes)

SA: MM(Inst. Acc.)

SA: SPM(Inst. Acc.)

SA: MM(Data Acc.)

SA: SPM(Data Acc.)

SO: MM(Inst. Acc.)

SO: SPM(Inst. Acc.)

SO: MM(Data Acc.)

SO: SPM(Data Acc.)

1st bar 2nd bar 3rd bar 4th bar

Fig. 6.16. Edge Detection: Comparison of SA and Near-Opt. SO Approaches for Memory Accesses

Next, we compare the SAand Near-Opt. SO approaches in terms of memory accesses for
the edge detection benchmark. Figure 6.16 presents the comparison for the two scratchpad
allocation approaches. The memory accesses are normalized according to the main mem-
ory accesses of the appropriate type (i.e. instruction or data access) for a system without a
scratchpad. The memory accesses for each allocation approach are classified into 4 cate-
gories, depending on the access type and accessed memory. The labels of Figure 6.16 are
defined according to the following regular expression.

{AllocationApproach} : {Memory}({AccessType}) (6.42)

where, AllocationApproach ∈ {SA, SO}, Memory ∈ {MM, SPM} and AccessType ∈
{Inst. Acc., Data Acc.} represent the allocation approach, accessed memory and the ac-
cess type. For example, the label SA: MM(Inst. Access) implies that the bar represents

6.6 Experimental Results 113

normalized instruction accesses to the main memory when the SA approach is used to
allocate the scratchpad present in the system. The normalized memory accesses to the main
memory and the scratchpad are stacked to distinguish between aggregate instruction and
data access. In the above figure, the first and the second bars represent the instruction and
data memory accesses for the SA approach, respectively. The third and the fourth bars
present the same for the Near-Opt. SO approach. From the figure, we make the following
observations:

First, the third and the fourth bars for the SO approach, representing normalized instruc-
tion and data accesses, are larger than the unit value. This is because additional instruction
and data accesses are required for copying the memory objects on and off the scratchpad.
Second, the SO approach very efficiently utilizes the scratchpad for caching instruction
segments. For example, a 256 byte scratchpad allocated using the SO approach caches 98%
of all instruction accesses. In contrast, the same sized scratchpad allocated through the SA
approach is able to cache around 40% of the total instruction accesses.

Third, the scratchpad allocated using the SO approach can also cache a higher percentage
of data accesses than that by the scratchpad allocated using the SA approach. However, the
percentage of cached data accesses is lower than that of cached instruction accesses for
the both the allocation approaches. This is due to the fact that instruction segments (i.e.
traces and functions) are smaller and more frequently accessed than data variables. Finally,
we conclude that the SO approach more efficiently utilizes the scratchpad than the SA
approach.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

64 128 200 256 300 400 512 avg.
Scratchpad Size (bytes)

Proc. Energy (SO) Mem. Energy (SO) Total Energy (SO) Exec. Time (SO)

Fig. 6.17. Edge Detection: Comparison of SA and Near-Opt. SO Approaches

Figure 6.17 presents the normalized energy consumption values and performance values
of the edge detection benchmark allocated using the Near-Opt. SO approach. The compo-
nents of total energy consumption, processor and memory energy consumption are also
shown in the figure. The energy and performance values for the benchmark allocated using
the SA approach are denoted as the unit valued baseline.

From Figure 6.17, we observe that both the energy and performance values for the
Near-Opt. SO approach are less than the corresponding values for the SA approach. Despite
the fact that the processor executes additional instructions for copying memory objects
on and off the scratchpad, the overlay approaches are able to save both energy and ex-
ecution time. The accesses to the scratchpad are cheaper than the main memory both in

114 6 Scratchpad Overlay Approaches for Main / Scratchpad Memory Hierarchy

terms of access time and energy per access. This enables the Near-Opt. SO approach to
over-compensate for the copying overhead which results in significant savings compared
to the SA approach. The Near-Opt. SO approach leads to a maximum reduction of 65%
in the memory energy consumption for a 128 bytes scratchpad. The total energy con-
sumption, being the sum of the processor energy and the memory energy, shows an av-
erage reduction of 42%. The application on an average requires 21% less CPU cycles for
execution.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

adpcm dsp edge

detection

histogram media mpeg multisort avg.

Energy (Near-Opt. SO) Energy (Opt. SO) Exec. Time (Near-Opt. SO) Exec. Time (Opt. SO)

Fig. 6.18. Overall Comparison of Near-Opt. SO, Opt. SO and SA Approaches

Figure 6.18 presents the comparison of the scratchpad overlay approaches against the
non-overlayed scratchpad allocation (SA) approach across all benchmarks. The total energy
consumption and execution time values for the overlay approaches are averaged across all
scratchpad sizes and are normalized against the corresponding average energy and execution
time values for the SA approach. Moreover, the average energy consumption and execution
time values across all scratchpad sizes and across all benchmarks are normalized and are
presented as the last set of bars in the figure.

From the figure, it is observed that the minimum energy and execution time savings
are for the adpcm benchmark. This is justified as the adpcm benchmark consists of only
one encoder and decoder routines and provides little opportunity for overlay. For the his-
togram benchmark, the maximum average energy savings of 44% are reported due to the
Opt. SO approach. Maximum performance improvements of 22% and 26% due to the Near-
Opt. SO and the Opt. SO approaches, respectively, are reported for the same benchmark.
The histogram benchmark comprises several hot-spots and data arrays with non-conflicting
life-times. As a consequence, the overlay approaches achieve the maximum savings for the
benchmark.

For the same benchmark, we observe a noticeable difference between the energy con-
sumption and execution time values for the Near-Opt. SO and the Opt. SO approach. This
is because the assignment step failed to assign an address in the scratchpad space to one
of the most energy consuming memory object. The Near-Opt. SO approach, otherwise,
achieved very close to the optimal results. Finally, the overall average energy consumption
and execution time savings for the Near-Opt. SO approach are reported to be 25% and
13%, respectively. The overall average energy and execution time savings for the Opt. SO
approach are merely 1% better than those for the Near-Opt. SO approach.

6.6 Experimental Results 115

0

2

4

6

8

10

12

14

16

0 128 256 512 1024
Scratchpad / Cache Size (bytes)

T
o

ta
lE

n
er

g
y

C
o

n
su

m
p

ti
o

n
(m

J)

Energy (SA)

Energy (Near-Opt. SO)

Energy (Cache)

(a) Edge Detection

0

20

40

60

80

100

120

140

0 128 256 512 1024
Scratchpad / Cache Size (bytes)

T
o

ta
lE

n
er

g
y

C
o

n
su

m
p

ti
o

n
(m

J)

Energy (SA)

Energy (Near-Opt. SO)

Energy (Cache)

(b) DSP

Fig. 6.19. Comparison of Cache with SA and Near-Opt. SO Approaches

Comparison of the Cache and the Scratchpad Memory:
The operation of a scratchpad under the control of the scratchpad overlay approaches is
similar to that of a cache. Hence, it would be appropriate to present a comparison between a
scratchpad and a cache. Figure 6.19(a) and Figure 6.19(b) compare caches against scratch-
pads allocated using the SA and the Near-Opt. SO approaches. The cache experiments were
conducted for a 4-way set associative unified cache of varying sizes.

From both the figures, we find that the energy consumption of the system with a 128 bytes
cache is much worse than that with a 128 bytes scratchpad. This is because a small cache
causes a high number of misses which results in high number of expensive main memory
accesses. In contrast, the best set of memory objects is assigned to the scratchpad mem-
ory, reducing the number of main memory accesses. Consequently, the small scratchpads,
irrespective of the allocation approaches, are significantly better than a small cache.

The energy consumption for the cache based systems improves significantly for larger
sizes. The reason being that the number of energy hungry cache misses is a lot lower for
large caches and that caches can perform a fine grained caching of variables than the pro-
posed scratchpad overlay approaches. For 1024 bytes, the energy consumption of the cache
based system is a bit better than that of the scratchpad memory based systems. Though, we
should note that for the edge detection benchmark the energy value for a 1024 bytes scratch-
pad allocated using the Near-Opt. SO approach is same as that for a 256 bytes scratchpad.
Hence, we conclude that the energy values for a small scratchpad based system with Near-
Opt. SO approach is comparable to that for a significantly larger cache based system.

Figure 6.20 presents a similar comparison of the scratchpad overlay approaches for the
scratchpad memory based systems with cache based systems. The total energy consumption
and execution time values for a scratchpad based system are normalized against those for a
same sized cache based system. These values are then averaged across all scratchpad and
cache sizes for each benchmark. The scratchpad allocated using the overlay approaches
clearly outperforms the cache for all benchmarks. However, the total energy and execution
time savings due to overlay approaches are lower than those presented in Figure 6.18. Max-
imum energy savings of 35% each due to the optimal and near-optimal overlay approaches,
are reported for the edge detection benchmark. Overall average energy savings of 19% and
20% are reported due to the Near-Opt. SO and the Opt. SO approaches, respectively. Moder-
ate average performance improvements of 9% and 10% are reported against a cache-based

116 6 Scratchpad Overlay Approaches for Main / Scratchpad Memory Hierarchy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

adpcm dsp edge

detection

histogram media mpeg multisort avg.

Energy (Near-Opt. SO) Energy (Opt. SO) Exec. Time (Near-Opt. SO) Exec. Time (Opt. SO)

Fig. 6.20. Overall Comparison of the Cache and Scratchpad Overlay Approaches

approach. In the following subsection, we present the evaluation of the scratchpad overlay
approaches for the multi-processor ARM setup.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

128 256 512 1024 2048 4096 8192 16384
Scratchpad Size (Bytes)

Energy (SO): 1 Compute Processor

Energy (SO): 2 Compute Processors

Energy (SO): 3 Compute Processors

Energy (SO): 4 Compute Processors

N
o

rm
al

iz
ed

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

Fig. 6.21. Multi-Process Edge Detection: Normalized Energy Consumption for Varying Compute
Processors and Scratchpad Sizes (Cycle Latency = 1 Master Cycle)

6.6.2 Multi-Processor ARM

In this subsection, the evaluation of the near-optimal scratchpad overlay approach for
Multi-Process edge detection benchmark is presented. The benchmark is simulated on the
multi-processor ARM based system. It consists of an initiator process, a terminator process
and a variable number of compute processes. Since each process is mapped to a separate
processor in the multi-processor ARM based system, the processors are named according
to the mapped process. Each ARM processor has its own local scratchpad memory, while
all of them access a shared main memory. Additional details regarding the Multi-Process
Edge Detection benchmark can be found in Section 3.2 of Chapter 3.

Figure 6.21 presents the normalized energy consumption values for the Multi-Process
Edge Detection benchmark when the number of compute processors and the size of scratch-
pad is varied. The energy values are normalized against the energy values of a system
without a scratchpad. The near-optimal scratchpad overlay approach is used to allocate the
scratchpad attached to the processors.

6.6 Experimental Results 117

The first observation from the figure is that the energy consumption values for a system
with 128 bytes of scratchpad is around 40% of that for a system without a scratchpad. This
result clearly indicates the benefit of using a scratchpad for energy minimization. The total
energy consumption of the system decreases with the increase in the size of the scratchpad
until it reaches the minimum energy consuming scratchpad memory size. Thereafter, any
increase in scratchpad size also increases the energy consumption of the system. The mini-
mum energy consuming scratchpad size for 1 and 2 compute processors is 4k bytes and for
3 and 4 compute processors is 8k bytes.

The energy consumption values increase after the minimum energy value since the
benefit of a larger scratchpad is negated by its higher energy per access. The mini-
mum energy values are about 10% of those for the system without a scratchpad. We
observe that the normalized energy values are at little bit higher at 256 bytes than those
at 128 bytes. This is because the memory objects that are chosen for allocation are same for
128 bytes and 256 bytes scratchpad. However, the latter consumes more energy per access
than the former. Therefore, the energy consumption slightly increases at 256 bytes. Finally,
we observe that the normalized energy values across different compute processors but for
the same scratchpad size are fairly close to each other.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

128 256 512 1024 2048 4096 8192 16384
Scratchpad Size (Bytes)

Energy (SO): 1 Cycle Latency

Energy (SO): 5 Cycle Latency

Energy (SO): 10 Cycle Latency

Energy (SO): 20 Cycle Latency

N
o

rm
al

iz
ed

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

Fig. 6.22. Multi-Process Edge Detection: Normalized Energy Consumption for Varying Memory
Access Times (#Compute Processors = 2)

The previous figure presented the energy comparison for the case when the main mem-
ory has a latency of 1 master clock cycle for each access. This scenario is not true for most of
the contemporary embedded systems. Therefore, we would like to evaluate the scratchpad
approach under realistic latency values of the main memory. Figure 6.22 presents the nor-
malized energy consumption values of the benchmark when the main memory has a latency
of 1, 5, 10 and 20 master clock cycles. The scratchpad is assumed to have a latency of
zero clock cycles. The energy values are normalized against those for the systems without a
scratchpad and with corresponding main memory latencies. Also, the multi-processor ARM
system is assumed to consist of 2 compute processors.

As expected, the effect of scratchpad overlay in reducing the energy consumption in-
creases as the main memory becomes slower. The effect of slower memory is more prominent
for larger scratchpads as it captures a larger fraction of the total number of accesses. For a 2k
bytes scratchpad, the normalized energy values are about 20% and 15% for systems whose
main memory has a latency of 1 and 20 master clock cycles, respectively. It is expected that

118 6 Scratchpad Overlay Approaches for Main / Scratchpad Memory Hierarchy

as the difference in access times of the main memory and the scratchpad will increase, the
benefit of utilizing the scratchpad will also improve.

6.6.3 M5 DSP

The experiments for the M5 DSP were conducted by assuming that the L1 group memory
or the scratchpad of varying sizes can be synthesized and that only global variables can
be assigned to the scratchpad. The optimal scratchpad overlay (Opt. SO) algorithm is used
for overlaying memory objects on the scratchpad. The Opt. SO approach requires minimal
computation time as the number of memory objects for the DSP routines are fairly small. The
Near-Opt. SO approach is not considered due to the low computation time of the Opt. SO
approach. Array slicing [93] approach was used to create small slices of the data arrays
present in the applications.

A comparison of the SA and the Opt. SO approaches for fir2dim, complex multiply and
fir routines is presented in Figures 6.23(a), 6.23(b) and 6.23(c), respectively. Normalized
energy values of the data memory subsystem of the M5 DSP are shown in the figure. The
energy consumption value of the data memory system without a scratchpad is considered
as the unit valued baseline. From the figures, we make a few observations. First, we observe
that the energy values for the Opt. SO approach are always better than or equal to those for
the SA approach. Second, we observe that the insertion of a small scratchpad into the data
memory hierarchy decreases its energy consumption. Energy reductions between 40% and
50% can be observed for a system with 512 bytes scratchpad memory allocated using the
Opt. SO approach. Third, the Opt. SO approach results in the maximum energy savings of
54%, 44% and 50% for fir2dim, complex multiply and fir benchmarks, respectively. Finally,

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

64 128 256 512 1024 avg.
Scratchpad Size (bytes)

Energy (SA)

Energy (Opt. SO)

N
o

rm
al

iz
ed

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

(a) FIR2DIM

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

64 128 256 512 1024 avg.
Scratchpad Size (bytes)

Energy (SA)

Energy (Opt. SO)

N
o

rm
al

iz
ed

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

(b) Complex Multiply

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

64 128 256 512 1024 avg.
Scratchpad Size (bytes)

Energy (SA)

Energy (Opt. SO)

N
o

rm
al

iz
ed

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

(c) FIR

Fig. 6.23. Normalized Energy Comparison of Scratchpad Allocation Approaches

6.7 Summary 119

the Opt. SO approach results in average energy savings of 31%, 32% and 30% for fir2dim,
complex multiply and fir benchmarks, respectively.

6.7 Summary

In this chapter, overlay based techniques for the utilization of the scratchpad memory were
presented. The problem of overlaying both data and instructions onto the scratchpad memory
was shown to be similar to the problem of global register allocation. Both optimal and near-
optimal approaches to solve the overlay problem were presented.

The approaches solved the problem in a two step process. While the first step is common,
the second step is different for both the techniques. In the first step, the approaches assign
memory objects to the scratchpad memory and also determine optimal locations to insert
spill instructions. In the second step, the approaches compute addresses for the memory
objects assigned to the scratchpad memory. The optimal approach uses an ILP formulation
to determine optimal solutions, whereas the near-optimal approach uses a first-fit heuristic
based approach.

The proposed approaches result in reduced energy consumption of the system against
the non-overlayed scratchpad allocation approach and also against a cache based system.
The scratchpad overlay approaches were evaluated for uni-processor ARM, multi-processor
ARM and DSP based systems. For an uni-processor ARM based system, the average energy
reductions of 24% and 20% are reported against the previous approach and the cache based
system, respectively. For a multi-processor ARM based system, a 4k bytes scratchpad mem-
ory reduces the energy consumption to 10% of that of a scratchpad-less system. Additional
experiments for the low power DSP report average savings of 31% in the energy consump-
tion of the data memory hierarchy.

The approaches presented in this chapter were published in [127], [130], and [124].

7

Data Partitioning and Loop Nest Splitting

In the previous chapters, the proposed scratchpad allocation approaches allocated aggregate
variables along with code fragments onto the scratchpad memory. The property of allocating
only aggregate variables may restrict the optimization potential of the approaches. Most of
the applications found in embedded system domain consist of large data arrays which are not
properly optimized by the previously presented allocation approaches. In this chapter, we
present a data partitioning approach which divides a large array into two smaller partitions
and then allocates one of these partitions along with application code fragments onto the
scratchpad memory in a non-overlayed manner. It is observed that partitioning the data arrays
degrades the control flow of the application, as if-statements are inserted in the application
code for appropriately accessing array partitions. Therefore, an approach which combines
the data partitioning with an already known loop nest splitting is also proposed in this
chapter. The objective of the combined approach is to improve the control flow degraded
by the data partitioning approach.

In the following, a brief introduction into the data partitioning and loop nest splitting
approaches is presented with the help of a motivating example. Section 7.2 presents a sur-
vey of the related work and enumerates the novel points of the data partitioning approach.
Section 7.3 describes the preliminaries and presents a formal definition of the data par-
titioning problem. Section 7.4 and Section 7.5 present the data partitioning and the loop
nest splitting approaches, respectively. The evaluation of the experimental results for the
proposed approach is presented in Section 7.6. Section 7.7 ends the chapter with a short
summary.

7.1 Introduction

Most of the applications running on embedded devices contain several large arrays. There-
fore, considering aggregate array variables for allocation onto the scratchpad may not be
an ideal decision, as it may lead to the under-utilization of the scratchpad. The proposed
data partitioning approach rectifies the aforementioned problem by partitioning an array
present in the application into two smaller arrays. It then uses non-overlayed allocation to
assign one of the two array partitions along with application code fragments to the scratch-
pad. The approach uses an accurate energy model [114] to compute the energy overhead

121

122 7 Data Partitioning and Loop Nest Splitting

#define SIZE 100
int A[SIZE];

for (i=0; i<SIZE/2; i++)
for (j=0; j<i; j++) {
data = A[i+j];
... }

#define SIZE 100
#define SPLIT 70
#define READ ACCESS(value,index)
if (index < SPLIT)
value = Aleft[index];

else
value = Aright[index-SPLIT];

int Aleft[SPLIT],Aright[SIZE-SPLIT];

for (i=0; i<SIZE/2; i++)
for (j=0; j<i; j++) {
READ ACCESS(data,i+j);
... }

Fig. 7.1. Example Code Fragment before and after Data Partitioning

for accessing the array partitions. Therefore, it partitions an array if it can determine that
the energy benefit due to data partitioning over-compensates the energy overhead caused
due to modified access functions to the array partitions. Otherwise, the approach allocates
aggregate variables and the code segments onto the scratchpad in a non-overlayed manner.

Figure 7.1 presents the application code before and after data partitioning. We can
observe that array A is replaced by two smaller arrays Aleft and Aright in the partitioned
application code. Additionally, the read access to array A in the loop is replaced by an
access macro (READ ACCESS). The access macro accesses the appropriate partitioned array
depending on the index value (i+j). A similar access macro is used for write accesses but
is not shown in the figure for the sake of simplicity. The use of access macros for accessing
array variables allows us to optimize application code with both regular (affine) and irregular
index functions. An additional advantage of our approach, highlighted by the second for-
loop, is its ability to optimize loop-nests with non-constant loop bounds. Most of the array
partitioning approaches work on the premise of perfect loops and affine index functions. In
the above example, the data partitioning approach increases the access to the scratchpad by
1015 if array Aleft is allocated to the scratchpad.

The data partitioning approach inserts access macros containing if-statements in the
application code for accessing the appropriate array partition. Given that array references
typically occur in the innermost loops of embedded applications, these if-statements lead to
overhead w.r.t. both runtime and energy consumption. If the index function to the unparti-
tioned array in the application is an affine function, we combine data partitioning with loop
nest splitting [39] to substantially reduce the overhead caused by the inserted if-statements.

Figure 7.2 depicts the array partitioned application code from Figure 7.1, before and
after loop nest splitting. Please note that the read access macro (READ ACCESS) shown in
Figure 7.1 has been expanded here. The loop nest splitting transformation determines the
ranges of loop iterations where all the if-statements in the loop nest are provably satisfied.
Using this information, the transformation rewrites the loop nest such that no if-statements
are executed for these iteration ranges.

In Figure 7.2, the transformation detects that the outer i loop iterates from 0 to 49
and the inner j loop iterates from 0 to the current value of i. Considering the condition
(i+j<70) inserted by data partitioning, it recognizes that this condition is true for all values

7.2 Related Work 123

for (i=0; i<50; i++)
for (j=0; j<i; j++) {
if (i+j<70)
data = Aleft[i+j];

else
data = Aright[i+j-70];

... }

for (i=0; i<50; i++)
if (i<=35) /* splitting-if */
for (; i<=35; i++)
for (j=0; j<i; j++) {
data = Aleft[i+j];
... }

else
for (j=0; j<i; j++) {
if(i+j<70)
data = Aleft[i+j];

else
data = Aright[i+j-70];

... }
Fig. 7.2. Example Code Fragment before and after Loop Nest Splitting

of i<=35. The transformation inserts a new if-condition, called splitting-if, in the loop nest
to check for the condition i<=35. The then-part of the splitting-if contains the loop nest
containing only those statements which were executed when the original condition (i+j<70)
was true. The else-part of the splitting-if is an exact copy of the original loop body. The loop
nest splitting transformation reduces the execution of the if-statement from 1,225 down to
610 for the example code shown in Figure 7.2.

7.2 Related Work

Data partitioning approaches have been extensively studied in the high-performance com-
puting domain. The approaches propose loop-nest and data layout transformations to enable
parallel processing or to improve the cache locality of the applications. Banerjee [17] showed
that unimodular matrices could be used to represent loop transformations, viz., permuta-
tion, reversal and skewing, in a mathematically elegant form. Wolf et al. [138] presented
a loop transformation theory that combined unimodular matrix based representations of
loop transformations with direction vectors. This unification allows the determination of a
single compound transformation, as opposed to series of transformations, that maximizes
an objective function, while satisfying a set of constraints. In addition, the theory enables a
single test to determine the legality of the compound transformation.

In the domain of memory constrained embedded systems, numerous approaches [5, 23,
58, 64, 65, 132] to perform loop transformations and data partitioning have been proposed.
The goal of the approaches is to efficiently utilize the scratchpad based memory hierarchies
and to reduce the energy consumption of the embedded processors.

The authors of [5] propose a data partitioning approach to partition data arrays into
disjoint partitions depending on the footprint associated with each of the references. Profit
values based on the number of distinct accesses are assigned to the partitions, then a knap-
sack algorithm is used to perform non-overlayed allocation of the array partitions on the
scratchpad memory. The authors of [132] extended this approach by combining loop-nest
transformations (e.g. loop fusion) with data partitioning to optimize across multiple loops.

124 7 Data Partitioning and Loop Nest Splitting

Loop-nest transformations are applied to improve the locality and reuse of the data arrays
while preserving the semantics of the application.

Kandemir et al. [64, 65] presented the overlayed allocation of array parts on the scratch-
pad. In [64], authors proposed to partition data arrays into equal sized parts called tiles,
whereas in [65], data arrays are partitioned into parts of different shapes and sizes called
slabs. The application is modified such that array parts are swapped in and out of the scratch-
pad at runtime. The previous two approaches did not consider the reuse of the array elements
prior to copying them onto the scratchpad. Therefore, the approaches reduce energy con-
sumption only for those benchmarks for which the energy benefit due to high data reuse can
offset the energy overhead caused due to the swapping of array parts.

Authors in [23] proposed a so-called memory hierarchy layer assignment (MHLA)
approach which performs the partitioning and the allocation of arrays while considering the
data reuse. The approach generates disjoint array parts from the application arrays and then
performs the mapping of the array parts to scratchpad memories present in the multi-level
memory hierarchy. The approach also modifies the application code such that arrays parts
are moved within the memory hierarchy at execution time. An additional advantage of the
MHLA approach is that it can also generate an energy efficient memory hierarchy optimized
for a given application.

Authors in [58] extended the MHLA approach to generate overlapping (non-disjoint)
array parts. Therefore, the approach not only reduces the scratchpad memory requirements
of the application but also reduces the overhead caused due to movement of the array parts
within the memory hierarchy.

All the data partitioning approaches presented above share the same set of limitations.
All the approaches are completely data centric and pay scant regard to the control-flow of
the application. In order to reference array parts, the index functions to the unpartitioned
array are replaced by significantly complex index functions to the array parts. These index
functions [23] are composed of complex mathematical operators even containing mod and
div operators. The instruction sets of various processors do not natively support division
and modulo operations and result in costly calls to the runtime library routines. In [124],
we demonstrated that application of the MHLA approach for the uni-processor ARM based
system leads to worse total energy consumption values of the system compared to the
overlayed scratchpad allocation approach presented in the previous chapter.

Another limitation of the approaches is that they are only applicable under the sim-
plifying constraint of perfectly nested loops, exactly known loop bounds and affine index
functions. The authors of [59] noted that a significant percentage of applications, even from
the embedded multi-media domain, are not written in a form that complies with the above
constraints. This limits the applicability of the approaches for applications running on em-
bedded processors. Next, we describe the work related to loop nest transformations for
embedded systems.

Loop nest transformations, e.g. loop fusion, loop fission, loop unrolling, loop interchange
etc., are now a part of all state-of-the-art optimizing compilers. Their impact on many
facets of computer performance, such as instruction and data cache performance, regularity
of the control flow and the code size of the application have been thoroughly studied.
[4] and [15] provide a thorough insight into the loop transformations integrated within
optimizing compilers.

7.2 Related Work 125

Authors in [67] studied the effect of several loop transformations (loop unrolling, loop
interchange, loop fusion and loop tiling) on the memory system energy caused due to
instruction and data accesses. The authors evaluated the loop transformation for four motion
estimation codes which are an integral part of the MPEG4 video coding standard. They
observed that the loop transformations reduced the energy consumed by the data accesses,
but significantly increased (by up to 466%) the energy consumed by the instruction fetches.
Therefore, the authors concluded that the energy optimizing compilers need to consider both
instruction and data locality in a unified optimization framework.

for (i=0; i<n; i++) {
a[i] = a[i]+c;
if (x<7)
b[i] = a[i]*c[i];

else
b[i] = a[i-1]*b[i-1];

}

if (x<7)
for (i=0;i<n; i++) {
a[i] = a[i]+c;
b[i] = a[i]*c[i]; }

else
for (i=0;i<n; i++) {
a[i] = a[i]+c;
b[i] = a[i-1]*b[i-i]; }

Fig. 7.3. Loop Unswitching

Classical loop unswitching, as shown in Figure 7.3, is the loop transformation that is
closest to the loop nest splitting transformation [39]. The transformation [15] is applied when
a loop contains an if-statement with a loop-invariant test condition.The loop then is replicated
inside each branch of the conditional, saving the overhead of conditional branching inside
the loop. Additionally, the transformation enables a loop to be cached by a dynamically
loaded loop cache, as the if-statement is moved out of the loop. The main disadvantage of
loop unswitching is that the control flow modifying if-statement must not depend on the
index variables. The loop nest splitting transformation removes this constraint as it allows
the splitting of the loop nest containing index variable dependent if-statements.

We would like to discuss the advantages and limitations of the proposed approaches.
The following are the advantages of our approach.

(a) The approach is very generic and can partition arrays even if they are accessed
through irregular access functions. It optimizes benchmarks containing imperfectly
nested loops or loop nests with non-constant bounds.

(b) The approach optimizes the total energy consumption of the system. It uses accurate
energy functions to determine the energy overhead of additional instruction accesses
caused by data partitioning. Consequently, it can determine when it is not beneficial
to partition an array.

(c) The approach considers both instruction segments and data array variables for
allocation onto the scratchpad.

Our approach has the following limitations which we would like to remove in the future.

(a) The modified access function to partitioned arrays is naive and can be optimized
for benchmarks containing perfectly nested loops and affine array accesses.

(b) The approach performs non-overlayed allocation of array parts onto the scratchpad
memory which we believe can be improved to overlayed allocation.

126 7 Data Partitioning and Loop Nest Splitting

7.3 Problem Formulation and Analysis

The goal of the data partitioning approach is to minimize the energy consumption of the
application. In order to minimize the energy consumption, the approach decides whether
to partition or not an array present in the application. Additionally, it selects the energy
optimal set of memory objects which should be allocated in an non-overlayed manner onto
the scratchpad memory. If the approach decides to partition an array, then it must select the
split point that one of two array partitions will belong to the energy optimal set of memory
objects marked for scratchpad allocation. Otherwise, the energy overhead is larger the energy
benefit due to data partitioning. In this case, the unpartitioned application consumes less
energy than the partitioned application.

In the this section, we present the data partitioning problem along with the details
required for understanding the problem. The following subsection presents a discussion on
the selecting a candidate array for partitioning, followed by a discussion on splitting point.
Subsection 7.3.3 describes the set of memory objects used for the current approach, followed
by a brief discussion on the energy model. In the end, we present the formal definition of
the data partitioning problem.

7.3.1 Partitioning Candidate Array

The proposed data partitioning approach selects from all the arrays in the application one
candidate array for partitioning. The candidate array for partitioning is the highest valence
(i.e. energy consumption per array element) array which could not be allocated onto the
scratchpad when only aggregate variables and code segments are considered for allocation.
It can be proved by contradiction that the candidate array provides the maximum potential
for energy reduction among all the remaining non-scratchpad allocated arrays. The selection
procedure also implies that the candidate arrays can vary for different scratchpad sizes.

7.3.2 Splitting Point

The splitting point refers to the point which bi-partitions the candidate array. Figure 7.4
depicts two possible splitting points for the candidate array A and their corresponding four
partitioned array variables. If the splitting point is allowed to be placed at any array element,
the number of possible array partitions become unmanageable for large arrays. Therefore,
we combine a constant number bsize of adjacent array elements of the array A to form a
basis element b. Now, the array A instead of having size elements has �size/bsize� basis
elements and the number of possible splitting points is reduced to �size/bsize�−1. A total
of 2 ∗ (�size/bsize� − 1) partitioned array variables PV are generated, as each splitting
point generates two partitioned array variables. This reduces the complexity of the problem
and the accuracy of the solution against the solution where each array element is a basis
element (i.e. bsize = 1).

From Figure 7.4 and from the discussion so far, it becomes evident that a two-way
partitioning of the array A is allowed by the proposed data partitioning approach. Though
the approach can support n-way partitioning of the array, it is restricted to consider only
two-way partitioning. For the uni-processor ARM based setup, we realized that the n-way

7.3 Problem Formulation and Analysis 127

Aleft[split] Aright[size-split]

Splitting Point #1

Partitioned Variable #1

Partitioned Variable #3 Partitioned Variable #4

Aleft[size-split] Aright[split]

Splitting Point #2

Partitioned Variable#2

Fig. 7.4. Splitting Points and Partitioned Variables

Memory Optimization System Architecture Memory Objects Explanation

global variables, basic
Data Partitioning and Loop Uni-processor ARM MO ⊆ V ∪BB ∪F blocks, functions, partitioned

Nest Splitting variables, referenced basic
blocks, referenced functions

Table 7.1. Memory Objects for Data Partition Approach

partitioning is not beneficial as the resulting complex if-then-else structures over-compensate
for the energy savings.

7.3.3 Memory Objects

The set of memory objects include functions (F), basic blocks (BB) and aggregate variables
(V). In addition, it includes a subset of functions and basic blocks and all partitioned array
variables of the application. The functions and basic blocks which contain a reference R
to the candidate array are known as referenced functions (RF) and referenced basic blocks
(RBB), respectively. It should be noted that only these functions and basic blocks will get
modified if the partitioning approach decides to partition the candidate array. Therefore,
they are included in the set of memory objects to represent the transformed application. The
set of memory objects also contain 2∗ (�size/bsize�−1) partition variables PV generated
from the candidate array. Table 7.1 summarizes the memory objects for the proposed data
partitioning approach.

7.3.4 Energy Model

The energy function E(inst, imem,dmem) shown below returns the energy dissipated by
the system during the execution of an instruction (inst) which is fetched from the instruction
memory (imem) and possibly accesses a data value from the data memory (dmem). The
energy function is derived from the energy model presented in Chapter 3.

E(inst, imem,dmem) = Eif (imem)+Eex(inst)+Eda(dmem) (7.1)

128 7 Data Partitioning and Loop Nest Splitting

The energy function E(inst, imem,dmem) is used to compute the energy E(mo,mem) dis-
sipated by a memory object mo ∈ MO ⊆ V ∪BB ∪F ∪PV ∪RBB ∪RF which is executed
from the instruction memory (mem) or accessed from the data memory (mem).

E(mo,mem) =

⎧⎪⎪⎨
⎪⎪⎩

Ebb(mo,mem) if mo ∈ BB ∪RBB
Efn(mo,mem) if mo ∈ F ∪RF
Evar(mo,mem) if mo ∈ V
Epv(mo,mem) if mo ∈ PV

(7.2)

The energy function E(mo,mem) (cf. Equation 7.2) classifies the memory objects into four
disjoint sets and computes the energy dissipation values differently for each of the set. The
classification of the memory objects into sets is presented in the following:

(a) basic blocks and referenced basic blocks (BB ∪RBB)
(b) functions and referenced functions (F ∪RF)
(c) global variables including the partitioning candidate array (V)
(d) partitioned array variables for the partitioning candidate array (PV)
The energy function Ebb(mo,mem) presented in the following computes the energy

dissipated by memory object mo ∈ {BB ∪RBB} belonging to the set of basic blocks and
referenced basic blocks:

Ebb(mo,mem) = nr ∗ inst(mo)∗E(mov,mem,MM) (7.3)

where nr is the number of executions of the memory object mo and inst(mo) returns the
number of instructions contained within the memory object. A basic block is characterized
by the property that each instruction is executed if the execution flow enters the basic
block. Therefore, the energy dissipated during a single execution of the basic block can be
computed as the product of the number of instructions belonging to the basic block and the
average energy dissipated by an instruction. The above average energy value simplification
works for ARM based setups since all instructions dissipate almost the same amount of
energy. In the present setup, a register-move instruction is used to represent the instruction
with average energy dissipation.

The energy dissipation function Efn(mo,mem) of a memory object belonging to set
of functions and referenced functions is the following:

Efn(mo,mem) =
∑

bbi∈mo

Ebb(bbi,mem) (7.4)

As shown in the above equation, the energy dissipated by a function mo ∈ F ∪RF is the
sum of the energy dissipated by the basic blocks contained within the function. The energy
function Evar(mo,mem) presented below computes the energy dissipated by a variable:

Evar(mo,mem) = nr(mo)∗ [E(load,MM,mem)−E(mov,MM,mem)]
+nw(mo)∗ [E(store,MM,mem)−E(mov,MM,mem)](7.5)

where, nr(mo) and nw(mo) return the number of read and write accesses to the variable,
respectively. Using the energy model, we compute that the energy dissipated for a read
access is equal to the difference in the energy dissipation of a load instruction and a register-
move instruction. Similarly, the energy dissipated due to a write access is computed to be

7.3 Problem Formulation and Analysis 129

the difference in the energy dissipation of a store and a register-move instruction. The above
equation sums the energy dissipated for all read and write access to compute the aggregate
energy dissipated by the variable.

The energy dissipated by a memory object mo belonging to the set of partitioned vari-
ables PV is computed as follows:

Epv(mo,mem) = nr(mo)∗ [E(load,MM,mem)−E(mov,MM,mem)]
+nw(mo)∗ [E(store,MM,mem)−E(mov,MM,mem)] (7.6)

nr(mo) =
∑

bi∈pv

nr(bi) (7.7)

nw(mo) =
∑

bi∈pv

nw(bi) (7.8)

where, nr(mo) and nw(mo) return the number of read and write accesses to the partitioned
variable, respectively. The number of the read accesses nr(mo) to a partitioned variable (cf.
Equation 7.7) is the sum of the number of read accesses nr(bi) to basis elements bi ∈ PV
belonging to the partitioned variable. The number of write accesses nw(mo) to a partitioned
variable can be computed in a similar manner.

The following equation presents the energy overhead caused due to the partitioning of
the candidate array A:

Eoverhead = nr(A)∗E(READ ACCESS)+nw(A)∗E(WRITE ACCESS) (7.9)

where E(READ ACCESS) and E(WRITE ACCESS) return the energy dissipated during a single
execution of the READ ACCESS and WRITE ACCESS macros, respectively. As discussed in
Section 7.1, these access macros (cf. Figure 7.1) are required for accessing the correct
array partition. The read and write access macros are used, respectively, on each read and
write access to the partitioning candidate array. Therefore, Eoverhead represents the energy
overhead caused due to the partitioning of the array A. In the following subsection, we
formally define the data partitioning problem.

7.3.5 Problem Formulation

Problem 7.1 (Data Partitioning (DP)). Given the set of memory objects MO, a candidate
array A marked for partitioning and a memory hierarchy consisting of a scratchpad and a
main memory. The problem is to determine a subset MOSPM ⊆ MO of the set of memory
objects such that the the total energy profit ETotal, achieved due to allocation of memory
objects moi ∈ MOSPM to the scratchpad memory, is maximized.

ETotal =
∑

moi∈MO

Eprofit(moi)−p(A)∗Eoverhead (7.10)

where, Eprofit(mo), shown below, computes the energy profit obtained by allocating a
memory object to the scratchpad memory.

Eprofit(mo) = E(mo,MM)−E(mo,SPM) (7.11)

130 7 Data Partitioning and Loop Nest Splitting

Moreover, p(A) is a binary variable to represent the partitioning of the array A.

p(A) =
{

1, if the array variable A is partitioned
0, otherwise

The maximization of the total energy profit ETotal is to be performed under the following
constraints:

(a) The aggregate size of the memory objects marked for scratchpad allocation must be
less than the size of the scratchpad memory.

∑
moi∈MOSPM

size(moi) ≤ size(SPM) (7.12)

(b) Only one of the partitioned array variable or the candidate array should be allocated
onto the scratchpad memory.

(c) If the candidate array A is not partitioned (i.e. p(A) = 0), then none of the referenced
basic blocks or the referenced functions should be allocated onto the scratchpad
memory.

(d) If the candidate array A is partitioned (i.e. p(A) = 1), then all basic blocks and
functions for which referenced basic blocks or referenced functions, respectively,
exist should not be allocated onto the scratchpad memory.

The data partitioning problem needs to decide between the original application and the
modified application. One approach is to compare the energy consumption values of the
applications and choose the one with lower energy consumption. The other approach is
to consider their energy difference to a high energy value, name the difference as energy
savings and choose the one with higher energy savings. We choose the latter approach as it
aids the problem formulation. The high energy value corresponds to the energy consumed
by a system for which all memory objects are assigned to the main memory.

The problem can be viewed as a decision problem, to choose between referenced basic
blocks, referenced functions and a partitioned array on one side and original basic blocks,
functions and the unpartitioned array on the other side. The decision is to maximize the
energy savings while ensuring that the combined size of the chosen memory objects does
not exceed the scratchpad size. The problem can also be viewed as a variant of the knapsack
problem [43] where objects to be packed in the knapsack have mutual exclusivity constraints
with other objects. Therefore, the data partitioning problem is also an NP-hard problem. In
the following section, we describe an ILP based approach for solving the data partitioning
problem.

7.4 Data Partitioning

The data partitioning approach extends the previously known non-overlayed scratchpad
allocation approach [115] which allocated aggregate variables along with code segments
onto the scratchpad memory. The proposed data partitioning approach partitions the data
array and also computes the energy optimal set of memory objects MOSPM to be allocated
onto the scratchpad memory. The approach, as shown in Figure 7.5, works in the following
stepwise manner:

7.4 Data Partitioning 131

Transformed
C Code

Candidate Array
Selection

Array Partitioning
Decision

Scratchpad
Allocation

Original
C Code

Application
Transformation

Fig. 7.5. Workflow of the Data Partitioning Approach

1. It chooses a candidate array A among all the possible arrays for partitioning.
2. It decides whether partitioning the array A will result in reduced energy consumption

of the application.
3. If the array A is partitioned, then it computes the splitting point split for partitioning

the array and determines the set of memory objects MOSPM , including one of the par-
titioned array, for energy optimal scratchpad allocation. If the array A is not partitioned,
then it determines the set of memory objects MOSPM , containing only the aggregate
variables and original basic blocks and functions, for scratchpad allocation.

4. Given the partitioning decision and the splitting point, it modifies the original application
according to the splitting point.

The procedures to select the candidate array (cf. Step 1) and to modify the application
(cf. Step 4) have already been presented in Subsection 7.3.1 and Section 7.1, respectively.
Step 2 and Step 3 are solved simultaneously in a phase coupled manner using an ILP based
approach. The ILPformulation of the data partitioning approach is presented in the following
subsection.

7.4.1 Integer Linear Programming Formulation

In order to formulate the data partitioning problem (cf. Subsection 7.3.5) as an integer
linear programming problem, we need to define a couple of binary variables. The first
binary variable is used to represent the location of a memory object moi ∈ MO in the
memory hierarchy and is defined as follows:

l(moi) =
{

1, if the memory object moi is present in the SPM
0, otherwise

(7.13)

The second binary variable, also defined in Subsection 7.3.5, represents the partitioning
decision of the candidate array A.

p(A) =
{

1, if the array variable A is partitioned
0, otherwise

(7.14)

Objective Function:
The above variable definitions (cf. Equations 7.13 and 7.14) are used to formulate the
objective function which needs to maximized. The objective function represents the total

132 7 Data Partitioning and Loop Nest Splitting

energy profit achieved through the mapping of memory objects onto the scratchpad and is
defined as follows:

ETotal =

⎡
⎣ ∑

moi∈MO

Eprofit(moi)∗ l(moi)

⎤
⎦ − p(A)∗Eoverhead (7.15)

where, the energy function Eprofit(moi) shown below computes the difference between the
energy values when the memory object moi is mapped to the main memory E(moi,MM)
and to the scratchpad E(moi,SPM).

Eprofit(mo) = E(mo,MM)−E(mo,SPM) (7.16)

Energy function Eoverhead (cf. Equation 7.9) denotes the energy overhead incurred due to
the partitioning the array A.

Constraints:
We add a few constraints to the ILP formulation such that it is restricted to generate only
valid solutions. The first constraint viz., scratchpad size constraint, restricts the aggregate
size of memory objects mapped to the scratchpad to be less than the size of the scratchpad.

∑
moi∈MO

l(moi)∗size(moi) ≤ size(SPM) (7.17)

A second constraint is added to ensure that if the array A is not partitioned (i.e.
p(A) = 0), then memory objects moi ∈ RBB∪RF ∪PV belonging to the set of referenced
basic blocks, referenced functions and partitioned variables are not selected for scratchpad
allocation.

⎡
⎣ ∑

moi∈RBB∪RF∪PV

l(moi)

⎤
⎦ − C ∗p(A) ≤ 0 (7.18)

The third constraint ensures that the opposite of the above constraints also does not occur.
It ensures that if the array A is partitioned (i.e. p(A) = 1), no memory object belonging to a
subset of memory objects MOorg containing original basic blocks and original functions is
selected for scratchpad allocation. The constraint, as shown in the following, also ensures
that even the array A is not allocated to the scratchpad.

⎡
⎣ ∑

moi∈MOorg

l(moi)

⎤
⎦ − C ∗ [1−p(A)] ≤ 0 (7.19)

MOorg = {bbi|rbbi ∈ MO}∪{fi|rfi ∈ MO}∪A (7.20)

A basic block or a function belongs to this memory object subset MOorg (cf. Equation 7.19)
iff there exists a corresponding referenced basic block or a referenced function, respectively.
Only the memory objects belonging to the set MOorg are restricted by the above constraint
while the remaining memory objects are unrestricted to be allocated onto the scratchpad.

7.5 Loop Nest Splitting 133

In the above constraints, C is any sufficiently large constant to ensure that Equations 7.18
and 7.19 always remain less than or equal to zero.

The final constraint is added to restrict that a maximum of one array partition is allocated
to the scratchpad memory.

∑
moi∈PV

l(moi) ≤ 1 (7.21)

The solution to ILP formulation of the data partitioning (DP) problem determines the
subset of memory objects (MOSPM = {moi|l(moi) = 1}) which maximizes the objective
function representing the energy benefit due to the allocation of memory objects moi ∈
MOSPM to the scratchpad memory.

A commercial ILP solver [32] is used to solve the ILP formulation. The number of
program code memory objects is bounded by the number of basic blocks O(|BB|) in the
application, and the number of data variable memory objects is bounded by the sum of
global variables and partitioned variables O(|V | + |PV |) = O (|V |+ �size(A)/bsize�).
Therefore, the total number of memory objects is O(|BB|+ |V |+ �size(A)/bsize�). The
ILP solver [32] requires only a minimal runtime of less than a second to compute the solution
of the ILP formulation. The following section presents the loop nest splitting approach to
improve the control flow of the partitioned application.

7.5 Loop Nest Splitting

This section presents a brief overview of the loop nest splitting transformation. The inter-
ested reader is referred to [39] for a detailed description and a comprehensive analysis of
the loop nest splitting approach. As described in Section 7.1, the data partitioning approach
improves scratchpad utilization but impairs the control flow of the application. The partition-
ing approach inserts if-statements in the loop nests and thus incurs significant performance
and energy penalty. The loop nest splitting transformation minimizes the penalty by rewrit-
ing the loop nest such that the execution of if-statements is minimized. We start by describing
the basics of loop nest splitting.

Basics of Loop Nest Splitting:
Given a loop nest Λ = {L1, . . . ,LN} of depth N , Ll denotes a single loop l with its index
variable il and the lower and upper bounds, lbl and ubl, respectively. Initially, the transfor-
mation could only optimize loop nests with constant loop bounds. Later, it was extended to
process loop nests for which all loops Ll except the outermost loop can have lbl and ubl as
the affine functions of the enclosing loops.

Each loop Ll can contain one or more if-statements whose conditions depend on the
index variables of the loop nest Λ. Such conditions are said to be loop-dependent. The
if-statements must have the format if (C1 ⊕ C2 ⊕ . . .), where each Ci can be a loop-
dependent or a loop-invariant condition. These conditions, however, must be combined
using logical operators ⊕ ∈ {∧,∨}. Every loop-dependent condition C must be an affine

expression of the index variables il and can thus be represented as C =
N∑

l=1
(cl ∗ il)+ c ≥ 0

for constants cl, c ∈ Z.

134 7 Data Partitioning and Loop Nest Splitting

Fig. 7.6. Workflow of the Loop Nest Splitting Transformation

Loop Nest Splitting Transformation:
The loop nest splitting transformation, as shown in Figure 7.6, consists of the following
four different steps:

1. Condition Satisfiability.
2. Condition Optimization.
3. Global Search Space Construction.
4. Global Search Space Exploration.

The condition satisfiability step independently analyzes all conditions Ci of the if-
statements contained within the loop nest Λ. Each condition defines a subset of the iteration
space of the loop nest and is represented as a polytope. The condition satisfiability step, based
on the generated polytope, determines if a condition Ci is either always satisfied or always
unsatisfied for all iterations of the loop nest. Such conditions are redundant conditions and
are replaced by their corresponding truth values in the if-statement. These conditions are
also pruned from the subsequent analysis steps.

In the second step viz., condition optimization, all non-redundant conditions are sepa-
rately analyzed and optimized. During this step, each condition Ci is independently opti-
mized assuming that the loop nest Λ contains a single if-statement with a single condition,
namely Ci. For each Ci, a locally optimized solution of minimized if-statement executions,
represented as a polytope PCi

([
lb ′

Ci,l
,ub ′

Ci,l

])
, is determined.

An ILP based approach is deemed unsuitable for the current optimization due to the non-
linearity of the objective function. Therefore, a genetic algorithm (GA) based approach is
used to compute the polytope PCi

. The fitness function computes the inverse of the number
of executed if-statements after loop nest splitting, i.e. the lower the number of executed
if-statements, the higher is the fitness of an individual. The fitness function has a linear time
complexity for loop nests with constant loop bounds, but an exponential time complexity
for loop nests with affine bounds.

The global search space construction step combines the local solution for each condi-
tion Ci to generate a global search space G. In order to generate G, first the polyhedra PCi

associated with the conditions of a single if-statement are combined according to the binary
logical operators ⊕ ∈ {∧,∨}. For example, if two conditions Ci and Cj are connected using
the ∧ operator, then their corresponding polyhedra PCi

and PCj
are intersected. For the ∨

operator, a union of the polyhedra is generated. This way, a polyhedron is generated rep-
resenting those iterations for which a single if-statement is satisfied. Since all if-statements
in a loop nest need to be satisfied for loop nest splitting, all the polyhedra for the different

7.6 Experimental Results 135

if-statements are intersected. The resulting polyhedron called the global search space G
represents those iterations for which all if-statements are satisfied.

It was observed that the global search space G is composed of a finite union of poly-
hedra: G = R1 ∪R2 ∪ ·· · ∪RM , where each Ri represents a region in the iteration space
where all the if-statements in the loop nest are satisfied. The goal of the loop nest splitting
transformation is to minimize the execution of if-statements. However, it was observed
that by using all the regions Ri of G to perform loop nest splitting the resulting loop nest
executed more if-statements than the minimum value. Therefore, the final step viz., Global
Search Space Exploration, is used to determine better solutions. The step uses a GA based
approach to prune G and restricts it to those regions Ri which lead to the globally opti-
mized solution representing the minimum number of executed if-statements. Based on the
regions Ri present in the pruned search space G, the loop nest in the original application is
transformed.

7.6 Experimental Results

In this section, the data partitioning and loop nest splitting approaches are evaluated for
the uni-processor ARM based setup. The data partitioning approach is implemented only
for ARM processors, however it can be easily extended to optimize benchmarks for M5
DSP. The loop nest splitting approach is an architecture independent source-level transfor-
mation and therefore is applicable to all processor architectures. The experiments are con-
ducted according to the experimental workflow (cf. Section 3.1) for the uni-processor ARM
based setup.

For the experiments, benchmarks from different application domains were selected to
demonstrate the efficacy of the proposed approaches. First, a 40 order fir filter routine
representing a typical embedded DSP algorithm is used. Second, the sorting algorithms
bubble sort, insertion sort and selection sort were analyzed. Finally, a complete MPEG4
motion estimation routine was optimized. Table 7.2 presents the benchmarks along with their
code and data sizes. The fir and motion estimation benchmarks feature perfectly nested loops
and affine access functions. Therefore, they can also be optimized by the affine function
based data partitioning approaches. The novelity of our approach is that it can as well
optimize the sorting routines which do not satisfy the conditions for optimization required
by the other data partitioning approaches.

The experiments in this section compare the two proposed approaches and a non-overlay
based scratchpad allocation (SA) [115] approach. The SAapproach allocates aggregate array

Benchmark Code Size Data Size System
(bytes) (bytes) Architecture

bubble sort 92 1412 uni-processor ARM
fir 92 3712 uni-processor ARM

insertion sort 88 1416 uni-processor ARM
motion estimation 644 176140 uni-processor ARM

selection sort 76 1412 uni-processor ARM

Table 7.2. Benchmark Programs for the Evaluation of Data Partitioning and Loop Nest Splitting

136 7 Data Partitioning and Loop Nest Splitting

variables along with code segments onto the scratchpad. The proposed data partitioning
(DP) approach divides a candidate array into two array partitions and then allocates an array
partition along with code segments onto the scratchpad in an non-overlayed manner. The
other proposed approach combines data partitioning with loop nest splitting (DP+LS) such
that overhead caused by the data partitioning approach is minimized.

4.0

4.5
5.0

5.5
6.0

6.5

7.0
7.5

8.0
8.5

9.0

256 512 600 700 800 900 1024 1100 1200 1300 1400 1500
Scratchpad Size (bytes)

T
o

ta
lE

n
er

g
y

C
o

n
su

m
p

ti
o

n
(m

J)

Energy (SA) Energy (DP) Energy (DP+LS)

(a) Energy

800

900

1000

1100

1200

1300

1400

1500

1600

1700

256 512 600 700 800 900 1024 1100 1200 1300 1400 1500
Scratchpad Size (bytes)

E
xe

cu
ti

o
n

T
im

e
(C

P
U

C
yc

le
s

x1
00

0)

Exec. Time (SA) Exec. Time (DP) Exec. Time (DP+LS)

(b) Execution Time

Fig. 7.7. Selection Sort: Comparison of Data Partitioning, Data Partitioning+Loop Nest Splitting and
Scratchpad Allocation Approaches

Figure 7.7 compares the two proposed approaches (DP, DP+LS) with the scratchpad
allocation (SA) approach for the selection sort benchmark. A number of important ob-
servations can be made from the figure. First, the energy consumption and the execution
time of the benchmark for the SA approach demonstrate a step-wise decrease. This is be-
cause the SA approach allocates the scratchpad at a coarse granularity due to aggregate
array variables. Therefore, the energy consumption and the execution time values for the
SA approach (cf. Figure 7.7) do not change when the scratchpad size is increased from
256 bytes upto 1400 bytes, as the large array in the benchmark could not be allocated in
its entirety onto the scratchpad. In contrast, the proposed approaches smoothen the energy
consumption curve as they perform scratchpad allocation at a finer granularity.

The second observation is that the data partitioning (DP) approach can decide, depending
on the scratchpad size, if it is energy efficient to partition the candidate array. For example,
the DP approach decides not to partition the array (cf. Figure 7.7) for scratchpad sizes
between 256 and 600 bytes. This is because for small scratchpad sizes, the energy overhead
due to array partitioning is larger than the energy gain achieved due to allocating a small
array partition onto the scratchpad. The array is again not partitioned for large scratchpads,
e.g. at 1500 bytes in Figure 7.7, as the aggregate array variable can be allocated onto the
large scratchpad. For all scratchpads of size between 700 bytes and 1400 bytes, the array is
partitioned into increasingly larger partitions to achieve energy reduction.

The third observation is that the partitioning the array (cf. 700 bytes in figures 7.7(a)
and 7.7(b)) reduces the energy consumption and increases the execution time for the DP
approach when compared to the corresponding values for the SA approach. The reason
for this behavior is that the DP approach reduces energy consumption by utilizing the
scratchpad space for array partitions. However, it inserts access macros to reference the
correct array partition into the application source code, and the execution of the inserted

7.6 Experimental Results 137

access macros causes an increase in the execution time of the benchmark. Therefore, we
conclude that the data partitioning approach optimizes the benchmark for energy consump-
tion and not for performance which is not a common phenomenon in energy aware code
optimizations.

Last, the combined (DP+LS) approach significantly improves the energy consumption
as well as the performance of the benchmark compared to the results obtained by the DP
approach. The loop nest splitting (LS) approach minimizes the execution of if-statements
which were inserted by the DP approach. For scratchpads larger than 1024 bytes, the execu-
tion time of the benchmark optimized by the combined (DP+LS) approach is even smaller
than that obtained by the SA approach. Next, an overall evaluation of the data partitioning
and the combined approach across all benchmarks is presented.

Figure 7.8 and Figure 7.9 depict the relative processor energy, memory energy, total
energy and execution time values for all benchmarks optimized using the DP approach and
the combined (DP+LS) approach, respectively. The energy and performance values due to
the proposed approaches are relative to the corresponding values due to the SA approach,
which are shown as the unit value baseline in the figures. For the current experiments,
the scratchpad size for the sorting benchmarks and the fir routine is set to 1400 bytes and
1800 bytes, respectively. The motion estimation benchmark with its large video frames is
analyzed for a 119k bytes scratchpad memory. From Figure 7.8, a couple of observations
can be made for the benchmarks optimized using the DP approach.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

bubble Sort fir insertion sort motion estimation selection sort average

Processor Energy (DP) Memory Energy (DP) Total Energy (DP) Execution Time (DP)

Fig. 7.8. Overall Comparison of Data Partitioning and Scratchpad Allocation Approaches

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

bubble Sort fir insertion sort motion estimation selection sort average

Processor Energy (DP+LS) Memory Energy (DP+LS) Total Energy (DP+LS) Execution Time (DP+LS)

Fig. 7.9. Overall Comparison of the Combined Data Partitioning and Loop Nest Splitting Approach
and Scratchpad Allocation Approach

138 7 Data Partitioning and Loop Nest Splitting

First, the DP approach reduces the memory energy consumption to a large extent com-
pared with that for the SA approach. The reductions in the memory energy consumption
values for the sorting routines range between 82% and 93%. For the fir and motion estimation
benchmarks, the reduction in the memory energy consumption is 59% and 39% compared
with that for the SA approach, respectively.

Second, the relative processor energy consumption values for the sorting routines are
higher than the unit baseline, while they are lower for fir and motion estimation bench-
marks. The same behavior is also observed for the relative execution time values for the
benchmarks. The reason for improved performance and processor energy consumption is
that an access to the scratchpad is both energy efficient and faster than an access to the
main memory. Therefore, for data dominated benchmarks, the overhead for executing ad-
ditional instructions is over-compensated by the energy and performance efficient accesses
to the partitioned array located on the scratchpad memory. An increase of 39% and 47%
in the processor energy consumption and the execution time, respectively, is observed for
the bubble sort benchmark. In contrast, a reduction of 29% in both the processor energy
and the execution time is observed for the motion estimation benchmark. The total energy,
being the sum of the processor energy and the memory energy, demonstrates a reduction
of between 22% and 35%. On average, the DP approach saves a quarter (25%) of the total
energy compared to that for the SA approach.

From Figure 7.9, it can be observed that the combined (DP+LS) approach substantially
improves both the energy and the execution time values for all but one benchmark compared
with those for the DP approach. For the fir benchmark, the combined (DP+LS) approach
leads to slightly degraded (by about 4%) total energy consumption and execution time
values. This is because loop nest splitting increases the code size and in this case modifies
the scratchpad allocation achieved by the data partitioning approach. On the other hand, a
substantial reduction of about 35% in both the total energy consumption and the execution
time is observed for the bubble sort benchmark when compared to those values achieved
by the DP approach.

The comparison of the combined (DP+LS) approach with the SAapproach, in Figure 7.9,
reveals that for the motion estimation benchmark, the execution time and the total energy
consumption values are reduced by 51% and 43%, respectively. On average, a reduction
of 37% in the total energy consumption is observed. The average execution time values are
also better than those obtained for the SA approach.

Both the DP and combined (DP+LS) approaches cause an increase in the code size of
the benchmark. Figure 7.10 evaluates the increase in the code size and the application size
(i.e. sum of the code size and the data size) of the benchmarks due to the two approaches
compared with the sizes of the original unoptimized benchmark. From Figure 7.10(a), it
can be easily observed that for small sorting benchmarks, the increase in the code due to
the DP approach is fairly substantial and ranges between 180% and 210%. For the motion
estimation benchmark, a reduction of only 16% in the code size is measured which is caused
by the insertion of less code for register spilling after data partitioning.

The combined (DP+LS) approach results in an even higher increase in the code sizes of
the benchmarks. The code size increase for the combined (DP+LS) approach ranges between
66% and 350% over the code size of the original benchmark. The loop nest splitting approach
replicates the body of the loop nest and therefore, leads to a substantial increase in the code
size. However, the increase in the total application size, which is the measure of the size of

7.7 Summary 139

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

bubble sort fir insertion sort motion
estimation

selection sort average

Code Size (DP) Code Size (DP+LS)

(a) Code Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

bubble sort fir insertion sort motion
estimation

selection sort average

Application Size (DP) Application Size (DP+LS)

(b) Application Size

Fig. 7.10. Code and Application Size Comparison for Data Partitioning and Loop Nest Splitting
Approaches

the main memory required to hold the entire application, is moderate. A maximum increase
of 22% in the application size due to the combined approach is observed for the bubble sort
benchmark. On the average, the DP approach and the combined (DP+LS) approach lead to
a modest increase of 7% and 13% in the application size, respectively.

7.7 Summary

In this chapter, we proposed data partitioning based scratchpad allocation approaches to
optimize embedded applications. The data partitioning approach partitioned the large ar-
rays present in the application and allocated code segments and one of the array partitions
onto the scratchpad memory. The approach partitioned the array when the overhead due to
partitioning is lower than the energy gains achieved by allocating the partitioned array onto
the scratchpad memory. The combined loop nest splitting and data partitioning approach
minimized the overhead caused by data partitioning.

Both approaches achieved significant benefits in terms of energy consumption compared
with a scratchpad allocation approach which could allocate only aggregate array variables
and code segments onto the scratchpad memory. The data partitioning approach leads to a
reduction between 20% and 50% in the total energy consumption of the benchmarks. How-
ever, the approach causes an average increase of 18% in the execution time. The combined
approach not only achieved higher energy savings but also reduced the execution time of
the benchmarks. On average, the combined approach reduced the total energy consumption
and the execution time by 37% and 9%, respectively.

The approaches presented in this chapter were published in [40] and [126].

8

Scratchpad Sharing Strategies for Multiprocess
Applications

In the previous chapters, scratchpad allocation approaches to optimize single process
applications were proposed. However, most of the contemporary embedded devices like
mobile phones, execute complex multiprocess applications. Applying the previously pre-
sented scratchpad allocation approaches to a multiprocess application will result in non-
optimal energy reductions, as the approaches can consider only a single process for allocation.
Therefore, in order to circumvent this problem we propose a set of three strategies to share
the scratchpad memory among the processes of a multiprocess application with the objective
to minimize its energy consumption. The first strategy is beneficial for large scratchpads,
while the second is beneficial for small scratchpads. The third strategy is relatively complex
but outperforms the previous two strategies.

The focus of this chapter is to propose approaches which are analyzable at design time and
which preserve the predictable characteristic of the scratchpad memories. In that respect,
this is the first work on fully-analyzable scratchpad sharing approaches for multiprocess
applications. The strategies are proposed for systems with a memory hierarchy consisting
of an L1 scratchpad and a background main memory.

The rest of the chapter is organized as follows: The following section provides an intro-
duction to the proposed approaches, followed by the presentation of a motivating example.
Section 8.3 presents a brief survey of the related work and Section 8.4 presents the pre-
liminaries for the approaches. Sections 8.5, 8.6 and 8.7 define the problems and also
describe the optimal approaches to solve the problems. The experimental setup is des-
cribed in Section 8.8 and the experimental results to evaluate the strategies are described in
Section 8.9. Section 8.10, ends the chapter with a short summary.

8.1 Introduction

The approaches proposed in this chapter enable sharing of the scratchpad memory among
the processes of a multiprocess application under the objective to minimize the energy con-
sumption of the application. A set of three scratchpad sharing strategies, viz., Scratchpad
Non-Saving/Restoring Context Switch (Non-Saving), Scratchpad Saving/Restoring Con-
text Switch (Saving) and Hybrid Scratchpad Saving/Restoring Context Switch (Hybrid),
are proposed. The names of the strategies are representatives of the activity that occurs at

141

142 8 Scratchpad Sharing Strategies for Multiprocess Applications

Process P1
(disjoint region 1)

Process P2
(disjoint region 2)

Process P3
(disjoint region 3)

(a)

Process P1
Process P2
Process P3

(overlapping region)

(b)

Process P1
(disjoint region 1)

Process P2
(disjoint region 2)

Process P3
(disjoint region 3)

Process P1
Process P2
Process P3

(overlapping region)

(c)

Fig. 8.1. Scratchpad Sharing Strategies: (a) Non-Saving (b) Saving and (c) Hybrid

context switch time for these strategies. The proposed strategies use the non-overlayed allo-
cation approach [115] to allocate memory objects of each process to its assigned scratchpad
memory region.

The Non-Saving approach partitions the scratchpad into disjoint regions such that each
process is exclusively assigned a region. The approach then uses the non-overlayed allo-
cation approach to allocate memory objects of each process onto its corresponding region.
Figure 8.1(a) shows the distribution of the scratchpad into three disjoint regions. The ben-
efit of partitioning the scratchpad into disjoint regions is that the contents of the regions
need not be updated at context switch time. The Non-Saving approach is beneficial for
large scratchpad memories, as they can be partitioned into adequately sized regions for the
processes of the application.

In contrast to the previous approach, the Saving approach shares the scratchpad
(cf. Figure 8.1(b)) as a common overlapping region and each process assumes that the
entire scratchpad is exclusively allocated to itself. The memory objects for each process
are copied to the scratchpad when the process is scheduled to execute on the processor.
They are copied back to the main memory when the process is scheduled off the processor.
However, during the time the process is executing, its memory objects are not swapped in
and out of the scratchpad, as they are allocated using a non-overlayed allocation approach.
The approach reduces the energy consumed by the application when the copy overhead at
each context switch is less than the energy reduction achieved due to the improved scratch-
pad utilization. For small scratchpads, the Saving approach is better than the Non-Saving
approach, as the energy savings are larger than the relatively small copy overhead.

The Hybrid approach, as the name suggests, combines the previous two approaches for
the shared utilization of the scratchpad. As shown in Figure 8.1(c), the approach distributes
the scratchpad into many disjoint regions and a single overlapping region. The disjoint
regions are exclusively assigned to the processes, while the overlapping region is shared by
all the processes. The approach ensures that at every context switch, only the overlapping
region is updated with the memory objects of the executing process. The hybrid approach
minimizes the energy consumption of the application for all scratchpad sizes, as it can
partition the scratchpad into both disjoint and overlapping regions. However, the approach
requires a complex analysis of the application and a longer computation time to partition

8.2 Motivating Example 143

the scratchpad. The following section demonstrates the benefit of the proposed approaches
with help of a motivating example.

GSM
Receive

MPEG
Decode

User
Interface

mpeg coded
frame

decoded
frame

GSMPacket displayed
frame

Fig. 8.2. Workflow of a Video Phone Application

Process Energy fn. 0 kB 1 kB 2 kB 3 kB 4 kB

GSMReceive fN
receive 40 25 20 18 18

MPEGDecode fN
decode 100 84 60 60 57

UserInterface fN
ui 20 9 8 8 8

Table 8.1. Energy Functions (Abstract Units) for Video Phone Application

8.2 Motivating Example

We now introduce a motivating example of a video phone application consisting of three
simultaneously running processes, viz., GSMReceive, MPEGDecode and UserInterface.
Figure 8.2 depicts the workflow of the video phone application. The GSMReceive process
receives the GSM packets over the network containing the MPEG video frames. The process
then unpacks the packets and stores coded MPEG video frames in an intermediate buffer.
The MPEGDecode process decodes the frames from the intermediate buffer and stores the
decoded frames in a decode frame buffer. These decoded frames are then displayed on the
screen by the UserInterface process.

Table 8.1 presents the energy consumption values of the processes when each process is
exclusively assigned scratchpad regions of varying sizes. It can be observed from the table,
all the processes have different energy consumption values and have different scratchpad
memory requirements. The memory objects of the processes are allocated in a non-overlayed
manner onto the assigned scratchpad region and the energy consumption of each process is
computed independently. The energy values presented in Table 8.1 are representative of the
real-life energy values. However, for the sake the simplicity they are proportionally reduced
and are presented in abstract units. For example, the MPEGDecode process consumes 84
units of energy when it utilizes a 1 kB scratchpad region.

Let us assume that the video-phone application is executed on our uni-processor ARM
based system having a 4 kB scratchpad memory. Let us also assume that an allocation
approach to allocate memory objects of a single process onto the scratchpad is used. The
approach selects memory objects from the MPEGDecode process, as it is leads to the mini-
mum energy consumption of the application under the assumption that the scratchpad can
be allocated to a single process. In this scenario, when the MPEGDecode process receives
4 kB scratchpad and the other processes receive no scratchpad, the energy consumed by
the application is 40 + 57 + 20 = 117 units. The other potential assignments are when

144 8 Scratchpad Sharing Strategies for Multiprocess Applications

GSMReceive or UserInterface receive 4 kB scratchpad. The energy consumption values for
these scenarios are 18+100+20 = 138 or 40+100+8 = 148 units, respectively.

The energy consumed by the video-phone application can be reduced further, if the
restriction to assign the scratchpad memory to a single process is removed. For example,
if 1k, 2k and 1k bytes scratchpad regions are assigned to the GSMReceive, MPEGDecode
and UserInterface processes, respectively, then the energy consumed by the application is
reduced to 25 + 60 + 9 = 94 units. On the other hand, an improper assignment of 0, 1k
and 3k bytes scratchpad regions to GSMReceive, MPEGDecode and UserInterface processes,
respectively, can also lead to an increased energy consumption of 40+84+8 = 132 units.
Therefore, there is a need to perform a careful assignment of scratchpad regions to processes.
In this chapter, we propose approaches to share the scratchpad among the processes under
the objective to minimize the energy consumption of a multiprocess application.

8.3 Related Work

Computers in 1960’s and 1970’s were severely memory constrained. Therefore, parallels can
be drawn between the approaches proposed in this chapter and the memory management
approaches in the operating systems of early computers. The only difference is that the
proposed approaches consider multiprocess applications with a fixed number of periodic
processes or tasks. The extension of these approaches for aperiodic tasks is a part of our
immediate future work.

In the OS/360 operating system by IBM, the memory was divided into contiguous
address spaces called regions or partitions. The operating system [100] featured memory
management techniques called multiple contiguous fixed partition allocation (MFT) and
multiple contiguous variable partition allocation (MVT). The MFT approach divided the
memory into regions of fixed sizes and each arriving process is assigned a multiple of fixed
sized regions. In contrast, the MVT approach creates regions of the exact size as that of
the arriving process. The MFT approach causes both internal and external fragmentation,
while the MVT approach only causes external fragmentation but is more complex. The Non-
Saving approach is similar to the MVT approach, as it divides the scratchpad into disjoint
regions of variable sizes for each process.

The resident monitor with swapping based memory management scheme [100] found in
Compatible Time Sharing System (CTSS) is similar to the proposed Saving approach. The
memory management scheme copies the contents of the process into the user memory when
it is scheduled to execute on the processor. When the processor switches to a next process,
the contents of the previously executing process are swapped to a backing store (a disk or
drum) and the contents of the next process are copied into the user memory.

Upon analysis of the recent related work, we realized that there are not many approaches
to share the scratchpad memories of the contemporary memory constrained embedded
devices. Only one approach [41] to share the scratchpad among processes is known. How-
ever, the approach is not designed to allocate multiprocess application on the scratch-
pad. It is based on a dynamic memory allocator [83] which handles memory allocation
and de-allocation requests from the application. Therefore, the approach can allocate only
dynamically created data variables and not code segments onto the scratchpad.

The main disadvantage of the approach is that the programmer or a timing analyzer
cannot be sure if a dynamically created variable which is supposed to be allocated onto

8.4 Preliminaries for Problem Formulation 145

the scratchpad, is actually mapped on the scratchpad by the dynamic allocator. This can
severely degrade the predictability w.r.t. worst case execution time (WCET) bounds for
a scratchpad based system. Moreover, the approach does not have a mechanism to en-
sure that the scratchpad always contains the most energy efficient variables. The other
disadvantage is that the approach is not automated and the programmer needs to man-
ually insert API calls at the appropriate locations in the application code to utilize the
scratchpad memory. This manual intervention can easily lead to error-prone or sub-optimal
results.

In the wake of the above discussion, we would like to enumerate the advantages of the
proposed scratchpad sharing approaches:

(a) They are fully automated and require no intervention of the programmer.
(b) They allocate both code segments and data variables onto the scratchpad.
(c) They are fully analyzable at design time, i.e. the locations of the memory objects

are decided and fixed at compile time.
(d) They minimize the energy consumption of the application and also generate pareto-

optimal energy consumption curves which enable exploration of the design space
for energy vs. scratchpad size tradeoffs.

In the following section, we describe the preliminaries associated with the scratchpad sharing
approaches.

8.4 Preliminaries for Problem Formulation

The scratchpad sharing approaches, viz, Non-Saving, Saving and Hybrid, minimize the
energy consumption of a multiprocess application by sharing the scratchpad among its
processes. The Non-Saving approach partitions the scratchpad into disjoint regions such
that each process is assigned a region. On the other hand, the Saving approach shares the
scratchpad as the overlapping region common for all the processes. The hybrid approach
which is a combination of the two approaches, divides the scratchpad into disjoint regions
and a common overlapping region.

The proposed approaches partitions the scratchpad into regions and then use a non-
overlayed allocation approach [115] to allocate memory objects of each process to its
assigned scratchpad region. As will be shown in the following sections, the proposed
approaches are independent of the underlying allocation approach, which can be easily
replaced by a complex overlay based approach (cf. Chapter 6). In this work, we chose the
non-overlayed allocation approach because of its simplicity.

The rest of the section is structured as the following: The following subsection describes
the notation of the functions used in this chapter, followed by the definitions of the system
variables. Subsection 8.4.3 describes the memory objects and Subsection 8.4.4 describes
the energy model used by the scratchpad sharing approaches.

8.4.1 Notation

Several notations to represent functions are commonly used. The rigorous notation [136]
f : x → f(x) specifies that f is a function acting upon a single number x and returning a

146 8 Scratchpad Sharing Strategies for Multiprocess Applications

value f(x). In addition, the notation f(x) is used to refer to the function f . In this chapter,
unless indicated otherwise, the notation f(x) refers to the rigorous notation f : x → f(x),
whereas the notation f(xi) with a subscripted argument xi refers to the value of the function
f for the input number xi. Similar, notations f(x,y), f(xi,yj) are used for bi-variate
functions.

8.4.2 System Variables

For the presented work, we assume a statically scheduled system with periodic processes
such that the execution profile (i.e. execution time and energy consumption) of each process
is known or can be estimated a priori. We also assume that the multiprocess application
consists of n processes P1 · · ·Pn running on a system with an M byte scratchpad memory
and that the non-saving fN

k (x), the saving fS
k (x) and the hybrid fH

k (x,y) energy functions
are known for each process Pk. The energy function CE(x,smem,dmem) returning the
energy overhead caused by the copying routines, is also assumed to be known. Furthermore,
we assume that schedule count sk is the number of times a process Pk is scheduled for
execution.

Definition 8.1 (Non-Saving Energy Function fN
k (x)). The Non-Saving energy function

fN
k : [0,M] → R takes the size of the disjoint scratchpad region as input and returns the

energy consumed by the process Pk when it is allocated onto the disjoint region.

Definition 8.2 (Saving Energy FunctionfS
k (x)). The Saving energy functionfS

k : [0,M] →
R takes the size of the overlapping scratchpad region as input and returns the energy con-
sumed by the process Pk when it is allocated onto the overlapping region. It also includes
the energy consumed by copy routines for swapping the contents of the process at the context
switch.

Definition 8.3 (Hybrid Energy Function fH
k (x,y)). The Hybrid energy function

fH
k : [0,M] × [0,M] → R takes the sizes of the disjoint and the overlapping scratchpad

regions as input and returns the energy consumed by the process Pk when it utilizes the
disjoint and the overlapping regions.

Definition 8.4 (Copy Energy Function CE(x,smem,dmem)). The Copy energy func-
tion CE : [0,M]×{SPM,MM}×{SPM,MM} → R returns the energy consumed in
copying x bytes from the source memory smem to the destination memory dmem.

Definition 8.5 (System Variables). The system variables, used to represent the scratchpad
sharing strategies, are defined as follows:
(a) n Number of processes.
(b) M Size of the SPM present in the system.
(c) {P1 · · ·Pn} Set of processes in the application.
(d) sk Schedule count for process Pk.
(e) fN

k (xi) Non-Saving energy function for process Pk.
(g) fS

k (xi) Saving energy function for process Pk.
(i) fH

k (xi,yj) Hybrid energy function for process Pk.
(k) CE(x,s,d) Copy energy function.

8.4 Preliminaries for Problem Formulation 147

Memory Optimization System Architecture Memory Objects Explanation

Scratchpad Sharing MO =
⋃

Pk
MOk global variables,

Strategies for Uni-Processor ARM basic blocks
Multiprocess Applications MOk ⊆ V ∪BB ∪F functions

Table 8.2. Memory Objects for Scratchpad Sharing Strategies

8.4.3 Memory Objects

The scratchpad sharing approaches utilize the non-overlayed scratchpad allocation
approach [115] as the underlying approach for allocating memory objects onto the scratchpad
memory. The non-overlayed approach considers global variables, basic blocks and func-
tions of each process Pk as the memory objects MOk for scratchpad allocation. Therefore,
the set of memory objects MO for the scratchpad sharing approaches contain all memory
objects MOk of all processes Pk. Currently, the scratchpad sharing approaches are imple-
mented only for a uni-processor ARM based system. At the time of writing, extensions
to the proposed scratchpad sharing approaches are being implemented and evaluated for
multi-processor ARM based systems. Table 8.2 summarizes the memory objects used for
the proposed approaches.

8.4.4 Energy Model

The proposed scratchpad sharing approaches depend on the energy functions fN
k (x),

fS
k (x) and fH

k (x,y) for each process Pk. The non-saving energy function fN
k (xi) com-

putes the energy dissipated by process Pk when it utilizes an xi bytes scratchpad region.
We solve the non-overlayed allocation (SA) problem (cf. page 39 of Chapter 4) for an
xi bytes scratchpad and obtain the minimized value of the objective function ETotal =
Objective(SA(MOk,xi)). Using this information, the non-saving energy function fN

k (x)
is computed as follows:

fN
k (xi) = Objective(SA(MOk,xi)) ∀xi ∈ [0,M] (8.1)

where, MOk is the set of memory objects belonging to the process Pk. In order to compute
the energy function fN

k (x), the non-overlayed scratchpad allocation (SA) problem should
be solved for all scratchpad sizes between 0 and M bytes. However, for practical reasons
the SA problem is solved at a granularity of 16 bytes.

The Saving approach assumes that the entire scratchpad is available to the process, while
the dispatcher manages the scratchpad contents of the process during a context switch. As
shown in the following, the saving energy function fS

k (x) computes the energy consumed
by the process Pk which utilizes an overlapping scratchpad region and includes the energy
consumed by the copy routines of the dispatcher.

fS
k (xi) = fN

k (xi)+sk ∗ [CE(xi,SPM,MM)+CE(xi,MM,SPM)] ∀xi ∈ [0,M]
(8.2)

where sk is the schedule count of process Pk and CE(x,smem,dmem) is the copy energy
function. The copy energy function CE(xi,SPM,MM) in the above equation results in a

148 8 Scratchpad Sharing Strategies for Multiprocess Applications

slightly overestimated energy value, as an intelligent approach would realize that program
memory objects can never be modified and therefore should not copied from the scratchpad
to the main memory at every context switch.

The hybrid scratchpad sharing approach assigns one disjoint and one overlapping region
to each process Pk. Therefore, it depends on a variant of the non-overlayed allocation
approach, viz. Bi-ScratchpadAllocation (BSA) approach. The BSAapproach allocates mem-
ory objects of a given process Pk onto two given scratchpads. A formal definition of the
Bi-Scratchpad Allocation problem is presented in Subsection 8.7.1. The hybrid energy func-
tion fH

k (xi,yj) is computed as follows:

fH
k (xi,yj) = Objective(BSA(MOk,xi,yj)) ∀xi,yj ∈ [0,M] (8.3)

where, xi and yj are the sizes of the two scratchpads allocated by the BSA approach. Similar
to the non-saving energy function fN

k (x), the value of the hybrid energy function fH
k (xi,yj)

is equal to the minimized objective ETotal = Objective(BSA(MOk,xi,yj)) of the BSA
problem. In the following section, the Non-Saving approach for sharing the scratchpad
memory is presented.

8.5 Scratchpad Non-Saving/Restoring Context Switch
(Non-Saving) Approach

The Non-Saving approach partitions the scratchpad memory into n disjoint regions, one for
each process, such that the non-overlayed allocation of each process Pk to its corresponding
scratchpad region minimizes the total energy consumption of the multiprocess application.
The approach generates a null sized region for a process, if it determines that it is not energy
efficient to assign a scratchpad region to the process. In the following, the formal definition
of the Non-Saving problem is presented.

8.5.1 Problem Formulation

Problem 8.6 (Non-Saving/Restoring Context Switch (Non-Saving)). Given a multipro-
cess application with n processes P1 · · ·Pn, the non-saving energy function fN

k (x) for each
process Pk and a memory hierarchy consisting of a scratchpad (SPM) and a main memory
(MM). The problem is to partition the scratchpad into disjoint contiguous address regions
of sizes d1 · · ·dn one for each process Pk such that the total energy consumption of the
application EN

Total, defined below, is minimized.

EN
Total = fN

1 (d1)+ · · ·+fN
n (dn) (8.4)

The minimization of the total energy consumption EN
Total is to be performed under the

following constraint:
∑
Pk

dk ≤ size(SPM) (8.5)

The constraint specifies that the aggregate size of all disjoint scratchpad regions should be
less than the scratchpad size.

8.5 Non-Saving Approach 149

BinMin (f, g)
Require: Energy functions f(x) and g(x) st. f,g : [0,M] → R

Ensure: h : [0,M] → R, where h(xi) = min{f(lj)+g(mk)|lj +mk ≤ xi}
1 min = ∞
2 for (xi = 0 to M) do
3 for (tmp = 0 to xi) do
4 lj = tmp
5 mk = xi − tmp
6 if (f(lj)+g(mk) < min) then
7 min = f(lj)+g(mk)
8 end-if
9 end-for
10 h(xi) = min
11 end-for
12 return h(x)

Fig. 8.3. Algorithm for Computing binmin Function

It can be observed from Equations 8.4 and 8.5, that the energy consumption of the processes
are inter-dependent as allocation of scratchpad region of size dk to process Pk reduces
the scratchpad size available to other processes. A pseudo-polynomial algorithm for the
Non-Saving problem is presented in the following.

8.5.2 Algorithm for Non-Saving Approach

The Non-Saving problem can be formulated easily as an Integer Linear Programming (ILP)
problem, as it optimizes of the objective function under the given constraints. However, a
small modification to the Non-Saving problem enables the computation of the non-saving
energy function hN

n (x) for the multiprocess application. The function hN
n (x) for the applica-

tion allows the system designer to perform energy/scratchpad size tradeoffs. The non-saving
energy function hN

n : [0,M] → R, computed using the non-saving energy function fN
k (x)

for each process Pk, is defined as follows:

hN
n (xi) = min

{
fN
1 (d1)+ · · ·+fN

n (dn)|d1 + · · ·+dn ≤ xi

} ∀xi ∈ [0,M] (8.6)

EN
Total = hN

n (M) (8.7)

The value of the function hN
n (x) at x = M is equal to the value of the optimized objective

function of the Non-Saving problem. Computing the value hN
n (xi) using the above equation

requires O ((xi +1)n) summation operations. Thus, a full-exhaustive algorithm to compute
hN

n (x) would require an exponential O(Mn) runtime. An efficient algorithm can utilize the
following distributive property of the min operator:

hN
3 (x) = min

{
fN
1 (d1)+fN

2 (d2)+fN
3 (d3)|d1 +d2 +d3 ≤ x

}
= binmin

(
binmin

(
fN
1 ,fN

2
)
,fN

3
)

(8.8)

150 8 Scratchpad Sharing Strategies for Multiprocess Applications

Definition 8.7 (Binary Minimum Function (binmin(f,g))). The binary minimum func-
tion binmin(f,g) takes two functions f and g as input and returns another function h as
output.

binmin : ([0,M] → R)× ([0,M] → R) −→ ([0,M] → R) (8.9)

h(x) = binmin(f,g) (8.10)

where the returned function h(x) satisfies the following property:

h(xi) = min{f(lj)+g(mk)|lj +mk ≤ xi} ∀xi ∈ [0,M] (8.11)

Figure 8.3 presents the algorithm to compute the function h(x) returned upon the
application of the binary minimum function binmin to two input functions f and g. For each
xi ∈ [0,M], the algorithm iterates over those values of lj and mk (cf. lines 4-5) which satisfy
the summation constraint lj +mk ≤ xi. The algorithm computes the sum of values returned
by input functions f and g at lj and mk, respectively and stores the minimum computed
value f(lj) + g(mk) at h(xi). The algorithm requires O(M2) runtime to compute the
binary minimum function h(x) = binmin(f,g) for two energy functions. The working
of the algorithm is explained with the help of an example in the following:

Example 8.8. Consider the Non-Saving energy functions shown in Table 8.1 for the example
video phone application. In this example, we will compute function h(x) by applying the
binary minimum function (cf. Figure 8.3) to non-saving energy functionsfN

receive andfN
decode

of the processes GSMReceive and MPEGDecode, respectively.

18

18

20

25

40

100 84 60 60 57

140124100100 97

125 109 85 85

120104 80

108 102

108

0

1

2

3

4

0 1 2 3 4

fdecode

f r
ec

ie
ve

binmin(frecieve, fdecode)

Fig. 8.4. Computation Matrix

Energy Fn. 0 kB 1 kB 2 kB 3 kB 4 kB

fN
receive 40 25 20 18 18

fN
decode 100 84 60 60 57

binmin(fN
receive, 140 124 100 85 80

fN
decode) (0,0) (0,1) (0,2) (1,2) (2,2)

Table 8.3. Computed binmin Function

Figure 8.4 presents the computation of the BinMin algorithm on energy functions
fN

receive andfN
decode in the form of a matrix.The computed function binmin(fN

receive,f
N
decode)

values are encircled in the computation matrix and are also presented in Table 8.3. From
the algorithm in Figure 8.3, we observe that for each xi ∈ [0,1,2,3,4], only those values lj
and mk which satisfy the summation constraints are considered. For example, for xi = 2
there are three possible input arguments (0,2), (1,1) and (2,0) to the functions fN

receive and

8.5 Non-Saving Approach 151

fN
decode. For these input arguments (0,2), (1,1) and (2,0) (cf. Figure 8.4), the summed val-

ues f(lj)+g(mk) are 100, 109 and 120, respectively. The minimum of the three values i.e.
100, is the value h(xi) stored at xi = 2. The function h(x) shown in Table 8.3 is computed
in a similar manner.

The definition of the binary minimum function and the distributive property of the
min operator (cf. Equation 8.8) are used to convert the non-saving energy function hN

n (x)
(cf. Equation 8.6) of the application into the following recurrence equation.

hN
1 (x) = binmin

(
fN
1 (x),Z(x)

)
(8.12)

hN
n (x) = binmin

(
hN

n−1(x),fN
n (x)

)
(8.13)

NonSaving(fN
1 , . . . ,fN

n)
Require: Non-Saving Energy functions fN

1 (x), . . . ,fN
n (x)

Ensure: hN
n : [0,M] → R, where
hN

n (xi) = min{fN
1 (d1)+ · · ·+fN

n (dn) | d1 + · · ·+dn ≤ xi}
1 if (n > 1) then
2 hN

n−1(x) = NonSaving(fN
1 (x), . . . ,fN

n−1(x))
3 hN

n (x) = BinMin(hN
n−1(x),fN

n (x))
4 else
5 hN

n (x) = BinMin(fN
1 (x),Z(x))

6 end-if
7 return hN

n (x)

Fig. 8.5. Recursive Algorithm for the Non-Saving Approach

where, Z(x) = 0 is a zero function which returns zero for all values of x. The correctness
proof of the recurrence equations is presented in Appendix A and their implementation as a
recursive algorithm is shown in Figure 8.5. The algorithm takes non-saving energy functions
fN
1 (x), . . . ,fN

n (x) as input and computes the non-saving energy function hN
n (x) of the

application. If there is a single process, then the algorithm computes the binmin function
for the non-saving energy function of the process and the zero function Z(x). Otherwise,
the algorithm recursively applies the binmin function on energy functions hN

k−1(x) and
fN

k (x) to compute the function hN
k (x). The algorithm requires O(nM2) runtime to compute

non-saving energy function hN
n (x) of the multiprocess application. The application of the

NonSaving algorithm to the video application is demonstrated in the following example.

Example 8.9. The application of the NonSaving algorithm (cf. Figure 8.5) to the non-saving
energy functions of the example video phone application is shown in Figure 8.6.

In the first step, the algorithm computes hN
2 (x) by applying the binary minimum func-

tion binmin(fN
receive,f

N
decode) on energy functions fN

receive and fN
decode. The computation

of hN
2 (x) is described in Example 8.8. In the next step, the algorithm applies the binary min-

imum function to the function hN
2 (x) computed in the previous step and to the non-saving

energy function fN
ui of the process UserInterface. The application of the binary minimum

152 8 Scratchpad Sharing Strategies for Multiprocess Applications

0

5

10

15

20

25

0 1 2 3 4

0
5

10
15
20
25
30
35
40
45

0 1 2 3 4
0

20

40

60

80

100

120

0 1 2 3 4

0

20

40

60

80

100

120

140

160

0 1 2 3 4

0
20
40
60
80

100
120
140
160
180

0 1 2 3 4

0

5

10

15

20

25

0 1 2 3 4

h2 =
frecievebinmin(, fdecode)

frecieve, fdecode fui

fui

h3 =
h2binmin(, fui)

Fig. 8.6. Workflow of the NonSaving Algorithm for the Video Phone Application

Energy Fn. (Soln. Set) 0 kB 1 kB 2 kB 3 kB 4 kB

hN
2 (x) = 140 124 100 85 80

binmin(fN
receive,f

N
decode) (0,0) (0,1) (0,2) (1,2) (2,2)

hN
3 (x) = 160 144 120 105 94

binmin
(
hN
2 ,fN

ui

)
(0,0) (1,0) (2,0) (3,0) (3,1)

Table 8.4. Computed Non-Saving Energy Functions

function results in function hN
3 (x) which is the non-saving energy function of the multipro-

cess video phone application, as defined in Equation 8.6.
Table 8.4 presents energy functions hN

2 (x) and hN
3 (x) as well as the assignment of

scratchpad regions to the processes. The video phone application dissipates 94 energy units
for the 4 kB scratchpad shared using the Non-Saving approach, compared to 117 units when
the scratchpad is not shared.

8.6 Scratchpad Saving/Restoring Context
Switch (Saving) Approach

Unlike the Non-Saving approach, the Saving approach shares the scratchpad as a common
region for all the processes. It assigns an overlapping scratchpad region to each process and

8.6 Saving Approach 153

then uses the non-overlayed allocation approach to allocate its memory objects onto the
assigned scratchpad region. The approach needs support from the dispatcher, as it copies
the memory objects of a process to the scratchpad everytime the process is scheduled to
execute on the processor. The dispatcher is also responsible for copying them back when the
process is taken off the processor. The formal definition of the Saving problem is presented
in the following.

8.6.1 Problem Formulation

Problem 8.10 (Scratchpad Saving/Restoring Context Switch (Saving)). Given a mul-
tiprocess application with n processes P1 · · ·Pn, the saving energy function fS

k (x) for
each process Pk and a memory hierarchy consisting of a scratchpad (SPM) and a main
memory (MM). The problem is to create overlapping scratchpad regions of sizes o1 · · ·on

one for each process Pk such that the total energy consumption of the application ES
Total,

defined below, is minimized.

ES
Total = fS

1 (o1)+ · · ·+fS
n (on) (8.14)

The minimization of the total energy consumption ES
Total is to be performed under the

following constraint:

∀Pk : ok ≤ size(SPM) (8.15)

The constraint specifies that the size of each overlapping scratchpad region should be less
than the scratchpad size.

An important observation related to the Saving problem is that the energy consumption of
each process allocated to the scratchpad memory in independent of the other processes. This
is because the allocation of ok bytes of scratchpad region to a process Pk does not limit the
size of the scratchpad region that can be assigned to any other process.

The saving energy function fS
k (x) shown below for each process Pk has the interesting

property that it contains a decreasing term and an increasing term.

fS
k (xi) = fN

k (xi)+sk ∗ [CE(xi,SPM,MM)+CE(xi,MM,SPM)] ∀xi ∈ [0,M]
(8.16)

The non-saving energy function fN
k (x) is a monotonically decreasing function if the size

x of the scratchpad region is less than the total size of the process. In contrast, the copy
energy function CE(x,smem,dmem) is a monotonically increasing function. The follow-
ing example describes the saving energy functions for the example application.

Example 8.11. Table 8.5 displays the saving energy functions for the processes of the video
phone application, computed using Equation 8.16. To compute saving function values, the
non-saving energy function values are taken from Table 8.1, while the aggregate copy energy
overhead is assumed to contribute 5 units of energy for each 1 kB of scratchpad region.

From Table 8.5, we observe that the saving energy function values initially decrease
with the increase in the size of the scratchpad region till it reaches the minimum energy

154 8 Scratchpad Sharing Strategies for Multiprocess Applications

Process Energy fn. 0 kB 1 kB 2 kB 3 kB 4 kB

GSMReceive fS
receive 40 30 30 33 38

MPEGDecode fS
decode 100 89 70 75 77

UserInterface fS
ui 20 14 18 23 28

Table 8.5. Saving Energy Functions (Abstract Units) for Video Phone Application

value. Thereafter, the values increase with the increase in scratchpad regions. The saving
energy functions fS

receive, fS
decode and fS

ui reach minimum values of 30, 70 and 14 units for
2 kB, 2 kB and 1 kB of scratchpad regions, respectively.

8.6.2 Algorithm for Saving Approach

The Saving problem can also be formulated as an Integer Linear Programming (ILP) prob-
lem. However, we use a pseudo-polynomial algorithm to solve the problem because instead
of just computing the assignment of scratchpad regions for an M byte scratchpad, we are
interested in computing the saving energy function hS

n(x) for the application. The energy
function hS

n : [0,M] → R uses the independence property of the saving functions fS
k (x) of

Saving(fS
1 , . . . ,fS

n ,s1, . . . ,sn,CE)
Require: Saving Energy functions fS

1 (x), . . . ,fS
n (x)

Require: Process schedule counts s1, . . . ,sn

Require: Copy Energy function CE(x,smem,dmem)
Ensure: hS

n : [0,M] → R, where hS
n(xi) =

∑
Pk

min
[
fN
k (oj)| ∀oj ≤ xi

]

1 for (k = 1 to n) do
2 prev min[k] = ∞
3 end-for
4 for (xi = 0 to M) do
5 for (k = 1 to n) do
6 oj = xi

7 fS
k (oj) = fN

k (oj)+sk ∗ [
CE(oj ,SPM,MM)+CE(oj ,MM,SPM)

]

8 if (fS
k (oj) < prev min[k]) then

9 min[k] = fS
k (oj)

10 else
11 min[k] = prev min[k]
12 end-if
13 end-for
14 for (k = 1 to n) do
15 Emin = Emin +min[k], prev min[k] = min[k]
16 end-for
17 hS

n(xi) = Emin

18 end-for
19 return hS

n(x)

Fig. 8.7. Algorithm for the Saving Approach

8.6 Saving Approach 155

the processes and is defined as the follows:

hS
n(xi) =

∑
Pk

min
[
fS

k (oj)| ∀oj < xi

] ∀xi ∈ [0,M] (8.17)

EN
Total = hN

n (M) (8.18)

The value of the saving energy function fS
n (xi) at xi bytes of scratchpad is the sum of

the minimum value of the function fS
k (oj) over the range oj ∈ [0,xi] for each process Pk.

Figure 8.7 presents the algorithm used to compute the saving energy function for an appli-
cation consisting of n processes.

The algorithm (cf. Figure 8.7) iterates over all overlapping region sizes xi ∈ [0,M] and
all processes k ∈ [1,n] and computes the saving energy function values fS

k (xi). For each
overlapping region size xi, the algorithm ensures that array prev min and min contain
the minimum values of the saving energy function fS

k (oi) for every process Pk over the
range oi ∈ [0,xi −1] and oi ∈ [0,xi], respectively. The minimum values stored in the array
variable min are then summed up to compute the saving energy function value hS

n(xi)
for each xi. The algorithm requires O(nM) to compute the saving energy function hS

n(x)
for the application. The following example explains the computation of the saving energy
function hS

3 (x) for the video phone application.

Example 8.12. Table 8.6 presents the values of the min array variable when the algorithm
iterates the variable xi over the range [0,M]. The algorithm ensures that for each xi ∈ [0,M]
the property of min variable min[k] = min

{
fS

k (oj)| ∀oj ∈ [0,xi]
}

holds. In Table 8.6,
min[1], min[2] and min[3] represent the minimum values of saving functions fS

receive,
fS

decode and fS
ui, respectively.

Energy Fn. (Soln. Set) 0 kB 1 kB 2 kB 3 kB 4 kB

min[1] 40 30 30 30 30

min[2] 100 89 70 70 70

min[3] 20 14 14 14 14

hS
3 (x) = Saving(fS

receive, 160 133 114 114 114

fS
decode,f

S
ui) (0,0,0) (1,1,1) (2,2,1) (2,2,1) (2,2,1)

Table 8.6. Computed Saving Energy Function

The algorithm computes the value of the saving function hS
3 (xi) at iteration xi by adding

the values of the elements of the array min. For example, the value of function hS
3 (xi) at

xi = 2 kB (cf. Table 8.6) is computed to be 70+30+14 = 114. The saving energy function
hS

3 (x) of the application and the assignment of the overlapping regions to the processes
are presented in the last row of Table 8.6. For a 2 kB scratchpad, the algorithm assigns
overlapping regions of sizes 2 kB, 2 kB and 1 kB to processes GSMReceive, MPEGDecode
and UserInterface, respectively. Upon comparing, the saving hS

3 (x) (cf. last row of Table 8.6)
and the non-saving hN

3 (x) (cf. last row of Table 8.4) energy function of the video phone

156 8 Scratchpad Sharing Strategies for Multiprocess Applications

application, we observe that for 1 kB and 2 kB scratchpads the saving function values are
lower than the non-saving function values, while the opposite is observed for 3 kB and 4 kB
scratchpads.

8.7 Hybrid Scratchpad Saving/Restoring Context Switch
(Hybrid) Approach

The Hybrid Approach combines the two proposed scratchpad sharing approaches. It parti-
tions the scratchpad into disjoint regions each allocated to one process, and one overlapping
region which is commonly utilized by all processes. The most frequently accessed mem-
ory objects of a process are allocated in a non-overlayed manner to the dedicated disjoint
scratchpad region. The other important memory objects are allocated to the overlapping
region causing a tolerable copy overhead.

We should note that the overlapping region and their corresponding disjoint region
cannot be adjacent for all the processes. The non-overlayed scratchpad allocation (SA)
approach [115] is incapable of allocating memory objects to disjoint and overlapping region.
Therefore, we use a Bi-Scratchpad Allocation (BSA) approach which determines the two
energy optimal memory objects sets for allocation on two scratchpads with different energy
consumption. The per access energy consumed by the overlapping region is higher than
that by the disjoint region because of the copy overheads associated with the overlapping
region. In the following, we present the formal definitions of the BSA problem and the
Hybrid problem.

8.7.1 Problem Formulation

Problem 8.13 (Bi-Scratchpad Allocation (BSA)). Given the set of memory objects MO, a
memory hierarchy consisting of two scratchpad memories (SPM1 and SPM2) and a main
memory (MM). The problem is to determine three mutually disjoint subsets of memory
objects MOSPM1 ,MOSPM2 ,MOMM ⊆ MO such that total energy consumption of the
application ETotal, achieved due to non-overlayed allocation of memory objects moi ∈
MOSPMk

to the scratchpad memory SPMk, is minimized.

ETotal =
∑

moi∈MOSPM1

E(moi,SPM1)+
∑

moi∈MOSPM2

E(moi,SPM2)

+
∑

moi∈MOMM

E(moi,MM) (8.19)

The minimization of the total energy consumption ETotal is to be performed under the
following constraints:

(a) The aggregate size of memory objects assigned to the scratchpad memories should
be the size of the corresponding scratchpad memory.

8.7 Hybrid Approach 157

∑
moi∈MOSPM1

size(moi) ≤ size(SPM1) (8.20)

∑
moi∈MOSPM2

size(moi) ≤ size(SPM2) (8.21)

(b) Every memory object moi ∈ MO should be allocated to atleast one of three mem-
ories.

MOSPM1 ∪MOSPM2 ∪MOMM = MO (8.22)

(c) Every memory object moi ∈ MO should be allocated to only one of three memories.

MOSPM1 ∩MOSPM2 = φ (8.23)

MOSPM1 ∩MOMM = φ (8.24)

MOSPM2 ∩MOMM = φ (8.25)

The BSA problem is special case of the General Assignment Problem [43]. Authors [26]
demonstrate that the BSAproblem is an NP-Complete problem and that unlike the Knapsack
problem it is APX-Hard implying that no polynomial time approximation scheme (PTAS)
exist. The best known approximation algorithm for the BSA problem is a 2-approximation.
In the current setup, the goal is to allocate memory objects to a disjoint and a overlapping
region on the scratchpad memory. Therefore, we could reformulate E(moi,SPM1) and
E(moi,SPM2) are follows:

E(moi,SPM1) = E(moi,SPM) (8.26)

E(moi,SPM2) = E(moi,SPM)+sk ∗ [CE(size(moi),SPM,MM)
+CE(size(moi),MM,SPM)] (8.27)

where, E(moi,mem) returns the energy consumed by the memory object moi when it
is allocated to the memory mem. Please refer to Section 4.4.2 on Page 37 for detailed
information on energy function E(moi,mem).

Problem 8.14 (Hybrid Scratchpad Saving/Restoring Context Switch (Hybrid)). Given
a multiprocess application with n processes P1 · · ·Pn, the hybrid energy function fH

k (x,y)
for each process Pk and a memory hierarchy consisting of a scratchpad (SPM) and a main
memory (MM). The problem is to generate disjoint regions of size d1 . . .dn and overlapping
regions of sizes o1 · · ·on such that each process is assigned one disjoint and one overlapping
region and that the total energy consumption of the application EH

Total defined below is
minimized.

EH
Total = fH

1 (d1,o1)+ · · ·+fH
n (dn,on) (8.28)

The minimization of the total energy consumption EH
Total is to be performed under the

following constraint:

∀Pk :

⎛
⎝∑

Pi

di

⎞
⎠+ok ≤ size(SPM) (8.29)

158 8 Scratchpad Sharing Strategies for Multiprocess Applications

The constraint specifies that the size of the overlapping scratchpad region plus the aggregate
size of all disjoint regions should be less than the scratchpad size.

The Hybrid problem assumes that the hybrid energy function fH
k (x,y) for each process Pk

is known. We solve the BSA problem for all dk,ok ∈ [0,M] to compute the hybrid energy
function fH

k (dk,ok) values.

8.7.2 Algorithm for Hybrid Approach

Similar to the Non-Saving and Saving approaches, we compute the hybrid energy func-
tion hH

n (x,y) of the application, rather than just computing an overlapping and disjoint
regions which optimize the objective function EH

Total of the Hybrid problem. The hybrid
energy function hH

n : [0,M]× [0,M] → R of the application depends upon the hybrid energy
functions fH

1 , . . . ,fH
n of the processes and is defined as follows:

hH(xi,yj) = min
{
fH
1 (d1,o1)+ · · ·+fH

n (dn,on) |
d1 + · · ·+dn ≤ xi ∧∀k ∈ [1,n] : ok ≤ yj} ∀xi,yj ∈ [0,M]

(8.30)

EH
Total = min

{
hH(xi,yj) |xi +yj ≤ M

} ∀xi,yj ∈ [0,M] (8.31)

The minimized objective function EH
Total of the Hybrid problem can be computed using

the above equation. Similar to the binary minimum function binmin of the Non-Saving
approach, we define hybridbinmin as follows:

Definition 8.15 (Hybrid Binary Minimum Function (hybridbinmin(f,g))). The hybrid
binary minimum function takes two bi-variate functions f and g as input and returns another
bi-variate function h as output.

HybridBinMin (f, g)
Require: Energy functions f(x,y) and g(x,y) st. f,g : [0,M]× [0,M] → R

Ensure: h : [0,M]× [0,M] → R, where
h(xi,yj) = min

{
f(dl,ol)+g(dm,om)|dl +dm ≤ xi ∧ol ≤ yj ∧om ≤ yj

}

1 for (yj = 0 to M) do
2 min = ∞
3 for (xi = 0 to M −yj) do
4 for (tmp = 0 to xi) do
5 dl = tmp, ol = yj , dm = xi − tmp, om = yj

6 if (f(dl,ol)+g(dm,om) < min) then
7 min = f(dl,ol)+g(dm,om)
8 end-if
9 end-for
10 h(xi,yj) = min
11 end-for
12 end-for
13 return h(x,y)

Fig. 8.8. Algorithm for Computing hybridbinmin Function

8.7 Hybrid Approach 159

hybridbinmin : ([0,M]× [0,M] → R)× ([0,M]× [0,M] → R) −→
([0,M]× [0,M] → R)

(8.32)

h(x) = hybridbinmin(f,g) (8.33)

where the returned function h(x) satisfies the following property:

h(xi,yj) = min{f(dl,ol)+g(dm,om)|dl +dm ≤ xi ∧ol ≤ yj ∧om ≤ yj}
∀xi,yj ∈ [0,M]

(8.34)

Figure 8.8 presents the algorithm to compute the function h(x,y) obtained by applying the
hybridbinmin function to two input functions f(x,y) and g(x,y). For each xi and yj , the
algorithm iterates over all dl, ol, dm and om which satisfy the condition dl +dm ≤ xi ∧ol ≤
yj ∧ om ≤ yj and computes the minimum sum of f(dl,ol) and g(dm,om). The minimum
value defines the value of the function h(x,y) at x = xi and y = yj . The algorithm requires
O(M3) to compute the function h(x,y).

Similarly to the Non-Saving approach, the definition of the hybrid binary minimum
function hybridbinmin and the distributive property of the min operator is used to convert
the hybrid energy function hH

n (x) (cf. Equation 8.30) of the application to the following
recurrence equations:

hH
1 (x,y) = hybridbinmin

(
fH
1 (x,y),Z(x,y)

)
(8.35)

hH
n (x,y) = hybridbinmin

(
hH

n−1(x,y),fH
n (x,y)

)
(8.36)

where Z(x,y) is the bi-variate zero function. Figure 8.9 presents the recursive algorithm to
compute the hybrid energy function hH

n (x,y) of a multiprocess application consisting of n
processes.

The algorithm presented in Figure 8.9 is similar to the algorithm for the Non-Saving
approach (cf. Figure 8.5). It takes the bi-variate hybrid energy function fH

k (x,y) of each
process Pk as input and computes the hybrid energy function hH

n (x,y) of the application
in O(nM3) time. The minimum energy consumption of the application EH

Total and the

Hybrid(fH
1 , . . . ,fH

n)
Require: Hybrid Energy functions fH

1 (x,y), . . . ,fH
n (x,y)

Ensure: hH
n : [0,M]× [0,M] → R, where

hH
n (xi,yj) = min

{
fH
1 (d1,o1)+ · · ·+fH

n (dn,on) |
d1 + · · ·+dn ≤ xi ∧∀k ∈ [1,n] : ok ≤ yj

}

1 if (n > 1) then
2 hH

n−1(x,y) = Hybrid(fH
1 (x,y), . . . ,fH

n−1(x,y))
3 hH

n (x,y) = HybridBinMin(hH
n−1(x,y),fH

n (x,y))
4 else
5 hH

n (x,y) = HybridBinMin(fH
1 (x,y),Z(x,y))

6 end-if
7 return hH

n (x,y)

Fig. 8.9. Recursive Algorithm for the Hybrid Approach

160 8 Scratchpad Sharing Strategies for Multiprocess Applications

assignment of disjoint dk and overlapping ok to each process Pk can be determined from
hH

n (x,y) after a small processing step.
The experimental workflow used to evaluate the scratchpad sharing approaches is a bit

different from the workflow of the previous scratchpad allocation approaches. Therefore, it
is described separately in the following section.

8.8 Experimental Setup

The experiments were conducted for the uni-processor ARM based system. The memory
hierarchy of the system consists of a 4 kB onchip scratchpad memory and a 512 kB
SRAM based on-board main memory. The accurate energy model [114] (cf. Section 3.1 for
additional details) is used to compute the energy consumed by the system. Additionally,
a simplistic operating system was implemented to execute multiprocess applications on
the uni-processor ARM system. We decide against using a standard operating system for
embedded systems, e.g. RTEMS [104], because we wanted an operating system which
causes the minimum overhead. The custom operating system consists of a Round-Robin
scheduler, a dispatcher and provides an API to system calls for managing scratchpad con-
tents. The operating system provides a time slice of 33000 CPU cycle or 1ns on the 33 MHz
ARM processor to each process for executing on processor. For the current experiments,
we assumed a statically scheduled system with all processes having equal priority.

The scratchpad sharing approaches require that the non-saving fN
k (x), the saving fS

k (x)
and the hybrid fH

k (x,y) energy functions are precomputed for each process Pk. The non-
saving energy function fN

k (x) is determined by computing the energy consumption values
of process Pk utilizing scratchpad regions of sizes between 0 and 4096 bytes. The non-
overlayed scratchpad allocation approach [115] is used for allocating the energy optimal set
of memory objects to the scratchpad region. The saving energy function fS

k (x) is computed
according to Equation 8.2 and uses the non-saving energy fN

k (x) and the schedule count
sk of the process Pk. Similar to the non-saving energy function fN

k (x), the hybrid energy
function fH

k (x,y) for each process Pk is computed by solving the BSA problem described
in Subsection 8.7.1. For our set of benchmarks, the computation of the non-saving and the
hybrid energy function over the range of [0,4096] bytes and at a granularity of 16 bytes
required a maximum of 130 and 1000 CPU seconds, respectively. The experiments were
conducted on a 1300 MHz Sun Sparc machine. The computation of the energy functions
requires ample computation time, however, the database of energy functions can be reused
later for many multiprocess applications.

The experiments were conducted according to the experimental workflow depicted in
Figure 8.10. The energy functions of all the processes belonging to a multiprocess appli-
cation are passed as input to the proposed scratchpad sharing algorithms. The algorithms
process these energy functions and generate a file containing the assignment of a disjoint
or an overlapping or both scratchpad region(s) to each process. In addition, the algorithm
generates another file containing the energy function (fN

n (x) or fS
n (x) or fH

n (x)) values of
the multiprocess application. The source code of each process is then compiled using our
energy optimizing research compiler (ENCC) and the optimal set of memory objects is
marked for allocation onto the assigned scratchpad regions. The assembly codes of the pro-
cesses and that of the operating system are then assembled and linked to create a single exe-
cutable binary. The executable is executed on the processor simulator, viz. ARMulator [9],

8.9 Experimental Results 161

Energy
Function f1(x)

Allocation
Algorithms
(

)
Non-Saving/

Saving/Hybrid

ENCC
Compiler

Processor
Simulator

Energy
Profiler

Energy
Report

Simulation
Trace

Executable
Binary

ASM-Code
Scheduler

C-Code
Process Pn

C-Code
Process P1

SPM
Regions

..
.

...

Energy
Function fn(x)

Fig. 8.10. Experimental Workflow

to generate the instruction trace which is then passed as input to the energy profiler. The
profiler uses the 98% accurate energy model [114] to compute the total energy consumed
by the application.

8.9 Experimental Results

The proposed scratchpad sharing approaches are evaluated for the set of benchmarks shown
in Table 8.7. We converted two single process benchmarks viz., Media and DSP, from
our set of benchmarks into multiprocess applications, as no standard benchmark suite for
multiprocess applications was available. The third benchmark is the video phone application
which was used as example application throughout the chapter. The table also presents the
total size and the processes constituting the application.

The evaluation of the scratchpad sharing approaches will be presented in the following
order:

(a) Benefits of scratchpad sharing allocation approaches
(b) Comparison of cache and scratchpad memory based systems
(c) Pareto-optimal energy functions
(d) Location of copy routines

First, the benefits of the scratchpad sharing approaches are evaluated by comparing them
to the single process allocation (SPA) approach. The SPA approach assigns the scratchpad
to a process which leads to the maximum reduction in the energy consumption of the
multiprocess application. Second, a comparison of the scratchpad utilized by the proposed

Application Size (kB) Processes System
Name (benchmarks) Architecture

Media 77 adpcm, g721, mpeg4, edge-detection uni-processor ARM
Video Phone 80 gsm, mpeg4 uni-processor ARM

DSP 26 fast-idct, lattice-init, lattice-small, fft, fir uni-processor ARM

Table 8.7. Multiprocess Applications

162 8 Scratchpad Sharing Strategies for Multiprocess Applications

80

90

100

110

120

130

140

150

160

64 128 256 512 1024 2048 4096
Scratchpad Size (bytes)

E
n

er
g

y
C

o
n

su
m

p
tio

n
(m

J)

Energy (SPA) Energy (Non-Saving)

Energy (Saving) CopyEnergy (Saving)

Energy (Hybrid) CopyEnergy (Hybrid)

(a) Energy Consumption

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

64 128 256 512 1024 2048 4096

in
M

ill
io

n
s)

Scratchpad Size (bytes)

E
xe

cu
tio

n
T

im
e

(C
P

U
C

yc
.

Exec. Time (SPA)

Exec. Time (Non-Saving)

Exec. Time (Saving)

Exec. Time (Hybrid)

(b) Execution Time

Fig. 8.11. Media: Comparison of SPA, Non-Saving, Saving and Hybrid Approaches

sharing approaches to the unified cache memory is presented. Third, the Pareto-optimal
function generated by the approaches are briefly discussed. Finally, a small extension
to store the copy routines of the Saving and Hybrid approaches onto the scratchpad memory
is also presented.

Benefits of Scratchpad Sharing Approaches:
Figures 8.11(a) and 8.11(b) evaluates the scratchpad sharing approaches viz., Non-Saving,
Saving and Hybrid, and the SPA approach w.r.t. energy consumption and execution time
values of the Media benchmark, respectively. The energy overhead due to the copy routines
for the Saving and Hybrid approaches is demarcated from the corresponding aggregate
energy values in Figure 8.11(a). We make a few observations from the figures.

Firstly, we observe that energy consumption and execution time values resulting from
the proposed approaches are always better than those for the SPA approach. This justifies
sharing of the scratchpad memory among the processes of the application.

Secondly, the energy consumption as well as execution time values for the Non-Saving
and Hybrid approaches decrease monotonically with the increase in the scratchpad size, as
large scratchpads are partitioned into disjoint regions adequate for each process. However,
the corresponding values for the Saving approach initially decrease till 512 bytes and then
remain constant for any further increase in scratchpad sizes. The reason for such a behavior
is that the Saving approach does not always assign the entire scratchpad as overlapping
regions to processes because a high energy overhead is incurred due to copy routines for
large overlapping regions.

Thirdly, for small scratchpad sizes between 64 and 512 bytes, the energy consumption
values for the Saving approach are smaller than those for the Non-Saving approach, while
the opposite is true for larger scratchpads. For small scratchpads, the improved utilization
of the scratchpad due to the Saving approach and the small copy energy overhead result in
the reduced energy consumption of the system.

Finally, the Hybrid approach distributes the scratchpad into disjoint and overlapping
regions and therefore achieves the minimum energy consumption compared to the Non-
Saving and Saving approaches for all scratchpad sizes. The energy consumption values
at 1024 bytes of scratchpad size in Figure 8.11(a) clearly demonstrate this behavior. The
execution time values of the benchmark also show a similar behavior.

8.9 Experimental Results 163

50%

60%

70%

80%

90%

100%

110%

64 128 256 512 1024 2048 4096 avg.
Scratchpad Size (bytes)

E
n

er
g

y
C

o
n

su
m

p
tio

n
(%

)

Energy (SPA) Energy (Non-Saving) Energy (Saving)

CopyEnergy (Saving) Energy (Hybrid) CopyEnergy (Hybrid)

(a) DSP

50%

60%

70%

80%

90%

100%

110%

64 128 256 512 1024 2048 4096 avg.
Scratchpad Size (bytes)

E
n

er
g

y
C

o
n

su
m

p
tio

n
(%

)

Energy (SPA) Energy (Non-Saving) Energy (Saving)

CopyEnergy (Saving) Energy (Hybrid) CopyEnergy (Hybrid)

(b) Media

75%

80%

85%

90%

95%

100%

105%

64 128 256 512 1024 2048 4096 avg.
Scratchpad Size (bytes)

E
n

er
g

y
C

o
n

su
m

p
tio

n
(%

)

Energy (SPA) Energy (Non-Saving) Energy (Saving)

CopyEnergy (Saving) Energy (Hybrid) CopyEnergy (Hybrid)

(c) Video Phone

Fig. 8.12. Normalized Energy Consumption of Non-Saving, Saving and Hybrid Approaches with SPA
Approach

Next, we compare the scratchpad sharing approaches to the SPA approach w.r.t. energy
consumption of the Media, DSP and Video Phone applications. Figure 8.12 presents energy
values of the proposed approaches relative to those of the SPA approach which are shown
as 100% bars. From Figures 8.12(a), 8.12(b) and 8.12(c), we observe that the Hybrid ap-
proach reduces the energy consumption of the applications by upto 35%, 27% and 17%
compared to the SPA approach, respectively. For the Media application, we report aver-
age energy reductions of 14%, 13% and 17% due to the Non-Saving, Saving and Hybrid
approaches, respectively. Even higher average energy reductions of 18%, 19% and 20%
due to Non-Saving, Saving and Hybrid approaches, respectively, are observed for the DSP
application. The sharing approaches lead to the smallest average energy savings of 9%, 11%
and 12% compared to the SPA approach for the Video Phone application. The MPEGDecode
process of the application consumes significantly more energy than the GSMReceive process
and therefore sharing the scratchpad results in small benefits.

Comparison of the Cache and the Scratchpad Memory:
A comparison of scratchpad memories utilized by the proposed approaches and unified
caches is presented below. In the present setup, the cache memory has a certain advantage
over the scratchpad memory, as it stores memory objects at a much finer granularity of a
cache line and also swaps the outdated memory objects with the relevant ones. In contrast, the
non-overlayed scratchpad allocation approach utilized by the proposed approaches allocates
code segments and aggregate array variables onto the scratchpad memory.We believe that the
use of the advanced scratchpad allocation approaches presented in Chapter 5 and Chapter 6
would reduce the disparity between the scratchpad and the cache memory.

164 8 Scratchpad Sharing Strategies for Multiprocess Applications

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

64 128 256 512 1024 2048 4096 avg.
Scratchpad Size (bytes)

E
n

er
g

y
C

o
n

su
m

p
tio

n
(%

)

Energy (Cache) Energy (Non-Saving) Energy (Saving)

CopyEnergy (Saving) Energy (Hybrid) CopyEnergy (Hybrid)

(a) DSP

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

64 128 256 512 1024 2048 4096 avg.
Scratchpad Size (bytes)

E
n

er
g

y
C

o
n

su
m

p
tio

n
(%

)

Energy (Cache) Energy (Non-Saving) Energy (Saving)

CopyEnergy (Saving) Energy (Hybrid) CopyEnergy (Hybrid)

(b) Media

0%

20%

40%

60%

80%

100%

120%

140%

160%

64 128 256 512 1024 2048 4096 avg.
Scratchpad Size (bytes)

E
n

er
g

y
C

o
n

su
m

p
tio

n
(%

)

Energy (Cache) Energy (Non-Saving) Energy (Saving)

CopyEnergy (Saving) Energy (Hybrid) CopyEnergy (Hybrid)

(c) Video Phone

Fig. 8.13. Normalized Energy Comparison of Non-Saving, Saving and HybridApproaches with Cache

Figure 8.13 presents the energy consumption values of a scratchpad based system relative
to the corresponding values (shown as 100% bars) for a unified cache based system of the
same size. The comparison of scratchpad under the control of the Non-Saving, Saving and
Hybrid approaches and the cache memory is presented for the DSP, Media and Video Phone
applications. From Figure 8.13(a), we observe that for small sizes between 64 bytes and
512 bytes the energy consumption of a scratchpad based system is better than that of a cache
based system executing the DSP application. For the Media and Video Phone applications,
a similar behavior (cf. Figure 8.13(b) and 8.13(c)) is observed for sizes between 64 bytes
and 256 bytes. The reason for this behavior is that for small cache sizes, a large number of
conflict cache misses occur which result in excessive accesses to the power hungry main
memory. On the other hand, the scratchpad is used to store the important memory objects
of all the processes.

For larger sizes, the energy consumption of the cache based systems is better than that
of the scratchpad based systems. This is because the scratchpad memory is not utilized to
its potential by the underlying non-overlayed scratchpad allocation approach used by our
scratchpad sharing approaches. Nevertheless, on the average the energy consumed by the
scratchpad based system is either equal to or better than (by 13%) that consumed by the
cache based system.

Pareto-Optimal Energy Functions:
Now, we would like to discuss the generation of Pareto-optimal curves for the multiprocess
application by the proposed approaches. In addition to the shared allocation of the multi-
process application onto an M bytes scratchpad, the energy functions (hN

n (x), hS
n(x) and

8.9 Experimental Results 165

80

100

120

140

160

180

200

5 6 7 8 9 10 11 12 13
Scratchpad Size [2^x] (bytes)

E
n

er
g

y
C

o
n

s
u

m
p

ti
o

n
(m

J
)

 Energy (Hybrid)

Fig. 8.14. Pareto-Optimal Curve for Media Application

25

30

35

40

45

50

55

60

65

128 256 512 1024 2048 4096
Scratchpad Size (Bytes)

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

(m
J)

Saving (Copy-MM) Saving (Copy-SPM)

Hybrid (Copy-MM) Hybrid (Copy-SPM)

Fig. 8.15. DSP: Different Locations of Copy Routines

hH
n (x,y)) defined over the range [0,M] bytes of scratchpad sizes are also determined by

the proposed allocation approaches. These energy functions represent the Pareto-optimal
curves for the application.

Figure 8.14 presents the curve of the hybrid energy function hH
n (x) for the Media

application. The values on the x-axis denote the scratchpad size and are presented in the
logarithmic (log2(x)) scale. The remaining points represent the energy consumption values
for promising allocations of scratchpad regions to the processes. The promising allocations,
though, represent non-optimal solutions, as they consume more energy than those using
the Hybrid approach. An easy indication for non-optimality is that all the remaining points
lie above the Pareto-optimal curve. The Pareto-optimal curve aids the system designer in
performing design-time scratchpad size vs. energy consumption tradeoffs. For example, a
system with a (212) 4 kB scratchpad consumes just 10% less energy than a system with a
(210) 2 kB scratchpad. Thus, a system designer can tradeoff 10% energy consumption for
half of the onchip scratchpad size.

Location of Copy Routines:
We observed that for the Saving approach (cf. Figure 8.11(a)), the energy overhead due
to copy routines accounts for significant portion of the total energy consumption of the
system, as the copy routines by default are allocated to the energy inefficient main memory.
Therefore, we conducted experiments to quantify the overhead when the copy routines
are assigned to the scratchpad or to the main memory. Figure 8.15 presents the energy

166 8 Scratchpad Sharing Strategies for Multiprocess Applications

consumption values for the DSP application when the copy routines are assigned to the
scratchpad (SPM) or the main memory (MM).

Energy values for the Saving and Hybrid approaches are presented in Figure 8.15, as
they only utilize the copy routines. We observe that in all but one case the energy values for
copy routines mapped to the scratchpad is lower than that for copy routines mapped to the
main memory. The copy routines are executed quite often and their energy consumption gets
reduced once they are assigned to the scratchpad. The exception case occurs for the smallest
scratchpad size (128 bytes), for which the copy routines occupy most of the scratchpad
space, and little space is left for the processes to utilize. From Figure 8.15, we observe that
up to 13% energy can be saved for the Saving approach by assigning the copy routines on
the scratchpad.

8.10 Summary

In this paper, a set of strategies viz., Non-Saving, Saving and Hybrid were proposed for
sharing the scratchpad among the processes of a multiprocess application. The Non-Saving
approach partitioned the scratchpad into disjoint regions each allocated to a process of the
application. In contrast, the Saving approach utilized the scratchpad as the common over-
lapping region for all the processes of the application. The Saving approach generated more
energy efficient allocations than the Non-Saving approach for small scratchpads and vice-
versa for large scratchpads. The Hybrid approach combines the two approaches and achieves
the most energy efficient allocations for all scratchpad sizes, though it also required the
longest computational time for the preprocessing step. The proposed approaches report
average energy reductions of 9%-20% compared to a single process allocation approach.
In addition to assigning energy optimal scratchpad regions to processes, the proposed
approaches generated the Pareto-optimal curves allowing exploration of the design space.

The approaches presented in this chapter were published in [125].

9

Conclusions and Future Directions

In this book, memory optimization techniques were proposed to transform an application
such that it efficiently utilizes the memory hierarchy of the underlying system. The objec-
tive of the proposed optimizations is to minimize the total energy consumption of system.
A positive impact of the optimizations on reducing the execution time of system was also
observed. In addition, it was discussed that the proposed optimizations improved the pre-
dictable behavior of the system. Consequently, it can be concluded that the proposed memory
optimizations aid the system designer in meeting the previously stated design constraints
on power, performance and predictability of the system.

The remainder of this chapter is organized as follows: The following section summarizes
the contribution of the memory optimization techniques proposed in this work. After that,
a discussion on important future directions for enhancing the proposed optimizations is
presented.

9.1 Research Contributions

Memory subsystem has been identified as the bottleneck with respect to both the perfor-
mance and energy consumption of the system. Consequently, a comprehensively optimized
memory subsystem is considered to be critical for meeting the stringent design constraints
on embedded devices, especially those belonging to the consumer electronics domain. In
the past few years, code optimization techniques have assumed a considerable significance,
since a majority of embedded software is being written in high-level languages. In addition,
compiler based optimizations can fully exploit the optimization potential as they have a
global view of the application.

Traditionally, caches were used to construct memory hierarchies in order to improve
the performance of the memory subsystem. However, for embedded systems which execute
only a limited set of applications in their entire lifetime, the limitations of caches in terms
of energy consumption, performance and predictability are well documented. Therefore,
energy efficient scratchpad memories now constitute the memory hierarchies found in most
of the embedded processors. Unlike caches, scratchpad memories require support from the
software or the compiler for their utilization.

167

168 9 Conclusions and Future Directions

In this work, compiler based optimization techniques to exploit the scratchpad based
memory hierarchies of three orthogonal system architectures, viz. Uni-Processor ARM,
Multi-Processor ARM and M5 DSP based systems, were proposed. The proposed opti-
mizations were implemented within the backends of the corresponding compilers. In
addition, they were implemented as “compiler-in-loop” source level transformations which
enhanced their applicability to a wide variety of processor architectures. Unlike contem-
porary approaches, the proposed optimizations minimized the total energy consumption of
the system as they allocate both instruction segments and data variables onto the scratchpad
memory.

A more detailed description of the memory optimizations proposed in the book, is pre-
sented in the following:

Non-Overlayed Scratchpad Allocation for Main / SPM Memory Hierarchy is one of
the basic memory optimization which allocated both instructions and variables onto the
scratchpad memory in a non-overlayed manner. It was developed for a simple memory
hierarchy consisting of an L1 scratchpad and a background main memory. The problem of
non-overlayed scratchpad allocation was demonstrated to be either Knapsack or Fractional
Knapsack problem under different pre-conditions of allocation. An Integer Linear Program-
ming (ILP) based optimal approach was presented for the knapsack variant of the memory
optimization, whereas a greedy algorithm based near-optimal approach was described for
the fractional knapsack variant.

Experimental results reported near-identical energy consumption values for the two
approaches. For the uni-processor ARM based system, average energy reductions between
29% and 64% compared to that for a scratchpad-less system were reported. For the multi-
processor ARM based system, a maximum reduction of upto 90% (cf. Figure 4.8 on 45) in
the total energy consumption of system was observed. Finally, for the M5 DSP based system,
average reductions in between 15% and 22% in the data memory energy consumption of
the system were observed.

Non-Overlayed Scratchpad Allocation for Main / Cache + SPM Memory Hierarchy
is a memory optimization which utilized the scratchpad memory as an instruction buffer.
It modeled the behavior of the cache memory as a conflict graph and allocated instruc-
tion segments onto the scratchpad memory such the energy consumption of the system is
minimized. Again, both optimal and near-optimal approaches were proposed for the non-
overlayed allocation of the scratchpad memory present in a cache based memory hierarchy.
The need for a sophisticated allocation approach arose due to the observation that the previ-
ous non-overlayed allocation approach led to erratic and unpredictable results for the current
memory hierarchy.

The impact of the proposed memory optimization is enumerated as follows: First, it was
demonstrated that an I-Cache and a scratchpad based memory subsystem had a 40% lower
energy consumption than the lowest energy I-Cache based memory subsystem. In addition,
the scratchpad based memory subsystem required only a quarter (25%) of the onchip area
required by the I-Cache based memory subsystem. Second, it was demonstrated that the
scratchpad memory under the control of the proposed optimization outperforms the archi-
tecturally complex preloaded loop caches. Finally, for the uni-processorARM based system,
average energy reductions of 23% and 29% compared to the previous memory optimization

9.1 Research Contributions 169

and the preloaded loop cache, respectively, were reported. Moreover, a maximum reduction
of 25% in the total energy consumption of the multi-processor ARM based system was also
reported.

Scratchpad Overlay for Main / SPM Memory Hierarchy is a memory optimization
which is based on the fact that all instruction segments and variables (memory objects)
allocated onto the scratchpad memory are not accessed at the same time instant during
the execution. Therefore, two or more memory objects with disjoint access times can be
assigned to overlapping regions on the scratchpad memory. In addition, the approach iden-
tifies locations in the application code to insert spill routines for the copying of memory
objects within the memory hierarchy.

It was demonstrated that the problem of scratchpad overlay is similar to the global
register allocation problem. Similar to the previous optimizations, both optimal and near-
optimal approaches were proposed for the scratchpad overlay problem. The problem was
divided into two subproblems. The optimal approach used ILP formulations for the both
subproblems, while the near-optimal approach used the same ILP formulation for the first
subproblem, but used the first-fit heuristic for the second subproblem.

Data Partitioning and Loop Nest Splitting is a memory optimization which divided
array variables into smaller array partitions and then performed a non-overlayed allocation
of instruction segments and array partitions onto the scratchpad memory. The optimizations
improved on previous optimizations which could allocate only aggregate array variables.
Unlike known optimizations, the proposed optimization can partition array variables with
regular as well as irregular index functions. In addition, the data partitioning approach
divided an array variable when it can determine that such a division would reduce the
overall energy consumption of the system.

The data partitioning approach inserts if-statements into the application source code to
access the array partitions. The execution of the inserted if-statements degraded the control
flow of the application and performance of the processor pipeline. Therefore, the data parti-
tioning approach was combined with the loop nest splitting approach to improve the control
flow of the application. The combined optimization improved the data memory energy
consumption due to a fine grained allocation of array partitions onto the scratchpad and
improved the execution time of the application by minimizing the number of executed
if-statements. Experimental results report that the combined optimization achieved sub-
stantial reductions of upto 50% in the total energy consumption of the system and in the
execution time of the application.

Scratchpad Sharing Strategies for Multiprocess Applications are based on the obser-
vation that most consumer centric embedded devices execute multiprocess applications,
while all the known memory optimizations were proposed for a single process application.
Therefore, a set of three approaches to share the scratchpad memory among the processes of
the application were proposed. The approaches assigned disjoint and overlapping scratch-
pad regions to processes at the design time. The scratchpad sharing approaches reduced
the total energy consumption of the system by about 30% compared to that for the opti-
mization which assigned the entire scratchpad to the most energy consuming process of the
application.

170 9 Conclusions and Future Directions

9.2 Future Directions

The dissertation ends with a brief outlook on the most relevant and promising future research
directions, itemized below in no particular order:

Array Tiling:
The proposed optimizations allocate both instructions and variables onto the scratchpad
memory and therefore optimize the total energy consumption of the system. However, the
handling of array variables by the optimizations is a bit basic, as most of them consider
aggregate variables for allocation onto the scratchpad. On the other hand, it was observed
that an aggressive tiling of array variables severely degrades the control flow as well as the
total energy consumption of the system. Therefore, the most promising step is to explore
cost and size bounded approaches for array tiling which allocates both instruction segments
and array tiles onto the scratchpad memory.

WCET Optimizations:
It has been observed that the predictability or the real-time responsiveness is becoming
increasingly important design objective for consumer electronic devices. The scratchpad
memory allows predictable and energy efficient accesses. Therefore, it is would a reason-
able research direction to explore optimizations whose objective is to minimize worst case
execution time (WCET) bounds on the system through the utilization of the scratchpad
memory.

Multi-Process Scratchpad Sharing:
The scratchpad sharing approaches can be extended in numerous possible directions. The
most promising extension is the integration of the scratchpad overlay as the underlying allo-
cation approach to further reduce the energy consumption. The other promising extension is
to consider multi-process applications composed of aperiodic tasks with different priorities.

Multi-Processor Scratchpad Allocation Approaches:
The approaches presented in this work represent the first such work on the utilization of
scratchpad memories in multi-processor systems. The combination of memory allocation
and optimizations with the mapping of tasks to processors in a homogenous or a hetero-
geneous multi-processor system opens a largely uncharted and yet, highly rewarding re-
search direction.

A

Theoretical Analysis for
Scratchpad Sharing Strategies

A.1 Formal Definitions

Definition A.1 (Non-Saving Energy Function fN
k (x)). The Non-Saving energy function

fN
k : [0,M] → R for a process Pk takes the size of the disjoint scratchpad region as input

and returns the energy consumed by the process Pk when it is allocated onto the disjoint
region.

Definition A.2 (Non-Saving Energy Function hN
n (x)). The Non-Saving energy function

hN
n : [0,M] → R for a multi-process application with n independent processes is defined

as the following:

hN
n (xi) = min

{
fN
1 (d1)+ · · ·+fN

n (dn)|d1 + · · ·+dn ≤ xi

} ∀xi ∈ [0,M] (A.1)

Definition A.3 (Binary Minimum Function (binmin(f,g))). The binary minimum func-
tion binmin(f,g) takes two functions f and g as input and returns another function h as
output.

binmin : ([0,M] → R)× ([0,M] → R) −→ ([0,M] → R) (A.2)

h(x) = binmin(f,g) (A.3)

where the returned function h(x) satisfies the following property:

h(xi) = min{f(lj)+g(mk)|lj +mk ≤ xi} ∀xi ∈ [0,M] (A.4)

A.2 Correctness Proof

Theorem 3 The distributive property of the min operator over functions f1 : [0,M] → R,
f2 : [0,M] → R and f3 : [0,M] → R can be shown as the following:

min
{
fN
1 (d1)+fN

2 (d2)+fN
3 (d3)|d1 +d2 +d3 ≤ xi

} ∀xi ∈ [0,M]

= binmin
(
binmin

(
fN
1 (l),fN

2 (m)
)
, fN

3 (n)
)

171

172 A Theoretical Analysis for Scratchpad Sharing Strategies

Proof. Let us define function hN
3 : [0,M] → R as the following:

hN
3 (xi) = min

{
fN
1 (d1)+fN

2 (d2)+fN
3 (d3)|d1 +d2 +d3 ≤ xi

} ∀xi ∈ [0,M] (A.5)

We know that if x1 +x2 +x3 ≤ x, then x1 +x2 ≤ x. Using this property we define function
f12 : [0,M] → R as the following:

fN
12(xi) = min

{
fN
1 (d1)+fN

2 (d2)|d1 +d2 ≤ xi

} ∀xi ∈ [0,M] (A.6)

We substitute the above equation into Equation A.5 to obtain the following equation:

hN
3 (xi) = min

{
fN
12(d1)+fN

3 (d3)|d1 +d3 ≤ xi

}
(A.7)

From the definition of the binmin function (cf. Definition A.3) and Equation A.6, we obtain
the following equation:

fN
12(xi) = min

{
fN
1 (lj)+fN

2 (mk)|lj +mk ≤ xi

} ∀xi ∈ [0,M] (A.8)

= binmin
(
fN
1 (l),fN

2 (m)
)

(A.9)

The above equation is then substituted in Equation A.7 to obtain the following equation:

hN
3 (xi) = min

{
fN
12(d1)+fN

3 (d3)|d1 +d3 ≤ xi

} ∀xi ∈ [0,M]

= min
{
binmin

(
fN
1 (l),fN

2 (m)
)
+fN

3 (d3)|d1 +d3 ≤ xi

}
(A.10)

Finally, we again substitute definition of binmin function into the above equation and obtain
the following equality:

hN
3 (x) = binmin

(
binmin

(
fN
1 (l),fN

2 (m)
)
,fN

3 (n)
)

Theorem 4 For any positive integer n, the static energy function of the multiprocess appli-
cation hN

n (x)

hN
n (x) = min

{
fN
1 (x1)+ · · ·+fN

n (xn)|x1 + · · ·+xn ≤ x
}

(A.11)

can be represented by the following recurrence equation:

HN
1 (x) = binmin

(
fN
1 (x),Z(x)

)
HN

n (x) = binmin
(HN

n−1(x),fN
n (x)

)
(A.12)

where, Z(x) = 0 is a zero function which returns zero for all values of x.

Proof. We will employ Structural Induction to prove the above theorem.
Basis of Induction: For n = 1,

hN
1 (x) = min{fN

1 (x1)|x1 ≤ x} (A.13)

= min{fN
1 (x1)+Z(x2)|x1 +x2 ≤ x} (A.14)

= binmin
(
fN
1 (x),Z(x)

)
= HN

1 (x) (A.15)

A.2 Correctness Proof 173

Inductive Hypothesis: Assume that for n−1 the following equality holds:

hN
n−1(x) = HN

n−1(x)

Induction Step: From the definition of the binmin operator (cf. Definition A.3) and
Theorem 3, we derive the following:

HN
n (x) = binmin

(HN
n−1(x),fN

n (x)
)

= binmin
(
hN

n−1(x),fN
n (x)

)
= binmin

(
min{fN

1 (x1)+ · · ·+fN
n−1(xn−1)|

x1 + · · ·+xn−1 ≤ x},fN
n (x)

)
= min

{
fN
1 (x1)+ · · ·+fN

n (xn)|x1 + · · ·+xn ≤ x
}

= hN
n (x)

List of Figures

1.1 Energy Distribution for (a) Uni-Processor ARM (b) Multi-Processor ARM
Based Setups . 3

1.2 Energy per Access Values for Caches and Scratchpad Memories 4

2.1 CMOS Inverter . 10
2.2 Classification of Energy Optimization Techniques (Excluding Approaches

at the Process, Device and Circuit Levels) . 11

3.1 Memory Aware Compilation and Simulation Framework 18
3.2 ARM7TDMI Processor . 19
3.3 ATMEL Evaluation Board . 19
3.4 Energy Aware C Compiler (ENCC) . 22
3.5 Multi-Processor ARM SoC . 26
3.6 Source Level Memory Optimizer . 27
3.7 Multi-Process Edge Detection Application . 28
3.8 Block Diagram of M5 DSP . 29
3.9 Die Image of M5 DSP . 29

4.1 Processor Address Space Containing a Scratchpad Memory 32
4.2 Workflow of Edge Detection Application . 33
4.3 Greedy Algorithm for Fractional Scratchpad Allocation Problem 40
4.4 Normalized Energy Consumption and Execution Time for Opt. SA

Approach . 42
4.5 Energy Comparison of Scratchpad Allocation Approaches 43
4.6 Overall Comparison of the Scratchpad Allocation Approaches 43
4.7 Multi-Process Edge Detection: Energy Consumption for Varying Compute

Processors and Scratchpad Sizes (Cycle Latency=1 Master Cycle) 44
4.8 Multi-Process Edge Detection: Normalized Energy Consumption for

Varying Memory Access Times (#Compute Processors=2) 45
4.9 Normalized Energy Comparison of Scratchpad Allocation Approaches 46

5.1 System Architecture: (a) Scratchpad (b) Loop Cache . 50

175

176 List of Figures

5.2 Example: Base Configuration . 54
5.3 Example: Non-Overlayed Scratchpad Allocation Approach 56
5.4 Example: Loop Cache Approach . 57
5.5 Example: Cache Aware Scratchpad Allocation Approach 58
5.6 Example: Application after Trace Generation Step . 60
5.7 Conflict Graph . 61
5.8 Workflow of Scratchpad Allocation Approaches . 64
5.9 Greedy Heuristic for Cache Aware Scratchpad Allocation Problem 67
5.10 MPEG: Instruction Memory Energy Consumption . 69
5.11 MPEG: Comparison of Energy Consumption of I-Cache + Scratchpad with

8 kB DM I-Cache . 70
5.12 Cache Behavior: Comparison of Opt-CASA and SA Approaches 71
5.13 EPIC: Comparison of Opt. CASA and SA Approaches 71
5.14 MPEG: Comparison of Opt. CASA and SA Approach 72
5.15 MPEG: Energy Comparison of Opt. CASA and SA Approaches for Direct

Mapped I-Caches . 73
5.16 MPEG: Energy Comparison of Opt. CASA and SA Approaches for 2-Way

Set-Associative I-Caches . 73
5.17 MPEG: Energy Comparison of Opt. CASA and SA Approaches for 4-Way

Set-Associative I-Caches . 74
5.18 Energy Comparison of Opt. CASA, Near-Opt. CASA and SA Approaches . . 74
5.19 Execution Time Comparison of Opt. CASA, Near-Opt. CASA and SA

Approaches . 75
5.20 Overall Comparison of Opt. CASA, Near-Opt. CASA and SA Approaches . . 75
5.21 MPEG: Determining the Optimal Scratchpad Size . 77
5.22 EPIC: Comparison of (SPM) Opt. CASA and (Loop Cache) the Ross

Approach . 78
5.23 MPEG: Comparison of (SPM) Opt. CASA and (Loop Cache) the Ross

Approach . 79
5.24 Overall Comparison of (SPM) Opt. CASA, (SPM) Near-Opt. CASA and

(Loop Cache) the Ross Approach . 79
5.25 Multi-Process Edge Detection: Energy Consumption for Varying Compute

Processors and Scratchpad Sizes (Cycle Latency = 1 Master Cycle) 81

6.1 Example and Overlayed Application Code Fragments 84
6.2 Workflow of Edge Detection Application . 85
6.3 Execution Profile of Edge Detection Application (without ReadImage and

WriteImage Routines) . 86
6.4 Example Application Code and the Corresponding Control Flow Graph 92
6.5 Control Flow Graph Displaying Traces . 93
6.6 Control Flow Graph Displaying LiveIn and LiveOut Attributes 95
6.7 Workflow of the Scratchpad Overlay Approaches . 98
6.8 Flow Constraints: (a) DEF (b) USE and (c) CONT Constraint 103
6.9 Flow Constraints: (a) Merge-Node (b) Diverge-Node Constraint 104
6.10 Incorrect Address Assignment . 106
6.11 Correct Address Assignment . 106

List of Figures 177

6.12 Two Potential Placements of Memory Objects . 107
6.13 First-Fit Heuristic Based Address Assignment Algorithm 109
6.14 Normalized Energy Consumption and Execution Time for Opt. SO Approach111
6.15 Energy Comparison of Scratchpad Allocation Approaches 111
6.16 Edge Detection: Comparison of SA and Near-Opt. SO Approaches for

Memory Accesses . 112
6.17 Edge Detection: Comparison of SA and Near-Opt. SO Approaches 113
6.18 Overall Comparison of Near-Opt. SO, Opt. SO and SA Approaches 114
6.19 Comparison of Cache with SA and Near-Opt. SO Approaches 115
6.20 Overall Comparison of the Cache and Scratchpad Overlay Approaches 116
6.21 Multi-Process Edge Detection: Normalized Energy Consumption for

Varying Compute Processors and Scratchpad Sizes (Cycle Latency = 1
Master Cycle) . 116

6.22 Multi-Process Edge Detection: Normalized Energy Consumption for
Varying Memory Access Times (#Compute Processors = 2) 117

6.23 Normalized Energy Comparison of Scratchpad Allocation Approaches 118

7.1 Example Code Fragment before and after Data Partitioning 122
7.2 Example Code Fragment before and after Loop Nest Splitting 123
7.3 Loop Unswitching . 125
7.4 Splitting Points and Partitioned Variables . 127
7.5 Workflow of the Data Partitioning Approach . 131
7.6 Workflow of the Loop Nest Splitting Transformation . 134
7.7 Selection Sort: Comparison of Data Partitioning, Data Partitioning+Loop

Nest Splitting and Scratchpad Allocation Approaches 136
7.8 Overall Comparison of Data Partitioning and Scratchpad Allocation

Approaches . 137
7.9 Overall Comparison of the Combined Data Partitioning and Loop Nest

Splitting Approach and Scratchpad Allocation Approach 137
7.10 Code and Application Size Comparison for Data Partitioning and Loop

Nest Splitting Approaches . 139

8.1 Scratchpad Sharing Strategies: (a) Non-Saving (b) Saving and (c) Hybrid . . 142
8.2 Workflow of a Video Phone Application . 143
8.3 Algorithm for Computing binmin Function . 149
8.4 Computation Matrix . 150
8.5 Recursive Algorithm for the Non-Saving Approach . 151
8.6 Workflow of the NonSaving Algorithm for the Video Phone Application . . . 152
8.7 Algorithm for the Saving Approach . 154
8.8 Algorithm for Computing hybridbinmin Function . 158
8.9 Recursive Algorithm for the Hybrid Approach . 159
8.10 Experimental Workflow . 161
8.11 Media: Comparison of SPA, Non-Saving, Saving and Hybrid Approaches . . 162
8.12 Normalized Energy Consumption of Non-Saving, Saving and Hybrid

Approaches with SPA Approach . 163

178 List of Figures

8.13 Normalized Energy Comparison of Non-Saving, Saving and Hybrid
Approaches with Cache . 164

8.14 Pareto-Optimal Curve for Media Application . 165
8.15 DSP: Different Locations of Copy Routines . 165

List of Tables

3.1 Snippet of Instruction Level Energy Model for Uni-Processor ARM System 21
3.2 Energy per Access and Access Time Values for Memories in Uni-Processor

ARM System . 22
3.3 Benchmark Programs for Uni-Processor ARM Based Systems 25

4.1 Execution and Access Counts for Functions and Arrays in Edge Detection
Application . 33

4.2 Energy per Access Values for Scratchpad and Main Memory 34
4.3 Memory Objects for Non-Overlayed Scratchpad Allocation Approach 37
4.4 Benchmark Programs for the Evaluation of Non-Overlayed Scratchpad

Allocation Approaches . 41

5.1 Energy Values for Different Memories . 55
5.2 Energy Values for Base Configuration . 55
5.3 Energy Values for Scratchpad (1 Word) Based System 56
5.4 Energy Values for Scratchpad (2 Words) Based System 56
5.5 Energy Values for Loop Cache (1 Word) Based System 57
5.6 Energy Values for Loop Cache (2 Words) Based System 57
5.7 Energy Values for Scratchpad (1 Word) Based System 58
5.8 Energy Values for Scratchpad (2 Words) Based System 58
5.9 Memory Objects for Non-Overlayed Scratchpad Allocation Approach 59
5.10 Benchmark Programs for the Evaluation of CASA Approaches 68
5.11 Code and Application Sizes of Benchmarks without and with Appended

NOP Instructions . 76

6.1 Memory Objects for Scratchpad Overlay Approach . 90
6.2 Attributes of References for Global Variables . 92
6.3 Attributes of References for Traces . 93
6.4 Live-Ranges of Memory Objects . 95
6.5 Definition of Flow and Spill Attributes for Global Variable A and

Trace T4 . 102

179

180 List of Tables

6.6 Benchmark Programs for the Evaluation of Scratchpad Overlay
Approaches . 110

7.1 Memory Objects for Data Partition Approach . 127
7.2 Benchmark Programs for the Evaluation of Data Partitioning and Loop

Nest Splitting . 135

8.1 Energy Functions (Abstract Units) for Video Phone Application 143
8.2 Memory Objects for Scratchpad Sharing Strategies . 147
8.3 Computed binmin Function . 150
8.4 Computed Non-Saving Energy Functions . 152
8.5 Saving Energy Functions (Abstract Units) for Video Phone Application 154
8.6 Computed Saving Energy Function . 155
8.7 Multiprocess Applications . 161

References

1. E. Aarts and R. Roovers. IC Design Challenges for Ambient Intelligence. In Proceedings of
Design Automation and Test in Europe (DATE’03), Munich, Germany, Mar. 2003.

2. AbsInt Angewandte Informatik GmbH. aiT: Worst Case Execution Time Analyzers. http:
//www.absint.com/ait, 2004.

3. R. Aitken, G. Kuo, and E. Wan. Low-Power Flow Enable Multi-Supply Voltage ICs.
EETimes, http://www.eetimes.com/news/design/showArticle.jhtml?articleID=
15990221%6, 2005.

4. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan Kaufmann
Publishers, San Francisco, California, 2002.

5. S. Anantharaman and S. Pande. An Efficient Data Partitioning Method for Limited Memory
Embedded Systems. In Proceedings of the ACM SIGPLAN’98 Workshop on Languages, Com-
pilers and Tools for Embedded Systems (LCTES’98), Montreal, Canada, May 1998.

6. F. Angiolini, M. Francesco, F. Alberto, L. Benini, and M. Olivieri. A Post-Compiler Approach
to Scratchpad Mapping of Code. In Proceedings of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES’04), Sep. 2004.

7. ANSI. American National Standards Institute - ISO/IEC 9899:1999 (or: C99), “The ANSI C
Standard”. http://www.ansi.org/.

8. A. W. Appel and L. George. Optimal Spilling for CISC Machines with Few Registers. In Pro-
ceedings of the Conference on Programming Language Design and Implementation (PLDI’01),
pages 243–253, Snowbird, Utah, USA, Jun. 2001.

9. ARM. Advanced RISC Machines Ltd. http://www.arm.com/products/CPUs/
ARM1156T2-S.html.

10. ARM. Advanced RISC Machines Ltd. - AMBA Homepage. http://www.arm.com/products/
solutions/AMBAHomePage.html.

11. ARM. Advanced RISC Machines Ltd. - ARM7TDMI Reference Manual. http://www.arm.
com/pdfs/DDI0210B_7TDMI_R4.pdf.

12. ARM. Advanced RISC Machines Ltd. - Development Tools. http://www.arm.com/
products/DevTools/.

13. ATMEL. Atmel Corporation. http://www.atmel.com.
14. O. Avissar, R. Barua, and D. Stewart. An Optimal Memory Allocation Scheme for Scratch-

Pad Based Embedded Systems. IEEE Transactions on Embedded Computing Systems (TECS),
1(1):6–26, Nov. 2002.

15. D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler Transformations for High-Performance
Computing. ACM Computing Surveys, 26(4):345–420, 1994.

181

182 References

16. R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel. Scratchpad Memory:
A Design Alternative for Cache On-chip Memory in Embedded Systems. In Proceedings of
10th International Symposium on Hardware/Software Codesign (CODES’02), Colorado, USA,
May 2002.

17. U. Banerjee. Loop Transformations for Restructuring Compilers: The Foundations. Kluwer
Academic Publisher, Boston u.a., 1. edition, 1993.

18. L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri. MPARM: Exploring the
Multi-Processor SoC Design Space with SystemC. Springer Journal of VLSI Signal Processing,
41(2):169–182, Sep. 2005.

19. L. Benini, A. Bogliolo, G. Paleologo, and G. D. Micheli. Policy Optimization for Dynamic
Power Management. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 18(6):813–833, 1999.

20. L. Benini and G. D. Micheli. Dynamic Power Management - Design Techniques and CAD Tools.
Kluwer Academic Publishers, Massachusetts, 1998.

21. S. Borkar. Design Challenges of Technology Scaling. IEEE Micro, 19(4):23–29, 1999.
22. P. Briggs, K. D. Cooper, and L. Torczon. Improvements to Graph Coloring Register Alloca-

tion. ACM Transactions on Programming Languages and Systems (TOPLAS), 16(3):428–455,
May 1994.

23. E. Brockmeyer, M. Miranda, H. Corporaal, and F. Cathoor. Layer Assignment Techniques for
Low Energy in Multi-Layered Memory Organization. In Proceedings of Design Automation
and Test in Europe (DATE’03), Munich, Germany, Mar. 2003.

24. S. Carr. Memory Hierarchy Management. PhD Thesis, Rice University, Houston, Texas, USA,
1992.

25. G. J. Chaitin. Register Allocation & Spilling via Graph Coloring. In Proceedings of the 1982
SIGPLAN Symposium on Compiler Construction (CC’82), pages 98–101, Boston,
Massachusetts, USA, 1982.

26. C. Chekuri and S. Khanna. A PTAS for the Multiple Knapsack Problem. In Proceedings of
the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’00), pages 213–222,
San Francisco, California, USA, Jan. 2000.

27. D. Chiou, P. Jain, L. Rudolph, and S. Devadas. Application-Specific Memory Management for
Embedded Systems Using Software-Controlled Caches. In Proceedings of Design Automation
Conference (DAC’00), Los Angeles, CA, USA, Jun. 2000.

28. G. Cichon, P. Robelly, H. Seidel, M. Bronzel, and G. Fettweis. Synchronous TransferArchitecture
(STA). In Proceedings of Fourth International Workshop on Systems, Architectures, Modeling,
and Simulation (SAMOS’04), Samos, Greece, Jul. 2004.

29. K. D. Cooper and T. J. Harvey. Compiler-Controlled Memory. In Proceedings of the 8th
International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’98), San Jose, CA, USA, Oct. 1998.

30. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. McGraw-Hill
Book Company, New York, USA, 1990.

31. O. Coudert. Exact Coloring of Real-Life Graphs is Easy. In Proceedings of Design Automation
Conference (DAC’97), Anaheim, CA, USA, Jun. 1997. DAC.

32. CPLEX. CPLEX Ltd. http://www.cplex.com.
33. Dresden Silicon. Samira Prototype DSP. http://www.dresdensilicon.com, 2006.
34. J. Edler and M. D. Hill. Dinero IV - Trace-Driven Uniprocessor Cache Simulator. http:

//www.cs.wisc.edu/˜markhill/DineroIV/.
35. B. Egger, J. Lee, and Heonshik Shin. Scratchpad Memory Management for Portable Systems

with a Memory Management Unit. In Proceedings of International Conference on Embedded
Software (EMSOFT’06), Seoul, Korea, Oct. 2006.

36. A. E. Eichenberger, K. O’Brien, K. O’Brien, P. Wu, T. Chen, P. H. Oden, D. A. Prener,
J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao, and M. Gschwind. Optimizing

References 183

Compiler for the Cell Processor. In Proceedings of the The Fourteenth International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT’05), Saint Louis, Missouri,
USA, Sep. 2005.

37. ENCC. University of Dortmund, Department of Computer Science XII. http://ls12-www.
cs.uni-dortmund.de/research/encc.

38. J. Fabri. Automatic Storage Optimization. UMI Research Press, Ann Arbor, Michigan, USA,
1982.

39. H. Falk and P. Marwedel. Source Code Optimization Techniques for Data Flow Dominated
Embedded Software. Kluwer Academic Publishers, Norwell, MA, 2004.

40. H. Falk and M. Verma. Combined Data Partitioning and Loop Nest Splitting for Energy Con-
sumption Minimization. In Proceedings of Workshop on Software and Compiler for Embedded
Systems (SCOPES’04), Amsterdam, The Netherlands, Sep. 2004.

41. P. Francesco, P. Marchal, D. Atienza, L. Benini, F. Catthoor, and M. J. Mendias. An Integrated
Hardware/SoftwareApproach for Run-Time Scratchpad Management. In Proceedings of Design
Automation Conference (DAC’04), Anaheim, California, USA, May 2004.

42. C. Fu and K. D. Wilken. A Faster Optimal Register Allocator. In Proceedings of 31st
International Microarchitecture Conference (MICRO’02), Istanbul, Turkey, Nov. 2002.

43. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide To the Theory of
NP-Completeness. Freeman, New York, USA, 1979.

44. GCC. GNU Compiler Collection. http://gcc.gnu.org/.
45. C. H. Gebotys. Low Energy Memory and Register Allocation Using Network Flow. In Pro-

ceedings of Design Automation Conference (DAC’97), Anaheim, CA, USA, Jun. 1997.
46. N. Gloy, T. Blackwell, M. D. Smith, and B. Calder. Procedure Placement Using Temporal

Ordering Information. In Proceedings of 30th International Symposium on Microarchitecture
(MICRO’97), Dec. 1997.

47. D. W. Goodwin and K. D. Wilken. Optimal and Near-optimal Global Register Allocation Using
0-1 Integer Programming. Software-Practice and Experience, 26(8):929–965, Aug. 1996.

48. S. C. A. Gordon-Ross and F. Vahid. Exploiting Fixed Programs in Embedded Systems:
A Loop Cache Example. Computer Architecture Letters, 1, Jan. 2002.

49. F. Gruian. Energy-Centric Scheduling for Real-Time Systems. PhD Thesis, Lund University,
Lund, Sweden, 2002.

50. GSI. Geospatial Systems Inc. http://www.geospatialsystems.com/.
51. M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown. MiBench:

A Free, Commercially Representative Embedded Benchmark Suite. In Proceedings of the 4th
IEEE Annual Workshop on Workload Characterization, Austin, Texas, USA, Dec. 2001.

52. J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann, 3 edition, 2003.

53. IBM. Cell Broadband Engine resource center. http://www-128.ibm.com/developer
works/power/cell/.

54. ICD. Informatik Centrum Dortmund (ICD e.V). http://www.icd.de/es.
55. Intel. Microprocessor Hall of Fame. http://www.intel.com/museum/online/hist_

micro/hof/tspecs.htm.
56. Intel and Microsoft and Toshiba. Advanced Configuration and Power Interface Specificaion.

http://www.acpi.info, 1996.
57. T. Ishihara and H. Yasuura. Voltage Scheduling Problem for Dynamically Variable Voltage

Processors. In Proceedings of International Symposium on Low Power Electronics and Design
(ISLPED’98), Monterey, CA, USA, Aug. 1998.

58. I. Issenin, E. Brockmeyer, M. Miranda, and N. Dutt. Data Reuse Analysis Technique for
Software-Controlled Memory Hierarchies. In Proceedings of Design Automation and Test in
Europe (DATE’04), Feb. 2004.

184 References

59. I. Issenin and N. Dutt. FORAY-GEN: Automatic Generation of Affine Functions for Memory
Optimizations. In Proceedings of Design Automation and Test in Europe (DATE’05), Munich,
Germany, Mar. 2005.

60. ITRS. Information Technology Roadmap for Semiconductors. http://public.itrs.net.
61. K. Jansen. Approximation Results for the Optimum Cost Chromatic Partition Problem. Elsevier

Journal of Algorithms, 34(1):54–69, Jan. 2000.
62. M. S. Johnstone and P. R. Wilson. The Memory Fragmentation Problem: Solved? In Proceedings

of the 1st International Symposium on Memory Management (ISMM ’98), pages 26–36. ACM
Press, Oct. 1998.

63. M. Kamble and K. Ghosh. Analytical Energy Dissipation Models for Low Power Caches. In Pro-
ceedings of the International Symposium on Low Power Electronics and Design (ISLPED’97),
Monterey, CA, USA, Aug. 1997.

64. M. Kandemir and A. Choudhary. Compiler-Directed Scratch Pad Memory Hierarchy Design
and Management. In Proceedings of Design Automation Conference (DAC’02), New Orleans,
USA, Jun. 2002.

65. M. Kandemir, I. Kadayif, and U. Sezer. Exploiting Scratch-Pad Memory Using Presburger
Formulas. In Proceedings of the 14th Internation Symposium on System Synthesis (ISSS’01),
Montreal, Canada, Sep. 2001.

66. M. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan, I. Kadayaif, and A. Parikh.
A Compiler-Based Approach for Dynamically Managing Scratchpad Memories in Embedded
Systems. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems
(TCAD), 23(2), Feb. 2004.

67. H. S. Kim, M. J. Irwin, N. Vijaykrishnan, and M. Kandemir. Effect of Compiler Optimizations
on Memory Energy. In Proceedings of IEEE Workshop on Signal Processing Systems (SIPS’00),
pages 663–672, Lafayette, USA, Oct. 2000.

68. J. Kin, M. Gupta, and W. H. Mangione-Smith. The Filter Cache: An Energy Efficient Memory
Structure. In Proceedings of the 30th Annual International Symposium on Microarchitecture
(MICRO’97), Research Triangle Park, North Carolina, USA, Dec. 1997.

69. D. E. Knuth. The Art of Computer Programming: SemiNumerical Algorithms, volume 2.
Addison-Wesley Longman Publishing, Boston, MA, USA, 3 edition, 1973.

70. D. J. Kolson, A. Nicolau, N. Dutt, and K. Kennedy. Optimal Register Assignment to Loops for
Embedded Code Generation. ACM Transcations on Design Automation of Electronic Systems
(TODAES), 1(2), Apr. 1996.

71. A. Krishnaswamy and R. Gupta. Profile Guided Selection of ARM and Thumb Instructions.
In Proceedings of the Joint Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES’02) and Software and Compilers for Embedded Systems (SCOPES’02), Berlin,
Germany, Jun. 2002.

72. C. Lee, J. K. Lee, T. Hwang, and S.-C. Tsai. Compiler Optimization on VLIW Instruction
Scheduling for Low Power. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 8(2), Apr. 2003.

73. C. G. Lee. University of Toronto Digital Signal Processing (UTDSP) Benchmark Suite. http:
//www.eecg.toronto.edu/˜corinna/DSP/infrastructure/UTDSP.html.

74. L. H. Lee, B. Moyer, and J. Arends. Instruction Fetch Energy Reduction Using Loop Caches for
EmbeddedApplications with Small Tight Loops. In Proceedings of the International Symposium
on Low Power Electronics and Design (ISLPED’97), San Diego, CA, USA, Aug. 1999.

75. S. Lee and T. Sakurai. Run-Time Voltage Hopping for Low-Power Real-Time Systems. In
Proceedings of Design Automation Conference (DAC’00), Los Angeles, CA, USA, Jun. 2000.

76. R. Leupers. Code Optimization Techniques for Embedded Processors - Methods, Algorithms,
and Tools. Kluwer Academic Publishers, Norwell, MA, 2000.

77. Y. Li and J. Henkel. A Framework for Estimating and Minimizing Energy Dissipation of
Embedded HW/SW Systems. In Proceedings of Design Automation Conference (DAC’98),
San Francisco, CA, USA, Jun. 1998.

References 185

78. M. Loghi, M. Poncino, and L. Benini. Cycle-Accurate Power Analysis for Multiproces-
sor Systems-on-a-Chip. In Proceedings of the 14th ACM Great Lakes symposium on VLSI
(GLSVLSI ’04), New York, NY, USA, Apr. 2004.

79. M. Lorenz. Performance- und energieeffiziente Compilierung für digitale SIMD-
Signalprozessoren mittels genetischer Algorithmen. PhD Thesis, University of Dortmund, Dort-
mund, Germany, 2003.

80. M. Lorenz and P. Marwedel. Phase Coupled Code Generation for DSPs Using a Genetic Al-
gorithm. In Proceedings of Design Automation and Test in Europe (DATE’04), Paris, France,
Feb. 2004.

81. P. Machanick. Approaches to Addressing the Memory Wall. Technical report, School of IT and
Electrical Engineering, University of Queensland, Nov. 2002.

82. A. Macii, L. Benini, and M. Poncino. Memory Design Techniques for Low Energy Embedded
Systems. Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.

83. S. Mamagkakis, C. Baloukas, D. Atienza, F. Catthoor, D. Soudris, J. M. Mendı́as, and
A. Thanailakis. Reducing Memory Fragmentation with Performance-Optimized Dynamic Mem-
ory Allocators in Network Applications. In Proceedings of Wired/Wireless Internet Communi-
cations (WWIC), Xanthi, Greece, May 2005.

84. T. Martin and D. P. Siewiorek. The Impact of Battery Capacity and Memory Bandwidth on CPU
speed-setting: A Case Study. In Proceedings of the International Symposium on Low Power
Design (ISLPED’99), San Diego, California, USA, Aug. 1999.

85. P. Marwedel. Embedded System Design. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1 edition, 2003.

86. P. Marwedel, L. Wehmeyer, M. Verma, S. Steinke, and U. Helmig. Fast, Predictable and
Low Energy Memory References Through Architecture-Aware Compilation. In Proceedings
of the Asia and South Pacific Design Automation Conference (ASPDAC’04), Yokohama, Japan,
Jan. 2004.

87. Mediabench. Benchmark Suite for Multimedia and Communication Systems. http://cares.
icsl.ucla.edu/MediaBench/.

88. H. Mehta, R. M. Owens, M. J. Irwin, R. Chen, and D. Ghosh. Techniques for Low Energy
Software. In Proceedings of the International Symposium on Low Power Design (ISLPED’97),
Monterey, CA, USA, Aug. 1997.

89. MEMSIM. University of Dortmund, Department of Computer Science XII. http://ls12-www.
cs.uni-dortmund.de/˜wehmeyer/LOW_POWER/memsim_doc.

90. G. E. Moore. Cramming More Components onto Integrated Circuits. Electronics, 38(8), 1965.
91. G. E. Moore. No Exponential is Forever: but Forever can be Delayed! In Proceedings of IEEE

International Solid-State Circuits Conference (ISSCC’03), San Francisco, California, USA,
Feb. 2003. ISSCC.

92. MOTOROLA. Motorola Inc. http://e-www.motorola.com/files/shared/doc/
selector_guide/SG1001.pdf.

93. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann Publishers,
San Francisco, California, 1 edition, 1997.

94. Computer History Museum. Timeline of Computers. http://www.computerhistory.org/.
95. O. Ozturk and M. Kandemir. Integer Linear Programming based Energy Optimization for

Banked DRAMs. In Proceedings of ACM Great Lakes Symposium on VLSI (GLSVLSI’05),
Chicago, Illinois, USA, Apr. 2005.

96. O. Ozturk, M. Kandemir, I. Demikiran, G. Chen, and M. J. Irwin. Data Compression for Improv-
ing SPM Behavior. In Proceedings of Design Automation Conference (DAC’04), San Deigo,
CA, USA, Jun. 2004.

97. P. R. Panda, N. Dutt, and A. Nicolau. Memory Issues in Embedded Systems-On-Chip. Kluwer
Academic Publishers, Norwell, MA, 1999.

186 References

98. C. Park, J. Lim, K. Kwon, J. Lee, and S. L. Min. Compiler-Assisted Demand Paging for
Embedded Systems with Flash Memory. In Proceedings of International Conference on
Embedded Software (EMSOFT’04), Pisa, Italy, Sep. 2004.

99. G. Peter, N. Dutt, and A. Nicolau. Memory Architecture Exploration for Programmable Embed-
ded Systems. Kluwer Academic Publishers, Dordrecht, Boston, London, 2003.

100. J. L. Peterson andA. Silberschatz. Operating System Concepts. Addison Wesley, Massachusetts,
USA, 1985.

101. P. Pettis and C. Hansen. Profile Guided Code Positioning. In Proceedings of the ACM SIG-
PLAN’90 Conference on Programming Language Design and Implementation (PLDI ’90),White
Plains, New York, USA, Jun. 1990.

102. J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits. Pearson Education
International, London u.a., 2 edition, 2003.

103. A. R. Rajiv, D. N. Pracheeti, S. D. Ganesh, D. M. Eric, M. S. Robert, A. M. Scott, and
B. B. Richard. Compiler Managed Dynamic Instruction Placement in a Low-Power Code Cache.
In Proceedings of International Symposium on Code Generation and Optimization (CGO’05),
San Jose, CA, USA, Mar. 2005.

104. RTEMS. Real-Time Executive For Multiprocessor Systems. http://www.rtems.com.
105. Y. Shin, K. Choi, and T. Sakurai. Power Optimization of Real-Time Embedded Systems on

Variable Speed Processors. In Proceedings of International Conference on Computer Aided
Design (ICCAD’01), San Jose, CA, USA, Nov. 2001.

106. T. Simunic, L. Benini, and G. D. Micheli. Event Driven Power Management of Portable Systems.
In Proceedings of International Symposium on System Synthesis (ISSS’99), San Jose, CA, USA,
Nov. 1999.

107. T. Simunic, L. Benini, G. D. Micheli, and M. Hans. Source Code Optimization and Profiling of
Energy Consumption in Embedded Systems. In Proceedings of the International Symposium of
System Synthesis (ISSS’00), Madrid, Spain, Sep. 2000.

108. J. Sjödin, B. Fröderberg, and T. Lindgren. Allocation of Global Data Objects in On-Chip RAM.
In Proceedings of Workshop on Compiler and Architectural Support for Embedded Computer
Systems, Washington, USA, Dec. 1998.

109. M. D. Smith, N. Ramsey, and H. Glenn. A Generalized Algorithm for Graph-Coloring Register
Allocation. In Proceedings of Conference on Programming Language Design and Implementa-
tion (PLDI’04), Washington, DC, USA, Jun. 2004.

110. M. B. Srivastava, A. P. Chandrakasan, and R. W. Broderson. Predictive Shutdown and Other
Architectural Techniques for Energy Efficient Programmable Computation. IEEE Transactions
on Very Large Scale Integration Systems (TVLSI), 4(1):42–54, 1996.

111. ST. STMicroelectronics Ltd. http://www.st.com.
112. S. Steinke. Untersuchung des Energieeinsparungspotenzials in eingebetteten Systemen durch

energieoptimierende Compilertechnik. PhD Thesis, University of Dortmund, Dortmund,
Germany, 2003.

113. S. Steinke, N. Grunwald, L. Wehmeyer, R. Banakar, M. Balakrishnan, and P. Marwedel.
Reducing Energy Consumption by Dynamic Copying of Instructions onto Onchip Memory.
In Proceedings of the 15th International Symposium on System Synthesis (ISSS’02), Japan,
Oct. 2002.

114. S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel. An Accurate and Fine Grain Instruction-
Level Energy Model Supporting Software Optimizations. In Proceedings of International Work-
shop on Power And Timing Modeling, Optimization and Simulation (PATMOS’01), Yverdon-
Les-Bains, Switzerland, Sep. 2001.

115. S. Steinke, L. Wehmeyer, B. S. Lee, and P. Marwedel. Assigning Program and Data Objects
to Scratchpad for Energy Reduction. In Proceedings of Design Automation and Test in Europe
(DATE’02), Paris France, Mar. 2002.

References 187

116. C. L. Su, C. Y. Tsui, and A. M. Despain. Saving Power in the Control Path of the Embedded
Processors. IEEE Design and Test, 11(4), (Winter) 94.

117. The Economist. Not just a flash in the pan. http://www.economist.com/displaystory.
cfm?story_id=E1_VVSTVQQ, 2006.

118. V. Tiwari, S. Malik, and A. Wolfe. Instruction Level Power Analysis and Optimization of
Software. Journal of VLSI Signal Processing Systems, 13(3):223–238, Aug. 1996.

119. H. Tomiyama and H. Yasuura. Optimal Code Placement of Embedded Software for Instruction
Caches. In Proceedings of the 9th European Design and Test Conference (ED&TC’96), Paris,
France, Mar. 1996.

120. UMC. United Microelectronics Corporation. http://www.umc.com.
121. F. Vahid. Embedded System Design - A Unified Hardware/Software Introduction. John Wiley

& Sons, New York, USA, 2002.
122. M. Verma and P. Marwedel. Memory Optimization Techniques for Low-Power Embedded

Processors. In Proceedings of VIVA Workshop on Fundamentals and Methods for Low-Power
Information Processing, Bonn, Germany, Sep. 2005.

123. M. Verma and P. Marwedel. Advanced Memory Optimization Techniques for Low-Power
Embedded Processors. In Fundamentals and Methods for Low-Power Information Processing.
Springer, Dordrecht, The Netherlands, 2006.

124. M. Verma and P. Marwedel. Overlay of Scratchpad Memory for Low Power Embedded
Processors. IEEE Transactions on Very Large Scale Integration Systems (TVLSI), 14(8),
Aug. 2006.

125. M. Verma, K. Petzold, L. Wehmeyer, and P. Marwedel. Memory Optimization Techniques
for Low-Power Embedded Processors. In Proceedings of IEEE 3rd Workshop on Embedded
Real-Time Multimedia (ESTIMedia’05), Jersy City, New York, USA, Sep. 2005.

126. M. Verma, S. Steinke, and P. Marwedel. Data Partitioning for Maximal Scratchpad Usage. In
Proceedings of Asia South Pacific Design Automation Conference (ASPDAC’03), Kitakyushu,
Japan, Jan. 2003.

127. M. Verma, L. Wehmeyer, and P. Marwedel. Cache-Aware Scratchpad Allocation Algorihm. In
Proceedings of Design Automation and Test in Europe (DATE’04), Paris, France, Feb. 2004.

128. M. Verma, L. Wehmeyer, and P. Marwedel. Dynamic Overlay of Scratchpad Memory for
Energy Minimization. In Proceedings of Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), Stockholm, Sweden, Sep. 2004.

129. M. Verma, L. Wehmeyer, and P. Marwedel. Efficient Scratchpad Allocation Algorithms for
Energy Constrained Embedded Systems. Lecture Notes in Computer Science (LNCS), 3164(1):
41–56, 2004.

130. M. Verma, L. Wehmeyer, and P. Marwedel. Cache Aware Scratchpad Allocation Algorithms
for Energy Constrained Embedded Systems. IEEE Transaction on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 25(10):2035–2051, 2006.

131. M. Verma, L. Wehmeyer, R. Pyka, P. Marwedel, and L. Benini. Compilation and Simulation
Tool Chain for Memory Aware Energy Optimizations. In Proceedings of Workshop on Embed-
ded Computer Systems: Architectures, Modeling, and Simulation (SAMOS VI), Samos, Greece,
Jul. 2006.

132. L. Wang, W. Tembe, and S. Pande. A Framework for Loop Distribution on Limited On-Chip
Memory Processors. In Proceedings of the International Conference on Compiler Construction
(CC’00), Berlin, Germany, Mar. 2000. CC.

133. L. Wehmeyer. Fast, Efficient and Predictable Memory Accesses - Optimization Algorithms for
Memory Architecture Aware Compilation. Springer, Dordrecht, The Netherlands, 2005.

134. L. Wehmeyer, U. Helmig, and P. Marwedel. Compiler-optimized Usage of Partitioned Memo-
ries. In Proceedings of the 3rd Workshop on Memory Performance Issues (WMPI’04), Munich,
Germany, Jun. 2004.

188 References

135. L. Wehmeyer and P. Marwedel. Influence of Memory Hierarchies on Predictability for Time
Constrained Embedded Software. In Proceedings of Design Automation and Test in Europe
(DATE’05), Munich, Germany, Mar. 2005.

136. E. W. Weisstein. Function: MathWorld-A Wolfram Web Resource. http://mathworld.
wolfram.com/Function.html.

137. S. J. E. Wilton and N. P. Jouppi. CACTI: An Enhanced Cache Access and Cycle Time Model.
IEEE Journal of Solid-State Circuits, 31(5), May 1996.

138. M. E. Wolf and M. S. Lam. A Loop Transformation Theory and an algorithm to maximise
parallelism. In Proceedings of The 3rd Workshop on Programming Languages and Compilers
for Parallel Computing (PLCPC’90), Aug. 1990.

139. W. A. Wulf and S. A. McKee. Hitting the Memory Wall: Implications of the Obvious. ACM
Computer Archtiecture News, 23(1), Mar. 1995.

140. S. Wuytack, F. Catthoor, L. Nachtergaele, and H. D. Man. Power Exploration for Data Dominated
Video Applications. In Proceedings of the International Symposium of Low-Power Electronics
and Design (ISLPED’96), Monterey, CA, USA, Aug. 1996. ACM.

141. C. Zhang, F. Vahid, J. Yang, and W. Najjar. A Way-Halting Cache for Low-Energy High-
Performance Systems. In International Symposium on Low-Power Electronics and Design
(ISLPED’00), Newport Beach, CA, USA, Aug. 2000.

