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Preface

Daß ich erkenne, was die Welt im Innersten zusammenhält.1

Faust

Concepts without intuition are empty, intuition without concepts is blind.
Immanuel Kant (1724–1804)

The greatest mathematicians like Archimedes, Newton, and Gauss have
always been able to combine theory and applications into one.

Felix Klein (1849–1925)

The present comprehensive introduction to the mathematical and physical
aspects of quantum field theory consists of the following six volumes:

Volume I: Basics in Mathematics and Physics
Volume II: Quantum Electrodynamics
Volume III: Gauge Theory
Volume IV: Quantum Mathematics
Volume V: The Physics of the Standard Model
Volume VI: Quantum Gravity and String Theory.

Since ancient times, both physicists and mathematicians have tried to under-
stand the forces acting in nature. Nowadays we know that there exist four
fundamental forces in nature:

• Newton’s gravitational force,
• Maxwell’s electromagnetic force,
• the strong force between elementary particles, and
• the weak force between elementary particles (e.g., the force responsible for

the radioactive decay of atoms).

In the 20th century, physicists established two basic models, namely,

• the Standard Model in cosmology based on Einstein’s theory of general
relativity, and

• the Standard Model in elementary particle physics based on gauge theory.
1 So that I may perceive whatever holds the world together in its inmost folds.

The alchemist Georg Faust (1480–1540) is the protagonist of Goethe’s drama
Faust written in 1808.
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One of the greatest challenges of the human intellect is the discovery of
a unified theory for the four fundamental forces in nature based on first
principles in physics and rigorous mathematics. For many years, I have been
fascinated by this challenge. When talking about this challenge to colleagues,
I have noticed that many of my colleagues in mathematics complain about the
fact that it is difficult to understand the thinking of physicists and to follow
the pragmatic, but frequently non-rigorous arguments used by physicists. On
the other hand, my colleagues in physics complain about the abstract level
of the modern mathematical literature and the lack of explicitly formulated
connections to physics. This has motivated me to write the present book and
the volumes to follow.

It is my intention to build a bridge between mathematicians and
physicists.

The main ideas of this treatise are described in the Prologue to this book.
The six volumes address a broad audience of readers, including both under-
graduate students and graduate students as well as experienced scientists
who want to become familiar with the mathematical and physical aspects of
the fascinating field of quantum field theory. In some sense, we will start from
scratch:

• For students of mathematics, I would like to show that detailed knowledge
of the physical background helps to motivate the mathematical subjects
and to discover interesting interrelationships between quite different math-
ematical questions.

• For students of physics, I would like to introduce fairly advanced mathe-
matics which is beyond the usual curriculum in physics.

For historical reasons, there exists a gap between the language of mathemati-
cians and the language of physicists. I want to bridge this gap.2 I will try to
minimize the preliminaries such that undergraduate students after two years
of studies should be able to understand the main body of the text. In writing
this monograph, it was my goal to follow the advise given by the poet Johann
Wolfgang von Goethe (1749–1832):

Textbooks should be attractive by showing the beauty of the subject.

Ariadne’s thread. In the author’s opinion, the most important prelude
to learning a new subject is strong motivation. Experience shows that highly
motivated students are willing to take great effort to learn sophisticated sub-
jects.

I would like to put the beginning of Ariadne’s thread into the hands
of the reader.

2 On November 7th 1940, there was a famous accident in the U.S.A. which was
recorded on film. The Tacoma Narrows Bridge broke down because of unexpected
nonlinear resonance effects. I hope that my bridge between mathematicians and
physicists is not of Tacoma type.
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Remember the following myth. On the Greek island of Crete in ancient times,
there lived the monster Minotaur, half human and half bull, in a labyrinth.
Every nine years, seven virgins and seven young men had to be sacrificed to
the Minotaur. Ariadne, the daughter of King Minos of Crete and Pasiphaë
fell in love with one of the seven young men – the Athenian Prince Theseus.
To save his life, Ariadne gave Theseus a thread of yarn, and he fixed the
beginning of the thread at the entrance of the labyrinth. After a hard fight,
Theseus killed the Minotaur, and he escaped from the labyrinth by the help
of Ariadne’s thread.3 For hard scientific work, it is nice to have a kind of
Ariadne’s thread at hand. The six volumes cover a fairly broad spectrum of
mathematics and physics. In particular, in the present first volume the reader
gets information about

• the physics of the Standard Model of particle physics and
• the magic formulas in quantum field theory,

and we touch the following mathematical subjects:

• finite-dimensional Hilbert spaces and a rigorous approach to the basic ideas
of quantum field theory,

• elements of functional differentiation and functional integration,
• elements of probability theory,
• calculus of variations and the principle of critical action,
• harmonic analysis and the Fourier transform, the Laplace transform, and

the Mellin transform,
• Green’s functions, partial differential equations, and distributions (gener-

alized functions),
• Green’s functions, the Fourier method, and functional integrals (path in-

tegrals),
• the Lebesgue integral, general measure integrals, and Hilbert spaces,
• elements of functional analysis and perturbation theory,
• the Dirichlet principle as a paradigm for the modern Hilbert space approach

to partial differential equations,
• spectral theory and rigorous Dirac calculus,
• analyticity,
• calculus for Grassmann variables,
• many-particle systems and number theory,
• Lie groups and Lie algebras,
• basic ideas of differential and algebraic topology (homology, cohomology,

and homotopy; topological quantum numbers and quantum states).

We want to show the reader that many mathematical methods used in quan-
tum field theory can be traced back to classical mathematical problems. In
3 Unfortunately, Theseus was not grateful to Ariadne. He deserted her on the Is-

land of Naxos, and she became the bride of Dionysus. Richard Strauss composed
the opera Ariadne on Naxos in 1912.
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particular, we will thoroughly study the relation of the procedure of renor-
malization in physics to the following classical mathematical topics:

• singular perturbations, resonances, and bifurcation in oscillating systems
(renormalization in a nutshell on page 628),

• the regularization of divergent infinite series, divergent infinite products,
and divergent integrals,

• divergent integrals and distributions (Hadamard’s finite part of divergent
integrals),

• the passage from a finite number of degrees of freedom to an infinite number
of degrees of freedom and the method of counterterms in complex analysis
(the Weierstrass theorem and the Mittag–Leffler theorem),

• analytic continuation and the zeta function in number theory,
• Poincaré’s asymptotic series and the Ritt theorem in complex analysis,
• the renormalization group and Lie’s theory of dynamical systems (one-

parameter Lie groups),
• rigorous theory of finite-dimensional functional integrals (path integrals).

The following volumes will provide the reader with important additional ma-
terial. A summary can be found in the Prologue on pages 11 through 15.

Additional material on the Internet. The interested reader may find
additional material on my homepage:

Internet: www.mis.mpg.de/ezeidler/

This concerns a carefully structured panorama of important literature in
mathematics, physics, history of the sciences and philosophy, along with a
comprehensive bibliography. One may also find a comprehensive list of math-
ematicians, physicists, and philosophers (from ancient until present time)
mentioned in the six volumes. My homepage also allows links to the lead-
ing centers in elementary particle physics: CERN (Geneva, Switzerland),
DESY (Hamburg, Germany), FERMILAB (Batavia, Illinois, U.S.A.), KEK
(Tsukuba, Japan), and SLAC (Stanford University, California, U.S.A.). One
may also find links to the following Max Planck Institutes in Germany: As-
tronomy (Heidelberg), Astrophysics (Garching), Complex Systems in Physics
(Dresden), Albert Einstein Institute for Gravitational Physics (Golm), Math-
ematics (Bonn), Nuclear Physics (Heidelberg), Werner Heisenberg Institute
for Physics (Munich), and Plasmaphysics (Garching).

Apology. The author apologizes for his imperfect English style. In the
preface to his monograph The Classical Groups, Princeton University Press,
1946, Hermann Weyl writes the following:

The gods have imposed upon my writing the yoke of a foreign tongue that
was not sung at my cradle.

“Was das heissen will, weiss jeder,
Der im Traum pferdlos geritten ist,”4

4 Everyone who has dreamt of riding free, without the need of a horse, will know
what I mean.
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I am tempted to say with the Swiss poet Gottfried Keller (1819–1890).
Nobody is more aware than myself of the attendant loss in vigor, ease and
lucidity of expression.
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staff of the institute including the librarians directed by Ingo Brüggemann,
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12.6.2 Hörmander’s Causal Product . . . . . . . . . . . . . . . . . . . . . 734

Part III. Heuristic Magic Formulas of Quantum Field Theory

13. Basic Strategies in Quantum Field Theory . . . . . . . . . . . . . . . 741
13.1 The Method of Moments and Correlation Functions . . . . . . . . 744
13.2 The Power of the S-Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747
13.3 The Relation Between the S-Matrix and the Correlation

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748
13.4 Perturbation Theory and Feynman Diagrams . . . . . . . . . . . . . 749
13.5 The Trouble with Interacting Quantum Fields . . . . . . . . . . . . . 750
13.6 External Sources and the Generating Functional . . . . . . . . . . . 751
13.7 The Beauty of Functional Integrals . . . . . . . . . . . . . . . . . . . . . . 754

13.7.1 The Principle of Critical Action . . . . . . . . . . . . . . . . . . . 754
13.7.2 The Magic Feynman Representation Formula . . . . . . . 755
13.7.3 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756
13.7.4 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757
13.7.5 Transition Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . 757



XXII Contents

13.7.6 The Magic Trace Formula . . . . . . . . . . . . . . . . . . . . . . . . 758
13.8 Quantum Field Theory at Finite Temperature . . . . . . . . . . . . 759

13.8.1 The Partition Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 759
13.8.2 The Classical Hamiltonian Approach . . . . . . . . . . . . . . . 762
13.8.3 The Magic Feynman Functional Integral for the Par-

tition Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
13.8.4 The Thermodynamic Limit . . . . . . . . . . . . . . . . . . . . . . . 765

14. The Response Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767
14.1 The Fourier–Minkowski Transform . . . . . . . . . . . . . . . . . . . . . . . 772
14.2 The ϕ4-Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775

14.2.1 The Classical Principle of Critical Action . . . . . . . . . . . 776
14.2.2 The Response Function and the Feynman Propagator 776
14.2.3 The Extended Quantum Action Functional . . . . . . . . . 784
14.2.4 The Magic Quantum Action Reduction Formula for

Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784
14.2.5 The Magic LSZ Reduction Formula for the S-Matrix . 787
14.2.6 The Local Quantum Action Principle . . . . . . . . . . . . . . 789
14.2.7 The Mnemonic Functional Integral . . . . . . . . . . . . . . . . 789
14.2.8 Bose–Einstein Condensation of Dilute Gases . . . . . . . . 790

14.3 A Glance at Quantum Electrodynamics . . . . . . . . . . . . . . . . . . 791
14.3.1 The Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . 793
14.3.2 The Principle of Critical Action . . . . . . . . . . . . . . . . . . . 795
14.3.3 The Gauge Field Approach . . . . . . . . . . . . . . . . . . . . . . . 796
14.3.4 The Extended Action Functional with Source Term . . 800
14.3.5 The Response Function for Photons . . . . . . . . . . . . . . . 801
14.3.6 The Response Function for Electrons . . . . . . . . . . . . . . 802
14.3.7 The Extended Quantum Action Functional . . . . . . . . . 803
14.3.8 The Magic Quantum Action Reduction Formula . . . . . 805
14.3.9 The Mnemonic Functional Integral . . . . . . . . . . . . . . . 806

15. The Operator Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815
15.1 The ϕ4-Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816

15.1.1 The Lattice Approximation . . . . . . . . . . . . . . . . . . . . . . . 817
15.1.2 Fourier Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819
15.1.3 The Free 2-Point Green’s Function . . . . . . . . . . . . . . . . 822
15.1.4 The Magic Dyson Formula for the S-Matrix . . . . . . . . 824
15.1.5 The Main Wick Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 826
15.1.6 Transition Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831
15.1.7 Transition Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 839
15.1.8 Scattering Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . 841
15.1.9 General Feynman Rules for Particle Scattering . . . . . . 845
15.1.10 The Magic Gell-Mann–Low Reduction Formula for

Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847
15.2 A Glance at Quantum Electrodynamics . . . . . . . . . . . . . . . . . . 848



Contents XXIII

15.3 The Role of Effective Quantities in Physics . . . . . . . . . . . . . . . 849
15.4 A Glance at Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 850

15.4.1 The Trouble with the Continuum Limit . . . . . . . . . . . . 852
15.4.2 Basic Ideas of Renormalization . . . . . . . . . . . . . . . . . . . . 852
15.4.3 The BPHZ Renormalization . . . . . . . . . . . . . . . . . . . . . . 855
15.4.4 The Epstein–Glaser Approach . . . . . . . . . . . . . . . . . . . . 856
15.4.5 Algebraic Renormalization . . . . . . . . . . . . . . . . . . . . . . . . 860
15.4.6 The Importance of Hopf Algebras . . . . . . . . . . . . . . . . . 861

15.5 The Convergence Problem in Quantum Field Theory . . . . . . . 862
15.5.1 Dyson’s No-Go Argument . . . . . . . . . . . . . . . . . . . . . . . . 862
15.5.2 The Power of the Classical Ritt Theorem in Quantum

Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863
15.6 Rigorous Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864

15.6.1 Axiomatic Quantum Field Theory . . . . . . . . . . . . . . . . . 868
15.6.2 The Euclidean Strategy in Constructive Quantum

Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872
15.6.3 The Renormalization Group Method . . . . . . . . . . . . . . . 874

16. Peculiarities of Gauge Theories . . . . . . . . . . . . . . . . . . . . . . . . . . 879
16.1 Basic Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879
16.2 The Principle of Critical Action . . . . . . . . . . . . . . . . . . . . . . . . . 880
16.3 The Language of Physicists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 886
16.4 The Importance of the Higgs Particle . . . . . . . . . . . . . . . . . . . . 888
16.5 Integration over Orbit Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 888
16.6 The Magic Faddeev–Popov Formula and Ghosts . . . . . . . . . . . 890
16.7 The BRST Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892
16.8 The Power of Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893

16.8.1 Physical States, Unphysical States, and Cohomology . 895
16.8.2 Forces and Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896
16.8.3 The Cohomology of Geometric Objects . . . . . . . . . . . . . 898
16.8.4 The Spectra of Atoms and Cohomology . . . . . . . . . . . . 901
16.8.5 BRST Symmetry and the Cohomology of Lie Groups 902

16.9 The Batalin–Vilkovisky Formalism . . . . . . . . . . . . . . . . . . . . . . . 905
16.10 A Glance at Quantum Symmetries . . . . . . . . . . . . . . . . . . . . . 906

17. A Panorama of the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 909
17.1 Introduction to Quantum Field Theory . . . . . . . . . . . . . . . . . . . 909
17.2 Quantum Gravity and Cosmology . . . . . . . . . . . . . . . . . . . . . . . 916
17.3 Exactly Soluble Models in Statistical Physics and Quantum

Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918
17.4 Standard References in Quantum Field Theory . . . . . . . . . . . . 920
17.5 Rigorous Approaches to Quantum Field Theory . . . . . . . . . . . 921
17.6 The Fascinating Interplay between Modern Physics and Math-

ematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924
17.7 The Monster Group, Vertex Algebras, and Physics . . . . . . . . . 935



XXIV Contents

17.8 Historical Development of Quantum Field Theory . . . . . . . . . 940
17.9 General Literature in Mathematics and Physics . . . . . . . . . . . 941
17.10 Encyclopedias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 942
17.11 Highlights of Physics in the 20th Century . . . . . . . . . . . . . . . 943
17.12 Actual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947
A.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947
A.2 The International System of Units . . . . . . . . . . . . . . . . . . . . . . . 950
A.3 The Planck System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952
A.4 The Energetic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958
A.5 The Beauty of Dimensional Analysis . . . . . . . . . . . . . . . . . . . . . 960
A.6 The Similarity Principle in Physics . . . . . . . . . . . . . . . . . . . . . . 962

Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025



Prologue

We begin with some quotations which exemplify the philosophical underpin-
nings of this work.

Theoria cum praxi.
Gottfried Wilhelm Leibniz (1646–1716)

It is very difficult to write mathematics books today. If one does not take
pains with the fine points of theorems, explanations, proofs and corollaries,
then it won’t be a mathematics book; but if one does these things, then
the reading of it will be extremely boring.

Johannes Kepler (1571–1630)
Astronomia Nova

The interaction between physics and mathematics has always played an
important role. The physicist who does not have the latest mathemati-
cal knowledge available to him is at a distinct disadvantage. The mathe-
matician who shies away from physical applications will most likely miss
important insights and motivations.

Marvin Schechter
Operator Methods in Quantum Mechanics5

In 1967 Lenard and I found a proof of the stability of matter. Our proof was
so complicated and so unilluminating that it stimulated Lieb and Thirring
to find the first decent proof. Why was our proof so bad and why was
theirs so good? The reason is simple. Lenard and I began with mathe-
matical tricks and hacked our way through a forest of inequalities without
any physical understanding. Lieb and Thirring began with physical under-
standing and went on to find the appropriate mathematical language to
make their understanding rigorous. Our proof was a dead end. Theirs was
a gateway to the new world of ideas collected in this book.

Freeman Dyson
From the Preface to Elliott Lieb’s Selecta6

The state of the art in quantum field theory. One of the intellectual
fathers of quantum electrodynamics is Freeman Dyson (born in 1923) who

5 North-Holland, Amsterdam, 1982.
6 Stability of Matter: From Atoms to Stars, Springer, New York, 2002.

E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics,
c© Springer-Verlag Berlin Heidelberg 2006, Corrected 2nd printing 2009



2 Prologue

works at the Institute for Advanced Study in Princeton.7 He characterizes
the state of the art in quantum field theory in the following way:

All through its history, quantum field theory has had two faces, one looking
outward, the other looking inward. The outward face looks at nature and
gives us numbers that we can calculate and compare with experiments.
The inward face looks at mathematical concepts and searches for a con-
sistent foundation on which to build the theory. The outward face shows
us brilliantly successful theory, bringing order to the chaos of particle in-
teractions, predicting experimental results with astonishing precision. The
inward face shows us a deep mystery. After seventy years of searching, we
have found no consistent mathematical basis for the theory. When we try
to impose the rigorous standards of pure mathematics, the theory becomes
undefined or inconsistent. From the point of view of a pure mathematician,
the theory does not exist. This is the great unsolved paradox of quantum
field theory.
To resolve the paradox, during the last twenty years, quantum field theo-
rists have become string-theorists. String theory is a new version of quan-
tum field theory, exploring the mathematical foundations more deeply and
entering a new world of multidimensional geometry. String theory also
brings gravitation into the picture, and thereby unifies quantum field the-
ory with general relativity. String theory has already led to important
advances in pure mathematics. It has not led to any physical predictions
that can be tested by experiment. We do not know whether string theory
is a true description of nature. All we know is that it is a rich treasure
of new mathematics, with an enticing promise of new physics. During the
coming century, string theory will be intensively developed, and, if we are
lucky, tested by experiment.8

Five golden rules. When writing the latex file of this book on my com-
puter, I had in mind the following five quotations. Let me start with the math-
ematician Hermann Weyl (1885–1955) who became a successor of Hilbert in
Göttingen in 1930 and who left Germany in 1933 when the Nazi regime came
to power. Together with Albert Einstein (1879–1955) and John von Neumann
(1903–1957), Weyl became a member of the newly founded Institute for Ad-
vanced Study in Princeton, New Jersey, U.S.A. in 1933. Hermann Weyl wrote
in 1938:9

The stringent precision attainable for mathematical thought has led many
authors to a mode of writing which must give the reader an impression
of being shut up in a brightly illuminated cell where every detail sticks
out with the same dazzling clarity, but without relief. I prefer the open
landscape under a clear sky with its depth of perspective, where the wealth
of sharply defined nearby details gradually fades away towards the horizon.

7 F. Dyson, Selected Papers of Freeman Dyson with Commentaries, Amer. Math.
Soc., Providence, Rhode Island, 1996. We recommend reading this fascinating
volume.

8 In: Quantum Field Theory, A 20th Century Profile. Edited by A. Mitra, Indian
National Science Academy and Hindustan Book Agency, 2000 (reprinted with
permission).

9 H. Weyl, The Classical Groups, Princeton University Press, 1938 (reprinted with
permission).
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For his fundamental contributions to electroweak interaction inside the Stan-
dard Model in particle physics, the physicist Steven Weinberg (born 1933) was
awarded the Nobel prize in physics in 1979 together with Sheldon Glashow
(born 1932) and Abdus Salam (1926–1996). On the occasion of a conference
on the interrelations between mathematics and physics in 1986, Weinberg
pointed out the following:10

I am not able to learn any mathematics unless I can see some problem I am
going to solve with mathematics, and I don’t understand how anyone can
teach mathematics without having a battery of problems that the student
is going to be inspired to want to solve and then see that he or she can
use the tools for solving them.

For his theoretical investigations on parity violation under weak interaction,
the physicist Cheng Ning Yang (born 1922) was awarded the Nobel prize in
physics in 1957 together with Tsung Dao Lee (born 1926). In an interview,
Yang remarked:11

In 1983 I gave a talk on physics in Seoul, South Korea. I joked “There
exist only two kinds of modern mathematics books: one which you cannot
read beyond the first page and one which you cannot read beyond the first
sentence. The Mathematical Intelligencer later reprinted this joke of mine.
But I suspect many mathematicians themselves agree with me.”

The interrelations between mathematics and modern physics have been pro-
moted by Sir Michael Atiyah (born 1929) on a very deep level. In 1966, the
young Atiyah was awarded the Fields medal. In an interview, Atiyah empha-
sized the following:12

The more I have learned about physics, the more convinced I am that
physics provides, in a sense, the deepest applications of mathematics. The
mathematical problems that have been solved, or techniques that have
arisen out of physics in the past, have been the lifeblood of mathematics. . .
The really deep questions are still in the physical sciences. For the health of
mathematics at its research level, I think it is very important to maintain
that link as much as possible.

The development of modern quantum field theory has been strongly influ-
enced by the pioneering ideas of the physicist Richard Feynman (1918–1988).
In 1965, for his contributions to the foundation of quantum electrodynam-
ics, Feynman was awarded the Nobel prize in physics together with Julian
Schwinger (1918–1994) and Sin-Itiro Tomonaga (1906–1979). In the begin-
ning of the 1960s, Feynman held his famous Feynman lectures at the Califor-
nia Institute of Technology in Pasadena. In the preface to the printed version
of the lectures, Feynman told his students the following:

Finally, may I add that the main purpose of my teaching has not been
to prepare you for some examination – it was not even to prepare you to

10 Notices Amer. Math. Soc. 33 (1986), 716–733 (reprinted with permission).
11 Mathematical Intelligencer 15 (1993), 13–21 (reprinted with permission).
12 Mathematical Intelligencer 6 (1984), 9–19 (reprinted with permission).
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serve industry or military. I wanted most to give you some appreciation
of the wonderful world and the physicist’s way of looking at it, which, I
believe, is a major part of the true culture of modern times.13

The fascination of quantum field theory. As a typical example, let
us consider the anomalous magnetic moment of the electron. This is given by
the following formula

Me = − e

2me
geS

with the so-called gyromagnetic factor

ge = 2(1 + a)

of the electron. Here, me is the mass of the electron, −e is the negative electric
charge of the electron. The spin vector S has the length �/2, where h denotes
Planck’s quantum of action, and � := h/2π. High-precision experiments yield
the value

aexp = 0.001 159 652 188 4 ± 0.000 000 000 004 3 .

Quantum electrodynamics is able to predict this result with high accuracy.
The theory yields the following value

a =
α

2π
− 0.328 478 965

(α

π

)2

+(1.175 62 ± 0.000 56)
(α

π

)3

−(1.472 ± 0.152)
(α

π

)4

(0.1)

with the electromagnetic fine structure constant

α =
1

137.035 989 500 ± 0.000 000 061
.

Explicitly,
a = 0.001 159 652 164 ± 0.000 000 000 108 .

The error is due to the uncertainty of the electromagnetic fine structure
constant α. Observe that 9 digits coincide between the experimental value
aexp and the theoretical value a.

The theoretical result (0.1) represents a highlight in modern theoretical
physics. The single terms with respect to powers of the fine structure constant
α have been obtained by using the method of perturbation theory. In order
to represent graphically the single terms appearing in perturbation theory,
Richard Feynman (1918–1988) invented the language of Feynman diagrams
in about 1945.14 For example, Fig. 0.1 shows some simple Feynman diagrams
13 R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures in Physics,

Addison-Wesley, Reading, Massachusetts, 1963.
14 For the history of this approach, see the quotation on page 27.
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(a)

γ γ

e− e−� � �

(b)

� �
e− e−� � � � � � � �

γ

e− e−

Fig. 0.1. Feynman diagrams

for the Compton scattering between electrons and photons. In higher order of
perturbation theory, the Feynman diagrams become more and more complex.
In particular, in order to get the α3-term of (0.1), one has to use 72 Feynman
diagrams. The computation of the α3-term has taken 20 years. The α4-term
from (0.1) is based on 891 Feynman diagrams. The computation has been
done mainly by numerical approximation methods. This needed years of su-
percomputer time.15 The mathematical situation becomes horrible because
of the following fact.

Many of the Feynman diagrams correspond to divergent higher-
dimensional integrals called algebraic Feynman integrals.

Physicists invented the ingenious method of renormalization in order to give
the apparently meaningless integrals a precise interpretation. Renormaliza-
tion plays a fundamental role in quantum field theory. Physicists do not
expect that the perturbation series (0.1) is part of a convergent power series
expansion with respect to the variable α at the origin. Suppose that there
would exist such a convergent power series expansion

a =
∞∑

n=1

anα
n, |α| ≤ α0

near the origin α = 0. This series would then converge for small negative
values of α. However, such a negative coupling constant would correspond to
a repelling force which destroys the system. This argument is due to Dyson.16

Therefore, we do not expect that the series (0.1) is convergent.

In Sect. 15.5.2, we will show that each formal power series expansion is indeed
the asymptotic expansion of some analytic function in an angular domain,
by the famous 1916 Ritt theorem in mathematics.
15 See M. Veltman, Facts and Mysteries in Elementary Particle Physics, World Sci-

entific, Singapore, 2003; this is a beautiful history of modern elementary particle
physics.

16 F. Dyson, Divergence of perturbation theory in quantum electrodynamics, Phys.
Rev. 85 (1952), 631–632.
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From the mathematical point of view, the best approach to renormaliza-
tion was created by Epstein and Glaser in 1973. The Epstein–Glaser theory
avoids the use of divergent integrals and their regularization, but relies on
the power of the modern theory of distributions (generalized functions).

Physicists have also computed the magnetic moment of the myon. As
for the electron, the coincidence between theory and experiment is of fan-
tastic accuracy. Here, the theory takes all of the contributions coming from
electromagnetic, weak, strong, and gravitative interaction into account.17

It is a challenge for the mathematics of the future to completely un-
derstand formula (0.1).

Let us now briefly discuss the content of Volumes I through VI of this mono-
graph.

Volume I. The first volume entitled Basics in Mathematics and Physics
is structured in the following way.

Part I: Introduction
• Chapter 1: Historical Introduction
• Chapter 2: Phenomenology of the Standard Model in Particle Physics
• Chapter 3: The Challenge of Different Scales in Nature.

Part II: Basic Techniques in Mathematics
• Chapter 4: Analyticity
• Chapter 5: A Glance at Topology
• Chapter 6: Many-Particle Systems
• Chapter 7: Rigorous Finite-Dimensional Magic Formulas of Quantum

Field Theory
• Chapter 8: Rigorous Finite-Dimensional Perturbation Theory
• Chapter 9: Calculus for Grassmann Variables
• Chapter 10: Infinite-Dimensional Hilbert Spaces
• Chapter 11: Distributions and Green’s Functions
• Chapter 12: Distributions and Quantum Physics.

Part III: Heuristic Magic Formulas of Quantum Field Theory
• Chapter 13: Basic Strategies in Quantum Field Theory
• Chapter 14: The Response Approach
• Chapter 15: The Operator Approach
• Chapter 16: Peculiarities of Gauge Theories
• Chapter 17: A Panorama of the Literature.

Describing the content of Volume I by a parable, we will first enter a mountain
railway in order to reach easily and quickly the top of the desired mountain
and to admire the beautiful mountain ranges. Later on we will try to climb
to the top along the rocks.
17 See M. Böhm, A. Denner, and H. Joos, Gauge Theories of the Strong and Elec-

troweak Interaction, Teubner, Stuttgart, 2001, p. 80.
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In particular, the heuristic magic formulas from Part III should help the
reader to understand quickly the language of physicists in quantum field
theory. These magic formulas are non-rigorous from the mathematical point
of view, but they are extremely useful for computing physical effects.

Modern elementary particle physics is based on the Standard Model in
particle physics introduced in the late 1960s and the early 1970s. Before
studying thoroughly the Standard Model in the next volumes, we will discuss
the phenomenology of this model in the present volume. It is the goal of
quantum field theory to compute

• the cross sections of scattering processes in particle accelerators which char-
acterize the behavior of the scattered particles,

• the masses of stable elementary particles (e.g., the proton mass as a bound
state of three quarks), and

• the lifetime of unstable elementary particles in particle accelerators.

To this end, physicists use the methods of perturbation theory. Fortunately
enough, the computations can be based on only a few basic formulas which
we call magic formulas. The magic formulas of quantum theory are extremely
useful for describing the experimental data observed in particle accelerators,
but they are only valid on a quite formal level.

This difficulty is typical for present quantum field theory.

To help the reader in understanding the formal approach used in physics, we
consider the finite-dimensional situation in the key Chapter 7.

In the finite-dimensional case, we will rigorously prove all of the
magic formulas used by physicists in quantum field theory.

Furthermore, we relate physics to the following fields of mathematics:

• causality and the analyticity of complex-valued functions,
• many-particle systems, the Casimir effect in quantum field theory, and

number theory,
• propagation of physical effects, distributions (generalized functions), and

the Green’s function,
• rigorous justification of the elegant Dirac calculus,
• duality in physics (time and energy, time and frequency, position and mo-

mentum) and harmonic analysis (Fourier series, Fourier transformation,
Laplace transformation, Mellin transformation, von Neumann’s general op-
erator calculus for self-adjoint operators, Gelfand triplets and generalized
eigenfunctions),

• the relation between renormalization, resonances, and bifurcation,
• dynamical systems, Lie groups, and the renormalization group,
• fundamental limits in physics,
• topology in physics (Chern numbers and topological quantum numbers),
• probability, Brownian motion, and the Wiener integral,
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• the Feynman path integral,
• Hadamard’s integrals and algebraic Feynman integrals.

In fact, this covers a broad range of physical and mathematical subjects.
Volume II. The second volume entitled Quantum Electrodynamics con-

sists of the following parts.18

Part I: Introduction
• Chapter 1: Mathematical Principles of Modern Natural Philosophy
• Chapter 2: The Basic Strategy of Extracting Finite Information from

Infinities – Ariadne’s Thread in Renormalization Theory
• Chapter 3: The Power of Combinatorics and Hopf Algebras
• Chapter 4: The Strategy of Equivalence Classes in Mathematics.

Part II: Basic Ideas in Classical Mechanics
• Chapter 5: Geometrical Optics
• Chapter 6: The Principle of Critical Action and the Harmonic Oscilla-

tor – Ariadne’s Thread in Classical Mechanics.
Part III: Basic Ideas in Quantum Mechanics

• Chapter 7: Quantization of the Harmonic Oscillator – Ariadne’s Thread
in Quantization

• Chapter 8: Quantum Particles on the Real Line – Ariadne’s Thread in
Scattering Theory

• Chapter 9: A Glance at General Scattering Theory.
Part IV: Quantum Electrodynamics (QED)

• Chapter 10: Creation and Annihilation Operators
• Chapter 11: The Basic Equations in Quantum Electrodynamics
• Chapter 12: The Free Quantum Fields of Electrons, Positrons, and

Photons
• Chapter 13: The Interacting Quantum Field, and the Magic Dyson

Series for the S-Matrix
• Chapter 14: The Beauty of Feynman Diagrams in QED
• Chapter 15: Applications to Physical Effects.

Part V: Renormalization
• Chapter 16: The Continuum Limit
• Chapter 17: Radiative Corrections of Lowest Order
• Chapter 18: A Glance at Renormalization to all Orders of Perturbation

Theory
• Chapter 19: Perspectives.

The final goal of quantum field theory is the foundation of a rigorous math-
ematical theory which contains the Standard Model as a special low-energy
approximation. At present we are far away from reaching this final goal. From
18 This volume appeared in 2008.
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the physical point of view, the most successful quantum field theory is quan-
tum electrodynamics. This will be studied in Volume II along with some appli-
cations to important physical processes like Compton scattering between elec-
trons and photons, the spontaneous emission of light by molecules, Cherenkov
radiation of fast electrons, the Lamb shift in the hydrogen spectrum, and the
anomalous magnetic moment of the electron. Generally, we try to include
both interesting mathematics and interesting physics. In particular, we will
discuss the relation of renormalization in physics to the following mathe-
matical subjects: Euler’s gamma function, the Riemann–Liouville integral,
and dimensional regularization; Borel summation of divergent series; pseudo-
convergence of iterative methods for ill-posed problems, Hopf algebras and
Rota–Baxter algebras; theory of categories; wave front sets and the theory
of distributions, Euler’s and Feynman’s mathemagics. Some important, but
lengthy computations of physical effects in quantum electrodynamics based
on renormalization theory are postponed to Volume III.

Volume III. The fundamental forces in the universe are described
by gauge field theories which generalize both Gauss’ surface theory and
Maxwell’s theory of electromagnetism. The third volume entitled Gauge The-
ory is divided into the following parts.

Part I: The Euclidean Manifold as a Paradigm
• Chapter 1: The Euclidean Space E3

• Chapter 2: Algebras and Supersymmetry
• Chapter 3: The Euclidean Manifold E

3

• Chapter 4: The Lie Group of Rotations and the Lie Algebra of In-
finitesimal Rotations

• Chapter 5: Temperature Fields on the Euclidean Manifold and the Lie
Derivative

• Chapter 6: The Lie Algebra of Velocity Vector Fields on the Euclidean
Manifold

• Chapter 7: The Beauty of Differential Forms.
Part II: The Sphere as the Paradigm of a Curved Surface

• Chapter 8: The Gauss Method of Quadratic Forms
• Chapter 9: The Cartan Method of Moving Frames and Fiber Bundles.

Part III: Observers and Invariants
• Chapter 10: Change of Local Coordinates for Two Observers
• Chapter 11: Families of Observers and Cocycles
• Chapter 12: Linear Connections.

Part IV: Einstein’s Theory of Special Relativity
• Chapter 13: The Importance of Inertial Systems
• Chapter 14: The Mathematical Structure of the Minkowski Space
• Chapter 15: The Poincaré Group and the Electromagnetic Field
• Chapter 16: Spinor Calculus.

Part V: Ariadne’s Thread in Gauge Theory
• Chapter 17: The SU(N)-Gauge Theory as a Paradigm
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• Chapter 18: Models in Solid State Physics.
Part VI: The Fundamental Forces in Nature

• Chapter 19: The Clifford Algebra of the Minkowski Space and the
Relativistic Electron

• Chapter 20: The Hydrogen Atom as a Paradigm
• Chapter 21: The Stability of Matter
• Chapter 22: The Standard Model in Particle Physics
• Chapter 23: Einstein’s Theory of General Relativity and Cosmology.

Part VII: Radiative Corrections in Quantum Electrodynamics (QED)
• Chapter 24: Dimensional Regularization of Critical Feynman Diagrams
• Chapter 25: The Electron in an External Electromagnetic Field
• Chapter 26: The Lamb Shift.

Part VIII: A Glance at String Theory
• Chapter 27: Minimal Surfaces
• Chapter 28: Strings and the Graviton.

Interestingly enough, it turns out that the Standard Model in particle physics
is related to many deep questions in both mathematics and physics. We will
see that the question about the structure of the fundamental forces in nature
has influenced implicitly or explicitly the development of a large part of
mathematics. One of our heros will be Carl Friedrich Gauss (1777–1855),
one of the greatest mathematicians of all time. We will encounter his highly
influential work again and again. In the German Museum in Munich, one can
read the following inscription under Gauss’ impressive portrait:

His spirit lifted the deepest secrets of numbers, space, and nature; he mea-
sured the orbits of the planets, the form and the forces of the earth; in his
mind he carried the mathematical science of a coming century.

On the occasion of Gauss’ death, Sartorius von Waltershausen wrote the
following in 1855:

From time to time in the past, certain brilliant, unusually gifted person-
alities have arisen from their environment, who by virtue of the creative
power of their thoughts and the energy of their actions have had such an
overall positive influence on the intellectual development of mankind, that
they at the same time stand tall as markers between the centuries. . . Such
epoch-making mental giants in the history of mathematics and the natural
sciences are Archimedes of Syracuse in ancient times, Newton toward the
end of the dark ages and Gauss in our present day, whose shining, glorious
career has come to an end after the cold hand of death touched his at one
time deeply-thinking head on February 23 of this year.

Another hero will be Bernhard Riemann (1826–1866) – a pupil of Gauss.
Riemann’s legacy influenced strongly mathematics and physics of the 20th
century, as we will show in this treatise.19

19 We also recommend the beautiful monograph written by Krzysztof Maurin, The
Riemann Legacy, Kluwer, Dordrecht, 1997.
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The two Standard Models in modern physics concerning cosmology and
elementary particles are closely related to modern differential geometry. This
will be thoroughly studied in Volume III. We will show that both Einstein’s
general theory of relativity and the Standard Model in particle physics are
gauge theories. From the mathematical point of view, the fundamental forces
in nature are curvatures of appropriate fiber bundles. Historically, mathe-
maticians have tried to understand the curvature of geometric objects. At
the very beginning, there was Gauss’ theorema egregium20 telling us the cru-
cial fact that curvature is an intrinsic property of a surface. On the other
side, in the history of physics, physicists have tried to understand the forces
in nature. Nowadays we know that both mathematicians and physicists have
approached the same goal coming from different sides. We can summarize
this by saying briefly that

force = curvature.

From the physical point of view, the parallel transport of physical informa-
tion plays the fundamental role in gauge theory. For the convenience of the
reader, we will also discuss in Volume III that many of the mathematical
concepts arising in quantum field theory are rooted in the geometry of the
Euclidean space (e.g., Lie groups and Lie algebras, operator algebras, Grass-
mann algebras, Clifford algebras, differential forms and cohomology, Hodge
duality, projective structures, symplectic structures, contact structures, con-
formal structures, Riemann surfaces, and supersymmetry).

Volume IV. Quantum physics differs from classical relativistic field the-
ories by adding the process of quantization. From the physical point of view,
there appear additional quantum effects based on random quantum fluctu-
ations. From the mathematical point of view, one has to deform classical
theories in an appropriate way. Volume IV is devoted to the mathematical
methods of quantization. For this, we coin the term Quantum Mathematics.
This is a branch of mathematics. Volume IV represents the first systematic
textbook on Quantum Mathematics. This volume will be divided into the
following parts.

Part I: Quantization
Part II: Quantum Information
Part III: Symmetry, Groups, and Hopf Algebras
Part IV: Observables and Operator Algebras
Part V: Cohomology and Homology
Part VI: Physical Fields, Fiber Bundles, and Sheaves.

Typically, quantum fields are interacting physical systems with an infinite
number of degrees of freedom and very strong singularities. In mathematics,

• interactions lead to nonlinear terms, and
• infinite-dimensional systems are described in terms of functional analysis.
20 The Latin expression theorema egregium means the beautiful theorem.
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Therefore, the right mathematical setting for quantum field theory is nonlin-
ear functional analysis. This branch of mathematics has been very successful
in the rigorous treatment of nonlinear partial differential equations concern-
ing elasticity and plasticity theory, hydrodynamics, and the theory of general
relativity. But the actual state of the art of nonlinear functional analysis
does not yet allow for the rigorous investigation of realistic models in quan-
tum field theory, like the Standard Model in particle physics. Physicists say,
we cannot wait until mathematics is ready. Therefore, we have to develop our
own non-rigorous methods, and we have to check the success of our methods
by comparing them with experimental data. In order to help mathematicians
to enter the world of physicists, we will proceed as follows.

(i) Rigorous methods: We first develop quantum mathematics in finite-
dimensional spaces. In this case, we can use rigorous methods based on
the theory of Hilbert spaces, operator algebras, and discrete functional
integrals.

(ii) Formal methods. The formulas from (i) can be generalized in a straight-
forward, but formal way to infinite-dimensional systems.

This way, the mathematician should learn where the formulas of the physicists
come from and how to handle these formulas in order to compute physical
effects. What remains is to solve the open problem of rigorous justification.

The point will be the investigation of limits and pseudo-limits if the
number of particles goes to infinity.

By a pseudo-limit, we understand the extraction of maximal information
from an ill-defined object, as in the method of renormalization. The experi-
ence of physicists and mathematicians shows that we cannot expect the limits
or pseudo-limits to exist for all possible quantities. The rule of thumb is as
follows: concentrate on quantities which can be measured in physical experi-
ments. This seriously complicates the subject. We will frequently encounter
the Feynman functional integral. From the mnemonic point of view, this is
a marvellous tool. But it lacks mathematical rigor. We will follow the advise
given by Evariste Galois (1811–1832):

Unfortunately what is little recognized is that the most worthwhile scien-
tific books are those in which the author clearly indicates what he does
not know; for an author most hurts his readers by concealing difficulties.

Volume V. The mathematician should notice that it is the ultimate goal
of a physicist to compute real numbers which can be measured in physical
experiments. For reaching this goal, the physicist mixes rigorous arguments
with heuristic ones in an ingenious way. In order to make mathematicians
familiar with this method of doing science, in Volume V we will study the
physics of the Standard Model in particle physics. In particular, we will show
how to compute a number of physical effects. In this respect, symmetries will
play an important role. For example, this will concern the representation the-
ory of compact Lie groups (e.g., gauge groups in gauge theory), noncompact
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Lie groups (the Poincaré group and its universal covering group in relativis-
tic physics), infinite-dimensional Lie algebras (e.g., the Virasoro algebra in
string theory), and supersymmetric generalizations.

Volume VI. The last volume will be devoted to combining the Standard
Model in particle physics with gravitation. We will study several possible
approaches to this fascinating, but still completely open problem. The leading
candidate is string theory. In connection with the string theory of physicists,
a completely new way of thinking has emerged which we will call physical
mathematics, a term already used in Kishore Marathe’s nice survey article
on the role of knot theory in modern mathematics, physics, and biology.21

Distinguish the following:

• By mathematical physics, we traditionally understand a branch of mathe-
matics which answers questions coming from physics by applying rigorous
mathematical methods. The heart of mathematical physics are mathemat-
ical proofs (e.g., existence proofs for solutions of partial differential equa-
tions or operator equations).

• By physical mathematics, we understand a branch of physics which is mo-
tivated by the question about the fundamental forces in nature. Using
physical pictures, physicists are able to conjecture deep mathematical re-
sults (e.g., the existence and the properties of new topological invariants
for manifolds and knots). The heart of physical mathematics is physical
intuition, but not the mathematical proof.

The hero of physical mathematics is the physicist Edward Witten (born 1951)
from the Institute for Advanced Study in Princeton. At the International
Congress of Mathematicians in Kyoto (Japan) in 1990, Witten was awarded
the Fields medal. In the last 15 years, physical mathematics was very suc-
cessful in feeding fascinating new ideas into mathematics. The main method
of physical mathematics goes like this:

• start with a model in quantum field theory based on an appropriate La-
grangian;

• quantize this model by means of the corresponding Feynman functional
integral;

• extract essential information from the functional integral by using the
method of stationary phase.

The point is that this method yields beautiful mathematical conjectures, but
it is not able to give rigorous proofs. Unfortunately, for getting proofs, math-
ematicians have to follow quite different sophisticated routes. It is a challenge
to mathematicians to understand better the magic weapon of physical math-
ematics.
21 K. Marathe, A chapter in physical mathematics: theory of knots in the sciences,

pp. 873–888. In: Mathematics Unlimited – 2001 and Beyond edited by B. En-
gquist and W. Schmid, Springer, Berlin, 2001.
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The magic weapon of physical mathematics will be called the Witten
functor. This functor translates physical structures into mathematical
structures.

With respect to the Witten functor, one observes the following general evo-
lution principle in mathematics.

(i) From quantity to quality: In the 1920s, modern algebra was founded by
passing from concrete mathematical objects like numbers to abstract
mathematical structures like groups, rings, fields, and algebras. Here, one
only considers the relations between the objects, but not the individual
structure of the objects. For example, Emmy Noether emphasized in the
1920s that, in the setting of algebraic topology created by Poincaré at the
end of the 19th century, it is very useful to pass from Betti numbers to
homology groups. In turn, it was discovered in the 1930s that cohomology
groups are in fact richer in structure than homology groups. The point is
that cohomology groups possess a natural multiplicative structure which
generates the cohomology ring of topological spaces. For example, the
product S

2×S
4 of a 2-dimensional sphere with a 4-dimensional sphere has

the same homology and cohomology groups as the 3-dimensional complex
projective space P

3
C
. However, these two manifolds are not topologically

equivalent, since their cohomology rings are different.
(ii) Combining abstract structures with each other: For example, Lie groups

are obtained by combining the notion of manifold with the notion of
group. In turn, fiber bundles occur by combining manifolds with Lie
groups.

(iii) Functors between abstract structures: In the late 1940s, the theory of
categories emerged in the context of algebraic topology. For example, the
Galois functor simplifies the study of field extensions by mapping fields
to groups. The Lie functor simplifies the investigation of Lie groups by
mapping Lie groups to Lie algebras. Moreover, the homology functor sim-
plifies the structural analysis of topological spaces (geometric objects) by
mapping topological spaces to groups called homology groups. Combin-
ing the homology functor with the general concept of duality, we arrive
at the cohomology functor which maps topological spaces to cohomology
groups. Cohomology plays a fundamental role in modern physics.

(iv) Statistics of abstract structures: In physical mathematics, one considers
the statistics of physical states in terms of functional integrals. The point
is that the states are equivalence classes of mathematical structures. In
the language of mathematics, the physical state spaces are moduli spaces.
For example, in string theory the states of strings are Riemann surfaces
modulo conformal equivalence. Thus, the state space of all those strings
which possess a fixed genus g is nothing other than Riemann’s famous
moduli space Mg which can be described by a universal covering space
of Mg called the Teichmüller space Tg. Mathematicians know that the
theory of moduli spaces is a challenge in algebraic geometry, since such
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objects carry singularities, as a rule. Physicists expect that those singu-
larities are responsible for essential physical effects.

Another typical feature of physical mathematics is the description of many-
particle systems by partition functions which encode essential information.
As we will show, the Feynman functional integral is nothing other than a
partition function which encodes the essential properties of quantum fields.
From the physical point of view, the Riemann zeta function is a partition
function for the infinite system of prime numbers. The notion of partition
function unifies

• statistical physics,
• quantum mechanics,
• quantum field theory, and
• number theory.

Summarizing, I dare say that

The most important notion of modern physics is the Feynman func-
tional integral as a partition function for the states of many-particle
systems.

It is a challenge of mathematics to understand this notion in a better way
than known today.

A panorama of mathematics. For the investigation of problems in
quantum field theory, we need a broad spectrum of mathematical branches.
This concerns

(a) algebra, algebraic geometry, and number theory,
(b) analysis and functional analysis,
(c) geometry and topology,
(d) information theory, theory of probability, and stochastic processes,
(e) scientific computing.

In particular, we will deal with the following subjects:

• Lie groups and symmetry, Lie algebras, Kac–Moody algebras (gauge groups,
permutation groups, the Poincaré group in relativistic physics, conformal
symmetry),

• graded Lie algebras (supersymmetry between bosons and fermions),
• calculus of variations and partial differential equations (the principle of

critical action),
• distributions (also called generalized functions) and partial differential

equations (Green’s functions, correlation functions, propagator kernels, or
resolvent kernels),

• distributions and renormalization (the Epstein–Glaser approach to quan-
tum field theory via the S-matrix),

• geometric optics and Huygens’ principle (symplectic geometry, contact
transformations, Poisson structures, Finsler geometry),
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• Einstein’s Brownian motion, diffusion, stochastic processes and the Wiener
integral, Feynman’s functional integrals, Gaussian integrals in the theory of
probability, Fresnel integrals in geometric optics, the method of stationary
phase,

• non-Euclidean geometry, covariant derivatives and connections on fiber
bundles (Einstein’s theory of general relativity for the universe, and the
Standard Model in elementary particle physics),

• the geometrization of physics (Minkowski space geometry and Einstein’s
theory of special relativity, pseudo-Riemannian geometry and Einstein’s
theory of general relativity, Hilbert space geometry and quantum states,
projective geometry and quantum states, Kähler geometry and strings,
conformal geometry and strings),

• spectral theory for operators in Hilbert spaces and quantum systems,
• operator algebras and many-particle systems (states and observables),
• quantization of classical systems (method of operator algebras, Feynman’s

functional integrals, Weyl quantization, geometric quantization, deforma-
tion quantization, stochastic quantization, the Riemann–Hilbert problem,
Hopf algebras and renormalization),

• combinatorics (Feynman diagrams, Hopf algebras),
• quantum information, quantum computers, and operator algebras,
• conformal quantum field theory and operator algebras,
• noncommutative geometry and operator algebras,
• vertex algebras (sporadic groups, monster and moonshine),
• Grassmann algebras and differential forms (de Rham cohomology),
• cohomology, Hilbert’s theory of syzygies, and BRST quantization of gauge

field theories,
• number theory and statistical physics,
• topology (mapping degree, Hopf bundle, Morse theory, Lyusternik–Schni-

relman theory, homology, cohomology, homotopy, characteristic classes, ho-
mological algebra, K-theory),

• topological quantum numbers (e.g., the Gauss–Bonnet theorem, Chern
classes, and Chern numbers, Morse numbers, Floer homology),

• the Riemann–Roch–Hirzebruch theorem and the Atiyah–Singer index the-
orem,

• analytic continuation, functions of several complex variables (sheaf theory),
• string theory, conformal symmetry, moduli spaces of Riemann surfaces,

and Kähler manifolds.

The role of proofs. Mathematics relies on proofs based on perfect logic.
The reader should note that, in this treatise, the terms

• proposition,
• theorem (important proposition), and
• proof
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are used in the rigorous sense of mathematics. In addition, for helping the
reader in understanding the basic ideas, we also use ‘motivations’, ‘formal
proofs’, ‘heuristic arguments’ and so on, which emphasize intuition, but lack
rigor. Because of the rich material to be studied, it is impossible to provide
the reader with full proofs for all the different subjects. However, for missing
proofs we add references to carefully selected sources. Many of the missing
proofs can be found in the following monographs:

• E. Zeidler, Applied Functional Analysis, Vols. 1, 2, Springer, New York. 1995.
• E. Zeidler, Nonlinear Functional Analysis and its Applications, Vols. 1–4, Sprin-

ger, New York, 1985–88.

For getting an overview, the reader should also consult the following book:22

• E. Zeidler (Ed.), Oxford Users’ Guide to Mathematics, Oxford University Press,
2004 (1300 pages).

At the end of the Oxford Users’ Guide to Mathematics, the interested reader
may find a chronology of mathematics and physics from ancient to present
times embedded in the cultural history of mankind.

Perspectives. At the International Congress of Mathematicians in Paris
in 1900, Hilbert formulated 23 open problems for the mathematics of the
20th century. Many of them have been solved.23 Hilbert said the following to
the audience in 1900:

Each progress in mathematics is based on the discovery of stronger tools
and easier methods, which at the same time makes it easier to understand
earlier methods. By making these stronger tools and easier methods his
own, it is possible for the individual researcher to orientate himself in the
different branches of mathematics. . .
When the answer to a mathematical problem cannot be found, then the
reason is frequently that we have not recognized the general idea from
which the given problem only appears as a link in a chain of related prob-
lems. . .
The organic unity of mathematics is inherent in the nature of this sci-
ence, for mathematics is the foundation of all exact knowledge of natural
phenomena.

For the 21th century, the open problem of quantum field theory represents a
great challenge. It is completely unclear how long the solution of this prob-
lem will take. In fact, there are long-term problems in mathematics. As an
example, let us consider Fermat’s Last Theorem where the solution needed
more than 350 years. In ancient times, Pythagoras (508–500 B.C.) knew that
the equation

x2 + y2 = z2

22 The German version reads as E. Zeidler, Teubner-Taschenbuch der Mathematik,
Vols. 1, 2, Teubner, Wiesbaden, 2003. The English translation of the second
volume is in preparation.

23 See D. Hilbert, Mathematical Problems, Bull. Amer. Math. Soc. 8 (1902), 437–
479, and B. Yandell, The Honors Class: Hilbert’s Problems and Their Solvers,
Natick, Massachusetts, 2001.
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has an infinite number of integer solutions (e.g., x = 3, y = 4, z = 5). In 1637,
Pierre de Fermat (1601–1665), claimed that the equation

xn + yn = zn, n = 3, 4, . . .

has no nontrivial integer solution. In his copy of the Arithmetica by Diophan-
tus (250 A.C.), Fermat wrote the following:

It is impossible to separate a cube into two cubes, or a biquadrate into
two biquadrates, or generally any power except a square into two powers
with the same exponent. I have discovered a truly marvellous proof of this,
which however the margin is not large enough to contain.

The history of this problem can be found in the bestseller by Simon Singh,
Fermat’s Last Theorem: The Story of a Riddle that Confounded the World’s
Greatest Minds for 358 Years, Fourth Estate, London, 1997. The final proof
was given by Andrew Wiles (born 1953) in Princeton in 1994.24 The proof,
based on the Galois functor, is of extraordinary complexity, and it uses many
sophisticated tools from number theory and algebraic geometry developed
in the 19th and 20th century. However, in the sense of Hilbert’s philosophy
for hard problems quoted above, let us describe the basic idea behind the
solution. In this connection, it turns out that there is a beautiful geometric
result of general interest behind Fermat’s Last Theorem.25 The fundamental
geometric result tells us that26

(M) Each elliptic curve is modular.

Roughly speaking, the proof of Fermat’s last theorem proceeds now like this:

(i) Suppose that Fermat’s claim is wrong. Then, there exists a nontrivial
triplet x, y, z of integers such that xn + yn = zn for some fixed natural
number n ≥ 3.

(ii) The triplet x, y, z can be used in order to construct a specific elliptic
curve (the Frey curve), which is not modular, a contradiction to (M).

It remains to sketch the meaning of the geometric principle (M). To begin
with, consider the equation of the complex unit circle

x2 + y2 = 1

where x and y are complex parameters. The unit circle allows a parametriza-
tion either by periodic functions,
24 A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Ann. Math. 142

(1994), 443–551.
25 We refer to the beautiful lecture given by Don Zagier, Leçon inaugurale, Jeudi

17 Mai 2001, Collège de France, Paris. See also H. Darmon, A proof of the full
Shimura–Taniyama–Weil conjecture is announced, Notices Amer. Math. Soc. 46
(1999), 1397–1401. Much background material can be found in the fascinating
textbook by Y. Hellagouarch, Invitation to the Mathematics of Fermat–Wiles,
Academic Press, New York.

26 A comprehensive survey article on modular forms can be found in Zagier (1995).
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x = cosϕ, y = sinϕ, ϕ ∈ C,

or by rational functions,

x =
2

1 + t2
− 1, y =

2t
1 + t2

, t ∈ C,

provided we set t := tan ϕ
2 . Recall that each compact Riemann surface

of genus zero is conformally and topologically equivalent to the real two-
dimensional sphere called the Riemann sphere. In particular, the complex
unit circle considered above is such a Riemann surface of genus zero. More-
over, compact Riemann surfaces of genus one are conformally and topologi-
cally equivalent to some real two-dimensional torus. Such Riemann surfaces
are also called elliptic curves. For example, given three pairwise different
complex numbers e1, e2, e3, the equation

y2 = 4(x− e1)(x− e2)(x− e3)

with complex parameters x and y represents an elliptic curve which allows
the global parametrization

x = ℘(t), y = ℘′(t), t ∈ C

by the Weierstrass ℘-function. This is an elliptic (i.e., double-periodic) func-
tion whose two complex periods depend on e1, e2, e3. The fundamental geo-
metric result reads now as follows:

(i) Each compact Riemann surface of genus zero (i.e., each complex curve of
circle type) allows two global parametrizations by either periodic func-
tions or rational functions.

(ii) Each compact Riemann surface of genus one (i.e., each elliptic curve)
allows two global parametrizations by either double-periodic functions
or modular functions.

(iii) Each compact Riemann surface of genus g ≥ 2 can be globally parame-
trized by automorphic functions.27

The global parametrization (i) of elliptic curves by elliptic functions is one of
the most famous results of 19th century mathematics due to Jacobi, Riemann,
and Weierstrass. The general result (ii) on the global parametrization of el-
liptic curves by modular functions was only proved in 1999, i.e., it was shown
that the full Shimura–Taniyama–Weil conjecture is true. Statement (iii) rep-
resents the famous uniformization theorem for compact Riemann surfaces
which was proved independently by Koebe and Poincaré in 1907 after strong
efforts made by Poincaré and Klein. The existence of double-periodic func-
tions was discovered by Gauss in 1797 while studying the geometric properties
27 Much material on Riemann surfaces, elliptic curves, zeta functions, Galois theory,

and so on, can be found in the volume edited by M. Waldschmidt et al., From
Number Theory to Physics, Springer, New York, 1995.
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of the lemniscate introduced by Jakob Bernoulli (1654–1705). Therefore, the
innocent looking three statements (i), (ii), (iii) above are the result of 200
years of intense mathematical research. Summarizing, in the sense of Hilbert,
the famous Fermat conjecture could finally be solved because it could be re-
duced to the general idea of modular curves. In a fascinating essay on the
future of mathematics, Arthur Jaffe (born 1937) from Harvard University
wrote the following:28

Mathematical research should be as broad and as original as possible, with
very long range-goals. We expect history to repeat itself: we expect that
the most profound and useful future applications of mathematics cannot
be predicted today, since they will arise from mathematics yet to be dis-
covered.

Studying the physics and mathematics of the fundamental forces in na-
ture, there arises the question about the philosophical background. Concern-
ing this, let me finish with two quotations. Erich Worbs writes in his Gauss
biography:

Sartorius von Waltershausen reports that Gauss once said there were ques-
tions of infinitely higher value than the mathematical ones, namely, those
about our relation to God, our determination, and our future. Only, he con-
cluded, their solutions lie far beyond our comprehension, and completely
outside the field of science.

In the Harnack Building of the Max Planck Society in Berlin, one can read
the following words by Johann Wolfgang von Goethe:

The greatest joy of a thinking man is to have explored the explorable and
just to admire the unexplorable.

28 Ordering the universe: the role of mathematics, Notices Amer. Math. Soc. 236
(1984), 589–608.



1. Historical Introduction

If we wish to foresee the future of mathematics our proper course is to
study the history and present condition of the science.

Henri Poincaré (1854–1912)

It is not the knowledge but the learning, not the possessing, but the earn-
ing, not the being there but the getting there, which gives us the greatest
pleasure.

Carl Friedrich Gauss (1777–1855)
to his Hungarian friend Janos Bólyai

For me, as a young man, Hilbert (1858–1943) became the kind of math-
ematician which I admired, a man with an enormous power of abstract
thought, combined with a fully developed sense for the physical reality.

Norbert Wiener (1894–1964)

In the fall 1926, the young John von Neumann (1903–1957) arrived in
Göttingen to take up his duties as Hilbert’s assistant. These were the hec-
tic years during which quantum mechanics was developing with breakneck
speed, with a new idea popping up every few weeks from all over the hori-
zon. The theoretical physicists Born, Dirac, Heisenberg, Jordan, Pauli, and
Schrödinger who were developing the new theory were groping for adequate
mathematical tools. It finally dawned upon them that their ‘observables’
had properties which made them look like Hermitean operators in Hilbert
space, and that by an extraordinary coincidence, the ‘spectrum’ of Hilbert
(which he had chosen around 1900 from a superficial analogy) was to be
the central conception in the explanation of the ‘spectra’ of atoms. It
was therefore natural that they should enlist Hilbert’s help to put some
mathematical sense in their formal computations. With the assistance of
Nordheim and von Neumann, Hilbert first tried integral operators in the
space L2, but that needed the use of the Dirac delta function δ, a concept
which was for the mathematicians of that time self-contradictory. John
von Neumann therefore resolved to try another approach.

Jean Dieudonné (1906–1992)
History of Functional Analysis1

Stimulated by an interest in quantum mechanics, John von Neumann be-
gan the work in operator theory which he was to continue as long as he
lived. Most of the ideas essential for an abstract theory had already been

1 North–Holland, Amsterdam, 1981 (reprinted with permission).

E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics,
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developed by the Hungarian mathematician Fryges Riesz, who had estab-
lished the spectral theory for bounded Hermitean operators in a form very
much like as regarded now standard. Von Neumann saw the need to ex-
tend Riesz’s treatment to unbounded operators and found a clue to doing
this in Carleman’s highly original work on integral operators with singular
kernels. . .
The result was a paper von Neumann submitted for publication to the
Mathematische Zeitschrift but later withdrew. The reason for this with-
drawal was that in 1928 Erhard Schmidt and myself, independently, saw
the role which could be played in the theory by the concept of the adjoint
operator, and the importance which should be attached to self-adjoint
operators. When von Neumann learned from Professor Schmidt of this ob-
servation, he was able to rewrite his paper in a much more satisfactory and
complete form. . . Incidentally, for permission to withdraw the paper, the
publisher exacted from Professor von Neumann a promise to write a book
on quantum mechanics. The book soon appeared and has become one of
the classics of modern physics.2

Marshall Harvey Stone (1903–1989)

1.1 The Revolution of Physics

At the beginning of the 20th century, Max Planck (1858–1947) and Albert
Einstein (1879–1955) completely revolutionized physics. In 1900, Max Planck
derived the universal radiation law for stars by postulating that

The action in our world is quantized.

Let us discuss this fundamental physical principle. The action is the most im-
portant physical quantity in nature. For any process, the action is the product
of energy × time for a small time interval. The total action during a fixed
time interval is then given by an integral summing over small time intervals.
The fundamental principle of least (or more precisely, critical) action tells us
the following:

A process in nature proceeds in such a way that the action becomes
minimal under appropriate boundary conditions.

More precisely, the action is critical. This means that the first variation of
the action S vanishes, δS = 0. In 1918 Emmy Noether (1882–1935) proved
a fundamental mathematical theorem. The famous Noether theorem tells us
that

Conservation laws in physics are caused by symmetries of physical
systems.

2 J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton
University Press, 1955 (first German edition: Springer, Berlin, 1932). This quo-
tation is taken from F. Browder (Ed.), Functional Analysis and Related Fields,
Springer, Berlin, 1970 (reprinted with permission).
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To explain this basic principle for describing nature in terms of mathemat-
ics, consider our solar system. The motion of the sun and the planets only
depends on the initial positions and initial velocities. Obviously, the motion
of the solar system is invariant under time translations, spatial translations,
and rotations. This is responsible for conservation of energy, momentum, and
angular momentum, respectively. For example, invariance under time trans-
lations means the following. If a process of the physical system is possible,
x = x(t), then each process is also possible which is obtained by time trans-
lation, x = x(t+ const). According to Planck, the smallest amount of action
in nature is equal to

h = 6.260 0755 · 10−34Js (1.1)

where 1 Joule = 1 kg · m2/s2. We also introduce � := h/2π. The universal
constant h is the famous Planck quantum of action (or the Planck constant).
Observe that the action of typical processes in daily life has the magnitude
of 1 Js. Therefore, the Planck constant is tiny. Nevertheless, the quantization
of action has enormous consequences. For example, consider a mass point on
the real line which moves periodically,

q(t) = const · sin(ωt)

where t denotes time, and ω is called the angular frequency of the harmonic
oscillator. Since the sine function has period 2π, the harmonic oscillator has
the time period T = 2π/ω. By definition, the frequency ν is the number
of oscillations per second. Hence T = 1/ν, and ω = 2πν. If E denotes the
energy of the harmonic oscillator, then the product ET is a typical action
value for the oscillations of the harmonic oscillator. Therefore, according to
Planck’s quantization of action, it seems to be quite natural to postulate
that ET = nh for n = 0, 1, 2, . . . This yields Planck’s quantization rule for
the energy of the harmonic oscillator,

E = n�ω, n = 0, 1, 2, . . .

from the year 1900. About 25 years later, the young physicist Werner Heisen-
berg (1901–1976) invented the full quantization procedure of classical me-
chanics. Using implicitly the commutation rule

qp− pq = i� (1.2)

for the position q and the momentum p of a quantum particle, Heisenberg
obtained the precise formula

E =
(
n+

1
2

)
�ω, n = 0, 1, 2, . . . (1.3)

for the quantized energy levels of a harmonic oscillator. Heisenberg’s quantum
mechanics changed completely the paradigm of physics. In classical physics,
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observables are real numbers. In Heisenberg’s approach, observables are ab-
stract quantities which obey certain commutation rules. More than fifty years
before Heisenberg’s discovery, the great Norwegian mathematician Sophus
Lie (1842–1899) found out that commutation rules of type (1.2) play a fun-
damental role when trying to study continuous symmetry groups by means
of linearization. In 1934, for this kind of algebraic structure, the term “Lie
algebra” was coined by Hermann Weyl (1885–1955). Lie algebras and their
generalizations to infinite dimensions, like the Virasoro algebra and super-
symmetric algebras in string theory and conformal quantum field theory, are
crucial for modern quantum physics. The Heisenberg formula (1.3) tells us
that the ground state of each harmonic oscillator has the non-vanishing en-
ergy

E =
�ω

2
. (1.4)

This fact causes tremendous difficulties in quantum field theories. Since a
quantum field has an infinite number of degrees of freedom, the ground state
has an infinite energy. There are tricks to cure the situation a little bit, but
the infinite ground state energy is the deeper reason for the appearance of
nasty divergent quantities in quantum field theory. Physicists have developed
the ingenious method of renormalization in order to extract finite quanti-
ties that can be measured in physical experiments. Surprisingly enough, in
quantum electrodynamics there is an extremely precise coincidence with the
renormalized theoretical values and the values measured in particle acceler-
ator experiments. No one understands this. Nowadays many physicists are
convinced that this approach is not the final word. There must be a deeper
theory behind. One promising candidate is string theory.

At the end of his life, Albert Einstein wrote the following about his first
years.

Between the ages of 12–16, I familiarized myself with the elements of math-
ematics. In doing so I had the good fortune of discovering books which were
not too particular in their logical rigor.
In 1896, at the age of 17, I entered the Swiss Institute of Technology
(ETH) in Zurich. There I had excellent teachers, for example, Hurwitz
(1859–1919) and Minkowski (1864–1909), so that I really could get a sound
mathematical education. However, most of the time, I worked in the phys-
ical laboratory, fascinated by the direct contact with experience. The rest
of the time I used, in the main, to study at home the works of Kirchhoff
(1824–1887), Helmholtz (1821–1894), Hertz (1857–1894), and so on. The
fact that I neglected mathematics to a certain extent had its cause not
merely in my stronger interest in the natural sciences than in mathemat-
ics, but also in the following strange experience. I saw that mathematics
was split up into numerous specialities, each of which could easily absorb
the short life granted to us. Consequently, I saw myself in the position
of Buridan’s ass which was unable to decide upon any specific bundle of
hay. This was obviously due to the fact that my intuition was not strong
enough in the field of mathematics in order to differentiate clearly that
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which was fundamentally important, and that which is really basic, from
the rest of the more or less dispensable erudition, and it was not clear to
me as a student that the approach to a more profound knowledge of the
basic principles of physics is tied up with the most intricate mathematical
methods. This only dawned upon me gradually after years of independent
scientific work. True enough, physics was also divided into separate fields.
In this field, however, I soon learned to scent out that which was able to
lead to fundamentals.3

After his studies, Einstein got a position at the Swiss patent office in Bern.
In 1905 Einstein published four fundamental papers on the theory of special
relativity, the equivalence between mass and energy, the Brownian motion,
and the light particle hypothesis in Volume 17 of the journal Annalen der
Physik.

The theory of special relativity completely changed our philosophy
about space and time.

According to Einstein, there is no absolute time, but time changes from
observer to observer. This follows from the surprising fact that the velocity
of light has the same value in each inertial system, which was established
experimentally by Albert Michelson (1852–1931) in 1887. From his principle
of relativity, Einstein deduced that a point particle of rest mass m0 and
momentum vector p has a positive energy E given by

E2 = m2
0c

4 + c2p2 (1.5)

where c denotes the velocity of light in a vacuum. If the particle moves with
sub-velocity of light, x = x(t), than it has the mass

m =
m0√

1 − ẋ(t)2/c2
. (1.6)

If the particle rests, then we get

E = m0c
2. (1.7)

This magic energy formula governs the energy production in our sun by
helium synthesis. Thus, our life depends crucially on this formula. Unfortu-
nately, the atomic bomb is based on this formula, too.

Let us now discuss the historical background of Einstein’s light parti-
cle hypothesis. Maxwell (1831–1879) conjectured in 1862 that light is an
electromagnetic wave. In 1886 Heinrich Hertz established the existence of
electromagnetic waves by a famous experiment carried out at Kiel Univer-
sity (Germany). When electromagnetic radiation is incident on the surface
3 This is the English translation of Einstein’s handwritten letter copied in the

following book: Albert Einstein als Philosoph und Naturforscher (Albert Ein-
stein as philosopher and scientist). Edited by P. Schilpp, Kohlhammer Verlag,
Stuttgart (printed with permission).
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of a metal, it is observed that electrons may be ejected. This phenomenon
is called the photoelectric effect. This effect was first observed by Heinrich
Hertz in 1887. Fifteen years later, Philipp Lenard (1862–1947) observed that
the maximum kinetic energy of the electrons does not depend on the intensity
of light. In order to explain the photoelectric effect, Einstein postulated in
1905 that electromagnetic waves are quantized. That is, light consists of light
particles (or light quanta) which were coined photons in 1926 by the physical
chemist Gilbert Lewis. According to Einstein, a light particle (photon) has
the energy E given by Planck’s quantum hypothesis,

E = hν. (1.8)

Here, ν is the frequency of light, which is related to the wave length λ by the
dispersion relation λν = c. Hence E = hc/λ. This means that a blue photon
has more energy than a red one. Since a photon moves with light speed, its
rest mass must be zero. Thus, from (1.5) we obtain |p| = E/c. If we introduce
the angular frequency ω = 2πν, then we obtain the final expression

E = �ω, p = �k, |k| =
ω

c
(1.9)

for the energy E and the momentum vector p of a photon. Here, the wave
vector k of length k = ω/c is parallel to the vector p. Nowadays we know that
light particles are quanta, and that quantum particles are physical objects
which possess a strange structure. Quanta combine features of both waves
and particles. In the photoelectric effect, a photon hits an electron such that
the electron leaves the metal. The energy of the electron is given by

E = �ω −W

where the so-called work function W depends on the binding energy of the
electrons in the atoms of the metal. This energy formula suggests that for
small angular frequencies ω no electrons can leave the metal, since there
would be E < 0, a contradiction. In fact, this has been observed in experi-
ments. Careful experiments were performed by Millikan (1868–1953) in 1916.
He found out that a typical constant in his experiments coincided with the
Planck constant, as predicted by Einstein. In 1921 Einstein was awarded the
Nobel prize in physics for his services to theoretical physics, and especially
for his discovery of the law of the photoelectric effect. As a curiosity let us
mention, that Max Planck, while recommending Einstein enthusiastically for
a membership in the Prussian Academy in Berlin, wrote the following:

That sometimes, in his speculations, he went too far, such as, for example,
in his hypothesis of the light quanta, should not be held too much against
him.
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1.2 Quantization in a Nutshell

In 1926 Born discovered the fundamental fact that quantum physics is intrin-
sically connected with random processes. Hence the mathematical theory of
probability plays a crucial role in quantum physics. Already Maxwell (1831–
1879) had emphasized:

The true logic of this world lies in probability theory.

Before discussing the randomness of quantum processes and the challenge
of quantization, let us mention that Maxwell strongly influenced the physics
of the 20th century. As we will show later on, Einstein’s theory of special
relativity follows from the invariance of the Maxwell equations in electro-
magnetism under Lorentz transformations. Moreover, the generalization of
the Maxwell equations from the commutative gauge group U(1) to the non-
commutative gauge groups SU(2) and SU(3) leads to the Standard Model in
particle physics. Finally, statistical physics can be traced back to Maxwell’s
statistical velocity distribution of molecules.

From the physical point of view, quantum mechanics and quantum field
theory are described best by the Feynman approach via Feynman diagrams,
transition amplitudes, Feynman propagators (Green’s functions), and func-
tional integrals. In order to make the reader familiar with the fascinating
story of this approach, let us start with a quotation taken from Freeman
Dyson’s book Disturbing the Universe, Harper & Row, New York, 1979:4

Dick Feynman (1918–1988) was a profoundly original scientist. He refused
to take anybody’s word for anything. This meant that he was forced to
rediscover or reinvent for himself almost the whole physics. It took him
five years of concentrated work to reinvent quantum mechanics. He said
that he couldn’t understand the official version of quantum mechanics
that was taught in the textbooks and so he had to begin afresh from the
beginning. This was a heroic enterprise. He worked harder during those
years than anybody else I ever knew. At the end he had his version of
quantum mechanics that he could understand. . .

The calculations that I did for Hans Bethe,5 using the orthodox method,
took me several months of work and several hundred sheets of paper.

Dick Feynman could get the same answer, calculating on a black-
board, in half an hour. . .

In orthodox physics, it can be said: Suppose an electron is in this state
at a certain time, then you calculate what it will do next by solving the
Schrödinger equation introduced by Schrödinger in 1926. Instead of this,
Dick simply said:

4 Reprinted by permission of Basic Books, a member of Perseus Books, L.L.C.
5 Hans Bethe (1906–2005) was awarded the 1967 Nobel prize in physics for his con-

tributions to nuclear reactions, especially his discoveries concerning the energy
production in stars. See H. Bethe, R. Bacher, and M. Livingstone, Basic Bethe:
Seminal Articles on Nuclear Physics 1936–37, American Institute of Physics,
1986.
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The electron does whatever it likes.

A history of the electron is any possible path in space and time. The
behavior of the electron is just the result of adding together all the histories
according to some simple rules that Dick worked out. I had the enormous
luck to be at Cornell in 1948 when the idea was newborn, and to be for a
short time Dick’s sounding board. . .

Dick distrusted my mathematics and I distrusted his intuition.

Dick fought against my scepticism, arguing that Einstein had failed be-
cause he stopped thinking in concrete physical images and became a ma-
nipulator of equations. I had to admit that was true. The discoveries of
Einstein’s earlier years were all based on direct physical intuition. Ein-
stein’s later unified theories failed because they were only sets of equations
without physical meaning. . .

Nobody but Dick could use his theory. Without success I tried to under-
stand him. . . At the beginning of September after vacations it was time to
go back East. I got onto a Greyhound bus and travelled nonstop for three
days and nights as far as Chicago. This time I had nobody to talk to. The
roads were too bumpy for me to read, and so I sat and looked out of the
window and gradually fell into a comfortable stupor. As we were droning
across Nebraska on the third day, something suddenly happened. For two
weeks I had not thought about physics, and now it came bursting into
my consciousness like an explosion. Feynman’s pictures and Schwinger’s
equations began sorting themselves out in my head with a clarity they had
never had before. I had no pencil or paper, but everything was so clear I
did not need to write it down.

Feynman and Schwinger were just looking at the same set of ideas
from two different sides.

Putting their methods together, you would have a theory of quantum elec-
trodynamics that combined the mathematical precision of Schwinger with
the practical flexibility of Feynman. . .

During the rest of the day as we watched the sun go down over the prairie,
I was mapping out in my head the shape of the paper I would write when
I got to Princeton. The title of the paper would be The radiation theories
of Tomonaga, Schwinger, and Feynman.6

For the convenience of the reader, in what follows let us summarize the pro-
totypes of basic formulas for the passage from classical physics to quantum
physics. These formulas are special cases of more general approaches due to

• Newton in 1666 (equation of motion),
• Euler in 1744 and Lagrange in 1762 (calculus of variations),
• Fourier in 1807 (Fourier method in the theory of partial differential equa-

tions, Fourier series, and Fourier integral),
• Poisson in 1811 (Poisson brackets and conservation laws),

6 F. Dyson, Phys. Rev. 75 (1949), 486–502. Freeman Dyson (born 1923) is a mem-
ber of the Institute for Advanced Study in Princeton (New Jersey, U.S.A.). He
made fundamental contributions to quantum field theory, statistical physics, sta-
bility of matter, and number theory. This can be found in F. Dyson, Selected
Papers, Amer. Math. Soc., Providence, Rhode Island, 1996.
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• Hamilton in 1827 (Hamiltonian and canonical equations),
• Green in 1828 (the method of Green’s function in electromagnetism),
• Lie in 1870 (continuous transformation groups (Lie groups) and infinitesi-

mal transformation groups (Lie algebras)),
• Poincaré in 1892 (small divisors in celestial mechanics, and the renormal-

ization of the quasi-periodic motion of planets by adding regularizing terms
(also called counterterms) to the Poincaré–Lindsted series),

• Fredholm in 1900 (integral equations),
• Hilbert in 1904 (integral equations, and spectral theory for infinite-dimen-

sional symmetric matrices),
• Emmy Noether in 1918 (symmetry, Lie groups, and conservation laws),
• Wiener in 1923 (Wiener integral for stochastic processes including Brown-

ian motion for diffusion processes),
• von Neumann in 1928 (spectral theory for unbounded self-adjoint operators

in Hilbert spaces, and calculus for operators),
• Stone in 1930 (unitary one-parameter groups and the general dynamics of

quantum systems).

From the physical point of view, the following formulas are special cases of
more general formulas due to Heisenberg in 1925, Born and Jordan in 1926,
Schrödinger in 1926, Dirac in 1927, Feynman in 1942, Heisenberg in 1943,
Dyson in 1949, Lippmann and Schwinger in 1950. In fact, we will study the
following approaches to quantum mechanics:

• the 1925 Heisenberg particle picture via time-dependent operators as ob-
servables, and the Poisson–Lie operator equation of motion,

• the 1926 Schrödinger wave picture via time-dependent quantum states, and
the Schrödinger partial differential equation of motion,

• the 1927 Dirac interaction picture which describes the motion under an
interacting force as a perturbation of the interaction-free dynamics, and

• the 1942 Feynman picture based on a statistics for possible classical mo-
tions via the Feynman path integral, which generalizes the 1923 Wiener
integral for the mathematical description of Einstein’s Brownian motion in
diffusion processes from the year 1905.

The fact that it is possible to describe quantum particles in an equivalent way
by either Heisenberg’s particle picture or Schrödinger’s wave picture reflects
a general duality principle in quantum physics:

Quantum particles are more general objects than classical particles
and classical waves.

This has been discovered in the history of physics step by step. Note that,
for didactic reasons, in this section we will not follow the historical route,
but we will present the material in a manner which is most convenient from
the modern point of view.7 Nowadays most physicists prefer the Feynman
7 Remarks on the historical route of quantum mechanics can be found in Sect. 1.3

on page 60.
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approach to quantum physics. In what follows we restrict ourselves to formal
considerations.

Hints for quick reading. After reading Sects. 1.2.1 through 1.2.4, the
reader may pass to Sects. 15.1 through 15.5 on the operator approach to
quantum field theory. A rigorous approach to the basic ideas in quantum field
theory in terms of a finite-dimensional Hilbert space setting can be found in
Chap. 7. The true mathematical difficulties in quantum field theory are re-
lated to the infinite-dimensional setting. However, rigorous finite-dimensional
models help to understand the mathematical substance of the magic formulas
used by physicists in quantum field theory in a formal way. These magic for-
mulas are due to Dyson, Feynman, Schwinger, Gell-Mann and Low, Faddeev
and Popov. They can be found in Chaps. 14 through 16. The reader who
wants to become familiar, as quickly as possible, with applications of quan-
tum field theory to concrete physical processes in quantum electrodynamics
should pass to Volume II.

1.2.1 Basic Formulas

The classical principle of critical action. For the mathematical descrip-
tion of physics, it is crucial that the fundamental processes in nature are
governed by an optimality principle called the principle of least action. In
fact, the action is not always minimal in nature, but sometimes the action
is only critical (also called stationary). Therefore, we have to speak about
the principle of critical action. In the history of physics, the role of varia-
tional principles was underlined by Fermat (1601–1665), Maupertius (1698–
1759), Euler (1707–1783), Lagrange (1736–1813), Gauss (1777–1855), Hamil-
ton (1788–1856), and Jacobi (1804–1851). As the simplest example for the
principle of critical action, let us start with the following variational problem

∫ t1

t0

L(q(t), q̇(t)) dt = critical! (1.10)

for the motion, q = q(t), of a classical particle with mass m on the real line
(Fig. 1.1). This is called the principle of critical action. Here, q(t) denotes
the position of the classical particle at time t. Following Newton, the dot, q̇,
denotes the derivative with respect to time. We have to add the boundary
condition

q(t0) = x0, q(t1) = x1 (1.11)

for given initial point x0 at the initial time t0, and given final point x1 at
the final time t1. The function L = L(q, q̇) is called Lagrangian; it has the
physical dimension of energy. More important than energy is the action S of
the classical motion, q = q(t), during the time interval [t0, t1]. Explicitly,
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�
q(t)

q

Fig. 1.1. Motion on the real line

S[q] :=
∫ t1

t0

L(q(t), q̇(t)) dt.

Here, the action S has the physical dimension of energy × time. Each
smooth solution of the variational problem (1.10) satisfies the following
Euler–Lagrange equation8

d

dt
Lq̇(q(t), q̇(t)) = Lq(q(t), q̇(t)) (1.12)

for all times t ∈ [t0, t1]. Since the Lagrangian L = L(q, q̇) does not depend
explicitly on time t, it is invariant under time translations t �→ t+ const. By
the Noether theorem, each solution, q = q(t), of the Euler–Lagrange equation
satisfies the conservation law

dE(t)
dt

= 0 for all t ∈ [t0, t1] (1.13)

with the momentum function p(t) := Lq̇(q(t), q̇(t)), and the energy function

E(t) := p(t)q̇(t) − L(q(t), q̇(t)).

The relation (1.13) tells us that the energy E(t) does not depend on time
along the classical trajectory. This is called conservation of energy.9 Generally,
from the mathematical point of view, the fundamental notion of energy is
intimately related to symmetry properties of physical systems, namely, the
invariance under time translations.

The Feynman picture of quantum mechanics and the Feynman
path integral. We want to consider the motion of a quantum particle on the
real line. This motion is described by a complex-valued function ψ = ψ(x, t)
whose physical meaning will be explained below. From the physical point of
view, the best interpretation of the passage from the classical motion of the
particle to the corresponding quantum motion can be obtained by the famous
Feynman formula
8 The symbol Lq̇ denotes the partial derivative of the function L = L(q, q̇) with

respect to the variable q̇.
9 Without referring to the general Noether theorem, energy conservation follows

directly from the Euler–Lagrange equation, ṗ = Lq. In fact, differentiation with
respect to time t yields

Ė = ṗq̇ + pq̈ − Lq̇ q̈ − Lq q̇ = (ṗ− Lq)q̇ = 0.
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P(x1, t1;x0, t0) =
∫

eiS[q]/� Dq. (1.14)

Formally, we sum over all possible classical trajectories q = q(t) which satisfy
the boundary condition (1.11). The integral from (1.14) is called a Feynman
path integral (or functional integral). It represents a statistic over the possible
trajectories of the classical particle. The statistical weight eiS[q]/� for each
trajectory depends on the classical action S[q] of the trajectory. Since the
quantity S[q] has the physical dimension of energy × time, we have to divide
the action S[q] by a constant � of the same dimension in order to get a
dimensionless argument of the exponential function.

This way, Planck’s constant of action, �, appears in a natural way.

It was noticed by Feynman that, because of the smallness of the Planck
constant �, a formal application of Kelvin’s method of stationary phase in
optics tells us that, naturally enough, the main contribution to the integral
(1.14) comes from that classical trajectory which corresponds to the solution
of the principle of critical action (1.10).

Quantum motion is obtained from classical motion by adding random
quantum fluctuations.

In particular, quantum mechanics passes over to classical mechanics if

� → 0.

This limit corresponds to the passage from wave optics to geometric optics
if the wave length of light goes to zero, λ → 0.

In terms of mathematics, quantization of a classical theory corre-
sponds to a deformation of the classical theory which depends on the
Planck parameter �.

It remains to discuss the physical meaning of the Feynman propagator ker-
nel P and of the function ψ. According to Feynman’s 1942 dissertation at
Princeton University, the dynamics of the function ψ is governed by the cru-
cial formula

ψ(x1, t1) =
∫ ∞

−∞
P(x1, t1;x0, t0)ψ(x0, t0) dx0 (1.15)

for all positions x1 and all times t1 ≥ t0. We write this briefly as

ψ(t1) = P (t1, t0)ψ(t0). (1.16)

The operator P (t1, t0) is called the Feynman propagator.
The simplest example corresponds to the motion of a free particle on the

real line. In this case, the Lagrangian reads as
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L(q, q̇) :=
mq̇2

2
.

The corresponding Euler–Lagrange equation, mq̈ = 0, has the general solu-
tion

q(t) = x0 + v(t− t0), t ∈ R.

This describes the motion of a point particle on the real line with the constant
velocity v. The corresponding Feynman propagator kernel is given by

P(x1, t1;x0, t0) =
√

m

2πi�(t1 − t0)
· e−

m(x1−x0)2

2i�(t1−t0) .

Here, we choose the value
√

i := eiπ/4 for the square root of the imaginary
unit. Using the replacement it �→ t, the Feynman kernel, P, passes over to
Fourier’s heat kernel for both the propagation of heat and the diffusion of
particles (Brownian motion) on the real line. This will be studied in Sect.
11.1.3 on page 589.

Born’s interpretation of the Schrödinger ψ-function. In 1926
Schrödinger formulated his famous partial differential equation for some wave
function ψ which will be considered below. Surprisingly enough, Schrödinger
was very successful in computing the quantized energy levels of the hydrogen
atom, but he did not know the physical meaning of the function ψ. This was
discovered by Born a few months later by studying scattering processes for
electrons.

According to Born, the value |ψ(x, t)|2 plays the role of a probability
density.

This changes physics dramatically. In contrast to classical physics, quantum
processes are random processes. More precisely, we have to distinguish be-
tween the following two cases.

(i) Case 1: One single particle. Suppose that
∫∞
−∞ |ψ(x, t)|2dx < ∞. Then

the function ψ describes a single particle on the real line. The quotient
∫ b

a
|ψ(x, t)|2 dx

∫∞
−∞ |ψ(x, t)|2 dx

is equal to the probability of finding the particle in the interval [a, b]
of the real line at time t. In addition, let us introduce the momentum
operator P and the position operator Q,

(Pψ)(x) := −i�
d

dx
ψ(x), (Qψ)(x) := xψ(x), x ∈ R,

along with the inner product

〈χ|ψ〉 :=
∫ ∞

−∞
χ(x)†ψ(x) dx.
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For a classical particle on the real line, position q and momentum p = mv
(mass × velocity) can be measured with arbitrarily high precision at the
same time. This is not true anymore for a quantum particle on the real
line. In fact, in the quantum state ψ = ψ(x) it is only possible to measure
the mean position q and the fluctuation Δq of the position. Explicitly,

q =
〈ψ|Qψ〉
〈ψ|ψ〉 =

∫∞
−∞ ψ(x)†xψ(x) dx
∫∞
−∞ ψ(x)†ψ(x) dx

and

(Δq)2 =
〈ψ|(Q− q )2ψ〉

〈ψ|ψ〉 =

∫∞
−∞ ψ(x)†(x− q)2ψ(x) dx

∫∞
−∞ ψ(x)†ψ(x) dx

.

Similarly, for the measured mean momentum p and its fluctuation Δp,
we get

p =
〈ψ|Pψ〉
〈ψ|ψ〉 , (Δp)2 =

〈ψ|(P − p )2ψ〉
〈ψ|ψ〉 .

If the function ψ = ψ(x, t) also depends on time t, then so do the mea-
sured values. In 1927 Heisenberg showed that there holds the following
fundamental inequality for the fluctuations:

ΔpΔq ≥ �

2
. (1.17)

This famous uncertainty inequality tells us that, in contrast to classical
particles, it is not possible to measure precisely position and momentum
of a quantum particle at the same time. If the measurement of the po-
sition of a quantum particle is fairly precise (i.e., Δq is small), then the
velocity of the particle is quite uncertain (i.e., Δp is large). Conversely, if
the velocity is known fairly precisely (i.e., Δp is small), then the position
of the quantum particle is quite uncertain (i.e., Δq is large).

(ii) Case 2: Homogeneous stream of particles. Suppose that
∫ ∞

−∞
|ψ(x, t)|2dx = ∞.

Then the function ψ describes a flow of identical particles on the real line
which has the current density vector

J(x, t) := �(x, t)v(x, t)

with the particle density �(x, t) := |ψ(x, t)|2 and the velocity vector
v(x, t) at the point x at time t. Explicitly,

J(x, t) = �
(

ψ(x, t)† · P
m

ψ(x, t)
)

e.
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The unit vector e points from left to right on the real line. For example,
choose the function

ψ(x, t) :=
√
�0 · ei(px−Ept)/�

with fixed real number p and Ep := p2/2m. This function describes a
homogeneous stream of particles with momentum p, energy Ep, and par-
ticle density �(x, t) = |ψ(x, t)|2 = �0. The particle momentum p is an
eigenvalue of the momentum operator P ,

Pψ = pψ,

and the particle energy Ep is an eigenvalue of the energy operator,

i�
∂

∂t
ψ = Epψ.

Moreover, we have J(x, t) = �0v along with the velocity vector v = pe/m.

Observe that the measured values of a single particle are based on the inner
product 〈ψ|ϕ〉. This is the key to John von Neumann’s Hilbert space approach
to quantum mechanics from the late 1920s. However, the Hilbert space setting
is not sufficient, since states ψ with 〈ψ|ψ〉 = ∞ appear which do not lie in
the Hilbert space under consideration. To include such states, one has to use
Gelfand’s theory of rigged Hilbert spaces from the 1950s which is based on
the notion of generalized functions (distributions). This will be studied in
Sect. 12.2 on page 677.

The Schrödinger wave picture for quantum mechanics on the
real line. Consider the special case where the Lagrangian is given by

L(q, q̇) :=
mq̇2

2
− κU(q).

Here, the Euler–Lagrange equation of motion reads as

mq̈ = −κU ′(q).

This is the Newtonian equation of motion with the force F (q) := −κU ′(q).
For the momentum, p(t) = mq̇(t). The function U is called the potential,
and the real number κ is called coupling constant.10 For the motion q = q(t)
of the classical particle on the real line, we have conservation of energy, i.e.,
there exists a constant E such that

E =
p(t)2

2m
+ κU(q(t)) (1.18)

10 In many cases, the coupling constant κ is small. Then, it is possible to apply the
methods of perturbation theory. This is of fundamental importance for quantum
field theory.
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for all times t. Here, E is called the energy of the motion. Using now the
elegant Schrödinger quantization rule

E ⇒ i�
∂

∂t
, p ⇒ P,

the classical energy equation (1.18) passes over to the following famous
Schrödinger equation

i�
∂

∂t
ψ =

(
P 2

2m
+ κU

)

ψ. (1.19)

Explicitly,

i�ψ̇(x, t) = − �
2

2m
ψxx(x, t) + κU(x)ψ(x, t). (1.20)

Recall that the dot, ψ̇, denotes the partial derivative with respect to time.
In the history of mathematics and physics, it was gradually discovered that
the solutions of partial differential equations can be represented by integral
formulas with appropriate kernels which are called Green’s functions. In par-
ticular, the corresponding solution formula for the initial-value problem to
the Schrödinger equation (1.20) reads as

ψ(x, t) =
∫ ∞

−∞
G(x, t; y, t0)ψ(y, t0)dy (1.21)

for all positions x ∈ R and all times t ≥ t0. Comparing this with Feynman’s
formula (1.15), we see that

G(x, t; y, t0) ≡ P(x, t; y, t0).

Consequently, the Feynman propagator kernel is nothing than the Green’s
function to the initial-value problem for the Schrödinger equation (1.20). In
fact, if we know the initial state ψ(x, t0) of the quantum particle at the initial
time t0, then formula (1.21) determines the state ψ = ψ(x, t) for all times
t ≥ t0 in the future. This tells us that

The Feynman propagator kernel knows all about the motion of the
quantum particle on the real line.

By physical considerations, Feynman discovered that the Feynman kernel
can be represented by a path integral of the form (1.14). This discovery was
crucial for the further development of quantum field theory.

Schrödinger’s method for computing quantized energies by solv-
ing eigenvalue problems. Motivated by the classical Fourier method,
Schrödinger made the separation ansatz
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ψ(x, t) = ϕ(x)e−iEt/�.

Then, the time-dependent Schrödinger equation (1.19) passes over to the
stationary Schrödinger equation

Eϕ(x) = − �
2

2m
ϕ′′(x) + κ U(x)ϕ(x), x ∈ R.

This is an eigenvalue problem for the unknown energy E. Using this method,
Schrödinger computed the quantized energies of quantum particles. Inter-
estingly enough, Schrödinger did not know the precise physical meaning of
the complex wave function ψ. This problem was solved by Born in 1926;
Born discovered the statistical interpretation of |ψ(x, t)|2 discussed above.
Schrödinger and Born were awarded the Nobel prize in physics in 1933 and
1954, respectively.

Von Neumann’s solution of the Schrödinger equation. Let us in-
troduce the free Hamiltonian

H0 :=
P 2

2m
= − �

2

2m
∂2

∂x2

along with the Hamiltonian

H := H0 + κU.

Then, the Schrödinger equation (1.19) can be written as an operator equation
of the form

i�ψ̇(t) = Hψ(t) (1.22)

for all times t ∈ R. If we consider equation (1.22) as a classical ordinary
differential equation, then the solution reads as

ψ(t) = e−i(t−t0)H/� ψ(t0) for all t ∈ R. (1.23)

Let us now discuss the mathematical meaning of the operator e−itH/�.
Von Neumann’s operator calculus. In the late 1920s, von Neumann

developed a calculus for unbounded self-adjoint operators on Hilbert spaces
which gives the exponential function for operators a precise meaning un-
der appropriate assumptions on the Hamiltonian H.11 In the sense of von
Neumann’s operator calculus, formula (1.23) solves the Schrödinger equation
(1.19), and it describes completely the dynamics of the quantum particle on
the real line. Comparing this with equation (1.16), ψ(t) = P (t, t0)ψ(t0), we
see that the Feynman propagator is given by
11 The operator H has to be a self-adjoint operator on the Hilbert space L2(R).

See Zeidler (1995), Vol. 1.
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P (t, t0) = e−i(t−t0)H/� for all t, t0 ∈ R.

Generalizing Hilbert’s spectral theory from 1904 for bounded symmetric op-
erators to unbounded self-adjoint operators in 1928, von Neumann justified
the formula

H =
∫ ∞

λ=−∞
λdEλ

where the operators Eλ : X → X are orthogonal projection operators on the
Hilbert space X = L2(R). Moreover, f(H) =

∫∞
λ=−∞ f(λ)dEλ. In particular,

e−itH/� =
∫ ∞

λ=−∞
e−itλ/�dEλ.

The family {Eλ} of operators Eλ with λ ∈ R is called the spectral family of
the Hamiltonian H. In order to discuss the physical meaning of the spectral
family, choose a fixed particle state on the real line, ψ ∈ X, normalized by

〈ψ|ψ〉 =
∫ ∞

−∞
|ψ(x, t)|2dx = 1.

Suppose we are measuring the energy E of the particle in the state ψ. Then,
the probability P of finding the measured value E in the interval J is given
by the integral

P :=
∫

J

dF (λ).

Here, the function F (λ0) :=
∫
]−∞,λ0[

dσ(λ) with σ(λ) := 〈ψ|Eλψ〉 represents
the probability distribution of the energy of the quantum particle on the real
line in the given state ψ. By the theory of probability, for the mean value E
and the fluctuation ΔE of the measured energy, we get

E =
∫ ∞

−∞
λdF (λ), (ΔE)2 =

∫ ∞

−∞
(λ− E)2dF (λ).

In particular, if the function F is smooth, then dF (λ) can be replaced by
F ′(λ)dλ where F ′(λ) = σ(λ).

According to von Neumann, the spectral family can be constructed for all
self-adjoint operators on Hilbert spaces. Such operators represent observables
in quantum mechanics. Therefore, the theory of spectral families allows us to
describe the random measurements of observables in quantum mechanics.12

Heisenberg’s S-matrix for scattering processes. The most impor-
tant processes for elementary particles are scattering processes in particle
12 As an introduction to functional analysis and its applications to mathematical

physics, we recommend Zeidler (1995), Vols. 1, 2.
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accelerators. Therefore, physicists are mainly interested in computing scat-
tering processes. For this, the main tool is the S-matrix which was introduced
by Wheeler in 1937 and Heisenberg in 1943. The further development was
strongly influenced by Heisenberg’s paper from 1943.

The S-matrix is closely related to physical quantities which can be
measured in experiments.

This underlines the importance of the S-matrix. Let us discuss this in terms
of scattering processes on the real line. To this end, set

ψin(x, t) :=
√
�in · ei(pinx−Eint)/�

and
ψout(x, t) :=

√
�out · ei(poutx−Eoutt)/�.

We regard ψin as a stream of incoming free particles with

• momentum vector pin = pine of the incoming particles,
• velocity vector vin = pin/m of the incoming particles,
• energy Ein = p2

in/2m of the incoming particles, and
• particle density �in of the incoming particles.

The corresponding quantities of the outgoing particles are defined similarly.
We assume that the potential U is concentrated in a neighborhood of the
origin. The incoming free particles are then scattered at the potential κU .
This means that some particles are reflected at the potential wall and some
of them penetrate the potential wall. We are interested in those particles
which penetrate the potential wall. This yields a stream of outgoing particles
described by the function ψout. Let us introduce the Feynman transition
amplitude

S(q, t1; p, t0) := 〈ψout|P (t1, t0)ψin〉.

In this connection, observe that the Feynman propagator P (t1, t0) sends the
incoming state ψin at time t0 to the state

ψ(t1) = P (t1, t0)ψ(t0)

at time t1, and we compare the actual state ψ(t1) with the possible outgoing
state ψout(t1) at time t1 by computing the inner product 〈ψout(t1)|ψ(t1)〉.
In terms of the Feynman propagator kernel P, the transition amplitude
S(q, t1; p, t0) is equal to

∫ ∞

−∞
ψout(x1, t1)†

(∫ ∞

−∞
P(x1, t1;x0, t0)ψin(x0, t0) dx0

)

dx1.

Carrying out a physical experiment, we are interested in the transition prob-
ability from the incoming particle stream at time t0 to the outgoing stream
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ψout(t1) at time t1. It turns out that this transition probability13 is given by
the expression

|S(q, t1; p, t0)|2.

To free ourselves from the arbitrary choice of the initial time t0 and the final
time t1, we pass over to the formal limit t0 → −∞ and t1 → +∞. This way,
we get

S(q,+∞; p,−∞) := lim
t1→+∞

lim
t0→−∞

S(q, t1; p, t0).

Physicists call this the S-matrix element for particles with incoming momen-
tum p and outgoing momentum q. The set of all these S-matrix elements
forms the S-matrix S. The corresponding transition probability for the par-
ticle stream is then given by the key formula

|S(q,+∞; p,−∞)|2.

It turns out that these S-matrix elements vanish if q �= p, by energy conser-
vation.

The Lippmann–Schwinger integral equation. It is possible to com-
pute the S-matrix elements by solving the following Lippmann–Schwinger
integral equation

ϕ(x) = ϕ0(x) − κ

∫ ∞

−∞
G(x, y)U(y)ϕ(y)dy (1.24)

with ϕ0(x) := eipx/� and the kernel

G(x, y) := im
eip|x−y|/�

�p
.

The function
ψin(x, t) := e−iEp(t−t0)/�ϕ0(x)

describes the incoming particle stream with momentum p. If the function
ϕ = ϕ(x) is a solution of (1.24), then

ψ(x, t) := e−iEp(t−t0)/�ϕ(x)

with Ep := p2/2m is a solution of the Schrödinger equation (1.19) which de-
scribes the scattering of the incoming particle stream ψin. Finally, we compare
the scattered particle stream with the outgoing particle stream

ψout(x, t) := e−iEp(t−t1)/�ϕ0(x)

of momentum p. This implies
13 In mathematics, transition probability is called conditional probability.
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(a)

ϕ0 ϕ1� �

U

(b)

ϕ1

ϕ0 ϕ2� � �

U U

Fig. 1.2. Feynman diagrams

〈ψout|ψ〉 =
∫ ∞

−∞
ψout(x, t)†ψ(x, t)dx

= e−iEp(t1−t0)

∫ ∞

−∞
ϕ0(x)†ϕ(x)dx = e−iEp(t1−t0)〈ϕ0|ϕ〉.

Letting t0 → −∞ and t1 → +∞, we obtain the formal limit

|S(p,+∞; p,−∞)|2 = |〈ϕ0|ϕ〉|2

which depends on the solution ϕ of the time-independent Lippmann–Schwin-
ger integral equation.14 The point is that the solution ϕ can be computed
approximately by using the following iterative method

ϕn+1(x) = ϕ0(x) − κ

∫ ∞

−∞
G(x, y)U(y)ϕn(y)dy, n = 0, 1, 2, . . .

The method of Feynman diagrams. The basic idea of Feynman di-
agrams is to represent graphically the approximations ϕ1, ϕ2, . . .. This tech-
nique is widely used in elementary particle physics; it helps to simplify the
computation of scattering processes, and gives physical insight. In the present
case, for small coupling constant κ, the first approximation

ϕ1(x) = ϕ0(x) − κ

∫ ∞

−∞
G(x, y)U(y)ϕ0(y)dy

is called the Born approximation; it was used by Born in 1926 in order to
compute scattering processes for electrons. The Feynman diagram for ϕ1 is
pictured in Fig. 1.2(a). Intuitively, the interaction between the “particle” ϕ0

and the potential U yields the “particle” ϕ1. The second approximation ϕ2

is given by

ϕ2(x) = ϕ0(x) − κ

∫ ∞

−∞
G(x, y)U(y)ϕ1(y)dy.

The corresponding Feynman diagram is pictured in Fig. 1.2(b). Intuitively,
the interaction between the “particle” ϕ1 and the potential U yields the
“particle” ϕ2. Observe that
14 This approach is called stationary scattering theory. See Zeidler (1995), Vol. 1,

Sect. 5.24.5.
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As a rule, each iterative method in mathematics and physics can be
represented graphically by Feynman diagrams.

The Heisenberg–Born–Jordan commutation relation. For the mo-
mentum operator P and the position operator Q,

QPψ − PQψ = −i�
(
xψ′(x) − (xψ(x))′

)
= i�ψ(x).

Letting [Q,P ]− := QP − PQ, we obtain

[Q,P ]− = i�I

where I denotes the identity operator. This is the commutation rule (1.2)
which appeared at the birth of modern quantum mechanics in 1925. The
interesting history of the commutation relation will be discussed in Sect. 1.3
on page 60.

The Heisenberg particle picture for quantum mechanics on the
real line. It was discovered in the 1920s that completely different approaches
to quantum mechanics are in fact equivalent. Let us discuss the equivalence
between the Schrödinger picture and the Heisenberg picture which was in-
vented before the Schrödinger equation. In the Schrödinger picture, the dy-
namics of the time-dependent wave function ψ = ψ(t) is governed by the
equation

ψ(t) = e−itH/�ψ(0).

In the Heisenberg picture, we introduce the time-dependent momentum op-
erator

P (t) := eitH/�P e−itH/�,

the time-dependent position operator

Q(t) := eitH/�Qe−itH/�,

and the time-independent state ψ(0). For the measured mean-value of mo-
mentum in the Schrödinger picture, we get

p =
〈ψ(t)|Pψ(t)〉
〈ψ(t)|ψ(t)〉 .

Moreover, we get

p =
〈ψ(0)|P (t)ψ(0)〉
〈ψ(0)|ψ(0)〉 .

in the Heisenberg picture.15 Differentiation with respect to time t yields
15 Note that 〈Aχ|ψ〉 = 〈χ|A†ψ〉. Since H† = H and (e−itH/�)† = eitH/� , we obtain

that the inner product 〈ψ(t)|Pψ(t)〉 is equal to

〈e−itH/�ψ(0)|P e−itH/�ψ(0)〉 = 〈ψ(0)|eitH/�P e−itH/�ψ(0)〉 = 〈ψ(0)|P (t)ψ(0)〉.

As an introduction to the theory of Hilbert spaces, we recommend Zeidler (1995),
Vol. 1.
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i�Ṗ (t) = P (t)H −HP (t).

This way, we obtain the equations of motion in the Heisenberg picture,

i�Ṗ (t) = [P (t), H]−, i�Q̇(t) = [Q(t), H]−,

along with the commutation relations [Q(t), P (t)]− = i�I for all times t ∈ R.

The Dirac interaction picture for quantum mechanics on the real
line. In order to study the dynamics of perturbed systems, Dirac introduced
the so-called interaction picture which is crucial for quantum field theory.
Let us discuss the basic idea of this approach. We start with the Schrödinger
equation

i�ψ̇(t) = (H0 + κU(t))ψ(t). (1.25)

Here, the potential U = U(t) is allowed to depend on time t. The following
arguments are well-known for classical ordinary differential equations. The
point is that we will apply formally these arguments to operator differential
equations, too. The first trick is to introduce the new function

Ψ(t) := ei(t−t0)H0/� ψ(t).

Then Ψ(t0) = ψ(t0). From the Schrödinger equation (1.25), we get the new
differential equation

i�Ψ̇(t) = κU(t)Ψ(t), t ∈ R (1.26)

with the transformed potential16

U(t) := ei(t−t0)H0/�U(t) e−i(t−t0)H0/�.

Differentiation of the function

F (t) = F (t0) +
∫ t

t0

f(τ)dτ

with respect to time t yields Ḟ (t) = f(t). Therefore, the differential equation
(1.26) is equivalent to the Volterra integral equation

Ψ(t) = Ψ0 +
κ

i�

∫ t

t0

U(τ)Ψ(τ)dτ (1.27)

16 In fact, for simplifying notation, we set � := 1 and t0 := 0. Then

iΨ̇(t) = −H0e
itH0ψ(t) + eitH0 iψ̇(t).

Using iψ̇ = (H0 + κU)ψ, we obtain the claim (1.26).
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with Ψ0 := Ψ(t0) = ψ(t0). This integral equation can be solved by means of
the following iterative method

Ψn+1(t) = Ψ0 +
κ

i�

∫ t

t0

U(τ)Ψn(τ)dτ, n = 0, 1, 2, . . .

This yields the solution

Ψ(t) = Ψ0 +
∞∑

n=1

κn

(i�)n

∫

U(t1) · · ·U(tn)Ψ0 (1.28)

where we use the convention
∫

:=
∫ t

t0
dt1

∫ t1
t0
dt2 · · ·

∫ tn−1

t0
dtn.

The magic Dyson series. It is our goal to simplify the solution formula
(1.28) by introducing the chronological operator T . We will obtain the elegant
formula

Ψ(t) = T exp
(
κ

i�

∫ t

t0

U(τ)dτ
)

Ψ0. (1.29)

Explicitly, we get the following Dyson series

Ψ(t) = Ψ0 +
∞∑

n=1

κn

n!(i�)n

∫ t

t0

· · ·
∫ t

t0

T (U(t1) · · ·U(tn))Ψ0 dt1 · · · dtn.

Here, the chronological operator T organizes the factors in such a way that
time is increasing from right to left.17 For example,

T (U(t1)U(t2)) :=

{
U(t1)U(t2) if t1 ≥ t2,

U(t2)U(t1) if t2 > t1.

More generally,

T (U(t1)U(t2) · · ·U(tn)) := U(t1′)U(t2′) · · ·U(tn′)

where t1′ , . . . , tn′ is a permutation of t1, . . . , tn such that t1′ ≥ t2′ ≥ . . . ≥ tn′ .
Consider now the integral

J :=
∫ t

t0

dt1

∫ t1

t0

dt2U(t1)U(t2) =
∫ t

t0

∫ t

t0

U(t1)U(t2)θ(t1 − t2)dt1dt2

where θ(t) := 1 if t ≥ 0, and θ(t) := 0 if t < 0. Using a permutation of indices,
17 In the present case, the use of the chronological operator T is trivial, since U(t1)

commutes with U(t2). However, the chronological operator is crucial if one wants
a straightforward generalization of the argument above to finite-dimensional sys-
tems of classical ordinary differential equations and infinite-dimensional operator
equations appearing in quantum field theory.
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J =
∫ t

t0

∫ t

t0

1
2

(
U(t1)U(t2)θ(t1 − t2) + U(t2)U(t1)θ(t2 − t1)

)
dt1dt2.

Hence J =
∫ t

t0

∫ t

t0
1
2T (U(t1)U(t2))dt1dt2. Similarly, we proceed for n = 3, 4, . . .

in order to get the desired relation (1.29). �

Summarizing, in the Dirac interaction picture we pass from the Schrö-
dinger state function ψ = ψ(t) and the potential U = U(t) to the Dirac state
function Ψ and the Dirac potential U, respectively. Explicitly,

Ψ(t) := ei(t−t0)H0/�ψ(t), U(t) := ei(t−t0)H0/�U(t) e−i(t−t0)H0/�

for all times t ∈ R. Here, the Hamiltonian H0 describes the free dynamics
in the Schrödinger picture. The Dirac state function Ψ satisfies the modified
Schrödinger equation

i�Ψ̇(t) = κU(t)Ψ(t), t ∈ R

and the Dirac potential U satisfies the equation of motion

i�U̇(t) = [U(t), H0]− + V (t), t ∈ R

with V (t) := ei(t−t0)H0/�U̇(t)e−i(t−t0)H0/�. If the potential U(t) is time-
independent, then

i�U̇(t) = [U(t), H0]−, t ∈ R.

This is the Heisenberg equation of motion with respect to the unperturbed
Hamiltonian H0.

In Chap. 15 we will use this type of argument in order to reduce the
investigation of interacting quantum fields to free quantum fields.

Perturbation theory. Suppose that the coupling constant κ is small.
We then obtain the first-order (or Born) approximation

Ψ(t) = Ψ0 +
κ

i�

∫ t

t0

U(τ)Ψ0dτ.

Thus, for the solution ψ(t) = e−i(t−t0)H0/�Ψ(t) of the Schrödinger equation
(1.25), we obtain the first-order approximation

ψ(t) = ψ0(t) +
κ

i�

∫ t

t0

e−i(t−τ)H0/�U(τ)ψ0(τ)dτ, t ∈ R

which represents the first-order perturbation of the free dynamics

ψ0(t) := e−i(t−t0)H0/�ψ0(t0).
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1.2.2 The Fundamental Role of the Harmonic Oscillator
in Quantum Field Theory

The present paper seeks to establish a basis for theoretical quantum me-
chanics founded exclusively upon relationships between quantities which
in principle are observable. . . We shall restrict ourselves to problems in-
volving one degree of freedom.18

Werner Heisenberg, 1925

Since the 1920s, the experience of physicists has shown that

Quantum fields can be treated as nonlinear perturbations of an infinite
number of uncoupled quantized harmonic oscillators.

All the computations of physical effects in quantum field theory done by
physicists have been based on this general principle. It is the long-term de-
sire of physicists to replace this local approach by a more powerful global
approach. The harmonic oscillator and its relations to quantum field theory
will be thoroughly studied in Volume II. At this point, let us only sketch the
basic ideas.

The classical harmonic oscillator and Poisson brackets. The New-
tonian equation of motion for a harmonic oscillator of mass m and coupling
constant κ > 0 on the real line reads as

mq̈(t) = −κq(t), t ∈ R. (1.30)

This is the simplest oscillating system in physics. The equation of motion
(1.30) possesses the following general solution

q(t) =

√
�

2mω
(ae−iωt + a†eiωt), t ∈ R (1.31)

along with the angular frequency ω :=
√
κ/m. The Fourier coefficient a is

a complex number. Introducing the momentum p(t) := mq̇(t) at time t, the
relations between the Fourier coefficient a, the conjugate complex value a†,
and the initial values of the harmonic oscillator are given by

q(0) =

√
�

2mω
(a+ a†), p(0) = i

√
�mω

2
(a† − a). (1.32)

The following three equivalent formulations were studied in the history of
classical mechanics.19

18 W. Heisenberg, Quantum-theoretical re-interpretation of kinematic and mechan-
ical relations, Zeitschrift für Physik 33 (1925), 879–893. This paper founded
quantum mechanics. Heisenberg was awarded the Nobel prize in physics in 1932.

19 A detailed investigation of the harmonic oscillator can be found in Volume II.
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(i) The Lagrangian approach: The function

L(q, q̇) :=
1
2
mq̇2 − 1

2
κq2

represents the Lagrangian of the harmonic oscillator. The Euler–Lagrange
equation ṗ = Lq is equivalent to the Newtonian equation (1.30). Along
each trajectory q = q(t) of the harmonic oscillator, we have energy con-
servation

E =
p(t)2

2m
+
κq(t)2

2
for all t ∈ R.

(ii) The Hamiltonian approach: Introducing the Hamiltonian

H(q, p) :=
p2

2m
+
κq2

2
,

the Newtonian equation (1.30) is equivalent to the following Hamiltonian
equations of motion

ṗ = −Hq, q̇ = Hp. (1.33)

This is also called canonical equation. Explicitly, ṗ(t) = −κq(t) and
q̇(t) = p(t)/m. We will show in Volume II that there is a symplectic
structure behind the Hamiltonian approach.

(iii) The Poissonian approach: Let us introduce the Poisson bracket

{A(q, p), B(q, p)} := AqBp −BqAp

where Aq denotes the partial derivative with respect to the variable q.
The Hamiltonian equations (1.33) of motion can then be written as

ṗ = {p,H}, q̇ = {q,H}. (1.34)

This reveals the Poissonian structure behind classical mechanics. More-
over, we have

{q, p} = 1. (1.35)

We will show below that the equations (1.34) and (1.35) are the key to the
quantization of the harmonic oscillator. This was discovered gradually by
Heisenberg, Born, Jordan, and Dirac in 1925/1926. Let us discuss this.

Heisenberg’s philosophical principle. In 1925 Heisenberg wanted to
understand atomic spectra. As a mathematical model, he considered the in-
finite scheme

q(t) = (qnmeiωnmt), n,m = 1, 2, . . .
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of angular frequencies ωnm and complex-valued amplitudes qnm. Following
Einstein and Bohr, Heisenberg postulated that the angular frequencies are
related to the possible energies of the system by the equation

ωnm =
En − Em

�
.

It was his goal to compute the energy levels E1, E2, . . . and the intensities of
the spectral lines which are proportional to the squares |qnm|2. To this end,
Heisenberg developed some simple rules for the scheme. Finally, he got the
crucial energy relation

En =
(

n+
1
2

)

�ω, n = 0, 1, 2, . . .

This was the birth of modern quantum mechanics. From the philosophical
point of view, Heisenberg did only use quantities which are directly related to
physical experiments in the spectroscopy of atoms and molecules. In particu-
lar, he did not use the notion of trajectory or velocity of a quantum particle.
In the same philosophical spirit, Heisenberg introduced the S-matrix in 1943;
this approach has been very successful in elementary particle physics.

Heisenberg did not know the mathematical notion of matrix. In fact, in his
1925 paper he invented matrix multiplication by using physical arguments.
When reading Heisenberg’s manuscript, Born remembered some course in
matrix calculus from the time of his studies; he conjectured that there should
hold the following commutation relation

q(t)p(t) − p(t)q(t) = i�I for all t ∈ R (1.36)

with p(t) := mq̇(t) = (imωnmqnmeiωnmt). Recall that the symbol I denotes
the identity operator. Born, himself, could prove (1.36) only for the diagonal
elements. The general proof was then obtained with the help of his young as-
sistant Pascual Jordan in Göttingen. For this historical reason, the commuta-
tion relation (1.36) will be called the Heisenberg–Born–Jordan commutation
relation in what follows.

The Heisenberg picture of the quantum harmonic oscillator and
Lie brackets. Let us now formulate Heisenberg’s approach to quantum me-
chanics in the manner polished by Born, Jordan, and Dirac. For the quantum
harmonic oscillator, the classical motion

q = q(t), t ∈ R

is replaced by the operator-valued function q = q(t). Moreover, in order
to obtain the equation of motion, we use the Poissonian approach, and we
replace the classical Poisson bracket by the Lie bracket. Explicitly,
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{A,B} ⇒ 1
i�

[A,B]−

where [A,B]− := AB − BA.20 From (1.34) and (1.35), we get the equations
of motion

i�ṗ(t) = [p(t), H(t)]−, i�q̇(t) = [q(t), H(t)]−, (1.37)

and the commutation relation (1.36) along with the Hamiltonian

H(t) =
p(t)2

2m
+
κq(t)2

2
.

It turns out that

This problem can be solved easily by using the classical solution (1.31)
and by replacing the Fourier coefficient a by an operator. Here, we
have to assume that the operator a and its adjoint a† satisfy the
following commutation relation

[a, a†]− = I. (1.38)

This method is called Fourier quantization. In Volume II, we will use this
method in order to obtain quantum electrodynamics as a quantum field the-
ory which generalizes classical Maxwell’s theory of electromagnetism.

The Schrödinger picture. The Schrödinger equation for the harmonic
oscillator reads as

i�ψ̇(x, t) = Hψ(x, t), x, t ∈ R

with the momentum operator (Pψ)(x, t) := −i�ψx(x, t), the position operator
(Qψ)(x, t) := xψ(x, t), and the Hamiltonian

H :=
P 2

2m
+
κQ2

2
.

Explicitly, the Schrödinger equation reads as

i�ψ̇(x, t) = − �
2

2m
ψxx(x, t) +

κ

2
x2ψ(x, t).

The ansatz ψ(x, t) = ϕ(x)e−iEt/� yields the stationary Schrödinger equation

Eϕ = Hϕ. (1.39)

20 This general rule is due to Dirac. In 1928, Jordan and Wigner discovered that
one has to replace the commutator [A,B]− for bosons (e.g., photons) by the
anticommutator [A,B]+ := AB +BA in the case of fermions (e.g., electrons).
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Explicitly, Eϕ(x) = − �
2

2mϕ′′(x) + κ
2x

2ϕ(x). This is an eigenvalue problem
for computing the unknown energy E. From classical analysis it is known
that the Hermite functions ϕ0, ϕ1, . . . are eigenfunctions of (1.39). Let us use
the language of physicists in order to obtain these eigenfunctions in a very
elegant manner. Motivated by (1.32), we set p(0) := P, q(0) := Q, and hence

Q =

√
�

2mω
(a+ a†), P = i

√
�mω

2
(a† − a).

To simplify notation, let m = ω = � = 1. This implies κ = 1. Then,

a =
1√
2

(Q+ iP ), a† =
1√
2

(Q− iP ).

It follows from the commutation relation [Q,P ]− = iI that this choice of the
operator a satisfies the commutation relation (1.38). We will show in Volume
II, using only the commutation relations, that the functions

ϕn :=
1√
n!

(a†)nϕ0, n = 0, 1, 2, . . .

with ϕ0(x) := c0e−x2/2 are eigensolutions of the equation

Enϕn = Hϕn, n = 0, 1, 2, . . .

with the eigenvalues En := (n+ 1
2 ).21 If we choose the constant c0 := π−1/4,

then

〈ϕn|ϕm〉 :=
∫ ∞

−∞
ϕn(x)†ϕm(x) dx = δnm, n,m = 0, 1, 2, . . .

In other words, the eigenfunctions ϕ0, ϕ1, . . . form an orthonormal system in
the Hilbert space L2(R).22 For the original Schrödinger equation, we get the
solutions

ψn(x, t) = ϕn(x)e−iEnt/�, n = 0, 1, 2, . . .

which describe quantum oscillations of the quantum particle on the real line
with energy En = (n+ 1

2 )�ω.
The Feynman picture. Using the eigenfunctions ψ0, ψ1, . . . , we can

construct the Feynman propagator kernel

P(x, t; y, t0) =
∞∑

n=0

ψn(x, t)ψn(y, t0)†.

21 This corresponds to En =
`

n+ 1
2

´

�ω when our simplification � = ω = m = 1
drops out.

22 In fact, it is shown in Zeidler (1995), Vol. 1, Sect. 3.4 that this orthonormal
system is complete.
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This kernel knows all about the dynamics of the quantum harmonic oscillator.
In fact, suppose that we are given the wave function ψ(x, t0) := ϕ(x) at the
initial time t0. For arbitrary points x on the real line and arbitrary real time
t, the wave function is then given by the formula

ψ(x, t) =
∫ ∞

−∞
P(x, t; y, t0)ϕ(y)dy. (1.40)

The fundamental role of Green’s functions in mathematics and
physics. In terms of physics, the Feynman propagator kernel P allows the
following intuitive interpretation. Choose the initial state

ϕ(x) := ϕ0δ(x− x0)

where ϕ0 is a fixed complex number.23 Formally, this corresponds to an initial
state which is sharply concentrated at the point x0 at the initial time t0. By
(1.40), we get the solution

ψ(x, t) = ϕ0P(x, t;x0, t0)

for all positions x ∈ R and all times t ≥ t0. Thus, the Feynman propagator
describes the propagation of a sharply concentrated initial state. Formula
(1.40) tells us then that the general dynamics is the superposition of sharply
concentrated initial states ϕ(x0)δ(x − x0). This is the special case of a gen-
eral strategy in mathematics and physics called the strategy of the Green’s
function:

• Study first the response of a given physical system under the action of
a sharply concentrated external force. This response corresponds to the
Green’s function of the system.

• The total response of the system under the action of a general external
force can then be described by the superposition of sharply concentrated
forces.

The response approach to quantum field theory will be studied in Chap. 14.
The importance of Fock states in quantum field theory. In the

example above, the states

ϕn :=
1√
n!

(a†)nϕ0, n = 0, 1, 2, . . .

span the Hilbert space L2(R). These states are called Fock states, and L2(R)
is called the corresponding Fock space. The state ϕ0 represents the ground
state, and we have

aϕ0 = 0.
23 The meaning of the Dirac delta function δ can be found on page 592.
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Furthermore, for the operator N := a†a, we get

Nϕn = nϕn, n = 0, 1, 2, . . .

In Chap. 15 we will generalize this model to quantum field theory. Then, the
following will happen:

• The state ϕ0 passes over to the vacuum state |0〉 of a free quantum field.
• The operator a† is called creation operator.
• The Fock state ϕn corresponds to a state which consists of n particles.
• Because aϕ0 = 0, the operator a is called annihilation operator.
• The Fock state ϕn is a common eigenstate of the energy operator H and

the particle number operator N with the eigenvalue n which counts the
number of particles of ϕn.

1.2.3 Quantum Fields and Second Quantization

Quantum field theory was founded by Heisenberg and Pauli in 1929.24 From
the physical point of view the following is crucial:

A quantum field can be treated as a system of an infinite number
of quantum particles where creation and annihilation of particles are
possible.

In particular, for studying the radiation of atoms and molecules, one has
to consider the quantum field of photons. In quantum electrodynamics, one
investigates the quantum field of electrons, positrons, and photons.

The second quantization of the Schrödinger equation. As a pro-
totype, let us consider the quantum field corresponding to the Schrödinger
equation. We will proceed in several steps.

• Step 1: Classical mechanics. We start with a classical particle on the real
line. The principle of critical action reads as

∫ t1

t0

L(q(t), q̇(t))dt = critical!

along with the boundary condition “q(t) = given” for t = t0, t1. This leads
to the Euler–Lagrange equation

d

dt
Lq̇(q(t), q̇(t)) = Lq(q(t), q̇(t))

which describes the motion, q = q(t), of the classical particle on the real
line.25 Let us consider the special case where

24 W. Heisenberg and W. Pauli, On quantum field theory (in German), Zeitschrift
für Physik 56 (1929), 1–61; 59 (1930), 108–190.

25 The derivation of the Euler–Lagrange equation in classical mechanics along with
symplectic and Poissonian geometry will be studied in Chaps. 4 and 5 of Vol. II.
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L(q, q̇) :=
mq̇2

2
− κU(q).

We define the momentum p := Lq̇ and the Hamiltonian H := pq̇−L. Hence
p = mq̇, and

H =
p2

2m
+ κU(q).

Set H(t) := p(t)2

2m + κU(q(t)). By energy conservation, we have

H(t) = H(0) for all t ∈ R,

for each smooth solution q = q(t) of the Euler–Lagrange equation.
• Step 2: First quantization by using Heisenberg’s particle picture. We want

to describe a quantum particle on the real line.
To this end, we replace the classical trajectory q = q(t) by an operator-
valued function.

This implies the operators p(t) := mq̇(t) and H(t) as given above. More
precisely, for each time t, we have the commutation relation

[q(t), p(t)]− = i�I

and the following equations of motion26

i�q̇(t) = [q(t), H(t)]−, i�ṗ(t) = [p(t), H(t)]−.

We will show in Volume II that this implies the Newtonian equation of
motion mq̈(t) = −κU ′(q(t)). Furthermore, the energy operator H(t) does
not depend on time t. To simplify notation, this operator is denoted by the
symbol H.

• Step 3: First quantization by using Schrödinger’s wave picture. Here, the
quantum particle on the real line is described by the complex-valued wave
function ψ = ψ(x, t) which satisfies the Schrödinger equation

i�ψ̇(x, t) = − �
2

2m
ψxx(x, t) + κU(x)ψ(x, t). (1.41)

First of all we want to derive the Schrödinger equation by the principle of
critical action of the form

∫ t1

t0

(∫ x1

x0

L dx

)

dt = critical! (1.42)

along with the boundary condition “ψ(x, t) = given” on the boundary ∂Ω
of the rectangle Ω := {(x, t) ∈ R

2 : x0 ≤ x ≤ x1, t0 ≤ t ≤ t1}. Explicitly,
for the Lagrangian density,

26 Recall that [A,B]− := AB −BA.
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L(ψ, ψ̇, ψx;ψ†, ψ̇†, ψ†
x) := i�ψ†ψ̇ − �

2

2m
ψ†

xψx − κUψ†ψ

with the real potential U = U(x). Recall that ψ̇ denotes the partial deriva-
tive with respect to time t. Each classical solution ψ = ψ(x, t) of (1.42)
satisfies the two Euler–Lagrange equations

∂

∂x
Lψx +

∂

∂t
Lψ̇ = Lψ (1.43)

and

∂

∂x
Lψ†

x
+

∂

∂t
Lψ̇† = Lψ† . (1.44)

Equation (1.43) is precisely the Schrödinger equation (1.41), whereas equa-
tion (1.44) is obtained from the Schrödinger equation by applying the op-
eration of complex conjugation, that is,

−i�ψ̇† = − �
2

2m
ψ†

xx + κUψ†.

Thus, equation (1.44) does not provide us any new information. Introduce
the momentum

π := Lψ̇.

Explicitly, π(x, t) = i�ψ†(x, t). Moreover, we introduce the Hamiltonian
density

H := πψ̇ − L

and the Hamiltonian H :=
∫∞
−∞ Hdx. Explicitly,

H =
�

2

2m
ψ†

xψx + Uψ†ψ.

Here, H represents the energy of the classical field ψ.
• Step 4: Second quantization of the Schrödinger equation and the quantum

field. We now want to describe an infinite number of quantum particles on
the real line including the creation and annihilation of particles.

To this end, we replace the classical wave function ψ = ψ(x, t) by an
operator-valued function.

More precisely, ψ(x, t) is an operator which, for all positions x, y ∈ R and
all times t ∈ R, satisfies the so-called canonical commutation relations

[ψ(x, t), π(y, t)]− = i�δ(x− y),
[ψ(x, t), ψ(y, t)]− = [π(x, t), π(y, t)]− = 0

along with the equations of motion
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i�ψ̇ = [ψ,H]−, i�π̇ = [π,H]−.

It turns out that this implies the Schrödinger equation for the quantum
field ψ = ψ(x, t).27

The prototype of a quantum field and the method of Fourier
quantization. Suppose that we know a system ϕ0, ϕ1, . . . of eigensolutions
of the stationary Schrödinger equation,

Eϕn = − �
2

2m
(ϕn)xx + κUϕn, n = 0, 1, 2, . . .

where ϕ0, ϕ1, . . . represents a complete orthonormal system in the Hilbert
space L2(R). The Fourier series

ψ(x, t) =
∞∑

n=0

ϕn(x)e−iEnt/�an (1.45)

with complex numbers a0, a1, . . . is then a solution of the Schrödinger equa-
tion. Replace now the classical Fourier coefficients by operators a0, a1, . . .
which, for all n,m = 0, 1, . . . satisfy the commutation relations

[
an, a

†
m

]
− = δnmI, [an, am]− =

[
a†n, a

†
m

]
− = 0.

The classical field ψ from (1.45) passes then over to a quantum field which
consists of an infinite number of particles having the energies E0, E1, . . . We
assume that there exists a state |0〉 which is free of particles. This state of
lowest energy E0 is called ground state (or vacuum).The symbol

a†i1a
†
i2
· · · a†iN

|0〉

represents then a state of the quantum field which consists of precisely N
free particles possessing the energies Ei1 , . . . , EiN

. Moreover, the symbol

ψ†
free(x1, t) · · ·ψ†

free(xN , t)|0〉

represents a state at time t which is related to N free particles. Here, it is
important to distinguish between

• the ground state |0〉 of the free quantum field ψfree without any interactions,
• and the ground state |0int〉 of the interacting quantum field ψ.

The main trouble of quantum field theories concerns the investigation of
interacting quantum fields in rigorous mathematical terms.
27 The Dirac delta function δ represents a generalization of the Kronecker symbol
δij to infinite degrees of freedom. In particular, δ(x − y) = 0 if x �= y. For the
heuristic and rigorous definition of δ, see pages 593 and 612, respectively.
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Commutation relations for creation and annihilation operators.
In elementary particle physics, we have to distinguish between bosons (parti-
cles of integer spin, e.g., photons) and fermions (particles of half-integer spin,
e.g., electrons). The prototype of commutation relations for annihilation op-
erators a(p) and creation operators a†(p) of bosonic particles of a momentum
vector p reads as28

[
a(p), a†(q)

]
− = δpqI, [a(p), a(q)]− =

[
a†(p), a†(q)

]
− = 0

for all momentum vectors p,q which lie on a fixed lattice of width Δp in
3-dimensional momentum space. Here, we use the 3-dimensional Kronecker
symbol defined by δpp := 1 and δpq = 0 if p �= q. Physicists pass to the
formal continuum limit. To consider this, let us rescale the annihilation and
creation operators by setting

a(p) :=
a(p)

√
(Δp)3

, a†(p) :=
a†(p)

√
(Δp)3

.

Hence

[
a(p),a†(q)

]
− =

δpq

(Δp)3
I, [a(p),a(q)]− =

[
a†(p),a†(q)

]
− = 0.

The formal continuum limit Δp → 0 yields then
[
a(p),a†(q)

]
− = δ3(p − q)I, [a(p),a(q)]− =

[
a†(p),a†(q)

]
− = 0

for all 3-dimensional momentum vectors p and q. The relation between the
discrete Dirac delta function and its continuum limit is studied on page 675.
The rigorous mathematical approach to creation and annihilation operators
for free quantum particles in terms of the so-called Fock space can be found
in Volume II.

The fundamental role of correlations of a quantum field. The ex-
perience of physicists in quantum physics shows that one should prefer the
study of quantities which are related to measurements in physical experi-
ments. From the physical point of view, we can measure

• cross sections of scattering processes for elementary particles, and
• masses of bound particles (like the proton as a bound state of three quarks).

It turns out that these quantities are related to correlations between different
space-time points of the quantum field. According to Feynman, the basic
quantity is the correlation function

G2(x1, t1;x2, t2) := 〈0int|T ψ(x1, t1)ψ†(x2, t2)|0int〉

28 Recall that [A,B]− := AB − BA and [A,B]+ := AB + BA. For fermions, one
has to replace the Lie bracket [., .]− by the Jordan–Wigner bracket [., .]+.
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which is also called the 2-point Green’s function of the interacting quantum
field ψ. This function describes the correlation between the quantum field at
position x1 at time t1 and the quantum field at position x2 and time t2. Here,
the symbol T denotes the chronological operator. Explicitly,

T (ψ(x1, t1)ψ†(x2, t2)) :=

{
ψ(x1, t1)ψ†(x2, t2) if t1 ≥ t2,

ψ†(x2, t2)ψ(x1, t1) if t2 > t1.

It turns out that

The 2-point Green’s function G2 of a quantum field is a highly sin-
gular mathematical object.

This fact causes serious mathematical difficulties. Similarly, the 2n-point
Green’s function is obtained by replacing the product ψ(x1, t1)ψ†(x2, t2) by
a product of 2n field operators. For example, the 4-point Green’s function
G4 is given by

〈0int|T ψ(x1, t1)ψ(x2, t2)ψ†(x3, t3)ψ†(x4, t4)|0int〉.

The Green’s functions G2, G4, G6, . . . of a quantum field are closely related
to the moments of the quantum field which contain the information on the
probability structure of the quantum field.

1.2.4 The Importance of Functional Integrals

The Feynman picture of quantum field theory and the method of
moments. For quantum field theory, it is crucial that the 2n-point Green’s
functions can be expressed by Feynman functional integrals (also called path
integrals). For example,

G2(x, t; y, s) =
∫
ψ(x, t)ψ†(y, s)eiS[ψ,ψ†]/� Dψ Dψ†

∫
eiS[ψ,ψ†]/� Dψ Dψ†

where we integrate over all possible classical fields ψ,ψ†. In this connection,
we use the classical action

S[ψ,ψ†] :=
∫

R2
L dxdt

where the Lagrangian density L depends on ψ,ψ†, and their first-order partial
derivatives. The crucial point is that the formula for G2 makes also sense if
the Lagrangian L contains nonlinear terms in ψ and ψ† which describe self-
interactions of the quantum field. For example, we may replace the potential
U by the field product ψ†ψ. Then

L := i�ψ†ψ̇ − �
2

2m
ψ†

xψx − κ(ψ†)2ψ2.
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The relation to the Gaussian distribution in the theory of prob-
ability. For k = 0, 1, 2, . . ., the quantity

Mk :=

∫
R
xke−x2/2σ2

dx
∫

R
e−x2/2σ2dx

is called the kth moment of the Gaussian distribution in the theory of proba-
bility. By the classical moment theorem, a probability distribution is uniquely
determined by its infinite series M0,M1,M2, . . . of moments.29 There exists
the following simple trick for computing the moments. We introduce the
function

Z(J) := C
∫

R

e−x2/2σ2
eJx dx

of the real variable J where the normalization constant C is chosen in such a
way that Z(0) = 1. Then, for k = 0, 1, 2, . . . ,

Mk =
dkZ(0)
dJk

.

Naturally enough, the function Z = Z(J) is called the generating function
of the moments. Physicists call this the Wick moment trick. It is quite re-
markable that the investigation of general interacting quantum fields can be
based on an infinite-dimensional version of the Wick trick. The point is that
classical integrals have to be replaced by Feynman functional integrals. Here,
physicists start with the so-called generating functional integral

Z(J, J†) = C
∫

eiS[ψ,ψ†]/� e
R

R2 (ψJ+ψ†J†)dxdt Dψ Dψ†

where the normalization C is chosen in such a way that Z(0, 0) = 1. Then

G2(x, t; y, s) =
(

�

i

)2
δ2Z(0, 0)

δJ(x, t)δJ†(y, s)
.

Analogously, one obtains the higher-order Green’s functions by applying func-
tional derivatives of higher order. The precise definition of functional deriva-
tives can be found in Sect. 7.20.1 on page 398. Note that

Functional derivatives and functional integrals are natural general-
izations of classical partial derivatives and classical multidimensional
integrals to infinite dimensions, respectively.

They have been used systematically by physicists in the 20th century in order
to generalize the classical calculus due to Newton and Leibniz to an infinite
number of degrees of freedom which appear typically in quantum field theory.
29 See Zeidler (1995), Vol. 2, Sect. 1.4.
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(a) n = 2

γ γ

e− e−� � �

(b) n = 4

� �
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γ

e− e−

Fig. 1.3. Virtual particles

The Feynman approach to interacting quantum fields can be based on
the moments of “infinite-dimensional Gaussian distributions”.

This will be thoroughly studied in the volumes of this treatise.
Virtual particles. It turns out that the Feynman diagrams from Fig.

1.2 on page 41 can be generalized to quantum fields. Fig. 1.3 displays some
Feynman diagrams which describe the scattering of one electron with one
photon (Compton effect). The diagrams are nothing more than a graphical
representation of the analytic expressions of perturbation theory. If one gives
the diagrams a physical interpretation, then there occur, for example, photons
for which the physical relation

E2 = c2p2

between energy E and momentum vector p is violated. Such particles are
called virtual photons by physicists.30 Without using virtual particles, the
computation of scattering processes would give wrong results. This shows
that

The interactions between quantum fields are based on both real and
virtual particles.

The Bethe–Salpeter equation for bound states. The state

ψ†(x, t)ψ†(y, s)|0int〉

of the quantum field ψ describes the physics of systems consisting of two quan-
tum particles. In particular, we expect that this state also contains bound
states between two particles. Let |p〉 denote a one-particle state of momentum
p. In 1951 Bethe and Salpeter used the so-called Bethe amplitudes

χp(x, t; y, s) := 〈0int|T ψ(x, t)ψ†(y, s)|p〉

in order to derive an integral equation for χp which contains the unknown
energy E of the bound state as an eigenvalue parameter. This is the famous
30 The Compton effect will be thoroughly studied in Volume II in the context of

quantum electrodynamics.
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Bethe–Salpeter equation which will be considered in Volume V on the physics
of the Standard Model.31

1.3 The Role of Göttingen

One cannot comprehend what it is one possesses if one has not understood
what one’s predecessors possessed.

Johann Wolfgang von Goethe (1749–1832)

I am ill-mannered, for I take a lively interest in a mathematical object
only where I see a prospect of a clever connection of ideas or of results
recommended by elegance or generality.

Carl Friedrich Gauss (1777–1855)

In 1807, Carl Friedrich Gauss got the position as professor for astronomy and
director of the observatory in Göttingen. His successors were Lejeune Dirich-
let (1805–1859) and Bernhard Riemann (1826–1866) in Göttingen. In 1871,
Felix Klein (1849–1925) finished his habilitation in Göttingen. After that he
received professorships in Erlangen, Munich, and Leipzig. In 1881 he founded
the Mathematical Institute of Leipzig University. After his move to Göttingen
in 1886, Sophus Lie (1842–1899) became Klein’s successor in Leipzig. Initi-
ated by Klein, Hilbert received a professorship at Göttingen University in
1895. Under Hilbert, Göttingen became an extremely active place in math-
ematics. In the 1920s, Emmy Noether (1882–1935) revolutionized algebra
in Göttingen. The young mathematician Bartel Leendert van der Waerden
(1903–1996) attended the lectures given by Emmy Noether and Emil Artin.
The result was his highly influential monograph Modern Algebra, Springer,
Berlin 1930.

The emergence of quantum mechanics. In the late 1920s, Göttingen
was the intellectual center for the development of the new quantum physics
by Heisenberg (1901–1976), Born (1882–1970), Jordan (1902–1980), Pauli
(1900–1958), and von Neumann (1903–1957). Students and scientists from all
over the world came to Göttingen in order to take part in this scientific rev-
olution. Among the visitors were the young physicists Vladimir Fock (1890–
1974), Lev Landau (1908–1968), and Robert Oppenheimer (1904–1967). In
order to get an impression of the flair of the early days of quantum me-
chanics, let us first quote Werner Heisenberg (1901–1976) and Paul Dirac
(1902–1984) who gave Evening Lectures at the International Center for The-
oretical Physics in Trieste (Italy) in 1968. They were invited by Abdus Salam
(1926–1996).32 Heisenberg pointed out the following:

31 See Bethe and Salpeter (1957), Itzykson and Zuber (1981), Sect. 10.2, and Gross
(1993), Sect. 12.5.

32 A. Salam (Ed.) (1968). The author would like to thank Professor Armin Uhlmann
(Leipzig) for drawing his attention to these beautiful “Evening Lectures”. The
history of quantum physics can be found in J. Mehra and H. Rechenberg (2002),
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I had the impression from my conversation with Bohr (1885–1962) that
one should go away from all these classical concepts, one should not speak
of the orbit of an electron. . .

When I came back from Copenhagen to Göttingen I decided that I should
again try to do some kind of guess work there, namely, to guess the in-
tensities in the hydrogen spectrum. . . That was early in the summer 1925
and I failed completely. The formulae got too complicated. . . At the same
time I also felt, if the mechanical system would be simpler, then it might
be possible just to do the same thing as Kramers (1894–1952) and I had
done in Copenhagen and to guess the amplitudes. Therefore I turned from
the hydrogen atom to the anharmonic oscillator, which was a very sim-
ple model. Just then I became ill and went to the island of Heligoland
to recover. There I had plenty of time to do my calculations. It turned
out that it really was quite simple to translate classical mechanics into
quantum mechanics. But I should mention one important point. It was
not sufficient simply to say “let us take some frequencies and amplitudes
to replace orbit quantities” and use a kind of multiplication which we had
already used in Copenhagen and which later turned out to be equivalent
to matrix multiplication. . .

It turned out that one could replace the quantum conditions of Bohr’s
theory by a formula which was essentially equivalent to the sum-rule by
Thomas and Kuhn. . . I was however not able to get a neat mathematical
scheme out of it. Very soon afterwards both Born and Jordan in Göttingen
and Dirac in Cambridge were able to invent a perfectly closed mathemat-
ical scheme; Dirac with very ingenious new methods on q-numbers and
Born and Jordan with more conventional methods of matrices33. . .

When you try too much for rigorous mathematical methods you fix your
attention on those points which are not important from the physics point
and thereby you get away from the experimental situation. If you try to
solve a problem by rather dirty mathematics, as I have mostly done, then
you are forced always to think of the experimental situation; and whatever
formulae you write down, you try to compare the formulae with reality and
thereby, somehow, you get closer to reality than by looking for the rigorous
methods. But this may, of course, be different for different people. . .

In 1926 Niels Bohr and I discussed the question on the physical interpre-
tation of quantum mechanics many, many nights and we were frequently
in a state of despair. Bohr tried more in the direction of duality between
waves and particles; I preferred to start from the mathematical formalism
and to look for a consistent interpretation. Finally Bohr went to Norway
to think alone about the problem and I remained in Copenhagen. Then I
remembered Einstein’s remark in our discussion. I remembered that Ein-
stein had said that “It is the theory which decides what can be observed.”
From there it was easy to turn around our question and not to ask “How
can I represent in quantum mechanics this orbit of an electron in a cloud

Vols. 1–6. As an introduction to the development of quantum mechanics in the
1920s, we recommend van der Waerden (1968). For the history of quantum field
theory, we refer to Schweber (1994) and Weinberg (1995), Vol. 1, Chap. 1.

33 Dirac’s q-numbers (quantum numbers) are abstract operators in the sense of
modern functional analysis, whereas Born and Jordan used concrete realizations
of the operators in the form of infinite-dimensional complex matrices.
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chamber?”, but rather to ask “Is it not true that always only such situa-
tions occur in nature, even in a cloud chamber, which can be described by
the mathematical formalism of quantum mechanics?” By turning around
I had to investigate what can be described in this formalism; and then it
was very easily seen, especially when one used the new mathematical dis-
coveries of Dirac and Jordan about transformation theory, that one could
not describe at the same time the exact position and the exact velocity of
an electron; one had these uncertainty relations. In this way things became
clear. When Bohr returned to Copenhagen, he had found an equivalent in-
terpretation with his concept of complementarity, so finally we all agreed
that now we had understood quantum theory. . .

Again we met a difficult situation in 1927 when Einstein and Bohr dis-
cussed these matters at the Solvay Conference. Almost every day the se-
quence of events was the following. We all lived in the same hotel. In the
morning for breakfast Einstein would appear and tell Bohr a new ficti-
tious experiment in which he could disprove the uncertainty relations and
thereby our interpretation of quantum theory. Then Bohr, Pauli and I
would be very worried, we would follow Bohr and Einstein to the meeting
and would discuss this problem all day. But at night for dinner usually
Bohr had solved the problem and he gave the answer to Einstein, so then
we felt that everything was alright and Einstein was a bit sorry about that
and said he would think about it. Next morning he would bring a new
fictitious experiment, again we had to discuss, and so on. This went on for
quite a number of days and at the end of the conference the Copenhagen
physicists had the feeling that they had won the battle and that actually
Einstein could not make any real objection. . . Einstein never accepted the
probabilistic interpretation of quantum mechanics. He said :“God does not
play at dice.”

Dirac emphasized the following in his Evening Lecture at Trieste:

I have the best of reasons for being an admirer of Werner Heisenberg.
He and I were young research students at the same time, about the same
age, working on the same problem. Heisenberg succeeded where I failed.
There was a large mass of spectroscopic data accumulated at that time
and Heisenberg found out the proper way of handling it. In doing so, he
started the golden age of theoretical physics. . .

One can distinguish between two main procedures for a theoretical physi-
cist. One of them is to work from the experimental basis. For this, one must
keep in close touch with the experimental physicists. One reads about all
the results they obtain and tries to fit them into a comprehensive and
satisfying scheme.

The other procedure is to work from the mathematical basis. One examines
and criticizes the existing theory. One tries to pin-point the faults in it
and then tries to remove them. The difficulty here is to remove the faults
without destroying the very great success of the existing theory. . .

This is illustrated by the discovery of quantum mechanics. Two men are
involved, Heisenberg and Schrödinger. Heisenberg was working from the
experimental basis, using the results of spectroscopy, which by 1925 had
accumulated an enormous amount of data. . . It was Heisenberg’s genius
that he was able to pick out the important things from the great wealth
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of information and arrange them in a natural scheme. He was thus led to
matrices. . .

Schrödinger’s approach was quite different. He worked from the mathemat-
ical basis. He was not well informed about the latest spectroscopic results,
like Heisenberg was, but had the idea at the back of his mind that spectral
frequencies should be fixed by eigenvalue equations, something like those
that fix the frequencies of systems of vibrating strings. He had this idea
for a long time, and was eventually able to find the right equation, in an
indirect way. . .

Heisenberg and Schrödinger gave us two forms of quantum mechanics,
which were soon found to be equivalent. They provided two pictures, with
a certain mathematical transformation connecting them. I joined in the
early work on quantum mechanics, following the procedure based on math-
ematics, with a very abstract point of view. I took the noncommutative
algebra which was suggested by Heisenberg’s matrices as the main feature
for a new dynamics. . .

The following quotation is taken from Max Born’s fascinating book Physics
in my Generation, Springer, New York, 1969:

In Göttingen we also took part in the attempts to distill the unknown
mechanics of the atom out of the experimental results. The logical diffi-
culty became ever more acute. Investigations on scattering and dispersions
of light showed that Einstein’s conception of transition probability as a
measure of the strength of an oscillation was not adequate. . . The art of
guessing correct formulas, which depart from the classical formulas but
pass over into them in the sense of Bohr’s correspondence principle, was
brought to considerable perfection. . .

This period was brought to a sudden end by Heisenberg, who was my
assistant at that time. He cut the Gordian knot by a philosophical principle
and replaced guesswork by a mathematical rule. The principle asserts that
concepts and pictures that do not correspond to physically observable facts
should not be used in theoretical description. When Einstein, in setting up
his theory of relativity, eliminated his concepts of the absolute velocity of
a body and of the absolute simultaneity of two events at different places,
he was making use of the same principle. Heisenberg banished the picture
of electron orbits with definite radii and periods of rotation, because these
quantities are not observable; he demanded that the theory should be built
up by means of quadratic arrays. Instead of describing the motion by giving
a coordinate as a function of time x = x(t), one ought to determine an
array of transition probabilities (xij). To me the decisive part in his work
is the requirement that one must find a rule whereby from a given array
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the array for the square (x2)ij may be found (or, in general, the multipli-
cation law of such arrays).

By consideration of known examples discovered by guesswork, Heisenberg
found this rule and applied it with success to simple examples such as
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the harmonic and anharmonic oscillator. This was in the summer 1925.
Heisenberg, suffering from a severe attack of hay fever, took leave of ab-
sence for a course of treatment at the seaside and handed over his paper
to me for publication, if I thought I could do anything about it.

The significance of the idea was immediately clear to me, and I sent the
manuscript to the publisher.34 Heisenberg’s rule of multiplication left me
no peace, and after a week of intensive thought and trial, I suddenly
remembered an algebraic theory that I had learned from my teacher,
Rosanes, in Breslau. Such quadratic arrays are quite familiar to mathe-
maticians and are called matrices, in association with a definite rule of
multiplication. I applied this rule to Heisenberg’s quantum condition and
found that it agreed for the diagonal elements. It was easy to guess what
the remaining elements must be, namely, null; and immediately there stood
before me the strange formula

qp− pq = i�. (1.46)

This meant that the coordinates q and momenta p are not to be represented
by the values of numbers but by symbols whose product depends on the
order of multiplication – which do not “commute”, as we say.

My excitement over this result was like that of the mariner who, after
long voyaging, sees the desired land from afar, and my only regret was
that Heisenberg was not with me. I was convinced from the first that we
had stumbled on the truth. Yet again a large part was only guesswork, in
particular the vanishing of the non-diagonal elements in the foregoing ex-
pression. For this problem, I secured the collaboration of my pupil Pascual
Jordan, and in a few days we succeeded in showing that I had guessed
correctly. The joint paper written by Jordan and myself35 contains the
most important principles of quantum mechanics, including its extension
to electrodynamics. . .

There followed a hectic period of collaboration among the three of us,
rendered difficult by Heisenberg’s absence. There was a lively interchange
of letters. . . The result was a three-man paper,36 which brought the formal
side of the investigation to a certain degree of completeness. Before this
paper appeared, the first dramatic surprise occurred: Paul Dirac’s paper on
the same subject.37 The stimulus received through a lecture by Heisenberg
in Cambridge led him to results similar to ours in Göttingen, with the
difference that he did not have recourse to the known matrix theory of the
mathematicians but discovered for himself and elaborated the doctrine of
such non-commuting symbols.

34 W. Heisenberg, Quantum-theoretical re-interpretation of kinematic and mechan-
ical relations, Zeitschrift für Physik 33 (1925), 879–893.

35 M. Born and P. Jordan, On quantum mechanics, Zeitschrift für Physik 34 (1925),
883–888.

36 M. Born, W. Heisenberg, and P. Jordan, On quantum mechanics II, Zeitschrift
für Physik 35 (1926), 557–615.

37 P. Dirac, Quantum mechanics and a preliminary investigation of the hydrogen
atom, Proc. Roy. Soc. A 110 (1926), 561–569.
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The first nontrivial and physically important application of quantum me-
chanics was made soon afterwards by Wolfgang Pauli,38 who calculated
the stationary energy values of the hydrogen atom by the matrix method
and found complete agreement with Bohr’s 1913 formulas. From this mo-
ment there was no longer any doubt about the correctness of the theory
among physicists. . .

What the real significance of the formalism might be was, however, by
no means clear. Mathematics, as often happens, was wiser than interpre-
tative thought. While we were still discussing the point, there occurred
the second dramatic surprise: the appearance of Schrödinger’s celebrated
paper.39 He followed quite a different line of thought, which derived from
Prince Louis de Broglie (1892–1987). The latter had a few years previ-
ously made the bold assertion, supported by brilliant theoretical consid-
erations, that wave-corpuscle dualism, familiar to physicists in the case of
light, must also be exhibited by electrons; to each freely movable electron
there belongs, according to these ideas, a plane wave of perfectly definite
wave length, determined by Planck’s constant and mass. . . Schrödinger
extended de Broglie’s wave equation, which applied to free motion, to the
case in which forces act. . . and he succeeded in deriving the stationary
states of the hydrogen atom as monochromatic solutions of his wave equa-
tion not extending to infinity. For a short while, at the beginning of 1926,
it looked as if suddenly there were two self-contained but entirely distinct
systems of explanation in the field – matrix mechanics and wave mechanics.
But Schrödinger himself soon demonstrated their complete equivalence.

Wave mechanics enjoyed much greater popularity than the Göttingen or
Cambridge version of quantum mechanics. Wave mechanics operates with
a wave function ψ, which – at least in the case of one particle – can be
pictured in space, and it employs the mathematical methods of partial
differential equations familiar to every physicist.

It appeared to me that it was not possible to arrive at a clear interpreta-
tion of the Schrödinger ψ-function by considering bound electrons. I had
therefore been at pains, as early as the end of 1925. . . I was at that time
the guest of the Massachusetts Institute of Technology in the U.S.A., and
there I found in Norbert Wiener (1894–1964) a distinguished collaborator.
In a joint 1926 paper we replaced the matrix by the general concept of an
operator and, in this way, made possible the description of aperiodic pro-
cesses. . . Once more an idea of Einstein’s gave the lead. He had thought
to make the duality of particles (light quanta or photons) and waves com-
prehensible by interpreting the square of the optical wave amplitudes as
probability density for the occurrence of photons. This idea could at once
be extended to Schrödinger’s ψ-function:

The square of the amplitude, |ψ|2, must represent the probability
density for electrons (or other particles).

To assert this was easy; but how could I prove this? For this purpose atomic
scattering processes suggested themselves. A shower of electrons coming
from an infinite distance, represented by a wave of known intensity (that

38 W. Pauli, On the hydrogen spectrum from the standpoint of the new quantum
mechanics, Zeitschrift für Physik 36 (1926), 336–363.

39 E. Schrödinger, Quantization as an eigenvalue problem, Ann. Phys. 9 (1926),
361–376.
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is, |ψ|2) impinge on an obstacle say a heavy atom. . . In the same way
that the water wave caused by a steamer excites secondary circular waves
in striking a pile, the incident electron wave is partly transformed by the
atom into a secondary spherical wave, whose amplitude of oscillations ψ
is different in different directions. The square of the amplitude |ψ|2 of this
wave at a great distance from the scattering center then determines the
relative probability of scattering in its dependence of direction. . . Soon
Wentzel succeeded in deriving Rutherford’s celebrated 1911 formula for
the scattering of α-particles from my theory.

But the factor that contributed more than these successes to the speed of
acceptance of my statistical interpretation of the ψ-function was a 1927
paper by Heisenberg that contained his celebrated uncertainty relationship,
through which the revolutionary character of the new conception was first
made clear.

In 1927 Heisenberg left Göttingen in order to get a professorship at Leipzig
University. Four years later, van der Waerden came to Leipzig as a professor
of mathematics. According to his own words, he liked very much to attend
Heisenberg’s seminars. In 1932 van der Waerden published his nicely written
book Group Theory and Quantum Mechanics about applications of group
theory to the spectra of non-relativistic molecules and Dirac’s relativistic
electron.

The challenge of quantum electrodynamics. Already in the early
days of quantum mechanics, physicists tried to understand the quantization
of the electromagnetic field. Heisenberg and Pauli published two fundamental
papers in 1929 and 1930.40 Quantum electrodynamics was fully developed in
the late 1940s. In order to handle meaningless infinite expressions, physicists
developed the method of renormalization in the 1930s and 1940s. This inge-
nious method allows physicists to extract the relevant physical information
from mathematically meaningless expressions. We will thoroughly study this
important point later on. From the physical point of view, the following is
crucial:

• The singularities of the Green’s functions reflect both the complicated
structure of the ground state of a quantum field and the complex interac-
tions between the unobservable ground state and the real world, by means
of quantum fluctuations.

• The renormalization procedure indicates that the present quantum field
theory is not a basic theory, but only an effective theory which averages a
deeper physical structure, at a fairly low energy scale.

In 1965, Julian Schwinger said in his Nobel prize speech:
The relativistic quantum theory of fields was born some thirty-five years
ago through the paternal efforts of Dirac, Heisenberg, Pauli and others. It
was a somewhat retarded youngster, however, and first reached adolescence
seventeen years later, an event we are gathered here to celebrate.

40 W. Heisenberg and W. Pauli, On quantum field theory (in German) Zeitschrift
für Physik 56 (1929), 1–61; 59 (1930), 168–190.
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1.4 The Göttingen Tragedy

Wistfully I recall how, during the Nazi occupation of Poland (1939–1945),
Edward Marczewski introduced the arcana of analysis to me. In those dark
days these were for me bright moments, for which I am infinitely grateful
to him.

Krysztof Maurin (born 1923)

In 1933 the Nazi regime reached the political power in Germany. Be-
cause of racist repression, the best scientists left Germany, among them
Emmy Noether (1882–1935), Emil Artin (1898–1972), Paul Bernays (1888–
1977), Max Born (1882–1970), Richard Courant (1882–1972), Albert Einstein
(1879–1955), Kurt-Otto Friedrichs (1901–1982), Leon Lichtenstein (1878–
1933), and Hermann Weyl (1885–1955). Furthermore, Edmund Landau (1877–
1938) and the Nobel laureate James Franck (1884–1964) lost their positions
at Göttingen University. Hilbert’s best friend, Otto Blumenthal (1876–1944),
was murdered in the Nazi concentration camp Terez̆in (Theresienstadt). In
1934 Hilbert was asked by the Nazi minister of education about the flourish-
ing scientific life in Göttingen. Hilbert answered:

There is no mathematics anymore in Göttingen.

The Göttingen tradition moved to the United States of America. Richard
Courant founded the famous Courant Institute at New York University
(NYU). In this context, we recommend reading the two beautiful biographies
about David Hilbert and Richard Courant written by Constance Reid.41

After working as professor in Zurich and Prague, Einstein was appointed
as director of the Kaiser-Wilhelm Institute for Physics in Berlin in 1914.
In 1933 Einstein emigrated to the United States of America where he got a
professorship at the Institute for Advanced Study in Princeton, New Jersey.42

Einstein lived there until his death in 1955.
In 1933 John von Neumann obtained a professorship at the Institute for

Advanced Study in Princeton. Von Neumann was one of the greatest math-
ematicians of the 20th century. His fundamental contributions concern game
theory, mathematical economics, mathematical logic, lattice theory, opera-
tor theory in Hilbert spaces, operator algebras, mathematical foundations of
quantum mechanics, theory of Lie groups, measure theory, statistical physics,
ergodic theory, construction of the first computers ENIAC and MANIAC, and
foundations of computer science in the 1940s, shock waves, turbulence, mete-
41 C. Reid, Hilbert, Springer 1970, New York, and C. Reid, Courant in Göttingen

and New York: the Life of an Improbable Mathematician, Springer, New York,
1976.

42 This institute was founded in 1930. The history of this famous research institute
can be found in E. Regis, Who Got Einstein’s Office? Eccentricity and Genius
at the Institute for Advanced Study in Princeton, Addison-Wesley, Reading,
Massachusetts.
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orology, and numerical mathematics. In the context with John von Neumann,
let us quote Peter Hilton:43

For a mentor of Ph.D. candidates it would be most easy to educate a poor
applied mathematician. The next simplest thing would be to educate a
poor pure mathematician. Then an entire quantum gap lies between the
education of a good pure mathematician, and finally, an enormous quan-
tum gap, the education of a good applied mathematician. For the latter
task, especially after the death of John von Neumann, I would consider no
one sufficiently qualified.

The knowledge and abilities which are nowadays required of a really suc-
cessful applied mathematician, presume an extraordinary high intellectual
standard, and, even for the career of our present-day students, it is almost
impossible to predict which parts of mathematics will prove most suited
for applications.

Besides John von Neumann, another hero of the 20th century mathematics is
Hermann Weyl. He studied mathematics in Göttingen from 1903 until 1908.
He attended lectures given by Carathéodory (1873–1950), Hilbert (1858–
1943), Klein (1849–1925), Koebe (1882–1945), and Zermelo (1871–1953). He
was Hilbert’s most gifted pupil. From 1913 until 1930, Weyl worked at the
Swiss Institute of Technology (ETH) in Zurich. In 1930 he became Hilbert’s
successor at Göttingen University. Three years later, Hermann Weyl left Ger-
many and joined Einstein and von Neumann at the Institute for Advanced
Study in Princeton. Hermann Weyl influenced very strongly the relations be-
tween mathematics and physics. He wrote a number of classical monographs
about Riemann surfaces, theory of general relativity, group theory and quan-
tum mechanics, representation theory of the classical Lie groups, symmetry,
and philosophical questions. His books became bibles for both physicists and
mathematicians. In particular, the idea of gauge field theory can be traced
back to Weyl’s monograph Space, Time, Matter from 1923 where he presented
Einstein’s theory of general relativity along with his own ideas about a gen-
eral theory of matter, based on scaling invariance and the conformal group.
In 1944 Hermann Weyl wrote the following in the Bulletin of the American
Mathematical Society:

A great master of mathematics passed away when Hilbert died in Göttingen
on February 14, 1943, at the age of eighty-one. In retrospect, it seems to
us that the era of mathematics upon which he impressed the seal of his
spirit, and which is now sinking below the horizon, achieved a more per-
fect balance than has prevailed before or since, between the mastering of
single concrete problems and the formation of general abstract concepts.
Hilbert’s own work contributed not a little to bringing about this happy
equilibrium, and the direction we have since proceeded can in many in-
stances be traced back to this impulse. No mathematician of equal stature
has arisen from our generation. . .

Hilbert was singularly free from national and racial prejudice; in all public
questions, be they political, social, or spiritual, he stood forever on the side

43 In: M. Otte (Ed.), Mathematiker über Mathematik, Springer, Berlin 1973.
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of freedom, frequently in isolated opposition against the compact majority
of his environment. . . It was not mere chance, when the Nazis “purged”
the universities in 1933 and their hand fell most heavily on the Hilbert
school that Hilbert’s most intimate collaborators left Germany voluntarily
or under the pressure of Nazi persecution. He himself was too old, and
stayed behind; but the years after 1933 became years of ever-deepening
tragic loneliness.

1.5 Highlights in the Sciences

1.5.1 The Nobel Prize

The history of quantum physics in the 20th century is reflected best by the
Nobel laureates in physics, chemistry, and medicine. For the convenience of
the reader, here is a selection of topics.44

(i) Radioactivity: Bequerel, and Marie and Pierre Curie 1903 (natural radioactiv-
ity), Rutherford 1908 (chemistry of radioactive substances), Marie Curie 1911
(radium), Irène Joliot-Curie and Frédérik Joliot 1935 (artificial radioactivity),
Hahn 1944 (uranium fission).

(ii) Rays: Röntgen 1901 (X-rays or Röntgen rays), Lorentz and Zeeman 1902 (in-
fluence of magnetism on radiation phenomena), Lenard 1905 (cathode rays),
Michelson 1907 (spectroscopic experiments), Wien 1911 (radiation of heat),
Sir William Henry Bragg and Sir William Lawrence Bragg 1913 (analysis of
crystal structure by means of X-rays), Laue 1914 (diffraction of X-rays by
crystals), Stark 1919 (splitting of spectral lines in electric fields), Franck and
Hertz 1925 (observation of energy quantization in mercury atoms), Perrin 1926
(measurement of the size of atoms), Compton 1927 (Compton effect), Wilson
1927 (electron tracks in a cloud chamber), Sir Raman 1930 (scattering of light
by atoms), Debye 1936 (investigation of molecular structure by diffraction of
X-rays and electrons in gases), Hess 1936 (discovery of cosmic rays), Cherenkov
1958 (Cherenkov radiation), Bethe 1967 (energy production in stars), Gabor
1971 (holograph method), Townes, Basov, and Prochorov 1973 (laser), Ryle
and Hewish 1974 (radio astronomy and pulsars), Penzias and Wilson 1978 (dis-
covery of cosmic microwave radiation coming from the early universe), Chan-
drasekhar 1983 (theory of the structure and formation of stars), Fowler 1983
(theory of the formation of chemical elements in the universe), Hulse and Taylor
1993 (detection of gravitational waves coming from binary neutron stars).

(iii) Structure of matter: Sir Joseph John Thomson 1906 (conduction of electric-
ity by gases), Einstein 1921 (photoelectric effect), Millikan 1923 (measurement
of the charge of the electron), Chadwick 1935 (discovery of the neutron), Ander-
son 1936 (discovery of the positron), Fermi 1938 (experimental production of
new radioactive elements and the discovery of nuclear reactions brought about
by slow neutrons), Lawrence 1939 (construction of the cyclotron as particle ac-
celerator), Stern 1943 (measurement of the magnetic moment of the proton),
Yukawa 1949 (theoretical prediction of the existence of π-mesons in 1935),
Powell 1950 (experimental discovery of π-mesons), Lamb 1955 (precision test
of quantum electrodynamics by measurement of the 2s and 2p energy difference

44 For more details, we refer to the literature about Nobel laureates summarized
on page 945.
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in the hydrogen atom), Kusch 1955 (measurement of the magnetic moment of
the electron), Chamberlain and Segré 1959 (discovery of the antiproton), Hof-
stadter 1961 (experimental discovery of the internal structure of the proton),
Richter and Ting 1976 (experimental discovery of the charm quark), Fitch
and Cronin 1980 (experimental discovery of CP violation in weak interaction),
Rubbia and van der Meer 1984 (experimental discovery of the W±-bosons and
the Z0-boson in electroweak interaction), Lederman, Schwartz, and Steinberger
1988 (experimental discovery of the muon neutrino), Friedman, Kendall, and
Taylor 1990 (experimental discovery of the quark structure of the proton by
investigating deep inelastic scattering of electrons on protons), Perl 1995 (ex-
perimental discovery of the tau lepton), Reines 1995 (detection of the neutrino),
Curl, Kroto, and Smalley 1996 (fullerenes).

(iv) Quantum mechanics: Planck 1918 (existence of energy quanta and foun-
dation of quantum physics), Bohr 1922 (semiclassical model of the atom), de
Broglie 1929 (wave nature of electrons), Heisenberg 1932 (foundation of quan-
tum mechanics), Dirac and Schrödinger 1933 (new productive forms of atomic
theory), Pauli 1945 (exclusion principle), Born 1954 (statistical interpreta-
tion of Schrödinger’s wave function), Pauling 1954 (chemical bond), Wigner
1963 (symmetry principles), Goeppert-Mayer and Jensen 1963 (nuclear shell),
Glauber, Hänsch, and Hall 2005 (quantum optics).

(v) Quantum chemistry: Fukui and Hoffmann 1981) (course of chemical re-
actions), Kohn 1998 (density functional theory), Pople 1998 (computational
methods in quantum chemistry).

(vi) The emergence of the Standard Model of elementary particle physics:
Yang and Lee 1957 (theory of parity violation in weak interaction), Feynman,
Schwinger, and Tomonaga 1965 (theory of quantum electrodynamics), Gell-
Mann 1969 (classification of elementary particles and interactions), Glashow,
Salam, and Weinberg 1979 (theory of electroweak interaction as a gauge the-
ory), Rubbia and van der Meer 1984 (experimental discovery of the intermedi-
ate vector bosons), ’t Hooft and Veltman 1999 (renormalization of the gauge
field theory for electroweak interaction), Gross, Politzer, and Wilczek 2004
(asymptotic freedom of quarks), Mather and Smoot 2006 (cosmic background
radiation), Nambu, Kobayashi, and Masukawa 2008 (symmetry breaking in
elementary particle physics).

(vii) Solid states and condensed matter: Kammerlingh-Onnes 1913 (super-
conductivity), Bardeen, Brattain, and Shocklee 1956 (transistor), Mößbauer
1961 (recoilless gamma emission from nuclei), Landau 1962 (theory of phase
transitions in condensed matter and liquid helium), Alfvén 1970 (magnetohy-
drodynamics and plasma physics), Néel 1970 (antiferromagnetism), Bardeen,
Cooper, and Schrieffer 1972 (theory of Cooper pairs and superconductivity),
Esaki and Giaever 1973 (tunnelling effects in semiconductors and superconduc-
tors), Josephson 1973 (super-current through a tunnel barrier and the Joseph-
son effect), Wilson 1980 (critical phenomena, phase transitions, and the renor-
malization group technique for combining different scales in nature with each
other), von Klitzing 1985 (experimental discovery of the quantum Hall effect),
Müller and Bednorz 1987 (experimental discovery of high-temperature super-
conductivity in ceramic materials), Ramsey 1989 (hydrogen maser), Dehmelt
and Paul 1989 (trapping of ions), de Gennes 1991 (liquid crystals and poly-
mers), Chu, Tannoudji, and Phillips 1998 (cooling and trapping of atoms with
laser light), Laughlin, Störmer, and Tsu 1999 (experimental discovery of the
fractional quantum Hall effect), Cornell, Ketterle, and Wieman 2001 (experi-
mental realization of Bose–Einstein condensation in dilute gases), Abrikosov,
Ginzburg, and Leggett 2003 (superconductivity and superfluidity).
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(viii) Non-equilibrium thermodynamics: Onsager 1968 (Onsager’s law), Pri-
gogine 1977 (dissipative structures).

(ix) Computer technology: Alferov and Kroemer 2000 (semiconductor het-
erostructures used in high-speed electronics and opto-electronics), Kirby 2000
(invention of integrated circuits), Fert and Grünberg 2007 (giant magnetore-
sistance).

(x) Molecular biology: Crick and Watson 1962 (double helix of DNA), Holley,
Har Gobind Khorana, and Nirenberg 1968 (genetic code and protein synthe-
sis), Delbrück, Hershey, and Luria 1969 (replication mechanism and the genetic
structure of viruses), Diesenhofer, Huber, and Michel 1988 (determination of a
3-dimensional structure of a photosynthetic reaction), Fenn and Tanaka 2002
(development of soft desorption ionization methods for mass spectrometric
analysis of biological macromolecules), Wüthrich 2002 (development of nu-
clear magnetic resonance spectroscopy for determining the three-dimensional
structure of biological macromolecules in solution).

1.5.2 The Fields Medal in Mathematics

The International Congress of Mathematicians (ICM) takes place every four
years. In 1924, a resolution was adopted that at each ICM, two gold medals
should be awarded to recognize outstanding mathematical achievement. Pro-
fessor J. C. Fields, a Canadian mathematician who was secretary of the 1924
Congress, later donated funds establishing the medals which were named in
his honor. Consistent with Field’s wish that the awards recognize both exist-
ing work and the promise of future achievement, it was agreed to restrict the
medal to mathematicians not over forty in the year of the congress. In 1966
it was agreed, because of great extension of mathematical research, up to
four medals could be awarded at each Congress. The following list of Fields
medallists reflects important progress in mathematics. The Fields medal has
a very high reputation.45

• 1936 Oslo: Ahlfors (quasi-conformal maps), Douglas (minimal surfaces).
• 1950 Cambridge, Massachusetts: Laurent Schwartz (generalized functions), Sel-

berg (elementary proof of the prime number theorem).
• 1954 Amsterdam: Kodaira (harmonic integrals in algebraic geometry), Serre (ho-

motopy groups of spheres).
• 1958 Edinburgh: Roth (rational approximations to algebraic numbers), Thom

(cobordism theory for manifolds).
• 1962 Stockholm: Hörmander (general theory of linear partial differential equa-

tions), Milnor (exotic spheres).
• 1966 Moscow: Atiyah (K-theory for vector bundles), Cohen (continuum hypoth-

esis), Smale (proof of the Poincaré conjecture for n-dimensional spheres with
n ≥ 5, general structure of dynamical systems), Grothendieck (nuclear spaces,
schemes in algebraic geometry).

• 1970 Nice: Baker (theory of transcendental numbers), Hironaka (blowing-up of
singularities of algebraic varieties), Novikov (homology and homotopy theory),
Thompson (group theory).

45 We refer to M. Atiyah and D. Iagolnitzer (Eds.), Fields Medallists’ Lectures,
World Scientific, Singapore, 2003.
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• 1974 Vancouver: Bombieri (analytic number theory and geometry of numbers),
Mumford (Abelian varieties).

• 1978 Helsinki: Deligne (proof of the modified Riemann conjecture due to Weil
for algebraic varieties over finite fields), Fefferman (singular integral operators,
analytic functions of several variables), Margulis (structure of discrete Lie sub-
groups with fixed volume), Quillen (proof of the Serre conjecture on projective
modules, cohomology of groups).

• 1982 Warsaw: Connes (structure of von Neumann algebras of type III), Thurston
(hyperbolic structure of 3-dimensional manifolds), Shing-Tung Yau (positive
mass theorem in general relativity, proof of the Calabi conjecture for Kähler
manifolds).

• 1986 Berkeley: Donaldson (Yang–Mills equations and the differential topoloy of
4-dimensional manifolds), Faltings (proof of the Mordell conjecture for Diophan-
tine equations), Freedman (proof of the Poincaré conjecture for 4-dimensional
spheres).

• 1990 Kyoto: Drinfeld (quantum groups and Galois groups), Jones (von Neu-
mann algebras and Jones polynomials in knot theory), Mori (classification of
3-dimensional algebraic varieties), Witten (supersymmetry and Morse theory,
global anomalies, supersymmetric index theory, rigidity theorems for represen-
tations of Lie groups in string theory, spin structure, and a new approach to the
positive mass theorem).

• 1994 Zurich: Bourgain (nonlinear Schrödinger equation, geometry of Banach
spaces, ergodic theory, and analytic number theory), Piere-Louis Lions (nonlin-
ear partial differential equations, Boltzmann equation, viscosity method for the
Hamilton–Jacobi equation, compressible fluids, Hartree–Fock equation, aniso-
tropic diffusion and image processing), Yoccoz (stability of dynamical systems),
Zelmanov (Lie algebras and Jordan algebras).

• 1998 Berlin: Borcherds (representation of the monster group, modular forms),
Gowers (geometry of Banach spaces, combinatorics), Kontsevich (Poisson struc-
tures and quantum deformations, equivalence of two models in quantum gravi-
tation, effective knot invariants in topology), McMullen (complex dynamics and
hyperbolic geometry), Wiles (special tribute for proving Fermat’s last theorem).

• 2002 Beijing: Lafforgue (Langlands program for function fields, deep connections
between number theory, analysis, and group representation theory), Voevodsky
(proof of the Milnor conjecture in algebraic K-theory, motivic cohomology the-
ory).

• 2006 Madrid: Okunkov (theory of probability, representation theory and alge-
braic geometry), Perelman (proof of the Poincaré conjecture via the Ricci flow
– Perelman turned down the Fields medal), Tao (partial differential equations,
combinatorics, harmonic analysis and additive number theory), Werner (stochas-
tic Loewner evolution, geometry of two-dimensional Brownian motion, conformal
field theory).

This list shows convincingly that the great achievements of mathematics in
the 20th century are related to the efforts made by the great masters of
mathematics and physics in the 18th and 19th century.

1.5.3 The Nevanlinna Prize in Computer Sciences

Since 1982, parallel to the Fields medal, the Nevanlinna prize has been
awarded for outstanding contributions to computer sciences.

• 1983 Warsaw: Tarjan (construction of highly effective algorithms).
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• 1986 Berkeley: Valiant (complexity theory, random algorithms).
• 1990 Kyoto: Razborov (complexity of networks).
• 1994 Avi Widgerson (verification of proofs).
• 1998 Berlin: Shore (theory of quantum computation).
• 2002 Beijing: Sudan (probabilistic algorithms for checking the correctness of

proofs).
• 2006 Madrid: Kleinberg (effective algorithm for ranking Web pages – nodes in a

directed graph – by assigning an authority value and a hub value to each page).

1.5.4 The Gauss Prize in Mathematics

The Gauss prize was founded in 2006 by the International Mathematical
Union (IMU) and the German Mathematical Society (DMV). It will be
awarded parallel to the Fields medal.

• 2006 Itô (solution of stochastic differential equations).

1.5.5 The Wolf Prize in Physics

Every year the Israelitic Parliament (the Knesseth) confers the Wolf prize
to outstanding scientists for their life-work in the fields of agriculture, arts,
chemistry, mathematics, medicine, and physics. Here is the list of physicists
who were awarded the Wolf prize.

• 1978 Wu (experimental discovery of parity violation in weak interaction in 1957).
• 1979 Uhlenbeck (experimental discovery of the electron spin in 1922, together

with the late Goudsmith), Occhialini (experimental discovery of electron pair
production and the charged pion).

• 1980 Fisher, Kadanoff, and Wilson (critical phenomena and phase transitions).
• 1981 Dyson, ’t Hooft, and Weisskopf (quantum theory of fields).
• 1982 Lederman and Perl (discovery of the bottom quark).
• 1983/84 Hahn (spin echo), Hirsh (transmission electron microscope), Maiman

(first operating laser).
• 1984/85 Herring and Nozieres (electrons in metals).
• 1986 Feigenbaum and Libchhaber (universal laws in turbulence; theory and ex-

periments).
• 1987 Friedman, Rossi, and Giacconi (solar X-rays).
• 1988 Penrose and Hawking (necessity of cosmic singularities).
• 1989 not awarded.
• 1990 de Gennes and Thouless (complex condensed matter, liquid crystals, and

disordered 2-dimensional systems).
• 1991 Goldhaber and Telegdi (weak interaction).
• 1992 Taylor (radio pulsar).
• 1993 Mandelbrot (fractals).
• 1994/95 Ginzburg (superconductivity and Ginzburg–Landau equation), Nambu

(superconductivity, colored quarks).
• 1996 not awarded.
• 1996/97 Wheeler (black holes, quantum gravity, and nuclear fission).
• 1998 Aharonov and Berry (global quantum effects, Aharonov–Bohm effect, and

Berry phase).
• 1999 Shechtman (experimental discovery of quasi-crystals).
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• 2000 Davis and Koshiba (neutrino astronomy).
• 2001 not awarded.
• 2002/03 Leggett (superfluidity of the light helium isotope and macroscopic quan-

tum phenomena), Halperin (two-dimensional melting, disordered systems, and
strongly interacting electrons).

• 2004 Brout and Higgs (mass generation by local gauge symmetry in the world of
subatomic particles).

• 2005 Kleppner (hydrogen maser, Rydberg atoms, and Bose–Einstein condensa-
tion).

• 2006/2007 Fert and Grünberg (giant magnetoresistance).
• 2008 not awarded.

1.5.6 The Wolf Prize in Mathematics

The following mathematicians were awarded the Wolf prize.46

• 1978 Gelfand (functional analysis, group representations, and seminal contribu-
tions to many parts of mathematics), Siegel (number theory, analytic functions
of several variables, celestial mechanics).

• 1979 Leray (application of topological methods to differential equations), Weil
(algebraic-geometric methods in number theory).

• 1980 Henri Cartan (algebraic topology, homological algebra, sheaf theory, and
analytic functions of several variables), Kolmogorov (foundation of probability
theory, stochastic processes, ergodic theory, Fourier analysis, and celestial me-
chanics).

• 1981 Ahlfors (geometric function theory), Zariski (commutative algebra and al-
gebraic geometry).

• 1982 Whitney (algebraic topology and differential topology), Krein (functional
analysis and its applications).

• 1983/84 Chern (global differential geometry), Erdös (discrete mathematics: num-
ber theory, combinatorics, graph theory, probability).

• 1984/85 Kodaira (complex manifolds and algebraic varieties), Hans Lewy (partial
differential equations).

• 1986 Eilenberg (algebraic topology and homological algebra), Selberg (number
theory, discrete groups, and automorphic functions).

• 1987 Itô (stochastic differential equations), Lax (linear and nonlinear partial
differential equations, direct and inverse scattering theory, and shock waves).

• 1988 Hirzebruch (topology, algebraic geometry, and index theory), Hörmander
(partial differential equations, pseudo-differential operators, Fourier integral op-
erators).

• 1989 Calderon (singular integral operators and partial differential equations),
Milnor (geometry, algebraic and differential topology).

• 1990 de Georgi (calculus of variations and partial differential equations).
• 1991 not awarded.
• 1992 Carleson (Fourier analysis, complex analysis, and quasi-conformal map-

pings), Thompson (finite groups).
• 1993 Gromov (global Riemannian geometry and symplectic geometry), Tits (al-

gebraic groups, Tits buildings).

46 We refer to S. Chern and F. Hirzebruch (Eds.), Wolf Prize in Mathematics, Vols.
1, 2, World Scientific, Singapore, 2001.
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• 1994 Moser (stabilitity in Hamiltonian mechanics, celestial mechanics, and non-
linear partial differential equations).

• 1995/96 Langlands (number theory, automorphic forms, group representations,
and the Langlands program on noncommutative class field theory), Wiles (proof
of Fermat’s last theorem).

• 1997 Joseph Keller (electromagnetic, acoustic, and optical wave propagation;
fluid, solid, and quantum mechanics, statistical physics), Sinai (ergodic theory
and statistical mechanics, dynamical systems).

• 1998 not awarded.
• 1999 Lovasz (combinatorics, theoretical computer sciences, combinatorial opti-

mization), Stein (Fourier analysis and harmonic analysis).
• 2000 Bott (topology, differential geometry, Lie groups), Serre (topology, algebra,

and algebraic geometry).
• 2001 Arnold (dynamical systems and singularity theory).
• 2002/03 Sato (hyperfunctions and microfunction theory, holonomic quantum field

theory), Tate (algebraic number theory).
• 2004 not awarded.
• 2005 Margulis (theory of lattices in semi-simple Lie groups and striking appli-

cations of this to ergodic theory, representation theory, number theory, com-
binatorics, and measure theory), Novikov (algebraic and differential topology,
algebraic-geometric methods in mathematical physics).

• 2006/07 Smale (differential geometry, dynamical systems, mathematical eco-
nomics, numerical analysis), Furstenberg (ergodic theory, topological dynamics,
analysis on symmetric spaces and homogeneous flows).

• 2008 Deligne (arithmetic, proof of the Weil conjecture, mixed Hodge theory,
Riemann–Hilbert correspondence), Griffiths (variations of Hodge structures, pe-
riods of Abelian integrals, complex differential geometry), Mumford (algebraic
surfaces, geometric invariant theory, foundations of the modern theory of moduli
of curves and theta functions).

1.5.7 The Abel Prize in Mathematics

The Abel prize was founded in 2003 by the Norwegian government. This new
prize is intended to play the role of the Nobel prize in mathematics.
• 2003 Serre (algebra, number theory, and topology).
• 2004 Atiyah and Singer (analysis, differential geometry, topology, and the Atiyah–

Singer index theorem).
• 2005 Lax (linear and nonlinear partial differential equations, solitons and Lax

pairs, scattering theory, shock waves).
• 2006 Carleson (harmonic analysis and smooth dynamical systems).
• 2007 Varadhan (theory of probability, unified theory of large deviations).
• 2008 Thompson and Tits (group theory).
• 2009 Gromov (differential geometry).

1.6 The Emergence of Physical Mathematics – a New
Dimension of Mathematics

At the International Congress of Mathematicians in Kyoto in 1990, the young
physicist Edward Witten (Institute for Advanced Study in Princeton) was
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awarded the Fields medal in mathematics. In his laudation for Edward Wit-
ten, Sir Michael Atiyah emphasized the following:47

The past decade has seen a remarkable renaissance in the interaction be-
tween mathematics and physics. This has been mainly due to the increas-
ingly sophisticated mathematical models employed by elementary particle
physicists, and the consequent need to use the appropriate mathematical
machinery. In particular, because of the strongly non-linear nature of the
theories involved, topological ideas and methods have played a prominent
part.

The mathematical community has benefited from this interaction in two
ways. First, and more conventionally, mathematicians have been spurred
into learning some of the relevant physics and collaborating with colleagues
in theoretical physics. Second, and more surprisingly, many of the ideas
emanating from physics have led to significant new insights in purely math-
ematical problems, and remarkable discoveries have been made in conse-
quence. The main input from physics has come from quantum field theory.
While the analytic foundations of quantum field theory have been inten-
sively studied by mathematicians for many years, the new stimulus has
involved the more formal (algebraic, geometric, topological) aspects.

In all this large and exciting field, which involves many of the leading physi-
cists and mathematicians in the world, Edward Witten stands clearly as
the most influential and dominating figure. Although he is definitely a
physicist his command of mathematics is rivalled by few mathematicians,
and his ability to interpret physical ideas in mathematical form is quite
unique. Time and again he has surprised the mathematical community by
a brilliant application of physical insight leading to new and deep mathe-
matical theorems.

In 1986, the American Mathematical Society invited mathematicians and
physicists to a joined symposium devoted to Mathematics: the Unifying
Thread in Science. In his quite remarkable speech, the physicist Steven Wein-
berg pointed out the following.48

String theory is right now the hot topic of theoretical physics. According
to this picture, the fundamental constituents of nature are not, in fact,
particles, or even fields, but are instead little strings, little elementary
rubber bands that go zipping around, each in its own state of vibration.
In these theories what we call a particle is just a string in a particular
state of vibration, and what we call a reaction among particles, is just
the collision of two or more strings, each in its own state of vibration,
forming a single joined string which then later breaks up, forming several
independent strings, each again in its own mode of vibration.

47 M. Atiyah and D. Iagolnitzer (Eds.), Fields Medallists’ Lectures, 1997. Reprinted
by permission of World Scientific Publishing Co. Pte. Ltd, Singapore.

48 Notices Amer. Math. Soc. 33 (1986), 716–733 (reprinted with permission). For
his fundamental contributions to the theory of the unified weak and electromag-
netic interaction between elementary particles, Steven Weinberg was awarded
the Nobel prize in physics in 1979. He wrote the standard textbook of modern
quantum field theory, S. Weinberg, Quantum Field Theory, Vols. 1–3, Cambridge
University Press.
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It seems like a strange notion for physicists to have come to after all these
years of talking about particles and fields, and it would take too long to
explain why we think this is not an unreasonable picture of nature, but
perhaps I can summarize it in one sentence:

String theories incorporate gravitation.

In fact, not only do they incorporate it, you cannot have a string theory
without gravitation. The graviton, the quantum of gravitational radiation,
the particle which is transmitted when a gravitational force is exerted
between two masses, is just the lowest mode of vibration of a fundamental
closed string (closed meaning that it is a loop). Not only do they include
and necessitate gravitation, but these string theories for the first time allow
a description of gravitation on a microscopic quantum level which is free
of mathematical inconsistencies.

All other descriptions of gravity broke down mathematically, gave nonsen-
sical results when carried to very small distances or very high energies.
String theory is our first chance at a reasonable theory of gravity which
extends from the very large down to very small and as such, it is natural
that we are all agog over it. String theory itself has focused the attention
of physicists on branches of mathematics that most of us weren’t fortunate
enough to have learned when we were students. You can easily see that a
string (just think of a little bit of cord) travelling through space, sweeps
out a two-dimensional surface.

A very convenient description of string theory is to say that it is
the theory of these two-dimensional Riemann surfaces.

The theory of two-dimensional surfaces is remarkably beautiful. There are
ways of classifying all possible two-dimensional surfaces according to their
handles on them and the number of boundaries, which simply don’t exist in
any higher dimension. The theory of two-dimensional surfaces is a branch
of mathematics that when you get into it is one of the loveliest things you
can learn. It was developed in the 19th century, starting with Riemann,
and further developed by mathematicians working in the late 19th century
motivated by problems in complex analysis, and then continuing into the
20th century.

There are mathematicians who have spent their whole lives working on
this theory of two-dimensional surfaces, who have never heard of string
theory (or at least not until very recently). Yet when the physicists started
to figure out how to solve the dynamical problems of strings, and they
realized what they had to do was to perform sums49 over all possible two-
dimensional surfaces in order to add up all the ways that reactions could
occur, they found the mathematics just ready for their use, developed over
the past 100 years.

String theory involves another branch of mathematics which goes back to
group theory.

The equations which govern these surfaces have a very large group
of symmetries, known as the conformal group.

One description of these symmetries is in terms of an algebraic structure
representing all the possible group transformations, which is actually infi-
nite dimensional. Mathematicians have been doing a lot of work developing

49 These sums correspond to Feynman functional integrals.
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the theory of these infinite dimensional Lie algebras which underlie sym-
metry groups, again without a clear motivation in terms of physics, and
certainly without knowing anything about string theory. Yet when the
physicists started to work on it, there it was.

Speaking quite personally, I have found it exhilarating at my stage of life to
have to go back to school and learn all this wonderful mathematics. Some
of us physicists have enjoyed our conversations with mathematicians, in
which

We beg them to explain things to us in terms we can understand.

At the same time the mathematicians are pleased and somewhat bemused
that we are paying attention to them after all these years. The mathematics
department of the University of Texas at Austin now allows the physicists
to use one of their lounges – which would have been unlikely in previous
years.

Unfortunately, I must admit that there is no experimental evidence yet
for string theory, and so, if theoretical physicists are spending more time
talking to the mathematicians, they are spending less time talking to the
experimentalists, which is not good.

1.7 The Seven Millennium Prize Problems of the Clay
Mathematics Institute

At the Second World Congress of Mathematicians in Paris in 1900, in a
seminal lecture, Hilbert formulated his famous 23 open problems.50 The
hundredth anniversary of Hilbert’s lecture was celebrated in Paris, in the
“Amphithéatre” of the Collège de France, on May 24, 2000. The Scientific
Advisory Board of the newly founded Clay Mathematics Institute (CMI)
in Cambridge, Massachusetts, U.S.A., selected seven Millennium prize prob-
lems. The Scientific Advisory Board consists of Arthur Jaffe (director of the
CMI, Harvard University, U.S.A), Alain Connes (Institut des Hautes Études
Scientifiques (IHÉS) and Collège de France), Andrew Wiles (Princeton Uni-
versity, U.S.A.), and Edward Witten (Institute for Advanced Study, Prince-
ton, U.S.A.). The CMI explains its intention as follows:

Mathematics occupies a privileged place among the sciences. It embodies
the quintessence of human knowledge, reaching into every field of human
endeavor. The frontiers of mathematical understanding evolve today in
deep and unfathomable ways. Fundamental advances go hand in hand with
discoveries in all fields of science. Technological applications of mathemat-
ics underpin our daily life, including our ability to communicate thanks
to cryptology and coding theory, our ability to navigate and to travel, our
health and well-being, our security, and they also play a central role in our
economy. The evolution of mathematics will remain a central tool to shap-
ing civilization. To appreciate the scope of mathematical truth challenges
the capabilities of the human mind.

50 See F. E. Browder (Ed.) Mathematical Developments Arising from Hilbert’s
Problems, Amer. Math. Soc., New York, 1976, and B. Yandell, The Honors Class:
Hilbert’s Problems and Their Solvers, Peters, Natick, Massachusetts, 2001.
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In order to celebrate mathematics in the new millennium, the CMI has
named seven “Millennium prize problems”. The Scientific Advisory Board
of the CMI selected these problems, focusing on important classic questions
that have resisted solution over the years. The Board of Directors of CMI
designated a $ 7 million prize fund to these problems, with $ 1 million
allocated to each.

The seven Millennium prize problems read as follows:

(i) The Riemann conjecture in number theory on the zeros of the Riemann zeta
function and the asymptotics of prime numbers.

(ii) The Birch and Swinnerton–Dyer conjecture in number theory on the relation
between the size of the solution set of a Diophantine equation and the behavior
of an associated zeta function near the critical point s = 1.

(iii) The Poincaré conjecture in topology on the exceptional topological structure
of the 3-dimensional sphere.

(iv) The Hodge conjecture in algebraic geometry on the nice structure of projective
algebraic varieties.

(v) The Cook problem in computer sciences of deciding whether an answer that
can be quickly checked with inside knowledge, may without such help require
much longer to solve, no matter how clever a program we write.

(vi) The solution of the turbulence problem for viscous fluids modelled by the
Navier–Stokes partial differential equations.

(vii) The rigorous mathematical foundation of a unified quantum field theory for
elementary particles.

A detailed description of the problems can be found on the following Internet
address:

http://www.claymath.org/prize−problems/

For a detailed discussion of the seven prize problems, we refer to K. De-
vlin, The Millennium Problems: the Seven Greatest Unsolved Mathematical
Puzzles of Our Time, Basic Books, New York, 2002.



2. Phenomenology of the Standard Model for
Elementary Particles

First Law of Progress in Theoretical Physics: You will get nowhere by
crunching equations.
Second Law: Do not trust arguments based on the lowest order of pertur-
bation theory.
Third Law: You may use any degrees of freedom you like to describe a
physical system, but if you use the wrong ones, you’ll be sorry.1

Steven Weinberg, 1983

For the motivation and convenience of the reader, let us sketch important
basic ideas of elementary particle physics in this chapter. It is our philosophy
that before studying a complex subject, one should know the main goals in
nontechnical terms. As an introduction to particle physics, we recommend the
textbooks by Nachtmann (1990), Coughlan and Dood (1991), Sibold (2001),
and Seiden (2005). For the history of elementary particle physics, see the
beautiful books by the two Nobel laureates Steven Weinberg (1983), (1995)
and Martinus Veltman (2003).

In the 1960s and early 1970s, Gell-Mann and Fritzsch, Glashow, Salam,
and Weinberg founded the so-called Standard Model of particle physics which
is of fundamental importance for modern physics.2 The Standard Model of
particle physics is based on

• the principle of critical action, and
• the principle of local symmetry (gauge theory).

The Lagrangian density of the Standard Model will be thoroughly studied
in Volume III. It turns out that the Standard Model of particle physics is
governed by the same mathematical approach as Einstein’s theory of general
relativity on gravitation from 1915. The common mathematical tool is the
theory of curvature in modern differential geometry (called gauge theory in
physics). A survey on the Standard Model in particle physics and its possible
generalizations along with a summary of the most important literature can
be found in
1 S. Weinberg, Why the renormalization group is a good thing. In: A. Guth, K.

Huang, and R. Jaffe (Eds.), Asymptotic Realms of Physics: Essays in Honor of
Francis Low, MIT Press, Cambridge, Massachusetts, 1983, pp. 1–19 (reprinted
with permission).

2 The Nobel prize in physics was awarded to Gell-Mann in 1969 and to Glashow,
Salam, and Weinberg in 1979.

E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics,
c© Springer-Verlag Berlin Heidelberg 2006, Corrected 2nd printing 2009
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J. Rosner, Resource letter SM-1: The standard model and beyond, 2003.
Internet: http://arXiv:hep-ph/0206176

This serves as a survey on modern physics including the following topics:
quarks and leptons, the Higgs mass, CP violation, strong CP problem and
massless axions, dynamics of heavy quarks, precision electroweak measure-
ments, neutrino oscillations and neutrino masses, grand unification of inter-
actions and extended gauge groups, proton decay, baryon asymmetry of the
universe, supersymmetry, the riddle of dark matter and dark energy in the
present universe, and string theory. Up-dated particle data are summarized
by

Particle Data Group. Internet: http://pdg.lbl.gov

For the cosmic microwave background radiation and its information on the
early universe see

NASA home page, WMAP, Internet: http://www.nasa.gov/home/

The WMAP (Wilkinson Microwave Anisotropy Probe) satellite experiment
of NASA allows us to see the state of the universe at the age of 400 000
years after the Big Bang. In particular, the WMAP experiment shows that
our universe is 13.7 · 109 years old. The five ages of our expanding universe
starting from the Big Bang are studied in Adams and Laughlin (1997), (1999)
(inside the physics of eternity). The five ages of our universe read as follows:

• the primordial era (from the Big Bang until the age of 105 years),
• the stelliferous era of the present universe (106–1014 years),
• the degenerate era (1015–1039 years) (brown and white dwarfs, neutron stars and

black holes dominate the universe),
• the black hole era (1040–10100 years) (black holes dominate the universe), and
• the dark era (> 10101 years).

It turns out that the expansion of our universe is accelerated. In the final dark
era, the energy density of the universe goes to zero after the vaporization of
the last black holes by Hawking radiation. However, it is possible that a new
Big Bang is generated by large quantum fluctuations of the ground state
(vacuum) of the universe. For modern astrophysics and cosmology, we refer
to Schutz (2003) (phenomenology), Shore (2003) (tapestry of astrophysics),
Börner (2003) (early universe), and Straumann (2004) (general relativity and
astrophysics).

2.1 The System of Units

In this monograph, if not stated explicitly the contrary, we will use the inter-
national system of physical units, SI. This system is based on meter (length),
second (time), kilogram (mass), Kelvin (temperature), and Coulomb (electric
charge). Systems of units in physics are thoroughly discussed in the Appendix
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Fig. 2.1. Harmonic wave

(e.g., the SI system, the dimensionless Planck system, and the energetic sys-
tem of units in particle physics based on powers of energy). In the Appendix,
the interested reader also finds the very useful method of dimensional analysis
along with tables about the values of the universal constants and the mag-
nitudes of important physical quantities in nature. The knowledge of this is
important for a deeper understanding of physical phenomena appearing in
the real world.

2.2 Waves in Physics

Waves play a crucial role in physics, since they allow us to describe the
transport of energy and information in nature.

2.2.1 Harmonic Waves

To begin with, let us explain the terminology used by physicists for describing
waves. We are given the positive numbers ν, λ, a and the real number α. The
real function

y = a sin 2π
(x

λ
− νt+

α

2π

)
(2.1)

is called a sinusoidal or harmonic wave. Let us discuss this. For fixed time
t, the function y = y(x) from (2.1) has the period λ with respect to the
position variable x (Fig. 2.1). For fixed x, the function y = y(t) has the time
period T = 1/ν. In order to avoid the factor 2π, physicists introduce both
the angular frequency ω := 2πν and the wave number κ := 2π/λ. Then

y = a sin(κx− ωt+ α). (2.2)

If position x and time t are related by

κx− ωt = const,

then y = a sin(κx − ωt + α) remains constant during all times. This means
that the wave propagates with the speed v = ω/κ = νλ from left to right.
Physicists use the following terminology:
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a amplitude,
α phase shift,
λ wave length,
T time period of oscillations,
ν = 1/T frequency (number of oscillations per second),
κ = 2π/λ wave number,
ω = 2πν angular frequency,
v = ω/κ = νλ phase velocity of the wave.

The function3

y = a sin(kx − ωt+ α) (2.3)

describes a so-called sinusoidal plane wave with the wave vector k and the
wave number κ := |k|. Let n be a unit vector. If we set x = xn and k = κn,
we obtain the function (2.2). Thus, the expression (2.3) corresponds to a wave
propagating with speed v in direction of the vector k and angular frequency

ω = v|k|.

Using the famous Euler exponential formula

eiz = cos z + i sin z for all z ∈ C, (2.4)

and letting A := aeiα, the wave (2.3) can be written as

y = �(Aei(kx−ωt)).

2.2.2 Wave Packets

Group velocity. Typically, there exists a so-called dispersion relation

ω = ω(κ)

between the wave number κ and the angular frequency ω of a wave. In con-
trast to the phase velocity, v := ω(κ0)/κ0, the number

vg := ω′(κ0)

is called the group velocity corresponding to the wave number κ0. We want
to show that the group velocity can be regarded as the propagation speed
of small wave packets (Fig. 2.2). In terms of physics, the group velocity is

3 The symbol kx denotes the inner product between the vectors k and x.Moreover,
we set x2 := xx.
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Fig. 2.2. Group velocity

decisive, since energy propagates with group velocity. By definition, a wave
packet is obtained by the superposition of harmonic waves,

y(x, t) :=
∫ ∞

−∞
a(κ)ei(κx−ω(κ)t)dκ, x, t ∈ R.

We assume that the amplitude function a = a(κ) is mainly concentrated on
a small interval centered at the wave number κ0. In order to understand the
typical behavior of a wave packet, let us choose the amplitude function

a(κ) := Ce−
1
2 (

κ−κ0
Δκ )2

where the number Δκ > 0 is fixed, and C denotes a positive constant. Fur-
thermore, we assume that the function ω = ω(κ) is a quadratic polynomial,

ω(κ) = ω0 + vg(κ− κ0) +
b

2
(κ− κ0)2.

Then

ω(κ)t− κx = (ω0t− κ0x) + (κ− κ0)(vgt− x) +
b

2
(κ− κ0)2t.

An explicit computation yields

y(x, t) = A(x− vgt) · ei(ω0t−κ0x), x, t ∈ R. (2.5)

Explicitly, we have

A(x) :=
C

√
2πΔ(t)

· e−
1
2 ( x

Δ(t) )
2

where
Δ(t) :=

√
(Δκ)2 − ibt.

Here, we take the principal part of the square root.4 The wave packet
y = y(x, t) from (2.5) can be regarded as a modified harmonic wave which
propagates with the phase velocity ω0/κ0, and the amplitude A propagates
with the group velocity vg.

4 Let z = |z| eiϕ where −π < ϕ ≤ π. Then, the principal part of the square root is

given by
√
z :=

p

|z| · eiϕ/2.
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Fig. 2.3. Standing waves

• If b = 0, then Δ(t) = Δκ for all times t. In this case, the amplitude is
mainly concentrated on the interval [κ0 −Δκ, κ0 +Δκ].

• If b �= 0, then

|Δ(t)|4 = (Δκ)4 + b2t2 for all t ∈ R.

Hence |Δ(t)| → +∞ as t → +∞. This means that the wave packet is
diffusing as times goes to infinity.

2.2.3 Standing Waves

The following investigations on the number of standing waves in a box were
critically used by Planck in 1900 in order to derive his famous radiation law
from Boltzmann statistics (see Sect. 2.3.2). Our goal is formula (2.6) below.
Consider first the function

y = a sinκx

where κ := nπ/L, n = 1, 2, . . . Since y(0) = y(L) = 0, this is called a
standing wave on the interval [0, L] (Fig. 2.3). Let N(R) denote the number
of standing waves on [0, L] with the restriction κ ≤ R. Approximately,

N(R) =
R

π/L
=
RL

π
.

Let us now pass to the 3-dimensional case. By definition, the function

y = A sinκ1x · sinκ2y · sinκ3z

with κj = njπ/L and nj = 1, 2, ..., j = 1, 2, 3 represents a 3-dimensional
standing wave in the box B := {(x, y, z) ∈ R

3 : 0 ≤ x, y, z ≤ L} of volume
V = L3. Set k := (κ1, κ2, κ3). Let N(R) denote the number of standing
waves in the box B with |k| ≤ R, and let V denote the volume of the pos-
itive quadrant {k : |k| ≤ R, κ1, κ2, κ3 ≥ 0} of a ball of radius R (Fig. 2.4).
Approximately,

N(R) =
V

(π/L)3
.
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Since V = 1
8 · 4

3πR
3, we have N(R) = R3V/6π2. From N ′(R) = R2V/2π2 we

get
ΔN = R2V ΔR/2π2

for the number of standing waves in the box with R ≤ |k| ≤ R+ΔR. Passing
to the angular frequency ω = c|k|, we finally obtain that

ΔN =
V ω2

2π2c3
Δω (2.6)

is the number of standing waves in the box B of volume V corresponding to
the interval [ω, ω +Δω] of angular frequency.

2.2.4 Electromagnetic Waves

The Maxwell equations for the electric field vector E = E(x, t) and the
magnetic field vector B = B(x, t) in vacuum read as

div E = 0, div B = 0,

curlE = −Ḃ, c2 curlB = Ė,
(2.7)

where c is the velocity of light in a vacuum. The dot denotes the partial time
derivative. Let i, j,n be a right-handed orthonormal vector basis. An explicit
computation shows that the harmonic waves

E = a cos(kx − ωt) · i + b sin(kx − ωt+ α) · j, B =
n × E
c

along with k := κn and the dispersion relation ω = cκ represent a solution of
the Maxwell equations. This electromagnetic wave (light wave) propagates in
direction of the unit vector n. From cg = ω′(κ) = c we obtain that the group
velocity of light is equal to the phase velocity. Thus, the light is polarized.
This means that the amplitude of the harmonic wave E = E(x, t) is a vector.
Explicitly, we have the following possibilities:

• If a2 + b2 �= 0, the polarization is called elliptic.
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• If a = b and a �= 0, the polarization is called circular.
• If a �= 0, b = 0 or a = 0, b �= 0, the polarization is called linear.

In a bounded region Ω of volume V , the energy E and the momentum vector
p of the electromagnetic field are given by

E =
∫

Ω

η d3x, p =
∫

Ω

(D × B)d3x, η :=
1
2
(ED + HB),

where D = ε0E and B = μ0H. Here, ε0 (resp. μ0) is the electric (resp.
magnetic) field constant of a vacuum. Moreover, c2 = 1/ε0μ0. In addition,
the energy current density vector is equal to S = E×H. For our light wave,
we get the energy density η = a2 + b2, and hence E = ηV as well as S = cηn.
This yields the crucial relation E2 = c2p2. Hence

E = c|p|

which corresponds to the Einstein relation E2 = m2
0c

4 + c2p2 with vanishing
rest mass, m0 = 0.

2.2.5 Superposition of Waves and the Fourier Transform

The profound study of nature is the most fertile source of mathematics.
Joseph Fourier (1768–1830)

The Fourier transform represents a fundamental duality between time and
frequency (resp. time and energy).

The frequency space. Let a : R → C be a measurable (e.g., continuous)
function with

∫
R
|a(ω)|dω < ∞. Then, the integral

f(t) =
1√
2π

∫

R

a(ω) e−iωtdω

exists for all times t ∈ R. The function f represents the superposition of har-
monic waves. The amplitude function a = a(ω) is called the Fourier transform
of the time-dependent function f with respect to angular frequency ω. Prop-
erties of the Fourier transform will be considered in Sect. 10.3.3 on page 537
by using the space S(R) of smooth complex-valued functions on the real line
which are rapidly decreasing at infinity. For example, if f ∈ S(R), then we
get a ∈ S(R) along with the inverse transformation formula

a(ω) =
1√
2π

∫

R

f(t) eiωtdt for all ω ∈ R.

In particular, if we choose the Gaussian function f(t) := e−
t2
2 for all t ∈ R,

then
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a(ω) = f(ω) for all ω ∈ R.

This means that the Gaussian function is distinguished by the fact that it is
invariant under the Fourier transform. This transform was extensively used
by Fourier in his treatise Théorie analytique de la chaleur (analytic heat
theory) from 1822.

The Fourier transform plays a fundamental role in quantum field
theory.

In particular, Feynman’s elegant approach to quantum physics via path in-
tegrals is closely related to Fourier’s heat kernel method for solving the heat
equation (see page 591). Furthermore,

• the Dirac calculus, and
• von Neumann’s spectral theory for self-adjoint operators in Hilbert space

represent far-reaching generalizations of the Fourier method to quantum field
theory.

The energy space. Let us use the transformation

E = �ω

in order to pass from the frequency space to the energy space. From the
physical point of view, E is the energy of a photon which has the frequency
ν = ω/2π. Setting b(E) := a(E/�)/

√
� , we get

f(t) =
∫ ∞

−∞

e−iEt/�

√
2π�

b(E)dE for all t ∈ R (2.8)

along with the inverse transformation formula

b(E) =
∫ ∞

−∞

eiEt/�

√
2π�

f(t)dt for all E ∈ R. (2.9)

In terms of quantum physics, the time-dependent function t �→ f(t) is repre-
sented as a superposition of the functions

t �→ e−iEt/�

√
2π�

which correspond to quantum states of energy E.

For historical reasons, engineers, mathematicians, and physicists use
different definitions of the Fourier transform.

This will be discussed on page 540. Our definition (2.9) fits the needs of quan-
tum physics. In particular, the normalization factor 1√

2π�
guarantees that the

map f �→ b is a unitary operator on the Hilbert space L2(R). Furthermore, in
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terms of the elegant Dirac calculus, formulas (2.8) and (2.9) can be written
symmetrically as

〈t|f〉 =
∫

R

〈t|E〉〈E|f〉dE

and
〈E|f〉 =

∫

R

〈E|t〉〈t|f〉dt,

respectively, where we set 〈t|f〉 := f(t) and 〈E|f〉 := b(E), as well as

〈t|E〉 = 〈E|t〉† :=
e−iEt/�

√
2π�

.

The choice of the normalization factor 1√
2π�

from (2.9) also yields the appro-
priate continuous orthonormality relation

〈E|E0〉 =
∫

R

〈E|t〉〈t|E0〉dt =
1

2π�

∫

R

ei(E−E0)t/� dt = δ(E −E0)

for all E,E0 ∈ R. Here, the symbol δ denotes the Dirac delta function. This
will be discussed in Sect. 12.1ff.

The local inversion theorem. As a preparation for the Laplace trans-
form below, let us recall the classical main theorem on the inversion of the
Fourier transform. The key formulas are given by (2.9) and the following
modification of the superposition formula (2.8):

f(t0) = PV

∫ ∞

−∞

e−iEt0/�

√
2π�

b(E)dE. (2.10)

Here, the symbol PV
∫∞
−∞ . . . stands for

PV

∫ ∞

−∞
g(E)dE := lim

N→∞

∫ N

−N

g(E)dE.

We assume that this finite limit exists which is called Cauchy’s ‘principal
value’ of the integral.

Theorem 2.1 Suppose that the function f : R → C is continuous except
for a finite number of points and

∫∞
−∞ |f(t)|dt < ∞. Then, the integral (2.9)

exists.
If, in addition, the function f is differentiable in an open neighborhood of

the point t0, then the inverse formula (2.10) holds true.

The classical proof can be found in Doetsch (1956), Vol. 1, Sect. 4.2.
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2.2.6 Damped Waves, the Laplace Transform, and Dispersion
Relations

In his 1812 treatise Théorie analytique des probabilités, Pierre-Simon
Laplace (1749–1824) extensively used special integrals of the type

F (s) :=

Z ∞

0

f(t)e−stdt

in order to solve both differential equations and difference equations and
to obtain asymptotic expansions. In modern terminology, these integrals
correspond to the Laplace transform. Historically, in 1737 Euler was the
first who applied such integrals for solving differential equations. However,
it seems that Laplace did not know Euler’s results.

Gustav Doetsch
Handbook of the Laplace Transform, Birkhäuser, Basel, 1956.

Damped wave. In particle accelerators, physicists observe unstable particles
of finite lifetime. Such particles are also called resonances. Let us model this
by using the so-called damped wave

y(t) = Ae−γ0t · e−iω0t = Ae−i(ω0−iγ0)t, t ∈ R (2.11)

where the real number ω0 and the positive number γ0 are called the angu-
lar frequency and the damping constant, respectively. The nonzero complex
number A is called the amplitude. Obviously,

lim
t→+∞

y(t) = 0,

that is, the wave vanishes at large time. The number

tmean :=
1
γ 0

is called the mean lifetime of the damped wave. Observe that during the time
interval [0, tmean] the damping function t �→ e−γ0t decreases from e0 = 1 to
e−1 ∼ 1

2 . Explicitly, if A = aeiα with a > 0 and α ∈ R, then

y(t) = ae−γ0t · (cos(ω0 − α) − i sin(ω0 − α)), t ∈ R.

Summarizing, we obtain that

Damped waves can be described by complex frequencies ω0−iγ0. Here,
the imaginary part is related to the mean lifetime of the wave by
tmean = 1/γ0.

Truncated damped wave. By definition, the Heaviside function θ
switches on physical processes at time t = 0. Explicitly, we set θ(t) := 1
if t ≥ 0 and θ(t) := 0 if t < 0. The function
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y(t) = Aθ(t)e−γ0t · e−iω0t, t ∈ R (2.12)

describes a damped wave which is switched on at time t = 0. Roughly speak-
ing, the notion of truncated damped wave is related to causality. We will show
below that this corresponds to analyticity properties of the Fourier transform.

Generally, there exists a deep relation between causality and analyt-
icity in physics.

The dispersion relation. The Fourier transform of the damped wave
(2.11) reads as5

a(ω) =
∫ ∞

−∞

(
Ae−γ0t e−iω0t

)
eiωt dt.

This integral does not exist in the classical sense because of e−γ0t → +∞ as
t → −∞. The situation changes completely if we replace the damped wave
by a truncated damped wave. Then

a(ω) =
∫ ∞

−∞
(Aθ(t)e−γ0te−iω0t eiωt) dt =

∫ ∞

0

Ae−γ0t+i(ω−ω0)tdt.

Explicitly, for all ω ∈ R,

a(ω) = lim
T→+∞

A · e−γ0T ei(ω−ω0)T − 1
i(ω − ω0) − γ0

=
iA

ω − (ω0 − iγ0)
.

Analytic continuation yields the meromorphic function

a(ω) =
iA

ω − (ω0 − iγ0)
, ω ∈ C \ {ω0 − iγ0}

on the complex ω-plane which has precisely one singularity at the point
ω0 − iγ0 in the open lower half-plane. This singularity encodes both the an-
gular frequency of the damped wave, ω0, and the lifetime, tmean = 1/γ0. By
Theorem 2.1 on page 90, the inverse Fourier transform yields

Aθ(t)e−γ0te−iω0t =
1
2π

PV

∫ ∞

−∞
a(ω)e−iωt dω, t ∈ R \ {0}.

In particular, the Laplace transform ω �→ a(ω) is holomorphic in the closed
upper half-plane. Moreover, the real and imaginary part of a(ω) satisfy the
relations

�(a(ω)) =
1
π
PV

∫

R

�(a(ξ))
ω − ξ

dξ for all ω ∈ R (2.13)

5 To simplify notation, we rescale the Fourier transform by using the replacement
a(ω)⇒ a(ω)/

√
2π.
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and

�(a(ω)) = − 1
π
PV

∫

R

�(a(ξ))
ω − ξ

dξ for all ω ∈ R. (2.14)

The integral is to be understood in the sense of Cauchy’s principal value

PV

∫

R

g(ξ)dξ
ω − ξ

:= lim
ε→+0

(∫ ω−ε

−∞

g(ξ)dξ
ω − ξ

+
∫ ∞

ω+ε

g(ξ)dξ
ω − ξ

)

with respect to the singularity of the integrand at the point ω ∈ R. This has
the following important consequence. If we know, say, the real part �(a(ω))
on the real line, then we get the imaginary part �(a(ω)) on the real line, by
(2.13). Furthermore, the classical Cauchy residue formula

a(ω) =
1

2πi
lim

R→+∞

∫ R

−R

a(ξ)dξ
ξ − ω

, �(ω) > 0

yields the values of a(ω) on the open upper-half plane.6 Using analytic con-
tinuation, we then get the function a = a(ω) on the complex plane.

Summarizing, for a truncated damped wave, the imaginary part of
the Laplace transform a = a(ω) on the real line knows all about the
meromorphic function a on the complex plane.

In mathematics, the map �(a) = H�(a) given by (2.13) is called the Hilbert
transform (see Sect. 11.9.3 on page 666). In physics, the relations (2.13)
and (2.14) are called dispersion relations (see Sect. 12.4.5 on causality and
analyticity).

The basic trick of the Laplace transformation. Let us now consider
the critical case where γ0 ≤ 0. The trick is to introduce a damping factor
e−γt. In fact, in order to get a convergent integral, we change the Laplace
transform by setting

a(ω + iγ) :=
∫ ∞

0

(
Ae−(γ0+γ)t e−iω0

)
eiωt dt.

To get a damping factor, we choose the real number γ in such a way that
γ0 + γ > 0. This can be written as

a(ω + iγ) =
∫ ∞

0

(
Ae−γ0te−iω0t

)
ei(ω+iγ)t dt.

Explicitly,

a(ω + iγ) =
iA

ω + iγ − (ω0 − iγ0)

for all real numbers ω, γ with γ > −γ0. By the inverse Fourier transform,
6 This follows as in Problem 12.1 on page 735.
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Aθ(t)e−(γ0+γ)te−iω0 =
1
2π

PV

∫ ∞

−∞
a(ω + iγ)e−iωt dω, t ∈ R \ {0}.

Hence

Aθ(t)e−γ0te−iω0t =
1
2π

PV

∫ ∞

−∞
a(ω + iγ)e−i(ω+iγ)t dω, t ∈ R \ {0}.

The energy space. Setting E = �ω, let us pass over to the space of
complex energy E = E − iΓ. The damped wave (2.12) can be equivalently
written as

y(t) = Ae−iE0t/� t ∈ R

where E0 = E0 − iΓ with E0 := �ω0 and Γ0 := �γ0. The Laplace transform
(2.16) reads as

(Ly)(E) =
i�A

E − E0
(2.15)

for all E ∈ C with �(E) > �(E0).
The Laplace transform in the energetic space. The two key formulas

read as

(Lf)(E) :=
∫ ∞

0

eiEt/�f(t) dt for all E ∈ Hγ0 (2.16)

and

f(t) =
1

2π�
PV

∫

L

e−iEt/�(Lf)(E) dE for all t > 0. (2.17)

The function L is called the Laplace transform of the function f in the energy
space. Furthermore, for given real number γ0 we write f ∈ Kγ0 iff7 the
continuous function f : [0,∞[→ C satisfies the growth condition

|f(t)| ≤ const · e−γ0t for all t ≥ 0.

Moreover, we introduce the open half-plane Hγ0 := {E ∈ C : �(E) > −�γ0}.

Theorem 2.2 Let f ∈ Kγ0 . Then, the Laplace transform Lf given by (2.16)
is a holomorphic function on the open half-plane Hγ0 .

The inverse transform f = L−1F is given by (2.17). Here, we integrate
over a fixed, but otherwise arbitrary line L in Hγ0 which is parallel to the real
axis.
7 In mathematics, ‘iff’ stands for ‘if and only if’.
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Using the same argument as for damped waves above, the inversion for-
mula (2.17) follows easily from the inversion formula for the Fourier transform
(2.10).8 It is crucial for physics that the Laplace transform Lf is holomorphic
in an open half-plane of the complex energy space. As we will show later on,
after carrying out an analytic continuation, the singularities of the Laplace
transform L are of great physical importance. They correspond to both the
energies of bound states and their lifetimes.

The Laplace transform in the frequency space. This is obtained
from (2.16) by using the replacement E ⇒ ω and setting � := 1. In terms of
physics, this corresponds to using the energetic system of units.

Three basic rules. The following rules allow us to solve differential equa-
tions and to get information about the solutions in terms of superpositions
of harmonic waves or damped waves. Moreover, the resonance effects become
transparent. To simplify notation, let us set � := 1 in (i)-(iii) below (i.e., we
work in the energetic system).

(i) Wave rule. Let k = 0, 1, . . . . For complex energy E0 = E0 − iΓ0, the
Laplace transform of the function

f(t) := tke−iE0t, t ≥ 0

is equal to

(Lf)(E) =
ik+1k!

(E − E0)k+1

for all complex energies E with �(E) > �(E0).
(ii) Derivative rule. We are given the function f ∈ Kγ0 . Moreover, we assume

that the time derivatives ḟ , f̈ also lie in Kγ0 . Then

(
Lḟ

)
(E) = −iE · L(f)(E) − f(+0)

and (
Lf̈

)
(E) = (−iE)2L(f)(E) + iE · f(+0) − ḟ(+0)

for all E ∈ C with �(E) > −γ0. This way, the Laplace transform converts
differentiation into multiplication.9

(iii) Convolution rule. Let f, g ∈ Kγ0 . Set

(
f ∗ g

)
(t) :=

∫ t

0

f(t− τ)g(τ) dτ for all t ≥ 0.

The function f ∗ g is called the causal convolution between the functions
f and g. Then

8 See the standard textbooks by Widder (1944) and Doetsch (1956). As an intro-
duction to the Laplace transform, we recommend Zeidler (2004).

9 As usual, the symbol g(+0) stands for the limit limt→+0 g(t).
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L(f ∗ g) = Lf · Lg on Hγ0 .

This tells us that the product in the energy space corresponds to the
causal convolution in the original time space.

Proof. Ad (i). If k = 0, the claim follows from (2.15). For k = 1, 2, . . . ,
differentiate successively equation (2.16) with respect to the parameter E0.

Ad (ii). Integration by parts yields
∫ T

0

eiEtḟ(t) dt = eiEtf(t)
∣
∣
∣
T

0
− iE

∫ T

0

eiEtf(t)dt.

Finally, apply the limit T → +∞. Observe that

|eiET f(T )| ≤ const · e−(�(E)+γ0)T → 0 as T → +∞

if �(E) > −γ0. The same argument applied to ḟ yields

L(f̈) = −iE · L(ḟ) − ḟ(+0).

Ad (iii). Set h := f ∗ g. It follows from
∫ t

0
eτet−τ dτ = tet that h ∈ Kγ0−ε

for all ε > 0. Define f(t) = g(t) = h(t) := 0 if t < 0. Then

h(t) :=
∫ ∞

−∞
f(t− τ)g(τ) dτ, t ∈ R.

Using the substitution s := t− τ ,
∫ ∞

−∞
eiEth(t) dt =

∫ ∞

−∞
eiEsf(s) ds

∫ ∞

−∞
eiEτg(τ) dτ.

�

2.2.7 The Response Function, the Feynman Propagator, and
Causality

We want to use the Laplace transform in order to construct the prototype of
the Feynman propagator. The idea is to describe mathematically the response
of a physical system to an external force which is switched on at the initial
time t = 0.

The causal initial-value problem for the harmonic oscillator. As
a simple example, let us consider the following initial-value problem

mẍ(t) = −κ0x(t) + F (t), t > 0,
x(+0) = x0, ẋ(+0) = v0 (2.18)

along with x(t) = 0 for all t < 0. Here, the function x = x(t) describes
the motion of a classical particle of mass m > 0 on the real line under the
influence of
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• the repulsive force −κ0x with the coupling constant κ0 > 0, and
• the external force F which is switched on at the initial time t = 0, that is,
F (t) = 0 for all t < 0. We assume that the given function F : R → R is
continuous on the time interval [0,∞[.

We are given the initial position x0 and the initial velocity v0 of the particle
at time t = 0. We are looking for a solution x : R → R which is differentiable
twice on the open time interval ]0,∞[. In addition, we postulate that the
functions x and ẋ can be continuously extended to the closed time interval
[0,∞[. We set ω0 :=

√
κ0/m.

Theorem 2.3 The initial-value problem (2.18) has the unique solution

x(t) = θ(t)
(

x0 cosω0t+
v0
ω0

· sinω0t+
1

mω0

∫ t

0

sinω0(t− τ) · F (τ) dτ
)

for all times t ∈ R.

Proof. To simplify notation, set m := 1.
(I) Existence. Let t > 0. Differentiation with respect to time t yields

ẋ(t) = −ω0x0 sinω0t+ v0 cosω0t+
∫ t

0

cosω0(t− τ) · F (τ) dτ.

Note that the differentiation of the integral yields the additional term
sinω0(t− t) · F (t) which vanishes. Furthermore,

ẍ(t) = −ω2
0x0 cosω0t− ω0v0 sinω0t− ω0

∫ t

0

sinω0(t− τ) · F (τ)dτ + F (t).

Hence ẍ(t) = −ω2
0x(t) + F (t) if t > 0.

(II) Uniqueness. Suppose that the two functions x1, x2 : R → R are
solutions of (2.18). Define x(t) := x1(t) − x2(t). The function x : R → R

satisfies then problem (2.18) in the special case where x0 = v0 = 0 and
F (t) ≡ 0. By a standard result, this implies x(t) ≡ 0. �

The retarded Green’s function. Set

G(t) :=

{
sin ω0t
mω0

if t ≥ 0,
0 if t < 0.

If x0 = v0 = 0, that is, the particle rests at time t = 0, then the solution
from Theorem 2.3 can be written as

x(t) =
∫ ∞

−∞
G(t− τ)F (τ) dτ for all t ∈ R. (2.19)

Synonymously, the function G is called
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• the response function,
• the Feynman propagator, and
• the retarded Green’s function

of the causal initial-value problem (2.18) for the harmonic oscillator on the
real line. In terms of physics, the function G describes the response of the
harmonic oscillator to the action of the external force F which is switched
on at time t = 0. Here, the harmonic oscillator rests on the time interval
] −∞, 0]. Observe that the construction of the function G critically depends
on causality, that is, this function refers to the behavior of the harmonic
oscillator in the future.

Response functions play a fundamental role in quantum field theory.

We will study this in Chap. 14.
The Dirac delta function. Physicists like to use the Dirac delta func-

tion δ = δ(t) in order to introduce the Green’s function G in a formal, but
elegant way. To this end, they choose the external force

F (t) := δ(t) for all t ∈ R

which only acts at the initial time t = 0. Using the characteristic property
(11.22) of the Dirac delta function on page 593, it follows from (2.19) that

x(t) =
∫ ∞

−∞
G(t− τ)δ(τ)dτ = G(t) for all t ∈ R.

Intuitively, the retarded Green’s function t �→ G(t) describes the motion of a
harmonic oscillator on the real line

• which rests on the time interval ] −∞, 0], and
• which starts to move under the influence of a large external force that acts

precisely at the time point t = 0.

Observe that the Dirac delta function is not a classical function, but a gener-
alized function also called distribution. The rigorous theory of distributions
will be studied in Chap. 11.

Application of the Laplace transform to the harmonic oscillator.
We want to show how the solution from Theorem 2.3 can be obtained by using
the Laplace transform. To display the elegant basic idea as clearly as possible,
we restrict ourselves to a formal argument by ignoring the range of validity of
the following formulas. Moreover, in order to simplify notation we set m := 1
and � := 1. Then E = ω. We will use the basic rules (i), (ii), (iii) for the
Laplace transform considered on page 95.

To begin with, suppose that the function x = x(t) is a solution of the
causal initial-value problem (2.18) above. By the derivative rule (ii), the
Laplace transform Lx satisfies the equation
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−ω2Lx+ iωx0 − v0 + ω2
0Lx = LF.

Hence

Lx = − iωx0

ω2
0 − ω2

+
v0

ω2
0 − ω2

+
LF

ω2
0 − ω2

.

This means that the Laplace transform Lx of the motion possesses a very
simple structure in the frequency space. This solution depends critically on
the function

R(ω) :=
1

ω2
0 − ω2

which is called the response function of the harmonic oscillator in the fre-
quency space. The singularities of the function R at the points ω = ±ω0

correspond to the eigenoscillations t �→ e±iω0t of the harmonic oscillator. We
will see at the end of the proof that the function R is the Laplace transform
of the retarded Green’s function G. It remains to reconstruct the function
x = x(t) from its Laplace transform. Let us discuss this.

Using partial fractions and the wave rule (i), we get

iω
ω2 − ω2

0

=
1
2

(
i

ω − ω0
+

i
ω + ω0

)

= L
(

e−iω0t + eiω0t

2

)

= L(cosω0t).

Similarly,

1
ω2

0 − ω2
=

1
2ω0

(
1

ω + ω0
− 1
ω − ω0

)

= L
(

eiω0t − e−iω0t

2iω0

)

= L
(

sinω0t

ω0

)

.

Finally, the convolution rule (iii) tells us that

1
ω2

0 − ω2
· LF = L

(
sinω0t

ω0
∗ F

)

.

Summarizing, for all times t ≥ 0,

x(t) = x0 cosω0t+
v0
ω0

· sinω0t+
∫ t

0

sinω0(t− τ)
ω0

· F (τ) dτ.

This is precisely the solution from Theorem 2.3 on page 97.

2.3 Historical Background

The explicit statement that matter is composed of indivisible particles
called atoms (from the Greek ατoμoσ, atomos, “uncuttable”) we trace
to the ancient town of Abdera, on the seacoast of Thrace. There, in the
latter part of the fifth century B.C., the Greek philosophers Leucippus
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and Democritus10 taught that all matter is made up of atoms and empty
space. . . After the birth of modern science, the idea of atoms came to
be used as a basis of quantitative theories of matter. In the 17th century
Newton attempted to account for the expansion of gases in terms of the
outrush of their atoms into empty space. More influential, in the early
19th century Dalton explained the fixed ratios of the weights of chemical
elements that make up common compounds in terms of the relative weights
of the atoms of these elements. . .

By the end of the 19th century the idea of the atom had become familiar
to most scientists – familiar but not yet universally accepted. . . All this
changed in the first decades of the 20th century. . .
Just as ancient Abdera symbolizes for us the birth of atomism, there is
one place with which the discovery of constituents of the atom is espe-
cially associated: It is the Cavendish Laboratory of the University of Cam-
bridge (England) founded in 1874.11 There, in 1895, Thomson performed
the experiments on cathode rays that led him to conclude that there is a
particle – the electron – that is both the carrier of electricity and a ba-
sic constituent of all atoms. It was at the Cavendish in 1895–1898 that
Rutherford began his work on radioactivity, and to the Cavendish in 1919
that Rutherford returned, after his discovery of the atomic nucleus in 1911,
to succeed Thomson as Cavendish Professor of Experimental Physics and
to found what was long the preeminent center for nuclear physics. The
list of constituents of the atom was completed at the Cavendish Labo-
ratory in 1932, when Chadwick discovered the neutron . . . All ordinary
matter is composed of atoms which in turn consist of protons, neutrons,
and electrons. . .
The particle menu changed drastically in the 1950s when large accelerators
like the Betatron at Berkeley and new devices for detecting particles like
the bubble chamber began to become available. In the debris of collisions
of the high-energy protons from these accelerators were found a great va-
riety of new hadrons, labelled ρ, ω, η, φ,Δ,Ξ,Ω, and so on – so many that
the Greek alphabet was in danger of exhaustion. They were all unstable
with extremely short lifetimes, which is why they are absent in ordinary
matter. . . Soon an attempt was made to restore some economy to the
multitude of hadrons. In the early 1960s Murray Gell-Mann and George
Zweig of the California Institute of Technology, building on earlier work of
Gell-Mann and Yuval Ne’eman of Tel-Aviv, proposed independently that
the hadrons are all composites of a few types of really elementary building
blocks, called quarks by Gell-Mann.12

Steven Weinberg
The Discovery of Subatomic Particles13

10 Democritus (460–371 B.C.), Sir Isaac Newton (1643–1727), John Dalton (1766–
1844).

11 The first Cavendish Professor was James Clerk Maxwell (1831–1879) from 1874
until his death. The next Cavendish Professors were Lord Rayleigh (1842–1919),
Nobel prize in physics in 1904, and after him Sir Joseph John Thomson (1856–
1940), Nobel prize in physics in 1906, Lord Ernest Rutherford (1871–1937), Nobel
prize in chemistry in 1908, for the chemistry of radioactive substances, James
Chadwick (1891–1974), Nobel prize in physics in 1935.

12 Quarks – a whimsical name was taken from a passage in James Joyce’s Finnegans
Wake by Gell-Mann.

13 Scientific American Library, New York, 1983 (reprinted with permission).
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Fig. 2.5. Feynman diagrams for electron-positron scattering

Quantum field theory is a set of ideas and tools that combine three of the
major themes of modern physics: the quantum theory, the field concept,
and the principle of relativity. Today, most working physicists need to know
some quantum field theory, and many others are curious about it. The
theory underlies modern elementary particle physics, and supplies essential
tools to nuclear physics, atomic physics, condensed matter physics, and
astrophysics. In addition, quantum field theory has led to new bridges
between physics and mathematics.
One might think that a subject of such power and widespread application
would be complex and difficult. In fact, the central concepts and tech-
niques of quantum field theory are quite simple and intuitive. This is espe-
cially true of the many pictorial tools (Feynman diagrams, renormalization
group flows, and spaces of symmetry transformations) that are routinely
used by quantum field theorists. Admittedly, these tools take time to learn,
and tying the subject together with rigorous proofs can become extremely
technical. Nevertheless, we feel that the basic concepts and tools of quan-
tum field theory can be made accessible to all physicists, not just an elite
group of experts.

Michael Peskin and Daniel Schroeder14

The gauge theories for the strong and electroweak interaction have become
the Standard Model of particle physics. They realize in a consistent way
the requirements of quantum theory, special relativity and symmetry prin-
ciples. For the first time, we have a consistent theory of the fundamental
interactions that allows for precision calculations for many experiments.
The Standard Model has, up to now, successfully passed all experimental
tests. This success establishes the importance of gauge theories, despite
the fact that gravity is not included and that the Standard Model is most
likely an effective theory resulting from the low-energy limit of a more
fundamental theory.

Manfred Böhm, Ansgar Denner, and Hans Joos15

14 From the preface to An Introduction to Quantum Field Theory, Addison–Wesley,
Reading, Massachusetts, 1995 (reprinted with permission).

15 From the preface to Gauge Theories of the Strong and Electroweak Interaction,
Teubner, Stuttgart, 2001 (reprinted with permission).
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Fig. 2.6. Neutrino-electron scattering

If supersymmetry plays the role in physics that we suspect it does, then it is
very likely to be discovered by the next generation of particle accelerators,
either at Fermilab in Batavia, Illinois, or at CERN in Geneva, Switzerland.

Edward Witten, 200016

If we are looking around, we see matter and light in the physical world. There
arises the question about the deeper structure of matter and light and the
final causes for these structures. The causes are called forces (or interactions)
by physicists.

Classical gravitation. In the 17th century, Newton introduced the no-
tion of gravitational force. This way, Newton could justify Kepler’s empirical
laws on the motion of planets. The precision of Newton’s mechanics was so
high that, by using the methods of perturbation theory, astronomers could
successfully predict the existence of new planets, namely, Neptune and Pluto
in 1846 and 1930, respectively.

The electromagnetic field. In the 19th century, Faraday studied ex-
perimentally the electromagnetic force. In particular, he discovered the law of
induction on the relation between electricity and magnetism in 1821. Maxwell
formulated mathematically his celebrated theory of electromagnetism in 1864.
The point is that the Maxwell equations unify two apparently different forces
in nature, namely, the electric and the magnetic force. To this end, Maxwell
used Faraday’s fundamental idea of the electromagnetic field. The existence
of electromagnetic waves was demonstrated experimentally by Hertz in 1886.
In the 20th century, classical physics was revolutionized by

• quantum physics based on Planck’s quantum hypothesis from the year
1900,

• Einstein’s 1905 theory of special relativity (e.g., electrodynamics of moving
bodies),

• Einstein’s 1905 theory of light quanta (photons), and
• Einstein’s 1915 theory of general relativity for gravitation.

Let us discuss some crucial points.
16 From the Foreword to G. Kane, Supersymmetry: Squarks, Photinos, and the

Unveiling of the Ultimate Laws of Nature, Perseus Publishing, Cambridge, Mas-
sachusetts, 2000.
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2.3.1 Planck’s Radiation Law

My new universal radiation formula was submitted to the Berlin Physi-
cal Society, at the meeting on October 19, 1900. On the very day when
I formulated this law by using purely formal arguments, I began to de-
vote myself to the task of investing it with a true physical meaning. This
quest let me to study the interrelation between entropy and probability.
Since the entropy S is an additive magnitude, but the probability W is a
multiplicative one, I simply postulated that

S = k · lnW,

where k is a universal constant.17 I found that k represents the so-called
absolute gas constant. It is, understandably, often called Boltzmann’s con-
stant. However, this calls for the comment that Boltzmann (1844–1906)
never introduced this constant.

Now, as for the quantity W with respect to radiation in a cavity, I found
that in order to interpret it as a probability, it was necessary to introduce
a universal constant which I called h. Since it had the physical dimension
of action (energy times time), I gave it the name elementary quantum of
action. Thus the nature of entropy as a measure of probability, in the sense
indicated by Boltzmann, was established in the domain of radiation, too.

While the significance of the quantum of action for the interrelation be-
tween entropy and probability was established, the part played by the
new constant in general physical processes still remained an open ques-
tion. I therefore tried immediately to weld the elementary quantum of
action into the framework of classical theory. But in the face of all such
attempts, which continued for a number of years, this constant showed
itself to be obdurate. For it heralded the advent of something entirely un-
precedented (namely, quantum physics), and was destined to remodel ba-
sically the physical outlook and thinking of man which, ever since Newton
(1643–1727) and Leibniz (1646–1716) laid the groundwork for infinitesimal
calculus, were founded on the assumption that all causal interactions in
nature are continuous.18

Max Planck (1858–1947)

The birth of quantum physics in 1900. Consider a star with surface
temperature T . For example, the surface temperature of the sun is equal to
6000K. The famous Planck radiation law from 1900 describes the amount
EA of electromagnetic energy which is emitted from the surface area A of
the star during the time interval [0, t] with respect to the interval [ω1, ω2] of
angular frequency. Explicitly,

EA =
ctA

4

∫ ω2

ω1

P(ω, T )dω (2.20)

with the Planck function
17 Note that in modern terminology, W is not a probability, but a statistical weight.
18 M. Planck, Wissenschaftliche Selbstbiographie, Barth, Leipzig 1948.
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Fig. 2.7. Planck’s radiation law

P(ω, T ) :=
�ω3

π2c3(e�ω/kT − 1)
. (2.21)

Here, we use the following notation: c velocity of light in vacuum, k Boltz-
mann constant, h Planck constant, � := h/2π, λ wave length of the radiation,
ν frequency, ω angular frequency. Recall that ν = c/λ = ω/2π. More pre-
cisely, the Planck radiation law refers to the radiation of a black body. By
definition, a body is called ‘black’ by physicists iff it absorbs all the incoming
electromagnetic radiation. In other words, there is no reflection of incoming
radiation. The radiation coming from stars can be described approximately
by black-body radiation. If we pass to the wave length λ, then we obtain

EA =
ctA

4

∫ λ2

λ1

P (λ, T )dλ

with
P (λ, T ) :=

8πhc
λ5(ehc/kTλ − 1)

(Fig. 2.7). The values of wave length λ observed today by physicists range
from 1 femtometer = 10−15m (high energy cosmic rays) to 107m (low energy
radio waves in the universe). Let us first discuss some important special cases
of the Planck radiation law.

The Stefan–Boltzmann law. From (2.20) we obtain the total amount
of emitted energy

EA =
ctA

4

∫ ∞

0

P(ω, T )dω.

Hence
EA = σtAT 4

where σ = 2π5/15c2h3 = 5.7 · 10−8J/sm2K4.
The Wien displacement law. For fixed temperature T , the function

P = P (λ, T ) has a maximum at the wave length

λmax =
a

T
,
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where a := 2.898 · 10−3mK. In fact, from Pλ(λ, T ) = 0 we get the fixed point
equation

x = f(x) where f(x) := 5e−x(ex − 1),

and x := hc/(kTλ). The corresponding iteration scheme

xn+1 = f(xn), n = 0, 1, 2, . . .

converges rapidly to the value x = 4.965.
The Wien approximation for high frequencies. If �ω/kT � 1, then

e�ω/kT − 1 can be approximated by e�ω/kT . Hence

P(ω, T ) =
�ω3

π2c3
e−�ω/kT , ω → ∞. (2.22)

Rayleigh–Jeans approximation for low frequencies. If �ω/kT � 1,
then e�ω/kT − 1 can be approximated by �ω/kT . Hence

P(ω, T ) =
kTω2

π2c3
, ω → 0. (2.23)

Cavity radiation. Consider a box of volume V filled with electromag-
netic radiation in thermodynamic equilibrium. Let T be the temperature of
the walls. According to Planck, the energy E of the radiation with respect to
the interval [ω1, ω2] of angular frequency is given by

E = η(T )V

with the energy density

η(T ) =
∫ ω2

ω1
P(ω, T )dω (2.24)

where

P(ω, T ) =
�ω3

π2c3(e�ω/kT − 1)
. (2.25)

The classical radiation argument. It was discovered by Kirchhoff
(1824–1884) that there exists a close connection between the energy density
η(T ) of the electromagnetic radiation in a box and the energy EA radiated
by a black body. Explicitly,

EA =
ctAη(T )

4
. (2.26)

The basic idea is to equip the box with a small slot of surface area A. The ra-
diation coming from the slot then represents the black body radiation (2.26).
The complete argument can be found in Zeidler (1986), Vol. IV, p. 410.
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Consequently, in order to derive the Planck radiation law (2.20), it is suffi-
cient to justify (2.24), (2.25). This will be done in the following. We will use
two different arguments based on phenomenological thermodynamics and the
Boltzmann statistics.

Planck’s first justification of the radiation law. Let us consider
the argument from phenomenological thermodynamics that was used first by
Planck in 1899 to obtain the energy density (2.24). Later on Planck applied
Boltzmann’s method of statistical mechanics to the radiation law. In 1893
Wien published the radiation law

P(ω, T ) = Aω3e−Bω/T . (2.27)

Tests showed, however, that this law failed for low frequencies. In 1899, Lord
Rayleigh formulated the law (2.23) for small frequencies. The idea of Planck
was to get the universal law for all frequencies by interpolating the Wien law
and the Rayleigh–Jeans law. To this end, he used the notion of entropy. To
explain this, let us start with a general thermodynamic system which has one
degree of freedom. Such a system is described by the fundamental equation

TdS = dE + pdV (2.28)

between volume V , pressure p, temperature T , inner energy E, and entropy
S. Choose E and V as basic variables.19 Then

S = S(E, V ), T = T (E, V ), p = p(E, V ).

From (2.28) we get TSEdE + TSV dV = dE + pdV . Hence

SE =
1
T
, SV =

p

T
.

Consider now the cavity radiation in a box of volume V with respect to
the interval [ω, ω+Δω] of angular frequency, where Δω is sufficiently small.
Then

E = V P(ω, T )Δω

with the unknown function P. To simplify notation, in what follows we will
denote different constants by the same symbols C and D.

(i) The Rayleigh–Jeans law. From (2.23) we obtain

E =
kTV ω2Δω

π2c3
= CT.

Hence E′(T ) = C. Since SE = T−1, it follows from the chain rule that
19 A detailed study of both phenomenological and statistical thermodynamics along

with substantial applications can be found in Zeidler (1986), Vol. IV, Chaps. 67
and 68.
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SEE =
dT−1

dE
=
dT−1

dT

dT

dE
= − 1

T 2E′(T )
. (2.29)

This implies

SEE = − C

E2
.

(ii) The Wien law. It follows from (2.27) that E = CeD/T . Hence

E′(T ) = −CD

T 2
eD/T = −DE

T 2
.

By (2.29),

SEE = −C

E
.

(iii) Planck’s interpolation. Planck started from the ansatz

SEE = − D

E(E + C)
. (2.30)

This equation can be satisfied by the choice

E =
C

eD/T − 1
.

In fact,

E′(T ) =
DeD/T

T 2(eD/T − 1)2
=
DE(E + C)

T 2
.

From (2.29) we get relation (2.30). This way, Planck obtained the desired
function

P =
C

eD/T − 1
of the radiation law. This method, however, does not determine the constants
C and D. As we will show below, the stronger methods of the Boltzmann
statistics along with the quantum hypothesis allow us the determination of
the unknown constants.

The Planck function and number theory. Letting x := �ω/kT , we
get

P(ω, T ) =
aT 3x3

ex − 1
,

where a := k3/π2
�

2c3. For all complex numbers x with 0 < |x| < 2π, one has
the classical relation

x3

ex − 1
=

∞∑

k=0

Bk

k!
xk+2.

The so-called Bernoulli numbers Bk were introduced by Jakob Bernoulli
(1675–1705). To explain the meaning of Bk, define the sum
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Sp
n := 1p + 2p + . . .+ np.

Then

Sp
n =

np+1

p+ 1
+
np

2
+
B2

2

(
p

1

)

np−1 +
B3

3

(
p

2

)

np−2 + . . .+
Bp

p

(
p

p− 1

)

n

for n = 1, 2, . . . and p = 1, 2, . . . The Bernoulli numbers can be computed by
means of the recursion formula

(
p+ 1
n

)

Bn = −
n−1∑

k=0

(
p+ 1
k

)

Bk.

Explicitly,

B0 = 1, B1 = −1
2
, B2 =

1
6
, B3 = 0, B4 = − 1

30
.

For odd natural numbers n ≥ 3, Bn = 0. The relation between the Bernoulli
numbers and the Riemann zeta function will be discussed on page 280.

2.3.2 The Boltzmann Statistics and Planck’s Quantum Hypothesis

Entropy and Boltzmann’s partition function. Consider a system which
can attain the possible energy states E0, E1, . . . , Em. According to Boltzmann
statistics, the mean value E of energy and the energy fluctuation ΔE at
temperature T are given by

E =
∑m

n=0 pnEn (2.31)

and

(ΔE)2 =
m∑

n=0

pn(En − E)2

along with the probabilities

pn =
e−En/kT

∑m
n=0 e

−En/kT
. (2.32)

Let us motivate this by means of the principle of maximal entropy. To this
end, define the entropy

S := −k
m∑

n=0

pn ln pn

and consider the problem
S = max !
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along with the side conditions
∑

n

pnEn − E = 0 and
∑

n

pn − 1 = 0

where 0 ≤ pn ≤ 1 for all n. According to the Lagrange multiplier rule,20 we
have to study the critical points of the Lagrange function

L := S + λ

(
∑

n

pnEn −E

)

+ μ

(
∑

n

pn − 1

)

.

The condition Lpn = 0 for all n yields

−k ln pn − k + λEn + μ = 0, n = 0, 1, . . . ,m.

Hence pn = const · eλEn/k. Set λ = −1/T . Using
∑

n pn = 1, we get the
desired result (2.32). From a formal point of view, this argument shows that
temperature is nothing else than a Lagrange multiplier.

Boltzmann’s law for the energy distribution. Let us now apply this
to the special situation where

En = n�ω, n = 0, 1, . . .

Introducing the so-called partition function

Z :=
∞∑

n=0

e−En/kT ,

we get

Z =
∞∑

n=0

e−nγ =
1

1 − e−γ

where γ := �ω/kT . By (2.31),

E = −�ωZ ′(γ)
Z(γ)

= −�ω
d lnZ(γ)

dγ
=

�ω

eγ − 1
.

Hence
E =

�ω

e�ω/kT − 1
. (2.33)

In particular, if �ω/kT � 1, we get the approximation

E = kT

which corresponds to the famous Boltzmann law. This law tells us that for
sufficiently high temperature T , each degree of freedom in a many-particle
20 A detailed investigation of the Lagrange multiplier rule with respect to statistical

physics can be found in Zeidler (1986), Vol. III, p. 296.
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system contributes the energy kT to the total mean energy of the system.
Relation (2.33) will be used now in order to obtain the Planck radiation law.

Planck’s quantum hypothesis. In 1900, Max Planck postulated that
the energy of the electromagnetic radiation emitted from the walls of a cavity
is quantized. The energy quanta are given by the formula

ΔE = �ω. (2.34)

Here, ω denotes the angular frequency of the electromagnetic radiation. Recall
that � := h/2π where

h = 6.626 · 10−34Js

is a fundamental constant in nature called the Planck constant (or Planck’s
quantum of action). Note that actions have the physical dimension of “energy
times time”. This is the most important physical quantity in nature. In daily
life, the actions have themagnitude of 1 Js. Planck’s quantum hypothesis
marked a revolutionin physics. It paved the way to modern quantum physics.

Let us discuss how Planck obtained his radiation law from the quantum
hypothesis. Consider a cubic cavity of length L and volume V = L3 filled
with electromagnetic radiation in thermodynamic equilibrium. By (2.6) on
page 87, the number of standing electromagnetic waves with respect to the
interval [ω, ω +Δω] of angular frequencies is equal to

2ΔN =
V ω2Δω

π2c3
.

The factor 2 can be motivated by the fact that plane electromagnetic waves
possess 2 linearly independent directions of polarization. Thus, the radiation
energy of the cavity with respect to [ω, ω +Δω] is

2ΔN · E =
V �ω3Δω

π2c3(e�ω/kT − 1)

by (2.33). According to (2.24) on page 105, this yields the Planck function

P(ω, T ) =
�ω3

π2c3(e�ω/kT − 1)
.

Heisenberg’s ground state energy of the harmonic oscillator.
Quantum mechanics was founded by Heisenberg in 1925. Born noticed that
Heisenberg’s ideas could be converted into a theory for infinite-dimensional
matrices. Heisenberg showed that the quantized energy of a harmonic oscil-
lator of angular frequency ω is given by the key formula

E = �ω

(

n+
1
2

)

, n = 0, 1, 2, . . . (2.35)
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This result justifies Planck’s quantum hypothesis for the harmonic oscillator.
In particular, Heisenberg obtained the value E = 1

2�ω for the energy of the
ground state corresponding to n = 0. The same argument as in (2.33) shows
that the mean energy of a large system of harmonic oscillators at temperature
T is given by

E =
�ω

e�ω/kT − 1
+

�ω

2
.

In 1926 Schrödinger formulated his wave quantum mechanics based on a par-
tial differential equation – the famous Schrödinger equation. We will show in
Volume II how the key formula (2.35) follows from the Schrödinger equation
for the harmonic oscillator.

2.3.3 Einstein’s Theory of Special Relativity

In the year 1905, in the same volume of the journal Annalen der Physik,
Einstein published four seminal papers on

(i) special relativity (electrodynamics of moving bodies),
(ii) the relation E = m0c

2 between the rest mass m0 of a particle and its
rest energy E,

(iii) the photoelectric effect (light particle hypothesis), and
(iv) the Brownian motion.

Let us discuss a few basic ideas.
The fundamental role played by inertial systems. Each physical

theory has to be described by both

• fundamental equations of motion and
• the systems of reference in which the equations of motion are valid.

In addition, one has to know how to transform the equations of motion be-
tween different systems of reference.

For example, the Newtonian equations of mechanics are valid in each
inertial system. By definition, a Cartesian coordinate system is an inertial
system iff there exists a system time t for it such that each mass point, which is
far enough from other masses and shielded against fields (e.g., light pressure),
remains at rest or moves rectilinearly with constant velocity. For example, a
spaceship represents an inertial system if it is located at far distance from
stars and planets and it flies without rocket propulsion. The experience of
astronomers shows that each Cartesian system Σsun is a good approximation
of an inertial system. Such a system is defined as follows.

• The system has its origin at the center of gravity of our solar system, which
lies within the sun.

• The axes of Σsun point towards fixed stars which can be chosen arbitrarily.
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In addition, note that a Cartesian coordinate system represents an inertial
system if it is obtained from Σsun by a constant translatory motion. The
rotating earth is not an inertial system.

In 1905 Einstein derived his theory of special relativity from the postulate
that

Physical processes proceed the same way in all inertial systems.

This is called the principle of special relativity. We will show later on that this
principle implies that relativistic physics has to be described mathematically
in terms of invariants of the Poincaré group. Around 1900 it was a famous
open problem in physics to determine the systems of reference in which the
Maxwell equations are valid and to understand how the electromagnetic field
has to be transformed under a general change of the observer. Einstein solved
this problem by postulating that

The Maxwell equations are valid in each inertial system.

In particular, this implies the surprising fact that the velocity of light in a
vacuum, c, is the same in each inertial system. This forced Einstein to change
Newton’s classical mechanics and the classical thinking about space and time.
In Newton’s classical mechanics, the formula

x′ = x− vt, y′ = y, z′ = z t′ = t (2.36)

describes the transformation from a right-handed Cartesian (x, y, z)-system
to a right-handed Cartesian (x′, y′, z′)-system. Here, we assume that the ori-
gin of the (x′, y′, z′)-system moves with the constant positive velocity v along
the x-axis. At time t = 0, the two systems coincide. Einstein showed in 1905
that one has to replace the Galilei transformation (2.36) by the following
Lorentz transformation

x′ =
x− vt

√
1 − v2

c2

, y′ = y, z′ = z, t′ =
t− vx

c2
√

1 − v2

c2

. (2.37)

The point is that in contrast to classical mechanics, time is not an abso-
lute quantity in Einstein’s theory of special relativity, but it depends on the
choice of the inertial system used by the observer. If the velocity v is small
compared with the velocity c of light in vacuum, that is, v/c � 1, then the
classical Galilei transformation (2.36) represents a good approximation of the
relativistic Lorentz transformation (2.37). Motivated by the singularity of the
Lorentz transformation (2.37) for v = c, Einstein postulated that

The maximal speed for the propagation of physical effects is the speed
of light.

As a consequence of his new relativistic mechanics, Einstein obtained the
fundamental relation
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E = m0c
2

between the energy E and the rest mass m0 of a resting particle. This is
the most important law in physics, since it governs the energy production in
stars, for example, in the sun.

2.3.4 Einstein’s Theory of General Relativity

Newton’s theory of gravitation implies a propagation of gravitational effects
with infinite speed. This fact violates Einstein’s postulate on the existence
of a maximal signal velocity. To explain this, suppose that there occurs a
huge explosion at the center C of our Milky Way which changes the mass
of the center drastically. According to Newton, this explosion would change
immediately the orbit of the sun around C. Following Einstein, the light
needs 30 000 years from C to the sun, and hence the sun will notice the
explosion 30 000 years later. In the years from 1905 until 1915, Einstein made
strong efforts to modify Newton’s theory of gravitation in such a way that
gravitational effects propagate with the velocity of light in vacuum. In 1915
Einstein published his theory of general relativity. In this theory, Newton’s
gravitational force is replaced by the

Riemann curvature of the 4-dimensional space-time manifold.

This curvature is caused by the existing masses in the universe.
In Newton’s mechanics, the equations of motion for the planets are invari-

ant under 3-dimensional rotations (the group SO(3)). This leads to conser-
vation of angular momentum which implies that the orbits of planets lie in a
plane. In addition, the equations of motion possess an additional hidden sym-
metry which is related to 4-dimensional rotations (the group SO(4)). This
additional symmetry fixes the axes of the elliptic orbits of the planets (Lenz
vector). In general relativity, the latter symmetry does not exist anymore.
Because of this symmetry breaking, the great semi-axis (perihelion) of Mer-
cury is not fixed, but it rotates 43 arc seconds per century. This rotation was
discovered by Le Verrier (1811–1877). In contrast to Newtonian mechanics,
Einstein’s theory of general relativity yields precisely the observed motion of
the perihelion of Mercury. Moreover, Einstein’s theory of general relativity
implies

• the existence of black holes,
• the Big Bang,
• and the expansion of our universe.

As an introduction to Einstein’s theory of special and general relativity, we
recommend the author’s monograph Zeidler (1986), Vol. IV.
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2.3.5 Einstein’s Light Particle Hypothesis

In his 1905 paper on the photoelectric effect, Einstein postulated that

Electromagnetic waves possess particle properties, too.

Nowadays these light particles are called photons.21 According to Einstein, a
photon of frequency ν has the energy

E = hν

where h is Planck’s quantum of action. The perfect dualism between particles
and waves was postulated by de Broglie in 1924. In 1932 Tamm and Ivanenko
formulated the hypothesis that all fundamental forces in nature are related
to the exchange of field quanta called messenger particles. The photon is
the messenger particle for the electromagnetic force. Einstein’s light particle
hypothesis was experimentally established by

• the photoelectric effect (Millikan 1916), and
• the Compton effect (Compton 1922).

For their contributions to the quantum physics of light particles, Einstein,
Millikan, and Compton were awarded the Nobel prize in physics in 1921,
1923, and 1927, respectively. Let us briefly discuss the photoelectric effect
first investigated by Thomson and Lenard at the end of the 19th century. If
light hits a metal, then electrons are ejected.

(i) The classical picture. Each electron is bound in the metal by the average
binding energy U. In order to eject an electron, we need the light energy
E where

E > U.

The classical electromagnetic wave is able to eject electrons if the inten-
sity of the light is large enough. The frequency ν of light does not play
any role.

(ii) Einstein’s quantum picture. According to Einstein, light consists of light
particles (photons) of energy E = hν. Such a photon can only eject
an electron if its energy hν is larger than the binding energy U of the
electron. This means that

ν > νcrit

where νcrit := U/h. Consequently, the photoelectric effect only occurs
above a threshold frequency, in contrast to (i).

The experiment verifies case (ii).
Photons and gravitation. Photons do not have any rest mass. Never-

theless, they are affected by gravitation. For example, light is deflected by the
21 The term ‘photon’ was introduced as the name for the particle of light, by the

physical chemist Gilbert Lewis, at Berkeley University (California) in 1926.
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sun. In 1959, using the Mößbauer effect (recoilless absorption of γ-quanta),
the red shift of light in the gravitational field of earth was established in a
tower of height 22.5m at Harvard University in Boston, by Pound and Repka.
In 1928 Hubble discovered a red shift in the spectra of distant galaxies. This
red shift is caused by the expansion of our universe after the Big Bang. s

Photons and the early universe. In 1965 Penzias and Wilson dis-
covered a weak cosmic background microwave radiation which is a relict of
the Big Bang (Nobel prize in physics in 1978). In 1992, the ‘Cosmic Back-
ground Explorer (COBE)’ satellite sent data to earth which showed that the
background radiation is not perfectly anisotropic. This slightly anisotropic
structure of the background radiation is very important for understanding
the formation of galaxies in the early universe caused by energy fluctuations.
More recent very precise measurements of the background radiation by the
WMAP (Wilkinson Microwave Anisotropic Probe) experiment of NASA con-
tribute to a better understanding of the evolution of our universe after the
Big Bang (see page 82).

2.3.6 Rutherford’s Particle Scattering

Coulomb force. Consider a particle with positive electric charge Q, mass
m, and initial velocity vector v = ve1 which is scattered at a fixed particle
with positive charge Q0, as shown in Fig. 2.8. Here, e1 is a fixed unit vector.
The motion x = x(t) of the incoming particle is governed by the Newtonian
equation of motion

mẍ =
QQ0

4πε0||x||2
· x
||x||

with respect to the Coulomb force between the charges Q and Q0. The orbit
of the scattered particle is a hyperbola. Explicitly, if the distance between
the incoming particle and the x-axis is equal to d, then the scattering angle
ϑ is given by

d =
QQ0

4πε0mv2
cot

ϑ

2
.

The proof of this classical result will be given in the chapter on the hydrogen
atom to be found in Volume III. The mathematics is the same as for the
motion of a comet scattered by the sun in celestial mechanics.22 The proof
is essentially based on conservation of energy and angular momentum. In
particular, if the scattering angle is equal to ϑ−Δϑ, then the distance d+Δd
is given by

d+Δd =
QQ0

4πε0mv2
cot

ϑ−Δϑ

2
.

22 Replace Q0, Q, and 1/4πε0 by the mass of the sun, the mass of the planet, and
the gravitational constant, respectively.



116 2. Phenomenology of the Standard Model for Elementary Particles

�
x

ϑ

Q0

� Q
v

d

�

�
e1

�e2

Fig. 2.8. Scattering of a charged particle

Differential cross section. Consider now a homogeneous current with
the velocity vector v = ve1 and particle number density �. This corresponds
to the electric current density vector

J = Q�v

of incoming particles. Let ΔN denote the number of incoming particles which,
during the time interval [0, t], are scattered about angles which lie in the
interval [ϑ, ϑ+Δϑ]. We then get the key formula for Coulomb scattering

ΔN = �vtΔσ (2.38)

along with the so-called differential cross section

Δσ =
(

QQ0

8πε0mv2

)2 2π sinϑ
sin4 ϑ

2

·Δϑ+ o(Δϑ), Δϑ → 0.

To prove this, consider an annulus A perpendicular to the x-axis of radii d
and d+Δd. Suppose that the incoming particles passing through the annulus
A possess a scattering angle that lies in the interval [ϑ, ϑ+Δϑ]. The annulus
A has the surface area

Δσ = π
(
(d+Δd)2 − d2

)
.

Hence

Δσ = π

(
QQ0

4πε0mv2

)2 (

cot2
ϑ−Δϑ

2
− cot2

ϑ

2

)

.

For small angles Δϑ, use the Taylor expansion

f(ϑ−Δϑ) − f(ϑ) = −f ′(ϑ)Δϑ+ o(Δϑ), Δϑ → 0.

This yields

Δσ = π

(
QQ0

4πε0mv2

)2 cos ϑ
2

sin3 ϑ
2

·Δϑ+ o(Δϑ), Δϑ → 0.

In addition, note that sinϑ = 2 sin ϑ
2 cos ϑ

2 . Physicists frequently write
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Δσ =
(

QQ0

8πε0mv2

)2
ΔΩ

sin4 ϑ
2

+ o(ΔΩ), ΔΩ → 0

where ΔΩ := 2π sinϑΔϑ. Intuitively, ΔΩ is the surface area of a region on
the unit sphere whose points possess a geographic latitude that lies in the
interval [ϑ, ϑ+Δϑ].

The structure of atoms. Around 1910, Ernest Rutherford (1871–1937)
performed scattering experiments in order to discover the structure of atoms.
He directed a beam of α-particles (generated by radioactive decay) to a thin
metal foil (e.g., gold), and he measured the distribution of the angle ϑ of the
scattered particles. This way, Rutherford discovered experimentally that an
atom consists of a nucleus and electrons. For his contributions to radioactive
chemistry, Rutherford was awarded the Nobel prize in chemistry in 1908.
In 1932, Chadwick discovered the neutron which has no electric charge. This
discovery clarified the structure of the nucleus of atoms. The final result reads
as follows.

• The nucleus of an atom consists of Z protons p and N neutrons n.
• The nucleus is surrounded by Z electrons e−.

Each electron e− has the negative electric charge −e, whereas each proton p
has the positive charge e. Here,

e = 1.602 · 10−19As.

The number Z of protons is called the atomic number. For example, the
hydrogen atom (Z = 1) consists of one proton and one electron. The helium
atom (Z = 2) consists of two protons, two neutrons, and two electrons. As
Rutherford discovered, α-particles are nuclei of the helium atom. For the rest
masses me, mp, mn of electron, proton, and neutron, respectively, we get

me = 9.108 · 10−31kg, mp = 1 836 me, mn = 1.009 mp .

Rutherford’s scattering experiments also proved that the radius of an atom
is about

r = 10−10m.

Nowadays we know the following:

• radius of the proton: 10−15m,
• radius of molecules: 10−9m − 10−10m,
• radius of the nucleus: 10−14m − 10−15m,
• radius of quarks and electrons: less than 10−18m.

2.3.7 The Cross Section for Compton Scattering

In order to investigate the properties of elementary particles, physicists per-
form scattering experiments. The most important quantity of a scattering
process is the cross section. There exist two important tasks for quantum
field theory:
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Fig. 2.9. Compton effect

(i) the computation of cross sections σ (scattering states), and
(ii) the computation of the rest energies of elementary particles (bound

states).

It turns out that the task (i) is much easier to handle than (ii), since we can
use the methods of perturbation theory pictured by Feynman diagrams. The
ultimate, extremely ambitious goal is the creation of a theory which predicts
the existence and properties (e.g., the masses and the magnetic moments) of
all fundamental particles and forces in nature.

Compton scattering. In each scattering process, physicists measure the
crucial cross section σ. In 1929, for the cross section of the Compton scattering
of light at crystals, Klein and Nishina computed the formula

σ =
∫

S2
f(ϑ)dΩ

with

f(ϑ) :=
(
β2(1 + cos2 ϑ) + β(1 − β)2

)
· λ

2
eα

2

8π2
(2.39)

where β := λin/λout. Here, we use the following notation:

• me mass of the electron, −e charge of the electron,
• λin (resp. λout) wave length of the incoming (resp. outgoing) photon,
• h Planck’s quantum of action,
• Compton wave length of the electron

λe :=
h

mec
= 10−12m,

• dimensionless fine structure constant in quantum electrodynamics

α :=
e2

4πε0c�
=

1
137.04

where ε0 is the electric field constant of a vacuum.
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Fig. 2.10. Cross section for the Compton scattering of light

We integrate over the unit sphere S
2 with the scattering angle ϑ and the

surface element
dΩ = cosϑ dϑdϕ

where the geographic latitude ϑ and the geographic longitude ϕ vary in the
interval [−π/2, π/2] and [−π, π], respectively. The differential

dσ := f(ϑ)dΩ

and the integral σ =
∫

S2 dσ are called the differential cross section and the
total cross section, respectively.

The famous Klein–Nishina formula (2.39) shows that Compton scatter-
ing is a second-order effect with respect to the fine structure constant α.
Explicitly,

σ =
λ2

eα
2

2π

(4
3
− 8γ

3
+

104γ2

15
+ . . .

)
, γ :=

λe

λin
.

If the energy of the incoming photons is sufficiently low, γ � 1, then we get
the classical formula

σ =
2λ2

eα
2

3π
= 0.665 · 10−28m2

which was obtained by Joseph John Thomson at the end of the 19th century.23

Observe that this classical approximation formula does not depend on the
scattering angle ϑ. Physicists measure cross sections in barns. By definition,
1 barn = 10−28m2.

Physical interpretation of the cross section. Let us now discuss the
physical meaning of the cross section σ. Consider the situation pictured in
Figure 2.10. We choose a sufficiently large sphere S

2
R of radius R about the

scattering center. Let n and ΔS be the outer normal unit vector and the
surface element of the sphere S

2
R, respectively. The incoming photon stream

can be described by the energy current density vector
23 This can be found in the standard textbook on electrodynamics by Jackson

(1975).
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jin = �invin

where �in and vin denote the energy density and the velocity vector, respec-
tively. In a typical experiment, the incoming photon stream is homogeneous.
Therefore, we assume that the vector jin is constant. By the scattering pro-
cess, we obtain the outgoing energy current density vector field

jout = �outvout

which depends on the position vector x, but not on time. Now to the point.
The decisive quantity

E = (t1 − t0)
∫

S2
R

joutn dS (2.40)

is equal to the amount of outgoing energy that flows through the sphere S
2
R

during the time interval [t0, t1]. This amount of energy can be measured by
experiment. Naturally enough, E is proportional to ||jin|| (incoming energy
flow). The coefficient of proportionality σ defined by

E = σ(t1 − t0) ||jin|| (2.41)

has the physical dimension of area (m2). Therefore, σ is called the total cross
section of the scattering process. We want to show that there exists a function
f such that

σ =
∫

S2
R

f(ϕ, ϑ)dΩ. (2.42)

In fact, from (2.40) and (2.41) we get

σ =
∫

S2
R

joutn
||jin||

dS.

Naturally enough, the outgoing energy E does not depend on the choice of the
radius R if the radius is sufficiently large. Because of the equality dS = R2dΩ,
we assume that the product R2jout does not depend on R, and hence

(joutn)(P )
||jin||

= f(ϕ, ϑ), P ∈ S
2
R

where ϕ and ϑ are the geographic longitude and the geographic latitude of
the point P , respectively. This implies the desired formula (2.42).

Concerning Rutherford’s experiment on the scattering of α-particles at
protons (Fig. 2.8 on page 116), observe that it does not make any sense
to consider the total cross section in this case, since the integral

∫
S2

R
fdΩ
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is divergent. Therefore, we need a localized version Δσ of the cross section
called the differential cross section. The idea is to consider a regular subset
S of the sphere S

2
R that surrounds the point P ∈ S

2
R. We now measure the

scattered energy flow that passes through the part S of the sphere S
2
R. The

quantity

E(S) := (t1 − t0)
∫

S
joutn dS

is equal to the amount of outgoing energy that flows through the part S of
the sphere S

2
R during the time interval [t0, t1]. Similarly as above, we define

the cross section σ(S) with respect to S by the relation

E(S) = σ(S)(t1 − t0) ||jin||.

Hence σ(S) =
∫
S f(ϕ, ϑ)dΩ. Contracting the set S to the point P ∈ S

2
R, we

define
dσ

dΩ
(P ) := lim

S→P

σ(S)
area (S)

= f(ϕ, ϑ).

Mnemonically, it is convenient to write

σ(S) =
∫

S
dσ where dσ := f(ϕ, ϑ)dΩ.

Compton effect and quantum electrodynamics. The Klein–Nishina
formula (2.39) for the cross section of the Compton effect can be obtained
from quantum electrodynamics. This highlight of quantum electrodynamics
will be thoroughly studied in Volume II. Quantum electrodynamics represents
a quantum field theory which describes the interactions between electrons,
positrons, and photons. This is a perturbation theory with respect to the fine
structure constant

α =
1

137.04
.

The smallness of the fine structure constant is responsible for the great success
of perturbation theory in quantum electrodynamics. We will show in Volume
II that the Klein–Nishina formula follows from using second-order Feynman
diagrams along with time-consuming computations based on Dirac matrices.
Observe that the Klein–Nishina formula does not depend on the polarization
of the photons. In fact, this formula averages over the polarizations of the
incoming photons and sums over the polarizations of the outgoing photons.

General cross sections in elementary particle physics. The def-
inition of total cross section σ and differential cross section dσ introduced
in (2.41ff) above applies to all types of scattering processes in physics. In
particle accelerators, one defines cross sections with respect to the particle
number. In this case, the incoming particle stream is described by the particle
number current density vector,
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jin = �invin

where �in and vin denote the particle density and the velocity vector, re-
spectively. In definition (2.41) we then have to replace the energy E by the
particle number N.

2.3.8 Bohr’s Model of the Hydrogen Atom

In 1922 Sommerfeld asked me whether I would be willing to follow him
to a meeting in Göttingen at which Bohr would present his theory. These
days in Göttingen we now always refer to the “Bohr festival”. There for
the first time I learned how a man like Bohr worked on problems of atomic
physics.24

Werner Heisenberg, 1968

Many properties of atoms, molecules, stars, and galaxies can be detected by
measuring the energy spectrum of the electromagnetic radiation emitted from
such objects. In 1884, the physicist Balmer tried to find a mathematical rela-
tion between the measured wave lengths λ in the spectrum of the hydrogen
atom. By trial and guesswork, he found out that

λ = const · m2

m2 − 4
for m = 3, 4, 5.

This is a discrete sequence for the wave length. A few years later, Rydberg
and Ritz postulated that all the possible values of the wave length observed
in the spectrum of the hydrogen atom are given by the following empirical
formula

λnm =
2πc
ωnm

, n < m, n,m = 1, 2, . . .

where

ωnm := R

(
1
n2

− 1
m2

)

. (2.43)

The experiment yields the value R = 2.07 ·1016s−1; this is called the Rydberg
frequency. In 1911, based on scattering experiments, Rutherford formulated
the hypothesis that each atom consists of electrons which surround the nu-
cleus like the planets surround the sun. In 1913 Bohr postulated the following
for the hydrogen atom.

(i) The hydrogen atom consists of one electron which travels around the
nucleus (one proton) in a circular orbit (Fig. 2.11(a)).

24 Heisenberg’s lecture about the history of quantum mechanics can be found in
the collection of lectures edited by A. Salam (1968).
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(a) bound state

p

e−

(b) scattering state

p

e−
�

�

Fig. 2.11. Hydrogen atom

(ii) The angular momentum a of the electron is quantized, that is,

a = n�, n = 1, 2, . . .

where h is Planck’s quantum of action and � := h/2π.
(iii) If the electron jumps from an orbit with energy En to an orbit with

lower energy Em, the energy difference

ΔE = En −Em

is emitted by electromagnetic radiation. According to Einstein’s light
quanta hypothesis, the angular frequency ω of the emitted light quantum
(photon) is given by

ΔE = �ω.

This implies the fundamental energy-frequency relation

ωnm =
En − Em

�
. (2.44)

From this we get the cocycle relation

ωnm + ωmk + ωkn = 0 for all n,m, k = 0, 1, 2, . . . .

From the mathematical point of view, the cocycle relation shows that the
emitted frequencies of the hydrogen atom have a cohomological structure.
This observation was the crucial starting point of Heisenberg’s ingenious ap-
proach to quantum mechanics in 1924. In fact, Heisenberg spoke about the
Ritz combination principle, but not on cohomology which was unknown at
that time. As a crucial topological tool, cohomology only emerged in the
1930s.

In order to discuss Bohr’s model, let En, rn, and vn denote energy, ra-
dius, and velocity of the nth orbit of the electron. We will show below that
postulates (i) through (iii) imply

En = − e2

8πε0r1
· 1
n2
, n = 1, 2, . . . (2.45)
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as well as
rn =

λe

2πα
· n2 and vn =

αc

n
, n = 1, 2, . . .

Recall the definition of both the fine structure constant

α :=
e2

4πε0�c
=

1
137.04

and the Compton wave length of the electron, λe := h
mec . Here, we use the

following notations: e charge of the proton, −e charge of the electron, mp

mass of the proton, me mass of the electron, ε0 electric field constant of
vacuum.

From (2.45) along with (iii) we obtain immediately the Rydberg–Ritz
formula (2.43). For the smallest orbit we get the energy

E1 = −13.6eV.

The electron is bound to the nucleus with this energy. Note that this energy
is needed in order to ionize the hydrogen atom, that is, to eject the electron.
Moreover, this gives the order of magnitude for the energies which occur in
chemical reactions per atom. The radius of the smallest orbit

r1 = 5 · 10−11m

is called the Bohr radius of the hydrogen atom. Recall that 1 nm = 10−9m
(nanometer) and 1 fm = 10−15m (femtometer). The radius of the proton

rproton = 1.4 · 10−15m

is much less than the Bohr radius. If we represent the proton by a pea of
radius 5mm, then the electron would surround the pea at a distance of 30m.
In addition, the mass quotient

mp

me
= 1836

shows that the proton is much heavier than the electron. The speed

v1 = αc =
c

137.04

of the electron on the smallest orbit is much less than the velocity of light
c. Therefore, relativistic effects do not play any role in Bohr’s atomic model.
Equivalently, formula (2.45) can be written as

En = −mec
2α2

2n2
, n = 1, 2, . . .

Here, mec
2 is the rest energy of the electron.
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Let us now prove the claim (2.45). The motion of the electron around the
proton on a circle of radius r is described by the equation

x = r(cosωt i + sinωt j)

where i, j are fixed right-handed orthonormal vectors. Hence

ẋ(t) = ωr(− sinωt i + cosωt j)

and
ẍ(t) = −ω2r(cosωt i + sinωt j).

As usual, the dot denotes the time derivative. For the angular momentum of
the electron, we obtain

L = me(x × ẋ) = meωr
2k

where k := i × j. There act two attractive forces between the proton and the
electron, namely, Newton’s gravitational force

FN = −Gmpme

r2
· x
r

and the electrostatic Coulomb force

FC = − e2

4πε0r2
· x
r
.

Here r := ||x||. Since ||FN ||/||FC || = 5 · 10−42, the gravitational force can
be neglected. Thus, the motion of the electron is governed by the Newton
equation

meẍ = FC .

Hence

meω
2r =

e2

4πε0r2
. (2.46)

The energy is equal to

E =
me

2
ẋ2 + U =

meω
2r2

2
− e2

4πε0r
= − e2

8πε0r
. (2.47)

Bohr postulated that the angular momentum only attains the following quan-
tized values

||L|| = n�, n = 1, 2, . . .

This gives meωr
2 = n� for n = 1, 2, . . . From (2.46) we obtain the orbit radii

rn = r1n
2, n = 1, 2, . . .

with r1 := 4πε0�
2/mee

2 = λe/2πα. The energy is given by
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E = − e2

8πε0rn
= − e2

8πε0r1n2
,

and the orbital velocity is equal to vn = ||ẋ|| = ωrn = αc/n.
The Bohr model described the observed spectrum of the hydrogen atom

in a perfect manner. However, physicists did not understand this model for
the following reason. In terms of classical electrodynamics, the rotating elec-
tron represents an accelerated electric charge. Such a charge steadily loses
energy by emitting electromagnetic radiation. Therefore, the electron cannot
move on stable orbits. In addition, classical physics cannot explain why the
electron jumps spontaneously from one orbit to another one. This fundamen-
tal problem was solved by Heisenberg in 1925 and Schrödinger in 1926, by
introducing quantum mechanics, namely, Heisenberg’s matrix mechanics and
Schrödinger’s wave mechanics, respectively. In terms of Schrödinger’s wave
mechanics, the wave function of the electron of the hydrogen atom performs
eigenoscillations which correspond to Bohr’s semiclassical circular orbits. In
1927 Heisenberg discovered the crucial quantum-mechanical uncertainty re-
lation which tells us that

The electron is a quantum particle for which the classical notions of
position and velocity do not make sense anymore.

2.3.9 Einstein’s Radiation Law and Laser Beams

In 1917 Einstein wrote a fundamental paper on the quantum theory of radia-
tion.25 Let us explain the basic ideas. Consider N atoms where each of them
can be in a state of energy E0, E1, E2, . . . There exist the following three
fundamental processes.

(i) Spontaneous emission: The atom passes spontaneously from the energy
En to the lower energy Em by emitting a photon of angular frequency

ω =
En −Em

�
. (2.48)

Here, we assume that En > Em.
(ii) Stimulated absorption: Suppose that the atom is embedded into an ex-

ternal electromagnetic field of energy density η(T ). This stimulates the
atom to jump from the energy Em to the higher energy En by absorbing
a photon of angular frequency (2.48).

(iii) Stimulated emission: The energy density η(T ) also stimulates jumps of
the atom from the energy En to the lower energy Em. In this case the
atom emits a photon of angular frequency (2.48).

25 A. Einstein, On the quantum theory of radiation (in German), Phys. Z. 18
(1917), 121–135. The English translation of this paper can be found in van der
Waerden (1968), pp. 63–68.
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We assume that the energy density η(T ) refers to the absolute temperature
T and to electromagnetic waves whose angular frequencies lie in the small
interval [ω, ω + Δω]. In order to describe the situation quantitatively, con-
sider a large system of N atoms at absolute temperature T . According to
Boltzmann statistics, Einstein assumed that at each fixed time t, the number
of atoms of energy En is equal to

Nn(t) = Ne−En/kT .

At the later time t+Δt, we get

Nn(t+Δt) = Nn(t) −Nn(t)(ωnmΔω)Δt−
−Nn(t)(ωstim

nm η(T ))Δt+Nm(t)(Astim
nm η(T ))Δt,

up to higher-order terms of the form o(Δt) as Δt → 0. The coefficient Enm

describes the spontaneous emission of photons whereas Estim
nm and Astim

nm de-
scribe the stimulated emission and absorption of photons, respectively. In
thermodynamic equilibrium, Einstein assumed that the energy jumps of the
atom from En to Em and from Em to En do not change the number of atoms
at the energy level En. Hence

Nn(t+Δt) = Nn(t).

This implies the Einstein relation

Nn(t)
(
EnmΔω + η(T ) Estim

nm

)
= Nm(t)η(T )Astim

nm .

Hence

e−(En−Em)/kT

(
EnmΔω

η(T )
+ Estim

nm

)

= Astim
nm .

Introducing the angular frequency ω of the emitted photon, En −Em = �ω,
we get

e−�ω/kT

(
EnmΔω

η(T )
+ Estim

nm

)

= Astim
nm . (2.49)

Assuming that η(T ) → +∞ as T → +∞, we obtain the Einstein relation

Estim
nm = Astim

mn .

This tells us that the coefficients of stimulated emission and stimulated ab-
sorption coincide. Moreover, for the energy density η(T ) of the external elec-
tromagnetic radiation, it follows from (2.49) that

η(T ) =
EnmΔω

Estim
nm

(
e�ω/kT − 1

) . (2.50)
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Let us compare this with the energy density of photons following from
Planck’s radiation law (2.24) on page 105,

η(T ) = P(ω, T )Δω =
�ω3Δω

π2c3
(
e�ω/kT − 1

) . (2.51)

From (2.50) and (2.51) we get

Enm =
�ω3

π2c3
· Estim

nm . (2.52)

This equation shows the relation between spontaneous and stimulated emis-
sion of photons of angular frequency ω.

The term “laser” stands for “light amplification by stimulated emission of
radiation.” The first lasers were realized experimentally around 1960. In 1964
Basov, Prochorov, and Townes were awarded the Nobel prize in physics for
“fundamental work in the field of quantum electronics, which has led to the
construction of oscillators and amplifiers based on the maser-laser principle.”
Theoretically, the laser is based on Einstein’s 1917 paper discussed above.

In 1927 Dirac wrote a fundamental paper on emission and absorption
of radiation where he showed that Einstein’s radiation law follows from the
new quantum theory due to Heisenberg and Schrödinger from 1925 and 1926,
respectively. Dirac’s paper is part of a collection edited by Schwinger (1958)
which contains the most important papers in quantum electrodynamics. See
also the classic textbooks by Dirac (1930) and Heitler (1936). The modern
quantum radiation theory can be found in Pike and Sarkar (1995) and Mandel
and Wolf (1995) (laser theory).

2.3.10 Quantum Computers

In order to speed up computers, physicists are thinking about the realization
of quantum computers based on the laws of quantum physics. The basic idea
is to use the fact that there exist superpositions of quantum states ϕ and ψ
given by

αϕ+ βψ

where α and β are complex numbers. This leads to ‘quantum bits’ called

qbits

which transport an essentially higher amount of information than can be
done by using traditional ‘bits’. We will study this in Volume IV on quantum
mathematics. Many strange properties of quantum information are based on
the existence of composed entangled states

ϕ⊗ ψ ± ψ ⊗ ϕ

where the single states ϕ and ψ lose their individuality. As an introduction
to quantum information, we recommend Boumeester, Ekert, and Zeilinger
(2000), Nielsen and Chuang (2001), and Heiss (2002).
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Table 2.1. Fundamental forces in nature

Interactions

force strong electroweak gravitation

electromagnetic weak

acting on quarks
and gluons

electric charges leptons, quarks,
and
W±, Z0 bosons

masses,
photons,
and gravitons

relative
strength

1 10−2 10−5 10−38

range 10−15m ∞ 10−18m ∞

2.4 The Standard Model in Particle Physics

I do not know what I may appear to the world, but to myself I seem to
have been only like a boy playing on the seashore, and diverting myself
now and then finding a smoother pebble or a prettier shell than ordinary,
whilst the great ocean of truth lay all undiscovered before me.

Isaac Newton (1643–1727)

It is our goal to study the basic ideas of the Standard Model in terms of
physics.

2.4.1 The Four Fundamental Forces in Nature

In the 20th century, physicists used radioactive decay, cosmic rays, and more
and more powerful particle accelerators in order to get a fairly complete
picture of the structure of matter. Nowadays physicists assume that there
exist the following four fundamental forces in nature.

(i) Strong force (e.g., the proton as a bound state of three quarks).
(ii) Electromagnetic force (e.g., the chemical binding of molecules).
(iii) Weak force (e.g., the β-decay of the neutron).
(iv) Gravitational force (e.g., the motion of planets around the sun, the ex-

pansion of the universe, and black holes).

Some important properties of these forces are summarized in Table 2.1. As
we will see below, the electromagnetic force and the weak force are part of a
unified force called the electroweak force.

Strong force. The nuclear force is responsible for the stability of the
proton and for the relative stability of the neutron and the atomic nucleus,
which consists of protons and neutrons (nucleons). The range of the strong
force is equal to the diameter of the proton, namely, 1 fermi = 10−15m.
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Table 2.2. Typical experimental data

interaction

typical cross
section

in millibarn
(10−31m2)

typical mean
energy

of resonances
in MeV

typical mean
lifetime

of resonances
in seconds

strong 1 102 10−23

electromagnetic 10−3 10−3 10−18

weak 10−9 10−14 10−7

The proton consists of two u quarks and one d quark, whereas the neutron
consists of two d quarks and one u quark. The proton p is the nucleus of the
hydrogen atom. The neutron was discovered experimentally by Chadwick in
1932 (Nobel prize in physics in 1935). In 1932 Ivanenko predicted that the
nucleus consists of protons and neutrons.

Electromagnetic force. The electromagnetic force is responsible for the
stability of atoms and molecules by acting on the protons and electrons of
the atoms. All physical and chemical properties of solid states, liquids, and
gases are based on the electromagnetic force. The range of the electromag-
netic force is infinite. The electron was discovered by Thomson in 1895 who
investigated cathode rays (Nobel prize in physics in 1906). If electrons hit
a metal, electromagnetic rays of high energy are generated. These so-called
X-rays were discovered by Röntgen in 1895 (first Nobel prize in physics in
1901). A semiclassical model of the atom was formulated by Bohr in 1913
(Nobel prize in physics in 1922). Bohr was strongly influenced by Ruther-
ford’s scattering experiments performed in the years 1909–1911. The final
model of the atom was based on quantum mechanics invented by Heisenberg
in 1925 (Nobel prize in physics in 1932) and Schrödinger in 1926 (Nobel prize
in physics together with Dirac in 1933). The shell structure of the atom can
only be understood by using the electron spin and Pauli’s exclusion principle
for fermions (e.g., electrons) from 1926. Pauli was awarded the Nobel prize
in physics in 1945.

Weak force. This force is responsible for the radioactive decay of atoms
discovered by Bequerel in 1892 (Nobel prize in physics together with Marie
and Pierre Curie in 1903). The basic reaction is the β-decay of the neutron,

n → p+ e− + νe.

That is, the neutron n decays into one proton p, one electron e−, and one
anti-electron neutrino νe. The mean lifetime of the neutron is 15 minutes.
Experiments show that the mean lifetime of the proton is larger than 1032

years. This is an incredibly huge number.26 The existence of the neutrino was
26 Note that the age of our universe is 13.7·109 years.
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predicted by Pauli in 1933 in order to guarantee momentum conservation in
the neutron decay. Radioactive decay and the chemical properties of radioac-
tive substances were studied around 1900 by Marie Curie (Nobel prizes in
physics and chemistry in 1903 and 1911, respectively), Pierre Curie (Nobel
prize in physics in 1903), and Rutherford (Nobel prize in physics in 1908).
These three scientists found out that radioactive decay generates three types
of rays:

• α-rays (helium nuclei 4
2He),

• β-rays (fast electrons),
• γ-rays (high-energy photons).

Visible light has a wave length between 4 · 10−7m and 8 · 10−7m. In contrast
to this, X-rays and γ-rays have a short wave length of 10−10m and 10−13m,
respectively. The energy of X-rays and γ-rays is much stronger than the
energy of light rays. Note that the energy of photons increases if the wave
length decreases. Cosmic rays were discovered by Hess in 1911 (Nobel prize
in physics in 1936). In 1928 Gamow explained the production of α-rays.
If α-particles would be classical particles, they could not leave the nucleus
because of the existence of a strong potential barrier. Therefore, it is crucial
that α-particles are quantum particles. They possess stochastic properties. In
particular, they can leave the nucleus by “tunnelling” the potential barrier. In
1934 Fermi used slow neutrons in order to produce new radioactive elements
containing a large number of nucleons. Fermi was awarded the Nobel prize
in physics in 1938.

The neutrino was experimentally discovered outside a nuclear reactor in
1956. At the Savannah River reactor (Georgia, U.S.A.), the number of neu-
trinos emerging per second was extremely high, and physicists waited with
their detector until they eventually detected some. Other neutrino sources
are our sun and outbursts of supernovae. Note that the energy production
of the sun is based on a series of nuclear reactions which converts hydrogen
into helium. These reactions start by the process

p+ p → 2
1D + e+ + νe.

Here, the fusion of two protons yields one deuteron 2
1D plus one positron e+

and one electron neutrino νe. This process is caused by the weak force.27 For
his theory of the energy production in stars, Bethe was awarded the Nobel
prize in physics in 1967. Neutrinos coming from the sun were detected by
Davies in 1970. In 1987, a supernova explosion took place about 160 000
27 The nucleus of an atom consists of protons and neutrons called nucleons. The

symbol N
Z A stands for the nucleus of an atom that consists of N nucleons and Z

protons. Hence the number of neutrons is equal to N − Z.
The symbol e− (resp. e+) tells us that the electron (resp. positron) has the

negative (resp. positive) elementary electric charge −e (resp. e). Similarly, Z0

tells us that the Z-boson has no electric charge.
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light years away in the Magellanic Cloud next to our Milky Way galaxy. This
star had 8 sun masses. The released energy was enormous,

E = 1046J.

More then 99% of energy came out in invisible form – as neutrinos – based
on the reaction

e− + p → n+ νe.

Two experimental groups in the United States and Japan reported detect-
ing neutrinos at the time of the supernova. The experimental detection of
neutrinos is a highly nontrivial task, since their interaction with matter is
extremely weak.

Phase transitions of the fundamental forces in the early uni-
verse. Many physicists assume that there was only one fundamental force
at the time of the Big Bang. The cooling of the universe was responsible for
phase transitions of this fundamental force which led to a splitting into the
four fundamental forces observed in nature today.

2.4.2 The Fundamental Particles in Nature

Basic ideas of the Standard Model. The Standard Model in elementary
particle physics concerns the strong, weak, and electromagnetic force. The
main idea of the Standard Model is the following.

(a) Fundamental particles. There exist precisely 12 fundamental particles in
nature, namely, the 6 quarks u, d, c, s, t, b and the 6 leptons

e− (electron), μ− (muon), τ− (tauon), νe, νμ, ντ (3 neutrinos).

These 12 fundamental particles are fermions (i.e., they have half-integer
spin, 1

2�.) For the six quarks u, d, c, s, t, b, physicists invented fancy
names. They call them up, down, charm, strange, top, and bottom
quarks, respectively. The 12 fundamental particles are divided into three
generations:
First generation: u, d, e−, νe.
Second generation: c, s, μ−, νμ.
Third generation: t, b, τ−, ντ .

(b) Messenger particles. The 12 fundamental particles experience the three
fundamental forces (strong, electromagnetic, and weak) by the exchange
of 12 messenger particles, namely,

γ (the photon), W+,W−, Z0 (3 weak gauge bosons), and 8 gluons.

These 12 messenger particles are bosons (integer spin, 0, �). The 8 gluons
provide the “glue” for keeping the quarks together.
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Table 2.3. Fundamental particles in the Standard Model

leptons quarks

particle mass
MeV/c2

electric
charge

spin particle mass
MeV/c2

electric
charge

spin

electron-
neutrino

νe

<15·10−6 0 1
2
� up u 2− 8 2

3
e 1

2
�

electron
e−

0.511 −e 1
2
� down d 5− 15 − 1

3
e 1

2
�

myon-
neutrino

νμ

< 0.17 0 1
2
� charm c 1000− 1600 2

3
e 1

2
�

myon
μ− 105.7 −e 1

2
� strange s 100− 300 − 1

3
e 1

2
�

tauon-
neutrino

ντ

< 24 0 1
2
� top t 180 000

±12 000
2
3
e 1

2
�

tauon τ− 1 777 −e 1
2
� bottom b 4100− 4500 − 1

3
e 1

2
�

(c) Antiparticles. To each fundamental particle, there exists an antiparticle
of same mass and opposite electric charge. The 12 antiparticles are de-
noted in the following way.
First generation: u, d (antiquarks), e+ (positron), νe (anti-electron neu-
trino).
Second generation: c, s (antiquarks), μ+ (antimuon), νμ (anti-muon neu-
trino).
Third generation: t, b (antiquarks), τ+ (antitauon), ντ (anti-tau neu-
trino).

It is a typical property of our universe that matter highly dominates antimat-
ter. In 1928 Dirac used his relativistic equation for the electron in order to
predict the existence of the antiparticle e+ to the electron e−. This particle
(called positron) was experimentally discovered in a Wilson cloud chamber in
1932 by Anderson (Nobel prize in physics in 1936). The antiproton p was dis-
covered by Chamberlain and Segré in 1955 (Nobel prize in physics in 1959),
and the antineutron was found by Cook in 1956.

Let us now discuss some more details of the Standard Model in particle
physics. A thorough investigation of the physics of the Standard Model can
be found in Volume V.

Strong force and the eight gluons. As a typical example, the proton
p consists of two u quarks and one d quark. Symbolically, p = uud. The rest
mass m0 of a proton is equal to
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Table 2.4. Messenger particles in the Standard Model

electroweak force

particle mass GeV/c2 electric charge spin

photon 0 0 �

W− 80.3 −e �

W+ 80.3 e �

Z0 91.2 0 �

strong force

particle mass electric charge spin

8 gluons 0 0 �

m0 = 1.67 · 10−27 kg.

This corresponds to the rest energy E = m0c
2 = 1.5 · 10−18J. Physicists like

to measure energies in eV (electron volt). In this energy scale, the rest energy
of the proton is equal to

E = 0.938 · 109 eV.

As a rule of thumb, the rest energy of a proton is equal to 1 GeV (giga
electron volt), and this equals the rest energy of 1836 electrons. Physi-
cists use the prefixes giga, mega, nano, femto for the corresponding factors
109, 106, 10−9, 10−15. For more information, see Table A.1 on page 951.

In 2009, the particle accelerator at CERN (Geneva, Switzerland)28 will
reach particle energies which equal the rest energy of 7 000 protons (7TeV).
The radius of the proton is equal to 10−15m = 1 fermi. Experiments show
that electrons and quarks have a radius which is less than 0.001 fermi. In
fact, nowadays the electron and the six quarks are considered to be point-like
particles. Observe that most space of the proton is filled with massless gluons.
Each quark has three charges called red, green, and blue by physicists. The
gluons see the color charge. The action of gluons onto the color charge causes
the strong force. There are 8 gluons. As we will see later on, this depends on
the fact that the dimension of the Lie algebra su(3) is equal to 8. Since the
strong force is based on the color charge, the theory of the strong force is
called quantum chromodynamics. An atom has a radius of 10−10m = 100 000
fermi. Therefore, the strong force does not play any role for the interaction
between the electrons and the nucleus of an atom.
28 CERN stands for Conseil Européen pour la Recherche Nucléaire (European Or-

ganization for Nuclear Research at Geneva); this was founded in 1953.
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The total rest energy of the three quarks of the proton is equal to 30MeV.
Consider the rough form of Heisenberg’s uncertainty relation

Δx ·Δp ∼ �.

The quark moves in a proton of radius Δx = 10−15m. Therefore, the quark
has the momentum Δp = �/Δx, and the total energy

E =
√
m2

0c
4 + c2(Δp)2 = 200 MeV.

Hence the total energy of the three quarks of the proton is equal to 0.6 GeV.
The remaining energy 0.4 GeV of the proton corresponds to the motion of
gluons. This means that the proton has an extremely large binding energy of
quarks which cannot be computed with the usual methods of perturbation
theory. Physicists use highly specialized supercomputers in order to compute
the binding energy of the proton, the neutron, and mesons. Mathematically,
the computations are based on grid models in the framework of gauge lattice
theory. The results are in good agreement with experiments.

Baryons and mesons as composite particles. An elementary parti-
cle is called a hadron iff it experiences the strong force. Quarks are elemen-
tary hadrons. Concerning composite hadrons, one has to distinguish between
baryons and mesons.

• Each baryon consists of three quarks (e.g., the proton, the neutron, the
lambda, and the sigma). Baryons have half-integer spin.

• Each meson consists of quark-antiquark pairs (e.g., the three mesons
π+, π0, π− or the kaon K0). Mesons have integer spin.

The existence of mesons, which have about 250 electron masses (or 1/7 of
the proton mass), was predicted by Yukawa in 1935 (Nobel prize in physics
in 1949). Experimentally, mesons were discovered in cosmic rays by Powell
in 1947 (Nobel prize in physics in 1950). Baryons and mesons are white,
that is, the color charges red, green, and blue neutralize each other so that
we cannot see the color charges. Only the gluons can see the color charges.
The existence of gluons was experimentally verified at the DESY accelerator
PETRA (Hamburg, Germany) in 1979.

Electroweak force, the photon, and the three weak gauge bosons.
Maxwell’s classical theory of electromagnetism from 1864 unified the electric
force with the magnetic force into the electromagnetic force. In the Standard
Model of particle physics, the electromagnetic force is unified with the weak
force. This yields the so-called electroweak force. The corresponding messen-
ger particles are the photon γ and the three weak gauge bosons W−,W+,
and Z0. As we will show later on, the appearance of 4 bosons depends on
the fact that the dimension of the Lie algebra u(1)×su(2) is equal to 4. The
process

d → u+ e− + νe (2.53)
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e− νe

d u

W−

 �

��

Fig. 2.12. Beta decay of the d quark

describes the decay of a d quark into a u quark, an electron, and an anti-
electron neutrino. This decay is caused by the exchange of a W−-boson (Fig.
2.12). Since we have n = ddu and p = uud for the neutron and proton,
respectively, the process (2.53) is responsible for the crucial beta decay of the
neutron n → p+ e− + νe.

Lifetime of elementary particles. As a rule of thumb, physicists use
the formula

Δt =
�

m0c2

for the lifetime, Δt, of an elementary particle. This is a consequence of the
energy-time uncertainty mentioned on page 144. Here, h, c, and m0 denote
Planck’s constant, the velocity of light in a vacuum, and the rest mass of the
particle, respectively. Recall that � := h/2π. In particular, massless particles
like the photon, the gluon, and the graviton have an infinite lifetime. If a
messenger particle has the lifetime Δt, then it can move the distance r during
its lifetime. This tells us that the range of the corresponding force is equal to

r = c ·Δt =
�

m0c
.

This is equal to the so-called reduced Compton wave length λC of the particle.
Since the weak gauge bosons W± and Z0 have a rest mass of about 100
GeV/c2, their lifetime is 10−23s, and the range of the weak force is less than
0.01 fermi = 10−17m.

The quark confinement. Note that there exists a fundamental differ-
ence between the electromagnetic force and the strong force (Fig. 2.13).

• The electromagnetic force vanishes for large distances and it goes to infinity
if the distance goes to zero.

• In contrast to this, the strong force vanishes if the distance between the
quarks goes to zero and it becomes infinite if the distance between the
quarks goes to infinity.

This implies the crucial fact that the quarks behave like free particles for
small distances less than 0.2 fermi = 0.2 · 10−15m (asymptotic freedom). For
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Fig. 2.13. The quark confinement

distances more than one fermi between the quarks, the strong force is very
large. This property of the strong force is responsible for the fact that free
quarks have never been observed. This is the so-called quark confinement. A
complete theoretical understanding of the quark confinement is still missing.

History of the Standard Model of particle physics. The quark hy-
pothesis was formulated by Gell-Mann in 1964 (Nobel prize in physics in
1969). A similar theory was independently proposed by Zweig in 1964. In
Zweig’s approach the quarks were called aces. In the very beginning of his
theory, Gell-Mann was not sure whether the quarks are merely mathematical
constructions (based on the representation theory of the group SU(3)) or
real physical objects. The breakthrough came from physical experiments. In
1968, deeply inelastic electron-proton scattering experiments were performed
at SLAC of Stanford University (California, U.S.A.). These experiments es-
tablished that the proton possesses an internal structure which corresponds
to a decomposition of the proton into three quarks.

The first theory of the weak force (β-decay) dates back to Fermi in 1933.
This model worked successfully for fairly low energies. In particular, Fermi
was able to compute the cross sections for neutrino reactions. Since the in-
finities of Fermi’s quantum field theory could not be renormalized, physicists
were looking for an improved theory. In 1967 and 1968, Weinberg and Salam,
respectively, formulated independently a model which unified the weak and
electromagnetic force. They based their models in part on work developed
by Glashow in 1961. Therefore, this model is called the Glashow–Salam–
Weinberg model (in 1979 Glashow, Salam, and Weinberg were awarded the
Nobel prize in physics). The sophisticated renormalization of this model was
shown by ’t Hooft in 1971 (Nobel prize in physics together with Veltman
in 1999). He used mathematical tools developed for Feynman integrals by
Faddeev and Popov in the 1960s (cancellation of ghosts by factorizing with
respect to gauge orbits). In 1974, the reaction

p+ νμ → n+ π+ + νμ

was observed at Argonne National Laboratory. This process is based on the
exchange of an electrically neutral Z0 boson, predicted by the Glashow–
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Salam–Weinberg model. This model was finally established experimentally
by the discovery of the three weak gauge bosons W± and Z0 at the CERN
particle accelerator (Geneva, Switzerland) in 1983. This experiment needs
very high energies, since the W and Z bosons have a rest mass of approxi-
mately 100 proton masses. Rubbia and van der Meer were awarded the 1984
Nobel prize in physics for performing this fundamental experiment, together
with a large group of experimentalists at the CERN proton-antiproton col-
lider. The particles of the Standard Model were discovered in the following
years:

• Free leptons: electron (1895), muon (1937), electron neutrino (1956), muon
neutrino (1961), tauon (1975), tauon neutrino (1975).

• Bound quarks: u, d, s (1970), c (1974), b (1977), t (1994).
• Messenger particles: photon (1922), gluons (1979), three weak gauge bosons

(1983).
• Composite particles: proton (1914), neutron (1932), π-meson (1947), and
J/ϕ-meson (1974).

• Antiparticles: anti-electron (positron) (1932), antiproton (1955), antineu-
tron (1956).

These particles have the following lifetimes: photon and gluon (∞), u quark
and proton (> 1032 years), electron (> 1023 years), d quark and neutron
(887s), muon (10−6s), s quark (10−8s), c and b quark (10−12s), Z and W±

bosons (10−25s), t quark (10−25s). Nowadays physicists know about 80 com-
posite particles.

Gravitational waves and the graviton. If we assume that all of the
fundamental forces in nature are based on the exchange of messenger par-
ticles, then we have to postulate the existence of an additional messenger
particle called graviton which is responsible for the gravitational force. This
is not a pure speculation. Let us discuss this. In 1974 Hulse and Taylor ob-
served the pulsar PSR 1913+16 which has a distance of 20 000 light years
from earth (Hulse and Taylor were awarded the Nobel prize in physics in
1993). This pulsar consists of two neutron stars. Each of them has 1.4 sun
masses and a diameter of approximately 20 km. This means that the mass
density is very large. The pulsation period of 0.0590299952709 seconds un-
dergoes a periodic change because of the companion star. This is one of the
stablest clocks in the universe. The two stars slowly approach each other
because of a loss of gravitational energy due to gravitational radiation. On
the basis of a post-Newtonian approximation to general relativity, computa-
tions verify a number of predictions, including the formula for the energy loss
from a binary system due to gravitational radiation.29 Observe that Hulse
and Taylor established the existence of gravitational waves only in an indi-
rect manner. In the near future, physicists will perform highly sensitive laser
experiments in order to prove directly the existence of gravitational waves.
29 This can be found in Straumann (2004).
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(a) point particle
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(b) string
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Fig. 2.14. Motion of particles and strings

The idea is the following. If a gravitational wave hits a mirror, then the small
change of the mirror position can be observed by the small deflection of a
laser beam of length between 500 meters (in Germany) and some kilometers
(the LIGO (Laser Interferometer Gravitational-Wave Observatory) project
in the United States of America). In the future, it is planned to use spacelabs
where the effective distance is about five million kilometers (the LISA (Laser
Interferometer Space Antenna) project to be launched by NASA and ESA
in about 2011).30 Right now extensive computer simulations are being per-
formed in order to understand the pattern of the gravitational waves caused
by supernova explosions or the collision of two black holes (resp. two col-
lapsing binary neutron stars). Einstein’s theory of general relativity predicts
that gravitational waves propagate with the speed of light and they have
two different directions of polarization. Therefore, the hypothetical massless
graviton of spin 2 should propagate with the speed of light.

String theory and the graviton. In the 1970s a true revolution took
place in the thinking of theoretical physicists. Up to this time, it was assumed
that the fundamental constituents of matter are particles. In contrast to this,
modern string theory is based on the following fascinating hypothesis:

Elementary particles are not point-particles, but they are tiny strings
living below the Planck length l = 10−35m.

The motion of a point-particle (resp. string) corresponds to a 1-dimensional
world-line (resp. 2-dimensional world-sheet) (Fig. 2.14). There exists a very
rich mathematical theory of 2-dimensional surfaces called Riemann surfaces.
It is typical for Riemann surfaces that they possess a conformal structure.
This explains why conformal field theory is closely related to string theory.
Note the following important fact:

The larger the symmetry of a physical system is, the more infor-
mation about the structure of the system can be obtained from the
mathematics of the relevant symmetry group.

In contrast to other dimensions, the two-dimensional (local) conformal group
is huge. This is reflected by the richness of the classical theory of analytic
functions on the complex plane. For example, in conformal field theory, the
30 Details can be found in the monograph by Schutz (2003), Chap. 22.
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structure of the fundamental Green’s function is mainly determined by the
conformal symmetry. Surprisingly enough, each string theory contains a par-
ticle of spin 2 which can be identified with the graviton. String theory is the
most promising candidate for a unified theory of all four interactions in na-
ture. However, one should also note that there is no experimental evidence for
strings so far. It is expected that typical string effects can be only observed
at extremely high energies. Therefore, one is looking for indirect effects which
can be observed at much lower energy ranges as virtual particles or as a relic
of the Big Bang (cosmic strings, magnetic monopoles, dark matter, dark en-
ergy, and so on). As an introduction to string theory, we recommend Lüst
and Theissen (1989) and Szabo (2004). Moreover, we refer to the standard
textbooks by Green, Schwarz and Witten (1987), Vols. 1, 2, and Polchinski
(1998), Vols. 1, 2. The history of string theory can be found in Greene (1999).

Supersymmetry. Physicists assume that there exists a perfect symme-
try between fermions and bosons at extremely high energies. This means
that, for each fermion there exists precisely one boson called the supersym-
metric partner of the fermion. For example, the supersymmetric partners
of electrons, quarks, photons, and gravitons are called electrinos, quarkinos,
photinos, and gravitinos, respectively. Note that this so-called supersymme-
try is not observed in our real world today. Physicists assume that perfect
supersymmetry did exist only shortly after the Big Bang at extremely high
energies. However, physicists expect that the particle accelerators of the next
generation will be able to prove the existence of supersymmetric particles.
The relevant calculations have been already performed in the framework of
the so-called minimal supersymmetric Standard Model. For the renormaliza-
tion of the minimal supersymmetric Standard Model see Hollik et al. (2002).
As an introduction to supersymmetry, we recommend Martin (1997) (a super-
symmetry primer), Bailin and Love (1997), Kalka (1997), and Kane (2000).
We also refer to Wess and Bagger (1991) and Weinberg (1995), Vol. 3.

The Higgs particles. In gauge theories, the messenger particles are
massless for mathematical reasons. In sharp contrast to this, the gauge bosons
W± and Z0 possess a large mass of about 100 proton masses which corre-
sponds to a rest energy of 100GeV. In order to explain theoretically the par-
ticle masses of W± and Z0, physicists invented a mathematical trick called
the Higgs mechanism, by using gauge invariance and adding appropriate mass
terms to the Lagrangian. In terms of physics, this means that the Standard
Model has to be supplemented by a number of hypothetical particles called
Higgs particles. Computations show that the mass of the lightest Higgs par-
ticle should be between 114 and 193 proton masses. In 2008, the energy of
the new CERN collider LHC31 will be large enough in order to establish the
existence of Higgs particles on a sound experimental basis. Note that the
31 The letters LHC stand for Large Hadron Collider. A detailed discussion of the

LHC can be found in the article by B. Mansoulié, Physics at the large hadron
collider. In: Duplantier and Rivasseau (Eds.) (2003), pp. 311–331.
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Standard Model of particle physics would break down if the Higgs particle
did not exist.

Noncommutative geometry and the Standard Model in particle
physics. It was discovered by Connes and Lott in 1990 that there is a new
kind of geometry behind the Standard Model of particle physics called non-
commutative geometry.32 As an introduction to noncommutative geometry,
we recommend the monographs by Connes (1994), Gracia-Bondia, Vàrilly,
and Figueroa (2001), and Connes and Marcolli (2008) (applications to the
Standard Model in particle physics).

Originally, the Higgs particle was inserted into the Standard Model by
hand. Noncommutative geometry implies the appearance of the Higgs particle
in a natural way. This will be studied in Volume V on the physics of the
Standard Model. Noncommutative geometry is a new branch of mathematics
which studies the generalization of geometric properties in terms of operator
algebras.

Quantum gravity. Most physicists assume that below the Planck length
lP = 10−35m and the Planck time tP = 10−44s, space and time lose their
classical geometric properties, and there appear new physical effects com-
bining gravitation and quantum physics in a strange manner. This has been
coined as quantum gravity. Moreover, it is thinkable that space and time
did not exist at the very beginning of the universe. They were created later
on. In contrast to space and time, physical states always exist. They can be
described mathematically by operator algebras.

In the setting of noncommutative geometry, physical states are pri-
mary and space-time is secondary.

As an introduction to different approaches to quantum gravity, we recom-
mend the collection of articles by Giulini, Kiefer, and Lämmerzahl (2003)
(from theory to experimental search), the survey article by Ashtekhar and
Lewandowski (2004) (loop quantum gravity), and the monographs by Kiefer
(2004), Rovelli (2004), and Thiemann (2007).

Most physicists expect that the creation of the final theory of quantum
gravity will dramatically change our knowledge about space and time.

The main tasks of quantum field theory. There exist two fundamen-
tal kinds of quantum states, namely, scattering states and bound states. In
terms of classical celestial mechanics, scattering states correspond to comets
and bound states correspond to closed orbits of planets (Fig. 2.15). Physicists
use quantum field theory in order to compute

• the cross section of scattering processes,
32 A. Connes and J. Lott, Particle models and noncommutative geometry, Nucl.

Phys. B (Proc. Suppl.) 18 (1990), 29–47. See also the collection of survey articles
edited by F. Scheck, W. Wend, and H. Upmeier, Noncommutative Geometry and
the Standard Model of Elementary Particle Physics, Springer, Berlin, 2002.
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Fig. 2.15. Classification of states

• the lifetime of decaying particles,
• the energy of composite particles (bound states), and
• the magnetic moment of particles.

A final theory should also allow us to compute the electric charge and further
properties of elementary particles. Basic literature on quantum field theory
can be found on page 909.

2.5 Magic Formulas

Let us summarize the most important formulas which govern the world of
elementary particles.

(i) Planck’s quantization of the energy of the harmonic oscillator from 1900:

E = �ω

(

n+
1
2

)

, n = 0, 1, 2, . . .

Here, we use the following notation: E energy of the harmonic oscillator,
ω angular frequency, h Planck’s quantum of action. Furthermore, the
symbol � := h/2π is called the reduced quantum of action. Forn = 0,
we get the ground state energy of the harmonic oscillator, E0 = 1

2�ω,
which was obtained by Heisenberg in 1925 in the framework of his new
quantum mechanics.

(ii) Planck’s mean energy of the harmonic oscillator from 1900:

E = �ω

(
1
2

+
1

e�ω/kT − 1

)

along with the following notation: E mean energy, ω angular frequency,
T absolute temperature, k Boltzmann constant. For high temperatures,
kT � �ω, we get approximately

E = kT.
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According to Boltzmann, this is the mean energy of an oscillating degree
of freedom in a many-particle system at the sufficiently high temperature
T. For low temperatures, kT � �ω, we get

E = E0 + �ωe−�ω/kT

where E0 = 1
2�ω is the ground state energy of the harmonic oscillator.

In a hot universe of absolute temperature T , an elementary particle with
nonzero rest mass m0 can only exist if

T ≤ Tcrit

where Tcrit := m0c
2/k.

(iii) Einstein’s energy-mass relation for relativistic particles from 1905:

E2 = m2
0c

4 + c2p2.

Here, we use the following notation: E energy of the particle, m0 rest
mass, p momentum vector, c velocity of light in vacuum. For a photon,
the rest mass vanishes, m0 = 0.

(iv) Einstein’s energy-frequency relation for photons from 1905:

E = �ω.

Equivalently, E = hν. Here, we use the following notation: E energy of
the photon, ν frequency of the photon, ω = 2πν angular frequency.

(v) Bohr’s quantized energy of the hydrogen atom from 1913:

En = −mee
4

8ε20h2
· 1
n2
, n = 1, 2, . . .

Here, we use the following notation: En energy of the electron on the
nth orbit, −e electric charge of the electron, me mass of the electron, ε0
electric field constant of the vacuum. The hydrogen atom consists of one
proton and one electron.
Equivalently, the Bohr energy can be written as

En = − e2

8πε0r1
· 1
n2
, n = 1, 2, . . .

along with

r1 :=
λe

2πα
, λe :=

h

mec
, α :=

e2

4πε0�c
=

1
137.04

where r1, λe, α are called the Bohr radius of the hydrogen atom, the
Compton wave length of the electron, and the fine structure constant in
quantum electrodynamics, respectively.
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(vi) The Schwarzschild radius of a star or a black hole from 1916:

r =
GM

c2

where M denotes the mass of the star or the black hole, and G is Newton’s
gravitational constant.

(vii) De Broglie’s wave length of the matter wave corresponding to a relativis-
tic particle from 1924 (duality between particles and waves in quantum
physics):

λC =
h

m0c

along with the following notation: m0 rest mass of the particle, λC wave
length of the matter wave (Compton wave length). Note that the symbol
λC := λ/2π is called the reduced Compton wave length.

(viii) Heisenberg’s uncertainty relation for position and momentum from
1927:

ΔqΔp ≥ �

2
.

Here, Δq and Δp denote the mean error of the position coordinate q and
the momentum coordinate p of the quantum particle, respectively.

(ix) The energy-time uncertainty relation for unstable particles:

ΔEΔt ≥ �

2

along with the following notation: ΔE mean energy and Δt mean lifetime
of the particle.

(x) The golden Breit–Wigner lifetime rule from 1930: Consider the scattering
amplitude f = f(E) as an analytic function of the energy E. If this
function f has a pole at the complex energy value E = E0 + iΓ ,

f(E) =
C

E − (E0 + iΓ )
+ regular terms,

then this corresponds to an unstable particle (resonance) of mean energy
E0 and mean lifetime,

Δtmean :=
�

Γ
.

The interval [E0 − 1
2ΔE,E0 + 1

2ΔE] with ΔE := Γ contains the fluctu-
ating energy values E of the particle. For the modulus of f , we have

|f(E)|2 =
|C|2

(E −E0)2 + Γ 2
+ regular terms.
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(xi) Yukawa’s meson mass formula from 1935:

m0 =
�

rc
.

This equation relates the rest mass, m0, of the messenger particle (meson)
to the range, r, of the corresponding force (radius of the proton). The
typical length, r, is also called the reduced Compton wave length of the
messenger particle.

(xii) The Hawking temperature of a black hole from 1975:

T =
hc3

10kGM
.

Here, T and M denote the temperature and the mass of the black hole,
respectively. Moreover, G denotes Newton’s gravitational constant.

(xiii) Hawking’s finite lifetime of a black hole caused by evaporation from
1975:

t =
5M3G2

hc4
.

Here, t denotes the lifetime of the black hole.
(xiv) Friedman’s mean energy density of the early universe from 1922:

η =
3c2

32πt2
.

Here, η and t denote the energy density and the age of the universe,
respectively.

(xv) Hubble’s law for the red shift in the spectrum of distant galaxies from
1928:

Δλ

λ
= Ht.

Here, we use the following notation: H Hubble constant, λ wave length of
light, Δλ red shift of wave length λ, t time needed by light for travelling
from the observed galaxy to earth. The red shift proves experimentally
the expansion of the universe. The Hubble law is only an approximation.
In fact, recent measurements of astronomers show that the expansion of
the universe is accelerated (see Börner (2003)).

2.6 Quantum Numbers of Elementary Particles

It is a typical feature of elementary particles that in contrast to classical
particles, important properties can be described by discrete numbers called
quantum numbers. The spin of an elementary particle serves as a typical
example.
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2.6.1 The Spin

Orbital angular momentum, spin, and chirality of a planet. Let us
first consider the spin in classical physics. Each planet of our solar system
travels around the sun in an elliptic orbit with position vector x = x(t) (Fig.
2.16). The vector

p(t) := mẋ(t)

is called the momentum vector of the planet at time t, where m and the time
derivative ẋ(t) are the mass and the velocity vector of the planet, respectively.
The vector

a(t) := x(t) × p(t)

is called the orbital angular momentum vector of the planet at time t. The
length ||a|| of the vector a is called the orbital angular momentum of the
planet at time t. In the special case where the planet rotates counterclockwise
on a circle of radius r about the unit vector n with constant angular velocity
ω, the position vector x(t) of length r is orthogonal to the velocity vector
ẋ(t) of length rω. Hence

a = (ωr2m)n.

In addition, the planet rotates counterclockwise about its own axis, given
by the unit vector ns, with constant angular velocity ωs. The corresponding
intrinsic angular momentum vector

S := χωs

(∫

r(P )2�(P )dV
)
ns

is called the spin vector of the planet. Here, �(P ) is the mass density of the
planet at the point P , r(P ) is the distance between the point P and the
rotation axis, and we take the volume integral over the points of the planet.
The length of the spin vector S is called the spin of the planet. The definition
of the spin vector S depends on the number χ = ±1 called chirality.

• If χ = 1, then the planet rotates counterclockwise about the vector S. The
planet is called right-handed (Fig. 2.17(a)).

• If χ = −1, then the planet rotates clockwise about the vector S. The planet
is called left-handed (Fig. 2.17(b)).
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Fig. 2.18. Helicity ζ of a planet

For a planet, this is only a matter of convention. We agree to choose χ := 1.
Then the spin vector S points in the direction of the axis vector ns. The
situation changes completely in elementary particle physics. For an elemen-
tary particle, we can measure the spin vector S. The chirality χ = ±1 is
then an additional degree of freedom of an elementary particle which plays a
crucial role in the Standard Model of particle physics. Observe the following
peculiarity.

In the classical form of the Standard Model of particle physics, it is
assumed that neutrinos are massless and always left-handed.

However, this is only an approximation of reality. On the basis of recent
experiments, physicists assume that neutrinos possess a small mass and there
exist also right-handed neutrinos in nature. This is based on the following
experimental observation. In the burning sun, only electron neutrinos are
produced. The measurements of astrophysicists show that there appears a
shortage of sun neutrinos by a factor two. This neutrino defect problem in
the sun can be solved in the following way: If we assume that neutrinos have
a small mass, then this small neutrino mass makes it possible that neutrino
oscillations occur which convert the electron neutrino into other types of
neutrinos on its way from sun to earth; this changes the number of observed
neutrinos.33 As we will show later on, the Dirac equation allows us to define
the chirality of a fermion in an elegant way.

Helicity of a planet. The real number

ζ :=
S(t)p(t)
||p(t)|| = ||S(t)|| cosϕ(t)

is called the helicity of a planet at time t, where ϕ(t) is the angle between
the spin vector S(t) and the direction of motion p(t) at time t (Fig. 2.18).
If ζ > 0 (resp. ζ < 0), then the spin vector S has the same (resp. opposite)
direction as the momentum vector p.

Fermions and bosons. Each elementary particle possesses an intrinsic
angular momentum called spin. The spin is characterized by a spin quantum
number
33 For more details, we refer to M. Fukugita and T. Yanagita, Physics of Neutrinos

and Applications to Astrophysics, Springer, Berlin, 2003.
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j = 0, 1
2 , 1,

3
2 , 2, . . .

The particle is called a fermion iff j = 1
2 ,

3
2 ,

5
2 , . . ., and the particle is called

a boson iff j = 0, 1, 2, . . . For example, the electron has the spin number
j = 1

2 (fermion), and the photon has the spin number j = 1 (boson). For the
quantity S2, we measure the mean value

�
2j(j + 1)

in each quantum state of the elementary particle. More precisely, we have the
following situation. Consider first an electron which has spin quantum number
j = 1

2 . Let the unit vector n be given. Choose a right-handed Cartesian
coordinate system such that the z-axis points in direction of n. Then there
exist two quantum states denoted by

| 12 ,n〉 and | − 1
2 ,n〉

such that we measure the spin vector

S = jz�n in the electron state |jz,n〉 where jz = ±1
2 .

The number jz is called the spin projection number with respect to the unit
vector n.34 Consider now the general case where the elementary particle has
spin number j. Then there exist 2j+1 quantum states of the particle denoted
by |jz, j,n〉 where jz = j, j − 1, j − 2, . . . ,−j. We measure the spin vector

S = jz�n in the particle state |jz, j,n〉.

It is possible that not all of these quantum states can be realized in nature.
In particular, for photons only the quantum states | ± 1, 1,n〉 are realized.
This corresponds to the classical fact that the polarization of electromagnetic
waves is always transversal. This means that both the electric and the mag-
netic field are transversal to the direction of propagation of the wave. Since
the methods of statistical physics are based on the counting of quantum
states, the following holds true.

If certain quantum states are forbidden by a general principle, then
this has crucial consequences for the physical properties of quantum
systems.

For example, this concerns the Pauli exclusion principle below. The spin of
an elementary particle is related to the 3-dimensional rotation group SO(3).
This is only part of the truth. Since the group SO(3) is not simply connected,
it has a simply connected universal covering group given by the group SU(2)
which is also called Spin(3) (3-dimensional spin group).

34 Instead of jz, we also write j3.
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The spin of elementary particles results from the fact that the irre-
ducible representations of the group SU(2) can be characterized by a
number j which coincides with the spin quantum number.

Since the irreducible representations of the group SO(3) have integer spin
quantum numbers, j = 0, 1, . . ., one can say that

The existence of fermions is related to the nontrivial topological struc-
ture of the 3-dimensional rotation group.

For more details, we refer to Sect. 5.7.1.
The sum rule for spin quantum numbers. Consider two elementary

particles which have the spin numbers j1 and j2. Then the composite particle
has a spin number j which may attain precisely one of the following values:

j = j1 + j2, j1 + j2 − 1, j1 + j2 − 2, . . . , |j1 − j2|.

For example, a system of two protons with j1 = j2 = 1
2 may have the spin

number j = 1 or j = 0. A system of three protons may have the spin numbers
j = 1 ± 1

2 or j = 0 + 1
2 , hence j = 3

2 ,
1
2 . As we will show later on, this

sum rule can be based on the representations of the spin group SU(2) on
tensor products of linear spaces along with the decomposition into irreducible
representations.

Three general principles for elementary particles. The following
three principles play a fundamental role in quantum physics.

(i) The principle of indistinguishability. Quantum particles are not individ-
uals. They cannot be distinguished individually.

(ii) Pauli’s exclusion principle. In contrast to bosons, two fermions can never
be in the same quantum state of a given quantum system.

(iii) Pauli’s spin-statistics principle. Bosons (resp. fermions) obey Bose (resp.
Fermi) statistics.35

We will show later on that principle (i) is responsible for the fact that the
quantum states of bosons (resp. fermions) are symmetric (resp. antisymmet-
ric) under permutations of elementary particles. Many strange properties of
quantum systems are consequences of (ii) and (iii) (e.g., Bose–Einstein con-
densation – a group of bosons which are all in the same quantum state at
extremely low temperature, and which behave like a single entity36).

The color charge of quarks is a consequence of the Pauli exclusion
principle.

35 Bose (resp. Fermi) statistics is also called Bose–Einstein (resp. Fermi–Dirac)
statistics. These kinds of quantum statistical physics along with important ap-
plications can be found in Zeidler (1986), Vol. IV (e.g., Planck’s radiation law,
the critical Chandrasekhar mass of a white dwarf star (Nobel prize in physics in
1983), neutron stars, black holes, the death of a star, and the early universe).

36 For the experimental realization, Cornell, Ketterle, and Wiemann were awarded
the Nobel prize in physics in 2001.



150 2. Phenomenology of the Standard Model for Elementary Particles

In fact, we will show later on that quarks violate the Pauli exclusion principle
if we do not add additional degrees of freedom (called color). In the framework
of axiomatic quantum field theory created by G̊arding and Wightman in the
1960s, the spin-statistics principle is a rigorous mathematical theorem. This
can be found in Streater and Wightman (1968).

Historical remark. In 1922 Stern and Gerlach observed an unexpected
splitting of a ray of silver atoms in a magnetic field (Stern–Gerlach effect).
This splitting was explained by Goudsmit and Uhlenbeck in 1925. They pos-
tulated that the electron has a spin, and hence a magnetic moment. More
precisely, if the electron is in the quantum state | ± 1

2 ,n〉, then it has the
magnetic moment vector

m = − e

me
S, S = ±�

2
n.

The vector m possesses the following physical meaning.

(i) An external magnetic field B acts onto the electron by the force

F(x) = B′(x)m (2.54)

and the torque T(x) = m × B(x).37

(ii) The constant magnetic field B adds the energy E = −mB to the electron.
(iii) The electron induces a magnetic field B0 given by

B0(x) =
μ0

4πr3
(3(xm)x

r2
− m

)

where we set r := ||x||. Here, μ0 is the magnetic field constant of a
vacuum.

The strength of the magnetic field B is measured in Tesla, 1T = Vs/m2. The
magnetic field of the earth has the strength of 0.5 ·10−4T. The force (2.54) is
responsible for the Stern–Gerlach effect. Similarly, we expect that the proton
has the magnetic moment

m =
e

mp
S, S = ±�

2
n

where e and mp denote the electric charge and mass of the proton, respec-
tively. The point is that these values are only approximations of the measured
values. Therefore, physicists say that both the electron and the proton have
an anomalous magnetic. For the magnetic moment μ := |m| of the electron
and the proton, experiments yield the values

μe =
e�

2me
· 1.001 159 652 193 = 9.284 770 1(31) · 10−24J/T

37 As usual, the directional derivative B′(x)m is defined to be the derivative of
B(x + εm) with respect to the real variable ε at the point ε = 0.
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and
μp =

e�

2mp
· 2.792 847 386 = 1.410 607 61(47) · 10−26J/T,

respectively. Thus, the magnetic moment of the electron is much stronger
than that of the proton. The relative error of the magnetic moment of the
electron and the proton is 3.4 · 10−7. The reason for these anomalous mag-
netic moments are typical effects of quantum field theory which are based
on vacuum fluctuations (interactions with virtual electrons, virtual positrons
and virtual photons). The sophisticated renormalization methods of quantum
electrodynamics based on large computer programs yield a theoretical value
of the magnetic moment of the electron which is in fantastic coincidence with
the experiments. In 1949, Schwinger used his new theory of quantum elec-
trodynamics in order to compute the first-order correction of the magnetic
moment of the electron. He obtained the formula

μe =
e�

2me

(
1 +

α

π

)

where α is the fine structure constant. Precision experiments yield the value

α =
e2

4πε0�c
=

1
137.035 989 5(61)

.

Based on huge computer programs and the methods of perturbation theory
in quantum electrodynamics (Feynman diagrams and renormalization meth-
ods), physicists computed higher order corrections of the magnetic moment
of the electron which are in fantastic coincidence with experimental data.

The perturbation methods of quantum electrodynamics were invented
in the late 1940s by Feynman, Schwinger, and Tomonaga.

These methods along with Dyson’s renormalization approach allow the com-
putation of electromagnetic effects in terms of powers of the fine structure
constant α. Quantum electrodynamics investigates the interactions between
electrons, positrons, and photons. The extremely accurate coincidence be-
tween theory and experiment can still be improved by including physical
effects that are caused by additional particles in the setting of the Standard
Model of particle physics. For example, the fourth-order approximation of
the magnetic moment of the electron also includes effects which come from
the muon. For the ratio between the masses and the magnetic moments of
the muon and the electron, we get approximately

mμ

me
= 2,

μμ

μe
= 5 · 10−3,

respectively. Similarly, for the ratio between the masses and magnetic mo-
ments of the neutron and proton, we obtain approximately
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mn

mp
= 1,

μn

μp
=

2
3
.

The exact values for the muon and the neutron are known with the same
high precision as for the electron and the proton. The magnetic moment
of the proton was measured by Stern in 1933 (Nobel prize in physics in
1943). Generally, both the experimental and the theoretical determination of
magnetic moments of elementary particles is a highly nontrivial task. The
magnetism of materials in nature is caused by both the intrinsic magnetic
moments of elementary particles (based on spin) and the motion of electrically
charged elementary particles.

In 1925 Heisenberg created quantum mechanics. Born and Jordan noticed
quickly that Heisenberg’s approach based on Fourier series could be reformu-
lated in the mathematical language of infinite-dimensional matrices. There-
fore, Heisenberg’s quantum mechanics is also called matrix mechanics. In
1926 Schrödinger formulated an alternative approach to quantum mechanics
based on the non-relativistic Schrödinger equation for a wave function. In the
same year, Pauli generalized the Schrödinger equation to the non-relativistic
Pauli–Schrödinger equation by inserting the electron spin. Pauli noticed that
this approach, along with the exclusion principle, explains the structure of
atoms encoded in the periodic table of chemical elements.

The final explanation for the existence of the electron spin was obtained
by Dirac in 1928. Dirac formulated a relativistic equation for the electron
by combining quantum mechanics with Einstein’s theory of special relativ-
ity (Nobel prize in physics together with Schrödinger in 1933). The Dirac
equation implies the existence of the electron spin, by using a simple group-
theoretical argument.

The electron spin represents a typical relativistic quantum effect.

The same is true for the spin of all elementary particles. As we will see later
on, the Dirac equation is of fundamental importance for describing the 12
fundamental particles of the Standard Model of particle physics. From the
mathematical point of view, the Dirac equation is based on a Clifford algebra.
Fundamentally, the spin of elementary particles is related to the transforma-
tion of quantum fields under the rotation of inertial systems. The general
approach was developed by Wigner in 1939 by classifying the irreducible
unitary representations of the Poincaré group in infinite-dimensional Hilbert
spaces (Nobel prize in physics in 1963).

The periodic table of chemical elements, Pauli’s exclusion prin-
ciple, and the shell structure of atoms. In 1869, great progress was made
in chemistry when Mendeleev (1834-1907) and Meyer (1830-1895) were able
to systematically order the chemical elements according to phenomenological
criteria. Table 2.5 shows the beginning of the periodic table. In the horizontal
direction the atomic number Z increases, while in the vertical direction ele-
ments behave similarly. In the late 1920s, Pauli discovered how the periodic
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Table 2.5. The periodic table of chemical elements

1 H 2 He

1s 1s2 = K

3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne
K K K K K K K K
2s 2s2 2s2, 2p 2s2, 2p2 2s2, 2p3 2s2, 2p4 2s2, 2p5 2s2, 2p6 = L

11 Na 12 Mg 13 Al 14 Si 15 P 16 S 17 Cl 18 Ar
K K K K K K K K
L L L L L L L L
3s 3s2 3s2, 3p 3s2, 3p2 3s2, 3p3 3s2, 3p4 3s2, 3p5 3s2, 3p6 = M

table of chemical elements can be understood in terms of quantum physics.
Let us discuss the main ideas.

(i) The atomic number Z is equal to the number of electrons and equal to
the number of protons in the nucleus.

(ii) The number of neutrons in the nucleus may vary for fixed Z. Thereby
isotopes occur.

(iii) An electron state
|n, l,m, jz〉

is characterized by the quantum numbers
• n = 1, 2, 3 . . . (orbit),
• l = 0, . . . , n− 1 (orbital angular momentum),
• m = l, l − 1, . . . ,−l (orbital angular momentum projection),
• jz = ±1

2 (spin projection).
In particular, the ground state is described by the quantum numbers
n = 1, l = m = 0, jz = ±1

2 . By Pauli’s exclusion principle, two electrons
cannot coincide in all four quantum numbers n, l,m, jz.

(iv) The energy of the electron depends on the quantum number n with
E1 < E2 < E3 < . . . For energetic reasons, the orbits with n = 1, 2, 3 . . .
are filled successively.

(v) The inner orbits are maximally filled. Such orbits are called closed shells
and denoted by K, L, M, . . . for n = 1, 2, 3 . . ., respectively. The electrons
of the incomplete outer orbit are responsible for the chemical behavior of
the element. The similarity of chemical elements is a consequence of the
same number of outer electrons. Table 2.5 shows the number of electrons
in different orbits. In horizontal direction new electrons are added con-
tinuously. Here, the symbols s and p stand for electron states with the
quantum number l = 0 and l = 1, respectively. Furthermore, the symbol
nsk means that the number of s-electrons is equal to k in the nth orbit.
The maximal number of s-electrons in the nth orbit (n = 1, 2, 3 . . .) is
equal to 2 because of



154 2. Phenomenology of the Standard Model for Elementary Particles

(a) hydrogen 1
1H

�

n = 2

n = 1

(b) helium 4
2He

�

�

Fig. 2.19. Structure of atoms

n = 1, l = 0, m = 0, jz = ±1
2 .

Similarly, the maximal number of p-electrons in the nth orbit is equal to
six since

n = 2, l = 1, m = 1, 0,−1, jz = ±1
2 .

In the vertical lines of Table 2.5 we have precisely the same number of
outer s- and p-electrons. This results in a similar behavior of the cor-
responding elements. The inert gases 2 He (helium), 10 Ne (neon), and
18 Ar (argon) have only closed shells K, L, M, respectively. This is the
reason for their chemical inactivity.

Spin-orbit coupling. The states from (iii) above neglect the interac-
tions between orbit and spin (called spin-orbit coupling) and the nonlinear
interaction between different electrons. If we take the spin-orbit coupling
into account, then we cannot anymore distinguish between orbital angular
momentum and intrinsic spin of the electron. Only the total angular momen-
tum makes sense. By the sum rule for angular momenta, the electron states
|n, j, jz〉 are now described by the following quantum numbers:

• n = 1, 2, . . . (orbit),
• j = l + 1

2 , l −
1
2 (total angular momentum), l = 1, . . . , n− 1,

• j = 1
2 if l = 0, and

• jz = j, j − 1, . . . ,−j (projection of total angular momentum).

The ground state corresponds to n = 1, j = 1
2 , jz = ±1

2 . Starting with cal-
cium Z = 19, the irregularities of the filling of the orbits begin. This follows
from the fact that for a large number Z of electrons the interaction between
the electrons becomes stronger and the energetic situation becomes more
complicated.38

Symmetry breaking in atomic spectra. If an electron jumps from an
energy level En to a lower energy level Em, then a photon of energy

hν = En −Em

38 As an introduction to the application of group-theoretic methods to atomic spec-
tra, we recommend van der Waerden (1930) and Mizushima (1970).
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and frequency ν is emitted. In first approximation, the electron energy En

only depends on the orbit quantum number n. This means that different
electron states may have the same energy. This degeneracy of energy levels is
a consequence of the rotational symmetry of the electrostatic Coulomb force.
This symmetry can be broken by external magnetic (resp. electric) fields or by
internal forces between the electrons. As a rule, symmetry breaking reduces
the degeneracy of energy levels. In experiments, this leads to a splitting of
spectral lines. For example, in a constant magnetic field, electron states with
different magnetic quantum numbers m possess different energy levels. This
splitting of the spectrum is called the Zeeman effect (in 1902 Zeeman was
awarded the Nobel prize in physics).

Quantum chemistry. Pauli’s approach to the periodic table of chem-
ical elements marked the emerging of quantum chemistry. Nowadays huge
computer programs (e.g., the “Gaussian” soft ware package) are used in or-
der to compute the properties of atoms and molecules. In 1998 Pople and
Kohn were awarded the Nobel prize in chemistry for the development of
computational methods in quantum chemistry and the development of the
density-functional theory, respectively. The density-functional method allows
us the approximate computation of ground state energies of large molecules.

• The first task of quantum chemistry is to compute the energy levels of an
atom or molecule. This is done by the Ritz method for eigenvalue prob-
lems.39 The main point is to find appropriate linear combinations of given
functions with unknown coefficients for the computation of approximate
eigenfunctions.

• Furthermore, chemists want to get information on the geometry of the
molecules (distances and angles between atoms, symmetries).

• Finally, chemists want to compute the dynamics of a chemical reaction,
that is, the change of the structure of the molecules during a reaction
process (reaction path). In this connection, saddle points on the energy
surface of molecules are crucial. The points of the energy surface depend
on the geometric molecule parameters.

Heisenberg’s isospin. In 1932, motivated by the theory of the electron
spin and the fact that protons and neutrons have approximately the same rest
energy, Heisenberg regarded the proton p and the neutron n as two different
states |12 〉 and | − 1

2 〉 of a quantum object (nucleon), and he called 1
2 and ±1

2
the isospin number and the isospin projection of the nucleon, respectively.
The isospin and the so-called weak isospin play an important role in the
Standard Model.

The particle zoo. Beginning in the 1950’s, physicists used particle ac-
celerators of increasing power in order to discover a large zoo of unstable “el-
ementary particles” of extremely short lifetimes. These particles were called
resonances. The quite natural goal of physicists was to reduce this zoo to a
39 The Ritz method is thoroughly studied in Zeidler (1986), Vol. IIA.
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small number of fundamental particles. They tried to understand the zoo of
elementary particles in the same way as the chemical elements can be under-
stood by means of the periodic table. To this end, physicists used quantum
numbers based on symmetries. Nowadays this goal is realized by the Standard
Model of elementary particle physics.

The mathematical formulation of the Standard Model in par-
ticle physics. In the next section, we will discuss the basic ideas of the
Standard Model in terms of quantum numbers. The detailed formulation of
the Standard Model in particle physics based on the full Lagrangian density
will be postponed to Volume III after a detailed study of quantum electro-
dynamics in Volume II. Quantum electrodynamics represents the Standard
Model in a nutshell. The Lagrangian density of the Standard Model contains
fields which describe

• the six quarks,
• the six leptons,
• the 12 messenger particles, and
• the Higgs particle.

The point is that the Lagrangian density of the Standard Model possesses
crucial symmetry properties, namely, the gauge symmetry

U(1) × SU(2) × SU(3)

and the relativistic symmetry under Poincaré transformations. Furthermore,
the Clifford algebra of Dirac–Pauli matrices plays a crucial role. This Clifford
algebra is closely related to the Minkowski metric of the 4-dimensional space-
time manifold. The interactions between elementary particles mediated by the
messenger particles are described by using the modern language of differential
geometry (curvature of fiber bundles) The prototype of this geometric concept
in physics will be discussed in Sect. 2.9.1 on page 185.

2.6.2 Conservation of Quantum Numbers

The Mendeleev of elementary particle physics is Murray Gell-Mann.
Folklore

The most important quantum numbers of elementary particles read as fol-
lows.

• Q/e electric charge number (global gauge group U(1)),40

• j spin number (j3 third component of spin) (symmetry group SU(2) as
subgroup of the universal covering group SL(2,C) of the Poincaré group
in special relativity),41

40 The group U(1) consists of all complex numbers z with |z| = 1.
41 The group SU(n) consists of all complex (n×n)-matrices A with A−1 = A† and

detA = 1.
The group SL(2,C) consists of all complex (2× 2)-matrices A with detA = 1.
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Table 2.6. Quantum numbers of leptons

particle e− νe μ− νμ τ− ντ

Q/e −1 0 −1 0 −1 0

P 1 1 1 1 1 1

L 1 1 1 1 1 1

Le 1 1 0 0 0 0

Lμ 0 0 1 1 0 0

Lτ 0 0 0 0 1 1

• rest mass m0 (infinite-dimensional representations of the universal covering
group of the Poincaré group due to Wigner),

• energy-momentum 4-vector p (group of space-time translations),
• P,Ptotal internal parity, total parity, respectively (group of space reflec-

tions),
• χ chirality (universal covering group SL(2,C) of the Poincaré group),
• L lepton number,
• Le,Lμ,Lτ electron lepton number, muon lepton number, tau lepton num-

ber, respectively,
• B baryon number,
• I strong isospin (I3 third component of the strong isospin),
• S,C,B, T strangeness, charm, bottomness, topness, respectively,
• Y strong hypercharge,42

• r, g, b color charge of quarks: red, green, blue, respectively (local gauge
group SU(3) of strong interaction),

• Iw weak isospin (I3
w third component of weak isospin) (local gauge group

SU(2) of electroweak interaction),
• Yw weak hypercharge (local gauge group U(1) of electroweak interaction).

Important examples can be found in Tables 2.6–2.9.
Antiparticles. If we pass from an elementary particle to its antiparticle,

then rest mass m0, spin j, strong isospin I, and weak isospin Iw remain
unchanged, whereas the quantum numbers

Q/e,B,L; Le,Lμ,Lτ ; I3, I3
w,Y ,Yw, S,B,C, T ; χ,P

change their sign. The color charges r, g, b have to be replaced by anticolor
charges r, g, b, respectively. The values of the color charges change their sign.

Particles and antiparticles are described by mathematical objects
which are dual to each other (elements of a Hilbert space and of its
dual space).

42 I, I3, S,B,C, T,Y are based on the global symmetry group SU(6) of the six
quarks called the flavor symmetry group of strong interaction.
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Table 2.7. Quantum numbers of quarks

particle d u s c b t

Q/e − 1
3

2
3

− 1
3

2
3

− 1
3

2
3

P 1 1 1 1 1 1

I 1
2

1
2

0 0 0 0

I3 1
2

− 1
2

0 0 0 0

Y 1
3

1
3

− 2
3

4
3

− 2
3

4
3

B 1
3

1
3

1
3

1
3

1
3

1
3

S 0 0 1 0 0 0

C 0 0 0 1 0 0

B 0 0 0 0 −1 0

T 0 0 0 0 0 1

Table 2.8. Quark content

baryon p n Σ− Σ0 Σ+ Ξ− Ξ0 Λ

uud ddu dds uds uus dss uss uds

meson K0 K+ π− π0 π+ K− K
0

η

ds̄ us̄ dū uū, dd̄ ud̄ sū d̄s uū, dd̄, ss̄

This will be discussed in Volume II on quantum electrodynamics in the frame-
work of the Fock space.

Electric charge. The electric charge of an elementary particle is con-
served for all processes. For composed particles, the electric charge is an ad-
ditive quantity. Recall that baryons consist of three quarks, whereas mesons
consist of quark-antiquark pairs. The quantum number Q/e is an integer for
leptons, baryons, and mesons.

Lepton number. The lepton numbers are additive quantities. Using Ta-
ble 2.6 on page 157, we set

L := Le + Lμ + Lτ .

In particular, for leptons, L = 1. For quarks, baryons, and mesons, all of the
lepton numbers are defined to be zero.

The lepton numbers L and Le,Lμ,Lτ are conserved for all processes.

For example, the beta decay of the neutron

n → p+ e− + νe (2.55)
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Table 2.9. Electroweak interaction

right-handed lepton singlets
(gauge group U(1))

Iw I3
w Yw Q/e χ

e−R μ−
R τ−R 0 0 −1 −1 1

left-handed lepton doublets
(gauge group SU(2))

1
2

1
2

− 1
2

0 −1
 

νeL

e−L

!  

νμL

μ−
L

!  

ντL

τ−L

!

1
2

− 1
2

− 1
2

−1 −1

right-handed quark singlets
(gauge group U(1))

uR cR tR 0 0 2
3

2
3

1

d′R s′R b′R 0 0 − 1
3

− 1
3

1

left-handed quark doublets
(gauge group SU(2))

1
2

1
2

1
6

2
3

−1
 

uL

d′L

!  

cL

s′L

!  

tL

b′L

!

1
2

− 1
2

1
6

− 1
3

−1

Higgs boson H 1
2

− 1
2

1
2

0

conserves the lepton numbers L and Le. In this case, the right-hand side has
the lepton number L = Le = 1−1 = 0, and the left-hand side has L = Le = 0
(see Table 2.6). Since the lepton number L of the electron neutrino, νe, is
equal to one, the process

n → p+ e− + νe (2.56)

is impossible because it violates the conservation of L. In fact, in contrast to
(2.55), the right-hand (resp. left-hand) side of (2.56) has L = 0+1+1 (resp.
L = 0). This argument shows that the production of an electron must always
be accompanied by the production of an anti-electron neutrino. Similarly, the
process

n → p+ μ− + νe

is impossible because it violates the conservation of the electron lepton num-
ber Le. In fact, the right-hand (resp. left-hand) side has Le = 0+0−1 (resp.
Le = 0).

Baryon number. The baryon number is an additive quantity. For each
quark, the baryon number is equal to 1

3 . Since each baryon consists of three
quarks, the baryon number of baryons is equal to 1. For mesons and leptons,
the baryon number is equal to zero.
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(a) baryon octet
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(b) meson octet
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Fig. 2.20. Composed particles

The baryon number B is conserved for all processes.

For example, one baryon can never decay into two leptons. Note that physi-
cists assume that the conservation of lepton number and baryon number was
violated shortly after the Big Bang. This way, the creation of leptons and
baryons was possible in the early universe. A similar asymmetry of the laws
of physics in the early universe is responsible for the dominance of particles
over antiparticles in the present universe.

Strong isospin, strangeness, and strong hypercharge. The relation
between electric charge Q and strong isospin I3 is given by

Q

e
= I3 +

Y
2

where the so-called strong hypercharge is defined by Y := B+S+C+B+T.
The eight baryons (resp. eight mesons) pictured in Fig. 2.20 possess approx-
imately the same mass.43 They are distinguished by the “quantum number
hypercharge Y” and the “quantum number third component of isospin I3.”
The quark content can be found in Table 2.8 on page 158. For example, a
proton consists of two up quarks u and one down quark d. For the proton,
we get S = C = B = T = 0, and hence Y = 1. Moreover, the proton has the
isospin I = 1

2 and the third component of isospin I3 = 1
2 . Thus, the electric

charge number of the proton is given by

Q

e
=

1
2

+
1
2
,

43 In contrast to strong hypercharge Y, weak hypercharge Yw is defined by the
slightly modified relation

Q

e
= I3

w + Yw

where Q and Iw denote electric charge and weak isospin, respectively. This con-
vention is used in order to simplify the notation in the Standard Model of particle
physics (see Table 2.9 on page 159).
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implying Q = e, as desired. For historical reasons, a baryon or meson is
called strange iff it contains a strange quark s or a strange antiquark s.
Such particles were discovered in the 1950s. All of the strange particles are
produced by strong interaction and often decay via weak interaction.

The quantum numbers I, I3,Y , S, C,B, T are conserved for processes
via strong interaction.

Chirality, weak isospin, and weak hypercharge. Table 2.9 on page
159 shows the classical Standard Model of electroweak interaction. This is
an approximation based on the assumption that neutrinos are massless and
there only exist left-handed neutrinos. Explicitly, the three left-handed pairs
are

(νe)L, e
−
L ; (νμ)L, μ

−
L ; (ντ )L, τ

−
L .

Since these pairs possess specific transformation laws with respect to the
gauge group SU(2), they are called doublets. In addition, there exist right-
handed leptons

e−R, μ
−
R, τ

−
R

called singlets. Similarly, one has to use the left-handed quark doublets

uL, d
′
L; cL, s

′
L; tL, b

′
L

and the right-handed quark singlets

uR, cR, tR; d′R, s
′
R, b

′
R.

Here, d′L replaces the quark d by a linear combination of quarks. The coeffi-
cients have to be determined by experiment. They are called CKM (Cabibbo–
Kobayashi–Maskawa) coefficients. Moreover, we assign

• the weak isospin Iw = 0 (singlets), Iw = 1
2 (doublets), and

• the weak hypercharge Yw = 2Q/e (singlets), Yw = B − L (doublets).

The explicit values can be found in Table 2.9 on page 159.
Parity. To each lepton and quark, we assign the internal parity number

P = 1. For antileptons and antiquarks, P = −1. In addition, for the pho-
ton, P = −1. For composed particles, the internal parity is a multiplicative
quantity. Since mesons consist of quark-antiquark pairs, the internal parity
of mesons is equal to

P = 1(−1) = −1.

Baryons consist of three quarks. Thus, for baryons, P = 13 = 1. In addition,
let us introduce the orbital parity by letting

Porbital := (−1)l.

Here, l is the quantum number of angular momentum of the particle. Finally,
the total parity is defined to be
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Table 2.10. Color charge of quarks

quarks red r green g blue b

Qr = 1
3

Qg = 1
3

Qb = − 2
3

antiquarks antired r̄ antigreen ḡ antiblue b̄

Qr̄ = − 1
3

Qḡ = − 1
3

Qb̄ = 2
3

Ptotal := P(−1)l.

Color of quarks. The electromagnetic interaction depends on the electric
charge of particles. Similarly, the strong interaction depends on a specific
charge of quarks called color charge. Each quark possesses three color charges
called red r, green g, and blue b. Let us assign the color charge quantum
numbers

Qr =
1
3
, Qg =

1
3
, Qb = −2

3
.

Antiparticles carry the color charges antired r̄ (or cyan), antigreen ḡ (or
magenta), antiblue b̄ (or yellow). Here, the color charge numbers change sign.
Explicitly,

Qr̄ = −1
3
, Qḡ = −1

3
, Qb̄ =

2
3
.

The color charge is an additive quantity. We postulate that

The total color charge of baryons and mesons is equal to zero.

Since the superposition of red, green, and blue yields white, physicists also
say that baryons and mesons are white.

States of elementary particles and group theory. Mathematically,
states of elementary particles are described by unit vectors in complex Hilbert
spaces. The vectors depend on space and time. Let us consider the following
three examples. To simplify notation, we do not take the dependence on space
and time coordinates into account.

(i) Two electrons with spin. We are given a right-handed (x, y, z)-Cartesian
coordinate system. The symbol

|e−, j, j3〉

denotes the state of an electron e− with spin numbers j = 1
2 and j3 = ±1

2 .
This means that, in this state, we measure the spin j3� in direction of
the z-axis. Assume that the two unit vectors

|e−, 1
2 ,

1
2 〉, |e−, 1

2 ,−
1
2 〉
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form the basis of a 2-dimensional complex Hilbert space X with the inner
product 〈ψ|ϕ〉. The linear operator S3 : X → X given by the following
eigenvectors and eigenvalues

S3|e−, 1
2 ,±

1
2 〉 = ±1

2� |e−, 1
2 ,±

1
2 〉

is called the spin operator in direction of the z-axis. For complex numbers
α, β with |α|2 + |β|2 = 1, the vector

ψ = α |e−, 1
2 ,

1
2 〉 + β |e−, 1

2 ,−
1
2 〉

corresponds to a state where the electron is in the state |e−, 1
2 ,

1
2 〉 and

|e−, 1
2 ,−

1
2 〉 with probability |α|2 and |β|2, respectively. In the state ψ,

we measure the value

〈ψ|S3ψ〉 = 1
2�|α|2 − 1

2�|β|2

of the electron spin in z-direction. It is assumed that two vectors ψ1 and
ψ2 represent the same physical state of the electron iff

ψ1 = σψ2

where σ is a complex number with |σ| = 1. In this case, the measured
value of the electron spin does not change. The antisymmetric tensor
product44

ϕ :=
|e−, 1

2 , j
3
1〉 ⊗ |e−, 1

2 , j
3
2〉 − |e−, 1

2 , j
3
2〉 ⊗ |e−, 1

2 , j
3
1〉√

2
(2.57)

represents the state of two electrons with spin numbers j31 and j32 .Observe
the following two crucial facts.
• A permutation of the two electrons changes the sign of ϕ, but not

the physical state. Thus, the two electrons are not distinguishable.
They lose their individuality (principle of indistinguishable elementary
particles).

• If j31 = j32 , then ϕ = 0. Consequently, the two electrons cannot be in
the same spin state (Pauli’s exclusion principle for fermions).

(ii) Two photons with spin. Electrons are fermions. In contrast to this, pho-
tons γ are bosons and hence Pauli’s exclusion principle is not valid for
photons. This motivates us to use the following symmetric tensor product

ϕ :=
|γ, 1, j31〉 ⊗ |γ, 1, j32〉 + |γ, 1, j32〉 ⊗ |γ, 1, j31〉√

2
44 Following Dirac’s notation, physicists write briefly the products

ϕ :=
|e−, 1

2
, j31〉 |e−, 1

2
, j32〉 − |e−, 1

2
, j32〉 |e−, 1

2
, j31〉√

2
.
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with j3k = ±1 for k = 1, 2. This describes the composed state of two
photons of spin number j = 1 and polarizations j31 and j32 . Here, j31 = j32
is possible.

(iii) The proton consisting of three colored quarks u, u, d and spin. The state

ψ : =
1√
108

3∑

α,β,γ=1

δ123αβγ

(
2|uα

+d
β
−u

γ
+〉 + 2|uα

+u
β
+d

γ
−〉 + 2|dα

−u
β
+u

γ
+〉

−|uα
+u

β
−d

γ
+〉 − |uα

+d
β
+u

γ
− − |uα

−d
β
+u

γ
+〉

−|dα
+u

β
−u

γ
+〉 − |dα

+u
β
+u

γ
−〉 − |uα

−u
β
+d

γ
+〉
)

describes a proton state with spin �/2 in z-direction. Here, the symbol
δ123αβγ denotes the sign of the permutation (123) �→ (αβγ). The indices
α, β, γ = 1, 2, 3 describe the color charges red, green, blue, respectively.
For example, the symbol |uα

+u
β
+d

γ
−〉 stands for the tensor product

(
|u〉 ⊗ |12 〉 ⊗ |α〉

)
⊗
(
|u〉 ⊗ |12 〉 ⊗ |β〉

)
⊗
(
|d〉 ⊗ | − 1

2 〉 ⊗ |γ〉
)
.

This represents the composition of
• one u quark with spin �/2 in the z-direction and color α,
• one u quark with spin �/2 in the z-direction and color β, and
• one d quark with spin −�/2 in the z-direction and color γ.
The state ψ follows in a quite natural way by using the representation
theory of the compact Lie group SU(3) due to Hermann Weyl. This will
be studied in Volume V on the physics of the Standard Model.

2.7 The Fundamental Role of Symmetry in Physics

Symmetries essentially simplify computations in mathematics and physics.
Folklore

Symmetry, as wide or as narrow you may define its meaning, is one idea
by which man through the ages has tried to comprehend and create order,
beauty, and perfection.

Hermann Weyl, 1952
Symmetry45

Symmetry and invariance considerations have long played important roles
in physics. The 32 crystal classes – that is, groups of rotations in three-
dimensional space all the elements of which are of the order 2, 3, 4 or 6
– were determined 1830 by Hessel, in the same year as group theory was
born by Galois.
The determination of the 230 space groups in 1891, independently by
Schoenflies and Fedorov (these are the discrete subgroups of the Euclidean

45 Princeton University Press, 1952
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group which contain three non-coplanar translations) was a masterpiece of
analysis and so was the determination by Groth of the possible properties
of crystals with the symmetries of these space groups in 1926. . .
Symmetry transformations in pre-quantum theory were rather obvious
transformations of 3-dimensional space; in quantum theory they became
unitary transformations of Hilbert space. These form subgroups of all uni-
tary transformations which are essentially homomorphic to the symmetry
group in question, essentially homomorphic only because a unitary trans-
formation in quantum mechanics is equivalent to any of its multiples by
a numerical factor (of modulus 1). However, this essential homomorphy
could be reduced, particularly, as a result of Bargmann’s investigations in
most cases to a true homomorphy to an extended group which is called,
then, the quantum mechanical symmetry group.46 The quantum mechan-
ical operations of the symmetry group break up the Hilbert space of all
states into subspaces each of which is invariant under the operations in
question. . .

The unitary representations of the Poincaré group were determined in the
late 30’s; except for the trivial one, they were all shown to be infinite-
dimensional.47 This is equivalent with the statement that no system can
be relativistically invariant unless it can be in an infinity of orthogonal
states. By calling attention to the properties of the unitary representations
of noncompact Lie groups, the physicists have stimulated the mathemati-
cians’ interest in this field. The mathematicians are now very much ahead
of us in this field, and it is not easy to catch up with the results of Gelfand,
Naimark, Harish-Chandra, and so many others.

Eugene Wigner, Gibbs Lecture 196848

Symmetry Principles in Old and New Physics

The most important lesson that we have learned in this century is that the
secret of nature is symmetry. Starting with relativity, proceeding through
the development of quantum mechanics, and culminating in the Standard
Model of particle physics, symmetry principles have assumed a central po-
sition in the fundamental theories of nature. Local gauge theories provide
the basis of the Standard Model and of Einstein’s theory of gravitation. . .
In recent years we have discovered a new and extremely powerful symmetry
– supersymmetry – which might explain many mysteries of the Standard
Model.
Another part of the lesson of symmetry is that much of the texture of the
world is due to mechanisms of symmetry breaking. In quantum mechanical
systems with a finite number of degrees of freedom global symmetries are
realized in only one way. The laws of physics are invariant and the ground
state of the theory is unique and symmetric. . . However, in systems with
an infinite number of degrees of freedom a second realization of symmetry
is possible, in which the ground state is asymmetric. This spontaneous

46 V. Bargmann, On unitary ray representations of continuous groups, Ann. of
Math. 59 (1954), 1–46.

47 E. Wigner, On unitary representations of the inhomogeneous Lorentz group,
Ann. of Math. 40 (1939), 149–204.

48 Bull. Amer. Math. Soc. 74 (1968), 793–815. Wigner (1902–1995) was awarded
the 1963 Nobel prize in physics for his contributions to symmetry principles in
quantum physics.
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symmetry breaking is responsible for magnetism, superconductivity, and
the structure of the unified electroweak theory in the Standard Model.

The second important lesson we have learned is the idea of renormalization
group and effective dynamics. The decoupling of physical phenomena at
different scales of energy is an essential characteristic of nature. It is this
feature of nature that makes it possible to understand the limited range
of physical phenomena without having to understand everything at once.
The characteristic behavior of the solutions of the renormalization equa-
tions is that they approach a finite dimensional submanifold in the infi-
nite dimensional space of all theories. This defines an effective low energy
theory. . . Thus, for example quantum chromodynamics is the theory of
quarks whose interactions are mediated by gluons. This is the appropriate
description at energies of billions of electron volts. However, if we want to
describe the properties of ordinary nuclei at energies of millions of elec-
tron volts, we employ instead an effective theory of nucleons, composites of
the quarks, whose interactions are mediated by other quark composites –
mesons. . . There may be more than one, equally fundamental, formulation
of a particular quantum field theory, each appropriate at a different scale
of energy.

David Gross
The triumph and limitations of quantum field theory.49

Symmetries have always played an important role in physics. With quan-
tum mechanics, however, the interplay between physics and symmetries
has reached a new dimension. The very structure of quantum mechanics
invites the application of group theoretical methods. . .
Symmetries are also a direct mediator between experimental facts and
the theoretical structure of a theory. This is the case because there is a
direct connection between symmetries and conservation laws. Space-time
symmetries are an obvious example. Conservation of energy, momentum
and angular momentum are linked to invariance under time translation,
space translation and rotation in space.
It was in atomic physics that space-time symmetries became significant,
but they are also important in nuclear physics and in all the physics discov-
ered after that. In nuclear physics, however, a new concept of symmetries,
symmetries in an internal space, was discovered with isospin. All our so-
called fundamental models describing what we know about strong-weak
and electromagnetic interactions are built on symmetries in space-time
and internal spaces. These symmetries are not only used to extract in-
formation from a theory, they are also used to construct these theories,
and this for good reasons. It turned out that only theories possessing such
symmetries make sense as quantum field theories. Thus symmetries are
not only a good tool to deal with quantum field theoretical models, they
are necessary to define such models.
Following this line of thought, a new type symmetry, the so-called super-
symmetry, proved to be extremely successful. Quantum theory seems to
have a very deep relation to supersymmetry.50 Thus it is not surprising

49 In: Tian Yu Cao (Ed.), Conceptual Foundations of Quantum Field Theory (with
contributions made by leading physicists), Cambridge University Press 1999, pp.
56–67 (reprinted with permission).

50 Supersymmetry is already present in the 3-dimensional Euclidean space. This
will be studied in Volume III.
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that the most promising models of physics are based on supersymmetry,
even when they go beyond a local quantum field theory, as string theory
does.51

Julius Wess
Quantum Theory Centenary, Berlin, 2000

For a deeper understanding of physical processes in nature, it is of funda-
mental importance to answer the following question.

Suppose that we observe a process in a physical system. Which trans-
formed versions of this process can also happen?

As we will show, this question is closely connected with the concept of sym-
metry which plays a fundamental role in modern physics. From the mathe-
matical point of view, symmetry is described by group theory which we will
encounter very frequently in this monograph. At this point, we only want
to discuss some basic ideas. First let us consider three important examples:
energy conservation, irreversible processes, and parity violation in weak in-
teraction.

(i) Time translation and energy conservation. Consider the motion q = q(t)
of a classical particle of mass m > 0 on the real line. The Newtonian
equation reads as

mq̈(t) = F (q(t)), t ∈ R. (2.58)

Since the given smooth force F = F (q) only depends on position q, but
not on time t, the following hold true for each fixed time t0:

If the smooth function q = q(t) is a solution of (2.58), then so is
the function q = q(t+ t0).

We say that equation (2.58) is invariant under time translations. This
implies conservation of energy. To show this, choose a function U such
that F (q) = −U ′(q) for all q ∈ R. Introduce the energy function

E(t) :=
mq̇(t)2

2
+ U(q(t)).

For each solution q = q(t) of (2.58), we then get

E(t) = const for all t ∈ R.

In fact, Ė(t) = mq̈(t)q̇(t) + U ′(q(t))q̇(t) = 0. Note that this argument
fails if the force F = F (q, t) depends on time t.

51 Max Planck presented his radiation law to the Deutsche Physikalische Gesell-
schaft on December 14, 1900. The Proceedings of the Symposia Quantum Theory
Cetenary December 2000 in Berlin appeared in Annalen der Physik (Leipzig),
Vol. 9, 11/12 (2000) and Vol. 10, 1/2 (2001) (reprinted with permission). These
two volumes contain survey articles on the modern development of quantum
physics.
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(ii) Irreversible processes. A process is called reversible iff it is invariant under
time-reversal. Otherwise, the process is called irreversible. In classical
mechanics, the motion of a mass point is reversible if the force is time-
independent. For example, if q = q(t) is a solution of (2.58), then so is
q = q(−t). The situation changes completely if there acts a friction force.
For example, consider the equation

mq̈(t) = −κq̇(t), t ∈ R (2.59)

with the friction force F = −κq̇ depending on velocity. Here, the real
number κ is positive. This problem has the solution

q(t) = e−κt/m, t ∈ R.

The motion is irreversible. To see this, observe that the time-reversed
process q = q(−t) = eκt/m is not a solution of (2.59). Since the equation
(2.59) is invariant under time translations, we expect energy conservation.
In fact, introducing the kinetic energy function

E(t) :=
mq̇(t)2

2

along with the heat function Q(t) := κ
∫ t

0
q̇(τ)2dτ , we get

E(t) − E(0) +Q(t) = const for all t ∈ R.

This is the first law of thermodynamics, telling us that the loss of kinetic
energy E(t)−E(0) is compensated by the production of heat energy Q(t)
during the time interval [0, t]. In fact,

Ė(t) = mq̈(t)q̇(t) = −κq̇(t)2 = −Q̇(t).

By friction, the real line is heated up. Let T (t) denote the temperature
of the real line at time t. Define the external entropy function Se by the
differential equation

Ṡe(t) :=
Q̇(t)
T (t)

.

Explicitly,

Se(t) = Se(0) +
∫ t

0

κq̇(τ)2

T (τ)
dτ for all t ∈ R.

The second law of thermodynamics tells us that there exists a function
S = S(t) called total entropy such that

Ṡ(t) ≥ Q̇(t)
T (t)

for all t ∈ R.
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�� electrons

�spin of nuclei

Fig. 2.21. Parity violation in β-decay of 60
27Co

Introducing the internal entropy Si by setting

S(t) = Se(t) + Si(t),

we get the inequality Ṡi(t) ≥ 0 or all times t ∈ R. Different choices of the
function Si lead to different thermodynamic models. The model is called
reversible iff

Ṡ(t) =
Q̇(t)
T (t)

for all t ∈ R.

This means that Si(t) = const for all t ∈ R. For example, a simple
reversible model is obtained by setting κ = 0 along with Si(t) :≡ 0, and

S(t) = Se(t) := const for all t ∈ R.

A detailed study of both phenomenological and statistical thermodynam-
ics can be found in Zeidler (1986), Vol. IV. We will show in Sect. 7.17
of Volume II of the present treatise that entropy is equivalent to infor-
mation. This explains why entropy plays such a crucial role in nature.

The time-evolution of a living being is always irreversible. Indeed, one
never observes that an old man develops back in time into a baby. Since
past and future can be distinguished by observing living beings, physicists
say that time is directed, or, time is equipped with an arrow.

(iii) Parity violation in weak interaction. The Andromeda galaxy is 2 million
light years far away from the earth. Suppose that there exist intelligent
creatures on a star of the Andromeda galaxy. We want to tell them the
definition of right-handed orientation. On earth we only need the first
three fingers of our right hand. But how can we communicate this posi-
tive orientation to distant creatures which might not have a right hand?
The answer to this is an experiment that was performed by Mrs. Chien-
Shiung Wu and coworkers at Columbia University, New York in 1957.
The effect is that the β-decay of 60

17Co-kernels results in the emission of
30 per cent more electrons antiparallel to the spin direction than parallel
(Fig. 2.21 on page 169). This shows that processes of weak interaction
are not always invariant under space reflections. Physicists call this the
violation of parity in weak interaction. Mrs. Wu starts her fundamental
paper (Phys. Rev. 105 (1957), 1431–1432) in the following way:
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In a recent paper on the question of parity in weak interaction (Phys.
Rev. 104 (1956)), Lee and Yang critically surveyed the experimen-
tal information concerning this question and reached the conclusion
that there is no existing evidence either to support or to refuse par-
ity conservation in weak interactions. They proposed a number of
experiments on beta decays and hyperon and meson decays which
would provide the necessary evidence for parity conservation or non-
conservation. . .

In 1957 Chen Ning Yang and Tsung Dao Lee were awarded the Nobel
prize in physics for their theoretical contributions to parity laws in weak
interaction. Mrs. Wu was awarded the first Wolf prize in physics in 1978.

Asymmetry under space reflections plays an important role in chemistry, too.
For example, amino acids existing on earth are left-handed.

2.7.1 Classical Symmetries

Consider the motion x = x(t), t ∈ R, of a mass point in the 3-dimensional
Euclidean space. The following transformations play a fundamental role.

(i) Translation: x(t) + a.
(ii) Rotation: Rx(t).
(iii) Space reflection: −x(t).
(iv) Time translation: x(t+ t0).
(v) Time reversal: x(−t).
(vi) Similarity transformation: λx(t).
(vii) Combined rescaling: λkx(λnt).
(viii) Rescaling of all physical units (choice of a new system of physical units).
(ix) Charge conjugation: Passage from a particle to its antiparticle. Replace

the charge Q by −Q.

If, in a physical system, the realization of the process x = x(t) implies that
the process x = x(t) + a is also possible, then we say that the physical
system is invariant under space translations. Similarly, we say that the system
is invariant under rotations, reflections, and so on. Such symmetries have
important consequences. For example,

Invariance under time translations, space translations, and rotations
imply conservation of energy, momentum, and angular momentum,
respectively.

This is a special case of the famous Noether theorem telling us that

Symmetries imply conservation laws.

This will be studied in Volume II.
Dimensional analysis. The very useful method (viii) above of dimen-

sional analysis in physics is based on the fact that physical quantities carry
a physical dimension. In this context, dimensionless physical quantities, like
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Table 2.11. Symmetry

invariance under transformations physical effect

time translation conservation of energy

space translation conservation of momentum

rotation conservation of angular momentum (spin)

Lorentz transformation
of space-time coordinates

theory of special relativity

Poincaré transformation
of space-time coordinates

energy-momentum tensor of relativistic
fields; CPT invariance of elementary
particle processes; quantum numbers

time reversal reversible processes; antiparticles

space reflection orientation; parity of elementary particles

diffeomorphism (change of
general space-time coordinates)

general theory of relativity

permutation bosons and fermions; Pauli’s exclusion
principle; supersymmetry

unitary gauge transformation
gauge theory and interaction;
quantum numbers (e.g., electric charge);
Standard Model of particle physics

similarity transformation
rescaling of processes;
dimensional analysis;
renormalization group (semigroup)

conformal transformation rescaling of processes; critical
phenomena and phase transitions

the fine structure constant α, play an outstanding role in physics. This will
be studied in the Appendix A.5 on page 960. There we will show that, sur-
prisingly enough,

• Newton’s gravitational law, and
• Kolmogorov’s law for turbulent flow

can be obtained from general rescaling arguments without using the specifics
of the physical situation.

Einstein’s theory of special relativity. Newton’s mechanics is invari-
ant under the Galileian transformation52

52 This is thoroughly studied in Zeidler (1986), Vol. IV, p. 28.
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x′ = x − vt, t′ = t.

In contrast to this, the Maxwell equations are not invariant under Galileian
transformations, but under Lorentz transformations (2.37) on page 112. Ein-
stein postulated that one has to use Lorentz transformations instead of
Galileian transformations. This led him to his revolutionary theory of special
relativity in 1905 which did not change the Maxwell equations, but Newton’s
classical equation of motion.

Prediction of new elementary particles via symmetry. Important
symmetries appearing in modern physics are listed in Table 2.11 on page
171. The development of modern elementary particle physics has strongly
been influenced by the use of symmetries. The existence of new particles has
always been predicted in order to avoid lack of symmetry. For example, Gell-
Mann predicted the existence of quarks by using symmetry arguments based
on the representation theory of the Lie group SU(3).

Conformal field theory. There holds the following rule of thumb:

The larger a symmetry group is, the stronger are its implications for
the structure of the physical system.

For example, in two dimensions, analytic functions generate conformal map-
pings. Therefore, the family of conformal mappings is huge in two dimensions.
Conformal field theory studies physical systems that are invariant under con-
formal mappings (general rescaling). Typical examples are

• string theory,
• 2-dimensional quantum field theories, and
• 2-dimensional lattice models near phase transitions in statistical physics.

In these cases, conformal symmetry determines the Green’s functions in an
almost unique manner. Let us motivate why conformal symmetry might be
important for phase transitions. Typically, the physical system (e.g., the lat-
tice model) possesses a characteristic length scale given by the finite correla-
tion length. However, near a phase transition, the fluctuations become large
and hence the correlation length becomes infinite in the limit. In other words,
the system loses its finite characteristic length scale in a phase transition, and
it becomes invariant under rescaling (conformal transformations).

Observe that the Maxwell equations in electromagnetism do not distin-
guish a characteristic length scale. Therefore, we expect that the Maxwell
equations are invariant under 4-dimensional conformal transformations of
the Minkowski space. This is indeed true. We will study this in Volume III.

2.7.2 The CPT Symmetry Principle for Elementary Particles

Elementary particle processes are invariant under the CPT symmetry. This
is one of the most fundamental symmetries in physics.

Folklore
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The Maxwell equations in electrodynamics. Suppose that we are given
an electric field E = E(x, t) and a magnetic field B = B(x, t) in vacuum.
According to Maxwell, these fields always satisfy the following four equations

ε0 div E = �, div B = 0,

curlE = −Ḃ, curlB =
Ė
c2

+ μ0J.
(2.60)

Here, we use the following notation: � electric charge density, J electric cur-
rent density vector, ε0 electric field constant of a vacuum, c velocity of light
in a vacuum, μ0 = 1/ε0c2 magnetic field constant of a vacuum. The Maxwell
equations (2.60) are valid in each inertial system. If we pass from one inertial
system to another one, then we have to use the Lorentz transformation for
the space-time coordinates and the tensor transformation law for the electro-
magnetic field tensor. The explicit transformation formulas for the electro-
magnetic field will be considered in Volume III. Note that it may happen that
the electric field is transformed into a magnetic field and vice versa. Choosing
a right-handed Cartesian (x, y, z)-coordinate system with orthonormal basis
vectors i, j,k, we have

x = xi + yj + zk, ∂ :=
∂

∂x
i +

∂

∂y
j +

∂

∂z
k.

Let E = E1i +E2j + E3k. By classical vector calculus, recall that

gradU := ∂U = Uxi + Uyj + Uzk, div E := ∂E = E1
x + E2

y + E3
z ,

and
curlE := ∂ × E = (E3

y −E2
z )i + (E1

z −E3
x)j + (E2

x −E1
y)k.

Let us introduce the following three operators C,P, T .

(i) Charge conjugation Q �→ −Q:

(C�)(x, t) := −�(x, t), (CJ)(x, t) := −J(x, t),
(CE)(x, t) := −E(x, t), (CB)(x, t) := −B(x, t).

(ii) Parity transformation x �→ −x:

(P�)(x, t) := �(−x, t), (PJ)(x, t) := −J(−x, t),
(PE)(x, t) := −E(−x, t), (PB)(x, t) := B(−x, t).

(iii) Time reversal t �→ −t:

(T�)(x, t) := �(x,−t), (TJ)(x,−t) := −J(x,−t),
(TE)(x, t) := E(x,−t), (TB)(x, t) := −B(x,−t).
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A simple computation shows that

The Maxwell equations (2.60) are invariant under the transforma-
tions C,P, and T .

For the transformation T , this means the following: If E,B, �,J are solutions
of the Maxwell equations (2.60), then so are

TE, TB, T�, TJ.

The same is true, if we replace T by either C or P .
It was discovered by Maxwell that the electromagnetic field can be rep-

resented in the form

E = −gradU − Ȧ, B = curlA.

Here, U and A are called the scalar and the vector potential of the elec-
tromagnetic field, respectively. As we will show on page 176, the potential
functions U and A are not uniquely determined by the electromagnetic field
E,B. This is intimately related to the idea of gauge symmetry in elemen-
tary particle physics. In order to obtain crucial transformation laws for the
electromagnetic field, we introduce the operators C,P, T in the following way.

(i) Charge conjugation Q �→ −Q:

(CU)(x, t) := −U(x, t), (CA)(x, t) := −A(x, t).

(ii) Parity transformation x �→ −x:

(PU)(x, t) := U(−x, t), (PA)(x, t) := −A(−x, t).

(iii) Time reversal t �→ −t:

(TU)(x, t) := U(x,−t), (TA)(x, t) := −A(x,−t).

Note that (c�,J) and (U/c,A) transform like (ct,x) under time reversal and
space reflections.53

The Schrödinger–Maxwell equation. The equation for the wave func-
tion ψ = ψ(x, t) of a quantum particle of mass m and electric charge Q in an
electromagnetic field E,B reads as

i�ψ̇ =
(P −QA)2

2m
ψ +QUψ (2.61)

53 As we will show in Volume III, this remains true for arbitrary Lorentz transfor-
mations.
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along with the generalized momentum operator P = −i�grad and

E = −gradU − Ȧ, B = curlA.

If we use the normalization condition
∫

R3 |ψ(x, t)|2d3x = 1, then the integral
∫

Ω

|ψ(x, t)|2d3x

tells us the probability for finding the particle in the regionΩ of the Euclidean
space at time t. The operators C,P , and T for the wave function are defined
as follows.

(i) Charge conjugation Q �→ −Q: (Cψ)(x, t) := ψ(x, t).
(ii) Parity operation x �→ −x: (Pψ)(x, t) := ψ(−x, t).
(iii) Time reversal t �→ −t: (Tψ)(x, t) := ψ(x,−t)†.

Suppose that the potential U only depends on the modulus ||x|| of the posi-
tion vector x. By a simple computation, we obtain that

The Schrödinger–Maxwell equation (2.61) is invariant under the
combined CPT transformation.

In addition, the Schrödinger–Maxwell equation is also invariant under gauge
symmetry. This will be considered in Sect. 2.7.3.

The basic symmetry of elementary particle processes. In contrast
to the Schrödinger–Maxwell equation, general processes for elementary par-
ticles are not always invariant under the single operations C,P, T . However,
the following holds true.

Elementary particle processes are invariant under the combined op-
eration CPT .

Intuitively, suppose that we observe a certain process for elementary particles.
Perform the following operations:

• reverse the time direction,
• replace particles by antiparticles and vice versa, and
• consider the process in a mirror.

This way, we get a new process which is also possible in nature.
In the 1950s, the fundamental CPT invariance principle was discovered by

Schwinger and Lüders and perfected by Pauli. A rigorous proof was given by
Res Jost (1965) on the basis of the G̊arding–Whightman axiomatic quantum
field theory introduced in the 1950s. Jost used sophisticated arguments based
on the analytic continuation of functions of several complex variables.54

54 See also Streater and Whightman (1968), Reed and Simon (1972), Vol. II, and
Bogoliubov et al. (1990).
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2.7.3 Local Gauge Symmetry

Local gauge symmetry plays a crucial role in elementary particle physics. In
fact, the Standard Model of particle physics is based on local gauge symme-
try. At this point, let us only discuss the basic idea of gauge invariance by
considering the Schrödinger–Maxwell equation as a prototype.

The Maxwell equations. Let f = f(x, t) be a real-valued smooth func-
tion on R

4. The transformation

Ug := U − ḟ , Ag := A + grad f

is called a gauge transformation of the 4-potential U,A. Recall that the dot
denotes the time derivative. The point is that such a gauge transformation
leaves the electromagnetic field invariant, that is,

Eg = E, Bg = B.

This follows from

Eg = −grad Ug − (Ȧ)g = −grad U + grad ḟ − Ȧ − grad ḟ

= −grad U − Ȧ = E,

and Bg = curlAg = curlA = B. In particular, the Maxwell equations
(2.60) are invariant under gauge transformations.

The Schrödinger–Maxwell equation. Let α = α(x, t) be a smooth
real-valued function on R

4. Consider the phase transformation

ψg(x, t) := eiα(x,t) ψ(x, t)

along with the transformation

Ug := U − ḟ , Ag := A + grad f.

In addition, we assume that the phase function α is related to the transfor-
mation function f by

f(x, t) =
�

Q
· α(x, t).

The transformation (ψ,U,A) �→ (ψg, Ug,Ag) is called a gauge transformation
of the Schrödinger–Maxwell equation (2.61). Since the wave function ψ is
transformed by a phase factor eiα(x,t) which depends on space and time, the
gauge transformation is also called a local symmetry transformation.

Theorem 2.4 The Schrödinger–Maxwell equation (2.61) is invariant under
gauge transformations.
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Explicitly, if ψ,U,A satisfy the equation (2.61) on page 174, then so do
ψg, Ug,Ag. This tells us that the Schrödinger–Maxwell equation describes
the prototype of a gauge field theory. In fact, we will show in Volume III that
the Standard Model of particle physics is of this type.
Proof. To simplify notation, choose the energetic system with � = 1.

(I) Covariant derivative. In order to get insight, let us introduce the co-
variant derivatives

∇tψ :=
∂ψ

∂t
+ iQUψ (2.62)

and

∇ψ := gradψ − iQAψ (2.63)

which generalize the classical partial derivatives of the wave function ψ. For
the components in a right-handed Cartesian coordinate systems, we also write

∇jψ :=
∂ψ

∂xj
− iQAjψ, j = 1, 2, 3

where A1, A2, A3 denote the components of the vector A. The point is that

In contrast to the classical partial derivatives, the covariant deriva-
tives transform like the wave function ψ under gauge transforma-
tions.

Explicitly, we will prove below that

(i) ∇g
tψ

g = eiα∇tψ and
(ii) ∇gψg = eiα∇ψ.
Generally, transformation laws of this type are crucial for gauge field theory,
as we will show in Volume III.

(II) Gauge invariance of the Schrödinger–Maxwell equation. Observe that

P −QA = −i(grad − iQA) = −i∇.

Therefore, using covariant derivatives, the Schrödinger–Maxwell equation
(2.61) on page 174 reads elegantly as

i∇tψ = −∇2ψ

2m
.

By (i) and (ii), this implies

i∇g
tψ

g = − (∇g)2ψg

2m

which is the desired invariance of the Schrödinger–Maxwell equation under
gauge transformations. In fact,
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(∇g)2ψg = ∇g(∇gψg) = ∇g(eiα∇ψ) = eiα∇(∇ψ).

In addition, ∇g
tψ

g = eiα∇tψ.
(III) Proof of (i). Observe that

∇g
tψ

g =
∂

∂t
(eiαψ) + iQUgψg

= (iα̇ψ + ψ̇)eiα + iQUψeiα − iα̇ψeiα.

Hence ∇g
tψ

g = eiα(ψ̇ + iQUψ) = eiα∇tψ.
(IV) Proof of (ii). By the product rule,

∇gψg = grad (eiαψ) − iQ
(

A + grad
α

Q

)

eiαψ

= ψ grad eiα + eiα grad ψ − iQAeiαψ − ieiαψ grad α.

Since grad eiα = ieiα grad α, we get

∇gψg = eiα(grad ψ − iQAψ) = eiα∇ψ.

�

2.7.4 Permutations and Pauli’s Exclusion Principle

The states of an elementary particle system are invariant under permutations
of the particles (principle of indistinguishable particles). More precisely, we
use

• even permutations for bosons, and
• odd permutations for fermions.

This guarantees that, as in (2.57), two identical fermions can never stay to-
gether in the same state (Pauli’s exclusion principle). According to Hermann
Weyl, permutation groups also play a crucial role in order to determine the
irreducible representations of the Lie group SU(3) which are fundamental for
elementary particle physics.55

2.7.5 Crossing Symmetry

Suppose that a reaction of the form

A+B → C +D

55 This will be studied in Volume V on the physics of the Standard Model. See also
the classic monograph by Weyl (1938) on the representations of the classical Lie
groups.
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for elementary particles A,B,C,D is observed in an experiment. Replacing
the particle B by its antiparticle B and crossing it over to the other side of
the equation, we get

A → B + C +D.

Similarly,
A+ C → B +D, C +D → A+B.

The crossing symmetry principle tells us that all of these processes are possi-
ble if conservation of energy is not violated. The same is true for the reversed
process C +D → A+B.

2.7.6 Forbidden Spectral Lines in Molecules

The representation theory for groups is an extremely useful tool in order to
understand the structure of both molecule spectra and scattering processes
for elementary particles. The same concerns the structure of processes for
nuclei of molecules.

Folklore

Suppose that an electron of a molecule jumps from the nth orbit with energy
En to the mth orbit with lower energy Em. According to Heisenberg and
Schrödinger, the transition probability for this jump is equal to

γnm :=
e2ω3

nm

3πc3�
|〈ψm|xψn〉|2

with the dipol transition amplitude

〈ψm|xψn〉 :=
∫

R3
ψm(x, t)†xψn(x, t)d3x. (2.64)

Here, e is the electric charge of the electron, and ωnm = (En −Em)/� is the
angular frequency of the emitted photon. Moreover,

ψn(x, t) = e−iEnt/�ϕ(x)

is the Schrödinger wave function of the electron on the nth orbit. The jump
of the electron is impossible as dipole radiation iff

〈ψm|xψn〉 = 0. (2.65)

For example, condition (2.65) is satisfied if ψn and ψm have the same par-
ity. In fact, in this case, ψn and ψm are both even (resp. odd) with respect
to x. Thus, the integrand from (2.64) is an odd function with respect to x,
and hence the integral vanishes. More generally, one can use the represen-
tation theory of the rotation group SO(3) in order to get (2.65) for special
values of angular momentum. In addition, the Wigner–Eckardt theorem tells



180 2. Phenomenology of the Standard Model for Elementary Particles

us the structure of the transition amplitude in terms of general values of an-
gular momentum. Similarly, symmetry properties of the S-matrix determine
the structure of transition probabilities for scattering processes of elementary
particles, including cross sections. This will be studied in later volumes. As an
introduction to the use of group theory in physics, we recommend the mono-
graphs by van der Waerden (1932), Novoshilov (1973), Fuchs and Schweigert
(1997), and Gilmore (2008).

2.8 Symmetry Breaking

Imperfection of matter sows the seed of death.
Thomas Mann (1875–1955)

Many phenomena in nature can be understood by using the fact that sym-
metries are disturbed under an external influence. We speak of symmetry
breaking which is frequently related to phase transition. As a typical process,
consider the cooling of water. At a critical temperature, water is transformed
into bizarre flowers of ice by a phase transition. Obviously, the ice flowers
possess a lower degree of symmetry than the homogeneous water. Mathemat-
ically, it is much easier to describe water than ice flowers. Similarly, physicists
expect that shortly after the Big Bang, there existed only one fundamental
force. In the process of cooling the universe, the gravitational force, the strong
force, the weak force, and the electromagnetic force crystallized out step by
step.

2.8.1 Parity Violation and CP Violation

Recall that the violation of mirror symmetry (i.e., parity P ) in weak interac-
tion was experimentally discovered by Mrs. Wu in 1955. After that discovery,
physicists hoped for some time that at least the combination of mirror sym-
metry and passage to antiparticles would be a universal symmetry in the
world of elementary particles (i.e., CP symmetry). For example, consider the
kaon decay

K0 → π+ + e− + νe (2.66)

caused by weak interaction. If CP symmetry would hold true, then the cor-
responding antiparticle reaction

K0 → π− + e+ + νe

considered in a mirror would have the same decay rate as the original process
(2.66). But in 1964 it was established experimentally by Cronin and Fitch
that this is not true. In 1980, Cronin and Fitch were awarded the Noble prize
in physics for the discovery of CP violation in nature. However, note that
the effect of CP violation is small.
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2.8.2 Irreversibility

The time-evolution of living beings is not reversible. There arises the impor-
tant question whether processes for elementary particles are always reversible.
The answer is ‘no’. In fact, each process for elementary particles is invariant
under the combined CPT symmetry transformation. If time reversal T would
be a universal symmetry, then the CP symmetry would be universally real-
ized. However, this contradicts the CP violation observed in experiments.

2.8.3 Splitting of Spectral Lines in Molecules

Many effects in quantum physics are based on the perturbation of degenerate
quantum states. For example, we speak of a degenerate energy E iff there
exist n linearly independent states

|1〉, |2〉, . . . , |n〉

in a Hilbert space which possess the same energy E. Under a small pertur-
bation, we obtain n slightly perturbed states

|1′〉, |2′〉, . . . , |n′〉

with the n energies E′
1, E

′
2, . . . , E

′
n. This splitting of energy values leads to a

splitting of spectral lines which can be observed by physical experiment. As
a simple mathematical model, consider the eigenvalue problem

H(ε)|k〉 = Ek|k〉, k = 1, 2

with the matrices

H(ε) :=

(
1 + ε 0

0 1 − ε

)

, |1〉 :=

(
1
0

)

, |2〉 :=

(
0
1

)

.

For ε = 0, we get the degenerate eigenvalue E1 = E2 = 1, which splits into
the two eigenvalues E1 = 1 + ε and E2 = 1 − ε for ε �= 0.

The Zeeman effect. For example, consider the electron of the hydrogen
atom on the nth orbit with angular momentum l. This electron can be in the
2l + 1 states

|l,m〉, m = l, l − 1, . . . ,−l

with energy En where l = 0, . . . , n− 1, and n = 1, 2, . . . . The hydrogen atom
is invariant under rotations. If we put the hydrogen atom into a constant
magnetic field B, then the full rotational symmetry is broken; it has to be
replaced by the rotational symmetry about the axis B. In 1926 Schrödinger
introduced his wave equation for the hydrogen atom, he computed the ener-
gies and wave functions for the hydrogen atom, and he developed stationary
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Fig. 2.22. Spontaneous symmetry breaking

perturbation theory.56 Using this, Schrödinger showed that, under the influ-
ence of the magnetic field B, the energy En of the unperturbed electron splits
into the 2l + 1 values

En +mΔE, m = l, l − 1, . . . ,−l.

This energy splitting is observed in the spectrum of the hydrogen atom as
Zeeman effect. For this experimental discovery, Pieter Zeeman was awarded
the Nobel prize in physics in 1902. The numbers l and m of the electron state
|l,m〉 are called angular quantum number and magnetic quantum number,
respectively.

The quark model. Similar group-theoretic arguments were used by
Gell-Mann in 1964. Organizing the mass spectrum of baryons and mesons
as pictured in Fig. 2.20 on page 160 and using the symmetry group SU(3),
Gell-Mann concluded that these particles (e.g., proton and neutron) are com-
posed particles. This led him to formulate the quark hypothesis which was
established experimentally a few years later by proton scattering experiments
at the Stanford linear accelerator SLAC.

2.8.4 Spontaneous Symmetry Breaking and Particles

If a physical process does not possess maximal symmetry, then we speak
of spontaneous symmetry breaking. For example, the gravitational field of
the sun is invariant under rotations. Orbits of maximal symmetry are cir-
cles. In order to compute the orbit of the planet Mars on the basis of Tycho
Brahe’s experimental data, Kepler started with the ansatz of a circle. After
time-consuming computations,57 Kepler found out that the orbit of Mars is
an ellipse which was published in his Astronomia Nova from 1609. It was
discovered in the 1960s by Goldstone and Higgs that spontaneous symme-
try breaking of the ground state of a quantum field enables us to model
mathematically the emergence of new particles called Goldstone and Higgs
particles. To explain the basic idea, consider the motion q = q(t) of a particle
of mass m in the complex plane
56 Perturbation theory for time-dependent processes was invented by Dirac in 1927.

As an introduction to perturbation theory, we recommend the classic monographs
by Kato (1966), Reed and Simon (1972), Vol. 4.

57 Note that Kepler could not use logarithms at this time, since logarithms were
introduced by John Napier only in 1614.
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mq̈(t) = −U ′(|q(t)|), t ∈ R (2.67)

under the influence of the Landau–Ginzburg potential

U(x) = (x2 − 1)2, x ∈ R

as pictured in Fig. 2.22. Here, q(t) is a complex number.

(i) Symmetry of the vacuum. Observe that the potential U(|q|) is invariant
under the group U(1) of rotations

q �→ eiϕq

about the origin in the complex plane C. Here, the rotation angle ϕ is
a real number. The particle states q of lowest potential energy are given
by the equation

U(|q|) = 0, q ∈ C.

Hence |q| = 1, i.e., the set of ground states coincides with the unit circle.
This set is called the vacuum by physicists. Observe that the vacuum is
invariant under the rotation group U(1).

(ii) Spontaneous symmetry breaking. Fix some ground state, say, q0 = 1,
and set

q = q0 + h

where h is a small real quantity. In other words, we consider a pertur-
bation of the vacuum state q0. Since U ′(x) = 2x(x2 − 1), the original
equation of motion (2.67) passes over to

mḧ = −2(1 + h)(2h+ h2).

Setting κ0 := 4 and neglecting terms of order O(h2) as h → 0, we get the
modified equation of motion

mḧ(t) + κ0h(t) = 0. (2.68)

This describes the motion of a harmonic oscillator with the angular fre-
quency ω0 :=

√
κ0/m. Physicists say that problem (2.68) is obtained

from the original problem (2.67) by spontaneous symmetry breaking.

The Higgs particle. Note the crucial fact that the Standard Model of
particle physics represents a gauge field theory. Such theories are generaliza-
tions of the Maxwell equations; they were considered first by Yang and Mills
in 1954. Originally, the messenger particles of each gauge theory are mass-
less. However, if one introduces an additional massive particle called Higgs
particle, then it is possible to equip the massless messenger particle with a
mass. The procedure (ii) above represents an oversimplified version of the
so-called Higgs mechanism which will be studied in Volume III. This way, in
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Fig. 2.23. Bifurcation of a flow

the Standard Model of particle physics, the messenger bosons W±, Z0 obtain
a mass of approximately 90 proton masses. These three particles were discov-
ered experimentally at CERN in 1983 by a large group of experimentalists.
Rubbia and van der Meer were awarded the Nobel prize in physics in 1984
for their decisive contributions to this challenging project.

2.8.5 Bifurcation and Phase Transitions

Bifurcation is caused by a loss of stability; it is accompanied by an increase
of complexity, and hence a decrease of entropy.

Folklore

Bifurcation theory studies the change of the qualitative behavior of systems
under an external influence. For example, this is related to pattern formation.
As a typical example, consider a viscous fluid between two parallel plates
heated from below. Let Tu and Tl denote the constant temperature of the
upper plate and the variable temperature of the lower plate, respectively. If
the temperature difference Tl − Tu reaches a critical value, then bifurcation
occurs. We observe the formation of hexagonal cells called Bénard cells first
observed by Bénard in 1901. As a simple example, consider the differential
equation

q̇(t) = μq(t) − q(t)3, t ∈ R

for the motion of fluid particles on the real line. The real parameter μ de-
scribes an external influence. The behavior of the trajectories is pictured in
Fig. 2.23.

• For μ < 0, the equation μq − q3 = 0 has the only solution q = 0. This
corresponds to an attractor at the point q = 0.

• For μ > 0, the equation μq − q3 = 0 has three solutions q = 0, q± := ±μ.
This corresponds to an repeller at the point q = 0 and two attractors at
the points q− and q+.

The bifurcation of this fluid appears at the critical parameter value μ = 0.
There exists a rich arsenal of bifurcations for dynamical systems describing,
for example, ecological catastrophes in nature (e.g., the extinction of ani-
mals). Many results on bifurcation theory along with substantial applications
in the sciences can be found in Zeidler (1986), Vols. I–IV.
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2.9 The Structure of Interactions in Nature

Force equals curvature in modern physics.
Folklore

2.9.1 The Electromagnetic Field as Generalized Curvature

Concerning the Schrödinger–Maxwell equation, it is a crucial observation that
the electromagnetic field E,B can be obtained by the commutation relation
for covariant derivatives of the wave function ψ. Explicitly, with respect to a
right-handed Cartesian coordinate system,58 we have

∇t∇−∇∇t = iQE (2.69)

and

∇1∇2 −∇2∇1 = −iQB3. (2.70)

Using cyclic permutation, we also get

∇2∇3 −∇3∇2 = −iQB1, ∇3∇1 −∇1∇3 = −iQB2.

In modern differential geometry, curvature is defined by the commutation
relations for covariant derivatives. According to (2.69) and (2.70), the elec-
tromagnetic field E,B can be regarded as the curvature to the covariant
derivatives generated by the Schrödinger–Maxwell equation. In order to prove
(2.69) and (2.70), observe that

∇t =
∂

∂t
+ iQU, ∇ = grad − iQA,

by (2.62) on page 177. Hence

∇t∇ =
∂

∂t
grad − iQAt

and
∇∇t = grad

∂

∂t
+ iQgradU.

Since grad commutes with ∂
∂t , we get

∇t∇−∇∇t = −iQAt − iQgradU = iQE.

This is (2.69). Similarly, it follows from

∇k = ∂k − iQAk, k = 1, 2, 3
58 Recall that x = x1i + x2j + x3k, and ∂k := ∂/∂xk. Similarly, the components of

B are denoted by B1, B2, B3, and so on.
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that
∇j∇k = ∂j∂k − iQ∂jAk.

Since ∂j∂k = ∂k∂j ,

∇1∇2 −∇2∇1 = −iQ(∂1A2 − ∂2A1) = −iQB3.

This proves (2.70).

2.9.2 Physics and Modern Differential Geometry

In modern differential geometry, one starts with the notion of parallel trans-
port, which corresponds to the transport of information in physics. Parallel
transport allows us the construction of covariant derivatives.59 Finally, com-
mutation relations between covariant derivatives lead us to the crucial notion
of curvature. This will be studied in Volume III by using the modern language
of fiber bundles, which fits best the idea of parallel transport of mathematical
objects. This approach called gauge field theory applies to

• the curvature of curves,
• the classical Gaussian curvature of 2-dimensional surfaces,
• the Riemann curvature of n-dimensional Riemannian manifolds,
• Einstein’s theory of general relativity and the Standard Model of modern

cosmology,
• the Cartan–Ehresmann curvature of fiber bundles,
• the Maxwell theory of electromagnetism with respect to the gauge group
U(1),

• the Yang–Mills gauge field theory with respect to the gauge group SU(n)
where n = 2, 3, . . . ,

• the Standard Model of elementary particle physics with respect to the
gauge group U(1) × SU(2) × SU(3),

• supergravity, and
• string theory.

Historical remarks. In the 20th century, physicists discovered step by
step that the fundamental interactions in nature can be described mathe-
matically by so-called gauge field theories. At this point let us only mention
the following. For example, in nature we observe electrons as basic particles.
Mathematically, electrons are governed by the 1928 Dirac equation which
combines Einstein’s 1905 theory of special relativity with Schrödinger’s 1926
quantum mechanics. Dirac noticed immediately that his equation predicts
the existence of an antiparticle to the electron which has the positive electric
charge e. In 1932 Anderson discovered the positron experimentally in cosmic
rays. Now to the point of gauge field theory.
59 Parallel transport and covariant derivatives are closely related to the notion of

‘connection’ which is basic for modern differential geometry.
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If we postulate that the Dirac equation is invariant under local sym-
metries (i.e., suitable phase transformations), then we have to intro-
duce mathematically an additional field.

It turns out that this additional field corresponds to the electromagnetic
field. According to Einstein, the electromagnetic field consists of light quanta
(photons). Roughly speaking, we can say that

The existence of the electron implies the existence of its antiparticle
and of the photon which mediates the interaction between electrons
and positrons.

The same remains true for the other interactions described by the Standard
Model of particle physics. The existence of the 12 basic particles (quarks and
leptons) of the Standard Model implies the existence of their antiparticles
and of the 12 interacting particles (8 gluons, the photon, and the three vec-
tor bosons W+,W−, Z0.) The number of the interacting particles is closely
related to the fact that the gauge group U(1)×SU(2)×SU(3) of the Standard
Model of particle physics has 1 + 3 + 8 = 12 dimensions.

In his 1915 theory of general relativity, Einstein described Newton’s grav-
itational force by the curvature of the 4-dimensional pseudo-Riemannian
space-time manifold. Élie Cartan discovered in the 1920’s that one can assign
the notion of curvature to fairly general mathematical objects. This general-
izes Gauss’ famous theorema egregium. In the 1950s, Ehresmann formulated
the final abstract mathematical theory of the curvature of fiber bundles. Yang
and Mills discovered in 1954 that it is possible to generalize Maxwell’s the-
ory of electromagnetism to more general noncommutative symmetry groups.
Nowadays we know that the curvature of fiber bundles is behind

• Einstein’s theory of general relativity,
• Maxwell’s theory of electromagnetism,
• quantum electrodynamics,
• the Standard Model of particle physics as a generalization of quantum

electrodynamics,
• string theory,
• supergravity theory, and so on.

In the terminology of physicists, all of these theories are gauge theories.
Mnemonically,

force = curvature.

This is the most important principle of modern physics. Since ancient times,
physicists have made strong efforts to understand the forces in nature. Math-
ematicians studied geometric objects and wanted to understand their cur-
vature. It turns out that physicists and mathematicians studied in fact the
same problem. This beautiful interaction between mathematics and physics
will be thoroughly studied in Volume II on quantum electrodynamics and in
Volume III on gauge theory.



3. The Challenge of Different Scales in Nature

Between quantum length scales (atomic diameters of about 10−10m) and
the earth’s diameter (106m) there are about 16 length scales. Most of tech-
nology and much of science occurs in this range. Between the Planck length
(10−35m) and the diameter of the visible universe there are 70 length scales;
70, 16, or even 2 is a very large number. Most theories become intractable
when they require coupling between even two adjacent length scales. Com-
putational resources are generally not sufficient to resolve multiple length
scales in three-dimensional problems and even in many two-dimensional
problems. The problem is not merely one of presently available compu-
tational resources, which are growing at a rapid rate. To obtain an extra
factor of 10 in computational resolution requires in the most favorable
case a factor 104 in computational resources for time-dependent three-
dimensional problems. When multiple length scales are in question, the
under-resolution of computations performed with today’s algorithms will
be with us for some time to come, and the essential role which must be as-
signed to theory, and to the design of algorithms of a new nature, becomes
evident. It is for this reason that nonlinear and stochastic phenomena, of-
ten described by the theory of coherent and chaotic structures, coupling
adjacent and multiple length scales, is a vital topic.1

James Glimm, 1991

3.1 The Trouble with Scale Changes

In physics we frequently have to perform singular limits when passing from
one essential scale to another one. There are the following typical examples:

(i) the singular limit from Einstein’s theory of general relativity to Newtonian
mechanics,

(ii) the singular limit from the mesoscopic Boltzmann equation to the macro-
scopic Navier–Stokes equations in continuum mechanics,

(iii) phase transitions as a singular limit related to the Ginzburg–Landau
equation,

(iv) thin films as singular limits,
(v) thin plates as singular limits of 3-dimensional elasticity theory,

1 J. Glimm, Nonlinear and stochastic phenomena: The grand challenge for partial
differential equations, SIAM Review 33 (1991), 626–643 (reprinted with permis-
sion).

E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics,
c© Springer-Verlag Berlin Heidelberg 2006, Corrected 2nd printing 2009
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Fig. 3.1. Degeneration of the light cone

(vi) the emergence of microstructures in nature and high-technology.

In what follows, let us discuss some basic ideas.
Ad (i). Letting the velocity of light go to infinity, c → ∞, the wave

equation
Utt

c2
− Uxx − Uyy − Uzz = 0

passes over to the Laplace equation

−Uxx − Uyy − Uzz = 0.

Roughly speaking, this is the limit from Einstein’s theory of relativity to New-
tonian mechanics. The causal structure of the theory of relativity is described
by the light cone

x2 + y2 + z2

c2
− t2 = 0.

This cone degenerates into the plane t = 0 as c → ∞. This is represented
schematically in Fig. 3.1. In terms of mathematics, this limit was studied first
by Friedrichs (1927).

Note that this limit is highly nontrivial, since the type of the partial
differential equation changes completely from the hyperbolic wave equation
to the elliptic Laplace equation. Important recent results were obtained by
Rendall (1994).

Ad (ii). In 1913 Hilbert investigated the Boltzmann equation. He posed
the problem of justifying the limit from the Boltzmann equation for a vis-
cous fluid to the Navier–Stokes equations in continuum mechanics. This cor-
responds to a passage

• from the mesoscopic length scale l = 10−5cm (the free path length of a
molecule)

• to the macroscopic length scale l = 1cm.

This famous, highly nontrivial problem was finally solved by Golse and Saint-
Raymond (2001).

Ad (iii). Phase transitions in superconductivity and superfluidity can be
modelled mathematically by the stationary Ginzburg–Landau equation. To
this end, one studies the singular limit ε → 0 for the following variational
problem
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∫

Ω

|gradψε|2d3x+
1
ε2

∫

Ω

(1 − |ψε|2)2d3x = min!,

ψε = g on ∂Ω.

where the boundary function g is given. This was done by Bethuel, Brézis,
and Hélein (1994) in a sophisticated manner. We refer to this monograph.
The basic ideas can be found in Zeidler (1995), Vol. 2, p. 152.

Ad (iv). Thin films play an important role in modern high technology.
From the mathematical point of view, the main task is to start with the
equations of continuum mechanics and to rigorously study the limit d → 0,
that is, the thickness goes to zero (Fig. 3.2). Recent sophisticated results can
be found in DeSimone, Kohn, Müller, and Otto (2002).

Ad (v). To study the limit d → 0 for thin plates of thickness d, it is possi-
ble to apply de Giorgi’s powerful technique of Γ -convergence for variational
integrals. For this, we refer to Friesecke, James, and Müller (2002). A brief
introduction to Γ -convergence can be found in Jost and Li-Jost (1998).

Ad (vi). The mathematical theory of microstructures tries to understand
the mathematical mechanisms which are responsible for the formation of mi-
crostructures. In this connection, singular scaling limits play a fundamental
role. As an introduction to this quite interesting, modern field of mathemati-
cal analysis, we recommend the lecture notes by Müller (1998) and Dolzmann
(2003).

Summarizing, the transition from one essential scale to another one is a
highly nontrivial task for mathematics. The dream of physicists is to create
a final theory for the four fundamental forces in the universe. However, the
experience of mathematicians in the past tells us that it will be extremely
difficult to pass from the Planck length l = 10−33cm to the macroscopic scale
l = 1 cm, in a mathematically rigorous way.

3.2 Wilson’s Renormalization Group in Physics

Each Lagrangian density represents a physical theory. The idea of flows for
ordinary differential equations can be generalized to flows (or semi-flows) in
the space of physical theories. It turns out that appropriate fixed points of
the semi-flow correspond to phase transitions. The physical idea behind this
fixed point is the observation that

n

d

↓

=⇒
d→ 0

Fig. 3.2. Thin film
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Physical systems are invariant under rescaling at phase transitions.

Intuitively, this is based on the following fact: Since the correlation length
becomes infinite at a phase transition (large fluctuations), the system loses its
typical length scale. We will study this in great detail in the later volumes. In
the collection of seminal papers that appeared in the journal Physical Review,
Joel Lebowitz writes the following:2

The Wilson renormalization group in statistical physics had antecedents in
quantum field theory by Gell-Mann and Low.3 Following Wilson’s work,
the renormalization group method has spread and had enormous influ-
ence on almost all fields of science. It provides a method for quantitative
analysis of the “essential” features of a large class of nonlinear phenom-
ena exhibiting self-similar structures. This includes not only scale invariant
critical systems (phase transitions) where fluctuations are “infinite” on the
microscopic spatial and temporal scale, but also fractals, dynamical sys-
tems exhibiting Feigenbaum period doubling, Kolmogorov–Arnold–Moser
theory (KAM theory) on critical resonances in celestial mechanics, singu-
lar behavior in nonlinear partial differential equations, and “chaos”. Even
where not directly applicable, the renormalization group often provides a
paradigm for the analysis of complex phenomenas. . . A lot of mathemati-
cal work remains to be done to make it into a well-defined theory of phase
transitions.

For his theory of critical phenomena in terms of the renormalization group,
Kenneth Wilson (born 1935) was awarded the Nobel prize in physics in 1982.
Wilson’s ideas changed the paradigm of theoretical physics.

(i) In the past, physicists studied specific theories like the motion of planets
around the sun or the motion of the electron around the nucleus of the
hydrogen atom.

(ii) Nowadays physicists want to study the behavior of physical phenomena
at quite different scales. The idea of the renormalization group helps to
bridge the different scales.

As a typical example for (ii), consider the cooling of the universe after the Big
Bang. To understand this, we have to study the behavior of elementary par-
ticles at completely different energy scales. Let us mention two fundamental
phase transitions in the early universe:

• First phase transition: Using the method of running coupling constants
in renormalized quantum field theory, physicists discovered that, 10−35

seconds after the Big Bang at a temperature of 1028K, strong interaction
2 J. Lebowitz, Statistical mechanics in the 20th century. In: H. Stroke (Ed.), The

Physical Review: The First Hundred Years, American Institute of Physics, New
York 1995, pp. 363–389 (reprinted with permission).

3 M. Gell-Mann and F. Low, Quantum electrodynamics at small distances, Rev.
Phys. 95(5) (1954), 1300–1317.
K. Wilson and J. Kogut, The renormalization group and the ε-expansion, Physics
Reports 12C (1974), 75–199.
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and electroweak interaction decoupled. This phase transition corresponds
to a particle energy of 1015 GeV.

• Second phase transition: 10−12 seconds after the Big Bang at a tempera-
ture of 1016K, weak and electromagnetic interaction decoupled. This cor-
responds to a particle energy of 103 GeV.

Note that the most powerful particle accelerator in the world will begin to
work at CERN (Geneva, Switzerland) in the year 2008. There, the particle
energy will be about 103 GeV. This means that we will be able in near future
to reach the energy scale of the second phase transition in a huge laboratory
on earth.

If we want to create a unified theory for all fundamental interactions in
the universe including gravitation, then we have to bridge 60 scales,

• from the radius of the visible universe, r = 1028cm,
• down to the Planck length, l = 10−33cm (see Table 3.1).

3.2.1 A New Paradigm in Physics

To emphasize the role of Wilson’s new paradigm in physics, let us quote from
the introduction to a series of lectures on the renormalization group given by
David Gross:4

Physics is scale dependent. For example, consider a fluid. At each scale of
distances, we need a different theory to describe its behavior:
• at ∼ 1 cm – classical continuum mechanics (Navier–Stokes equations),
• at ∼ 10−5cm – theory of granular structure,
• at 10−8 cm – theory of atom (nucleus plus electronic cloud),
• at 10−13cm – nuclear physics (nucleons),
• at ∼ 10−13cm – 10−18cm – quantum chromodynamics (quarks)
• at ∼ 10−33cm – string theory.
At each scale, we have different degrees of freedom and different dynamics.
Physics at a larger scale (largely) decouples from the physics at a smaller
scale. For example, to describe the behavior of a fluid at the scale ∼ 1cm,
we do not need to know about the granular structure, nor about atoms
or nucleons. The only things we need to know are the viscosity and the
density of the fluid. Of course, these values can be computed from the
physics of a smaller scale, but if we found them out in some way (for
example, measurement), we can do without smaller scale theories at all.
Similarly, if we want to describe atoms, we do not need to know anything
about the nucleus except its mass and electric charge.

Thus, a theory at a larger scale remembers only finitely many parameters
from the theories at smaller scales, and throws the rest of the details away.

4 These lectures were part of the Special Year 1996-97 at the Institute for Advanced
Study in Princeton, New Jersey, devoted to the physics and mathematics of
quantum field theories. See P. Deligne, E. Witten et al., Lectures on Quantum
Field Theory, Vol. 1, pp. 551–593, Amer. Math. Soc., Providence, Rhode Island
2000 (reprinted with permission).
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Table 3.1. From macrocosmos to microcosmos

length scale
in centimeter

physical phenomenon

1028cm radius of the visible universe

1023 radius of the Milky Way

1018 light year

1015 radius of the solar system

1011 radius of the sun

109 radius of the earth

105 wave length of radio waves

103 − 10−1 wave length of sound

3.75 cm wave length of the cosmic background radiation

10−3 wave length of heat radiation

4 · 10−7 − 8 · 10−7 wave length of visible light

10−7 radius of molecules

10−8 radius of atoms

10−8 wave length of X rays

10−13 radius of protons

10−13 wave length of cosmic rays

10−14 Compton wave length of the electron

10−17 Compton wave length of the proton

< 10−18 radius of quarks and electrons

10−33 cm Planck scale, strings, quantum gravitation

More precisely, when we pass from a smaller scale to a larger scale, we
average over irrelevant degrees of freedom. Mathematically, this means
that they become integration variables and thus disappear in the answer.

This decoupling is the reason why we are able to do physics. If there was
no decoupling, it would be necessary for Newton to know string theory to
describe the motion of a viscous fluid. . .

The general aim of the renormalization group method is to explain how
this decoupling takes place and why exactly information is transmitted
from scale to scale through finitely many parameters. In quantum theory,
decoupling of scales is not at all obvious. Indeed, because of the uncertainty
principle, we have to work at all scales at once. The renormalization group
describes why decoupling survives in quantum theory.
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Table 3.2. Typical energy scales

energy in
Giga electron volt

physical phenomenon

10−8 binding energy of the electron in the hydrogen atom;
energy of chemical processes

10−3 rest energy of the electron

1 GeV rest energy of the proton

102 rest energy of the vector bosons W+, W−, Z0

103 weak and electromagnetic interaction decouple at this
particle energy

103 particle energy at the new CERN accelerator in 2008

1014 energy consumption of a human being per day

1015 strong and electroweak energy decouple at this particle
energy

1019 Planck energy

1027 rest energy of a stone (mass of 1kg)

1029 energy production of a hydrogen bomb

1036 energy production of the sun per day

1052 rest energy of the earth

1057 rest energy of the sun

1068 rest energy of the Milky Way

1079 rest energy of the visible universe

3.2.2 Screening of the Coulomb Field and the Renormalization
Group of Lie Type

The infinitesimal transformations of a Lie group know all about the local
structure of the Lie group itself.

Folklore

My text for today is a paper by Francis Low and Murray Gell-Mann.5 It is
“Quantum Electrodynamics at Small Distances” published in the Physical
Review in 1954. This paper is one of the most important ever published
in quantum field theory. . . Gell-Mann and Low started by considering an
ancient problem, the Coulomb force between two charges and how this
force behaves at very short distances. . . The important thing about the
Gell-Mann–Low paper was the fact that they realized that quantum field
theory has a scale invariance, that the scale invariance is broken by particle
masses but these are negligible at very high energy or very short distances

5 S. Weinberg, Why the renormalization group is a good thing. In: A. Guth, K.
Huang, and A. Jaffe (Eds.) (1983), Asymptotic Realms of Physics, Essays in
Honor of Francis Low, MIT Press, Cambridge, Massachusetts, pp. 1–19 (reprinted
with permission).
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if you renormalize in an appropriate way, and that then the only things
that’s breaking scale invariance is the renormalization procedure, and that
one can take that into account by keeping track of the running coupling
constant a(r).

Steven Weinberg, 1983

It is typical for the coupling constants of the Standard Model of particle
physics that they depend on the physical situation, for example, the energy-
momentum transfer of a scattered particle. We speak of running coupling
constants. This has been established experimentally. In 1994, the Particle
Data Group reported that, for scattering processes of particles at an energy of
91 GeV,6 one does not have to use the classical electromagnetic fine structure
constant α = 1/137.04, but rather the effective fine structure constant

a =
1

128.87 ± 0.12
.

To begin with, we want to study the running coupling constant (i.e., the
running fine structure constant) in the case of quantum electrodynamics. We
will work in the energetic system, that is, we set c = � = ε0 := 1.

The renormalized electric charge. The classical electrostatic Coulomb
field of an electron with electric charge −e and mass me is given by

E = −gradU

along with the Coulomb potential

U(x) := − e

4πr
(3.1)

where r := ||x||. Recall that the electric charge −e is related to the electro-
magnetic fine structure constant α by

α :=
e2

4π
=

1
137.04

.

We will also use the reduced Compton wave length7 λe = 1/me. The force F
between two electrons is equal to

F = −gradV

with V = −eU. Hence
V (x) =

α

r
.

In 1935 Sperber and Uehling showed that quantum effects change the electric
field E = −gradU of a charged particle. For an electron, we have to replace
6 This is the rest energy of the Z0 boson.
7 In the SI system, λe = 3.86 · 10−11m.
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(3.1) by the expression8

U(x) = − e

4πr

(

1 +
2α
3π

ln
(
λe

r

)

− 2α
3π

(
C +

5
6

))

+O(α2), α → 0 (3.2)

if r/λe � 1, and

U(x) = − e

4πr

(

1 +
α

4
√
π

(
λe

r

)3/2

e−2r/λe

)

+O(α2), α → 0

if r/λe � 1. Therefore, quantum effects influence only the short-distance
behavior of the electric field E. These effects are called vacuum polarization
by physicists. Here, C = 0.577 . . . is the famous Euler constant. For the force
between two electrons, F = −eE = −gradV, we get

V (x) =
α

r

(

1 +
α

4
√
π

(
λe

r

)3/2

e−2r/λe

)

+O(α2), α → 0

if r/λe � 1. In a classical experiment, we measure the force between two
electrons at a large distance r. It turns out that this yields the fine structure
constant α = 1/137.04, and hence the electron charge e =

√
4πα. For short

distances, r/λe � 1, we obtain

V (x) =
a(r)
r

with9

a(r) := α+
2α2

3π

(

ln
(
λe

r

)

− C − 5
6

)

+O(α3), α → 0. (3.3)

We call a(r) the running fine structure constant, since it depends on the
distance, r. The effective electron charge −e(r) is defined by

e(r)2 := 4πa(r).

In quantum electrodynamics, the coupling constant between the Dirac field
of the electron and the electromagnetic field is given by κ = e. Therefore, we
call

κ(r) = e(r) =
√

4πa(r)

8 In terms of modern quantum electrodynamics, the potential U is obtained by
using renormalized second-order perturbation theory. This will be studied in
Volume III. See also Landau and Lifshitz (1982), Vol. IV, Sect. 111, and Greiner,
Reinhardt (1996a), p. 252.

9 Note that ln(λe/r) > 0 if 0 < r < λe.
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the running coupling constant of quantum electrodynamics. In contrast to
the classical Coulomb law (3.1), the modified Coulomb law (3.2) contains
the distinguished length scale λe. This is an important consequence of the
renormalization procedure.

The basic ideas of the renormalization group in quantum elec-
trodynamics. In 1954 Gell-Mann and Low studied the Coulomb potential
for short distances in all orders of perturbation theory. They found out that
the approach can be substantially simplified by using general symmetry ar-
guments which correspond to the renormalization group. Let us discuss the
basic ideas by using some heuristic arguments. Choose the distance R > 0 as
a fixed, sufficiently small parameter. Suppose that the coupling constant a(R)
is known at the given distance R. It is our goal to determine the coupling
constant a(r) for distances r different from the initial distance R. Below we
will obtain the following approximative formula

a(r) =
a(R)

1 − 2a(R)
3π ln

(
R
r

) (3.4)

for all distances r > rcrit(R). Naturally enough, the critical distance rcrit(R)
is given by the zero of the denominator, that is,

1 − 2a(R)
3π

ln
(

R

rcrit(R)

)

= 0.

In particular, it follows from (3.3) that a(R) = α, up to terms of order O(α2).
Hence

rcrit(R) = 10−293m.

This critical distance is extremely small. Finally, we obtain the crucial limit

lim
r→rcrit+0

a(r) = +∞.

Summarizing, we get the following in quantum electrodynamics.

There exists a tiny critical distance rcrit such that the effective electric
charge of two electrons at distance r > rcrit becomes infinite if the
distance r goes to rcrit.

We will not get any information about the behavior for distances r < rcrit.
The situation changes dramatically if we replace electrons by quarks. The
strong force between two quarks vanishes if the distance between two quarks
goes to zero. This will be discussed in Sect. 3.2.3 on page 203.

In order to get the crucial relation (3.4), we will use the elegant technique
of the renormalization group. The essential ingredients of this technique read
as follows:

• dimensional analysis,
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• the algebraic renormalization-group equation (self-similarity),
• the equivalent renormalization-group differential equation (also called the

infinitesimal renormalization-group equation), and
• the solution of the renormalization-group differential equation.

We will also show that the renormalization group represents a local 1-dimen-
sional group (also called local flow), in the sense of the classical theory due
to Sophus Lie (1842–1899).

Dimensional analysis and the renormalization-group equation.
The quantities a(r), r/R, and r/λe = rme are dimensionless in the energetic
system. By dimensional analysis, we start with the ansatz

a(r) = G
(
a(R),

r

R
, rme

)

for the running coupling constant a(r). We now make the crucial assumption
that, for small distances r, the function G does not depend on the electron
mass me. Thus, we get the key equation

a(r) = G
(
a(R),

r

R

)
. (3.5)

We call this the renormalization-group equation. This equation tells us that
the running coupling constant a(r) at the distance r depends on both the run-
ning coupling constant a(R) at the distance R and the ratio r/R. Generally,
in physics, such a situation is characterized by the key word self-similarity.
The classical Lie theory can be used in order to analyze the general structure
of the solutions of equation (3.5). The idea is to pass over from (3.5) to an
equivalent differential equation which is called the renormalization-group dif-
ferential equation (or the infinitesimal renormalization-group equation). As a
preparation for this, let us write G = G(a, x), and let us introduce the crucial
Gell–Mann–Low beta function

β(a) := −Gx(a, 1).

It follows from (3.5) that a = G(a, 1). By Taylor expansion,

G(a, x) = G(a, 1) +Gx(a, 1)(x− 1) + o(x− 1)
= a− β(a)(x− 1) + o(x− 1), x → 1.

Roughly speaking, the beta function a �→ β(a) knows all about the local
behavior of the function G.

The renormalization-group differential equation. Using the re-
placement R ⇒ r and r ⇒ r +Δr, it follows from (3.5) that

a(r +Δr) = G

(

a(r),
r +Δr

r

)

, a(r) = G(a(r), 1).
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This implies

a′(r) = lim
Δr→+0

a(r +Δr) − a(r)
Δr

=
Gx(a(r), 1)

r
.

This yields the crucial renormalization-group differential equation

a′(r) = −β(a(r))
r

. (3.6)

Determination of the beta function. It remains to compute the beta
function. To this end, we will use the additional information given by equation
(3.3) which follows from renormalized perturbation theory. By (3.3), we get

a(r) = α,

and

a′(r) = −2α2

3πr
,

up to terms of order O(α3). This motivates the differential equation

a′(r) = −2a(r)2

3πr
. (3.7)

This is the desired renormalization-group differential equation (3.6) with the
beta function β(a) := 2a2/3π. Summarizing,

• the general structure of the renormalization-group differential equation
(3.6) follows from dimensional analysis (Lie group theory);

• the specific form of this equation depends on the beta function which fol-
lows from renormalized perturbation theory.

The same method can be applied to the Standard Model of particle physics.
Rescaling. To simplify the approach, it is convenient to rescale the dis-

tance r by introducing the new variable

t := ln
( r

R

)
, r > 0. (3.8)

Setting b(t) := a(r), the differential equation (3.7) passes over to the rescaled
renormalization-group differential equation:

b′(t) = −2b(t)2

3π
(3.9)

along with the initial condition b(0) = a(R). This equation has the unique
solution

b(t) =
a(R)

1 + 2
3π a(R)t

for all t > −3π/2a(R), which proves the claim (3.4).
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Summarizing, the renormalization group approach adds a global as-
pect to local renormalized perturbation theory (3.3).

This is one of the crucial advantages of renormalization group theory. It
remains to show that there is indeed a symmetry and hence a group behind
(3.5). To this end, we will use the classical Lie theory for differential equations.

The relation to Lie’s theory of additive one-parameter groups.
The renormalization-group differential equation (3.9) can be written as

b′(t) = −β(b(t)),

along with the initial condition b(0) = a(R). Since the beta function does not
explicitly depend on time t, this differential equation describes a dynamical
system. Let b = b(t) be a solution. In terms of physics, we regard this as the
trajectory of a fluid particle on the real line. Define

Ftb(0) := b(t).

The flow operator Ft sends the initial position b(0) of the fluid particle at time
t = 0 to the position b(t) of the particle at time t. Obviously, F0b(0) = b(0),
and

Fs(Ftb(0)) = Fsb(t) = b(t+ s) = Ft+sb(0).

This implies that

(i) F0 = id, and
(ii) FtFs = Ft+s for all real numbers t, s in some open neighborhood of

t0 = 0.

Following Sophus Lie, we call the family {Ft} of operators Ft a local additive
one-parameter group (or a local flow).

The multiplicative one-parameter group. Let us now reformulate
this in terms of the original parameter r. Consider the renormalization-group
differential equation

a′(r) = −β(a(r))
r

. (3.10)

Let a = a(r) be a solution. Define

Gra(1) := a(r).

With respect to the variable t = ln r, the function a(r) := Fln r a0 is a solution
of (3.10) with a(1) = a0. Hence

Gra(1) = Fln r a(1).

This implies that
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(i) G1 = id, and
(ii) GrGR = GrR for all real numbers r and R in some open neighborhood of

r0 = 1.

Define G(a, r) := Gra. We want to show that

G
(
a(R),

r

R

)
= a(r).

This is the renormalization-group equation. In fact, GRG1/R = id implies
G1/R = G−1

R . Therefore,

Gr/R a(R) = GrG1/R a(R) = GrG−1
R a(R) = Gr a(1) = a(r).

The family {Gr} is called a local multiplicative one-parameter group.
Historical remarks. The idea of the renormalization group in quantum

electrodynamics can be traced back to a paper by Stückelberg, Petermann
(1953), and by Gell-Mann, Low (1954). Based on Lie’s theory of infinitesimal
transformations and the Dyson transformation in renormalization theory, the
mathematical theory of the renormalization group in quantum field theory
was developed by Bogoliubov and Shirkov (1956). Nine years later, Kadanoff
(1965) applied the idea of renormalization group to studying the Ising model
for ferromagnets near the phase transition. As a powerful general tool for
modern physics, the theory of renormalization group was established by Wil-
son around 1970 (see Wilson and Kogut (1974)). For this, he was awarded
the Nobel prize in physics in 1982. In particular, Wilson used the idea of
renormalization group in order to compute

• critical exponents for the physical laws which govern phase transitions of
many-particle systems (e.g., fluids, gases, materials), and

• the high-energy asymptotics of quantum fields via the method of the sin-
gularities of operator products on the light cone, and

• the structure functions for the cross sections of scattering processes via the
operator-product method.

In the 1980s, Polchinski (1984) developed a new approach to the renor-
malization of quantum field theories by using a semi-flow which approaches
the renormalized Lagrangian in a large number of steps. This revolutionized
renormalization theory in both quantum field theory and statistical physics.
This can be found in the monograph by M. Salmhofer (1999). For a detailed
history of the renormalization group, we refer to L. Brown, Renormalization:
From Lorentz to Landau and Beyond, Springer, New York, 1993. See also
Rivasseau’s remark on the modern strategy in renormalization theory quoted
on page 851. This strategy has been strongly influenced by Wilson’s work on
the renormalization group. For recent progress in the theory of the renormal-
ization group due to Connes, Kreimer, and Marcolli, we refer to Sect. 15.4.6
on page 861.
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3.2.3 The Running Coupling Constant and the Asymptotic
Freedom of Quarks

In 1973 Politzer, Gross, and Wilczek realized that the plus sign in the
logarithmic term (3.2) which prevented the use of perturbation theory in
quantum electrodynamics at short distances, for non-Abelian gauge the-
ories is a minus sign10. . . Politzer, Gross, and Wilczek instantly realized
that this explains an experimental fact which had been observed in a fa-
mous experiment on deep inelastic electron-proton scattering done by an
MIT-SLAC collaboration in 1968. This was that at very high momentum
transfer, in other words, at very short distances, the strong interactions
seem to turn off and the formulas for the form factors in deep inelastic elec-
tron scattering seem to obey a kind of naive scaling,“Bjorken scaling.”11

Steven Weinberg

We say that some interaction between particles is asymptotically free iff the
particles move freely for short distances (or high energies). In terms of the
running coupling constant κ(r), by asymptotic freedom we understand that
the function r �→ κ(r) is continuous on a reasonably large interval ]0, r0[, and

lim
r→+0

κ(r) = 0.

This means that the interaction vanishes for short distances. Typically, quarks
are free particles at short distances.

Lack of asymptotic freedom in quantum electrodynamics. By
(3.4),

a(r) =
a(R)

1 − 2a(R)
3π ln(R

r )
(3.11)

for all distances r > rcrit(R). The running coupling constant a = a(r) is
defined on the interval ]rcrit(R),∞[, and

lim
r→rcrit+0

a(r) = +∞.

Note that rcrit = 10−293m. This is an extremely small distance compared
with the radius of the proton, r = 10−15m. At the critical distance rcrit, the
electromagnetic interaction becomes infinite, i.e., quantum electrodynamics
breaks down. Observe that physicists expect that already below the Planck
length, r = 10−35m, quantum field theory breaks down. For such short dis-
tances, physicists believe that the structure of space and time change dramat-
ically, and quantum field theory has to be replaced by quantum gravitation.
Nowadays, there exist several proposals for quantum gravitation. However,
10 See Politzer (1973), Gross and Wilzek (1973). The three physicists were awarded

the Nobel prize in physics in 2004.
11 In: A. Guth, K. Huang, and A. Jaffe (Eds.) (1983), pp. 1–19 (reprinted with

permission).
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a convincing and generally accepted theory of quantum gravitation is still
missing.

A model for asymptotic freedom. For quantum electrodynamics, by
(3.3) we have

a(r) = α+ σ · 2α2

3π

(

ln
(
λe

r

)

− C − 5
6

)

(3.12)

with σ = 1 if r/λe � 1. According to (3.7), the renormalization-group differ-
ential equation reads as

a′(r) = −σ · 2a(r)2

3πr
,

with the solution

a(r) =
a(R)

1 − σ · 2a(R)
3π ln(R

r )
.

Choose now the converse sign, σ := −1. Then, the situation changes com-
pletely compared with quantum electrodynamics. We now have a(r) > 0 for
all r ∈]0, R[, and

lim
r→+0

a(r) = 0.

This is a model for asymptotic freedom which resembles the situation in
strong interaction to be considered below.

Running coupling constants in gauge theories. The method de-
scribed above for quantum electrodynamics can be generalized to gauge field
theories with the gauge groups U(1) and SU(n) where n = 2, 3, ..., along with
the coupling constant κ. Let us introduce the energy-momentum 4-vector

P := (E,p)

with the Minkowski square P 2 = E2−p2.Recall that we work in the energetic
system with c = � = ε0 = 1. The coupling constant

κ(P )

depends on the energy-momentum 4-vector P of the physical experiment
under consideration. We speak of running coupling constant. Let us also
introduce the running fine structure constant of the theory by letting

α(P ) :=
κ(P )2

4π
.

In the special case of quantum electrodynamics, we have κ(P ) = e(P ), where
−e(P ) is the running effective electron charge which depends on P . Comput-
ing the renormalized radiative corrections in lowest order, one obtains the
following renormalization group differential equation
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dα(P )
d lnP 2

= −βnα(P )2

4π
(3.13)

along with the initial condition α(P0) = α0. The constant βn depends on the
choice of the gauge group and the number of fermions, Nfermion. Explicitly,

βn :=

{
−2

3Nfermion : gauge group U(1), n = 1
11
3 n− 2

3Nfermion : gauge group SU(n), n = 2, 3, . . .

The solution of the differential equation (3.13) reads as

α(P ) =
α(P0)

1 + α(P0)
4π · βn ln

(
P 2

P 2
0

) . (3.14)

For fixing the energy-momentum scale P0, the value α(P0) of the fine struc-
ture constant has to be determined by the experiment. As typical examples,
let us consider both quantum electrodynamics and quantum chromodynam-
ics.

(i) Quantum electrodynamics (electromagnetic interaction): In this case, we
have the gauge group U(1) and one fermion, namely, the electron. Hence
β1 = −2

3 . For the running fine structure constant,

α(P ) =
α(P0)

1 − α(P0)
6π ln

(
P 2

P 2
0

) .

Let us pass from energy-momentum to distance r. High energies P 2 cor-
respond to small distances r. Therefore, it is reasonable to replace the
dimensionless quantity P 2/P 2

0 by (r0/r)γ for some γ > 0. Hence

α(r) =
α(r0)

1 − α(r0)γ
6π · ln

(
r0
r

)

for small distances, r. In first-order approximation, α(r0) = α = 1/137.04.
This implies

α(r) =
α

1 − αγ
6π · ln

(
r0
r

) .

Writing a(r) instead of α(r) and choosing γ = 4, this is precisely formula
(3.11) which has been motivated in the preceding section.

(ii) Quantum chromodynamics (strong interaction): Here, we have six quarks
along with the gauge group SU(3). Hence βQCD = β3 = 11− 4 = 7. This
implies

αQCD(P ) =
αQCD(P0)

1 + 7αQCD(P0)
4π · ln(P 2

P 2
0
)
. (3.15)
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Observe that the renormalization-group differential equation above is only
an approximation. If we pass to higher-order perturbation theory, then this
differential equation has to be refined which leads to corrections of the basic
formula (3.14). Higher-order corrections can be found in the monograph by
Böhm, Denner, and Jost (2001), Sect. 2.6.

High-energy asymptotic freedom in strong interaction. For strong
interaction, equation (3.15) tells us that

lim
P 2→+∞

αQCD(P ) = 0.

This is the famous asymptotic freedom of strong interaction discovered in
1973 by Politzer, Gross, and Wilczek. From the physical point of view, this
means that quarks are free particles at very high energies or very small dis-
tances (e.g., in the early universe or inside the proton).

3.2.4 The Quark Confinement

In 1964 Gell-Mann introduced quarks as a mathematical construction for
simplifying the classification of elementary particles. But he hesitated to
consider them as real particles, since the experiments in particle accelera-
tor did not prove the existence of such particles. The situation changed in
1967 when electron-proton scattering experiments at SLAC (Stanford Uni-
versity) revealed an internal structure of the proton. Nowadays, we assume
that there exists a quark confinement, which prevents quarks from living
outside of hadrons in our present world. A deep theoretical understanding
of quark confinement is a true challenge for modern theoretical physics. In
1974 Wilson initiated a discrete version of the Standard Model called lattice
gauge field theory. On the basis of this lattice approach, special supercom-
puters have been constructed which are able to compute, for example, the
proton mass as a bound state of three quarks.

In addition, there exist phenomenological models for explaining quark
confinement. For example, bag models are based on the construction of ef-
fective potentials which do not allow the quarks to leave the bag. Other so-
called chromoelectric models use similar methods as in superconductivity by
replacing magnetic fields with electric fields. In this direction, a fundamental
approach was developed by Seiberg and Witten (1994). This led to the for-
mulation of the famous Seiberg–Witten equation which plays a fundamental
role in modern differential geometry and topology.12

12 As an introduction to the Seiberg–Witten equation, we recommend Moore (1996)
and Jost (2000a). See also the survey article by Donaldson (1996). The Seiberg–
Witten equation simplifies dramatically the sophisticated Donaldson theory for
constructing topological invariants of 4-dimensional manifolds via the Yang–Mills
equation.
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Fig. 3.3. Unification of fundamental interactions

3.2.5 Proton Decay and Supersymmetric Grand Unification

There may be all sorts of new physical effects that come into play at particle
energies above 1015 GeV. For example, there’s no real reason to believe that
baryon number would be conserved at such energies. . . We might expect
a proton mean lifetime of the order of magnitude of (1015GeV)4/(α2m5

p),
essentially as estimated in a paper by Georgi, Quinn, and me (Phys. Rev.
Lett. 33, 451). This comes out to be about 1032 years.

Steven Weinberg13

Figure 3.3 shows the running coupling constants αQED, αEW , αQCD of quan-
tum electrodynamics, electroweak interaction and strong interaction (quan-
tum chromodynamics), respectively. Surprisingly enough, the curves of the
three coupling constants intersect each other at a typical particle energy of
1015 GeV. Therefore, physicists conjecture that above this critical particle
energy, there exists only one fundamental interaction which can be described
by a theory called Grand Unified Theory (GUT). In the framework of GUT,
the proton is not stable anymore. Experiments show that the mean lifetime
of a proton is more than 1032 years. This disqualifies the original GUT based
on the gauge group SU(5). However, supersymmetric variants of GUT are
still possible, since they possess additional degrees of freedom. Interestingly
enough, the intersection of the running coupling constant curves in Fig. 3.3
is especially sharply concentrated at one point in the case of supersymmetric
GUT. This seems to underline the importance of superymmetric theories.

3.2.6 The Adler–Bell–Jackiw Anomaly

In 1969 Adler, Bell, and Jackiw pointed out that there exist special Feynman
diagrams in the theory of electroweak interaction which cause nasty divergent
expressions called Adler–Bell–Jackiw anomalies. Fortunately enough, these
anomalies disappear if one postulates the following lepton–quark symmetry:

The number of leptons is equal to the number of quarks.

This condition is fulfilled in the Standard Model of particle physics. Here, we
have six leptons and six quarks. For the theory of anomalies, we refer to the
monograph by Fujikawa and Suzuki (2004).
13 In: A. Guth, K. Huang, and A. Jaffe (Eds.) (1983), pp. 1–19 (reprinted with

permission).
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(a) attracting

�  x = 0 x1 x0 

(b) repelling

x = 0 x0 x1�

Fig. 3.4. Discrete dynamical system

3.3 Stable and Unstable Manifolds

The method of Wilson’s renormalization group reduces the computation of
critical phenomena in physics to the study of dynamical systems near a sta-
tionary point. To explain the basic ideas concerning stability and instability,
let us consider discrete dynamical systems.

Iterative methods, stable manifolds, and unstable manifolds. For
given real parameters a and x0, the iterative method

xn+1 = axn, n = 0, 1, . . .

is convergent (resp. divergent) for |a| < 1 (resp. |a| > 1). In the case of
convergence, we have

lim
n→∞

xn = 0.

The limit x = 0 is the unique solution of the fixed point equation

x = ax

if a �= 0. We say that this fixed point is attracting (resp. repelling) if |a| < 1
(resp. |a| > 1) (Fig. 3.4). In terms of physics, we set x(nΔt) := xn. This can
be regarded as the position of a particle at the discrete time nΔt.

Let us now study the more general 2-dimensional iterative method

xn+1 = 1
2xn, yn+1 = −2yn, n = 0, 1, 2, . . . (3.16)

The corresponding equation

x = 1
2x, y = −2y

has the unique fixed point (x, y) = (0, 0). The behavior of the iterative
method (3.16) critically depends on the choice of the starting point.

• For the starting point (x0, 0), the iterative method (3.16) converges to the
fixed point (0, 0) along the x-axis which is called a stable manifold.

• In contrast to this, for the starting point (0, y0) with y0 �= 0, the itera-
tive method (3.16) runs away along the y-axis which is called an unstable
manifold.
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Fig. 3.5. Stable and unstable manifolds

Fig. 3.5 shows the flow of a fluid which is a continuous version of the itera-
tive method (3.16). As an introduction to the theory of stable and unstable
manifolds for dynamical systems, we recommend the monograph by Amann
(1990).

In statistical mechanics, it turns out that the renormalization-group
flow (or semi-flow) corresponds to iterative methods which possess
a fixed point along with the typical property that there exist stable
and unstable manifolds which are passing through the fixed point. In
terms of physics, the fixed point describes a phase transition.

We refer to the collection of survey articles by Duplantier and Rivasseau
(2003).

3.4 A Glance at Conformal Field Theories

In terms of mathematics, rescaling of a physical parameter corresponds to
a special conformal transformation. Therefore, it is quite natural that the
theory of conformal transformations plays an important role in statistical
mechanics in connection with phase transitions and in 2-dimensional quantum
field theory. The point is that the conformal invariance in two dimensions
determines almost uniquely the structure of the Green’s functions (correlation
functions). Conformal field theory was founded by Polyakov in 1970.14 For the
last 30 years, physicists have developed the so-called conformal field theory.
We refer to Fuchs (1992) (introduction), Fradkin and Palchik (1996), De
Francesco et al. (1997) (general theory), and Polchinski (1998), Vols. 1, 2
(string theory).

For example, the conformal symmetry plays a fundamental role in string
theory, since string theories are conformally invariant. From the mathematical
point of view, the theory of conformal transformations was created by Gauss
in the 1820s and further developed by Riemann in the 1850s. The notion of
Riemann surfaces and their uniformization by Poincaré and Koebe in 1907
is the mathematical background of conformal field theory and string theory.
This will be studied in Volume VI.

14 Conformal symmetry of critical fluctuations, JETP Lett. 12 (1970), 381.
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Mathematicians and physicists like holomorphic and meromorphic func-
tions, since the local behavior of such functions determines completely
their global behavior.

Folklore

A complex number has the form

z = x+ yi

where x and y are real numbers and i2 = −1. We write �(z) := x and �(z) := y and
call this the real and imaginary part of z, respectively. The set of all complex num-
bers is denoted by C; it is also called the complex plane. Using polar coordinates,
each complex number z = x+ yi can be written uniquely as

x = r cosϕ, y = r sinϕ, −π < ϕ ≤ π

where r :=
p

x2 + y2. The real numbers

|z| := r, arg z := ϕ

are called the modulus and the principal argument of z, respectively (Fig. 4.1).
Using the Euler formula eiϕ = cosϕ + i sinϕ, each complex number z can also be
uniquely represented as

z = |z| · eiϕ, −π < ϕ ≤ π.

Sometimes it is useful to use the representation

z = |z|eiϕ∗

where ϕ∗ = arg(z) + 2πk with k = 0,±1,±2, . . . We call ϕ∗ an argument of the
complex number, and we write arg∗(z) = ϕ+.

Convention. In what follows, the symbol U always denotes an open subset of
the complex plane.

The theory of complex-valued holomorphic functions is one of the most beau-
tiful parts of mathematics; it has played a key role in the development of modern
mathematics (analysis, topology, algebraic geometry, and number theory). As an in-
troduction to complex function theory, we recommend Hurwitz and Courant (1964)
(classic), Remmert (1991), (1998), and Zeidler (2004).

E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics,
c© Springer-Verlag Berlin Heidelberg 2006, Corrected 2nd printing 2009
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Fig. 4.1. Complex number

4.1 Power Series Expansion

Holomorphic functions. A function f : U → C is called holomorphic on the open
set U iff it is differentiable at each point z of U, that is, there exists the derivative

f ′(z) = lim
h→0

f(z + h)− f(z)

h
.

Theorem 4.1 A function f : U → C is holomorphic on the open set U iff, for
each point z0 ∈ U, there exists a power series such that

f(z) = a0 + a1(z − z0) + a2(z − z0)
2 + . . .

for all points z in some open neighborhood of z0.

For example, polynomials are holomorphic. The power series expansion

ez :=
∞
X

n=0

zn

n!
= 1 + z +

z2

2
+ . . .

is convergent for all z ∈ C. Thus, the exponential function z �→ ez is holomorphic
on the complex plane. The same is true for the functions z �→ sin z, cos z given by

sin z :=
eiz − e−iz

2i
, cos z :=

eiz + e−iz

2
for all z ∈ C.

For all z, w ∈ C, there holds the crucial addition theorem

ez+w = ezew.

The exponential function has the period 2πi. For all z ∈ C, we have the Euler
relation

eiz = cos z + i sin z.

Entire functions. By definition, a function f : C → C is called entire iff it
is holomorphic on the complex plane. For example, polynomials, the exponential
function z �→ ez, and the trigonometric functions z �→ sin z and z �→ cos z are entire
functions.

Locally holomorphic functions. Let z0 be a point of the complex plane. A
complex-valued function f is called locally holomorphic at the point z0 iff there
exists an open ball B(z0) centered at z0 such that the function f : B(z0) → C is
holomorphic.
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Biholomorphic functions. Let U and V be open subsets of the complex plane
C. A function

f : U → V

is called biholomorphic iff it is bijective and both f and f−1 are holomorphic. Bi-
holomorphic maps are always angle-preserving, that is, the oriented angles between
intersecting curves are preserved.

Conformal maps. Fix the point z0 of the complex plane and the complex
numbers a, b with b �= 0. The function

f(z) := a+ b(z − z0), z ∈ C

is the superposition of a translation, a rotation around the center z0, and a similarity
transformation with respect to z0. Obviously, this map is angle-preserving and a
biholomorphic map f : C → C from the complex plane onto itself. Such a map is
called a conformal map of the complex plane onto itself. We want to generalize this
concept. To this end, let

f : U → C (4.1)

be a holomorphic function on the nonempty open subset U of the complex plane.
This map is called a conformal map from U onto f(U) iff it is an angle-preserving
diffeomorphism1 from the set U onto the set f(U). For a function (4.1) on the
nonempty open subset U of the complex plane C, the following three properties are
equivalent.

(i) The map f is conformal from U onto f(U).
(ii) The function f : U → C is holomorphic, injective, and f ′(z0) �= 0 for all points

z0 in U .2

(ii) The set f(U) is open and the function f : U → f(U) is biholomorphic.

In the case (ii), the function f looks locally like

f(z) = f(z0) + f ′(z0)(z − z0) + . . . .

in a sufficiently small open neighborhood of each point z0 ∈ U. Because of the
condition f ′(z0) �= 0, the map f is not locally degenerate at z0.

Integrals. It turns out that integrals of holomorphic functions reflect topo-
logical properties of the domain of definition. Let the function f : U → C be
holomorphic, and let C : z = z(t), t0 ≤ t ≤ t1 be an oriented smooth curve in the
set U . Define

Z

C

f(z)dz :=

Z t1

t0

f(z(t))
dz(t)

dt
· dt.

This definition of the curve integral does not depend on the parametrization of the
oriented smooth curve C. The integral changes sign if the orientation of the curve
changes.

The fundamental theorem of calculus. Let f : U → C be holomorphic.
Then for each smooth curve C in U with initial point z0 and end point z1,

Z

C

f ′(z)dz = f(z1)− f(z0).

1 By definition, the map f : U → f(U) is a diffeomorphism iff it is bijective and
both the functions f and f−1 are smooth with respect to the two real variables
on U and f(U), respectively.

2 This implies that the set f(U) is open in the complex plane.
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Fig. 4.2. Continuous deformation of the integration path

Proof. By the chain rule,

Z t1

t0

f ′(z(t))z′(t)dt =

Z t1

t0

df(z(t))

dt
dt = f(z(t1))− f(z(t0)).

�

4.2 Deformation Invariance of Integrals

Let the function f : U → C be holomorphic. Then

Z

C1

f(z)dz =

Z

C2

f(z)dz (4.2)

if the following holds true: The two smooth curves C1 and C2 have the same initial
and end point, and they can be continuously deformed into each other without
leaving the set U and without changing the initial and end point (Fig. 4.2(a)).
This result remains true if C1 and C2 are reasonable piecewise smooth curves (e.g.,
polygons).

4.3 Cauchy’s Integral Formula

In recent years, progress in the theory of partial differential equations has
been tremendous, often in unexpected directions, while also solving classi-
cal problems in more general settings. New fields have been added, like the
study of variational inequalities, of solitons, of wave front sets, of pseudo-
differential operators, of differential forms on manifolds, and so on. Much
of the progress has been made by the use of functional analysis. However,
in the process much of the original simplicity of the theory has been lost.
This is perhaps connected with the emphasis of solving problems, which
often requires piling up mountains of a priori estimates and the skillful
juggling of function spaces to make ends meet. It is good to remember
that mathematics is not only concerned with solving problems, but also
with studying the structure and behavior of objects that it creates. One
of the best examples is classical theory of functions of a complex variable.
It, incidentally, does solve problems as in the Riemann mapping theorem.
But much of its beauty lies in statements that can hardly be considered
as “solving” anything, like the calculus of residues, or Cauchy’s integral
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formula (4.3). The only “problem” solved by (4.3) is the improper one
of determining the function f from its boundary values, which generally
has no solution. Formula (4.3) is not only strikingly beautiful but also
extremely useful. It shows easily that each holomorphic function can be
differentiated infinitely often and can be represented by convergent power
series.3

Fritz John, 1984

Let C be a counterclockwise oriented circle living in the open set U . If the function
f is holomorphic on U , then

f(z) =

Z

C

f(ζ)dζ

ζ − z
(4.3)

for all points z inside the circle C. This fundamental formula was discovered by
Cauchy (1789–1857) in 1831 during his exile in Turin (Italy).

4.4 Cauchy’s Residue Formula and Topological Charges

The word residue was first used by Cauchy in 1826, but to be sure the
definition there is quite complicated.4

Reinhold Remmert

Meromorphic functions. The function f : U → C has an isolated singularity at
the point z0 iff it is holomorphic in a punctured open neighborhood of z0.

5 Then,
there exist complex numbers . . . , a−2, a−1, a0, a1, a2, . . . such that

f(z) =

∞
X

k=−∞
ak(z − z0)

k

for all z in some punctured open neighborhood of z0.
6 The number

resz0(f) := a−1

is called the residue of the function f at the point z0. If there exists a positive
integer m such that a−m �= 0 and ak = 0 for all k < −m, then we say that the
function f has an isolated pole of order m at the point z0. Then,

f(z) =
a−m

(z − z0)m
+ . . .+

a−1

z − z0
+ a0 + a1(z − z0) + . . .

for all points z in some punctured open neighborhood of z0. The sum

a−m

(z − z0)m
+ . . .+

a−1

z − z0

3 F. John, A walk through partial differential equations. In: S. Chern (Ed.), Sem-
inar on Nonlinear Partial Differential Equations, Springer, New York, 1984, pp.
73–84 (reprinted with permission).

4 R. Remmert, Theory of Complex Functions, Springer, New York, 1991.
5 This means that there exists an open neighborhood V of z0 such that f is holo-

morphic on V \ {z0}.
6 The symbol

P∞
k=−∞ bk stands for

P−∞
k=−1 bk +

P∞
k=0 bk.
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is called the principal part of the function f at the point z0.
The function f : U → C is called meromorphic on the open set U iff it is

holomorphic up to isolated poles. Rational functions (i.e., quotients of polynomials)
and the functions

tan z :=
sin z

cos z
, cot z :=

cos z

sin z

are meromorphic on the complex plane. The poles correspond to the zeros of the
denominator. Meromorphic functions play a fundamental role in physics.

The poles of meromorphic functions describe essential physical properties
(e.g., the masses of elementary particles).

The following theorem is called Cauchy’s residue theorem.

Theorem 4.2 For a meromorphic function f : U → C, there holds

1

2πi

Z

C

f(z)dz =

m
X

k=1

reszk(f) (4.4)

if the following conditions are met: the circle C lies in the open set U , the function
f has precisely the poles z1, . . . , zm inside the circle C and no poles on C.

The integral is equal to zero if there are no poles on the closed disc bounded by
the circle C.

This is one of the most useful theorems in mathematics. For example, the function

f(z) :=
2iQ

1 + z2
=

Q

z − i
− Q

z + i

has the residue resz=i(f) = 1 at the point z = i. If C1 is a counterclockwise oriented
circle of radius R < 2 centered at the point i, then the residue theorem tells us that

1

2πi

Z

C1

f(z)dz = Q.

If we continuously deform the circle C1 into the closed curve C2 such that the
singularities z = ±i are not touched during the deformation (Fig. 4.2(b) on page
214), then

1

2πi

Z

C1

f(z)dz =
1

2πi

Z

C2

f(z)dz = Q.

We say that the function f has the topological charge Q at the point z = i.

The attribute ‘topological’ refers to the fact that this charge is invariant
under continuous deformations of the integration path.

Topological charges are also called topological quantum numbers.

4.5 The Winding Number

Let the functions f, g : U → R be meromorphic on the open set U , and let C be a
counterclockwise oriented circle lying in U . Suppose that no zeros or singularities
of f lie on C. Define
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Fig. 4.3. The system y2 − x2 = 1, xy = 0

w(f) :=
1

2πi

Z

C

f ′(z)

f(z)
dz.

This is an integer called the winding number of the function f on the circle C. For
example, if f(z) := zn for a fixed integer n and the origin lies inside the circle C,
then

w(f) =
1

2πi

Z

C

ndz

z
= n,

by Cauchy’s residue theorem. Generally, the winding number tells us how often the
image curve f(C) winds counterclockwise around the origin (see Fig. 5.6(a) on page
233). There hold the following two crucial properties.

(E) Existence principle: If w(f) �= 0, then the equation f(z) = 0 has a solution
inside the circle C.

(P) Invariance under perturbations: We have w(f + g) = w(g) if

sup
z∈C

|g(z)| < sup
z∈C

|f(z)|.

Let us apply the winding number to the fundamental theorem of algebra.

4.6 Gauss’ Fundamental Theorem of Algebra

Finally, I note that it is not at all impossible that the proof, which I have
based on geometric principles here, be given in a purely analytic form; but
I believed the presentation which I developed here to be less abstract and
to expose better the essence of the proof than one could expect from an
analytic proof.

Carl Friedrich Gauss (1777–1855)
Thesis, 1799

Complex numbers were introduced by Bombelli in 1550; he used complex numbers
systematically in order to solve algebraic equations of third degree. The imaginary
unit, i, solves the equation z2 + 1 = 0, and we have the factorization

z2 + 1 = (z − i)(z + i).

The fundamental theorem of algebra tells us the following much more general result.

Theorem 4.3 Let n = 1, 2, . . . For each polynomial

p(z) := zn + an−1z
n−1 + . . .+ a1z + a0
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with complex coefficients a0, a1, . . . , there exist complex numbers z1, . . . , zn such
that

p(z) = (z − z1)(z − z2) · · · (z − zn) for all z ∈ C.

Gauss proved this theorem for the first time in his Ph.D. thesis7 in 1799. He reduced
this problem to the intersection problem for two real algebraic curves. To explain
the basic idea, consider the equation

z2 + 1 = 0, z ∈ C.

Letting z = x+ yi, we get x2 − y2 + (2xy)i + 1 = 0. This problem is equivalent to
the system of equations

y2 − x2 = 1, 2xy = 0.

In terms of geometry, this system describes the intersection of a hyperbola with the
y-axis (Fig. 4.3). In the general case, Gauss had to study the intersection problem
for two algebraic curves of nth degree. The second and third proofs of this theorem,
given by Gauss in the years 1815 and 1816, were purely analytic, while the fourth
proof, on the 50th anniversary of his doctorate in 1849, was closely related to the
first. In fact, the first and the fourth proof contain a gap. Gauss assumed certain
properties of algebraic curves to be self-evident, which is not at all the case. This gap
was filled by Alexander Ostrowski in 1920 (see Ostrowski’s article in the Collected
Works of Gauss, Vol. 10). Let us give an elegant proof of the fundamental theorem
of algebra by using the winding number.
Proof. We proceed in two steps.

• Step 1: Existence of at least one zero. Set f(z) := zn, and p(z) = f(z) + g(z).
Choose a counterclockwise oriented circle C of radius R centered at the origin.
Then |f(z)| = Rn on C. Furthermore,

|g(z)| ≤
n−1
X

k=0

|ak| · |zk| ≤ const ·Rn−1 on C.

If we choose the radius R sufficiently large, then the perturbation property (P)
of the winding number above tells us that

w(p) = w(f + g) = w(f) = n.

By the existence principle (E), p(z1) = 0 for some z1.
• Step 2: Factorization. By the Taylor theorem,

p(z) = p(z1) + (z − z1)
`

p′(z1) +
1

2
p′′(z1)(z − z1)

2 + . . .
´

.

Hence p(z) = (z− z1)q(z) where q is a polynomial of degree n− 1. By induction,
we obtain the claim. �

Intuition. The geometric idea behind the argument from step 1 is quite simple.
The map z �→ zn sends the circle C to a circle which winds n times around the
origin. If the radius R is sufficiently large, then the map z �→ p(z) sends the circle
C to a curve which winds n times around the origin as well, by a perturbation
argument. By continuity, there must exist some point z1 inside the circle C which

7 C. F. Gauß, The four proofs of the fundamental theorem of algebra (in Ger-
man), Ostwald’s Klassiker, No. 14, Engelmann, Leipzig, 1890. The book series
Ostwald’s classic library (Ostwald’s Klassiker) is the best source for classic papers
in mathematics and physics.
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Fig. 4.4. Riemann sphere

is mapped to the origin, that is, p(z1) = 0. The point z1 is the desired zero of the
given polynomial p.

Gauss implicitly used this intuitive argument, but he had to argue in a more
sophisticated way, since he did not have the rigorous theory of the winding number
at hand.

4.7 Compactification of the Complex Plane

Each bounded sequence (zn) in the complex plane contains a convergent subse-
quence. This important property is not always true for unbounded sequences. In
order to cure this defect, we add the symbol ∞ to the complex plane C. The set

C := C ∪ {∞}

is called the closed complex plane.
The Riemann sphere. The unit sphere

S
2 := {(x, y, ζ) ∈ R

3 : x2 + y2 + ζ2 = 1}

in the 3-dimensional Euclidean space is called the Riemann sphere. Naturally
enough, the point N := (0, 0, 1) is called the North Pole of S

2. Using Fig. 4.4,
we set χ(z) := P. The map

χ : C → S
2 \ {N}

can be extended to a map χ : C → S
2 by setting χ(∞) := N. A sequence (zn) in

the closed complex plane is said to converge to the point z iff this is true for the
corresponding points on the Riemann sphere. We now get the desired convergence
theorem:

Each sequence in the closed complex plane has a convergent subsequence.

We call the closed complex plane a compactification of the complex plane. In modern
mathematics, the compactification of mathematical objects is used very frequently.
Using the topological terminology introduced in Sect. 5.5 on page 241, the Rie-
mann sphere S

2 is a compact topological space, and the closed complex plane C is
homeomorphic to the Riemann sphere. The inverse map χ−1 : S

2 \N → C is called
stereographic projection.

By definition, a function f is called locally holomorphic at the point z = ∞ iff
the function

g(z) := f

„

1

z

«
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is locally holomorphic at the point z = 0. For example, the functions

f(z) :=
1

zn
, n = 1, 2, . . .

are locally holomorphic at the point z =∞.

Theorem 4.4 Each holomorphic function from the closed complex plane into itself
is constant.

This theorem is named after Liouville, but it was first proved by Cauchy in 1844. We
want to use this theorem in order to give an alternative proof of the fundamental
theorem of algebra. By our argument above, it is sufficient to prove that each
polynomial of order n ≥ 1 has a zero.

Application to the fundamental theorem of algebra. Suppose that the
polynomial p has no zeros on the complex plane. Define

f(z) :=
1

p(z)
, z ∈ C,

and set f(∞) := 0. Since the function f behaves like 1/zn near the point ∞, it
is locally holomorphic at ∞. Thus, the function f is holomorphic on the closed
complex plane, and hence it is constant, a contradiction. �

The Liouville Theorem 4.4 is the prototype of a mathematical theorem which
relates the structure of analytic objects to the topology of the space on which the
objects live. In terms of physics, this corresponds to the situation that the structure
of physical fields depends on the topological structure of the underlying space-time
manifold.

4.8 Analytic Continuation and the Local-Global
Principle

Let f, g : U → R be holomorphic functions on the open, arcwise connected set U
such that

f(zn) = g(zn) for all n = 1, 2, . . . ,

and the sequence (zn) with zn �= a for all n converges to some point a in U as
n→ +∞. Then f = g on U .

Let U and V be open, arcwise connected sets in the complex plane such that
U ⊂ V. If f : U → C and F : V → C are holomorphic and f = F on U , then F is
called the holomorphic (or analytic) extension of f . This holomorphic (or analytic)
continuation is uniquely determined. For example, the power series

f(z) = 1 + z + z2 + . . .

is convergent for all z ∈ C with |z| < 1. Since f(z) = 1
1−z

, the function f can be

uniquely extended to the holomorphic function F : C \ {1} → C given by

F (z) :=
1

1− z
for all z ∈ C, z �= 1.

As a second example, consider the energy function
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f(E) :=
√
E for all E > 0.

This function allows the power series expansion

f(E) = {1 + (E − 1)}1/2 = 1 + 1
2
(E − 1) +

 

1
2

2

!

(E − 1)2 + . . .

for all complex energy values E with |E − 1| < 1. The unique global analytic
continuation is given by the double-valued expression

F (E) := ±
p

|E| · e
1
2 i arg E for all E ∈ C.

We also write F (E) =
√
E.

Counterexample. The fact that a function allows a holomorphic extension
represents important and highly nontrivial information, as the following simple
counterexample (ii) shows.

(i) Consider the real function f : [ 1
2
, 1] → R defined by f(x) := x. There exist

infinitely many smooth functions g : R → R which are extensions of f , but
there is only one holomorphic extension, namely, f(z) := z for all z ∈ C.

(ii) Modifying the preceding example, set

f(x) := |x|

if either x ∈ [ 1
2
, 1] or x ∈ [−1,− 1

2
]. There exist infinitely many smooth ex-

tensions g : R → R of the function f , but no holomorphic extension. To see
this, suppose that there exists such an extension. This extension would be
uniquely determined by the values of f on the interval [ 1

2
, 1]. By (i), f(x) = x

on [−1,− 1
2
], a contradiction.

Generalization of terminology. Let D be an arbitrary subset of the complex
plane (e.g., the closed unit disc). The function

f : D → C

is called holomorphic iff there exists a holomorphic function g : U → C such that D
is a subset of the open set U and f = g onD. A function is called locally holomorphic
at a point z0 iff it is defined and holomorphic on some open neighborhood of the
point z0.

4.9 Integrals and Riemann Surfaces

Algebraic integrals. Let R = R(z, w) be a rational function with respect to the
complex variables z and w (i.e., R is the quotient of two polynomials with respect
to z and w). By an algebraic integral or Abelian integral, we mean an integral of
the form

Z

C

R(z, w(z))dz

where C is a curve, and the function w = w(z) is given by the equation

wn + pn−1(z)w
n−1 + . . .+ p1(z)w + p0(z) = 0, z, w ∈ C. (4.5)
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Here, p0, p1, . . . are polynomials. Such integrals were first studied by Abel (1802–
1829). In an ingenious way, Riemann (1826–1866) discovered that algebraic integrals
can be understood best by using the topological concept of the Riemann surface.
Let us explain this by considering a simple example.

The Riemann surface of the logarithmic function. For each given complex
number z �= 0, the equation

z = ew, w ∈ C

has a set of solutions which we denote by w = ln z. Explicitly,

lnz = ln |z|+ i arg z + 2πk, k = 0,±1,±2, . . . (4.6)

This function is many-valued on the punctured complex plane C \ {0}. It was
Riemann’s idea to construct a set R such that the function

ln : R→ C

is single-valued on R. This can be done easily. To this end, set

Sk := C \ {0}, k = 0,±1,±2, . . .

We cut each sheet Sk along the negative real axis, and we glue the sheets along the
cuts together in the following way.

• If we start from the point z = 1 on the sheet S0, and we move counterclockwise
along the unit circle, then we change from the sheet Sk to the sheet Sk+1 at the
point z = −1 where k = 0, 1, 2, . . . .

• Similarly, if we start from the point z = 1 at the sheet S0 and we move clockwise
along the unit circle, then we change from Sk to Sk−1 at the point z = −1 where
k = 0,−1,−2, . . .

Furthermore, if z ∈ Sk, then we define ln z := ln |z| + i arg z + 2πk. The set R is
called the Riemann surface of the function ln . This is an ‘infinite round staircase’.
If we cut the sheet S0 along the negative real axis, then the restriction

ln : S0\ ]−∞, 0]→ C

is called the principal branch of the logarithmic function; this function is single-
valued and holomorphic. Explicitly, for the principal branch,

ln z = ln |z|+ i arg z, −π < arg z < π.

For all complex numbers z with |z| < 1, the principal branch allows the power series
expansion

ln(1 + z) = z − z2

2
+
z3

3
− . . .

Application to integrals. The idea of the Riemann surface is extremely useful
for computing curve integrals.

The point is that we have to choose curves on the Riemann surface of the
primitive function to the integrand.
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For example, consider the smooth curve C : z = z(t), t0 ≤ t ≤ t1. By the funda-
mental theorem of calculus,

Z

C

dz

z
= ln z(t1)− ln z(t0).

However, this value is not well-defined, since the logarithmic function is many-
valued. This defect can be cured completely if we regard C as a curve on the
Riemann surface R of the logarithmic function. For example, let C denote the
counterclockwise oriented unit circle on the complex plane. Now regard C as a
curve on the Riemann surface R of the logarithmic function. For example, let us
start at the point z = 1 on the sheet S0. Moving counterclockwise, we end up at
the point z = 1 on the sheet S1. Hence

Z

C

dz

z
= lnS1 z(t1)− lnS0 z(t0) = lnS1 1− lnS0 1 = 2πi.

The same result is obtained by using Cauchy’s residue theorem. The Riemann
surface R reveals the natural background of the residue theorem.

Algebraic curves and Riemann surfaces. The real equation

w − z = 0, z, w ∈ R

represents a real curve, namely, a straight line through the origin. The complex
equation

w − z = 0, z, w ∈ C

represents a complex curve (also called 1-dimensional complex manifold). This com-
plex curve corresponds to the complex plane, C, which is equivalent to the two-
dimensional real plane,8 R

2. If we compactify the complex plane, C, then we obtain
the closed complex plane, C, which is in one-to-one correspondence to the Riemann
sphere, S

2. In terms of the theory of manifolds to be introduced in Sect. 5.4 on page
236, Riemann surfaces are defined to be 1-dimensional, complex, arcwise connected
manifolds. Using this terminology, the following hold true:

The closed complex plane and the Riemann sphere are conformally equiv-
alent compact Riemann surfaces of genus zero.

Furthermore, the real equation

w2 − z = 0, z, w ∈ R

describes a parabola. The complex extension

w2 − z = 0, z, w ∈ C

describes the Riemann surface to the function w =
√
z. After compactification,

this is a compact Riemann surface which is conformally equivalent to the Riemann
sphere. More generally, each of the algebraic equations (4.5) describes, after passing
to connected components and using compactification, a compact Riemann surface
of genus g where g = 0, 1, 2, . . . In 1907, Poincaré and Koebe proved independently
the famous uniformization theorem telling us that

Each algebraic curve (and hence each compact Riemann surface) possesses
a global smooth parametrization z = z(t), w = w(t) for all parameters
t ∈ T

8 Traditionally, the notion complex curve (resp. plane or surface) corresponds to
a space of complex dimension one (resp. real dimension two).
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Fig. 4.5. The Riemann moduli space M1

where the parameter space T has to be chosen in an appropriate manner. This
way, many special functions of mathematical physics appear as parametrizations of
algebraic curves (trigonometric functions, elliptic functions, modular functions, and
automorphic functions). For example, the complex unit circle, that is, the complex
curve

z2 + w2 − 1 = 0, z, w ∈ C

possesses the global parametrization z = cos t, w = sin t, t ∈ C. Let e1, e2, e3 be
three pairwise different complex numbers. Then, the algebraic curve

w2 − 4(z − e1)(z − e2)(z − e3) = 0, z, w ∈ C (4.7)

possesses the global parametrization z = ℘(t), w = ℘′(t), t ∈ C where ℘ denotes
the Weiererstrass elliptic function (i.e., ℘ is double-periodic). The Riemann surface
of the algebraic curve (4.7) is conformally equivalent to a torus which has always
the genus g = 1. The Riemann surface to the complex curve

z − ew = 0, z, w ∈ C

is nothing other than the Riemann surface to the function w = ln z.
The space of string states. Riemann surfaces and their applications in string

theory will be studied in Volume VI. At this point let us only mention that

Compact Riemann surfaces correspond to string states; conformally equiv-
alent Riemann surfaces represent the same string state.

In this modern terminology, the space of string states corresponds to Riemann’s
classical moduli space. If g denotes the genus of the string state, then the following
are met:

(i) If g ≥ 2, then the space of string states can be parametrized by 3g− 3 complex
parameters.

(ii) If g = 0, then there exists a unique string state which corresponds to the
Riemann sphere.

(ii) If g = 1, then the string states correspond to tori. The space of string states is
in one-to-one correspondence to the subsetM1 of the complex upper half-plane
pictured in Fig. 4.5. Therefore, the string states can be parameterized by one
complex parameter. Explicitly, we start with the strip

{− 1
2
< �(z) ≤ 1

2
, �(z) > 0}.

We take away the points of the strip that lie in the closed unit disc, and we
add the arc {z ∈ C : |z| = 1, �(z) ≥ 0} of the unit circle.
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For genus g ≥ 1, the string state space is not a manifold, but has singularities.
The theory of Riemann surfaces and its generalizations has played a key role in the
development of modern algebraic geometry.

Suggested reading. As an introduction to Riemann surfaces, we recommend
the following two books:

• A. Hurwitz and R. Courant, Lectures on Complex Function Theory and Elliptic
Functions (in German), Springer, Berlin, 1964.

• J. Jost, Compact Riemann Surfaces: An Introduction to Contemporary Mathe-
matics, Springer, Berlin, 1997.

Furthermore, we refer to the following books:

• M. Farkas and I. Kra, Riemann Surfaces, Springer, New York, 1992.
• M. Farkas and I. Kra, Theta Constants, Riemann Surfaces and the Modular

Group: An Introduction with Applications to Uniformization Theorems, Parti-
tion Identities and Combinatorial Number Theory, American Mathematical So-
ciety, Providence, Rhode Island, 2001.

• L. Ford, Automorphic Functions, Chelsea, New York, 1972.
• O. Forster, Lectures on Riemann Surfaces, Springer, Berlin, 1981.
• K. Maurin, The Riemann Legacy: Riemann’s Ideas in Mathematics and Physics

of the 20th Century, Kluwer, Dordrecht, 1997.
• R. Narasimhan, Compact Riemann Surfaces, Birkhäuser, Basel, 1996.

A collection of beautiful survey articles can be found in

• R. Waldschmidt et al. (Eds.), From Number Theory to Physics, Springer, New
York, 1995.

4.10 Domains of Holomorphy

Physically interpretable functions obtained by analytic continuation from
functions describing physical phenomena also describe physical phenom-
ena: they are not mere mathematical chimeras. . . It turns out that the
Wightman distributions9 are boundary values of holomorphic functions of
N variables, the Wightman functions, and these have proved to be a very
useful tool for investigating axiomatic quantum field theory.

Res Jost, 1965
The General Theory of Quantized Fields10

It turns out that there exists a crucial difference between holomorphic functions on
the complex plane and holomorphic functions on the higher-dimensional complex
spaces C

2,C3, . . . This concerns analytic continuation. Let us discuss this. For an
open set U in C

N , the function f : U → C
N is called holomorphic on U iff the

partial derivatives
∂f

∂zj
, j = 1, . . . , N

exist on U . This is equivalent to the fact that the function f can be locally rep-
resented by a power series expansion which converges absolutely in some open
neighborhood of each point in U .

9 The Wightman distributions are the averaged vacuum expectation values of
products of quantum fields.

10 American Mathematical Society, Providence, Rhode Island, 1965 (reprinted with
permission).
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An open, arcwise connected subset U of C
N is called a domain of holo-

morphy iff there exists a holomorphic function f : U → C which cannot
be extended to a holomorphic function on a larger open, arcwise connected
set.

On the complex plane C, each open, arcwise connected set U is a domain of holo-
morphy. This theorem does not remain true for C

2,C3, . . . For example, consider
the set

W := {(z1, z2) ∈ C
2 : 1

2
< |z| < 1}

with |z| :=
p

|z1|2 + |z2|2. Then, each holomorphic function f : W → C can be
extended to a holomorphic function f : U → C on the open unit ball

U := {(z1, z2) ∈ C
2 : |z| < 1},

but a further extension to a larger open set is not always possible. This tells us that
the open set W is not a domain of holomorphy. In contrast to this, the open ball
U is a domain of holomorphy. This is a special case of the following more general
result:

Each convex open subset of C
N is a domain of holomorphy.

The famous 1938 Bochner theorem on the analytic continuation of functions of
several variables tells us the following. Consider a so-called tube

R
N + iΩ := {(x+ yi) : x ∈ R

N , y ∈ Ω}

where Ω is a convex open subset of R
N , N = 1, 2, . . . .

Theorem 4.5 If a function f is locally holomorphic at some point of the tube R +
iω, then it can be holomorphically extended to the tube. But a further holomorphic
extension to a larger open set in C

N is not always possible.

This theorem tells us that the tube R
N +iΩ is a domain of holomorphy in C

N . The
proofs can be found in Vladimirov (1966).

4.11 A Glance at Analytic S-Matrix Theory

In the 1950s and 1960s, physicists thoroughly studied scattering processes for ele-
mentary particles by using analytic continuation for the S-matrix and the Green’s
functions. If these functions have a singularity at the complex energy

E = E0 + iΔE,

then there exists an elementary particle with rest mass m0 = E0/c
2 and mean

lifetimeΔt = �/ΔE. As an introduction to analytic S-matrix theory, we recommend
the monographs by

• A. Barut, The Theory of the Scattering Matrix, MacMillan, New York, 1967.
• G. Chew, The Analytic S-Matrix: A Basis for Nuclear Democracy, Benjamin,

New York, 1966.
• R. Eden, High Energy Collisions of Elementary Particles, Cambridge University

Press, 1967.
• I. Todorov, Analytic Properties of Feynman Diagrams in Quantum Field Theory,

Pergamon Press, London, 1971.

We will study this in Volume V on the physics of the Standard Model.
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4.12 Important Applications

Analyticity plays a fundamental role in physics. In this treatise, we will encounter
the following topics:

• residue theorem, Fresnel integrals, and the diffraction of light (Vol. I);
• causality and dispersion relations (Vol. I);
• analytic continuation and path integrals (Vol. I);
• analytic continuation of the zeta function, the prime number theorem, and the

Casimir effect in quantum field physics (Vol. I);
• asymptotic formulas for the Laplace transform (Vol. I);
• the Paley–Wiener theorem, wave front sets, and the propagation of singularities

(Vol. I);
• distributions as boundary values of holomorphic functions (Vol. I);
• the Riemann–Hilbert problem and renormalization (Vols. I, IV);
• singularities of analytic functions and phase transitions (Vols. I, IV);
• scattering processes, Riemann surfaces, and energy resonances (Vol. II);
• Borel summation (Vol. II);
• analytic S-matrix theory for studying scattering processes for elementary parti-

cles (Vol. V);
• analytic continuation of Wightman functions (the edge-of-the-wedge theorem,

the Bargmann–Hall–Wightman theorem), the CPT symmetry principle, and the
spin-statistics theorem in axiomatic quantum field theory (Vol. IV);

• analytic continuation and the Euclidean approach to axiomatic quantum field
theory (the Osterwalder–Schrader axioms) (Vol. IV);

• Riemann surfaces and string theory (Vol. VI);
• Kähler manifolds and string theory (Vol. VI);
• holomorphic functions, strings, conformal field theory, the structure of Green’s

functions, and phase transitions in statistical physics (Vol. VI).



5. A Glance at Topology

Topology is precisely that mathematical discipline which allows a passage
from the local to the global.

René Thom (1923–2002)

Topology studies the qualitative behavior of mathematical and physical objects.
The following results discussed in the preceding chapter are related to topology:

• deformation invariance of the integral of holomorphic functions,
• Cauchy’s residue theorem,
• properties of the winding number,
• Liouville’s theorem,
• analytic continuation of holomorphic functions,
• Abelian integrals and Riemann surfaces.

Topology was created by Poincaré (1854–1912) at the end of the 19th century
and was motivated by the investigation of Riemann surfaces and the qualitative
behavior of the orbits of planets, asteroids, and comets in celestial mechanics.1

Topology studies far-reaching generalizations of the results summarized above.

5.1 Local and Global Properties of the Universe

Since ancient times, scientists have made enormous efforts to understand

• the macrocosmos – our universe – and
• the microcosmos – the world of elementary particles.

A unified theory for the four fundamental forces in nature (i.e., strong, weak, elec-
tromagnetic, and gravity) has the task to combine the macrocosmos with the micro-
cosmos. In Fig. 5.1, two 1-dimensional models of the universe are pictured. These
two models possess the same local structure near the earth, but the global struc-
tures are completely different. To illustrate this, consider a spaceship starting on
earth and moving the same direction all the time. In a closed universe, the spaceship
may return to earth, whereas this is impossible in an open universe. Note that in
reality, the universe is expanding. This means that the radius of the closed universe
in Fig. 5.1(a) is expanding in time. At the time of the Big Bang, the universe was
concentrated at one point.

The study of the global behavior of geometric objects is the subject of topol-
ogy. We expect that the topology of the global universe influences the physics of
elementary particles. As an example, consider a photon of wave length λ. If the

1 H. Poincaré, Analysis situs, J. Math. École Polytechnique 1 (1895), 1–121.

E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics,
c© Springer-Verlag Berlin Heidelberg 2006, Corrected 2nd printing 2009
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(a) closed universe

earth

spaceship�

(b) open universe

earth
�

Fig. 5.1. Local and global structure of the universe

radius of our universe r is finite, then we get the inequality λ ≤ r. This implies that
there exists a lower bound (or cut-off) for the energy of photons,

E =
hc

λ
≥ hc

r
.

In fact, the so-called infrared (or low-energy) catastrophe of quantum electrody-
namics concerns mathematical problems which arise at low energies (λ → +∞).

It is thinkable that our universe possesses a very strange global structure which
results from the cooling process after the Big Bang. For example, we know that the
freezing of water can produce bizarre ice flowers. In Fig. 5.2(a), the earth E and a
distant galaxy G are connected by a wormhole W which allows fast travelling from
E to G by leaving the regular universe and entering the hyperspace.2

In Fig 5.2(b), we picture a singularity S which is observed in a 1-dimensional
universe. This singularity can be obtained by projecting a regular space curve with-
out singularities (e.g., without self-intersections) onto a plane. In algebraic geome-
try, this method is widely used for the so-called blowing-up of singularities.

It is thinkable that the complex structure of the observed 4-dimensional
space-time physics results from a much simpler physics in higher dimen-
sions.

This is one of the hopes of all the physicists who are working in the theory of
strings and d-dimensional branes.3 This explains why topology enters more and
more into modern physics. Of course, there is much room for fancy ideas and wild
speculations.

5.2 Bolzano’s Existence Principle

We are going to consider the prototype of a topological theorem on the intersection
of continuous curves which dates back to Bolzano (1781-1848).

The mapping degree. For a real continuous function f : [0, 1] → R with
f(0) �= 0 and f(1) �= 0, we define the mapping degree deg(f) by setting

deg(f) :=

8

>

<

>

:

1 if f(0) < 0, f(1) > 0,

−1 if f(0) > 0, f(1) < 0,

0 if f(0)f(1) > 0.

2 The theory of wormholes was developed by Wheeler in the 1950s (see Thorne
(1993)).

3 ‘Branes’ generalize membranes to higher dimensions.
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�

(a) wormhole
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Fig. 5.2. Strange one-dimensional universes

If the function is smooth and has only a finite number of zeros x1, ..., xN along with
f ′(xj) �= 0 for all j, then

deg(f) = sgn f ′(x1) + ...+ sgn f ′(xN ).

In geometric terms, the mapping degree coincides with the intersection number
between the x-axis and the graph of f (Fig. 5.3).

In 1817 Bolzano published a fundamental paper. In the introduction, he wrote
the following.

There are two theorems of which it could be said that until recently a
completely correct proof of the same was unknown. One is the fundamental
theorem of algebra proved by Gauss in his 1799 dissertation; the other one
is the following theorem: That between two quantities of unknown size
which evince a result of opposite sign, there must lie at least one root of
the equation.

In modern language, Bolzano’s theorem reads as follows.

The continuous function f : [0, 1]→ R has a zero if f(0)f(1) < 0.

Intuitively, the condition f(0)f(1) < 0 tells us that the function f has different
signs at the two end points x = 0 and x = 1, and hence the graph of f has to

(a) deg f = 1
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(b) deg f = −1
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f

(c) deg f = 1− 1 + 1 = 1
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f

(d) deg f = −1 + 1 = 0

�
x

�y

−1 +1

f

Fig. 5.3. Existence of at least one zero
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Fig. 5.4. Intersection number

intersect the x-axis. In terms of the mapping degree, the Bolzano theorem reads as
follows. We are given a continuous function f : [0, 1]→ R which does not vanish on
the boundary of the interval.

If deg(f) �= 0, then the function f has a zero.

Invariance of the mapping degree under deformations of the maps.
Consider a finite time interval [t0, t1]. Suppose that we are given two continuous
functions f, g : [0, 1] → R. Then, we get

deg(f) = deg(g)

if there exists a continuous map

H : [0, 1]× [t0, t1]→ R

such that H(x, t0) = f(x) and H(x, t1) = g(x) for all x ∈ [0, 1]. Furthermore, we
have to assume that H(x, t) �= 0 for the boundary points x = 0, 1 and all times
t ∈ [t0, t1].

Perspectives. The Bolzano theorem represents one of the most fundamental
topological existence principles in mathematics. It allows far-reaching generaliza-
tions

• to the Euclidean spaces R
n, n = 1, 2, . . . (the Brouwer mapping degree introduced

in 1910)
• and to infinite-dimensional Banach spaces (the Leray–Schauder mapping degree

introduced in 1936)
• along with numerous applications to differential and integral equations.

This can be found in the author’s monographs Zeidler (1986), Vols. I–IV.

5.3 Elementary Geometric Notions

The most important elementary geometric notion is the concept of intersection
number (Fig. 5.4).
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(b) i = −1
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Fig. 5.5. Linking number

• Local intersection number for two oriented plane curves c1 and c2: At the inter-
section point P , define

iP (c1, c2) := 1 (resp. iP (c1, c2) := −1)

iff the curve c2 can be obtained from the curve c1 by a counterclockwise (resp.
clockwise) rotation about the point P with positive rotation angle 0 < ϕ < π
(Figs. 5.4(a), (b)).

• Global intersection number i(c1, c2) for two oriented plane curves: This is equal
to the sum of local intersection numbers provided this number is finite (Fig.
5.4(e)).

• Local intersection number of an oriented curve and an oriented 2-dimensional
surface: This is defined as pictured in Figs. 5.4(c), (d).

• Global intersection number of an oriented curve and an oriented 2-dimensional
surface: This is defined to be the sum of the local intersection numbers.

• Linking number for two closed curves in the 3-dimensional space: This is re-
duced to the intersection number between an oriented curve and an oriented
2-dimensional surface as pictured in Fig. 5.5.

• Winding number: For a given plane curve, the winding number w tells us how
many times the curve surrounds the origin, taking orientation into account, as
pictured in Figs. 5.6(b)-(g). Note that the winding number is equal to the inter-
section number between a ray L through the origin and the curve (Figs. 5.6(f),
(g)).
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(g) w = 2

�L
 
 

Fig. 5.6. Winding number
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Fig. 5.7. Mapping degree

• Local mapping degree: Consider maps as pictured in Fig. 5.7. If f(P ) = P ′ and f
preserves (resp. reverses) orientation in a sufficiently small neighborhood of the
point P , then we set

degP f := 1 (resp. degP f = −1).

• Global mapping degree: If a map f : A → B globally preserves (resp. reverses)
orientation, then we set

deg f := 1 (resp. deg f = −1).

If this is not the case, then we choose an image point P ′ and define

deg f := degP1
f + ...+ degPn

f (5.1)

where the points P1, ..., Pn are precisely the preimage points of P ′. Mnemonically,
the global mapping degree is the sum of local mapping degrees with respect to
a fixed image point P ′. It turns out that, roughly speaking, this definition does
not depend on the choice of the image point P ′. In the plane, winding number
and mapping degree coincide.

The strategy of putting in general position. The definition given above
for the intersection number of two curves refers tacitly to transversal intersection.
This excludes the degenerate case where the two curves touch each other (Fig.
5.8(c)). In the degenerate case, we proceed in the following quite natural manner:
We slightly perturb the curves such that

(a) either they intersect transversally each other (Fig. 5.8(a)) or
(b) they do not intersect at all (Fig. 5.8(b)).

It is now crucial that in both perturbed regular cases, we obtain the same well-
defined intersection number, namely, zero. Therefore, it is reasonable to assign the
intersection number zero to the degenerate situation of Fig. 5.8(c). This is part
of a general strategy used in modern differential topology. This strategy reads as
follows:
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Fig. 5.8. General position

Put geometric objects in general position by sufficiently small perturbations,
and assign integers to the general position configuration.

It turns out that general position can always be formulated in terms of transver-
sality. The point is that

Transversality is generic.

This means that the transversal situation can always be obtained by sufficiently
small perturbations. Finally, one has to show that the integer assigned to the
transversal situation is stable, that is, it does not depend on the specific form of
the small perturbation, as in Fig. 5.8. The prototype for the success of this strategy
is the following simple variant of the Sard theorem. Consider the equation

f(x) = y0, x ∈ R. (5.2)

We are given the real number y0. Let f : R → R be a smooth function such that

lim
|x|→∞

|f(x)| =∞.

Then, there exist a sequence (εn) with εn → 0 such that, for each index n, the
perturbed equation

f(x) = y0 + εn, x ∈ R

has at most a finite number of solutions x1, ..., xN , and each solution is nondegen-
erate, that is,

f ′(xj) �= 0 for all j.

In terms of geometry, this means that the graph of f transversally intersects the

(a)

�
x

�y

y0

(b)

�
x

�y

y0

x1 x2 x3

Fig. 5.9. Sard’s theorem
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Fig. 5.10. Surface of earth

horizontal line y = y0 (Fig. 5.9).4 The importance of transversality and genericity
for differential topology was emphasized by René Thom in the 1950s.5

5.4 Manifolds and Diffeomorphisms

The theory of manifolds studies smooth maps between geometric objects. Roughly
speaking, manifolds are smooth curves and smooth surfaces along with higher-
dimensional generalizations (e.g., m-dimensional spheres or Lie groups).

Intuitive motivation. The prototype of a real 2-dimensional manifold is the
surface of earth, M . In geography, we describe parts of the earth locally by charts
(subsets of R

2) of an atlas (Fig. 5.10). Here, the same city can be located on
different charts. Therefore, we need transition maps between charts. The following
two properties are typical:

• the surface M is locally described by local coordinates living in open subsets of
the 2-dimensional Euclidean space R

2, and
• the change of local coordinates is carried out by smooth functions.

Generally, a real m-dimensional manifold M looks locally like an open subset of
R

m, and the change of local coordinates is done by diffeomorphisms. To explain
this, let U and V be two open subsets of R

m. The map

f : U → V (5.3)

is called smooth iff it is continuous and its components have continuous partial
derivatives of each order. The smooth map (5.3) is called a diffeomorphism iff it
is bijective and smooth, and the inverse map f−1 : V → U is smooth as well. For
example, set f(x) := ex. Then, the map

f : R → ]0,∞[

is a diffeomorphism. The inverse map reads as f−1(x) := lnx for all x ∈]0,∞[.
The definitions can be immediately generalized to the situation where U and

V are open subsets of the complex plane, C, or more generally, open subsets of
the m-dimensional complex space, C

m. In particular, the map f : U → V is a

4 The proof along with far-reaching generalizations to infinite-dimensional spaces
due to Smale can be found in Zeidler (1986), Vol. I, Sect. 4.18. As an introduc-
tion to differential topology based on the transversality strategy, we recommend
Guillemin and Pollack (1974).

5 In 1958 Thom was awarded the Fields medal for his pioneering contributions to
the global theory of manifolds (cobordism theory).
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diffeomorphism iff it is bijective and the maps f and f−1 are smooth. In the special
case where m = 1, diffeomorphisms coincide with conformal maps.

Definition of real manifolds. The precise definition of a manifold reads like
this (Fig. 5.10).

(M1) A real m-dimensional manifold is a set M along with a (finite or countable)
family of bijective maps6

ϕA : MA → UA. (5.4)

Here, MA is a subset of M , and UA is a nonempty open subset of R
m. We call

xA = ϕA(x) the local coordinate of the point x ∈M , and ϕA is called a chart
map.

(M2) If the point x lies both in MA and MB , then there are assigned the two local
coordinates

xA = ϕA(x) and xB = ϕB(x)

to the point x. In this case, we assume that the transition map

xB = ϕBA(xA)

is a diffeomorphism on its natural domain of definition. Explicitly, we have
ϕBA = ϕB ◦ ϕ−1

A on the set ϕA(MA ∩MB).7

The manifold is called oriented iff all of the transition maps preserve orientation.
Morphisms. Let M and N be manifolds. By a manifold morphism, we under-

stand a smooth map
f : M → N,

that is, this map is smooth with respect to local coordinates. Furthermore, the
smooth map f : M → N is called a manifold isomorphism iff it is bijective and the
inverse map f−1 : N → M is also smooth. Manifold isomorphisms are also called
diffeomorphisms.

Complex manifolds. Similarly, the notion of complex m-dimensional manifold
is obtained by replacing open subsets of the real m-dimensional space R

m by open
subsets of the complex m-dimensional space C

m. Complex 1-dimensional manifolds
are also called regular complex curves. By a Riemann surface, we understand an
arcwise connected, regular complex curve. Diffeomorphic Riemann surfaces are also
called conformally equivalent.

Convention. If we do not explicitly state otherwise, by a manifold we always
understand a real finite-dimensional manifold.

5.5 Topological Spaces, Homeomorphisms, and
Deformations

Topology studies continuous maps between geometric objects. The notion of topo-
logical space was introduced by Hausdorff in 1914.8 Topological spaces generalize
manifolds. For example, the graph of the curve

6 The index A lies in the set A. We assume that the index set A is either finite or
equal to the set of natural numbers. Naturally enough, suppose that each point
of M lies in some set MA.

7 Naturally enough, we assume that the set ϕA(MA ∩MB) is an open subset of
the chart space R

m.
8 F. Hausdorff, Foundation of Set Theory (in German), Teubner, Leipzig, 1914.
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y = x2/3, x ∈ R

is a topological space, but not a manifold because of the singularity (cusp) at the
point (0, 0). For fixed genus g ≥ 2, spaces of string states (i.e., the Riemann moduli
spaces) are topological spaces, but not manifolds because of the appearance of
singularities. The prototype of a topological space is a subset of R

n with n = 1, 2, . . .
or a point. Roughly speaking, we pass from manifolds to topological spaces by
replacing ‘smooth’ by ‘continuous.’

Definition. A set X is called a topological space iff certain subsets S of X are
distinguished as open sets such that the following hold:

(T1) Both the set X and the empty set ∅ are open.
(T2) The union of each arbitrary family of open sets is open.
(T3) The intersection of each finite family of open sets is open.

The family of all open sets is called a topology. By an open open neighborhood of
the point x in X, we understand an open subset of X which contains the point x.9

The topological space X is called separated iff for any two different points x, y ∈ X,
there exist disjoint open neighborhoods of x and y. A subset C of the topological
space X is called closed iff the complement X \ C is open.

Each subset M of a topological space X is also a topological space.

By definition, a subset V of M is called open iff there exists an open subset U of
X such that

V = U ∩M.

The topology of M is called the topology induced by X.
Morphisms. Let X and Y be topological spaces. The map

f : X → Y

is called continuous (or a topological morphism) iff the preimage of open sets is
again open. The continuous map f : X → Y is called a topological isomorphism
iff it is bijective and the inverse map f−1 : Y → X is continuous, too. Topological
isomorphisms are also called homeomorphisms.

Standard examples. In order to give the reader a feeling for the universality
of the notion of topological space, let us consider the following examples.

• For n = 0, 1, . . . , the sets R
n and C

n and their subsets are topological spaces.
• Every Hilbert space and Banach space and their subsets are topological spaces.
• Every real (resp. complex) finite-dimensional manifold is a topological space.
• For n = 1, 2, . . . , the n-dimensional unit sphere

S
n := {x ∈ R

n+1 : x2
1 + x2

2 + . . .+ x2
n+1 = 1}

is an n-dimensional real manifold.
• Define F (ϕ) := eiϕ for all ϕ ∈ R. The continuous map

F : R → S
1

sends the real line onto the unit circle S
1. This is not a homeomorphism. We say

that the real line R is a covering space of the unit circle.

9 More generally, by a neighborhood of the point x, we understand an arbitrary
set which contains an open neighborhood of the point x.
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(a) homeomorphism
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Fig. 5.11. Global behavior of a function

• Consider the interval [−π, π] and identify the point −π with π. This way, we
obtain a topological space denoted by [−π, π]/{−π, π} which is homeomorphic
to the unit circle S

1. Explicitly, the homeomorphism is given by the map

h : [−π, π]/{−π, π} → S
1

where h(ϕ) := eiϕ for all ϕ ∈ [−π, π].
• The n-dimensional real projective space P

n is an n-dimensional real manifold
obtained by considering antipodal pairs as one point. That is, the elements of P

n

are antipodal pairs {x,−x}.
• For n = 1, 2, . . . . the groups SU(n), U(n), SO(n) are manifolds. More general,

each Lie group is a real manifold.
• For the rotation group of the 3-dimensional Euclidean space,

SO(3) = {(n, ϕ) : n ∈ P
2, ϕ ∈ S

1}.

Here, the unit vector n represents the rotation axis, and ϕ represents the rotation
angle. Note that each rotation about the axis n can also be described by a rotation
about the axis −n. We briefly write

SO(3) = P
2 × S

1.

More precisely, the manifold SO(3) is diffeomorphic to the manifold P
2×S

1. This
shows that the Lie group SO(3) possesses a nontrivial topological structure. We
will show in Sect. 5.7.1 on page 267 that the topology of SO(3) is responsible for
the electron spin.

• Riemann surfaces are 2-dimensional real manifolds and 1-dimensional complex
manifolds.

Each diffeomorphism is a homeomorphism, but the converse is not true. To explain
this, consider the two maps

f(x) := x3, g(x) := sinhx for all x ∈ R

pictured in Fig. 5.11. Then, the map g : R → R is a diffeomorphism, whereas
f : R → R is a homeomorphism, but not a diffeomorphism. In fact, the inverse map
f−1(x) := x1/3 is not smooth at the point x = 0.

Deformations. We want to study the deformation of both geometric objects
(topological spaces) and continuous maps. We expect that

Crucial phenomena in nature should be invariant under continuous defor-
mations.

The prototypes of deformations are given by the following two maps
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(i) H(x, t) := (1− t)x for all x ∈ R, t ∈ [0, 1], and
(ii) H(x, t) := (1− t)f(x) + tg(t) for all x ∈ R, t ∈ [0, 1].

We regard the variable t as time. The map (i) contracts the real line into the origin
during the time interval [0, 1]. The trajectory

x(t) := (1− t)x, t ∈ [0, 1]

sends the point x at the initial time t = 0 to the origin x = 0 at the final time
t = 1. If the functions f, g : R → R are continuous, then the map (ii) continuously
deforms the function f into g. This motivates the following definitions.

• Homotopic continuous maps: Let X and Y be topologically spaces. Two con-
tinuous maps f, g : X → Y are called homotopic iff there exists a continuous
map

H : X × [0, 1] → Y

such that H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X. Intuitively, the map
f is continuously deformed into the map g during the time interval [0, 1]. The
map f : X → Y is called homotopically trivial iff it is homotopic to a constant
map g : X → Y.

• Homotopically equivalent topological spaces: The two topological spaces X and
Y are called homotopically equivalent iff there exists a map

f : X → Y

which is invertible up to deformations. We briefly write X ∼ Y. Explicitly, this
means the following. There exists a map

g : Y → X

such that f ◦g : Y → Y is homotopic to the identity map on Y , and g◦f : X → X
is homotopic to the identity map on X. We briefly write

f ◦ g ∼ idY and g ◦ f ∼ idX .

If f : X → Y is a homeomorphism, then the topological space X is called topolog-
ically equivalent to the topological space Y . This implies that X is homotopically
equivalent to Y . To see this, choose g := f−1.

Standard examples. We want to consider contractible topological spaces and
deformation retracts.

• A topological space is called contractible iff it is homotopically equivalent to a
one-point space.10 Explicitly, this means the following. Let x0 be a point of the
topological space X. Suppose that there exists a continuous map

H : X × [0, 1]→ X

such that H(x, 0) = x and H(x, 1) = x0 for all x ∈ X. Then, the space X is
contractible to the point x0.

• Retract: Let Y be a subset of a the topological space X. The continuous map

r : X → Y

is called a retract iff it is continuous and it fixes the points of Y , that is, r(y) = y
for all y ∈ Y.

10 Contractible topological spaces are also called homotopically trivial.
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(a) simply connected disc

C

X

(b) not simply connected annulus


 X
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Fig. 5.12. Connectivity

• Deformation retract: If, in addition, the retraction r is homotopic to the identity
map on X, then Y is called a deformation retract of X. Explicitly, this means
that there exists a continuous map

H : X × [0, 1]→ X

such that H(x, 0) = x for all x ∈ X and H(y, 1) = y for all y ∈ Y.
For example, the real line and each interval is contractible, but the unit sphere
S

1 is not contractible. Furthermore, for n = 2, 3, . . . , each n-dimensional ball is
contractible. Let x, y ∈ R

2. Then, the map

(x, y) �→ (x, 0)

is a retraction, and the x-axis is a deformation retract of the (x, y)-plane.
Topological invariants. Suppose that we assign a mathematical object to a

class of topological spaces.

• This object is called a topological invariant iff it is invariant under homeomor-
phisms.

• This object is called a homotopy invariant iff it is the same for homotopically
equivalent topological spaces.

The most important topological invariant is the Euler characteristic to be intro-
duced below. Topological invariants play a fundamental role in mathematics and
physics (e.g., Betti numbers, Gauss’ linking number, genus of a Riemannian surface,
winding number, mapping degree, Morse index of a dynamical system, characteristic
classes, Stiefel–Whitney classes, Chern classes and Chern numbers, Atiyah–Singer
index, Gromov–Witten invariants, Donaldson invariants of 4-dimensional manifolds,
Seiberg–Witten invariants, Jones polynomials of knots, homology groups, cohomol-
ogy groups, homotopy groups, K-groups as generalized cohomology groups). We
will study this thoroughly in Volume IV on quantum mathematics. At this point,
we will only sketch same basic ideas.

As a rule, topological invariants are also homotopy invariants.

Compactness. A topological space X is called compact iff each covering of X
by open sets contains a finite family of open subsets which already covers the space
X. For example, a subset of R

n, n = 1, 2, . . . is a compact topological space iff it is
closed and bounded (e.g., closed balls or spheres).

Connectedness. The topological space X is called arcwise connected iff for
any two points x0, x1 in X there exists a continuous map

x : [0, 1]→ X

such that x(0) = x0 and x(1) = x1. Intuitively, the continuous curve x = x(t) with
0 ≤ t ≤ 1 connects the point x0 with the point x1. To each point x0 in X, there
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exists a maximal arcwise connected subset of X which contains the point x0. This
set is called the component of the point x0 in the topological space X. For example,
the component of the point x = 1 on the punctured real line R \ {0} is equal to the
interval ]0,∞[.

By a loop in X, we understand a continuous map x : [0, 1] → X with the
property x(0) = x(1). The topological space X is called simply connected iff each
loop in X can be continuously contracted into a point of X. Explicitly, there exists
a continuous map (t, s) �→ H(t, s),

H : [0, 1]× [0, 1] → X,

and a point x0 such that H(t, 0) = x(t) and H(t, 1) = x0 for all t ∈ [0, 1]. The
unit circle S

1 is not simply connected. Any disc in R
2 is simply connected, but an

annulus is not simply connected (Fig. 5.12). The 2-dimensional sphere S
2 is simply

connected, but a torus is not simply connected.
The Jordan curve theorem. A topological space is called a closed Jordan

curve iff it is homeomorphic to the unit circle S
1. Obviously, the topological space

R
2 \ S

1

consists of two components, namely, the interior and the exterior of the unit circle.
In 1887 Camille Jordan (1838-1922) proved the much deeper result that for any
closed Jordan curve C living in R

2, the topological space

R
2 \ C

consists of two components; one component is bounded and the other component
is unbounded. These two components are called the interior and the exterior of the
curve C, respectively.11

Suggested reading. For first reading, we recommmend the elegant book by
Guillemin and Pollack (1974) on elementary differential topology, which empha-
sizes geometric intuition. We also refer to the beautiful modern textbook by Jost
(2002a) (Riemannian geometry, spin structures and the Dirac operator, geometric
analysis, de Rham cohomology, geodesics, Morse theory, Floer homology, harmonic
maps, Kähler manifolds, Chern classes, variational problems from quantum field
theory, the Yang–Mills functional, the Chern–Simons functional, the Ginzburg–
Landau functional, and the Seiberg–Witten functional).

As an introduction to topology and its applications to physics, we recommend
the following books: Milnor (1963) (Morse theory), (1965) (differential topology),
Pontryagin (1965) and Spanier (1989) (classic textbooks), Hirzebruch (1966) (clas-
sic monograph on topology and algebraic geometry), Milnor and Stasheff (1974)
(characteristic classes), Naber (1980), (1982), (1997) (applications to physics, e.g.,
singularities of our universe and gauge theory), Bott and Tu (1982) (differential
forms and characteristic classes), Dubrovin, Fomenko, and Novikov (1992) (geom-
etry, topology, and physics), Marathe and Martucci (1992) (gauge field theory),
Bredon (1993) (topology and geometry), Schwarz (1993), (1994) (topology and
quantum field theory), Gilkey (1995) (Atiyah–Singer index theorem and spectral
geometry), Knörrer (1995) (the beauty of geometry), Jost (1997) (Riemann sur-
faces), Friedrich (2000) (spin geometry and Dirac operators), Hatcher (2002), (2005)
(modern textbook).

11 The proof based on the mapping degree and the generalization to higher dimen-
sions (the Jordan–Brouwer separation theorem) can be found in Zeidler (1986),
Vol. I, Sect. 13.8. The Appendix of Zeidler (1986), Vol. I, contains a summary of
important notions and theorems from topology.
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General surveys on topology can be found in Novikov (1996), Dodson and Parker
(1997), and Zeidler (2002a), Vol. II. For the history of algebraic topology and alge-
braic geometry, we recommend Dieudonné (1978), (1985), (1989).

5.6 Topological Quantum Numbers

In the 20th century, physicists learned that quantum phenomena in nature can be
classified by quantum numbers. There arises the question how to describe quan-
tum numbers in terms of mathematics. It turns out that there are two important
possibilities to obtain quantum numbers, namely,

(S) symmetry (the representation theory of compact Lie groups), and
(T) topology (topological invariants as topological charges or topological quantum

numbers).

In what follows, we will sketch some basic ideas by emphasizing the relations to
physical applications.

5.6.1 The Genus of a Surface

Classification of real 1-dimensional manifolds. Let M be a real, 1-dimen-
sional, arcwise connected manifold.

• If M is compact, then it is diffeomorphic to the unit circle S
1.

• If M is not compact, then it is diffeomorphic to the real line R.

The proof can be found in Milnor (1965) (appendix).
Classification of real 2-dimensional manifolds. The following theorem was

one of the highlights of topology at the end of the 19th century:12

Each real, 2-dimensional, compact, oriented, arcwise connected manifold
is homeomorphic to a surface that is obtained by attaching a finite number
of handles to the 2-dimensional sphere S

2.

The number of handles, g = 0, 1, 2, . . . , is called the genus of the manifold. For ex-
ample, the 2-dimensional sphere S

2 has the genus g = 0. The torus is homeomorphic
to a sphere with one handle (Fig. 5.13(a)). Therefore, the genus of a torus is equal
to 1. Equivalently, the genus is the number of ‘holes’ (Fig. 5.13(b)). The genus is
a topological invariant. More precisely, two real, 2-dimensional, compact, oriented,
arcwise connected manifolds are homeomorphic iff they have the same genus. This
means that the crucial qualitative structure of such manifolds only depends on the
genus of the manifold. Below we will illuminate this by considering

12 The proof of the more general result on the classification of real, 2-dimensional,
oriented and non-orientable, compact, arcwise connected topological manifolds
can be found in W. Rinow, Topologie (in German), Sect. 50, Verlag der Wis-
senschaften, Berlin, 1975.
The complete proof was given first by Dehn and Heegard in 1907 based on earlier
work by Möbius, Riemann, Betti, Felix Klein, Poincaré, and van Dyck in the 19th
century. We refer to E. Scholz, History of the Theory of Manifolds from Riemann
to Poincaré (in German), Birkhäuser, Basel, 1980.
The classification of non-compact, real, 2-dimensional topological manifolds can
be found in B. von Kerékjártó, Vorlesungen über Topologie (Lectures on topol-
ogy) (in German), Springer, Berlin, 1923.
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(a) g = 1 (b) g = 2

Fig. 5.13. The genus g of an oriented surface

• the Poincaré–Hopf index theorem on stationary points of dynamical systems,
• the Gauss–Bonnet theorem on the total curvature of surfaces, and
• the Morse theorem on critical points of energy functions on surfaces.

In addition, the crucial properties of Abelian integrals only depend on the genus g
of the Riemann surface of the corresponding algebraic function. In particular, the
number of additive periods of an Abelian integral is equal to 2g. In particular, the
Riemann surface of an elliptic integral is a torus with genus g = 1. This is respon-
sible for the fact that elliptic integrals possess two additive periods and the inverse
functions to elliptic integrals are double-periodic (i.e., they are elliptic functions).

5.6.2 The Euler Characteristic

We will decompose geometric objects into cells. This allows us to compute the Euler
characteristic as an alternating sum of the numbers of cells of increasing dimension.
Let us start with the following definitions.

• A 0-cell is a point.
• A 1-cell is a topological space which is homeomorphic to the open interval ]0, 1[.
• A 2-cell is a topological space which is homeomorphic to the open unit square
{(x, y) ∈ R

2 : 0 < x, y < 1}.
• For n = 1, 2, . . . , an n-cell is a topological space which is homeomorphic to the

open n-dimensional cube {x ∈ R
n : 0 < x1, . . . , xn < 1}.

We define the Euler characteristic of the topological space X by

χ(X) := c0 − c1 + c2 − . . . (5.5)

Here, c0, c1, . . . is the number of 0-cells, 1-cells, . . . , respectively. This definition
seems to depend on the decomposition of the space X into cells. The point is that
the Euler characteristic of X does not depend on the choice of the decomposition.

It turns out that the Euler characteristic of homotopically equivalent topo-
logical spaces is the same.

This is a deep result of modern topology.
Prototypes of the Euler characteristic χ. To get some feeling for the Euler

characteristic, let us consider a few simple examples.

(i) For a point, χ = c0 = 1.
(ii) Compact interval [a, b]. The interval [a, b] consists of the two boundary points

a, b and the open interval ]a, b[. Hence

χ = c0 − c1 = 2− 1 = 1.
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(a) χ = 2− 2 = 0

S
1

(b) χ = 3− 3 = 0

Fig. 5.14. Euler characteristic of a circle

(a) χ = 8− 12 + 6 = 2 (b) χ = 4− 6 + 4 = 2 (c) χ = 6− 12 + 8 = 2

Fig. 5.15. Euler characteristic of a sphere

The point is that the Euler characteristic of [a, b] does not depend on the choice
of any decomposition of the interval. In fact, if we consider the decomposition

a < x1 < . . . < xn < b,

we have n + 2 points a, x1, . . . , b and n + 1 open intervals ]a, x1[, . . . , ]xn, b[.
Hence

χ = c0 − c1 = n+ 2− (n+ 1) = 1.

(iii) Unit circle. For n = 2, 3, . . . , every decomposition of the unit sphere S
1 consists

of n points and n 1-cells (Fig. 5.14). Hence

χ(S1) = c0 − c1 = n− n = 0.

(iv) 2-dimensional unit sphere. The sphere S
2 can be decomposed into one point

(e.g., the North Pole) and the complement S
2 \ {N} which is a 2-cell. Hence

χ(S2) = c0 − c1 + c2 = 1− 0 + 1 = 2.

Consider now a triangulation of S
2 as pictured in Fig. 5.15(c). This triangula-

tion consists of six vertices, twelve 1-cells, and eight 2-cells. Hence

χ(S2) = c0 − c1 + c2 = 6− 12 + 8 = 2.

(v) Surface of a cube. By 5.15(b), there are eight vertices, twelve 1-cells, and six
2-cells. Hence

χ = c0 − c1 + c2 = 8− 12 + 6 = 2.

We expect this, since the surface of the cube is homeomorphic to the 2-
dimensional sphere. For the solid cube, we get

χ = c0 − c1 + c2 − c3 = 8− 12 + 6− 1 = 1.
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(a) (b) (c) (d) (e)

Fig. 5.16. Tetrahedron, cube, octahedron, dodecahedron, icosahedron

The following are true.

• The Euler characteristic of a contractible space is equal to one.
• The Euler characteristic of a real, 2-dimensional, compact, oriented, arcwise con-

nected manifold of genus g = 0, 1, 2, . . . is equal to χ = 2 − 2g. This generalizes
(iv). In particular, for the torus we have g = 1, and hence we get χ = 2− 2 = 0.

5.6.3 Platonic Solids and Fullerenes

In 387 B.C. Plato founded in Athens his Academy, which in most re-
spects was like a modern university. . . Though the main center shifted to
Alexandria around 300 B.C., the Academy remained preeminent in phi-
losophy throughout the Alexandrian period. It lasted nine hundred years
until it was closed by the Christian emperor Justinian in A.D. 529 be-
cause it taught “pagan and perverse learning”. . . Plato, one of the most
informed men of his day, was not a mathematician; but his enthusiasm
for the subject and his belief in its importance for philosophy and for the
understanding of the universe encouraged mathematicians to pursue it. It
is noteworthy that almost all of the important mathematical work of the
fourth century was done by Plato’s friends and pupils. Plato himself seems
to have been more concerned to improve and perfect what was known.

Morris Kline, 1972
Mathematical Thought from Ancient to Modern Times13

The Greeks were charmed by the fact that there exist precisely five regular polyhe-
dra called the Platonic solids: tetrahedron, cube, octahedron, dodecahedron, and
icosahedron (Fig. 5.16).

• The number of faces is equal to 4 (triangles), 6 (squares), 8 (triangles), 12 (pen-
tagons), 20 (triangles), respectively. These numbers are responsible for the des-
ignation of the Platonic solids.

• The number of vertices is equal to 4, 8, 6, 20, 12, respectively.
• The number of edges is equal to 6, 12, 12, 30, 30, respectively.

By definition, a regular polyhedron is a polyhedron whose faces all have the same
number of sides, and which also has the same number of faces meeting at each
vertex. It can be proven that the Platonic solids are the only regular polyhedra
homeomorphic to the 2-sphere. In 1750 Euler discovered that there holds

c0 − c1 + c2 = 2

13 Reprinted by permission of Oxford University Press.
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for the Platonic polyhedra. Here, c0 is the number of vertices, c1 is the number of
edges, and c2 is the number of faces. This formula follows from the fact that the
Euler characteristic of the 2-dimensional sphere is equal to 2, and the surfaces of
all the Platonic solids are homeomorphic to the 2-dimensional sphere. Felix Klein
wrote a beautiful book on the icosahedron14 and its symmetry group of order 60. He
used the symmetry group of the icosahedron in order to solve fifth-order algebraic
equations by means of automorphic functions. If the polyhedron has g holes, then

χ = c0 − c1 + c2 = 2− 2g.

This was discovered by Simon l’Huilier in 1815. The number g is called the genus
of the polyhedron. In particular, for a torus-like polyhedron, we get g = 1.

In 1985, a new class of molecules was experimentally discovered. These molecules
of carbon have a roughly spherical shape. They are called fullerenes. For example,
the sixty carbon atoms of the C60-molecule form a polyhedron which has 60 vertices
and 32 faces (20 six-angles and 12 five-angles). By Euler’s polyhedron formula, the
number of edges is equal to

c1 = c0 + c2 − 2 = 60 + 32− 2 = 90.

A soccer ball has the same shape. For the discovery of fullerenes, Sir Harold Kroto,
Robert Curl, and Richard Smalley were awarded the 1996 Nobel Prize in chemistry.
These molecules are named after the American architect Robert Buckminster Fuller.

5.6.4 The Poincaré–Hopf Theorem for Velocity Fields

We want to show that the topology of a manifold restricts the structure of velocity
vector fields on the manifold. Consider a velocity vector field

v(x) = v(x, y)i + w(x, y)j

on the Euclidean plane. Suppose that v(x0) = 0 and that the stationary point x0

is regular, that is, we define

detv′(x0) :=

˛

˛

˛

˛

˛

vx(x0, y0) vy(x0, y0)

wx(x0, y0) wy(x0, y0)

˛

˛

˛

˛

˛

,

and we assume that detv′(x0) �= 0. The number indv(x0) := sgn detv′(x0) is
called the index of the stationary point x0. Some typical situations are pictured in
Fig. 5.17. For example, if

v(x, y) := λx, w(x, y) := μy

with real nonzero numbers λ and μ, then indv′(0) = sgn(λμ). In particular, the
index of a sink (or source) is equal to +1, whereas the index of a saddle is equal
to −1. Consider a smooth velocity vector field on a real, 2-dimensional, compact,
arcwise connected manifold (e.g., a sphere) which has only a finite number of sta-
tionary points x1, ...,xN . In addition, suppose that all of the stationary points are
regular. Then, the Poincaré–Hopf theorem tells us that

14 Vorlesungen über das Ikosaeder, Teubner, Leipzig, 1884. (English translation:
Lectures on the Icosahedron, Dover, 1956.)
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Fig. 5.17. Velocity vector field of a fluid

N
X

j=1

indv′(xj) = χ (5.6)

where χ is the Euler characteristic of the manifold.15 Let us consider some examples.

• The velocity field pictured in Fig. 5.17(d) has one sink and one source, and the
Euler characteristic of a sphere is equal to 2.

• Since the Euler characteristic of a sphere is different from zero, each smooth
velocity vector field on a sphere has at least one stationary point (Poincaré’s
hairy ball theorem).

• The velocity field pictured in Fig. 5.17(e) has one source, one sink, and two
saddles, and the Euler characteristic of a torus is equal to zero.

Conversely, the Poincaré–Hopf theorem can be used in order to compute the Euler
characteristic of a manifold easily. To this end, one has to construct a simple flow
of fluid particles on the manifold.

5.6.5 The Gauss–Bonnet Theorem

Consider the triangle pictured in Fig. 5.18(a) on a sphere S
2
R of radius R where the

sides are geodesics. For the sum of angles,

α+ β + γ − F = π.

Here, F is the surface area of the triangle. Introducing the Gaussian curvature of
the sphere, K := 1/R2, we get the formula

15 The index refers to local coordinates. However, it turns out that this definition
is independent of the choice of local coordinates.
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(a) α+ β + γ − F = π

βα

γ

(b) π
2

+ π
2

+ π − π = π

π
2

π
2

π

Fig. 5.18. The Gauss–Bonnet theorem

α+ β + γ −
Z

T
KdS = π (5.7)

where we integrate over the triangle. The sphere S
2
R can be decomposed into four

triangles as pictured in Fig. 5.18(b). Summing over the four triangles, we get

Z

S2
R

KdS = 4 · 2π − 4π = 4π.

Letting M = S
2
R, this can be written as

1

2π

Z

M

KdS = χ(M) (5.8)

where χ(M) = 2 is the Euler characteristic (or the first Chern number) of the
sphere. The integral is to be understood as an integral with respect to the surface
measure of the sphere. This Gauss–Bonnet formula is the prototype for a topological
quantum number. It tells us that a topological quantity – the Euler characteristic
– can be expressed by an analytical quantity – the Gaussian curvature. For a torus,
equation (5.18) is valid with K ≡ 0 and χ = 0.

The Gauss–Bonnet–Chern theorem. The Gauss–Bonnet theorem is one of
the most beautiful theorems in mathematics. In Volume IV on quantum mathe-
matics, we will consider far-reaching generalizations in the framework of the theory
of characteristic classes: the Gauss–Bonnet–Chern theorem for n-dimensional Rie-
mannian manifolds. In order to obtain such a generalization, one has to reformulate
the classical Gauss–Bonnet theorem in the modern language of vector bundles. At
this point, let us only sketch a few basic ideas.

Riemannian geometry of the 2-dimensional sphere. To begin with, let
us introduce spherical coordinates

−π < ϕ ≤ π, −π
2
≤ ϑ ≤ π

2
.

Here, ϕ and ϑ denote geographic longitude and geographic latitude, respectively.
Moreover, we get the following:

• equator: ϑ = 0;
• North Pole: ϑ = π

2
;

• South Pole: ϑ = −π
2
;

• meridian: ϕ = const;
• parallel of latitude: ϑ = const.
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In terms of Cartesian coordinates x, y, z, the sphere S
2
R can be parametrized in the

following way:

x = R cosϕ cosϑ, y = R sinϕ cosϑ, z = R sinϑ.

In fact, it follows from cos2 α+ sin2 α = 1 that x2 + y2 + z2 = R2. Now consider a
smooth curve

C : ϕ = ϕ(t), ϑ = ϑ(t), t0 ≤ t ≤ t1

on the sphere. In Cartesian coordinates,

x(t) = R cosϕ(t) cosϑ(t), y(t) = R sinϕ(t) cosϑ(t), z(t) = R sinϑ(t).

Differentiation with respect to time yields

ẋ(t) = −Rϕ̇(t) sinϕ(t) cosϑ(t)−Rϑ̇(t) cosϕ(t) sinϑ(t).

Similarly, we get ẏ and ż. Using again cos2 α+ sin2 α = 1,

ṡ(t) :=
p

ẋ2(t) + ẏ2(t) + ż2(t) = R

q

ϑ̇2(t) + ϕ̇(t)2 cos2 ϑ(t).

This yields the arc length of the curve C,

s :=

Z t1

t0

ṡ(t)dt =

Z t1

t0

R

q

ϑ̇(t)2 + ϕ̇(t)2 cos2 ϑ(t) dt.

Setting u1 := ϕ, u2 := ϑ, we get

ṡ(t)2 = gij(u
1(t), u2(t))u̇i(t)u̇j(t)

where we sum over i, j = 1, 2. The functions

g11(ϕ, ϑ) := R2 cos2 ϑ(t), g22(ϕ, ϑ) := R2, g12 = g21 = 0

are called the components of the metric tensor of the sphere. Set g := det(gij). For
the sphere, g = g11g22 = R4 cos2 ϑ. The differential form

υ :=
√
g dϕ ∧ dϑ = R2 cosϑ dϕ ∧ dϑ

is called the volume form of the sphere S
2
R. The integral

Z

S2
R

υ =

Z π

−π

Z π/2

−π/2

R2 cosϑ dϕdϑ = 4πR2

is equal to the surface area of the sphere.
In the 1820s, the importance of the metric tensor was first noticed by Gauss in

the context of his surface theory. The theorema egregium (the beautiful theorem)
of Gauss tells us that the curvature of a surface can be computed by means of
the second partial derivatives of the functions gij (see Volume III). In the 1850s,
Riemann introduced the components Rijkl of the Riemann curvature tensor for n-
dimensional Riemannian manifolds. In the special case of the sphere, there is only
one essential component of the Riemann curvature tensor, namely,

R1212 = Kg

where K = 1/R2 is the Gaussian curvature of the sphere S
2
R. In 1915 Einstein crit-

ically used the Riemann curvature tensor of the 4-dimensional space-time manifold



5.6 Topological Quantum Numbers 251

in order to describe the gravitational force in our universe in the framework of the
theory of general relativity.

Velocity fields and the tangent bundle of the 2-dimensional sphere.
For each point x of the sphere S

2
R, let TxS

2
R denote the tangent space at x. In terms

of physics, this tangent space consists of all possible velocity vectors v at the point
x. In order to get a global object, let us introduce the tangent bundle TS

2
R of the

sphere S
2
R which consists of all possible pairs (x,v) where v is a velocity vector at

the point x. In other words,

TS
2
R := {(x,v) : x ∈ S

2
R, v ∈ TxS

2
R}.

One can show that this is a real 4-dimensional manifold. It turns out that the
important geometric properties of the sphere like

• the parallel transport of velocity vectors and
• the curvature properties

can be formulated in terms of a connection on the tangent bundle. The basic idea
is to compute the curvature of the sphere at a point by measuring the parallel
transport of a velocity vector along a sufficiently small loop around the point. This
concept is intrinsic, that is, it is independent of the surrounding space of the surface.

In order to best understand the geometry of the sphere S
2
R, do not study

the sphere itself, but its tangent bundle TS
2
R.

This strategy is crucial for modern differential geometry. Replacing the tangent
bundle by more general bundles, we get a mathematical approach to differential
geometry which is identical with gauge theory in physics. The two approaches were

created independently by mathematicians (Gauss, Riemann, Lie, Levi-Civita, Élie
Cartan, Ehresmann) and physicists (Yang, Mills) and completed in the 1950s.16 In
particular, the Standard Model in particle physics can be described this way. This
will be studied in great detail in Volume III on gauge theory. We will see that

• connection (resp. curvature) in mathematics
• corresponds to potential (resp. interacting force) in physics.

The first Chern class of the tangent bundle of the sphere. By definition,
the differential form

ω =
K

2π
· υ

is a representative of the first Chern class c1(S
2
R) of the tangent bundle TS

2
R. The

Gauss–Bonnet theorem (5.8) can equivalently be written as

Z

S2
R

ω = χ(S2
R).

As we will show in Volume IV, the first Chern class is an element of the second de
Rham cohomology group H2(S2

R) of the sphere S
2
R. In 1945 Chern discovered how

to generalize this to higher dimensions.17

16 See S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vols. 1, 2,
Wiley, New York, 1963.

17 S. Chern, A simple intrinsic proof of the Gauss–Bonnet formula for closed Rie-
mannian manifolds, Ann. of Math. 45 (1945), 747–752.
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Fig. 5.19. Morse index

5.6.6 The Morse Theorem on Critical Points of Energy Functions

The Morse index of an energy function. Suppose that the smooth real function
E : R → R has a regular critical point at x0, that is, E′(x0) = 0 and E′′(x0) �= 0.
Then, the Morse index of x0 is given by

i(x0) :=

(

0 if E′′(x0) > 0,

1 if E′′(x0) < 0.

This corresponds to a minimum (resp. maximum) of E at the point x0 (Fig. 5.19).
More generally, consider a smooth real function E : R

2 → R. Then

E′(x, y) := (Ex(x, y), Ey(x, y)), E′′(x, y) :=

 

Exx(x, y) Exy(x, y)

Exy(x, y) Eyy(x, y)

!

.

Let (x0, y0) be a regular critical point of E, that is, E′(x0, y0) = 0 and

detE′′(x0, y0) �= 0.

Then the Morse index i(x0, y0) of (x0, y0) is defined to be the number of negative
eigenvalues of the matrix E′′(x0, y0). For example, the function

f(x, y) := λx2 + μy2

with the real nonzero numbers λ and μ has the origin (0, 0) as regular critical point
with the Morse index

i(0, 0) :=

8

>

<

>

:

0 if λ > 0, μ > 0,

1 if λμ < 0,

2 if λ < 0, μ < 0.

This corresponds to a minimum (resp. saddle point, maximum) of the function E
at the point (0, 0).

The Morse theorem. Let E : M → R be a smooth function on the real,
2-dimensional, compact, oriented, arcwise connected manifold M of genus g (e.g., a
sphere or a torus). Suppose that the function E has only a finite number of critical



5.6 Topological Quantum Numbers 253

(a)

�
B

C

C′

J ′

�

�

(b)

�
B

C

C′

J ′S

�

�
�

Fig. 5.20. Gauss’ linking number

points, and all of them are regular. Let mi be the number of critical points of E
with Morse index i.18 Then

m0 −m1 +m2 = χ(M).

In addition, we have the famous Morse inequalities19

m0 ≥ β0, m1 ≥ β1, m2 ≥ β2.

The lower bounds β0 := 1, β1 := 2g, β2 := 1 are the so-called Betti numbers of the
manifold M . For the Euler characteristic of the manifold M , we get

χ(M) = β0 − β1 + β2 = 2− 2g.

In particular, for a torus M , g = 1.20 Thus, on a torus, the function E has at least
one minimum, one maximum, and two saddle points. In addition, from χ = 0 we
get m0 + m2 = m1, that is, the number of minima plus the number of maxima of
E is equal to the number of saddle points.

For example, consider the function z = h(x, y) on the torus where h(x, y) de-
notes the height of the point (x, y) (Fig. 5.19(c)). The function h has a mini-
mum (resp. maximum) at the point A (resp. D) with Morse index iA = 0 (resp.
iD = 2). Furthermore, the function h has saddles at the points B,C with Morse
index iB = iC = 1. For the Euler characteristic of the torus, we get

χ = m0 −m1 +m2 = 1− 2 + 1 = 0.

5.6.7 Magnetic Fields, the Gauss Integral, and the Linking
Number

Topology is rooted in Maxwell’s theory on the electromagnetic field.
Folklore

18 The Morse index refers to local coordinates. However, it is independent of the
choice of local coordinates. The proof of the Morse theorem can be found in Jost
(2002a), 2nd edn., Sect. 5.3.

19 Betti (1823–1892), Morse (1892–1977).
20 The first Betti number β1 = 2 tells us that on the torus, there are two essentially

different loops (also called fundamental 1-cycles) which cannot be continuously
deformed into each other. For example, think of the equator and some meridian.
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Of the geometria situs, which Leibniz (1646–1716) sensed, and of which
only a few geometers, Euler (1707–1783) and Vandermonde (1735–1796),
were granted an obscured view, we know and have, after a hundred and
fifty years, still little more than nothing.

Carl Friedrich Gauss, 1833

It was the discovery by Gauss of this very integral expressing the work
done on a magnetic pole while describing a closed curve in presence of a
closed electric current and indicating the geometric connection between the
two closed curves, that led him to lament the small progress made in the
Geometry of Position since the time of Leibniz, Euler and Vandermonde.
We now have some progress to report, chiefly due to Riemann, Helmholtz
and Listing.

James Clerk Maxwell, 1873
A Treatise on Electricity and Magnetism

In obtaining a topological invariant by using a physical field theory, Gauss
had anticipated Topological Field Theory by almost 150 years. Even the
term topology was not used then. It was introduced by Johann Listing
(1806-1882), a student and protegé of Gauss, in his 1847 essay Preliminary
Studies on Topology. Gauss’ linking number formula can also be interpreted
as the equality of topological and analytical degree of a suitable function.
Starting with this a far-reaching generalization of the Gauss integral to
higher linking self-linking integrals can be obtained. This forms a small
part of a program initiated by Maxim Kontsevich to relate topology of
low-dimensional manifolds, homotopical algebras, and non-commutative
geometry with topological field theories and Feynman diagrams in physics.

Kishore Marathe, 2001
A chapter in physical mathematics: theory of knots in the sciences21

Consider the situation pictured in Fig. 5.20. The electric current of strength J ′

flowing in the wire C′, generates the magnetic field

B(x) =
μ0J ′

4π

Z

C′

(x′ − x)× dx′

|x− x′|3 ,

by the Biot–Savart law. From the global Maxwell equation
R

C
Bdx = μ0J it follows

that

μ0J =
μ0J ′

4π

Z

C

Z

C′

((x′ − x)× dx′)dx

|x− x′|3 .

Hence

μ0J =
μ0J ′

4π

Z

C

Z

C′

(x− x′)(dx× dx′)

|x− x′|3 .

In terms of physics, the linking number is defined to be the quotient

l(C,C′) :=
J
J ′ .

For example, in Fig. 5.20(b) the linking number is equal to 2. In this case, the
current strength J ′ in the wire C′ flows twice through the surface S spanned by

21 This nice survey article is contained in the monumental survey on modern math-
ematics edited by Engquist and Schmid (Eds.) (2001), pp. 873–888 (reprinted
with permission). References to modern topological quantum field theory can be
found on page 267.
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the wire C. For the electric current strength J flowing through S, we then get
J = 2J ′. Generally, this leads us to the definition of the Gaussian integral for the
linking number between the two curves C and C′,

l(C,C′) :=
1

4π

Z

C

Z

C′

(x− x′)(dx× dx′)

|x− x′|3 .

Note that l(C′, C) = l(C,C′).
Historically, the Biot–Savart law was discovered in 1820. In the 1830s in

Göttingen, Gauss (1777–1855) experimentally studied the magnetic field of the
earth with Wilhelm Weber (1804–1891). After Gauss’ death, the fragment of a 1833
note was found. In this note entitled “On Electrodynamics”, Gauss introduced his
linking integral.22

5.6.8 Electric Fields, the Kronecker Integral, and the Mapping
Degree

Electric Fields. Parallel to the Biot–Savart law for magnetic fields and Gauss’
linking integral, let us now use the electric Coulomb field in order to give the
Kronecker degree integral a physical motivation. In what follows, we will use the
elegant language of differential forms which generalizes the classical Newton–Leibniz
calculus to functions of several variables in a natural way. This calculus is basic
for modern physics and mathematics. We will thoroughly study this in Volume
III. As an introduction to differential forms and their applications to physics, we
recommend the author’s handbook Zeidler (2002a), Vols. 1, 2.

The localization principle. Let x1, . . . ,xN be points in the interior of a closed
3-dimensional ball B. For j = 1, . . . , N , choose a small closed ball Bj centered at the
point xj such that Bj lies in the interior of B, and B1, . . . ,BN are pairwise disjoint
(Fig. 5.21). Then

Z

∂B

ω =
N
X

j=1

Z

∂Bj

ω (5.9)

if the differential 2-form ω is smooth and a cocycle. i.e.,

dω = 0 on B \
N
[

j=1

int Bj .

In addition, we assume that the spheres ∂B and ∂B1, . . . , ∂BN are oriented in such
a way that the unit normal vector points outwards on the corresponding ball. In
fact, let N = 2. By the Poincaré–Stokes theorem,

0 =

Z

B\(B1∪B2)

dω =

Z

∂B

ω −
Z

∂B1

ω −
Z

∂B2

ω.

The same argument applies to N ≥ 2.

22 As an introduction to the relations between Gauss’ linking number and modern
knot theory, we recommend the article by A. Hirshfeld, Knots and physics: old
wine in new bottles, Am. J. Phys. 66(12) (1998), 1060–1066.
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Fig. 5.21. Singularities
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Fig. 5.22. Electric field

Generalization of Cauchy’s residue theorem to electric fields. Suppose
that E = E(x) is an electric field which is smooth on the closed ball B up to the
interior points x1, . . . ,xN along with

div E = 0

for all x ∈ B with x �= x1, . . . ,xN . In addition, suppose that the electric field
behaves like the Coulomb field near the point xj , that is,

E(x) =
Qj

4πε0‖x− xj‖2
· x− xj

‖x− xj‖
+ Ej(x)

for all x �= x1, . . . ,xN where the field Ej is smooth on Bj . Then

ε0

Z

∂B

(En)dS =

N
X

j=1

Qj (5.10)

where n denotes the outer unit normal vector of B. This is a special case of the
localization principle (5.9). In fact, let N = 2. By the Gauss integral theorem

0 =

Z

B\(B1∪B2)

div E d3x =

Z

∂B

(En) dS −
Z

∂B1

(En) dS −
Z

∂B2

(En) dS.

Moreover,

Z

∂Bj

Qj

4πε0‖x− xj‖2
· (x− xj)n

‖x− xj‖
dS =

Qj

4πε0r2
· 4πr2 =

Qj

ε0
.

The claim follows now by contracting the ball Bj to the center xj .
The pull-back of a differential form. Let f : R → R be a smooth function.

Then dy = f ′(x) dx. For the differential form

ω = a(y) dy,

we define the pull-back with respect to f by

f∗ω = a
`

f(x)
´

f ′(x) dx.

If f : R → R is a diffeomorphism then the classical substitution rule tells us that

Z β

α

f∗ω =

Z f(β)

f(α)

ω
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for all real numbers α ≤ β. This technique can be generalized to higher dimensions
in a quite natural way. Explicitly, for a smooth map f : R

n → R
m, the pull-back of

the differential form

ω =

m
X

j1,...,jp=1

aj1...jp(y) dyj1 ∧ · · · ∧ dyjp

is obtained by the substitution

f∗ω :=
m
X

j1,...,jp=1

aj1...jp

`

f(x)
´

dyj1 ∧ · · · ∧ dyjp

with

dyjk =

n
X

l=1

∂fjk (x)

∂xl
dxl

for all indices j1, . . . , jp. The pull-back has the crucial property

d(f∗ω) = f∗(dω).

If f : R
n → R

n is a diffeomorphism, then

Z

Ω

f∗ω = σ

Z

f(Ω)

ω

for all open (or closed) bounded subsets Ω of R
n and all smooth differential n-forms

ω. Here, σ = 1 (resp. σ = −1) if f preserves (resp. reverses) the orientation. If we
contract the set Ω into the point x, then

lim
Ω→x

R

Ω
f∗ω

R

f(Ω)
ω

= sgndet f ′(x). (5.11)

The Kronecker integral. Let f : B → R
3 be a smooth map on the closed ball

B such that the restriction
f : ∂B → S

2

maps the boundary of B to the unit sphere S
2. In addition, assume that the map f

has precisely the zeros x1, . . . ,xN . In addition, let det f ′(xj) �= 0 for all j.23 Define
the mapping degree

deg f :=

N
X

j=1

sgn det f ′(xj).

The famous Kronecker integral formula from 1869 tells us that24

Z

∂B

f∗υ = deg f

Z

S2
υ (5.12)

23 The derivative f ′(x) is the matrix of the first-order partial derivatives of the
components of f at the point x.

24 Kronecker (1823–1891)
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where υ is the volume form on the unit sphere S
2. Explicitly, in spherical coordi-

nates,
υ = cosϑ dϕ ∧ dϑ.

In Cartesian (X,Y, Z)-coordinates,

υ = X dY ∧ dZ + Y dZ ∧ dX + Z dX ∧ dY.

Let us prove (5.12). The trick is to use the Coulomb field

E(x) =
x

‖x‖3

along with the corresponding differential form

E = E1dY ∧ dZ + E2dZ ∧ dX + E3dX ∧ dY.

Then

dE =

„

∂E1

∂X
+
∂E2

∂Y
+
∂E3

∂Z

«

dX ∧ dY ∧ dZ = div E dX ∧ dY ∧ dZ.

Hence dE = 0 if x �= 0. By the Poincaré–Stokes theorem,

Z

∂B

E =

Z

B

dE =

Z

U(0)

dE .

Here, B is the closed unit ball, and U(0) is an arbitrary open neighborhood of the
origin. Since

d(f∗E) = f∗(dE) = 0

for all x �= x1, . . . ,xN , it follows from the Poincaré–Stokes theorem that

Z

∂B

f∗E =

Z

B

d(f∗E) =

N
X

j=1

Z

Bj

f∗(dE)

where Bj is a small ball centered at xj . Contracting the ball,

lim
Bj→xj

R

Bj
f∗E

R

f(Bj)
E = sgn det f ′(xj),

by (5.11). This implies

Z

∂B

f∗E =
N
X

j=1

sgn det f ′(xj)

Z

S2
E .

Finally, observe that E = ω on S
2.
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5.6.9 The Heat Kernel and the Atiyah–Singer Index Theorem

Like others, we came to the heat kernel via one direction of mathemat-
ics. However, as we progressed in that direction, we realized that the heat
kernel plays a central role in almost all directions we can think of. That
it bears a name related to physics only indicates that it was originally
discovered in direction with heat.25 But even in physics, its significance
goes way beyond the giving a mathematical model for heat distribution.
The name cannot be changed – it’s too late for that – but the impression
some people may have that an occurrence of a certain kernel called the
heat kernel means one is necessarily doing physics is a false impression.
Maybe one is and maybe one isn’t. . . There is a universal gadget which is
a dominant factor practically everywhere in mathematics, also in physics,
and has very simple and powerful properties. We have no a priori explana-
tion (psychological, philosophical, mathematical) for the phenomenon of
the existence of such a universal gadget.

Jay Jorgenson and Serge Lang, 2001
The Ubiquitous Heat Kernel26

To explain the basic ideas of the far-reaching heat kernel approach to mathematics,
let us study the most simple example, namely, heat conduction on the unit circle.
To this end, let C∞(S1) denote the space of smooth complex-valued functions

f : S
1 → C

on the unit circle S
1. Alternatively, these functions can be regarded as smooth

functions f = f(ϕ) on the real line of period 2π, with respect to the angle ϕ. In
this case, we have the convergent Fourier series expansion

f(ϕ) =

∞
X

n=−∞
an(f) einϕ (5.13)

for all ϕ ∈ R where an(f) := 1
2π

R π

−π
f(ϕ)e−inϕ dϕ. We are given the function

g ∈ C∞(S1). Let us first study the following differential equation on the unit circle,

Df = g, f ∈ C∞(S1), (5.14)

with the differential operator D := −i d
dϕ

. We want to show that

indD = χ(S1) = 0. (5.15)

This tells us that an analytic quantity – the index of the differential operator D on
the unit circle S

1 – equals a topological quantity – the Euler characteristic χ(S1) of
the unit circle.27

25 Joseph Fourier, La théorie de la chaleur (heat theory), Paris, 1822.
26 This survey article covers rich material from number theory, algebraic geometry,

differential geometry, analysis, approximation theory, and topology. See Engquist
and Schmid (2001), pp. 655–683 (reprinted with permission).

27 Euler (1707–1783), Laplace (1749–1827), Fourier (1768–1830), Gauss (1777–
1855), Jacobi (1804–1851), Dirichlet (1805–1859), Riemann (1826–1866), Weyl
(1885–1955), Feynman (1918–1988). For their index theory, Atiyah (born 1929)
and Singer (born 1924) were awarded the Abel prize in 2004.
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The classical Fourier method. Let us prove (5.15). Using Fourier series
expansion, it follows from

g(ϕ) = a0(g) + a1(g)e
iϕ + a−1(g)e

−iϕ + ...

and f ′(ϕ) = ia1(f)eiϕ − ia−1(f)e−iϕ + ... that the original problem (5.14) has a
solution iff a0(g) = 0. In other words, we have the solvability condition

Z π

−π

g(ϕ)dϕ = 0.

The solution f is then given by (5.13) where

a0(f) = const, an(f) = −an(g)

n
, n = ±1,±2, ...

By definition, the index of the equation (5.14) reads as

indD := d− s

where d is the dimension of the solution space, and s is the number of linearly
independent solvability conditions. Since d = 1 and s = 1, indD = 0. This proves
the claim.

The heat equation on the unit circle. Let us pass from the operator D to
the Laplacian Δ := D2 on the unit circle. Explicitly,

Δ = − d2

dϕ2
.

Following Fourier, we want to study the initial-value problem for the unit circle,

∂T (ϕ, t)

∂ϕ
= −D2T (ϕ, t), ϕ ∈ [−π, π], t > 0,

T (ϕ, 0) = T0(ϕ). (5.16)

This equation describes the propagation of heat on the unit circle (e.g., heat con-
duction within a thin wire). Here, T denotes temperature. Alternatively, this can
be viewed as the propagation of heat on the real line where the temperature T
has the period 2π with respect to the position coordinate ϕ ∈ R. We are given the
initial temperature T0 ∈ C∞(S1) at the initial time t = 0. By using the classical
Fourier method, our goal is to describe the unique solution of (5.16) by the integral
formula

T (ϕ, t) =

Z π

−π

P+(ϕ,ψ, t)T0(ψ)dψ (5.17)

for all ϕ ∈ [−π, π], t > 0. Here, the heat kernel P+ is given by the infinite series

P+(ϕ,ψ, t) :=

∞
X

k=−∞
e−tλkfk(ϕ)fk(ψ)†

along with the functions
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fk(ϕ) :=
eikϕ

√
2π

, ϕ ∈ [−π, π], k = 0,±1,±2, . . .

which represent eigenfunctions of the operator D. Explicitly,

Dfk = kfk on S
1, k = 0,±1,±2, ...

This implies
D2fk = λkfk on S

1, k = 0,±1,±2, ...

with the eigenvalue λk = k2.

In terms of Feynman’s approach to physics, the heat kernel is identical to
the Feynman propagator kernel for the heat equation.

Let us introduce the complex Hilbert space L2(S
1) of all measurable functions

f : R → C of period 2π with the inner product

〈f |h〉 :=

Z π

−π

f(ϕ)†h(ϕ)dϕ.

The functions f0, f1, ... form a complete orthonormal system in the Hilbert space
L2(S

1). Explicitly, the heat kernel of (5.16) reads as

P+(ϕ,ψ, t) :=
1

2π

∞
X

k=−∞
e−k2teik(ϕ−ψ), ϕ, ψ ∈ R, t > 0.

Note that the series for P+ is convergent for times t > 0, but divergent for t < 0.
This reflects the fact that the temperature distribution T0 at time t = 0 does not
determine the temperature distribution in the past.

Theorem 5.1 The initial-value problem (5.16) for heat conduction on the unit
circle has the unique solution (5.17).

Proof. It follows from (5.17) that

T (ϕ, t) =

∞
X

k=−∞
ak(T0)e

−k2teikϕ.

Differentiation shows that this is a solution of the initial-value problem (5.16).
Uniqueness of the solution follows from the classical maximum principle for the
heat equation.28 �

The language of the Dirac calculus. For the convenience of the reader, we
want to reformulate the classical Fourier method above in terms of the elegant Dirac
calculus. We restrict ourselves to formal arguments. To begin with, let us denote
the function fk by |k〉. Moreover, we set fk(ϕ) := 〈ϕ|k〉. We have the orthogonality
conditions

〈k|l〉 = δkl, k, l = 0,±1,±2, . . .

and the two completeness relations

∞
X

k=−∞
|k〉〈k| = I,

Z π

−π

dϕ |ϕ〉〈ϕ| = I.

28 The Fourier method is studied in greater detail in Zeidler (1995), Vol. 1, Chap. 5.
Many applications of the maximum principle to linear and nonlinear differential
equations can be found in Zeidler (1986), Vol. I, Chap. 7.
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For example, this implies the inner product

〈k|l〉 =

Z π

−π

〈k|ϕ〉〈ϕ|l〉 dϕ =

Z π

−π

fk(ϕ)†fl(ϕ)dϕ.

Now to the point. Introducing the Feynman propagator P+(t) := θ(t)e−D2t for all
t ∈ R, the solution of the initial-value problem (5.16) reads as

T (t) = P+(t)T0, t ≥ 0.

Let us motivate this in a formal way. By the completeness relation,

〈ϕ|T (t)〉 =

Z π

−π

dψ〈ϕ|P+(t)|ψ〉〈ψ|T0〉.

Since D|k〉 = k|k〉, we get the crucial eigensolutions

P+(t)|k〉 = e−k2t|k〉, t ≥ 0

of the Feynman propagator. Introducing the Feynman propagator kernel

P+(ϕ,ψ, t) := 〈ϕ|P+(t)|ψ〉, t ≥ 0,

the completeness relation yields

P+(ϕ,ψ, t) =
∞
X

k=−∞
〈ϕ|P+(t)|k〉〈k|ψ〉

=

∞
X

k=−∞
e−k2t〈ϕ|k〉〈k|ψ〉 =

∞
X

k=−∞
e−k2tfk(ϕ)fk(ψ)†.

This is precisely the solution formula (5.17).
The zeta function of a compact manifold. Before continuing the study of

the heat equation on the unit circle, let us embed this problem into the general
context of real d-dimensional compact manifolds M .29 On such a manifold, the
Laplacian Δ has a countable set of eigenvalues 0 ≤ λ0 < λ1 < ... which possesses
the following famous Weyl asymptotics

λn �
„

2πn

V

«

2
d

as n→∞, (5.18)

where d and V denote the dimension and the volume of the manifold M , respec-
tively.30 By definition, the zeta function of the manifold M reads as

ζM (s) :=
∞
X

n=1

1

λs
n

, s ∈ C, �(s) >
d

2
.

29 The proofs of the following statements can be found in the standard textbook
on spectral geometry by Gilkey (1995). Many applications to physical problems
are investigated in Kirsten (2002).

30 Hermann Weyl’s first investigations on (5.18) from 1911 were motivated by
Planck’s radiation law. In modern language, Weyl wanted to prove that the
properties of a photon gas in a box do not depend on the shape of the box, but
only on the volume.
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This series converges for all complex numbers s with �(s) > d
2
. Introducing the

energy En := − lnλn, we get the partition function

ζM (s) :=
∞
X

n=1

e−sEn �(s) >
d

2
.

This zeta function is closely related to the Dirichlet series

KM (t) :=

∞
X

n=1

e−tλn , t > 0

which is called the global heat kernel of the manifold M . Letting τ :=
√
t, the global

heat kernel possesses the following asymptotic expansion for small times,

KM (t) =
c−d

τd
+
c−d+1

τd−1
+ ...+

c−1

τ
+ c0 + c1τ + ..., τ → +0.

The coefficients c−d, c−d+1, ... are called heat kernel coefficients. The normalized
Mellin transform of the heat kernel yields the zeta function,

ζM (s) =
1

Γ (s)

Z ∞

0

K(t)ts−1dt, s ∈ C, �(s) >
d

2

along with the relations

c−d+k = Γ (s)Res ζM (s)|s=(d−k)/2, k = 0, 1, 2, ...

In particular, the zeta function ζM is holomorphic in a neighborhood of the ori-
gin s = 0. In order to compute Feynman functional integrals, physicists need the
product

detΔ :=

∞
Y

n=0

λn

called the determinant of Δ (see page 661). Obviously, the derivative ζ′M (0) is equal
to the sum −λ0 − λ1 − ... of eigenvalues. Hence we get the basic formula

detΔ = e−ζ′
M (0) (5.19)

frequently used by physicists.
The heat kernel method for computing the index. One of the deepest

results of modern mathematics is the 1963 Atiyah–Singer index theorem. This the-
orem generalizes the Riemann–Roch theorem for Riemann surfaces; it tells us that
the index of each elliptic operator (e.g., the Laplacian) on a compact manifold M
is a topological invariant of the manifold and can be computed by means of the
heat kernel coefficients. In particular, the index does not change if both the mani-
fold and the differential operator are perturbed in a reasonable manner. Thus, the
Atiyah–Singer index theorem tells us that

There exists a deep relation between the topology (i.e., the qualitative be-
havior) of a manifold and the structure of analytic objects on the manifold.

This index theorem also applies to pseudo-differential operators including large
classes of differential and integral equations. The Atiyah–Singer theorem will be
studied in Volume IV; it is a crucial ingredient of quantum mathematics. Interest-
ingly enough, there exists a rigorous supersymmetric proof of the Atiyah–Singer
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index theorem which was motivated by physical mathematics. This proof can be
found in Cycon et al. (1986). See also Berline, Getzler, and Vergne (1991).

At this point, let us consider the special case of the Atiyah–Singer theorem for
the operator D on the 1-dimensional unit circle S

1 with d = 1. The eigenvalues of
the Laplacian Δ are given by

λn = n2, n = 0, 1, 2, ...

This corresponds to the Weyl asymptotics (5.18) where V = 2π denotes the volume
of the unit circle. This yields the zeta function

ζS1(s) =

∞
X

n=1

1

n2s
= ζ(2s), s ∈ C, �(s) >

1

2
,

and the heat kernel

KS1(t) =

∞
X

n=0

e−tn2
= 1

2
(ϑ3(0, t) + 1), t > 0.

The function ϑ3 is one of the four Jacobi theta functions. The heat kernel allows
the following asymptotic expansion,

P+(ϕ,ϕ, t) ∼ 1√
4πt

+ P0(ϕ) + tP1(ϕ) + t2P2(ϕ)...,

as time goes to zero, t→ +0. Here, P0 = 0. The Atiyah–Singer index theorem tell
us the index formula

indD =

Z

S1
P0dϕ.

Hence indD = 0, as obtained above in an explicit way.

5.6.10 Knots and Topological Quantum Field Theory

In the last twenty years a body of mathematics has evolved with strong
direct input from theoretical physics, for example from classical and quan-
tum field theories, statistical mechanics and string theory. In particular,
in the geometry and topology of low dimensional manifolds (i.e., mani-
folds of dimensions 2, 3 and 4) we have seen new results, some of them
quite surprising, as well as new ways of looking at old results. Donaldson’s
work based on his study of the solution space of the Yang–Mills equations,
monopole equations of Seiberg–Witten, Floer homology, quantum groups
and topological quantum field theoretical interpretation of the Jones poly-
nomial and other knot invariants are some of the examples of this devel-
opment. Donaldson, Jones and Witten have received the Fields medal for
their work. We think the name “Physical Mathematics” is appropriate to
describe this new, exciting and fast growing area of mathematics. Recent
developments in knot theory make it an important chapter in “Physical
Mathematics.” Until the early 1980s it was an area in the backwaters of
topology. Now it is a very active area of research with its own journal.31

Kishore Marathe, 2001
A chapter in physical mathematics: theory of knots in the sciences

31 See the footnote on page 254.
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(a) L+

� 

(b) L−

� 

(c) L0

 �

Fig. 5.23. Knots and links

Intuitively, a knot is a closed curve in the 3-dimensional Euclidean space without
self-intersections; two knots are called equivalent iff they can be deformed into each
other in the 3-dimensional Euclidean space, by avoiding self-intersections during the
deformation process. More precisely, by definition, a knot is a smooth embedding

f : S
1 → R

3

of the unit circle S
1 into R

3, that is, the image f(S1) of the smooth map f is a
submanifold of R

3, and the induced map

f : S
1 → f(S1)

is a diffeomorphism.32 Two knots f, g : S
1 → R

3 are called equivalent (or ambient
isotopic) iff there exists an orientation-preserving diffeomorphism

F : R
3 → R

3

which maps the set f(S1) onto g(S1). The knot is called an unknot iff it is equivalent
to the unit circle.

A link is a finite collection of pairwise disjoint knots. Note that knots are special
links. Graphically, links are represented by projections onto a fixed plane with cross-
ings marked as over and under (Fig. 5.23). There exists a complete classification
of all knots having at most 16 crossing points. This list comprehends 1, 701, 936
knots.33 Two links are called equivalent iff they consist of equivalent knots.

The main task of knot theory is to decide whether two knots or links are
equivalent.

For example, one wants to know whether a knot is trivial, that is, it is equivalent
to the unknot. To this end, one introduces link invariants which possess the char-
acteristic property that equivalent links have the same link invariant. A crucial link
invariant is the Jones polynomial

J(t) :=

n
X

k=−n

akt
k/2

generated by t1/2 and t−1/2 with integer coefficients ak, n = 0, 1, 2, .... The Jones
polynomials have the following properties:

(J1) Two oriented equivalent links have the same Jones polynomial.
(J2) For the unknot, J(t) :≡ 1.

32 The precise definition of submanifolds will be given in Volume III.
33 See the introduction to knot theory by Adams (1994) and the article by Hoste

et al. (1998).
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(a) L+

��

(b) L−

� �

(c) L0

* �

Fig. 5.24. Crossing points

(J3) If the projective link diagrams of three links differ exactly at one distinguished
crossing point, then the corresponding Jones polynomials satisfy the following
skein relation

t−1J+(t)− tJ−(t) = (t1/2 − t−1/2)J0(t)

where the Jones polynomials J+, J−, J0 correspond to the behavior of the link
diagrams L+, L−, L0, respectively, at the distinguished crossing point (Fig.
5.24).

(J4) For the mirror image of a link, the Jones polynomial is transformed by t �→ t−1.

For a given link, the idea of computing the Jones polynomial is to successively
change the link diagram at crossing points according to Fig. 5.24 in order to finally
obtain the unknot. The corresponding skein relations then yield recursive formulas
for the desired Jones polynomial. In particular, for the links L+, L−, L0 pictured in
Fig. 5.23, the skein relation with J± = 1 by (J2) yields

t−1 − t = (t1/2 − t−1/2)J0(t).

Hence the Jones polynomial J0 of the link L0 in Fig. 5.23(c) is equal to

J0(t) = −t1/2 − t−1/2.

Considering Fig. 5.23, the link L+ (resp. L−) is not equivalent to the link L0, since
the corresponding Jones polynomial J± = 1 is different from J0.

The Jones polynomials were discovered by Jones in 1985 when studying the
structure of von Neumann operator algebras.34 A few years later, Witten (1989)
published a fundamental paper on a beautiful physical interpretation of the Jones
polynomials via a special model in quantum field theory. The idea is to use

• the principle of critical action for the Chern–Simons Lagrangian on the three-
dimensional sphere S

3 with respect to the gauge group SU(2);
• quantization of this classical field theory yields the corresponding Feynman func-

tional integral, as a formal partition function;
• to each knot on S

3 one can assign a physical quantity called the Wilson loop;
• finally, the Jones polynomial of a knot or link is the vacuum expectation value

of the corresponding Wilson loop.

Roughly speaking, the Chern–Simons Lagrangians represent quite natural gauge
field theories on 3-dimensional manifolds.

Topological quantum field theory. This new branch of topology was
founded by E. Witten, Topological quantum field theory, Commun. Math. Phys.
117 (1988), 353–386. The basic idea of topological quantum field theory is to use
the Lagrangians of special gauge field theories and the corresponding Feynman
functional integrals in order to construct sophisticated topological invariants for

34 Vaughan Jones was awarded the Fields medal in 1990.
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low-dimensional manifolds. As an introduction to modern knot theory and its rela-
tions to physics, chemistry, and biology (DNA), we recommend the survey article
by Marathe (2001) and the monographs by Kaufman (2001) and Flappan (2000)
(molecular chirality in chemistry). For topological quantum field theory, see the lec-
tures given by Atiyah (1990b) and Witten (1999c). We also refer to the monograph
by Jost (2002a) (geometric analysis and classical models in quantum field theory).

For a wealth of material on the relation between topological charges and non-
linear partial differential equations arising in modern physics, we recommend the
monographs by Felsager (1997), Naber (1997), and Yang (2001).

5.7 Quantum States

In the next sections we want to show that the study of quantum states is closely
related to crucial topological concepts. We will consider

• the covering group of the rotation group and the electron spin,
• the space of spin states of an electron with the Hopf fibration of the 3-dimensional

sphere (the U(1)-Hopf bundle), and
• the relation between the space of spin states, Grassmann manifolds, and projec-

tive geometry.

5.7.1 The Topological Character of the Electron Spin

Our 3-dimensional intuition sees rotations, but not the corresponding uni-
versal covering group Spin(3) which lives on the 4-dimensional unit sphere.
Nature sees this in terms of the electron spin.

Folklore

Let us sketch why the electron spin is a topological effect.

The point is that the rotation group SO(3) of the 3-dimensional Euclidean
space of our intuition is not simply connected, whereas the multiplicative
group Spin(3) of unit quaternions is simply connected.

Let us start with the famous Cayley rotation formula35

x′ = QxQ† (5.20)

where we use the following quaternions

Q := cos
θ

2
+ n sin

θ

2
, Q† := cos

θ

2
− n sin

θ

2
.

Formula (5.20) describes the rotation of the position vector x about an axis given
by the unit vector n and the rotation angle θ ∈ [0, 2π[. Here, we use Hamilton’s
quaternions. A quaternion (α,a) is an ordered pair of a real number α and an vector
a in the 3-dimensional Euclidean space. We briefly write α + a. The sum and the
product of two quaternions are defined by

(α+ a) + (β + b) = (α+ β) + (a + b)

and

35 Hamilton (1805–1865), Cayley (1821–1895).
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(α+ a)(β + b) = αβ + αb + βa + a× b− ab.

If we replace Q by −Q, then we get the same rotated vector x′. This corresponds to
a passage from n to −n and from θ to 2π−θ. Consequently, there are two additional
degrees of freedom hidden in the Cayley formula (5.20).

Nature sees these hidden degrees of freedom in terms of the electron spin.

Let us discuss this. The length of a quaternion is defined by

||α+ a|| :=
p

α2 + a2.

In particular, ||Q|| =
q

cos2 θ
2

+ sin2 θ
2

n2 = 1. The set of all unit quaternions Q

forms a multiplicative group called the spin group Spin(3). The Cayley formula
(5.20) describes a group epimorphism

χ : Spin(3)→ SO(3) (5.21)

from the spin group Spin(3) onto the group SO(3) of rotations SO(3) in three-
dimensional space, that is, the surjective map χ respects products.

The group SO(3) is not simply connected, but the group Spin(3), which corre-
sponds to the 4-dimensional unit sphere, is simply connected. We call Spin(3) the
universal covering group of the group SO(3). Let us now study this in terms of Lie
groups and Lie algebras.

(i) The Lie group U(1) of rotations in the plane consists of all complex numbers A
with |A| = 1 Hence A = eiθ with real parameter θ. For all the complex numbers
z = x+ yi, the transformation

z′ = eiθz

describes a rotation in the plane about the origin with rotation angle θ. Set
!(θ) := eiθ. The map

! : R → U(1)

is a group epimorphism from the additive group R onto the multiplicative group
U(1). Explicitly,

!(θ + ϕ) = !(θ)!(ϕ) for all θ, ϕ ∈ R.

The unit circle U(1) is not simply connected, whereas the real line R is simply
connected. The additive group R is called the universal covering group of U(1).

(ii) The Lie algebra u(1). By Taylor expansion,

eiθ = 1 + iθ + o(θ), θ → 0.

The set u(1) := {iθ : θ ∈ R} is called the Lie algebra to U(1).
(iii) The Lie group SO(3). Choose a right-handed Cartesian (x, y, z)-system in the

Euclidean space of our intuition. All possible rotations about the origin can be
described by the matrix transformations

0

B

@

x′

y′

z′

1

C

A

= A

0

B

@

x

y

z

1

C

A
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where the real (3× 3)-matrix has the properties detA = 1 and A−1 = Ad. All
of these matrices form the group SO(3).36

(iv) The Lie algebra so(3) of the group SO(3) consists of all real (3× 3)-matrices
B with B = −Bd. The set so(3) is a real 3-dimensional linear space equipped
with the Lie product

[B,C]− := BC − CB.

That is, B,C ∈ so(3) implies [B,C]− ∈ so(3). The matrices in so(3) are called
infinitesimal rotations. Set

!(B) := eB .

The map ! : so(3) → SO(3) is surjective. In other words, each given matrix
A ∈ SO(3) can be represented in the form A = eB with B ∈ so(3). The relation
between the commutator of SO(3) and the Lie product of the corresponding
Lie algebra so(3) is given by

[A,B]− =
∂2

∂t∂s

“

etAesBe−tAe−sB
”

|t,s=0

where t and s are real parameters.
(v) The Lie group SU(n), n ≥ 2 consists of all the complex (n × n)-matrices A

with detA = 1 and A−1 = A†.
(vi) The Lie algebra su(n) of the Lie group SU(n) consists of all the complex

(n× n)-matrices B with B† = −B and trB = 0. If B, C ∈ su(n), then we have
[B, C]− ∈ su(n). Set

!(B) := eB.

The map ! : su(n)→ SU(n) is surjective. The group SU(n) is simply connected
for n = 2, 3, . . . .

The group SU(2) is isomorphic to the group Spin(3), that is, there ex-
ists a bijective map from SU(2) onto Spin(3) which respects products.

The map (5.21) induces the group epimorphism

χ : SU(2) → SO(3).

The linearization of this map at the unit element,

χ′(I) : su(2) → so(3),

is a Lie algebra isomorphism, that is, χ′(I) is a linear isomorphism which
respects Lie products.37

(vii) Representations of SO(3) and integer angular momentum. For each natural
number l = 0, 1, 2, . . ., there exist both a complex Hilbert space Xl of dimension
2l + 1 and a group morphism

r : SO(3)→ GL(Xl),

that is, the map r respects products. Here, GL(Xl) denotes the group of all
linear isomorphisms from Xl onto itself. The linearization at the unit element

r′(I) : so(3)→ gl(Xl)

36 The symbol Ad = (bjk) denotes the dual (or transposed) matrix to the given
matrix A = (ajk). Explicitly, bjk := akj for j, k = 1, 2, 3. Instead of Ad, one also
uses the symbols AT , At, or tA in the literature.

37 The definition of the derivative χ′(I) can be found in Sect. 7.20.1 on page 398.
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is a Lie algebra morphism, that is, r′(I) is a linear operator which respects Lie
products. Here, gl(Xl) consists of all linear operators on Xl equipped with the
Lie product [A,B]− := AB −BA.

(ix) Representations of SU(2) and half-integer spin. For each given rational number
s = 0, 1

2
, 1, 3

2
, 2, . . . , there exist both a complex Hilbert space Xs of dimension

2s+ 1 and a group morphism

r : SU(2)→ GL(Xs)

such that the linearization at the unit element,

r′(I) : su(2)→ gl(Xs),

is a Lie algebra morphism. The elements of Xl (resp. Xs) represent quantum
states with the angular momentum quantum number l (resp. the spin quantum
number s.)

Summarizing, the Lie group SO(3) and its universal covering group
SU(2) are locally isomorphic near the unit element, but they are not
globally isomorphic.

This leads to different representations of the groups SO(3) and SU(2) which
is responsible for the existence of the electron spin. The Lie algebras so(3) and
su(2) are isomorphic. Therefore, the operators for both angular momentum
and spin satisfy the same commutation rules in quantum physics. This will be
studied in Volume III on quantum mathematics.

5.7.2 The Hopf Fibration of the 3-Dimensional Sphere

The space of quantum states of a quantum system possesses a nontrivial
topology.

Folklore

In 1931, Heinz Hopf (1894–1971) proved the existence of a continuous map

h : S
3 → S

2 (5.22)

from the 3-dimensional unit sphere onto the 2-dimensional unit sphere which is not
homotopic to a constant map, that is, this map cannot be continuously deformed
into a constant map without leaving the spheres during the deformation process.38

This was a sensation in topology. The map h is called the Hopf map or the Hopf
U(1)-principal fiber bundle. Hopf did not refer to physics. We want to show that
the Hopf map possesses a quite natural physical interpretation in terms of the clas-
sification of quantum states of a non-relativistic electron. There arises the following
fundamental question:

What is a quantum state?

38 For n = 1, 2, ..., we define

S
n := {(x1, ..., xn+1) ∈ R

n+1 : x2
1 + ...+ x2

n+1 = 1}.

This is called the n-dimensional unit sphere in R
n+1. Moreover, the set

B
n+1 := {(x1, ..., xn+1) ∈ R

n+1 : x2
1 + ...+ x2

n+1 ≤ 1}

is called the (n+ 1)-dimensional closed unit ball in R
n+1.
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To answer this question, we will consider non-relativistic electrons. We will see that
quantum states are highly nonlinear mathematical objects.

Quantum states. Let C
2 denote the linear space of all the complex 1-column

matrices

ψ =

 

ψ1

ψ2

!

where ψ1, ψ2 are complex numbers. We also introduce the inner product

〈ψ|ϕ〉 :=

2
X

j=1

ψ†
jϕj for all ϕ,ψ ∈ C

2

along with the norm ||ψ|| :=
p

〈ψ|ψ〉. Consider the unit sphere

S(C2) := {ψ ∈ C
2 : ||ψ|| = 1}

of the complex 2-dimensional Hilbert space C
2. By definition, each element ψ of

S(C2) is called the state of a non-relativistic electron. Writing ψj = αj + iβj with
real numbers αj , βj , we get

〈ψ|ψ〉 = |ψ1|2 + |ψ2|2 = α2
1 + β2

1 + α2
2 + β2

2 = 1

for all ψ ∈ S(C2). Hence S(C2) can be identified with the unit sphere,

S(C2) = S
3.

Two states ϕ,ψ ∈ S(C2) are called equivalent iff there exists a complex number
λ ∈ U(1) (i.e., |λ| = 1) such that ϕ = λψ. By a quantum state of the electron, we
understand the equivalence class

[ψ] := {λψ : λ ∈ U(1)} (5.23)

where ψ ∈ S(C2) and |λ| = 1. We have the fibration

S(C2) =
[

ψ∈S(C2)

[ψ],

that is, the sphere is decomposed into the sets [ψ] which are called U(1)-fibers in
mathematics. Consequently, the set of all quantum states coincides with the set of
all U(1)-fibers of the unit sphere S(C2). This set is denoted by

S(C2)/U(1).

In terms of orbits, this definition reads like this. Choose a point ψ ∈ S(C2). For
each complex number λ ∈ U(1), define a map

!λ : S(C2)→ S(C2)

given by !λ(ψ) := λψ. We say that the group U(1) acts on the unit sphere S(C2).
Naturally enough, the set [ψ] from (5.23) is called an orbit through the point ψ. In
this setting, the space of quantum states coincides with the space of U(1)-orbits on
the unit sphere of the Hilbert space C

2.
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The Hopf map. Our next goal is to understand the topological structure of
the space S(C2)/U(1) of quantum states. To this end, we choose the Pauli matrices

σ1 :=

 

0 1

1 0

!

, σ2 :=

 

0 −i

i 0

!

, σ3 :=

 

1 0

0 −1

!

,

and we define the spin operators Sj := �

2
σj , j = 1, 2, 3. For each state ψ ∈ S(C2),

we define
S̄j := 〈ψ|Sjψ〉, j = 1, 2, 3.

Choose a Cartesian coordinate system with the right-handed orthonormal basis
vectors i, j,k. From the physical point of view, if the electron is in the state ψ, then
we measure the mean spin vector S̄ := S̄1i + S̄2j + S̄3k. We now construct a map

h : S(C2)→ S
2 (5.24)

by setting

h(ψ) :=
S̄(ψ)

||S̄(ψ)||
.

That is, we assign the measured normalized mean spin vector to each given state
ψ ∈ S

2(C2). This measured value does not change if we pass to an equivalent state
ϕ. Thus, the function h only depends on the equivalence class [ψ]. Setting

h([ψ]) :=
S̄(ψ)

||S̄(ψ)||
,

we obtain a well-defined induced map

h : S(C2)/U(1)→ S
2. (5.25)

Now to the point. We claim that the following hold true.

Theorem 5.2 (i) The map h introduced in (5.24) is a continuous map from the unit
sphere S(C2) of the 2-dimensional complex Hilbert space C

2 onto the 2-dimensional
unit sphere S

2 of the 3-dimensional Euclidean space.
(ii) The map h is essential, that is, it is not homotopic to a constant map.
(iii) There exists a one-to-one correspondence between the space of quantum

states S(C2)/U(1) and the 2-dimensional unit sphere which is given by the induced
map h from (5.25).

The proof will be given in Volume IV on quantum mathematics (see also Knörrer
(1996)). In terms of physics, this result tells us that

Two normalized vectors ψ and χ represent the same quantum state iff the
measured normalized spin vectors coincide.

This is a quite natural result. Using (5.24) and S
2(C2) = S

3, we get the desired
Hopf map (5.22).
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5.7.3 The Homotopy Functor

Functors reduce the solution of topological problems to simpler algebraic
problems.

Folklore

The homotopy groups of a topological space. We are going to sketch how the
Hopf map is related to the classification of continuous maps up to deformations.
Let X be a topological space. Consider the continuous map

f : S
k → X, k = 1, 2, . . . . (5.26)

By definition, the homotopy class [f ] of the map f consists of all continuous maps
g : S

k → X that are homotopic to f . The symbol πk(X) denotes the set of all
homotopy classes [f ] of maps of the form (5.26).

The set πk(X) can be equipped with the structure of a group.

This yields the kth homotopy group πk(X) of the topological space X. In particular,
the group π1(X) is Poincaré’s fundamental group. Note the following.

(i) The topological space X is simply connected iff π1(X) = 0.

(ii) If πk(X) = 0, then each continuous map f : S
k → X is homotopic to a constant

map. In this case, we say that the k-connectivity of the space X is trivial.
(iii) If πk(X) = Z, then it is possible to assign an integer to each continuous map

f : S
k → X which is called the mapping degree deg(f). Two continuous maps

f, g : S
k → X

have the same mapping degree iff they are homotopic. In other words, the
mapping degree is a homotopy invariant.

(iv) Homotopically equivalent topological spaces have the same homotopy groups.

Let us consider the following examples.

• For the unit circle, π1(S
1) = Z and πk(S1) = 0, k = 2, 3, . . . The mapping degree

of f : S
1 → S

1 is called the winding number.
• For the fundamental group of the 2-dimensional torus, π1(X) = Z⊕ Z.
• For the 2-dimensional unit sphere,

π1(S
2) = 0, π2(S

2) = π3(S
2) = Z.

• For the k-dimensional unit sphere with k = 1, 2, 3, . . . , we get πk(Sk) = Z.

The complete computation of all the homotopy groups of the spheres of arbitrary
dimension is an open problem in topology.39

The mapping degree for smooth mappings. Let k = 1, 2, . . . For a smooth
map f : S

k → S
k, the mapping degree deg(f) is given by the Kronecker integral

deg(f) =

Z

Sk

f∗υ

where υ denotes the volume form on S
k normalized by

R

Sk υ = 1. Let us consider
some examples.

39 A comprehensive list of known homotopy groups can be found in Dodson and
Parker (1997) (appendix).
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(a) Suppose that the smooth map f : S
1 → S

1 is given by the function Φ = Φ(ϕ)
where ϕ and Φ are angle coordinates. Then υ = 1

2π
· dΦ. Hence

deg(f) =

Z

S1
f∗υ =

1

2π

Z π

−π

Φ′(ϕ)dϕ =
Φ(π)− Φ(−π)

2π
.

Since Φ is an angle variable on the unit circle, the mapping degree is an integer.
For example, if Φ(ϕ) = nϕ for some integer n, then deg(f) = n.

(b) Assume that the smooth map f : S
2 → S

2 is given by the functions

φ = Φ(ϕ, ϑ), Θ = Θ(ϕ, ϑ)

with respect to spherical coordinates. Then υ = 1
4π

cosΘ dΦ ∧ dΘ. Hence

deg(f) =

Z

S2
υ =

1

4π

Z π

−π

Z π/2

−π/2

cosΘ(ϕ, ϑ)
∂(Φ,Θ)

∂(ϕ, ϑ)
dϕdϑ.

Here, noting that dϕ ∧ dϑ = −dϑ ∧ dϕ, we use

dΦ ∧ dΘ = (Φϕdϕ+ Φϑdϑ) ∧ (Θϕdϕ+Θϑdϑ)

= (ΦϕΘϑ − ΦϑΘϕ) dϕ ∧ dϑ =
∂(Φ,Θ)

∂(ϕ, ϑ)
dϕ ∧ dϑ.

(c) Suppose that the smooth map f : S
2 → S

2 is described by the functions

X = X(ϕ, ϑ), Y = Y (ϕ, ϑ), Z = Z(ϕ, ϑ)

where X,Y, Z are Cartesian coordinates. Then

υ =
XdY ∧ dZ + Y dZ ∧ dX + ZdX ∧ dY

4π
.

For the mapping degree, this implies

deg(f) =
1

4π

Z π

−π

Z π/2

−π/2

˛

˛

˛

˛

˛

˛

˛

X Y Z

Xϕ Yϕ Zϕ

Xϑ Yϑ Zϑ

˛

˛

˛

˛

˛

˛

˛

dϕdϑ.

This follows from

ZdX ∧ dY = Z(Xϕdϕ+Xϑdϑ) ∧ (Yϕdϕ+ Yϑdϑ)

= Z(XϕYϑ − YϕXϑ) dϕ ∧ dϑ

along with the cyclic permutation X �→ Y �→ Z �→ X.
(d) For a smooth map f : S

3 → S
2, the mapping degree can be computed by using

the formula

deg(f) =

Z

S3
f∗υ ∧ ω

along with the normalized volume form υ on S
2 and the 1-form

ω :=
8ψ2 sinϑ dψ

π(1 + ψ2)3
+

2ψ2 cos2 ϑ dϕ

π(1 + ψ2)2
.

Here, ϕ, ϑ, ψ denote spherical coordinates on S
3 where −π < ϕ ≤ π along with

−π
2
≤ ϑ ≤ π

2
and 0 ≤ ψ ≤ π. The Hopf map has the mapping degree one.40

40 The proof can be found in Schwarz (1994), p. 164 and Spanier (1989), p. 489.
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The homotopy functor and the mapping degree for continuous maps.
Let

f : X → Y

be a continuous map from the topological space X into the topological space Y . It
can be shown that for each k = 1, 2, . . . , the map f induces a group epimorphism

f∗ : πk(X)→ πk(Y )

in a quite natural manner. The following crucial properties hold.

(C) Composition of maps: For continuous maps f : X → Y and g : Y → Z, the
composition g ◦ f corresponds to the composition f∗ ◦ g∗.

(I) Identity map: The identity map on X corresponds to the identity map on πk(X)
for all k.

(H) Homeomorphism: If f : X → Y is a homeomorphism, then the induced map
f∗ : πk(X) → πk(Y ) is a group isomorphism for all k.

This homotopy functor allows us to define the mapping degree for continuous maps

f : S
k → S

k, k = 1, 2, . . .

In fact, the homotopy functor generates the group epimorphism

f∗ : πk(Sk)→ πk(Sk).

where πk(Sk) = Z. We now define deg(f) := f∗(1).
Generalization of the mapping degree. Consider a continuous map

F : S
k → R

k+1 \ {0}, k = 1, 2, . . . .

This yields the normalized map

f : S
k → S

k, k = 1, 2, . . .

by setting f(x) := F (x)/||F (x)||. We now define the mapping degree of the mapping
F by

deg(F ) := deg(f).

Suppose that we are given the smooth map

F : B
k+1 → R

k+1, k = 1, 2, . . .

on the closed (k + 1)-dimensional unit ball such that the following are met:

• F (x) �= 0 on the boundary S
k.

• The map F has precisely the zeros x1, . . . , xN on B
k+1.

• The zeros are regular, that is, detF ′(xj) �= 0 for all j.41

Then, the mapping degree can be computed by the simple formula

deg(F ) = sgn detF ′(x1) + . . .+ sgn detF ′(xN ).

This shows that the mapping degree generalizes the 1-dimensional concept intro-
duced on page 230.

The homotopy functor is the prototype of functors in algebraic topology. The
crucial homology and cohomology functors will be studied in Volume IV on quantum
mathematics.

41 The symbol detF ′(xj) denotes the Jacobian of the map F at the point xj ; this
is the determinant of the first partial derivatives of the components of F at the
point xj .
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These functors allow us to reduce the study of topological spaces and con-
tinuous maps to the study of groups and group morphisms.

To illustrate this, let us prove that there is no homeomorphism

f : B
2 → S

1

In fact, suppose that there exists such a homeomorphism. Then, the map

f∗ : π1(B
2)→ π1(S

1) (5.27)

is a group isomorphism. Since the unit ball is simply connected, π1(B
2) = 0. How-

ever, π1(S
1) = Z. Thus, there is no group isomorphism of the form (5.27). This is

the desired contradiction.

5.7.4 Grassmann Manifolds and Projective Geometry

Grassmann manifold. By a 1-dimensional linear subspace of the complex Hilbert
space C

2, we understand a set of the form

L(ψ) := {λψ : λ ∈ C}

where ψ is a fixed nonzero element of C
2. Without loss of generality, we can choose

ψ in such a way that ||ψ|| = 1. Then

C
2 =

[

ψ∈S(C2)

L(ψ).

Obviously, the map L(ψ) �→ [ψ] is a one-to-one correspondence between the set of
linear 1-dimensional subspaces L(ψ) and the set of quantum states [ψ]. Therefore,
a quantum state can also be defined as a linear 1-dimensional subspace of C

2.
In mathematics, the space of all one-dimensional subspaces of C

2 is called the 1-
Grassmann manifold G1(C

2) of C
2.

Rays and projective space. By a ray, we understand a set of the form

R(ψ) := {λψ : λ ∈ C, λ �= 0}

where ψ ∈ S(C2). The map
R(ψ) �→ [ψ]

yields a one-to-one correspondence between the set of rays P(C2) and the set of
quantum states. In mathematics, the set of rays L(ψ) is also called the complex
1-dimensional projective space P

1
C.

Summarizing, there exist the following three equivalent possibilities for defining
the space of quantum states of the Hilbert space C

2, namely,

(i) the orbit space S(C2)/U(1) of the unit sphere S(C2) under the action of the
group U(1) on S(C2),

(ii) the 1-Grassmann manifold G1(C
2) of C

2 which consists of all complex one-
dimensional subspaces of C

2,
(iii) the complex one-dimensional projective space P

1
C of rays in C

2.
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These objects are well-known in algebraic geometry. In some sense, projective spaces
are the simplest geometric objects which possess a nontrivial topology. Explicitly,
we have the following homeomorphisms:

S(C2)/U(1) ∼= S
2 ∼= G1(C

2) ∼= P
1
C.

The complex projective space P
1
C is a Kähler manifold. This is proved in Jost

(2002a), Chap. 5. The Hopf bundle is an example for the following fascinating
development in sciences:

Physicists and mathematicians have studied completely different deep ques-
tions posed by nature and by intrinsic mathematics, respectively. Finally,
they have arrived at the same highly nontrivial mathematical tools.

5.8 Perspectives

For further prototypes of important topological phenomena in physics, we refer to
the following sections of the present volume:

• cohomology and potentials of physical fields (Sect. 16.8.2);
• the cohomology of the unite circle, the unit sphere, and the torus (Sect. 16.8.3);
• cohomology and atomic spectra (Sect. 16.8.4);
• cohomology and BRST symmetry (the classification of physical states and the

elimination of ghosts, and the cohomology of Lie groups) (Sect. 16.8.5).

Much material on topology can be found in Volume IV on quantum mathemat-

ics. In particular, we will investigate there homology groups, cohomology groups,

homotopy groups, and characteristic classes. In particular, we will show that the

fundamental concepts of homology and cohomology are rooted in the properties of

electric circuits.



6. Many-Particle Systems in Mathematics and
Physics

Partition functions are the main tool for studying many-particle systems.

Folklore

Many-particle systems play a fundamental role in both mathematics and physics.

• In physics, we encounter systems of molecules (e.g., gases or liquids) or systems
of elementary particles in quantum field theory.

• In mathematics, for example, we want to study the system of prime numbers.

In the 19th century, physicists developed the methods of statistical mechanics for
studying many-particle systems, whereas mathematicians proved the distribution
law for prime numbers. It turns out that the two apparently different approaches
can be traced back to the same mathematical root, namely, the notion of partition
function. In modern quantum field theory, the Feynman functional integral can be
viewed as a partition function, as we will discuss later on. The typical procedure
proceeds in the following two steps.

(i) Coding: The many-particle system is encoded into one single function called a
partition function (e.g., the Boltzmann partition function in statistical physics,
Riemann’s zeta function or Dirichlet’s L-function for describing prime numbers,
the Feynman functional integral in quantum field theory). The idea goes back
to Euler; in 1737 he proved the identity

Y

p

„

1− 1

ps

«−1

=

∞
X

n=1

1

ns
= ζ(s)

for all real numbers s > 1. The product refers to all prime numbers p.
(ii) Decoding: The task is to get crucial information about the many-particle system

by studying the properties of the partition function. The idea goes back to
Riemann. He recognized that the zeta function ζ extends holomorphically to
the punctured complex plane C \ {0}, and that the detailed knowledge on the
distribution of the zeros of the zeta function allows far-reaching statements
about the asymptotic distribution of the prime numbers. This is related to the
famous Riemann hypothesis to be considered on page 298.

The complexity of justifying the Riemann hypothesis and the mathematical trouble
with the Feynman path integral prove that step (ii) is much more complex than
step (i). By analytic continuation, the series

∞
X

n=1

1

ns

can be assigned the value ζ(s) for all complex numbers s with s �= 1. In particular,
for the uncritical value s = 0, we can assign the value

E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics,
c© Springer-Verlag Berlin Heidelberg 2006, Corrected 2nd printing 2009
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1 + 1 + 1 + . . . = ζ(0) = −1

2
. (6.1)

Note that the series 1 + 1 + 1 . . . is divergent in the classical sense. Furthermore,

∞
X

n=1

n = ζ(−1) = − 1

12
.

Interestingly enough, this formula is closely related to a physical experiment called
the Casimir effect. This crucial effect in quantum field theory will be studied in
Sect. 6.6. More generally, one has the identity1

ζ(s) =
1

s− 1
+

1

2
+

s

12
− s(s+ 1)(s+ 2)

720
+ . . .+

+
Bn

n!
· s(s+ 1) · · · (s+ n− 2)

for s = 0,−1,−2 . . . ,−n+ 1 and n = 2, 3, . . . Here, the Bernoulli numbers, Bn, are
defined by

z

ez − 1
=

∞
X

k=0

Bk

k!
zk, 0 < |z| < 2π.

This function is called the generating function of the Bernoulli numbers.2 Recall
that this function enters the 1900 Planck radiation law on page 103. Explicitly,

B0 = 1, B1 = −1

2
, B2 =

1

6
, B4 = − 1

30
, B6 =

1

42
, . . .

and Bn = 0 for n = 3, 5, 7, . . . This yields

ζ(0) = −1

2
, ζ(−1) = − 1

12
, ζ(−2) = 0, ζ(−3) =

1

120
.

More generally,

ζ(1− 2m) = −B2m

2m
, ζ(−2m) = 0, m = 1, 2, 3, . . .

In 1734 Euler proved the famous formulas

ζ(2) =
π2

6
, ζ(4) =

π4

90
.

More generally,

ζ(2m) =
(−1)m−122m−1B2m

(2m)!
· π2m, m = 1, 2, . . .

The properties of ζ(2m+ 1) for m = 1, 2, 3, .. represent a famous open problem of
mathematics. In 1986 Roger Apéry created a sensation by proving the irrationality
of the number ζ(3) = 1.2020569 . . .3

1 The proof can be found in Zagier (1981), p. 26.
2 These numbers were introduced by Jakob Bernoulli (1654–1705).
3 See the survey article by M. Kontsevich and D. Zagier, Periods. In: B. Enquist

and W. Schmid (Eds.) (2001), pp. 771–808. This article contains a wealth of
sophisticated material on the values of integrals over rational integrands and
their properties. Such numbers are generally called periods. Prototypes are the
number π and the periods of elliptic integrals.
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As an introduction to the Riemann zeta function and its numerous relations
to other mathematical subjects, we recommend the book by J. Havil, Gamma:
Exploring Euler’s Constant, Princeton University Press, 2003. Recommendations
for further reading can be found on page 300.

6.1 Partition Function in Statistical Physics

Statistical physics is based on the partition function

Z(T, μ, V ) :=

M
X

m=1

e(μNm−Em)/kT . (6.2)

Here, we assume that the physical system under consideration can be located in
precisely M different states S1, . . . ,SM . Each state Sm is characterized by

• the energy Em, and
• the particle number Nm.

Energy and particle number depend on the volume V of the system. The positive
real parameter T is called absolute temperature, and the real parameter μ is called
chemical potential. Finally, k denotes the Boltzmann constant. In SI units, k =
1.380 ·10−23Joule/Kelvin. The point is that the knowledge of the partition function
allows us to compute all of the important thermodynamic quantities of the physical
system. Let us summarize this. The probability of finding the system in the state
Sm is given by

pm :=
e(μNm−Em)/kT

Z(T, μ, V )
, m = 1, . . . ,M.

This implies the mean energy

E :=
M
X

m=1

pmEm,

the square of the energy fluctuation

(ΔE)2 :=
M
X

m=1

pm(Em − E)2,

the mean particle number

N :=
M
X

m=1

pmNm,

and the square of the particle number fluctuation

(ΔN)2 :=
M
X

m=1

pm(Nm −N)2.

The fundamental quantity
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S := −k
M
X

m=1

pm ln pm

is called the entropy of the physical system. We will show in Volume II that the
entropy measures the disorder of the system.

• The entropy S is minimal if, say, p1 = 1, p2 = p3 = . . . = pM = 0 (maximal
order). Then S = 0.

• The entropy S is maximal if p1 = p2 = . . . = pM = 1
M

(maximal disorder). Then
S = kM lnM .

In addition, we will show in Volume II that the entropy S is equal to the mean
number of questions with yes-no answers which are necessary in order to determine
the state of the physical system. Thus, the entropy is equal to the mean information
gained after measuring the state of the physical system. In terms of biology, the
complexity of a biological system increases if its order increases, and hence its
entropy decreases.

The statistical potential. The function

Ω(T, μ, V ) := −kT lnZ(T, μ, V )

is called the statistical potential (or the Gibbs potential) of the physical system.
We get the partial derivatives

S = −ΩT , N = −Ωμ, P = −ΩV

where P denotes the pressure of the system. Moreover, we obtain the mean free
energy

F := Ω + μN,

and the mean inner energy E = F + ST . Physicists introduce the fugacity

z := eμ/kT .

Using this, the partition function can be written as

Z(T, μ, V ) =

Nmax
X

N=0

zNZN (T, μ, V )

where we set
ZN (T, μ, V ) :=

X

Nm=N

e−Em/kT .

Here, we sum over the energies Em of all the possible states which correspond to
N particles.

The extended statistical potential. Replacing the energy Em by the sum
Em + Jm, we introduce

Ω+(μ, T, V ; J) := −kT ln

M
X

m=1

e(μNm−Em−Jm)/kT .

The additional real parameters J1, . . . , JM are called source parameters by physi-
cists. For the probability, we then get
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pm =
∂Ω+

∂Jm
˛

˛

J1=...=JM =0

, m = 1, . . . ,M.

The ground state energy formula. Consider the case where the particle
number is fixed, that is, μ = 0. Then

Z =

M
X

m=1

e−Em/kT = e−E1/kT

„

1 +

M
X

m=2

e−(Em−E1)/kT

«

.

Suppose that the ground state energy E1 is not degenerate. This means that we
have E1 < E2 ≤ . . . ≤ Em. Then, for fixed volume V ,

E1 = − lim
T→+∞

kT lnZ(T, V ). (6.3)

This formula is frequently used by physicists in order to compute the ground state
energy of non-degenerate ground states.

The Riemann zeta function represents a special partition function. To see this,
choose the chemical potential μ = 0 and the special energy levels

En := kT lnn, n = 1, 2, . . .

for fixed real number s > 1. Then

Z =
M
X

n=1

e−En/kT =
M
X

n=1

1

ns
.

This special partition function is a truncation of the Riemann zeta function

ζ(s) :=

∞
X

n=1

1

ns
, �(s) > 1.

Von Neumann’s density matrix. Let us formulate the partition function in
the language of the density matrix which was introduced by John von Neumann
(1903–1957) around 1930. Define the Hamiltonian H and the particle number op-
erator N by letting

H :=

0

B

B

@

E1 0
E2

. . .
0 EM

1

C

C

A

, N :=

0

B

B

@

N1 0
N2

. . .
0 NM

1

C

C

A

.

Then, for the partition function,

Z(T, μ, V ) = tr e(μN−H)/kT . (6.4)

The matrix

! :=

0

B

B

@

p1 0
p2

. . .
0 pM

1

C

C

A

is called the density matrix. Explicitly,
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! =
e(μN−H)/kT

Z(T, μ, V )
.

For the mean energy and the mean particle number,

E = tr(!H), N = tr(!N).

In the language of the Dirac calculus,

H =

M
X

m=1

EM |m〉〈m|, N =

M
X

m=1

Nm|m〉〈m|

where |1〉, |2〉, . . . , |M〉 form a complete orthonormal system of joint eigenvectors of
the operators H and N . Explicitly,

|1〉 :=

0

B

B

B

@

1
0
...
0

1

C

C

C

A

, . . . , |M〉 :=

0

B

B

B

@

0
...
0
1

1

C

C

C

A

.

Hence H|m〉 = Em|m〉 and N |m〉 = Nm|m〉. Furthermore, note that matrix multi-
plication yields

|1〉〈1| =

0

B

B

B

B

@

1 0 . . . 0

0 0 . . . 0
...

0 0 . . . 0

1

C

C

C

C

A

along with similar matrices for |m〉〈m|. The density matrix ! can be written as

! =

M
X

m=1

pm|m〉〈m|

where

pm =
〈m|e(μN−H)/kT |m〉

tr e(μN−H)/kT
(6.5)

is the probability of finding the physical system in the state |m〉.
Historical remarks. Classical statistical physics was created by Maxwell

(1831–1879) and Boltzmann (1844–1906); it was completed by Gibbs (1839–1903)
who was professor for mathematical physics at Yale University (Connecticut,
U.S.A.). Gibbs used the following classical partition function

Zclass =

Z

R6
e−E(x,p)/kT d3x d3p

h3

for sufficiently high temperature T . Here, x and p are the position vector and
the momentum vector of a particle in 3-dimensional Euclidean space, respectively.
Since Zclass has to be a dimensionless physical quantity, we introduce an arbitrary
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constant h3 where h has the physical dimension of action. In classical physics,
there is no such distinguished physical constant. However, the situation changes
completely in quantum physics. In 1900 Planck (1858–1947) introduced his quantum
of action, h. We now have the following heuristic principle which is successfully used
by physicists:

The high-temperature approximation of quantum statistics is obtained from
classical statistical physics by subdividing the phase space into cells of vol-
ume h3.

For example, we will use this principle of phase space quantization for computing
the cross section of scattering processes on page 840. Important contributions to the
development of quantum statistics were made by Einstein (1879–1955), Pauli (1900–
1958) (exclusion principle), Bose (1894–1974) (Bose–Einstein statistics for bosons),
Dirac (1902–1984), Fermi (1901–1954) (Dirac–Fermi statistics for fermions), von
Neumann (1903–1957) (density matrix), Lev Landau (1908–1968) (low tempera-
tures and liquid helium), and Schwinger (1918–1994) (Green’s function and KMS
states of thermodynamic equilibrium). In fact, high-technology is based on solid
state physics and quantum statistics (e.g., semiconductors, superconductors, and
lasers). Moreover, the structure of stars (e.g., white dwarfs, neutron stars, super-
novae, black holes), and the evolution of the universe after the Big Bang can only
be understood by using the methods of quantum statistics. This can be found in
Zeidler (1986), Vol. IV. We will come back to this fascinating topic in Volume III
of this treatise.

6.2 Euler’s Partition Function

Read Euler, he is the master of us all.
Marquis Pierre Simon de Laplace4

We want to study the decomposition of natural numbers into the sum of natural
numbers. This is a basic problem in additive number theory. To this end, let n be
a nonzero natural number. We define

p(n) := number of decompositions of n

into a sum of nonzero natural numbers.

For example, one has p(3) = 3, since

3 = 1 + 1 + 1, 3 = 2 + 1, 3 = 3.

We also set p(0) := 1. Following Euler, we define the partition function

P (q) :=

∞
X

n=0

p(n)qn.

This represents the generating function for p(0), p(1), p(2), . . .
Euler’s theorem. For all complex numbers q with |q| < 1, one has the con-

vergent product representation

4 Euler (1707–1783), Laplace (1749–1827), Fourier (1768–1830), Hardy (1877–
1947), Ramanujan (1887–1920), Hecke (1887–1947), Rademacher (1892–1969).
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P (q) =
1

Q∞
n=1(1− qn)

together with

∞
Y

n=1

(1− qn) =

∞
X

n=−∞
(−1)nq

3n2+n
2 = 1− q − q2 + q5 + q7 + . . .

After finding the formulas numerically, Euler had to work a long time to get a
rigorous proof.

The Hardy–Ramanujan theorem. For large numbers n, we have the asymp-
totic equation

p(n) � eπ
√

2n/3

4n
√

3
, n→∞.

This theorem was obtained by Hardy and Ramanujan in 1918. Rademacher discov-
ered in 1937 that p(n) can be expanded in a convergent series in n. His proof used
the Dedekind eta function

η(τ) := eπiτ/12
∞
Y

n=1

(1− qn) with q := e2πτ i.

The proof can be found in T. Apostol, Modular Functions and Dirichlet Series in
Number Theory, Springer, New York, 1990. Let C> := {τ ∈ C : �(τ) > 0} be the
open upper half-plane. The Dedekind eta function is holomorphic on C>, and it
has the symmetry property

η

„

aτ + b

cτ + d

«

= ε(cτ + d)
1
2 η(τ) for all τ ∈ C> (6.6)

and all modular transformations (i.e., for all integers a, b, c, d with ad − bc = 1).
Here, ε is a 24th root of unity (i.e., ε24 = 1).

Modular forms of weight k. Let k be an integer. By definition, a modular
form f of weight k has the following properties.

• The function f : C> → C is holomorphic.
• The function f satisfies the symmetry condition

f

„

aτ + b

cτ + d

«

= (cτ + d)kf(τ) for all τ ∈ C>

and all modular transformations.
• The Fourier expansion f(τ) =

P

n ane2πiτ has the property that an = 0 for all
n = −1,−2, . . .

Typically, modular forms satisfy sophisticated relations. Don Zagier writes in his
beautiful survey article on modular forms:5

The importance of modular forms stems from the conjunction of the fol-
lowing two facts.
(i) They arise naturally in a wide variety of contexts in mathematics and

physics and often encode the arithmetically interesting information
about a problem.

5 Introduction to modular forms, pp. 238–291. In: M. Waldschmidt et al. (Eds.),
From Number Theory to Physics, Springer, Berlin, 1995 (reprinted with permis-
sion).
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(ii) The space Mk of modular forms of weight k is finite-dimensional for
each integer k.

The point is that if dimMk = d and we have more than d situations
giving rise to modular forms in Mk, then we automatically have a linear
relation among these functions and hence get ‘for free’ information – often
highly nontrivial – relating these different situations. . . What we meant
by (i) above is that nature – both physically and mathematically – often
produces situations described by numbers which turn out to be the Fourier
coefficients of a modular form. These can be as disparate as multiplicities
of energy levels, numbers of vectors in a lattice of given length, sums over
the divisors of integers, special values of zeta functions, or numbers of
solutions of Diophantine equations. But the fact that all of these different
objects land in the little space Mk forces the existence of relations among
them. . .
The key to the rich internal structure of the theory of modular forms is
the existence of a commutative algebra (Hecke algebra) of operators Tn

(n ∈ N) acting on the space Mk. The space Mk has a canonical basis
of simultaneous eigenvectors of all the Hecke operators Tn; these special
modular forms have the property that their Fourier coefficients a(n) are al-
gebraic integers and satisfy the multiplicative property a(nm) = a(n)a(m)
whenever n and m are relative prime.

6.3 Discrete Laplace Transformation

The two key formulas of the discrete Laplace transformation are given by

f(z) =

∞
X

n=0

anz
n (6.7)

along with the inverse formula

an =
1

2πi

Z

|z|=r

f(z)

zn+1
dz, n = 0, 1, 2, . . . (6.8)

for fixed radius r > 0. The transformation

f = L(a0, a1, a2, . . .)

sends each sequence (a0, a1, a2) of complex numbers to a formal power series ex-
pansion f. We want to study the properties of the map L.

The Tauberian theorem. If the function f is holomorphic on the open unit
disc {z ∈ C : |z| < 1} and it has the power series expansion (6.7), then the function
f is called the generating function of the sequence (a0, a1, . . .). In this case, we have
the inverse transformation formula (6.8) for each real number r ∈]0, 1[. We now
want to investigate the formula

lim
ε→+0

f(1− ε) =

∞
X

n=0

an (6.9)

where ε is a positive real parameter. Mnemonically, this can be written as
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lim
z→1−0

f(z) = f(1).

(i) The 1826 Abelian theorem: Relation (6.9) is valid if the right-hand series is
convergent.

(ii) The 1897 Tauberian theorem: Relation (6.9) is valid if the left-hand limit exists
and

an = o

„

1

n

«

, n→∞. (6.10)

Theorem (i) describes a specific property of the map L, whereas theorem (ii) refers
to the inverse map L−1. These two theorems are due to Abel (1802–1829) and
Tauber (1866–1942).6 In 1911, Hardy (1877–1947) and Littlewood (1885–1977)
proved a sophisticated result saying that the condition (6.10) can be replaced by
the weaker condition

an = O

„

1

n

«

, n→∞.

The theorems (i) and (ii) are prototypes of numerous sophisticated mathematical
theorems about sums and integrals. This is summarized in the modern standard
text by Korevaar (2004). The transformation

z = eiE , �(E) > 0

maps the open upper half-plane conformally onto the open unit disc. In terms of
the variable E, the discrete Laplace transform looks like

F (E) =
∞
X

n=0

aneiEn, �(E) > 0.

The corresponding integral transform reads as

G(E) =

Z ∞

0

a(t)eiEt/�dt, �(E) > 0.

This is called the Laplace transform. In physics, the variable t (resp. E) has the
meaning of time (resp. energy). Engineers use the Laplace transform for computing
electric circuits. Then, we set E = ω� where the variable ω corresponds to frequency.
The Laplace transform describes a crucial duality between time and energy (resp.
time and frequency).

The rabbit problem and Fibonacci numbers. The discrete Laplace trans-
form can be used in order to solve difference equations. Let us consider a classic
problem. The most accomplished mathematician of the Middle Ages was Leonardo
de Pisa (1175–1250) called Fibonacci who lived in Italy. Fibonacci is a shortened
form of Filius Bonaccio (son of Bonaccio). In his famous 1202 Liber Abaci (Book
of the Abacus), Fibonacci introduced the Arabic system of numbers to Europe.7

Fibonacci formulated and solved the rabbit problem which leads to the discrete
dynamical system

6 Alfred Tauber was murdered in the German concentration camp Theresienstadt
(Terežin).

7 The decimal system was introduced much later on the European mainland by
the Dutch engineer Simon Stevin in 1585.
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N((n+ 2)Δt) = N((n+ 1)Δt) +N(nΔt), n = 0, 1, 2, . . . (6.11)

Explicitly, the rabbit problem reads as follows:

• A pair of adult rabbits produces a pair of baby rabbits once each month.
• Each pair of baby rabbits requires one month to grow to be adults and subse-

quently produces one pair of baby rabbits each month thereafter.
• Determine the number N(nΔt) of adult rabbit pairs after n months. In this

model, Fibonacci assumed that rabbits are immortal.

Noting that the number of pairs of baby rabbits is equal to the number of adult
rabbit pairs in the previous month, we get the difference equation (6.11). For given
initial values N(0) = 0 and N(Δt) = 1, one checks explicitly that the solution is
given by the formula

N(nΔt) =
1√
5

„

rn − (−1)n

rn

«

, n = 0, 1, . . . (6.12)

due to Binnet (1786-1856). The irrational number

r =
1

2
(1 +

√
5) = 0.681 . . .

is the positive solution of the equation

λ2 − λ− 1 = 0. (6.13)

which is called the characteristic equation to the original difference equation (6.11).
The nonnegative integers N(nΔt) are called the Fibonacci numbers. The first Fi-
bonacci numbers read as

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610.

For example, after 15 months the number of adult rabbit pairs equals 610. For
the mathematicians in the 13th century, it was a great surprise that the integer
Fibonacci numbers are generated by the irrational numbers r and − 1

r
. Obviously,

we have the asymptotic law

lim
n→∞

N(nΔt+Δt)

N(nΔt)
= r.

For large times, we get the asymptotic equation8

N(nΔt) � rn

√
5

as n→∞.

Let us motivate the solution by using two different methods.

(i) The ansatz method: Letting N(nΔT ) := λn, we get λ2+n = λ1+n +λn, implying

the characteristic equation (6.13) which has the two solutions λ± := 1
2
(1±

√
5).

Hence λ+ = r and λ− = − 1
r
. By superposition,

N(nΔt) = aλn
+ + bλn

−.

8 Recall that f(n) � g(n) as n→∞ means that f(n)
g(n)

→ 1 as n→∞.
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0 r 1

Fig. 6.1. The golden ratio

From the initial conditions N(0) = 0 and N(Δt) = 1, we get the constants a
and b, giving the solution (6.12). This solution method resembles the ansatz
N(t) := eλt for solving the ordinary differential equation

N ′′ = N ′ +N

which leads to the characteristic equation (6.13) as well.
(ii) Laplace’s method of generating function F : Set an := N(nΔt) and

F (z) := a0 + a1z + a2z
2 + . . .

The original difference equation reads as an+2 = an+1 + an. Hence

F − a0 − a1z

z2
=
F − a0

z
+ F.

Since a0 = 0 and a1 = 1,

F =
z

1− z − z2
.

It remains to compute the coefficients an of F . This can be done easily by
using the method of partial fractions. To begin with, note that the equation
1 − z − z2 = 0 has the zeros z = 1

λ±
, since the substitution z = 1

λ
yields

the characteristic equation λ2 − λ − 1 = 0. Explicitly, we get the following
decomposition

F =
1

λ+ − λ−

„

1

1− λ+z
− 1

1− λ−z

«

.

By applying the geometric series,

1

1− λ±z
= 1 + λ± + λ2

±z
2 + . . .

This way we obtain the desired solution an = 1√
5
(λn

+ − λn
−) from (6.12).

Note that the proof (ii) has a formal character, since we did not check the con-
vergence of the power series expansion. It turns out that it is not necessary to
check the convergence; in Volume II we will establish the Mikusiński calculus for
hyperfunctions which leads to expressions being always convergent, in a generalized
sense.

The golden ratio and the chaotic motion of asteroids. The number r
is one of the most famous irrational numbers. It is called the golden ratio for the
following reason. Subdivide the unit interval by the point r into two subintervals
such that

r

1− r
=

1

r
.

Then r2−r−1 = 0 (Fig. 6.1) In ancient times, the golden ratio played an important
role in architecture for aesthetical reasons.9 The iterative method

9 Applications of the golden ratio in art and sciences including quasi-crystals and
biological objects can be found in Dunlap (1997) and Koshy (2001).
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rn+1 =
1

1 + rn
, n = 0, 1, . . . , r0 = 1 (6.14)

converges to the golden ratio r as n → ∞. This is the most regular continued
fraction,

r =
1

1 + 1
1+...

In this sense, the golden ratio is the “most irrational” real number. If one wants
to simulate chaotic motion of asteroids on computers in the framework of the
Kolmogorov–Arnold–Moser theory (KAM theory), one uses the iterative method
(6.14) (see Scheck (2000), Vol. 1). Surprisingly enough, this method works perfectly
despite the rational character of the approximations.

Applications of discrete dynamical systems. In mathematics, the equa-
tions of motion of a discrete dynamical system are called difference equations. Nowa-
days such equations are used

• for solving partial differential equations on computers (see Knabner and Anger-
mann (2003)),

• for modelling deterministic chaos in physics (see Schuster (1994)),
• for studying mathematical models on both the origin of life, taking metabolism

into account (see Dyson (1999a)), and
• virus dynamics in immunology (see Noack and May (2000)). This concerns, for

example, the spread of aids.

We also refer to W. de Melo and S. van Strien, One-Dimensional Dynamics,
Springer, Berlin, 1993 and to J. Jost, Dynamical Systems: Examples of Complex
Behavior, Springer, Berlin, 2005.

6.4 Integral Transformations

Integral transformations are extremely useful in mathematics and physics.
Folklore

The discrete two-sided Laplace transform. Replace the discrete Laplace trans-
form (6.7) by the more general formula

f(z) =

∞
X

n=−∞
anz

n (6.15)

along with the inverse formula

an =
1

2πi

Z

|z|=r

f(z)

zn+1
dz, n = 0, 1, 2, . . . (6.16)

for fixed radius r > 0. The transformation

f =M(. . . , a−2, a−1, a0, a1, a2, . . .)

sends each sequence (. . . , a−2, a−1, a0, a1, a2, . . .) of complex numbers to a formal
Laurent series expansion, f . Let r0 ∈]0, 1[ be a fixed number. Suppose that the
function f is holomorphic in the open annulus {z ∈ C : r0 < |z| < 1} where
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r0 > 0. Then, we have the inverse transformation formula (6.16) for each real
number r ∈]r0, 1[.

The two-sided Laplace transform. The two-sided Laplace transform

A(s) :=

Z ∞

−∞
a(t)e−stdt (6.17)

represents the continuous analogue of the two-sided discrete Laplace transform by
setting z = e−s.

The Mellin transform. Substituting τ := e−t and b(τ) := a(t), the two-sided
Laplace transform (6.17) passes over to the integral transformation

A(s) :=

Z ∞

0

b(τ)τs−1 dτ (6.18)

which is called the Mellin transform. The Mellin transform (6.18) of the function
e−τ is precisely Euler’s gamma function,

Γ (s) =

Z ∞

0

e−ττs−1 dτ for all s ∈ C, �(s) > 0. (6.19)

The gamma function can be analytically continued to a meromorphic function in
the complex plane which has poles only at the points s = 0,−1,−2, . . ., and these
poles are simple. The Laurent series at the pole s = −n with n = 0, 1, . . . reads as

Γ (s) =
(−1)n

n!(s+ n)
+ a0 + a1(s+ n) + . . .

The gamma function has the following characteristic properties:

(i) Γ (1) = 1.
(ii) Γ (n) = (n− 1)! for n = 2, 3, . . .
(iii) Γ (z + 1) = zΓ (z) for all z ∈ C with z �= 0,−1,−2, . . .

The integral transformation

F (s) =
1

Γ (s)

Z ∞

0

f(τ)τs−1 dτ (6.20)

is called the normalized Mellin transform f to F . This transformation is named
after Robert Mellin (1854–1933) who wrote a fundamental paper about this trans-
formation in 1895. In particular, the Riemann zeta function can be represented by
the following normalized Mellin transform

ζ(s) =
1

Γ (s)

Z ∞

0

τs−1

eτ − 1
dτ for all s ∈ C, �(s) > 1.

We will show on page 668 that the Mellin transformation is closely related to the
Haar measure on the multiplicative group of positive real numbers. This will be
discussed in Sect. 11.9.4 on page 668.

The Euler beta function and string theory. For all complex numbers p
and q with �(p) > 0 and �(q) > 0, the integral

B(p, q) :=

Z 1

0

τp−1(1− τ)q−1 dτ
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exists. This function is called Euler’s beta function. The relation between the beta
function and the gamma function reads as

B(p, q) =
Γ (p)Γ (q)

Γ (p+ q)
.

The beta function played an important role in the history of string theory. In
the 1970s, the physicist Veneziano looked for a function that fulfills a number of
natural postulates for the scattering amplitudes of elementary particles in strong
interaction. He found out that Euler’s beta function did the job. This observation
initiated string theory as a theory for strong interaction. Later on, the paradigm
changed completely. Nowadays string theory is a candidate for describing all of the
fundamental forces in the universe.

6.5 The Riemann Zeta Function

I feel that I am expressing my gratitude for the honor that the Berlin
Academy has endowed upon me by appointing me as one of its correspon-
dents, by making immediate use of my privileges thereof and presenting
the results of an investigation on the frequency of prime numbers; a subject
which, by the interest which Gauss (1777–1855) and Dirichlet (1805–1859)
have given it over a long period of time, seems to be worthy of renewed
mention.10

Berhard Riemann, 1859
On the distribution of prime numbers

By definition, the Riemann zeta function looks like

ζ(s) :=

∞
X

n=1

1

ns
.

This series converges in the classical sense if s is a complex number with real part
larger than 1. This function plays a fundamental role in both number theory and
modern physics. Let us first investigate applications to number theory. Applications
to the famous Casimir effect in quantum field physics will be studied on page 301.

6.5.1 The Prime Number Theorem – a Pearl of Mathematics

A natural number p is said to be a prime iff p ≥ 2 and the only divisors of p are 1
and p itself. The first prime numbers are 2, 3, 5, 7, 11, 13, 17, 19. Euclid (300 B.C.)
knew that

10 This is the beginning of one of the most famous works in all of mathematics.
In this short paper Riemann develops his new ideas and presents the famous
“Riemann hypothesis.” The German title of this paper reads as “Über die An-
zahl von Primzahlen unter einer gegebenen Grösse,” Berliner Monatsberichte
1859, pp. 671–680. The collected works of Riemann (1990) are all in all just one
volume. However, every single one of these papers is a jewel of mathematics.
Riemann (1826–1866) has profoundly influenced the mathematics and physics
of the twentieth century with his treasure of ideas. We refer to K. Maurin, The
Riemann Legacy, Kluwer, Dordrecht, 1997.
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• there exists an infinite number of primes, and
• each natural number n ≥ 2 allows the unique factorization

n = pα1
1 pα2

2 · · · pαm
m

where p1, p2, . . . is an increasing sequence of primes, and the exponents α1, α2, . . .
are positive integers.

In 1737 Euler proved that for each real number s > 1,

Y

p

„

1− 1

ps

«−1

=
∞
X

n=1

1

ns
. (6.21)

Here, the product refers to all primes p. Euler’s formula combines number theory
with analysis. In fact, from unique factorization we have

ζ(s) =
X

μ2,μ3,...≥0

(2μ23μ3 · · · )−s =
Y

p

0

@

X

μ≥0

p−μs

1

A =
Y

p

1

1− p−s

by using the geometric series.
Legendre (1752–1832) introduced the prime number distribution function π(x).

For an arbitrary real number x ≥ 2,

π(x) := {number of primes ≤ x}.

Counting the primes below 40 000, Legendre conjectured in 1785 that11

π(x) � x

lnx− 1.083 66
, x→ +∞.

The young Gauss did not know Legendre’s work. In 1792, the fifteen-years old
Gauss conjectured by counting primes that

π(x) � Li(x), x→ +∞

where

Li(x) := PV

Z x

2

dt

ln t
, x ≥ 2.

The principal value stands for the limit limε→+0

R 1−ε

2
+
R x

1+ε
. The prime number

theorem reads as follows.

Theorem 6.1 The asymptotic distribution of primes is given by

π(x) � x

lnx
as x→ +∞.

11 The symbol f(x) � g(x), x → +∞ means that the quotient f(x)
g(x)

goes to 1 as
x→ +∞.
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For more than hundred years, the proof of the prime number conjecture was a
famous open problem in mathematics. In 1896, Jacques Hadamard (1865–1963) and
Charles de la Valeé-Poussin (1866–1962) proved independently the prime number
theorem. Their proofs were long and intricate. A simple analytic proof was given
by Newman (1980). Our proof follows Zagier (1996).
Proof. For complex numbers s with �(s) > 1 and real numbers x, let us introduce
the two auxiliary functions

Φ(s) :=
X

p

ln p

ps
, ϑ(x) :=

X

p≤x

ln p.

Here, we sum over all the primes p. The following proof uses analytic continuation of
the Riemann ζ function along with Newman’s adiabatic theorem based on Cauchy’s
integral formula. We will proceed in the following steps.

(i) For the Riemann zeta function, the series

ζ(s) =

∞
X

n=1

1

ns

converges absolutely for all complex numbers s with �(s) > 1.
(ii) Extension of Euler’s formula: For all complex numbers s with �(s) > 1,

ζ(s) =
Y

p

„

1− 1

ps

«−1

.

(iii) ζ(s)− 1
s−1

extends holomorphically to the set {s ∈ C : �(s) > 0}.
(iv) ϑ(x) = O(x) as x→ +∞.
(v) ζ(s) �= 0 for all s ∈ C with �(s) ≥ 1, and Φ(s)− 1

s−1
extends holomorphically

to the set {s ∈ C : �(s) ≥ 1}.
(vi) Newman’s adiabatic theorem: Let a : [0,∞[→ R be a bounded and locally

integrable function and suppose that the function

A(z) :=

Z ∞

0

a(t)e−zt dt, �(z) > 0

extends holomorphically to the set {z ∈ C : �(z) ≥ 0}. Then, the integral
R∞
0
a(t)dt exists and equals A(0).

(vii) The integral
R∞
1

ϑ(x)−x

x2 dx is convergent.
(viii) ϑ(x) � x as x→∞.

Let us first show that claim (viii) implies easily the prime number theorem. In fact,
for any ε > 0, we get the following two inequalities

ϑ(x) =
X

p≤x

ln p ≤
X

p≤x

lnx = π(x) lnx

and

ϑ(x) ≥
X

x1−ε≤p≤x

ln p ≥
X

x1−ε≤p≤x

(1− ε) lnx

≥ (1− ε) lnx · {π(x)−O(x1−ε)} x→ +∞.
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To simplify notation, set f(x) := π(x) ln x
x

. Then

(1− ε)f(x)−O

„

1

xε

«

lnx ≤ ϑ(x)

x
≤ f(x), x→ +∞.

Letting x→ +∞, it follows from (viii) above that

(1− ε) lim sup f(x) ≤ 1 ≤ lim inf f(x)

for all ε > 0. Hence

lim sup f(x) ≤ 1 ≤ lim inf f(x) ≤ lim sup f(x), x→ +∞.

Therefore, lim inf f(x) = lim sup f(x) = 1 as x→ +∞. This implies

lim
x→+∞

f(x) = 1

which is the claim of the prime number theorem.
It remains to prove (i) through (viii). The symbol p denotes primes in what

follows.
Ad (i). Note that |ns| = n�(s) for n = 1, 2, . . .
Ad (ii). Use Euler’s argument from (6.21) by taking the absolute convergence

from (i) into account.
Ad (iii). For �(s) > 1 we have

ζ(s)− 1

s− 1
=

∞
X

n=1

1

ns
−
Z ∞

1

dx

xs
=

∞
X

n=1

Z n+1

n

„

1

ns
− 1

xs

«

dx.

The series on the right converges absolutely for �(s) > 0 because

˛

˛

˛

˛

Z n+1

n

„

1

ns
− 1

xs

«

dx

˛

˛

˛

˛

=

˛

˛

˛

˛

s

Z n+1

n

dx

Z x

n

du

us+1

˛

˛

˛

˛

≤ max
n≤u≤n+1

˛

˛

˛

s

us+1

˛

˛

˛

=
|s|

n�(s)+1

by the mean theorem for integrals.
Ad (iv). For n = 1, 2, . . . we have

`

2n
n

´

= (2n− 1)
`

2n−2
n−1

´

. By induction,

 

2n

n

!

≥
Y

n<p≤2n

p.

This implies

22n = (1 + 1)2n =

 

2n

0

!

+ . . .+

 

2n

2n

!

≥
 

2n

n

!

≥
Y

n<p≤2n

p = e2ϑ(2n)−ϑ(n).

Hence, since ϑ(x) changes by O(lnx) if x changes by O(1) for large x,

ϑ(x)− ϑ
“x

2

”

≤ Cx

for any C > ln 2 and all x ≥ x0 where x0 depends on C. Summing this over
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x,
x

2
, . . . ,

x

2r
,

where x/2r ≥ x0 > x/2r+1, we obtain ϑ(x) ≤ 2Cx+O(1) as x→ +∞.
Ad (v). For �(s) > 1, the convergent product in (ii) implies that ζ(s) �= 0 and

that

−ζ
′(s)

ζ(s)
=
X

p

ln p

ps − 1
= Φ(s) +

X

p

ln p

ps(ps − 1)
.

The final sum converges for �(s) > 1
2
, so this and (iii) imply that Φ(s) extends

meromorphically to �(s) > 1
2
, with poles only at s = 1 and at the zeros of ζ(s),

and that, if ζ(s) has a zero of order μ at s = 1 + iα (α ∈ R, α �= 0) and a zero of
order ν at 1 + 2iα (so μ, ν ≥ 0 by (iii)), then

• limε→+0 εΦ(1 + ε) = 1,
• limε→+0 εΦ(1 + ε± iα) = −μ,
• limε→+0 εΦ(1 + ε± 2iα) = −ν.
The inequality

2
X

r=−2

 

4

2 + r

!

Φ(1 + ε+ irα) =
X

p

ln p

p1+ε
(piα/2 + p−iα/2)4 ≥ 0

then implies that 6− 8μ− 2ν ≥ 0, so μ = 0.
Ad (vi). The elementary proof will be given on page 688 in the context of

adiabatic limits in physics.
Ad (vii). The function ϑ is piecewise constant and it jumps at the prime num-

bers. This implies that for �(s) > 1, we have

Φ(s) =
X

p

ln p

ps
= s

Z ∞

1

ϑ(x)

xs+1
dx = s

Z ∞

0

e−stϑ(et)dt.

Therefore, the claim (vii) is obtained by applying Newman’s adiabtatic theorem
(vi) to the functions a(t) := ϑ(et)e−t − 1 and

A(z) =
Φ(z + 1)

z + 1
− 1

z
,

which satisfy its hypotheses by (iv) and (v).
Ad (viii). Assume that for some λ > 0 there are arbitrarily large x which satisfy

the inequality ϑ(x) ≥ λx. Since ϑ is non-decreasing, we have

Z λx

x

ϑ(t)− t

t2
dt ≥

Z λx

x

λx− t

t2
dt =

Z λ

1

λ− t

t2
dt > 0

for such x, contradicting (vi). Similarly, the inequality ϑ(x) ≤ λx with λ < 1 would
imply

Z x

λx

ϑ(t)− t

t2
dt ≤

Z x

λx

λx− t

t2
dt =

Z 1

λ

λ− t

t2
dt < 0,

again a contradiction for λ fixed and x big enough. �
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6.5.2 The Riemann Hypothesis

Billions of zeros cannot be wrong. Recent work by van de Lune has shown
that the first 10 billion zeros of the zeta function are on the critical line. . .
The Riemann hypothesis tells us that the primes are distributed in as nice
a way as possible. If the Riemann hypothesis would be false, there would
be some strange irregularities in the distribution of primes. The first zero
off the line would be a very important mathematical constant. It seems
unlikely that nature is that perverse!

Brian Conrey, 2003
The Riemann hypothesis12

In 1859 Riemann wrote a fundamental paper about the zeta function. For the first
time, he studied this function for complex arguments. He proved that the zeta
function is well-defined for all complex numbers s �= 1, in the sense of an analytic
continuation. To this end, Riemann used the following functional equation for the
zeta function,

2s−1πs

Γ (s)
ζ(1− s) = ζ(s) cos

πs

2
for all s ∈ C.

The zeta function has the trivial zeros s = −2,−4,−6, . . . The Riemann hypothesis
claims that all of the other zeros s satisfy the condition

�(s) =
1

2
.

This is the most famous open problem in mathematics. If the Riemann hypothesis
is right, then one has the following sharp inequality

|π(x)− Li(x)| ≤ const ·
√
x lnx for all x ≥ 2 (6.22)

where π(.) denotes the prime number distribution function.

6.5.3 Dirichlet’s L-Function

Over the years striking analogies have been observed between the Riemann
ζ-function and other L-functions. While these functions are seemingly in-
dependent of each other, there is growing evidence that they are all some-
how connected in a way that we do not fully understand. . . There is a
growing body of evidence that there is a conspiracy between L-functions –
a conspiracy which is preventing us from solving the Riemann hypothesis.

Brian Conrey, 2003
The Riemann hypothesis

In his famous 1801 treatise on number theory Disquisitiones arithmeticae, the young
Gauss studied the theory of quadratic number fields. Such fields are generated by
adding the solution of a quadratic algebraic equation to the field of rational numbers
Q. For example, adding the solution of the quadratic equation

x2 − 5 = 0

12 Notices of the American Mathematical Society 50 (3) (2003), pp. 341–353
(reprinted with permission).
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to the field Q we get the quadratic number field Q(
√

5) consisting of all numbers

a+b
√

5 where a and b are rational numbers. In 1837 Dirichlet (1805–1859) founded
analytic number theory. He used L-functions in order to get his famous explicit
formulas for the class numbers of quadratic number fields. These formulas describe
deep structural properties of quadratic number fields. In 1855 Dirichlet became the
follower of Gauss in Göttingen. Dirichlet also used L-series in order to prove the
following crucial theorem:

If the integers n and d are positive, then the sequence
n, n+ d, n+ 2d, . . . contains infinitely many primes.

For the proofs, we refer to Zagier (1981), and Stein, Shakarchi (2003), Vol. 1. In
order to explain the basic idea of Dirichlet’s L-function, let us consider a simple
example.

The ring Z/mod 4. Let Z denote the ring of integers. For n,m ∈ Z, we write

n ≡ m mod 4

iff the difference n−m is divisible by 4. The set

[n] := {m ∈ Z : m ≡ n mod 4}

is called the rest class modulo 4, and the elements of [n] are called the representa-
tives of the rest class. For example,

[3] := {3, 3± 4, 3± 8, 3± 12, . . .}.

Addition and multiplication of rest classes are defined by the corresponding oper-
ations for the representatives. Explicitly,

[n] + [m] := [n+m], [n][m] := [nm].

These definitions do not depend on the choice of representatives. The rest classes
[0], [1], [2], [3] form the ring Z/mod 4 with the zero element [0] and the unit element
[1]. Since

[2][2] = [4] = [0], [3][3] = [9] = [1],

precisely the elements [1], [3] are invertible.
Characters of the ring Z/mod 4. By a character of the ring Z/mod 4, we

understand a multiplicative map

χ : Z/mod 4 → C.

More precisely, for all elements a and b of Z/mod 4, we postulate that

χ(ab) = χ(a)χ(b).

Furthermore, |χ(a)| = 1 for all invertible elements a, and χ(b) = 0 for all non-
invertible elements b. Explicitly, such a character is given by

χ([0]) := χ([2]) = 0, χ([1]) := 1, χ([3]) := −1.

The L-function of the ring Z/mod 4. Set χ(n) := χ([n]) for all integers n,
and define

Lχ(s) :=
∞
X

n=1

χ(n)

ns

for all complex numbers s with �(s) > 1. Then
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Lχ(s) =
Y

p

„

1− χ(p)

ps

«−1

.

Here, the product runs over all prime numbers. This generalizes Euler’s product
formula.

Suggested reading. For number theory including applications to physics, we
refer to the following collection of beautiful survey articles

• M. Waldschmidt, P. Moussa, J. Luck, and C. Itzykson (Eds.), From Number
Theory to Physics, Springer, New York, 1995

and to the following books and papers:

• T. Apostol, Introduction to Analytic Number Theory, Springer, New York, 1986.
• P. Bateman and H. Diamond, A hundred years of prime numbers, American

Math. Monthly 103 (1996), 729–741.
• A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti, and S. Zerbini, Analytic As-

pects of Quantum Fields, World Scientific, Singapore, 2003.
• P. Cartier, An introduction to zeta functions. In: M. Waldschmidt et al. (1995)

(see above), pp. 1–63.
• J. Conrey, The Riemann hypothesis, Notices Amer. Math. Soc. 50(3) (2003),

341–353.
• A. Connes, Noncommutative geometry and the Riemann zeta function, Frontieres

and perspectives, International Mathematical Union, 2000.
• J. Havil, Gamma: Exploring Euler’s Constant, Princeton University Press, Prince-

ton, 2003.
• H. Edwards, Riemann’s Zeta Function, Academic Press, New York, 1974.
• E. Elizalde, Ten Physical Applications of Spectral Zeta Functions, Springer,

Berlin, 1995.
• P. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah–Singer Index

Theorem, CRC Press, Boca Raton, Florida, 1995.
• P. Gilkey, Asymptotic Formulae in Spectral Geometry, Chapman, CRC Press,

Boca Raton, Florida, 2003.
• K. Jorgenson and S. Lang, The ubiquitous heat kernel. In: B. Enquist and

W. Schmid (Eds.), Mathematics Unlimited – 2001 and Beyond, pp. 655–684.
Springer, New York, 2001.

• K. Kirsten, Spectral Functions in Mathematics and Physics, Chapman, Boca
Raton, Florida, 2002.

• M. Kontsevich and D. Zagier, Periods. In: B. Enquist and W. Schmid (Eds.), pp.
771–808 (see above).

• S. Lang, Introduction to Modular Forms, Springer, Berlin, 1976.
• D. Newman, Simple analytic proof of the prime number theorem, American

Math. Monthly, 87 (1980), 693–696.
• S. Patterson, An Introduction to the Theory of the Riemann Zeta Function,

Cambridge University Press, 1995.
• P. Ribenboim, The New Book of Prime Number Records, Springer, New York,

1996.
• B. Riemann, Collected Mathematical Works with Commentaries. Edited by R.

Narasimhan, Springer, New York, and Teubner, Leipzig, 1990.
• E. Stein and R. Shakarchi, Princeton Lectures in Analysis, I: Fourier Analy-

sis, II: Complex Analysis, III: Measure Theory, IV: Selected Topics, Princeton
University Press, 2003.

• E. Titchmarsh, The Theory of the Riemann Zeta Function. Edited by D. Heath-
Brown, Cambridge University Press, 1986.
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• D. Vassilievich, Heat Kernel Expansion: User’s Manual, Physics Reports 388
(2003), 279–360.

• D. Zagier, Zeta Functions and Quadratic Number Fields: An Introduction to
Advanced Number Theory, Springer, Berlin, 1981 (in German).

• D. Zagier, Introduction to Modular Forms, pp. 238–291. In: M. Waldschmidt et
al. (Eds.) (1995) (see above).

• D. Zagier, Newman’s short proof of the prime number theorem, Amer. Math.
Monthly 104, 705–708.

6.6 The Casimir Effect in Quantum Field Theory and
the Epstein Zeta Function

How can it be that mathematics, being after all a product of human
thought independent of experience, is so admirably adapted to the objects
of reality.

Albert Einstein (1879–1955)

Let us study some physical effect which allows us to prove experimentally the exis-
tence of the ground state energy of a quantum field. This is the so-called Casimir
effect. Consider two parallel, uncharged, perfectly conducting metallic plates (see
Fig. 6.2). From the classical point of view, there should not be any electromagnetic
force between the two plates. However, Casimir predicted in 1948 that the fluctu-
ations of the ground state energy of the electromagnetic quantum field cause an
attractive electromagnetic force between the two plates given by

F(d) = −π
2
�cL2

240d4
ex

where d is the distance between the two plates, and L2 is the surface area of each of
the two plates. Here, the unit vector ex points in direction of the x-axis. We write
F(d) = F (d)ex. Explicitly, in the SI system,

F (d) = −1.30 · 10−27 [L]2

[d]4
·N

where [L] and [d] are the numerical values of L and d, respectively, measured in

m (meter). Note that 1 N (Newton) = 1 kg m/s2. The tiny Casimir force F (d) can
be established experimentally. This effect was first studied by H. Casimir, On the

�
x

�z

�
y

d

Fig. 6.2. The Casimir effect
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attraction between two perfectly conducting plates, Kon. Ned. Akad. Wetensch
Proc. 51 (1948), 793–795.

Let us show how this Casimir force can be obtained by using both physical and
mathematical arguments. From the physical point of view, the two plates change
the situation of the ground state of the electromagnetic quantum field. The ground
state is confined by the two plates. We now postulate that the confinement of the
ground state of a quantum fields causes a force. In the present case, we get

F (d) = −E′(d)

where E(d) is the ground state energy of the quantum field between the two plates.13

The one-dimensional model. We first consider a one-dimensional model. Let
A : [0, d] → R be a classical physical quantity which describes a standing wave with
A(0) = A(d) = 0. That is,

A(x) := A0 sin
nπx

d
, x ∈ [0, d]

where n = 0, 1, 2, . . . . Here, we have the wave number

k(n) :=
nπ

d
.

The corresponding travelling wave reads as

A(x, t) = A0 sin(k(n)x− ω(n)t), x, t ∈ R (6.23)

with the propagation speed c = ω(n)
k(n)

. In 1925 Heisenberg showed that the energy

levels of a harmonic quantum oscillator with angular frequency ω are given by

E = �ω

„

N +
1

2

«

, N = 0, 1, 2, . . .

The quantum number N = 0 describes the zero-point energy

E =
�ω

2
.

Furthermore, the quantum numbers N = 1, 2, . . . correspond to excited energy
states.

Let us now consider a quantum field which is obtained by quantizing the clas-
sical field (6.23). Heuristically, the quantum field is given by an infinite number of
harmonic quantum oscillators of frequencies ω(n) = ck(n) with n = 0, 1, . . . Nat-
urally enough, we assume that the ground state energy E(d) of the quantum field
is given by the sum of the zero-point energies of the single harmonic oscillators.
Hence

E(d) =
∞
X

n=0

�ω(n)

2
=

∞
X

n=0

�ck(n)

2
.

This implies

E(d) =
πc�

2d

∞
X

n=1

n.

13 Note that the derivative E′(d) of the energy E(d) with respect to the length
parameter d has the physical dimension of energy/length = force.
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Obviously, this series is divergent. This difficulty is typical for quantum field theo-
ries. In order to get a finite value as observed in the physical experiment, we will
argue as follows. To begin with, we choose a large cut-off constant R > 0, and we
introduce the truncated ground state energy

ER(d) :=
πc�

2d

∞
X

n=1

nθ(R− n)

where θ denotes the Heaviside function. Explicitly, θ(t) := 1 if t ≥ 0 and θ(t) := 0
if t < 0. Naturally enough, we postulate that

The true ground state energy does not depend on the arbitrarily chosen
cut-off.

In order to get such an energy expression, we introduce the truncated Riemann
zeta function

ζR(s) :=
∞
X

n=1

1

ns
· θ(R− n)

for all complex numbers s. Obviously,

ER(d) =
πc�

2d
ζR(−1).

Let us now study the limit R→ +∞.

• If �(s) > 1, then the classical limit

lim
R→+∞

ζR(s) =

∞
X

n=1

1

ns
= ζ(s)

exists. The Riemann zeta function ζ is a meromorphic function on the complex
plane C with one simple pole at the point s = 1 and no other poles. Thus, ζ(s)
is well-defined for all s ∈ C \ {1}. In particular, ζ(−1) = − 1

12
.

• We now define the generalized limit

lim
R→+∞

ζR(s) := ζ(s) for all s ∈ C \ {1}

which is finite. We briefly write this as

∞
X

n=1

1

ns
= ζ(s) for all s ∈ C \ {1}. (6.24)

Now we define the ground state energy E(d) by setting

E(d) :=
πc�

2d
ζ(−1) = −πc�

24d
.

This method is called the zeta function regularization.
In what follows, we will show that a similar argument can be used in order

to get the energy expression (6.30) below for the Casimir effect. The idea is to
replace the Riemann zeta function by the Epstein zeta function14 and to study the

14 P. Epstein, On the theory of general zeta functions I, II, Math. Ann. 56 (1903),
615–644; 63 (1907), 205–216 (in German).
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asymptotics of the Epstein zeta function by using sophisticated arguments from
analytic number theory.

The ground state energy of the electromagnetic quantum field. The
truncated ground state energy ER(d) is equal to

1

8

X

l,m,n∈Z

π�c

„

l2

L2
+
m2

L2
+
n2

d2

«1/2

· θ(R2 − l2 −m2 − n2). (6.25)

Here, we fix the large cut-off parameter R > 0. We sum over all integers l,m, n.
Note that

P

l∈Z
l2θ(R2− l2) = 2

P

l∈N
l2θ(R2− l2). Similarly, we obtain that ER(d)

is equal to

X

l,m,n∈N

wlmnπ�c

„

l2

L2
+
m2

L2
+
n2

d2

«1/2

· θ(R2 − l2 −m2 − n2). (6.26)

Here, we only sum over lattice points (l,m, n) whose components are natural num-
bers, and we use the following weights:

• wlmn = 1 if the tupel (l,m, n) is non-degenerate, that is, none of the indices
l,m, n is equal to zero;

• wlmn := 1
2

if precisely one of the indices l,m, n is equal to zero;

• wlmn := 1
4

if precisely two of the indices l,m, n are equal to zero.

The expression (6.25) for the ground state energy of the electromagnetic quan-
tum field will be thoroughly motivated in Volume III by using the free photon field.
At this point let us only discuss the basic ideas. Suppose that the functions A, U
satisfy the wave equations

�A = 0, �U = 0

and the Lorentz gauge condition div A + U̇
c2

= 0. Then the electromagnetic field

E = −Ȧ− gradU, B = curlA

satisfies the Maxwell equations without electric charges and electric currents. Ac-
cording to the experimental situation pictured in Fig. 6.2 on page 301, we want to
construct standing electromagnetic waves on the parallelepiped

P :=

j

(x, y, z) ∈ R
3 : 0 ≤ x ≤ d, −L

2
≤ y, z ≤ L

2

ff

.

To this end, we set U := 0 and

A(x, t) := A0 sin(klmnx− ωlmnt) (6.27)

with x = xex+yey +zez and klmn = kxex+kyey +kzez. The unit vectors ex, ey, ez

point into the direction of the x-axis, y-axis, z-axis, respectively. Here, we choose
the wave numbers

kx :=
nπ

d
, ky :=

lπ

L
, kz :=

mπ

L
, l,m, n = 0, 1, 2, . . .

and the angular frequencies ωlmn := c||klmn|| along with

A0klmn = 0. (6.28)
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This transversality condition guarantees that the gauge condition div A = 0 is sat-
isfied. If klmn �= 0, then the equation (6.28) has two linearly independent vector
solutions A0 which correspond to two possible polarization directions of electro-
magnetic waves.

We now consider the corresponding quantum field. Let us motivate that the
truncated ground state energy of the quantum field is given by

ER(d) =
X

l,m,n∈N

wlmn · �ωlmn · θ(R2 − l2 −m2 − n2).

Case 1: Non-degenerate oscillations. If the wave vector klmn is non-degenerate,
that is, all of the natural numbers l,m, n are different from zero, then the oscillations
with angular frequency ωlmn contribute the amount of zero-point energy

2 · �ωlmn

2
(6.29)

to the ground state energy of the quantum field. The factor 2 corresponds to the two
polarization degrees of freedom of electromagnetic waves. The energy contribution
(6.29) is equal to

�ωlmn = wlmn · �c||klmn|| = wlmn · π�c

„

l2

L2
+
m2

L2
+
n2

d2

«1/2

with the weight wlmn := 1.
Case 2: Degenerate oscillations. If the wave vector klmn is degenerate (i.e.,

at least one of the natural numbers l,m, n is equal to zero), then the oscillation
(6.27) degenerates. This means that the oscillation is not 3-dimensional, but only
r-dimensional with r = 2, 1, 0. In this case, we use the weights wlmn := 1

2
, 1

4
, 1

8
,

respectively.15 This way we get the truncated ground state energy ER(d) from
(6.25) above. Setting λ := L

d
, we obtain

ER(d) =
πc�

8L

X

l,m,n∈Z

(l2 +m2 + λ2n2)1/2 · θ(R2 − l2 −m2 − n2).

Now define the Epstein zeta function

Z(λ, s) :=
X′

l,m,n∈Z

1

(l2 +m2 + λ2n2)s

for all λ > 0 and all complex numbers s with �(s) > 3
2
. The prime on the summation

sign means that the term (l,m, n) = (0, 0, 0) is to be omitted. This series converges.
For understanding the Casimir effect, the following theorem is crucial.

Theorem 6.2 (i) For each λ > 0, the Epstein zeta function s �→ Z(λ, s) is a
meromorphic function on the complex plane with a simple pole at the point s = 3

2
and no other poles.

(ii) We have the following asymptotics

Z

„

λ,−1

2

«

= − π

90
λ3 − 1

π2
ζ

„

3

2

«

L4

„

3

2

«

+O(
√
λe−πλ), λ→ +∞

15 From the mathematical point of view, this choice of weights will allow us to
apply the Epstein zeta function.
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and

Z

„

λ,−1

2

«

= −L4(2)

3πλ
− λ

6
+O(λe−π/λ), λ→ +0.

Here, L4(s) := 1− 1
3s + 1

5s − . . . for all complex numbers s with �(s) > 1.

The proof due to Don Zagier will be given in the next section. As for the one-
dimensional model above, we define the generalized limit E(d) = limR→+∞ ER(d)
by setting

E(d) :=
πc�

8L
· Z
„

L

d
,−1

2

«

.

If the distance d between the two plates is small with respect to the length L of the
plates, then the quotient λ = L

d
is large and we get the following asymptotics

E(d) � − π2
�c

720L

„

L

d

«3

,
L

d
→ +∞. (6.30)

This yields the desired Casimir force

F (d) = −E′(d) = −π
2
�cL2

240d4
.

In 1826, the ingenious young mathematician Niels Hendrik Abel (1802–1829) wrote
the following:

The divergent series are the invention of the devil, and it is a shame to
base on them any demonstration whatsoever. By using them, one may
draw any conclusion he pleases and that is why these series have produced
so many fallacies and so many paradoxes.

The experience of physicists shows that the definition of a convergent series is
too restrictive; sometimes nature also sees the information which is encoded in a
divergent series. In particular, one can say that

Nature sees analytic continuation.

Suggested reading. As an introduction to the Casimir effect, we recommend
Gottfried and Tung-Mow Yan (2003), Sect. 10.3. A detailed study of the Casimir
effect can be found in the following monographs:

K. Milton, The Casimir Effect: Physical Manifestations of Zero-Point En-
ergy, World Scientific, Singapore, 2001.
P. Milonni, The Quantum Vacuum: An Introduction to Quantum Electro-
dynamics, Academic Press, Boston, 1994.
E. Elizalde, Ten Physical Applications of Spectral Zeta Functions, Springer,
Berlin, 1995.

P. van Baal, A Course in Field Theory, University of Leiden, 1998.
Internet: http://rulgm4.leidenuniv.nl/van-baal/FTcourse.html
K. Kirsten, Spectral Functions in Mathematics and Physics, Chapman,
Boca Raton, 2002.
A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti, and S. Zerbini, Analytic
Aspects of Quantum Fields, World Scientific, Singapore, 2003.

We also refer to

S. Blau, M. Visser, and A. Wipf, Zeta functions and the Casimir energy.
Nucl. Phys. B 310 (1988), 163–180
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and to the two survey articles on the Casimir effect written by B. Duplantier and
R. Balian. These articles are contained in the following collection:

B. Duplantier and V. Rivasseau (Eds.), Vacuum Energy – Renormaliza-
tion. Poincaré Seminar 2002, Birkhäuser, Basel, 2003.

Experimental results about the Casimir effect can be found in

T. Ederth, Template-stripped gold surfaces with 0.4-nm rms roughness
suitable for force measurements: Applications to the Casimir force in the
20-100-nm range, Physical Reviews A62 (6) (2000), 062104.

6.7 Appendix: The Mellin Transformation and Other
Useful Analytic Techniques by Don Zagier

The Mellin transformation is a magic wand.
Folklore

The following material is not sufficiently well known to a broad audience. The reader
should note that the tools to be described are extremely useful. These tools enlarge
the arsenal of weapons used in mathematical physics. They allow interesting appli-
cations concerning the asymptotic behavior of functions occurring in mathematics
and physics.

6.7.1 The Generalized Mellin Transformation

The Mellin transformation is a basic tool for analyzing the behavior of many impor-
tant functions in mathematics and mathematical physics, such as the zeta functions
occurring in number theory and in connection with various spectral problems in-
cluding the Casimir effect. We describe it first in its simplest form and then explain
how this basic definition can be extended to a much wider class of functions, im-
portant for many applications.

Let ϕ : ]0,∞[→ C be a function on the positive real axis which is reasonably
smooth (actually, continuous or even piecewise continuous would be enough) and
decays rapidly at both 0 and ∞, i.e., the function tAϕ(t) is bounded on ]0,∞[ for
any A ∈ R. Then the integral

ϕ̃(s) =

Z ∞

0

ϕ(t)ts−1dt (6.31)

converges for any complex value s and defines a holomorphic function of s called the
Mellin transform of ϕ(t). The following small table, in which α denotes a complex
number and λ a positive real number shows how ϕ̃(s) changes when ϕ(t) is modified
in various simple ways:

ϕ(λt) tαϕ(t) ϕ(tλ) ϕ(t−1) ϕ′(t)

λ−sϕ̃(s) ϕ̃(s+ α) λ−sϕ̃(λ−1s) ϕ̃(−s) (1− s)ϕ̃(s− 1)
(6.32)
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We also mention, although we will not use it in the sequel, that the function ϕ(t)
can be recovered from its Mellin transform by the inverse Mellin transformation
formula

ϕ(t) =
1

2πi

Z C+i∞

C−i∞
ϕ̃(s)t−sds (0 < t <∞),

where C is any real number. (That this is independent of C follows from Cauchy’s
formula (4.2) on page 214.)

The need for generalizing the Mellin transformation. In contrast to the
assumption formulated for the classical Mellin transformation above, most functions
which we encounter in practise are not very small at both zero and infinity.

• If we assume that ϕ(t) is of rapid decay at infinity but grows like t−A for some
real number A as t → +0, then the integral (6.31) converges and defines a
holomorphic function only in the right half-plane �(s) > A.

• Similarly, if ϕ(t) is of rapid decay at zero but grows like t−B at infinity for
some real number B, then ϕ̃(s) makes sense and is holomorphic only in the left
half-plane �(s) < B,

• while if ϕ(t) has polynomial growth at both ends, say like t−A at 0 and like t−B

at ∞ with A < B, then ϕ̃(s) is holomorphic only in the strip A < �(s) < B.

But it turns out that in many cases the function ϕ̃(s) has a meromorphic extension
to a larger half-plane or strip than the one in which the original integral (6.31)
converges, or even to the whole complex plane. Moreover, this extended Mellin
transform can sometimes be defined even in cases where A > B, in which case the
integral (6.31) does not converge for any value of s at all.

Investigation of the generalized Mellin transform. We are going to con-
sider three different cases.

Case 1: Let us start with the frequently occurring case where ϕ(t) is of rapid
decay at infinity and is smooth in a neighborhood of zero, i.e., it has an asymptotic
expansion16

ϕ(t) ∼
∞
X

n=0

ant
n (t→ +0).

Then for s with �(s) > 0 and any positive integer N , the integral (6.31) converges
and can be decomposed as follows:

ϕ̃(s) =

Z 1

0

ϕ(t)ts−1dt+

Z ∞

1

ϕ(t)ts−1dt

=

Z 1

0

 

ϕ(t)−
N−1
X

n=0

ant
n

!

ts−1dt+

N−1
X

n=0

an

n+ s
+

Z ∞

1

ϕ(t)ts−1dt.

The first integral on the right converges in the larger half-plane �(s) > −N and
the second for all s ∈ C, so we deduce that ϕ̃(s) has a meromorphic continuation
to �(s) > −N with simple poles of residue an at s = −n (n = 0, . . . , N − 1) and no
other singularities. Since this holds for every n, it follows that the Mellin transform
ϕ̃(s) in fact has a meromorphic continuation to all of C with simple poles of residue
an at s = −n (n = 0, 1, 2, . . . ) and no other poles. The same argument shows that,
more generally, if ϕ(t) is of rapid decay at infinity and has an asymptotic expansion

16 Recall that this means that the difference ϕ(t)−
PN

n=0 ant
n is o(tN ) as t→ +0

for any integer N ≥ 1; it is not required that the series
P∞

n=0 ant
n be convergent

for any positive t.
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ϕ(t) ∼
∞
X

j=1

aj t
αj (t→ 0) (6.33)

as t tends to zero, where the αj are real numbers tending to +∞ as j → ∞ or
complex numbers with real parts tending to infinity, then the function ϕ̃(s) defined
by the integral (6.31) for �(s) > −minj �(αj) has a meromorphic extension to
all of C with simple poles of residue aj at s = −αj (j = 1, 2, . . . ) and no other
poles. Yet more generally, we can allow terms of the form tα(ln t)m with λ ∈ C

and m ∈ Z≥0 in the asymptotic expansion of ϕ(t) at t = 0 and each such term
contributes a pole with principal part (−1)mm!/(s + α)m+1 at s = −α, because
R 1

0
tα+s−1(ln t)m dt = ∂m

∂αm

R 1

0
tα+s−1 dt = (−1)mm!/(α+ s)m+1 for �(s+ α) > 0.

Case 2: By exactly the same considerations, or by replacing ϕ(t) by ϕ(t−1), we
find that if ϕ(t) is of rapid decay (faster than any power of t) as t → +0 but has
an asymptotic expansion of the form

ϕ(t) ∼
∞
X

k=1

bk t
βk (t→∞) (6.34)

at infinity, where now the exponents βk are complex numbers whose real parts
tend to −∞, then the function ϕ̃(s), originally defined by (6.31) in a left half-plane
�(s) < −maxk �(βk), extends meromorphically to the whole complex s-plane with
simple poles of residue −bk at s = −βk and no other poles. (More generally, again
as before, we can allow terms bkt

βk (ln t)nk in (6.33) which then produce poles with
principal parts (−1)nk+1nk! bk/(s+ βk)nk+1 at s = −βk.)

Case 3: Now we can use these ideas to define ϕ̃(s) for functions which are not
small either at 0 or at ∞, even when the integral (6.31) does not converge for any
value of s. We simply assume that ϕ(t) is a smooth (or continuous) function on
]0,∞[ which has asymptotic expansions of the forms (6.33) and (6.34) at zero and
infinity, respectively. (Again, we could allow more general terms with powers of ln t
in the expansions, as already explained, but the corresponding modifications are
easy and for simplicity of expression we will assume expansions purely in powers of
t.) For convenience we assume that the numbering is such that �(α1) ≤ �(α2) ≤ · · ·
and �(β1) ≥ �(β2) ≥ · · · . Then, for any T > 0 (formerly we took T = 1, but the
extra freedom of being able to choose any value of T will be very useful later) we
define two “half-Mellin transforms” ϕ̃≤T (s) and ϕ̃≥T (s) by

ϕ̃≤T (s) =

Z T

0

ϕ(t) ts−1 dt
`

�(s) > −�(α1)
´

,

ϕ̃≥T (s) =

Z ∞

T

ϕ(t) ts−1 dt
`

�(s) < −�(β1)
´

.

Just as before, we see that for each integer J ≥ 1 the function ϕ̃≤(s) extends by
the formula

ϕ̃≤T (s) =

Z T

0

 

ϕ(t)−
J
X

j=1

ajt
αj

!

ts−1 dt+

J
X

j=1

aj

s+ αj
T s+αj

to the half-plane �(s) > −�(αJ+1) and hence, letting J → ∞, that ϕ̃≤(s) is a
meromorphic function of s with simple poles of residue aj at s = −αj (j = 1, 2, . . . )
and no other poles. Similarly, ϕ̃≥t(s) extends to a meromorphic function whose only
poles are simple ones of residue −bk at s = −βk. We now define
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ϕ̃(s) := ϕ̃≤T (s) + ϕ̃≥T (s). (6.35)

This is a meromorphic function of s and is independent of the choice of T, since the
effect of changing T to T ′ is simply to add the everywhere holomorphic function
R T ′

T
ϕ(t) ts−1 dt to ϕ̃≤T (s) and subtract the same function from ϕ̃≥(s), not affecting

the sum of their analytic continuations.
In summary, if ϕ(t) is a function of t with asymptotic expansions as a sum of

powers of t (or of powers of t multiplied by integral powers of ln t) at both zero and
infinity, then we can define in a canonical way a Mellin transform ϕ̃(s) which is
meromorphic in the entire s-plane and whose poles reflect directly the coefficients
in the asymptotic expansions of ϕ(t). This definition is consistent with and has the
same properties (6.32) as the original definition (6.31).

We end this section by giving two simple examples, while Sections 6.7.2 and
6.7.3 will give further applications of the method.
Example 1. Let ϕ(t) := tα, where α is a complex number. Then ϕ has an asymp-
totic expansion (6.33) at 0 with a single term α1 = α, a1 = 1, and an asymptotic
expansion (6.34) at ∞ with a single term β1 = α, b1 = 1. We immediately find that
ϕ̃≤T (s) = T s+α/(s+ α) for �(s+ α) > 0 and

ϕ̃≥T (s) = −T s+α/(s+ α)

for �(s + α) < 0, so that, although the original Mellin transform integral (6.31)
does not converge for any value of s, the function ϕ̃(s) defined as the sum of the
meromorphic continuations of ϕ̃≤T (s) and ϕ̃≥T (s) makes sense, is independent of
T , and in fact is identically zero. More generally, we find that

ϕ̃(s) ≡ 0

whenever ϕ(t) is a finite linear combination of functions of the form tα lnm t with
the exponents α ∈ C and m ∈ Z≥0. (These are exactly the functions whose images
ϕλ(t) := ϕ(λt) under the action of the multiplicative group R

×
+ of positive real

numbers span a finite-dimensional space.) In particular, we see that the generalized
Mellin transformation is no longer injective.
Example 2. Let ϕ(t) := e−t. Here the integral (6.31) converges for �(s) > 0 and
defines Euler’s gamma-function

Γ (s) =

Z ∞

0

e−tts−1dt (�(s) > 0). (6.36)

From the fact that ϕ(t) is of rapid decay at infinity and has the asymptotic (here
even convergent) expansion

P∞
n=0(−t)

n/n! at zero, we deduce that Γ (s) = ϕ̃(s)
has a meromorphic continuation to all s with a simple pole of residue (−1)n/n! at
s = −n (n = 0, 1, . . . ) and no other poles.17 From the first of the properties listed
in (6.32), we find the following formula, which we will use many times:

ϕ(t) = e−λt ⇒ ϕ̃(s) = Γ (s)λ−s (λ > 0). (6.37)

17 Of course, in this special case these well-known properties can also be deduced
from the functional equation Γ (s+1) = sΓ (s) (proved for �(s) > 0 by integration
by parts in the integral (6.36) defining Γ (s)), N applications of which gives the
meromorphic extension Γ (s) = s−1(s+ 1)−1 · · · (s+N − 1)−1Γ (s+N) of Γ (s)
to the half-plane �(s) > −N .
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6.7.2 Dirichlet Series and their Special Values

In this section we look at functions ϕ(t) for which the Mellin transform defined
in Sect. 6.7.1 is related to a Dirichlet series. The key formula is (6.37), because it
allows us to convert Dirichlet series into exponential series, which are much simpler.
Example 3. Define ϕ(t) for t > 0 by ϕ(t) = 1/(et − 1). This function is of rapid
decay at infinity and has an asymptotic expansion (actually convergent for t < 2π)

1

et − 1
=

1

t+ t2

2
+ t3

6
+ · · ·

=
∞
X

r=0

Br

r!
tr−1 (6.38)

with certain rational coefficients B0 = 1, B1 = − 1
2
, B2 = 1

6
, . . . called Bernoulli

numbers. From the results of Sect. 6.7.1 we know that the Mellin transform ϕ̃(s),
originally defined for �(s) > 1 by the integral (6.31) has a meromorphic contin-
uation to all s with simple poles of residue Br/r! at s = 1 − r (r = 0, 1, 2, . . . ).
On the other hand, since et > 1 for t > 0, we can expand ϕ(t) as a geometric
series e−t + e−2t + e−3t + · · · , so (6.37) gives (first in the region of convergence)
ϕ̃(s) = Γ (s)ζ(s), where

ζ(s) =

∞
X

m=1

1

ms
(�(s) > 1) (6.39)

is the Riemann zeta function. Since Γ (s), as we have seen is also meromorphic, with
simple poles of residue (−1)n/n! at non-positive integral arguments s = −n and
no other poles, and since Γ (s) (as is well-known and easily proved) never vanishes,
we deduce that ζ(s) has a meromorphic continuation to all s with a unique simple
pole of residue 1/Γ (1) = 1 at s = 1 and that its values at non-positive integral
arguments are rational numbers expressible in terms of the Bernoulli numbers:18

ζ(−n) = (−1)n Bn+1

n+ 1
(n = 0, 1, 2, . . .). (6.40)

Example 4. To approach ζ(s) in another way, we choose for ϕ(t) the theta function

ϑ(t) :=
∞
X

n=−∞
e−πn2t (t > 0). (6.41)

(The factor π in the exponent has been included for later convenience.) We can
write this out as

ϑ(t) = 1 + 2 e−πt + 2 e−4πt + · · · , (6.42)

and since the generalized Mellin transform of the function 1 is identically 0 by
Example 1, we deduce from (6.37) that ϕ̃(s) = 2 ζ∗(2s), where

ζ∗(s) := π−s/2 Γ
“ s

2

”

ζ(s). (6.43)

To obtain the analytic properties of ζ(s) from the results of Sect. 6.7.1, we need the
asymptotics of ϑ(t) at zero and infinity. They follow immediately from the following
famous result, due to Jacobi:

18 Jakob Bernoulli (1654–1705), Maclaurin (1698–1746), Euler (1707–1783), Fourier
(1768–1830), Gauss (1777-1855), Poisson (1781–1840), Jacobi (1804–1851),
Dirichlet (1805–1859), Catalan (1814–1894), Riemann (1826–1866), Dedekind
(1831–1916), Mellin (1854–1933), Hurwitz (1859–1919), Epstein (1871–1939).
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Proposition 6.3 The function ϑ(t) satisfies the functional equation

ϑ(t) =
1√
t
ϑ

„

1

t

«

(t > 0). (6.44)

Proof. Formula (6.44) is a special case of the Poisson summation formula, which
says that

X

n∈Z

f(n) =
X

n∈Z

f̂(n) (6.45)

for any sufficiently well-behaved (i.e., smooth and small at infinity) complex-valued
function f on the real line, where

f̂(y) :=

Z ∞

−∞
f(x) e2πixy dx

is the Fourier transform of f , up to rescaling.19 Now let us consider the function

ft(x) := e−πtx2
. Its Fourier transform is given by

f̂t(y) =

Z ∞

−∞
e−πtx2+2πixy dx = e−πy2/t

Z ∞

−∞
e−πt(x+iy/t)2 dx =

c√
t
f1/t(y),

where c > 0 is the constant c =
R∞
−∞ e−πx2

dx. Applying (6.45) with f = ft therefore

gives ϑ(t) = ct−1/2ϑ(1/t), and taking t = 1 in this formula gives c = 1 and proves
equation (6.44). �

Now we find from (6.42) that ϑ(t) has the asymptotic expansions

ϑ(t) = 1 +O(t−N ) as t→∞

and ϑ(t) = t−1/2 + O(tN ) as t → 0, where N > 0 is arbitrary. It follows from the

results of Sect. 6.7.1 that its Mellin transform ϑ̃(s) has a meromorphic extension
to all s with simple poles of residue 1 and −1 at s = 1/2 and s = 0, respectively,

and no other poles. From the formula ζ∗(s) = 1
2
ϑ̃(s/2) we deduce that the function

ζ∗(s) defined in (6.43) is meromorphic having simple poles of residue 1 and 0
at s = 1 and s = 0 and no other poles and hence (using once again that Γ (s)
has simple poles at non-positive integers and never vanishes) that ζ(s) itself is
holomorphic except for a single pole of residue 1 at s = 1 and vanishes at negative
even arguments s = −2, −4, . . . . This is weaker than (6.40), which gives a formula
for ζ(s) at all non-positive arguments (and also shows the vanishing at negative
even integers because it is an exercise to deduce from the definition (6.38) that
Br vanishes for odd r > 1). The advantage of the second approach to ζ(s) is that
from equation (6.44) and the properties of Mellin transforms listed in (6.32) we
immediately deduce the famous functional equation

ζ∗(s) = ζ∗(1− s) (6.46)

of the Riemann zeta-function which was discovered (for integer values �= 0, 1 of s)
by Euler in 1749 and proved (for all complex values �= 0, 1 of s) by Riemann in
1859 by just this argument.

19 To prove this, note that the function F (x) =
P

n∈Z
f(n + x) is periodic with

period 1, so has a Fourier expansion F (x) =
P

m∈Z
cme2πimx with the Fourier

coefficients cm =
R 1

0
F (x)e−2πimxdx = f̂(−m). Now set x = 0.
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We next generalize the method of Example 3. Consider a generalized Dirichlet
series

L(s) =

∞
X

m=1

cm λ−s
m (6.47)

where the λm are real numbers satisfying 0 < λ1 < λ2 < · · · and growing at least
as fast as some positive power of m. (This is an ordinary Dirichlet series if λm = m
for all m.) Assume that the series converges for at least one value s0 of s. Then
it automatically converges in a half-plane (for instance, if λm = m then the fact
that cm = O(ms0) implies convergence in the half-plane �(s) > �(s0) + 1) and the
associated exponential series

ϕ(t) =

∞
X

m=1

cm e−λmt (t > 0) (6.48)

converges for all positive values of t. We then have:

Proposition 6.4 Let L(s) be a generalized Dirichlet series as in (6.47), convergent
somewhere, and assume that the function ϕ(t) defined by (6.48) has an asymptotic
expansion of the form

ϕ(t) ∼
∞
X

n=−1

an t
n (t→ +0). (6.49)

Then L(s) has a meromorphic continuation to all s, with a simple pole of residue
a−1 at s = 1 and no other singularities, and its values at non-positive integers are
given by

L(−n) = (−1)n n! an (n = 0, 1, 2, . . .) . (6.50)

Proof. The function ϕ(t) is of rapid decay at infinity and has the asymptotic
expansion (6.49) at zero, so by the results of Sect. 6.7.1 we know that its Mellin
transform ϕ̃(s) extends meromorphically to all s, with simple poles of residue an

at s = −n (n = −1, 0, 1, . . . ). On the other hand, ϕ̃(s) is equal to Γ (s)L(s) by
formula (6.37), and we know that Γ (s) has simple poles of residue (−1)nn! at
s = −n (n = 0, 1, . . . ), has no other zeros or poles, and equals 1 at s = 1. The
result follows. �

Example 5. Consider the Dirichlet series defined by

L4(s) :=
1

1s
− 1

3s
+

1

5s
− · · · (�(s) > 1). (6.51)

Here the function defined by (6.48) is given by

ϕ(t) = e−t − e−3t + e−5t − · · · = 1

et + e−t
=

1

2 cosh t

(geometric series). The asymptotic expansion of this function at t = 0 has the form

ϕ(t) =
1/2

1 + t2/2! + t4/4! + · · · =
1

2

∞
X

n=0

En
tn

n!

where the coefficients E0 = 1, E1 = 0, E2 = −1, . . . are certain integers called
the Euler numbers. It follows from the proposition that the function L4(s) has a
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holomorphic continuation to all s and that L4(−n) = En/2 for all n ≥ 0. (We can
omit the factor (−1)n because En = 0 for n odd.) The same method works for
any Dirichlet series of the form

P∞
m=1 χ(m)m−s with coefficients χ(m) which are

periodic of some period (here 4), the most important case being that of Dirichlet
L-series, where the coefficients χ(m) also satisfy χ(m1m2) = χ(m1)χ(m2) for all
m1 and m2.
Example 6. As a final example, consider the Hurwitz zeta function, defined by

ζ(s, a) :=
∞
X

n=0

1

(n+ a)s
(a > 0, �(s) > 0). (6.52)

Here ϕ(t) =
P∞

n=0 e−(n+a)t = e−at

1− e−t . But for any x we have the expansion

ext

et − 1
∼

∞
X

n=0

Bn(x)

n!
tn (t→ 0) (6.53)

where the Bn(x) are the Bernoulli polynomials

Bn(x) :=

n
X

r=0

 

n

r

!

Br x
n−r (6.54)

(B0(x) = 1, B1(x) = x− 1
2
, B2(x) = x2 − x+ 1

6
, . . . ). We deduce that ζ(s, a) has a

meromorphic continuation in s with a simple pole of residue 1 (independent of a)
at s = 1, and, generalizing (6.40), that its values at non-positive integers are given
by

ζ(s,−n) = − Bn+1(a)

n+ 1
(n = 0, 1, 2, . . . ). (6.55)

6.7.3 Application: the Casimir Effect

In the study of the Casimir effect, described in Sect. 6.6, one encounters the “func-
tion” defined by the series

F (λ) = − 2π
X

l, m, n∈Z

p

l2 +m2 + λ2n2 (6.56)

where λ is a positive real variable. (Here the factor −2π has been included for
later convenience.) Of course this series is divergent. One would like to answer the
following questions:
A. How can F (λ) be defined rigorously?
B. How can F (λ) be computed effectively for a given λ > 0 ?
C. How does F (λ) behave asymptotically as λ→ 0 and as λ→∞ ?
(For the analysis of the Casimir effect, it is the asymptotics at λ → ∞ which are
important.) Using the ideas explained in the previous two sections, we will show
that the answers are as follows:
A. Let λ > 0. For complex s with �(s) > 3

2
, define

Z(λ, s) :=
X′

l, m, n∈Z

1

(l2 +m2 + λ2n2)s
(6.57)

(the prime on the summation sign means that the term (l,m, n) = (0, 0, 0) is to
be omitted), a so-called Epstein zeta function. Then Z(λ, s) has a meromorphic
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continuation to all s, with a simple pole of residue 2π/λ at s = 3/2 and no other
poles, and satisfies the functional equation

Z∗(λ, s) =
1

λ
Z∗
„

1

λ
,

3

2
− s

«

, (6.58)

where

Z∗(λ, s) := π−s Γ (s)Z(λ, s) . (6.59)

Then one makes sense of (6.56) by setting F (λ) = Z∗(λ,− 1
2
).20

B. The value of the function F (λ) is given for any positive real number T by

F (λ) =
1√
T

X

l, m, n

γ
− 1

2

`

πT (l2 +m2 + λ2n2)
´

+
1

λT 2

X

l,m,n

γ2

“ π

T
(l2 +m2 + λ−2n2)

”

, (6.60)

where the sums are taken over all triples (l,m, n) ∈ Z
3 and the functions γ

− 1
2

(x)

and γ2(x) are defined by the formulas

γ
− 1

2

(x) :=

Z ∞

1

e−xt dt

t3/2
(x ≥ 0) (6.61)

(a variant of the error function) and

γ2(x) :=

(

`

1
x

+ 1
x2

´

e−x if x > 0

− 1
2

if x = 0,
(6.62)

respectively. Since both γ− 1
2
(x) and γ2(x) are O(e−x) as x → ∞, formula (6.60)

makes F (λ) rapidly computable. More precisely, if we choose T = λ−2/3 then there

are (uniformly in λ) only O(M3/2) terms in the two sums in (6.60) for which the
arguments of γ

− 1
2

or γ2 are ≤M , so that a relatively small number of terms suffices

to compute F (λ) to high precision. Here are some sample values:

t F (t)

0.1 6.21115704963445320831277821363781739171176675371 . . .

0.5 1.74490666842235054522002968176940979179901592336 . . .

1 1.67507382139216375677378965854995727774709002078 . . .

2 3.19240228274691182863701405594738286405890947611 . . .

10 220.762287791317835036587359031113282945900247337 . . .

(6.63)

Each of these numbers was computed independently using (6.60) for several different
values of T . The fact that the answers agreed to the precision given, even though
the individual terms of the sums are completely different, gives a high degree of
confidence in the correctness of the theoretical and numerical calculations.

20 Note that π1/2 Γ (− 1
2
) = −2π.
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Of course we could also use the functional equation (6.58) to give a much simpler
convergent series expansion for F (λ) than (6.60), namely

F (λ) =
1

λ
Z∗
„

1

λ
, 2

«

=
λ3

π2

X

l, m, n

′ 1

(λ2l2 + λ2m2 + n2)2
, (6.64)

but this formula would be useless for practical purposes because of the slow con-
vergence: summing over |l|, |m|, |n| ≤ N involves O(N3) terms and gives an error
of the order of 1/N , so that we would need some 1010 terms to achieve even three
digits of precision.
C. The value of F (λ) is given for small λ by

F (λ) =
2C

3λ
+
π

3
λ+O(λe−π/λ´ (λ→ 0) (6.65)

and for large λ by

F (λ) =
π2

45
λ3 + C′ +O(

√
λ e−πλ´ (λ→∞) (6.66)

where C = 1− 1
9

+ 1
25
− · · · = L4(2) (with L4 as in (6.51) is Catalan’s constant and

C′ = 2
π
ζ( 3

2
)L4(

3
2
). The values obtained for λ = 0.1 and λ = 10 by retaining only

the first two terms in equations (6.65) or (6.66), respectively, are

F (0.1) = 6.21115704963445320831277821232521083463423480852 . . . ,

F (10) = 220.762287791317835036587358989193358212711493834 . . .

extremely close to the exact values for these two numbers given above. Let us now
prove each of these assertions.
Proof of A. From (6.37) and the fact that the generalized Mellin transform of
the constant function 1 vanishes, we deduce that the function Z∗(λ, s) defined by
(6.59) equals the Mellin transform ϕ̃λ(s) of the function

ϕλ(t) :=
X

l, m, n∈Z

e−π(l2+m2+λ2n2)t = ϑ(t)2 ϑ(λ2t) (λ, t > 0) ,

where ϑ(t) is the theta series defined in (6.41). The functional equation (6.44) of

ϑ(t) implies the functional equation ϕλ(t) = λ−1t−3/2ϕ1/λ(t−1) of ϕλ(t), and the
meromorphic continuation, description of poles and functional equation (6.58) of
Z∗(s) then follow as in Example 4 above.
Proof of B. Since the function ϕ(t) = ϕλ(t) equals 1 to all orders in t as t → ∞
and (by virtue of its functional equation) equals λ−1t−3/2 to all orders in t as t→ 0,
the two pieces of the decomposition (6.35) of its Mellin transform are given by

ϕ̃λ,≥T (s) =

Z ∞

T

`

ϕλ(t) − 1
´

ts−1 dt − T s

s
(6.67)

and

ϕ̃λ,≤T (s) =

Z T

0

`

ϕλ(t) − λ−1 t−3/2´ ts−1 dt+
λ−1 T s− 3

2

s− 3
2

,

respectively. Using the functional equation of ϕλ(t), we see that these are exchanged
when we replace λ, s and T by λ−1, 3

2
− s and T−1, respectively (again making
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the functional equation of Z∗(λ, s) = ϕ̃λ(s) evident), so we only have to study
ϕ̃λ,≥T (s). Substituting the definition of ϕλ(t) into (6.67), we find

ϕ̃λ,≥T (s) = T s
X

l,m,n

′
γs

`

πT (l2 +m2 + λ2n2)
´

− T s

s
,

where γs(x), essentially the incomplete gamma function, is defined for x > 0 by

γs(x) :=

Z ∞

1

ts−1 e−xt dt (x > 0) .

The extra term −T s/s in this formula can be omitted if we drop the prime from
the summation signs and define the value of γs(0) as −1/s (which is indeed the
limiting value of γs(x) as x→ 0 if �(s) < 1). The final result, with this convention
for γs(0), is therefore

Z∗(λ, s) = T s
X

l,m,n

γs

`

πT (l2 +m2 + λ2n2)
´

+

»

s �→ 3

2
− s, λ �→ λ−1, T �→ T−1

–

.

The special case s = − 1
2

gives the expansion (6.60).
Proof of C. The leading term in the expansion of F (λ) when λ is very big or very
small can be obtained from equation (6.64): if λ is small then the dominating terms
in (6.64) are those with n = 0, so F (λ) is asymptotically equal to

π−2λ−1
X

l,m

′
(l2 +m2)−2 = 4π−2ζ(2)L4(2)λ−1

(here we have used that 1
4

P′
l,m(l2 + m2)−s is the Dedekind zeta function of the

field Q(i), which factors as ζ(s) times L4(s)), while for large λ the dominating terms
are those with l = m = 0 and we get F (λ) ∼ 2π−2ζ(4)λ3. To get a more precise
estimate, we use equation (6.60).

Consider first the case λ→ 0, and choose T in (6.60) so that T →∞, λ2T → 0.
(The best choice will turn out to be T = λ−1.) Then in view of the exponential
decay γs(x) = Os(x

−1e−πx) of γs(x) when x → ∞, we find that the only terms in
(6.60) which are not exponentially small are those with (l,m) = (0, 0) in the first
sum and those with n = 0 in the second one. Hence

F (λ) =
1√
T

2

4f1(λ
2T ) +O

0

@

1

T

X

l,m

′
e−πT (l2+m2) ·

X

n

e−πλ2Tn2

1

A

3

5

+
1

λT 2

2

4f2

„

1

T

«

+O

0

@

X

l,m

e−π(l2+m2)/T · λ2T
X

n

′
e−πn2/λ2T

1

A

3

5

=
1√
T
f1(λ

2T ) +
1

λT 2
f2

„

1

T

«

+O

„

1

λT 2
e−πT + λ e−π/λ2T

«

, (6.68)

where

f1(ε) :=
X

n∈Z

γ−1/2(πεn
2) , f2(ε) :=

X

l, m∈Z

γ2(πε(l
2 +m2)) .
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From the definition (6.61) and the functional equation of ϑ(x) we find (for ε small)

f1(ε) =

Z ∞

1

t−3/2 ϑ(εt) dt =
√
ε

Z ∞

ε

ϑ(t)
dt

t3/2
=
√
ε

Z 1/ε

0

ϑ(x) dx

=
1√
ε

+
√
ε

Z 1/ε

0

`

ϑ(x)− 1
´

dx =
1√
ε

+
√
ε
“π

3
+O

`

e−π/ε´
”

,

since
Z ∞

0

`

ϑ(x)− 1
´

dx = 2

∞
X

n=1

Z ∞

0

e−πn2x dx =
2

π

∞
X

n=1

1

n2
=
π

3
.

Similarly, noting the exceptional case x = 0 in the definition (6.62) of γ2(x), we
find

f2(ε) +
1

2
=

Z ∞

1

t
`

ϑ(εt)2 − 1
´

dt =
1

ε2

Z ∞

ε

x (ϑ(x)2 − 1) dx

=
1

ε2

„

Z ∞

0

x (ϑ(x)2 − 1) dx −
Z ε

0

(1− x+O(e−π/x)) dx

«

=
2C

3ε2
− 1

ε
+

1

2
+O(e−π/ε) ,

where this time we have used
Z ∞

0

x
`

ϑ(x)2 − 1
´

dx =
X

l, m

′
Z ∞

0

xe−π(l2+m2)x dx

=
1

π2

X

l, m

′ 1

(l2 +m2)2
=

4

π2
ζ(2)L4(2) .

Inserting these formulas into (6.68), we find

F (λ) =
1√
T

»

1

λ
√
T

+
π

3
λ
√
T +O(λ

√
T ) e−π/λ2T )

–

+
1

λT 2

ˆ2C

3
T 2 − T +O(e−πT )

˜

+O

„

1

λT 2
e−πT + λ e−π/λ2T

«

=
2C

3λ2
+
π

3
λ+O

„

1

λT 2
e−πT + λ e−π/λ2T

«

.

(Note how the two non-exponentially small terms which depend on T cancel, as
they have to.) Taking T = 1/λ gives (6.65).

The proof of (6.66) is completely analogous. From (6.60) and the exponential
decay of γs(x) we get

F (λ) =
1√
T
f3(T ) +

1

λT 2
f4

„

1

λ2T

«

+O

 

e−πλ2T

λ2T 5/2
+

e−π/T

T 1/2

!

as λ→∞, where T → 0 with λ2T →∞ and where f3(ε) and f4(ε) are defined by

f3(ε) :=
X

l, m∈Z

γ−1/2(πε(l
2 +m2)) , f4(ε) :=

X

n∈Z

γ2(πεn
2) .

This time we find the expansions
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f3(ε) =
2

3ε
+ C′√ε+O(e−π/ε)

and

f4(ε) =
π2

45ε2
− 2

3
√
ε

+O(
√
ε e−π/ε)

for ε small, the non-exponentially small terms which depend on T again cancel,
and taking T = 1/λ to make the error as small as possible we obtain (6.66). The
details are left to the reader.

As a final comment, we mention that the constants C and C′ occurring in (6.65)
and (6.66) can be evaluated rapidly by the same method as in B above, with ϑ(t)2

instead of ϑ(t)2ϑ(λt), using the fact that the Dirichlet series 4ζ(s)L4(s) is the Mellin
transform of ϑ(t)2. Their numerical values are

C = 0.915965594177219015054603514932384110774149374281672134 . . . ,

C′ = 1.437745544887643506932003436389999650184840340379933997 . . .

6.7.4 Asymptotics of Series of the Form
∑

f(nt)

In this section we describe an extremely useful, and not sufficiently well known,
asymptotic formula for functions given by expansions of the form

g(x) = f(x) + f(2x) + f(3x) + · · · (6.69)

where f : ]0,∞[→ C is a smooth function of sufficiently rapid decay to ensure the
convergence of the series (say f(x) = O(x−1−ε) as x → ∞) and having a known
asymptotic expansion at x = 0. In the simplest situation, we assume that f has a
power series expansion (which may be only asymptotic rather than convergent, i.e.
f need only be differentiable rather than analytic at the origin)

f(x) ∼
∞
X

n=0

bn x
n (x→ 0) . (6.70)

First, let us try to guess what the answer should be. On the one hand we can
argue à la Euler, simply substituting the expansion (6.70) into (6.69) and inter-
changing the order of summation, without worrying about convergence problems.
This gives

g(x) ∼
∞
X

m=1

∞
X

n=0

bn (mx)n =

∞
X

n=0

bn

„ ∞
X

m=1

mn

«

xn =

∞
X

n=0

bn ζ(−n)xn . (6.71)

Of course this calculation is meaningless, since not only is the interchange of summa-
tion not permitted, but each of the interior sums

P

m mn is divergent. Nevertheless,
we know from Sect. 6.7.2, and Euler knew non-rigorously in 1749, that the numbers
ζ(−n) do make sense and are certain rational numbers given by equation (6.40),
so that at least the final expression in (6.71) makes sense as a formal power series.
Alternatively, we can proceed à la Riemann and consider (6.69) for x small as 1/x
times an approximation to the integral

If =

Z ∞

0

f(t) dt . (6.72)

This suggests instead that the correct asymptotic expansion of g(x) near 0 should
be given by
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g(x) ∼ If

x
(x→ 0) , (6.73)

and indeed this formula is true, by the very definition of Riemann integrals as limits
of sums, if we interpret the symbol of asymptotic equality “∼ ” in its weak sense,
as saying simply that the ratio of the expressions on its left and right tends to 1 as
x→ 0. However, we are using “∼ ” in its strong sense, where g(x) ∼

P

λ aλx
λ means

that the difference between g(x) and the finite sum
P

λ<C aλx
λ is O(xC) as x→ 0

for any value of C, no matter how large. In this stronger sense, neither (6.71) nor
(6.73) gives the correct asymptotic development of g. Remarkably enough, however,
their sum does give the right answer:

Proposition 6.5 Let f be a smooth function on the positive real line which has
the asymptotic development (6.70) at the origin and, together with all its deriva-
tives, is of rapid decay at infinity. Then the function g(x) defined by (6.69) has the
asymptotic development

g(x) ∼ If

x
+

∞
X

n=0

bn
Bn+1

n+ 1
(−x)n (6.74)

as x→ 0, where If is defined by equation (6.72).

Proof. We begin by describing the Euler–Maclaurin summation formula. To state
it, we need the Bernoulli polynomials Bn(x), which can be described by the gener-
ating function (6.54), by the explicit formula (6.55) in terms of Bernoulli numbers,
or, most beautiful, by the property that

Z a+1

a

Bn(x)dx = an for every a.

(It is easy to see that there is only one polynomial Bn(x) with this property for each
n.) From any of these definitions we can deduce without difficulty that B′

n(x) =
nBn−1(x) and that Bn(x+ 1)−Bn(x) = nxn−1.

Now let f be a smooth function on the positive reals. Integration by parts and
the fact that B1(0) = 1

2
= −B1(0) but Bn+1(1) = Bn+1(0) = Bn+1 for n ≥ 2 gives

Z 1

0

f (n)(t)
Bn(t)

n!
dt = −

Z 1

0

f (n+1)(t)
Bn+1(t)

(n+ 1)!
dt+ rn

where r0 := 1
2
(f(0) + f(1)) and

rn :=
Bn+1

(n+ 1)!
[f (n)(1)− f (n)(0)] (n ≥ 1).

Hence, by induction on N ,

Z 1

0

f(t) dt =
1

2
[f(0) + f(1)] +

N−1
X

n=1

(−1)nBn+1

(n+ 1)!
[f (n)(1)− f (n)(0)]

+(−1)N

Z 1

0

f (N)(t)
BN (t)

N !
dt

for every integer N ≥ 1. Replacing f(t) by f(t + m − 1) and summing over the
natural numbers m = 1, 2, . . . ,M gives
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Z M

0

f(t) dt =
f(0)

2
+

M−1
X

m=1

f(m) +
f(M)

2
+

N−1
X

n=1

(−1)nBn+1

(n+ 1)!
[f (n)(M)− f (n)(0)]

+(−1)N

Z M

0

f (N)(t)
B̄N (t)

N !
dt (6.75)

where B̄N (t) := BN (t− [t]). This is the Euler-Maclaurin summation formula.21

Now assume that f and each of its derivatives is of rapid decay at infinity, so
that

R∞
0
|f (N)(t)|dt converges. Since B̄N (t) is periodic and hence bounded, we can

let M →∞ in (6.75) to get

∞
X

m=1

f(m) =

Z ∞

0

f(t) dt+

N−1
X

n=0

(−1)nBn+1

(n+ 1)!
f (n)(0)

− (−1)N

Z ∞

0

f (N)(t)
B̄N (t)

N !
dt .

Replacing f(t) by f(xt) and then t by t/x with x > 0 changes this formula to

∞
X

m=1

f(mx) =
1

x

Z ∞

0

f(t) dt+

N−1
X

n=0

(−1)nBn+1

(n+ 1)!
f (n)(0)xn

+(−x)N−1

Z ∞

0

f (N)(t)
B̄N (t/x)

N !
dt .

The last integral is bounded as x→ 0 with N fixed for the same reason as before,
so the final term is ON (xN−1). Substituting f (n)(0) = n! bn from (6.70), we obtain
the desired asymptotic formula (6.74). �

Before giving examples of Prop. 6.5, we mention three extensions to more gen-
eral sums.

1. First, instead of (6.69) we can look at shifted sums of the form

g(x) =

∞
X

m=0

f((m+ a)x)

where a > 0. Here the “Riemann Ansatz” and the “Euler Ansatz” predict Ifx
−1

and
P∞

n=0 bnζ(−n, a)xn for the asymptotic expansion of g, and again the correct
answer is the sum of these two:

∞
X

m=0

f((m+ a)x) ∼ If

x
+

∞
X

n=0

bn
Bn+1(a)

n+ 1
xn (6.76)

(cf. equation (6.55)). The proof is similar to that of Prop. 6.5 and will be omitted.
By taking rational values of a in (6.76) and forming suitable linear combinations,
we can use this formula to give the asymptotic development of

P

m≥1 χ(m)f(mx)

as x→ 0 for any periodic function χ(m), such as a Dirichlet character.
2. Next, we can allow non-integral exponents of x in (6.70). If the expansion

of f(x) at the origin contains terms bλx
λ with arbitrary real numbers λ > −1 (or

complex numbers with real part greater than −1), then the formula for g need only
be modified by adding the corresponding terms bλζ(−λ)xλ. Terms with λ < −1

21 The symbol [t] denotes the largest integer m with m ≤ t. For example, [2.5] = 2.
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are not interesting since they can simply be subtracted from f(x), since the sum
P

m bm(mx)λ then converges absolutely. The limiting case λ = −1 is of interest
because it occurs in various applications. Here the answer (proved most easily by
taking one function, like x−1e−x, which has a 1/x singularity at the origin and for
which

P

f(mx) can be computed exactly) is

f(x) ∼
X

λ≥−1

bλ x
λ

⇒
∞
X

m=1

f(mx) ∼ 1

x

„

b−1 ln
1

x
+ I∗f

«

+

∞
X

λ>−1

bλ ζ(−λ) (−x)λ . (6.77)

Here, we introduce the following integral I∗f :=
R∞
0

(f(t)− b−1e
−t/t)dt.

3. Finally, we can also allow terms of the form xλ(lnx)n in the expansion of
f(x), the corresponding contribution to g(x) being simply the nth derivative with
respect to λ of ζ(−λ)xλ, e.g. a term xλ ln 1

x
in the expansion of f(x) at 0 leads to

a term xλ
`

ζ(−λ) ln 1
x

+ ζ′(−λ)
´

in the expansion at 0 of g(x). In particular, using

the known value ζ′(0) = − 1
2

ln(2π) we find

f(x) ∼ b ln
1

x
+

∞
X

n=0

bnx
n

⇒
∞
X

m=1

f(mx) ∼ If

x
− b

2
ln

2π

x
+

∞
X

n=0

bn ζ(−n)xn . (6.78)

We end by giving two easy and two harder examples to illustrate how these
asymptotic formulas work.
Example 1. Take f(x) := e−λx with λ > 0. This function is smooth, small at
infinity, and has an expansion (6.70) at x = 0 with bn = (−λ)n/n! . The integral If

equals 1/λ. Hence (6.74) gives

g(x) ∼ 1

λx
+

∞
X

n=0

Bn+1

(n+ 1)!
(λx)n

as the asymptotic expansion of g(x) =
∞
P

m=1

f(mx) = 1
eλx−1

, in accordance with the

definition (6.38) of the Bernoulli numbers.

Example 2. Now take f(x) := e−λx2
with λ > 0. This function is again smooth

and small at infinity, and has an expansion (6.70) at x = 0 with b2n = (−λ)n/n!
and bn = 0 for n odd. Since all Bernoulli numbers with odd indices > 1 vanish, the
asymptotic expansion in (6.74) breaks off after two terms, and we find

g(x) =
If

x
− 1

2
+O(xN )

for all N , with If =
p

π/4λ. In this case, of course, we know much more, because

g(x) is simply 1
2

`

ϑ(πx2) − 1
´

and therefore equation (6.44) gives the much more
precise statement

g(x) =
If

x
− 1

2
+O

“

x−1e−π2/λx2
”

.

The same applies to any function f(x) whose expansion at x = 0 has only even
powers of x. For such a function, the expansion (6.74) collapses to
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g(x) ∼ If

x
− b0

2

as x → 0, but this is always just a weakening of the Poisson summation formula
(6.45), because we can extend f(x) by f(−x) = f(x) to a smooth even function on
the real line and use (6.46) to get the exact formula

2g(x) + f(0) =
X

n∈Z

f(nx) =
1

x

X

n∈Z

f̂(nx) =
2If

x
+

2

x

∞
X

n=1

f̂(nx) ,

and the smoothness of f implies that the function f̂(y) decays at infinity more
rapidly than any negative power of y. The right way to think of Prop. 6.5 is therefore
as a replacement for the Poisson summation formula when one is confronted with
a sum over only positive integers rather than a sum over all of Z. Such sums are
very much harder to study than sums over all integers – just think of the special
values of the Riemann zeta function, where the numbers ζ(2k) can be obtained in
closed form because they can be written as

ζ(2k) =
1

2

X

n∈Z

1

nk
,

while the numbers ζ(2k+ 1), which cannot be reduced to sums over all of Z in this
way, are not known exactly.
Example 3. As our next example, we consider the function

gk(q) :=

∞
X

n=1

σk−1(n) qn (0 < q < 1) ,

where k is an integer greater than 1 and σk−1(n) denotes the sum of the (k − 1)st
powers of the divisors of a natural number n. In the theory of modular forms, it is
shown that if k is even and larger than 2, then gk satisfies the functional equation22

−Bk

2k
+gk

`

e−2πx´ =
(−1)k/2

xk

„

−Bk

2k
+ gk

`

e−2π/x´
«

(k = 4, 6, 8, . . . ; x > 0).

In particular, gk(e−2πx) has the terminating asymptotic expansion

gk(e−2πx) = −(−1)k/2Bk

2k
x−k +

Bk

2k
+O(xN ) (N = 1, 2, . . .) (6.79)

as x → 0 in these cases. Let us see how Prop. 6.5 permits us to recover this
asymptotic formula without knowing the modularity, and at the same time tells us
why (6.79) fails for k = 2 or k odd and what replaces it in those cases.

We first note that

gk(q) =

∞
X

n=1

`

X

m|n

mk−1´qn =

∞
X

m=1

mk−1`qm + q2m + · · ·
´

=

∞
X

m=1

mk−1 qm

1− qm

and hence that gk can be written after a change of variables in the form

gk

`

e−x´ =
1

xk−1

∞
X

m=1

fk(mx) , fk(x) =
xk−1

ex − 1
.

22 For the theory of modular forms, we refer to Sect. 6.2.
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The function f = fk satisfies the hypotheses of Prop. 6.5 with integral

If =

Z ∞

0

xk−1

ex − 1
dx =

Z ∞

0

xk−1`e−x + e−2x + · · ·
´

dx = (k − 1)! ζ(k)

and with Taylor expansion f(x) =
∞
P

r=0

Br

r!
xr+k−2 at zero. Prop. 6.5 therefore gives

xk−1gk

`

e−x´ ∼ (k − 1)! ζ(k)

xk
+

∞
X

r=0

(−1)r+k Br

r!

Br+k−1

r + k − 1
xr−1 (6.80)

as x → 0. If k is even and ≥ 4, then all products BrBr+k−1 with r �= 1 vanish,
since r and r + k − 1 have opposite parity and all odd-index Bernoulli numbers
except B1 are zero. Therefore only two terms of (6.80) survive, and replacing x by
2πx and using the well-known formula for ζ(k) in terms of Bk, we recover (6.79).
If k = 2, then the argument is the same except that now the r = 0 term also gives
a non-zero contribution, so that we find

g2
`

e−2πx´ =
1

24x2
− 1

4πx
+

1

24
+O(xN ) (N = 1, 2, . . .),

instead of (6.79), in accordance with the known near-modularity property of g2.
Finally, if k is odd then we still get an explicit asymptotic formula with rational
coefficients, but it now no longer terminates. Thus for k = 3 we find the expansion

g3
`

e−x´ ∼ 2 ζ(3)

x3
− 1

12x
+

x

1440
+

x3

181440
+

x5

7257600
+

x7

159667200
+ · · ·

as x → 0, even though gk has no modularity properties in this case. We leave it
as an exercise to the reader to calculate the corresponding expansion when k = 1,
where one has to use equation (6.77) instead of equation (6.74).
Example 4. As our final example, consider the function

P (q) =

∞
Y

m=1

1

1− qm
(|q| < 1) ,

the generating power series of the partition function. To study the behavior of the
partition function, we need to know how P (q) blows up as q approaches 1 from
below (or, more generally, any root of unity from within the unit circle). Here
again the known modularity properties of the function P (q) imply the non-trivial
functional equation

eπx/12 P
`

e−2πx´ =
√
x eπ/12x P

`

e−2π/x´ (x > 0),

from which one immediately obtains the asymptotic expansion

lnP
`

e−2πx´ =
π

12x
+

1

2
lnx − π

12
x+O(xN ) (N = 1, 2, . . .) . (6.81)

To obtain this formula without knowing anything about the modularity of P , we
observe that lnP

`

e−x
´

has the form
P∞

m=1 f(mx) with f(x) = − ln(1− e−x). This
function is small at infinity, has integral If = ζ(2) (as one sees by integrating by
parts once and then calculating as in Example 2), and has an asymptotic develop-
ment
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f(x) ∼ ln
1

x
−

∞
X

n=1

Bn

n · n!
xn ,

as one sees easily by differentiating once. Hence equation (6.79) applies and gives

lnP
`

e−x´ ∼ ζ(2)

x
+

1

2
ln

x

2π
−

∞
X

n=1

(−1)n Bn

n · n!

Bn+1

n+ 1
xn .

Again all terms except for the first in the sum on the right vanish because n and
n+1 have opposite parity, and replacing x by 2πx and using ζ(2) = π2/6 we recover
(6.81). The same method using (6.76) with rational values of a lets us compute the
exact asymptotics of P (q) as q approaches any root of unity, recovering precisely
the same result as that given by the modularity. Moreover, just as in the case of
Example 2 for k odd, the method applies even when modularity fails. For example,
if we define

P2(q) =
∞
Y

m=1

1

(1− qm)m
(|q| < 1) ,

a generating function that occurs in connection with the theory of plane partitions,
then an analysis like the one just given for P (q), but now with f(x) = −x ln(1−e−x),
produces the complete asymptotic expansion

P2(e
−x) = c x1/12 eζ(3)/x2

„

1 − x2

2880
− 17x4

12902400
− · · ·

«

(x→ 0)

with c = eζ′(−1) = 0.847536694 · · · , and using (6.78) one can get the expansion of

P2(αe−x) for any root of unity α. Furthermore, for reasons similar to those which

applied to gk with k even, one finds that the corresponding expansions for the

logarithm of P3(q) =
Q

(1−qn)−n2
when q tends to a root of unity are terminating,

even though there are no modularity properties in this case.



7. Rigorous Finite-Dimensional Magic
Formulas of Quantum Field Theory

Everything should be made as simple as possible, but not simpler.

Albert Einstein (1879–1955)

The important things in the world appear as invariants. . . The things we
are immediately aware of are the relations of these invariants to a certain
frame of reference. . . The growth of the use of transformation theory, as
applied first to relativity and later to the quantum theory, is the essence
of the new method in theoretical physics.

Paul Dirac, 19301

St. John’s College, Cambridge, England

This chapter is completely elementary, but it is very important for under-
standing both the basic ideas behind quantum field theory and the language
used by physicists. Mathematicians should note that we introduce two crucial
tools which are not mentioned in the standard literature on finite-dimensional
linear algebra, namely,

• the Dirac calculus and
• discrete path integrals (functional integrals).

These tools are also very useful for mathematics itself.

7.1 Geometrization of Physics

In his 1915 theory of general relativity, Einstein described observers by local
coordinate systems. However, since physics has to be independent of the
choice of observers, physical quantities like the gravitational force have to
be described by geometric objects which do not depend on the choice of the
observer. In the late 1920s, Dirac tried to translate this general philosophy
to quantum mechanics. To this end, he invented his transformation theory
in the setting of Hilbert spaces. More precisely, as we will show in Sect.
12.2, one needs the concept of a rigged Hilbert space or Gelfand triplet.
This is intimately related to Laurent Schwartz’s theory of distributions which
generalizes the Newton–Leibniz calculus. Summarizing, modern theoretical
physics is based on the following concept:
1 P. Dirac, The Principles of Quantum Mechanics, Clarendon Press, Oxford, 1930.

E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics,
c© Springer-Verlag Berlin Heidelberg 2006, Corrected 2nd printing 2009
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physical quantities (observables) and states
⇒ invariant geometric objects;

observers ⇒ coordinate systems.

This underlines the importance of geometry for modern physics and the use-
fulness of abstract mathematical notions for describing physical quantities.
In quantum physics, one has to use the geometry of Hilbert spaces.

7.2 Ariadne’s Thread in Quantum Field Theory

Quantum field theory is based on the following tools:

• Fourier series (7.17) and Dirac calculus (7.20);
• the Fourier representation of the Green’s operator (7.28);
• the Laplace transform of the Green’s operator (7.30);
• the Dyson series for the Feynman propagator (7.51).

The magic formulas of quantum field theory. The following three
magic formulas lie at the heart of quantum field theory:

(i) the magic Dyson perturbation formula for the S-matrix (Sect. 7.18);
(ii) the magic Feynman propagator formula and the Feynman kernel in terms

of discrete path integrals (Sect. 7.21.1);
(iii) the magic Gell-Mann–Low formula for perturbed causal correlation func-

tions (Sect. 7.22.2).

Furthermore, the magic Gell-Mann–Low formula is closely related to the
magic Feynman formula for time-ordered products (Sect. 7.21.2) and the
Wick rotation trick for vacuum expectation values (Sect. 7.22.1).

Basic strategy. These formulas are used by physicists in a formal manner
for infinite-dimensional systems. There is a lack of rigorous justification. Our
strategy is the following one:

(F) Rigorous finite-dimensional approach: We prove the magic formulas rig-
orously in finite-dimensional Hilbert spaces. In particular, we introduce a
rigorous discrete Feynman path integral. This will be done in the present
chapter.

(I) Formal infinite-dimensional approach: We translate straightforwardly the
rigorous finite-dimensional formulas to infinite dimensions in a formal
manner. This will be done in
• Chapter 14 (response approach) and
• Chapter 15 (operator approach).

This way, a mathematician should learn quickly the background of the formu-
las used by physicists in quantum field theory. The most important quantities
read as follows:
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• transition amplitude 〈ϕ|Aψ〉 for the observable A;
• transition probability |〈ϕ|Aψ〉|2;
• transition amplitude for the propagator,

〈ϕ|e−iHt/�ϕ0〉,

describing the dynamics of the quantum system in terms of the crucial
Hamiltonian H (energy operator);

• ground state expectation value 〈0|A|0〉 (also called vacuum expectation
value for the observable A);2

• causal correlation coefficient

〈0|A(t)B(s)|0〉

with the time ordering t > s (also called 2-point Green’s function) describ-
ing the correlations between two observables A and B at different time
points t and s;

• higher causal correlation coefficient

〈0|A1(t1)A2(t2) · · ·An(tn)|0〉

with the time ordering t1 > t2 > · · · > tn (also called n-point Green’s
function);

• the singularities of the Green’s operator which correspond to the rest en-
ergies (and hence the rest masses) of the bound states.

The advantage of Feynman’s approach to quantum field theory is the fact
that both the transition amplitudes and the causal correlation functions can
be represented by functional integrals which only depend on the classical
action that appears in the principle of critical action.

Resonances and renormalization. In quantum field theory, a crucial
role is played by the methods of renormalization theory. In Sect. 8.1, we will
discuss the basic ideas of renormalization.

Using a simple rigorous finite-dimensional model, we will show that
the phenomenon of renormalization is related to resonances which
can be treated rigorously in terms of bifurcation theory.

The point is that in the resonance case, naive perturbation theory fails com-
pletely; it has to be replaced by a more sophisticated approach.

The challenge for mathematics. The reader should note that physi-
cists successfully use the formal infinite-dimensional methods in order to pre-
dict experimental data with extremely high precision.
2 Note that the ground state |0〉 refers either to the state |E1〉 of least energy of

the full system described by the perturbed Hamiltonian H = H0 + V or to the
ground state |E0

1〉 of the unperturbed (or free) Hamiltonian H0. In the following,
we will clearly distinguish between the two cases.
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From the mathematical point of view, the main problem is to justify
the passage from finite to infinite dimensions for quantities which can
be measured in physical experiments.

The study of the appropriate limits represents an important mathematical
task for the future.

7.3 Linear Spaces

Functional analysis uses linear spaces and equips them with additional struc-
tures. This way, algebra, analysis, and geometry are combined with each
other. Physical systems with a finite (resp. infinite) number of degrees of free-
dom are described by finite-dimensional (resp. infinite-dimensional) spaces.

The real, N-dimensional, linear space R
N . By definition, the space

R
N consists of all the column matrices

x =

⎛

⎜
⎜
⎝

x1

...
xN

⎞

⎟
⎟
⎠ (7.1)

where x1, . . . , xN are real numbers.
The complex, N-dimensional, linear space C

N . By definition, the
space C

N consists of all the column matrices

ψ =

⎛

⎜
⎜
⎝

ψ1

...
ψN

⎞

⎟
⎟
⎠ (7.2)

where ψ1, . . . , ψN are complex numbers. In particular, the zero vector 0 is
obtained by setting ψj = 0 for j = 1, . . . , N. The space C

N is the prototype
of a complex linear space. Let us discuss this. To begin with, for all ϕ,ψ ∈ C

N

and all complex numbers α, β, we introduce the linear combination αϕ+ βψ
by setting

α

⎛

⎜
⎜
⎝

ϕ1

...
ϕN

⎞

⎟
⎟
⎠ + β

⎛

⎜
⎜
⎝

ψ1

...
ψN

⎞

⎟
⎟
⎠ :=

⎛

⎜
⎜
⎝

αϕ1 + βψ1

...
αϕN + βψN

⎞

⎟
⎟
⎠ .

These linear combinations satisfy the following quite natural rules:

(L1) (ϕ+ ψ) + χ = ϕ+ (ψ + χ) (associative law);
(L2) ϕ+ ψ = ψ + ϕ (commutative law);
(L3) ϕ+ 0 = ϕ (zero element);
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(L4) (α+ β)ϕ = αϕ+ βϕ and α(ϕ+ ψ) = αϕ+ αψ (distributive laws);
(L5) α(βϕ) = (αβ)ϕ (associative law);
(L6) αϕ = ϕ if α = 1 (normalization);
(L7) αϕ = 0 if α = 0.

For N = 2, the two elements

e1 :=

(
1
0

)

, e2 :=

(
0
1

)

form a basis of the space C
2. That is, for all ψ ∈ C

2,

ψ = ψ1e1 + ψ2e2.

A linear operator A : C
2 → C

2 is given by the matrix equation Aψ = ϕ which
reads explicitly as

(
a11 a12

a21 a22

)(
ψ1

ψ2

)

=

(
ϕ1

ϕ2

)

with complex entries. Equivalently, this stands for the system

a11ψ
1 + a12ψ

2 = ϕ1,

a21ψ
1 + a22ψ

2 = ϕ2.

This can be generalized immediately to the spaces C
N for N = 1, 2, 3, . . .

Complex linear space. A set X is called a complex linear space iff it
contains a distinguished element 0 and for all ϕ,ψ ∈ X and all complex
numbers α, β, the linear combination

αϕ+ βψ

is defined in such a way that the rules (L1) through (L7) above are satisfied.3

A subset L of X is called a linear subspace of X iff ϕ,ψ ∈ L implies
αϕ+ βψ ∈ L for all complex numbers α, β.

Linear hull. Let S be a subset of the complex linear space X. By def-
inition, the linear hull, spanS, is the smallest linear subspace of X which
contains the set S. Explicitly, the set spanS consists of all possible finite
linear combinations

α1ψ1 + . . .+ αnψn, n = 1, 2, . . .

where ψj ∈ S and αj ∈ C for all j = 1, . . . , n. Analogously, we define the
linear hull of a subset of a real linear space.
3 To simplify notation, in what follows we will write 0 instead of 0. This cannot

lead to any mistakes.
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Morphisms and isomorphisms in modern mathematics. In this
monograph, we will encounter many mathematical structures, for example,
linear spaces, Hilbert spaces, groups, algebras, topological spaces, manifolds,
and so on. Typical maps are called morphisms; they preserve the structure
under consideration. Isomorphic structures are always characterized by iso-
morphisms. Let us explain this for linear spaces. Note that

The definitions of the standard notions “surjective, injective, and
bijective” can be found in the Appendix on page 947.

Linear morphisms. Linear spaces are characterized by the linear struc-
ture based on linear combinations. Linear morphisms preserve linear struc-
ture. Explicitly, let X and Y be complex linear spaces. By a linear morphism
(or a linear operator) A : X → Y we understand a map which preserves
linear combinations, that is,

A(αϕ+ βψ) = αAϕ+ βAψ

for all ϕ,ψ ∈ X and all complex numbers α, β.
Isomorphic linear spaces. By a linear isomorphism, we understand a

linear morphism A : X → Y which is bijective. Two complex linear spaces
X and Y are said to be isomorphic iff there exists a linear isomorphism
A : X → Y.

Dimension. Let N = 1, 2, . . . By definition, the elements ϕ1, . . . , ϕN

form a basis of the complex linear space X iff each element ψ in X can be
represented by the linear combination

ψ = c1ϕ1 + . . .+ cNϕN

in such a way that the complex numbers c1, . . . , cN are uniquely determined
by ψ. The complex numbers c1, . . . , cN are called the coordinates of ψ with
respect to the basis ϕ1, . . . , ϕN . The main theorem on linear spaces reads as
follows.

Theorem 7.1 If a complex linear space has a finite basis, then every basis
has the same number of elements.

The number of basis elements is called the dimension of the linear space X;
the dimension is denoted by dimX. For the trivial linear space {0} which only
contains the zero element, we define dim{0} = 0. By an infinite-dimensional
linear space X, we understand a nontrivial linear space which does not have
any finite basis. We write dimX = ∞.

The proof of Theorem 7.1 can be found in all textbooks on linear algebra.
We recommend A. Kostrikin and Yu. Manin, Linear Algebra and Geometry,
Springer, New York, 1989. This book emphasizes the relations to modern
physics.
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Each complex linear space X of finite dimension N is linearly iso-
morphic to the space C

N .

To prove this, choose a fixed basis ϕ1, . . . , ϕN in X. For each element ϕ of
X, we have

ϕ = c1ϕ1 + . . .+ cNϕN

where the complex numbers c1, . . . , cN are uniquely determined by ϕ. The
map

ϕ �→ (c1, . . . , cN )

is the desired linear isomorphism from the space X onto the space C
N . This

shows that finite-dimensional complex linear spaces possess only one essential
invariant, namely, the dimension.

Two finite-dimensional complex linear spaces are isomorphic iff they
have the same dimension.

Examples. The space C∞(R) of smooth functions ψ : R → C forms a
complex linear space. For fixed n = 0, 1, 2, . . ., the space Pn of all complex
polynomials

p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n, x ∈ R

with complex coefficients a0, a1, . . . , an represents an n-dimensional linear
subspace of C∞(R). Set pj(x) := xj . Then, the polynomials p0, p1, . . . , pn

form a basis of Pn. Let −∞ < a < b < ∞. Define

(Aψ)(x) :=
dψ(x)
dx

, Bψ :=
∫ b

a

ψ(x)dx, (Sψ)(x) := ψ(x)2

for all x ∈ R and all ψ ∈ C∞(R). Then, the operators

A : C∞(R) → C∞(R), B : C∞(R) → C

are linear operators, whereas the operator S : C∞(R) → C
∞(R) is not linear.

Nonlinear operators describe interactions in physics.

Therefore, nonlinear operators play a fundamental role in physics.
Real linear space. If we only consider real linear combinations αϕ+βψ

where α and β are real numbers, then we get the notion of a linear real
space. All of the notions and results discussed for complex linear spaces above
remain valid for real linear spaces if we restrict ourselves to real coefficients.
For example, the space R

N is a real, N -dimensional space. Moreover, every
real N - dimensional linear space is linear isomorphic to R

N .
Terminology. In what follows, the symbol K denotes either R or C. By

a linear space over K we understand a real (resp. complex) linear space iff
K = R (resp. K = C).
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The linear space L(X,Y ). The symbol L(X,Y ) denotes the set of all
linear operators

A : X → Y

where X and Y are linear spaces over K. Let A,B ∈ L(X,Y ) and α, β ∈ K.
The linear combination αA+ βB is defined by setting

(αA+ βB)ψ := αAψ + βBψ for all ϕ,ψ ∈ X.

This way, the set L(X,Y ) becomes a linear space over K. We now choose
Y = X.

The algebra L(X,X). For two linear operators A,B : X → X define
the product AB by setting

(AB)ψ := A(Bψ) for all ψ ∈ X.

The set L(X,X) becomes an algebra. For all A,B,C ∈ L(X,X) and all
α, β ∈ K, this means the following.

• L(X,Y ) is a linear space over K.
• (αA + βB)C = αAC + βBC and C(αA + βB) = αCA + βCB (distribu-

tivity).
• (AB)C = A(BC) (associativity).

The following simple criterion is useful.

Proposition 7.2 The linear operator A : X → X is bijective iff there exist
operators B,C ∈ L(X,X) such that AB = CA = I. Then, A−1 = B = C.

Proof. It follows from ABϕ = ϕ that each element ϕ of X lies in the image
of A. Hence A is surjective (see page 947).

If Aϕ = Aψ, then ϕ = CAϕ = CAψ = ψ. Therefore, A is injective.
Consequently, the operator A is bijective, and hence the inverse operator
A−1 : X → X exists with AA−1 = A−1A = I. Hence A−1 = A−1AB = B
and A−1 = CAA−1 = C. �

As we will show in Volume IV on quantum mathematics, operator algebras
play a fundamental role in the algebraic approach to quantum physics (e.g.,
algebraic quantum field theory). As an introduction to this, we recommend
R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer, 1996,
and H. Araki, Mathematical Theory of Quantum Fields, Oxford University
Press, 1999.

Linear functionals and the dual space Xd. Let X be a linear space
over K. By a linear functional on X, we understand a linear map

F : X → K.

The set L(X,K) of all linear functionals on X forms a linear space over X
which is called the dual space to the linear X. This space is also denoted by
the symbol Xd.
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For example, the most general linear functional F : C
2 → C has the form

F (ψ) = c1ψ
1 + c2ψ

2 for all ψ ∈ C
2

where c1, c2 are fixed complex numbers. Setting

F (ψ) :=
∫ 1

0

xψ(x)dx for all ψ ∈ C∞(R),

we get a linear functional F : C
∞(R) → C on the function space C∞(R).

Multilinear functionals. Again let X be a linear spaces over K. We
speak of a bilinear map

B : X ×X → K

iff this map is linear in each argument. Explicitly, for all ϕ,ψ, χ ∈ X and all
α, β ∈ K, we have

B(αϕ+ βψ, χ) = αB(ϕ, χ) + βB(ψ, χ),
B(χ, αϕ+ βψ) = αB(χ, ϕ) + βB(χ, ψ).

Furthermore, B is called symmetric (resp. antisymmetric) iff for all ϕ,ψ ∈ X,

B(ϕ,ψ) = B(ψ,ϕ)

(resp. B(ϕ,ψ) = −B(ψ,ϕ)). If B is antisymmetric, then B(ϕ,ϕ) = 0. Simi-
larly, the map

(ϕ1, . . . , ϕm) �→ M(ϕ1, . . . , ϕm)

from X×· · ·×X (m factors) to K is called m-linear iff it is linear with respect
to each argument. Moreover, M is called symmetric (resp. antisymmetric)
iff it remains unchanged (resp. changes sign) under a transposition of two
arguments.

The determinant of a linear operator. Let X be an m-dimensional
linear space over K with m = 1, 2, . . . . Let A,B : X → X be linear operators.
One can show that there exists a uniquely determined number det(A) in K

such that
M(Aϕ1, . . . , Aϕm) = det(A) ·M(ϕ1, . . . , ϕm)

for all m-linear antisymmetric functionals M on X and all ϕ1, . . . , ϕm ∈ X.
The so-called determinant has the following properties.

(i) det(AB) = det(A) det(B),
(ii) det(I) = 1 (identity operator),
(iii) det(A) �= 0 iff A is a linear isomorphism.
(iv) If det(A) �= 0, then detA−1 = (detA)−1.
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For example, if the linear operator A : C
2 → C

2 is given by the matrix

A =

(
a b

c d

)

, then det(A) = ad− bc.

In fact, if we choose the basis e1, e2 of C
2 introduced above, then

Ae1 = ae1 + ce2, Ae2 = be1 + de2.

For an antisymmetric bilinear functional B, we get B(e1, e1) = B(e2, e2) = 0
and B(e1, e2) = −B(e2, e1). Hence

B(Ae1, Ae2) = (ad− bc)B(e1, e2) = det(A) ·B(e1, e2).

The determinant was introduced by Leibniz (1646–1716). The general formula
can be found in (7.3) below.

Matrix elements as coordinates of a linear operator. Consider an
arbitrary linear operator A : X → X on the N -dimensional linear space X
over K where K = R,C. Let ϕ,ψ ∈ X. Choose any basis e1, . . . , eN of X.
The element Aek is then a linear combination of the basis vectors e1, . . . , eN .
Explicitly,

Aek =
N∑

k=1

ajkej , k = 1, . . . , N.

Consequently, it follows from ψ =
∑N

k=1 ψ
kek that

Aψ =
N∑

j,k=1

(ajkψ
k)ej .

This way, we assign the matrix A := (ajk) to the operator A. The matrix
elements akj are also called the coordinates of the operator A with respect to
the basis e1, . . . , eN . If we set ϕ = Aψ, then this corresponds to the equation

ϕj =
N∑

k=1

ajkψ
k, j = 1, . . . , N

for the corresponding coordinates of ϕ,ψ, and A.

In physics, the choice of a basis corresponds to the choice of an ob-
server who measures coordinates.

Matrix calculus. There exists a perfect correspondence between oper-
ator algebra and matrix algebra. To explain this, let A,B : X → X be two
linear operators. Moreover, let A := (aij) and B := (bij) denote the matrices
corresponding to A and B with respect to a fixed basis e1, . . . , eN of X. Then
the following are met.
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(i) Linear combination: The matrix C := (cij) corresponding to the linear
combination C := αA+ βB is given by

cij = αaij + βbij , i, j = 1, . . . N

for all numbers α, β ∈ K. The sum of matrices is defined in such a way
that the operator equation C = αA + βB passes over to the matrix
equation C = αA + βB.

(ii) Operator product: The matrix P := (pij) corresponding to P := AB
reads as

pij =
N∑

s=1

aisbsj , i, j = N.

The product of matrices is defined in such a way that the operator equa-
tion P = AB passes over to the matrix equation P = AB.

(iii) Determinant: We have detA = detA, that is, the determinant detA of
the operator A is equal to the determinant of the matrix A := (aij) given
by

detA :=
N∑

j1,...,jN=1

a1j1a2j2 · · · aNjN
εj1...jN

(7.3)

where ε12...N := 1, and this symbol is antisymmetric with respect to the
indices. For example, ε12 = 1, ε21 = −1, and ε11 = ε22 = 0.

The advantage of the definition of the determinant det(A) of the linear oper-
ator A, in terms of multi-linear functionals above, is that it does not depend
on the choice of any basis of the space X.

The determinant is an invariant of linear operators on finite-dimen-
sional linear spaces.

7.4 Finite-Dimensional Hilbert Spaces

For quantum physics, it is crucial to use linear spaces which are equipped ad-
ditionally with an inner product. This leads us to the notion of Hilbert space.
In 1906 Hilbert (1862–1943) introduced the space l2 in order to generalize the
classical principal axis transformation for finite-dimensional quadratic forms
to infinite dimensions. By definition, the elements of l2 are infinite sequences
(ψ1, ψ2, . . .) of complex numbers ψ1, ψ2, . . . such that

∑∞
j=1 |ψj |2 < ∞. The

space l2 becomes a complex infinite-dimensional Hilbert space equipped with
the inner product

〈ϕ|ψ〉 =
∞∑

j=1

(ϕj)†ψj .
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This inner product converges for all ϕ,ψ ∈ l2. Motivated by the needs of
quantum mechanics, the young John von Neumann (1903–1957) introduced
the notion of an abstract Hilbert space in 1929.4 At this time, von Neumann
was Hilbert’s assistant in Göttingen. Hilbert’s 1906 paper founded the spec-
tral theory for bounded self-adjoint operators. Von Neumann generalized this
to unbounded self-adjoint operators. Such operators are typical for quantum
mechanics. In particular, von Neumann found out that in infinite-dimensional
Hilbert spaces, the domain of definition of an operator plays a crucial role.

Since two different operators may possess the same matrix elements,
infinite-dimensional matrices are not sufficient for the mathematics
of quantum physics.

One has to use John von Neumann’s abstract language of operators.
The N-dimensional real linear Hilbert space R

N . Using the Eu-
clidean inner product

〈x|y〉 :=
N∑

j=1

xjyj , x, y ∈ R
N ,

the space R
N becomes an N -dimensional real Hilbert space.

The N-dimensional complex Hilbert space C
N . The space C

N be-
comes a complex N -dimensional Hilbert space if we introduce the following
inner product

〈ϕ|ψ〉 :=
N∑

j=1

(ϕj)†ψj . (7.4)

Here, the symbol z† denotes the conjugate complex number to z.5 We also
introduce the norm of the element ψ given by

||ψ|| :=
√

〈ψ|ψ〉 =

⎛

⎝
N∑

j=1

|ψj |2
⎞

⎠

1/2

. (7.5)

4 J. von Neumann, General spectral theory for Hermitean operators, Math. An-
nalen 102 (1929), 49–131 (in German).

5 Recall that (α+βi)† = α−βi for real numbers α and β. As a rule, mathematicians
use the modified inner product

〈ϕ|ψ〉 =

N
X

j=1

ϕj(ψj)†.

However, as we will see below, this convention does not fit the elegant Dirac
calculus which is very useful for mathematics as well. Therefore, we adopt the
convention (7.4) used by physicists.
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The elements

e1 :=

(
1
0

)

, e2 :=

(
0
1

)

form an orthonormal basis of the Hilbert space C
2, that is,

〈ej |ek〉 = δjk, j, k = 1, 2.

Recall that δjk := 1 if j = k and δjk = 0 if j �= k. Traditionally, δjk is called
theKronecker symbol. For

ψ =

(
ψ1

ψ2

)

,

we get 〈e1|ψ〉 = ψ1 and 〈e2|ψ〉 = ψ2. Hence

ψ = 〈e1|ψ〉e1 + 〈e2|ψ〉e2.

This is the prototype of a Fourier series. For all ϕ,ψ, χ ∈ C
N and all complex

numbers α, β, the inner product satisfies the following conditions:

(P1) 〈ϕ|ψ〉 is a complex number,
(P2) 〈ϕ|ψ〉† = 〈ψ|ϕ〉 (antiduality),
(P3) 〈ψ|ψ〉 > 0 if ψ �= 0, and 〈ψ|ψ〉 = 0 if ψ = 0 (definiteness),
(P4) 〈χ|αϕ+ βψ〉 = α〈χ|ϕ〉 + β〈χ|ψ〉 (linearity),
(P5) 〈αϕ+ βψ|χ〉 = α†〈ϕ|χ〉 + β†〈ψ|χ〉 (antilinearity).

Pre-Hilbert space. By a complex pre-Hilbert X, we understand a com-
plex linear space equipped with an inner product which satisfies the condi-
tions (P1) through (P5) for all ϕ,ψ, χ ∈ X and all complex numbers α, β.
The definition of the norm

||ψ|| :=
√
〈ψ|ψ〉 (7.6)

allows us to introduce the notion of convergence. Let ψn, ψ ∈ X for the
indices n = 1, 2, . . . We write

lim
n→∞

ψn = ψ (7.7)

iff the condition limn→∞ ||ψn − ψ|| = 0 is satisfied.
Hilbert space. A pre-Hilbert space is called a Hilbert space iff it is

complete. This means the following. A sequence (ψn) in X is called a Cauchy
sequence iff for each number ε > 0, there exists an index n0(ε) such that

||ψm − ψn|| < ε for all m,n ≥ n0(ε).

By definition, the pre-Hilbert space X is called complete iff each Cauchy
sequence converges to an element of X. Summarizing, a complex Hilbert
space X is characterized by
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• complex linear combinations αϕ+ βψ,
• an inner product 〈ϕ|ψ〉, and
• the validity of the completeness condition.

Hilbert space morphism. Let X and Y be complex Hilbert spaces.
By a Hilbert space morphism (or an isometric operator) U : X → Y, we
understand a linear operator which preserves the inner product, that is,

〈Uϕ|Uψ〉 = 〈ϕ|ψ〉 for all ϕ,ψ ∈ X. (7.8)

Isomorphic Hilbert spaces. Bijective Hilbert space morphisms are
called Hilbert space isomorphisms. Explicitly, the operator U : X → Y is
called a Hilbert space isomorphism (or a unitary operator) iff it is linear,
bijective, and there holds relation (7.8). By definition, the Hilbert X is iso-
morphic (or unitarily equivalent) to the Hilbert space Y iff a Hilbert space
isomorphism U : X → Y exists. Intuitively, isomorphic Hilbert spaces de-
scribe the same physics.

Finite-dimensional Hilbert spaces. It can be shown that every finite-
dimensional pre-Hilbert space is complete, and hence it is a Hilbert space.
This is not true anymore for infinite-dimensional pre-Hilbert spaces, as we
will discuss in Sect. 10.2.

An N -dimensional complex (resp. real) Hilbert space is isomorphic
to the Hilbert space C

N (resp. R
N ).

The Schwarz inequality. The most important inequality which is valid
in a Hilbert space is the Schwarz inequality.6 For example, we will show
in Sect. 10.1 that this inequality implies Heisenberg’s famous uncertainty
principle in quantum physics.

Theorem 7.3 For all elements ϕ and ψ of a pre-Hilbert space, we have the
Schwarz inequality

|〈ϕ|ψ〉| ≤ ||ϕ|| · ||ψ||.

Proof. Let ψ �= 0. For all complex numbers α, 0 ≤ 〈ϕ− αψ|ϕ− αψ〉. Hence

0 ≤ 〈ϕ|ϕ〉 − α〈ϕ|ψ〉 − α†{〈ψ|ϕ〉 − α〈ψ|ψ〉}.

Finally, choose α := 〈ψ|ϕ〉
〈ψ|ψ〉 . �

The triangle inequality. For all elements ϕ,ψ, χ of a pre-Hilbert space,

| ||ϕ|| − ||ψ|| | ≤ ||ϕ− ψ|| ≤ ||ϕ|| + ||ψ||. (7.9)

6 In the 19th century, classical variants of this inequality were discovered by several
mathematicians including Victor Bunyakovski (1804–1889), Augustin Cauchy
(1775–1857), and Amandus Schwarz (1843–1921). In the standard literature on
functional analysis, one speaks usually of the Schwarz inequality.
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Proof. Since 〈ψ|ϕ〉 = 〈ϕ|ψ〉†, it follows from the Schwarz inequality that

||ϕ+ ψ||2 = 〈ϕ+ ψ|ϕ+ ψ〉 = 〈ϕ|ϕ〉 + 〈ϕ|ψ〉 + 〈ϕ|ψ〉† + 〈ψ|ψ〉
= ||ϕ||2 + 2�(〈ϕ|ψ〉) + ||ψ||2

≤ ||ϕ||2 + 2||ϕ|| · ||ψ|| + ||ψ||2 = (||ϕ|| + ||ψ||)2.

Hence ||ϕ+ ψ|| ≤ ||ϕ|| + ||ψ||. This implies

||ϕ|| = ||ψ + (ϕ− ψ)|| ≤ ||ψ|| + ||ϕ− ψ||.

Thus, ||ϕ|| − ||ψ|| ≤ ||ϕ−ψ||. Finally, interchanging ϕ with ψ, we obtain the
inequality ±(||ϕ|| − ||ψ||) ≤ ||ϕ− ψ||. �

Continuity of the inner product. Suppose that ϕn → ϕ and ψn → ψ
as n → ∞ in a pre-Hilbert space. Then

lim
n→∞

〈ϕn|ψn〉 → 〈ϕ|ψ〉. (7.10)

Proof. It follows from | ||ϕn|| − ||ϕ|| | ≤ ||ϕ − ϕn|| → 0 as n → ∞ that the
sequence (||ϕn||) converges to ||ϕ||, and hence it is bounded. Similarly, the
sequence (||ψn||) is bounded. By the Schwarz inequality,

|〈ϕn|ψn〉 − 〈ϕ|ψ〉| = |〈ϕn − ϕ|ψn〉 + 〈ϕ|ψn − ψ〉|
≤ |〈ϕn − ϕ|ψn〉| + |〈ϕ|ψn − ψ〉|
≤ ||ϕn − ϕ|| · ||ψn|| + ||ϕ|| · ||ψn − ψ|| → 0 as n → ∞.

This finishes the proof. �

The continuity of the inner product implies the continuity of the norm.
Explicitly, it follows from ϕn → ϕ as n → ∞ in a pre-Hilbert space that

lim
n→∞

||ϕn|| = ||ϕ||.

The topology of a Hilbert space. A subset O of a Hilbert space X is
called open iff for each point ψ0 ∈ X, there exists a number ε > 0 such that
the open ball

{ψ ∈ X : ||ψ − ψ0|| < ε}
is contained in the set O. It turns out that

Each Hilbert space is a topological space.

For a subset C of a Hilbert space X, the following two conditions are equiv-
alent.

(i) The set C is closed, that is, the complement X \ C is open.
(ii) The set C is sequentially closed, that is, if ψn ∈ C for all n and ψn → ψ

in X as n → ∞, then ψ ∈ C.
The same is true for pre-Hilbert spaces.
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7.5 Groups

Groups describe symmetries in physics, whereas the linearization of sym-
metries leads to Lie algebras.

Folklore

Let X be an n-dimensional real or complex linear space with n = 1, 2, . . ..
The set GL(X) of all linear isomorphisms A : X → X is the prototype of a
group; it is called the general linear group of the space X. Set G := GL(X).
Then, for all A,B,C ∈ G, the following are met.

(G1) Consistency: AB ∈ G.
(G2) Associativity: (AB)C = A(BC).
(G3) Unit element: There exists a uniquely determined element I in G such

that IA = AI = A for all A ∈ G.
(G4) For each A ∈ G, there exists a uniquely determined element B in G

such that AB = BA = I. We write A−1 instead of B.

A set G equipped with a uniquely defined product AB for all A,B ∈ G is
called a group iff the conditions (G1) through (G4) are satisfied.

Group morphism. A map χ : G → H between two groups G and H is
called a group morphism iff it respects products, that is,

χ(AB) = χ(A)χ(B) for all A,B ∈ G.

A bijective (resp. surjective) group morphism χ : G → H is called group
isomorphism (resp. group epimorphism).

Subgroup. A subset S of a group G is called a subgroup iff it is a group
with respect to the product on G. Again let X be a complex n-dimensional
Hilbert space with n = 1, 2, . . . Then the following are true.

• Unitary group U(X): The set U(X) of all unitary operators A : X → X
forms a subgroup of GL(X).

• Special unitary group SU(X): The set of all A ∈ U(X) with det(A) = 1
forms a subgroup of U(X) denoted by SU(X).

Matrix algebra. Let A = (aij) be a real or complex (n×n)-matrix with
n = 1, 2, . . . .

• The dual matrix Ad = (bij) is defined by bij := aji for i, j = 1, . . . n.
• The adjoint matrix A† = (cij) is defined by cij := a†ji for i, j = 1, . . . n.
• The conjugate complex matrix Ac = (dij) is defined by dij := a†ij for
i, j = 1, . . . , n.

• The number tr(A) :=
∑n

j=1 ajj is called the trace of the matrix A. The
expression for the determinant det(A) can be found in (7.3) on page 337.

For all complex linear (n× n)-matrices A, B and all complex numbers α, β,
the following ar true:
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• (αA+ βB)† = α†A† + β†B†,
• (AB)† = B†A† and (AB)d = BdAd,
• det I = 1 and detAd = detA,
• det(AB) = detA · detB,
• detA−1 = (detA)−1 if detA �= 0.
• tr(αA+ βB) = α trA+ β trB,
• trAd = trA and trA† = (trA)†,
• tr(AB) = tr(BA),
• tr I = n.

The proofs of all the matrix rules can be found in Hein (1990).
Multiplicative matrix groups. The following groups with respect to

multiplication AB of numbers A,B or matrices will be used quite often.

(i) The group GL(1,R) consists of all nonzero real numbers. This group is
also denoted by R

×.
(ii) The group R

×
+ consists of all positive numbers. This is a subgroup of R

×.
(iii) The group U(1) consists of all complex numbers z with |z| = 1.
(iv) The real, general linear group GL(n,R) consists of all invertible real

(n× n)-matrices.
(v) The real, special linear group SL(n,R) consists of all matrices A in

GL(n,R) with det(A) = 1.
(vi) The complex, general linear group GL(n,C) consists of all invertible

complex (n× n)-matrices.
(vii) The complex, special linear group SL(n,C) consists of all matrices A

in GL(n,C) with det(A) = 1.
(viii) The unitary group U(n) consists of all complex (n× n)-matrices with

AA† = A†A = I. Such matrices are called unitary matrices. This is a
subgroup of GL(n,C).

(ix) The special unitary group SU(n) consists of all matrices A ∈ U(n) with
detA = 1.

(x) The orthogonal group O(n) consists of all real (n × n)-matrices A with
AAd = AdA = I. Such matrices are called orthogonal matrices. This is a
subgroup of GL(n,R).

(xi) The special orthogonal group SO(n) consists of all matrices A ∈ O(n)
with det(A) = 1. In particular, O(1) = {1,−1} and SO(1) = {1}.

If X is a complex n-dimensional Hilbert space with n = 1, 2, . . . , then we
have the following group isomorphisms:

• U(n) = U(X), SU(n) = SU(X), GL(n,C) = GL(X), SL(n,C) = SL(X).

Similarly, if X is a real n-dimensional Hilbert space, then we have the fol-
lowing group isomorphisms:

• O(n) = U(X), SO(n) = SU(X), GL(n,R) = GL(X), SL(n,R) = SL(X).

A group is called commutative (or Abelian) iff AB = BA for all A,B ∈ G.
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• The groups (i)–(iii) above are commutative.
• If n = 1, then the groups (iv)–(xi) are commutative.
• If n ≥ 2, then the groups (iv)–(xi) above are not commutative.

Additive groups. The prototype of an additive group is the real line R

equipped with addition. Set A := R. Then, for all a, b, c ∈ A, the following
are met.

(A1) Consistency: a+ b ∈ A.
(A2) Associativity: (a+ b) + c = a+ (b+ c).
(A3) Commutativity: a+ b = b+ a.
(A4) Zero element: There exists precisely one element 0 in the set A such

that a+ 0 = a for all a ∈ A.
(A5) Inverse element: For each a ∈ A, there exists precisely one element b

such that a+ b = 0. We write (−a) instead of b.

A set A is called an additive group iff it is equipped with a uniquely deter-
mined addition a + b for all a, b ∈ A such that the conditions (A1) through
(A5) are met. A map

χ : A → B

between two additive groups A and B is called an additive group morphism
iff it respects addition, that is, χ(a+ b) = χ(a) + χ(b) for all a, b ∈ A.

7.6 Lie Algebras

Let X be a real linear space. The prototype of a Lie algebra is the set gl(X)
of all linear operators A : X → X. Define the Lie product

[A,B] := AB −BA.

Set L := gl(X). Then, for all A,B,C ∈ L and all real numbers α, β the
following are met.

(L1) Linearity: L is a real linear space.
(L2) Consistency: [A,B] ∈ L.
(L3) Anticommutativity: [B,A] = −[A,B].
(L4) Bilinearity: [αA+ βB,C] = α[A,C] + β[B,C].
(L5) Jacobi identity: [[A,B], C] + [[B,C], A] + [[C,A], B] = 0.

A set L is called a real Lie algebra iff it is equipped with a uniquely determined
Lie product [A,B] for all elementsA,B of L such that conditions (L1) through
(L5) are met.7 The Lie product [A,B] is also called the Lie bracket.

7 Similarly, we speak of a complex Lie algebra L iff a natural modification of (L1)
through (L5) holds true. Explicitly, we postulate that L is a complex linear space,
and condition (L4) is valid for all complex numbers α, β.
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Lie algebra morphism. A map χ : L → M between two real (resp. com-
plex) Lie algebras is called a Lie algebra morphism iff it is a linear morphism
and it respects Lie products, that is,

χ([A,B]) = [χ(A), χ(B)] for all A,B ∈ L.

Lie subalgebra. A subset S of a Lie algebra L is called a Lie subalgebra
iff it is a Lie algebra with respect to the Lie product on L. For example,
let X be a complex n-dimensional Hilbert space with n = 1, 2, . . . Then the
following are true.8

• Skew-adjoint operators: The set u(X) of all linear operators A : X → X
with A† = −A forms a Lie subalgebra of gl(X).

• Traceless skew-adjoint operators: The set of all A ∈ u(X) with tr(A) = 0
forms a Lie subalgebra of u(X) denoted by su(n).

Classification of morphisms. The following terminology is used in
mathematics for all kind of morphisms:

• bijective morphisms are called isomorphisms if the inverse map is also a
morphism;9

Furthermore, for linear morphisms (or group morphisms, Lie algebra mor-
phisms), we use the following convention:10

• surjective morphisms are called epimorphisms;
• injective morphisms are called monomorphisms.

For example, two groups G and H are called isomorphic iff there exists a
group isomorphism χ : G → H.

Isomorphic groups and isomorphic Lie algebras describe the same
mathematics and physics.

Matrix Lie algebras. The following real Lie algebras with respect to
the Lie product [A,B] := AB −BA are frequently used.11

(i) The Lie algebra gl(n,R) consists of all real (n× n)-matrices.
(ii) The Lie algebra sl(n,R) consists of all A ∈ gl(n,R) with tr(A) = 0.
(iii) The Lie algebra gl(n,C) consists of all complex (n× n)-matrices.
(iv) The Lie algebra sl(n,C) consists of all matrices A ∈ gl(n,C) with van-

ishing trace, tr(A) = 0.

8 The definition of the adjoint operator A† and the trace tr(A) of the linear oper-
ator A can be found on page 359 and 365, respectively.

9 For linear isomorphisms, group isomorphisms, and Lie algebra isomorphisms, the
latter condition is satisfied automatically.

10 For general morphisms, the definition of epimorphisms and monomorphisms will
be given in Volume IV in the setting of category theory.

11 The Lie algebras gl(n,C), sl(n,C) are also complex Lie algebras, but u(n) and
su(n) are not complex Lie algebras.
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(v) The Lie algebra u(n) consists of all A ∈ gl(n,C) with A† = −A. These
matrices are called skew-adjoint.

(vi) The Lie algebra su(n) consists of all complex matrices A ∈ u(n) with
tr(A) = 0.

(vii) The Lie algebra o(n) consists of all A ∈ gl(n,R) with Ad = −A. These
matrices are called skew-symmetric.

(viii) The Lie algebra so(n) coincides with o(n).

For example, in order to prove that su(n) is a real Lie algebra, we have to
show that the following are true.

(a) If A,B ∈ su(n) and α, β ∈ R, then αA+ βB ∈ su(n).
(b) If A,B ∈ su(n), then [A,B] ∈ su(n).

in fact, the claim (a) follows from

(αA+ βB)† = αA† + βB† = −αA− βB.

In order to prove (b), note that

[A,B]† = (AB −BA)† = B†A† −A†B† = BA−AB = −[A,B].

In addition, tr([A,B]) = tr(AB −BA) = tr(AB) − tr(BA) = 0.
If X is a complex n-dimensional Hilbert space with n = 1, 2, . . . , then we

have the following real Lie algebra isomorphisms:

u(n) = u(X), su(n) = su(X), gl(n,C) = gl(X), sl(n,C) = sl(X).

Similarly, if X is a real n-dimensional Hilbert space, then we have the fol-
lowing real Lie algebra isomorphisms:

o(n) = so(n) = u(X), gl(n,R) = gl(X), sl(n,R) = sl(X).

The Hilbert space gl(n,C). This space is a complex Hilbert space of
dimension n2 with respect to the inner product

〈A|B〉 := tr(A†B).

For the norm,

||A|| := 〈A|A〉1/2 = (tr(A†A))1/2 =

⎛

⎝
n∑

j=1

|aij |2
⎞

⎠

1/2

.

In particular, the convergence Ak → A as k → ∞ in gl(n,C) means that

lim
k→∞

||Ak −A||2 =
n∑

i,j=1

||(aij)k − aij ||2 = 0.

This is equivalent to the convergence limk→∞(aij)k = aij of the correspond-
ing matrix elements.
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7.7 Lie’s Logarithmic Trick for Matrix Groups

In 1614, John Napier (1550–1617) published his book “Mirifici logarithmorum
canonis descriptio” where he popularized the use of logarithms. His idea was
to simplify the computation of products by reducing this to the computation
of sums. The basic rule reads as

ln(ab) = ln a+ ln b for all a, b ∈ R.

Johannes Kepler (1571–1630) used this new mathematical tool for simplifying
substantially his huge computations in celestial mechanics.

Our goal is to simplify the products of matrices in a similar manner.

This approach was invented by Sophus Lie (1842–1899) in the 1870s and lies
at the heart of the theory of Lie groups and Lie algebras.

The exponential function. For each matrix A ∈ GL(n,C), we define

eA := I +A+
A2

2!
+ . . . =

∞∑

k=0

Ak

k!
.

This infinite series converges in the Hilbert space gl(n,C). Observe that for
all matrices A,B ∈ gl(n,C), the following useful formulas are valid.

• If AB = BA, then eA+B = eAeB .12

• det(eA) = etr(A).

•
(
eA

)† = eA†
and

(
eA

)d = eAd

.

•
(
eA

)−1 = e−A.

• etAesA = e(t+s)A (causality relation). In other words, the set {etA : t ∈ R}
is a subgroup of GL(n,C), and the map t �→ etA is a group morphism from
the additive group R into the group GL(n,C).

• Let ψ0 ∈ C
n. The function ψ(t) := etAψ0 for all times t ∈ R is the unique

solution of the differential equation

dψ(t)
dt

= Aψ(t), t ∈ R, ψ(0) = ψ0.

This equation and its infinite-dimensional generalizations govern the dy-
namics of many physical systems (e.g., quantum systems). If we set
A := −iH/� where H† = H, then we get the Schrödinger equation

i�
dψ(t)
dt

= Hψ(t), t ∈ R, ψ(0) = ψ0

for the Hamiltonian H (energy operator).
12 It is crucial for quantum physics that this formula is not valid, as a rule, if
AB �= BA. Then, one has to use the magic Baker–Campbell–Hausdorff formula
(see page 510).
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Finally, let us comment on the causality relation. To this end, introduce
the time-dependent operator Ttψ0 := ψ(t) = e−itH/�ψ0. Then the causality
relation tells us that

Ts+tψ0 = Ts(Ttψ0) for all t, s ≥ 0.

In terms of physics, this means that the following two procedures yield the
same result.

(I) Start from the initial state ψ0 and compute the state ψ(s+ t) = Ts+t of
the system at the later time s+ t.

(II) Compute first the state at time ψ(t) = Ttψ0. Use this as new initial state
for computing state Tsψ(t) of the system at the later time s.

Finally, it follows from
ψ0 = T−tψ(t), t ≥ 0

that the state of the system at the later time t uniquely determines the initial
state of the system at time t = 0.

Summarizing, the exponential function describes the causality of
physical processes.

The logarithmic function. For all matrices A ∈ gl(n,C) with ||A|| < 1,
we define

ln(I +A) := A− A2

2
+ . . . =

∞∑

k=1

(−1)k+1A
k

k
.

This series converges in the Hilbert space gl(n,C). There exists a small num-
ber ε > 0 such that for all matrices B,C ∈ gl(n,C) with ||B − I|| < ε and
||C − I|| < ε, the following are true.

• ln(BC) = lnB + lnC,
• ln I = 0,
• (lnB)† = lnB† and (lnB)d = lnBd,
• tr(B) = ln(det eB),
• eln A = A if ||A− I|| < 1,
• ln eA = A if ||eA − I|| < 1.

The local parametrization of the group GL(n,C). We are given the
matrix A0 ∈ GL(n,C) and the number ε > 0. By an ε-neighborhood of A0

in the group GL(n,C), we understand the set

Uε(A0) := {A ∈ GL(n,C) : ||A−A0|| < ε}

where the norm refers to the Hilbert space gl(n,C). In addition, the subset
U(A0) of the group GL(n,C) is called a neighborhood of A0 iff it contains any
ε-neighborhood Uε(A0). If we replace the group GL(n,C) by the Lie algebra
gl(n,C), then we obtain the corresponding notions for gl(n,C). The following
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theorem tells us that the group GL(n,C) can be locally parametrized by the
elements of the Lie algebra gl(n,C). This main trick of the theory of Lie
groups simplifies the computations with respect to the group GL(n,C).

Theorem 7.4 The map A �→ lnA sends the neighborhood

{A ∈ GL(n,C) : ||A− I|| < I}

of the unit element I of the group GL(n,C) bijectively onto some neighborhood
of the origin in the Lie algebra gl(n,C). The inverse map is given by B �→ eA.

The matrix B := lnA is called the local coordinate of the group element A
near the unit element. For an arbitrary group element A0 in GL(n,C), we
write

A = A0eB for all B ∈ gl(n,C).

If the matrix A lies in a sufficiently small neighborhood of A0, then the local
coordinate of A is given by B := ln(A−1

0 A). Analogously, the groups

SL(n,C), GL(n,R), SL(n,R), U(n), SU(n), O(n), SO(n)

can be locally parametrized by the matrices of the Lie algebras

sl(n,C), gl(n,R), sl(n,R), u(n), su(n), o(n), so(n),

respectively. For example, consider the case of the group SU(n). Choose a
matrix A ∈ SU(n) near the unit element. It follows from AA† = I that

0 = ln I = lnA+ lnA† = lnA+ (lnA)†. (7.11)

In addition, detA = 1 implies tr(lnA) = ln(detA) = 0. Hence the local
coordinate lnA is a skew-adjoint and traceless matrix which lies in the Lie
algebra su(n).

7.8 Lie Groups

Lie groups. The notion of Lie group combines the notion of group with
the notion of manifold. By definition, a finite-dimensional real manifold is
called a Lie group iff it is equipped with a group structure such that both
the multiplication map

(A,B) �→ AB

and the inversion map A �→ A−1 are smooth. The following theorem is merely
a reformulation of Theorem 7.4.
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Theorem 7.5 For n = 1, 2, . . ., the classical groups

GL(n,C), SL(n,C), GL(n,R), SL(n,R), U(n), SU(n), O(n), SO(n)

are Lie groups. The tangent space of these Lie groups at the unit element are
the Lie algebras

gl(n,C), sl(n,C), gl(n,R), sl(n,R), u(n), su(n), o(n), so(n),

respectively. Here, so(n) = o(n). The Lie groups U(n), SU(n), O(n), SO(n)
are compact subsets of C

n2
.

Observe that the 2-dimensional sphere (e.g., the surface of earth) cannot be
equipped with the structure of a Lie group. However, if we identify the points
of the 3-dimensional unit sphere S

3 with the unit quaternions, then the sphere
S

3 becomes a Lie group with respect to the multiplication of quaternions.
Lie’s linearization principle. The tangent space of a Lie group G at

the unit element can always be equipped with the structure of a Lie algebra
which is denoted by LG.

It is crucial for the theory of Lie groups that the Lie algebra LG
knows all about the local structure of the Lie group G.

This is the famous Lie linearization principle for Lie groups which we will
encounter quite often.

Lie group morphism. Let G and H be Lie groups. By a Lie group
morphism

f : G → H
we understand a map which is both a group morphism and a manifold mor-
phism. In other words, this is a smooth group morphism. The map f : G → H
is called a Lie group isomorphism iff it is both a group isomorphism and a
manifold isomorphism. In other words, this is a group isomorphism which is
a diffeomorphism, too.

The theory of manifolds is fundamental for modern physics, as we will
see at many different places of the volumes of this treatise. In particular, the
theory of Lie groups and Lie algebras (and their representations) is basic for
the study of symmetry phenomena in physics and mathematics.

The physical meaning of the tangent space. If we consider the mo-
tion x = x(t) of a particle on a manifold M such that the particle is at the
point x0 at time t = 0, then the velocity vector ẋ(0) lies in the tangent space
Tx0M of the manifold M at the point x0. Generally, the space Tx0M consists
of all possible velocity vectors at the point x0. As an example, consider the
group SU(n) at the point I (unit element).

(a) We show that each velocity vector at the unit element lies in the Lie
algebra su(n). To this end, consider an arbitrary smooth curve

A = A(t), t ∈ U(0)
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on the manifold SU(n) with A(0) = I. Here, U(0) is a neighborhood of
the origin on the real line. Differentiation with respect to time t at the
point t = 0 yields the velocity vector Ȧ(0). Set

B(t) := lnA(t), t ∈ U(0).

Hence Ḃ(0) = A(0)−1Ȧ(0) = Ȧ(0). By (7.11), B(t) ∈ su(n) for all times
t ∈ U(0). This implies Ḃ(0) ∈ su(n), noting that su(n) is a linear space.

(b) We show that each vector B in su(n) is the velocity vector of a smooth
curve on SU(n) which passes through the point I. Explicitly, we choose
the curve

A(t) := etB , t ∈ R.

Then Ȧ(0) = B. It remains to show that A(t) ∈ SU(n) for all t ∈ R. In
fact, it follows from B +B† = 0 and trB = 0 that

A(t)A(t)† = et(B+B†) = I, detA(t) = et tr B = 1.

Infinitesimal transformations. The elements B of the Lie algebra
su(n) are called the infinitesimal transformations of the Lie group SU(n).
This is motivated by the approximation

etB = I + tB +O(t2), t → 0. (7.12)

The use of infinitesimal transformations substantially simplifies the investi-
gation of Lie groups. Finally, let us motivate the Lie bracket. Suppose that
B,C ∈ su(n). Then e±tB , esC ∈ SU(n) for all t, s ∈ R. For fixed s ∈ R, set

A(t) := esBetCe−sB, t ∈ R.

Since SU(n) is a group, the product A(t) lies in SU(n) for all t ∈ R, and
A(0) = I. By (a) above, the velocity vector Ȧ(0) lies in su(n). Explicitly,
Ȧ(0) = esBCe−sB . Therefore,

esBCe−sB ∈ su(n) for all s ∈ R.

Differentiating this with respect to s at the point s = 0, we obtain that
BC − CB ∈ su(n). This argument shows that the group property of SU(n)
implies that the tangent space su(n) of SU(n) at the point I is invariant
under the Lie bracket [B,C] := BC − CB, that is,

B,C ∈ su(n) ⇒ [B,C] ∈ su(n).

7.9 Basic Notions in Quantum Physics

Quantum physics is based on the study of states, costates, and observables.
Folklore

Let X and Y be complex finite-dimensional Hilbert spaces of dimension N
and M , respectively, N,M = 1, 2, . . .
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7.9.1 States, Costates, and Observables

States. The nonzero elements ψ of the Hilbert space X are called states in
quantum physics. Two states ψ and ϕ are said to be equivalent iff there exists
a nonzero complex number μ with

ψ = μϕ.

Intuitively, equivalent states represent the same physics. The notions like
mean value, mean fluctuation, and transition probability to be introduced
below are the same for equivalent states. The state ψ is called normalized iff
||ψ|| = 1.

Duality and costates. By a linear functional F on the space X, we
understand a linear map F : X → C, that is,

F (αψ + βϕ) = αF (ψ) + βF (ϕ)

for all ψ,ϕ ∈ X and all complex numbers α, β. By definition, the set of all
linear functionals on X forms the dual space of X denoted by Xd. Linear
functionals are called costates in quantum physics.

Observables. The operator A : X → Y is called linear iff

A(αψ + βϕ) = αAψ + βAϕ

for all ψ,ϕ ∈ X and all complex numbers α and β. By an observable on the
Hilbert space X, we understand a linear self-adjoint operator A : X → X,
that is, we have the symmetry property

〈ψ|Aϕ〉 = 〈Aψ|ϕ〉 for all ϕ,ψ ∈ X.

Intuitively, observables are physical quantities like energy, position, momen-
tum, angular momentum (spin). It follows from

〈ψ|Aψ〉† = 〈Aψ|ψ〉 = 〈ψ|Aψ〉

that 〈ψ|Aψ〉 is a real number for all states ψ. The real number

Ā :=
〈ψ|Aψ〉
||ψ||2 (7.13)

is called the mean value of the observable A in the state ψ. Intuitively, this
represents the mean value of the physical quantity A (for example, energy)
measured in the state ψ. Moreover, the nonnegative mean fluctuation, ΔA,
of the observable A in the state ψ is defined by13

13 To simplify notation, we write Ā instead of Ā · I where I denotes the identity
operator.
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(ΔA)2 = (A− Ā)2.

Explicitly,

(ΔA)2 =
〈ψ|(A− Ā)2ψ〉

||ψ||2 . (7.14)

As in the theory of probability,

(ΔA)2 = A2 − Ā2.

In fact, this follows from

A2 − 2ĀA+ Ā2 = A2 − 2ĀĀ+ Ā2.

Furthermore, from 〈ψ|(A− Ā)2ψ〉 = 〈(A− Ā)ψ|(A− Ā)ψ〉 we get

ΔA =
||(A− Ā)ψ||

||ψ|| .

Eigenstates as sharp states. A state ψ is called an eigenstate of the
observable A iff there exists a complex number λ such that

Aψ = λψ.

In an eigenstate ψ, the mean value is equal to the eigenvalue λ, and the mean
fluctuation is equal to zero,

Ā = λ, ΔA = 0.

In fact, 〈ψ|Aψ〉 = 〈ψ|λψ〉 = λ〈ψ|ψ〉, and ||(A − λI)ψ|| = 0. In particular,
the eigenvalues of an observable are always real. Because of ΔA = 0, the
eigenstate ψ of the observable A is called a sharp state with the sharp value
λ. Let us consider two examples:

• Molecule states are eigenstates of the energy operator (Hamiltonian). The
sharp energy values are responsible for the spectrum of molecules.

• Elementary particle are eigenstates of the mass operator and the spin op-
erator. The corresponding eigenvalues represent sharp values of mass and
spin.

Transition amplitude. The complex number

〈ψ|Aϕ〉

is called the transition amplitude from the state ϕ to the state ψ with respect
to the observable A. The real number
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τ :=
|〈ψ|Aϕ〉|2

||ψ||2 · ||ϕ||2

is called the transition probability from the state ϕ to the state ψ with respect
to the observable A. In particular, if A is the identity operator, then τ is
called the transition probability from the state ϕ to the state ψ The great
importance of transition amplitudes for quantum physics was emphasized
by Feynman in the 1940s. He based his approach to quantum mechanics,
quantum statistics, and quantum field theory on the notion of transition
amplitude. In a natural way, this leads to path integrals for the propagators,
as we will discuss in Sect. 7.21.

Correlation coefficient. Let A,B : X → X be two observables. The
complex number

γ :=
(A− Ā)(B − B̄)

ΔA ·ΔB
is called the (generalized) correlation coefficient for the ordered pair of ob-
servables A,B in the state ψ. There holds

γ =
AB − ĀB̄

ΔA ·ΔB .

This follows from (A− Ā)(B − B̄) = AB − 2ĀB̄ + ĀB̄. Explicitly,

γ =
〈ψ|(A− Ā)(B − B̄)ψ〉

ΔA ·ΔB · ||ψ||2 =
〈(A− Ā)ψ|(B − B̄)ψ〉

ΔA ·ΔB · ||ψ||2 .

By the Schwarz inequality,

|γ| ≤ ||(A− Ā)ψ|| · ||(B − B̄)ψ||
ΔA ·ΔB · ||ψ||2 = 1.

Hence |γ| ≤ 1.
Commuting observables and the Gauss method of least squares.

Let us now consider the special case of two observables A,B : X → X which
commute, that is, AB = BA. It follows then from

〈ψ|ABϕ〉 = 〈Aψ|Bϕ〉 = 〈BAψ|ϕ〉 = 〈ABψ|ϕ〉

for all ψ,ϕ ∈ X that AB is again an observable. Thus, AB is a real number,
and hence the correlation coefficient γ for A and B (in each state ψ) is
also a real number. In addition, −1 ≤ γ ≤ 1. In order to get an intuitive
interpretation of the correlation coefficient, consider the following minimum
problem

(B − αA− β)2 = min!, α, β ∈ R. (7.15)

That is, by Gauss’ method of least squares, we want to optimally fit the
observable B by the real linear combination αA + β. Assume that ΔA and
ΔB do not vanish.
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Theorem 7.6 For given observables A and B with AB = BA, the minimum
problem (7.15) has the solution

α := γ · ΔB
ΔA

, β := B̄ − αĀ.

The minimal value is equal to (ΔB)2(1 − γ2).

Intuitively, this theorem tells us that the correlation coefficient γ measures
the dependence between the physical quantities A and B.

• This dependence is optimal iff

(ΔB)2 · (1 − γ2) = 0,

that is, |γ| = 1. We call this strong correlation.
• The coefficient γ = 0 corresponds to weak correlation.

Proof. (I) Assume first that Ā = B̄ = 0 and ΔA = ΔB = 1. Then γ = AB
and A2 = (ΔA)2 + Ā2 = 1. Similarly, B2 = 1. Therefore,

(B − γA)2 = B2 − 2γAB + γ2A2 = 1 − γ2.

Noting that (B − γA)A = BA− γ = 0, the trick is to set

(B − αA− β)2 = ((B − γA) − (α− γ)A− β)2.

This is equal to

(B − γA)2 + (α− γ)2A2 + β2 = 1 − γ2 + (α− γ)2 + β2.

This quadratic expression is minimal if α = γ and β = 0. The minimal value
is equal to 1 − γ2. This proves the theorem in the present special case.

(II) For general mean values Ā, B̄, assume that ΔA = ΔB = 1. Setting
A := A− Ā and B := B − B̄, we get

(B − αA− β)2 = (B − αA− β′)2 = min!

with β′ := β − B̄ + αĀ. By (I), this problem has the solution α = γ and
β′ = 0.

(III) For general nonzero mean fluctuations ΔA,ΔB, the proof can be
easily reduced to (II) by using the rescaling A �→ A/ΔA and B �→ B/ΔB. �

Causal correlation functions. Let A = A(t) and B = B(t) be functions
depending on time t such that A(t), B(t) : X → X are observables for each
t ∈ R. Fix the state ψ ∈ X. For t > s, we set

C(t, s) := 〈ψ|A(t)B(s)ψ〉.

The function C is called the causal correlation function. Motivated by the
correlation coefficients introduced above, we expect that the value C(t, s) of
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the causal correlation function contains information about the correlation
between the observable B at time s and the observable A at the later time t,
in the state ψ. The experience of physicists is that causal correlation functions
represent an important tool in quantum field theory.

Quantum field theory is mainly based on the computation of causal
correlations functions which describe the correlations of the quantum
field between different space points at different time points.

The causal correlation functions of a quantum field are also called 2-point
Green’s functions and higher-order Green’s functions.

7.9.2 Observers and Coordinates

Orthogonality. Two states ψ and ϕ of the Hilbert space X are called or-
thogonal iff

〈ψ|ϕ〉 = 0.

This is the most important notion in Hilbert spaces.

The geometry of Hilbert spaces and hence quantum physics are gov-
erned by orthogonality.

For example, this concerns Fourier series and Dirac calculus, as we will show
below.

Proposition 7.7 Two eigenstates of an observable A with different eigen-
values are orthogonal.

To prove this, let Aψ = λψ and Aϕ = μϕ wit λ �= μ. Since the eigenvalues λ
and μ are real, (λ− μ)〈ψ|ϕ〉 = 〈Aψ|ϕ〉 − 〈ψ|Aϕ〉 = 0. Hence 〈ψ|ϕ〉 = 0.

Fourier coefficients of states. If an observer measures the state ψ by
a measurement device, then this corresponds to the decomposition

ψ = c1ϕ1 + . . .+ cNϕN (7.16)

where ϕ1, . . . , ϕN is a basis of the Hilbert space X, and c1, . . . , cN are complex
numbers. In order to get a physical interpretation of this decomposition,
assume additionally that the basis ϕ1, . . . , ϕN forms an orthonormal system,
that is, 〈ϕj |ϕk〉 = δjk for all j, k.14 Then

〈ψ|ψ〉 = |c1|2 + . . .+ |cN |2.

Finally, assume that the state ψ is normalized, that is, 〈ψ|ψ〉 = 1. Then

|c1|2 + . . .+ |cN |2 = 1.

This allows us to give the following interpretation:
14 For the Kronecker symbol, recall that δjk := 1 if j = k, and δjk := 0 if j �= k.

Here, j, k = 1, . . . , N.
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• Our measurement device is able to detect the states ϕ1, . . . , ϕN .
• If the particle is in the state ψ, then |cj |2 is the probability of measuring

the state ϕj .

We call c1, . . . , cN the coordinates of the state ψ with respect to the basis
ϕ1, . . . , ϕN . Explicitly,

cj = 〈ϕj |ψ〉, j = 1, . . . N.

This follows from (7.16) by using 〈ϕk|ψ〉 = 〈ϕk|ckϕk〉 = ck. The complex
number ck is called the Fourier coefficient of the state ψ.

Matrix elements of observables. The matrix elements

ajk := 〈ϕj |Aϕk〉, j, k = 1, . . . , N

are called the coordinates of the observable A with respect to the basis
ϕ1, . . . , ϕN . The Dirac calculus was invented by Dirac in the late 1920s;
it allows us to pass elegantly from one coordinate system to another one.
Dirac called this transformation theory. The Dirac calculus translates well-
known notions from linear algebra into a convenient mnemonical language.
In this monograph, we will always use Dirac’s language. To begin with, let
us formulate the relevant notions in the traditional mathematical language.

7.10 Fourier Series

Theorem 7.8 Each nontrivial finite-dimensional Hilbert space possesses an
orthonormal basis.

The standard proof based on the Schmidt orthogonalization method can be
found in Zeidler (1995), Vol. 1, Sect. 3.3.

Key relations. For fixed N = 1, 2, . . . , let X be an N -dimensional com-
plex Hilbert space.

(i) Orthonormal system: By definition, the states ϕ1, . . . , ϕK form an or-
thonormal system of the Hilbert space X iff

〈ϕj |ϕk〉 = δjk, j, k = 1, . . . ,K.

This orthonormal system is called complete iff the states form a basis of
X, that is, K = N. Then, each state ψ of X can be represented by the
finite Fourier series

ψ =
N∑

j=1

〈ϕj |ψ〉ϕj . (7.17)

The complex numbers 〈ϕj |ψ〉, j = 1, . . . , N, are called the Fourier coef-
ficients of the state ψ.
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(iii) Parseval equation: If ϕ1, . . . , ϕN is a complete orthonormal system in
the Hilbert space X, then15

〈ϕ|ψ〉 =
N∑

j=1

〈ϕ|ϕj〉〈ϕj |ψ〉.

This so-called Parseval equation represents the inner product in terms of
Fourier coefficients.16

(iv) Duality: For each state ϕ in X, set

Fϕ(χ) := 〈ϕ|χ〉 for all χ ∈ X.

This is a linear functional on the Hilbert space X called the costate, Fϕ,
corresponding to the state ϕ.
The Riesz theorem tells us that each linear functional on the Hilbert
space X is the costate to some state of X.17

(v) Two different products: For the costate F ∈ Xd and the state ψ ∈ X, we
introduce the inner product

F · ψ := F (ψ),

and the tensor product ψ ⊗ F. By definition, this is a linear operator
ψ ⊗ F : X → X given by

(ψ ⊗ F )(χ) := F (χ)ψ for all χ ∈ X.

(vi) Dirac’s completeness relation: An orthonormal system ϕ1, . . . , ϕN is
complete iff

N∑

j=1

ϕj ⊗ Fϕj = I

where I denotes the identity operator on X. In fact,

N∑

j=1

(ϕj ⊗ Fϕj )ψ =
N∑

j=1

Fϕj (ψ)ϕj =
N∑

j=1

〈ϕj |ψ〉ϕj = ψ.

15 To prove this, note that the inner product 〈ϕ|ψ〉 is equal to

〈
N
X

j=1

cjϕj |
N
X

k=1

dkϕk〉 =

N
X

j,k=1

c†jdk〈ϕj |ϕk〉 =

N
X

j,k=1

c†jdkδjk =

N
X

j=1

c†jdj

along with cj = 〈ϕj |ϕ〉 and dk := 〈ϕk|ψ〉, as well as c†j = 〈ϕ|ϕj〉.
16 Parseval des Chénes (1755–1836)
17 For the proof, see Zeidler (1995), Vol. 1, Sect. 2.10.
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(vii) Adjoint operator: For each linear operator A : X → X, there exists a
unique linear operator A† : X → X such that

〈Aϕ|ψ〉 = 〈ϕ|A†ψ〉 for all ϕ,ψ ∈ X. (7.18)

The operator A† is called the adjoint operator to A. An observable A is
characterized by the condition A = A†. Such operators are called self-
adjoint.

(viii) Dual operator: For each linear operator A : X → X, the dual operator
Ad : Xd → Xd is defined as follows. To each costate F ∈ Xd, we assign
the costate AdF given by

(AdF )(ϕ) := F (Aϕ) for all ϕ ∈ X.

Observe that the adjoint operator A† and the dual operator Ad act on differ-
ent spaces. Let ϕ1, . . . , ϕN be an orthonormal basis of the Hilbert space X.
Then, the matrix elements of the adjoint operator A† are given by

bjk := 〈ϕj |A†ϕk〉, j, k = 1, . . . , N.

Hence

bjk = 〈Aϕj |ϕk〉 = 〈ϕk|Aϕj〉† = a†kj , j, k = 1, . . . , N.

The (N × N)-matrix A† := (bjk) is called the adjoint matrix to the matrix
A := (ajk).

The main theorem on observables. The following theorem is called
the principal axis theorem in mathematics, since it guarantees the existence
of a principal axis for quadratic curves and surfaces (for example, ellipses
and ellipsoids). This theorem can be traced back to Euler (1707–1783) and
Cauchy (1789–1857).18

Theorem 7.9 Each observable A : X → X possesses a complete orthonor-
mal system of eigenstates ϕ1, . . . , ϕN .

Let Aϕj = λjϕj for j = 1, . . . , N where ϕ1, . . . , ϕN is a complete orthonormal
system in X. Then

Aψ =
N∑

j=1

λj〈ϕj |ψ〉ϕj for all ψ ∈ X.

This follows from Aψ =
∑N

j=1〈ϕj |ψ〉Aϕj .
Functions of observables. Let F : R → C be an arbitrary function.

For given observable A : X → X, we define the operator F (A) : X → X by
setting
18 The proof can be found in Zeidler (1995), Vol. 1, Sect. 4.2.
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F (A)ϕ :=
N∑

j=1

F (λj)〈ϕj |ϕ〉ϕj

for all ϕ ∈ X. This way, we get the operator function A �→ F (A). More
generally, the definition of the operator F (A) makes sense if the function
F : σ(A) → C is only defined on the spectrum σ(A) of the observable A, that
is, on the set of eigenvalues λ1, . . . , λN of A. For example, if the complex
number λ is not in the spectrum σ(A), then it makes sense to define

Rλ(A)ϕ :=
N∑

j=1

〈ϕj |ϕ〉
λ− λj

ϕj for all ϕ ∈ X.

Obviously, Rλ(A)(λI−A) = (λA−I)Rλ(A) = I. Hence Rλ(A) = (λI−A)−1.
This operator is called the resolvent of the observable A at the point λ ∈ C.
In the language of the Dirac calculus to be considered in the next section, we
get the elegant formula

F (A) =
N∑

j=1

F (λj) |ϕj〉〈ϕj |. (7.19)

Fourier transform. Let X be a finite-dimensional complex Hilbert space
of dimension N = 1, 2, . . . . Recall that the Hilbert space C

N is equipped with
the inner product

〈x|y〉 :=
N∑

j=1

x†jyj .

The operator F : X → C
N is defined by

(Fψ)(j) := 〈ϕj |ψ〉, j = 1, . . . , N.

That is, the operator F maps each state ψ to the sequence of its Fourier
coefficients,

Fψ = (〈ϕ1|ψ〉, . . . , 〈ϕN |ψ〉).

The operator F is called the discrete Fourier transformation with respect to
the orthonormal basis ϕ1, . . . , ϕN . The Parseval equation tells us that

〈ϕ|ψ〉 = 〈Fϕ|Fψ〉 for all ϕ,ψ ∈ X.

Consequently, the operator F : X → C
N is unitary, and the Hilbert space X

is isomorphic (or unitarily equivalent) to the Hilbert space C
N .

Let A : X → X be an observable with the eigenvalues λ1, . . . , λN and the
eigenvectors ϕ1, . . . , ϕN , respectively. Then
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F(Aψ) = (λ1〈ϕj |ψ〉, . . . , λN 〈ϕN |ψ〉).

This means that the observable A corresponds to the multiplication operator

〈ϕj |ψ〉 �→ λj〈ϕj |ψ〉, j = 1, . . . , N

in the Fourier space C
N . We will show later on that there exists a far-reaching

generalization to self-adjoint operators in infinite-dimensional Hilbert spaces
due to John von Neumann.

Reformulation in terms of some measure integral. When generaliz-
ing the notion of finite Fourier series to infinite dimensions, we will encounter
infinite series and integrals with appropriate weights which can be regarded
as continuous sums (Fourier–Stieltjes integral transformations). All of these
notions can be described in a unique manner by the basic notion of measure
integral to be considered later on. In particular, for an arbitrary function
f : R → C, we get

∫

R

f(x)dμ(x) =
N∑

j=1

f(j).

Here, the measure μ corresponds to a mass distribution on the real line where
precisely the points x1 = 1, . . . , xN = N possess the mass one. Furthermore,
for an arbitrary subset Ω of the real line,

∫

Ω

f(x)dμ(x) =
∑

j∈Ω

f(j).

This reformulation of finite sums in terms of a measure integral serves as
preparation for generalizing the Dirac calculus to infinite dimensions.

In what follows we will translate the relations above into Dirac’s language
which is used in physics textbooks.

7.11 Dirac Calculus in Finite-Dimensional Hilbert
Spaces

The Dirac calculus works on its own.
Folklore

Dirac’s bra and ket symbols. The inner product 〈ϕ|ψ〉 represents a
bracket. Mnemonically, it was Dirac’s idea to introduce the bra symbol 〈ϕ|
and the ket symbol |ψ〉 which possess the following meaning.

• States and costates: Let ϕ,ψ ∈ X and F ∈ Xd. We write

|ψ〉 := ψ, 〈ϕ| := Fϕ, |ψ〉〈ϕ| := ψ ⊗ Fϕ.

This yields the inner product 〈ϕ| · |ψ〉 = 〈ϕ|ψ〉, and the Dirac product
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|ψ〉〈ϕ| · |χ〉 = |ψ〉〈ϕ|χ〉.

• Adjointness: We set |ψ〉† = 〈ψ| and 〈ϕ|† = |ϕ〉, as well as

(ab)† = b†a†

for operators and states. It turns out that this convention implies the right
rules for both the inner product and the adjoint operator. In fact, we obtain

〈ϕ|ψ〉† = (〈ϕ| · |ψ〉)† = 〈ψ| · |ϕ〉 = 〈ψ|ϕ〉

where the dot denotes the inner product. Furthermore,

〈Aϕ|ψ〉 = 〈ψ|Aϕ〉† = (〈ψ|A · |ϕ〉)† = 〈ϕ| ·A†|ψ〉 = 〈ϕ|A†ψ〉.

• Dirac’s completeness relation: An orthonormal system ϕ1, . . . , ϕN is com-
plete iff

N∑

j=1

|ϕj〉〈ϕj | = I. (7.20)

Dirac’s substitution trick and coordinates. Dirac’s completeness
relation allows us to elegantly reformulate equations for states, costates, and
operators in terms of coordinates (that is, Fourier coefficients and matrix
elements). As a prototype for Dirac’s substitution trick, use the completeness
relation (7.20) in order to get

〈ϕ|ψ〉 = 〈ϕ|I|ψ〉 =
N∑

j=1

〈ϕ|ϕj〉〈ϕj |ψ〉.

This is the Parseval equation.

(i) Transition amplitude: Let A : X → X be a linear operator. Then19

〈ϕ|A|ψ〉 =
N∑

j,k=1

〈ϕ|ϕj〉〈ϕj |A|ϕk〉〈ϕk|ψ〉.

If we set bj := 〈ϕj |ϕ〉 and ck := 〈ϕk|ψ〉, as well as ajk := 〈ϕj |A|ϕk〉, then
we get the matrix equation

〈ϕ|A|ψ〉 =
N∑

j,k=1

bjajkck = bdAc

with the matrix A := (ajk) corresponding to the operator A.
19 We use synonymously the two symbols 〈ϕ|Aψ〉 and 〈ϕ|A|ψ〉.
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(ii) Operator equation: Our next goal is to reformulate the equation

ϕ = Aψ

in terms of coordinates. By Dirac’s substitution trick,

〈ϕj |ϕ〉 =
N∑

k=1

〈ϕj |A|ϕk〉〈ϕk|ψ〉, j = 1, . . . , N.

This can be written as bj =
∑N

k=1 ajkck. In the language of matrices,
b = Ac. Explicitly,

⎛

⎜
⎜
⎝

b1
...
bN

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

a11 a12 . . . a1N

...
aN1 aN2 . . . aNN

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

c1
...
cN

⎞

⎟
⎟
⎠ .

(iii) Product of operators: Finally, let us reformulate the product

C = AB

of the two linear operators A,B : X → X in terms of coordinates. Dirac’s
substitution trick yields

〈ϕj |AB|ϕk〉 =
N∑

s=1

〈ϕj |A|ϕs〉〈ϕs|B|ϕk〉.

For the matrix elements,

cjk =
N∑

s=1

ajsbsk, j, k = 1, . . . , N.

This corresponds to the matrix equation C = AB.

In Sect. 7.21 we will use Dirac’s substitution trick in order to obtain the
Feynman path integral.

Costates. Let F and ψ be a costate and a state, respectively, that is,
F ∈ Xd and ψ ∈ X. According to Dirac, we write

〈F | · |ψ〉 = 〈F |ψ〉 := F (ψ).

In particular, this yields

〈Fϕ|ψ〉 = 〈ϕ|ψ〉 for all ϕ,ψ ∈ X.

By Dirac’s completeness relation (7.20),
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〈F |ψ〉 =
N∑

j=1

〈F |ϕj〉〈ϕj |ψ〉.

Therefore, we write 〈F | =
∑N

j=1〈F |ϕj〉〈ϕj |.20 The complex numbers

〈F |ϕ1〉, . . . , 〈F |ϕN 〉

are called the coordinates (or the Fourier coefficients) of the costate F .
Dual operator. We are given the linear operator A : X → X. According

to Sect. 7.10, the dual operator Ad : Xd → Xd is defined by the relation
(AdF )(ϕ) = F (Aϕ). In the Dirac calculus, this can be written as

〈AdF |ϕ〉 = 〈F |Aϕ〉 for all F ∈ Xd, ϕ ∈ X.

For each F ∈ Xd, let us formulate the equation

G = AdF

in terms of coordinates. By Dirac’s completeness relation (7.20),

〈G|ϕj〉 = 〈F |Aϕ〉 =
N∑

k=1

〈F |ϕk〉〈ϕk|Aϕj〉.

This yields the matrix equation

〈G|ϕj〉 =
N∑

k=1

bjk〈F |ϕk〉, j = 1, . . . , N

where we set

bjk := akj = 〈ϕk|Aϕj〉, j, k = 1, . . . , N.

The (N ×N)-matrix Ad := (bjk) is called the dual (or transposed) matrix to
the matrix A = (ajk). In terms of the dual operator,

20 In the traditional language of mathematics,

F =

N
X

j=1

F (ϕj)Fϕj .

This follows from ψ = c1ϕ1 + . . . + cNϕN along with cj = 〈ϕj |ψ〉 = Fϕj (ψ).
Hence

F (ψ) = F

 

N
X

j=1

cjϕj

!

=

N
X

j=1

cjF (ϕj) =

N
X

j=1

F (ϕj)Fϕj (ψ).
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bjk = 〈AdFϕk
|ϕj〉, j, k = 1, . . . , N.

In fact, 〈AdFϕk
|ϕj〉 = 〈Fϕk

|Aϕj〉 = 〈ϕk|Aϕj〉 = akj = bjk.
Finally, let us mention that for an observable A : X → X, we get

〈AdFϕ|ψ〉 = 〈Aϕ|ψ〉 for all ϕ,ψ ∈ X.

This follows from 〈AdFϕ|ψ〉 = 〈Fϕ|Aψ〉 = 〈ϕ|Aψ〉 = 〈Aϕ|ψ〉.

7.12 The Trace of a Linear Operator

As all roads lead to Rome so I find in my own case at least that all algebraic
inquiries, sooner or later, end at the Capitol of Modern Algebra over whose
shining portal is inscribed the Theory of Invariants.21

James Sylvester (1814–1897)

The theory of invariants came into existence about the middle of the nine-
teenth century somewhat like Minerva: a grown-up virgin, mailed in the
shining armor of algebra, she sprang forth from Cayley’s Jovian head:22

Her Athens over which she ruled and which she served as a tutelary and
beneficent goddess was projective geometry.23

Hermann Weyl (1885–1955)

Geometry is the invariant theory of groups of transformations.
Felix Klein (1849–1925)
Erlanger Program, 1872

Let A : X → X be a linear operator on the complex N -dimensional Hilbert
space X with N = 1, 2, . . . Choose a fixed complete orthonormal system
ϕ1, . . . , ϕN and define the trace of A by setting

tr(A) :=
N∑

j=1

〈ϕj |Aϕj〉. (7.21)

Proposition 7.10 The value tr(A) does not depend on the choice of the
complete orthonormal system.

In terms of physics this means that different observers use different matrices
(ajk) for describing the abstract observable A (for example, energy), but all
of them compute the same matrix trace, tr(A) =

∑N
j=1 ajj .

21 As an introduction to invariant theory, we recommend the textbook by P. Olver,
Classical Invariant Theory, Cambridge University Press, 1999.

22 Cayley (1821–1895)
23 H. Weyl, The Classical Groups, Princeton University Press, 1938 (8th edition,

1973). H. Weyl, Invariants, Duke Math. J. 5 (1939), 489–502.
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Proof. Let ψ1, . . . , ψN be an orthonormal basis. By Dirac’s completeness
relation (7.20), we obtain

tr(A) =
N∑

j=1

〈ϕj |Aϕj〉 =
N∑

j,k,r=1

〈ϕj |ψk〉〈ψk|Aψr〉〈ψr|ϕj〉

along with
∑N

j=1〈ψr|ϕj〉〈ϕj |ψk〉 = 〈ψr|ψk〉 = δrk. This yields the claim
tr(A) =

∑N
r=1〈ψr|Aψr〉. �

Proposition 7.11 For linear operators A,B : X → X and complex numbers
α, β the following are met:

(i) tr(αA+ βB) = α trA+ β trB,
(ii) tr(AB) = tr(BA),
(iii) trA† = (trA)†.

Proof. Ad (i).
∑

j〈ϕj |αA+ βB|ϕj〉 = α
∑

j〈ϕj |A|ϕj〉 + β
∑

j〈ϕj |B|ϕj〉.
Ad (ii). By Dirac’s completeness relation (7.20),

tr(AB) =
N∑

j=1

〈ϕj |ABϕj〉 =
N∑

j,k=1

〈ϕj |Aϕk〉〈ϕk|Bϕj〉.

This is equal to

N∑

j,k=1

〈ϕk|Bϕj〉〈ϕj |Aϕk〉 =
N∑

k=1

〈ϕk|BAϕk〉 = tr(BA).

Ad (iii). trA† =
∑

j〈ϕj |A†ϕj〉 =
∑

j〈Aϕj |ϕj〉 =
∑

j〈ϕj |Aϕj〉†. �

For three linear operators A,B,C : X → X, it follows from the associative
law, ABC = A(BC) = (AB)C, that

tr(ABC) = tr(BCA) = tr(CAB).

This means that the trace is invariant under cyclic permutations. The same
argument shows that the trace of a finite product of operators is invariant
under cyclic permutations of the factors. For example,

tr(ABCD) = tr(BCDA).

Linear invariance. Let T : X → X be a linear invertible operator. Then,
TT−1 = I implies that

tr(TAT−1) = tr(AT−1T ) = tr(A).

This tells us that the trace of a linear operator on a finite-dimensional Hilbert
space is invariant under linear isomorphisms.
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The theory of invariants plays a fundamental role in physics.

We will encounter this quite often in this treatise. For example, the trace
of observables is fundamental for statistical physics and quantum physics.
This importance of the trace stems from the fact that tr(A) assigns a real
number to the observable A. This real number can be measured in a physical
experiment.

The characteristic equation. Let A : X → X be a linear operator on
the complex N -dimensional linear space X with N = 1, 2, . . .. The equation

det(λI −A) = 0, λ ∈ C (7.22)

is called the characteristic equation (or the secular equation) of the linear
operator A. For example, this equation was used by Lagrange (1736–1813)
and Laplace (1749–1827) for computing the long-term (secular) perturbations
of the orbits of planets. The solutions of (7.22) are precisely the eigenvalues
λ1, . . . , λN of the linear operator A. The set

σ(A) := {λ1, . . . , λN}

is called the spectrum of A, whereas the complement �(A) := C \ σ(A) is
called the resolvent set of A.

The inverse operator (λI −A)−1 exists iff λ ∈ �(A).

This operator is called the resolvent of the operator A at the point λ ∈ C.
Equation (7.22) can be written as

λN + pN−1λ
N−1 + . . .+ p1λ+ p0 = 0.

Since the determinant of a linear operator is an invariant, the coefficients
p0, p1, . . . are invariants of the linear operator A. They are called the principal
invariants of A. In particular,

p0 = (−1)N detA, pN−1 = − tr(A).

In terms of the eigenvalues of A,

det(λI −A) = (λ− λ1)(λ− λ2) · · · (λ− λN ) = 0.

This implies

det(A) = λ1λ2 · · ·λN , tr(A) = λ1 + λ2 + . . .+ λN .

For example, the characteristic equation det(λI−A) = 0 of the (2×2)-matrix
A = (aij) reads as

(λ− a11)(λ− a22) − a12a21 = λ2 − (a11 + a22)λ+ a11a22 − a12a21 = 0.

This is identical to λ2 − tr(A) λ+ det(A) = 0.
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7.13 Banach Spaces

Banach spaces are used in order to study the convergence of iterative
methods which play a fundamental role in perturbation theory.

Folklore

Let −∞ < a < b < ∞. The prototype of a Banach space is the space C[a, b]
of all continuous functions f : [a, b] → C equipped with the norm

||f || := max
a≤t≤b

|f(t)|.

Normed space. Set X := C[a, b]. For all f, g ∈ X and all complex
numbers α, the following are met:

(B0) X is a complex linear space.
(B1) To each element f of X, there is assigned a nonnegative real number

||f ||. Moreover, ||f || = 0 iff f = 0.
(B2) Triangle inequality: ||f + g|| ≤ ||f || + ||g||.
(B3) ||αf || = |α| · ||f ||.

Generally, a space X is called a complex normed space iff the conditions (B0)
through (B3) are satisfied. By definition, a subset M of a normed space is
bounded iff there exists a positive number r such that ||f || ≤ r for all f ∈ M.
Furthermore, let X and Y be normed spaces, and let M be a subset of X.
The operator A : M → Y is called bounded iff it transforms bounded sets
into bounded sets.

Completeness. The convergence limn→∞ fn = f in a complex normed
space X is defined by

lim
n→∞

||f − fn|| = 0.

A sequence (fn) in X is called a Cauchy sequence iff for each given ε > 0,
there exists an index n0(ε) such that

||fn − fm|| < ε for all n,m ≥ n0(ε).

A complex normed space is called a Banach space iff it is complete, that
is, each Cauchy sequence is convergent. It can be shown that each finite-
dimensional complex normed space is a Banach space. For the proof, see
Zeidler (1995), Vol. 1, Sect. 1.12. Moreover, with respect to the norm

||ϕ|| :=
√

〈ϕ|ϕ〉,

each pre-Hilbert space (resp. Hilbert space) is a normed space (resp. Banach
space).

The Banach fixed-point theorem. Consider the operator equation

ϕ = κAϕ, ϕ ∈ B. (7.23)
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We are given the complex number κ. We are looking for an element ϕ of the
complex Banach space X which lies in the ball B := {ϕ ∈ X : ||ϕ|| ≤ r} of
fixed radius r > 0. In addition, we set ϕ0 := 0, and we consider the iterative
method

ϕn+1 = κAϕn, n = 0, 1, . . . . (7.24)

Theorem 7.12 Suppose that the operator A : B → X satisfies the Lipschitz
condition

||Aϕ−Aχ|| ≤ const ||ϕ− χ|| for all ϕ, χ ∈ B.

Then, there exists a number κ0 > 0 such that, for each given complex number
κ with |κ| ≤ κ0, equation (7.23) has a unique solution ϕ, and the iterative
method (7.24) converges to ϕ as n → ∞.

The proof of this theorem along with applications to numerous problems can
be found in Zeidler (1986), Vol. I.

The Banach space L(X,Y ). Let X and Y be finite-dimensional complex
Banach spaces. By L(X,Y ), we denote the set of all linear operators

A : X → Y.

For all A,B ∈ L(X,Y ) and all complex numbers α, β, the linear combination
αA+ βB is defined by

(αA+ βB)ϕ := αAϕ+ βBϕ for all ϕ ∈ X.

This way, L(X,Y ) becomes a complex linear space. For each A ∈ L(X,Y ),
the norm

||A|| := max
||ϕ||≤1

||Aϕ||

is a well-defined real number, and it can be shown that L(X,Y ) becomes a
finite-dimensional complex Banach space. For the proof, see Zeidler (1995),
Vol. 1, Sect. 1.20. In particular, if we choose Y := C then the dual space Xd

of all linear functionals F : X → C becomes a complex Banach space with
respect to the norm

||F || := max
||ϕ||≤1

|F (ϕ)|.

Analytic operator functions. Let a0, a1, a2, . . . be complex numbers.
Suppose that the power series expansion

f(z) = a0 + a1z + a2z
2 + . . .

is convergent for all complex numbers z with |z| < r. Define
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f(A) := a0I + a1A+ a2A
2 + . . . =

∞∑

k=0

akA
k. (7.25)

This series converges for all operators A ∈ L(X,X) with ||A|| < r, and we
have f(A) ∈ L(X,X). Explicitly,

lim
n→∞

||f(A) −
n∑

k=0

akA
k|| = 0.

This convergence is equivalent to the convergence of the corresponding matrix
elements with respect to any fixed basis of the linear space X. As an example,
let us consider the geometric series

f(z) := 1 + z2 + z3 + . . .

which converges for all z ∈ C with |z| < 1. Explicitly, f(z) = 1
1−z . For all

A ∈ L(X,X) with ||A|| < 1, we set

f(A) := I +A+A2 + . . .

It turns out that f(A) = (I − A)−1. Analogously, we get the exponential
function

eA = I +A+
A2

2!
+
A3

3!
+ . . .

for all operators A ∈ L(X,X). The proofs can be found in Zeidler (1995),
Vol. 1, Sect. 1.22.

7.14 Probability and Hilbert’s Spectral Family
of an Observable

We want to formulate basic notions in finite-dimensional Hilbert spaces in
such a language that it can be easily generalized to infinite dimensions later
on, by using John von Neumann’s operator calculus. In this section, we use
the measure integral to be introduced in Sect. 10.2.1. The reader who is not
familiar with this notion of integral should only look at the finite sums below.

Hilbert’s spectral family. Let A : X → X be an observable on the
complex N -dimensional Hilbert space X. Furthermore, let ϕ1, . . . , ϕN be a
complete orthonormal system of eigenstates of the operator A with the eigen-
values λ1, . . . , λN , respectively. That is, Aϕj = λjϕj for j = 1, . . . , N. In 1904
Hilbert introduced the spectral operator Eλ : X → X given by

Eλ :=
∑

λj<λ

|ϕj〉〈ϕj |, λ ∈ R.
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The symbol
∑

λj<λ means that we sum over all indices j with the property
that λj < λ. We call {Eλ}λ∈R the spectral family of the observable A. Spec-
tral families play a crucial role in quantum physics for describing the energy
spectrum of atoms, molecules, and elementary particles.

Hilbert’s spectral integral. For each given observable A,

A =
∫

R

λdEλ =
N∑

j=1

λj |ϕj〉〈ϕj |.

Let ϕ,ψ ∈ X. For the transition amplitude,

〈ϕ|Aψ〉 =
∫

R

λd〈ϕ|Eλψ〉 =
N∑

j=1

λj〈ϕ|ϕj〉〈ϕj |ψ〉.

Randomness of quantum processes. Suppose that we measure the
observable A (e.g., energy) in the normalized state ψ, and we obtain the
value a. The probability, P (Ω), of finding the measured value a in the set Ω
is defined to be

P (Ω) :=
∑

λj∈Ω

|〈ϕj |ψ〉|2.

Observe that if Ω is the real line, then P (R) =
∑N

j=1 |〈ϕj |ψ〉|2 = 〈ψ|ψ〉 = 1,
by the Parseval equation, as expected. In the language of measure integrals,

P (Ω) =
∫

Ω

d〈Eλψ|Eλψ〉.

This integral refers to the variable λ. Since the operator Eλ is self-adjoint
and E2

λ = Eλ, we get 〈Eλψ|Eλψ〉 = 〈ψ|E2
λψ〉 = 〈ψ|Eλψ〉. Hence

P (Ω) =
∫

Ω

d〈ψ|Eλψ〉.

If we choose the open interval Ω :=] − ∞, λ[, then we obtain the so-called
probability distribution function

F (λ) := P (] −∞, λ[) =
∑

λj<λ

|〈ϕj |ψ〉|2.

The function F is a step function which jumps at the points λ1, . . . , λN .
Moreover, the function F is continuous from the left. According to the rules
of the theory of probability, the mean value of the observable A is given by

Ā =
∫

R

λdF (λ).

Hence
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Ā =
N∑

j=1

λj |〈ϕj |ψ〉|2 =
N∑

j=1

λj〈ψ|ϕj〉〈ϕj |ψ〉 = 〈ψ|Aψ〉

which coincides with the definition of the mean value given by formula (7.13)
on page 352.

7.15 Transition Probabilities, S-Matrix, and Unitary
Operators

In elementary particle physics, the S-matrix plays a fundamental role for
describing scattering processes. In what follows, we want to describe the basic
ideas of this fundamental concept in terms of a complex finite-dimensional
Hilbert space X which has the dimension N = 1, 2, . . . Suppose that the two
systems

ϕ1, . . . ϕN and ψ1, . . . , ψN

form an orthonormal basis of the Hilbert space X. By the Dirac calculus, we
get the following key relation:

N∑

r=1

〈ψj |ϕr〉〈ϕr|ψk〉 = 〈ψj |ψk〉 = δjk, j, k = 1, . . . , N. (7.26)

S-matrix. By definition, the transition amplitude from the state ψk to
the state ϕj reads as

sjk := 〈ϕj |ψk〉, j, k = 1, . . . , N. (7.27)

The idea is to regard this system (sjk) of transition amplitudes as the el-
ements of a complex (N × N)-matrix called the S-matrix. From (7.26) we
obtain immediately the following crucial property.

Proposition 7.13 The S-matrix (sjk) is unitary. Explicitly,

N∑

r=1

s†rjsrk = δjk, j, k = 1, . . . , N.

Transition probabilities. Letting j = k, we get

N∑

r=1

|srk|2 = 1, k = 1, . . . , N.

This allows us the following interpretation. For given fixed state ψk with
k = 1, . . . , N , the number
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|srk|2 = |〈ϕr|ψk〉|2, r = 1, . . . , N

is the transition probability from the state ψk to the state ϕr. We now want
to show that precisely unitary operators are related to systems of transition
probabilities.

From transition probabilities to unitary operators. Let ϕ1, . . . , ϕN

and ψ1, . . . , ψN be chosen as above. Define a linear operator S : X → X by
setting

Sϕk := ψk, k = 1, . . . , N.

Then, the operator S is unitary, that is,

〈Sϕ|Sψ〉 = 〈ϕ|ψ〉 for all ϕ,ψ ∈ X.

Let us prove this. Note first that

〈Sϕj |Sϕl〉 = 〈ψj |ψl〉 = δjl j, l = 1, . . . , N.

Thus, it follows from ϕ =
∑N

k=1〈ϕk|ϕ〉ϕk and ψ =
∑N

l=1〈ϕl|ψ〉ϕl that
〈Sϕ|Sψ〉 is equal to

N∑

k,l=1

〈ϕk|ϕ〉†〈ϕl|ψ〉〈Sϕk|Sϕl〉 =
N∑

k=1

〈ϕ|ϕk〉〈ϕk|ψ〉 = 〈ϕ|ψ〉.

From unitary operators to transition probabilities. Conversely,
suppose that we are given a linear unitary operator S : X → X. Let
ϕ1, . . . , ϕN be an orthonormal basis of X. Finally, set

ψk := Sϕk, k = 1, . . . , N.

Then, the system ψ1, . . . , ψN is also an orthonormal basis. In fact,

〈ψk|ψl〉 = 〈Sϕk|Sϕl〉 = 〈ϕk|ϕl〉 = δjk.

The matrix elements of the operator S are given by

sjk := 〈ϕj |Sϕk〉, j, k = 1, . . . , N.

Hence sjk = 〈ϕj |ψk〉, showing us that sjk represents a transition probability,
as in (7.27) above.

Physical interpretation. Suppose that the following situation is met.

• The given quantum system is in one of the states ϕ1, . . . , ϕN at the initial
time tin.

• The initial state ϕk passes over to the state Sϕk at the final time tout.
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Then, the real number
|sjk|2 = |〈ϕj |Sϕk〉|2

represents the transition probability of the quantum system from the initial
state ϕk to the final state ϕj during the time interval [tin, tout]. It is cru-
cial that the operator S is unitary. Otherwise, an interpretation in terms of
transition probabilities is not possible.

Typically, the original S-matrix constructed in the Standard Model in
particle physics is not unitary. However, this shortcoming can be fixed by
introducing ghosts and antighosts (see Chap. 16).

7.16 The Magic Formulas for the Green’s Operator

Let H : X → X be an observable on the complex Hilbert space X of finite
dimension N = 1, 2, , . . . The three magic formulas read as follows:24

(i) Fourier representation formula in terms of energy eigenstates:

G(E) =
N∑

j=1

|Ej〉〈Ej |
Ej − E

, E ∈ C \ σ(H). (7.28)

(ii) The Laplace transform of the retarded propagator in the energy space:

G(E) =
i
�

∫ ∞

0

P+(t, t0) ei(t−t0)E/� dt, �(E) > 0. (7.29)

The retarded propagator P+ is also called the Feynman propagator.
(iii) The inverse Laplace transform:

P+(t, t0) =
1

2πi
lim

R→+∞

∫ R+iγ

−R+iγ

e−i(t−t0)E/� G(E) dE. (7.30)

This is true for all real times t �= t0. For fixed parameter γ > 0, we
integrate over the line {E ∈ C : �(E) = γ} parallel to the real axis.

These formulas reflect the duality between time t and energy E which is
crucial for quantum field theory. We will use the following terminology:

• energy operator H (Hamiltonian);
• energy eigenvalues E1, . . . EN with H|Ej〉 = Ej |Ej〉 for j = 1, . . . , N ;
• energy eigenstates |E1〉, . . . , |EN 〉;
24 Fourier (1768–1830) and Laplace (1749–1827); John von Neumann (1903–1957)

founded far-reaching generalizations of these formulas in the framework of his
operator calculus for self-adjoint operators in infinite-dimensional Hilbert spaces.
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• energy spectrum σ(H) := {E1, . . . , EN};
• Green’s operator G(E) := (H−EI)−1 defined for complex energies E with
E /∈ σ(H);

• Green’s matrix Gjk(E) := 〈j|G(E)|k〉 for j, k = 1, . . . , N with respect to
the complete orthonormal system |1〉, . . . , |N〉;

• propagator P (t, t0) := e−i(t−t0)H/� for all real times, t ∈ R, and fixed real
initial time t0.

• Retarded propagator (or Feynman propagator)

P+(t, t0) :=

{
P (t, t0), if t ≥ t0

0 if t < t0.

In terms of the Heaviside function, P+(t, t0) = θ(t − t0)P (t, t0).25 The re-
tarded propagator is switched on at time t0. The eigenstates form a complete
orthonormal system in the Hilbert space X. In the physics textbooks, the
retarded propagator (resp. the Green’s operator) is closely related to insta-
tionary (resp. stationary) scattering theory. For physics it is crucial that

The singularities of the Green’s operator in (7.28) are precisely the
points in the energy spectrum.

Physicists developed methods for computing the Green’s operator and the
retarded propagator. For example,

Feynman’s approach to quantum physics is based on representing the
retarded propagator by a path integral.

In what follows, we will discuss this. We start with the instationary Schrödin-
ger equation

i�ψ̇(t) = Hψ(t), t ∈ R. (7.31)

Here, the dot denotes the time derivative.

7.16.1 Non-Resonance and Resonance

Motivated by Fourier’s approach to eigenoscillations of the vibrating string,
we are looking for special solutions of the instationary Schrödinger equation
(7.31) which have the following form

ψ(t) = e−iEt/�ϕ, t ∈ R.

This leads to the stationary Schrödinger equation

Hϕ = Eϕ, ϕ ∈ X. (7.32)

25 By definition, θ(t) := 1 if t ≥ 0, and θ(t) := 0 if t < 0.
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In mathematics, this is called an eigenvalue problem. The corresponding in-
homogeneous problem looks like

Hϕ− Eϕ = χ, ϕ ∈ X. (7.33)

In terms of physics, the right-hand side χ describes an external force. In
Schwinger’s terminology, χ is called a source term.

Basic ideas. There is a duality between the two problems (7.33) and
(7.32). To explain this, fix the complex number E. We are interested in the
operator

G(E) := (H − EI)−1

called the Green’s operator in physics.

(N) Non-resonance case: Suppose E /∈ σ(H). Then, the Green’s operator

G(E) : X → X

exists.26 For each given χ ∈ X, the inhomogeneous equation (7.33) has
the unique solution ϕ = G(E)χ. Explicitly, the Green’s operator looks
like

G(E) =
N∑

j=1

|Ej〉〈Ej |
Ej − E

.

In terms of physics, the energy parameter E is different from the energies
|Ej〉, . . . , |EN 〉 of the eigenoscillations of the system.

(R) Resonance case: Suppose E ∈ σ(H). Without any loss of generality, we
assume that E = E1. Moreover, assume that the energy eigenvalue E1

has the multiplicity m, that is, E1 = E2 = . . . = Em and Ej �= E1 if
j > m.27 Then, the inhomogeneous problem (7.33) has a solution iff the
resonance condition

〈Ej |χ〉 = 0, j = m+ 1, . . . , N (7.34)

is satisfied. In this case, the general solution of (7.33) looks like

ϕ = Greg(E1)χ+ c1|E1〉 + . . .+ cm|Em〉

where c1, . . . , cm are arbitrary complex numbers, and the regularized
Green’s operator is given by

Greg(E1) :=
m∑

j=1

|Ej〉〈Ej | +
N∑

j=m+1

|Ej〉〈Ej |
Ej − E1

.

26 In mathematics, the operator −G(E) = (EI − H)−1 is called the resolvent of
the Hamiltonian H at the point E. The functional analytic theory of resolvents
can be found in Lax (2002).

27 Suppose that 1 ≤ m < N in order to exclude the trivial case H = E1I.
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In terms of physics, the resonance condition (7.34) tells us that the exter-
nal force χ has to be compatible with the eigenoscillations of the system.
If this compatibility is violated, then the physical process is impossible.
Furthermore, the external force χ never uniquely determines the state
of the system. This complicates the physics. In order to obtain a unique
state, one has to add a side condition (see Theorem 7.15 below).

In Sect. 8.1 we will show how the difficulties of the resonance case
are related to renormalization.

In quantum field theory, the Epstein–Glaser approach to renormalization dis-
plays most clearly that there are additional degrees of freedom which have to
be determined by side conditions coming from physics. The Epstein–Glaser
approach is based on the theory of generalized functions. This will be inves-
tigated in Volume IV.
Proof. We will use the Fourier method, that is, we will determine the solution
by computing its Fourier coefficents.

Ad (N). By (7.33), 〈Ej |(H − E)ϕ〉 = 〈Ej |χ〉 for all j. If Hϕj = Ejϕj ,
then 〈ϕj |Hϕ〉 = 〈Hϕj |ϕ〉 = Ej〈ϕj |ϕ〉. Hence

〈Ej |Hϕ〉 = Ej〈Ej |ϕ〉.

Thus, we obtain

(Ej − E)〈Ej |ϕ〉 = 〈Ej |χ〉, j = 1, . . . , N. (7.35)

If E �= Ej for all j, then

|ϕ〉 =
N∑

j=1

|Ej〉〈Ej |ϕ〉 =
N∑

j=1

|Ej〉〈Ej |χ〉
Ej − E

= G(E)|χ〉.

Ad (R). If E = E1, then 〈Ej |χ〉 = 0 for j = m+ 1, . . . , N, by (7.35).
This yields the special solution

|ϕ〉 =
N∑

j=m+1

|Ej〉〈Ej |χ〉
Ej − E

.

Note that the resonance condition (7.35) does not restrict the Fourier coeffi-
cients 〈Ej |ϕ〉 for j = 1, . . . ,m. Therefore, the general solution is obtained by
adding the linear combination

∑m
j=1(cj + 1)|Ej〉. �

The orthogonal projector P onto the eigenspace of the eigen-
value E1. Let us consider the resonance case (R) above. Define the operator

P :=
m∑

j=1

|Ej〉〈Ej |.
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It is our goal to describe the regularized Green’s operator Greg(E1) in terms
of the operator P. We will show that Greg(E1) = (H + P −E1I)−1.

Let us first study typical properties of the operator P. For all ϕ ∈ X, we
have ϕ =

∑N
j=1 |Ej〉〈Ej |ϕ〉, and

Pϕ =
m∑

j=1

|Ej〉〈Ej |ϕ〉.

This implies the decomposition

ϕ = Pϕ+ (I − P )ϕ

where Pϕ is orthogonal to (I − P )ϕ. We write this as X = PX ⊕ (I − P )X.
The space PX is identical with the eigenspace of the Hamiltonian H with
respect to the eigenvalue E1. We call P the orthogonal projector onto the
eigenspace PX.

Proposition 7.14 (i) Pϕ = ϕ iff Hϕ = E1ϕ.
(ii) P 2 = P and P † = P.

Proof. Ad (i). Note that Pϕ = ϕ iff 〈Ej |ϕ〉 = 0 for j = m+ 1, . . . , N.
Ad (ii). Since P |Ej〉 = |Ej〉 for j = 1, . . . ,m, we get P 2 = P. Moreover,

for all ϕ,ψ ∈ X,

〈ϕ|Pψ〉 =
N∑

j=1

〈ϕ|Ej〉〈Ej |ψ〉.

Similarly, 〈ψ|Pϕ〉 =
∑N

j=1〈ψ|Ej〉〈Ej |ϕ〉. Hence

〈Pϕ|ψ〉 = 〈ψ|Pϕ〉† =
N∑

j=1

〈Ej |ψ〉〈ϕ|Ej〉 = 〈ϕ|Pψ〉.

Therefore, P † = P. �

Let us now use the operator P in order to study the operator equation

Hϕ−E1ϕ = χ, ϕ ∈ X (7.36)

in the resonance case (R) above. We are given χ ∈ X. Reformulating (R), we
obtain the following result.

Theorem 7.15 Equation (7.36) has a solution iff Pχ = 0. Assume that
Pχ = 0. Then, ϕ = Gregχ is the unique solution of equation (7.36) along
with the side condition Pϕ = 0.
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Consequently, the linear operator Greg : (I − P )X → (I − P )X is invertible.
The pseudo-resolvent in the resonance case. Consider now the mod-

ified operator equation

Hϕ+ Pϕ− E1ϕ = χ, ϕ ∈ X (7.37)

in the resonance case (R) above.

Theorem 7.16 For each χ ∈ X, equation (7.37) has the unique solution

ϕ = (H + P −E1I)−1χ = Greg(E1)χ.

Therefore, the operator −Greg(E1) is called the pseudo-resolvent of the
Hamiltonian H at the eigenvalue E1.
Proof. (I) Uniqueness. Let ϕ1 and ϕ2 be solutions of (7.37). Set ϕ := ϕ1−ϕ2.
Then

Hϕ− E1ϕ = −Pϕ.
By Theorem 7.15, P 2ϕ = 0. Hence Pϕ = 0. Finally, Theorem 7.15 tells us
that ϕ = 0.

(II) Existence. Set

ϕ := Greg(E1)χ =
m∑

j=1

|Ej〉〈Ej |χ〉 +
N∑

j=m+1

|Ej〉〈Ej |χ〉
Ej − E1

.

Then (H + P − E1I)ϕ = Pϕ+ (H −E1I)ϕ. This is equal to

m∑

j=1

|Ej〉〈Ej |χ〉 +
N∑

j=m+1

|Ej〉〈Ej |χ〉 = χ.

Therefore, (H + P −E1I)ϕ = χ. �

In Sect. 8.1, we will show how to use Theorem 7.16 in the nonlinear
resonance case which is related to the concept of renormalization.

7.16.2 Causality and the Laplace Transform

Damped oscillations and complex energy. Let us introduce the complex
energy

E = �(ω − Γ i)

where ω and Γ > 0 are real numbers. For a fixed nonzero complex number
x0, the function

x(t) = x0e−iEt/� = x0e−iωte−Γt, t ∈ R

describes a damped wave of angular frequency ω. It is reasonable to call the
parameter
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Δt :=
1
Γ

the mean lifetime of the damped oscillation. Since the function x = x(t)
increases as t → −∞, the integral

∫ ∞

−∞
x(t)dt = x0

∫ ∞

−∞
e−iωte−γtdt (7.38)

does not exist. The situation changes completely if we truncate the function
x = x(t) by introducing the Heaviside function θ. This yields the function

y(t) := θ(t)x(t) = x0θ(t)e−iωte−γt, t ∈ R.

Explicitly, y(t) = x(t) if t ≥ 0, and y(t) = 0 if t < 0. Set x0 := 1. For the
integral,

∫ ∞

−∞
y(t)dt =

∫ ∞

0

e(−iω−γ)t dt = − lim
T→+∞

e(−iω−γ)t

iω + γ

∣
∣
∣

T

0
=

1
iω + γ

.

Note that e−γT → 0 as T → +∞.
The role of negative energies. In classical mechanics, the energy E

is always nonnegative. However, in quantum physics, negative energies are
allowed. In 1928 Dirac predicted that negative energies correspond to positive
energies of antiparticles.

The importance of the retarded propagator. We now want to inves-
tigate the Laplace transform of the retarded propagator. By definition, the
retarded operator reads as

P+(t, t0) := θ(t− t0)e−i(t−t0)H/�, t, t0 ∈ R.

By the operator calculus formula (7.19) on page 360,

P+(t, t0) = θ(t− t0)
N∑

j=1

e−i(t−t0)Ej/�|Ej〉〈Ej |. (7.39)

Here, |E1〉, . . . , |EN 〉 represents a complete orthonormal system of eigenvec-
tors of the Hamiltonian H corresponding to the eigenvalues E1, . . . , EN , re-
spectively. Observe that it is crucial to use the retarded propagator P+(t, t0)
instead of the propagator P (t, t0) = e−i(t−t0)E/�. Indeed, the Fourier trans-
form

∫ ∞

−∞
P (t, t0)eiE(t−t0)/�dE =

∫ ∞

−∞
e−i(t−t0)H/� eiE(t−t0)/�dE

does not exist. To check this, it is sufficient to consider the corresponding
integrals for the eigenvalues, by (7.39). However, if we replace the operator
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H by the eigenvalue Ej , then we get a divergent integral. As the following
theorem shows, the situation changes completely if we consider the integral

∫ ∞

−∞
P+(t, t0)eiE(t−t0)/�dE =

∫ ∞

0

e−i(t−t0)H/� eiE(t−t0)/�dE,

and if we use the complex energy E = �(ω + γi) with γ > 0. The passage
from the propagator P (t, t0) to the retarded propagator P+(t, t0) means that
the process is switched on at time t0, and we study the process in the future,
t ≥ t0. Therefore, the retarded propagator reflects causality.

Theorem 7.17 The retarded propagator P+ is related to the Green’s opera-
tor G by the magic Laplace transform (7.29) and the inverse Laplace trans-
form (7.30).

Proof. To simplify notation, we set � := 1 and t0 := 0.
Ad (7.29). Let �(E) > 0. Then

1
Ej − E

= i
∫ ∞

0

e−itEj eiEt dt.

By (7.39), we get the claim (7.29).
Ad (7.30). We will use Cauchy’s residue method. Using a translation, we

have to show that

θ(t)e−itH =
1

2πi
lim

R→+∞

∫ R

−R

e−it(E+iγ) G(E + iγ)dE.

By (7.39), it is enough to prove this relation for the eigenvalues of H. Thus,
we have to show that

θ(t)e−itEj =
1

2πi
lim

R→+∞

∫ R

−R

e−it(E+iγ)

Ej − (E + iγ)
dE (7.40)

for all real times t �= 0 and fixed parameter γ > 0.

(a)

�
x

�y

�
�

�

  

Ej − iγ
C−

−R R

y = −R
(b)

�
x

�y

�

  

�
��

Ej − iγ

C+

−R R

y = R

Fig. 7.1. Cauchy’s residue method
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Case 1: t > 0. Choose the curve C− as pictured in Fig. 7.1(a). By Cauchy’s
residue method, we get

1
2πi

∫

C−

e−iEt

E − (Ej − iγ)
dE = e−it(Ej−iγ),

noting that the integrand has a first-order pole at the point E = Ej − iγ.
Letting E = x+ iy,

e−iEt

E − (Ej − iγ)
=

e−ixt eyt

x−Ej + i(y + γ)
.

For fixed time t > 0, the function y �→ eyt decays fast as y → −∞. Hence

lim
R→+∞

∫

C−\[−R,R]

e−iEt

E − (Ej − iγ)
dE = 0.

Observing the orientation of the curve C−,

lim
R→+∞

1
2πi

∫ R

−R

e−iEt

E − (Ej − iγ)
dE = −e−i(Ej−iγ)t.

This yields the claim (7.40).
Case 2: t < 0. Now use Fig. 7.1(b). Noting that the curve C+ does not

surround the singularity Ej − iγ of the integrand,

∫

C+

e−iEt

E − (Ej − iγ)
dE = 0.

For fixed time t < 0, the function y �→ ety decays rapidly as y �→ +∞. Hence

lim
R→+∞

∫ R

−R

e−iEt

E − (Ej − iγ)
dE = 0.

�

The lifetime of particles. In particle accelerators, physicists frequently
observe particles which have only a finite lifetime. To mathematically model
this phenomenon, we have to modify the instationary Schrödinger equation,

i�ψ̇(t) = (H − iV )ψ(t), t ∈ R

by adding the complex perturbation −iV to the self-adjoint Hamiltonian
H. Making the Fourier ansatz ψ(t) = e−iEt/�ϕ, we obtain the stationary
Schrödinger equation

(H − iV )ϕ = Eϕ.

Assume that this equation has the complex eigenvalues



7.17 The Magic Dyson Formula for the Retarded Propagator 383

Ej = �(ωj − Γj i), j = 1, . . . , N

with the corresponding eigenvectors |E1〉, . . . , |EN 〉. Suppose that Γj > 0 for
all j. Then, the state

ψ(t) = e−iEjt/�|Ej〉 = e−iωjte−Γjt|Ej〉, t ∈ R

can be regarded as a state which has the energy �ωj and the mean lifetime
Δt = 1/Γj . From the functional analytic point of view, this important phe-
nomenon is studied in the monograph by Hislop and Sigal (1996).

7.17 The Magic Dyson Formula for the Retarded
Propagator

We want to study the initial value problem

i�ψ̇(t) = H(t)ψ(t), t ≥ t0, ψ(t0) = ψ0. (7.41)

We make the following assumptions:

(A1) Let X be a finite-dimensional complex Hilbert space. We are given the
initial state ψ0 ∈ X at the initial time t0.

(A2) The operator H(t) : X → X is linear for each time t ∈ R.
(A3) The map t �→ H(t) is smooth from R to the space L(X,X).28

(A4) The operator H0 : X → X is linear, and it does not depend on time t.
(A5) The function f : R → X is smooth.

The assumptions (A4), (A5) refer to problems considered below. In the spe-
cial case where X = C

N , all of the operators and states are matrices. By
choosing an orthonormal basis of the Hilbert space X and passing to ma-
trices, our problem can be always reduced to the space C

N . If we pass to
matrix elements, then problem (7.41) represents a linear system of ordinary
differential equations. The unique solution of (7.41) can be written as

ψ(t) = P+(t, t0)ψ0, t ≥ t0.

It is our goal to prove the magic Dyson formula

P+(t, t0) = T e−
i
�

R t
t0

H(τ)dτ
, t ≥ t0 (7.42)

for the retarded propagator (Feynman propagator) P+ and to derive the
Dyson series. Here, we use the so-called time-ordering operator T which
28 This means that the matrix elements of H(t) are smooth functions of time t.

Similarly, we assume that the Fourier coefficients of f(t) are smooth functions
with respect to time t. Naturally enough, these definitions of smoothness do not
depend on the choice of the basis vectors.
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describes the causal structure of time-dependent processes. Explicitly, the
chronological operator T organizes the factors in such a way that time is
increasing from right to left:

T {H(τ1)H(τ2)} :=

{
H(τ1)H(τ2) if τ1 ≥ τ2,

H(τ2)H(τ1) if τ2 ≥ τ1.

More generally,

T {H(τ1)H(τ2) · · ·H(τn)} := H(τ1′)H(τ2′) · · ·H(τn′). (7.43)

Here, τ1′ , . . . , τn′ is a permutation of τ1, . . . , τn such that τ1′ ≥ τ2′ ≥ . . . ≥ τn′ .
The Dyson formula (7.42) is to be understood mnemonically. Using the power
series expansion of the exponential function, for all t ≥ t0, we get

P+(t, t0) =
∞∑

k=0

(−i)k

�kk!

∫ t

t0

· · ·
∫ t

t0

T (H(τ1) · · ·H(τk))dτ1 · · · dτk.

Thus, for all t ≥ t0,

P+(t, t0) = I − i
�

∫ t

t0

H(τ) dτ − 1
2!

∫ t

t0

∫ t

t0

T (H(τ1)H(τ2))dτ1dτ2 + . . .

This is the famous Dyson series. The convergence of the Dyson series will
be proved on page 390. At this point, let us only mention the following two
special cases.

• Let X = C. Then, H(t) is a complex number for each time t, and we are
looking for a complex-valued function ψ : R → C. The Dyson formula now
corresponds to the classical solution

ψ(t) = ψ0e
− i

�

R t
t0

H(τ)dτ

of equation (7.41). This formula was known to Euler (1707–1783) and La-
grange (1736–1813).

• Suppose that H(t) = H0 for all times t. For (7.41), we then get the solution
formula

ψ(t) = e−itH0/�ψ0.

For understanding quantum field theory, observe that

The infinite-dimensional version of the Dyson series lies at the heart
of the operator approach to quantum field theory.

This will be considered in Chap. 15. Applications to quantum electrody-
namics will be studied in Volume II. Alternatively, the retarded propagator
P+(t, t0) can be represented by a path integral. This will be investigated in
Sect. 7.21.1 on page 419. It is now our goal to prove the convergence of the
Dyson series. To begin with, we need some preparatory results.
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7.17.1 Lagrange’s Variation of the Parameter

The inhomogeneous linear problem. Let us start our approach to the
Dyson series by considering the initial-value problem

i�ψ̇(t) = H0ψ(t) + f(t), t ∈ R, ψ(t0) = ψ0. (7.44)

We are looking for a solution ψ : R → X. By the classical theory of linear
differential equations, the initial-value problem (7.44) has a unique solution
which exists for all times t ∈ R. Explicitly, this solution is given by the
formula

ψ(t) = P (t, t0)ψ0 +
1
i�

∫ t

t0

P (t, s)f(s)ds (7.45)

for all times t ∈ R with the propagator

P (t, s) := e−iH0(t−s)/�.

Consider the special case where X = C. Then, differentiation with respect to
time t yields

i�ψ̇(t) = i�Pt(t, t0)ψ0 + P (t, t)f(t) +
∫ t

t0

Pt(t, s)f(s)ds.

The propagator satisfies the initial-value problem

i�Pt(t, t0) = H0P (t, t0), t ∈ R, P (t0, t0) = 1.

In addition, P (t, t) = 1 for all t ∈ R. Hence

i�ψ̇(t) = H0P (t, t0)ψ0 + f(t) +H0

∫ t

t0

P (t, s)f(s)ds = H0ψ(t) + f(t).

The same argument applies to all finite-dimensional Hilbert spaces X.
Variation of the parameter. Let us explain how the basic formula

(7.45) is related to the method of the variation of parameters. Again set
X = C. Then H0 is a complex number. The differential equation

i�ψ̇(t) = H0ψ(t)

with vanishing external influence, f(t) ≡ 0, has the general solution

ψ(t) = P (t, t0)C, t ∈ R

where C is an arbitrary constant. Following Lagrange, we make the ansatz

ψ(t) = P (t, t0)C(t), t ∈ R
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for getting the solution of the initial-value problem

i�ψ̇(t) = H0ψ(t) + f(t), t ∈ R, ψ(t0) = C(t0).

From the physical point of view, Lagrange’s idea was to describe the influence
of the external force f on the physical state ψ by a variation of the constant C
in time. It remains to determine the function C = C(t). In fact, differentiation
with respect to time yields

ψ̇(t) = Pt(t, t0)C(t) + P (t, t0)Ċ(t).

Hence

i�ψ̇(t) = H0P (t, t0)C(t) + i�P (t, t0)Ċ(t) = H0ψ(t) + i�P (t, t0)Ċ(t).

Therefore,
i�P (t, t0)Ċ(t) = f(t).

Observe that we have the crucial propagator equation

P (t, s)P (s, τ) = P (t, τ), P (t, t) = 1, t, s, τ ∈ R.

Hence P (t, s) = P (s, t)−1. Thus, i�Ċ(t) = P (t0, t)f(t). This differential equa-
tion has the solution

i�C(t) = i�C(t0) +
∫ t

t0

P (t0, s)f(s)ds.

Multiplying this by P (t, t0) and using the propagator equation, we get the
desired result

i�ψ(t) = i�P (t, t0)C(t0) +
∫ t

t0

P (t, s)f(s)ds.

The propagator. We introduce the retarded propagator

P+(t, t0) := θ(t− t0)P (t, t0), t ∈ R (7.46)

and the advanced propagator

P−(t, t0) := −θ(t0 − t)P (t, t0), t ∈ R.

For the propagator,

P (t, t0) = P+(t, t0) − P−(t, t0), t ∈ R.
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7.17.2 Duhamel’s Principle

The solution formula from (7.45) tells us that

The solution of the special problem with vanishing external influence,
f(t) ≡ 0, knows the propagator P (t, s), and hence it knows all about
the general solution by superposition.

This is called Duhamel’s principle.29 More precisely, the general solution ψ
of the initial-value problem (7.44) can be obtained as follows.

(H1) General homogeneous problem: Consider first the case where the exter-
nal influence vanishes, f(t) ≡ 0. Then, the initial-value problem

i�ψ̇(t) = H0ψ(t), t ∈ R, ψ(t0) = ψ0

has the unique solution

ψ(t) = P (t, t0)ψ0, t ∈ R.

This determines uniquely the propagator P (t, t0).
(H2) Special homogeneous problem: Consider the case where the external

influence vanishes, f(t) ≡ 0, but the initial condition depends on the
external influence f(s) at time s. Then, for each given initial time s ∈ R,
the initial-value problem

i�ψ̇(t) = H0ψ(t), t ∈ R, ψ(s) = f(s)

has the unique solution ψ(t) = P (t, s)f(s), t ∈ R.
(I1) Inhomogeneous problem with special initial condition: Consider the case

where the external influence is acting, but the system rests at the initial
time t0. Then, the initial-value problem

i�ψ(t) = H0ψ(t) + f(t), t ∈ R, ψ(t0) = 0

has the unique solution

ψ(t) =
∫ t

t0

P (t, s)f(s)ds, t ∈ R

which is obtained as a superposition of the solutions from (H2).
(I2) General inhomogeneous problem: The solution (7.45) of the general

initial-value problem (7.44) is obtained by a superposition of the spe-
cial solutions from (H1) and (I1).

29 Duhamel (1792–1872)
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7.17.3 The Volterra Integral Equation

Let us replace equation (7.44) on page 385 by the more general equation

i�ψ̇(t) = H(t)ψ(t) + f(t), t ∈ R, ψ(t0) = ψ0 (7.47)

where the Hamiltonian, H = H(t), depends on time t. It turns out that the
initial-value problem (7.47) is equivalent to the following Volterra integral
equation30

ψ(t) = ψ0 +
1
i�

∫ t

t0

H(s)ψ(s)ds+ F (t), t ∈ R (7.48)

where F (t) := 1
i�

∫ t

t0
f(s)ds. In fact, integrating equation (7.47), we get (7.48).

Conversely, suppose that the integral equation (7.48) has a continuous solu-
tion ψ : R → X. Then, the function ψ is differentiable, and it is the solution of
the differential equation (7.47). The standard method for solving the Volterra
integral equation (7.48) is the following iterative method

ψn+1(t) = ψ0 +
1
i�

∫ t

t0

H(s)ψn(s)ds+ F (t), t ∈ R (7.49)

for all indices n = 0, 1, 2, . . .

Theorem 7.18 The Volterra integral equation (7.48) has a unique continu-
ous solution ψ : R → X. As n → ∞, the sequence (ψn) converges uniformly
on each compact interval to the solution ψ.

Proof. To simplify notation, set t0 := 0 and � := 1. Fix T > 0. Let C[−T, T ]
denote the space of all continuous functions ψ : [−T, T ] → X. Equipped with
the norm

||ψ|| := max
−T≤t≤T

||ψ(t)||,

the space C[−T, T ] becomes a complex Banach space.31

(I) Existence on the time interval [−T, T ]. Set H := max−T≤t≤T ||H(t)||.
Let t > 0. Then

||ψ2(t) − ψ1(t)|| =
∣
∣
∣
∣
∣
∣

∫ t

0

H(s)(ψ1(s) − ψ0)ds
∣
∣
∣
∣
∣
∣ ≤ tH ||ψ1 − ψ0||.

Hence
30 Volterra (1860–1950)
31 In the special case where X = C, the norm ||ψ(t)|| coincides with the modulus

of the complex number ψ(t).



7.17 The Magic Dyson Formula for the Retarded Propagator 389

||ψ3(t) − ψ2(t)|| =
∣
∣
∣
∣
∣
∣

∫ t

0

H(s)(ψ2(s) − ψ1(s))ds
∣
∣
∣
∣
∣
∣

≤
∫ t

0

sH2||ψ1 − ψ0||ds =
t2H2

2!
||ψ1 − ψ0||.

Similarly, for n = 1, 2, . . . we get

||ψn+1 − ψn|| ≤
(TH)n

n!
||ψ1 − ψ0||.

Since the series eTH = 1+TH+ . . . is convergent, the triangle inequality tells
us that

||ψn+m+1 − ψn|| ≤
n+m∑

k=n

||ψk+1 − ψk|| ≤
n+m∑

k=n

(TH)k

k!
< ε

for all n ≥ n0(ε) and all m = 1, 2, . . . Thus, the sequence (ψn) is Cauchy, and
hence it converges to an element ψ of the Banach space C[−T, T ], that is,

lim
n→∞

||ψn − ψ|| = 0.

Therefore, the sequence (ψn) converges uniformly on the interval [−T, T ] to
the function ψ. Letting n → ∞, it follows from (7.49) that the function
ψ : [−T, T ] → X is a solution of (7.48) on the time interval [−T, T ].

(II) Uniqueness. Let ψ and ϕ be two solutions of (7.48). As in (I), it
follows from

ψ(t) − ϕ(t) =
1
i

∫ t

0

H(s)(ψ(s) − ϕ(s))ds

that ||ψ−ϕ|| ≤ (TH)n

n! ||ψ−ϕ||. Letting n → ∞, we see that ψ = ϕ on [−T, T ].
Since the choice of T > 0 is arbitrary, we get uniqueness for all times t ∈ R.

(III) Continuation. By (I) and (II), there exists a unique solution of (7.48)
on each time interval [−T, T ]. Choosing T = 1, 2, . . ., the corresponding so-
lutions can be continued to a unique solution on the real line. �

The propagator equation. Fix the initial time t0 ∈ R. The unique
solution P = P (t, t0) of the initial-value problem

i�Pt(t, t0) = H(t)P (t, t0), t ∈ R, P (t0, t0) = I (7.50)

is called the propagator of equation (7.47). This designation is motivated by
the following fact.

Theorem 7.19 The function

ψ(t) := P (t, t0)ψ0 +
1
i�

∫ t

t0

P (t, s)f(s)ds, t ∈ R

is the unique solution of the initial-value problem (7.47).
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Proof. (I) Existence. Differentiation with respect to time t yields

i�ψ̇(t) = i�Pt(t, t0)ψ0 + P (t, t)f(t) +
∫ t

t0

Pt(t, s)f(s)ds.

Hence

i�ψ̇(t) = H(t)P (t, t0)ψ0 + f(t) +
1
i�

∫ t

t0

H(t)P (t, s)f(s)ds.

This implies i�ψ̇(t) = H(t)ψ(t) + f(t).
(II) Uniqueness. This follows from Theorem 7.18. �

7.17.4 The Dyson Series

Let us now study the following Dyson series

P+(t, t0) = I − i
�

∫ t

t0

H(τ)dτ +

+
1
2!

(

− i
�

)2 ∫ t

t0

∫ t

t0

T {H(τ1)H(τ2)}dτ1dτ2 + . . . .

Mnemonically, we write

P+(t, t0) = T e−
i
�

R t
t0

H(τ)dτ
, t ≥ t0. (7.51)

The definition of the chronological operator T can be found on page 384.

Theorem 7.20 The Dyson series converges for all times t ≥ t0. The solution
of the initial-value problem

i�ψ̇(t) = Hψ(t), t ≥ t0, ψ(t0) = ψ0

is given by ψ(t) = P+(t, t0)ψ0 for all t ≥ t0.

Proof. Let t ≥ t0. The propagator equation (7.50) is equivalent to the
Volterra integral equation

P (t, t0) = I − i
�

∫ t

t0

H(τ)P (τ, t0)ds.

The iterative method

Pn+1(t, t0) = I − i
�

∫ t

t0

H(τ)Pn(τ, t0)dτ, n = 0, 1, . . .

with the initial approximation P0(t, t0) :≡ I yields
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P (t, t0) = I +
∞∑

n=1

(

− i
�

)n ∫

H(τ1) · · ·H(τn)

where
∫

:=
∫ t

t0
dτ1

∫ τ1

t0
dτ2 · · ·

∫ τn−1

t0
dτn. From this we get the claim by using

the chronological operator T . In fact, for example, consider the integral

J :=
∫ t

t0

dτ1

∫ τ1

t0

dτ2 H(τ1)H(τ2)

over a triangle. We want to transform this into an integral over a square. To
this end, let us equivalently write

J =
∫ t

t0

∫ t

t0

H(τ1)H(τ2)θ(τ1 − τ2) dτ1dτ2,

noting that θ(τ1 − τ2) = 0 if τ2 > τ1. Permuting the indices,

J =
∫ t

t0

∫ t

t0

1
2{H(τ1)H(τ2)θ(τ1 − τ2) +H(τ2)H(τ1)θ(τ2 − τ1)}dτ1dτ2

=
∫ t

t0

∫ t

t0

1
2T {H(τ1)H(τ2)} dτ1dτ2.

Similarly, we transform the other integral terms. �

Physical motivation of the magic Dyson formula. Using a formal
argument, we want to show that

The magic Dyson formula (7.51) is quite natural from the physical
point of view; it follows from the superposition principle.

The point is that we have to apply the superposition principle to time-
dependent interactions. To this end, we decompose the time interval [t0, t]
into small pieces of equal length, i.e., we set tk := t0 + kΔt, k = 0, 1, . . . , n.
Then

t0 < t1 < . . . < tn = t.

The following formulas are valid up to terms of higher order with respect to
the time difference Δt. From the key differential equation i�ψ̇(t) = H(t)ψ(t)
we get

i�
ψ(t+Δt) − ψ(t)

Δt
= H(t)ψ(t).

This implies

ψ(t+Δt) =
(

1 − i
�
H(t)Δt

)

ψ(t).

It is convenient to write this as

ψ(t+Δt) = e−
i
�

H(t)Δtψ(t),
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up to terms of order (Δt)2. Consider first the special case where n = 2. Then
t = t2, and

ψ(t) = e−
i
�

H(t1)Δtψ(t1) = e−
i
�

H(t1)Δte−
i
�

H(t0)Δtψ(t0).

Since t1 > t0, we may add the chronological operator T . Hence

ψ(t) = T {e− i
�

H(t1)Δte−
i
�

H(t0)Δt}ψ(t0).

By the addition theorem for the exponential function,

ψ(t) = T e−
i
�
(H(t1)+H(t0))Δtψ(t0).

Similarly, for n = 2, 3, . . . ,

ψ(t) = T e−
i
�

Pn−1
k=0 H(tk)Δtψ(t0).

Letting n → ∞, we formally get

ψ(t) = T e−
i
�

R t
t0

H(τ)dτ
ψ(t0).

Using the propagator, ψ(t) = P (t, t0)ψ(t0). This yields the Dyson propagator
formula (7.51).

7.18 The Magic Dyson Formula for the S-Matrix

It is our goal to reformulate the Dyson propagator formula (7.51) in terms
of perturbation theory. This way, we will obtain the magic Dyson formula
for the S-matrix. This formula is the key to computing all kind of scattering
processes for elementary particles in quantum field theory. The following
perturbed Hamiltonian

H = H0 + κV

is typical for perturbation theory. Here, the operators H0, V : X → X are
linear and self-adjoint on the complex N -dimensional Hilbert space X where
1 ≤ N < ∞. The real constant κ ≥ 0 is called the coupling constant. Recall
that the retarded propagator with respect to the perturbed Hamiltonian H
is given by

P+(t, s) := e−i(t−s)H/�, t ≥ s.

The key formula reads as

P+(t, s) = e−itH0/�S(t, s)eisH0/�, t ≥ s (7.52)

along with the magic Dyson formula

S(t, s) = T e−
iκ
�

R t
s

VI(η)dη, t ≥ s. (7.53)

Here, we set VI := eitH0/�V e−itH0�. In physics, the operator S(t, s) is called
the S-matrix operator with respect to the finite time-interval [s, t].
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Theorem 7.21 For all real times t and s with t ≥ s, the formulas (7.52)
and (7.53) are valid.

Let us first discuss the physical interpretation of the S-matrix. The crucial
relation reads as

〈e−itH0/�ϕout|P+(t, s)e−isH0/�ϕin〉 = 〈ϕout|S(t, s)ϕin〉. (7.54)

In terms of physics, this means the following:

• The function ψin(s) = e−isH0/�ϕin describes the dynamics of a free particle
at time s. We regard this particle as an incoming free particle running from
time s = −∞ until time s = +∞. At time s = 0, the particle is in the
state ϕin.

• The function ψout(t) = e−itH0/�ϕout describes the dynamics of a free par-
ticle at time t. We regard this particle as an outgoing free particle running
from time t = −∞ until time t = +∞. At time t = 0, the particle is in the
state ϕout.

• The transition amplitude

a := 〈ψout(t)|P+(t, s)ψin(s)〉

corresponds to the transition probability

|a|2 = |〈ψout(t)|P+(t, s)ψin(s)〉|2

from the free incoming particle at time s to the free outgoing particle at
time t with t > s. By (7.54),

|a|2 = |〈ϕout|S(t, s)ϕin〉|2.

This way, the transition probability |a|2 is related to the S-matrix operator
S(t, s). Using the transition probability |a|2, one can compute the correspond-
ing cross sections which can be measured in particle accelerators. This justi-
fies the terminology S-matrix (or scattering matrix). More precisely, using a
complete orthonormal system |1〉, . . . , |N〉 of the Hilbert space X, the matrix
to the operator S(t, s) reads as (Sjk(t, s)) where we set

Sjk(t, s) := 〈j|S(t, s)|k〉, j, k = 1, . . . , N.

In order to simplify terminology, we frequently use the two terms ‘S-matrix’
and ‘scattering operator’ synonymously.

Proof of Theorem 7.21. Set � := 1. Fix the initial time s ∈ R. By
(7.50), the Feynman propagator satisfies the differential equation

iPt(t, s) = HP (t, s), t ≥ s, P (s, s) = I. (7.55)

Note that P+(t, t0) = P (t, t0) for all t ≥ t0. The trick is to introduce the
operator
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S(t, s) := eitH0P+(t, s)e−isH0 .

By (7.55), it follows from P+(t, s) = e−itH0S(t, s)eisH0 that

H0e−itH0S(t, s)eisH0 + ie−itH0St(t, s)eisH0 = (H0 + κV )e−itH0S(t, s)eisH0 .

Hence
ie−itH0St(t, s)eisH0 = κV e−itH0S(t, s)eisH0 .

Setting VI(t) := eitH0V e−itH0 , we get the modified differential equation

iSt(t, s) = κVI(t)S(t, s), t ≥ s, S(s, s) = I.

Theorem 7.20 tells us that S(t, s) = T e−
κi
�

R t
s

VI(η)dη. �

7.19 Canonical Transformations

Canonical transformations were introduced by Jacobi (1804–1851) in order
to simplify the solution of difficult problems in celestial mechanics. It is a
typical property of canonical transformations that

• they do not change the physics and
• they preserve the mathematical structure.

In quantum physics, the typical mathematical structure is given by the
Hilbert space structure. This motivates the following definition:

Canonical transformations are Hilbert space isomorphisms.

Recall that by a Hilbert space isomorphism (or a unitary operator), we un-
derstand a linear bijective map U : X → Y from the complex Hilbert space
X onto the complex Hilbert space Y which preserves the inner product,

〈Uϕ|Uψ〉 = 〈ϕ|ψ〉 for all ϕ,ψ ∈ X.

We want to study two important canonical transformations in quantum
physics, namely,

• the passage from the Schrödinger picture to the Heisenberg picture, and
• the passage from the Schrödinger picture to Dirac’s interaction picture.

7.19.1 The Schrödinger Picture

Let H : X → X be a linear self-adjoint operator on the complex N -dimen-
sional Hilbert space X where 1 ≤ N < ∞. For given ψ0 ∈ X, the Schrödinger
equation reads as

i�ψ̇(t) = Hψ(t), t ≥ 0, ψ(0) = ψ0. (7.56)
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We are looking for the function ψ : [0,∞[→ X. The unique solution of (7.56)
is given by

ψ(t) = e−itH/�ψ0, t ≥ 0.

Here, ψ(t) describes the state of the quantum system at time t. By an ob-
servable, we understand an arbitrary linear self-adjoint operator

A : X → X.

Suppose that the initial state ψ(0) is normalized. Then, the state ψ(t) is
normalized for all times t ∈ R. The real number

Ā(t) = 〈ψ(t)|Aψ(t)〉

is the mean value of the observable A measured in the state ψ(t) at time t.
Obviously, we get

Ā(t) = 〈ψ(0)|eitH/�Ae−itH/�ψ(0)〉.

This identity is the basis for the passage to the Heisenberg picture to be
considered now.

7.19.2 The Heisenberg Picture

Fix time t ∈ R. To each observable A : X → X, we assign the operator

AH(t) := eitH/�Ae−itH/�.

In addition, to each state ϕ ∈ X, we assign the element ϕH(t) of X where

ϕH(t) := eitH/�ϕ.

We call AH(t) and ϕH(t) the Heisenberg picture of the observable A and the
state ϕ at time t, respectively. Set

U(t) := eitH/�.

The operator U(t) : X → X is unitary, that is,

〈ϕ|χ〉 = 〈U(t)ϕ|U(t)χ〉 (7.57)

for all ϕ, χ ∈ X and all t ∈ R. Therefore, the transformation ϕH(t) = U(t)ϕ
represents a canonical transformation at time t. Observe the following:

(i) Dynamics: For the solution of the Schrödinger equation,

ψ(t) = e−itH/�ψ(0), t ∈ R,

the Heisenberg picture is given by

ψ(t)H = eitH/�ψ(t) = ψ(0), t ∈ R.

This state does not depend on time t.
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(ii) Observable: The Heisenberg picture AH(t) of the observable A satisfies
the following equation of motion32

i�ȦH(t) = [AH(t), H]−, t ∈ R

which replaces the Schrödinger equation in the Heisenberg picture.
(iii) Transition amplitude: It follows from (7.57) and AH(t) = U(t)AU(t)−1

that
〈ϕ|Aχ〉 = 〈ϕH(t)|AH(t)χH(t)〉

for all ϕ, χ ∈ X and all t ∈ R.

7.19.3 The Dirac Interaction Picture

Dirac modified the Heisenberg picture in terms of perturbation theory. To
explain this, consider the situation

H = H0 + κV

which is typical for perturbation theory. Let H0, V : X → X be linear
self-adjoint operators on the complex N -dimensional Hilbert space X where
1 ≤ N < ∞. The real constant κ ≥ 0 is called coupling constant. In physics,
the Hamiltonian H is called a perturbation of the free Hamiltonian H0. The
idea of Dirac’s interaction picture is to modify the passage to the Heisen-
berg picture by replacing the Hamiltonian H by the free Hamiltonian H0.
Explicitly, fix time t ∈ R. To each observable A : X → X, we assign the
operator

AI(t) := eitH0/�Ae−itH0/�.

Moreover, to each state ϕ ∈ X, we assign the element ϕI(t) of X where

ϕI(t) := eitH0/�ϕ.

We call AI(t) and ϕI(t) the Dirac interaction picture of the observable A and
the state ϕ at time t, respectively. Set

U0(t) := eitH0/�.

The operator U0(t) : X → X is unitary, that is,

〈ϕ|χ〉 = 〈U0(t)ϕ|U0(t)χ〉

for all ϕ, χ ∈ X and all t ∈ R. Thus, the transformation ϕI(t) = U0(t)ϕ
represents a canonical transformation at time t. Observe the following.
32 In fact, differentiation with respect to time t yields

i�ȦH(t) = −HeitH/�Ae−itH/� + eitH/�Ae−itH/�H.

Moreover, recall that [A,B]− := AB −BA.
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(i) Dynamics: Let
ψ(t) = e−itH/�ψ(0), t ∈ R

be a solution of the Schrödinger equation i�ψ̇(t) = Hψ(t), t ∈ R with
respect to the perturbed Hamiltonian H. Then, the interaction picture
ψI = ψI(t) satisfies the differential equation33

i�ψ̇I(t) = κVI(t)ψI(t), t ∈ R.

Here, VI(t) := eitH0/�V e−itH0/�.
(ii) Observable: The Dirac interaction picture AI(t) of the observable A sat-

isfies the following equation of motion

i�ȦI(t) = [AI(t), H0]−, t ∈ R

which replaces the Schrödinger equation in the Dirac interaction picture.
This equation only depends on the free Hamiltonian H0.

(iii) Transition amplitude: For all ϕ, χ ∈ X and all t ∈ R,

〈ϕ|Aχ〉 = 〈ϕI(t)|AI(t)χI(t)〉.

7.20 Functional Calculus

Functionals generalize classical functions to systems with a finite or infinite
number of degrees of freedom. Folklore

It was emphasized by Feynman (1918–1988) and Schwinger (1918–1994) in
the 1940s that it is very useful for quantum field theory to extend the classical
calculus due to Newton (1643–1727) and Leibniz (1646–1716) to functionals.
In mathematics, the differentiation of functionals and operators was intro-
duced by Fréchet (1878–1973), Gâteaux (1889–1914), and Volterra (1860–
1950) in about 1900. The goal was to give the calculus of variations a rigor-
ous basis.34 In the 1920s, functional integrals (Euclidean path integrals) were
introduced by Wiener (1894–1964) in order to mathematically describe Ein-
stein’s 1905 approach to Brownian motion (theory of stochastic processes).
We are going to discuss the basic ideas.

33 In fact, ψI(t) = eitH0/�ψ(t). Differentiation with respect to time yields

i�ψ̇I(t) = −H0e
itH0/�ψ(t) + eitH0/� i�ψ̇(t).

This is equal to −H0e
itH0/�ψ(t) + eitH0/�(H0 + κV )ψ(t) = κVI(t)ψI(t).

34 This modern version of calculus is thoroughly studied in Zeidler (1986), Vol. I,
Chap. 4.
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7.20.1 Functional Derivatives

Classical derivatives are generalized to functional derivatives; differentials
are linear functionals in modern mathematics.

Folklore

Let Z : X → C be a functional on the complex Hilbert space X. We write

Z = Z(J).

That is, to each element J of X we assign the complex number Z(J). In
quantum field theory, such functionals arise in a natural way. Prototypes are
the action, S(ψ), of a quantum field ψ and the generating functional Z for the
correlation functions (see Chap. 13). Then, Z(J) is the value of the generating
functional at the point J . Intuitively, the source function J describes an
external force acting on the physical system. The functional derivative Z ′(J)
tells us then the response of the physical system under a small change of the
source. It is our goal to investigate the following generalizations:

• derivative ⇒ functional derivative;
• partial derivative ⇒ partial functional derivative;
• integral ⇒ functional integral.

Notation. In mathematics, the following notions possess a precise mean-
ing:

• functional derivative and partial functional derivative,
• directional derivative,
• variation,
• differential,
• infinitesimal transformation.

The confusion caused by infinitesimals. The idea of infinitesimals
was introduced by Newton and Leibniz in the 17th century. They used the
magic relation

(δx)2 = 0 (7.58)

for the ‘infinitesimally small quantity’ δx. Obviously, the only real number δx
which satisfies the relation (7.58) is given by δx = 0, which does not fit the
intention of Newton and Leibniz. Thus, there is a lot of confusion concerning
(7.58), which has survived in parts of the physical literature. Nowadays, the
notions are completely clarified in mathematics. There exist two approaches,
namely,

• the standard approach, and
• the non-standard approach.
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In the standard approach, one completely avoids the relation (7.58). This
approach will be applied in the present first volume and in most parts of the
further volumes. In non-standard analysis, one also introduces the following
notions:

• infinitesimally small number, and
• infinitely large number.

In the setting of non-standard analysis, quantities of the form (7.58) are
replaced by infinitesimally small numbers with 0 < δx < ε and 0 < (δx)2 < ε
for all real numbers ε > 0.35 Furthermore, in the volumes of this treatise, we
will show that relations of the form

∂2 = 0, d2 = 0, δ2 = 0 Q2 = 0

for operators are well-established in standard mathematics, and they play a
fundamental role in modern mathematics and physics. In particular,

• the relation ∂2 = 0 for the boundary operator ∂ is responsible for Poincaré’s
homology theory in algebraic topology,

• the Poincaré lemma d2 = 0 for differential forms (that is, d(dω) = 0) is the
basis for de Rham’s cohomology theory in differential topology,

• the relation δ2 = 0 allows us to introduce the Hodge homology on Rieman-
nian manifolds which is dual to the de Rham cohomology, and

• the operator relation Q2 = 0 is crucial for the BRST quantization (or
cohomological quantization) of gauge theories (e.g., the Standard Model in
particle physics and string theories).

There exists a branch of mathematics called homological algebra which stud-
ies the far-reaching consequences of the relation Q2 = 0 in terms of exact
sequences and homology groups (resp. the dual cohomology groups).36 In the

35 Non-standard analysis was rigorously founded in 1960 by the logician Abraham
Robinson (1918–1974). This will be considered in Sect. 4.6 of Volume II, by
using ultrafilters. The elegant basic idea of non-standard analysis is to construct
a field ∗R of mathematical objects called non-standard numbers such that ∗R
represents an extension of the field R of real numbers,

R ⊂ ∗R.

Besides the real numbers, the field ∗R contains infinitesimally small numbers and
infinitely large numbers. For all the elements of ∗R, the operations of addition,
multiplication, and division (by nonzero elements) are well defined. In terms of
algebra, the set ∗R is a field which extends the field R of classical real numbers.
For two positive elements x and y of R, there exists always a nonzero natural
number n such that x < ny. This so-called Archimedian property of the field R

is not anymore valid for ∗R.
36 The classical book is H. Cartan and S. Eilenberg, Homological Algebra, Prince-

ton University Press. In terms of physics, we recommend M. Henneaux and C.
Teitelboim, Quantization of Gauge Systems, Princeton University Press, 1993.
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early 1950s, Jean Leray and Henri Cartan showed that the theory of holo-
morphic functions of several variables can be reformulated elegantly in the
language of sheaf cohomology37

The one-dimensional case. As starting point, consider the Taylor ex-
pansion of the smooth function f : R → R,38

f(x+Δx) = f(x) + f ′(x)Δx+ o(Δx), Δx → 0.

We define
δx := Δx, δf := f ′(x)δx,

and

df(x)(h) := f ′(x)h, dx(h) := h for all h ∈ R.

With a view to generalizations to be considered below, note that

• the variations δx and δf are real numbers,
• whereas the differentials dx, df(x) : R → R are linear mappings (function-

als) on the real line R.

Obviously, we have df(x)(h) = f ′(x)dx(h) for all h ∈ R. This is equivalent to
the rigorous formula

df(x) = f ′(x)dx,

in the sense of mappings.
The language of physicists. In the physics literature, one proceeds

frequently as follows. By Taylor expansion,

δf = f(x+ δx) − f(x) = f ′(x)δx+
f ′′(x)δx2

2
+ . . . (7.59)

Using (δx)2 = 0, we get

δf = f ′(x)δx. (7.60)

This is formally the same result as above. In terms of mathematics, let us
write

f(x) = g(x) mod o(x), x → 0

iff f(x) − g(x) = o(x) as x → 0. In particular, (δx)2 = o(x) as x → 0 means
that

(δx)2 = 0 mod o(x), x → 0.

We will show in Volume IV on quantum mathematics that the physical origin
of both homology and cohomology is rooted in electric circuits and the Maxwell
equations in electrodynamics.

37 See K. Maurin, Methods of Hilbert Spaces, PWN, Warsaw, 1972.
38 The definition of the classical Landau symbols o(Δx) and O(Δx) can be found

on page 948. In particular, we write r(χ) = o(χ) as χ→ 0 iff limχ→0
r(χ)

χ
= 0.
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In standard mathematics, this replaces the magic relation (7.58) due to New-
ton and Leibniz. The passage to the language of physicists consists then in
dropping out the symbol mod o(x) for simplifying notation. In this sense,
equation (7.59) implies (7.60).

The general case. Consider now the functional Z : X → C on the
complex Hilbert space X. Our starting point is the definition of the functional
derivatives

δZ(J)
δJ

,
δ2Z(J)
δJ2

.

Synonymously, we will write

Z ′(J) =
δZ(J)
δJ

, Z ′′(J) =
δ2Z(J)
δJ2

.

Naturally enough, we will formulate the corresponding definitions in such a
way that, in the special case where Z = Z(J) is a complex-valued function
of the real variable J (i.e., X = R), the functional derivative coincides with
the classical derivative. That is,

Z ′(J) =
δZ(J)
δJ

=
dZ(J)
dJ

, Z ′′(J) =
δ2Z(J)
δJ2

=
d2Z(J)
dJ2

.

Moreover, our notation will be chosen in such a way that in the classical case,
X = R, we get

δZ(J)
δJ

(h) = Z ′(h)h,
δ2Z(J)
δJ2

(h, k) = Z ′′(J)hk

for all real numbers h, k. In the volumes of this treatise, we will extensively
use the calculus of differential forms. In modern mathematics, differentials
are not infinitesimally small quantities, but functionals. Explicitly,

dZ(J)(h) = Z ′(J)(h), d2Z(J)(h, k) = Z ′′(J)(h, k).

In this sense, dZ(J) = Z ′(J) and d2Z(J) = Z ′′(J).
In the calculus of variations, one writes

δZ :=
δZ(J)
δJ

(h).

This is called the first variation of the functional Z at the point J in direction
of the vector h. More precisely, one has to write

δZ(J ;h) :=
δZ(J)
δJ

(h).

Similarly,
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δ2Z :=
δ2Z(J)
δJ2

(h, k).

More precisely,

δ2Z(J ;h, k) =
δ2Z(J)
δJ2

(h, k).

Basic definition of the functional derivative. Fix the point J ∈ X.
For given h ∈ X, define

δZ(J)
δJ

(h) := lim
t→0

Z(J + th) − Z(J)
t

.

Here, t is a real parameter. If this limit exists, then it is called the directional
derivative of the functional Z at the point J in direction of the vector h.
Equivalently,

δZ(J)
δJ

(h) :=
d

dt
(Z(J + th))|t=0 .

This allows us the following physical interpretation. Think of Z as temper-
ature and regard J as a point in 3-dimensional Euclidean space. Starting at
the point J , we move along a straight line in direction of the vector h. At
time t we reach the point J + th and we observe the temperature

Z(J + th).

Differentiating this with respect to time t at the initial time, t = 0, we get
the directional derivative of temperature Z at the point J in direction of the
vector h. This quantity is also called the temperature gradient at the point
J in direction of h. For the change of temperature, we get

Z(J + th) = Z(J) + t
δZ(J)
δJ

(h) + o(t), t → 0.

In the general case, the map h �→ δZ(J)
δJ (h) represents an operator of the form

δZ(J)
δJ

: X → C.

Parallel to classical calculus, this operator is also denoted by the symbol

Z ′(J) :=
δZ(J)
δJ

.

We call Z ′(J) the functional derivative39 of the functional Z at the point J .
Higher-order functional derivatives. Fix h, k ∈ X. Naturally enough,

we define
39 As a rule, the map Z′(J) : X → C is linear, but this is not always the case.
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δ2Z(J)
δJ

(h, k) :=
d

dt

(
δZ(J + tk)

δJ
(h)

)

|t=0

.

The map (h, k) �→ δ2Z(J)
δJ2 (h, k) represents an operator of the form

δ2Z(J)
δJ2

: X ×X → C.

We also introduce the notation

Z ′′(J) :=
δ2Z(J)
δJ2

.

This operator is called the second functional derivative40 of the functional Z
at the point J . Summarizing, the first and second functional derivatives of
the functional Z at the point J are operators of the form

Z ′(J) : X → C, Z ′′(J) : X ×X → C.

Higher-order functional derivatives are defined analogously. For example, fix
h, k, l ∈ X. We then define

δ3Z(J)
δJ3

(h, k, l) :=
d

dt

(
δ2Z(J + tl)

δJ2
(h, k)

)

|t=0

.

Example. Define F (ψ) := 〈ψ|ψ〉 for all ψ ∈ X where X is a complex
Hilbert space.41 Then, for all h, k ∈ X,

F ′(ψ)(h) =
δF (ψ)
δψ

(h) = 〈ψ|h〉 + 〈ψ|h〉†

and F ′′(ψ)(h, k) = 〈h|k〉 + 〈h|k〉†.
Proof. Set χ(t) := F (ψ + th) for all t ∈ R. Explicitly,

χ(t) = 〈ψ|ψ〉 + t(〈ψ|h〉 + 〈h|ψ〉) + t2〈h|h〉.

This implies χ′(0) = F ′(ψ)(h) = 〈ψ|h〉 + 〈h|ψ〉. Moreover, let k ∈ X. Set

�(t) := F ′(ψ + kt)(h) = 〈ψ + tk|h〉 + 〈h|ψ + tk〉, t ∈ R.

Hence �′(0) = F ′′(ψ)(h, k) = 〈k|h〉 + 〈h|k〉. �

40 As a rule, Z′′(J)(h, k) is linear with respect to h and k, and we have the symmetry
property Z′′(J)(h, k) = Z′′(J)(k, h), but this is not always the case.

41 In a real Hilbert space X, we have F ′(ψ)(h) = 2〈ψ|h〉 and

F ′′(ψ)(h, k) = 2〈h|k〉 for all h, k ∈ X.
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7.20.2 Partial Functional Derivatives

Here, one finds a method which requires only a simple use of the principles
of differential and integral calculus; above all I must call attention to the
fact that I have introduced in my calculations a new characteristic δ since
this method requires that the same quantities vary in two different ways.

Comte de Joseph Louis Lagrange, 1762

By generalizing Euler’s 1744 method, Lagrange (1736–1813) got the idea
for his remarkable formulas, where in a single line there is contained the
solution of all problems of analytic mechanics.

Carl Gustav Jacob Jacobi (1804–1851)

It is our goal to generalize the classical partial derivatives

∂f(x, y)
∂x

,
∂2f(x, y)
∂x∂y

to the partial functional derivatives

δZ(J)
δJ(x)

,
δ2Z(J)

δJ(x)δJ(y)
,

respectively. In classical calculus, the problem

f(x1, x2) = critical!

is equivalent to
∂f(x1, x2)

∂xj
= 0 for all indices j.

In the calculus of variations, the solutions of the principle of critical action

S(ψ) = critical!, ψ ∈ X

satisfy the so-called variational equation

δS(ψ)
δψ

= 0.

This implies

δS(ψ)
δψ(x)

= 0 for all indices x (7.61)

which represents the desired equation of motion for the field ψ. This equation
is also called the Euler–Lagrange equation.

We will show in this treatise that all of the fundamental field equa-
tions in physics are of the type (7.61).
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For example, this concerns the electromagnetic field, non-relativistic and rel-
ativistic quantum mechanics, the Standard Model in particle physics, and the
theory of general relativity. The basic tool for introducing partial functional
derivatives is the notion of the density of a given functional; this generalizes
the classical mass density

Density of a functional. Consider a set M equipped with a measure μ.
Let X be an appropriate subspace of the space of all the functions h : M → C.
For given function � ∈ X, define

F (h) :=
∫

C

�(x)h(x)dμ(x) for all h ∈ X.

The function � is called the density function of the functional F . This def-
inition is well formulated if the function � is uniquely determined by the
functional F . This uniqueness has to be checked in each case. Examples will
be considered below. Suppose now that the functional derivative δZ(J)

δJ has a
density �, that is,

δZ(J)
δJ

(h) =
∫

M

�(x)h(x)dμ(x) for all h ∈ X.

We then define
δZ(J)
δJ(x)

:= �(x).

This is called the partial functional derivative of the functional Z at the
point J with respect to the ‘index’ x. Summarizing, for all h ∈ X, we get the
suggestive formula

δZ(J)
δJ

(h) =
∫

M

δZ(J)
δJ(x)

h(x)dμ(x).

The variational lemma. Let us now study a few examples which are
prototypes for general situations arising in quantum field theory. For checking
the density property, we will use the following result. Let −∞ < a < b < ∞,
and let C[a, b] denote the space of all continuous functions f : [a, b] → R.

Proposition 7.22 Suppose that for given two functions f, g ∈ C[a, b], we
have

∫ b

a

f(x)h(x)dx =
∫ b

a

g(x)h(x)dx for all h ∈ C[a, b]. (7.62)

Then f(x) = g(x) for all x ∈ [a, b].

Proof. Set F (x) := f(x) − g(x). Then
∫ b

a
F (x)h(x)dx = 0 for all functions

h ∈ C[a, b]. Choosing h = F ,
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∫ b

a

F (x)2dx = 0.

Hence F (x) = 0 for all x ∈ [a, b]. �

It is important for the calculus of variations that there exists a stronger
variant of the preceding proposition. To this end, let D(a, b) denote the set
of all smooth functions h : [a, b] → R which have compact support in the
open interval ]a, b[, that is, they vanish in some open neighborhoods of the
boundary points a and b.

Proposition 7.23 Suppose that for given two functions f, g ∈ C[a, b], we
have

∫ b

a

f(x)h(x)dx =
∫ b

a

g(x)h(x)dx for all h ∈ D(a, b). (7.63)

Then f(x) = g(x) for all x ∈ [a, b].

This is a special case of the variational lemma to be considered in Prop. 10.15
on page 545. The idea of proof is to use a limiting process in order to get the
identity (7.62) from (7.63).

Example. Set X := C[a, b]. Fix the function � ∈ X, and define

Z(J) :=
∫ b

a

�(x)J(x)dx for all J ∈ X.

This is a functional F : X → R on the real, linear function space X.

Proposition 7.24 For fixed J ∈ X, the functional derivative is given by

δZ(J)
δJ

(h) =
∫ b

a

�(x)h(x)dx for all h ∈ X.

This functional has the function � as density.

According to this fact, for each given point x ∈ [a, b] we define the partial
functional derivative as

δZ(J)
δJ(x)

:= �(x).

Proof. Fix h ∈ X. Define

χ(t) := Z(J + th) =
∫ b

a

�(x){J(x) + th(x)}dx, t ∈ R.

Hence χ′(0) = Z ′(J)(h) =
∫ b

a
�(x)h(x)dx. The uniqueness of the density

function follows from Prop. 7.22.
Example. Choose again X := C[a, b]. We now set
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Z(J) :=
1
2

∫

C

�(x, y)J(x)J(y)dxdy for all J ∈ X.

Here, we are given the continuous function � : M → R on the closed square
M := [a, b] × [a, b]. In addition, we assume that � is symmetric, that is, we
have �(x, y) = �(y, x) for all (x, y) ∈ M.

Proposition 7.25 Fix J ∈ X. For all h, k ∈ X, the first functional deriva-
tive and the second functional derivative are given by

δZ(J)
δJ

(h) =
∫

M

�(x, y)h(x)J(y)dxdy

and
δ2Z(J)
δJ2

(h, k) =
∫

M

�(x, y)h(x)k(y)dxdy,

respectively. The second functional derivative has the function density �.

Therefore, for all x, y ∈ [a, b], we define

δ2Z(J)
δJ(x)δJ(y)

:= �(x, y).

This is the second partial functional derivative of the functional Z.
Proof. (I) First functional derivative. Let t ∈ R. From

χ(t) := Z(J + th) =
1
2

∫

M

�(x, y){J(x) + th(x)}{J(y) + th(y)}dxdy

we get

χ′(0) = Z ′(J)(h) =
1
2

∫

M

{�(x, y)h(x)J(y) + �(x, y)J(x)h(y)}dxdy.

By symmetry of �, Z ′(J)(h) =
∫

M
�(x, y)h(x)J(y)dxdy.

(II) Second partial derivative. Differentiating the function

σ(t) := Z ′(J + tk)(h)

with respect to t at the point t = 0, we obtain

Z ′′(J)(h, k) =
∫

M

�(x, y)h(x)k(y)dxdy.

(III) Uniqueness of the density. Let �∗ : M → R be continuous, and
suppose that

∫

M

�(x, y)h(x)k(y)dxdy =
∫

M

�∗(x, y)h(x)k(y)dxdy (7.64)
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for all h, k ∈ X. Let F : M → R be an arbitrary continuous function. By
the classical Weierstrass theorem, there exists a sequence pn : M → R of
polynomials in two variables such that maxa≤x,y≤b |f(x, y)−pn(x, y)| → 0 as
n → ∞. By (7.64),

∫
M
�(x, y)pn(x, y)dxdy =

∫
M
�∗(x, y)pn(x, y)dxdy for all

indices n. Letting n → ∞, we get
∫

M

�(x, y)F (x, y)dxdy =
∫

M

�∗(x, y)F (x, y)dxdy

for all continuous functions F : M → R. The same argument as in the proof
of Prop. 7.24 tells us now that � = �∗ on M. �

Example. In the calculus of variations, the density functions of function-
als are obtained by using integration by parts. As a prototype, consider the
functional

S[q] :=
1
2

∫ t1

t0

q̇(t)2dt for all q ∈ X.

The dot denotes the time derivative. By definition, the symbol X represents
the space of all smooth functions q : [t0, t1] → R on the compact time interval
[t0, t1] which vanish on the boundary, that is, q(t0) = q(t1) = 0.

Proposition 7.26 Let q ∈ X. The functional derivative is given by

δS[q]
δq

(h) =
∫ t1

t0

−q̈(t)h(t)dt for all h ∈ X.

This functional has the density −q̈.

Therefore, for each point t ∈ [t0, t1], we define the partial functional derivative

δS[q]
δq(t)

:= −q̈(t).

Proof. (I) Functional derivative. Fix q, h ∈ X. For each parameter τ ∈ R,
define

χ(τ) := S[q + τh] =
1
2

∫ t1

t0

(q̇(t) + τ ḣ(t))2dt, τ ∈ R.

Hence χ′(0) = S′[q](h) =
∫ t1

t0
q̇(t)ḣ(t)dt. Observing the boundary condition

h(t0) = h(t1) = 0, integration by parts yields

S′[q](h) = −
∫ t1

t0

q̈(t)h(t)dt for all h ∈ X.

This proves the claim for the functional derivative.
(II) Uniqueness of the density. Let g : [t0, t1] → R be a continuous func-

tion. Suppose that
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∫ t1

t0

−q̈(t)h(t)dt =
∫ t1

t0

g(t)h(t)dt for all h ∈ X.

In particular, this identity is true for all functions h ∈ D(t0, t1). By the
variational lemma (Prop. 7.23), g = −q̈ on [t0, t1]. �

The principle of least action for the classical harmonic oscillator.
Let us study the motion q = q(t) of a particle of mass m on the real line. Fix
the compact time interval [t0, t1]. The functional

S[q] :=
∫ t1

t0

(
mq̇(t)2

2
− κq(t)2

2
+ F (t)q(t)

)

dt, q ∈ X

is called the action of the particle. Here, κ is a positive number called coupling
constant, and the given function F : [t0, t1] → R is smooth. By definition,
the space X consists of all smooth functions q : [t0, t1] → R which satisfy the
following boundary condition

q(t0) = 0, q(t1) = 0.

The principle of least action for the motion of the particle reads as

S[q] = min!, q ∈ X. (7.65)

Let us first compute the functional derivative. To this end, fix q, h ∈ X. Set

χ(τ) := S[q + τh], τ ∈ R.

Differentiating with respect to the parameter τ at the point τ = 0,

χ′(0) = S′[q](h) =
∫ t1

t0

(
mq̇(t)ḣ(t) − κq(t)h(t) + F (t)h(t)

)
dt.

Observing the boundary condition h(t0) = h(t1) = 0, integration by parts
yields

S′[q](h) =
∫ t1

t0

(−mq̈(t) − κq(t) + F (t))h(t)dt.

Hence, for all t ∈ [t0, t1], we obtain the partial functional derivative

δS[q]
δq(t)

= −mq̈(t) − κq(t) + F (t).

Theorem 7.27 Each solution q = q(t) of the principle of least action (7.65)
satisfies the Euler–Lagrange equation

δS[q]
δq(t)

= 0 for all t ∈ [t0, t1].

Explicitly, mq̈(t) = −κq(t) + F (t).
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This is the equation of a so-called harmonic oscillator with the restoring force
−κq and the external force F . If the external force vanishes, F = 0, then we
get the special solution

q(t) = const · sin(ωt), t ∈ R.

This motion represents an oscillation on the real line with the positive angular
frequency ω given by the relation ω2 = κ/m.
Proof. Let q ∈ X be a solution of the minimum problem (7.65). Fix the
function h ∈ D(t0, t1). Introduce the function

χ(τ) := S[q + τh] for all τ ∈ R.

Since h(t0) = h(t1) = 0, we get h ∈ X. Consequently, the simplified problem

χ(τ) = min!, τ ∈ R

has the solution τ = 0. By classical calculus,

χ′(0) = 0.

This yields S′[q](h) = 0 for all h ∈ D(t0, t1). Hence
∫ t1

t0

δS[q]
δq(t)

h(t)dt =
δS[q]
δq

(h) = 0

for all h ∈ D(t0, t1). This implies

δS[q]
δq(t)

= 0 for all t ∈ [t0, t1],

by the variational lemma (Prop. 7.23). This finishes the classical proof in-
vented by the young Lagrange in 1762. �

The same argument applies to all kinds of variational problems in
mathematics and physics.

In the volumes of this treatise, we will encounter plenty of such variational
problems.

The principle of critical action. Consider first the smooth real func-
tion f : R → R. By definition, the problem

f(x) = critical!, x ∈ R

is equivalent to f ′(x) = 0. The solutions are called the critical points of the
function f . This includes minimal points, maximal points, and horizontal
inflection points. Similarly, by definition, the following critical point problem

S[q] = critical!, q ∈ X (7.66)
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is equivalent to S′[q] = 0. The same argument as above shows that each
solution q of (7.66) satisfies the same Euler–Lagrange equation as obtained
in Theorem 7.27.

The principle of least action versus the principle of critical ac-
tion. Let us finish with the following remark. Consider first the real function
f : R → R given by f(x) := x3. The minimum problem

f(x) = min!, x ∈ R

has no solution, but the critical point problem

f(x) = critical!, x ∈ R

has the solution x = 0. In fact, f ′(x) = 0 implies 3x2 = 0, and hence x = 0.
The same happens to more general variational problems. Therefore, we will
not use the principle of least action, but the more general principle of critical
action.

The language of physicists. In Sect. 11.2.3 on page 594, we will con-
sider a formal definition of partial functional derivatives based on the Dirac
delta function. This formal definition is used in most physics textbooks. The
experience shows that both our rigorous approach introduced above and the
formal approach based on the Dirac delta function lead to the same results.

7.20.3 Infinitesimal Transformations

Infinitesimal symmetry transformations know much, but not all about
global symmetry transformations.

Folklore

In order to investigate the invariance of physical processes under symmetries,
physicists simplify the considerations by using infinitesimal transformations.
This theory was created by Sophus Lie (1849–1899) in about 1870. Let us
discuss some basic ideas in rigorous terms.

Roughly speaking, infinitesimal transformations are obtained by ne-
glecting terms of higher order than one.

The prototype of infinitesimal transformations are infinitesimal rotations. Let
us study this first.

Infinitesimal rotations. The transformation

x′ = x cos θ − y sin θ, y′ = x sin θ + y cos θ (7.67)

represents a counterclockwise rotation about the origin in the plane, with
rotation angle θ (Fig. 7.2). For small rotation angle θ, we get

x′ = x− yθ + o(θ), y′ = y + xθ + o(θ), θ → 0.
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Fig. 7.2. Rotation

Thus, the linearization of the rotation (7.67) reads as

x′ = x− yθ, y′ = y + xθ (7.68)

where θ is a fixed real number. This linear transformation is called an in-
finitesimal rotation with rotation angle θ. Physicists set

δθ := θ, δx := x′ − x, δy := y′ − y.

Therefore, the infinitesimal rotation (7.68) reads as

δx = −yδθ, δy = xδθ. (7.69)

Invariant functions. The smooth function f : R
2 → R is called invariant

under rotations iff for all rotation angles θ and all x, y ∈ R, we have

f(x′, y′) = f(x, y).

Moreover, the function f is called invariant under infinitesimal rotations iff
for all rotation angles δθ and all x, y ∈ R, we get

f(x+ δx, y + δy) = f(x, y) + o(δθ), δθ → 0

where δx and δy are given by (7.69). As the prototype of the classical Lie
theory on invariant functions, let us prove the following result. The point
is that global symmetry properties can be described by a local equation,
namely, a partial differential equation.

Proposition 7.28 For each smooth function f : R
2 → R, the following three

conditions are equivalent.
(i) The function f is invariant under infinitesimal rotations.
(ii) The function f satisfies the Lie partial differential equation

xfy(x, y) − yfx(x, y) = 0 for all (x, y) ∈ R
2. (7.70)

(iii) The function f is invariant under rotations.
(iv) In polar coordinates ϕ, r, the function f only depends on r.
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Proof. (i) ⇔ (ii). By Taylor expansion, as δθ → 0,

f(x+ δx, y + δy) − f(x, y) = fx(x, y)δx+ fy(x, y)δy + o(θ)
= (−yfx(x, y) + xfy(x, y))δθ + o(δθ).

If (i) holds true, then as δθ → 0,

o(δθ) = (−yfx(x, y) + xfy(x, y))δθ + o(δθ).

Dividing this by the real number δθ and letting δθ → 0, we get (ii).
Conversely, if (ii) holds true, then f(x + δx, y + δy) − f(x, y) = o(δθ) as

δθ → 0. This implies (i).
(ii) ⇔ (iii). Introduce polar coordinates,

x = r cosϕ, y = r sinϕ,

and set F (ϕ, r) := f(x, y). By the chain rule,

Fϕ(ϕ, r) = −fx(x, y)r sinϕ+ fy(x, y)r cosϕ = −yfx(x, y) + xfx(x, y).

The function f is invariant under rotations iff the function F does not depend
on the variable ϕ, that is, Fϕ(ϕ, r) = 0 for all ϕ, r. This is equivalent to (ii).

(iii) ⇔ (iv). This is obvious. �

Conservation laws. From the infinitesimal transformation (7.69) we get

δx

δθ
= −y, δy

δθ
= x.

Letting θ → 0, we obtain the dynamical system

ẋ(θ) = −y(θ), ẏ(θ) = x(θ) (7.71)

which is called the characteristic system to the Lie equation (7.70). The
solutions of the characteristic system (7.71) read as

x(θ) = x0 cos θ − y0 sin θ, y(θ) = x0 sin θ + y0 cos θ.

Regarding θ as time, θ := t, we get rotations around the origin with angular
velocity ω = 1. A smooth function f : R

2 → R is a conservation law for this
dynamical system (i.e., the function is constant along the trajectories) iff f
is invariant under rotations. By Prop. 7.28, the function f satisfies the Lie
partial differential equation (7.70).

The language of complex numbers. Set

z := x+ yi, z′ := x′ + y′i.

Using the Euler equation eiθ = cos θ+ i sin θ, the rotation formula (7.67) can
be elegantly written as



414 7. Rigorous Finite-Dimensional Magic Formulas

z′ = eiθz.

From the Taylor expansion eiθ = 1 + iθ + o(θ), we get

z′ = z + izθ + zo(θ), θ → 0.

This yields the linearization

z′ = z + izθ.

Setting δθ := θ and δz := z′ − z, we get z′ = z + δz along with

δz = izδθ.

This represents an infinitesimal rotation. The addition theorem for the expo-
nential function yields the so-called group equation

ei(ϕ+θ) = eiϕeiθ for all ϕ, θ ∈ R (7.72)

which tells us that the composition of rotations corresponds to the addition
of the rotation angles ϕ and θ.

The language of matrices. Introducing the matrix

R(θ) :=

(
cos θ − sin θ
sin θ cos θ

)

for all θ ∈ R

the rotation formula (7.67) can be written as
(
x′

y′

)

= R(θ)

(
x

y

)

.

The group equation (7.72) corresponds to

R(ϕ+ θ) = R(ϕ)R(θ) for all ϕ, θ ∈ R.

Explicitly,

R(ϕ+ θ) =

(
cos(ϕ+ θ) − sin(ϕ+ θ)
sin(ϕ+ θ) cos(ϕ+ θ)

)

and

R(ϕ)R(θ) =

(
cosϕ − sinϕ
sinϕ cosϕ

)(
cos θ − sin θ
sin θ cos θ

)

.

Hence
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R(ϕ)R(θ) =

(
cosϕ cos θ − sinϕ sin θ − cosϕ sin θ − sinϕ cos θ
cosϕ sin θ + sinϕ cos θ cosϕ cos θ − sinϕ sin θ

)

.

From R(ϕ+θ) = R(ϕ)R(θ) we obtain the addition theorem for trigonometric
functions. For example,

sin(ϕ+ θ) = cosϕ sin θ + sinϕ cos θ for all ϕ, θ ∈ R.

Differentiation of R(θ) with respect of θ at the point θ = 0 yields

R′(0) =

(
0 −1
1 0

)

.

Moreover, differentiating the group equation R(ϕ + θ) = R(ϕ)R(θ) with
respect to the angle ϕ at ϕ = 0, we obtain the differential equation

R′(θ) = AR(θ), θ ∈ R, R(0) = I

by setting A := R′(0). This initial-value problem has the unique solution42

R(θ) = eθA for all θ ∈ R.

By Taylor expansion,

R(θ) = I + θA+ o(θ), θ → 0.

Infinitesimal transformations correspond to the matrix θA. Explicitly, writing
δθ instead of θ, we get

(
δx

δy

)

= δθ ·A
(
x

y

)

for all δθ ∈ R.

This is equivalent to the infinitesimal rotation δx = −yδθ, δy = xδθ.
The infinitesimal strategy for one-parameter Lie groups and con-

servation laws. We now want to generalize the results for rotations in the
plane to one-parameter Lie matrix groups. To this end, choose either K := R

(set of real numbers) or K := C (set of complex numbers). Set

x :=

⎛

⎜
⎜
⎝

x1

...
xn

⎞

⎟
⎟
⎠

where x1, . . . , xn ∈ K. Furthermore, fix an (n × n)-matrix A = (aij) with
entries a11, a12, . . . in K. Now to the point. The family G of matrices,
42 See Zeidler (1995), Vol. 1, Sect. 1.24.
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{etA}t∈R

is called a one-parameter Lie matrix group with the generator A. Obviously,

A =
detA

dt

∣
∣
t=0

.

For all parameters t, s ∈ R, we have the so-called group equation (or causality
equation)

e(t+s)A = etAesA.

By Taylor expansion, etA = I + tA+ o(t) as t → 0. Thus, the linearization of
the transformation

x′ = etAx, t ∈ R

looks like
x′ = x+ tAx, t ∈ R.

Writing δt instead of t and setting δ := x′ −x, we get x′ = x+ δx along with
the so-called infinitesimal transformation

δx = δt ·Ax, δt ∈ R. (7.73)

By definition, the function f : K
n → K is called invariant under the Lie group

G iff
f(etAx) = f(x)

for all x ∈ K
n and all t ∈ R. Moreover, the function f is called invariant

under the infinitesimal transformations (7.73) iff

f(x+ δx) − f(x) = o(δt), δt → 0

for all x ∈ K
n and all real parameters δt.

Theorem 7.29 For a smooth function f : K
n → K, the following three

statements are equivalent.
(i) The function f is invariant under the infinitesimal transformations of

the one-parameter Lie group G.
(ii) The function f satisfies the Lie equation

f ′(x)(Ax) = 0 for all x ∈ K
n. (7.74)

(iii) The function f is invariant under the Lie group G.

Explicitly, the Lie equation (7.74) reads as
(
∂f(x)
∂x1

, . . . ,
∂f(x)
∂xn

)

Ax = 0 for all x ∈ K
n. (7.75)
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From the physical point of view, the solutions of the Lie system (7.75) of first-
order partial differential equations are the conservation laws to the dynamical
system x(t) = etAx(0), t ∈ R described by the system

ẋ(t) = Ax(t), t ∈ R (7.76)

of ordinary differential equations. Equation (7.76) is called the characteristic
equation to (7.75); it follows from the infinitesimal transformation (7.73) by
passing to the quotient δx

δt = Ax and letting δt → 0.
Proof. By Taylor expansion,

f(x+ th) = f(x) + f ′(x)(h) + o(t), t → 0

with

f ′(x)(h) =
(
∂f(x)
∂x1

, . . . ,
∂f(x)
∂xn

)

h =
n∑

k=1

∂f(x)
∂xk

hk.

(i) ⇔ (ii). Fix the point x ∈ K
n. Introduce the function

γ(t) := f(x+ tAx) for all t ∈ R.

By the chain rule, γ′(0) = f ′(x)(Ax). Condition (i) is equivalent to

γ(t) − γ(0) = o(t), t → 0.

In turn, this is equivalent to γ′(0) = 0.
(ii) ⇔ (ii). Now set g(t) := f(etAx) for all t ∈ R. By the chain rule,

g′(t) = f ′(etAx)(AetAx) for all t ∈ R.

Replacing x with etAx, condition (ii) is equivalent to

g′(t) = 0 for all t ∈ R.

In turn, this is equivalent to g(t) = const for all t ∈ R, which corresponds to
condition (iii). �

Lack of global information. The theory of Lie matrix groups is funda-
mental for elementary particle physics. This will be studied in the following
volumes. In Sect. 5.7.1 we have discussed the crucial fact that the two ma-
trix Lie groups SO(3) and SU(2) have isomorphic Lie algebras, and hence
they are locally isomorphic, but they are not globally isomorphic. In this
important case, the infinitesimal transformations do not know all about the
global transformations. It is quite remarkable that nature sees this difference
in terms of the electron spin.
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7.20.4 Functional Integration

We want to generalize the notion of classical integral to integrals over func-
tionals.

Finite measure integral. Let Q be a finite nonempty set. Suppose that
a nonnegative real number μ(q) is assigned to each point q of Q. We regard
this number as the mass of the point q. For each function F : Q → C, we
define the integral with respect to the measure μ by

∫

Q
F (q)dμ(q) :=

∑

q∈Q
F (q)μ(q).

Path integral. Let us now consider the special case where the set Q
consists of a finite number of curves. To this end, we divide the time interval
[s, t] into small equidistant time intervals

s = t0 < t1 < . . . < tm = t

where tj := t0 + jΔt for all j = 0, 1, . . . ,m. Consider continuous, piecewise
linear curves

q : [s, t] → C

that attain some of the given discrete values q1, . . . , qN at the discrete time
points t0, . . . , tm (Fig. 7.3). Let QΔt denote the set of all such curves. Suppose
that we are given the functional F : QΔt → C which assigns a complex
number F (q) to each curve q ∈ QΔt (e.g., the curve length). Then, the
measure integral

∫

QΔt

F (q)dμ(q) :=
∑

q∈QΔt

F (q)μ(q) (7.77)

is called a path integral. In what follows we will use the terms ‘functional
integral’ and ‘path integral’ synonymously.

7.21 The Discrete Feynman Path Integral

I found myself thinking of a large number of integrals, one after the other
in sequence. In the integrand was the product of the exponentials, which,
of course, was the exponential of the sum of the terms like εL. Now L is
the Lagrangian and ε is like the time interval dt, so that if you took a
sum of such terms, that’s exactly like an integral. That’s like Riemann’s
formula for the integral

R

Ldt; you just take the value at each point and add
them together. We are to take the limit as ε→ 0, of course. Therefore, the
connection between the wave function of one instant and the wave function
of another instant a finite time later could be obtained by an infinite
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Fig. 7.3. Piecewise linear curve

number of integrals of eiS/� , where S is the action expression. . . This led
later on to the idea of the amplitude of the path; that for each possible way
that the particle can go from one point to another in space-time, there’s
an amplitude eiS/� , where S is the action along the path. Amplitudes from
various paths superpose by addition. This then is another, a third way,
of describing quantum mechanic, which looks quite different than that of
Heisenberg or Schrödinger, but is equivalent to them.43

Richard Feynman (1918–1988)
Nobel Lecture in 1965

In modern textbooks in physics, the approach to quantum field theory is
mainly based on functional integrals which can be viewed as generalized path
integrals. In the following we want to discuss the basic ideas.

7.21.1 The Magic Feynman Propagator Formula

The magic Feynman propagator formula is given by the following discrete
path integral

〈Qout|P (tout, tin)Qin〉 =
∫

q∈ΠΔt(qin,qout)

eiS[q]/� dμ[q]. (7.78)

In terms of physics, this is the transition amplitude of the propagator with re-
spect to the finite time interval [tin, tout]. This transition amplitudes describes
the dynamics of the quantum system. The real number

|〈Qout|P (tout, tin)Qin〉|2

is the transition probability from the initial state Qin at the initial time tin
to the final state Qout at the final time tout. The explicit form of

• the action S[q] along the curve q : [tin, tout] → R,
• and the measure μ[q] of the curve q = q(t)

43 Nobel Prize Lectures. Reprinted by permission of the Nobel Foundation, Stock-
holm.
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are given by44

〈Q(tr+1)|e−iΔt·H/�Q(tr)〉 = �reiΔSr[q]/�, (7.79)

and

S[q] :=
m∑

r=1

ΔSr[q],

as well as

μ[q] :=
m∏

r=1

�r.

The path integral (7.78) represents a finite sum of the form
∑

q∈ΠΔt(qin,qout)

eiS[q]/� μ[q].

The real number ΔSr[q] is called the local action of the curve q on the time
interval [tr, tr+1]. By definition, the total action of the curve q is then obtained
by summing up the local actions. The precise formulation will be given in
(A1) through (A5) below.

The importance of the magic formula (7.78) relies on the fact that
it represents the crucial transition amplitude as the superposition of
simpler physical effects given by eiΔSr[q]/� which are acting on small
time intervals [tr, tr+1] of length Δt.

This can be regarded as a generalization of Newton’s classical strategy of
describing the dynamics of mechanical systems by their behavior during in-
finitesimally small time intervals. We make the following assumptions.

(A1) Energy operator: We are given a linear self-adjoint operator

H : X → X

on the N -dimensional complex Hilbert space X, 1 ≤ N < ∞. This op-
erator is called the energy operator (or the Hamiltonian). There exists a
complete orthonormal basis |E1〉, . . . , |EN 〉 of the Hilbert space X such
that

H|Ej〉 = Ej |Ej〉, j = 1, . . . , N.

The real eigenvalues E1, . . . , EN of the operator H are the possible en-
ergy values of the system with the corresponding energy eigenstates
|E1〉, . . . , |EN 〉.

44 Here, ΔSr[q]/� and !r are the argument and the modulus of the complex num-

ber 〈Q(tr+1)|e−iΔt·H/�Q(tr)〉, respectively. Equation (7.79) determines the real
argument ΔSr[q]/� only up to a multiple of the number 2π. The same is true

for S[q]/�. However, the point is that the factor eiS[q]/� arising in the magic
Feynman propagator formula (7.78) is uniquely determined.
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(A2) Position operator: Let Q1, . . . , QN denote an arbitrary orthonormal ba-
sis of the Hilbert space X. In order to get some intuitive interpretation,
suppose that there exists a linear self-adjoint operator Q : X → X such
that

QQj = qjQj , j = 1, . . . N.

We regard the operator Q as position operator, and the eigenvalues
q1, . . . , qN may be regarded as the positions of a quantum particle on
the real line. The position qj corresponds to the normalized state Qj . As
in the Dirac calculus, we will use the notation |Qj〉 instead of Qj .

(A3) Feynman propagator: Let us also introduce the propagator

P (t, s) := e−i(t−s)H/�, s, t ∈ R. (7.80)

The truncated operator

P+(t, s) := θ(t− s)P (t, s), t, s ∈ R

is called the retarded propagator (or the Feynman propagator).
(A4) Piecewise linear paths: Decompose the given time interval [tin, tout] into

m pieces of equal length,

tj = tin + jΔt, j = 0, 1, . . . ,m

where Δt := (tout − tin)/m. As pictured in Fig. 7.3 on page 419, we
consider all possible curves q : [tin, tout] → R which have the following
properties:
• The curves are piecewise linear and continuous. In other words, they

are polygonal curves in the plane.
• At the node points t0 = tin, t1, . . . , tm−1, tm = tout, the curves attain

some of the real values q1, . . . , qN .
• Both the initial point and the final point of the curves are fixed, i.e.,

q(tin) := qin, q(tout) := qout.

The space of these curves is denoted by ΠΔt(qin, qout).
(A5) Transition amplitudes: Let q ∈ ΠΔt(qin, qout). Suppose that the curve

has the node points

q(tr) = qj , q(tr+1) = qk

at time tr and tr+1, respectively. We set Q(tr) := Qj and Q(tr+1) := Qk.
Then

〈Q(tr+1)|e−iΔtH/�Q(tr)〉 = 〈Qk|e−iΔt·H/�Qj〉.

This complex number can be written as �reiΔSr[q]/� with the real argu-
ment ΔSr[q]/� and the modulus �r.
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By the Dirac calculus,
∑

k=1 |Ek〉〈Ek| = I. Hence 〈Q(tr+1)|e−iΔt·H/�Q(tr)〉
is equal to

N∑

j,k=1

〈Q(tr+1)|Ej〉〈Ej |e−iΔt·H/�|Ek〉〈Ek|Q(tr)〉.

Since 〈Ej |e−iΔt·H/�|Ek〉 = e−iEkΔt/�〈Ej |Ek〉 = e−iEkΔt/� δjk, we get

�reiΔSr[q]/� =
N∑

j=1

e−iEjΔt/�〈Q(tr+1)|Ej〉〈Ej |Q(tr)〉.

Theorem 7.30 The magic Feynman formula (7.78) holds true.

Proof. To simplify notation, set � := 1. To begin with, let m = 2, that is,
t0 < t1 < t2, and Δt = t1 − t0 = t2 − t1. According to the Dirac calculus,

N∑

j=1

|Qj〉〈Qj | = I.

By (7.80), the propagator satisfies the relation

P (t2, t0) = P (t2, t1)P (t1, t0).

Thus, Dirac’s substitution trick (7.20) yields

〈Qout|P (t2, t0)|Qin〉 =
N∑

j=1

〈Qout|P (t2, t1)Qj〉〈Qj |P (t1, t0)Qin〉.

An arbitrary curve q ∈ ΠΔt(qin, qout) has the form

q(t0) = qin, q(t1) = qj , q(t2) = qout.

Therefore, the transition amplitude 〈Qout|P (t2, t0)|Qin〉 is equal to the sum
∑

q∈ΠΔt(qin,qout)

〈Q(t2)|P (t2, t1)|Q(t1)〉〈Q(t1)|P (t1, t0)|Q(t0)〉

over all possible curves. This is the basic trick. This tells us that the transition
amplitude 〈Qout|P (t2, t0)|Qin〉 is equal to

∑

q∈ΠΔt(qin,qout)

〈Q(t2)|e−iΔtH |Q(t1)〉〈Q(t1)|e−iΔtH |Q(t0)〉

=
∑

q∈ΠΔt(qin,qout)

ei(ΔS1[q]+ΔS2[q])�1�2.
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This finishes the proof for m = 2. Now let m = 3, that is, t0 < t1 < t2 < t3.
By Dirac’s substitution trick, the transition amplitude 〈Qout|P (t3, t0)|Qin〉 is
equal to

N∑

j,k=1

〈Qout|P (t3, t2)Qj〉〈Qj |P (t2, t1)Qk〉〈Qk|P (t1, t0)|Qin〉.

The proof proceeds now as above. A similar argument can be applied in the
case where m = 4, 5, . . . �

The Feynman propagator kernel. Let us now explain the basic trick
of Feynman’s approach to quantum physics. For a given Hamiltonian H, the
dynamics of the quantum system is described by the equation

ψ(tout) = P (tout, tin)ψ(tin), tout > tin (7.81)

where ψ(t) denotes the state of the system at time t. Introducing the Fourier
coefficients

ψj(t) := 〈Qj |ψ(t)〉, j = 1, . . . , N

and the so-called Feynman propagator kernel

K(Qj , tout;Qk, tin) := 〈Qj |P (tout, tin)Qk〉,

we get the Feynman propagator kernel equation

ψj(tout) =
N∑

k=1

K(Qj , tout;Qk, tin)ψk(tin), tout > tin (7.82)

for j = 1, . . . , N. This equation is equivalent to (7.81). In fact, by the Dirac
calculus,

〈Qj |ψ(tout)〉 =
N∑

k=1

〈Qj |P (tout, tin)Qk〉〈Qk|ψ(tin)〉.

Using the magic Feynman propagator formula (7.78), the Feynman propaga-
tor kernel can be expressed by a path integral. Explicitly,

K(Qj , tout;Qk, tin) =
∫

q∈ΠΔt(qj ,qk)

eiS[q]/� dμ[q]. (7.83)

Rescaling. For a given positive number Δq, let us consider the special
case where

qj := q1 + (j − 1)Δq, j = 1, . . . , N.

Define the rescaled states

|qj〉 :=
|Qj〉√
Δq

, j = 1, . . . N.
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Introducing the discrete Dirac delta function,

δΔq(qj − qk) :=
δjk

Δq
, j, k = 1, . . . , N, (7.84)

we get the rescaled orthogonality condition

〈qj |qk〉 = δΔq(qj − qk), j, k = 1, . . . , N

along with the rescaled completeness relation

N∑

j=1

|qj〉〈qj | Δq = I.

The magic Feynman propagator formula (7.78) now reads as

〈qout|P (tout, tin)|qin〉 =
∑

q∈ΠΔt(qin,qout)

eiS[q]/� μ(q)(Δq)m−1.

Perspective. Roughly speaking, physicists use the formal limits

N,m → +∞, Δt → 0, Δq → 0, q1 → −∞, qN → +∞

in order to investigate quantum particles on the real line in terms of path
integrals. In particular, the discrete Dirac delta function passes over to the
Dirac delta function in a formal manner,

δΔq → δ as Δq → 0.

7.21.2 The Magic Formula for Time-Ordered Products

We now modify the magic formula (7.78) by considering the following tran-
sition amplitude:

〈Qout|P (tout, tr)QP (tr, tin)Qin〉 =
∫

q∈ΠΔt(qin,qout)

q(tr)eiS[q]/� dμ[q]. (7.85)

This means that the physical influence of the operator Q acting at time tr can
be described simply by inserting the value of the curve q(tr) at time tr into the
path integral. Here, we use again the decomposition t0 < t1 < . . . < tm with
tin := t0 and tout := tm. Moreover, we choose tr for fixed r = 1, . . . ,m− 1.

Theorem 7.31 Formula (7.85) holds true.
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Proof. To explain the basic idea, choose t0 < t1 < t2, and set tr := t1. By
the Dirac calculus,

∑N
j=1 |Qj〉〈Qj | = I. Hence the transition amplitude

〈Qout|P (tout, t1)QP (t1, tin)Qin〉

is equal to

N∑

j,k=1

〈Qout|P (tout, t1)Qj〉〈Qj |QQk〉〈Qk|P (t1, tin)Qin〉.

Since 〈Qj |QQk〉 = qk〈Qj |Qk〉 = qkδjk, this is equal to

N∑

j=1

qj〈Qout|P (tout, t1)Qj〉〈Qj |P (t1, tin)Qin〉,

which is the expression for the path integral from the proof of Theorem 7.30,
up to the additional factor qj which corresponds to the value q(t1) of the
curve q at time t1. �

The same argument applies to transition amplitudes where the operator
Q acts at different times tr1 < tr2 < . . . < trl . For example, let tin < t1 <
. . . < tm = tout, and choose tr1 < tr2 with 1 < r1 < r2 < m. Then, the
time-ordered transition amplitude

〈Qout|P (tout, tr2)QP (tr2 , tr1)QP (tr1 , tin)Qin〉

is equal to the path integral
∫

q∈ΠΔt(qin,qout)

q(tr2)q(tr1)e
iS[q]/� dμ[q]. (7.86)

The proof proceeds similarly to the proof of Theorem 7.31 by inserting the
identity

∑N
j=1 |Qj〉〈Qj | = I at time tr2 and time tr1 .

7.21.3 The Trace Formula

The following formula plays an important role in quantum statistics. For the
trace of the propagator P (tout, tin) = e−i(tout−tin)H/�, we get

trP (tout, tin) =
∫

q∈ΠΔt,periodic

eiS[q]/� dμ[q]. (7.87)

Here, we sum over all of the curves q ∈ ΠΔt(qin, qout) with qin = qout.
Proof. Set Qin := Qj and Qout := Qj for fixed j = 1, . . . , N. By (7.78),

〈Qj |P (tout, tin)Qj〉 =
∫

ΠΔt(qj ,qj)

eiS[q]/� dμ[q].

Finally, note that trP (tout, tin) =
∑N

j=1〈Qj |P (tout, tin)Qj〉. �
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7.22 Causal Correlation Functions

It is our goal to compute causal correlation functions which lie at the heart
of quantum field theory. Assume that the energies are ordered by

E1 ≤ E2 ≤ . . . ≤ EN .

The least energy value E1 is also called the ground state energy (or the vac-
uum energy) of the system. For the following, we make the crucial assumption
that the ground state energy is not degenerate. By definition, this means that
the eigenvalue E1 of the energy operator (Hamiltonian) H is simple, that is,

E1 < E2 ≤ . . . ≤ EN .

Thus, the normalized states of least energy are of the form �|E1〉 where � is
a complex number with |�| = 1. For arbitrary real times s < t, the causal
correlation function is defined by

C(t, s) := 〈E1|eitH/�Qe−itH/� · eisH/�Qe−isH/�|E1〉.

This function is also called the 2-point Green’s function. Using the propaga-
tor, this can be written as

C(t, s) := 〈E1|P (0, t)QP (t, s)QP (s, 0)|E1〉.

In terms of physics, C(t, s) describes the correlation between quantum fluc-
tuations of the ground state |E1〉 at time s and the later time t. Because of
this time-ordering, we speak of causal correlation functions. The quantum
fluctuations refer to the operator Q acting at time s and the later time t.

It is our goal to reduce the computation of causal correlation functions
to simpler expressions.

This will correspond to both the magic Wick rotation formula (7.89) below
and the magic Gell-Mann–Low perturbation formula from Theorem 7.33 on
page 429. To this end, we will use the trick of Wick rotation. This trick is
based on the time transformation

τ = t(1 − εi), t ∈ R (7.88)

for fixed real parameter ε > 0. The basic idea is to simplify computations by
passing from real time t to complex time τ. In addition, we will apply the
limits

tout → +∞, tin → −∞, ε → +0.

Introducing the modified correlation function

Cε(t, s) := C(t(1 − εi), s(1 − εi)), s < t,
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we obtain the following limit relation

C(t, s) = lim
ε→+0

Cε(t, s), s < t.

We will now show how to compute the modified correlation function Cε(t, s)
by applying the limits tout → +∞ and tin → −∞ to appropriate transition
amplitudes.

7.22.1 The Wick Rotation Trick for Vacuum Expectation Values

We are given the states Qout and Qin as eigenstates of the linear self-adjoint
operator Q : X → X on the N -dimensional complex Hilbert space X where
1 ≤ N < ∞. Assume that 〈Qout|E1〉 �= 0 and 〈E1|Qin〉 �= 0. Fix the parameter
ε > 0, and choose the real times s and t with s < t. The following formula
(7.89) is called the magic Wick rotation formula.

Theorem 7.32 The modified causal correlation function is equal to the limit

Cε(t, s) = lim
tout→+∞

lim
tin→−∞

A
B (7.89)

where
A := 〈Qout|P (τout, τ)QP (τ, σ)QP (σ, τin)|Qin〉

along with τ := t(1 − εi) and σ := s(1 − εi), and

B := 〈Qout|P (τout, τin)|Qin〉.

Observe that the key formula (7.89) represents the vacuum expectation
value Cε(t, s) = 〈E1| . . . |EN 〉 by the transition amplitudes A and B extended
over an infinite time interval. Before proving this, let us reformulate this in
terms of path integrals. In fact, we obtain

A =
∫

q∈ΠΔτ (qin,qout)

q(τ)q(σ)eiS[q]/�dμ[q]

and
B =

∫

q∈ΠΔτ (qin,qout)

eiS[q]/�dμ[q].

These discrete path integrals are obtained from the corresponding discrete
path integrals introduced in Sect. 7.21 by replacing real time t by the complex
time t(1 − εi) for fixed parameter ε > 0. In particular, t = tr1 and s = tr2 fit
the decomposition of the time interval, that is, r1 < r2, and

t0 := tin < t1 < . . . < tm := tout.



428 7. Rigorous Finite-Dimensional Magic Formulas

Proof of Theorem 7.32. (I) Basic trick. Let a1, . . . , aN be complex num-
bers. Fix ε > 0. Then

lim
t→+∞

∑N
j=1 e−εtEjaj

∑N
j=1 e−εtEj

= a1.

In fact, this follows from the decomposition

e−εtEj = e−εtE1 e−εt(Ej−E1)

along with E1 < E2 ≤ . . . ≤ EN . Hence

lim
t→+∞

e−εtE1(a1 +
∑N

j=2 e−εt(Ej−E1)aj)

e−εtE1(1 +
∑N

j=2 e−εt(Ej−E1))
= a1.

(II) Similarly, for given complex numbers ajk, bjk, j, k = 1, . . . , N with
a11 �= 0, we obtain

lim
t→+∞

lim
s→−∞

∑N
j,k=1 e−it(1−εi)Ej eis(1−εi)Ekajkbjk
∑N

j,k=1 e−it(1−εi)Ej eis(1−εi)Ekajk

= b11.

(III) To simplify notation, set � := 1. Observe that

A := 〈eiτoutHQout|eiτHQe−iτH · eiσHQe−iσH · eiτinHQin〉.

By the Dirac calculus,

A =
N∑

j,k=1

〈eiτoutHQout|Ej〉〈Ej |eiτHQe−iτH · eiσHQe−iσH |Ek〉〈Ek|eiτinHQin〉.

Since 〈eiτoutHQout|Ej〉 = 〈Qout|e−iτoutH |Ej〉 = e−iEjτout〈Qout|Ej〉, we get

A =
N∑

j,k=1

e−iτoutEj 〈Qout|Ej〉eiτinEk〈Ek|Qin〉cjk

with
cjk := 〈Ej |eiτHQe−iτH · eiσHQe−iσH |Ek〉.

Similarly,

B =
N∑

j,k=1

e−iτoutEj 〈Qout|Ej〉eiτinEk〈Ek|Qin〉.

By (II), the quotient A/B goes to c11 as tout → +∞ and tin → −∞. �
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7.22.2 The Magic Gell-Mann–Low Reduction Formula

The magic Dyson formula for the S-matrix and the magic Gell-Mann–
Low formula for the causal correlation functions are the key to applying
perturbation theory in quantum field theory.

Folklore

Consider the typical perturbation of the Hamiltonian,

H = H0 + κV,

where H0, V : X → X are linear self-adjoint operators on the given complex
N -dimensional Hilbert space X, N = 1, 2, . . . The real constant κ ≥ 0 is
called the coupling constant. It is our goal to reformulate the Wick rotation
trick from the preceding section in terms of the Dyson S-matrix operator,

S(t, s) = T e−
iκ
�

R t
s

VI(η)dη, (7.90)

introduced in Sect. 7.18. Here, VI(t) := eitH0/�V e−itH0/�. Let

H0|E0
j 〉 = E0

j |E0
j 〉, j = 1, . . . N,

that is, |E0
1〉, . . . |E0

N 〉 forms a complete orthonormal system of eigenvectors
of the unperturbed Hamiltonian H0. In addition, assume that the ground
state of the unperturbed Hamiltonian is not degenerate, that is, the lowest
eigenvalue E0

1 is simple,
E0

1 < E0
2 ≤ . . . E0

N .

Similarly, let
H|Ej〉 = Ej |Ej〉, j = 1, . . . , N,

that is, |E1〉, . . . , |EN 〉 forms a complete orthonormal system of eigenvectors
of the perturbed Hamiltonian H. Furthermore, assume that E1 is simple and
that

〈E1|E0
1〉 �= 0.

By classical perturbation theory, these two conditions are always satisfied if
the coupling constant κ is sufficiently small.45

Theorem 7.33 We are given the real times t and s with s < t. For fixed
parameter ε > 0, set τ := t(1 − εi) and σ := s(1 − εi). Then, the modified
correlation function is given by the following limit

Cε(t, s) = lim
tout→+∞

lim
tin→−∞

〈E0
1 |S(τout, τ)Q0(τ)S(τ, σ)Q0(σ)S(σ, τin)|E0

1〉
〈E0

1 |S(τout, τin)|E0
1〉

.

Here, we set Q0(τ) := eiτH0/�Qe−iτH0/�.

45 As an introduction to perturbation theory, we recommend the standard text-
books by Kato (1966) and Reed, Simon (1972), Vol. 4.
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Mnemonically, using the time-ordering operator T from Sect. 7.17.4,
physicists write this briefly as

Cε(t, s) = lim
tout→+∞

lim
tin→−∞

〈E0
1 |T {S(τout, τin)Q0(τ)Q0(σ)}|E0

1〉
〈E0

1 |S(τout, τin)|E0
1〉

.

This is called the magic Gell-Mann–Low perturbation formula. Observe the
following. The causal correlation function is given by the limit

C(t, s) = lim
ε→+0

Cε(t, s).

By Sect. 7.22, C(t, s) = 〈E1| . . . |E1〉, that is, the causal correlation function
refers to the ground state |E1〉 of the perturbed quantum system. In contrast
to this, the Gell-Mann–Low formula refers to the ground state |E0

1〉 of the
unperturbed (free) quantum system. Moreover, the operator Q0 = Q0(τ) only
depends on the unperturbed Hamiltonian H0. The interaction is described
by the S-operator switched on at times τ = t(1 − εi) and σ = s(1 − εi).
Proof of Theorem 7.33. This follows from Theorem 7.32 by replacing
the states |Qin〉 and |Qout〉 by |E0

1〉. In addition, for the propagator use the
following Dyson formula (7.52), namely, P (t, s) = e−itH0/�S(t, s)eisH0/� if
t ≥ s. �

In Chap. 15, we will consider the operator approach to quantum field
theory. We will start there with the magic Dyson formula (7.90) in order to
elegantly compute the S-matrix. The causal correlation functions then fol-
low from the magic Gell-Mann–Low formula. In the following two sections,
as an alternative, we will consider the rigorous response approach based on
Gaussian integrals and discrete functional integrals. The corresponding ap-
plications to quantum field theory will be studied in Chap. 14.

7.23 The Magic Gaussian Integral

The most important probability distribution is the Gaussian distribution.
Folklore

Quantum theory is a stochastic theory. Therefore, it is not a big surprise
that the Gaussian distribution plays a fundamental role in quantum physics.
The following formulas are frequently used by physicists when computing
Feynman functional integrals.

7.23.1 The One-Dimensional Prototype

The Fourier–Gauss formula. Let us start with the classical key formula

1√
2π

∫ ∞

−∞
e−x2/2e−ipx dx = e−p2/2 (7.91)
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which is valid for all complex numbers p. This magic formula tells us that
the Gaussian function e−x2/2 is invariant under Fourier transformation. The
integral (7.91) exists in the classical sense because of the damping factor
e−x2/2. The proof will be given in Problem 7.1.

Use now the rescaling x �→
√
a x and p �→ p/

√
a. Then, for all a > 0 and

p ∈ C, we obtain

1√
2π

∫ ∞

−∞
e−ax2/2e−ipx dx =

e−p2/2a

√
a

. (7.92)

The Gaussian probability distribution. The function

�(x) :=
e−

(x−μ)2

2σ2

σ
√

2π
, x ∈ R

is called the density function of the Gaussian probability distribution. Here,
μ ∈ R and σ > 0 (Fig. 7.4). We have the following normalization condition

∫ ∞

−∞
�(x)dx = 1. (7.93)

The number ∫ d

c

�(x)dx

is equal to the probability of measuring the quantity x in the interval [c, d].
In addition, for the mean value x̄ and the mean fluctuation Δx of the random
variable x, we get

x̄ =
∫ ∞

−∞
x�(x)dx = μ,

(Δx)2 =
∫ ∞

−∞
(x− x̄)2�(x)dx = σ2.

By the central limit theorem of probability theory, roughly speaking, a ran-
dom variable possesses a Gaussian distribution if it results from the super-
position of a large number of independent random variables.

�
x

�
!

μ μ+σμ−σ

Fig. 7.4. Gaussian probability distribution
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In quantum field theory, we will use perturbed Gaussian distributions.

The perturbations are caused by the interactions between quantum fields.
The Dirac delta distribution. In what follows we will use the space

S(R) (resp. D(R)) of smooth test functions χ : R → C which go rapidly
to zero at infinity (resp. vanish outside a compact interval). Furthermore,
we will use elementary facts about generalized functions (see Sect. 11.3). By
(7.93), we get the classical limiting relation

lim
σ→+0

∫ ∞

−∞

e−
x2

2σ2

σ
√

2π
χ(x) dx = χ(0) (7.94)

for all test functions χ ∈ S(R). The proof will be given in Problem 7.2. In
the language of generalized functions,

lim
σ→+0

e−
x2

2σ2

σ
√

2π
= δ(x), x ∈ R.

It follows from (7.92) and (7.94) that

lim
a→+0

1
2π

∫ ∞

−∞
e−

1
2 ax2−ipx dx = δ(p), p ∈ R, (7.95)

in the sense of generalized functions. This means explicitly that for all test
functions χ ∈ S(R),

lim
a→+0

∫ ∞

−∞

(
1
2π

∫ ∞

−∞
e−

1
2 ax2−ipx dx

)

χ(p)dp = χ(0).

The method of stationary phase. The following observation is crucial.
Formula (7.92) can be written as

1√
2π

∫ ∞

−∞
eΦ(x)dx =

eΦ(x0)

√
a

. (7.96)

Here, we introduce the phase function

Φ(x) := −1
2ax

2 − ipx.

The critical value x0 is determined by the stationary phase condition

Φ′(x0) = 0. (7.97)

Explicitly, −ax0−ip = 0 implies x0 = − ip
a . Hence Φ(x0) = − p2

2a . The classical
identity (7.96) is called the stationary phase identity.
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Let h be a small positive real parameter. Set � := h/2π. For each test
function χ ∈ D(R), we have the asymptotic expansion of the Gaussian inte-
gral,

∫ ∞

−∞
e−x2/2� χ(x) dx = h

1
2χ(0) +O

(
h

3
2
)
, h → +0, (7.98)

which follows from (7.94). This is the key to the method of stationary phase to
be studied in Sect. 12.5.3 in connection with geometric optics, by generalizing
Fresnel integrals. In particular, it turns out that formula (7.98) remains valid
if we replace h by ±ih. We then get

∫ ∞

−∞
e±ix2/2� χ(x) dx = (±ih)

1
2χ(0) +O

(
h

3
2
)
, h → +0 (7.99)

where we set (±i)
1
2 := e±

iπ
4 . Intuitively, for small values of h, the integral

(7.99) is rapidly oscillating. Therefore, the contributions of the integrand to
the integral cancel each other, except at the position x = 0 where the rapid
oscillations do not appear.

Physicists use the method of stationary phase in order to compute semi-
classical approximations of quantum effects where the Planck constant � is
assumed to be small. More precisely, we assume that S(x)/� is small, where
S(x) denotes the classical action. Applications of this so-called WKB method
for computing semiclassical approximations of the Feynman propagator ker-
nel can be found in both Kleinert (1996) and Grosche, Steiner (1996). It
turns out that the topology of the corresponding classical dynamical system
(focal points, closed orbits) plays a fundamental role in terms of the Maslov
index. Summarizing, for an important class of interactions, the method of
stationary phase allows us to compute the most important contributions to
the corresponding physical processes.

The moment trick. For fixed a > 0 and all J ∈ C, define

Z(J) :=
√

a

2π

∫ ∞

−∞
e−ax2/2 eiJx dx.

By (7.92),

Z(J) = e−J2/2a for all J ∈ C.

In particular, Z(0) = 1. Using the nth derivative of the function Z = Z(J),
the integral

√
a

2π

∫ ∞

−∞
xne−

1
2 ax2

dx =
1
in
dnZ(0)
dJn

n = 1, 2, . . .

can be computed easily. In the theory of probability, this integral is called the
nth moment of the Gauss distribution if we choose a = 1/σ2. In particular,
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the nth moment vanishes if n is odd. Physicists call this the moment trick or
the Wick trick. The function Z = Z(J) is called the generating function for
the moments. For example,

√
a

2π

∫ ∞

−∞
x2e−

1
2 ax2

dx = −Z ′′(0) =
1
a
.

Perturbation theory. As a typical example, consider the integral

Z(J, κ) :=
∫ ∞

−∞
dx e−

1
2 ax2

eiκx4
eiJx

where κ is a positive constant called the coupling constant. By power series
expansion,

Z(J, κ) =
∫ ∞

−∞
dx e−

1
2 ax2

(1 + iκx4 − 1
2κ

2x8 + . . .)eiJx.

By the Wick trick,

Z(J, κ) =
∫ ∞

−∞
dx e−

1
2 ax2

{

1 + iκ
(

1
i

d

dJ

)4

− 1
2κ

2

(
1
i
d

dJ

)8

+ . . .

}

eiJx

=

{

1 + iκ
(

1
i

d

dJ

)4

− 1
2
κ2

(
1
i
d

dJ

)8

+ . . .

}∫ ∞

−∞
dx e−

1
2 ax2

eiJx.

Mnemonically, this can be written as

Z(J, κ) = exp

{

iκ
(

1
i
d

dJ

)4
}

Z(J, 0). (7.100)

Explicitly, we get

Z(J, 0) =

√
2π
a

e−J2/2a.

Recall that this can be obtained by using the method of stationary phase.
Therefore, the first and second approximation of Z(J, κ) reads as

Z(J, κ) =

√
2π
a

(

1 + iκ
d4

dJ4

)

e−J2/2a

and

Z(J, κ) =

√
2π
a

(

1 + iκ
d4

dJ4
− κ2

2
d8

dJ8

)

e−J2/2a.

Formula (7.100) is the prototype of the fundamental quantum action principle
in quantum field theory. More generally, let U = U(x) be a polynomial with
real coefficients. Then the integral
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Z(J, κ) =
∫ ∞

−∞
dx e−

1
2ax2+iκU(x)eiJx

is equal to

Z(J, κ) = exp
{

iκU
(

1
i
d

dJ

)}

Z(J, 0). (7.101)

The heat kernel formula. Using e−x2−y2
= e−x2

e−y2
, and so on, from

the key formula (7.92) we obtain the 3-dimensional heat kernel relation

1
(2π)

3
2

∫

R3
d3x e−

1
2 ax2−ipx =

e−
p2

2a

a
3
2

(7.102)

for all a > 0 and all vectors p.
Analytic continuation. Let z = a + ib be a complex number with

a, b ∈ R where
a+ ib = |a+ ib| eiα, −π < α < π.

In other words, the number z lies in the complex plane outside the negative
real axis. We define √

a+ ib :=
√
|a+ ib| eiα/2.

This function is analytic on C \ {a ∈ R : a ≤ 0}. Let us study the integral

G(a+ ib) :=
1√
2π

∫ ∞

−∞
e−

1
2 (a+ib)x2

e−ipxdx

where p is an arbitrary complex number. Our goal is the formula

G(a+ ib) =
e−p2/2(a+ib)

√
a+ ib

(7.103)

for all p ∈ C. We have to discuss three cases.
Case 1: Let a > 0 and b = 0. By the key formula (7.91),

G(a) =
e−p2/2a

√
a

. (7.104)

Case 2: Let a > 0 and b ∈ R. The integral G(a+ib) exists, and the function
a+ib �→ G(a+ib) is analytic on the open half-plane {a+ib : a > 0, b ∈ R}. In
fact, the derivative of G can be computed as in Problem 7.1. Formula (7.103)
follows now from (7.104) by means of analytic continuation.

Case 3: Let a ≤ 0 and b �= 0. Then, the integral G(a+bi) does not exist in
the classical sense. However, we can define it in a generalized sense by means
of analytic continuation. This yields (7.103). For example, in the generalized
sense,

1√
2π

∫ ∞

−∞
e∓

1
2 ix2

dx =
1√
±i

= e∓iπ/4.
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7.23.2 The Determinant Trick

Let us now pass over to multidimensional generalizations of the formulas
considered above. Let N = 1, 2, . . . , and let λ1 > 0, . . . , λN > 0. Moreover,
let J1, . . . , JN be complex numbers. Set

Z(J) :=
1

(2π)N/2

∫

RN

e−
1
2

PN
k=1 λkϕ2

k ei
PN

k=1 Jkϕkdϕ1 · · · dϕN .

By the key formula (7.92),

Z(J) :=
e−

1
2

PN
k=1 λ−1

k J2
k

(
∏N

k=1 λk)1/2
. (7.105)

In what follows, we will use the matrices

ϕ :=

⎛

⎜
⎜
⎝

ϕ1

...
ϕN

⎞

⎟
⎟
⎠ , J :=

⎛

⎜
⎜
⎝

J1

...
JN

⎞

⎟
⎟
⎠ (7.106)

where ϕ1, . . . , ϕN are real numbers, and J1, . . . , JN are complex numbers.

Theorem 7.34 Let A be a real symmetric (N × N)-matrix with the eigen-
values λ1 > 0, . . . , λN > 0. Then

1
(2π)N/2

∫

RN

e−
1
2 ϕdAϕeiϕdJ dϕ1 · · · dϕN =

e−
1
2 JdA−1J

(detA)1/2
. (7.107)

The proof of this determinant formula will be given in Problem 7.3.

7.23.3 The Zeta Function Trick

Let the matrix A be given as in Theorem 7.34 above. The function

ζA(s) :=
N∑

k=1

1
λs

k

, for all s ∈ C

is called the zeta function of the matrix A on the complex plane. Note that
λ−s

k = e−s ln λk . Thus, for the derivative,

ζ ′A(s) = −
N∑

k=1

lnλk

λs
k

, s ∈ C.

Hence
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detA =
N∏

k=1

λk = e−ζ′
A(0).

Setting 〈ϕ|Aϕ〉 := ϕdAϕ and 〈ϕ|J〉 := ϕdJ , formula (7.107) is equivalent to
the magic zeta function formula

∫

RN

e−
1
2 〈ϕ|Aϕ〉+i〈ϕ|J〉

N∏

k=1

dϕk√
2π

= e
1
2 ζ′

A(0) e−
1
2 〈J|A−1J〉. (7.108)

In the case of infinite-dimensional functional integrals, physicists use this
formula; they then compute the derivative of the zeta function at the origin,
ζ ′(0), by using analytic continuation.

7.23.4 The Moment Trick

Let the matrix A be given as in Theorem 7.34 above. Define

Z(J) :=
∫

RN

e−
1
2 ϕdAϕ eiϕdJdϕ1 · · · dϕN .

Then

1
i
∂Z(0)
∂Jk

=
∫

RN

ϕke−
1
2 ϕdAϕ dϕ1 · · · dϕN .

This implies

1
in

∂nZ(0)
∂Jk1 · · · ∂Jkn

=
∫

RN

ϕk1 · · ·ϕkne−
1
2 ϕdAϕ dϕ1 · · · dϕN . (7.109)

7.23.5 The Method of Stationary Phase

First prototype. For N = 1, 2, . . . and each fixed real number η > 0, let us
consider the integral

W (J) :=
∫

RN

eΦ(ϕ,J) e−ηϕdϕdϕ1 · · · dϕN

with the phase function

Φ(ϕ, J) := 1
2 iϕdAϕ+ iϕdJ.

Here, ϕ and J are given by (7.106). We will show below that under suitable
assumptions, the functional Φ has a unique critical point ϕ0 depending on J ,
and
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W (J) = eΦ(ϕ0,J)W (0).

Explicitly,

W (J) = e−
1
2 iJdA−1JW (0) (7.110)

for all real numbers J1, . . . , JN .

Theorem 7.35 Let A be a complex symmetric invertible (N × N)-matrix
such that

sup
ϕ∈RN

|eiϕdAϕ| < ∞. (7.111)

Then, equation (7.110) holds true.

In particular, this implies

lim
η→+0

W (J)
W (0)

= e−
1
2 iJdA−1J . (7.112)

For example, condition (7.111) is satisfied if A := D + iεI where the matrix
D is real and ε ≥ 0. In fact, then

|eiϕdAϕ| = |eiϕdAϕ| · e−εϕdϕ = e−εϕdϕ.

Proof. (I) The integral

W (J) =
∫

RN

e
1
2 iϕdAϕ eiϕdJ e−ηϕdϕ dϕ1 · · · dϕN

exists because of the damping factor e−ηϕdϕ.
(II) Critical point of the phase function Φ. For fixed ϕ0, h and J, define

χ(τ) := Φ(ϕ0 + τh, J), τ ∈ R.

The function χ is quadratic. By Taylor expansion,

χ(1) = χ(0) + χ′(0) + 1
2χ

′′(0). (7.113)

Choose ϕ0 in such a way that it is a critical point of Φ, that is, χ′(0) = 0 for
all h. Since A is symmetric, we get

χ′(0) = 1
2 ihdAϕ0 + 1

2 iϕd
0Ah+ ihdJ = ihd(A+ J)ϕ0 = 0

for all h ∈ R
N . Hence Aϕ0 + J = 0. This so-called response equation has the

unique solution

ϕ0 = −A−1J. (7.114)
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Since the matrix A−1 is symmetric, ϕd
0 = −JdA−1. Setting h := ϕ − ϕ0, it

follows from (7.113) that

Φ(ϕ) = Φ(ϕ0 + h) = Φ(ϕ0) + 1
2χ

′′(0).

This implies

W (J) = eΦ(ϕ0,J)

∫

RN

e
1
2 χ′′(0) e−ηϕdϕdϕ1 · · · dϕN .

If J = 0, then Φ(ϕ0) = Φ(0) = 0. Since the J-term of the function Φ is linear
with respect to ϕ, the second derivative χ′′(0) does not depend on J . Thus,

W (0) =
∫

RN

e
1
2χ′′(0) e−ηϕdϕdϕ1 · · · dϕN .

By (7.114),

Φ(ϕ0, J) =
1
2
iJdA−1J − iJdA−1J = −1

2 iJdA−1J.

�

Analytic continuation. Motivated by (7.112), we define

∫
RN e

1
2 iϕdAϕ+iϕdJ

∏N
k=1 dϕk

∫
RN e

1
2 iϕdAϕ

∏N
k=1 dϕk

:= e−
1
2 iJdA−1J (7.115)

for all complex symmetric invertible (N × N)-matrices A and all complex
numbers J1, . . . , JN .

Second prototype. Fix N = 1, 2, . . . and η > 0. Let us now consider the
integral

W (J, J) :=
∫

RN

eΦ(ψ,ψ,J,J) e−η(ψdψ+ψ ψ
d
) dψ1 · · · dψNdψ1 · · · dψN

with the phase function

Φ(ψ,ψ, J, J) := iψAψ + iψJ + iJψ.

Here, we use the following real matrices

ψ =

⎛

⎜
⎜
⎝

ψ1

...
ψN

⎞

⎟
⎟
⎠ , J =

⎛

⎜
⎜
⎝

J1

...
JN

⎞

⎟
⎟
⎠

along with ψ = (ψ1, . . . , ψN ) and J = (J1, . . . , JN ).
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Theorem 7.36 Let A be a real invertible (N ×N)-matrix. Then,

W (J, J) = e−iJA−1J W (0, 0)

for all real numbers J1, . . . , JN , J1, . . . , JN , and all η > 0.

In particular, this implies

lim
η→+0

W (J, J)
W (0, 0)

= e−iJA−1J . (7.116)

Proof. For fixed ψ0, ψ0, h, h, J, J , set

χ(τ) := Φ(ψ0 + τh, ψ0 + τh, J, J), τ ∈ R.

Note that
χ′(0) = ih(Aψ0 + J) + i(ψ0A+ J)h.

If we choose
ψ0 := −A−1J, ψ0 := −JA−1,

then χ′(0) = 0. As in the proof of Theorem 7.35, we get

W (J, J) = eΦ(ψ0,ψ0,J,J) W (0, 0)

where W (0, 0) depends on η. Finally,

Φ(ψ0, ψ0, J, J) = iJA−1J − 2iJA−1J = −iJA−1J.

This finishes the proof. �

Analytic continuation. Motivated by (7.116), we define

∫
RN eiψAψ+iJψ+iψJ

∏N
k=1 dψkdψk

∫
RN eiψAψ

∏N
k=1 dψkdψk

:= e−iJA−1J (7.117)

for all complex invertible (N × N)-matrices A and all complex numbers
J1, . . . , JN , J1, . . . , JN .

46 Here, as a rule, the single integrals do not exist,
only the quotient is well-defined. Expressions of the form (7.117) play a cru-
cial role in the following response approach to quantum field theory.

7.24 The Rigorous Response Approach to Finite
Quantum Fields

Quantum field theory is based on only a few basic principles which we call
magic formulas.

Folklore

46 Note that the symbol Jk does not denote the conjugate complex number to Jk,
but an independent variable.
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7.24.1 Basic Ideas

Classical fields are described by the principle of critical action. The uni-
versal response approach to quantum field theory combines the principle of
critical action with the random aspects of infinite-dimensional Gaussian in-
tegrals. The idea is to study the response of the quantum field under the
influence of an external source. In this section, we will rigorously study a
finite-dimensional variant of the response approach. The notation will be
chosen in such a way that the formal continuum limit can be carried out
in a straightforward manner in Chap. 14. The basic idea is to introduce the
so-called extended quantum action functional Z(J, ϕ) which depends on both
the quantum field ϕ and the external source J and to derive two magic for-
mulas, namely,

(QA) the quantum action reduction formula, and
(LSZ) the Lehmann–Symanzik–Zimmermann reduction formula on the re-

lation between correlation functions

Cn(x1, . . . , xn)

and scattering functions Sn(x1, . . . , xn).

The main steps of our approach are the following ones.

(i) The principle of critical action. The point is that the classical action
functional

S[ϕ, J ]

depends on both the classical quantum field ϕ and the external source
J. This yields the Euler–Lagrange equation of the motion of the classical
quantum field under the influence of the external source. See (7.122) on
page 448.

(ii) The response operator. The linearized (and regularized) Euler–Lagrange
equation determines the response operator Rε which describes the re-
sponse

ϕ = RεJ

of the interaction-free classical quantum field ϕ to the external source
J . See (7.125) on page 448. The small parameter ε > 0 regularizes the
response. It turns out that the response operator Rε knows all about the
full quantum field. To this end, we will use the two magic formulas (QA)
and (LSZ).

(iii) The quantum action reduction formula (QA). The response operator Rε

determines the free generating functional

Zfree(J, ϕ).

The formula (QA) tells us how the corresponding generating functional
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Z(J, ϕ)

of the interacting quantum field can be obtained from the free functional
Zfree(J, ϕ) by functional differentiation. See (7.127) on page 450. Note
that the key formula (QA) is valid in each order of perturbation theory
with respect to the coupling constant κ.

The magic formula (QA) describes the quantization of the clas-
sical quantum field ϕ.

(iv) The n-point correlation function Cn. It is our philosophy that
The main properties of a quantum field are described by the se-
quence of correlation functions C2, C4, . . .

These functions are obtained from Z(J, 0) by using functional differenti-
ation at the point J = 0. See (7.129) on page 450.

(v) The n-point scattering functions Sn. These functions are obtained by
applying functional differentiation to Z(0, ϕ) at the point ϕ = 0. See
(7.130) on page 451. The scattering functions know all about scattering
processes.

(vi) The LSZ reduction formula. This fundamental formula tells us how to re-
late the n-point scattering function Sn to the n-point correlation function
Cn.

(vii) The local quantum action principle. The formula (QA) is the solution
formula to the Dyson–Schwinger equation (7.133) on page 455 which is
called the local quantum action principle.

We will use finite functional integrals in order to derive rigorously the magic
formulas (QA) and (LSZ) by using the quite natural global quantum action
principle.

The global quantum action principle is based on an averaging over
the classical fields where the statistical weight eiS[ϕ,J]/� depends on
the classical action S[ϕ, J ].

The explicit formulation can be found in Sect. 7.24.5 on page 449. However,
the response approach can also be formulated in such a way that functional in-
tegrals do not appear explicitly. This is important for the infinite-dimensional
approach, since functional integrals are not well-defined in infinite dimen-
sions.

The basic idea is then to start with the definition of the extended
quantum action functional Z = Z(J, ϕ) and to define the correlation
functions Cn and the scattering functions Sn as functional derivatives
of Z(ϕ, J).

In what follows, we will investigate the basic ideas sketched in (i) through
(vii) above in a rigorous setting. The translation to quantum fields with an
infinite number of degrees of freedom will be studied in Chap. 14 (response
approach) and Chap. 15 (operator approach).
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7.24.2 Discrete Space-Time Manifold

According to Einstein, the physics in an inertial system depends on space-
time points

x = (x, ct)

where x and t denote position vector and time, respectively. Moreover, c is
the velocity of light in a vacuum. The set of all space-time points x forms
the 4-dimensional space-time manifold M

4. In this section, we use a finite-
dimensional set

M = (1, 2, . . . , N)

as discrete space-time manifold where N = 1, 2, . . . . Furthermore, we fix a
real number Δx > 0, and we set Δ4x := (Δx)4. Each function

ϕ : M → R

is called a discrete quantum field, and each function J : M → R is called an
external source. In the language of matrices, we write

ϕ =

⎛

⎜
⎜
⎝

ϕ1

...
ϕN

⎞

⎟
⎟
⎠ , J =

⎛

⎜
⎜
⎝

J1

...
JN

⎞

⎟
⎟
⎠ .

Discrete integral. For each function f : M → R, the sum
∑

x∈M
f(x)Δ4x

is called a finite integral on M. The space of all functions f : M → R becomes
a real N -dimensional Hilbert space with respect to the inner product

〈f |g〉 :=
∑

x∈M
f(x)g(x)Δ4x. (7.118)

This Hilbert space is denoted by L2(M). Let A be a real (N × N)-matrix
with the entries A(x, y) where x, y ∈ M. Let Δ4y := Δ4x. Define

(Aϕ)(x) :=
∑

x∈M
A(x, y)ϕ(y)Δ4y for all x ∈ M.

The linear operator A : L2(M) → L2(M) is called a discrete integral operator
with the kernel A. Obviously, each linear operator A on L2(M) is a discrete
integral operator. This statement is not true anymore in infinite-dimensional
Hilbert spaces. This fact causes trouble in infinite dimensions.

Discrete Dirac delta function. Let δx,x := 1 and δx,y := 0 if x �= y.
The 4-dimensional discrete Dirac delta function δΔ4x is defined by
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δΔ4x(x, y) :=
δx,y

Δ4x
, x, y ∈ M.

For each function ϕ ∈ L2(M), the key relation

ϕ(x) =
∑

y∈M
δΔ4x(x, y)ϕ(y)Δ4y for all x ∈ M

tells us that the discrete Dirac delta function δΔ4x is the kernel of the identity
operator on the Hilbert space L2(M). The formal limit N → +∞, Δx → 0
yields

ϕ(x) =
∫

M4
δ(x, y)ϕ(y)d4y for all x ∈ M

4.

In terms of the formal Dirac delta function, δ(x, y) = δ4(x − y) (see Sect.
11.2.1 on page 593).

Discrete local functional derivative. For each function F : R
N → R,

define
δF (ϕ)
δϕ(x)

:=
1

Δ4x

∂F (ϕ(1), . . . , ϕ(N))
∂ϕ(x)

.

This functional derivative differs from the corresponding partial derivative
with respect to the variable ϕ(x) by multiplying with the factor 1/Δ4x. For
example,

δ

δϕ(y)

∑

x∈M
ϕ(x)J(x)Δ4x = J(y) .

Discrete functional integral. For each function F : R
N → R, the key

definition reads as

∫

L2(M)

F (ϕ)Dϕ :=
∫

RN

F (ϕ(1), . . . , ϕ(N))
N∏

k=1

√
Δ4x

2π
dϕ(k).

We briefly write

∫

L2(M)

F (ϕ)Dϕ :=
∫

RN

F (ϕ)
∏

x∈M

√
Δ4x

2π
dϕ(x).

Naturally enough, we assume that the classical integral exists on the right-
hand side. Let us explain why this represents a functional integral over the
Hilbert space L2(M). Obviously, the map

ϕ �→ (ϕ(1), . . . , ϕ(N))

is bijective from the function space L2(M) onto the space R
N . In this sense,

we write L2(M) = R
N . Therefore, we may regard F as a functional
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F : L2(M) → R,

and
∫
F (ϕ)Dϕ is an integral over the function space L2(M).

Example. Let λ(1) > 0, . . . , λ(N) > 0. Set

ζN (s) :=
N∑

k=1

1
λ(k)s

, s ∈ C.

By the magic zeta function formula (7.108) on page 437,
∫

L2(M)

e−
1
2

P

x∈M λ(x)ϕ(x)2Δ4x Dϕ =
∏

x∈M

1
√
λ(x)

= e
1
2 ζ′

N (0).

In the special case where λ(x) = 1 for all x ∈ M,
∫

L2(M)

e−
1
2

P

x∈M ϕ(x)2Δ4x Dϕ = 1.

The formal limit N → +∞ and Δx → 0 motivates the definition
∫

L2(M4)

e−
1
2

R

M4 ϕ(x)2d4x Dϕ := 1.

Terminology. Let us summarize the basic notions to be introduced be-
low. The starting point will be the classical action functional S[ϕ, J ]. The
principle of critical action yields the Euler–Lagrange equation of motion for
the quantum field ϕ under the influence of the external source J .

The fundamental quantum action principal defines the quantum ac-
tion functional

Z(J) :=

∫
x∈M eiS[ϕ,J]/� e−η〈ϕ|ϕ〉 Dϕ
∫

x∈M eiS[ϕ,0]/� e−η〈ϕ|ϕ〉 Dϕ

as a functional integral depending on the classical action functional
S[ϕ, J ] and by averaging over all possible quantum fields ϕ.

Here, we introduce the fixed small parameter η > 0 in order to force the
convergence of the integrals. The quantum action functional Z = Z(J) is
normalized by the condition Z(0) = 1. The quantum action functional Z(J)
is related to quantum fluctuations that are added to the classical quantum
field. These quantum fluctuations are described by correlation functions. In
addition, we will introduce the extended quantum action functional

Z = Z(J, ϕ)

in (7.127) below. The relation between the function Z = Z(J) and the ex-
tended function Z = Z(J, ϕ) will be given by
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Z(J) =
Z(J, 0)
Z(0, 0)

.

To simplify notation, we will use the same symbol Z for both Z(J) and
Z(J, ϕ). Using the extended function Z = Z(J, ϕ), we also introduce the
scattering functional

S(ϕ) :=
Z(0, ϕ)
Z(0, 0)

.

This way, Z(J) and S(ϕ) are dual quantities along with the normalization
condition Z(0) = S(0) = 1. For describing the crucial properties of quantum
fields we will use the following functions:

(i) the n-point correlation function Cn = Cn(x1, . . . , xn);
(ii) the n-point scattering function Sn = Sn(x1, . . . , xn);
(iii) the causal n-point correlation function Cn = Cn(x1, . . . , xn), and
(iv) the n-point vertex function Vn = Vn(x1, . . . , xn).

By definition,

Cn(x1, . . . , xn) :=
(

�

i

)n
δnZ(J)

δJ(x1) · · · δJ(xn)
|J=0

and

Sn(x1, . . . , xn) :=
δnS(ϕ)

δϕ(x1) · · · δϕ(xn)
| ϕ=0 .

Here, Z = Z(J) and S = S(ϕ) are called generating functionals. Switching off
the interaction by putting the coupling constant to zero, κ = 0, the correlation
function Cn passes over to the so-called free correlation function, Cn,free.
Quantum field theory can be based on two magic formulas (QA) and (LSZ).
Let us briefly discuss this.

(QA) The quantum action formula reduces the correlation function Cn to
the free correlation functions C02, C04, . . . In addition, the free correlation
functions are determined by the response function which describes the
solution ϕ = RεJ of the linearized (and regularized) equation of motion
with the regularization parameter ε > 0.

(LSZ) The Lehmann–Symanzik–Zimmermann formula reduces the scattering
function Sn to the correlation function Cn.

We will show in Sect. 14.2.5 that the scattering function Sm+n allows us to
compute the S-matrix elements. This yields the essential information about
scattering processes of m incoming particles and n outgoing particles.

The causal correlation function Cn was introduced in Sect. 7.22. We will
show in Chap. 15 on the operator approach to quantum field theory that
Cn = Cn for all n.

The function Cn is also called the n-point Green’s function.
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In the literature, one uses the notations Gn or τn for Cn synonymously. The
n-point vertex function Vn is defined in terms of the correlation function
Cn. The vertex functions extract important information from the correlation
functions. The local quantum action principle tells us that the functional
derivatives

δZ(J)
δJ(x)

, x ∈ M

satisfy an equation which is called the Dyson–Schwinger equation.
Warning. For historical reasons, the physical quantity ‘action’ is denoted

by the letter S. In 1943 Heisenberg introduced the S-matrix. Here, the letter
S refers to ‘scattering’. We will use the italic symbol S[ϕ] and the san-serif
symbol S(ϕ) in order to distinguish between the action functional and the
scattering functional, respectively.

7.24.3 The Principle of Critical Action

We are given the action

S[ϕ, J ] :=
∑

x∈M
L(ϕ)(x)Δ4x (7.119)

along with the Lagrangian density

L(ϕ)(x) := 1
2ϕ(x)(Dϕ)(x) + 1

2 iεϕ(x)2 + κLint(ϕ)(x) + ϕ(x)J(x).

In terms of the inner product on L2(M), the action looks like

S[ϕ, J ] = 1
2 〈ϕ|(D + iεI)ϕ〉 + κ〈1|Lint(ϕ)〉 + 〈ϕ|J〉. (7.120)

In the following sections, the response approach is essentially based on the ac-
tion S[ϕ, J ] of the quantum field ϕ. This action depends on the fixed external
source J . We make the following assumptions:

• The functions ϕ and J lie in the space L2(M).
• The operator D : L2(M) → L2(M) is linear and self-adjoint.
• There exists a real number ε0 > 0 such that the inverse operator

(D + iεI)−1 : L2(M) → L2(M)

exists for all ε ∈]0, ε0[.
• We fix the coupling constant κ ≥ 0, and we assume that the function

Lint : R → R is a polynomial with real coefficients (e.g., Lint(χ) = −χ4).
The nonlinear term κLint with κ > 0 describes interactions.

Theorem 7.37 The problem of critical action,

S[ϕ, J ] = critical!, ϕ ∈ L2(M), (7.121)
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is equivalent to the Euler–Lagrange equation of motion,

(Dϕ)(x) + iεϕ(x) + κL′
int(ϕ)(x) + J(x) = 0 (7.122)

for all x ∈ M. This equation of motion is equivalent to

δS[ϕ, J ]
δϕ(x)

= 0 for all x ∈ M. (7.123)

Proof. Fix h ∈ L2(M). Introduce the function

χ(τ) := S[ϕ+ τh, J ] for all τ ∈ R.

By definition, problem (7.121) is equivalent to

χ′(0) = 0 for all h ∈ L2(M).

Recall that

S[ϕ, J ] = 1
2 〈ϕ|Dϕ〉 + 1

2 iε〈ϕ|ϕ〉 + 〈ϕ|J〉 + κ
∑

x∈M
Lint(ϕ)(x)Δ4x.

Therefore, the derivative χ′(0) is equal to

1
2 〈h|Dϕ〉 + 1

2 〈ϕ|Dh〉 + iε〈h|ϕ〉 + 〈h|J〉 + κ
∑

x∈M
L′

int(ϕ)(x)h(x)Δ4x.

Since 〈ϕ|Dh〉 = 〈Dϕ|h〉 = 〈h|Dϕ〉,

〈h|Dϕ+ iεϕ+ J + κL′
int(ϕ)〉 = 0 for all h ∈ L2(M).

This implies (7.122). Furthermore,

δS[ϕ, J ]
δϕ(x)

(h) = χ′(0) =
∑

x∈M

δS[ϕ, J ]
δϕ(x)

h(x)Δ4x = 0

for all h ∈ L2(M). This yields (7.123). �

7.24.4 The Response Function

Set κ = 0. The linearized equation of motion

Dϕ+ iεϕ = −J (7.124)

is called the response equation. For a sufficiently small parameter ε > 0,
equation (7.124) has the unique solution

ϕ = −(D + iεI)−1J.

We set Rε := −(D + iεI)−1. Then ϕ = RεJ. We write

ϕ(x) =
∑

y∈M
Rε(x, y)J(y)Δ4y, x ∈ M. (7.125)

The kernel Rε of the response operator Rε is called the response function.
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7.24.5 The Global Quantum Action Principle

Fix the real number η > 0. We define the crucial quantum action functional

Z(J) := N
∫

L2(M)

eiS[ϕ,J]/� e−η〈ϕ|ϕ〉 Dϕ.

The number N is chosen in such a way that Z(0) = 1. Explicitly,

Z(J) :=

∫
L2(M)

eiS[ϕ,J]/� e−η〈ϕ|ϕ〉 Dϕ
∫

L2(M)
eiS[ϕ,0]/� e−η〈ϕ|ϕ〉 Dϕ . (7.126)

Correlation functions. Define

Cn(x1, . . . , xn) :=
(

�

i

)n
δnZ(J)

δJ(x1) · · · δJ(xn)
|J=0.

Hence

Cn(x1, . . . , xn) =

∫
L2(M)

ϕ(x1) · · ·ϕ(xn) eiS[ϕ,0]/� e−η〈ϕ|ϕ〉 Dϕ
∫

L2(M)
eiS[ϕ,0]/� e−η〈ϕ|ϕ〉 Dϕ .

Explicitly, Cn(x1, . . . , xn) is equal to

∫
RN ϕ(x1) · · ·ϕ(xN ) e

PN
k=1 F (ϕ(k))+iϕ(k)J(k)/� e−η〈ϕ|ϕ〉 dϕ(1) · · · dϕ(N)

∫
RN e

PN
k=1 F (ϕ(k)) e−η〈ϕ|ϕ〉 dϕ(1) · · · dϕ(N)

for all x1, . . . , xn ∈ M. Here, we set

F (ϕ(k)) :=
i

2�
{ϕ(k)(Dϕ)(k) + 2κLint(ϕ)(k)} − ε

2�
ϕ(k)2.

These are classical integrals over the N real variables ϕ(1), . . . , ϕ(N). The
damping factors e−εϕ(k)2/2� and e−ηϕ(k)2 with ε, η > 0 and k = 1, . . . , N
guarantee the existence of these integrals.47 Motivated by the theory of prob-
ability, we call Cn the n-moment function or the n-correlation function. In
particular, we get the following.

(i) Cn(x1, . . . , xN ) ≡ 0 if n = 1, 3, 5, . . .
(ii) Cn(x1, . . . , xn) is symmetric with respect to the variables x1, . . . , xn if

n = 2, 4, 6, . . .

47 Since the matrix D is real, |eiϕ(k)(Dϕ)(k)| = 1.
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7.24.6 The Magic Quantum Action Reduction Formula for
Correlation Functions

The following two magic reduction formulas (QA) and (LSZ) will be based
on the extended quantum action functional

Z(J, ϕ) := exp

{
iκ
�

∑

x∈M
Δ4x Lint

(
�

i
δ

δJ(x)

)}

· Zfree(J, ϕ) (7.127)

along with
Zfree(J, ϕ) := e

1
2 i〈J|RεJ〉/� ei〈ϕ|J〉/�.

Explicitly,

Zfree(J, ϕ) = e
1
2 i
P

x,y∈M J(x)Rε(x,y)J(y)Δ4xΔ4y/� ei
P

x∈M ϕ(x)J(x)Δ4x/�.

Observe that, in contrast to the definition of Z(J) above, the extended func-
tional Z(J, ϕ) is formulated without using functional integrals. This func-
tional only depends on the response function Rε. In particular, for vanishing
coupling constant, κ = 0, we get Z(J, ϕ) = Zfree(J, ϕ).

Theorem 7.38 For each source J ∈ L2(M), the quantum action functional
is given by

Z(J) =
Z(J, 0)
Z(0, 0)

. (7.128)

This so-called magic quantum action formula (QA) reduces the com-
putation of the quantum action functional Z(J) to the response function
Rε = Rε(x, y), by (7.127). Note that equation (7.127) is to be understood
in the sense of a formal power series expansion with respect to the coupling
constant κ. This means that the left-hand side and the right-hand side of
(7.127) are formal power series expansions with identical complex coefficients.
Consequently, equation (7.127) represents a rigorous relation in each order
of perturbation theory with respect to κ. This follows from our assumption
that Lint(ζ) is a polynomial with respect to the variable ζ. Recall that the
correlation functions are given by the following functional derivatives

Cn(x1, . . . , xn) :=
(

�

i

)n
δnZ(J)

δJ(x1) · · · δJ(xn)
| J=0 (7.129)

if n = 2, 4, 6, . . .. Furthermore, Cn ≡ 0 if n = 1, 3, 5, . . .
Proof of Theorem 7.38. To simplify notation, set � := 1. By (7.126), the
functional Z(J) is equal to

N
∫

L2(M)

e
1
2 i〈ϕ|Dϕ〉− 1

2 ε〈ϕ|ϕ〉+i〈ϕ|J〉 eiκ
P

x∈M Δ4x Lint(ϕ)(x) e−η〈ϕ|ϕ〉 Dϕ.
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The number N has to be chosen in such a way that Z(0) = 1.
(I) The moment trick. We will use an argument which is similar to equa-

tion (7.100) on page 434. Define

Zfree(J) :=
∫

L2(M)

e
1
2 i〈ϕ|Dϕ〉− 1

2 ε〈ϕ|ϕ〉+i〈ϕ|J〉 e−η〈ϕ|ϕ〉 Dϕ.

This corresponds to Z(J) by switching off the interaction, κ = 0. For the
functional derivative,

1
i
δZfree(J)
δJ(x)

=
∫

L2(M)

ϕ(x) e
1
2 i〈ϕ|Dϕ〉− 1

2 ε〈ϕ|ϕ〉+i〈ϕ|J〉 e−η〈ϕ|ϕ〉 Dϕ.

Power series expansion yields ez = 1 + z + 1
2z

2 + . . . Hence

eiκ
P

x∈M Δ4x Lint(ϕ)(x) = 1 + iκ
∑

x∈M
Δ4x Lint(ϕ)(x) + . . .

This implies

Z(J) = N
{

1 + iκ
∑

x∈M
Lint

(
1
i

δ

δJ(x)
+O(κ2)

)}

Zfree(J)

= N exp

{

iκ
∑

x∈M
Lint

(
1
i

δ

δJ(x)

)}

Zfree(J).

(II) The method of stationary phase. Recall that Rε := −(D+iεI)−1. By
(7.110) on page 438,

Zfree(J) = e
1
2 i〈J|RεJ〉 Zfree(0).

This way, we get Z(J) = const · Z(J, 0). Finally, the constant is uniquely
determined by the normalization condition Z(0) = 1. �

7.24.7 The Magic LSZ Reduction Formula for Scattering
Functions

Let us use the extended quantum action functional Z(J, ϕ) in order to define
the scattering functional

S(ϕ) :=
Z(0, ϕ)
Z(0, 0)

.

The functional derivative

Sn(x1, . . . , xn) :=
δnS(ϕ)

δϕ(x1) · · · δϕ(xn)
| ϕ=0 (7.130)
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is called the n-point scattering function. The physical meaning of this function
will be discussed in Sect. 14.2.5. For example, if κ = 0, then S(ϕ) = 1. In terms
of physics, the triviality of S(ϕ) tells us that there is no proper scattering if
the interaction vanishes. By Taylor expansion,

S(ϕ) = 1 +
∞∑

n=1

1
n!

∑

x1,...,xn∈M
Sn(x1, . . . , xn)ϕ(x1) · · ·ϕ(xn)(Δ4x)n.

This is regarded as a formal power series expansion. In perturbation theory,
we consider terms up to order κm for fixed m = 1, 2, . . . , where κ denotes the
coupling constant. Define the modified n-point scattering function

Ŝn(x1, . . . , xn) :=
1

(i�)n

{
n∏

k=1

(Dxk
+ iεI)Cn

}

(x1, . . . , xn),

which depends on the correlation function Cn. Here, the symbol Dxk
stands

for the linear operator D from the equation of motion (7.122) which acts on
the kth variable of the correlation function Cn.

Theorem 7.39 Choose the function ϕ0 : M → R such that Dϕ0 = 0. For
all x1, . . . , xn ∈ M and n = 1, 2, . . ., we have the following LSZ reduction
formulas: The sum

∑

x1,...,xn∈M
Sn(x1, . . . , xn)ϕ0(x1) · · ·ϕ0(xn)(Δ4x)n

is equal to the sum
∑

x1,...,xn∈M
Ŝn(x1, . . . , xn)ϕ0(x1) · · ·ϕ0(xn)(Δ4x)n +O(ε) as ε → +0.

Proof. The proof is an elementary consequence of the chain rule for partial
derivatives and the relation

Rε(D + iεI) = −I

together with (D+iεI)ϕ0 = iεϕ0. To simplify notation, we set Dε := D+iεI.
Step 1: To understand the simple idea of the proof, let us start with the

case where N = 1. Then

Zfree(J, ϕ) := eiRεJ2/2� eiϕJ/�, ϕ, J ∈ R.

Here, Dε and Rε are nonzero real numbers with (−Dε)Rε = 1. For the indices
k = 0, 1, 2, . . . , let us also introduce the differential operators

δ

δJ
:=

1
Δ4x

∂

∂J
, A :=

δk

δJk
,

δ

δϕ
:=

1
Δ4x

∂

∂ϕ
.
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Let n = 1, 2, . . . We claim that

δnAZfree

δϕn
(0, 0)ϕn

0 (Δ4x)n = (−Dε)n δ
nAZfree

δJn
(0, 0)ϕn

0 (Δ4x)n +O(ε)

as ε → 0. This is equivalent to

∂nAZfree

∂ϕn
(0, 0)ϕn

0 = (−Dε)n ∂
nAZfree

∂Jn
(0, 0)ϕn

0 +O(ε) (7.131)

as ε → 0, which is the key relation of our proof.

(i) First choose n = 1. To simplify notation, set α := i
�
. Obviously,

∂Zfree(J, ϕ)
∂ϕ

= αJZfree(J, ϕ).

Furthermore,

∂Zfree(J, ϕ)
∂J

= α(RεJ + ϕ)Zfree(J, ϕ).

Setting ϕ = 0,
∂Zfree

∂J
(J, 0) = αRεJZfree(J, 0).

Noting that −DεRε = 1, we get

−Dε
∂Zfree

∂J
(J, 0) = αJZfree(J, 0).

Hence
−Dε

∂Zfree

∂J
(J, 0) =

∂Zfree

∂ϕ
(J, 0).

Applying the differential operator A to this, we obtain

−Dε
∂AZfree

∂J
(J, 0) =

∂AZfree

∂ϕ
(J, 0).

Setting J = 0, we get the claim (7.131) for n = 1.
(ii) Now choose n = 2. This step will show the typical feature of our proof.

Differentiation with respect to ϕ yields

∂2Zfree

∂ϕ2
(J, 0) = α2J2Zfree(J, 0). (7.132)

Observe that
∂keiϕJ/�

∂Jk
|ϕ=0 = 0, k = 1, 2, . . .

Therefore, setting Zfree(J) := Zfree(J, 0), we get
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∂2Zfree

∂J2
(J, 0) =

d2Zfree(J)
dJ2

.

Hence
∂2Zfree

∂J2
(J, 0) = α2R2

εJ
2Zfree(J, 0) + αRεZfree(J, 0).

Multiplying this by the factor D2
ε and noting that DεRε = −1 (and hence

D2
εRε = −Dε), we get

D2
ε

∂2Zfree

∂J2
(J, 0) = α2J2Zfree(J, 0) − αZfree(J, 0)Dε.

This yields
∂2Zfree

∂ϕ2
(J, 0) = D2

ε

∂2Zfree

∂J2
(J, 0) + r

with the remainder r := αZfree(J, 0)Dε. Since Dεϕ0 = iεϕ0, we get

rϕ2
0 = O(ε), ε → 0.

This implies

∂2Zfree

∂ϕ2
(J, 0)ϕ2

0 = D2
ε

∂2Zfree

∂J2
(J, 0)ϕ2

0 +O(ε).

Applying the differential operator A to this, we get

∂2AZfree

∂ϕ2
(J, 0)ϕ2

0 = D2
ε

∂2AZfree

∂J2
(J, 0)ϕ2

0 +O(ε).

Finally, setting J = 0, we obtain the claim (7.131) for n = 2.
(iii) For n = 3, 4, . . . , the proof of (7.131) proceeds analogously.

Step 2: Let N = 2, 3, . . . In contrast to Step 1, now we have to use partial
derivatives with respect to the real variables J(1), . . . , J(N), ϕ(1), . . . , ϕ(N).
Let Dε(x, y) and Rε(x, y)Δ4xΔ4y denote the entries of the matrix Dε and
Rε, respectively. Here, Rε = −D−1

ε . Then

〈J |RεJ〉 =
∑

x,y∈M
J(x)Rε(x, y)J(y)Δ4xΔ4y,

and
∑

y∈MDε(x, y)Rε(y, z)Δ4y = −δx,z. The same argument as in Step 1
tells us that the functional derivative

δnS

δϕ(x1) · · · δϕ(xn)
(0)

is equal to

(−1)n
∑

y1,...,yn∈M
Dε(x1, y1) · · ·Dε(xn, yn)

δnZ

δJ(y1) · · · δJ(yn)
(0, 0) + r.
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Since Dεϕ0 = iεϕ0 and hence
∑

y∈MDε(x, y)ϕ0(y) = iεϕ0(x) = O(ε), the
remainder r has the crucial property that

∑

x1,...,xn∈M
rϕ0(x1) · · ·ϕ0(xn) = O(ε), ε → 0.

Replacing the functional derivatives by Sn and Cn, we obtain that the n-point
scattering function Sn(x1, . . . , xn) is equal to

1
(i�)n

∑

y1,...,yn∈M
D(x1, y1) · · ·D(xn, yn)Cn(y1, . . . , yn) + r.

Multiplying this by ϕ0(x1) · · ·ϕ0(xn)(Δ4x)n and summing over the variables
x1, . . . , xn ∈ M, we obtain the desired LSZ reduction formula. �

7.24.8 The Local Quantum Action Principle

The following theorem is called the local quantum action principle.

Theorem 7.40 The functional derivative of the quantum action functional
Z = Z(J) satisfies the following Dyson–Schwinger integro-differential equa-
tion

�

i
δZ(J)
δJ(x)

=
∑

y∈M
Rε(x, y)J(y)Z(J)Δ4y +

+κ
∑

y∈M
Rε(x, y)L′

int

(
�

i
δ

δJ(y)

)

Z(J) Δ4y. (7.133)

For each x ∈ M, this equation is to be understood in the sense of formal
power series expansions with respect to the coupling constant κ. Therefore,
this equation holds true in each order of perturbation theory with respect
to κ. Since Rε = −(D + iεI)−1, the Dyson–Schwinger equation (7.133) is
equivalent to the following equation

�

i

{

(D + iεI)
δZ(J)
δJ

}

(x) = −J(x)Z(J) −

−κ L′
int

(
�

i
δ

δJ(x)

)

Z(J) (7.134)

for all x ∈ M. This equation resembles the equation of motion for the classical
field ϕ. In the next section, we will show that the Dyson–Schwinger equation
is the equation of motion for the mean field ϕmean which includes quantum
fluctuations. The trick of the following proof is to use the identity (7.138)
below which is a special case of the Baker–Campbell–Hausdorff formula in
the theory of Lie algebras.
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Proof of Theorem 7.40. Recall that

Z(J) = eB Zfree(J)

where Zfree(J) := ei〈J|RεJ〉/2� along with

〈J |RεJ〉 =
∑

x,y∈M
J(x)Rε(x, y)J(y)Δ4xΔ4y.

Furthermore, we use the differential operator

B :=
κi
�

∑

y∈M
Δ4y L′

int

(
�

i
δ

δJ(y)

)

.

Observe that Lint(ζ) = a0 +a1ζ+ . . .+arζ
r is a real polynomial with respect

to the variable ζ.
(I) Two key identities. We claim that

�

i
δZfree(J)
δJ(x)

=
∑

y∈M
Rε(x, y)J(y)Zfree(J)Δ4y, (7.135)

and

J(x)eBZfree(J) = eBJ(x)Zfree(J) − κL′
int

(
�

i
δ

δJ(x)

)

Zfree(J). (7.136)

(II) We first show that (I) implies the desired key relation (7.134). It
follows from (7.135) that

�

i

{

(D + iεI)
δZfree(J)

δJ

}

(x) = −J(x)Zfree(J).

Furthermore, the matrix operator D commutes with the differential operators
δ

δJ(x) and B. Therefore,

�

i

{

(D + iεI)
δZ(J)
δJ

}

(x) = eB · �

i

{

(D + iεI)
δZfree(J)

δJ

}

(x)

= −eBJ(x)Zfree(J).

By (7.136), this is equal to −J(x)Z(J) − κL′
int(

�

i
δ

δJ(x) )Z(J).
(III) Proof of the first key relation (7.135). This follows immediately from

the definition Zfree(J) := ei〈J|RεJ〉/2�.
(IV) Proof of the second key relation (7.136). Recall the definition

[A,B]− := AB −BA.
Step 1: Let n = 1, 2, . . . . We show that

[
δn

δJ(x)n
, J(y)

]

−
F (y) = nδ(x, y)

δn−1

δJ(y)n−1
F (y). (7.137)
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First consider the case where n = 1. Then
[

δ

δJ(x)
, J(y)

]

−
F (y) =

δ

δJ(x)
{J(y)F (y)} − J(y)

δF (y)
δJ(x)

=
δJ(y)
δJ(x)

F (y) =
δx,y

Δ4x
F (y) = δ(x, y)F (y).

Now let n = 2. Then
[

δ2

δJ(x)2
, J(y)

]

−
F (y) =

δ

δJ(x)

[
δ

δJ(x)
, J(y)

]

−
F (y) +

+
[

δ

δJ(x)
, J(y)

]

−

δF (y)
δJ(y)

= 2δ(x, y)
δF (y)
δJ(y)

.

The general induction proof proceeds analogously.
Step 2: We show that

[B, J(x)]−F (z) = κL′
int

(
�

i
δ

δJ(x)

)

F (z).

In fact, by (7.137),

[B, J(x)]−F (z) =
κi
�

∑

y∈M
Δ4y

�

i
δ(x, y) L′

int

(
�

i
δ

δy

)

F (z)

= κL′
int

(
�

i
δ

δx

)

F (z).

Step 3: We show that

[ [J(x), B]−, B]− = 0.

In fact, since [J(x), 1]− = 0, it follows from (7.137) that

[J(x), B]− =
∑

y∈M
b0δ(x, y) + b1

δ

δy
+ . . .

This differential operator commutes with the differential operator B.
Step 4: We have the special Baker–Campbell–Hausdorff formula

J(x)eB = eBJ(x) + [J(x), B]−. (7.138)

This is a consequence of Step 3. The proof for matrices can be found in
Problem 7.4 on page 497. The proof of (7.138) proceeds analogously to the
proof for matrices. Note that (7.138) is to be understood in the sense of
formal power series expansions with respect to κ. Using Step 2 and Step 4,
we get the key relation (7.136). �
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7.24.9 Simplifying the Computation of Quantum Effects

We have seen that correlation functions know all about quantum fields includ-
ing scattering processes via the LSZ reduction formula. However, as a rule,
the computation of concrete physical effects is lengthy and time consuming.
Therefore, physicists have invented tools in order to simplify computations,
namely,

(i) the family of reduced correlation functions and
(ii) the mean field approach (averaged quantum fluctuations).

Reduced correlation functions. The basic idea is to start with so-
called reduced correlation functions which allow us the computation of the
correlation functions. Schematically,

response function ⇒ reduced correlation functions ⇒
⇒ correlation functions ⇒ scattering functions (S matrix).

The S matrix knows all about scattering processes.
Mean field approach. In order to get typical information about the

influence of quantum fluctuations, we average the quantum fluctuations over
all possible classical field configurations. Schematically,

• classical field ϕ ⇒ mean field ϕmean;
• classical action S[ϕ, J ] ⇒ effective quantum action Seff ;
• response function ⇒ vertex functional V ⇒ effective quantum action

Seff = V (ϕmean).

The effective quantum action depends on the vertex functional V which
can be described by vertex functions V (x1, . . . , xn), n = 1, 2, . . .

From the computational point of view, note the following.

The computations concerning the reduced correlation functions and
the mean field approach depend on the coupling constant κ, and they
can be carried out in each order of perturbation theory.

7.24.10 Reduced Correlation Functions

Since Z(0) = 1, it makes sense to define the reduced quantum action func-
tional by

Zred(J) := lnZ(J).

Hence
Z(J) = eZred(J).

Parallel to the n-correlation functions, we introduce the so-called n-correlation
functions
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Cn,reduced(x1, . . . , xn) =
(

�

i

)n
δnZred(J)

δJ(x1) · · · δJ(xn)
, n = 1, 2, . . .

The reduced correlation functions simplify the computation of correlation
functions. Examples will be considered in Prop. 7.45 on page 475. Roughly
speaking, the reduced correlation functions have the advantage that they
do not contain contributions that arise trivially from the multiplication of
correlation functions of lower order.

7.24.11 The Mean Field Approximation

In physics, effective quantities can be obtained by averaging.
Folklore

The classical field. Fix the external source J . By the equation of motion
(7.122) on page 448, the classical field ϕ satisfies the following (discrete)
integral equation:

ϕ(x) =
∑

y∈M
Rε(x, y) {J(y) + κL′

int(ϕ)(y)}Δ4y. (7.139)

The kernel of this integral equation is the response function Rε. Setting κ = 0,
we obtain the classical free field

ϕfree(x) =
∑

y∈M
Rε(x, y)J(y)Δ4y.

We now compute the interacting field by the following iterative method

ϕn+1(x) = ϕfree(x) + κ
∑

y∈M
Rε(x, y)L′

int(ϕn)(y)Δ4y, n = 0, 1, 2, . . .

with the free field as initial approximation, that is, we set ϕ0 := ϕfree. This
yields the first approximation

ϕ1(x) = ϕfree(x) + κ
∑

y∈M
Rε(x, y)L′

int(ϕfree)(y)Δ4y.

Quantum fields differ from classical fields by adding quantum effects. Intu-
itively, we have to add quantum fluctuations. The complete theory is based
on the quantum action principle considered in Sect. 7.24.6 on page 450. At
this point, we want to discuss a simplified version of the complete theory
based on the averaging of quantum effects.

Averaging quantum fluctuations. Fix the external source J and define

ϕmean(x) :=
�

iZ(J)
δZ(J)
δJ(x)

, x ∈ M.



460 7. Rigorous Finite-Dimensional Magic Formulas

This is called the mean field approximation of the classical field (7.139) cor-
responding to J . To justify this terminology, note that the global quantum
action principle (7.126) on page 449 implies that

ϕmean(x) =

∫
L2(M)

ϕ(x)eiS[ϕ,J]/� · e−η〈ϕ|ϕ〉 Dϕ
∫

L2(M)
eiS[ϕ,J]/� · e−η〈ϕ|ϕ〉 Dϕ .

Thus, the mean field ϕmean is obtained by averaging over all possible classical
fields ϕ. Note that the mean field ϕmean depends on the choice of the external
source J and the small damping parameter η > 0.

The relation between the mean field and the reduced quantum
action functional. Using the reduced quantum action functional, the mean
field is given by

ϕmean(x) =
�

i
δZred(J)
δJ(x)

. (7.140)

Switching off the coupling constant, κ = 0, we have

Zfree(J) = eZfree,red(J)

along with

Zfree,red(J) :=
i

2�
〈J |RεJ〉 =

i
2�

∑

x,y∈M
J(x)Rε(x, y)J(y)Δ4xΔ4y.

It follows from the Dyson–Schwinger equation (7.133) on page 455 that

ϕmean(x) = ϕfree(x) +

+κe−Zred(J)
∑

y∈M
Rε(x, y)L′

int

(
�

i
δ

δJ(y)

)

eZred(J) Δ4y.

This resembles the classical equation of motion

ϕ(x) = ϕfree(x) + κ
∑

y∈M
Rε(x, y)L′

int(ϕ)(y)Δ4y.

From the physical point of view, the quantum field differs from the classical
field by quantum corrections.

The mean field ϕmean can be regarded as a field which differs from
the classical field by adding the average of quantum corrections.

In what follows we will use the Legendre transformation in order to introduce
vertex functions and the effective action of a quantum field.
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7.24.12 Vertex Functions and the Effective Action

The Legendre transformation. Equation (7.140) defines a map

(J(1), . . . , J(N)) �→ (ϕmean(1), . . . , ϕmean(N)) (7.141)

from the external sources to the mean fields. Let us assume that this map is a
diffeomorphism from R

N onto R
N . This means that there exists a one-to-one

relation between external sources and mean fields. Let us write this map as

ϕmean = ϕmean(J).

Conversely, J = J(ϕmean). Our goal is to replace external sources, J, by
mean fields, ϕmean according to (7.141). In classical mechanics, one uses the
Legendre transformation in order to pass from velocity to momentum and
from the Lagrangian density to the Hamiltonian function. Parallel to this
classical tool, let us introduce the Legendre transformation

J �→ ϕmean, Zred(J) �→ V (ϕmean)

given by (7.140) and

V (ϕmean) :=
�

i
Zred(J) −

∑

x∈M
ϕmean(x)J(x)Δ4x.

The functional V is called the vertex functional.

Proposition 7.41 We have

δV (ϕmean)
δϕmean(x)

= −J(x)

where the source J is related to the mean field ϕmean by the Legendre trans-
formation (7.141) above.

Proof. For the total differential,

dV =
∑

x∈M

∂V (ϕmean)
∂ϕmean(x)

dϕmean(x).

Furthermore,

dV =
∑

x∈M

�

i
∂Zred(J)
∂J(x)

dJ(x) −

−
∑

x∈M
{J(x)dϕmean(x) + ϕmean(x)dJ(x)}Δ4x.
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By (7.140), the terms with dJ(x) compensate each other. Hence

dV = −
∑

x∈M
J(x)dϕmean(x) Δ4x.

This implies
δV (ϕmean)
δϕmean(x)

=
1

Δ4x

∂V (ϕmean)
∂ϕmean(x)

= −J(x).

�

Vertex functions. Let us define

Vn(x1, . . . , xn) :=
δnV (ϕ)

δϕ(x1) · · · δϕ(xn)
| ϕ=0.

These functions are called vertex functions. The quantum action functional
Z(J) can be expressed by the vertex functional. Explicitly,

Z(J) = ei(V (ϕmean)+〈ϕmean|J〉)/�. (7.142)

Here, the source J is related to the mean field ϕmean by the Legendre trans-
formation (7.141).

The effective quantum action. Switching off the interaction, κ = 0,
we get ϕmean = ϕfree, and

V (ϕfree) =
∑

x∈M

1
2
ϕfree(x)(Dϕfree + iεϕfree)(x)Δ4x. (7.143)

This is the classical action functional with vanishing source term. To prove
(7.143), note that

V (ϕfree) =
�

i
Zfree,red(J) − 〈ϕfree|J〉 =

1
2
〈J |RεJ〉 − 〈ϕfree|J〉.

Since ϕfree = RεJ , we get V (ϕfree) = −1
2 〈J |RεJ〉. Finally, it follows from

J = R−1
ε ϕfree that

V (ϕfree) = −1
2
〈R−1

ε ϕfree|ϕfree〉 =
1
2
〈(D + iεI)ϕfree|ϕfree〉.

This proves (7.143). Now consider the case of general coupling constant,
κ ≥ 0. We define

Seff [ϕmean] := V (ϕmean)

and call this the effective action of the quantum field. This definition is mo-
tivated by equation (7.143).

The effective quantum action adds the average of quantum corrections
to the classical action.
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7.25 The Discrete ϕ4-Model and Feynman Diagrams

It is our goal to apply the preceding response approach to a special discrete
model, which is obtained from the continuum ϕ4-model by replacing the
Fourier transform by the discrete Fourier transform.

The continuum ϕ4-model. Set x = (x, ct). Let

ϕ = ϕ(x)

be a real-valued function ϕ : R
4 → R which depends on the position vector

x and time t. The solution ϕ of the nonlinear Klein–Gordon equation

−�
2�ϕ−m2

0c
2ϕ+ iεϕ− 4κϕ3 + J = 0 on R

4 (7.144)

models the self-interaction of an uncharged meson of rest mass m0 along
with the coupling constant κ ≥ 0 and the regularization parameter ε > 0.
The given smooth function J : R

4 → R describes an external source. The
operator

� :=
1
c2

∂2

∂t2
−

3∑

k=1

(
∂

∂xk

)2

is called the wave operator. The action functional of the meson reads as

S[ϕ, J ] :=
∫

Ω

L(ϕ, ∂ϕ, J) d4x

with the Lagrangian density

L(ϕ, J) :=
1
2
ϕ(D + iε)ϕ+ κLint(ϕ) + ϕJ

where we set D := −�
2� −m2

0c
2. Because of

Lint(ϕ) := −ϕ4,

we speak of the ϕ4-model. Recall that the closure cl(Ω) of the open set Ω
is obtained from Ω by adding the boundary ∂Ω. The quantity S has the
physical dimension of action which equals the product of energy with time.

Theorem 7.42 Let Ω be a nonempty bounded open subset of R
4. Then, each

smooth solution ϕ : cl(Ω) → R of the variational problem

S[ϕ, J ] = critical! (7.145)

with the boundary condition ϕ = 0 on ∂Ω satisfies equation (7.144) on Ω.
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This is called the principle of critical action for the meson equation (7.144).
Proof. Let D(Ω) denote the space of all smooth functions h : Ω → R which
vanish outside a compact subset of Ω. In particular, if h ∈ D(Ω), then h = 0
on ∂Ω. Let ϕ be a solution of (7.145). Fix h ∈ D(Ω), and set

χ(τ) := S[ϕ+ τh, J ] for all τ ∈ R.

By definition, problem (7.145) is equivalent to

χ′(0) = 0 for all h ∈ D(Ω).

This means that
∫

Ω

1
2
hDϕ+

1
2
ϕDh+ h(iεϕ− 4κϕ3 + J) d4x = 0

for all h ∈ D(Ω). Using integration by parts, we obtain
∫

Ω

h(Dϕ+ iεϕ− 4κϕ3 + J) d4x = 0 for all h ∈ D(Ω).

This implies
Dϕ+ iεϕ− 4κϕ3 + J = 0 on Ω,

by the variational lemma on page 544. �

Let ϕ ∈ S(R4), that is, the smooth function ϕ : R
4 → C goes rapidly to

zero at infinity.48 Introducing the momentum vector p, the energy E, and
the 4-momentum vector p := (p, E/c) along with

px := Et− xp,

the Fourier–Minkowski transform of the function ϕ reads as

ϕ̂(p) :=
1

4π2�2

∫

R4
ϕ(x)eipx/� d4x.

The inverse transformation is given by

ϕ(x) :=
1

4π2�2

∫

R4
ϕ(x)e−ipx/� d4p.

Using the Fourier–Minkowski transform, the equation

(−�
2� −m2

0c
2 + iε)ϕ(x) = f(x), x ∈ R

4

passes over to

(p2 −m2
0c

2 + iε)ϕ̂(p) = f̂(p), p ∈ R
4 (7.146)

48 The precise definition can be found in Sect. 11.3.3 on page 617.
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with c2p2 = E2 − c2p2. Hence

ϕ̂(p) =
f̂(p)

p2 −m2
0c

2 + iε
, p ∈ R

4. (7.147)

Set Dε := −�
2� −m2

0c
2 + iε. By (7.146),

• the operator Dε := D + iεI corresponds to multiplication by the function
p2 −m2

0c
2 + iε in the Fourier space,

(D̂εϕ̂)(p) = (p2 −m2
0c

2 + iε)ϕ̂(p), p ∈ R
4;

• the response operator Rε := −D−1
ε corresponds to division by the function

−(p2 −m2
0c

2 + iε) in the Fourier space. Hence

(R̂εf̂)(p) = − f̂(p)
p2 −m2

0c
2 + iε

, p ∈ R
4. (7.148)

The set of all 4-momentum vectors p ∈ R
4 with

p2 − c2m2
0 = 0

is called the mass hyperboloid or the mass shell of the meson. Explicitly, this
means that

E2 = c2p2 +m2
0c

4,

which is the relation between energy E and momentum vector p of a free
meson. Note that equation (7.148) makes sense, since ε > 0. However, in
the critical case where ε = 0, the operator R̂0 is singular if p lives on the
mass shell. This is the reason for introducing the regularization term iεϕ
into the meson equation (7.144). The relation of the response operator to
the Feynman propagator for the Klein–Gordon equation will be considered
in Sect. 14.2.2 on page 777.

Discretization. It is our goal to introduce a lattice approximation of the
meson model above by discretizing space, time, momentum, and energy. To
this end, we choose real numbers Δx > 0, Δp > 0 and a natural number
nmax. We will introduce the notation in such a way that the limit

Δx → 0, Δp → 0, nmax → +∞

yields the continuum model. To this end, we choose a right-handed orthonor-
mal system e1, e2, e3. For integers nμ = 0,±1, . . . ,±nmax with μ = 0, 1, 2, 3,
we set

x = (n1e1 + n2e2 + n3e3)Δx, ct = n0Δx.

This way, we obtain a finite number x(1), . . . , x(N) of space-time points living
in R

4. To simplify notation, we write



466 7. Rigorous Finite-Dimensional Magic Formulas

∑

x∈M
f(x)Δ4x :=

N∑

k=1

f(k)Δ4x,

that is, we identify x(1), . . . , x(N) with 1, . . . , N, respectively. Recall that
Δ4x := (Δx)4. Similarly, we set

p = (n1e1 + n2e2 + n3e3)Δp, E = n0cΔp.

This yields the finite number p(1), . . . , p(N) of 4-momentum vectors. We
write Δ4p := (Δp)4, and

∑

p∈M
f̂(p)Δ4p =

N∑

k=1

f̂(k)Δ4p.

In what follows, we will use the matrices

ϕ =

⎛

⎜
⎜
⎝

ϕ(1)
...

ϕ(N)

⎞

⎟
⎟
⎠ , ϕ̂ =

⎛

⎜
⎜
⎝

ϕ̂(1)
...

ϕ̂(N)

⎞

⎟
⎟
⎠ .

By a discrete Fourier transform, we understand a linear transformation

ϕ̂ = Uϕ

where U is a fixed complex unitary (N×N)-matrix with the matrix elements
U(p, x)Δ4x, that is, U† = U−1. Explicitly,

ϕ̂(p) =
∑

x∈M
U(p, x)ϕ(x)Δ4x, p ∈ M.

The inverse transformation ϕ = U−1ϕ̂ will be written as

ϕ(x) =
∑

p∈M
Û(x, p)ϕ̂(p)Δ4p, x ∈ M.

Let D : L2(M) → L2(M) be a linear operator. The equation

Dϕ = ψ

is transformed into UDU−1(Uϕ) = Uψ. Hence

D̂ϕ̂ = ψ̂

where D̂ := UDU−1 represents the Fourier transform of the operator D.
The discrete ϕ4-model. As a discretization of the continuum ϕ4-model

above, we use the discrete model from Sect. 7.24.3 on page 447 along with
the following special choices.
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(i) Interaction: We set Lint(χ) := −χ4. Then, L′
int(χ) = −4χ3.

(ii) The linear operator D: Let ε > 0. We define D + iεI := U−1(D̂ + iεI)U
along with the Fourier transform

{(D̂ + iεI)ϕ̂}(k) := (p(k)2 −m2
0c

2 + iε)ϕ̂(k), k = 1, . . . , N.

This definition is motivated by formula (7.146) on page 464.

For the response operator Rε := −(D + iεI)−1, we get Rε = U−1R̂εU along
with

R̂εϕ̂(k) = − ϕ̂(k)
p(k)2 −m2

0c
2 + iε

, k = 1, . . . , N.

The linear response equation

(D + iεI)ϕ = −J

has the unique solution ϕ = RεJ. Let Rε(x, y)Δ4y be the entries of the
matrix Rε where Δ4y = Δ4x := (Δx)4. Then

ϕ(x) =
∑

y∈M
Rε(x, y)J(y)Δ4y, x ∈ M.

The function (x, y) �→ Rε(x, y) is called the response function of the discrete
ϕ4-model.

For the discrete ϕ4-model let us now compute the free correlation func-
tions, the full correlation functions, the mean field, and the vertex functions
in low orders of perturbation theory with respect to the coupling constant,
κ. By the magic formula (7.127) on page 450, the quantum action functional
is given by

Z(J) = N exp

{

−iκ�
3
∑

z∈M
Δ4z

δ4

δJ(z)4

}

eZfree,red(J) (7.149)

with the reduced free quantum action functional

Zfree,red :=
i

2�
〈J |RεJ〉 =

i
2�

∑

x,y∈M
J(x)Rε(x, y)J(y) Δ4xΔ4y.

The normalization constant N has to be chosen in such a way that Z(0) = 1.
Up to terms of order κ2 with respect to the small coupling constant κ, we
get

Z(J) = N
{

1 − iκ�
3
∑

z∈M
Δ4z

δ4

δJ(z)4

}

eZfree,red(J).

Free correlation functions. First consider the case where the interac-
tion is switched off by setting κ = 0.
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x1 x2

(a) C2,free(x1, x2)

x1 x2

x3 x4

+

x1 x2

x3 x4

+

(b) C4,free(x1, x2, x3, x4)

x1 x2

x3 x4

Fig. 7.5. Feynman diagrams for free correlation functions

Proposition 7.43 For the free correlation functions, we get the following
expressions.

(i) Cn,free(x1, . . . , xn) ≡ 0 if n = 1, 3, 5, . . . .
(ii) Free 2-point correlation function: C2,free(x1, x2) = −i�Rε(x1, x2).
(iii) Free 4-point correlation function:

C4,free(x1, x2, x3, x4) = C2,free(x1, x2)C2,free(x3, x4) +
+C2,free(x1, x3)C2,free(x2, x4) + C2,free(x1, x4)C2,free(x2, x3).

Feynman diagrams. The functions C2,free and C4,free can be represented
graphically by Feynman diagrams as pictured in Figure 7.5. The free 2-point
correlation function C2,free is also called the Feynman propagator of the dis-
crete ϕ4-model. Note that a complete list of the Feynman rules for the discrete
ϕ4-model can be found in Table 7.1 on page 472.
Proof of Proposition 7.43. Recall that

Cn,free(x1, . . . , xn) :=
(

�

i

)n
δnZfree(J)

δJ(x1) · · · δJ(xn)
| J=0. (7.150)

Ad (i). Since Zfree,red is quadratic with respect to J , the functional

Zfree(J) = eZfree,red(J)

contains only terms of even degree with respect to J .
Ad (ii). Power series expansion yields

Zfree(J) = 1 +
i

2�
〈J |RεJ〉 + . . .

= 1 +
i

2�

∑

x,y∈M
J(x)Rε(x, y)J(y)Δ4xΔ4y + . . .

The dots stand for terms of order 4, 6, 8, . . . with respect to J . Hence

δ2Zfree(J)
δJ(x1)δJ(x2)

=
i
�
Rε(x, y).

By (7.150), C2,free(x, y) = −i�Rε(x, y).
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Ad (iii). Note that Zfree(J) = eZfree,red . Hence

Zfree(J) = 1 + Zfree,red(J) +
1
2
Zfree,red(J)2 + . . .

The function C4,free is determined by the term 1
2Zfree,red(J)2 of order four

with respect to J . Explicitly,

1
4!

(
i
�

)4 ∑

x1,x2,x3,x4∈M
C4,free(x1, x2, x3, x4)

4∏

k=1

J(xk)Δ4xk =
1
2
Zfree,red(J)2.

Here, C4,free is symmetric with respect to x1, x2, x3, x4. By comparison, we
get the claim. In fact, note that

Zfree,red(J) = − 1
2�2

〈J |C2,freeJ〉.

This implies
1
2
Zfree,red(J)2 =

3
4!�4

〈J |C2,freeJ〉2.

Moreover,

〈J |C2,freeJ〉2 =
∑

x1,x2∈M
Δ4x1Δ

4x2J(x1)C2,free(x1, x2)J(x2)

×
∑

x3,x4∈M
Δ4x3Δ

4x4J(x3)C2,free(x3, x4)J(x4).

Hence

〈J |C2,freeJ〉2 =
∑

x1,x2,x3,x4∈M
f(x1, x2, x3, x4)

4∏

k=1

J(xk)Δ4xk

where we set

f(x1, x2, x3, x4) := C2,free(x1, x2)C2,free(x3, x4).

The function f is not symmetric with respect to the variables x1, x2, x3, x4.
Therefore, we have to symmetrize. Since C2,free(x, y) is symmetric with re-
spect to x, y, we get

3〈J |C2,freeJ〉 =
∑

x1,x2,x3,x4∈M
C(x1, x2, x3, x4)

4∏

k=1

J(xk)Δ4xk

where C(x1, x2, x3, x4) is equal to

f(x1, x2, x3, x4) + f(x1, x3, x2, x4) + f(x1, x4, x2, x3).
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This finishes the proof of Proposition 7.43. �

Generally, for even n, the free correlation function Cn,free is given by

Cn,free(x1, . . . , xn) =
∑

π

C2,free(xi1 , xi2) · · ·C2,free(xin−1 , xin).

Here, we sum over all permutations of x1, . . . , xn in such a restricted way that
the pairs are always ordered, that is il < il+1 for all l. The corresponding
Feynman diagrams are obtained by drawing n nodes and by connecting all
possible pairs. Since the node x1 can be connected with the other n−1 nodes,
it follows by induction that there are 1× 3× · · ·× (n− 1) Feynman diagrams
for n = 2, 4, . . . . The Feynman graph to C2,free is connected, whereas the
graphs to Cn,free with n = 4, 6, 8, . . . are not always connected.

Summary of properties of the free field. For the convenience of the
reader, let us summarize typical quantities of the free field. Below we will
generalize this to the case of interacting fields with κ > 0.

• Free reduced 2-point correlation function:

C2,free,red(x1, x2) = C2,free(x1, x2) = −i�Rε(x1, x2).

• Free reduced 4-point correlation function:

C4,free,red(x1, x2, x3, x4) = C2,free(x1, x4)C2,free(x2, x3).

This corresponds to the connected Feynman graph pictured in Fig. 7.5(b)
on page 468.49

• Free 2-point vertex function V2,free:
∑

z∈M
V2,free(x, z)C2,free(z, y)Δ4z = i�δ(x, y).

• Free 4-point vertex function:

V4,free(x1, x2, x3, x4) =
i
�
· V2,free(x1, x4)V2,free(x2, x3).

• Mean field transformation (Legendre transformation):

ϕmean,free(x) =
i
�

∑

y∈M
C2,free(x, y)J(y)Δ4y.

The free mean field ϕmean,free coincides with the free field caused by the
external source J , that is, (D + iεI)ϕmean,free = −J.

49 Reduced correlation functions are also called connected correlation functions. It
can be shown that the corresponding Feynman graphs are always connected.
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• Inverse mean field transformation:

J(x) = −
∑

y∈M
V2,free(x, y)ϕmean,free(y) Δ4y.

Therefore, the inverse kernel to iC2,free(x, y)/� is equal to −V2,free(x, y).
• The effective free action V (ϕmean,free) is equal to the free action

Sfree[ϕ] :=
∑

x∈M

1
2
ϕd(D + iεI)ϕ Δ4x (7.151)

where we set ϕ := ϕmean,free.

The formulas above show that the vertex functions are dual to the correlation
functions. If we switch on the interaction such that the coupling constant
κ > 0 is small, then the free functions summarized above are perturbed
slightly. Let us compute this in first order with respect to κ, that is, we
neglect terms of order κ2.

Full correlation functions. The free correlation functions Cn,free refer
to vanishing coupling constant, κ = 0. In contrast to this, the full correla-
tion functions Cn describe the behavior of the meson under self-interactions
corresponding to the coupling constant κ > 0. The full n-point correlation
function Cn is defined by

Cn(x1, . . . , xn) :=
(

�

i

)n
δnZ(J)

δJ(x1) · · · δJ(xn)
| J=0.

Theorem 7.44 Up to terms of order κ2, the full correlation functions of the
discrete ϕ4-model read as follows for all x1, x2, . . . ∈ M:

(i) Cn(x1, . . . , xn) ≡ 0 if n = 1, 3, 5, . . .
(ii) Full 2-point correlation function:

C2(x1, x2) = C2,free(x1, x2) + 12κD(x1, x2) (7.152)

along with

D(x1, x2) := − i
�

∑

z∈M
C2,free(x1, z)C2,free(z, z)C2,free(z, x2) Δ4z.

(iii) Full 4-point correlation function:

C4(x1, x2, x3, x4) = C4,free(x1, x2, x3, x4)
+12κA(x1, x2, x3, x4) + 24κB(x1, x2, x3, x4).

Here, A(x1, x2, x3, x4) is equal to
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Table 7.1. Feynman diagrams for the discrete ϕ4-model

propagator
x y

C2,free(x, y)

loop

z

C2,free(z, z)

x yz
vertex of

interaction
− i

�

X

z∈M
Δ4z . . .

z

symmetry
factor

s

− i
�

∑

z∈M
C2,free(x1, z)C2,free(z, z)C2,free(z, x2)C2,free(x3, x4)Δ4z

− i
�

∑

z∈M
C2,free(x1, x2)C2,free(x3, z)C2,free(z, z)C2,free(z, x4)Δ4z

− i
�

∑

z∈M
C2,free(x1, z)C2,free(z, z)C2,free(z, x3)C2,free(x2, x4)Δ4z

− i
�

∑

z∈M
C2,free(x1, x3)C2,free(x2, z)C2,free(z, z)C2,free(z, x4)Δ4z

− i
�

∑

z∈M
C2,free(x1, z)C2,free(z, z)C2,free(z, x4)C2,free(x2, x3)Δ4z

− i
�

∑

z∈M
C2,free(x1, x4)C2,free(x2, z)C2,free(z, z)C2,free(z, x3)Δ4z.

Furthermore, B(x1, x2, x3, x4) is equal to

− i
�

∑

z∈M
{C2,free(x1, z)C2,free(z, z)C2,free(z, x4)

+C2,free(x2, z)C2,free(z, z)C2,free(z, x3)}Δ4z.

Feynman diagrams. Using Table 7.1, the first-order approximation of
the full 2-point correlation function C2 from Theorem 7.44 is pictured in Fig.
7.6. Here, the symmetry factor is given by s = 12. Moreover, the self-energy
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x1 x2
+ 12κ

x1 x2z

Fig. 7.6. First-order approximation of the full correlation function C2(x1, x2)

term A and the vertex-interaction term B of the full 4-point correlation
function C4 from Theorem 7.44 are pictured in Fig. 7.7.
Proof of Theorem 7.44. To simplify notation, we set � := 1.

Ad (i). Observe that the functional Z(J) only contains terms of even order
with respect to the source J .

Ad (ii). We will proceed in several steps.
(I) By the magic quantum action formula,

Z(J) =
E(J)
E(0)

.

Here, we set

E(J) := exp

{

−iκ
∑

z∈M
Δ4z

δ4

δJ(z)4

}

· eB(J)

along with

B(J) := −1
2
〈J |C2,free|J〉 = −1

2

∑

x,y∈M
J(x)C2,free(x, y)J(y) Δ4xΔ4y.

(II) Up to terms of order κ2,

E(J) =

{

1 − iκ
∑

z∈M
Δ4z

δ4

δJ(z)4

}

eB(J). (7.153)

Introducing

A(J) := e−B(J)

{

−i
∑

z∈M
Δ4z

δ4

δJ(z)4

}

eB(J),

we get E(J) = eB(J)(1 + κA(J)). Up to terms of order κ2, this implies

Z(J) =
eB(J)(1 + κA(J))

1 + κA(0)
= eB(J){1 + κ(A(J) −A(0))}. (7.154)

(III) Computation of the functional derivatives. To simplify notation, set

b :=
δB(J)
δJ(z)

, c :=
δ2B(J)
δJ(z)2

.
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(a) self-energy graphs (s = 4!/2)

z

x1 x2

x3 x4

+ + + + +

(b) Vertex interaction (s = 4!)

z

x1 x2

x3 x4

Fig. 7.7. First-order correction for the full correlation function C4(x1, x2, x3, x4)

Because of the symmetry property C2,free(x, y) = C2,free(y, x), we get

b = −
∑

y∈M
C2,free(z, y)J(y)Δ4y, c = −C2,free(z, z).

(IV) Using the chain rule, we obtain

δeB(J)

δJ(z)
= beB(J),

δ2eB(J)

δJ(z)2
= ceB + b2eB ,

δ3eB(J)

δJ(z)3
= cbeB + 2bceB + b3eB = (3bc+ b3) eB ,

δ4eB(J)

δJ(z)4
= (3c2 + 3b2c+ 3b2c+ b4)eB .

This implies

A(J) = −i
∑

z∈M
(3c2 + 6b2c+ b4) Δ4z. (7.155)

Since the function c does not depend on J ,

A(J) −A(0) = −i
∑

z∈M
(6b2c+ b4) Δ4z. (7.156)

Here, ∑

z∈M
b2c Δ4z =

∑

x,y∈M
J(x)H(x, y)J(y)Δ4xΔ4y

along with H(x, y) :=
∑

z∈M C2,free(x, z)C2,free(z, z)C2,free(z, y)Δ4z.
(V) For the correlation functions,
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Fig. 7.8. Vacuum bubble

Z(J) = 1 − 1
2

∑

x,y∈M
C2(x, y)J(x)J(y)Δ4xΔ4y + . . . .

Since eB = 1 + B + . . . , it follows from (7.154) that the quadratic term of
Z(J) with respect to J is equal to

B(J) − iκ
∑

z∈M
6b2c Δ4z.

Multiplying this by −2, we get the desired result

C2(x, y) = C2,free(x, y) − 12iκH(x, y).

Ad (iii). Use analogous arguments. See Problem 7.5 on page 498. �

Vacuum bubble. By (7.155), the functional A contains the expression

−3i
∑

z∈M
c2 = −3i

∑

z∈M
C2,free(z, z)2

which is pictured graphically in Fig. 7.8, up to the symmetry factor 3. Be-
cause of the normalization condition Z(0) = 1, the difference A(J) − A(0)
appears instead of A(J) in (7.156). This cancels the vacuum bubble. Similar
cancellations of vacuum effects appear in higher order of perturbation theory.

The reduced correlation functions. The reduced quantum action
functional Zred is defined by Zred(J) := lnZ(J). Hence

Z(J) = eZred(J).

The reduced n-point correlation function is given by

Cn,red(x1, . . . , xn) :=
(

�

i

)n
δn lnZ(J)

δJ(x1) · · · δJ(xn)
.

Proposition 7.45 There exist the following relations between full correla-
tion functions and reduced correlation functions for all x1, x2, . . . ∈ M :

(i) Cn,red(x1, . . . , xn) ≡ 0 if n = 1, 3, 5, . . .
(ii) Reduced 2-point correlation function: C2,red(x1, x2) = C2(x1, x2).
(iii) Reduced 4-point correlation function:
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x1 x2

x3 x4

+ 24κ

x1 x2

x3 x4

+ 24κ

x1 x2

x3 x4

Fig. 7.9. First-order approximation of C4,red

C4,red(x1, x2, x3, x4) = C4(x1, x2, x3, x4) − C2(x1, x2)C2(x3, x4)
−C2(x1, x3)C2(x2, x4) − C2(x1, x4)C2(x2, x3).

Up to terms of order κ2, the reduced 4-point function is given by the Feynman
diagram from Fig. 7.9. Explicitly,

C4,red(x1, x2, x3, x4) = C2,free(x1, x4)C2,free(x2, x4) + 24κB(x1, x2, x3, x4).

The definition of B(x1, x2, x3, x4) can be found in Theorem 7.44 on page
471. The Feynman graphs from Fig. 7.9 are precisely the connected graphs
from Fig. 7.5(b) and Fig. 7.7 on pages 468 and 474, respectively.
Proof. Ad (i). Since Z(J) does not contain terms of odd order with respect
to J , the function lnZ(J) has the same property.

Ad (ii). Note that

δ2 lnZ(J)
δJ(x)δJ(y)

=
δ

δJ(x)

(
1

Z(J)
δZ(J)
δJ(y)

)

= − 1
Z(J)2

δZ(J)
δJ(x)

δZ(J)
δJ(y)

+
1

Z(J)
δ2Z(J)

δJ(x)δJ(y)
.

Setting J = 0 and observing that Z(0) = 1, we get

C2,red(x1, x2) = C1(x)C1(y) + C2(x, y) = C2(x, y).

Ad (iii). Compute higher derivatives as in the proof to (ii).
Ad (iv). Use the correlation function C2 from (7.152) on page 471. By

(ii), the terms corresponding to disconnected graphs are cancelled. �

Vertex functions. The vertex functions are dual objects to the reduced
correlation functions. By the chain rule, there follows from (7.140) and (7.142)
on pages 460 and 462, respectively, that each correlation function can be
represented by vertex functions and 2-point correlation functions. In this
sense, vertex functions and 2-point correlation functions are the building
blocks of general correlation functions (see (7.158) on page 478). In fact,
vertex functions were introduced by physicists in order to simplify lengthy
computations in higher orders of perturbation theory.

Proposition 7.46 For all x1, x2, x3, x4 ∈ M, the following hold true.
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(i) Vn(x1, . . . , n) ≡ 0 if n = 1, 3, 5, . . . .
(ii) The 2-point vertex function V2 satisfies the equation

∑

z∈M
C2,red(x1, z)V2(z, x2)Δ4z = i�δΔ4x(x1, x2).

(iii) The 4-point vertex function V4(x1, x2, x3, x4) is equal to

1
i�3

∑

z1,z2,z3,z4∈M
C4,red(z1, z2, z3, z4)

4∏

k=1

V2(xk, zk)Δ4zk.

Before giving the proof, let us discuss some special cases in order to get
some feeling for vertex functions. In what follows we refer to the statements
(i) through (iii) from Proposition 7.46 above.

• Inverse response kernel: First switch off the interaction by setting κ = 0.
By statement (i) above, it follows from the response equation

ϕfree(x) =
i
�

∑

y∈M
C2,free(x, y)J(y) Δ4y, x ∈ M

with the response kernel Rε = iC2,free/� that

J(x) = −
∑

y∈M
V2,free(x, y)ϕ(y) Δ4y.

• Free 4-point vertex function: By (iii) above, it follows from the reduced
free 4-point function

C4,red,free(x1, x2, x3, x4) = C2,free(x1, x4)C2,free(x2, x3)

that
V4,free(x1, x2, x3, x4) =

i
�
· V2,free(x1, x4)V2,free(x2, x3).

• Full 2-point vertex function: By (i) above, the equation

ϕ(x) =
i
�

∑

y∈M
C2(x, y)J(y) Δ4y

implies that

J(x) = −
∑

y∈M
V2(x, y)ϕ(y) Δ4y. (7.157)
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• Representation of the full reduced 4-point correlation function by vertex
functions: It follows from (i) above that equation (iii) above is equivalent
to

C4,red(x1, x2, x3, x4) =
i
�

∑

z1,z2,z3,z4∈M
V4(z1, z2, z3, z4)

×
4∏

k=1

C2(xk, zk)Δ4zk. (7.158)

• First order approximation of the full 4-point vertex function: Up to terms
of order κ2,

C4,red(x1, x2, x3, x4) = C4,red,free(x1, x2, x3, x4) + 24κB(x1, x2, x3, x4)

where B(x1, x2, x3, x4) is equal to

− i
�

∑

z∈M
{C2,free(x1, z)C2,free(z, z)C2,free(z, x4)

+C2,free(x2, z)C2,free(z, z)C2,free(z, x3)}Δ4z.

By (7.158) along with (i) above,

V4(x1, x2, x3, x4) = V4,free(x1, x2, x3, x4) + κB(x1, x2, x3, x4)

where B(x1, x2, x3, x4) is equal to
∑

z∈M
{V2,free(x1, z)C2,free(z, z)V2,free(z, x4)

+V2,free(x2, z)C2,free(z, z)V2,free(z, x3)}Δ4z.

Feynman diagrams. The formula for V4(x1, x2, x3, x4) above displays a
nice duality between the reduced correlation function C4,red and the vertex
function V4. In the language of Feynman graphs for correlation functions (see
Fig. 7.9 on page 476), one has only to replace

• the correlation function C2,free corresponding to the external lines
• by the vertex function V2,free, up to an additional factor.

Proof of Proposition 7.46. If κ = 0, then the map J �→ ϕmean is invert-
ible. By perturbation theory, this invertibility property remains true if κ is
sufficiently small. This tells us that the Legendre transformation

ϕmean(x) =
�

i
δZred(J)
δJ(x)

, J(x) = −δV (ϕmean)
δϕmean(x)

(7.159)

is well-defined for each small coupling constant κ. Recall that
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Vn(x1, . . . , xn) :=
δnV (ϕmean)

δϕmean(x1) · · · δϕmean(xn)
.

To simplify notation, replace ϕmean by ϕ, and set � := 1.
Ad (i). Note that the map ϕ �→ V (ϕ) contains only terms which are even

with respect to ϕ.
Ad (ii). We first prove the following key identity:

∑

z∈M
Δ4z

δ2Zred(J)
δJ(x)δJ(z)

δ2V (ϕ)
δϕ(z)δϕ(y)

= −iδΔ4x(x, y). (7.160)

In fact, it follows from the Legendre transformation (7.159) that the left-hand
side of (7.160) is equal to

−i
∑

z∈M
Δ4z

δϕ(x)
δJ(z)

δJ(z)
δϕ(y)

= −i
δϕ(x)
δϕ(y)

= −iδΔ4x(x, y).

Setting J = 0, equation (7.160) implies the claim (ii).
Ad (iii). Changing variables and differentiating (7.160) with respect to

J(x3), we get

∑

z1∈M
Δ4z1

δ3Zred(J)
δJ(x1)δJ(z1)δJ(x3)

· δ2V (ϕ)
δϕ(z1)δϕ(z2)

= −
∑

z1,z3∈M
Δ4z1Δ

4z3
δ2Zred(J)

δJ(x1)δJ(z1)
· δ3V (ϕ)
δϕ(z1)δϕ(z2)δϕ(z3)

· δϕ(z3)
δJ(x3)

.

By the Legendre transformation (7.159), this is equal to

i
∑

z1,z3∈M
Δ4z1Δ

4z3
δ2Zred(J)

δJ(x1)δJ(z1)
· δ3V (ϕ)
δϕ(z1)δϕ(z2)δϕ(z3)

· δ2Zred(J)
δJ(z3)δJ(x3)

.

Multiplying this by δ2Zred/δJ(x2)δJ(z2) and summing over z2, we get

∑

z1,z2∈M
Δ4z1Δ

4z2
δ3Zred

δJ(x1)δJ(z1)δJ(x3)
· δ2V

δϕ(z1)δϕ(z2)
· δ2Zred

δJ(x2)δJ(z2)

= i
∑

z1,z2,z3∈M
Δ4z1Δ

4z2Δ
4z3

δ2Zred

δJ(x1)δJ(z1)
· δ3V

δϕ(z1)δϕ(z2)δϕ(z3)

× δ2Zred

δJ(z3)δJ(x3)
· δ2Zred

δJ(x2)δJ(z2)
.

Using (7.160), there appears the factor −iδΔ4x(z1, x2) after summing over z2.
Then, summation over z1 yields the key relation
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δ3Zred(J)
δJ(x1)δJ(x2)δJ(x3)

= −
∑

z1,z2,z3∈M
Δ4z1Δ

4z2Δ
4z3

δ3V (ϕ)
δϕ(z1)δϕ(z2)δϕ(z3)

× δ2Zred(J)
δJ(x1)δJ(z1)

· δ2Zred(J)
δJ(x2)δJ(z2)

· δ2Zred(J)
δJ(x3)δJ(z3)

.

Differentiating this with respect to J(x4) and setting J = 0, we obtain the
desired relation (7.158). �

The mean field. By definition, the mean field is given by

ϕmean(x) :=
�

i
δZred(J)
δJ(x)

.

Suppose that the components of the external source J are sufficiently small.
Then, we may use the following approximation

ϕmean(x) =
�

i
δZ2,red(J)
δJ(x)

.

By Proposition 7.45 on page 475,

Z2,red(J) = Z2(J) =
1
2

(
i
�

)2 ∑

x,y∈M
J(x)C2(x, y)J(y) Δ4xΔ4y.

This yields

ϕmean(x) =
i
�

∑

y∈M
C2(x, y)J(y) Δ4y.

According to Theorem 7.44 on page 471,

C2(x, y) = C2,free(x, y) + 12κD(x, y),

in first-order approximation of perturbation theory with respect to the small
coupling constant κ.

The effective action. By definition, the effective action is given by

Seff [ϕmean] := V (ϕmean).

If the components of the mean field, ϕmean, are sufficiently small, we may use
the approximation

Seff [ϕ] := V2(ϕ) =
1
2

∑

x,y∈M
ϕ(x)V2(x, y)ϕ(y)Δ4xΔ4y.

According to (7.143) on page 462, this differs from the classical free action
(7.151) on page 471 by a term of order κ.
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7.26 The Extended Response Approach

The following modification of the response model from Sect. 7.24 is the proto-
type of models used in quantum electrodynamics and in the Standard Model
of particle physics (gauge field theory). The basic idea is to replace the action
functional from (7.120) on page 447 by the following action functional

S[ψ,ψ, J, J ] := 〈ψ|(D + iεI)ψ〉 + κ〈1|Lint(ψ,ψ)〉
+〈J |ψ〉 + 〈ψ|J〉.

(7.161)

In contrast to (7.120), two independent fields ψ,ψ and two independent source
functions J, J appear. Explicitly, the functional S[ψ,ψ, J, J ] is equal to

∑

x,y∈M
ψ(x)D(x, y)ψ(y)Δ4xΔ4y + κ

∑

x∈M
Lint(ψ(x), ψ(x))Δ4x

+
∑

x∈M
{J(x)ψ(x) + ψ(x)J(x) + iεψ(x)ψ(x)}Δ4x.

Here, we introduce the coupling constant κ ≥ 0 and the regularization pa-
rameter ε > 0. With a view to later applications, it is convenient to use the
column matrices

ψ :=

⎛

⎜
⎜
⎝

ψ(1)
...

ψ(N)

⎞

⎟
⎟
⎠ , J :=

⎛

⎜
⎜
⎝

J(1)
...

J(N)

⎞

⎟
⎟
⎠

along with the row matrices

ψ := (ψ(1), . . . , ψ(N)), J := (J(1), . . . , J(N)).

We make the following assumptions:

• ψ(1), . . . , ψ(N), ψ(1), . . . , ψ(N) denote 2N independent real field vari-
ables.50

• J(1), . . . J(N), J(1), . . . , J(N) denote 2N independent real source vari-
ables.

• The (N ×N)-matrix D is real.
• There is a number ε0 > 0 such that the inverse matrix (D + iεI)−1 exists

for all ε ∈]0, ε0[.
• The function Lint : R

2 → R is a real polynomial of the two real variables ζ
and ζ. For example, Lint(ζ, ζ) := (ζζ)2.

The proofs of the following statements proceed as in Sect. 7.24 on page 440.
The principle of critical action. We are given the source functions

J, J ∈ L2(M).
50 The case of complex variables will be considered in Sect. 7.27 on page 486.
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Theorem 7.47 Each solution ψ,ψ ∈ L2(M) of the variational problem

S[ψ,ψ, J, J ] = critical! (7.162)

satisfies the following Euler-Lagrange equations

δS

δψ(x)
= 0,

δS

δψ(x)
= 0 for all x ∈ M. (7.163)

Explicitly, the Euler–Lagrange equations read as

(Dψ)(x) + iεψ(x) + κ
∂Lint

∂ζ
(ψ(x), ψ(x)) + J(x) = 0

and
(ψD)(x) + iεψ(x) + κ

∂Lint

∂ζ
(ψ(x), ψ(x)) + J(x) = 0.

Proof. (I) For fixed h ∈ L2(M), set

χ(τ) := S[ψ,ψ + τh, J, J ], τ ∈ R.

From the variational problem (7.162), we get χ′(0) = 0. This yields

〈h|(D + iεI)ψ〉 + 〈h|J〉 + κ
∑

x∈M

∂Lint

∂ζ
(ψ(x), ψ(x))h(x) = 0.

This can be written as
∑

x∈M

δS

δψ(x)
h(x) = 0 for all h ∈ L2(M) (7.164)

along with

δS

δψ(x)
= {(D + iεI)ψ}(x) + J(x) + κ

∂Lint

∂ζ
(ψ(x), ψ(x)).

From equation (7.164) we obtain δS
δψ(x)

= 0.
(II) Similarly, for fixed h ∈ L2(M), set

χ(τ) := S[ψ + τh, ψ, J, J ], τ ∈ R.

From χ′(0) = 0 we get

〈ψ|(D + iεI)h〉 + 〈J |h〉 + κ
∑

x∈M

∂Lint

∂ζ
(ψ(x), ψ(x))h(x) = 0.

This implies
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∑

x∈M

δS

δψ(x)
h(x) = 0 for all h ∈ L2(M)

along with

δS

δψ(x)
= {ψ(D + iεI)}(x) + J(x) + κ

∂Lint

∂ζ
(ψ(x), ψ(x)).

Hence δS
δψ(x) = 0. �

The response function. The inverse operator Rε := −(D + iεI)−1 is
called response operator. Switching off the interaction by setting κ = 0, the
so-called response equations

(D + iεI)ψ = −J, ψ(D + iεI) = −J

have the unique solution ψ = RεJ and ψ = JRε, respectively. Explicitly,

ψ(x) =
∑

y∈M
Rε(x, y)J(y)Δ4y, ψ(y) =

∑

x∈M
J(x)Rε(x, y)Δ4x.

(7.165)

The kernel (x, y) �→ Rε(x, y) is called response function. Equation (7.165)
tells us how the source function J influences the free field ψ, and how the
second source function J influences the free field ψ.

Double functional integrals. For each function F : R
2N → R, the

functional integral
∫

L2(M)×L2(M)

F (ψ,ψ) DψDψ

is defined by the following classical 2N -dimensional integral

∫

R2N

F (ψ(1), . . . , ψ(N), ψ(1), . . . , ψ(N))
N∏

k=1

(
Δ4x

2π

)N

dψ(k)dψ(k).

We also briefly write

∫

R2N

F (ψ,ψ)
∏

x∈M

(
Δ4x

2π

)N

dψ(x)dψ(x).

The global quantum action principle. By definition, the fundamental
quantum action functional reads as

Z(J, J) := N
∫

F
eiS[ψ,ψ,J,J]/�fη(ψ,ψ) DψDψ.
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Here, we use the function space F := L2(M) × L2(M) and the regularizing
factor

fη(ψ,ψ) := e−η〈ψ|ψ〉−η〈ψ|ψ〉

for fixed η > 0. The number N has to be chosen in such a way that
Z(0, 0) = 1. The local functional derivatives of the quantum action func-
tional Z represent moments of the fields ψ and ψ. For example, since
eiS/� = ei〈ψ|J〉/� · ei〈J|ψ〉/� · · · , we get

�

i
δZ

δJ(y)
= N

∫

F
ψ(y)eiS[ψ,ψ,J,J]/� fη(ψ,ψ) DψDψ.

This is the first moment with respect to the field variable ψ at the space-time
point y. Similarly,

(
�

i

)2
δ2Z

δJ(x)δJ(y)
= N

∫

F
ψ(y)ψ(x)eiS[ψ,ψ,J,J]/� fη(ψ,ψ) DψDψ.

This is the second moment with respect to the field variables ψ and ψ at the
space-time points y and x, respectively.

The extended quantum action functional. We define the functional

Z(J, J, ψ, ψ)

by the following expression

exp

{
iκ
�

∑

x∈M
Δ4x Lint

(
�

i
δ

δJ(x)
,
�

i
δ

δJ(x)

)}

Zfree(J, J, ψ, ψ)

along with

Zfree(J, J, ψ, ψ) := Zfree(J, J) ei〈J|ψ〉/� ei〈ψ|J〉/�.

The magic quantum action reduction formula for correlation
functions. This formula tells us that

Z(J, J) =
Z(J, J, 0, 0)
Z(0, 0, 0, 0)

.

Explicitly,

Z(J, J) = M exp

{
iκ
�

∑

x∈M
Δ4x Lint

(
�

i
δ

δJ(x)
,
�

i
δ

δJ(x)

)}

Zfree(J, J)

along with
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Zfree(J, J) := ei〈J|RεJ〉/�. (7.166)

The number M is uniquely determined by the normalization condition
Z(0, 0) = 1. The proof proceeds analogously to the proof of Theorem 7.38 on
page 450 by using the principle of stationary phase. For example, switching
off the interaction by setting κ = 0, we get

(
�

i

)2
δ2Zfree

δJ(x)δJ(y)
| J=J=0 = −i�Rε(x, y).

This tells us that the response kernel function Rε = Rε(x, y) represents a
special 2-point correlation function. This corresponds to Prop. 7.43 on page
468. For n,m = 1, 2, . . ., the correlation functions

Cn,m(x1, . . . , xn, y1, . . . , ym)

are defined by
(

�

i

)n+m
δZn+m(J, J)

δJ(x1) · · · δJ(xn)δJ(y1) · · · δJ(ym)
| J=J=0.

Furthermore, switching off the interaction by setting κ = 0, the free correla-
tion functions

Cn,m,free(x1, . . . , xn, y1, . . . , ym)

are given by
(

�

i

)n+m
δZn+m

free (J, J)
δJ(x1) · · · δJ(xn)δJ(y1) · · · δJ(ym)

| J=J=0.

For example,
C1,1,free(x, y) = −i�Rε(x, y).

The scattering functional. Let us define the so-called scattering func-
tional S by setting

S(ψ,ψ) :=
Z(0, 0, ψ, ψ)
Z(0, 0, 0, 0)

.

For n,m = 1, 2, . . ., the so-called scattering function

Sn,m(x1, . . . , xn, y1, . . . , ym)

is defined by the functional derivative

δn+mS(ψ,ψ)
δψ(x1) · · · δψ(xn)δψ(y1) · · · δψ(ym)

| ψ=ψ=0.
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In addition, we assume that Dψ = 0 and ψD = 0. There exists an LSZ
reduction formula similarly as in Theorem 7.39 on page 452.

The mean field approximation. The reduced quantum action func-
tional is defined by

Zred(J, J) := lnZ(J, J).

Hence
Z(J, J) = eZred(J,J).

By definition, the mean field reads as

ψmean(x) :=
�

i
δZred(J, J)
δJ(x)

, ψmean(x) :=
�

i
δZred(J, J)
δJ(x)

.

We assume that the map (J, J) �→ (ψmean, ψmean) is a diffeomorphism from
R

2N onto R
2N .

Vertex functions and effective action. Let us define the vertex func-
tional

V (ψmean, ψmean) := Zred(J, J) − 〈J |ψ〉 − 〈ψ|J〉.

It follows as in Sect. 7.24.12 on page 461 that

J(x) = −δV (ψmean, ψmean)
δψmean(x)

, J(x) = −δV (ψmean, ψmean)
δψmean(x)

.

The map
(J, J, Zred) �→ (ψmean, ψmean, V )

is called Legendre transformation. Let us write ψ and ψ instead of ψmean and
ψmean, respectively. For n,m = 1, 2, . . ., the functions

Vn,m(x1, . . . , xn, y1, . . . , ym) :=
δn+mV (ψ,ψ)

δψ(x1) · · · δψ(xn)δψ(y1) · · · δψ(ym)
| ψ=ψ=0

are called vertex functions. Finally, as in Sect. 7.24.12 on page 461, the value

Seff [ψmean, ψmean] := V (ψmean, ψmean)

is called the effective action of the mean field.

7.27 Complex-Valued Fields

Let us now modify the model from Sect. 7.26 on page 481 by setting

ψ := ψ†, J := J†
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and by assuming that the components of ψ and J are complex numbers. In
particular, the action functional reads as

S[ψ,ψ†, J, J†] := 〈ψ†|Dψ〉 + κ〈1|Lint(ψ,ψ†)〉
+〈J†|ψ〉 + 〈ψ†|J〉.

(7.167)

Explicitly, the functional S[ψ,ψ†, J, J†] is equal to
∑

x,y∈M
ψ(x)†D(x, y)ψ(y)Δ4xΔ4y + κ

∑

x∈M
Lint(ψ(x), ψ(x)†)Δ4x

+
∑

x∈M
{J(x)†ψ(x) + ψ(x)†J(x)}Δ4x.

Recall that ψ(x)† denotes the complex-conjugate of ψ(x). We are given the
coupling constant κ ≥ 0, and we make the following assumptions:

• ψ(1), . . . , ψ(N) are complex field variables.
• J(1), . . . J(N) denote complex source variables.
• The complex (N ×N)-matrix D is self-adjoint.
• There is a number ε0 > 0 such that the inverse matrix (D + iεI)−1 exists

for all ε ∈]0, ε0[.
• The function Lint : C

2 → R is a complex polynomial of the two variables
ζ and ζ†. For example, Lint(ζ, ζ†) := (ζ†ζ)2.

The special case where Lint := −(ψψ†)2 = −|ψ|4 is called the discrete com-
plex ϕ4-model. Let L2(M) denote the space of all functions ψ : M → C. As
in the real case, we set

〈f |g〉 :=
∑

x∈M
f(x)g(x)Δ4x.

Note that in contrast to the dual pairing 〈f |g〉, the inner product on the
complex Hilbert space L2(M) is denoted by

〈f |g〉L2(M) :=
∑

x∈M
f(x)†g(x) Δ4x.

The principle of critical action. We are given the source function
J ∈ L2(M).

Theorem 7.48 Each solution ψ ∈ L2(M) of the variational problem

S[ψ,ψ†, J, J†] = critical! (7.168)

satisfies the following Euler-Lagrange equations

δS

δψ†(x)
= 0,

δS

δψ(x)
= 0 for all x ∈ M.
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Explicitly, the Euler–Lagrange equations read as

(Dψ)(x) + κ
∂Lint

∂ζ†
(ψ(x), ψ(x)†) + J(x) = 0 (7.169)

and

(ψ†D)(x) + κ
∂Lint

∂ζ
(ψ(x), ψ(x)†) + J(x)† = 0. (7.170)

Proof. (I) To begin with, let us prove the following complex variational
lemma. We are given f, g ∈ L2(M). Suppose that

〈h†|f〉 + 〈g|h〉 = 0 for all h ∈ L2(M). (7.171)

Then f ≡ 0 and g ≡ 0. In fact, equation (7.171) reads explicitly as
∑

x∈M
(h(x)†f(x) + g(x)h(x))Δ4x = 0.

First use real values h(x). Then, f(x)+g(x) = 0 for all x ∈ M. Secondly, use
purely imaginary values h(x). Then, −f(x) + g(x) = 0 for all x ∈ M. Hence
f(x) = g(x) = 0 for all x ∈ M.

(II) For fixed h ∈ L2(M), set

χ(τ) := S[ψ + τh, ψ† + τh†, J, J†], τ ∈ R.

From the variational problem (7.168), we get χ′(0) = 0. This yields

〈h†|Dψ〉 + 〈h†|J〉 + κ
∑

x∈M

∂Lint

∂ζ†
(ψ(x), ψ(x)†)h(x)†

+〈ψ†|Dh〉 + 〈J†|h〉 + κ
∑

x∈M

∂Lint

∂ζ
(ψ(x), ψ(x)†)h(x) = 0.

The claim follows now from (I). �

The response function. Switching off the interaction by setting κ = 0,
the regularized Euler–Lagrange equation (7.169) reads as

Dψ + iεψ = −J (7.172)

where the regularization parameter ε > 0 is small enough that the inverse op-
erator Rε := −(D+iεI)−1 exists. Using matrix elements, the unique solution
ψ = RεJ of equation (7.172) is given by

ψ(x) =
∑

y∈M
Rε(x, y)J(y)Δ4y, x ∈ M.

The function Rε is called the response kernel. Using D† = D, it follows from
(7.172) that
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ψ†D − iεψ† = −J†.

This is the regularized version of the linearized Euler–Lagrange equation
(7.170) with the unique solution

ψ(x)† =
∑

y∈M
J(y)†Rε(x, y)†Δ4y, x ∈ M.

We will show in Problem 7.6 on page 498 that the regularized equation (7.172)
does not follow from a variational problem.

The extended quantum action functional. The functional

Z(J, J†, ψ, ψ†)

is defined by

exp

{
iκ
�

∑

x∈M
Δ4x Lint

(
�

i
δ

δJ†(x)
,
�

i
δ

δJ(x)

)}

Zfree(J, J†, ψ, ψ†)

along with

Zfree(J, J†, ψ, ψ†) := Zfree(J, J†) ei〈J†|ψ〉/� ei〈ψ†|J〉/�.

The magic quantum action reduction formula for correlation
functions. We define the quantum action functional of our complex model
by

Z(J, J†) :=
Z(J, J†, 0, 0)
Z(0, 0, 0, 0)

.

Explicitly,

Z(J, J†) := M exp

{
iκ
�

∑

x∈M
Δ4x Lint

(
�

i
δ

δJ†(x)
,
�

i
δ

δJ(x)

)}

Zfree(J, J†)

along with

Zfree(J, J†) := ei〈J†|RεJ〉/�.

The number M is uniquely determined by the normalization condition
Z(0, 0) = 1. This yields the correlation function

Cn,m(x1, . . . , xn, y1, . . . , ym)

defined by
(

�

i

)n+m
δn+mZ(J, J†)

δJ†(x1) · · · δJ†(xn)δJ(y1) · · · δJ(ym)
| J=0.
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For example,

C1,1,free(x, y) =
(

�

i

)2
δZfree(J, J†)
δJ†(x)δJ(y)

= −i�Rε(x, y).

The scattering functional. Let us define the so-called scattering func-
tional S by setting

S(ψ,ψ†) :=
Z(0, 0, ψ, ψ†)
Z(0, 0, 0, 0)

For n,m = 1, 2, . . ., the scattering function

Sn,m(x1, . . . , xn, y1, . . . , ym)

is defined by the functional derivative

δn+mS(ψ,ψ†)
δψ(x1) · · · δψ(xn)δψ†(y1) · · · δψ†(ym)

| ψ=0.

In addition, we assume that Dψ = 0 and ψ†D = 0. There exists an LSZ
reduction formula similarly as in Theorem 7.39 on page 452.

7.28 The Method of Lagrange Multipliers

Reduce constrained extremal problems to free extremal problems by chang-
ing the Lagrangian.

Folklore

The Standard Model of particle physics is based on gauge field theory. The
fixing of a gauge corresponds to some constraint. Therefore, constrained vari-
ational problems will play a fundamental role in the Standard Model later on.
At this point, let us only summarize the basic ideas of the rigorous theory for
finite-dimensional constrained problems. The point is that the Lagrange mul-
tiplier rule only applies to regular solutions of constrained problems. From
the physical point of view, Lagrange multipliers correspond to

• constraining forces in classical mechanics,
• ghosts and antighosts (BRST symmetry) in non-commutative gauge field

theories (e.g., electroweak and strong interaction in the Standard Model).51

51 In the author’s monograph, Zeidler (1986), Vol. III, the interested reader may find
the general functional analytic theory of Lagrange multipliers along with many
applications to extremal problems in the calculus of variations, linear and non-
linear optimization (e.g., the Kuhn–Tucker theory for convex problems) and op-
timal control (e.g., the Pontryagin maximum principle applied to optimal moon
landing and the optimal return of a spaceship to earth).
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Simple constrained problem. Consider the minimum problem

y = min! (7.173)

under the constraint

x2 + y2 = 1. (7.174)

Obviously, the solution is x0 = 0, y0 = −1. The problem

y = critical! (7.175)

under the constraint (7.174) means the following. Set F (x, y) := y. Consider
a smooth curve x = x(τ), y = y(τ) which satisfies the constraint (7.174) along
with x(0) = x0, y(0) = y0. Set

χ(τ) := F (x(τ), y(τ)), τ ∈ R.

By definition, the point (x0, y0) is a solution of problem (7.175) along with
the constraint (7.174) iff χ′(0) = 0. Explicitly, the solutions are x0 = 0 and
y0 = ±1 which correspond to a minimum and a maximum, respectively.

Lagrange’s idea. Consider the problem

F (x, y) = critical! (7.176)

under the constraint

G(x, y) = 0. (7.177)

Suppose that the functions F,G : R
2 → R are smooth. The solution (x0, y0)

of (7.176), (7.177) is called regular iff for each real number c, the linearized
constraint

Gx(x0, y0)a+Gy(x0, y0)b = c

has a solution (a, b) ∈ R
2. In other words,

(Gx(x0, y0), Gy(x0, y0)) �= (0, 0).

This means that the rank of this matrix is maximal (i.e., equal to 1).52 It
was the idea of Lagrange to replace the original constrained problem (7.176),
(7.177) by the free problem

F (x, y) + λG(x, y) = critical! (7.178)

where λ is a fixed, but unknown real parameter. This parameter is called
Lagrange multiplier.
52 In terms of geometry, we postulate that the constraint G(x, y) = 0, (x, y) ∈ R

2

represents a manifold (i.e., a curve which has a tangent line at each point).



492 7. Rigorous Finite-Dimensional Magic Formulas

Proposition 7.49 If (x0, y0) is a regular solution of the constrained problem
(7.176), (7.177), then there exists a real number λ such that (x0, y0) is a
solution of the free problem (7.178), that is,

Fx(x0, y0) + λGx(x0, y0) = 0, Fy(x0, y0) + λGy(x0, y0) = 0. (7.179)

As a rule, this equation along with the constraintG(x0, y0) = 0 determines
uniquely the Lagrange multiplier λ. In classical mechanics, the value of λ
describes the strength of the constraining force (see the spherical pendulum
below). The proof of the classical Proposition 7.49 can be found in Zeidler
(1986), Vol. III, Sect. 43.10.

In the case of problem (7.173), (7.174), we have F (x, y) := y and

G(x, y) := x2 + y2 − 1.

The constraint G(x, y) = 0 describes the unit circle. Obviously, this is a
manifold. Equation (7.179) yields

2λx0 = 0, 1 + 2λy0 = 0.

Hence λ �= 0. This implies x0 = 0. From x2 + y2 = 1 we get y0 = ±1. Finally,
λ = ∓1/2.

The principle of critical action under constraints. Consider the
variational problem

S[ϕ] = critical! (7.180)

under the constraints

Gk[ϕ] = 0, k = 1, . . . ,K. (7.181)

Suppose that S,G1, . . . , GK : R
N → R are smooth functions where K < N.

Let us also consider the system of linearized constraints:53

∑

x∈M

δGk[ϕ0]
δϕ(x)

hk(x) = ck, k = 1, . . . ,K. (7.182)

A solution ϕ0 of (7.180), (7.181) is called regular iff for arbitrary real numbers
c1, . . . , cK , equation (7.182) has always a real solution h1, . . . hk.

Theorem 7.50 Let ϕ0 be a regular solution of the constrained problem
(7.180), (7.181). Then, there exist real numbers λk indexed by k = 1, . . . ,K
such that

δS[ϕ0]
δϕ(x)

+
K∑

k=1

λk
δGk[ϕ0]
δϕ(x)

= 0 for all x ∈ M.

53 Recall that M = {1, . . . , N}. Moreover, the components of ϕ are denoted by
ϕ(1), . . . , ϕ(N).
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The proof of this finite-dimensional theorem along with infinite-dimensional
generalizations and numerous applications can be found in Zeidler (1986),
Vol. III, Sect. 43.10.

The universal Gaussian principle of critical constraint. We want
to study the motion x = x(t) of a classical particle of mass m > 0 under the
constraints

f(x(t), t) = 0, g(x(t), ẋ(t), t) = 0. (7.183)

From this, we get the linearized constraints54

fx(X)ẍ + ẋfxx(X)ẋ + 2fxt(X)ẋ + ftt(X) = 0,
gẋ(X)ẍ + gx(X)ẋ + gt(X) = 0 (7.184)

where X := (x, ẋ, t). We assume that the functions f : R
3 × R → R and

g : R
3 × R

3 × R → R are smooth, and the regularity condition

fx(X)2gẋ(X)2 − fx(X)gẋ(X) �= 0 (7.185)

is satisfied for all points X with f(X) = g(X) = 0. According to Gauss, the
equation of motion for the particle reads as

mẍ = F + λfx + μgẋ. (7.186)

The additional force Fc := λfx + μgẋ is called constraining force. Explicitly,

mẍ = F(X) + λ(X)fx(X) + μ(X)gẋ(X).

Here, λ(X) and μ(X) are uniquely determined by the linearized constraint
(7.184). In fact, it follows from (7.184) and (7.186) that

λf2
x + μgẋfx = −Ffx − ẋfxxẋ − 2fxtẋ − ftt,

λgẋfx + μg2
ẋ = −Fgẋ − gxẋ − gt

at the point X := (x, ẋ, t). By the regularity condition (7.185), this linear
system has a unique solution (λ, μ). Let us now show that the equation of
motion follows from the Gaussian principle of critical constraint:
54 Equation (7.184) is obtained from (7.183) by differentiating with respect to time
t. In fact, it follows from f(x(t), t) = 0 that

fx(x(t), t)ẋ(t) + ft(x(t), t) = 0.

Again differentiating this with respect to t, we obtain

fx(x(t), t)ẍ(t) + ẋ(t)fxx(x(t), t)ẋ(t) + 2fxt(x(t), t)ẋ(t) + ftt(x(t), t) = 0.
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m

2

(

ẍ − F
m

)2

= critical!, (7.187)

fx(X)ẍ + ẋfxx(X)ẋ + 2fxt(X)ẋ + ftt(X) = 0,
gẋ(X)ẍ + gx(X)ẋ + gt(X) = 0.

This represents a variant of the Gaussian least square method. We are looking
for a solution ẍ which depends on the fixed parameter X := (x, ẋ, t). A
solution of (7.187) is called regular iff condition (7.185) is satisfied.

Theorem 7.51 Every regular solution of the Gaussian principle of critical
constraint (7.187) satisfies the equation of motion (7.186).

Proof. (I) Regularity. By (7.185), the rank of the matrix

(fx(X), gẋ(X))

is maximal (i.e., equal to 2). To show this suppose that λfx(X)+μgẋ(X) = 0.
Hence

λfx(X)2 + μfx(X)gẋ(X) = 0,
λgẋ(X)fx(X) + μgẋ(X)2 = 0.

By (7.185), λ = μ = 0.
(II) We are now able to use the general Lagrange multiplier rule on R

N

whose proof can be found in Zeidler (1986), Sect. 43.10. By this rule, the
original constrained problem (7.187) is equivalent to the free problem

m

2

(

ẍ − F
m

)2

+ λ(fxẍ + ẋfxxẋ + 2fxtẋ + ftt) +

+ μ(gẋẍ + gxẋ + gt) = critical!

Differentiating this with respect to ẍ, we get the equation of motion (7.186).
�

Special case. Suppose that g ≡ 0. In this case, we have to replace the
regularity condition (7.185) by fx(x, t) �= 0 for all (x, t) with f(x, t) = 0. The
equation of motion reads now as

mẍ = F(x, ẋ, t) + λ(x, ẋ, t)fx(x, t).

The parameter λ follows uniquely from

fx(X)2λ = −F(X)fx(X) − ẋfxx(X)ẋ − 2fxt(X)ẋ − ftt(X).

Application to the spherical pendulum. Let us investigate the mo-
tion of a point of mass m > 0 on a sphere of radius R under the action of
the gravitational force of earth. This corresponds to the constraint
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x2 −R2 = 0

and the force F := −mgk. Here, we use the outer normal unit vector k of
earth and the acceleration constant g = 9.81m/s2. Setting f(x) := 1

2 (x2−R2),
we get the equation of motion

mẍ = −mgk + Fc.

The constraining force is given by Fc := λfx(x) = λx (normal force) along
with

f2
xλ = mg · kfx − ẋfxxẋ = mg · kx − ẋ2.

Hence

λ =
mg · kx − ẋ2

R2
.

Here, z = kx is the height of the point x. For example, if the mass point
rests at the South Pole of the sphere, then ẍ = 0. As expected, this implies

Fc = −Fgravitation = mgk.

The Gaussian principle of critical constraint is the most general principle
for the motion of n particles under constraints in classical mechanics. The
general formulation of this principle can be found in Zeidler (1986), Vol. IV,
Sect. 58.10.

7.29 The Formal Continuum Limit

The passage from the discrete ϕ4-model to the corresponding continuum
model is based on the formal limit

N → +∞, Δx → +0 (7.188)

Explicitly, this means the following:

• Space-time manifold: M → M
4.

• Integral:
∑

x∈M
f(x)Δ4x →

∫

M4
f(x)d4x.

• Dirac’s delta function: δΔ4x(x, y) → δ4(x− y).
• Functional derivative:55

1
Δ4x

∂Z(J)
∂J(x)

→ δZ(J)
δJ(x)

.

55 To simplify notation, we use the same symbol δZ(J)
δJ(x)

in both the discrete case

and the continuum case.
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• Functional integral:
∫

F (ϕ)
∏

x∈M
dϕ(x) →

∫

F (ϕ)
∏

x∈M4

dϕ(x).

The point is that, as a rule, the formal limits above produce divergent expres-
sions. The idea of the method of counterterms is to change the Lagrangian
of the theory in such a way that

(i) new terms appear which regularize the divergent integrals, and
(ii) the original physical parameters are replaced by new finite parameters

which have to be determined by the physical experiment.

This is the procedure of renormalization to be discussed in Sect. 15.4. The
counterterms for the continuum ϕ4-model can be found in Sect. 15.4.2.

Problems

7.1 The Fourier–Gauss integral. Prove (7.91). Solution: Set

h(p) :=

Z ∞

−∞
e−x2/2e−ipx dx

where p ∈ C. Differentiating this,

h′(p) = −i

Z ∞

−∞
e−x2/2xe−ipxdx = i

Z ∞

−∞

d

dx

“

e−x2/2
”

e−ipxdx.

This derivative exists, by the majorant criterion for integrals (see Zeidler
(1995), Vol. 1, p. 440). In fact, let p = α + iβ where α, β ∈ R. Choose a
real number C > 0 and a natural number n = 0, 1, 2, . . . . Then

|xne−x2/2e−ipx| = |xn| e−x2/2 eβx ≤ const · e−x2/4 (7.189)

for all x, α ∈ R and all β ∈ [−C,C]. The constant depends on C and n.
The right-hand side of (7.189) represents a majorant for the integrands of the
integrals corresponding to h and h′. The point is that this majorant is integrable
over R.
Using integration by parts, h′(p) = −ph(p). Hence h(p) = e−p2/2h(0). Further-
more,

h(0)2 =

„

Z ∞

−∞
e−x2/2dx

«2

=

Z ∞

−∞

Z ∞

−∞
e−(x2+y2)/2dxdy.

Using polar coordinates,

h(0)2 =

Z ∞

0

Z π

−π

e−r2/2rdrdϕ = −2π

Z ∞

0

d

dr

“

e−r2/2
”

dr = 2π.
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7.2 The limiting relation. Prove (7.94). Solution: Set fσ(x) := e−x2/2σ2

σ
√

2π
if σ > 0.

Using the rescaling x = σy,

lim
σ→+0

Z ∞

−∞
fσ(x)χ(x)dx = lim

σ→+0

Z ∞

−∞
f1(y)χ(σy)dy

=

Z ∞

−∞
f1(y)χ(0)dy = χ(0).

This limit exists because of the majorant condition. In fact, for all y ∈ R,

|f1(y)χ(σy)| ≤ const · f1(y),

and the right-hand side is integrable over the real line.
7.3 The determinant trick. Prove Theorem 7.34. Solution: Let T be a real orthog-

onal (N ×N)-matrix, that is T−1 = T d. Define

Z(J) :=
1

(2π)N/2

Z

RN

exp− 1
2 ϕdAϕ eiJdϕ dϕ1 · · · dϕN .

Using the transformation ϕ = Tψ, pd = JdT, we get

Z(J) =

Z

RN

e−
1
2 ψd(T dAT )ψ eipdψ |detT | dψ1 · · · dψN .

It follows from (detT )−1 = detT−1 = detT d = detT that detT = ±1. By the
principal axis theorem, the orthogonal matrix T can be chosen in such a way
that

ϕdAϕ = ψd(T dAT )ψ = λ1ψ
2
1 + . . .+ λNψ

2
N .

Hence T dAT is equal to the diagonal matrix diag(λ1, . . . , λN ). By (7.105),

Z(J) =
e−

1
2
PN

k=1 λkp2
k

√
λ1 · · ·λN

.

Furthermore,
QN

k=1 λk = det(T dAT ) = detT d detAdetT = detA. Finally,

diag(λ−1
1 , . . . , λ−1

N ) = (T dAT )−1 = T−1A−1(T d)−1.

Hence JdA−1J = pdT−1A−1(T d)−1p =
PN

k=1 λ
−1
k p2

k.
7.4 Commutation rule for matrices. Let A,B be complex (N × N)-matrices for

N = 2, 3, . . . Set [A,B] := AB −BA. Show that

[[A,B], B] = 0 (7.190)

implies

[A, eB ] = eB [A,B]. (7.191)

This is a simple special case of the famous Baker–Campbell–Hausdorff formula
from Sect. 8.4 on page 510.
Solution: It is sufficient to show that

ABn+1 + nBn+1A = (n+ 1)BnAB, n = 1, 2, . . . (7.192)

In fact, this implies
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ABn+1

(n+ 1)!
− Bn+1A

(n+ 1)!
=
Bn

n!
(AB −BA). (7.193)

Since eB = I +B + 1
2
B2 + . . . , it follows from (7.193) that

AeB − eBA = eB(AB −BA).

This is the claim. It remains to prove (7.192) by induction.
(I) n = 1. By (7.190), (AB −BA)B = B(AB −BA). Hence

AB2 +B2A = 2BAB. (7.194)

(II) n = 2. Multiply equation (7.194) by B from the right and from the left.
Then

AB3 +B2AB = 2BAB2,

2BAB2 + 2B3A = 4B2AB.

Adding this, we get the claim (7.192) for n = 2. The general induction proof
proceeds analogously.

7.5 Proof of Theorem 7.44(iii). Proceed as in the proof of (ii). Hint: The explicit
computations can be found in Greiner and Reinhardt (1996b), p. 397.

7.6 Corollary to Theorem 7.48. Let ε > 0. Parallel to Theorem 7.48 on page 487,
consider the modified variational problem

〈ψ†|(D + iεI)ψ〉+ 〈J†|ψ〉+ 〈ψ†|J〉 = critical! (7.195)

Recall that D† = D, by assumption. Show the following:
(i) For given J ∈ L2(M), the variational problem (7.195) is equivalent to the

Euler–Lagrange equations

(D + iε)ψ = −J, ψ†(D + iεI) = −J†. (7.196)

(ii) If J �= 0, the variational problem (7.195) has no solution.
(iii) If ε = 0 and D is invertible, then the variational problem (7.195) has the

unique solution ψ = −D−1J.
Solution: Ad (i). Argue as in the proof of Theorem 7.48.
Ad (ii). Let ψ be a solution of (7.195). This implies (7.196). It follows from
(D + iεI)ψ = −J along with D† = D that

ψ†(D − iεI) = −J†.

By (7.196), 2iεψ† = 0. Hence ψ = 0. Again by (7.196), we get J = 0, a
contradiction.
Ad (iii). Observe that ψ†D = −J† is a consequence of Dψ = −J.



8. Rigorous Finite-Dimensional Perturbation
Theory

Perturbation theory is the most important method in modern physics.
Folklore

8.1 Renormalization

In quantum field theory, a crucial role is played by renormalization. Let us now
study this phenomenon in a very simplified manner.

• We want to show how mathematical difficulties arise if nonlinear equations are
linearized in the incorrect place.

• Furthermore, we will discuss how to overcome these difficulties by using the
methods of bifurcation theory.

The main trick is to replace the original problem by an equivalent one by introducing
so-called regularizing terms. We have to distinguish between

• the non-resonance case (N) (or regular case), and
• the resonance case (R) (or singular case).

In celestial mechanics, it is well-known that resonance may cause highly complicated
motions of asteroids.1

In rough terms, the complexity of phenomena in quantum field theory is
caused by resonances.

In Sect. 7.16, the non-resonance case and the resonance case were studied for linear
operator equations. We now want to generalize this to nonlinear problems.

8.1.1 Non-Resonance

Consider the nonlinear operator equation

H0ϕ+ κ(v0 + V (ϕ)) = Eϕ, ϕ ∈ X. (8.1)

We make the following assumptions.

(A1) The complex Hilbert space X has the finite dimension N = 1, 2, . . .

1 This is described mathematically by KAM theory (Kolmogorov–Arnold–Moser
theory). As an introduction, we recommend Scheck (2000), Vol. 1, and Thirring
(1997).

E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics,
c© Springer-Verlag Berlin Heidelberg 2006, Corrected 2nd printing 2009
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(A2) The operator H0 : X → X is linear and self-adjoint. Furthermore,

H0|E0
j 〉 = E0

j |E0
j 〉, j = 1, . . . , N.

Here, the energy eigenstates |E0
1〉, . . . , |E0

N 〉 form a complete orthonormal sys-
tem of X.

(A3) We set V (ϕ) := W (ϕ,ϕ, ϕ) for all ϕ ∈ X. Here, we assume that the given
operator W : X × X × X → X is linear in each argument. For example, we
may choose V (ϕ) := 〈ϕ|ϕ〉ϕ.

(A4) We are given the complex constant κ called the coupling constant, and we
are given the fixed element v0 of the space X.

We are looking for an element ϕ of X.

Theorem 8.1 Suppose that we are given the complex number E different from the
energy values E0

1 , . . . , E
0
N . Then, there exist positive numbers κ0 and r0 such that,

for each given coupling constant κ with |κ| ≤ κ0, equation (8.1) has precisely one
solution ϕ ∈ X with ||ϕ|| ≤ r0.

Proof. Equation (8.1) is equivalent to

ϕ = −κ(H0 − EI)−1(v0 + V (ϕ)), ϕ ∈ X.

The statement follows now from the Banach fixed-point theorem in Sect. 7.13.
�

In particular, the solution ϕ can be computed by using the following iterative
method

ϕn+1 = −κ(H0 − EI)−1(v0 + V (ϕn)), n = 0, 1, . . . (8.2)

with ϕ0 := 0. This method converges to ϕ as n → ∞ in the Hilbert space X. For
the first approximation, we get

ϕ1 = −κ(H0 − EI)−1v0 = κ

N
X

j=1

|E0
j 〉〈E0

j |v0〉
E − E0

j

. (8.3)

Let us discuss this.

(N) The non-resonance case (regular case). The expression (8.3) makes sense, since
we assume that the parameter E is different from the eigenvalues E0

1 , . . . , E
0
N .

We say that the value E is not in resonance with the eigenvalues E0
1 , . . . , E

0
N .

Then, the Green’s operator (H0 − EI)−1 is well-defined. Explicitly,

(H0 − EI)−1 =

N
X

j=1

|E0
j 〉〈E0

j |
E0

j − E
.

(R) The resonance case (singular case). The situation changes completely if we
choose

E := E0
1 .

Here, we say that the value E is in resonance with the eigenvalue E0
1 . Then,

the Green’s operator (H0 − E0
1I)

−1 does not exist, and the iterative method
(8.2) above fails completely. As a rule, ϕ1 is an infinite quantity. Furthermore,
if we set

E := E0
1 + ε, ε �= 0,
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then we obtain

(H0 − EI)−1 =

N
X

j=1

|E0
j 〉〈E0

j |
E0

j − E0
1 − ε

.

Since

lim
ε→+0

1

E0
1 − E

= − lim
ε→+0

1

ε
= −∞,

some of the expressions arising from perturbation theory become very large if
the perturbation ε is very small.

Summarizing, it turns out that

Naive perturbation theory fails completely in the resonance case.

This situation is typical for the naive use of perturbation theory in quantum field
theory. In what follows, we will show how to obtain a rigorous result. To this
end, we will replace the naive iterative method (8.2) above by the rigorous, more
sophisticated iterative method (8.12) below.

8.1.2 Resonance, Regularizing Term, and Bifurcation

Set E := E0
1 + ε. Consider the nonlinear operator equation

H0ϕ+ κV (ϕ) = Eϕ, ϕ ∈ X. (8.4)

In addition to (A1) through (A4) above, we assume that the energy eigenvalue
E0

1 is simple, that is, the eigenvectors to E0
1 have the form !|E0

1〉 where ! is an
arbitrary nonzero complex number. We are looking for a solution (ϕ,E) of (8.4)
with ϕ ∈ X and E ∈ C. The proof of the following theorem will be based on the
use of regularizing terms.

Theorem 8.2 There exist positive constants κ0, s0, η0 and r0 such that for given
complex parameters κ and s with

|κ| ≤ κ0, 0 < |s| ≤ s0,

equation (8.4) has precisely one solution ϕ,E which satisfies the normalization con-
dition

〈E0
1 |ϕ〉 = s

and the smallness conditions |E − E0
1 | ≤ η0 and ||ϕ|| ≤ r0.

Before proving this, let us discuss the physical meaning of this result. We will
show below that the zeroth approximation of the solution looks like

ϕ = s|E0
1〉, E = E0

1 .

The first approximation of the energy is given by

E = E0
1 + κs2〈GregV (ψ1)|ψ1〉

where we set ψ1 := |E0
1〉. Observe the following point which is crucial for under-

standing the phenomenon of renormalization in physics.

From the mathematical point of view, we obtain a branch of solutions which
depends on the parameter s.
The free parameter s has to be determined by physical experiments.
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Let us discuss this. Suppose that we measure the

• energy E and
• the running coupling constant κ.

We then obtain the approximation

κ =
E − E0

1

s2〈GregV (ψ1)|ψ1〉
.

This tells us the value of the parameter s. This phenomenon is typical for renormal-
ization in quantum field theory. The energy E0

1 is called the bare energy. However,
this bare energy is not a relevant physical quantity. In a physical experiment we
do not measure the bare energy E0

1 , but the energy E and the running coupling
constant κ. In elementary particle physics, this corresponds to the fact that the rest
energy of an elementary particle (e.g., an electron) results from complex interac-
tion processes. Therefore, the rest energy E differs from the bare energy E0

1 . In the
present simple example, interactions are modelled by the nonlinear term κV (ϕ).

Proof of Theorem 8.2. (I) The non-resonance (or solvability) condition. To
simplify notation, set ψj := |E0

j 〉, j = 1, . . . , N. For given χ ∈ X, consider the linear
operator equation

H0ϕ− E0
1ϕ = χ, ϕ ∈ X. (8.5)

By Theorem 7.15 on page 378, this problem has a solution iff the so-called non-
resonance condition

〈ψ1|χ〉 = 0

is satisfied. This condition tells us that χ is orthogonal to the eigenstate ψ1 (i.e., χ
is not in ‘resonance’ to ψ1). The general solution is then given by

ϕ = sψ1 +

N
X

j=2

〈ψj |χ〉
E0

j − E0
1

ψj (8.6)

where s is an arbitrary complex parameter.
(II) The regularized Green’s operator Greg. Set Pϕ := 〈ψ1|ϕ〉ψ1. The operator

P : X → span(ψ1) projects the Hilbert spaceX orthogonally onto the 1-dimensional
eigenvector space to the energy eigenvalue E0

1 . We now consider the modified equa-
tion

H0ϕ+ Pϕ− E0
1ϕ = χ, ϕ ∈ X. (8.7)

Theorem 7.16 on page 379 tells us that, for each given χ ∈ X, equation (8.7) has
the unique solution

ϕ = (H0 + P − E0
1I)

−1χ.

We define Greg := (H0 + P − E0
1I)

−1. Explicitly,2

ϕ = Gregχ = 〈ψ1|χ〉ψ1 +
N
X

j=2

〈ψj |χ〉
E0

j − E0
1

ψj .

In particular, Gregψ1 = ψ1. The term Pϕ = 〈ψ1|ϕ〉ψ1 in (8.7) is called regularizing
term.

2 In fact, (H0 + P − E0
1I)ϕ is equal to 〈ψ1|χ〉ψ1 +

PN
j=2〈ψj |χ〉ψj = χ.
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(III) The trick of regularizing term. The original equation (8.4) on page 501 can
be written equivalently as

H0ϕ− E0
1ϕ+ κV (ϕ) + 〈ψ1|ϕ〉ψ1 = sψ1 + εϕ, ϕ ∈ X (8.8)

along with the normalization condition

〈ψ1|ϕ〉 = s. (8.9)

By (II), this is equivalent to the operator equation

ϕ = Greg(sψ1 − κV (ϕ) + εϕ)

along with (8.9). Finally, since Gregψ1 = ψ1, we obtain the equivalent operator
equation

ϕ = sψ1 − κGregV (ϕ) + εGregϕ (8.10)

along with (8.9). We have to solve the system (8.9), (8.10). To this end, we will use
both a rescaling and the Banach fixed-point theorem.

(IV) Rescaling. Set ϕ := s(1 + ε)ψ1 + sχ. Equation (8.9) yields

s〈ψ1|ψ1 + εψ1 + χ〉 = s.

Since s �= 0 and 〈ψ1|ψ1〉 = 1, we get ε = −〈ψ1|χ〉. Furthermore, it follows from
(8.10) that

s(1 + ε)ψ1 + sχ = sψ1 − κs3GregV ((1 + ε)ψ1 + χ)

+sε(1 + ε)ψ1 + sεGregχ.

Consequently, the system (8.9), (8.10) corresponds to the following equivalent sys-
tem

χ = A(χ, ε, κ, s),

ε = −〈ψ1|A(χ, ε, κ, s)〉, χ ∈ X, ε ∈ C (8.11)

along with

A(χ, ε, κ, s) := −κs2GregV ((1 + ε)ψ1 + χ) + εGregχ+ ε2ψ1.

(V) The Banach fixed-point theorem. The system (8.11) represents an operator
equation on the Banach space X × C with the norm

||(χ, ε)|| := ||χ||+ |ε|.

We are given the complex parameters s and κ with 0 < |s| ≤ s0 and |κ| ≤ κ0

where s0 > 0 and κ0 > 0 are sufficiently small numbers. By the Banach fixed-point
theorem in Sect. 7.13 on page 368, there exists a small closed ball B about the origin
in the Banach space X × C such that the operator equation (8.11) has a unique
solution in the closed ball B.

(V) Iterative method. By the Banach fixed-point theorem, the solution (χ, ε) of
(8.11) can be computed by using the following iterative method

χn+1 = A(χn, εn, κ, s),

εn+1 = −〈ψ1|A(χn, εn, κ, s)〉, n = 0, 1, 2, . . . (8.12)
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with χ0 := 0 and ε0 := 0. This method converges in the Banach space X × C. In
particular, we get

χ1 = −κs2GregV (ψ1), ε1 = κs2〈ψ1|GregV (ψ1)〉.

�

Bifurcation. On the product space X×C, the original nonlinear problem (8.4)
on page 501 has two different solution curves, namely,

• the trivial solution curve ϕ = 0, E = arbitrary complex number,
• and the nontrivial solution curve (ϕ = ϕ(s, κ), E = E(s, κ)) given by Theorem

8.2 on page 501.

The two curves intersect each other at the point ϕ = 0, E = E0
1 . Therefore, we

speak of bifurcation. The nontrivial solution branch of equation (8.4) represents a
perturbation of the curve

ϕ = sψ1, E = E0
1 , s ∈ C

which corresponds to the linearized problem H0ϕ = E0
1ϕ. Bifurcation theory is part

of nonlinear functional analysis. A detailed study of the methods of bifurcation
theory along with many applications in mathematical physics and mathematical
biology can be found in Zeidler (1986).

8.1.3 The Renormalization Group

The method of renormalization group plays a crucial role in modern physics.

Roughly speaking, this method studies the behavior of physical effects under
the rescaling of typical parameters.

We are going to study a very simplified model for this. Let (ϕ(s, κ), E(s, κ)) be the
solution of the original equation (8.4) on page 501, that is,

H0ϕ(s, κ) + κV [ϕ(s, κ)] = E(s, κ)ϕ(s, κ)

along with 〈ψ1|ϕ(s, κ)〉 = s. Choose the fixed real number λ > 0. Replacing s �→ λs
and κ �→ κ

λ2 , we get

H0ϕ
“

λs,
κ

λ2

”

+
κ

λ2
V
h

ϕ
“

λs,
κ

λ2

”i

= E
“

λs,
κ

λ2

”

ϕ
“

λs,
κ

λ2

”

along with 〈ψ1|ϕ
`

λs, κ
λ2

´

〉 = λs. Define

ψ(s, κ) :=
1

λ
· ϕ
“

λs,
κ

λ2

”

.

Noting that V (λψ) = λ3V (ψ), we obtain

H0ψ(s, κ) + κV [ψ(s, κ)] = E
“

λs,
κ

λ2

”

ψ(s, κ)

along with 〈ψ1|ψ(s, κ)〉 = s. By the uniqueness statement from Theorem 8.2 on
page 501, we get

1

λ
· ϕ
“

λs,
κ

λ2

”

= ϕ(s, κ) (8.13)
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along with

E
“

λs,
κ

λ2

”

= E(s, κ) (8.14)

for all nonzero complex parameters s and κ in a sufficiently small neighborhood of
the origin.

Summarizing, the homogeneity of the potential, V (λϕ) = λ3V (ϕ), implies
the symmetries (8.13), (8.14) of the solution branch.

Differentiating equation (8.13) with respect to the parameter λ, and setting λ = 1,
we obtain

ϕ(s, κ)− sϕs(s, κ) + 2κϕκ(s, κ) = 0. (8.15)

In our model, the differential equation (8.15) can be regarded as a simplified version
of the Callan–Symanzik equation in quantum field theory.

Let R
×
+ denote the set of all positive real numbers; that is, x ∈ R

×
+ iff x > 0.

For each parameter λ ∈ R
×
+, define the map Tλ : C

2 → C
2 given by

Tλ(s, κ) :=
“

λs,
κ

λ2

”

.

For all parameters λ, μ ∈ R
×
+,

Tλμ = TλTμ.

Therefore, the family {Tλ}λ∈R
×
+

of all operators Tλ forms a group. This group is

called the renormalization group of the original operator equation (8.4) on page
501.

8.1.4 The Main Bifurcation Theorem

Let us now study the general case of the nonlinear equation

H0ϕ+ κV (ϕ) = Eϕ, ϕ ∈ X (8.16)

where the eigenvalue E0
1 of the linearized problem

H0ϕ = E0
1ϕ

is not simple as in Sect. 8.1.2, but it has general multiplicity. To this end, we will
reduce the problem to the nonlinear system (8.17) below. We make the following
assumptions.

(A1) The complex Hilbert space X has the finite dimension N = 1, 2, . . .
(A2) Linear operator: The operator H0 : X → X is linear and self-adjoint. Fur-

thermore,
H0|E0

j 〉 = E0
j |E0

j 〉, j = 1, . . . , N.

Here, the energy eigenstates |E0
1〉, . . . , |E0

N 〉 form a complete orthonormal sys-
tem of X.
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(A3) Multiplicity: The eigenvalue E0
1 has the multiplicity m, that is, the eigenvec-

tors |E0
1〉, . . . , |E0

m〉 form a basis of the eigenspace of H0 to the eigenvalue E0
1 .

Let 1 ≤ m < N. To simplify notation, set ψj := |E0
j 〉. Define the orthogonal

projection operator P : X → X by setting

Pϕ :=

m
X

j=1

〈ψj |ϕ〉ψj for all ϕ ∈ X.

(A4) Nonlinearity: We set V (ϕ) := W (ϕ,ϕ, ϕ) for all ϕ ∈ X, where the given
operator W : X × X × X → X is linear in each argument. For example,
V (ϕ) := 〈ϕ|ϕ〉ϕ.

(A5) Regularity condition: The nonlinear equation3

σ = κPV (σ), σ ∈ PX, κ ∈ C (8.17)

has a solution (σ0, κ0) where σ0 �= 0 and κ0 �= 0. This solution is regular, that
is, the linearized equation

h = κ0P · V ′(σ0)h, h ∈ X (8.18)

has only the trivial solution h = 0.

Theorem 8.3 There exists a number α0 > 0 such that for each given complex
number α with |α| ≤ α0, the nonlinear problem (8.16) with the coupling constant
κ0 has a solution

ϕ = ασ0 +O(α2), E = E0
1 + α2, α→ 0.

Proof. (I) The regularized Green’s operator. For all χ ∈ X, define

Gregχ :=

m
X

j=1

〈ψj |χ〉ψj +

N
X

j=m+1

〈ψj |χ〉
E0

j − E0
1

ψj .

Suppose that we are given χ ∈ X with Pχ = 0. By Theorem 7.16 on page 379, the
equation

H0!− E0
1! = χ

has precisely one solution ! ∈ X with P! = 0. This solution is given by

! = Gregχ =

N
X

j=m+1

〈ψj |χ〉
E0

j − E0
1

ψj .

3 Set σ := s1ψ1 + . . .+ smψm. Equation (8.17) is then equivalent to the system

gj(s1, . . . , sm;κ) = 0 j = 1, . . . ,m, s1, . . . , sm ∈ C.

Here, gj(s1, . . . , sm;κ) := sj − κ · 〈ψj |V (s1ψ1 + . . . + smψm)〉. Condition (8.18)
means that

det

„

∂gj(s01, . . . , s0m;κ0)

∂sk

«

|j,k=1,...,m �= 0.
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(II) Equivalent system. Set E := E0
1+ε, and introduce the orthogonal projection

operator Q := I − P. Explicitly,

Qϕ =

N
X

j=m+1

〈ψj |ϕ〉ψj for all ϕ ∈ X.

Then, the original nonlinear problem (8.16) is equivalent to

Q(H0ϕ− (E0
1 + ε)ϕ+ κV (ϕ)) = 0,

P (H0ϕ− (E0
1 + ε)ϕ+ κV (ϕ)) = 0. (8.19)

The idea of the following proof is

(i) to solve the first equation from (8.19) by the Banach fixed-point theorem,
(ii) to insert the solution from (i) into the second equation from (8.19), and
(iii) to solve the resulting equation by using the implicit function theorem near the

solution (σ0, κ0) of equation (8.17).

For each ϕ ∈ X, define χ := Pϕ and ! := Qϕ. Then

ϕ = χ+ !, χ ∈ PX, ! ∈ QX.

Therefore, system (8.19) is equivalent to

Q{H0(χ+ !)− (E0
1 + ε)(χ+ !) + κV (χ+ !)} = 0,

P{H0(χ+ !)− (E0
1 + ε)(χ+ !) + κV (χ+ !)} = 0. (8.20)

Observe that 〈ψj |H0ϕ− E0
1ϕ〉 = 〈H0ψj − E0

1ψj |ϕ〉 = 0 for j = 1, . . . ,m. Hence

P (H0 − E0
1I) = 0.

Furthermore, Pχ = χ,Qχ = 0 and Q! = !, P! = 0. Thus, choosing the coupling
constant κ := κ0 and recalling that Q := I − P , the system (8.20) is equivalent to

H0!− E0
1! = ε!− κ0QV (χ+ !),

εχ = κ0PV (χ+ !). (8.21)

Finally, using the regularized Green’s operator, this system is equivalent to the
equation

! = εGreg!− κ0GregQV (χ+ !) (8.22)

along with

εχ = κ0PV (χ+ !). (8.23)

(III) Rescaling. We set χ := ασ and ε := α2. Equation (8.22) passes then over
to

! = α2Greg!− κ0GregQV (ασ + !). (8.24)

(IV) The Banach fixed-point theorem. By Theorem 7.12 on page 369, there
exist positive parameters α0, β0 and r0 such that for given α ∈ C and σ ∈ PX with
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|α| ≤ α0, ||σ|| ≤ β0,

equation (8.24) has precisely one solution ! ∈ QX with ||!|| ≤ r0. This solution
will be denoted by

! = !(α, σ).

By the analytic form of the implicit function theorem,4 the components of !(α, σ)
depend holomorphically on the complex parameter α. The iterative method

!n+1 = α2Greg!n − κ0GregQV (ασ + !n), n = 0, 1, . . .

with !0 := 0 (or comparison of coefficients) shows that

!(α, σ) = −α3κ0GregQV (σ) +O(α4), α→ 0.

(V) The bifurcation equation. Inserting !(α, σ) into equation (8.23), we get

α3σ = κ0PV (ασ + !(α, σ)).

Dividing this by α3, we obtain the so-called bifurcation equation

σ = κ0PV (σ) +O(α), α→ 0. (8.25)

For α = 0, this equation has the solution σ = σ0, by assumption (A5). Choose
h ∈ X. Differentiating the equation

σ0 + th = κ0PV (σ0 + th)

with respect to the real parameter t at t = 0, we get

h = κ0P · V ′(σ0)h. (8.26)

This is the linearization of (8.25) at the point σ = σ0, α = 0. By assumption (A5),
equation (8.26) has only the trivial solution h = 0. By the implicit function theorem,
the bifurcation equation (8.25) has a solution of the form

σ = σ0 +O(α), α→ 0.

�

Modification. If the regularity condition (A5) above is satisfied for the modi-
fied equation

σ = −κPV (σ), σ ∈ PX, κ ∈ C,

then Theorem 8.3 remains true if we replace E = E0
1 + α2 by E = E0

1 − α2.

8.2 The Rellich Theorem

Let X be a complex Hilbert space of finite dimension N = 1, 2, . . . . Consider the
eigenvalue equation

Aϕ = λϕ, λ ∈ R, ϕ ∈ X \ {0}

along with the perturbed problem

A(ε)ϕ(ε) = λ(ε)ϕ(ε), λ(ε) ∈ R, ϕ(ε) ∈ X \ {0}

where ε is a small real perturbation parameter, and A(0) = A. We assume the
following.

4 This can be found in Zeidler (1986), Vol. I, Sect. 8.3.
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(H1) The linear operator A : X → X is self-adjoint.
(H2) There exists an open neighborhood U(0) of the origin of the real line such

that for each ε ∈ U(0), the operator A(ε) : X → X is linear and self-adjoint,
and it depends holomorphically on the parameter ε. Explicitly,

A(ε) = A+ εA1 + ε2A2 + . . .

This means that for each arbitrary, but fixed basis |1〉, . . . , |N〉 of the space X,
all of the matrix elements 〈m|A(ε)|n〉 are power series expansions which are
convergent for all real parameters ε ∈ U(0).

By the principal axis theorem, each operator A(ε) with ε ∈ U(0) possesses a com-
plete orthonormal system of eigenvectors with real eigenvalues.

Theorem 8.4 There exists a small neighborhood of the origin V (0) of the real line
such that the eigenvalues and eigenvectors of the operator A(ε) depend holomorphi-
cally on the real parameter ε ∈ V (0).

Explicitly, this means the following. Let ϕ be an eigenvector of multiplicity m
of the operator A with eigenvalue λ ∈ R. Then, there exist power series expansions

λj(ε) = λ+ ελj1 + ε2λj2 + . . . ,

ϕj(ε) = ϕ+ εϕj1 + ε2ϕj2 + . . . , j = 1, 2, . . . ,m

which converge for all ε ∈ V (0), and which are eigensolutions of A(ε).5 In addition,
there exists a number δ > 0 such that λ1(ε), . . . , λm(ε) are the only eigenvalues of
A(ε) which lie in the interval ]λ− δ, λ+ δ[.

Theorem 8.4 is the special case of a general theorem due to Rellich which is
valid for a broad class of self-adjoint operators in Hilbert spaces. The proof can be
found in Riesz and Nagy (1978), Sect. 136.

8.3 The Trotter Product Formula

Theorem 8.5 Let A,B : X → X be linear operators on the finite-dimensional
Hilbert space X. Then

eA+B = lim
N→∞

(eA/NeB/N )N .

Proof. Set C := e(A+B)/N and D := eA/NeB/N . Then

C −D =
1

N2

∞
X

m=2

1

Nm−2

 

(A+B)m

m!
−

X

k+l=m

AkBl

k!l!

!

,

since the terms for m = 1 cancel each other. Using

||(A+B)m|| ≤ (||A||+ ||B||)m, ||AkBl|| ≤ ||A||k||B||l,

we get

||C −D|| = O

„

1

N2

«

N →∞.

5 The convergence of ϕj(ε) refers to the components.
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Moreover, max{||C||, ||D||} ≤ e(||A||+||B||)/N . It follows from the identity

CN −DN =

N−1
X

k=0

Ck(C −D)DN−1−k

that ||CN −DN || ≤ N ||C −D|| · e(||A||+||B||)(N−1)/N . Hence

||CN −DN || = O

„

1

N

«

, N →∞.

This implies limN→+∞ CN −DN = 0. �

8.4 The Magic Baker–Campbell–Hausdorff Formula

Let A,B : X → X be linear operators on the complex finite-dimensional Hilbert
space X with AB = BA. Then

eAeB = eA+B .

However, the commutation relation AB = BA is frequently violated in mathematics
and physics. We then have to use the following Baker–Campbell–Hausdorff formula

eAeB = eA+B+
1
2
[A,B]−+r(A,B) (8.27)

if the operator norms ||A|| and ||B|| are sufficiently small. Again, we see the Lie
product [A,B]− := AB −BA. The remainder r(A,B) has the form

r(A,B) =

∞
X

k=3

pk(A,B) (8.28)

where pk(A,B) is a polynomial of order k of the variables A,B with respect to the
Lie product [., .]−. The coefficients of pk(A,B) are rational numbers. For example,

12p3(A,B) = A · (A ·B) +B · (B ·A),

24p4(A,B) = B · (A · (B ·A))

where we write A ·B instead of [A,B]−. The point is that the exponent

A+B + 1
2
[A,B]− + r(A,B)

lies in the Lie algebra generated by the operators A and B. Thus, the generalized
addition theorem (8.27) for the exponential function leads us in a natural way to
the concept of Lie algebra.

Theorem 8.6 Let A,B : X → X be linear operators on the finite-dimensional
Hilbert space X. Then there exists a number r > 0 such that (8.27), (8.28) hold true
if ||A|| ≤ r and ||B|| ≤ r.
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Formula (8.27) is named after contributions made independently by Campbell,
Baker, and Hausdorff around 1900. In 1950 Dynkin discovered the following explicit
formula:

r(A,B) =

∞
X

k=2

(−1)k

k + 1

X′ 1

l1 + . . .+ lk + 1

×
„

(ad A)l1

l1!

(ad B)m1

m1!
· · · (ad A)lk

lk!

(ad B)mk

mk!

«

(A).

Here, we use the operator ad : L(X) → L(X) given on the space L(X) of linear
operators on X. Explicitly, for each C ∈ L(X), the linear operator ad C : X → X
is given by

(ad C)D := [C,D]− for all D ∈ L(X).

The sum
P′ refers to all integers l1, . . . , lk ≥ 0 and m1, . . . ,mk ≥ 0 with mj +lj > 0

for all j. The proof can be found in Duistermaat and Kolk (2000), p. 30.

8.5 Regularizing Terms

The naive use of perturbation theory in quantum field theory leads to divergent
mathematical expressions. In order to extract finite physical information from this,
physicists use the method of renormalization. In Volume II we will study quan-
tum electrodynamics. In this setting, renormalization can be understood best by
proceeding as follows.

(i) Put the quantum system in a box of finite volume V .
(ii) Consider a finite lattice in momentum space of grid length Δp and maximal

momentum Pmax.

The maximal momentum corresponds to the choice of a maximal energy, Emax. We
then have to carry out the limits

V → +∞, Emax → +∞, Δp→ 0.

Unfortunately, it turns out that the naive limits do not always exist. Sometimes
divergent expressions arise.

The idea of the method of regularizing terms is to force convergence of diver-
gent expressions by introducing additional terms. This technique is well-known in
mathematics. In what follows we will study three prototypes, namely,

• the construction of entire functions via regularizing factors (the Weierstrass prod-
uct theorem),

• the construction of meromorphic functions via regularizing summands (the
Mittag–Leffler theorem), and

• the regularization of divergent integrals by adding terms to the integrand via
Taylor expansion.

In this monograph, we distinguish between

• regularizing terms and
• counterterms.

By convention, regularizing terms are mathematical objects which give divergent
expressions a well-defined rigorous meaning. Counterterms are added to Lagrangian
densities in order to construct regularizing terms. Roughly speaking, this allows
us a physical interpretation of the regularizing terms. In quantum field theory,
renormalization theory is based on counterterms.
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8.5.1 The Weierstrass Product Theorem

Recall that by an entire function, we mean a function f : C → C which is holomor-
phic on the complex plane. The entire function f has no zeros iff there exists an
entire function g : C → C such that

f(z) = eg(z) for all z ∈ C.

Suppose that the function f is a polynomial which has the zeros z0, z1, . . . zm with
the multiplicities n0, . . . , nm, respectively, where z0 := 0 and zj �= 0 if j = 1, . . . ,m.
Then

f(z) = azn0

m
Y

k=1

„

1− z

zk

«nk

for all z ∈ C. (8.29)

Here, a is a complex number. If z = 0 is not a zero of f , then the factor zn0 drops
out. Now consider the case where the function f has an infinite number of zeros.
The key formula reads as

f(z) = eg(z)zn0

∞
Y

k=1

„

1− z

zk

«nk

epk(z) for all z ∈ C. (8.30)

The point is that the naive generalization of (8.29) fails, but we have to add the

regularizing factors epk(z) which force the convergence of the product.

Theorem 8.7 Let f : C → C be an entire function which has an infinite number
of zeros z0, z1, . . . ordered by modulus, |z0| < |z1| < . . . with z0 := 0. Let nk be
the multiplicity of the zero zk. Then, there exist polynomials p1, p2, .. and an entire
function g such that the product formula (8.30) holds true.

This classical theorem is due to Weierstrass (1815–1897). The proof can be found
in Remmert (1998), Sect. 3.1.

8.5.2 The Mittag–Leffler Theorem

We want to generalize the decomposition into partial fractions from rational func-
tions to meromorphic functions. As prototypes, let us consider the two functions

f(z) :=
2z

(z − i)(z + i)
=

A−

z − i
+

A+

z + i

with A± = limz→±i f(z)(z ± i) = 1, and

π cotπz =
π cosπz

sinπz
.

The function z �→ sinπz has precisely the zeros zk := k with k = 0,±1,±2, . . .
Since limz→zk π(z − zk) cotπz = 1, we get the representation

π cotπz =
1

z − zk
+ gk(z), k = 0,±1,±2, . . .

for all z different from zk in a sufficiently small neighborhood of the point zk.
The function gk is locally holomorphic at the point zk. Thus, the given function
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z �→ cotπz has a pole of first order at each point zk with the principal part 1/(z−zk).
Motivated by the decomposition into partial fractions of the function f , we make
the ansatz6

π cotπz =

∞
X

k=−∞

1

z − zk
.

However, this ansatz does not work, since the series is not convergent. We have to
pass to the modified sum

π cotπz =

∞
X

k=−∞

1

z − zk
+ Ck (8.31)

with the so-called regularizing terms Ck := 1/k for k = ±1,±2, . . . and C0 := 0.
These regularizing terms force the convergence of the series from (8.31) for all
complex points z different from the critical points zk with k = 0,±1,±2, . . . In
1748 Euler incorporated this formula in his Introductio.7 Interestingly enough, the
regularizing terms cancel if we combine the right terms with each other. Explicitly,

π cotπz = z
∞
X

k=−∞

1

z2 − z2
k

=
1

z
+

∞
X

k=1

2z

z2 − z2
k

.

A similar cancellation was observed by Brown and Feynman in 1952 when com-
puting radiative corrections to Compton scattering.8 Generally, such cancellations
occur in renormalization theory for low energies if one takes the full set of possible
Feynman diagrams into account.

Theorem 8.8 Let f : C → C be a meromorphic function on the complex plane
which has an infinite number of poles z0, z1, . . . ordered by modulus, |z0| < |z1| < . . .
Let fk denote the principal part of the function f at the pole zk. Then, there exist
polynomials p0, p1, .. and an entire function g such that

f(z) = g(z) +
∞
X

k=0

fk(z)− pk(z)

for all complex numbers z different from z0, z1, . . .

The polynomials pk are called regularizing terms. This classical theorem is due to
Mittag–Leffler (1846–1927). The proof can be found in Remmert (1998), Sect. 6.1.

8.5.3 Regularization of Divergent Integrals

Let f : R → R be a continuous function, and let ! be a real number. Consider the
integral

E(R) :=

Z R

�

f(x)dx.

6 The sum
P∞

k=−∞ . . . stands for
P∞

k=0 . . .+
P−∞

k=−1 . . .
7 A proof of this formula can be found in Remmert (1991), Sect. 11.2.
8 L. Brown and R. Feynman, Radiative corrections to Compton scattering, Phys.

Rev. 85(2) (1952), 231–244.
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Suppose that

E(R) = a lnR+ g(R) (8.32)

for a fixed nonzero real number number a and all sufficiently large real real numbers
R. In addition, suppose that the finite limit limR→+∞ g(R) exists. In the classical
sense,

Z ∞

�

f(x)dx = lim
R→+∞

Z R

�

f(x)dx = (sgn a) ∞.

The regularized integral is defined by

reg

Z ∞

�

f(x)dx := lim
R→+∞

g(R). (8.33)

This value is well-defined. In fact, suppose that there exists a second decomposition

Z R

�

f(x)dx = a1 lnR+ g1(R)

where a �= a1. Then, (a− a1) lnR+ g(R)− g1(R) = 0. Letting R→ +∞, we get a
contradiction. Therefore, a = a1 and g = g1.

Regularizing terms. Suppose that the function f behaves asymptotically like

f(x) =
a

x
+O

„

1

x2

«

, x→ +∞ (8.34)

where a is a nonzero real number. Let ! > 0. Then

Z R

�

f(x)dx = a lnR− a ln !+

Z R

�

“

f(x)− a

x

”

dx.

This implies

reg

Z ∞

�

f(x)dx = −a ln !+

Z ∞

�

“

f(x)− a

x

”

dx. (8.35)

The second integral is finite. The term − a
x

is called regularizing term.
Example. It follows from

Z R

2

dx

x+ 1
= ln(R+ 1)− ln 3 = lnR+ ln

R+ 1

R
− ln 3

that

reg

Z ∞

2

dx

x+ 1
= − ln 3.

Physical interpretation. Regard E(R) above as the energy of a quantum
system on the interval [!,R]. This energy is very large if the size of the system is
very large. Such extremely large energies are not observed in physical experiments.
Physicists assume that we only measure relative energies with respect to the ground
state. In our model above, we measure E(R) − a lnR. In the limit R → +∞, we
get the regularized value reg E(∞).
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The method of subtracting infinities. Suppose that the integral
R∞

�
f(x)dx

is finite. For given nonzero real number b,

Z ∞

�

(b+ f(x))dx = (sgn b)∞.

Since

lim
R→+∞

„

Z R

�

(b+ f(x))dx−
Z R

�

bdx

«

=

Z R

�

f(x)dx,

we define
Z ∞

�

(b+ f(x))dx−
Z ∞

�

bdx :=

Z ∞

�

f(x)dx.

This procedure helps to cancel infinities in renormalization theory.

8.5.4 The Polchinski Equation

Suppose again that the function f has the asymptotic behavior given in (8.34).
Then

lim
R→+∞

Rf(R) = a.

Consequently, the coefficient a of the regularizing term can be uniquely determined
by using the equation

lim
R→+∞

R
d

dR

Z R

�

“

f(x)− a

x

”

dx = 0. (8.36)

This is the prototype of the so-called Polchinski equation which plays an important

role in modern renormalization theory based on the renormalization group. We will

study this in a later volume. We also refer to J. Polchinski, Renormalization and

effective Lagrangians, Nucl. Phys. B 231 (1984), 269–295.



9. Fermions and the Calculus for Grassmann
Variables

In 1844, Hermann Grassmann (1809–1877) emphasized the importance
of the wedge product (Grassmann product) for geometry in higher di-
mensions. But his contemporaries did not understand him. Nowadays the
wedge product is fundamental for modern mathematics (cohomology) and
physics (fermions and supersymmetry).

Folklore

Recall that we distinguish between bosons (elementary particles with integer spin
like photons or mesons) and fermions (elementary particles with half-integer spin
like electrons and quarks). The rigorous finite-dimensional approach from the pre-
ceding Chap. 7 refers to bosons. However, it is possible to extend this approach to
fermions by replacing complex numbers by Grassmann variables. In this chapter,
we are going to discuss this.

9.1 The Grassmann Product

Vectors. Let X be a complex linear space. For two elements ϕ and ψ of X, we
define the Grassmann product ϕ ∧ ψ by setting

(ϕ ∧ ψ)(f, g) := f(ϕ)g(ψ)− f(ψ)g(ϕ) for all f, g ∈ Xd.

Recall that the dual space Xd consists of all linear functionals f : X → C. The map

ϕ ∧ ψ : Xd ×Xd → C

is bilinear and antisymmetric. Explicitly, for all f, g, h ∈ Xd and all complex num-
bers α, β, we have

• (ϕ ∧ ψ)(f, g) = −(ϕ ∧ ψ)(g, f);
• (ϕ ∧ ψ)(f, αg + βh) = α(ϕ ∧ ψ)(f, g) + β(ϕ ∧ ψ)(f, h).

The two crucial properties of the Grassmann product are

• ϕ ∧ ψ = −ψ ∧ ϕ (anticommutativity), and
• (αϕ+ βχ) ∧ ψ = αϕ ∧ ψ + βχ ∧ ψ (distributivity)

for all ϕ,ψ, χ ∈ X and all complex numbers α, β. If we write briefly ϕψ instead of
the wedge product ϕ ∧ ψ, then

• ϕψ = −ψϕ, and
• (αϕ+ βχ)ψ = αϕψ + βχψ.

E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics,
c© Springer-Verlag Berlin Heidelberg 2006, Corrected 2nd printing 2009
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This implies the key relation

ϕ2 = 0 for all ϕ ∈ X.

Functionals. Dually, for f, g ∈ Xd, we define

(f ∧ g)(ϕ,ψ) := f(ϕ)g(ψ)− f(ψ)g(ϕ) for all ϕ,ψ ∈ X.
The map f ∧ g : X ×X → C is bilinear and antisymmetric.

9.2 Differential Forms

Dual basis. Let b1, . . . , bn be a basis of the complex linear space X. We define the
linear functional bi : X → C by setting

bi(β1b1 + . . .+ βnbn) := βi, i = 1, . . . , n

for all complex numbers β1, . . . , βn. We call b1, . . . , bn the dual basis to b1, . . . , bn.
The expressions

n
X

i=1

αib
i and

1

2

n
X

i,j=1

αijb
i ∧ bj (9.1)

are called 1-forms and 2-forms on X, respectively. Here, the coefficients α1, . . . , αn

and α12, . . . are complex numbers with αij = −αji for all i, j.
Terminology. In modern mathematics, one writes

dxi instead of bi.

Using this convention, the differential forms (9.1) are written as

n
X

i=1

αidx
i and

1

2

n
X

i,j=1

αijdx
i ∧ dxj . (9.2)

9.3 Calculus for One Grassmann Variable

Consider the set of all formal power series expansions

α+ βη + γη2 + . . . (9.3)

with respect to the variable η and complex coefficients α, β, . . . . Add the relations

η2 = 0

and αη = ηα for all complex numbers α. This way, the expansion (9.3) reduces to
α+ βη. This procedure allows us to define functions of the Grassmann variable η.
For example, for each complex number α, we define

eαη := 1 + αη.

This is motivated by the formal power series expansion

eαη = 1 + αη + 1
2
(αη)2 + . . . = 1 + αη.

For all complex numbers α, β, we define
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• derivative: d
dη

(α+ βη) := β;

• integral:
R

(α+ βη)dη := β.

The reader should note that in the case of Grassmann variables, derivative and
integral coincide.

9.4 Calculus for Several Grassmann Variables

We now consider the set of all formal power series expansions

α0 + α1η1 + . . .+ αnηn + α12η1η2 + . . .

with respect to the variables η1, . . . , ηn and complex coefficients α1, α2, . . . . We add
the relations

ηiηj = −ηjηi, αηi = ηiα, i, j = 1, . . . , n, α ∈ C.

This implies η2
i = 0 for all i.

• The left partial derivative ∂l
∂ηk

f(η1, . . . , ηn) is performed after moving the variable

ηk to the left. For example,
∂l

∂η2
(η2η1) = η1

and
∂l

∂η2
(η1η2) =

∂l

∂η2
(−η2η1) = −η1.

In general we have the anticommutativity property

∂2
l

∂η1∂η2
= − ∂2

l

∂η2∂η1
. (9.4)

• Similarly, the right partial derivative ∂r
∂ηk

f(η1, . . . , ηn) is performed after moving

the variable ηk to the right. For example,

∂r

∂η2
(η2η1) =

∂r

∂η2
(−η1η2) = −η1.

As for the left partial derivative, we have the anticommutativity property

∂2
r

∂η1∂η2
= − ∂2

r

∂η2∂η1
. (9.5)

• By definition, the integral

Z

f(η1, . . . , ηn)dη1 · · · dηn := c

is equal to the coefficient c of ηnηn−1 · · · η1 in the expansion of f ,

f(η1, . . . , ηn) = c(ηnηn−1 · · · η1) + . . . .

For example, η1η2 = −η2η1 implies
Z

η1η2dη1dη2 = −1.
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9.5 The Determinant Trick

Gaussian integrals play a fundamental role in the functional integral approach to
the Standard Model in particle physics. We want to generalize the formula

Z

eζαηdηdζ = α for all α ∈ C

with respect to the Grassmann variables η, ζ to 2n variables. To this end, let
η1, . . . , ηn, ζ1, . . . , ζn variables which satisfy the following relations

ηiηj = −ηjηi, ζiζj = −ζjζi, ηiζj = −ζjηi + γδij

for all i, j = 1, . . . , n and fixed complex number γ.

Theorem 9.1 For each complex (n× n)-matrix A = (aij),

Z

exp

 

n
X

i,j=1

ζiaijηj

!

n
Y

i=1

dηidζi = detA. (9.6)

Proof. (I) Let n = 2. We have to compute the coefficient c of η2ζ2η1ζ1 in the
expansion of the integrand,

1 +

2
X

i,j=1

ζiaijηj +
1

2

 

2
X

i,j=1

ζiaijηj

!2

= c(η2ζ2η1ζ1) + . . .

The dots denote the remaining terms. It turns out that

c = a11a22 − a12a21 = det(A).

Let us show this. Since ζ2η2 = −η2ζ2 + γ, we get

ζ1η1ζ2η2 = −ζ1η1η2ζ2 + γζ1η1.

Furthermore, it follows from η1η2 = −η2η1 and ζ1η2 = −η2ζ1 that

ζ1η1ζ2η2 = −η2ζ1η1ζ2 + . . . = −η2ζ2ζ1η1 + . . . = η2ζ2η1ζ1 + . . . .

The dots denote terms that contain less than four factors. This implies

1

2
(ζ1a11η1)(ζ2a22η2) =

1

2
a11a22(η2ζ2η1ζ1) + . . .

The same expression is obtained for 1
2
(ζ2a22η2)(ζ1a11η1). Similarly, we get

1

2
(ζ1a12η2)(ζ2a21η1) = −1

2
a12a21(η2ζ2η1ζ1) + . . . ,

and the same expression is obtained for 1
2
(ζ2a21η1)(ζ1a12η2).

(II) For n = 3, 4, . . ., the proof proceeds analogously. �

Remark. Observe that Theorem 9.1 is related to the classical Gaussian integral

Z

Rn

exp

 

−1

2

n
X

i,j=1

xiaijx
j

!

dx1

√
2π
· · · dx

n

√
2π

=
1√

detA
(9.7)

for all real symmetric (n× n)-matrices A = (aij) whose eigenvalues are positive.
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The Grassmannian-Gaussian integral (9.6) has the advantage over the clas-
sical Gaussian integral (9.7) that the determinant detA appears in the nu-
merator.

This simplifies computations in physics. As a typical application, we will introduce
the Faddeev–Popov trick in Sect. 16.6 on page 891. This trick introduces ghosts
into gauge field theories in order to guarantee the crucial unitarity of the S-matrix.

9.6 The Method of Stationary Phase

We want to compute the following Grassmann integral

W (J, J) :=

Z

eΦ(ψ,ψ,J,J)
N
Y

k=1

dψ(k)dψ(k) (9.8)

with the phase function

Φ(ψ,ψ, J, J) := iψAψ + iψJ + iJψ.

Let us first explain the notation.

• For fixed N = 1, 2, . . . , the complex (N ×N)-matrix A is invertible.

• The quantities ψ(k), ψ(k), J(k), J(k) with k = 1, . . . N form a sequence χ1, . . . χ4N

of Grassmann variables, that is,

χiχj = −χjχi, i, j = 1, . . . , 4N.

In particular, the symbol
QN

k=1 dψ(k)dψ(k) stands for the ordered product

dψ(1)dψ(1) · · · dψ(N)dψ(N).
• We use the following matrices

ψ =

0

B

B

@

ψ(1)
...

ψ(N)

1

C

C

A

, J =

0

B

B

@

J(1)
...

J(N)

1

C

C

A

along with ψ = (ψ(1), . . . , ψ(N)) and J = (J(1), . . . , J(N)).

The proof of the following theorem proceeds analogously to the proof of Theorem
7.36 on page 440.

Theorem 9.2 W (J, J) = e−iJA−1J W (0, 0).

9.7 The Fermionic Response Model

The global quantum action principle. Parallel to Sect. 7.26 on page 481, we
study the generating functional

Z(J, J) = N
Z

eiS[ψ,ψ,J,J]/� DψDψ
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along with the action functional

S[ψ,ψ, J, J ] := 〈ψ|(D + iεI)ψ〉+ κ〈1|Lint(ψ,ψ)〉+

+〈J |ψ〉+ 〈ψ|J〉.

The detailed notation can be found in (7.161) on page 481. In contrast to Sect.
7.26, we now assume that the quantities

ψ(x), ψ(x), J(x), J(x)

are not complex numbers, but independent Grassmann variables. Here, the index
x denotes an arbitrary discrete space-time point, that is, x ∈ M. Explicitly, the
functional integral is to be understood as the following integral

Z(J, J) = N
Z

eiS[ψ,ψ,J,J]/�
Y

x∈M
dψ(x)dψ(x)

with respect to Grassmann variables. The normalization factor N has to be chosen
in such a way that Z(0, 0) = 1. The symbol

Q

x∈M dψ(x)dψ(x) stands for the
product

dψ(1)dψ(1) · · · dψ(N)dψ(N)

where the discrete space-time points x ∈M are numbered in a fixed order.
The magic quantum action reduction formula. The point is that this

formula reads as in the case of the extended response model considered in Sect.
7.26. Explicitly,

Z(J, J) = exp

(

iκ

�

X

x∈M
Δ4x Lint

„

�

i

δ

δJ(x)
,
�

i

δ

δJ(x)

«

)

Zfree(J, J)

along with

Zfree(J, J) := ei〈J|RεJ〉/�

where Rε := −(D + εI)−1. Here, we use the partial functional derivatives

δ

δJ(x)
:=

1

Δ4x

∂l

∂J(x)
,

δ

δJ(x)
:=

1

Δ4x

∂l

∂J(x)
.

The proof proceeds analogously to the proof given in Sect. 7.24 on page 440. Observe
that, in the present case, we have to use the principle of stationary phase for
integrals with Grassmann variables from Sect. 9.6. The different determinant tricks
for Gaussian and Grassmannian–Gaussian integrals do not matter, since the choice
of the normalization factor N always cancels the different determinants.

The magic LSZ reduction formula. From the quantum action reduction

formula above, we get the LSZ reduction formula as in Sect. 7.26. We will come

back to this in connection with the Standard Model in particle physics. We also

refer to Faddeev and Slavnov (1980).



10. Infinite-Dimensional Hilbert Spaces

Quantum fields possess an infinite number of degrees of freedom. This
causes a lot of mathematical trouble.

Folklore

Smooth functions. Let Ω be an open subset of R
N , N = 1, 2, . . . The function

f : Ω → C is called smooth iff it is continuous and the partial derivatives of f
of arbitrary order are also continuous on Ω. For the theory of infinite-dimensional
Hilbert spaces and its applications in physics, it is important to use not only smooth
functions, but also reasonable discontinuous functions which are limits of smooth
functions. Here, we use pointwise limits, limn→∞ fn(x) = f(x) for all x ∈ Ω, and
more general limits in the sense of the averaging over integrals, for example,

lim
n→∞

Z

Ω

|fn(x)− f(x)|2dNx = 0.

Furthermore, it is important to replace the classical Riemann integral by the modern
Lebesgue integral.

10.1 The Importance of Infinite Dimensions in
Quantum Physics

We want to discuss why an infinite number degrees of freedom for quantum physics
is inevitable. To this end, we will show that the Heisenberg uncertainty relation
cannot be realized in a finite-dimensional Hilbert space.

10.1.1 The Uncertainty Relation

Before you start to axiomatize things, be sure that you first have something
of mathematical substance.

Hermann Weyl (1885–1955)

In 1927 Heisenberg (1901–1976) discovered that in contrast to Newton’s classical
mechanics, it is impossible to measure precisely position and momentum of a quan-
tum particle at the same time. Heisenberg based his mathematical argument on the
commutation relation

QP − PQ = i�I (10.1)

for the position operator Q and the momentum operator P , along with the Schwarz
inequality.

E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics,
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Finite-dimensional Hilbert spaces fail. Observe first that the fundamental
commutation relation (10.1) cannot be realized for observables Q and P living in
a nontrivial finite-dimensional Hilbert space X if the Planck constant � is different
from zero.1 Indeed, suppose that there exist two self-adjoint linear operators

Q,P : X → X

such that (10.1) holds true. By Proposition 7.11 on page 366, tr(QP ) = tr(PQ).
This implies

0 = tr(QP − PQ) = i� · tr I = i� dimX.

Thus, relation (10.1) forces the vanishing of the Planck constant � in the setting of
a nontrivial finite-dimensional Hilbert space.

A nontrivial mathematical model. Our goal is to construct a nontrivial
model which realizes the commutation relation (10.1). To this end, we choose the
space C2(R) which consists of all continuous functions ψ : R → C with the property
R∞
−∞ |ψ(x)|2dx <∞. Define 〈ϕ|ψ〉 :=

R∞
−∞ ϕ(x)†ψ(x)dx.

Proposition 10.1 For all functions ϕ,ψ ∈ C2(R), the integral 〈ϕ|ψ〉 is finite.

Proof. Set

an :=

Z n

−n

ϕ(x)†ψ(x)dx, n = 1, 2, . . .

By the classical Schwarz inequality for integrals,

|an|2 ≤
Z n

−n

|ϕ(x)|2dx
Z n

−n

|ψ(x)|2dx.

This implies

|an|2 ≤
Z ∞

−∞
|ϕ(x)|2 dx

Z ∞

−∞
|ψ(x)|2 dx, n = 1, 2, . . .

Thus, the sequence a1, a2, . . . is increasing and bounded. Consequently, the finite
limit limn→∞ an exists. �

Proposition 10.2 The space C2(R) is a complex pre-Hilbert space.

Proof. It can be checked easily that 〈ϕ|ψ〉 possesses the properties (P1) through
(P5) from page 339. In particular, for a given continuous function ψ : R → C, we
have 〈ψ|ψ〉 = 0, that is,

Z

R

|ψ(x)|2dx = 0

iff the function ψ vanishes identically. �

Consider now the Schwartz space D(R) which consists of all smooth functions
ψ : R → C that vanish outside some finite interval. For all functions ψ ∈ D(R), we
define the so-called position operator Q,

(Qψ)(x) := xψ(x) for all x ∈ R,

and the so-called momentum operator P ,

1 In the trivial Hilbert space {0}, relation (10.1) is obviously true.
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(Pψ)(x) := −i�
dψ(x)

dx
for all x ∈ R.

For every function ϕ ∈ D(R), we have the commutation relation

QPϕ− PQϕ = i�ϕ on R. (10.2)

In fact, PQϕ = −i�ϕ+QPϕ follows from the product rule,

d

dx
(xϕ(x)) = ϕ(x) + xϕ′(x).

Finally, for all ϕ ∈ D(R) with ||ϕ|| = 1, set

Q := 〈ϕ|Qϕ〉, P := 〈ϕ|Pϕ〉,

as well as ΔQ := ||(Q − QI)ϕ|| and ΔP := ||(P − PI)ϕ||. In terms of physics, if

the quantum particle is in the state ϕ on the real line, then Q is the mean position
and ΔQ is the mean fluctuation of the particle position. Similarly, P is the mean
momentum and ΔP is the mean fluctuation of the particle momentum.

Proposition 10.3 There holds the Heisenberg uncertainty inequality

ΔQ ·ΔP ≥ �

2
.

Proof. This is a special case of Theorem 10.4 below with the pre-Hilbert space
X := C(R)2, the linear subspace D := D(R) of X, and the identity operator
C := I. Note that the operators Q,P : D(R) → D(R) are formally self-adjoint. In
fact, for all ϕ,ψ ∈ D(R), integration by parts yields

〈ϕ|Pψ〉 =

Z

R

ϕ(x)†(−i�)ψ′(x)dx =

Z

R

(−i�ϕ′(x))†ψ(x)dx = 〈Pϕ|ψ〉.

Moreover,

〈ϕ|Qψ〉 =

Z

R

ϕ(x)†xψ(x)dx =

Z

R

(xϕ(x))†ψ(x)dx = 〈Qϕ|ψ〉.

�

The abstract uncertainty theorem. We make the following assumptions.

(H1) We are given a linear subspace D of the complex infinite-dimensional pre-
Hilbert space X.

(H2) The linear operators Q,P : D → X are formally self-adjoint, that is, we have

〈Qϕ|ψ〉 = 〈ϕ|Qψ〉 for all ϕ,ψ ∈ D.

The analogous formula is true if we replace Q by P .
(H3) If ϕ ∈ D, then Qϕ ∈ D and Pϕ ∈ D.
(H4) For all ϕ ∈ D, there holds the commutation relation

QPϕ− PQϕ = i�Cϕ.

Furthermore, for each ϕ ∈ D with ||ϕ|| = 1, set C := 〈ϕ|Cϕ〉. Similarly, we define

Q := 〈ϕ|Qϕ〉 and P := 〈ϕ|Pϕ〉. Furthermore, define

ΔQ := ||(Q−QI)ϕ||, ΔP := ||(P − PI)ϕ||.

The following theorem is called the abstract uncertainty theorem.
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Theorem 10.4 There holds the inequality ΔQ ·ΔP ≥ 1
2
�|C|.

Proof. Set z := 〈(Q−QI)ϕ|(P − PI)ϕ〉. By the Schwarz inequality,

|z| ≤ ||(Q−QI)ϕ|| · ||(P − PI)ϕ|| = ΔQΔP.

Since Q and P are real numbers,

z − z† = 〈(Q−QI)ϕ|(P − PI)ϕ〉 − 〈(P − PI)ϕ|(Q−QI)ϕ〉
= 〈ϕ|(Q−QI)(P − PI)ϕ〉 − 〈ϕ|(P − PI)(Q−QI)ϕ〉
= 〈ϕ|(QP − PQ)ϕ〉 = i�〈ϕ|Cϕ〉.

Finally,
�|C| = |�〈ϕ|Cϕ〉| = |z − z†| = |2i�(z)| ≤ 2|z| ≤ 2ΔQΔP.

�

10.1.2 The Trouble with the Continuous Spectrum

Let H : X → X be a linear self-adjoint operator on the complex finite-dimensional
Hilbert space X. Then, the inverse operator

(H − EI)−1 : X → X

exists for all complex energy parameters E ∈ C \ σ(H) up to a finite set of real
energy values, σ(H) := {E1, . . . , EN}. The set σ(H) is called the energy spectrum of
the operator H. In the finite-dimensional case, there exists a complete orthonormal
system |E1〉, . . . |EN 〉 in the Hilbert space X such that

H|Ej〉 = Ej |Ej〉, j = 1, . . . , N.

The situation may change dramatically in an infinite-dimensional Hilbert space X.
In such a space it is possible that the energy spectrum σ(H) contains a contin-
uum of energy values. For example, consider the electron of the hydrogen atom.
Then, in non-relativistic quantum mechanics, the spectrum of the corresponding
Hamiltonian H has the form

σ(H) = {E1, E2, . . .} ∪ [0,∞[

where

En := −mec
2α2

2n2
, n = 1, 2, . . . .

Here, we use the following notation: me rest mass of the electron, c velocity of light
in a vacuum, α = 137.04 fine structure constant. Note the following two crucial
facts:

• the energy values E1, E2, . . . correspond to bound states of the electron in the
hydrogen atom, and

• the energy values E ∈ [0,∞[ correspond to scattering states (scattering of an
electron at the nucleus (proton) of the hydrogen atom).
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In terms of our solar system, the bound states correspond to planets moving on
ellipses, and the scattering states correspond to comets moving on hyperbolas and
leaving the solar system for ever (Fig. 2.11 on page 123). For the hydrogen atom,
the point is that the bound states correspond to eigenvectors |E1〉, |E2〉, . . . of the
Hamiltonian H in the Hilbert space X = L2(R

3), that is,

H|En〉 = En|En〉, n = 1, 2, . . . .

In contrast to this, the energy values E which lie in the continuous spectrum σcont :=
[0,∞[ do not correspond to eigenvectors in the Hilbert space X, but to more general
objects 〈E|,

H〈E| = E〈E|, 〈E| ∈ Y.
Here, the costate 〈E| does not lie in the original Hilbert space X, but in some larger
space Y . For the spectral theory in terms of costates, see Sect. 12.2 on page 677.

Historical remarks. In Sect. 7.4, we introduced the notion of a finite-dimen-
sional Hilbert space. For quantum physics, it is crucial that the situation of finite-
dimensional Hilbert spaces can be generalized to infinite dimensions. This represents
a far-reaching generalization of the classical Fourier method for solving partial dif-
ferential equations. The main contributions are due to the following mathematicians
and physicists:

• Fourier (1786–1830) in 1822 (the Fourier method for solving the heat equation),
• Cauchy (1789–1857) in 1826 (principal axis transformation for finite-dimensional

quadratic forms),
• Hilbert (1862–1943) in 1904 (principal axis transformation for infinite-dimensio-

nal symmetric quadratic forms (symmetric matrices)),
• Schrödinger (1887–1961) in 1926 (application of the Fourier method to the spec-

trum of the hydrogen atom),
• von Neumann (1903–1957) in 1928 (spectral theory for unbounded self-adjoint

operators and the mathematical foundation of quantum mechanics),
• Dirac (1902–1984) in 1930 (transformation theory and Dirac calculus),
• Laurent Schwartz in 1945 (theory of distributions),
• Gelfand and Kostyuchenko in 1955 (generalized eigenfunctions and rigorous jus-

tification of the Dirac calculus).

Nowadays this is part of functional analysis and harmonic analysis. The point is
that the classical Fourier transform is closely related to the translation group on
the real line. If we replace the translation group by more general groups, then we
get more general eigenfunction expansions and integral transformations for broad
classes of special functions in mathematical physics. This goes back to

• Sturm (1803–1855) and Liouville (1818–1882) in 1836 and 1837, respectively.

In the 20th century, important contributions were made by

• Hermann Weyl (1885–1955) (representation theory for compact Lie groups),
• and Eugene Wigner (1902–1995) (representation theory of the noncompact

Poincaré group).

10.2 The Hilbert Space L2(Ω)

Counterexample. In a finite-dimensional Hilbert space as defined in Sect. 7.4
on page 337, the completeness condition is automatically satisfied. The situation
changes essentially in the infinite-dimensional case. To illustrate this, consider the
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space C2(R) of continuous functions ψ : R → C with
R

R
|ψ(x)|2dx < ∞. It follows

from the classical Schwarz inequality that for all ϕ,ψ ∈ C2(R), the integral

〈ψ|ϕ〉 :=

Z

R

ψ(x)†ϕ(x)dx

is finite. Equipped with this inner product, the space C2(R) becomes a complex
pre-Hilbert space.

Unfortunately, the space C2(R) is not a Hilbert space, since the complete-
ness condition fails.

In fact, it can be shown that there exists a sequence (ψn) of continuous functions
ψn in the space C2(R) such that for each number ε > 0, there exists an index n0(ε)
with

||ψm − ψn|| =
„

Z

R

|ψm(x)− ψn(x)|2dx
«1/2

< ε

for all m,n ≥ n0(ε). But there does not exist any continuous function ψ in the
space C2(R) such that

lim
n→∞

||ψn − ψ|| = lim
n→∞

„

Z

R

|ψn(x)− ψ(x)|2dx
«1/2

= 0.

The point is that such a function ψ only exists if

• we allow the use of discontinuous functions, and
• we replace the classical Riemann integral by the more general Lebesgue integral.

This integral was introduced by Henri Lebesgue in his 1902 Paris dissertation. Using
the Lebesgue integral, the space C2(R) can be extended to some space L2(R), that
is,

C2(R) ⊂ L2(R)

such that L2(R) is a complex Hilbert space. In particular, the space L2(R) contains
a class of reasonable discontinuous functions ψ : R → C. Moreover, the properties
of the Lebesgue integral force the validity of the completeness relation with respect
to the inner product

〈ψ|ϕ〉 :=

Z

R

ψ(x)†ϕ(x)dx.

Explicitly, the completeness condition means the following. Suppose that we are
given a sequence (ψn) of functions ψn in the space L2(R) such that for each number
ε > 0, there exists an index n0(ε) with

||ψm − ψn|| =
„

Z

R

|ψm(x)− ψn(x)|2dx
«1/2

< ε

for all m,n ≥ n0(ε). There exists then a function ψ ∈ L2(R) such that ψn → ψ in
L2(R) as n→∞. This means that

lim
n→∞

||ψn − ψ|| = lim
n→∞

„

Z

R

|ψn(x)− ψ(x)|2dx
«1/2

= 0.

Let us discuss the main points. In what follows, we formulate the statements
for the N -dimensional space R

N with N = 1, 2, . . . Note the following special cases.



10.2 The Hilbert Space L2(Ω) 529

• For N = 1, the space R
1 coincides with the real line, and 1-dimensional cubes

are intervals.
• For N = 2, the space R

2 coincides with the plane, and 2-dimensional cubes are
squares.

For x ∈ R
N , recall that ||x|| :=

p

x2
1 + . . . x2

N .

Using an intuitive picture, the incomplete space C2(R) and the complete
space L2(R) correspond to the incomplete space of rational numbers Q and
the complete space of real numbers R, respectively.

A Cauchy sequence (xn) of rational numbers x1, x2, . . . is does not always converge
to a rational number. However, if we complete the space of rational numbers to
the space of real numbers by introducing irrational numbers, then each Cauchy
sequence of real numbers converges to a real number. The term ‘irrational number’
indicates that in the history of mathematics, mathematicians had philosophical
trouble with understanding this notion.

10.2.1 Measure and Integral

Almost all concepts which relate to the modern measure and integration
theory, go back to the works of Lebesgue (1875–1941). The introduction of
these concepts was the turning point in the transition from mathematics
of the 19th century to mathematics of the 20th century.

Naum Vilenkin

Our goal is to introduce the integral

Z

RN

f(x)dμ(x) =

J
X

j=1

f(xj)mj

and to generalize it to the prototype

Z

RN

f(x)dμ(x) =

Z

RN

f(x)!(x)dNx+
∞
X

j=1

f(xj)mj .

Intuitively, the function ! represents a mass density on R
N , and mj is the mass at

the point xj in R
N . On the real line, the value

x =

R

R
xdμ(x)

R

R
dμ(x)

represents the center of gravity of the mass distribution. This measure integral
includes finite sums, infinite series, and traditional integrals, as special cases. This
generality is needed for obtaining expansion formulas of the following form,

F (y) =

Z

RN

K(y, x)dμ(x), y ∈ R
N .

Such general expansions appear in von Neumann’s and Dirac’s operator calculus.
This plays a fundamental role in quantum physics. These expansion formulas gener-
alize the Fourier series of periodic functions and the Fourier transform. Furthermore,
the measure integral is the natural setting for the theory of probability. Mass has
then to be replaced by probability.
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Measure theory begins with Archimedes of Syracus (287–212 B.C.) who com-
puted the measure of the unit circle, S

1. Using a polygon with 96 nodes, he obtained
the approximation μ(S1) = 6.28 which corresponds to π = 3.14. Around 1900, mod-
ern measure theory was founded by Borel (1871–1956) and Lebesgue (1875–1941).
In 1932 Kolmogorov (1903–1987) used general measure theory in order to found the
modern theory of probability. For example, the crucial mean value of the random
function f : R

N → R is defined by

f̄ :=

R

RN f(x)dμ(x)
R

RN dμ(x)
.

Definition of measure. The notion of measure generalizes the intuitive notion
of volume, mass, positive electric charge, and probability. Suppose we are given an
arbitrary set S. To certain subsets A of the set S we want to assign a number, μ(A),
with

0 ≤ μ(A) ≤ ∞.

The number μ(A) is called the measure of the set A.2 More precisely, by a measure
we understand a map μ : A �→ [0,∞] which has the following properties:

(P1) σ-algebra: The members of A are subsets of S including the set S and the
empty set, ∅. If A,B,A1, A2, .. are members of A, then so are

A \B, A ∪B, A ∩B,
∞
[

n=1

An,
∞
\

n=1

An.

(P2) Additivity: If A and B are disjoint members of A, then

μ(A ∪B) = μ(A) + μ(B).

(P3) σ-additivity: If (An) is a pairwise disjoint family of members from A, then

μ

 ∞
[

n=1

An

!

=

∞
X

n=1

μ(An).

The members of A are called measurable sets (with respect to μ). The measure is
called finite iff μ(S) < ∞. By a zero set, we understand a set whose measure is
zero. The measure is called complete iff subsets of zero sets are always zero sets.

Measurable functions. The function f : S → C is called measurable iff the
preimage of open sets is measurable.

Step functions. Let us start with the formula

Z

RN

f(x)dμ(x) =

J
X

j=1

fjμ(Aj).

for step functions. By definition, the function f : R
N → C is called a step function

iff there exists a finite number A1, . . . , Am of subsets of R
N with finite measure

such that f is constant on Aj with value fj for all j, and f vanishes outside the
sets A1, . . . , AJ .

Measure integral. For a function f : R
N → C, we define the integral by the

key formula

2 In the theory of probability, μ(S) := 1.
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Z

RN

f(x)dμ(x) := lim
n→∞

Z

RN

fn(x)dμ(x) (10.3)

where fn : R
N → C are step functions, n = 1, 2, . . . More precisely, assume that the

following hold true.

(H1) Convergence almost everywhere: There exists a sequence (fn) of step functions
such that

lim
n→∞

fn(x) = f(x)

for all x ∈ R
N with the possible exception of a zero set.

(H2) Mean square approximation: The sequence (fn) is Cauchy with respect to the
mean square norm, that is, for each number ε > 0, there exists an index n0(ε)
with

Z

RN

|fn(x)− fm(x)|2dμ(x) < ε for all n,m ≥ n0(ε).

This integral is to be understood in the sense of step functions.

Theorem 10.5 The finite limit (10.3) exists and is independent of the choice of
the step functions.

Precisely in this case, we say that the integral
R

RN f(x)dμ(x) exists. This is equiv-

alent to the existence of the integral
R

RN |f(x)|dμ(x).3

The integral
R

S
f(x)dμ(x) is defined analogously by replacing the set R

N by S.

The value of the integral
R

S
f(x)dμ(x) remains invariant if we change the function

f on a zero set.
Majorant criterion. If f, g : S → C are measurable and

|f(x)| ≤ g(x) for all x ∈ S,

then the existence of the integral
R

S
g(x)dμ(x) implies the existence of the integral

R

S
f(x)dμ(x), and we have the inequalities

˛

˛

˛

˛

Z

S

f(x)dμ(x)

˛

˛

˛

˛

≤
Z

S

|f(x)|dμ(x) ≤
Z

S

g(x)dμ(x).

10.2.2 Dirac Measure and Dirac Integral

The Dirac measure. Fix a point x0 in R
N . For an arbitrary subset A of R

N ,
define

μ(A) :=

(

1 if x0 ∈ A,
0 if x0 �∈ A.

Each subset A of R
N and each function f : R

N → C is measurable. For the integral,4

Z

RN

f(x)dμ(x) = f(x0).

3 For the function f(x) ≡ 1, the integral
R

R
f(x)dx does not exist. Since

limR→+∞
R R

−R
dx =∞, we say that the integral is divergent.

4 Physicists write formally
R

RN f(x)δ(x− x0)d
Nx = f(x0).



532 10. Infinite-Dimensional Hilbert Spaces

Finite number of mass points. Assign the positive mass m1, . . . ,mJ to
the points x1, . . . , xJ in R

N , respectively. By definition, the measure μ(A) of an
arbitrary subset A of R

N is equal to the total mass of this set. For example, if
x1, x2 ∈ A and x2, . . . , xJ lie outside A, then μ(A) = m1 + m2. For an arbitrary
function f : R

N → C,
Z

RN

f(x)dμ(x) =

J
X

j=1

f(xj)mj .

10.2.3 Lebesgue Measure and Lebesgue Integral

Characterization of the Lebesgue measure by translation invariance. The
Lebesgue measure generalizes the classical volume of a set in R

N .

Theorem 10.6 There exists precisely one complete measure on R
N which general-

izes the elementary measure of open cubes and which is invariant under translations.

This measure is called the N -dimensional Lebesgue measure on R
N . In particular,

open and closed subsets of R
N are measurable. As a rule of thumb, non-measurable

sets and functions with respect to the Lebesgue measure are highly pathological.
Zero sets. A subset of R

N is called a zero set iff it has the N -dimensional
Lebesgue measure zero. The set A is a zero set iff for each ε > 0, there exists a
system J1, J2, . . . of open N -dimensional cubes which cover the set A and whose
total volume is less than ε. For example, the sets

{x1, . . . , xn}, n = 1, 2, . . . or {x1, x2, . . .}

of a finite or countable number of points in R
N are zero sets. Roughly speaking, a

subset of R
N is a zero set if its dimension is less than N. For example, the boundary

of a ball or a cube in R
N is a zero set.

Almost everywhere continuous functions. By definition, the given func-
tion f : R

N → C is almost everywhere continuous iff it is continuous for all points
of R

N with possible exception of a zero set.5

The Lebesgue integral. The Lebesgue integral refers to the Lebesgue mea-
sure. Note the following:

If the classical Riemann integral
R

RN |f(x)|dNx is finite, then the Lebesgue

integral
R

RN f(x)dNx exists and is equal to the Riemann integral.

In this monograph, all the integrals
R

RN f(x)dNx are to be understood in the sense
of Lebesgue.

Example. If the function f : R
N → C is almost every continuous and satisfies

the following growth condition

|f(x)| ≤ const

1 + ||x||N+1
for all x ∈ R

N ,

then the Lebesgue integral
R

RN f(x)dNx exists. In contrast to the Riemann integral,
the Lebesgue integral possesses the following nice property concerning limits. We
have

5 Generally, a property is true almost everywhere on R
N iff it is true for all points

of R
N with possible exception of a zero set.
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lim
n→∞

Z

RN

fn(x)dx =

Z

RN

lim
n→∞

fn(x)dNx

if the following are met:

(H1) The integral
R

RN fn(x)dNx exists for each n.

(H2) The limit f(x) := limn→∞ fn(x) exists almost everywhere on R
N .

(H3) Majorant condition: There exists an integrable function g : R
N → C such

that |fn(x)| ≤ g(x) almost everywhere on R
N for all n.

10.2.4 The Fischer–Riesz Theorem

By definition, the Lebesgue space L2(R
N ) consists of all complex-valued measurable

functions ψ : R
N → C with

R

RN |ψ(x)|2dNx <∞.

Theorem 10.7 The space L2(R
N ) is a complex infinite-dimensional Hilbert space

with respect to the inner product

〈ψ|ϕ〉 :=

Z

RN

ψ(x)†ϕ(x)dNx.

This fundamental theorem of modern analysis was proven independently by Ernst
Fischer (1875–1954) and Fryges Riesz (1880–1956) in 1907. Note that, by definition,
two functions ψ and ϕ represent the same element of the Hilbert space L2(R

N ) iff
they differ on a zero set. In the Hilbert space L2(R

N ), the convergence

lim
n→∞

ψn = ψ

means explicitly that

lim
n→∞

||ψn − ψ|| =
„

Z

RN

|ψn(x)− ψ(x)|2dNx

«1/2

= 0.

This is called mean-square convergence.
If we replace R

N by a measurable subset Ω of R
N (e.g., Ω is open or closed),

then we obtain the Hilbert space L2(Ω) with the inner product

〈ψ|ϕ〉 :=

Z

Ω

ψ(x)†ϕ(x)dNx.

Suggested reading. As an introduction to the theory of infinite-dimensional
Hilbert spaces, we recommend the following two textbooks:

• P. Lax, Functional Analysis, Wiley, New York, 2002.
• E. Zeidler, Applied Functional Analysis: Applications to Mathematical Physics,

Springer, New York, 1995.

In the Appendix to the latter book, the interested reader finds a summary of the
basic properties of the Lebesgue integral. A detailed summary on general modern
measure and integration theory can be found in the Appendix to the author’s
monograph,

• E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. IIB, Springer,
New York, 1990.

As an introduction to the Lebesgue integral, we recommend the following textbooks:

• S. Lang, Real Analysis and Functional Analysis, Springer, New York, 1993.
• E. Lieb and M. Loss, Analysis, American Mathematical Society, Providence,

Rhode Island, 1997.
• E. Stein and R. Shakarchi, Measure Theory, Princeton University Press, 2003.
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10.3 Harmonic Analysis

The proofs to the statements of the following summary can be found in the author’s
textbook, Zeidler (1995), Vol. 1, Chap. 3.

10.3.1 Gauss’ Method of Least Squares

Orthonormal system. Let X be a complex infinite-dimensional Hilbert space.
By definition, the elements ϕ1, . . . , ϕn of X form an orthonormal system iff

〈ϕj |ϕk〉 = δjk, j, k = 1, . . . , n.

For each given ψ ∈ X, we define the Fourier coefficients by setting

ak(ψ) := 〈ϕk|ψ〉, k = 1, . . . , n.

As we will show below, this definition generalizes the classical Fourier coefficients.

Theorem 10.8 The Fourier coefficients a1(ψ), . . . , an(ψ) are the unique solution
of the minimum problem

||ψ − a1ϕ1 − . . .− anϕn||2 = min!, a1, . . . , an ∈ C

which is the abstract form of Gauss’ least square method.

Completeness. The orthonormal system ϕ1, ϕ2, . . . in the Hilbert space X is
called complete iff for all ψ ∈ X, the Fourier series is convergent,

ψ =

∞
X

k=1

〈ϕk|ψ〉ϕk. (10.4)

This means that limn→∞ ||
Pn

k=1〈ϕk|ψ〉ϕk − ψ|| = 0. Then, for all ϕ,ψ ∈ X, we
have the Parseval equation

〈ϕ|ψ〉 =

∞
X

k=1

〈ϕ|ϕk〉〈ϕk|ψ〉. (10.5)

The Dirac calculus. From the mnemonic formula

∞
X

k=1

|ϕk〉〈ϕk| = I

called the completeness relation by physicists, we immediately get

|ψ〉 =

∞
X

k=1

|ϕk〉〈ϕk|ψ〉

and

〈ϕ|ψ〉 =
∞
X

k=1

〈ϕ|ϕk〉〈ϕk|ψ〉

which is identical with (10.4) and (10.5), respectively.
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10.3.2 Discrete Fourier Transform

The Hilbert space L2(−π, π). Fourier (1768–1830) used the functions

ϕp(x) :=
eipx

√
2π

, p = 0,±1,±2, . . .

The key observation is the following integral relation
Z π

−π

ϕp(x)†ϕq(x)dx = δpq, p, q = 0,±1,±2, . . .

To translate this classical identity into the language of Hilbert spaces, let L2(−π, π)
denote the space of all measurable6 functions ψ :]− π, π[→ C with

Z π

−π

|ψ(x)|2dx <∞.

The space L2(−π, π) becomes a complex Hilbert space equipped with the inner
product

〈ϕ|ψ〉 :=

Z π

−π

ϕ(x)†ψ(x)dx.

Then 〈ϕp|ϕq〉 = δpq for all p, q = 0,±1,±2, . . .

Theorem 10.9 The system ϕ0, ϕ1, ϕ−1, . . . forms a complete orthonormal system
in the Hilbert space L2(−π, π).

The corresponding Fourier series in the Hilbert space L2(−π, π) reads as

ψ =

∞
X

p=−∞
ap(ψ)ϕp (10.6)

with ap(ψ) := 〈ψ|ϕp〉.
Convergence of the Fourier series. The series (10.6) corresponds to the

classical Fourier series

ψ(x) =
1√
2π

∞
X

p=−∞
ap(ψ)eipx (10.7)

along with the Fourier coefficients

ap(ψ) :=
1√
2π

Z π

−π

ψ(x)e−ipxdx, p = 0,±1,±2, . . .

The formulas for the derivatives are given by

Dαψ(x) =
1√
2π

∞
X

p=−∞
(ip)αap(ψ)eipx (10.8)

where we set D := d
dϕ

, and we choose α = 1, 2, . . . The following hold:

6 We use the Lebesgue measure on the interval ]− π, π[.
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(i) If ψ ∈ L2(−π, π), then the Fourier series (10.7) converges in the Hilbert space
L2(−π, π). Explicitly,

lim
n→∞

Z π

−π

˛

˛

˛

˛

˛

ψ(x)− 1√
2π

n
X

p=−n

ap(ψ)eipx

˛

˛

˛

˛

˛

2

dx = 0.

This is called mean-square convergence.
(ii) Let the function ψ : R → C be 2π-periodic. The function ψ is smooth iff for

each positive integer M , we have the decay condition

ap(ψ) = O

„

1

pM

«

, p→ +∞. (10.9)

In this case, the Fourier series (10.7) and (10.8) converge uniformly and abso-
lutely on the real line for all derivatives, α = 1, 2, . . .

The Hilbert space l2. By definition, the space l2 consists of all sequences
(a0, a1, a−1, a2, a−2, . . .) of complex numbers with

|a0|2 + |a1|2 + |a−1|2 + . . . <∞.

This is a complex infinite-dimensional Hilbert space equipped with the inner prod-
uct

〈a|b〉 :=
∞
X

p=−∞
a†pbp.

This series is absolutely convergent. Define the discrete Fourier transform by setting
Fψ := (a0(ψ), a1(ψ), a−1(ψ), . . .).

Theorem 10.10 The operator F : L2(−π, π) �→ l2 is unitary.

We call l2 the momentum space. The derivative Dα, α = 1, 2, . . . , corresponds to
the multiplication operator ap �→ (ip)αap in the momentum space.

The convolution theorem. Let f, g, h : R → C be 2π-periodic functions that
are integrable over the interval [−π, π]. We define the convolution

(f ∗ g)(x) =
1

2π

Z π

−π

f(x− y)g(y)dy, x ∈ R.

The following properties are met:

• Consistency: f ∗ g : R → C is 2π-periodic and continuous.
• Commutativity: f ∗ g = g ∗ f.
• Associativity: (f ∗ g) ∗ h = f ∗ (g ∗ h).
• Linearity: (αf + βg) ∗ h = αf ∗ h+ βg ∗ h for all complex numbers α, β.

Theorem 10.11 For all n = 0,±1,±2, . . . ,

F(f ∗ g)(n) = (Ff)(n)(Fg)(n).

The proof can be found in Stein and Shakarchi (2003), Vol. 1, Sect. 2.3.
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10.3.3 Continuous Fourier Transform

Let us first summarize the key formulas which will be used frequently in this mono-
graph. The validity of these formulas will be discussed below.

Key formulas on the real line. For the Fourier transform Fψ : R → C of a
function ψ : R → C on the real line, the following are met.

(i) Fourier transform:

(Fψ)(p) :=
1√
2π

Z ∞

−∞
f(x)e−ipx dx, p ∈ R. (10.10)

(ii) Inverse Fourier transform:

ψ(x) =
1√
2π

Z ∞

−∞
(Fψ)(p)eipx dx, x ∈ R. (10.11)

(iii) Transformation of derivatives: For α = 1, 2, . . .,

dαψ(x)

dxα
=

1√
2π

Z ∞

−∞
(ip)α(Fψ)(p)eipx dx, x ∈ R. (10.12)

(iv) The Parseval equation:

〈ψ|χ〉 =

Z ∞

−∞
ψ(x)†χ(x)dx = 〈Fψ|Fχ〉. (10.13)

Physical interpretation in quantum mechanics. In terms of physics, the
original function ψ acts in position space, whereas the Fourier transform Fψ acts
in momentum space. In quantum mechanics, the function ψ = ψ(x) is the wave
function of a quantum particle on the real line. The operator

(Pψ)(x) := −i�
d

dx
ψ(x)

represents the momentum operator of the particle. Setting

ψp(x) :=
eipx/�

√
2π�

,

we get Pψp = pψp for each real value p of momentum. To simplify notation, we set
� = 1.

The Fourier transform represents an expansion with respect to the eigen-
functions of the momentum operator.

The normalization factor 1/
√

2π of the eigenfunction ψp is dictated by the Dirac
calculus (see Sect. 11.2 on page 592) and the fact that the operator F can be
uniquely extended to a unitary operator on the Hilbert space L2(R).

By (iii) above, the momentum operator P corresponds to the multiplication
operator

(Fψ)(p) �→ p(Fψ)(p)

in momentum space. This tells us that the Fourier transform is related to a diago-
nalization of the momentum operator, P = −i� d

dx
. John von Neumann (1903–1957)
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proved that each self-adjoint operator on a Hilbert space can be realized as mul-
tiplication operator on a suitable function space (see the von Neumann spectral
theorem in Sect. 11.2.3 on page 680).

Key formulas on R
N . For the Fourier transform Fψ : R

N → C of a function
ψ : R

N → C, the following hold true.

(i) Fourier transform:

(Fψ)(p) :=
1

(2π)N/2

Z

RN

f(x) e−i〈p|x〉 dNx, p ∈ R
N .

(ii) Inverse Fourier transform:

ψ(x) =
1

(2π)N/2

Z

RN

(Fψ)(p) ei〈p|x〉 dNx, x ∈ R
N . (10.14)

(iii) Transformation of derivatives: For partial derivatives of arbitrary order,

∂αψ(x) =
1

(2π)N/2

Z

RN

i|α|pα(Fψ)(p) ei〈p|x〉 dNx, x ∈ R
N .

(iv) The Parseval equation:

〈ψ|χ〉 =

Z

RN

ψ(x)†χ(x)dNx =

Z

RN

(Fψ)(x)†(Fχ)(x)dNx = 〈Fψ|Fχ〉.

This implies the modified Parseval equation
Z

RN

ψ(x)(Fχ)(x)dNx =

Z

RN

(Fψ)(x)χ(x)dNx.

Here, we use the following notation

x = (x1, . . . , xN ), p = (p1, . . . , pN ), 〈p|x〉 :=
N
X

j=1

pjx
j ,

along with the norm ||x|| :=
p

(x1)2 + . . .+ (xN )2. Furthermore, we set

∂j :=
∂

∂xj
, j = 1, . . . , N.

For partial derivatives of arbitrary order, we will use the symbol

∂αψ := ∂α1
1 ∂α2

2 · · · ∂αN
N =

∂|α|ψ

(∂x1)α1(∂x2)α2 · · · (∂xN )αN
. (10.15)

Here, the multi-index α := (α1, . . . , αN ) has nonnegative integers α1, . . . , αN as
components. Moreover, the order of the partial derivative ∂α is given by the integer
|α| := α1 + . . .+ αN . Similarly,

pα := pα1
1 pα2

2 · · · pαN
N .

To simplify notation, we include the trivial multi-index α = (0, . . . , 0) which corre-
sponds to the function itself, ∂αψ = ψ.
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The Schwartz space S(RN ) of rapidly decreasing functions. In order
to guarantee the existence of the Fourier integral, we have to assume that the
functions ψ decrease rapidly at infinity. For example, the Gaussian function, given

by ψ(x) := e−||x||2/2, has the Fourier transform

(Fψ)(p) =
1

(2π)N/2

Z

RN

e−i〈p|x〉e−||x||2/2 dNx = e−||p||2/2

for all p ∈ R
N . This is a typical element of the space S(RN ). By definition, the

space S(RN ) consists of all the smooth functions ψ : R
N → C which satisfy the

decay condition

|∂αψ(x)| = O

„

1

||x||M

«

, ||x|| → ∞

for all positive integers M and all multi-indices α.

Theorem 10.12 The Fourier transform is a bijective map

F : S(RN )→ S(RN )

from the space S(RN ) onto itself. In addition, the inverse Fourier transform is given
by the classical formula above. For all ψ, χ ∈ S(RN ), both the Parseval equation
and the modified Parseval equation are valid.

In order to formulate continuity properties of the Fourier transform, we intro-
duce the semi-norms

|ψ|M,α := sup
x∈RN

(1 + ||x||M )|Dαψ(x)|

for all integers M and all multi-indices α. We write

lim
n→∞

ψn = ψ in S(RN ) (10.16)

iff limn→+∞ |ψn−ψ|M,α = 0 for all possible M,α. The convergence (10.16) implies
the convergence

lim
n→∞

F(ψn) = F(ψ) in S(RN ).

The same is true for the inverse operator F−1. We say briefly that the operators
F ,F−1 : S(RN )→ S(RN ) are sequentially continuous.

The convolution theorem. Let N = 1, 2, . . . . We are given the functions
ϕ,ψ, χ ∈ S(RN ). The function ϕ ∗ ψ defined by

(ϕ ∗ ψ)(x) :=

Z

RN

ϕ(x− y)ψ(y)dNy for all x ∈ R
N

is called the convolution of ϕ with ψ. We have the following properties:

• Consistency: ϕ ∗ ψ ∈ S(RN ).
• Commutativity: ϕ ∗ ψ = ψ ∗ ϕ.
• Associativity: (ϕ ∗ ψ) ∗ χ = ϕ ∗ (ψ ∗ χ).
• Linearity: (αϕ+ βψ) ∗ χ = αϕ ∗ χ+ βψ ∗ χ for all complex numbers α, β.

The proof of the following theorem can be found in the monograph by Hörmander
(1983), Vol. 1, Sect. 7.1.
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Theorem 10.13 For the Fourier transform,

F(ϕ ∗ ψ) = (2π)N/2(Fϕ)(Fψ).

Conversely, F(ϕψ) = (2π)−N/2(Fϕ) ∗ (Fψ).

This theorem tells us that up to a real factor, the Fourier transform sends convo-
lutions to products and, conversely, products to convolutions.

Discussion of terminology. In order to avoid confusion, the reader should
note that there exist different variants of the Fourier transform in the literature.
To discuss this, let us start with the rescaled Fourier transformation formulas

ϕ̂(ξ) =
α

(2π)N/2

Z

RN

ϕ(x)e−i〈x|ξ〉dNx,

ϕ(x) =
1

α(2π)N/2

Z

RN

ϕ̂(ξ)ei〈x|ξ〉dNξ.

(10.17)

Here, x = (x1, . . . , xN ) and ξ = (ξ1, . . . , ξN ) lie in R
N , and

〈x|ξ〉 :=

N
X

j=1

xjξj . (10.18)

The normalization factor α is positive. Setting Fαϕ := ϕ̂, we obtain the following
convolution formulas

Fα(ϕ ∗ ψ) =
(2π)N/2

α
(Fαϕ)(Fαψ) (10.19)

and

Fα(ϕψ) =
1

α(2π)N/2
(Fαϕ) ∗ (Fαψ). (10.20)

Note the following.

• The choice α = 1 yields symmetric transformation formulas (10.17) which we
have used in (10.14) above. This is called the Euclidean Fourier transform, since
〈x|ξ〉 represents the inner product on the N -dimensional Euclidean space R

N .
The choice α = 1 has the advantage that the Fourier transform Fϕ := ϕ̂ is a
unitary operator F : L2(R

N ) → L2(R
N ) on the complex Hilbert space L2(R

N ).
This is important, since unitary operators between Hilbert spaces preserve the
structure of the corresponding quantum physics.

• However, the choice α = 1 has the disadvantage that there appears an additional
factor in the convolution rule (10.19). To avoid this factor, one has to choose

α = 1/(2π)N/2.

From the physical point of view, the variables x and ξ possess different physical
meaning in different situations. Let us discuss some typical examples.

(i) The Fourier transform from 1-dimensional position space to 1-dimensional mo-
mentum space:

N = 1, x⇒ x, ξ ⇒ p

�
, α :=

1

�N/2
=

1√
�
.

From (10.17) we get
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ϕ̂
“p

�

”

=
α√
2π

Z

R

ϕ(x)e−ixp/�dx,

ϕ(x) =
1

α
√

2π

Z

R

ϕ̂
“p

�

”

eixp/� dp

�
.

Replacing ϕ̂
`

p
�

´

by ϕ̂(p), we obtain

ϕ̂ (p) =
1√
2π�

Z

R

ϕ(x)e−ixp/�dx,

ϕ(x) =
1√
2π�

Z

R

ϕ̂(p)eixp/�dp.

(10.21)

(ii) The Fourier transform from 3-dimensional position space to 3-dimensional mo-
mentum space:

N = 3, x⇒ x, ξ ⇒ p

�
, α :=

1

�N/2
=

1

�3/2
.

Hence

ϕ̂ (p) =
1

(2π�)3/2

Z

R3
ϕ(x)e−ixp/�d3x,

ϕ(x) =
1

(2π�)3/2

Z

R3
ϕ̂(p)eixp/�d3p.

(10.22)

(iii) The Fourier transform from time space to energy space:

N = 1, x⇒ t, ξ ⇒ −E
�
, α :=

1

�N/2
=

1√
�
.

This substitution implies

ϕ̂ (E) =
1√
2π�

Z

R

ϕ(t)eitE/�dt,

ϕ(t) =
1√
2π�

Z

R

ϕ̂(E)e−itE/�dE.

(10.23)

(iv) The Fourier transform from time space to angular frequency space: Use (10.23)
and set � := 1 along with E := ω.

(v) The Fourier transform from the 4-dimensional Minkowski space for space and
time to the 4-dimensional momentum space:

N = 4, x⇒ (ct,x), ξ ⇒
„

−E

c�
,
p

�

«

, α :=
1

�N/2
=

1

�2
.

Set x := (x0, x1, x2, x3) with x0 := ct, as well as p = (p0, p1, p2, p3) with
p0 = p0 := E/c and pj = −pj for j = 1, 2, 3. Furthermore, define

xp :=

3
X

j=0

xjpj = Et− xp.
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Then eipx/� = e−iEt/� eipx/� . Hence

ϕ̂ (p) =
1

(2π�)2

Z

R4
ϕ(x)eixp/�d4x,

ϕ(x) =
1

(2π�)2

Z

R4
ϕ̂(p)e−ixp/�d4p.

(10.24)

This so-called Fourier–Minkowski transform generalizes the Fourier transform
from (ii) and (iii).

(vi) The Fourier–Laplace transform:

N = 1, 2, . . . , x ∈ R
N , ξ ∈ C

N , α = 1.

Hence

ϕ̂(ξ) =
1

(2π)N/2

Z

RN

ϕ(x)e−i〈x|ξ〉dNx,

ϕ(x) =
1

(2π)N/2

Z

RN

ϕ̂(ξ)ei〈x|ξ〉dNξ.

(10.25)

Here, the inner product 〈x|ξ〉 is given by (10.18). The point is that in contrast
to the Fourier transform, the variable ξ does not live in the real space R

N , but
in the complex space C

N . The Fourier–Laplace transform can be regarded as
an analytic extension of the Fourier transform.

10.4 The Dirichlet Problem in Electrostatics as a
Paradigm

The Dirichlet principle is an exciting example for a problem that came
from physics and could be solved by mathematics; this famous problem
strongly influenced the development of far-reaching mathematical theories
in the 20th century.

Folklore

By the Dirichlet principle we understand a method for solving boundary
value problems via minimum problems for variational integrals. This prin-
ciple goes back to Green (1793–1841), Gauss (1777–1855), Lord Kelvin
(1824–1907), and Dirichlet (1805–1859). In 1870 Weierstrass (1815–1897)
was the first to underline the shortcomings of this principle. He showed
that there are variational problems which do not have any solution. In 1900
I showed that it is possible to rigorously justify the Dirichlet principle.7

David Hilbert (1862–1943)

In order to understand the great achievement of Hilbert in the field of
analysis, it is necessary to first comment on the state of analysis at the
end of the nineteenth century. After Weierstrass had made sure of the
foundations of complex function theory, and it has reached an impressive
level, research switched to boundary-value problems, which first arose in

7 D. Hilbert, On the Dirichlet principle (in German), Math. Ann. 59 (1904), 161–
186.
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physics (e.g., electrostatics). The work of Riemann (1826–1866) on complex
function theory and conformal maps, however, had shown that boundary-
value problems have great importance for pure mathematics as well. Two
problems had to be solved:
(i) the problem of the existence of an electrostatic potential function for

given boundary values, and
(ii) the problem of eigenoscillations of elastic bodies, for example, string

and membrane.
The state of the theory was bad at the end of the nineteenth century. Rie-
mann had believed that, by using the Dirichlet principle, one could deal
with these problems in a simple and uniform way. After Weierstrass’ sub-
stantial criticism of the Dirichlet principle in 1870, special methods had
to be developed for these problems. These methods, by Carl Neumann,
Amandus Schwarz, and Henri Poincaré, were very elaborate and still have
great aesthetic appeal today; but because of their variety they were confus-
ing, although at the end of the nineteenth century, Poincaré (1854–1912),
in particular, endeavored with great astuteness to standardize the theory.
There was, however, a lack of “simple basic facts” from which one could
easily get complete results without sophisticated investigations of limiting
processes.
Hilbert first looked for these “simple basic facts” in the calculus of vari-
ations. In 1900 he had an immediate and great success; he succeeded in
justifying the Dirichlet principle.
While Hilbert used variational methods, the Swedish mathematician Fred-
holm (1866–1927) approached the same goal by developing Poincaré’s work
by using linear integral equations. In the winter semester 1900/01 Holm-
gren, who had come from Uppsala (Sweden) to study under Hilbert in
Göttingen (Germany), held a lecture in Hilbert’s seminar on Fredholm’s
work on linear integral equations which had been published the previous
year. This was a decisive day in Hilbert’s life. He took up Fredholm’s dis-
covery with great zeal, and combined it with his variational method. In
this way he succeeded in creating a uniform theory which solved problems
(i) and (ii) above.8

Hilbert believed that with this theory he had provided analysis with a great
general basis which corresponds to an axiomatics of limiting processes. The
further development of mathematics has proved him to be right.9

Otto Blumenthal, 1932

The creation of a rigorous mathematical quantum field theory is a challenge for
modern mathematics. There is hope for solving this hard problem in the future. The
optimism is motivated by the success of mathematics in the past. As an example,
let us consider the Dirichlet principle in this section.

Physical motivation. Let Ω be a nonempty bounded open set in R
3. We want

to study electric fields E = −gradU which are generated by a charge density !.
The corresponding Maxwell equation in a vacuum, ε0 div E = !, reads as

ε0ΔU = ! on Ω, U = U0 on ∂Ω (10.26)

8 See D. Hilbert, Foundations of the Theory of Integral Equations, Teubner,
Leipzig, 1912 (in German).

9 O. Blumenthal, Hilbert’s biography (in German). In: D. Hilbert, Collected
Works, Springer, Berlin, 1932, Vol. 3, pp. 388–429.
Hilbert’s friend Otto Blumenthal (1876–1944) was murdered in the Nazi concen-
tration camp Theresienstadt (Terežin).
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with the Laplacian ΔU := −Uxx −Uyy −Uzz.The boundary-value problem (10.26)
is called the Dirichlet problem for the Poisson equation. The electric energy in the
region Ω is given by the following integral

E(U) :=

Z

Ω

ε0
2

(U2
x + U2

y + U2
z )− !U dxdydz.

In particular, if ! = 0, then E(U) = ε0
2

R

Ω
E2 dxdydz. The principle of minimal

energy reads as

E(U) = min!, U = U0 on ∂Ω. (10.27)

We are given the charge density ! and the boundary values U0 of the potential U .
We are looking for a potential U such that the electric energy is minimal.

From the physical point of view, it seems to be obvious that there exists a
solution for problem (10.27).

However, from the mathematical point of view, the existence proof is a highly non-
trivial task. In the first half of the 19th century, mathematicians and physicists
studied gravitational, electric and magnetic forces in the setting of potential the-
ory.10 Green and Gauss independently published two fundamental papers on the
properties of gravitational and electrostatic forces in 1828 and 1840, respectively.
However, the full understanding of such problems was only completed in the 1960s
on the basis of functional analytic interpolation theory.11 For the history of the
Dirichlet principle, we refer to the following two beautiful articles:

S. Hildebrandt, Remarks on the Dirichlet Principle (in German).
In: H. Weyl, Die Idee der Riemannschen Fläche (The concept of a Riemann
surface). Edited by R. Remmert, Teubner, Leipzig, 1997, pp. 197–215 (in
German).

H. Brézis and F. Browder, Partial differential equations in the 20th century,
Advances in Math. 135 (1998), 76–144.

System of units. To simplify notation, in this section we choose a system of
units where the electric field constant of the vacuum is equal to one, ε0 = 1.

10.4.1 The Variational Lemma

The space D(Ω) of test functions. For the calculus of variations and the theory
of generalized functions (distributions), it is typical to use test functions. In order
to fix the notation, let Ω be a nonempty open subset of the N -dimensional space
R

N where N = 1, 2, . . .

(i) The space C∞(Ω) of smooth functions: This space consists of all smooth func-
tions f : Ω → C. This means that f is continuous on Ω and has partial
derivatives of arbitrary order which are continuous on Ω, too.

10 Laplace (1749–1827), Gauss (1777–1855), Poisson (1781–1859), Green (1793–
1841), Dirichlet (1805–1859), Weierstrass (1815–1897), Riemann (1826–1866),
Hilbert (1862–1943), Tonelli (1885–1946), Weyl (1885–1955), Sobolev (1908–
1989).

11 J. Lions and E. Magenes, Nonhomogeneous Boundary-Value Problems and Ap-
plications, Vols. 1–3, Springer, New York, 1972.
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(ii) The space D(Ω) of smooth functions which have compact support: By defi-
nition, the smooth function f : Ω → C has compact support iff it vanishes
outside a compact subset of Ω. The set of these functions is denoted by the
symbol D(Ω). In other words, we have

f ∈ D(Ω)

iff f ∈ C∞(Ω) and the function f vanishes in some open neighborhood of the
boundary ∂Ω. Intuitively, these test functions do not see the boundary ∂Ω.

(iii) The space C∞(Ω) of functions which are smooth up to the boundary: Recall

that the closure Ω of the set Ω is obtained from Ω by adding the boundary,

Ω = Ω ∪ ∂Ω.

By definition, the function f : Ω → C lives in the space C∞(Ω) iff f ∈ C∞(Ω)
and the function f , together with all of its partial derivatives of arbitrary order,
can be continuously extended to the closure Ω.

Obviously, we have the inclusions

D(Ω) ⊆ C∞(Ω) ⊆ C∞(Ω).

The spaceD(Ω) was used by Laurent Schwartz in the 1940s in order to introduce the
space D′(Ω) of generalized functions (see Chap. 11). In the literature, one also uses
the symbol C∞

0 (Ω) instead of D(Ω). The following theorem describes the typical
property of test functions.

Theorem 10.14 The set of test functions D(Ω) is dense in the Hilbert space
L2(Ω).

Explicitly, this means the following. For each given function ϕ ∈ L2(Ω), there exists
a sequence (ϕn) of test functions, ϕn ∈ D(Ω) for all n, such that

lim
n→∞

||ϕ− ϕn||2 = lim
n→∞

Z

Ω

|ϕ(x)− ϕn(x)|2dNx = 0.

The proof can be found in Zeidler (1995), Vol. 1, Sect. 2.2.3.
The real variational lemma. The following result is crucial for the calculus

of variations (i.e., the principle of critical action in physics).

Proposition 10.15 We are given the continuous function f : Ω → C. Suppose
that

Z

Ω

f(x)h(x)dNx = 0

for all smooth functions h : Ω → R which have compact support. Then, the function
f vanishes on Ω.

Proof. Suppose first that the set Ω is bounded. Choosing h := �(ϕ) and h := �(ϕ),
we get

〈ϕ|f〉 =

Z

Ω

ϕ(x)†f(x)dNx = 0 for all ϕ ∈ D(Ω).

Let g ∈ L2(Ω). By Theorem 10.14, there exists a sequence (ϕn) of test functions
ϕn ∈ D(Ω) for all n such that ϕn → g in L2(Ω) as n→∞. It follows from

〈ϕn|f〉 = 0, n = 1, 2, . . .
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that 〈g|f〉 = limn→∞〈ϕn|f〉 = 0. Choosing g = f , we get f = 0 in L2(Ω). This
tells us that f(x) = 0 for almost all x ∈ Ω. Since the function f is continuous, this
implies f(x) = 0 for all x ∈ Ω.

If the set Ω is unbounded (e.g. Ω = R
N ), then we choose an open ball BR of

radius R, and we redefine f(x) := 0 outside BR. Then, the argument above shows
that f = 0 on Ω ∩BR. Choosing R = 1, 2, . . ., we obtain that f = 0 on Ω. �

The complex variational lemma. Since the fields arising in quantum physics
are complex-valued, the following variant of the variational lemma is useful for the
principle of critical action.

Proposition 10.16 We are given the continuous functions f, g : Ω → C. Suppose
that

Z

Ω

(f(x)h(x) + g(x)h(x)†)dNx = 0

for all smooth functions h : Ω → C which have compact support. Then the functions
f and g vanish on Ω.

Proof. First let h be real. By the real variational lemma above,

f(x) + g(x) = 0 on Ω.

Secondly, if h(x) := ik(x) where k is real, then f(x)− g(x) = 0 on Ω. This implies
f(x) = 0 and g(x) = 0 on Ω. �

10.4.2 Integration by Parts

Integration by parts is the key to the calculus of variations and to the
modern theory of linear and nonlinear partial differential equations.

Folklore

Gauss (1777–1855) had very early been interested in the Laplace equation,
both in two variables in connection with his work on complex numbers,
and in three variables in relation with his astronomical studies. In his 1813
paper on the attraction of spheroids, he had proved particular cases of the
Green formula. After 1830, he devoted much of his time to the study of
magnetism, both experimentally and theoretically, and thus was led to new
research on potential theory which he published in 1839. In that paper, he
quotes no other work on the subject, and it is very unlikely that he ever
heard of Green (1793–1841) whose work was not widely known, even in
England.

Jean Dieudonné (1906–1992)
History of Functional Analysis12

Green applied his concepts based on the Green’s integral formula and the
Green’s function to electrical and magnetic problems.13 He also took up

12 North Holland, Amsterdam, 1981 (reprinted with permission).
13 G. Green, Essay on the application of mathematical analysis to the theory of

electricity and magnetism, 1828. Reprinted in Ostwald’s Klassiker No. 61, Geest
& Portig, Leipzig, 1895. This famous essay founded potential theory as a branch
of mathematics and physics.
C. F. Gauss, General theorems on attractive and repulsive forces which act
according to the inverse square of the distance (in German), 1839. See Gauss
(1863/1933), Collected Works, Vol. V, pp. 197–242.
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in 1833 the problem of the gravitational potential of ellipsoids of variable
density. In this work Green showed that when the potential U is given on
the boundary of a body, there is just one function that satisfies ΔU = 0
throughout the body, has no singularities, and has the given boundary
values. To make his proof, Green assumed the existence of a function that
minimizes the integral

Z

(U2
x + U2

y + U2
z ) dxdydz.

This is the first use of the Dirichlet principle. Green’s work strongly in-
spired the great Cambridge school of mathematical physicists which in-
cluded Sir Gabriel Stokes (1819–1903), Lord Kelvin (1824–1907), Lord
Rayleigh (1842–1919), and Clerk Maxwell (1831–1879).

Morris Kline, 1972
Mathematical Thought from Ancient to Modern Times14

The 1-dimensional case. Let −∞ < a < b < ∞. Newton (1643–1727) and
Leibniz (1646–1716) discovered the formula

Z b

a

f ′(x)dx = f |ba (10.28)

which is called the fundamental theorem of calculus. Here, we set

f |ba := f(b)− f(a).

The idea is to reduce an integral over the interval Ω :=]a, b[ to an “integral over the
boundary” ∂Ω. For example, formula (10.28) is valid if the function f : [a, b] → R

is smooth up to the boundary. If the functions f, g : [a, b] → R are smooth up to
the boundary, then (fg)′ = f ′g + fg′. By (10.28),

Z b

a

f ′g + fg′ dx = fg|ba.

This implies the following integration-by-parts formula

Z b

a

f ′gdx = −
Z b

a

fg′dx+ fg|ba. (10.29)

In particular, the boundary term drops out if the function f has compact support
in the open interval Ω, that is, f ∈ D(Ω). Conversely, the integration-by-parts
formula (10.29) implies (10.28) by setting g = 1.

The N-dimensional case. It is our goal to generalize the fundamental theorem
of calculus and hence the integration-by-parts formula to higher dimensions. To
this end, let Ω be a nonempty bounded open subset of R

N with N = 2, 3 . . . Set
x := (x1, . . . , xN ) and ∂j := ∂

∂xj if x ∈ R
N .

(i) Suppose that f, g : Ω → R are smooth functions where f has compact support.
Then, for j = 1, . . . , N ,

Z

Ω

∂jf · g dNx = −
Z

Ω

f∂jg d
Nx. (10.30)

14 Reprinted by permission of Oxford University Press.
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(ii) Suppose that the functions f, g : cl(Ω)→ R are continuous. In addition, assume
that f and g are smooth on Ω, and their first partial derivatives can be extended
to continuous functions on cl(Ω). Furthermore, suppose that the boundary of
Ω is sufficiently regular (e.g., Ω is a ball or a cuboid). Then, for j = 1, . . . , N ,

Z

Ω

∂jf · g dNx = −
Z

Ω

f∂jg d
Nx+

Z

∂Ω

fgnj dS. (10.31)

Here, n(x) = (n1(x), . . . , nN (x)) is the outer unit normal vector at the bound-
ary point x ∈ ∂Ω, and dS refers to the surface measure.

For the precise formulation one needs the precise definition of the admissible bound-
aries. We distinguish two cases.

(a) Smooth boundaries: Here, we assume that the closure cl(Ω) = Ω∪∂Ω is a man-
ifold with boundary. Roughly speaking, each boundary point x has a neighbor-
hood in cl (Ω) which, in suitable local coordinates, looks like the sufficiently
small neighborhood of a boundary point y of the half-space

{(y1, . . . , yN ) ∈ R
N : yN ≥ 0},

and the change of local coordinates is carried out by diffeomorphisms which
are smooth up to the boundary of the half-space. The precise definition of the
standard term “manifold with boundary” can be found in Zeidler (1986), Vol.
4, p. 584. The prototype of a manifold with boundary is a closed ball in R

N .
(b) Piecewise smooth boundaries: Note that a cuboid in R

3 is not a “manifold with
boundary” because of the corners and edges. However, the integration-by-parts
formula is also valid for cuboids and a general class of bounded open sets in R

N

with “piecewise smooth” boundaries (i.e., Lipschitz-continuous boundaries).
The precise formulation of the integration-by-parts formula in this case along
with the proof can be found in J. Nečas, Les méthodes directes en théorie des
equations elliptiques, Academia, Prague, p. 121.

The general Stokes theorem. The integration-by-parts formula dates back
to Lagrange (1736–1813) and Gauss (1777–1855). The formula

Z

Ω

div v d3x =

Z

∂Ω

vn dS (10.32)

for velocity fields v is called the Gauss theorem. Here, n denotes the outer unit nor-
mal vector at boundary points. From (10.32) we immediately get the integration-by-
parts formula by choosing v := (fg, 0, 0). Then we obtain div v = fxg+ gxf. Green
(1793–1848) based his fundamental 1828 paper, concerning the Green’s function in
potential theory, on the Green’s integral formula

Z

Ω

(UΔV − V ΔU) d3x =

Z

∂Ω

„

V
∂U

∂n
− U

∂V

∂n

«

dS (10.33)

which follows from repeated integration by parts.15 Stokes (1819–1903) announced
the following integral relation

15 Note that ΔU := −
P

j ∂
2
jU and ∂U

∂n
:=
P

j nj∂jU.

In 1828 the Green’s integral formula (10.33) was obtained independently by
Ostrogradski (1801–1862).
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Z

S

Ncurl v dS =

Z

∂S

vdx (10.34)

in 1854. Here, N denotes the unit normal vector of the surface S in R
3, and the

boundary curve ∂S is counterclockwise oriented with respect to N. For a region in
the Euclidean plane, the Stokes formula (10.34) coincides with the 2-dimensional
version of the Gauss formula (10.32). The modern variant of the Gauss formula
(10.32) and the Stokes formula (10.34), basically due to Poincaré (1854–1912),
reads elegantly as

Z

M

dω =

Z

∂M

ω. (10.35)

Here, ω is a smooth (N − 1)-dimensional differential form on the N -dimensional
manifold M with boundary. For the proof of the Poincaré–Stokes integral theorem
(10.35) (also called the general Stokes theorem) and its numerous applications, we
refer to the following monographs:

H. Amann and J. Escher, Analysis III, Sect. 12.3, Birkhäuser, Basel, 2004.

V. Zorich, Analysis II, Sect. 13.3, Springer, Berlin, 2003.

V. Guillemin and A. Pollack, Differential Topology, Sect. 4.7, Prentice Hall,
Englewood Cliffs, New Jersey, 1974.

R. Bott and L. Tu, Differential Forms in Algebraic Topology, Sect. 1.3,
Springer, New York, 1982.

In Volumes III and IV, we will show that the formula (10.35) is crucial for under-
standing the topological structure of general potentials in physics, and it lies at
the heart of cohomology theory which is crucial for modern topology and quantum
field theory.

The Poincaré–Stokes integral theorem is one of the most beautiful and most
useful theorems in mathematics and physics.

10.4.3 The Variational Problem

One needs to have delved but little into the principles of differential cal-
culus to know the method of how to determine the greatest and least
ordinates of curves. But there are maxima or minima problems of a higher
order, which in fact depend on the same method, which however can not
be subjected to this method. These are the problems where it is a matter
of finding the curves themselves.
The first problem of this type, which the geometers solved, is that of the
brachistochrone or the curve of fastest fall, which Johann Bernoulli (1667–
1748) proposed toward the end of the preceding century. One attained this
only in special ways, and it was only some time later and on the occasion of
the investigations concerning isoperimetric problems that the geometer of
whom we just spoke and his excellent brother Jakob Bernoulli (1654–1705)
gave some rules in order to solve several other problems of this type.
But since these rules were not of sufficient generality, the famous Euler
(1707–1783) undertook in 1744 to refer all investigations of this type to
a general method. But even as sophisticated and fruitful as his method
is, one must nevertheless confess that it is not sufficiently simple. . . Now,
here one finds a method which requires only a simple use of the principles
of differential and integral calculus.

Comte Joseph Louis de Lagrange, 1762
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I am very happy that this theory which I have treated since the first
attempts almost alone, has been brought precisely by you to the highest
perfection.

Euler in a letter to Lagrange

The Euler–Lagrange equation. Let Ω be a nonempty bounded open set in R
2.

We are given the continuous function ! : Ω → R and the continuous boundary
function U0 : ∂Ω → R.16

Theorem 10.17 Each smooth solution U : Ω → R of the variational problem

Z

Ω

1
2
(U2

x + U2
y )− !U dxdy = min! (10.36)

with the boundary condition U = U0 on ∂Ω satisfies the differential equation

−Uxx − Uyy = ! on Ω

which is called the Euler–Lagrange equation to (10.36).

The following elegant proof is identical with Lagrange’s classical argument.
Proof. Let U ∈ C∞(Ω) be a solution of the minimum problem. Choose a smooth
test function h : Ω → R which has compact support. Replacing U by U + τh, we
get

J (τ) :=

Z

Ω

1
2
(Ux + τhx)2 + 1

2
(Uy + τhy)2 − !(U + τh) dxdy, τ ∈ R.

The test function h vanishes on the boundary ∂Ω. Therefore, the function U + τh
has the same boundary values on ∂Ω as the function U . Since U is a solution of
the minimum problem (10.36), the function τ �→ J (τ) has a minimum at the point
τ = 0. This implies that the derivative of the real function J vanishes at the point
τ = 0, that is, J ′(0) = 0. Hence

Z

Ω

Uxhx + Uyhy − !h dxdy = 0.

Integration by parts yields
Z

Ω

(−Uxx − Uyy − !)h dxdy = 0

for all test functions h. By the variational lemma, −Uxx − Uyy − ! = 0 on Ω.
�

Many important variational problems related to the principle of critical action in
physics can be found in the problem section to Chap. 14 on page 807.

16 Recall that the symbol Ω denotes the closure of the set Ω. The closure is also
denoted by cl(Ω).
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10.4.4 Weierstrass’ Counterexample

Karl Weierstrass (1815–1897) studied law in Bonn. In 1839 he decided
to study mathematics and therefore went to Münster, where he attended
a mathematical lecture by Gudermann (1798–1852) on elliptic functions.
This was the only mathematical lecture which he ever heard in his life.
After that Weierstrass worked from 1840 until 1855 as schoolteacher, to-
tally isolated, in small towns. During this time he published a series of
fundamental papers on the most difficult problems of complex function
theory.17

In his academic inaugural speech in 1857 as a newly elected member of
the Berlin Academy, he described how the theory of elliptic functions had
tremendously attracted him, even before his studies, and that he regarded
it as one of the main tasks of mathematics to create a general theory on
periodic functions of several complex variables (Abelian functions).
To prepare himself for this difficult task, he first studied the available
tools and occupied himself with less difficult problems. As a result of these
studies he published, during the years 1841–1843, papers on the theory
of power series and on the definition of analytic functions by means of
algebraic differential equations.
In 1854 Weierstrass first succeeded in finding the solution to the famous
“inverse problem” posed by Jacobi (1804–1851) in 1832.18 The generaliza-
tion of this result to general Abelian integrals, which was later obtained
by Riemann and then by Weierstrass, is one of the greatest achievements
in analysis. Whereas Riemann based his theory on the imperfect Dirichlet
principle, Weierstrass’ theory is based on purely algebraic arguments.

From Hilbert’s obituary for Weierstrass

Riemann (1826–1866) is the man with glowing intuition. Through his over-
all genius he stands far above all his peers. Everywhere that his interest
was aroused, he started the theory from scratch without worrying about
tradition or constraints of existing systems.
Weierstrass (1815–1897) was above all a logician; he works slowly, system-
atically, step by step. Where he works, he heads for a finished form of the
theory.
Without new ideas and without the formulation of new objectives, mathe-
matics would soon amount to nothing more than the rigidity of its proofs
and would begin to stagnate, its fuel running out. So, in a certain sense,

17 In 1864 Weierstrass became professor in mathematics at the Berlin University.
18 Jacobi formulated the following hypothesis: Let p = p(z) be a polynomial of

degree six. Consider the two functions u = u(a, b) and v = v(a, b) of the two
complex arguments a, b given by the following system of hyperelliptic integrals

Z u

u0

dz
p

p(z)
+

Z v

v0

dz
p

p(z)
= a,

Z u

u1

dz
p

p(z)
+

Z v

v1

dz
p

p(z)
= b.

Then the two functions u+v and uv are univalent and they possess four different
periods.
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mathematics has been furthered most by those who distinguished them-
selves more through their intuition than through strong deduction.19

Felix Klein (1849–1925)

Riemann’s argument. Riemann based his seminal approach to complex function
theory (e.g., the Riemann mapping theorem) and to Abelian integrals on both the
notion of Riemann surface and on the following boundary-value problem for the
Laplace equation20

ΔU = 0 on Ω, U = U0 on ∂Ω (10.37)

where Ω is a bounded region in R
2. According to the Dirichlet principle, Riemann

reduced the boundary-value problem (10.37) to the following minimum problem

Z

Ω

U2
x + U2

y dxdy = min!, U = U0 on ∂Ω. (10.38)

He followed the opinion of his contemporaries that the existence of a solution for
(10.37) is evident, by physics. In fact, if we set E = −gradU, then problem (10.38)
concerns the determination of an electrostatic field E of minimal energy under given
boundary values of the potential U. By physical intuition, such a field always exists.

The counterexample. Let C1[−1, 1] be the space of all continuous functions
f : [−1, 1] → R which have a continuous first derivative f ′ on the open interval
]−1, 1[, such that f ′ can be extended to a continuous function on the closed interval
[−1, 1]. In 1870 Weierstrass published the following variational problem

E(f) : =

Z 1

−1

(xf ′(x))2dx = min!, f ∈ C1[−1, 1],

f(−1) = 1, f(1) = 0.

(10.39)

Obviously, E(f) ≥ 0 for all f ∈ C1[−1, 1]. Choose

fn(x) :=
1

2
− 1

2
· arctannx

arctann
, n = 1, 2, . . .

Then, fn(−1) = 1 and fn(1) = 0 for all n. Moreover, limn→∞E(fn) = 0. Conse-
quently, we have

inf E(f) = 0

where the infimum is taken over all admissible functions f ∈ C1[−1, 1] which satisfy
the boundary conditions f(−1) = 1 and f(1) = 0.

Proposition 10.18 Problem (10.39) has no solution.

19 F. Klein, Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert
(Development of mathematics in the 19th century), Vol. 1, Springer, Berlin, 1926.

20 B. Riemann, Foundations of a general theory of complex-valued functions (in
German), Dissertation, Göttingen, 1851.
B. Riemann, Theory of Abelian functions (in German), J. reine und angew.
Math. 54 (1857), 115–155.
These two fundamental papers can be found in the collected works of Riemann
(1990).
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Proof. Suppose that f is a solution. Then E(f) = 0. This implies that xf ′(x) = 0
for all x ∈ [−1, 1]. Hence f ′(x) = 0 for all x ∈ [−1, 1] with x �= 0. Since f is
continuous on [−1, 1], we get f(x) = const for all x ∈ [−1, 1]. This implies the
relation f(−1) = f(1), which contradicts the boundary condition f(−1) = 1 and
f(1) = 0. �

If we replace the boundary condition from (10.39) by f(−1) = f(1) = 0, then
the modified problem has a solution, namely, f = 0.

The idea of completion. Let X be the set of all rational numbers living in
the interval [0, 2]. For the two minimum problems

f(x) = min!, x ∈ [0, 2], (10.40)

and

f(x) = min!, x ∈ X, (10.41)

the following two statements can be proved.

(i) The Weierstrass theorem: If f : [0, 2] → R is continuous, then problem (10.40)
has a solution.

(ii) If f : X → R is continuous, then problem (10.41) does not always have a
solution.

To prove (ii), choose f(x) := (x −
√

2)2. Problem (10.40) then has the unique

solution x =
√

2. Since this is an irrational number,
√

2 is not contained in the
set X. Therefore, problem (10.41) has no solution. If a mathematician knew only
rational numbers, but not irrational numbers, then he could not prove a general
existence theorem about minimal problems of the type (10.41). But if, one day, our
mathematician invented irrational numbers, thereby completing the set of rational
numbers Q to the set of real numbers R, then he could prove a general existence
theorem for problem (10.40). For the Dirichlet principle, we will encounter the same
situation in Sect. 10.4.6 on page 557 by using the following replacements:

• rational numbers ⇒ smooth functions;
• irrational numbers ⇒ distributions;
• completion of the set of rational numbers to the set of real numbers
⇒ completion of the space of smooth functions to Sobolev spaces.

It is a general strategy of mathematics to simplify the solution of important prob-
lems by introducing ideal objects.

Weyl’s elegant presentation of Riemann’s theory. As a highlight in com-
plex analysis, the young Hermann Weyl (1885–1955) wrote a famous monograph
on Riemann’s theory:

H. Weyl, Die Idee der Riemannschen Fläche (The concept of a Riemann
surface), Teubner, Leipzig, 1913 (in German).21

Recall that, by definition, a Riemann surface is a connected 2-dimensional complex
manifold.22 This means that the change of local coordinates is given by diffeomor-
phisms χ, that is, the bijective map χ and its inverse map χ−1 are holomorphic
functions with respect to local coordinates. We call such functions biholomorphic.
Two Riemann surfaces X and Y are called conformally equivalent iff there exists a
biholomorphic map

f : X → Y,

21 A new edition of this classic with commentaries has been published in 1997.
22 Naturally enough, we exclude the trivial case where the manifold is empty.
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that is, this map is bijective and both f and f−1 are holomorphic functions with
respect to local coordinates. The following theorems are basic for the theory of
Riemann surfaces:

(i) The Riemann mapping theorem:

Each nonempty, simply connected, open subset of the complex plane
which differs from the plane is conformally equivalent to the open unit
disc.

An elegant proof of this theorem can be found in Remmert (1998), Sect. 8.2.
(ii) The uniformization theorem for simply connected Riemann surfaces:

Each simply connected Riemann surface is conformally equivalent to
one and only one of the following three normal forms: the open unit
disc, the complex plane, the Riemann sphere.

The proof can be found in Farkas and Kra (1992), Sect. 4.4. .
(iii) The uniformization theorem for compact Riemann surfaces: The classification

of compact Riemann surfaces via conformal equivalence is crucial for string
theory.

The equivalence classes of compact Riemann surfaces with fixed genus
g = 0, 1, 2, . . . form Riemann’s moduli space Mg of complex dimension
0, 1, 3g − 3 if g = 0, 1, g ≥ 2, respectively.

The moduli spaces Mg are closely related to Teichmüller spaces. We will study
this in Volume VI. As an introduction to the theory of compact Riemann
surfaces, we recommend the Lecture Notes by Jost (1997). This monograph is
based on harmonic maps which are related to a generalization of the Dirichlet
principle to mappings between manifolds.

10.4.5 Typical Difficulties

We want to explain why the notion of classical solution fails for the Dirichlet prin-
ciple in reasonable situations.

Euler’s paradox. The variational problem

Z t1

t0

p

x(t)
p

ẋ(t)2 + ẏ(t)2 dt = min!,

x(t0) = x0, y(t0) = y0, x(t1) = x1, y(t1) = y1

(10.42)

refers to a curve of minimal length between the points (x0, y0) and (x1, y1). The
calculus of variations was founded by Euler (1707–1783) in his famous 1744 paper.
In 1779 Euler discovered that for appropriate boundary points, the solution of
(10.42) is only a polygon, but not a smooth curve. Euler called this the paradox of
the calculus of variations. It seems that Euler’s paradox was not known to the great
masters of mathematics in the first half of the 19th century. In 1871 there appeared
the paper by L. Todhunter, Researches in the calculus of variations, principally of
discontinuous solutions, MacMillan, London.

The microstructure of materials and random ground states. Consider
the variational problem

E(u) :=

Z 1

0

(u′(x)2 − 1)dx = min!, u ∈ C1[0, 1] (10.43)

along with the boundary condition u(0) = u(1) = 0.
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Proposition 10.19 This minimum problem has no solution.

Proof. The idea is to use an equipartition of the interval [0, 1] of mesh size Δx
and piecewise linear continuous functions p : [0, 1] → R which attain the derivatives
p′(x) = ±1 outside the grid points. Smoothing these zig-zag functions a little bit
and letting Δx → 0, we get a sequence (un) of admissible functions such that
E(un) → 0 as n → ∞. Hence inf E(u) = 0 where the infimum is taken over all
admissible functions.

Suppose now that u is a solution of the minimum problem. Then E(u) = 0.
Hence u′(x) = ±1 for all x ∈ [0, 1]. By continuity, either u′(x) = 1 on [0, 1] or
u′(x) = −1 on [0, 1]. But this contradicts u(0) = u(1) = 0. �

In terms of physics, problem (10.43) represents an oversimplified model of some
material which has the energy E(u) in the state u. Proposition 10.19 tells us that
there is no state of minimal energy, but only a sequence of states (i.e., zig-zag
functions with Δx→ 0) which approach the infimum of possible energies.

Therefore, it is meaningful to say that the generalized solution of problem
(10.43) is a random distribution of states where the derivatives +1 and −1
are attained with probability 1

2
.

This situation is well-known in the modern mathematical theory for materials
equipped with microstructure. As an introduction into this new branch of anal-
ysis, we recommend the Lecture Notes by Müller (1999) (variational models for
microstructure and phase transitions) and Dolzmann (2003) (variational methods
for crystalline microstructure: analysis and computation).

Lack of smoothness of the ground state. The minimum problem

E(u) :=

Z 1

−1

u(x)2(2x− u′(x))2dx = min!, u ∈ C1[−1, 1]

with the boundary condition u(−1) = 0, u(1) = 1 has the unique solution

u0(x) := 0 on [−1, 0], u0(x) := x2 on ]0, 1].

The second derivative of this solution jumps at the point x = 0.
Proof. (I) Existence. Obviously, E(u0) = 0. Since E(u) ≥ 0 for all admissible
functions u, the function u0 is a solution.

(II) Uniqueness. Let v be a solution. Then E(v) = 0. Consequently, we obtain
v(x)2(2x− v′(x))2 = 0 for all x ∈ [−1, 1]. Hence

v′(x) = 2x or v(x) = 0 for all x ∈ [−1, 1]

along with v(−1) = 0 and v(1) = 1. At the point x = 1, the boundary condition
v(1) = 1 implies v′(x) = 2x near x = 1. Let ]a, 1] be the largest subinterval of
[0, 1] such that v(x) �= 0. Then v′(x) = 2x on ]a, 1]. Hence v(x) = x2 on ]a, 1].
This implies a = 0. Similarly, we start at the boundary point x = −1 in order to
conclude that v(x) = 0 on [−1, 0]. Thus, v = u0. �

States of infinite energy. Let Ω be the open unit disc in the plane. We are
given the continuous boundary function g0 : ∂Ω → R by the Fourier series

g0(ϕ) :=

∞
X

n=1

sinn!ϕ

n2
.

We are looking for a continuous function U : cl(Ω)→ R which is smooth on Ω such
that
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ΔU = 0 on Ω, U = g0 on ∂Ω. (10.44)

This problem has the unique solution

U(ϕ, r) =

∞
X

n=1

sinn!ϕ

n2
rn!

where we use polar coordinates. For the energy of the electrostatic potential U , we
get

E(U) =
1

2

Z

Ω

U2
x + U2

y dxdy =
π

2

∞
X

n=1

n4

n!
=∞.

This counterexample due to Hadamard (1865–1963) tells us that the solution of
the boundary-value problem (10.44) cannot be obtained by solving the variational
problem of minimal energy.

In other words, the Dirichlet principle fails completely for the special
boundary values g0 on the unit circle.

Hölder spaces. Let Ω be a nonempty bounded open set in R
N with dimension

N = 1, 2, . . . . Fix the number α ∈]0, 1[. We say that the function f : Ω → R is
Hölder continuous with exponent α iff the following supremum

Hα(f) := sup
x,y∈Ω,x �=y

|f(x)− f(y)|
||x− y||α

is finite. We write f ∈ Cα(Ω). This implies that

|f(x)− f(y)| ≤ Hα(f)||x− y||α for all x, y ∈ Ω. (10.45)

Note that the given function f can be uniquely extended to a continuous function
f : cl(Ω) → R on the closure of Ω, and the inequality (10.45) remains valid for all
x, y ∈ cl(Ω).

• The Hölder space Cα(Ω) becomes a real Banach space equipped with the norm

||f ||α := max
x∈cl(Ω)

|f(x)|+Hα(f).

• Let k = 1, 2, . . . The Hölder space Ck,α(Ω) consists of all the functions f ∈ Cα(Ω)
whose partial derivatives up to order k lie in Cα(Ω). These partial derivatives
on Ω can then be continuously extended to the closure cl(Ω). Equipped with the
norm

||f ||k,α :=
X

|α|≤k

max
x∈cl(Ω)

|∂αf(x)|+
X

|α|=k

Hα(∂αf),

the space Ck,α(Ω) becomes a real Banach space.

Lipschitz spaces. The function F : Ω → R is called Lipschitz continuous iff
condition (10.45) is satisfied with α = 1. The set of all these functions is denoted
by C0,1(Ω). This is a real Banach space equipped with the norm

||f ||0,1 := max
x∈cl(Ω)

|f(x)|+H1(f).

Setting k = 1, 2, . . . and α = 1, we get the real Banach space Ck,1(Ω) as above.
The Rademacher theorem tells us that23

23 Lipschitz (1832–1903), Rademacher (1892–1969).
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If f ∈ C0,1(Ω), then the function f is differentiable almost everywhere on
the set Ω.

Lack of smoothness of the Newtonian potential. Let Ω be an open ball
in R

3. The Newtonian potential

U(x) :=

Z

Ω

!(y)d3y

4π||x− y|| (10.46)

describes the electrostatic potential generated by the charge density !. The corre-
sponding electric field is given by E := −gradU. The Newtonian potential is also
called volume potential.

(i) If the charge density ! : cl(Ω)→ R is continuous, then the Newtonian potential
U is continuous and has continuous first partial derivatives on the total space
R

3. Hence the electric field E is continuous on R
3.

(ii) If ! : cl(Ω) → R is continuous, then it is not always true that the Newtonian
potential U has partial derivatives of second order on Ω. This means that the
electric field E = −gradU is not always differentiable on the ball Ω.

(iii) However, if ! is Hölder continuous, that is, ! ∈ Cα(Ω) with 0 < α < 1, and
if ! vanishes in an open neighborhood of the boundary of the ball Ω, then we
have U ∈ C2,α(Ω) along with ΔU = ! on Ω.

For the proof of (i) and (iii), see Jost (2000b), p. 256. The classical counterexample
to (ii) is given by

!(x) :=

„

3z2

r2
− 1

«

1

ln r

with r := ||x||. This is studied in the monograph by Günter (1957), Sect. 2.14. The
classical result (iii) was first obtained by Otto Hölder (1859–1937) in his dissertation
at the University of Tübingen (Germany) in 1882. For further material, we refer to
the treatise on the calculus of variations by Giaquinta and Hildebrandt (1995).

Summarizing, the solvability theory for variational problems is complicated,
since there exist strange states in nature (e.g., discontinuous microstruc-
tures or concentrations of energy described by infinities of energy.)

Similarly, the mathematical difficulties arising in quantum field theory are caused
by the complexity of the fundamental interactions in nature. To overcome the math-
ematical difficulties, it is necessary to develop the right mathematical tools. Con-
cerning the Dirichlet principle, mathematics was successful in the 20th century in
the framework of functional analysis (Hilbert’s axiomatics of limiting processes). In
what follows we shall discuss the basic ideas.

Historical remark. In 1782 Laplace (1749–1827) remarked in a study on the
shape of the planets that the Newtonian potential (10.46) satisfies the equation
ΔU = 0 outside the region Ω of the planet. Interestingly enough, Laplace found
this equation in the complex form of spherical coordinates. Five years later, Laplace
discovered the simpler expression in Cartesian coordinates, ΔU = Uxx +Uyy +Uzz.
In 1813 Poisson (1781–1840) found that for a ball Ω with constant mass density,
there holds −ΔU = ! on Ω which is now called the Poisson equation. Observe that
in modern differential geometry, the sign of Δ has been changed in order to obtain
an operator with positive eigenvalues of Δ. We follow this sign change.

10.4.6 The Functional Analytic Existence Theorem

The role of functional analysis has been decisive exactly in connection
with classical problems. Almost all problems are on the applications, where
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functional analysis enables one to focus on a specific set of concrete ana-
lytical tasks and organize material in a clear and transparent form so that
you know what the difficulties are.

Felix Browder, 197524

The generalized Dirichlet principle. LetΩ be a nonempty open bounded subset
of R

N for fixed N = 2, 3, . . . Set x = (x1, . . . , xN ) and ∂j := ∂/∂xj . Furthermore,

set ΔU := −
PN

j=1 ∂
2
jU. We want to study the minimum problem

Z

Ω

(

N
X

j=1

1
2
(∂jU)2 − !U) dNx = min!, U ∈W 1

2 (Ω),

U − U0 ∈
◦
W 1

2

(10.47)

along with the corresponding Euler–Lagrange equation

ΔU = ! on Ω, U − U0 ∈
◦
W 1

2 . (10.48)

We are given the functions !, U0 : Ω → R such that we have ! ∈ L2(Ω) and
U0 ∈W 1

2 (Ω).

Theorem 10.20 The minimum problem (10.47) has a unique solution U. This
function satisfies the partial differential equation (10.48) in the sense of distribu-
tions.

If the boundary is smooth, that is, the closure cl(Ω) is a manifold with boundary,
then the solution U lies in the Sobolev space W 2

2 (Ω). The solution only depends on
the generalized boundary values of the given function U0

Roughly speaking, the solutions gain regularity if the boundary of the set Ω gains
regularity (e.g., Ω is a ball).

Basic notions. Let us explain the terminology used above. We will apply the
language of distributions to be introduced in Sect. 11.3 on page 610. As above, let
Ω be a nonempty bounded open subset of R

N .

(i) The Schwartz space D(Ω) of test functions: Recall that this space consists of
all smooth functions ϕ : Ω → R which vanish outside a compact subset of Ω.
In particular, we have

ϕ = 0 on ∂Ω. (10.49)

This boundary condition will be generalized below.
(ii) Distributions: Each function U : Ω → R with U ∈ L2(Ω) represents a distri-

bution, that is, U ∈ D′(Ω).

Therefore, the function U has partial derivatives of all orders.

This is the decisive advantage of the theory of distributions. In particular, the
symbols ∂jU, j = 1, 2, . . . , and ΔU are well-defined. If U, fj ∈ L2(Ω), then the
equation ∂jU = fj is equivalent to

Z

Ω

fjϕ dNx = −
Z

Ω

U∂jϕ dNx for all ϕ ∈ D(Ω). (10.50)

24 F. Browder, The relation of functional analysis to concrete analysis in 20th cen-
tury mathematics, Historia Math. 2 (1975), 577–590.
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Moreover, for given ! ∈ L2(Ω), the equation ΔU = ! is equivalent to

Z

Ω

UΔϕ dNx =

Z

Ω

!ϕ dNx for all ϕ ∈ D(Ω). (10.51)

In the special case where f, fj , U, ! are smooth functions, formulas (10.50) and
(10.51) coincide with the classical integration-by-parts formulas.

(iii) The Sobolev space W 1
2 (Ω): By definition, this space consists of all functions

U : Ω → R with U, ∂1U, . . . , ∂NU ∈ L2(Ω). The space W 1
2 (Ω) becomes a real

Hilbert space equipped with the inner product

〈U |V 〉1,2 :=

Z

Ω

(UV +

N
X

j=1

∂jU∂jV ) dNx for all U, V ∈W 1
2 (Ω).

(iv) The Sobolev space
◦
W 1

2 (Ω) : This space is the smallest closed linear subspace
of the Hilbert space W 1

2 (Ω) which contains the set D(Ω) of test functions.
(v) The Sobolev space W k

2 (Ω) with k = 1, 2, . . . This space consists of all functions
U : Ω → R which lie in L2(R

N ) and whose partial derivatives up to order k lie
in L2(Ω), too. Equipped with the inner product

〈U |V 〉k,2 :=

Z

Ω

X

|α|≤k

∂αU · ∂αV dNx,

the space W k
2 (Ω) becomes a real Hilbert space.25 We also introduce the norm

||U ||k,2 :=
p

〈U |U〉k,2.
26

(vi) The fractional Sobolev space Wα
2 (Ω) with 0 < α < 1. This space consists of

all functions U ∈ L2(Ω) for which the following integral is finite:

||U ||2α,2 :=

Z

Ω

|U(x)|2dNx+

Z

Ω×Ω

|U(x)− U(y)|2
||x− y||N+2α

dNxdNy.

(vii) The fractional Sobolev space W 1+α
2 (Ω) with 0 < α < 1. This space consists

of all functions U ∈W 1
2 (Ω) for which the following integral is finite:

||U ||21+α,2 := ||U ||21,2 +

Z

Ω×Ω

N
X

j=1

|∂jU(x)− ∂jU(y)|2
||x− y||N+2α

dNxdNy.

(viii) The Sobolev space W−1
2 (Ω) of negative order: This space is the dual space

to the Hilbert space
◦
W 1

2 (Ω), that is, this space consists of all linear continuous
functionals

F :
◦
W 1

2 (Ω)→ R

equipped with the norm ||F || := sup||U||1,2≤1 |F (U)|.

25 Recall that ∂αU∂αV = UV if |α| = 0.
26 For an introduction to the theory of Sobolev spaces, see Evans (1998), Gilbarg

and Trudinger (1983), and Kufner, John, and Fučik (1977).
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(ix) Generalized boundary values: Suppose that the behavior of the closure cl(Ω)
is sufficiently regular near the boundary. More precisely, we assume that cl(Ω)
is a manifold with boundary (e.g., a ball). The classical boundary operator

B : C(Ω)→ C(∂Ω)

maps the continuous function U : cl(Ω) → R to its boundary values BU :
∂Ω → R. This map can be uniquely extended to a linear continuous operator

B : W 1
2 (Ω)→ L2(∂Ω). (10.52)

We call the function BU in L2(∂Ω) the generalized boundary values of the

function U ∈ W 1
2 (Ω). Naturally enough, if U ∈

◦
W 1

2 (Ω), then BU = 0, that
is, U = 0 on ∂Ω in the generalized sense. Observe that the boundary operator
from (10.52) is not surjective. This means that there are boundary functions
g : ∂Ω → R with

R

∂Ω
g2dS < ∞ such that g is not the generalized boundary

value of a function U : Ω → R which lies in W 1
2 (Ω). However, the boundary

operator

B : W 1
2 (Ω)→W

1/2
2 (∂Ω)

is surjective, linear, and continuous. Observe that the fractional Sobolev space

W
1/2
2 (∂Ω) is defined similarly to W

1/2
2 (Ω) above, by using a decomposition of

the boundary ∂Ω along with local coordinates.

10.4.7 Regularity of the Solution

We want to show that the generalized solution U from Theorem 10.20 is indeed
a classical smooth solution if the given data (i.e., density !, boundary ∂Ω, and
boundary values U0) are smooth.

The Sobolev embedding theorem. As above, let Ω be a nonempty bounded
open subset of R

N with N = 1, 2, . . . such that the closure cl(Ω) is a manifold with
boundary. If k is an integer with k > N/2, then the embedding

W k
2 (Ω) ⊆ C(Ω)

is continuous. Explicitly this means that if U ∈W k
2 (Ω), then there exists a uniquely

determined continuous function V : cl(Ω)→ R such that

U(x) = V (x) for almost all x ∈ Ω.

Moreover, if we have the convergence Un → U in W k
2 (Ω) as n → ∞, then we get

the convergence Vn → V in C(Ω) for the corresponding continuous functions. In
the special case where N = 1 (resp. N = 2, 3), we need k ≥ 1 (resp. k ≥ 2). This
implies the following crucial theorem:

If U ∈W k
2 (Ω), k = 1, 2, . . . , then U ∈ C∞(Ω),

after changing the values of U on a set of N -dimensional Lebesgue measure zero, if
necessary.27 In particular, in order to get smooth solutions of the Dirichlet problem,

27 The proof of the Sobolev embedding theorem can be found in Evans (1998),
p. 270. There, one also finds stronger results. For example, if N = 3, then the
embedding W 2

2 (Ω) ⊆ C1/2(Ω) is continuous. The simple proof for a prototype
of the Sobolev embedding theorem will be given in Problem 10.3 based on the
fundamental theorem of calculus.
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one has to show that the solution U from Theorem 10.20 lies in all the Sobolev
spaces W k

2 (Ω) with k = 1, 2, . . . This is the basic idea of regularity proofs in the
modern theory of partial differential equations.

Smooth solutions of the Dirichlet problem. Consider the classical bound-
ary value problem

ΔU = ! on Ω, U = U0 on ∂Ω. (10.53)

The corresponding electrostatic energy reads as

E(U) =

Z

Ω

(

N
X

j=1

1
2
(∂jU)2 − !U) dNx.

Let us make the following assumptions.

(A1) Smooth boundary: Let Ω be a nonempty bounded open subset of R
N with

N = 2, 3, . . . such that the closure cl(Ω) is a manifold with boundary (e.g., a
ball).

(A2) Smooth charge density function: We are given the function ! ∈ C∞(Ω).
(A3) Smooth boundary values of the electrostatic potential: The given boundary

function U0 : ∂Ω → R is smooth (with respect to local coordinates of the
boundary manifold ∂Ω).

Theorem 10.21 The boundary-value problem (10.53) has a unique real solution

U ∈ C∞(Ω). The function U is also the unique solution of the variational problem

E(U) = min!, U ∈ C∞(Ω), U = U0 on ∂Ω.

More generally, the classical solution U from Theorem 10.21 coincides with the
generalized solution from Theorem 10.20. The proof can be found in Jost (2000b),
p. 226.

The extension of the classical Laplacian for zero boundary values. It
is convenient to reformulate the concept of generalized solution in the language of
operator theory in Hilbert spaces. Let us first consider the homogeneous boundary
value problem

ΔU = ! on Ω, U = 0 on ∂Ω. (10.54)

We start with the classical Laplacian

Δ : D(Ω)→ D(Ω) (10.55)

given by ΔU = !. Our goal is to construct function spaces X and Y such that there
exists an extension

Δ : X → Y

of the Laplacian from (10.55) where the extended operator is a linear homeomor-
phism from X onto Y . Then there exists the linear continuous operator

Δ−1 : Y → X.

This means that equation (10.54) has the unique solution U = Δ−1!, and this
solution depends continuously on the charge density !. The proof of Theorem 10.20
shows that one can choose the Sobolev spaces
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X =
◦
W 1

2 (Ω) and Y = W−1
2 (Ω).

The extension of the classical Laplacian for nonzero boundary values.
We now consider the more general inhomogeneous boundary-value problem

ΔU = ! on Ω, U = U0 on ∂Ω. (10.56)

We assume that Ω is a nonempty bounded open set in R
N such that cl(Ω) is a

manifold with boundary. Let us start with the classical operator

Δ : C∞(Ω)→ C∞(Ω)× C∞(∂Ω)

given by ΔU := (!, U0). This operator can be uniquely extended to a linear home-
omorphism

Δ : X → Y × Z

if we choose the following spaces.

(i) Hölder spaces: X = C2,α(Ω), Y = Cα(Ω), Z = C2,α(∂Ω).28

(ii) Sobolev spaces: X = W 2
2 (Ω), Y = L2(Ω), Z = W

3/2
2 (∂Ω).

The extension of linear differential operators in Hilbert spaces was first studied by
Friedrichs (1901–1982) in the 1930s, by applying von Neumann’s spectral theory
for unbounded self-adjoint operators. The theory of the Friedrichs extension and
important applications to the partial differential equations of mathematical physics
can be found in Zeidler (1995), Vol. 1, Chap. 5.

Interpolation theory. In order to get operators of the form X,Y, Z above
in a systematic way, interpolation theory was developed in the 1960s. The most
important function spaces are the Besov spaces Bs

pq(Ω) and the Triebel–Lizorkin
spaces F s

pq(Ω). As special cases, we mention

Bk+α
∞,∞(Ω) = Ck,α(Ω), F k

22(Ω) = W k
2 (Ω), k = 0, 1, . . . , 0 < α < 1

and F
1/2
22 (Ω) = W

1/2
2 (Ω). Here, Ck,α(Ω) := Cα(Ω) and W k

2 (Ω) := L2(Ω) if k = 0.
As an elementary introduction to this subject, we recommend Zeidler (1995), Vol.
2, p. 360ff and Reed and Simon (1972), Vol. 2, Sect. IX.4 (interpolation theory in
Banach spaces). Much material can be found in Triebel, Theory of Function Spaces,
Birkhäuser, Basel, 1992.

10.4.8 The Beauty of the Green’s Function

The Green’s function allows us to reduce the solution of general boundary
values to the solution of a special boundary value problem.

Folklore

The fundamental solution of the Poisson equation. Let us fix the point
x0 ∈ R

N . For all x ∈ R
N with x �= x0, define

Ux0(x) :=

(

Q
(N−2) meas(SN−1)

· ||x− x0||−N+2 if N = 3, 4, . . . ,

− Q
2π

ln ||x− x0|| if N = 2.

28 This approach was developed by Schauder (1899–1943) in the 1930s. A modern
version of the Schauder theory based on sophisticated a priori estimates can be
found in Jost (2002b).
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Here, meas(SN−1) is the surface measure of the unit sphere in R
N . Explicitly,

meas(S2M−1) =
2πM

(M − 1)!
, meas(S2M ) =

22M+1M ! πM

(2M)!
, M = 1, 2, . . .

In terms of physics, for N = 3, the function

Ux0(x) =
Q

4π ||x− x0||
is the electrostatic potential of the charge Q located at the point x0, along with the
electric field E = −gradUx0 .

Proposition 10.22 For all test functions ϕ ∈ D(RN ) with N = 2, 3, . . .,
Z

Ω

Ux0(x)Δϕ(x) dNx = Qϕ(x0).

The proof will be given in Problem 10.4. Let us translate this into the modern
language of distributions to be introduced in Sect. 12.6.1 on page 732. To this end,
for all ϕ ∈ D(RN ), we define the following notions.

• Dirac’s delta distribution: δx0(ϕ) := ϕ(x0);
• electrostatic potential as generalized function (distribution):

Ux0(ϕ) :=

Z

RN

Ux0(x)ϕ(x) dNx;

• derivative ∂jUx0(ϕ) = −Ux0(∂jϕ), j = 1, . . . , N ;
• Laplacian: ΔUx0(ϕ) = Ux0(Δϕ).

Therefore, it follows from Prop. 10.22 that

ΔUx0 = Qδx0 . (10.57)

The existence-and uniqueness theorem for the Green’s function. Let
Ω be a nonempty bounded open subset of R

N with N = 2, 3, . . . such that the
closure cl(Ω) is a manifold with boundary. Fix the point x0 ∈ Ω, and consider the
following boundary-value problem:

ΔWx0 = 0 on Ω, Wx0 = −Ux0 on ∂Ω. (10.58)

The following theorem is a special case of Theorem 10.21.

Theorem 10.23 The boundary-value problem (10.58) has precisely one classical

solution Wx0 ∈ C∞(Ω).

Using the function Wx0 , we define the function

G(x, x0) := Ux0(x) +Wx0(x) for all x ∈ Ω \ {x0}
which is called the Green’s function of the Poisson equation on the set Ω. We set
Gx0(x) := G(x, x0). By (10.57),

ΔGx0 = Qδx0 on Ω, Gx0 = 0 on ∂Ω. (10.59)

It turns out that G is symmetric, that is, G(x, x0) = G(x0, x) for all x, x0 ∈ Ω with
x �= x0.

The magic Green’s solution formula. In his 1828 paper, Green underlined
the importance of the following formula.
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Theorem 10.24 The solution U from Theorem 10.21 can be represented by the
magic Green formula

U(x0) =

Z

Ω

G(x, x0)!(x) d
Nx−

Z

∂Ω

∂G(x, x0)

∂nx
U0(x) dS

where ∂
∂nx

denotes the directional derivative with respect to the outer normal vector

at the boundary point x.

This is the prototype of representation formulas for the solutions of partial differen-
tial equations by using integral kernels. This formula shows how the charge density
and the boundary values influence the electrostatic potential U . For example, if the
charge density ! is only concentrated near the point x1 and the boundary values
of the potential are only concentrated near the point x2, then the solution looks
approximately like

U(x0) = G(x1, x0)!(x1)(Δx)
3 − ∂G(x2, x0)

∂nx2

U0(x2)ΔS.

Therefore, the Green’s function localizes physical effects. This fact is crucial for
quantum field theory.
Proof. Let BR be an open ball of sufficiently small radius R centered at the point
x0. By Green’s formula (10.33) on page 548,

Z

Ω\BR

UΔGx0 −Gx0ΔU dNx =

Z

∂Ω

Gx0

∂U

∂n
− U

∂Gx0

∂n
dS.

This formula can be simplified by observing the following.

• ΔGx0 = 0 on Ω \BR.
• Gx0 = 0 on ∂Ω.
• ΔU = ! on Ω.

Finally, let R→ 0 and observe the Green lemma proved in Problem 10.5. �

The Green’s function for the unit ball. Let B be the open unit ball in
R

3. In this case, the Green’s function for the Poisson equation is explicitly known,
namely, if x0 ∈ B \ {0}, then

G(x, x0) :=
Q

4π||x− x0||
− Q∗

4π||x− x∗
0||

for all x ∈ B \ {x0}.

Here, the point x∗
0 is obtained from x0 by inversion with respect to the unit sphere.

Explicitly,

x∗
0 :=

1

||x0||
· x0

||x0||
for all x0 ∈ B \ {0}.

Moreover, we choose the charges Q := 1 and Q∗ := Q||x∗
0||/||x0||. The conformal

map x0 �→ x∗
0 is called Kelvin transformation.. If x0 = 0, then we set

G(x, 0) :=
1

4π||x|| −
1

4π
for all x ∈ B \ {0}.

In terms of physics, the Green’s function allows the following interpretation. Note
that in a metallic electric conductor, the electrostatic potential vanishes. Now con-
sider a metallic unit sphere which bounds the open unit ball B. Put an electric
charge at the point x0. The Green’s function x �→ G(x, x0) is then the corre-
sponding electrostatic potential. In fact, as the superposition of two potentials, the
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function x �→ G(x, x0) satisfies the Laplace equation outside both the point x0 and
the mirror point x∗

0. Furthermore, we have chosen the point x∗
0 in such a way that

G(x, x0) = 0 on the unit sphere ∂B. In fact, if ||x|| = 1, then

||x− x∗
0||2

||x− x0||2
=

1− xx∗
0 + ||x∗

0||2
1− xx0 + ||x0||2

.

Set r := ||x0|| and r∗ := ||x∗
0||. Noting that rr∗ = 1,

r2||x− x∗
0||2

||x− x0||2
=
r2(1− 2r∗ cosϑ+ r2∗)

1− 2r cosϑ+ r2
= 1.

From Theorem 10.24 we obtain the so-called Poisson formula

U(x0) :=
1− ||x0||2

4π

Z

∂B

U0(x)dS

||x− x0||3
for all x0 ∈ B. (10.60)

By Theorem 10.24, this is the unique solution of the boundary-value problem

ΔU = 0 on B, U = U0 on ∂B (10.61)

if the given boundary function U0 is smooth. The following classical proposition
shows that the continuity of the boundary function is sufficient.

Proposition 10.25 If the given boundary function U0 : ∂B → R is continuous,
then the Poisson formula (10.60) yields the unique solution of the Dirichlet problem
(10.61) which is smooth on the open ball B and can be continuously extended to the
closed unit ball cl(B).

For the proof, see Problem 10.6.
The elegant formal language of physicists. In the late 1920s, Dirac refor-

mulated the classical 1828 approach due to Green by introducing the Dirac delta
function δ. Formally, we have δ(x− x0) = 0 if x ∈ R

N \ {x0} and
Z

RN

δ(x− x0)f(x) dNx = f(x0).

By (10.22), for all test functions ϕ ∈ D(Ω),
Z

Ω

Ux0(x)Δϕ(x) dNx =

Z

Ω

Qδ(x− x0)(x)ϕ(x) dNx.

Formal integration by parts tells us that
Z

Ω

(ΔUx0(x)−Qδ(x− x0))ϕ(x) dNx = 0 for all ϕ ∈ D(Ω).

Formal application of the variational lemma yields ΔUx0(x) = Qδ(x − x0) on the
set Ω. Thus, for each fixed x0 ∈ Ω,

ΔG(x, x0) = Qδ(x− x0) on Ω, G(x, x0) = 0 on ∂Ω. (10.62)

This equation is used by physicists in order to characterize the Green’s function
of the Poisson equation on Ω. Equations (10.62) and (10.59) reflect the difference
between the language of physicists and mathematicians, respectively.
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10.4.9 The Method of Orthogonal Projection

I am convinced that it will be possible to get these existence proofs by a
general basic idea towards which the Dirichlet principle points. Perhaps it
will then also be possible to answer the question of whether or not every
regular variational problems possesses a solution if, with regard to bound-
ary conditions, certain assumptions are fulfilled and if, when necessary,
one sensibly generalizes the concept of solution.

David Hilbert
Paris lecture 190029

The method of orthogonal projection. We consider the following minimum
problem

||U0 − U ||2 = min!, U ∈ L. (10.63)

We are given the element U0 of the real Hilbert space X and the closed linear sub-
space L of X. Explicitly, ||U0−U ||2 = 〈U0−U |U0−U〉. Therefore, problem (10.63)
is called a quadratic variational problem. Intuitively, if X is the 3-dimensional
Euclidean space, then we are looking for the minimal distance between the given
point U0 and the plane L. We expect that there exists a unique solution U which
is the orthogonal projection of the position vector U0 onto the plane L, and the
Pythagorean theorem from elementary geometry motivates the relation

||U0||2 = ||U ||2 + ||U − U0||2. (10.64)

Intuitively, the following theorem tells us that in a real Hilbert space, there exists
a perpendicular from a given point to the closed linear subspace L.

Theorem 10.26 Problem (10.63) has precisely one solution U .
The vector U0−U is orthogonal to the plane L, and there holds the Pythagorean

relation (10.64).

Proof. (I) The parallelogram identity. For all U, V ∈ X, we have

2||U ||2 + 2||V ||2 = ||U − V ||2 + ||U + V ||2

which generalizes the Pythagorean theorem. To prove this, note that

〈U ± V |U ± V 〉 = 〈U |U〉 ± 〈U |V 〉 ± 〈V |U〉+ 〈V |V 〉

implies ||U ± V ||2 = ||U ||2 ± 2〈U |V 〉+ ||V ||2.
(II) Existence. Set κ := infU∈L ||U0 − U ||2. Obviously, κ ≥ 0. There exists a

sequence (Vn) in the linear subspace L such that

lim
n→∞

||U0 − Vn||2 = κ. (10.65)

Applying the parallelogram identity,

2||U0 − Vn||2 + 2||U0 − Vm||2 = ||Vn − Vm||2 + 4||U0 − 1
2
(Vn + Vm)||2.

Since Vn, Vm ∈ L, we get 1
2
(Vn + Vm) ∈ L. Hence

29 D. Hilbert, Mathematical problems, Bull. Amer. Math. Soc. 8 (1902), 437–479.
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2||U0 − Vn||2 + 2||U0 − Vm||2 ≥ ||Vn − Vm||2 + 4κ.

Letting n→∞ and m→∞, the left-hand side goes to 4κ. Consequently, (Vn) is a
Cauchy sequence, and hence it is convergent, say, Vn → U as n → ∞. By (10.65),
||U0 − U ||2 = κ. Thus, U is a solution of (10.63).

(III) The abstract Euler–Lagrange equation. If U is a solution of (10.63), then

〈U0 − U |V 〉 = 0 for all V ∈ L. (10.66)

To show this, fix the point V ∈ L and set

J (t) := ||U0 − (U + tV )||2 for all t ∈ R.

Then the function J has a minimum at t = 0. Hence J ′(0) = 0. Since J (t) is equal
to

〈U0 − (U + tV )|U0 − (U + tV )〉 = 〈U0|U0〉+ 2t〈U0 − U |V 〉+ t2〈V |V 〉,

we get J ′(0) = 2〈U0 − U |V 〉 = 0.
(IV) The Pythagorean relation. It follows from 〈U − U0|U〉 = 0 that

〈U0|U0〉 = 〈U + (U0 − U)|U + (U0 − U)〉 = 〈U |U〉+ 〈U − U0|U − U0〉.

(V) Uniqueness. If U and U1 are solutions of (10.63), then U and U1 satisfy
the Euler–Lagrange equation (10.66). Hence 〈U −U1|V 〉 = 0 for all V ∈ L. Letting
V := U − U1 = 0, we get U − U1 = 0. �

The main theorem on quadratic minimum problems. For the minimum
problem

1
2
a(U,U)− b(U) = min!, U ∈ L, (10.67)

let us make the following assumptions.

(A1) The map b : L → R is linear on the real Hilbert space L. There exists a
constant β > 0 such that |b(U)| ≤ β||U || for all U ∈ L.

(A2) The map a : L × L → R is linear in each argument and symmetric, that is,
a(U, V ) = a(V, U) for all U, V ∈ L. There exist constants α > 0 and γ > 0 such
that

γ||U ||2 ≤ a(U,U) ≤ α||U ||2 for all U ∈ L.

Theorem 10.27 Problem (10.67) has a unique solution.

The proof proceeds analogously to the proof of Theorem 10.26 on orthogonal pro-
jection. This proof can be found in Problem 10.1. In the special case where L = R,
our problem reads as 1

2
U2 − bU = min!, U ∈ R with the given real number b. The

unique solution reads as U = b. This follows from 1
2
U2 − bU = 1

2
(U − b)2 − b2.

Application to the Dirichlet principle. Let Ω be a nonempty bounded
open set in R

2. We consider the variational problem

Z

Ω

1
2
(U2

x + U2
y )− !U dxdy = min!, U ∈

◦
W 1

2 (Ω). (10.68)

This corresponds to the homogenous boundary condition U = 0 on ∂Ω.
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Theorem 10.28 For given function ! ∈ L2(Ω), the problem (10.68) of minimal
energy has a unique solution.

Proof. We will use Theorem 10.27. To this end, we set L :=
◦
W 1

2 (Ω) with the norm
||U ||2 :=

R

Ω
U2 + U2

x + U2
y dxdy, as well as

a(U, V ) :=

Z

Ω

UxVx + UyVy dxdy, b(U) :=

Z

Ω

!U dxdy.

By the Schwarz inequality on the Hilbert space L2(Ω), for all U ∈ L,

|b(U)|2 ≤
Z

Ω

!2 dxdy

Z

Ω

U2 dxdy ≤
„

Z

Ω

!2 dxdy

«

||U ||2.

Analogously, |a(U, V )|2 ≤ ||U ||2 · ||V ||2 for all U ∈ L. Finally, it follows from the
Poincaré–Friedrichs inequality (see Problem 10.2) that

||U ||2 ≤ (1 + C)a(U,U) for all U ∈ L.

�

Suggested reading. For first reading on the modern theory of partial differ-
ential equations, we recommend:

C. Evans, Partial Differential Equations, Amer. Math. Soc., Providence,
Rhode Island, 1998.

G. Evans, J. Blackledge, and P. Yardley, Analytic Methods for Partial
Differential Equations, Springer, London, 2000.

Yu. Egorov, A. Komech, and M. Shubin, Elements of the Modern Theory
of Partial Differential Equations, Springer, New York, 1999.

The Hilbert space approach to the Dirichlet problem can be extended to the linear
partial differential equations of elliptic, parabolic, and hyperbolic type. In the 1960s
and 1970s, this approach was generalized to nonlinear partial differential equations
in the setting of the theory of monotone operators. This can be found in Zeidler
(1986), Vol. IIA (linear theory), Vol. IIB (nonlinear theory), Vol. III (variational
problems and optimization), Vol. IV (applications to nonlinear problems in math-
ematical physics).

For the regularity theory of generalized solutions to linear elliptic partial differ-
ential equations and variational problems, see the following textbooks:

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of
Second Order, Springer, New York, 1983.

J. Jost and Xianqing Li-Jost, Calculus of Variations, Cambridge University
Press, 1998.

J. Jost, Partial Differential Equations, Springer, New York, 2002.

J. Jost, Postmodern Analysis, Springer, Berlin, 2005.

For a comprehensive presentation of the modern theory of partial differential equa-
tions, we refer to the following two treatises:

R. Dautray and J. Lions, Mathematical Analysis and Numerical Methods
for Science and Technology, Vols. 1–6, Springer, New York, 1988.

M. Taylor, Partial Differential Equations, Vols. 1–3, Springer, New York.

As impressive monographs on the scope of Hilbert space theory, we recommend:
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K. Maurin, Methods of Hilbert Spaces, Polish Scientific Publisher, Warsaw,
1972.

K. Maurin, Generalized Eigenfunction Expansions and Unitary Represen-
tations of Topological Groups, Polish Scientific Publisher, Warsaw, 1968.

K. Maurin, The Riemann Legacy: Riemann’s Ideas in Mathematics and
Physics of the 20th Century, Kluwer, Dordrecht, 1997.

10.4.10 The Power of Ideas in Mathematics

A mathematician like a painter or poet, is a maker of patterns. If his
patterns are more permanent as theirs, it is because they are made with
ideas.

Godfrey Harold Hardy (1877–1947)

In a right triangle the side opposite to the right angle is called the hypotenuse. The
theorem of Pythagoras says that

c2 = a2 + b2.

In words: the square of the length of the hypotenuse is equal to the sum of the
squares of the lengths of the other two legs. Mathematicians of the Pythagorean
school in ancient Greece attributed the Pythagorean theorem to the master of their
school, Pythagoras of Samos (circa 560 B.C.–480 B.C.). It is said that Pythagoras
sacrificed one hundred oxen to the gods in gratitude. In fact, this theorem was
already known in Babylon at the time of King Hammurabi (circa 1728 B.C.–1686
B.C.). Presumably, however, it was a mathematician of the Pythagorean school who
first proved the Pythagorean theorem. This famous theorem appears as Proposition
47 in Book I of Euclid’s Elements (300 B.C.).

In 1940 Hermann Weyl wrote a fundamental paper where he emphasized that
the justification of the Dirichlet principle can be based on the method of orthogonal
projection. In 1943 he applied this method to the Dirichlet prinicple for harmonic
differential forms. This way, Hodge theory obtained a sound analytic foundation.30

The notion of Hilbert space is the abstract realization of the idea of orthogonality.
To this end, one introduces the inner product

〈ϕ|ψ〉

between the two elements ϕ and ψ of the Hilbert space. Recall that we say that ϕ
is orthogonal to ψ iff 〈ϕ|ψ〉 = 0. The proofs of the essential theorems about Hilbert
spaces (e.g., spectral theory) are based on the notion of orthogonality. In the late
1920s, John von Neumann (1903–1955) discovered that the mathematical founda-
tion of quantum mechanics can be based on the theory of Hilbert spaces. Therefore,
the concept of orthogonality is crucial for quantum mechanics. In the early 1940s,
Feynman (1918–1988) developed a new approach to quantum mechanics. He called
the inner product 〈ϕ|ψ〉 the transition amplitude between the two quantum states
ϕ and ψ, and he used this in order to construct his path integral.

There are ideas in mathematics, like the idea of orthogonality, which re-
main eternally young and which lose nothing of their intellectual freshness
after thousands of years.

30 H. Weyl, The method of orthogonal projection in potential theory, Duke Math.
J. 7, (1940), 411–440.
H. Weyl, On Hodge’s theory of harmonic integrals, Ann. of Math. 44 (1943),
1–6.
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10.4.11 The Ritz Method

In order to solve the Dirichlet problem on computers, one uses the method of finite
elements in modern scientific computing. This is a special case of the Ritz method.31

The basic idea. To the original minimum problem

||U0 − U ||2 = min!, U ∈ L, (10.69)

we add the family of finite-dimensional problems

||U0 − Vn||2 = min!, Vn ∈ Ln, n = 1, 2, . . . (10.70)

and we make the following assumptions.

(A1) Let L be a closed linear infinite-dimensional subspace of the real infinite-
dimensional Hilbert space X. We are given U0 ∈ X.

(A2) We choose a sequence L1, L2, . . . of finite-dimensional linear subspaces of L
such that the union of these subspaces is dense in L.

Theorem 10.29 Each finite-dimensional problem from (10.70) has a unique so-
lution Vn, and the sequence (Vn) converges in the Hilbert space L to the unique
solution U of (10.69) as n→∞.

The method of finite elements corresponds to the special case where Ln consists of
piecewise linear (or piecewise polynomial) functions. Theorem 10.29 is the special
case of a general theorem on quadratic minimum problems in Hilbert spaces. In
order to get two-sided estimates for the minimal value of the original problem one
uses dual maximum problems. This can be found in Zeidler (1995), Vol. 1, Sect.
2.6ff. In order to obtain optimal speed of convergence, one uses different scales.
This so-called multi-grid method was developed in the 1980s. We recommend the
following monographs:

W. Hackbusch, Multigrid Methods and Applications, Springer, Berlin,
1985.

W. Hackbusch, Elliptic Differential Equations: Theory and Numerical
Treatment, Springer, New York, 1992.

P. Knabner and L. Angermann, Numerical Methods for Elliptic and
Parabolic Partial Differential Equations, Springer, New York, 2003.

Application to the ground state energy of the Helium atom. In 1928
Hylleraas used the Ritz method in order to approximately compute the ground state
energy of the Helium atom which has two electrons.32 We refer to the following
monographs:

H. Bethe and E. Salpeter, Quantum Mechanics of One- and Two-Electron
Atoms, Springer, Berlin, 1957.

M. Reed and B. Simon, Methods of Modern Physics, Vol. 4, Chap. XIII,
Academic Press, New York, 1978.

31 W. Ritz, On a new method for solving a class of variational problems (in Ger-
man), J. Reine Angew. Math. 135 (1909), 1–61.

32 E. Hylleraas, On the ground state of the Helium atom (in German), Z. Phys. 48
(1928), 469–494; 54 (1929), 347–366; 65 (1930), 209–225.
E. Hylleraas, Reminiscences from early quantum mechanics of two-electron
atoms, Rev. Mod. Phys. 35 (1963), 421–436.
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In quantum chemistry, the huge software system “Gaussian” is used in order to
compute the energy levels of fairly large molecules by means of the Ritz method.
In this connection, the method of the density functional plays an important role.
This method was developed by Walter Kohn in 1965 who was awarded the Nobel
prize in chemistry in 1998. As an introduction to this topic, we recommend the
monograph by

H. Eschrig, The Fundamentals of Density Functional Theory, Teubner,
Leipzig, 2003.

We also refer to the basic paper by E. Lieb, Density functionals for Coulomb sys-
tems, International Journal of Quantum Chemistry 24 (1983), 243–277.

10.4.12 The Main Existence Principle

Tonelli (1885–1946) very successfully introduced lower-semicontinuity ar-
guments into existence proofs by direct methods. He collected and pre-
sented his ideas, methods, and results in his treatise Fondamenti di Cal-
colo delle Variazioni the two volumes of which appeared in 1921 and 1923,
respectively.

Mariano Giaquinta and Stefan Hildebrandt33

We want to generalize the method of orthogonal projection for quadratic variational
problems to more general minimum problems. This way, we will obtain a universal
abstract existence principle in the calculus of variations.

The classical existence theorem. Let us make the following assumptions.

(A1) The real Hilbert space X is finite-dimensional.
(A2) Semicontinuity: The function F : X → R is lower semicontinuous. By defini-

tion, this means that if Un → U in X as n→∞, then34

F (U) ≤ lim inf
n→∞

F (Un).

(A3) Coercivity: lim||U||→∞ ||F (U)|| =∞ (growth condition at infinity).

Theorem 10.30 Each lower semicontinuous, coercive functional on a finite-dimen-
sional real Hilbert space has a minimum.

For example, the real function F : R → R given by

F (U)) := |U | for all U ∈ R \ {0}, F (0) ≤ 0

is lower semicontinuous and coercive. This function attains the minimum at the
point U = 0.
Proof. By (A3), there exists a number R > 0 such that

||F (U)|| ≥ ||F (0)|| for all U ∈ X with ||U || ≥ R.

Thus, in order to compute the minimum of F on X, we can restrict ourselves to
the minimum problem

F (U) = min!, U ∈ X, ||U || ≤ R.

33 Calculus of Variations, Vols. 1, 2, Springer, Berlin, 1995.
34 Explicitly, if F (Un′)→ κ as n′ →∞ for any subsequence of (Un), then F (U) ≤ κ.
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Set κ := inf ||U||≤R F (U). Then there exists a sequence (Un) with ||Un|| ≤ R for all
n such that

κ = lim
n→∞

F (Un).

Since the sequence (Un) is bounded, there exists a convergent subsequence, Un′ → U
as n′ →∞. Hence ||U || ≤ R. By (A2),

F (U) ≤ lim
n′→∞

F (Un′) = κ.

This implies F (U) = κ. �

Lack of compactness in infinite-dimensional Hilbert spaces. We now
want to generalize Theorem 10.30 to infinite dimensions. There arises the following
difficulty.35

Proposition 10.31 For a Hilbert space X, the following three properties are equiv-
alent.

(i) The dimension of X is finite.
(ii) Each bounded sequence in X has a convergent subsequence.
(iii) The closed unit ball of X is compact.

Consequently, the proof of Theorem 10.30 fails in infinite-dimensional Hilbert
spaces. However, it is possible to modify this proof by passing from convergence to
weak convergence.

The idea of weak convergence. By definition, a sequence (Un) in the Hilbert
space X is weakly convergent, denoted by

Un ⇀ U as n→∞,

iff 〈V |Un〉 → 〈V |U〉 as n→∞ for all V ∈ X.

Proposition 10.32 Each bounded sequence in a Hilbert space has a weakly con-
vergent subsequence.

If a closed ball contains a weakly convergent sequence, then it also contains the
weak limit.

On a finite-dimensional Hilbert space, convergence and weak convergence coin-
cide.

The main theorem. Let us modify the assumptions (A1)–(A3) of Theorem
10.30 above in the following way.

(B1) The dimension of the real Hilbert space X is finite or infinite.
(B2) Weak semicontinuity: The function F : X → R is weakly lower semicontinu-

ous, that is, it follows from Un ⇀ U in X as n→∞ that

F (U) ≤ lim inf
n→∞

F (Un).

(B3) Coercivity: lim||U||→∞ ||F (U)|| = ∞.

Theorem 10.33 Each weakly lower semicontinuous, coercive functional on a real
Hilbert space has a minimum.

35 For the proofs of Propositions 10.31, 10.32, see Zeidler (1995), Vol. 2, Sect. 2.4.
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Corollary 10.34 Each continuous convex coercive functional on a real Hilbert
space has a minimum.

For the proof of Theorem 10.33, replace convergence by weak convergence and ar-
gue as in the proof of Theorem 10.30. For the proof of Corollary 10.34, we refer
to Zeidler (1995), Vol. 2, Sect. 2.5. Generalizations of this theorem and many ap-
plications to variational problems and optimization problems can be found in the
author’s monograph Zeidler (1986), Vol. III. In particular, the violation of convex-
ity is responsible for the appearance of microstructures. This is studied in Müller
(1999) and Dolzmann (2003).

Problems

10.1 The main theorem on quadratic variational problems. Prove Theorem 10.27
analogously to Theorem 10.26 on orthogonal projection.
Solution: (I) Existence. Set F (U) := 1

2
a(U,U) − b(U). Let κ := infu∈L F (U).

By (A3),

F (U) ≥ γ

2
||U ||2 − β||U ||.

Hence limF||U||→∞F (U) =∞. Furthermore, F (u) ≥ −R if ||U || ≤ R. This im-
plies κ > −∞. Choose a sequence (Un) with limn→∞ F (Un) = κ, and ||Un|| ≤ R
for all n. From the identity

2a(Un, Un) + 2a(UmUm) = a(Un − Um, Un − Um) + a(Un + Um, Un + Um)

we get

F (Un) + F (Um) =
1

4
a(Un − Um, Un − Um) + 2F

„

Un + Um

2

«

≥ γ

4
||Un − Um||2 + 2κ.

Since F (Un)+F (Um)→ 2κ as n,m→∞, the sequence (Un) is Cauchy. Hence
Un → U as n→∞. As on page 341 for the inner product, it follows that F is
continuous. Therefore, F (Un)→ F (U) as n→∞. Hence F (U) = κ.
(II) The Euler–Lagrange equation. If U is a solution of the minimum problem
(10.67), then the same argument as in the proof of Theorem 10.26 shows that

a(U, V ) = b(V ) for all V ∈ L.

(III) Uniqueness. If U and U1 are solutions of (10.67), then a(U − U1, V ) = 0
for all V ∈ L, by (II). Choosing V := U − U1, we get

γ||U − U1||2 ≤ a(U − U1, U − U1) = 0,

and hence U − U1 = 0.
10.2 The Poincaré–Friedrichs inequality. Let Ω be a nonempty bounded open set

in R
N with N = 1, 2, . . . . Show that there exists a constant C > 0 such that

for all U ∈
◦
W 1

2 (Ω),
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Z

Ω

U2 dNx ≤ C

Z

Ω

N
X

j=1

(∂jU)2 dNx.

Hint: Let N = 1 and Ω :=]a, b[ Set X :=
◦
W 1

2 (Ω). For all U ∈ D(Ω), it follows
from the fundamental theorem of calculus that

U(x) =

Z x

a

f(ξ) · U ′(ξ) dξ, x ∈ [a, b]

with f(x) ≡ 1. Hence

U(x)2 ≤
Z x

a

f(ξ)2dξ

Z x

a

U ′(ξ)2dξ ≤ (b− a)

Z b

a

U ′(ξ)2dξ, (10.71)

by the Schwarz inequality. This implies

Z b

a

U(x)2dx ≤ (b− a)2
Z b

a

U ′(x)2dx.

If U ∈ X, then there exists a sequence (Un) in D(Ω) such that Un → U in X
as n→∞. Applying the limit n→∞ to

Z b

a

Un(x)2 dx ≤ (b− a)2
Z b

a

|U ′
n(x)|2dx,

we obtain the same inequality by replacing Un by U . In the general case, use
an N -dimensional interval (see Zeidler (1995), Vol. 1, Sect. 2.5.6).

10.3 Prototype of the Sobolev embedding theorem. Consider the bounded open in-

terval Ω :=]a, b[. Show that the embedding
◦
W 1

2 (Ω) ⊆ C[a, b] is continuous.
Solution: Let U ∈ D(Ω). By (10.71),

maxa≤x≤b|U(x)| ≤
„

(b− a)

Z b

a

U ′(x)2dx

«1/2

.

Noting that ||U ||1,2 := (
R b

a
U(x)2 + U ′(x)2 dx)1/2, we get

||U ||C[a,b] ≤ const ||U ||1,2.

This remains true for all functions U ∈W 1
2 (Ω), by using convergent sequences,

as in the proof of Problem 10.2. The proofs of further prototypes for the crucial
Sobolev embedding theorems can be found in Zeidler (1995), Vol. 1, Sect. 2.5.

10.4 The fundamental solution of the Poisson equation. Use the Green’s formula
(10.33) in order to prove Proposition 10.22.
Solution: Let BR be an open ball of radius R centered at the point x0. The
trick invented by Green is to replace the set Ω by Ω \ BR and letting R → 0.
By the Green’s formula (10.33) on page 548,

Z

Ω\BR

Ux0Δϕ− ϕΔUx0 d
Nx =

Z

∂Ω

ϕ
∂Ux0

∂n
− Ux0

∂ϕ

∂n
dS

+

Z

∂BR

ϕ
∂Ux0

∂n
− Ux0

∂ϕ

∂n
dS
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where ∂
∂n

denotes the derivative in direction of the outer normal vector. Note

that ∂
∂n

= − ∂
∂r

, since the outer normal vector of Ω \ BR at the sphere ∂BR

points inside the ball BR. Observe that ΔUx0 = 0 on Ω \ BR and that the
integral over ∂Ω vanishes, since the test function ϕ ∈ D(Ω) vanishes in a
boundary strip of ∂Ω. Finally, letting R→ 0, we get

lim
R→0

Z

Ω

Ux0Δϕ dNx = ϕ(x0),

by using the following Green lemma.
10.5 The Green lemma. Let f be a real valued function which is continuous on

some open neighborhood of the point x0 in R
N with N = 2, 3, , . . . . Show that

lim
R→0

Z

||x−x0||=R

f(x)
∂Ux0(x)

∂r
dS = −f(x0).

Solution: To simplify notation, we set x0 = 0 and N = 3 along with r := ||x||.
Then

Ux0(x) =
1

4πr
,

∂Ux0(x)

∂r
= − 1

4πr2
.

By the mean value theorem for integrals, there exists a point y with ||y|| = R
such that

Z

||x||=R

f(x)
∂Ux0(x)

∂r
dS = − f(y)

4πR2

Z

||x||=R

dS = −f(y).

Finally, limR→0 f(y) = f(0).
10.6 The Poisson formula for the ball. Prove Prop. 10.25. Hint: Study the proof in

Jost (2000b), p. 14.
10.7 The fundamental solution of the Helmholtz equation. Fix k ∈ R Set r := ||x||.

Show that the function

G(x) :=
e−ikr

r
for all x ∈ R

3

satisfies the identity
Z

R3
G(x)(Δϕ(x)− k2ϕ(x)) d3x = ϕ(0) for all ϕ ∈ D(R3).

In the language of distributions, this means that

(Δ− k2)G = δ on R
3.

Hint: Argue as in the proof of Prop. 10.22 on page 563.
10.8 Green’s classical argument for the Helmholtz equation. Let Ω be a nonempty

bounded open subset in R
3. Suppose that the function U ∈ C∞(Ω) ∩ C(Ω) is

a solution of the Helmholtz equation ΔU − k2U = 0 on Ω. Show that for all
points x1 ∈ Ω,

U(x1) =

Z

∂Ω

G(x1 − x)
∂U(x)

∂n
− ∂G(x1 − x)

∂n
U(x) dS.

Hint: Argue as in the proof of Theorem 10.24.
Further explicit material on the Green’s function for important equations in
mathematical physics can be found in Evans, Blackledge, and Yardley (2000).



11. Distributions and Green’s Functions

Whoever understands Green’s functions can understand forces in nature.
Folklore

The invention of the Green’s function brought about a tool-driven revo-
lution in mathematical physics, similar in character to the more famous
tool-driven revolution caused by the invention of electronic computers a
century and a half later. . . The Green’s function and the computer are
prime examples of intellectual tools. They are tools for clear thinking. . .

Invented in 1828 by George Green (1793–1841) and successfully applied to
classical electromagnetism, acoustics, and hydrodynamics, Green’s func-
tions were the essential link between the theories of quantum electrody-
namics by Schwinger, Feynman, and Tomonaga in 1948 and are still alive
and well today. . .
I began the application of the Green’s function to condensed matter physics
in 1956 with a study of spin-waves in ferromagnets. I found that all the
Green’s function tricks that had worked so well in quantum electrodynam-
ics worked even better in the theory of spin waves. . .
Meanwhile, the Green’s functions method was applied systematically by
Bogoliubov and other people to a whole range of problems in condensed
matter physics. The main novelty in condensed matter physics was the
appearance of temperature as an additional variable. . . A beautiful thing
happens when you make the transition from ordinary Green’s functions to
thermal Green’s functions. To make the transition, all you have to do is to
replace the real frequency of any oscillation by a complex number whose
real part is frequency and whose imaginary part is temperature1. . .
Soon after thermal Green’s functions were invented, they were applied to
solve the outstanding unsolved problem of condensed matter physics, the
problem of superconductivity. They allowed Cooper, Bardeen, and Schri-
effer to understand superconductivity as an effect of a particular thermal
Green’s functions expressing long-range phase-coherence between pairs of
electrons (called Cooper pairs). . .
In the 1960s, after Green’s functions had become established as the stan-
dard working tools of theoretical analysis in condensed matter physics,
the wheel of fashion in particle physics continued to turn. For a decade,
quantum field theory and Green’s functions were unfashionable in particle

1 See G. Mahan, Many-Particle Physics, Plenum Press, New York, 1990.

E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics,
c© Springer-Verlag Berlin Heidelberg 2006, Corrected 2nd printing 2009
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physics. The prevailing view was that quantum field theory had failed in
the domain of strong interactions2. . .

Then in the 1970s, the wheel of fashion turned once more. Quantum
field theory was back in the limelight with two enormous successes, the
Weinberg–Salam unified theory of electromagnetic and weak interactions,
and the gauge theory of strong interactions now known as quantum chro-
modynamics. Green’s functions were once again the working tools of cal-
culation, both in particle physics and in condensed matter physics. And
so they have remained up to the present day.

In the 1980’s, quantum field theory moved off in a new direction, to lattice
gauge theories in one direction and to superstring theory in another. . . The
Wilson loop is the reincarnation of a Green’s function in a lattice gauge
theory3 and there is a reincarnation of Green’s functions in superstring
theory.

Freeman Dyson
George Green and physics4

Between 1930 and 1940, several mathematicians began to investigate sys-
tematically the concept of a “weak” solution of a linear partial differential
equation, which appeared episodically (and without a name) in Poincaré’s
work.

It was one of the main contributions of Laurent Schwartz when he saw,
in 1945, that the concept of distribution introduced by Sobolev in 1936
(which he had rediscovered independently) could give a satisfactory gen-
eralization of the Fourier transform including all the preceding ones. . . By
his own research and those of his numerous students, Laurent Schwartz
began to explore the potentialities of distributions (generalized functions)
and gradually succeeded in convincing the world of mathematicians that
this new concept should become central in all problems of mathematical
analysis, due to the greater freedom and generality it allowed in the funda-
mental operations of calculus, doing away with a great many unnecessary
restrictions and pathology.

The role of Laurent Schwartz (born 1915) in the theory of distributions is
very similar to the one played by Newton (1643–1727) and Leibniz (1646–
1716) in the history of Calculus. Contrary to popular belief, they of course
did not invent it, for derivation and integration were practiced by men such
as Cavalieri (1598–1647), Fermat (1601–1665) and Roberval (1602–1675)
when Newton and Leibniz were merely schoolboys. But they were able to
systematize the algorithms and notations of Calculus in such a way that it
became a versatile and powerful tool which we know, whereas before them
it could only be handled via complicated arguments and diagrams.

Jean Dieudonné, 1981
History of Functional Analysis5

2 See G. Chew (1966), The Analytic S-Matrix: A Basis for Nuclear Democracy,
Benjamin, New York, and A. Barut, The Theory of the Scattering Matrix,
MacMillan, New York, 1967.

3 See I. Montvay and G. Münster, Quantum Fields on a Lattice, Cambridge Uni-
versity Press, 1994.

4 Physics World, August 1993, pp. 33–38 (reprinted with permission).
5 North Holland, Amsterdam, 1981 (reprinted with permission).
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Fig. 11.1. Heaviside function

The local propagation of physical effects is described mathematically by Green’s
functions. In quantum field theory, special Green’s functions are

• n-point correlation functions of quantum fields (n-point Green’s functions).6

They are closely related to

• propagators,
• retarded propagators,
• advanced propagators.

The prototypes can be found in Sect. 11.1.2. In terms of physics, Green’s functions
describe physical processes under the influence of sharply concentrated external
forces described by the Dirac delta function. General external forces are then ob-
tained by the superposition principle. The Dirac delta function is not a classical
object, but a generalized function (also called distribution). Therefore, distribu-
tions play a crucial role in physics, in particular, in quantum field theory. We do
not suppose that the reader is familiar with this fundamental mathematical tool.
Therefore, in this chapter, we will give an introduction to the mathematical theory
of distributions and its physical interpretation.

The theory of distributions was created by Laurent Schwartz in 1945; it was
motivated by Dirac’s approach to quantum mechanics. This was represented in
Dirac’s famous 1930 monograph Foundations of Quantum Mechanics.7 Distribu-
tions generalize a broad class of continuous and discontinuous functions. For a
classical function, one has always to worry about the existence of derivatives. The
situation changes completely for distributions.

Distributions possess derivatives of all orders.

Therefore, distributions are the right tool for the investigation of linear partial
differential equations. For example, let us introduce the discontinuous Heaviside
function

θ(t) :=

(

1 if t ≥ 0,

0 if t < 0
(11.1)

which jumps at the initial time t = 0 from zero to one (Fig. 11.1(a)). By convention,
the Heaviside function is continuous from the right. In the language of distributions
introduced in this chapter, the Heaviside function has the derivatives

θ′ = δ, θ′′ = δ′, θ′′′ = δ′′, . . .

where δ denotes the Dirac delta distribution, and δ′ denotes the first derivative of
δ, and so on.8 We will introduce the following spaces of test functions:

6 The 2-point Green’s function is also called the Feynman propagator.
7 Laurent Schwartz was awarded the Fields medal in 1950.
8 Heaviside (1850–1925) founded the theory of telephoning in his 1892 treatise

Electrical Papers.
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• the Schwartz space D(RN ) of smooth functions ϕ : R
N → C which have compact

support, and
• the Schwartz space S(RN ) of smooth functions ϕ : R → C which are rapidly

decreasing at infinity.

In addition, we will use

• the Hilbert space L2(R
N ) of square-integrable functions ϕ : R

N → C,

Z

RN

|ϕ(x)|2 dNx <∞,

• the Schwartz space D′(RN ) of distributions, and
• the Schwartz space S ′(RN ) of tempered distributions.

We have the following inclusions9

D(RN ) ⊂ S(RN ) ⊂ L2(R
N ) ⊂ S ′(RN ) ⊂ D′(RN ).

In particular, each tempered distribution is also a distribution, but the converse
is not always true. Furthermore, the functions in the Hilbert space L2(R

N ) are
tempered distributions, too. Tempered distributions are crucial for the Fourier
transform. The N -dimensional Dirac delta distribution δ is characterized by the
equation

δ(ϕ) = ϕ(0)

for all test functions ϕ ∈ S(RN ) (resp. all test functions ϕ ∈ D(RN )). Therefore, δ is
both a tempered distribution and a distribution, i.e., δ ∈ S ′(RN ) and δ ∈ D′(RN ).
If L a linear differential operator with constant coefficients, then the solutions F of
the differential equation

LF = δ

are called fundamental solutions of the differential operator L. One of the deepest
theorems in the theory of distribution tells us that

Each nonzero linear differential operator L has a fundamental solution
which is a tempered distribution.

Green’s functions are special fundamental functions which satisfy additional bound-
ary conditions and initial conditions characterizing the specific physical situation.
The Hilbert space L2(R

N ) is equipped with the inner product

〈ψ|ϕ〉 :=

Z

RN

ψ(x)†ϕ(x) dNx.

This space plays a fundamental role in quantum physics. However, in order to
rigorously justify the elegant Dirac calculus used by physicists, one has to pass
from the Hilbert space L2(R

N ) to the larger space S ′(RN ) of tempered distributions.
More precisely, one has to use the triplet of spaces

S(RN ) ⊂ L2(R
N ) ⊂ S ′(RN )

called the Gelfand triplet (or rigged Hilbert space L2(R
N )).

9 We write A ⊆ B (resp. A ⊂ B) iff A is a subset of B (resp. A is a proper subset
of B).
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Suggested reading. As an introduction to Green’s functions, we recommend
Economu (1988), Barton (1989) (the language of physicists), and Evans, Blackledge,
and Yardley (2000) (the language of mathematicians). The following monographs
serve as introductions to the theory of distributions and its applications to the
partial differential equations of mathematical physics:

• Zeidler (1995), Vol. 1,
• Gelfand and Shilov (1964), Vol. 1,
• Stein and Shakarchi (2003)(harmonic analysis),
• Vladimirov (1966) (modern reformulation of the classic theory for partial differ-

ential equations in mathematical physics),
• Egorov, Komech, and Shubin (1999) (pseudo-differential operators and Fourier

integral operators).
• Hsiao and Wendland (2008) (pseudo-differential operators, potential theory, and

boundary integral equations).

The relations between the theory of distributions and functional analysis can be
found in

• Schwartz (1965), (1978), Vols. 1, 2,
• Reed and Simon (1972), Vols. 1–4,
• Triebel (1989), and
• Yosida (1995).

Comprehensive standard texts on the theory of distributions and its applications
are

• Gelfand and Shilov (1964), Vols. 1–5,
• Hörmander (1983), Vols. 1–4,
• Egorov and Shubin (1991), Vols. 1–4.

Applications of the theory of distributions to quantum field theory are studied in

• Bogoliubov and Shirkov (1959),
• Bogoliubov et al. (1975), (1990),
• Jost (1965),
• Streater and Wightman (1968) (classic monograph on axiomatic quantum field

theory),
• Reed and Simon (1972), Vol. 2 (axiomatic quantum field theory), Vol. 3 (Haag–

Ruelle theorem in scattering theory),
• Simon (1974) (the P (ϕ)2-model),
• Scharf (1995) (the Epstein–Glaser approach to quantum electrodynamics and

renormalization), (2001) (gauge field theories),
• Manoukian (1983) (BPHZ renormalization).

A comprehensive list of fundamental solutions for partial differential equations can
be found in Ortner and Wagner (1997).

System of units. In this chapter, we use the international SI system.

11.1 Rigorous Basic Ideas

The main goal of this chapter is to show how rigorous mathematics and the formal,
but very useful language of physicists fit together. To begin with, we consider the
discrete Dirac delta function. This will serve as a preparation for introducing the
Dirac delta distribution below.
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11.1.1 The Discrete Dirac Delta Function

The discrete Dirac delta function is the key to the Dirac delta distribution.
Folklore

For a fixed number Δt > 0, the discrete delta function is defined by

δΔt(t) :=

(

1
Δt

if 0 ≤ t ≤ Δt,

0 otherwise.

Intuitively, this is a force which acts on the small time interval [0, Δt]. This force
goes to infinity as Δt→ 0. The Dirac delta function to be considered in Sect. 11.2
on page 592 refers to the limit of δΔt as Δt→ +0.

Proposition 11.1 Fix time t0. For each continuous function ϕ : R → C,

lim
Δt→+0

Z

R

δΔt(t− t0)ϕ(t)dt = ϕ(t0).

Proof. By the mean value theorem for integrals, there exists a real number τ ∈
[t0, t0 +Δt] such that

Z

R

δΔt(t− t0)ϕ(t)dt =
1

Δt

Z t0+Δt

t0

ϕ(t)dt = ϕ(τ).

By continuity, ϕ(τ) goes to ϕ(t0) as Δt→ +0. �

The Fourier transform. Let us now compute the Fourier transform of the
discrete Dirac delta function,

(FδΔt)(ω) :=
1√
2π

Z ∞

−∞
δΔt(t)e

−iωtdt =
1

Δt
√

2π

Z Δt

0

e−iωtdt.

For all nonzero real frequencies ω,

(FδΔt)(ω) =
1− e−iωΔt

iωΔt
√

2π
.

If ω = 0, then (FδΔt)(0) = 1/
√

2π. This yields the following limit.

Proposition 11.2 For all real frequencies ω,

lim
Δt→+0

(FδΔt)(ω) =
1√
2π

.

Fix the real time t0. For all real times t, we obtain the formula

δΔt(t− t0) =
1√
2π

Z ∞

−∞
(FδΔt)(ω)eiω(t−t0)dω.

Furthermore, for all real frequencies ω,

e−iωt0(FδΔt)(ω) =
1√
2π

Z ∞

−∞
δΔt(t− t0)e

−iωtdt.
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Approximation of white noise. In terms of physics, the discrete Dirac delta
function can be represented as a superposition of plane waves,

δΔt(t) =

Z ∞

−∞
aΔt(ω)eiωtdω, t ∈ R

with the amplitude

aΔt(ω) :=
(FδΔt)(ω)√

2π
, ω ∈ R.

Since limΔt→+0 aΔt(ω) = 1/2π, the amplitudes do not depend on the frequency ω,
as Δt→ +0. Physicists say that

The discrete Dirac delta function δΔt approximates white noise
as Δt→ +0.

The term ‘white’ comes from the fact that white light is a superposition of electro-
magnetic waves of all frequencies, and each frequency contributes approximately
the same amplitude.

11.1.2 Prototypes of Green’s Functions

The notion of Green’s function was introduced by George Green (1793–1841) in the
year 1828.10

The Green’s function describes the behavior of a physical system by kicking
it with a force which acts only during a very small time interval and which
is concentrated on a very small neighborhood of some point in the position
space.

This generalizes Newton’s infinitesimal strategy from mechanics to field theories.
Motion of a classical particle on the real line. Consider the following

initial-value problem

mẍ(t) = F (t), t ∈ R, x(t0) = x0, ẋ(t0) = v0. (11.2)

We are given the initial time t0, the initial position x0, the initial velocity v0, and the
smooth force function F : R → R. We are looking for the smooth position function
x : R → R. In terms of physics, problem (11.2) describes the motion x = x(t) of a
classical particle of mass m > 0 on the real line under the influence of the force F .
This force acts from left to right if it is positive. To simplify notation, set m := 1.

Proposition 11.3 The initial-value problem (11.2) has the unique solution

x(t) = x0 + P (t, t0)v0 +

Z t

t0

P (t, τ)F (τ)dτ, t ∈ R. (11.3)

The function P (t, τ) := t− τ is called the propagator defined for all t, τ ∈ R.

This proposition tells us that the propagator knows all about the motion of the
mass point.
Proof. (I) Uniqueness. If there are two solutions x and x∗, then set y := x − x∗.
Thus, ÿ = 0 on R with y(0) = ẏ(0) = 0. Hence y(t) = a+ bt with a = b = 0.

(II) Existence. Differentiation with respect to time t yields the equation

10 See the footnote on page 546.
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ẋ(t) = v0 + P (t, t)F (t) +

Z t

t0

Pt(t, τ)F (τ)dτ = v0 +

Z t

t0

F (τ)dτ.

This implies ẍ(t) = F (t). �

Retarded and advanced force. Let us split the force

F (t) = Fret(t) + Fadv(t), t ∈ R (11.4)

by setting Fret(t) := θ(t − t0)F (t) and Fadv(t) := θ(t0 − t)F (t) for all t ∈ R.
Explicitly,

Fret(t) :=

(

F (t) if t ≥ t0,

0 if t < t0,

and

Fadv(t) :=

(

0 if t ≥ t0,

F (t) if t < t0.

That is, the so-called retarded (resp. advanced) force Fret (resp. Fadv) is switched
on (resp. switched off) at time t0.

Retarded and advanced propagator. Roughly speaking, the retarded (resp.
advanced) propagator governs the motion of the particle under the influence of the
retarded (resp. advanced) force. Let us discuss this. The motion of the particle
under the influence of the retarded and advanced force is given by

x(t) =

(

x0 + (t− t0)v0 +
R t

t0
P (t, τ)Fret(τ) dτ if t ≥ t0,

x0 + (t− t0)v0 if t < t0

and

x(t) =

(

x0 + (t− t0)v0 −
R t0

t
P (t, τ)Fadv(τ) dτ if t ≤ t0,

x0 + (t− t0)v0 if t > t0,

respectively. This can be written as

x(t) = x0 + (t− t0)v0 +

Z t

t0

Pret(t, τ)Fret(τ) dτ, t ∈ R, (11.5)

and

x(t) = x0 + (t− t0)v0 +

Z t0

t

Padv(t, τ)Fadv(t, τ) dτ, t ∈ R, (11.6)

respectively. Here, for all time points t, τ ∈ R, the following two functions

Pret(t, τ) := θ(t− τ)P (t, τ)

and
Padv(t, τ) := −θ(τ − t)P (t, τ)

are called the retarded and advanced propagator, respectively.11 Obviously,

11 Instead of Pret(t, τ) (resp. Padv(t, τ)), one also uses the symbol P+(t, τ) (resp.
P−(t, τ)).
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P (t, τ) = Pret(t, τ)− Padv(t, τ).

Explicitly,

Pret(t, τ) :=

(

P (t, τ) = t− τ if t ≥ τ,

0 if t < τ,

and

Padv(t, τ) :=

(

−P (t, τ) = τ − t if t ≤ τ,

0 if t > τ.

In terms of physics, the retarded (resp. advanced) propagator describes the motion
of the mass point in the case where the force F is switched on (resp. switched off)
at time t0.

The retarded and advanced Green’s function. Alternatively, the solutions
(11.5) and (11.6) can be written as

x(t) = x0 + (t− t0)v0 +

Z ∞

−∞
Gret(t, τ)Fret(τ) dτ, t ∈ R,

and

x(t) = x0 + (t− t0)v0 +

Z ∞

−∞
Gadv(t, τ)Fadv(τ) dτ, t ∈ R,

respectively. Here, we introduce the so-called retarded Green’s function

Gret(t, τ) :=

(

Pret(t, τ) = t− τ if t0 ≤ τ ≤ t,

0 otherwise,

and the the so-called advanced Green’s function

Gadv(t, τ) :=

(

Padv(t, τ) = τ − t if t ≤ τ ≤ t0,

0 otherwise

of the initial value problem (11.2).
The Green’s function. The solution from Prop. 11.3 can be written as

x(t) = x0 + (t− t0)v0 +

Z ∞

−∞
G(t, τ)F (τ)dτ, t ∈ R. (11.7)

The function G is called the Green’s function of the initial-value problem (11.2).
Here, we set

G(t, τ) :=

8

>

<

>

:

Pret(t, τ) if t0 ≤ τ ≤ t,

Padv(t, τ) if t ≤ τ ≤ t0,

0 otherwise.

Explicitly,

G(t, τ) :=

8

>

<

>

:

t− τ if t0 ≤ τ ≤ t,

τ − t if t ≤ τ ≤ t0,

0 otherwise.



586 11. Distributions and Green’s Functions

The equations (11.2) and (11.7) reflect the duality between differential relations
and integral relations.

The kick force. In order to understand the physical meaning of the Green’s
function t �→ G(t, t1), choose the so-called kick force

F (t) := δΔt(t− t1) =

(

1
Δt

if t1 ≤ t ≤ t1 +Δt,

0 otherwise.

This force is concentrated on the time interval [t1, t1 +Δt] together with the nor-
malization condition

R∞
−∞ F (t)dt = 1. The initial-value problem (11.2) has then the

classical solution

xΔt(t) = x0 + (t− t0)v0 +

Z ∞

−∞
G(t, τ)δΔt(τ − t1)dτ

for all times t ∈ R different from the points t1 and t1 +Δt where the force jumps.
The position function x = xΔt(t) is continuous for all times t ∈ R.

Proposition 11.4 The limit Δt→ +0 yields the motion

x(t) = lim
Δt→+0

xΔt(t) = x0 + (t− t0)v0 +G(t, t1), t ∈ R.

This tells us that, as Δt → +0, the influence of the kick force is described by
the Green’s function t �→ G(t, t1).
Proof. Note that

lim
Δt→+0

Z ∞

−∞
G(t, τ)δΔt(τ − t1) dτ = lim

Δt→+0

1

Δt

Z t1+Δt

t1

G(t, τ)dτ = G(t, t1).

�

The prototype of the Schrödinger equation. Let A be a fixed complex
number. We want to study the initial-value problem

ẋ(t) = Ax(t) + F (t), t ∈ R, x(t0) = x0. (11.8)

We are given the initial time t0, the initial position x0 ∈ C, and the smooth external
source F : R → C. We are looking for a smooth function x : R → C.

Proposition 11.5 Problem (11.8) has the unique solution

x(t) = P (t, t0)x0 +

Z t

t0

P (t, τ)F (τ)dτ, t ∈ R

with the propagator P (t, τ) := eA(t−τ) for all t, τ ∈ R.

The proof parallels the proof of Proposition 11.3. Replacing the propagator
P (t, τ) := t−τ by the new propagator P (t, τ) := eA(t−τ), we introduce the functions
Pret, Padv, G,Gret, Gadv as described above.

Oscillating classical mass point with non-critical angular frequency.
We are given the time interval [−T

2
, T

2
] of length T > 0. Introduce the following

critical angular frequencies

ωk :=
2πk

T
, k = 0, 1, 2, . . . .



11.1 Rigorous Basic Ideas 587

Consider the problem

mẍ(t) + ω2x(t) = F (t), t ∈ R. (11.9)

To simplify notation, choose the unit mass, m := 1. For fixed K = 1, 2, . . . , we are
given the smooth T -periodic force function

F (t) :=

K
X

k=−K

bke2πikt/T , t ∈ R

where the Fourier coefficients bk are complex numbers. Furthermore, we are given
the angular frequency ω > 0 such that ω �= ωk for all k = 1, 2, . . . We are looking
for the smooth T -periodic position function x : R → C. The real and imaginary
parts of the function x = x(t) describe the oscillation of a mass point on the real
line of time period T .

Proposition 11.6 Problem (11.9) has the unique solution

x(t) =

Z T/2

−T/2

G(t, τ)F (τ)dτ, t ∈ R

with the continuous Green’s function

G(t, τ) :=

∞
X

k=−∞

e2πik(t−τ)/T

T (ω2 − ω2
k)
, t, τ ∈ R.

Proof. To simplify notation, set T := 2π. The general case follows then by rescaling
of time.

(I) Existence. Choose F (t) := bkeikt for fixed k = 0,±1,±2, . . . Then the func-
tion

x(t) =
bkeikt

ω2 − k2
, t ∈ R

is a solution of (11.9). By the orthogonality relation
R π

−π
eintdt = 2πδn,0 for all

integers n, we get

bk =
1

2π

Z π

−π

e−ikτ F (τ)dτ.

Hence

x(t) =

Z π

−π

eik(t−τ)

2π(ω2 − k2)
F (τ) dτ.

Again by the orthogonality relation,

x(t) =

K
X

n=−K

Z π

−π

ein(t−τ)

2π(ω2 − n2)
F (τ) dτ

for all K with K > |k|. Letting K → +∞, we get

x(t) =

Z π

−π

G(t, τ)F (τ) dτ, t ∈ R.

Note that integration and the limiting process K → ∞ can be interchanged by
means of the majorant condition
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˛

˛

˛

˛

eik(t−τ)

2π(ω2 − n2)

˛

˛

˛

˛

≤ const

1 + n2
, n = 0,±1,±2, . . .

along with
P∞

n=0
1

1+n2 < ∞. For the finite sum F (t) =
P

k bkeikt, we use the

superposition principle.
(II) Uniqueness. Let t �→ x1(t) and t �→ x2(t) be two solutions of (11.9). For the

difference x(t) := x1(t)− x2(t), we get ẍ+ ω2x = 0. Since x : R → C is 2π-periodic
and smooth, we have the Fourier series

x(t) =

∞
X

k=−∞
akeikt, t ∈ R.

Moreover, for each r = 1, 2, . . . , we have the estimate

|ak| ≤
const(r)

1 + kr
for all k = 0,±1,±2, . . . , (11.10)

by (10.9) on page 536. Hence the Fourier series can be differentiated term by term.
This yields

ẍ(t) + ω2x(t) =
∞
X

k=−∞
(ω2 − k2)akeikt = 0.

This implies (ω2 − k2)ak = 0 for all integers k. Hence ak = 0 for all k. Therefore,
x(t) ≡ 0. �

The critical resonance case and the method of regularization. For fixed
k0 = 1, 2, . . . , choose the critical angular frequency

ω = ωk0 .

In this case, the homogeneous problem (11.9) with F (t) ≡ 0 has the general solution

x(t) = ak0e
2πik0t/T + a−k0e

−2πik0t/T , t ∈ R

with arbitrary complex numbers a±k0 . These solutions correspond to eigenoscilla-
tions with the angular frequency ωk0 = 2πk0/T.

Proposition 11.7 The inhomogeneous problem (11.9) has a solution iff the ex-
ternal force F satisfies the non-resonance condition bk0 = b−k0 = 0. The general
solution of (11.9) is then given by

x(t) = ak0e
2πik0t/T + a−k0e

−2πik0t/T + lim
ε→+0

Z T/2

−T/2

Gε(t, τ)F (τ)dτ, t ∈ R

where a±k0 are arbitrary complex numbers. For each ε > 0, the function

Gε(t, τ) :=

∞
X

k=−∞

e2πik(t−τ)/T

T (ω2 − ω2
k + iε)

, t, τ ∈ R

is called the regularized Green’s function.
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Proof. Use the same argument as in the proof of Prop. 11.6 above. Note the fol-
lowing peculiarity. Let T = 2π. If x = x(t) is a solution of (11.9), then

(−k2 + ω2
k0)ak = bk, k = 0,±1,±2, . . .

Since ωk0 = k2
0, we get bk0 = b−k0 = 0. Conversely, let bk0 = b−k0 = 0. Then, the

dangerous terms
b±k0e

±ik0t

ω2
k0
− k2

0 + iε

drop out. Therefore, the limit

lim
ε→+0

Z T/2

−T/2

Gε(t, τ)F (τ)dτ, t ∈ R

is well-defined, and it represents a special solution of (11.9). �

11.1.3 The Heat Equation and the Heat Kernel

We now want to study the prototype of the Green’s function for a classical field
theory. This is Fourier’s famous heat kernel. Let ψ(x, t) be the temperature of a
homogeneous body at position x and time t. By Fourier’s law, variations of the
temperature generate a heat current density vector given by

J = −κgradψ

where the material constant κ > 0 is called the heat conductivity of the body. The
conservation law for heat,

∂ψ

∂t
+ div J = 0,

yields the heat conduction equation

∂ψ

∂t
= −κΔψ. (11.11)

In his 1822 treatise On the Theory of Heat, Fourier used the Fourier transform in
order to obtain the famous solution formula

ψ(x, t) =

Z

R3
K(x, t;y, s)ψ(y, s)d3y, x ∈ R

3, t > s (11.12)

with the so-called heat kernel

K(x, t;y, s) :=

„

1

4πκ(t− s)

«

3
2

e
− (x−y)2

4κ(t−s)

for all position vectors x,y ∈ R
3, and all times t, s ∈ R with t > s. If we know the

temperature ψ(y, s) at the initial time s, then formula (11.12) yields the tempera-
ture ψ(x, t) at each later time t > s. In order to get the physical interpretation of
the heat kernel, choose an initial temperature ψ(y, s) := δε(y) at time s which is
localized in a small neighborhood of the point y = 0. Explicitly,

δε(y) :=

(

1
V (ε)

if ||y|| ≤ ε

0 otherwise
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where V (ε) = 4
3
πε3 is the volume of a sphere of radius ε. Letting ε→ 0, we get the

temperature

K(x, t; 0, s) = lim
ε→0

Z

R3
K(x, t;y, s)δε(y)d3y

at the point x at time t > 0. Physicists say briefly that the initial temperature
δ(y), which is sharply concentrated at the origin at time s, induces the temperature
K(x, t; 0, s) at each point x and each time t > s.

The classical approach. For the temperature function ψ = ψ(x, t), consider
the initial-value problem

∂ψ(x, t)

∂t
= −κΔψ(x, t) + f(x, t), x ∈ R

3, t ≥ 0,

ψ(x, 0) = ψ0(x), x ∈ R
3.

(11.13)

Here, κ > 0. We are given both the smooth initial temperature ψ0 ∈ S(R3), and
the external heat source f = f(x, t) which is smooth on R

3× [0,∞[. In addition, we
assume that the function x �→ f(x, t) lies in the space S(R3) for each time t ≥ 0. We
are looking for a solution ψ = ψ(x, t) which is smooth on R

3× ]0,∞[, continuous
on R

3 × [0,∞[ , and bounded on R
3 × [0, t1] for each t1 > 0.

Theorem 11.8 The initial-value problem (11.13) has a unique solution given by

ψ(x, t) =

Z

R3
K(x, t;y, 0)ψ0(y) d3y

+

Z t

0

dτ

Z

R3
K(x, t;y, τ) f(y, τ) d3y (11.14)

for all position vectors x ∈ R and all times t > 0.

The heat kernel is also called the Feynman propagator kernel of the heat equation.
The proof of this classical result can be found in Triebel (1989), Sect. 41. In fact,
careful differentiation of (11.14) shows that ψ is a solution of (11.13). Uniqueness
follows from the maximum principle.

Perturbation theory. Instead of (11.13), let us consider the modified initial-
value problem

∂ψ(x, t)

∂t
= −κΔψ(x, t)− U(x)ψ(x, t), x ∈ R

3, t ≥ 0,

ψ(x, 0) = ψ0(x), x ∈ R
3.

(11.15)

By Theorem 11.8, we obtain the Volterra integral equation

ψ(x, t) =

Z

R3
K(x, t;y, 0)ψ0(y) d3y

−
Z t

0

dτ

Z

R3
K(x, t;y, τ)U(y)ψ(y, τ) d3y

which can be solved by an iterative method. As first approximation, we get

ψ(x, t) =

Z

R3
K(x, t;y, 0)ψ0(y) d3y

−
Z t

0

dτ

Z

R3
K(x, t;y, τ)U(y)ψ0(y) d3y.
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Fig. 11.2. Wick rotation

11.1.4 The Diffusion Equation

The heat equation (11.11) also describes a diffusion process in 3-dimensional space.
In this case, ψ(x, t) describes the density of a fluid at the point x at time t. The
number κ > 0 is called the diffusion coefficient.

11.1.5 The Schrödinger Equation and the Euclidean Approach

We now consider the Schrödinger equation for a free particle,

i
∂ψ

∂t
=

�

2m
Δψ. (11.16)

This equation is obtained from the heat conduction equation (11.11) with the pa-
rameter κ := �/2m by replacing real time t by imaginary time it. This way, we
formally obtain the Feynman propagator kernel for a free quantum particle

P+(x, t;y, s) = K(x, it;y, is) =

„

m

ih(t− s)

«

3
2

e
im(x−y)2

2�(t−s) (11.17)

for t > s. This corresponds to an analytic continuation from the real t axis to the
imaginary axis by a counterclockwise rotation of angle π

2
. This rotation is called a

Wick rotation (Fig. 11.2). Thus, i
3
2 is to be understood as e

3πi
4 .

The free quantum particle. Consider the initial-value problem

i�
∂ψ

∂t
(x, t) =

P2

2m
ψ(x, t), x ∈ R

3, t > 0,

ψ(x, 0) = ψ0(x), x ∈ R
3.

(11.18)

Here, P = −i�∂. This Schrödinger equation describes the motion of a free quan-
tum particle of mass m (e.g., an electron) on the 3-dimensional Euclidean space.
Replacing time t by it and applying formal analytic continuation to the solution
formula (11.14), we get

ψ(x, t) =

Z

R3
P+(x, t;y, 0)ψ0(y)d3y, x ∈ R

3, t > 0.

Explicitly,

ψ(x, t) =
“ m

iht

”

3
2
Z

R3
e−

m(x−y)2

2i�t ψ0(y) d3y, x ∈ R
3, t > 0. (11.19)
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In order to justify this formula rigorously, let us introduce the Hilbert space L2(R
3).

Define

H0 :=
P2

2m
.

More precisely, as the domain of definition of the operator

H0 : D(H0) ⊆ L2(R
3) → L2(R

3),

we choose the Sobolev space D(H0) := W 2
2 (R3). By definition, this space consists

of all functions ϕ ∈ L2(R
3) whose first and second partial derivatives, in the sense

of generalized functions, lie in L2(R
3), too (see page 614). Since the operator H0

is self-adjoint, the operator e−iH0t/� : L2(R
3) → L2(R

3) is unitary, by the classical
Stone theorem. The Hilbert space function

ψ(t) := e−iH0t/� ψ0, t ∈ R (11.20)

represents the generalized solution of (11.18) for each given ψ0 ∈ L2(R
3).

Theorem 11.9 For each given function ψ0 ∈ S(R3), the solution (11.20) coincides
with (11.19).

The proof can be found in Zeidler (1995), Vol. 1, Sect. 5.22.2.

11.2 Dirac’s Formal Approach

Our work led us to consider quantities involving a certain kind of infinity.
To get a precise notation for dealing with these infinities, we introduce a
quantity δ(t) depending on a parameter t satisfying a condition

Z ∞

−∞
δ(t)dt = 1 and δ(t) = 0 for t �= 0. (11.21)

This is not a function according to the usual mathematical definition of
a function, but is something more general. . . Thus δ(t) is not a quantity
which can be generally used in mathematical analysis like an ordinary
function, but its use must be confined to certain simple kinds of expressions
for which it is obvious that no inconsistency can arise.

Paul Dirac, 1930
Principles of Quantum Mechanics12

In order to understand the Dirac delta function δ, use the discrete Dirac
delta function δΔt and carry out the limit Δt→ 0 at the right place.

Folklore

In this section, let us discuss the Dirac delta function in the language used by
physicists. The following formal considerations will be given a rigorous meaning
later on. However, it is useful to know the language of physicists as a mnemonic
tool for the rigorous approach.

12 Clarendon Press, Oxford, 1930. Fourth edition 1981. Reprinted by permission of
Oxford University Press.
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11.2.1 Dirac’s Delta Function

The use of the Dirac delta function in physics is based on the following formal
formulas:

(i) Limit: limΔt→0 δΔt(t) = δ(t) for all t ∈ R.
(ii) Support: δ(t) = 0 for all t ∈ R with t �= 0.
(iii) Characteristic property: Fix the real time t0. For each continuous function

ϕ : R → C,

Z

R

δ(t− t0)ϕ(t)dt = ϕ(t0). (11.22)

Moreover, δ(t− t0) = δ(t0 − t) for all t, t0 ∈ R.
(iv) Fourier transform: Fix the real time t0. For all real frequencies ω,

1√
2π

Z ∞

−∞
δ(t− t0)e

−iωtdt =
e−iωt0

√
2π

.

In particular, for t0 = 0 we get

(Fδ)(ω) =
1√
2π

, ω ∈ R.

(v) Inverse Fourier transform: For all real times t,

δ(t) =
1

2π

Z ∞

−∞
eiωtdω.

This corresponds to δ(t) = F−1
“

1√
2π

”

(t).

Motivation. The relations (ii) through (v) can be obtained from Sect. 11.1.1
by using the corresponding relations for the discrete Dirac delta function δΔt and
formally carrying out the limit Δt→ 0. Mnemonically, the Fourier transformation
formula (iv) follows immediately from the characteristic property (iii). This implies
(v) by using the inverse Fourier transform from Sect. 10.3.3 on page 537 in a formal
way.

The need for introducing generalized functions. There does not exist
any classical function δ which satisfies relations (i) through (v) above. In fact, if a
classical solution f : R → C has the property that f(t) = 0 for all t ∈ R with t �= 0,
then

Z

R

f(t)ϕ(t)dt = 0

for all smooth functions ϕ : R → C. Therefore, relations (ii) and (iii) are contra-
dictory for a classical function. However, we will show below that there exists a
generalized function δ in the sense of Laurent Schwartz which has rigorous proper-
ties that resemble the formal properties (i) through (v) summarized above.
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11.2.2 Density of a Mass Distribution

The Dirac delta function allows us to handle continuous and discrete mass
distributions on equal footing by using mass density functions.

Folklore

Continuous mass distribution. Let ! : R → R be a continuous nonnegative
function. Physically, this function can be regarded as the mass density of a mass
distribution on the real line. The number

m =

Z b

a

!(x)dx

then represents the mass on the finite interval [a, b].
Discrete mass distribution. Consider now a point of mass m > 0 at the

coordinate x0 on the real line. Formally, we assign the mass density function

!(x) := m · δ(x− x0) for all x ∈ R

to the mass point. To motivate this formal convention, note that !(x) = 0 for all
points x on the real line different from x0. This means that there is no mass at the
points different from x0. Moreover,

Z

R

!(x)dx = m,

that is, the total mass equals m.
Approximation of a mass point. For fixed Δx > 0, choose the mass density

!Δx(x) := m · δΔx(x− x0) for all x ∈ R.

Then, we have !Δx(x) = 0 for all points x on the real line outside the small interval
[x0, x0 +Δx]. Furthermore,

Z

R

!Δx(x)dx =
1

Δx

Z x0+Δx

x0

mdx = m.

Letting Δx → 0, the interval [x0, x0 + Δx] shrinks to the point x0. Formally, we
write

lim
Δx→+0

!Δx(x) = m · δ(x− x0) for all x ∈ R.

11.2.3 Local Functional Derivative

Local functional derivatives are frequently used in quantum field theory.
They generalize classical partial derivatives to an infinite number of vari-
ables.

Folklore

The Dirac delta function as a generalized Kronecker symbol. Recall that
δkk := 1 and δkl = 0 if k �= l. For a given finite interval [a, b] on the real line,
consider the partition points

xk := a+ kΔx, k = 0, 1, . . . N

with Δx := (b− a)/N. Then
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N
X

j=1

f(xj)
δjk

Δx
·Δx = f(xk), k = 1, . . . , N.

The formal limit yields

Z b

a

f(x)δ(x− y) · dx = f(y), a < y < b.

Classical partial derivatives. Let f : R
n → R be a function of n real variables

x1, . . . , xn. The partial derivative is defined by

∂f(x1, . . . , xn)

∂xk
=

d

dt
f(x1 + tδ1k, . . . , x

n + tδkn)|t=0.

Therefore

∂xj

∂xk
= δjk, j, k = 1, . . . , n. (11.23)

This corresponds to f(x1, . . . , xn) := xj for all x1, . . . , xn ∈ R.
Local functional derivative. By a real functional on the real line, we mean

a map J �→ Z(J) which assigns a real number Z(J) to each function J : R → R.
If necessary, we restrict ourselves to continuous functions J , smooth functions,
integrable functions, and so on. Replacing the Kronecker symbol by the Dirac delta
function, we formally define the functional derivative by setting

δZ(J)

δJ(y)
:=

d

dt
Z(J + tδy)|t=0 (11.24)

where δy(x) := δ(x− y). Parallel to (11.23), we get

δJ(x)

δJ(y)
= δ(x− y), x, y ∈ R.

This corresponds to (11.24) by choosing the functional Z(J) := J(x) for all func-
tions J : R → R and fixed x ∈ R. Let us consider some examples.

(i) Consider the functional

Z(J) :=

Z

R

!(x)J(x)dx

for all continuous functions J : R → R and fixed continuous function ! : R → R.
Formally differentiating the expression

Z(J + tδy) =

Z

R

!(x)(J(x) + tδ(x− y)) dx

with respect to the variable t at the point t = 0, we get

δZ(J)

δJ(y)
=

Z

R

!(x)δ(x− y) dx = !(y).
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(ii) Let !(x, y) = !(y, x) for all x, y ∈ R. For the functional

Z(J) := 1
2

Z

R2
!(x, y)J(x)J(y) dxdy

we obtain

δ2Z(J)

δJ(y0)δJ(x0)
= !(x0, y0) for all x0, y0 ∈ R. (11.25)

In fact, formally differentiating the function

Z(J + tδx0) = 1
2

Z

R2
!(x, y)(J(x) + tδ(x− x0))(J(y) + tδ(y − x0)) dxdy

with respect to t at the point t = 0, we get that the local functional derivative

δZ(J)

δJ(x0)

is equal to

1
2

Z

R2
!(x, y)δ(x− x0)J(y) dxdy + 1

2

Z

R2
!(x, y)J(x)δ(y − x0) dxdy

= 1
2

Z

R

!(x0, y)J(y)dy + 1
2

Z

R

!(x, x0)J(x)dx =

Z

R

!(x0, y)J(y)dy.

Furthermore, formally differentiating the function

δZ(J + tδy0)

δJ(x0)
=

Z

R

!(x0, y)(J(y) + tδ(y − y0)) dy

with respect to t at t = 0, we get
R

R
!(x0, y)δ(y− y0)dy = !(x0, y0). This is the

claim (11.25).
(iii) Let −∞ < t1 < τ < t2 <∞. For the functional

S[q] :=

Z t2

t1

{ 1
2
q̇(t)2 − 1

2
q(t)2 + q(t)F (t)} dt,

we obtain
δS[q]

δq(τ)
= −q̈(τ)− q(τ) + F (τ).

In fact, formally differentiating the function

S[q + sδτ )] =

Z t2

t1

{ 1
2
(q̇(t) + sδ̇(t− τ))2

− 1
2
(q(t) + sδ(t− τ))2 + (q(t) + δ(t− τ))F (t)} dt

with respect to the variable s at the point s = 0, we get

δS[q]

δq(τ)
=

Z t2

t1

{q̇(t)δ̇(t− τ)− q(t)δ(t− τ) + F (t)δ(t− τ)} dt.

Finally, integration by parts yields

δS[q]

δq(τ)
=

Z t2

t1

(−q̈(t)− q(t) + F (t))δ(t− τ) dt = −q̈(τ)− q(τ) + F (τ).
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The relation to functional derivatives used in mathematics. Let us
consider a typical example which arises in the calculus of variations. To this end,
introduce the space C∞

b [t1, t2] of smooth functions q : [t1, t2]→ R which satisfy the
boundary condition q(t1) = q(t2) = 0. Define the functional S : C∞

b [t1, t2] → R by
setting

S[q] :=

Z t2

t1

{ 1
2
q̇(t)2 − 1

2
q(t)2 + q(t)F (t)} dt.

Here, the continuous function F : [t1, t2] → R is fixed. For given functions q, h ∈
C∞

b [t1, t2], the functional derivative of the functional S at the point q in direction
of h is defined by

δS[q]

δq
(h) =

d

ds
S[q + sh]|s=0.

Explicitly, differentiating the function

S[q + sh] =

Z t2

t1

{(q̇(t) + sḣ(t))2 − (q(t) + sh(t))2 + (q(t) + h(t))F (t)} dt

of the real variable s at the point s = 0, we obtain

δS[q]

δq
(h) =

Z t2

t1

(q̇(t)ḣ(t)− q(t)h(t) + h(t)F (t)) dt.

Integration by parts yields

δS[q]

δq
(h) =

Z t2

t1

(−q̈(t)− q(t) + F (t))h(t) dt.

Defining
δS[q]

δq(t)
:= −q̈(t)− q(t) + F (t),

we obtain

δS[q]

δq
(h) =

Z t2

t1

δS[q]

δq(t)
· h(t) dt. (11.26)

Naturally enough, the function

t �→ δS[q]

δq(t)

is called the density function of the functional derivative

δS[q]

δq
: C∞

b [t1, t2]→ R.

Note that the density function coincides with the local functional derivative intro-
duced above in a formal way. Setting δq := h, let us write the key formula (11.26)
as

δS =

Z t2

t1

δS[q]

δq(t)
· δq(t) dt.

This formula resembles the classical formula
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df =
n
X

k=1

∂f(x)

∂xk
· dxk

for the function f : R
n → R with x = (x1, . . . , xn).

Application to the calculus of variations. Consider the problem

S[q] = critical!, q ∈ C∞
b [t1, t2]. (11.27)

Here, the function q is a solution iff

δS[q]

δq
(h) = 0 for all h ∈ C∞

b [t1, t2].

By the variational lemma on page 544, this is equivalent to

δS[q]

δq(t)
= 0 for all t ∈ [t1, t2].

Explicitly, this means that q̈(t) + q(t) = F (t) for all t ∈ [t1, t2]. This is the Euler–
Lagrange equation to the variational problem (11.27).

11.2.4 The Substitution Rule

In quantum field theory, physicists use frequently the function x �→ δ(f(x)). We
define

δ(f(x)) :=

N
X

j=1

δ(x− xj)

|f ′(xj)|
for all x ∈ R. (11.28)

Here, we assume that the function f : R → R is smooth, and it has precisely the
zeros x1, . . . , xN . In addition, suppose that the zeros are non-degenerate, that is,
f ′(xj) �= 0 for all j = 1, . . . , N. For example, if a is a nonzero real number and
x0 ∈ R, then

δ(a(x− x0)) :=
δ(x− x0)

|a| for all x ∈ R.

Furthermore, if a > 0, then

δ(x2 − a2) =
δ(x− a)

2a
+
δ(x+ a)

2a
for all x ∈ R.

This implies
Z

R

δ(x2 − a2)ϕ(x)dx =
ϕ(a)

2a
+
ϕ(−a)

2a
(11.29)

for all continuous functions ϕ : R → R. In turn, setting x := (x, t), formula (11.29)
yields

Z

R4
δ(t2 − x2)ϕ(x)d4x =

X

σ=±1

Z

R3

ϕ(x, σ||x||)
2||x|| d3x, (11.30)

for all continuous functions ϕ : R
4 → R which vanish outside some ball. In order to

get formula (11.30), one has to first integrate over time t.
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Let us now motivate the definition (11.28). Suppose first that the smooth func-
tion f : R → R has the only zero x1. In addition, let f ′(x1) > 0. Set

J :=

Z x1+Δx

x1−Δx

δ(f(x))ϕ(x)dx.

For sufficiently small Δx > 0, the function f is monotone increasing on the interval
[x1 −Δx, x1 +Δx]. Using the substitution y = f(x), we get

J =

Z f(x1+Δx)

f(x1−Δx)

δ(y)ϕ(x(y))
dx(y)

dy
dy.

Since f(x1) = 0,

J = ϕ(x(0))
dx(0)

dy
=

ϕ(x1)

f ′(x1)
.

If f ′(x1) < 0, then we get an additional minus sign. Finally, the case of several
zeros can be reduced to the case of one zero, by localization.

11.2.5 Formal Dirac Calculus and the Fourier Transform

It is worth noting that notation facilitates discovery. This, in a most won-
derful way, reduces the mind’s labor.

Gottfried Wilhelm Leibniz (1646–1716)

We want to show that the Dirac calculus represents the most elegant mnemonic
method in order to memorize the Fourier transform and, more general, all kinds of
eigenfunction expansions appearing in mathematics and physics. In this section, we
are going to generalize the rigorous finite-dimensional Dirac calculus from Sect. 7.11
on page 361 to infinite dimensions in a formal, but very useful way. In 1955 Gelfand
and Kostyuchenko published a rigorous justification of the general Dirac calculus
in terms of an extension of von Neumann’s spectral theory to rigged Hilbert spaces;
they used distributions as generalized eigenfunctions (see Sect. 12.2 on page 677).

States, costates, and generalized states. Let x, p ∈ R. It turns out that for
the complete description of a quantum particle on the real line, the notion of states
in a Hilbert space is not sufficient. One also needs costates and generalized states
which are related to the duality theory of Hilbert spaces in mathematics. Following
Dirac, we introduce the following symbols:

• state |ψ〉 of a quantum particle on the real line;
• costate 〈F | of a quantum particle on the real line;
• generalized state |F 〉 which is dual to the costate 〈F |;
• position costate 〈x|;13
• generalized position state |x〉;
• momentum costate 〈p|;
• generalized momentum state |p〉;
13 Intuitively, 〈x|ψ〉 is the value ψ(x) of the Schrödinger wave function ψ at the

point x.
The state |x〉 describes a quantum particle on the real line which is localized at
the point x. This is a highly idealized situation.
The state |p〉 describes a quantum particle on the real line which has the sharp
momentum p.
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• to each state |ψ〉 we assign a uniquely determined costate which is denoted by
〈ψ|.

Below we will use the following notation: |ϕ〉, |ψ〉, |χ〉 are states, 〈F |, 〈G| are
costates, and α, β are complex numbers. We first postulate that the linear com-
binations

α|ϕ〉+ β|ψ〉 and α〈F |+ β〈G|
and

α|F 〉+ β|G〉
make sense, that is, states, costates, and generalized states form a complex linear
space, respectively. Secondly, we postulate that the following products are defined:

• 〈F | · |ψ〉 (dual pairing);
• |ψ〉〈F | (tensor product);
• 〈ψ| · |F 〉 (antidual pairing).

Here, 〈F | · |ψ〉 is a complex number which relates the abstract quantities 〈F | and
|ψ〉 to physical measurement processes. We assume that the following properties
hold true:

• Distributivity: 〈F | · (α|ϕ〉+ β|ψ〉) = α〈F | · |ϕ〉+ β〈F | · |ψ〉, and

(α〈F |+ β〈G|) · |ψ〉 = α〈F | · |ϕ〉+ β〈G| · |ψ〉.

• Anticommutativity: 〈ψ| · |ϕ〉 = (〈ϕ| · ψ〉)† and 〈ψ| · |F 〉 = (〈F | · |ψ〉)†.
• Associativity: (|ϕ〉 · 〈F |) · |ψ〉 := |ϕ〉 · (〈F | · |ψ〉).
To simplify notation, we write

〈F |ψ〉 := 〈F | · |ψ〉,

and 〈ψ|F 〉 := 〈ψ| · |F 〉, as well as |αϕ+βψ〉 := α|ϕ〉+β|ψ〉. This yields the following
formulas:

(a) 〈F |αϕ+ βψ〉 = α〈F |ϕ〉+ β〈F |ψ〉;
(b) 〈ψ|ϕ〉 = 〈ϕ|ψ〉†;
(c) 〈ψ|F 〉 = 〈F |ψ〉†;
(d) |ϕ〉〈F | · |ψ〉 = |ϕ〉〈F |ψ〉 = 〈F |ψ〉 |ϕ〉.
(e) 〈αϕ+ βψ|χ〉 = α†〈ϕ|χ〉+ β†〈ψ|χ〉;
(f) 〈αϕ+ βψ|F 〉 = α†〈ϕ|F 〉+ β†〈ψ|F 〉.
In fact, 〈αϕ+ βψ|χ〉 is equal to

〈χ|αϕ+ βψ〉† = (α〈χ|ϕ〉+ β〈χ|ψ〉)† = α†〈ϕ|χ〉+ β†〈ψ|χ〉.

Similarly, we argue for motivating (f). In terms of mathematics, the following hold
true.

• By (a), costates 〈F | are linear functionals, and 〈F |ψ〉 is the value F (ψ) of the
functional F at the point ψ.

• By (f), generalized states |F 〉 are antilinear functionals where 〈ψ|F 〉 is the value
F (ψ) of the functional at the point ψ.

• By (d), the product |ϕ〉 · 〈F | corresponds to the tensor product ϕ⊗ F.

The key relations. In the late 1920’s, Dirac noticed that the classical Fourier
transform can be elegantly reformulated in terms of the following key relations for
states and costates. Let x, y, p, q ∈ R.
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(K1) Dual pairing between states and position costates:

〈x|ψ〉 = ψ(x).

In terms of physics, the complex-valued function x �→ ψ(x) is the famous
Schrödinger wave function of the quantum particle on the real line. Further-
more,

〈ψ|x〉 = 〈x|ψ〉† = ψ(x)†.

(K2) Dual pairing between position costates and generalized momentum states:

〈x|p〉 =
eipx/�

√
2π�

.

The function x �→ 〈x|p〉 represents the Schrödinger wave function of a particle
on the real line which has the momentum p.14

(K3) Orthogonality relation for position states: 〈x|y〉 = δ(x− y).
(K4) Completeness relation for position states:

Z

R

|x〉〈x| dx = I

where I denotes the identity operator.
(K5) Orthogonality relation for momentum states: 〈p|q〉 = δ(p− q).
(K6) Completeness relation for momentum states:

Z

R

|p〉〈p| dp = I.

(K7) Matrix elements of the position operator X: For all x, y ∈ X,

〈x|X|y〉 := xδ(x− y).

This implies 〈x|X|y〉† = 〈y|X|x〉.
(K8) Matrix elements of the momentum operator P : For all p, q ∈ R,

〈p|P |q〉 := pδ(p− q).

Hence 〈p|P |q〉† = 〈q|P |p〉.
The Fourier transform. Let us now show that (K1) through (K8) summarize

all of the properties of both the Fourier transform and the Dirac delta function.

(i) Inner product: For all states |ψ〉 and |ϕ〉,

〈ϕ|ψ〉 =

Z

R

ϕ(x)†ψ(x)dx. (11.31)

To get this in a formal way, we start with the trivial identity

〈ϕ|ψ〉 = 〈ϕ|I|ψ〉.
14 Note that

R

R
|eipx/� |2dx = ∞. Therefore, the function x �→ 〈x|p〉 does not lie in

the Hilbert space L2(R).
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We now apply Dirac’s substitution trick. Explicitly, we replace the identity
operator I by the completeness relation (K4) for the position operator. Thus,

〈ϕ|ψ〉 =

Z

R

〈ϕ|x〉〈x|ψ〉 dx.

This is identical with (11.31).
(ii) Fourier transform: By Dirac’s substitution trick,

〈p|ψ〉 =

Z

R

〈p|x〉〈x|ψ〉 dx.

Setting ψ̂(p) := 〈p|x〉, we obtain

ψ̂(p) =
1√
2π�

Z

R

e−ipx/�ψ(x) dx.

This shows that ψ̂ is the Fourier transform of ψ.
(iii) Inverse Fourier transform: By Dirac’s substitution trick and the completeness

relation (K6) for the momentum states,

〈x|ψ〉 =

Z

R

〈x|p〉〈p|ψ〉 dp.

Explicitly, this is the inverse Fourier transform,

ψ(x) =
1√
2π�

Z

R

eipx/�ψ̂(p) dp.

(iv) The Parseval equation: By Dirac’s substitution trick,

〈ϕ|ψ〉 =

Z

R

〈ϕ|x〉〈x|ψ〉dx =

Z

R

〈ϕ|p〉〈p|ψ〉dp.

Hence
Z

R

ϕ(x)†ψ(x) dx =

Z

R

ϕ̂(p)†ψ̂(p) dp.

This is the Parseval equation for the Fourier transform.
(v) The Dirac delta function in position space: By Dirac’s substitution trick,

〈x|ψ〉 =

Z

R

〈x|y〉〈y|ψ〉 dy.

This means that

ψ(x) =

Z

R

δ(x− y)ψ(y)dy

which is the characteristic property of the Dirac delta function. Using the
orthogonality relation for position states and Dirac’s substitution trick with
respect to the completeness relation for momentum states, we obtain
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〈x|y〉 =

Z

R

〈x|p〉〈p|y〉 dp.

Hence

δ(x− y) =
1

2π�

Z

R

eip(x−y)/� dp. (11.32)

This is the representation of the Dirac delta function by a Fourier integral.
(vi) The Dirac delta function in momentum space: Using the orthogonality rela-

tion for momentum states and Dirac’s substitution trick with respect to the
completeness relation for position states, we obtain

〈p|q〉 =

Z

R

〈p|x〉〈x|q〉 dx.

Hence

δ(p− q) =
1

2π�

Z

R

eix(q−p)/� dx.

Noting the invariance of the integral under the reflection x �→ −x, this formula
is equivalent to (11.32).

(vii) The position operator X in position space: For each state |ψ〉 and all x ∈ R,

〈x|X|ψ〉 = x〈x|ψ〉. (11.33)

We say that 〈x| is an eigencostate of the position operator X. In fact, by Dirac’s
substitution trick,

〈x|X|ψ〉 =

Z

R

〈x|X|y〉〈y|ψ〉 dy. (11.34)

Hence

〈x|X|ψ〉 =

Z

R

xδ(x− y)ψ(y)dy = xψ(x) = x〈x|ψ〉.

Equation (11.33) can be written as

(Xψ)(x) = xψ(x) for all x ∈ R.

This means that the position operator X corresponds to the multiplication
operator with respect to Schrödinger’s wave function ψ of the quantum particle
in the position space. Introducing the kernel

KX(x, y) := 〈x|X|y〉, x, y ∈ R

of the position operator X, equation (11.34) corresponds to the so-called kernel
equation

(Xψ)(x) =

Z

R

KX(x, y)ψ(y)dy for all x ∈ R

with KX(x, y) = xδ(x− y). By definition, the real number
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x =
〈ψ|X|ψ〉
〈ψ|ψ〉 =

R

R
ψ(x)†xψ(x)dx

R

R
ψ(x)†ϕ(x)dx

is the mean position of the quantum particle in the nonzero state |ψ〉 on the
real line. Finally, let us motivate the equality

X|x〉 = x|x〉 for all x ∈ R.

This means that |x〉 is a generalized eigenstate of the position operator X with
the corresponding real eigenvalue x. In fact, by Dirac’s substitution trick,

X|x〉 =

Z

R

|y〉〈y|X|x〉 dy =

Z

R

|y〉 yδ(y − x) dy = x|x〉.

(viii) The momentum operator P in momentum space: The operator P plays the
same role in the momentum space as the position operator in the position
space. Replacing X, |x〉, 〈x| by P, |p〉, 〈p|, respectively, we obtain that for all
states ψ and all p ∈ R,

〈p|Pψ〉 = p 〈p|ψ〉 (11.35)

and

P |p〉 = p|p〉. (11.36)

Equation (11.35) tells us that

F(Pψ)(p) = pF(ψ)(p) for all p ∈ R.

This means that the momentum operator P represents the multiplication op-
erator after carrying out the Fourier transform. Instead of (11.36) and (11.35),
we say that 〈p| and |p〉 are an eigencostate and a generalized eigenstate, re-
spectively, of the momentum operator P with the real eigenvalue p.

(ix) The momentum operator P in position space: It follows from

ψ(x) =
1√
2π�

Z

R

eipx/�ψ̂(p)dp

that

− i�
d

dx
ψ(x) =

1√
2π�

Z

R

eipx/�pψ̂(p)dp. (11.37)

Consequently, the multiplication operator ψ̂(p) �→ pψ̂(p) in the Fourier space
corresponds to the operator ψ(x) �→ −i�ψ′(x) in the position space. Explicitly,

(Pψ)(x) =

„

−i�
d

dx
ψ

«

(x) for all x ∈ R.

In the language of the Dirac calculus, we have

〈x|Pψ〉 = −i�
d

dx
〈x|ψ〉.
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This follows from (11.35) and (11.37) along with

〈x|Pψ〉 =

Z

R

〈x|p〉〈p|P |ψ〉 dp =

Z

R

〈x|p〉p〈p|ψ〉 dp

= −i�
d

dx
ψ(x) = −i�

d

dx
〈x|ψ〉.

The energy operator. In terms of the formal Dirac calculus, we now want to
study the energy of a quantum particle on the real line. To this end, we postulate
that there exists a measure μ on the real line along with the measure integral

Z

R

f(E)dμ(E).

By definition, the zero set, zero(μ), of the measure μ is the largest open subset
of the real line R such that the measure vanishes on this set. By definition, the
complement

supp(μ) := R \ zero(μ)

is called the support of the measure μ. For a reasonable subset S of the real line,
the number

μ(S) =

Z

S

dμ(E)

represents the measure of the set S. Moreover, we introduce the formal Dirac delta
function δμ with respect to the measure μ by postulating the characteristic property

Z

R

δμ(E,E0)f(E)dμ(E) = f(E0) for all E0 ∈ R.

Furthermore, we postulate that

• δμ(E,E0) = 0 if E �= E0.
• δμ(E,E) = 0 if E /∈ supp(μ).
• δμ(E,E)† = δμ(E,E).

To illustrate the notion of measure, let us consider two typical examples.

• Discrete mass distribution: Consider n points E1, . . . , En on the real line which
have the positive masses m1, . . . ,mn, respectively. Then

Z

R

f(E)dμ(E) =
n
X

k=1

f(Ek)mk.

The support of the measure μ is equal to the finite set {E1, . . . , En}.
• Continuous mass distribution: Let ! : R → R be a nonnegative continuous func-

tion. In terms of physics, the function ! represents a mass density on the real
line. Then

Z

R

f(E)dμ(E) =

Z

R

f(E)!(E)dE

if the right-hand integral exists. The set zero(!) is the largest open subset of R

on which the density function ! vanishes.

Following Dirac, we introduce the following symbols for all E ∈ R :

• the energetic costate 〈E|;
• the generalized energetic state |E〉.15

15 Intuitively, |E〉 corresponds to a quantum particle on the real line which has the
energy E. If the function x �→ 〈x|E〉 lies in the Hilbert space L2(R), then |E〉
is called a classical quantum state. This is not always the case. Therefore, we
speak of the generalized energy state |E〉.
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We also set |E〉 = 0 and 〈E| = 0 if E /∈ supp(μ). Furthermore, we postulate that
the following key relations hold true for all E,E′ ∈ R:

(E1) Orthogonality: 〈E′|E〉 = δμ(E′, E).
(E2) Completeness:

Z

R

|E〉〈E| dμ(E) = I.

(E3) Matrix elements of the energy operator H:

〈E′|H|E〉 = Eδμ(E′, E).

Furthermore, 〈E′|H|E〉† = 〈E|H|E′〉.
Instead of the symbol supp(μ) we synonymously write σ(H), and we call this the
spectrum of the energy operator (or Hamiltonian) H. Intuitively, the energy spec-
trum σ(H) is the set of all possible energy values E of quantum particles on the
real line which correspond to the physical situation described by the operator H
(e.g., a fixed potential). Let us discuss some formal consequences of the conditions
(E1) through (E3).

(i) Energetic Fourier transform: By the completeness condition for position states,

〈E|ψ〉 =

Z

R

〈E|x〉〈x|ψ〉 dx.

Setting ψ̂(E) := 〈E|ψ〉 and χE(x) := 〈x|E〉, this reads as

ψ̂(E) =

Z

R

χE(x)†ψ(x)dx for all E ∈ R.

The function E �→ ψ̂(E) is called the energetic Fourier transform of the
Schrödinger wave function x �→ ψ(x) in the position space.

(ii) The inverse energetic Fourier transform: By the energetic completeness relation
(E2),

〈x|ψ〉 =

Z

R

〈x|E〉〈E|ψ〉 dμ(E).

This means that

ψ(x) =

Z

R

χE(x)ψ̂(E)dμ(E) for all x ∈ R.

(iii) The Parseval equation for the inner product: By the energetic completeness
relation (E2),

〈ϕ|ψ〉 =

Z

R

〈ϕ|E〉〈E|ψ〉 dμ(E).

This tells us that for all states |ϕ〉 and |ψ〉,

〈ϕ|ψ〉 =

Z

R

ϕ(x)†ψ(x)dx =

Z

R

ϕ̂(E)†ψ̂(E)dμ(E).
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(iv) Energetic eigencostates: For all states ψ and all E ∈ R,

〈E|H|ψ〉 = E〈E|ψ〉.

We say that 〈E| is an eigencostate of the energy operator H to the energy value
E. In fact, by the completeness relation (E2),

〈E|H|ψ〉 =

Z

R

〈E|H|E′〉〈E′|ψ〉 dμ(E′)

=

Z

R

Eδμ(E,E′)〈E′|ψ〉 dμ(E′) = E〈E|ψ〉.

(v) Generalized energetic eigenstates: For all E ∈ R, we get

H|E〉 = E|E〉.

We say that |E〉 is a generalized energetic eigenstate with the eigenvalue E. To
motivate this, note that by the completeness relation (E2),

H|E〉 =

Z

R

|E′〉〈E′|H|E〉dμ(E′) =

Z

R

E′δμ(E′, E)|E′〉 dμ(E′) = E|E〉.

(vi) Functions of the energy operator: Let k = 1, 2, . . . . For all E ∈ R, we have

Hk|E〉 = Ek|E〉.

In fact, H2|E〉 = H(H|E〉) = H(E|E〉) = E(H|E〉) = E2|E〉, and so on.
This motivates the following definition. Let f : R → C be a polynomial or an
analytic function. For all E ∈ R, we set

f(H)|E〉 := f(E)|E〉.

(iv) Transition amplitudes: For all states |ϕ〉 and |ψ〉,

〈ϕ|f(H)|ψ〉 =

Z

R

〈ϕ|E〉f(E)〈E|ψ〉dμ(E).

Equivalently,

〈ϕ|f(H)|ψ〉 =

Z

R

ϕ̂(E)†f(E)ψ̂(E)dμ(E).

In fact, by the completeness relation (E2),

〈ϕ|f(H)|ψ〉 =

Z

R

dμ(E′)

Z

R

dμ(E)〈ϕ|E′〉〈E′|f(H)E〉〈E|ψ〉

=

Z

R

dμ(E′)

Z

R

dμ(E)f(E)〈ϕ|E′〉〈E′|E〉〈E|ψ〉

=

Z

R

dμ(E)f(E)〈ϕ|E〉〈E|ψ〉.
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(v) Dynamics of a quantum particle: Let |ψ(t)〉 be the state of the quantum particle
on the real line at the time t. We postulate that

|ψ(t)〉 = e−itH/� |ψ(0)〉 for all t ∈ R. (11.38)

Differentiation with respect to time t yields the Schrödinger equation

i�
d

dt
|ψ(t)〉 = H|ψ(t)〉 for all t ∈ R.

By the completeness relation in the position state, it follows from (11.38) that

〈x|ψ(t)〉 =

Z

R

〈x|e−itH/� |y〉〈y|ψ(0)〉 dy (11.39)

for all positions x ∈ R and all times t ∈ R. Setting ψ(x, t) := 〈x|ψ(t)〉 and
introducing the so-called propagator kernel,

P(x, y; t) := 〈x|e−itH/� |y〉,

equation (11.39) reads as

ψ(x, t) =

Z

R

P(x, y; t)ψ(y, 0)dy for all x, t ∈ R.

Introducing the so-called retarded propagator kernel (or Feynman propagator
kernel)

P+(x, y; t) := θ(t)P(x, y; t), x, y, t ∈ R,

then

ψ(x, t) =

Z

R

P+(x, y; t)ψ(y, 0)dy for all x ∈ R, t > 0.

Observables. Let A ∈ R. If we replace H, |E〉, 〈E| by A, |A〉, 〈A|, respectively,
then we get the Dirac calculus with respect to the observable A. Special observables
are energy H, position X, and momentum P.

In terms of this general approach, the spectral measure of both the position
operator X and the momentum operator P is the Lebesgue measure on the real
line. This measure is characterized by the fact that it is invariant under translations.
In fact, the relation

„

d

dx
ψ

«

(x) = lim
ε→+0

ψ(x+ ε)− ψ(x)

ε

shows that the differential operator d
dx

represents the infinitesimal operator of the
group of all translations, x �→ x+ ε, on the real line. For the momentum operator,
we obtain

P := −i�
d

dx

on the position state. Therefore, it is quite natural that the translation-invariant
Lebesgue measure represents the spectral measure of the momentum operator P.
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11.2.6 Formal Construction of the Heat Kernel

We want to show how the Dirac calculus can be used in order to motivate the heat
kernel formulas discussed on page 589. Set P := −i�∂ with � = 1. Hence

P2 = −∂2 = Δ.

Generalizing the one-dimensional Dirac calculus above, we will use the following
key formulas:

• 〈x|y〉 = δ3(x− y);

• 〈x|p〉 = eipx/(2π)
3
2 ;

•
R

R3 |x〉〈x| d3x = I;

•
R

R3 |p〉〈p| d3p = I;
• P|p〉 = p |p〉.

The homogeneous heat equation. Let us prove the solution formula (11.12)
for the homogeneous heat equation (11.11) on page 589. In fact, the initial-value
problem (11.11),

ψ̇(t) = −κP2ψ(t), t > 0, ψ(0) = ψ0

has the solution
ψ(t) = e−κtP2

ψ0, t > 0.

By the completeness relation
R

R3 |y〉〈y| d3y = I,

〈x|ψ(t)〉 =

Z

R3
〈x|e−κtP2

|y〉〈y|ψ0〉 d3y. (11.40)

Since P|p〉 = p|p〉, we get the crucial eigensolutions

e−κtP2
|p〉 = e−κtp2

|p〉.

Let x,y ∈ R
3 and t > 0. Introducing the heat kernel

K(x, t;y, 0) := 〈x|e−κtP2
|y〉,

the completeness relation
R

R3 |p〉〈p| d3p = I yields

K(x, t;y, 0) =

Z

R3
〈x|e−κtP2

|p〉〈p|y〉 d3p

=

Z

R3
e−κtp2

〈x|p〉〈p|y〉 d3p =
1

(2π)3

Z

R3
e−κtp2

ei(x−y)p d3p.

Using the Gaussian integral (7.102) on page 435,

K(x, t;y, 0) =
e−

(x−y)2

4κt

`

4πκt
´

3
2
.

This is the heat kernel. From (11.40) we get the desired formula (11.12) on page
589.

The inhomogeneous heat equation and Duhamel’s principle. The
initial-value problem
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ψ̇(t) = −κP2ψ(t) + f(t), t > 0, ψ(0) = ψ0

has the solution

ψ(t) = e−κtP2
ψ0 +

Z t

0

e−κ(t−τ)P2
f(τ)dτ, t > 0. (11.41)

This formula is called Duhamel’s principle.16 The proof of (11.41) follows by formal
differentiation parallel to (11.3). By the completeness relation,

〈x|ψ(t)〉 =

Z

R3
〈x|e−κtP2

|y〉〈y|ψ0〉 d3y +

+

Z t

0

Z

R3
〈x|e−κ(t−τ)P2

|y〉〈y|f(τ)〉 d3ydτ.

This is the desired solution formula (11.14) on page 590.

11.3 Laurent Schwartz’s Rigorous Approach

11.3.1 Physical Measurements and the Idea of Averaging

Our measurement instruments measure only averages. The theory of distributions
is based on different methods of averaging by using different types of test functions.
For example, we can replace the mass density function ! = !(x, t) by the average

![ϕ] =

Z

R3
!(x, t)ϕ(x)d3x (11.42)

where the test function ϕ : R
3 → C is smooth and vanishes outside some ball. The

average ![ϕ] depends on the choice of the function ϕ. Dirac’s relation

Z

R3
δ3(x− x0)ϕ(x)d3x = ϕ(x0) (11.43)

does not make any sense in classical analysis. However, we can define

δx0(ϕ) := ϕ(x0)

for all test functions ϕ. The map ϕ �→ δx0(ϕ) describes a mass m = 1 at the point
x0. Formula (11.43) serves as a very useful mnemonic tool.

The strategy of the theory of distributions is to reformulate classical prop-
erties in terms of averages of type (11.42) and then to generalize this to
functionals ϕ �→ F (ϕ).

In quantum field theory, the method of averaging allows us to handle strong singu-
larities in a reasonable way.

16 Duhamel (1797–1872)
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11.3.2 Distributions

Let N = 1, 2, . . .. We will study complex-valued functions

f : R
N → C

and generalizations of such functions called generalized functions or distributions.
The real components of the point x in R

N are denoted by x1, . . . , xN . We will use
the notation introduced on page 538. In particular we write

∂α := ∂α1
1 ∂α2

2 · · · ∂αN
N

along with the partial derivative ∂j := ∂/∂xj and α = (α1, . . . , αN ).
The support of a function. Let f : R

N → C be an arbitrary function. By
definition, the zero set, zero(f), is the maximal open subset of R

N on which the
function f vanishes. The complement is called the support of f ,

supp(f) := R
N \ zero(f).

The support of a function is always a closed set. In particular, for the Heaviside
function θ : R → R,

supp(θ) = [0,∞[.

The function, f(x) := sinx vanishes precisely at the points x = 0,±π,±2π, . . . .
The support of this function is a closed set, and hence it equals the real line.

The space D(RN ) of test functions. Let N = 1, 2, . . . By definition, the
space D(RN ) consists of all smooth functions

ϕ : R
N → C

which have compact support.17 Let ϕn, ϕ ∈ D(RN ) for all n. We write

lim
n→∞

ϕn = ϕ in D(RN )

iff there exists a compact subset B of R
N such that

• supp(ϕn) ⊆ B for all n;
• limn→∞ supx∈B |ϕn(x)− ϕ(x)| = 0;
• limn→∞ supx∈B |∂αϕn(x)− ∂αϕ(x)| = 0 for all possible derivatives ∂α.

The space D′(RN ) of distributions. By definition, a distribution is a linear,
sequentially continuous map

F : D(RN )→ C.

Explicitly, we assign a complex number F (ϕ) to each test function ϕ in the space
D(RN ). Moreover, for all ϕ,ψ ∈ D(RN ) and all complex numbers α, β,

F (αϕ+ βψ) = αF (ϕ) + βF (ψ).

Finally, limn→∞ ϕn = ϕ in D(RN ) always implies

17 Recall that a subset of R
N is compact iff it is bounded and closed (e.g., a closed

ball). For example, the smooth function ϕ : R → R lies in D(R) iff it vanishes
outside some finite interval.
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lim
n→∞

F (ϕn) = F (ϕ).

The space of all such distributions is denoted by D′(RN ).
The Dirac delta distribution. Define

δ[ϕ] := ϕ(0) for all ϕ ∈ D(RN ).

Then, δ is a distribution living in D′(RN ). In fact, for all ϕ,ψ ∈ D(RN ) and all
complex numbers α and β,

δ[αϕ+ βψ] = αϕ(0) + βϕ(0) = αδ[ϕ] + βδ[ψ].

Moreover, limn→∞ ϕn = ϕ in D(RN ) implies limn→∞ ϕn(0) = ϕ(0), and hence

lim
n→∞

δ[ϕn] = δ[ϕ].

Furthermore, for each fixed point x0 ∈ R
N , we define

δx0 [ϕ] := ϕ(x0) for all ϕ ∈ D(RN ).

This distribution, δx0 ∈ D′(RN ), is called the Dirac delta distribution at the point
x0.

Classical functions as distributions. The key formula reads as

f [ϕ] :=

Z

RN

f(x)ϕ(x)dNx for all ϕ ∈ D(RN ).

Let Lloc(R
N ) be the space of all locally integrable functions f : R

N → C, that is,
the Lebesgue integral

R

B
f(x)dNx exists for all compact subsets B of R

N .18 Then,

the map ϕ �→ f [ϕ] is a distribution which lies in the space D′(RN ). We briefly write

f ∈ D′(RN ).

In this sense, we also write Lloc(R
N ) ⊂ D′(RN ). Suppose that we are given functions

f, g ∈ Lloc(R
N ) such that

f [ϕ] = g[ϕ] for all ϕ ∈ D(RN ).

Then, f(x) = g(x) for almost all x ∈ R
N , in the sense of the N -dimensional

Lebesgue measure. In particular, if f, g : R
N → C are continuous, then f = g on

R
N . For example, the Heaviside function θ : R → R corresponds to the distribution

θ[ϕ] =

Z

R

θ(x)ϕ(x)dx =

Z ∞

0

ϕ(x)dx for all ϕ ∈ D(R).

Convention. In what follows, we say that the distribution F ∈ D′(RN ) is a
classical function iff there exists a function f : R

N → C living in the space Lloc(R
N )

such that

18 For example, the function f is continuous (or almost everywhere continuous and
bounded on bounded sets).
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F (ϕ) =

Z

RN

f(x)ϕ(x)dNx for all ϕ ∈ D(RN ).

To simplify notation, we also write f instead of F .
The product between classical functions and distributions. Let the

function χ : R
N → C be smooth. Then, for all test functions ϕ ∈ D(RN ), the prod-

uct function χϕ also lies in the space D(RN ) of test functions. For given distribution
F ∈ D′(RN ), we define the product χF by setting

(χF )(ϕ) := F (χϕ) for all ϕ ∈ D(RN ).

Then, χF is a distribution living in D′(RN ). For example, χδ is given by

(χδ)(ϕ) = χ(0)ϕ(0) for all ϕ ∈ D(RN ).

The support of a distribution. Let Ω be an open subset of R
N . For a

distribution F ∈ D′(RN ), we write

F = 0 on Ω

iff F (ϕ) = 0 for all test functions ϕ ∈ D(RN ) with supp(ϕ) ⊆ Ω. By definition, the
set zero(F ) is the maximal open subset of R

N such that F = 0 on this set. The
complement

supp(F ) := R
N \ zero(F )

is called the support of the distribution F . For example, the Dirac delta distribution
δ has the origin as support, and

supp(δx0) = {x0}.

Derivative of a distribution. Let f : R
N → C be a smooth function. Inte-

gration by parts yields
Z

RN

∂αf(x)ϕ(x)dNx = (−1)|α|
Z

RN

f(x)∂αϕ(x)dNx

for all ϕ ∈ D(RN ). This motivates the following definition. We are given the distri-
bution F ∈ D′(RN ). The derivative ∂αF is defined by

(∂αF )(ϕ) := (−1)|α|F (∂αϕ) for all ϕ ∈ D(RN ).

This is a distribution living in D′(RN ). Note that

Each distribution has derivatives of all orders.

In particular, each function f ∈ Lloc(R
N ) has derivatives of each order in the sense

of distributions. Explicitly,

∂αf [ϕ] = (−1)|α|
Z

RN

f(x)∂αϕ(x)dNx for all ϕ ∈ D(RN ).

For the Dirac delta distribution, the derivative ∂αδx0 is given by

(∂αδx0)(ϕ) = (−1)|α|∂αϕ(x0) for all ϕ ∈ D(RN ).

Typical examples. The following derivatives of distributions are used fre-
quently.
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(i) For the Heaviside function θ : R → R,

θ′ = δ on R.

In fact, for all test functions ϕ ∈ D(R), integration by parts yields

Z

R

−θ(t)ϕ′(t)dt =

Z ∞

0

−ϕ′(t)dt = ϕ(0).

Hence θ[−ϕ′] = ϕ(0) = δ[ϕ] for all ϕ ∈ D(R).
(ii) Fix the complex number a and set f(t) := θ(t)eat for all t ∈ R. Then

f ′ = af + δ on R.

To prove this, note that integration by parts yields
Z

R

θ(t)eat(−ϕ′(t))dt = −
Z ∞

0

eatϕ′(t)dt = a

Z ∞

0

eatϕ(t)dt+ ϕ(0).

Hence f [−ϕ′] = af [ϕ] + δ[ϕ] for all ϕ ∈ D(R).19

(iii) Set g(t) := θ(t)t for all t ∈ R. Then

g′′ = δ on R. (11.44)

In fact, integration by parts tells us that

g[−ϕ′] =

Z ∞

0

−tϕ′(t)dt =

Z ∞

0

ϕ(t)dt = θ[ϕ].

Hence g′ = θ on R. By (i), g′′ = θ′ = δ, as claimed above.20

(iv) Suppose that the distribution F ∈ D′(RN ) satisfies the equation21

∂jF = 0 on R
N , j = 1, . . . , N.

Then, F is a constant classical function. Explicitly,

F (ϕ) = const

Z

RN

ϕ(x)dNx for all ϕ ∈ D(RN ). (11.45)

(v) The Weyl lemma: Fix the complex number a. If the distribution F ∈ D′(RN )
satisfies the equation

ΔF + aF = 0 on R
N ,

then F is a classical smooth function on R
N .

The Sobolev space W k
2 (RN ). Let k = 1, 2, . . . By definition, the space

W k
2 (RN ) consists of all functions f ∈ L2(R

N ) such that

∂αf ∈ L2(R
N ) for all α with |α| ≤ k.

Explicitly, there exist functions gα living in L2(R
N ) such that

19 Formally, f ′(t) = θ′(t)eat + θ(t)aeat = δ(t)eat + af(t) = δ(t)e0 + af(t).
20 Formally, g′(t) = δ(t)t+ θ(t) = θ(t). Hence g′′(t) = θ′(t) = δ(t).
21 The proof of (iv) and (v) can be found in Hörmander (1983), Vol. 1, Sect. 3.1

and Zeidler (1986), Vol. IIA, Sect. 18.15, respectively.
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Z

RN

f(x)(−1)|α|∂αϕ(x)dNx =

Z

RN

gα(x)ϕ(x)dNx

for all test functions ϕ ∈ D(RN ) and all indices α with |α| ≤ k. Then, ∂αf = gα.
The space W k

2 (RN ) is a complex Hilbert space equipped with the inner product

〈f |g〉 :=

Z

RN

{f(x)†g(x) +
X

0<|α|≤k

∂αf(x)†∂αg(x)}dNx.

Limit of distributions. Let Fn, F ∈ D′(RN ) for all n. We write

lim
n→∞

Fn = F in D′(RN ) (11.46)

iff limn→∞ Fn(ϕ) = F (ϕ) for all ϕ ∈ D(RN ).

Proposition 11.10 For all derivatives ∂α, it follows from (11.46) that

lim
n→∞

∂αFn = ∂αF.

For each continuous function ψ : R
N → C, there exists a sequence (pn) of

polynomials pn : R
N → C such that

lim
n→∞

sup
x∈B

|ψ(x)− pn(x)| = 0

for all N -dimensional balls, B. This is the Weierstrass approximation theorem.
Hence

lim
n→∞

Z

RN

pn(x)ϕ(x)dNx =

Z

RN

ψ(x)ϕ(x)dNx for all ϕ ∈ D(RN ).

Consequently, limn→∞ pn = ψ in D′(RN ).
Application to the vibrating string. Fix c > 0. Let f, g : R → R be smooth

functions. Then, the function

ψ(x, t) := f(x− ct) + g(x+ ct), x, t ∈ R

is a classical solution of the wave equation

ψtt(x, t)

c2
− ψxx(x, t) = 0, (x, t) ∈ R

2. (11.47)

If f, g : R → R are continuous, then the function ψ describes a vibrating string (su-
perposition of two waves propagating with the speed c to right and to left, respec-
tively). Thus, the function ψ possesses a well-defined physical meaning. However,
as a rule, ψ is not a classical solution of the wave equation because of a lack of
smoothness. However, the following hold true.

Proposition 11.11 If f, g : R → R are continuous, then ψ solves the wave equa-
tion in the sense of distributions in D′(R2).
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−→ c

x

ψ

Fig. 11.3. Shock wave

Proof. To simplify notation, set g = 0. Approximate the function f by a sequence
(pn) of polynomials. For the function ψn corresponding to pn,

(ψn)tt

c2
− (ψn)xx = 0.

Letting n→∞, limn→∞ ψn = ψ in D′(R2). It follows from Prop. 11.10 that

ψtt

c2
− ψxx = 0 in D′(R2).

Explicitly, this means that

Z

R2
ψ(x, t)

„

ϕtt(x, t)

c2
− ϕxx(x, t)

«

dxdt = 0

for all test functions ϕ ∈ D(R2). �

This proof shows that the theory of distributions can be used in order to con-
struct solutions of differential equations by using smooth approximations.

Propagation of singularities. The function

ψ(x, t) := θ(x− ct), (x, t) ∈ R
2 (11.48)

is a solution of the wave equation (11.47) in the sense of distributions in the space
D′(R2).
Proof. For fixed Δt > 0, choose the continuous function θΔt : R → R as pictured
in Fig. 11.1 on page 579. By Prop. 11.11, the function ψΔt(x, t) := θΔt(x − ct)
satisfies the wave equation, that is,

Z

R2
θΔt(x− ct)

„

ϕtt(x, t)

c2
− ϕxx(x, t)

«

dxdt = 0

for all test functions ϕ ∈ R
2. Letting Δt→ 0, we get

Z

R2
θ(x− ct)

„

ϕtt(x, t)

c2
− ϕxx(x, t)

«

dxdt = 0.

�

The solution ψ from (11.48) can be regarded as the propagation of a mass
density ψ on the real line with velocity c. The jump of mass density at the point
x = ct at time t represents a simplified model for a shock wave in gas dynamics
(Fig. 11.3). For example, supersonic aircrafts generate strongly audible shock waves
in air. Shock waves are studied in the the standard textbook by Smoller (1994).

The propagation of singularities at the speed of light is typical for quantum
field theory.
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Nonlinear transformation of the Dirac delta distribution. We are given
the smooth function f : R

N → R
N which has precisely the zeros x1, . . . , xn. In

addition, we assume that the zeros are non-degenerate, that is, det f ′(xj) �= 0 for
j = 1, . . . , n. We define22

δ ◦ f :=
n
X

j=1

δxj

|det f ′(xj)|
.

Then, δ ◦ f is a distribution living in D′(RN ).
The space D′(Ω). Let Ω be a nonempty open subset of R

N . Replacing R
N by

Ω, all of the considerations above can be generalized immediately to the set Ω. In
particular, the space D(Ω) of test functions consists of all smooth functions

ϕ : Ω → R
N

which have compact support.23 Furthermore, the space of distributions D′(Ω) con-
sists of all linear, sequentially continuous maps

F : D(Ω) → C.

Such distributions generalize functions of the form f : Ω → C.
The Sobolev space W k

2 (RN ) is replaced by W k
2 (Ω). Here, we have to replace

R

RN by
R

Ω
above.

The space E ′(RN ). By definition, the space E(RN ) consists of all smooth
functions ϕ : R

N → C. Let ϕn, ϕ ∈ E(RN ) for all n. As n→∞, we write

ϕn → ϕ in E(RN )

iff ϕn (resp. every derivative ∂αϕn) converges uniformly to ϕ (resp. to ∂αϕ) on
each compact subset of R

N . By definition, the space E ′(RN ) consists of all linear,
sequentially continuous functionals

F : E(RN)→ C.

One can show that the space E ′(RN ) coincides with a linear subspace of D(RN ),
namely, the space of distributions with compact support. We have the inclusions

D(RN ) ⊂ S(RN ) ⊂ E(RN ) ⊂ E ′(RN ) ⊂ S ′(RN ) ⊂ D′(RN ).

11.3.3 Tempered Distributions

Let us now introduce a subclass of distributions which are called tempered distri-
butions and which play a crucial role for the Fourier transform. The definition of
the space S(RN ) of rapidly decreasing functions

ϕ : R
N → C

22 This definition is motivated by the heuristic formula (11.28) for δ(f(x)).
23 The symbol C∞(Ω) denotes the space of smooth functions ϕ : Ω → R. The space
D(Ω) is also denoted by C∞

0 (Ω) in the literature.
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along with the appropriate notion of convergence can be found in Sect. 10.3.3
on page 537. By a tempered distribution on R

N , we mean a linear, sequentially
continuous map

F : S(RN )→ C.

Explicitly, we assign a complex number F (ϕ) to each test function ϕ in S(RN ).
Moreover, for all ϕ,ψ ∈ S(RN ) and all complex numbers α, β,

F (αϕ+ βψ) = αF (ϕ) + βF (ψ).

Finally, limn→∞ ϕn = ϕ in S(RN ) always implies

lim
n→∞

F (ϕn) = F (ϕ).

The space of all such distributions is denoted by S ′(RN ). In particular, fix the
point x0 in R

N , and set

δx0(ϕ) := ϕ(x0) for all ϕ ∈ S(RN ).

This tempered distribution is called the tempered Dirac distribution. Note that
D(RN ) ⊂ S(RN ) and that the convergence in D(RN ) implies the convergence in
S(RN ). Consequently, each tempered distribution is also a distribution, that is,

S ′(RN ) ⊂ D′(RN ).

Let us now summarize some classes of functions which are tempered distributions.
To this end, set

f [ϕ] :=

Z

RN

f(x)ϕ(x)dNx for all ϕ ∈ S(RN )

where the function f : R
N → C is given.

Proposition 11.12 The functional ϕ �→ f [ϕ] is a tempered distribution on R
N if

one of the following two conditions is satisfied.
(i) The function f is either a polynomial or f ∈ L2(R

N ).
(ii) The function f ∈ Lloc(R

N ) is of moderate growth at infinity. Explicitly,
there exists a nonnegative integer m such that

|f(x)| = O(||x||m), ||x|| → ∞.

The proof can be found in Problem 12.7. Finally, we define the product xαF by
setting

(xαF )(ϕ) := F (χϕ) for all ϕ ∈ S(RN )

where we set χ(x) := xα = (x1)α1(x2)α2 · · · (xN )αN for all x ∈ R
N . If F is a

tempered distribution on R
N , then so is xαF.

The tensor product of distributions. Let N,M = 1, 2, . . . . For given func-
tions ϕ ∈ D(RN ) and ψ ∈ D(RM ), we define the tensor product ϕ⊗ ψ by setting

(ϕ⊗ ψ)(x, y) := ϕ(x)ψ(y) for all x, y ∈ R
N+M .

If f ∈ Lloc(R
N ) and g ∈ Lloc(R

M ), then
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Z

RM+N

f(x)g(y)ϕ(x)ψ(y)dNxdMy =

Z

RN

f(x)ϕ(x)dNx

Z

RM

g(y)ψ(y)dMy.

Furthermore, for all test functions χ ∈ D(RN+M ),
Z

RM+N

f(x)g(y)χ(x, y)dNxdMy =

Z

RM

„

Z

RN

f(x)χ(x, y)dNx

«

g(y)dMy.

This motivates the following definition of the tensor product of two distributions.

Proposition 11.13 For given distributions F ∈ D′(RN ) and G ∈ D′(RM ), there
exists precisely one distribution T ∈ D′(RN+M ) such that

T (ϕ⊗ ψ) = F (ϕ)G(ψ) for all ϕ ∈ D(RN ), ψ ∈ D(RM ).

If F and G are tempered distributions, then so is T .

We write T = F ⊗ G and call this the tensor product between F and G. The
proof can be found in Triebel (1989), Sect. 13. Furthermore, for all test functions
χ ∈ D(RN+M ),

(F ⊗G)(χ) = G(F (χ)).

This means that, we first apply F to the test function x �→ χ(x, y) for fixed y ∈ R
M ,

and we then apply G to the test function y �→ F (χ(., y)).
The convolution of distributions. Recall that the function f ∗ g given by

(f ∗ g)(x) :=

Z

RN

f(x− y)g(y)dNy for all x ∈ R
N

is called the convolution between f and g. The convolution makes sense if one of
the following two conditions is satisfied:24

(a) The functions f, g : R
N → C are continuous and g has compact support.

(b) f, g ∈ S(RN ).

Using the substitution z = x− y, for each test function χ ∈ D(RN ) we get
Z

RN

(f ∗ g)(x)χ(x)dNx =

Z

RN

f(x)

„

Z

RN

g(y)χ(x+ y)dNy

«

dNx.

This motivates the definition

(F ∗G)(χ) := F{G(χ(x+ ...))} for all χ ∈ D(RN ).

This means that we first apply G to the test function y �→ χ(x+ y) for fixed x ∈ R,
and we then apply F to the test function25 x �→ G(χ(x + ...)). The proof of the
following theorem can be found in Triebel (1989), Sect. 13.

Theorem 11.14 We are given the distributions F,G ∈ D′(RN ) where G has com-
pact support. Then:

(i) F ∗G ∈ D′(RN ).
(ii) ∂α(F ∗G) = ∂αF ∗G = F ∗ ∂αG for all derivatives.
(iii) If F has compact support, then F ∗ G = G ∗ F. In particular, we obtain

F ∗ δ = δ ∗ F.
(iv) If F ∈ S ′(RN ), then F ∗G ∈ S ′(RN ).

24 Properties of the classical convolution can be found on page 539.
25 The symbol χ(x+ ...) stands for the function y �→ χ(x+ y).
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11.3.4 The Fourier Transform

Recall from Sect. 10.3.3 on page 537 that the Fourier transform

F : S(RN )→ S(RN )

is linear, bijective, and sequentially continuous. For all functions g, ϕ in S(RN ), we
have the identity

Z

RN

(Fg)(x)ϕ(x)dNx =

Z

RN

g(x)(Fϕ)(x)dNx.

This motivates the following definition. For each tempered distribution G ∈ S ′(RN ),
we define the Fourier transform FG by setting

(FG)(ϕ) := G(Fϕ) for all ϕ ∈ S(RN ). (11.49)

It can be shown that FG is a tempered distribution. The map

F : S ′(RN )→ S ′(RN )

is linear, bijective, and sequentially continuous.26 In addition, for the inverse map
F(G) �→ G, we get

G(ϕ) = (FG)(F−1ϕ) for all ϕ ∈ S(RN ).

The Fourier transform has the following properties:

(P1) Fδ = (2π)−N/2.

(P2) Fδx0 = χx0 where χx0(x) := (2π)−N/2e−i〈x0|x〉 for all x ∈ R
N .

(P3) F(∂αG) = i|α|xαFG for all derivatives.

To prove this, choose an arbitrary test function ϕ ∈ S(RN ). Obviously, (P1) is a
special case of (P2). In order to prove (P2), note that

(Fδx0)(ϕ) = δx0(Fϕ) = (Fϕ)(x0) =

Z

RN

(2π)−N/2e−i〈x0|x〉 ϕ(x)dNx.

The derivative rule (P3) follows from

∂α

Z

RN

e−i〈p|x〉 ϕ(p)dNp =

Z

RN

e−i〈p|x〉 (−i)|α|pαϕ(p) dNp

along with

F(∂αG)(ϕ) = ∂αG(Fϕ) = (−1)|α|G(∂αFϕ)

= G(F(i|α|xαϕ)) = (FG)(i|α|xαϕ) = i|α|(xαFG)(ϕ).

Let f ∈ L2(R
N ). If we regard the function f as tempered distribution, then the

Fourier transform Ff is a well-defined tempered distribution. It turns out that Ff
represents a function which lies in the space L2(R

N ). More generally, the following
hold true.

Theorem 11.15 The Fourier transform F : L2(R
N )→ L2(R

N ) is a unitary trans-
formation on the Hilbert space L2(R

N ).

For the proof, see Triebel (1989), p. 109.

26 The proof can be found in Zeidler (1995), Vol. 1, Sect. 3.8.
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11.4 Hadamard’s Regularization of Integrals

As a rule, the Green’s functions for hyperbolic differential equations possess strong
singularities. In order to represent such Green’s functions by integral formulas,
Hadamard (1865–1963) introduced the notion of the finite part of a divergent inte-
gral.27

11.4.1 Regularization of Divergent Integrals

In order to discuss the basic idea, choose the function ϕ ∈ D(R). The integral

J(ϕ) :=

Z

R

ϕ(x)dx

x

is convergent if ϕ(0) = 0 and divergent if ϕ(0) �= 0. By definition, the regularization
of this integral is given by

Jreg(ϕ) =

Z

R

ϕ(x)− ϕ(0)

x
dx

for all functions ϕ ∈ D(R). The additional term −ϕ(0)
x

is called regularizing term.
We will also use the notation

Jreg = P
„

1

x

«

.

The following are met:

(i) The regularized functional, Jreg, is a distribution on R.
(ii) For all test functions ϕ ∈ D(R),

Jreg(ϕ) = PV

Z

R

ϕ(x)

x
dx.

As usual, the symbol PV stands for Cauchy’s principal value of the integral. This
is defined by the following limit

PV

Z

R

ϕ(x)

x
dx = lim

ε→+0

„

Z −ε

−∞

ϕ(x)

x
dx+

Z ∞

ε

ϕ(x)

x
dx

«

.

Proof. Ad (i). If ϕn → ϕ in S(R) as n→∞, then Jreg(ϕn)→ Jreg(ϕ).
Ad (ii). Choose ε > 0. Since the following integrand is odd,

Z −ε

−∞

ϕ(0)

x
dx+

Z ∞

ε

ϕ(0)

x
dx = 0.

Finally, choose the following decomposition

ϕ(x)

x
=
ϕ(x)− ϕ(0)

x
+
ϕ(0)

x
.

�

Note that if the integral J(ϕ) is convergent, then Jreg(ϕ) = J(ϕ). However, if
the integral J(ϕ) is divergent, then the well-defined integral Jreg(ϕ) is called the
finite part of J(ϕ), in the sense of Hadamard.

27 J. Hadamard, Le problème de Cauchy et les équations aux dérivées partielles
linéaire hyperboliques, Paris, 1932. For a modern version of the theory, see the
monograph by P. Günther (1988).
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11.4.2 The Sokhotski Formula

The classical function

f(x) :=
1

x
for all x ∈ R \ {0}

has a singularity at the point x = 0. There exist three different distributions which
can be regarded as regularizations of this singular function, namely,

P
„

1

x

«

,
1

x+ 0+i
,

1

x− 0+i
.

To discuss this, let z be a fixed, but otherwise arbitrary complex number. For each
test function ϕ ∈ D(R), define

P
„

1

x− z

«

(ϕ) := PV

Z

R

ϕ(x)dx

x− z
.

This is a distribution living in D′(R). If the parameter z is not real, then the integral
exists in the classical sense. If z is a real number, then it follows as in the preceding
section that

P
„

1

x− z

«

(ϕ) :=

Z

R

ϕ(y + z)− ϕ(z)

y
dy.

Choose z := ∓εi with ε > 0.

Theorem 11.16 For every test function ϕ ∈ D(R), we have the classical Sokhotski
formula

lim
ε→+0

P
„

1

x± εi

«

(ϕ) = P
„

1

x

«

∓ iπϕ(0). (11.50)

Proof. We have to show that for all test functions ϕ ∈ D(R),

lim
ε→+0

Z ∞

−∞

ϕ(x)dx

x+ εi
= −iπϕ(0) +

Z ∞

−∞

ϕ(x)− ϕ(0)

x
dx.

The key to this limit is the identity

Z R

−R

dx

x+ εi
=

Z R

−R

x− εi

x2 + ε2
dx

= −
Z R

−R

εi

x2 + ε2
dx = −2i arctan

R

ε

which converges to −iπ as ε→ +0. Since the test function ϕ has compact support,
there exists an interval [−R,R] such that ϕ vanishes outside this interval. Therefore,
it remains to use the decomposition

Z R

−R

ϕ(x)dx

x+ εi
=

Z R

−R

ϕ(x)− ϕ(0)

x+ εi
dx+ ϕ(0)

Z R

−R

dx

x+ εi
,

and to perform the limit ε→ +0. �

Let us translate this into the language of distributions. The Sokhotski formula
tells us that
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lim
ε→+0

P
„

1

x± εi

«

= P
„

1

x

«

∓ iπδ,

in the sense of distributions. This is called an adiabatic limit. We now define the
distribution

1

x+ 0+i
:= P

„

1

x

«

− iπδ. (11.51)

Similarly, we define the distribution

1

x− 0+i
:= P

„

1

x

«

+ iπδ.

If �(z) �= 0, then

P
„

1

x− z

«

(ϕ) :=

Z

R

ϕ(x)dx

x− z

where the integral exists in the classical sense. According to the usual identification
between functions and the corresponding distributions, we write

P
„

1

x− z

«

=
1

x− z
if �(z) �= 0.

Thus, in the sense of distributions,

1

x± 0+i
= lim

ε→+0

1

x± εi
.

The considerations above remain valid if the test functions ϕ lie in the space
S(R). Thus, 1

x+0+i
and 1

x−0+i
are also tempered distributions.

11.4.3 Steinmann’s Renormalization Theorem

The quest for the existence of a non-trivial quantum field in four space-
time dimensions is still without any conclusive result. Nonetheless, physi-
cists are working daily, with success, on concrete models which describe
very efficiently physics at wide energy scales. This description is based
on expansion of physical quantities like amplitudes of scattering processes
of power series of “physical” parameters, as coupling constants, masses,
charges. The higher order terms of these power series are usually ill-
defined, in a naive approach, but physicists have soon learned how to make
sense of them through the procedure now known as renormalization. . . On
Minkowski space-time, Steinmann’s concept of the scaling degree of a gen-
eralized function at a point leads to a rather smooth and economic method
of renormalization. . .

Romeo Brunetti and Klaus Fredenhagen, 200028

28 Microlocal analysis and interacting quantum fields: renormalization on phys-
ical backgrounds, Commun. Math. Phys. 208 (2000), 623–661 (reprinted with
permission).



624 11. Distributions and Green’s Functions

The support theorem. Let c0, . . . , cm be complex numbers. Set

F = c0δ + c1δ
′ + c2δ

′′ + . . .+ cmδ
(m). (11.52)

Then, the distribution F has the origin as support (or it vanishes identically).
Interestingly enough, the converse is also true. The proof of the following theorem
can be found in Triebel (1989), Sect. 4.

Theorem 11.17 If the distribution F ∈ D′(RN ) has the origin as support, then it
has the form (11.52).

The local degree of homogeneity of a distribution. Let σ0 be a real
number. The function f : R

N → C is said to be homogeneous of order σ0 iff

f(λx) = λσ0f(x) for all x ∈ R
N , x �= 0, λ > 0. (11.53)

For example, if N = 1, then the functions f(x) := x, x2, x−1, x−2 are homogeneous
of order (or degree) σ0 = 1, 2, −1 − 2, respectively. We write

degh f := σ0.

We want to generalize this notion to distributions. Let λ > 0. Suppose first that the
function f is locally integrable along with (11.53). For all test functions ϕ ∈ D(RN ),
we then have the two identities

λ−σ

Z

RN

f(λy)ϕ(y)dNy = λσ0−σ

Z

RN

f(y)ϕ(y)dNy,

and
Z

RN

f(λy)ϕ(y)dNy =

Z

RN

f(x)λ−Nϕ(λ−1x)dNx,

by the substitution x := λy. Now consider a general distribution F ∈ D′(RN ). Set

(Sλϕ)(x) := λ−Nϕ(λ−1x) for all x ∈ R
N , λ > 0.

Suppose that there exists a real number σ such that

lim
λ→+0

λ−σF (Sλϕ) = 0 for all ϕ ∈ D(RN ).

Let σ0 be the supremum of all such numbers σ. We then write σ0 = degh F , and we
call this the local degree of homogeneity of the distribution F . If there is no such
real number σ, we set degh F := −∞. Therefore, each distribution F ∈ D′(RN ) has
a local degree of homogeneity, and

−∞ ≤ degh F ≤ +∞.

Let us consider some typical examples.

(i) Homogeneous distribution: Suppose that there exists a real number σ0 such
that

F (Sλϕ) = λσ0F (ϕ) for all λ > 0

and all test functions ϕ ∈ D(RN ). Then σ0 = degF.
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(ii) Dirac’s delta distribution δ on R
N : For all λ > 0 and ϕ ∈ D(RN ),

δ(Sλϕ) = (Sλϕ)(0) = λ−Nϕ(0) = λ−Nδ(ϕ).

Hence degh δ = −N.
Steinmann’s renormalization theorem for distributions. We are given a

distribution
F0 ∈ D′(RN \ {0})

with finite local degree of homogeneity, degh F0.
29 By an admissible extension of

F0, we mean a distribution
F ∈ D′(RN )

with F (ϕ) = F0(ϕ) for all ϕ ∈ D(RN \ {0}), and degh F = degh F0. The following
theorem is basic for renormalization theory.

Theorem 11.18 Each distribution F0 above has an admissible extension F . If
degh F0 > −N , then the admissible extension of F0 is unique.

If degh F0 ≤ −N , then the family of all admissible extensions of F0 depends on
a finite number of complex parameters.

More precisely, in the critical case where degh F0 ≤ −N , suppose that the degree
degh F0 is an integer. Then the set of all admissible extensions of F0 is given by

F +
X

|α|≤m

cα∂
αδ

where F is a fixed admissible extension, and m = −N−degh F0. In addition, cα are
arbitrary complex numbers. The admissible extensions are also called Steinmann
extensions. In quantum field theory, the free parameters cα have to be determined
by additional symmetry conditions (e.g., Ward–Takehashi identities). This is the
method of renormalization. The proof of Theorem 11.18 will be given in Volume
IV in connection with the Epstein–Glaser approach to quantum field theory.30 Let
us consider a typical application.

11.4.4 Regularization Terms

Modern functional analysis solves classical problems in a generalized set-
ting by extending function spaces, operators, and functionals to more gen-
eral objects. For example, this concerns variational problems, the partial
differential equations of mathematical physics, and optimization problems.
The key words for typical extensions are Sobolev spaces, the Friedrichs ex-
tension of a formally self-adjoint operator, the Hahn–Banach extension of
functionals, and the Steinmann extension of distributions.31

Folklore

29 This degree is defined as above by restricting the test functions ϕ to the space
D(RN \ {0}).

30 See also Steinmann (1971), and Brunetti, Fredenhagen (2000).
31 This is thoroughly studied in the author’s textbook, E. Zeidler, Applied Func-

tional Analysis, Vols. 1, 2, Springer, New York, 1995.
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Consider the integral

F0(ϕ) :=

Z

R

ϕ(x)

x
dx.

If we restrict ourselves to smooth test functions ϕ : R \ {0} → C having compact
support, that is, these functions vanish outside a compact subset of the open set
R \ {0}, then ϕ vanishes in some open neighborhood of the origin and outside
some sufficiently large interval. Consequently, the integral F0(ϕ) is well-defined; it
represents a distribution in the space D′(R \ {0}) with local degree of homogeneity,
degh F0 = −1. By the Steinmann Renormalization Theorem 11.18, we obtain the
following.

Theorem 11.19 The most general extension of the distribution F0 to a distribu-
tion F ∈ D′(R) with the same degree of homogeneity, degh F = −1, is given by

F = Jreg + c0δ

where c is an arbitrary complex number.

Explicitly, we obtain the following expression

F (ϕ) =

Z

R

„

ϕ(x)

x
− ϕ(0)

x

«

dx+ cϕ(0)

for all test functions ϕ ∈ D(R).
As next example, consider the divergent integral

Z

R

dx

x2
. (11.54)

In order to renormalize this integral, we proceed as follows.

(i) We introduce the functional

F0(ϕ) :=

Z

R

ϕ(x)

x2
dx

for all test functions ϕ ∈ D(R \ {0}). This is a distribution living in the space
D′(R \ {0}). By Taylor expansion,

ϕ(x) = ϕ(0) + ϕ′(0)x+O(x2), x→ 0.

Therefore, we construct the regularized integral32

Freg(ϕ) :=

Z

R

ϕ(x)− ϕ(0)− ϕ′(0)x

x2
dx

which exists for all test functions ϕ ∈ D(R). The distribution Freg living in
D′(R) represents an extension of F0.

32 This integral represents the finite part of the integral F0(ϕ), in the sense of
Hadamard.
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(iii) The distribution F0 has the local degree of homogeneity, degh F0 = −2. The
most general distribution F ∈ D′(R) of local degree of homogeneity −2, which
is an extension of F0, reads as

F = Freg + c0δ + c1δ
′

where c0 and c1 are arbitrary complex numbers. Explicitly,

F (ϕ) =

Z

R

ϕ(x)− ϕ(0)− ϕ′(0)x

x2
dx+ c0ϕ(0) + c1ϕ

′(0)

for all test functions ϕ ∈ D(R). Note that also this makes sense for all test
functions ϕ ∈ S(R). Consequently, F is not only a distribution on the real line,
but also a tempered distribution.

By definition, the tempered distribution F is called the regularization of
the divergent integral (11.54).

The philosophy of renormalization. Typically, the process of renormaliza-
tion in physics introduces additional parameters which have to be fixed by addi-
tional considerations, frequently based on physical arguments.

The philosophy is that we extract relevant physical information from given,
possibly ill-defined mathematical objects.

As a typical example, consider the Fourier series

∞
X

p=−∞
ap(ψ)ϕp(x)

with the basis functions ϕp(x) := eipx/
√

2π and the Fourier coefficients

ap(ψ) :=

Z π

−π

ϕp(x)†ψ(x)dx, p = 0,±1,±2, . . .

If the 2π-periodic function ψ : R → C is measurable, and
R π

−π
|ψ(x)|dx < ∞, then

the Fourier coefficients are well-defined. In contrast to this, the Fourier series is not
always well-defined as a classical convergent series.

The task is to reconstruct the function ψ from its Fourier coefficients.

A nice answer to a special case of this problem is given by the following Fejér
theorem from 1904.33

Proposition 11.20 Let ψ : R → C be a continuous 2π-periodic function. Introduce
the partial sums

sn(x) :=

n
X

p=−n

ap(ψ)ϕp(x), x ∈ R, n = 0, 1, . . .

Then, the classical limit
ψ(x) = lim

n→∞
sn(x)

does not always exist. However, for all x ∈ R, we have the convergence

33 The proof can be found in Zorich (2003), Vol. I, p. 538.
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ψ(x) = lim
N→∞

s0(x) + s1(x) + . . .+ sN (x)

N + 1

for the mean averages of the partial sums. In addition, the convergence is uniform
on the real line.

Similarly, it is possible to extract important information from divergent inte-
grals. This fact is used critically in renormalization theory. For the regularization
of divergent integrals, we refer to

• Sect. 8.5.3 on page 513 (counterterms), and
• Sect. 11.6.2 on page 639 (dimensional regularization).

11.5 Renormalization of the Anharmonic Oscillator

Resonances are dangerous for the mathematics of physical systems.
Folklore

11.5.1 Renormalization in a Nutshell

This section should help the reader to understand the basic ideas of renormalization
theory from both the mathematical and physical point of view. We will use a simple
example in order to demonstrate the relation between the critical phenomenon of
resonance of an oscillating system and the renormalization of physical parameters.
Our rigorous approach will be based on the classical methods of bifurcation theory
in nonlinear functional analysis.34 This way, we will also clarify the role of renor-
malized Green’s functions which represent an important tool used by physicists in
renormalization theory.

11.5.2 The Linearized Problem

In nature, oscillating systems play a crucial role. As examples, consider electromag-
netic waves or the periodic motion of planets around the sun. As a rule, the motion
of coupled oscillating systems becomes complicated if resonance occurs, that is, the
difference between two frequencies becomes small. As a simple model, consider the
motion q = q(t),

q̈(t) + ω2q(t) = F (t), q(0) = q0, q̇(0) = q1, (11.55)

of a particle on the real line under the influence of the smooth external force F .
Here, the angular frequency ω is a fixed positive number. The unique solution is
given by

q(t) = q0 cosωt+
q1
ω

sinωt+

Z t

0

G(t, τ)F (τ) dτ, t ∈ R

with the Green’s function

34 A detailed study of bifurcation theory can be found in Zeidler (1986), Vol. 1,
Chap. 8.
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G(t, τ) :=
1

ω
sinω(t− τ), t, τ ∈ R.

Now choose the periodic external force

F (t) := sinαt, t ∈ R

with the fixed angular frequency α > 0. We have to distinguish between the follow-
ing two cases.

(i) Non-resonance. Let α �= ω. Then

q(t) = q0 cosωt+
q1
ω

sinωt+
sinαt+ sinωt

2(α+ ω)ω
− sinαt− sinωt

2(α− ω)ω
.

If α is near ω, then we speak of the small divisor α− ω.
(ii) Resonance. Let α = ω. The limit α→ ω yields

q(t) = q0 cosωt+
q1
ω

sinωt+
sinωt

2ω2
− t

2ω
cosωt.

This is the unique solution of (11.55).

The appearance of the term t cosωt corresponds to a motion with increasing am-
plitude. In practice, such resonant motions may destroy bridges. From the phys-
ical point of view, for vanishing external force, the system (11.55) possesses the
eigenoscillations

q(t) = q0 cosωt+
q1
ω

sinωt.

Since the external force F (t) := sinωt has the same angular frequency ω as the
eigenoscillations, the external force amplifies the eigenoscillations. From the math-
ematical point of view, small divisors are responsible for resonance effects.

In the 1950s and 1960s, Kolmogorov, Arnold, and Moser showed that resonance
effects can cause chaotic motions of bodies in celestial mechanics (KAM theory).
Chaotic motions of asteroids have been observed by astronomers.35

The following material serves as preparation for renormalization. Let us consider
the boundary-value problem

q̈(t) + ω2q(t) = F (t), q(0) = q(π) = 0 (11.56)

where ω > 0. Let C−
π denote the space of continuous π-periodic odd functions

f : R → R with the norm
‖f‖π := max

0≤t≤π
|f(t)|.

We are given the external force F ∈ C−
π . We are looking for a solution q ∈ C−

π

which is twice continuously differentiable on the interval [0, π]. Such a solution is
called a classical solution of (11.56).

Eigenoscillations. Consider first the case where the external force vanishes,
F ≡ 0. Problem (11.56) possesses then a nontrivial solution iff we choose ω = k for
some k = 1, 2, . . . . The solution reads as

q(t) = const · sin kt.

To each function q ∈ C−
π , we assign the Fourier series

35 As an introduction to KAM theory, we recommend Scheck (2000), Vol. 1 and
Thirring (1997).
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b1(q) sin t+ b2(q) sin 2t+ . . . (11.57)

with the Fourier coefficients

bk(q) :=

r

2

π

Z π

0

q(t) sin kt dt, k = 1, 2, . . .

If the function q is smooth, then the Fourier series (11.57) converges to q(t) uni-
formly on the real line. Moreover, all the derivatives q′, q′′, . . . can be computed by
differentiating the Fourier series (11.57) term by term, and these series converge
uniformly on the real line, by (10.8) on page 535.

The non-resonance case. Let ω �= k for all k = 1, 2, . . . . If q is classical
solution of problem (11.56), then the Fourier coefficients of q read as

bk(q) =
bk(F )

ω2 − k2
, k = 1, 2, . . . (11.58)

This follows from

bk(F ) =

r

2

π

Z π

0

F (t) sin kt dt =

r

2

π

Z π

0

`

q̈(t) + ω2q(t)
´

sin kt dt

along with integration by parts

bk(F ) =

r

2

π

Z π

0

(ω2 − k2)q(t) sin kt dt = (ω2 − k2)bk(q). (11.59)

Proposition 11.21 Suppose we are given the function F ∈ C−
π and the positive

parameter ω with ω �= 1, 2, . . . Then, the original boundary-value problem (11.56)
has the unique classical solution

q(t) =

Z π

0

G(t, τ ;ω)F (τ) dτ, t ∈ [0, π] (11.60)

with the kernel

G(t, τ ;ω) :=

r

2

π
·

∞
X

k=1

sin kt sin kτ

ω2 − k2

which is called the Green’s function.

Proof. For all indices k = 1, 2, . . .,
˛

˛

˛

˛

sin kt sin kτ

ω2 − k2

˛

˛

˛

˛

≤ const

k2
for all t, τ ∈ R.

Therefore, the series for G converges uniformly for all t, τ ∈ R. Hence the Green’s
function G is continuous. We now restrict ourselves to the special case where the
function F is a finite Fourier series. By (11.58),

q(t) =
∞
X

k=1

bk(q) sin kt =
∞
X

k=1

bk(F ) sin kt

ω2 − k2
.

Inserting the integral bk(F ) =
q

2
π

R π

0
F (τ) sin kτ dτ , we get the claim. Note that

summation and integration can be interchanged because of uniform convergence. �

Let us now discuss the general case where the given function F lies in the Banach
space C−

π .
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• Step 1: Classical solution: Our proof above shows that the function q = q(t) from
(11.60) is a classical solution of the original problem (11.56) if the given function
F is a finite Fourier series.

• Step 2: Generalized solution: If F ∈ C−
π , then the integral (11.60) is still well-

defined. Since the Green’s function G is continuous, the function q is at least
continuous. Therefore, the function q = q(t) from (11.60) can be regarded as
a generalized solution of the original problem (11.56). It can be shown that
this generalized solution q ∈ C−

π satisfies the original problem (11.56) in the
sense of distribution theory, that is, the derivatives of q are to be understood as
distributional derivatives.

• Step 3: Regularity of the generalized solution: Standard arguments from the reg-
ularity theory for boundary-value problems of second-order ordinary differential
equations show that q is indeed a classical solution of (11.56) which has contin-
uous derivatives of second order.

For the functional analytic proof of the statement from step 3, see Problem 12.10.
The proof will be based on the theory of Fredholm operators of index zero in Banach
spaces and the approximation theorem of periodic continuous functions by finite
Fourier series (the Fejér theorem).

The procedure from step 1 through step 3 is typical for the modern, func-
tional analytic theory of differential equations.

The resonance case. Let ω = 1. If problem (11.56) has a solution q, then it
follows from (11.59) that

b1(F ) = (ω2 − 1)b1(q) = 0. (11.61)

In terms of physics, the external force F (t) = sin t is in resonance with the
eigenoscillation q(t) = sin t. In this case, the original boundary-value problem
(11.56) has no solution. Observe that the Green’s function G from Prop. 11.21
has a singularity at ω = 1. Suppose that the external force F satisfies the reso-
nance condition b1(F ) = 0 and that q is a solution of (11.56). Then, by (11.59), the
Fourier coefficients of q satisfy the equation

bk(q) =
bk(F )

1− k2
, k = 2, 3, . . . (11.62)

By (11.61), the Fourier coefficient b1(q) is undetermined.

Proposition 11.22 If ω = 1 and b1(F ) = 0, then problem (11.56) has the general
solution

q(t) = const · sin t+

Z π

0

Greg(t, τ ; 1)F (τ) dτ

with the regularized Green’s function

Greg(t, τ ; 1) := lim
ω→1

 

G(t, τ ;ω)−
r

2

π
· sin t sin τ

ω2 − 1

!

.

The proof proceeds similarly to the proof of Prop. 11.21. The expression

−
r

2

π
· sin t sin τ

ω2 − 1

is called regularizing counterterm. Explicitly,
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Greg(t, τ ; 1) =

r

2

π
·

∞
X

k=2

sin kt sin kτ

1− k2
.

Note that the singular part of the Green’s function G disappears.
The method of pseudo-resolvents in the resonance case. Let ω = 1.

Consider the modified problem

q̈(t) + q(t) + b1(q) sin t = F (t), q(0) = q(π) = 0. (11.63)

If q is a solution, then

b1(q) = b1(F ), bk(q) =
bk(F )

1− k2
, k = 2, 3, . . . , (11.64)

by (11.59).

Proposition 11.23 For given F ∈ C−
π , problem (11.63) has the unique solution

q ∈ C−
π given by

q(t) =

Z π

0

Gpseudo(t, τ ; 1)F (τ) dτ, t ∈ [0, π]

along with the pseudo-Green’s function

Gpseudo(t, τ ; 1) :=

r

2

π

 

sin t sin τ +

∞
X

k=2

sin kt sin kτ

1− k2

!

.

If b1(F ) = 0, then q is a special solution of the original resonance problem

q̈(t) + q(t) = F (t), q(0) = q(π) = 0.

The proof proceeds as for the non-resonance case above, by using Fourier series.
Note that if b1(F ) = 0, then

R π

0
F (τ) sin τ dτ = 0. Hence

Z π

0

Gpseudo(t, τ ; 1)F (τ) dτ =

Z π

0

Greg(t, τ ; 1)F (τ) dτ.

The following investigations should help the reader to understand the phenomenon
of renormalization for nonlinear oscillations in the resonance case. We will use the
methods of bifurcation theory. Let us study the nonlinear oscillation problem

q̈(t) + ω2q(t) = κ q(t)3 + μ sin t, q(0) = q(π) = 0. (11.65)

The term μ sin t describes an external periodic force, whereas the nonlinear term
κq(t)3 models self-interaction. We call κ the coupling constant.

11.5.3 The Nonlinear Problem and Non-Resonance

Non-resonance case. Let ω > 0 where ω �= k for all k = 1, 2, . . . . There exist
positive numbers κ0, μ0 and r0 such that the following hold true.

Proposition 11.24 For given real parameters κ and μ with |κ| ≤ κ0 and |μ| ≤ μ0,
problem (11.65) has a unique solution q ∈ C−

π with ‖q‖π ≤ r0.
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Explicitly,

q(t) =
μ sin t

ω2 − 1
+

μ3κ

4(ω2 − 1)3

„

3 sin t

ω2 − 1
− sin 3t

ω2 − 9

«

+ . . .

The dots stand for higher-order terms with respect to κ and μ.
Proof. By Prop. 11.21, our problem is equivalent to the integral equation

q(t) =

Z π

0

G(t, τ ;ω)
`

κ q(τ)3 + μ sin τ
´

dτ.

This equation can be solved by means of the iterative method

qn+1(t) =

Z π

0

G(t, τ ;ω)
`

κ qn(τ)3 + μ sin τ
´

dτ, n = 0, 1, 2, . . .

with q0(τ) ≡ 0. This corresponds to the following boundary-value problem

q̈n+1 + ω2qn+1 = Fn, qn+1(0) = qn+1(π) = 0

with Fn(t) := κqn(t)3 + μ sin t. To begin with, let F0(t) = μ sin t. By (11.58),

q1(t) =
μ sin t

ω2 − 1
.

Furthermore, F1(t) = κq1(t)
3 + μ sin t. Hence

F1(t) =
κμ3

4(ω2 − 1)3
(3 sin t− sin 3t) + μ sin t.

By (11.58),

q2(t) = q1(t) +
κμ3

4(ω2 − 1)3

„

3 sin t

ω2 − 1
− sin 3t

ω2 − 9

«

.

As n→∞, this iterative method converges in the Banach space C−
π , according to

the Banach fixed-point theorem (see Zeidler (1995), Vol. 1, Sect. 1.7). �

11.5.4 The Nonlinear Problem, Resonance, and Bifurcation

The resonance case, bifurcation, and renormalization. The situation changes
substantially if we consider the resonance case ω = 1. To simplify notation, let us
set μ = 0, that is, we only study the crucial nonlinear self-interaction. The point is
that in contrast to the non-resonance case, the linearized problem

q̈(t) + q(t) = 0, q(0) = q(π) = 0

has the nontrivial solution

q(t) = s · sin t

which we call ground state. Here, s is a real parameter. If we switch on the self-
interaction, then we have to study the perturbed solutions

q(t) = s · sin t+ h(t) (11.66)



634 11. Distributions and Green’s Functions

of the boundary-value problem

q̈ + ω2q = κq3, q(0) = q(π) = 0 (11.67)

along with
ω = 1 + δω.

Here, both the function h and the real parameter δω depend on the small parameters
s and κ. In terms of physics, the observed angular frequency ω depends not only
on the coupling constant κ, but also on the parameter s of the actual ground state
q = s · sin t+ . . . of the system. This serves as a very simple model for the situation
encountered in quantum field theory where physicists argue as follows.

• In an experiment, we measure both the coupling constant κ and the characteristic
quantity ω = 1 + δω (e.g., the effective mass and the effective electric charge of
an electron).

• The knowledge of κ and ω determines the parameter s. This way, we get the
ground state (11.66).

• Physicists call ω = 1 + δω the renormalization of the bare quantity ω = 1.

In terms of mathematics, we get a family of solutions q, 1 + δω depending on the
small coupling constant κ and an additional small parameter s. In fact, there exist
positive numbers κ0, s0, ε0 and r0 such that the following hold true.

Proposition 11.25 For given real parameters κ and s with |κ| ≤ κ0 and |s| ≤ s0,
there exists a unique solution q ∈ C−

π , ω ∈ R of (11.67) with

‖q‖π ≤ r0, b1(q) = s,

and |ω2 − 1| ≤ ε0.

Explicitly, the solution reads as

q(t) = s · sin t+ . . . , ω2 = (1 + δω)2 = 1 +
3

4
κs2 + . . .

The dots stand for higher-order terms with respect to κ and s. If we know κ and

s, then we approximately get the value s = ±
q

4
3κ

(ω2 − 1) and the ground state

q(t) = ±
r

4(ω2 − 1)

3κ
· sin t, t ∈ R.

The following proof of Prop. 11.25 is based on a special variant of the Lyapunov–
Schmidt method in bifurcation theory which was invented around 1900 (see Zeidler
(1986), Vol. 1).
Proof. Let ω2 = 1 + ε. Motivated by the resonance case (11.63), we pass to the
equivalent problem

q̈ + q + b1(q) sin t = κq3 − εq + s · sin t, q(0) = q(π) = 0 (11.68)

along with the additional equation

b1(q) = s

which is called the bifurcation equation in mathematics. First regard ε as a free
parameter. To solve (11.68), we will use the iterative method
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q̈n+1 + qn+1 + b1(qn+1) sin t = Fn, qn+1(0) = qn+1(π) = 0

for n = 0, 1, . . . with

Fn(t) := κqn(t)3 − εqn(t) + s · sin t,

and q0 ≡ 0. By F0(t) = s · sin t and (11.64),

q1(t) = s · sin t.

Furthermore, since F1(t) = 1
4
κs3(3 sin t− sin 3t)− εs · sin t+ s · sin t,

q2(t) =
1

4
κs3

„

3 sin t+
1

8
sin 3t

«

− εs · sin t+ s · sin t.

By the Banach fixed-point theorem, the iterative method converges to the function
q = q1 + . . . . Observe the crucial fact that each term of q contains the parameter
s as a factor. Therefore, the bifurcation equation b1(q) = s yields

3

4
κs3 − εs+ s+ . . . = s.

This fixes the parameter ε, namely,

ε =
3

4
κs2 +O(s3), s→ 0.

Hence q(t) = s · sin t+O(s2), s→ 0. �

11.5.5 The Importance of the Renormalized Green’s Function

Let κ �= 0 and s �= 0, and suppose that κ and s are sufficiently small. The solution
q = q(t;κ, s) from Prop. 11.25 satisfies the boundary-value problem

q̈ + ω(κ, s)2q = κq3, q(0) = q(π) = 0.

By Prop. 11.21, this is equivalent to the integral equation

q(t;κ, s) =

Z π

0

Gren(t, τ ; 1)κ q(τ ;κ, s)3dτ

where Gren(t, τ ; 1) := G
`

t, τ ;ω(κ, s)
´

is called the renormalized Green’s function.
Explicitly,

Gren(t, τ ; 1) =

r

2

π
·

∞
X

k=1

sin kt sin kτ

ω(κ, s)2 − k2
, s �= 0, κ �= 0

along with
ω(κ, s) = 1 + 3

4
κs2 + . . .

The function ω = ω(κ, s) is an absolutely convergent power series with respect to
the small parameters κ and s. The well-defined renormalized Green’s function Gren

differs from the ill-defined naive Green’s function

G(t, τ ;ω = 1) =

r

2

π
·

∞
X

k=1

sin kt sin kτ

ω2 − k2
(11.69)
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with the singularity at k = 1 because of ω = 1. The passage from G to Gren

corresponds to the passage

12 − k2 ⇒ ω(κ, s)2 − k2.

We say that we add counterterms in order to force well-defined expressions.

Roughly speaking, the ill-defined Green’s function G from (11.69) is ob-
tained by linearizing at the wrong angular frequency ω = 1.

Our rigorous approach linearizes at the perturbed angular frequency 1+ δω and we
replace the ill-defined Green’s function G at ω = 1 by the pseudo-Green’s function.

11.5.6 The Renormalization Group

In quantum field theory, renormalized quantities depend on the energy E. The
method of the renormalization group studies the dependence of physical quantities
on the positive parameter E (or on other characteristic parameters). Let us explain
the basic idea by considering the following simple model. Consider the boundary-
value problem

d2Q(τ)

dτ2
+ ω2

TQ(τ) = κTQ(τ)3, Q(0) = Q(T ) = 0. (11.70)

Using the rescalings τ := πt/T and Q(τ) := q(t), we get

d2q(t)

dt2
+ ω2q(t) = κ q(t)3, q(0) = q(π) = 0

where

ωT =
πω

T
, κT =

π2κ

T 2
.

Introducing w(T ) := ωT
πω

= 1
T

and k(T ) := κT
π2κ

= 1
T2 , we get the renormalization

group equation

w(T1T2) = w(T1)w(T2), k(T1T2) = k(T1)k(T2)

for all positive numbers T1 and T2. This is a representation of the multiplicative
group R

×
+ of positive real numbers. Differentiation yields the renormalization-group

differential equation

dw(T )

dT
= −w(T )

T
,

dk(T )

dT
= −2k(T )

T

along with the initial condition w(1) = 1 and k(1) = 1. Setting ξ := lnT , we obtain
the dynamical system

dw

dξ
= −w, dk

dξ
= −2k

with the solution w = e−ξ, k = e−2ξ.
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11.6 The Importance of Algebraic Feynman Integrals

At the beginning of the 19th century, Abel (1802–1829) studied algebraic integrals
of the form

J =

Z

R(z, w(z)) dz

where R is a rational function of the two complex variables z and w, and the
function w = w(z) satisfies an algebraic equation

P (z, w(z)) = 0, z ∈ C,

that is, P (z, w) denotes a polynomial with respect to z and w with complex coeffi-
cients. If P (w, z) := w2 − (z − e1)(z − e2)(z − e3) with pairwise different complex
numbers e1, e2, e3, then J is an elliptic integral. For example,

J =

Z

dz
p

(z − e1)(z − e2)(z − e3)
.

Riemann (1826–1866) showed that algebraic integrals can be understood best by
studying the topology of the corresponding Riemann surface. In the 1940s, Feynman
systematically used higher-dimensional algebraic integrals.

11.6.1 Wick Rotation and Cut-Off

As a prototype, let us consider the algebraic Feynman integral

J(m) :=

Z ∞

−∞
dE

Z

R3

d3p

(E2 − c2p2 −m2c4)2
.

When computing cross sections for scattering processes of elementary particles via
the Feynman diagram technique, one encounters integrals of such type. These in-
tegrals correspond to the internal lines of the Feynman diagrams. Here, we use the
following notation: E energy, p momentum vector, and m > 0 bare mass of the
elementary particle. Note that the integral J(m) is divergent for the following two
reasons.

• First, the integrand has a singularity if

E2 = c2p2 +m2c4.

This is a hyperboloid in R
4 called the mass shell with respect to the mass pa-

rameter m. From the physical point of view, the energy E and momentum vector
p of an elementary particle of rest mass m live on the mass shell, by Einstein’s
energy-momentum relation for a free particle.

• Second, the integrand decreases too slowly as |p| → ∞ and |E| → ∞.

The following definition is basic. To simplify notation, we replace the SI system by
the energetic system, that is, we set c = 1. For given large cut-off mass Mmax > 0,
we define the regularized form of the integral J(m) by

regMmax
J(m) := 2π2i · ln

„

Mmax

m

«

. (11.71)
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In terms of physics, this means that we only consider such physical situations, say,
in a particle accelerator where energy E and momentum vector p satisfy the relation

E2 = p2 +M2

along with 0 ≤M ≤Mmax. Under this mass restriction, we assign the value (11.71)
to the integral J(m) if Mmax/m! 1. Let us motivate this definition.

• Step 1: Wick rotation. To eliminate the indefinite metric of the Minkowski space,
we first perform a Wick rotation. This means that we pass over to imaginary
energies by replacing the real axis by the imaginary axis.To this end, we define

JWick(m) :=

Z i∞

−i∞
dE

Z

R3

d3p

(E2 − p2 −m2)2
.

Use now the substitution
E = iq0, p := q.

Here, q0 is a real parameter, and we set q2 = q20 + q2. We then get

JWick(m) := i

Z ∞

−∞
dq0

Z

R3

d3q

(q20 + q2 +m2)2
= i

Z

R4

d4q

(q2 +m2)2
.

This integral is infinite.
• Step 2: Mass cut-off. Fix Mmax > 0. We define the cut-off by setting

JWick(m,Mmax) := i

Z

q2≤M2
max

d4q

(q2 +m2)2
.

This is a well-defined classical integral which can be computed easily. In fact,
introducing spherical coordinates,

JWick(m,Mmax) = i

Z Mmax

r=0

Z

S3

r3drdΩ

(r2 +m2)2
.

Using the measure meas(S3) = 2π2 of the 3-dimensional unit sphere S
3 and the

rescaling r = m!,

JWick(m,Mmax) = 2π2i

Z

Mmax
m

0

!(!2 + 1)− !

(!2 + 1)2
d!

= π2i

0

@ln(
M2

max
m2 + 1) +

1
M2

max
m2 + 1

− 1

1

A .

Hence

JWick(m,Mmax) = π2i(1 + o(1)) ln
M2

max
m2 , Mmax

m
→∞.

Finally, we obtain the desired expression (11.71) by neglecting the term o(1) if
Mmax/m! 1.
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11.6.2 Dimensional Regularization

For given mass parameters m > 0 and Mmax > 0, we want to show that the
expression (11.71) can also be obtained by a completely different approach called
dimensional regularization. Nowadays physicists prefer to use the method of dimen-
sional regularization in renormalization theory, since this method does not destroy
the gauge invariance.36

• Step 1: The classical integral. Let q := (q0, . . . , qD−1). Moreover, introduce the
sum of squares q2 := q20 + . . .+ q2D−1. We start with the classical key formula

Z

RD

dDq

(q2 +m2)N
=
π

D
2 Γ

`

N − D
2

´

m2N−D Γ (N)
(11.72)

where D = 1, 2, . . . and N > D/2. Recall that Euler’s gamma function Γ = Γ (z)
is holomorphic on the complex plane up to first-order poles at the singular points
z = 0,−1,−2, . . . At the origin,

Γ (z) =
1

z
− C +O(z), z → 0

where C := limn→∞(
Pn

k=1
1
k
− ln(n + 1)) = 0.5722 . . . is Euler’s constant.37

Generally, for n = 1, 2, . . . we have38

Γ (z − n) =
(−1)n

n!

 

1

z
− C +

n
X

k=1

1

k

!

+O(z), z → 0. (11.73)

Furthermore, Γ (1) = Γ (2) = 1. In general

Γ (n) := (n− 1)!, n = 1, 2, 3, . . .

In formula (11.72), the pole of the function N �→ Γ (N − D/2) at the point
N = D/2 indicates that the integral is divergent in this situation. For example,
this is the case if D = 4 and N = 2.

• Step 2: Analytic continuation: Note that
The basic trick of dimensional regularization is to apply analytic continua-
tion to formula (11.72) with respect to the dimension D.

This way, we define the left-hand integral from (11.72) by the right-hand side of
(11.72) for all complex numbers D with

N − D

2
�= 0,−1,−2, . . .

For example, choose D := 4− δ and N = 2 where 0 < δ < 1. This yields

36 Much material can be found in ’t Hooft and Veltman (1973), Veltman (1995). See
also Peskin and Schroeder (1995), Kugo (1997), Ryder (1999), and Zinn-Justin
(2004).

37 The experience of physicists shows that this constant is cancelled when comput-
ing quantities that can be observed in physical experiments. A detailed investi-
gation of Euler’s constant can be found in Havil (2003).

38 The proof can be found in Ryder (1999), p. 385.
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Z

R4−δ

d4−δq

(q2 +m2)2
:=

π2−δ/2Γ
`

δ
2

´

mδΓ (2)
.

Using this, we define

Jδ(m) := iκδ

Z

R4−δ

d4−δq

(q2 +m2)2
= iπ2Γ

„

δ

2

«„

mπ1/2

κ

«−δ

.

Here, the positive parameter κ has the physical dimension of energy; κ has been
introduced in order to get the dimensionless quotient m/κ. Let x > 0. As δ → +0,
it follows from

Γ

„

δ

2

«

=
2

δ
− C + o(1)

and
x−δ = e−δ ln x = 1− δ lnx+ o(δ)

that

Jδ(m) = iπ2

„

2

δ
− C − 2 ln

„

mπ1/2

κ

««

+ o(1), δ → +0.

• Step 3: The Pauli–Villars regularization method: In order to cancel the singular
term 1

δ
, we consider the difference

Jδ(m)− Jδ(Mmax) = 2π2i · ln
„

Mmax

m

«

+ o(1), δ → +0

by introducing the large fictitious mass Mmax. Generally, the classic Pauli–Villars
method introduces additional physical fields which contain large fictitious masses.
In contrast to the cut-off method, Pauli–Villars regularization does not destroy
the relativistic invariance.39

• Step 4: The limit: Letting δ → +0, we get

lim
δ→+0

(Jδ(m)− Jδ(Mmax)) = 2π2i · ln
„

Mmax

m

«

.

This coincides with (11.71).

The same method can be applied to broad classes of algebraic Feynman integrals.
This will be studied in Volume V on the physics of the Standard Model in particle
physics.

The Euler beta function. Let α > 0 and β > 0. In dimensional regularization,
one frequently uses the following two classic integral formulas

Γ (α) =

Z ∞

0

xα−1e−x dx (11.74)

and

B(α, β) =
Γ (α) · Γ (β)

Γ (α+ β)
(11.75)

where

B(α, β) :=

Z 1

0

xα−1(1− x)β−1 dx

is the Euler beta function. The proofs along with further important material can
be found in Zorich (2003), p. 439ff.

39 W. Pauli and F. Villars, On the invariant regularization in relativistic quantum
theory, Rev. Mod. Phys. 21 (1949), 434–444.
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11.6.3 Weinberg’s Power-Counting Theorem

An attack is made on the problem of determing the asymptotic behavior
at high energies and momenta of the Green’s function, using new mathe-
matical methods from the theory of real variables. We define a class An of
functions of n real variables whose asymptotic behavior may be specified
in a certain manner by means of certain ”asymptotic coefficients“. The
Feynman integrands of perturbation theory (with energies taken imag-
inary) belong to such classes. We then prove that if certain conditions
on the asymptotic coefficients are satisfied then an integral over k of the
variables converges, and belongs to the class An−k with new asymptotic
coefficients simply related to the old ones. When applied to perturbation
theory this theorem validates the renormalization procedure of Dyson and
Salam, proving that the renormalized integrals actually do always con-
verge, and provides a simple rule for calculating the asymptotic behavior
of any Green’s function to any order of perturbation theory.

I particularly wish to thank Professor Wightman for his many valuable
suggestions, and for enabling this paper to satisfy Salam’s criterion.

Steven Weinberg, 1960
High energy behavior in quantum field theory40

The prototypes of convergent and divergent integrals are given by the following
one-dimensional examples:

(i) Convergence for N > 1:

Z +∞

1

dp

pN
= lim

P→+∞

1

N − 1

„

1− 1

PN−1

«

=
1

N − 1
.

(ii) Logarithmic divergence:

Z +∞

1

dp

p
= lim

P→+∞
lnP = +∞.

(iii) Divergence for 0 < N < 1:

Z +∞

1

dp

pN
= lim

P→+∞

P 1−N − 1

1−N
= +∞.

Using spherical coordinates, this can be easily translated to higher dimensions.
Simple model. Consider the integral

Σ(q) :=

Z ∞

−∞

p dp

(m2 + p2)(μ2 + (p− q)2)
. (11.76)

This is a simplified one-dimensional version of a Feynman integral corresponding
to the self-energy of a fermion (e.g., an electron) of mass m > 0 and a boson (e.g.,
a meson) of mass μ > 0. The real variables p and q correspond to the momentum
of the particles. Explicitly,

40 Reprinted excerpt with permission from S. Weinberg, Phys. Rev. 118(3) (1960),
838–849. Copyright 1960 by the American Physical Society. The reader should
note that the meaning of Salam’s criterion is explained on page 850.
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Σ(q) =
πq(q2 + (m− μ)2)

μ(q4 + 2q2(m2 + μ2) + (m2 − μ2)2)
.

Thus, the integral possesses the following asymptotics for large momenta:

Σ(q) = O

„

1

q

«

, q → +∞

for all q ∈ R. Weinberg’s fundamental power-counting theorem generalizes this
simple example to very general situations. This theorem tells us that under quite
general assumptions, the asymptotics of the integrand implies both the existence
and the asymptotics of the integral for large momenta. The full formulation of this
theorem along with the sophisticated proof can be found in Volume V. The proof
starts with the one-dimensional case by using a compactness argument. One then
proceeds by induction. At this point, we will only consider a special case concerning
the existence of multidimensional integrals with rational integrands.41

Critical subdivergences. To begin with, let us discuss some typical pitfalls.
Let N ≥ 0.

• Inspect the integral

J(a) :=

Z

R2

dxdy

(1 + x2 + ay2)N
.

Suppose first that a > 0. In this favorite case, the integral is convergent if N > 2.
For N ≤ 2, the integral is divergent.

• The situation changes completely if a ≤ 0. The integral is then divergent for all
exponents N ≥ 0. In fact, for a = 0, the divergence of the integral is simply a
consequence of

Z ∞

−∞
dy = ∞.

If a < 0, then the denominator has zeros along the hyperbola |a|y2 − x2 = 1
which is responsible for the divergence of the integral.

• The integral
Z

R2

dxdy

(1 + x2)(1 + |y|N )

is convergent for N > 1, and it is divergent for N < 1. This follows from the fact
that the integral

Z ∞

−∞

dy

1 + |y|N

is convergent (resp. divergent) if N > 1 (resp. N < 1).

Observe that in these examples, the danger comes from divergent subintegrals ex-
tended over lower-dimensional domains of integration.

The power-counting method. Let us consider the following integral

Σ(q) :=

Z

R4n

P(q, p)

ΠN
i=1(s

2
i +m2

i )
d4np (11.77)

for all q ∈ R
4n along with the subintegrals

41 We recommend reading Weinberg (1960). Generalizations can be found in Hahn
and Zimmermann (1968), Manoukian (1983), and Etingof (1999).
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Z

H

P(q, p)

ΠN
i=1(s

2
i +m2

i )
dVH. (11.78)

Here, P is a polynomial with respect to the real components of the 4-vectors
p1, . . . ,pn ∈ R

4 and q1, . . . ,qn ∈ R
4. Moreover, we set

p2
j := p2

j0 + p2
j1 + p2

j2 + p2
j3.

Furthermore, we have

si := qi +
n
X

j=1

aijpj , i = 1, .., N

where aij are real numbers. The mass coefficients m1, . . . ,mN are assumed to be
positive. Finally, H is an arbitrary plane in R

4n described by a linear system of the
form

n
X

j=1

bijpj = ci, i = 1, . . . , n

where bij , ci are real numbers for all i, j = 1, . . . , n. In addition, dVH denotes the
volume element of H. Now to the point. The superficial degree of the integral Σ(q)
is defined to be

degsup Σ(q) : = degree of the integrand

plus dimension of the domain of integration.

By definition, the degree of the integrand is equal to “degree of the numerator
minus degree of the denominator”. For example, the integrand from (11.76) has the
degree 1 − 4 = −3. Therefore, the integral Σ(q) from (11.76) has the superficial
degree

degsup = −3 + 1 = −2.

A very useful special case of the Weinberg theorem reads as follows.

Theorem 11.26 The integral (11.77) is absolutely convergent if its superficial de-
gree is negative and the superficial degrees of all of the subintegrals (11.78) are also
negative.

11.6.4 Integration Tricks

We want to summarize prototypes of integration tricks which are frequently used
by physicists in quantum field theory.

Cauchy’s residue trick. Consider the rational function

f(x) :=
a(x)

b(x)
, x ∈ R

where a and b are polynomials of degree α and β, respectively, with complex coeffi-
cients. We assume that β−α ≥ 2, α ≥ 0, and b(x) �= 0 for all x ∈ R. Let z1, . . . , zK

be precisely the poles of the function f on the upper half-plane. Then

Z

R

f(x)dx = 2πi

K
X

k=1

reszk (f). (11.79)
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This integral exists in the classical sense.42 In addition, we have
R

R
f(x)dx = 0

if the function f has no poles on the upper-half plane. The proof proceeds as in
Problem 12.1 on page 735.

Example. Let m > 0. Consider the integral

J(m) :=

Z

R

dE

m2 − E2
.

This integral does not exist in the classical sense because of the singularity of the
integrand at the points E = ±m. It is our goal to describe two different methods
which motivate the definition

Z

R

dE

m2 − E2
:=

iπ

m
(11.80)

of the regularized value of the divergent integral.

(i) Mass perturbation. We start with the replacement

m⇒ m− μi, μ > 0 (11.81)

where μ is small. In terms of physics, the choice of the sign of μ is motivated by
the argument (14.14) discussed on page 775 (damped oscillation of a quantum
particle of mass m). By definition, the regularized integral reads as

J(m− μi) =

Z

R

dE

(m− μi)2 − E2
, μ > 0.

The decomposition

1

(m− μi)2 − E2
=

1

2(m− μi)

„

1

m− μi− E
+

1

m− μi + E

«

tells us that the functionE �→ 1
(m−μi)2−E2 has a pole at the point −m+ μi in

the upper half-plane. By (11.79),

J(m− μi) =
iπ

m− μi
.

The limit

lim
μ→+0

J(m− μi) =
iπ

m

coincides with (11.80). The same argument shows that the modified regular-
ization

Jε(m) :=

Z

R

dE

m2 − εi− E2
, ε > 0

yields the same value, namely,

lim
ε→+0

Jε(m) = lim
ε→+0

iπ√
m2 − εi

=
iπ

m
.

42 The definition of the residue reszk (f) of the function f at the point zk can be
found on page 215.
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(ii) Wick rotation. Replacing the real energy axis by the imaginary energy axis, we
get

JWick(m) :=

Z i∞

−i∞

dE

m2 − E2
.

Using the substitution E = iq,

JWick(m) = i

Z ∞

−∞

dq

m2 + q2
.

Since 1
q2+m2 = 1

2mi
( 1

q−mi
− 1

q+mi
), the residue method (11.79) yields

JWick(m) =
iπ

m

which coincides with (11.80).

The differentiation trick. Let m > 0. We want to discuss an iterative method
in order to regularize divergent integrals of the type

JN (m) :=

Z

R

dE

(m2 − E2)N
, N = 1, 2, . . . .

We already know the definition J1(m) := iπ/m. Formal differentiation with respect
to the mass parameter m yields

J ′
N (m) = −2mN

Z

R

dE

(m2 − E2)N+1
= −2mNJN+1(m).

This motivates the recursive definition

JN+1(m) :== − 1

2Nm

dJN (m)

dm
, N = 1, 2, . . .

with J1(m) := iπ/m. For example, J2(m) = iπ/2m3.
Feynman’s product trick. Let 0 < a < b. Then

1

ab
=

1

b− a

Z b

a

dt

t2
.

Hence

1

ab
=

Z 1

0

du

[a+ (b− a)u]2
. (11.82)

For example,

J :=

Z

R2

dxdy

(1 + x2)(1 + y2)
=

„

Z

R

dx

1 + x2

«2

= π2.

By (11.82),

J =

Z 1

0

du

Z

R2

dxdy

[1 + x2 + (y2 − x2)u]2.
.

Similarly, for j, k = 1, 2, . . . ,
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1

ajbk
=

(j + k − 1)!

(j − 1)!(k − 1)!

Z 1

0

xj−1(1− x)k−1

[ax+ b(1− x)]j+k
dx.

Schwinger’s parametrization trick. Let a > 0. Then

1

a
=

Z ∞

0

e−atdt. (11.83)

Here, t is called the Schwinger parameter by physicists. This identity allows us to
reduce algebraic Feynman integrals to integrals of exponential type. For example,

π =

Z

R

dx

1 + x2
=

Z

R

dx

Z ∞

0

dt e−(1+x2)t.

Example. Set p := (p0, . . . , pD−1) and p2 = p2
0 + . . . + p2

D−1. For p, q ∈ R
D

with p �= 0, we want to compute the integral

JD(p) :=

Z

RD

dDq

q2(p+ q)2
.

To begin with, let D = 3. By Schwinger’s trick,

JD(p) =

Z ∞

0

dt

Z ∞

0

dτ

Z

RD

dDq e−tq2−τ(p+q)2

=

Z ∞

0

dt

Z ∞

0

dτ

Z

RD

dDq exp

"

−(t+ τ)

„

q +
τp

t+ τ

«2

− tτp2

t+ τ

#

.

Computing the Gaussian integral with respect to the variable q,

JD(p) = πD/2

Z ∞

0

dt

Z ∞

0

(t+ τ)−D/2 · exp

„

− tτp2

t+ τ

«

dτ.

The Jacobian of the transformation t = sx, τ = (1− x)s reads as

∂(t, τ)

∂(x, s)
=

∂t

∂x

∂τ

∂s
− ∂t

∂s

∂τ

∂x
= s(1− x) + xs = s.

Hence

JD(p) = πD/2

Z 1

0

dx

Z ∞

0

ds s1−D/2e−sx(1−x)p2
.

For all numbers α > 0, Γ (α) =
R∞
0
sα−1e−s ds. This implies

JD(p) = πD/2(p2)−2+D/2 Γ

„

2− D

2

«

Z 1

0

[x(1− x)]−2+D/2 dx.

Finally, using the Euler beta function and its relation to the gamma function (11.75)
on page 640, we get

JD(p) = πD/2(p2)−2+D/2 ·
Γ
`

2− D
2

´

Γ
`

D
2
− 1
´2

Γ (D − 2)
.

Analytic continuation shows that the right-hand side is finite if



11.7 Fundamental Solutions of Differential Equations 647

D > 0 and D �= 2, 4, 6, . . . .

This corresponds to the dimensional regularization of the integral JD(p). The
asymptotic expansion of the function JD(p) at the critical values D = 2, 4, . . .
follows from (11.73) on page 639.

The measure of the n-dimensional unit sphere. We have

meas(Sn) =
2π(n+1)/2

Γ
`

n+1
2

´ , n = 1, 2, . . . .

For n = 1, 2, 3, we get meas(Sn) = 2π, 4π, 2π2, respectively. This surface measure
is useful when passing to spherical coordinates in R

n+1. In fact,
Z

Rn+1
f(||x||) dn+1x = meas(Sn)

Z ∞

0

f(r)rndr.

Suggested reading. Lists of integrals useful for computations in quantum field
theory can be found in Macke 1959, Vol. 6 (classical Feynman integration tricks),
’t Hooft and Veltman (1973), Bogoliubov and Shirkov (1983), and Veltman (1995)
(dimensional regularization). For computing algebraic Feynman integrals by using
computers, we refer to the list of software systems on page 946.

We also recommend Itzykson and Zuber (1980), Collins (1984), Peskin and
Schroeder (1995), Kugo (1997), Ryder (1999), and Zinn-Justin (2004). The re-
lation between algebraic Feynman integrals and both the theory of distributions
and Green’s functions for hyperbolic differential equations (the classical theory of
Hadamard and Marcel Riesz) are thoroughly studied in Gelfand and Shilov (1964),
Vol. 1, Chap. III, and Egorov, Komech, and Shubin (1999).

The connection between algebraic Feynman integrals and topology in terms of
the Picard–Lefschetz theorem can be found in Hwa and Teplitz (1966). See also the
hints for further reading given in the footnote on page 642.

For the classical background, we refer to Zorich (2003), Vol. 2. An extensive
collection of classical integrals and infinite series can be found in Prudnikov et al.
(1986), Vols. 1–5.

11.7 Fundamental Solutions of Differential Equations

Let N = 1, 2, . . . We want to solve the differential equation

Lψ = f on R
N (11.84)

in the sense of distributions. Here, L is a differential operator with constant complex
coefficients of order m,

L :=
X

|α|≤m

aα∂
α

where each aα is a complex number. Naturally enough, we assume that L is not
trivial, that is, there exists at least one nonzero coefficient aα. We are given the
distribution f ∈ D′(RN ) with compact support. We are looking for a distribution
ψ ∈ D′(RN ). Motivated by the idea of the Green’s function, we want to reduce the
solution of (11.84) to the equation

LG = δ on R
N . (11.85)
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Each solution G ∈ D′(RN ) of (11.85) is called a fundamental solution of the differ-
ential operator L. Green’s functions are special fundamental solutions which satisfy
additional side conditions (e.g., initial conditions and boundary conditions).

Theorem 11.27 If G is a fundamental solution of the differential operator L, then
the convolution G ∗ f is a solution of (11.84).

Proof. L(G ∗ f) = LG ∗ f = δ ∗ f = f. �

For many important differential equations in mathematical physics, fundamen-
tal solutions are explicitly known. A comprehensive summary can be found in Ort-
ner and Wagner (1997).

(i) For given distribution f ∈ D′(R), consider the equation

ψ′ = f on R. (11.86)

We are looking for a solution ψ ∈ D′(R). The fundamental solutions of (11.86)
have the form

G(t) = θ(t) + const for all t ∈ R.

This means that G′ = δ. The general solution of (11.86) reads as

ψ = θ ∗ f + const.

In particular, if f : R → C is continuous and has compact support, then

ψ(t) =

Z ∞

−∞
θ(t− τ)f(τ)dτ + const =

Z t

−∞
f(τ)dτ + const, t ∈ R.

(ii) Suppose we are given the distribution f as in (i) above. We are looking for a
distribution ψ ∈ D′(R) such that

ψ′′ = f on R. (11.87)

The fundamental solutions of (11.86) have the form

G(t) = tθ(t) + const · t+ const for all t ∈ R.

This means that G′′ = δ. The general solution of (11.86) reads as

ψ = (gθ) ∗ f + const · g + const

where g(t) := t. In particular, if f : R → C is continuous and has compact
support, then

ψ(t) =

Z t

−∞
(t− τ)f(τ)dτ + const · t+ const, t ∈ R.

Proof. Ad (i). By (11.45) on page 614, each solution ψ ∈ D′(R) of the homogeneous
equation ψ′ = 0 is constant. Thus, two solutions of (11.86) differ by a constant.
Finally, θ′ = δ.

Ad (ii). By the Weyl lemma on page 614, each solution ψ ∈ D′(R) of ψ′′ = 0
is a smooth function. Hence ψ(t) = const · t + const. Moreover, we have shown in
(11.44) on page 614 that (gθ)′′ = δ. �
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11.7.1 The Newtonian Potential

Consider the Poisson equation

ε0ΔV = ! on R
3. (11.88)

We are given the distribution ! ∈ R
3 with compact support, and we are looking

for the distribution V ∈ D′(R3). In terms of physics, the electric charge density !
generates the electric field E = −gradV. The equation

ε0ΔG = δ on R
3 (11.89)

corresponds to a charge Q = 1 at the origin.

Proposition 11.28 The general solution of (11.88) is given by

V = G ∗ !+W

where W : R
3 → C is an arbitrary smooth function with ΔW = 0 on R

3, and

G(x) :=
1

4πε0||x||
, x ∈ R

3 \ {0}

is a fundamental solution satisfying (11.89). If ! : R
3 → R is a continuous function

with compact support, then

(G ∗ !)(x) =

Z

R3

!(y)

4πε0||x− y|| d
3y, x ∈ R

3.

Proof. By the Weyl lemma on page 614, each distribution V ∈ D′(R3) withΔV = 0
is a smooth function. By Prop. 10.22,

Z

R3
ε0G(x)Δϕ(x)d3x = ϕ(0) for all ϕ ∈ D(R3).

This tells us that ε0ΔG = δ. �

11.7.2 The Existence Theorem

Theorem 11.29 Each nontrivial linear differential operator with complex constant
coefficients has a tempered distribution as fundamental solution.

In 1958, this crucial theorem was proved by Hörmander in a sophisticated manner.
An alternative proof was given by �Lojasiewicz in 1959. Atiyah showed in 1970 that
this theorem can be proved in an elegant way by using the deep Hironaka theorem.
Let us discuss the main difficulty of the proof. By Fourier transform, the original
equation LG = δ passes over to the equation

PĜ = 1, Ĝ ∈ S ′(Rn) (11.90)

where P is a polynomial with respect to the momentum variable p ∈ R
n. Naively,

we get

Ĝ =
1

P
.

However, as a rule, this method does not work, since the zeros of P generate sin-
gularities. This complicates the proof substantially.
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11.7.3 The Beauty of Hironaka’s Theorem

In this note I shall show how Hironaka’s theorem43 on the resolution of
singularities leads quickly to a new proof of the Hörmander–�Lojasiewicz
theorem on the division of distributions (generalized functions) and hence
to the existence of tempered fundamental solutions for constant-coefficient
differential operators. Since most of the difficulties in the general theory of
partial differential operators arise from the singularities of the characteris-
tic variety, it is quite natural to expect Hironaka’s theorem to be relevant.
In fact, this note is primarily intended to draw the attention of analysts
to the power of this theorem.

Michael Atiyah, 197044

In this section, we want to have a look at some deep mathematical theorems which
are related to quantum field theory. At the top is the highly sophisticated Hironaka
theorem. It turns out that

An appropriate mathematical tool for quantum field theory is the theory of
tempered generalized functions based on the Fourier transform.

In fact, the basic objects of Feynman’s approach to quantum field theory, namely,

• the Dirac delta function,
• the Feynman propagators (e.g., the photon propagator and the electron propa-

gator in quantum electrodynamics), and
• the algebraic Feynman integrals (corresponding to internal lines of Feynman

diagrams)

are not classical mathematical functions, but tempered distributions. Let us mention
the following fundamental results:

(i) the 1964 Hironaka theorem on the resolution of singularities in algebraic geom-
etry;

(ii) the 1968 Hironaka–Atiyah–Bernstein–Gelfand (HABG) theorem on meromor-
phic families of tempered distributions;

(iii) propagators of quantum fields and the 1958 Hörmander–�Lojasiewicz theorem
on the existence of tempered fundamental solutions; this can be based on the
HABG theorem;

(iv) dimensional regularization of Feynman integrals via the HABG theorem;
(v) the zero-mass limit as a tempered generalized function via the HABG theorem;
(vi) the multiplication of generalized functions by using Hörmander’s wave front

sets, and causal products of propagators (the 1973 Epstein–Glaser approach
to quantum field theory via constructing the S-matrix in terms of tempered
generalized functions);

(vii) Hörmander’s 1971 theory of Fourier integral operators, microlocal analysis,
and Radzikowski’s 1996 theory for Hadamard states in quantum gravitation;

(viii) Analytic continuation of functions of many complex variables; analyticity
properties of the Fourier transform or Laplace transform of tempered gener-
alized functions (the Paley–Wiener theorem and Bogoliubov’s “edge-of-the-
wedge” theorem); proof of the fundamental CPT theorem in the setting of
axiomatic quantum field theory by Res Jost in 1957.

43 H. Hironaka, Resolution of singularities of an algebraic variety over a field of
characteristic zero, Ann. Math. 79 (1964), 109–326. Heisuke Hironaka (born
1931) was awarded the Fields medal in 1970.

44 Resolution of singularities and division of distributions, Commun. Pure Appl.
Math. 23 (1970), 145–150 (reprinted with permission).
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Z

V (0)

=⇒
ϕ

U(0)

Z

Fig. 11.4. Normal form of singularities

Mathematically, important contributions came from Laurent Schwartz (theory of
generalized functions) in the 1940’s and from Hörmander between 1955 and 1975
(general theory of linear partial differential operators). See Hörmander (1983), Vols.
1–4.45

In terms of quantum field theory, during the 1950s important impacts came
from Arthur Wightman in Princeton and Nikolai Bogoliubov in Moscow and from
their numerous collaborators. In what follows, let us sketch some of the main ideas.

The Hironaka theorem on the resolution of singularities. We want to
study the behavior of the equation

F (x) = 0, x ∈ R
n (11.91)

near the origin, x = 0. The simplest case is the equation

y = 0, (x, y) ∈ R
2

where the solutions are the points of the x-axis. However, we also allow singularities.
As a prototype, consider the equation

xy = 0, (x, y) ∈ R
2.

Here, the solutions consist of the points of both the x-axis, y = 0, and the y-axis,
x = 0. We want to generalize this. To this end, we assume that the nonzero function

F : U(0)→ R

is real analytic in a neighborhood U(0) of the origin.46 It is our goal to transform
the function F into the local normal form

F (ϕ(z)) = f(z)zα1
1 zα2

2 · · · zαn
n , z ∈ V (0) (11.92)

on a neighborhood V (0) of the origin in R
n (Fig. 11.4). For the real exponents,

α1 ≥ 0, . . . , αn ≥ 0. Furthermore,

f(z) �= 0 on V (0),

45 Laurent Schwartz, Lars Hörmander, Michael Atiyah, and Heisuke Hironaka were
awarded the Fields medal in 1950, 1962, 1966, and 1970, respectively.

46 This means that the function F can be represented as an absolutely convergent
power series expansion on U(0),

F (x) = a0 + a1x1 + . . .+ anxn + a12x1x2 + . . .

with real coefficients a0, a1, . . .
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and the function f : V (0) → R is real analytic. The original equation (11.91) then
passes over to the equivalent equation

zα1
1 zα2

2 · · · zαn
n = 0, z ∈ V (0)

which can be solved easily. Hironaka’s theorem (1964) tells us that

The local normal form (11.92) can be obtained by a regular local coordinate
transformation, x = ϕ(z).

More precisely, there exists a surjective, real analytic map

ϕ : V (0)→ U(0)

on a neighborhood V (0) of the origin such that the following hold true:

• The map ϕ is proper, that is, the preimages of compact sets are again compact.
• Let Z denote the set of zeros of the original equation (11.91), that is,

Z := {x ∈ U(0) : F (x) = 0}.

Let Z be the preimage of the zero set Z under the coordinate transformation
x = ϕ(z), i.e.,

Z := {z ∈ V (0) : F (ϕ(z)) = 0}.

• The complementary map ϕ : V (0) \ Z → U(0) \ Z is a real analytic diffeomor-
phism.47

This is a special case of general results due to Hironaka (1964), pp. 109–326; the
local normal form quoted above is a consequence of the theorem on page 170 of
Hironaka’s paper applied to analytic local rings.

Note that Hironaka’s theorem represents a far-reaching generalization of the
implicit function theorem. This theorem corresponds to the special case where
F ′(0) �= 0. Then, the normal form looks like

F (ϕ(z)) = f(z)z1, z ∈ V (0)

with f(z) �= 0 on the neighborhood V (0). This means that the solutions of the
equation F (x) = 0 are given by the smooth hypersurface x = ϕ(z) near the origin.

The genesis of the implicit function theorem and the Hironaka theorem goes
back to Newton (1643-1727) who developed the method of Newton polygons in
order to study the zeros of polynomial equations in two variables. For example, the
two local solution branches of the equation

2x3 + 2x2y + xy2 + x2y3 + y4 = 0

near the origin, x = 0, y = 0, read as

y = (−1± i)x+ o(x) and y = ±ix1/2 + o(x1/2), x→ 0.

The appearance of fractional powers is typical for “this type of problem”. This
means that besides power series expansions we also encounter Puiseux expansions as
solutions. See Zeidler (1986), Vol. 1, p. 431. In quantum field theory, such expansions
are called singular Landau expansions.

47 Explicitly, the map ϕ : V (0) \ Z → U(0) \ Z is bijective and real analytic, and
the inverse map is also real analytic.
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Further important contributions to the implicit function theorem were made
by Lagrange (1736–1813), Cauchy (1789–1857), and Weierstrass (1815–1897) (the
Weierstrass preparation theorem is a forerunner of Hironaka’s theorem). A fairly
elementary discussion of the Hironaka approach to the blowing-up of singularities
in algebraic geometry can be found in the survey article by Hauser (2003).

Besides the Hironaka theorem, there exists another deep generalization of the
regular implicit function theorem called the hard implicit function theorem (or
the Nash–Moser theorem). This theorem allows applications to chaotic motions in
celestial mechanics (KAM theory) and to embedding theorems in the theory of
manifolds.48

The Hironaka–Atiyah–Bernstein–Gelfand theorem on meromorphic
families of generalized functions. Let us study the integral

Fs(ϕ) :=

Z

H≥

f(x)sϕ(x)dnx (11.93)

for all test functions ϕ ∈ D(Rn) and fixed complex exponent s with �(s) > 0. Our
goal is to extend the function s �→ Fs(ϕ) analytically to the complex plane. We
cannot expect that this extended function is holomorphic on the complex plane.
For physics, however, it is sufficient, that the extended function is meromorphic on
the complex plane. In fact, the theorem below tells us that this property is met. To
be precise, we assume that the nonzero function

f : R
n → R

is real analytic and nonnegative. We set x = (t, x1, . . . , xn−1), and define the closed
half-space

H≥ := {x ∈ R
n : t ≥ 0}.

In applications to physics, t plays the role of time. Then, for each complex number s
with �(s) > 0, Fs is a generalized function which lies in the Schwartz space D′(Rn).

Theorem 11.30 For each test function ϕ ∈ D(Rn), the function

s �→ Fs(ϕ)

can be extended to a meromorphic function on the complex plane.

This theorem can be generalized in the following way.

• We replace R
n by an n-dimensional, real analytic, paracompact, and connected

manifold X.
• We replace the closed half-space H≥ by the set

H≥ := {x ∈ X : g1(x) ≥ 0, . . . , gp(x) ≥ 0}

where g1, . . . , gp : X → R are real analytic functions.
• The nonzero real analytic function f : X → R is nonnegative.

For further material, we refer to the lectures by Etinghoff (1999).

48 As an introduction to the implicit function theorem and the Nash–Moser theorem
including detailed historical comments, we recommend the monograph by Krantz
and Parks (2002). We also recommend Nirenberg (2001), Scheck (2000), Vol. 1
(applications to mechanics), and Zeidler (1986), Vol. 1 (see Chap. 8 on bifurcation
theory).



654 11. Distributions and Green’s Functions

11.8 Functional Integrals

Feynman’s path integrals are both infinite-dimensional Gaussian integrals
and continuous partition functions.

Folklore

By Theorem 11.8 on page 590, the initial-value problem for the heat equation is
completely determined by the knowledge of the heat kernel.

In terms of the heat equation, the Feynman functional integral approach
represents the heat kernel as an infinite-dimensional integral.

This fundamental idea can be generalized to the time-evolution of general physical
systems. The Feynman approach can be viewed as a generalization of the classical
Fourier method via Fourier series or Fourier integral. Physicists like functional
integrals very much, since they allow elegant explicit computations based on the
following crucial methods:

• approximation by finite-dimensional Gaussian integrals,
• the method of stationary phase,
• infinite-dimensional Gaussian integrals and the method of zeta function regular-

ization, and
• (formal) analytic continuation.

From the mathematical point of view, functional integrals represent an extraordi-
narily useful mnemonic tool for conjecturing rigorous results. Unfortunately, the
rigorous proofs are frequently missing or they have to be based on sophisticated
methods. Let us sketch the main ideas for the heat kernel. We will restrict our-
selves to the elegant formal language used by physicists which can be immediately
translated

• to the Schrödinger equation in quantum mechanics by replacing real time by
imaginary time, t⇒ it/�,

• and to quantum field theory.

11.8.1 The Feynman Path Integral for the Heat Equation

The heat kernel. Let κ > 0. For a given initial time s, consider the initial-value
problem

∂T

∂t
(x, t) = −κΔT (x, t)− U(x)T (x, t), x ∈ R

3, t ≥ s,

T (x, s) = T0(x), x ∈ R
3.

(11.94)

The solution formula reads as

T (x, t) =

Z

R3
K(x, t;y, s)T0(y) d3y

for all x ∈ R
3 and t ≥ s. For the heat kernel K, we get Feynman’s key formula

K(x, t;y, s) = lim
n→∞

Z

R3n

e−S d3x1d
3x2 · · · d3xn

`

4πκΔt
´

3n
2

(11.95)

along with the discrete action
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S :=
n
X

j=0

„

1

4κ

“xj+1 − xj

Δt

”2

+ U(xj)

«

Δt. (11.96)

Here, we use the equidistant decomposition

t0 = s < t1 < t2 < . . . < tn+1 = t

of the time interval [s, t] where tj := s+ jΔt. Equivalently, the key formula (11.95)
can be written as

K(x, t;y, s) = lim
n→∞

Z

R3n

n
Y

j=0

KΔt(xj+1, tj+1;xj , tj) d
3x1d

3x2 · · · d3xn

with the so-called infinitesimal heat kernel

KΔt(xj+1, tj+1;xj , tj) :==
e−

(xj+1−xj)2

4κΔt

`

4πκΔt
´

3
2

e−U(xj)Δt .

Observe that the infinitesimal heat kernel coincides with the free heat kernel if the
potential vanishes, U ≡ 0. Summarizing,

Feynman’s key formula (11.95) reduces the full heat kernel under the influ-
ence of the potential U to an infinite-dimensional integral which depends
on the simpler, explicitly known infinitesimal heat kernel.

Let us give a formal proof via the elegant Dirac calculus.
Step 1: The heat kernel. Introduce the Hamiltonian

H := H0 + U

with the unperturbed Hamiltonian H0 := κP2 = κΔ, and P := −i∂. The heat
equation (11.94) reads then as

Ṫ (t) = −HT (t), t ≥ 0, T (s) = T0.

This equation has the solution

T (t) = e−H(t−s)T0, t ≥ s.

Using Dirac’s completeness relation
R

R3 d
3y |y〉〈y| = I,

〈x|T (t)〉 =

Z

R3
d3y 〈x|e−H(t−s)|y〉〈y|T0〉.

This implies

T (x, t) =

Z

R3
K(x, t;y, s)T0(y) d3y

for all x ∈ R
3 and all t ≥ s with the heat kernel

K(x, t;y, s) := 〈x|e−H(t−s)|y〉.

Step 2: Causality. The heat kernel satisfies the product formula

K(x, t;y, s) =

Z

R3
d3z K(x, t; z, τ)K(z, τ ;y, s)
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if t > τ > s. This follows from the causality relation

e−H(t−s) = e−H(t−τ) e−H(τ−s)

along with the completeness relation
R

d3z |z〉〈z| = I. Hence

〈x|e−H(t−s)|y〉 =

Z

R3
d3z 〈x|e−H(t−τ)|z〉〈z|e−H(τ−s)|y〉.

Analogously, K(x, t;y, s) is equal to the following multiple integral

Z

R3n

d3xn d
3xn−1 · · · d3x1×

×K(x, t;xn, tn)K(xn, tn;xn−1, tn−1) · · · K(x1, t1;y, s).

For small time intervals Δt, the basic idea is now to replace the heat kernel

K(xj+1, tj+1 ;xj , tj) = 〈xj+1|e−(H0+U)Δt|xj〉

by the infinitesimal heat kernel

KΔt(xj+1, tj+1 ;xj , tj) := 〈xj+1|e−H0Δt e−UΔt|xj〉

and to perform the limit n→∞, i.e., Δt→ +0. This will produce the claim (11.95).
Let us motivate this.

Step 3: The Trotter product formula. By the addition theorem for the exponen-
tial function,

e−H(t−s) = e−H(t−tn) e−H(tn−tn−1) · · · e−H(t1−s).

Noting that H = H0 + U , the Trotter product formula tells us that

e−H(t−s) = lim
n→∞

e−H0(t−tn) e−U(t−tn) · · · e−H0(t1−s) e−U(t1−s). (11.97)

This means that, for small time intervals Δt, we can replace approximately
e−(H0+U)Δt by the product e−H0Δte−UΔt. This is motivated by

eAΔt = I +AΔt+ o(Δt), Δt→ +0,

and hence
e(A+B)Δt = eAΔteBΔt + o(Δt), Δt→ +0.

By the completeness relation
R

d3x |x〉〈x| = I, it follows from (11.97) that the

transition amplitude 〈x|e−H(t−s)|y〉 is equal to

lim
n→∞

Z

R3n

d3xn · · · d3x1 KΔt(x, t;xn, tn) · · · KΔt(x1, t1;y, s).

Step 4: Explicitly computing the infinitesimal heat kernel. Finally, we have to
show that

KΔt(x, t;y, s) =
e−

(x−y)2

4κΔt

`

4πκΔt
´

3
2

e−U(y)Δt. (11.98)



11.8 Functional Integrals 657

In fact, by the completeness relation
R

R3 d
3p |p〉〈p| = I,

〈x|e−H0Δt e−UΔt|y〉 =

Z

R3
d3p 〈x|e−H0Δt|p〉〈p|e−UΔt|y〉.

Since P|p〉 = p|p〉 and H0 = κP2,

e−H0Δt|p〉 = e−κp2Δt|p〉.

Moreover, e−UΔt|y〉 = e−U(y)Δt|y〉. Hence

〈x|e−H0Δt e−UΔt|y〉 =

Z

R3
d3p e−κp2Δt e−U(y)Δt〈x|p〉〈p|y〉.

Since 〈x|p〉 = eixp

(2π)3/2 , we get

〈x|e−H0Δt e−UΔt|y〉 =

„

Z

R3
d3p e−κp2Δt ei(x−y)p

(2π)3

«

e−U(y)Δt

=
e−

(x−y)2

4κΔt

`

4πκΔt
´

3
2

e−U(y)Δt,

(11.99)

by using the classical Gaussian integral from (7.102) on page 435. This finishes the
formal proof of claim (11.98).

11.8.2 Diffusion, Brownian Motion, and the Wiener Integral

The integral
Z

R3n

e−S d3x1 d
3x2 · · · d3xn

`

4πκΔt
´

3n
2

can be viewed approximately as a summation over all possible piecewise linear paths
q = q(t) from the point y at time s to the point x at time t along with the node
points

q(tj) = xj , j = 0, . . . , n+ 1.

Here, x0 := y and xn+1 := x. Then

S(q) =

Z t

s

„

q̇(τ)2

2κ
+ U

`

q(τ)
´

«

dτ.

Therefore, it seems to be reasonable to write the key formula (11.95) as

K(x, t;y, s) =

Z q(t)=x

q(s)=y

e−S(q) Dq. (11.100)

Here, we sum over all paths q = q(t) connecting the starting point y with the point
final x.

The point is that the famous Feynman–Kac formula (11.100) can be given a
rigorous meaning, in the sense of a classical measure integral with respect to the
Wiener measure on the space of continuous curves q : [s, t] → R

3. This can be
found in Reed and Simon (1972), Vol. II, Sect. X.11. In terms of physics, we regard
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the differential equation (11.94) as diffusion equation for the mass density func-
tion T . Microscopically, diffusion corresponds to the stochastic motion of molecules
(Brownian motion). This stochastic process can be described by some probability
measure on the space of continuous paths. This measure was introduced by Norbert
Wiener in 1923. The path integral (11.100) represents the corresponding Wiener
integral.49

11.8.3 The Method of Quantum Fluctuations

We want to discuss a formal method which is frequently used by physicists in order
to compute Feynman functional integrals in an elegant way. It is our goal

• to separate quantum fluctuations from the classical motion, and
• to compute the Feynman functional integral corresponding to quantum fluctua-

tions by the method of zeta function regularization.

We will apply this method to the heat kernel. However, the same method also
applies to the Feynman propagator kernel for the Schrödinger equation. Let us
consider the heat equation (11.94) with vanishing potential, U ≡ 0. Below we want
to show the following.

(i) Choose the action

S(q) :=

Z t

s

q̇(τ)2

4κ
dτ.

Then

Z q(t)=x

q(s)=y

e−S(q)Dq = e−S(qclass)

Z q(t)=0

q(s)=0

e−S(q) Dq. (11.101)

Here, qclass is the solution to the action principle

S(q) = stationary ! , q(s) = y, q(t) = x. (11.102)

(ii) For the “classical contribution”,

e−S(qclass) = e
− (x−y)2

4κ(t−s) . (11.103)

(iii) For the “quantum fluctuations”,

Z q(t)=0

q(s)=0

e−S(q) Dq =
1

`

4πκ(t− s)
´

3
2
. (11.104)

49 N. Wiener, Differential space, J. Math. and Phys. of MIT 2 (1923), 131–174.
M. Kac, On distributions of certain Wiener functionals, Trans. Amer. Math. Soc.
65 (1949), 1–13.
R. Cameron, A family of integrals serving to connect the Wiener and Feynman
integrals. J. of Math. and Phys. Sci. of MIT, 39 (1960), 126–140.
M. Kac, Wiener and integration in function spaces, Bull. Amer. Math. Soc. 72
(1966), 52–68.
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This means that formula (11.101) yields the right expression for the heat kernel

K(x, t;y, s) =
e
− (x−y)2

4κ(t−s)

`

4πκ(t− s)
´

3
2
.

The crucial point is the verification of (11.104) below.
Step 1: Computation of qclass. The Euler–Lagrange equation to (11.102) reads

as
q̈(τ) = 0, q(s) = y, q(t) = x

with the solution

qclass(τ) =

„

x− y

t− s

«

τ + y −
„

x− y

t− s

«

s.

Hence

S(qclass) =

Z t

s

q̇class(τ)
2

4κ
dτ =

(x− y)2

4κ(t− s)
.

Step 2: Decomposition. For an arbitrary motion, we set

q(τ) := qclass(τ) + r(τ)

along with the boundary condition r(s) = r(t) = 0 for the remainder r. Hence

S(q) = S(qclass) + S(r) +R

with R :=
R t

s
1
2κ

q̇class(τ) ṙ(τ) dτ . Integration by parts yields

R = −
Z t

s

1

2κ
q̈class(τ)r(τ) dτ = 0.

This implies (11.101).
Step 3: Proof of (11.104). Let us first consider the special case of the motion

q = q(τ) on the real line, that is, we want to show that

Z q(t)=0

q(s)=0

e−S(q)Dq =
1

`

4πκ(t− s)
´

1
2
. (11.105)

Let a > 0. Motivated by the formula

Z

R3
dx dy dz e−ax2−ay2−az2

=

„

Z

R

dx e−ax2
«3

,

we then get the desired result

Z q(t)=0

q(s)=0

e−S(q)Dq =

 

Z q(t)=0

q(s)=0

e−S(q)Dq
!3

=
1

`

4πκ(t− s)
´

3
2
.

To simplify the argument, note that the rescaling τ �→ ατ of

S(q) =

Z t

s

1

4κ

„

dq(τ)

dτ

«2

dτ (11.106)
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yields
Z αt

αs

1

4κα

„

dq(τ)

dτ

«2

dτ.

For the integral from (11.105), this means that we have to replace κ by ακ. There-
fore, it is sufficient to motivate (11.105) in the special case where, say, κ = 1

2
. To

this end, we will use the standard method of zeta function regularization.

11.8.4 Infinite-Dimensional Gaussian Integrals and Zeta Function
Regularization

Choose κ = 1
2
. Let us motivate (11.105). The crucial trick is to write the action

S(q) as a quadratic form 1
2
〈q|Aq〉 with a suitable differential operator A, that is,

Z q(t)=0

q(s)=0

e−S(q) Dq =

Z q(t)=0

q(s)=0

e−
1
2 〈q|Aq〉Dq.

Then, motivated by the classical Gaussian integral

Z

Rn

e−
1
2 xTAx dnx

`

2π
´

n
2

=
1√

detA

for all n = 1, 2, . . ., let us try to make the formal ansatz

Z q(t)=0

q(s)=0

e−
1
2 〈q|Aq〉 Dq :=

γ√
detA

where γ is a normalization constant to be determined.50 Finally, we have to compute
the determinant detA of the operator A. To this end, we will use the method of
zeta function regularization. Surprisingly enough, as we will show below, this formal
approach provides us with the correct heat kernel formula if we choose γ := 1√

π
.

To begin with, we start with (11.106). Setting κ = 1
2
, we get

S(q) =
1

2

Z t

s

„

dq(τ)

dτ

«2

dτ.

Integration by parts yields

S(q) =
1

2

Z t

s

q(τ)Aq(τ) dτ

with the differential operatorA := − d2

dτ2 (1-dimensional Laplacian). More precisely,
the domain of definition, D(A), of the operator

A : D(A) ⊆ L2(s, t)→ L2(s, t)

50 Note the following nice fact. In applications of path integrals to quantum field
theory, one wants to compute correlation functions. In this case, the explicit
knowledge of the normalization factor is not necessary, since the correlation
functions are given by quotients of functional integrals where the normalization
factors are cancelled.
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consists of all smooth functions q : [s, t] → C with q(s) = q(t) = 0. This operator
has the eigensolutions

Aqn(τ) = λnqn(τ), s ≤ τ ≤ t

with qn(τ) = const · sin πnτ
t−s

and

λn =

„

πn

t− s

«2

, n = 1, 2, . . . .

Motivated by the classical zeta function determinant formula (5.19) on page 263,
we introduce first the ζ-function

ζA(z) :=

∞
X

n=1

1

λz
n

, �(z) >
1

2
,

and we then define

detA := e−ζ′
A(0). (11.107)

Here, in some neighborhood of the origin, z = 0, the zeta function ζA is to be
understood in the sense of analytic continuation. Explicitly,

ζA(z) =

„

t− s

π

«2z ∞
X

n=1

1

n2z
=

„

t− s

π

«2z

ζ(2z)

where ζ denotes the classical Riemann zeta function. By analytic continuation,
Riemann showed that

ζ(0) = −1

2
, ζ′(0) = −1

2
ln 2π.

Thus, it follows from ζA(z) = e2z ln t−s
π ζ(2z) that

ζ′A(0) = 2ζ(0) ln
t− s

π
+ 2ζ′(0) = − ln 2(t− s).

Hence
detA = e−ζ′

A(0) = 2(t− s).

Choosing the normalization constant γ := 1√
π
, we get the desired formula

Z q(t)=0

q(s)=0

e−
1
2 〈q|Aq〉Dq =

γ√
detA

=
1

p

2π(t− s)
.

11.8.5 The Euclidean Trick and the Feynman Path Integral for
the Schrödinger Equation

One of the main tricks used in physics is to reduce the Schrödinger equation to the
Fourier heat equation by passing to imaginary time. This is called the Euclidean
trick. Explicitly, replacing the time t by it/� and choosing the coupling constant
κ := �

2/2m, the initial problem (11.94) for the heat equation passes over to the
initial-value problem for the Schrödinger equation
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i�
∂T

∂t
(x, t) = �

2

2m
ΔT (x, t) + U(x)T (x, t), x ∈ R

3, t ≥ s,

T (x, s) = T0(x), x ∈ R
3.

(11.108)

The solution formula for the heat equation (11.94) on page 654 passes over to

T (x, t) =

Z

R3
P+(x, t;y, s)T0(y) d3y

for all x ∈ R
3 and t ≥ s. For the Feynman propagator kernel P+, we get Feynman’s

key formula51

P+(x, t;y, s) = lim
n→∞

Z

R3n

eiS/� d3x1d
3x2 · · · d3xn

`

ihΔt
m

´

3n
2

(11.109)

along with the discrete action

S :=
n
X

j=0

„

m

2

“xj+1 − xj

Δt

”2

− U(xj)

«

Δt,

and the equidistant decomposition t0 = s < t1 < t2 < . . . < tn+1 = t of the time
interval [s, t] where tj := s+ jΔt. Explicitly, we start with the discrete action S for
the heat equation introduced in (11.96). We obtain the action S for the Schrödinger
equation by using the following replacements:

• Δt⇒ iΔt/�,
• −S ⇒ iS/�, and

• κ⇒ �
2

2m
.

Furthermore, after carrying out the formal limit Δt→ 0, we get

P+(x, t;y, s) =

Z q(t)=x

q(s)=y

eiS(q)/� Dq. (11.110)

Here, we sum over all paths q = q(t) connecting the point y with the point x, and
we use the action

S(q) =

Z t

s

„

mq̇(τ)2

2
− U

`

q(τ)
´

«

dτ.

Note that this is the action of a classical particle of mass m which moves under the
influence of the potential U along the trajectory q = q(t).

Suggested reading. As an introduction to Feynman’s path integral, we rec-
ommend Zeidler (1995), Vol. 1, Chap. 5. Much material on path integrals can be
found in the following monographs: Schulmann (1981), Chaichian and Demichev
(2001), Vols. 1, 2, Kleinert (1990), and Roepstorff (1996). In the handbook on path
integrals by Grosche and Steiner (1998), one finds an extensive list of about 200
pages which summarizes all of the explicitly known path integrals in quantum me-
chanics. This handbook also contains quite interesting comments on the history of
the Feynman path integral.

51 We choose the convention i
3n
2 := e

3niπ
4 . Furthermore, note that 4πκΔt passes

over to 4π · �
2iΔt
2m�

= ihΔt
m

.
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For a rigorous approach of the path integral to quantum physics, we recommend
Reed and Simon (1972), Vol. 2, Simon (1979), Albeverio and Høegh-Krohn (1975),
Glimm and Jaffe (1981), Klauder and Daubchies (1982), Klauder (1989), (2000).
We also refer to Freidlin (1985) and Johnson, Lapidus (2000).

For Brownian motion, stochastic processes and the Wiener integral, we refer to
Hida (1970), Yeh (1973), and Chung, Zha (1995) (from Brownian motion to the
Schrödinger equation).

The main trouble with Feynman integrals in quantum physics. The
typical mathematical difficulty is based on the fact that, in contrast to the Wiener
integral for the heat equation, the formal Feynman measures Dq and Dψ for the
Schrödinger equation and the equations of quantum field theory, respectively, do
not exist as classical measures. Therefore, the Feynman path integral and its gen-
eralizations to quantum field theory do not exist as standard measure integrals. We
refer to Cameron (1960) and Johnson, Lapidus (2000), Sect. 4.6.

11.9 A Glance at Harmonic Analysis

11.9.1 The Fourier–Laplace Transform

For the Heaviside function θ, define

a(ω) :=
1√
2π

Z ∞

−∞
θ(t)e−iωtdt.

If the frequency ω is real, then the integral does not exist. To overcome this difficulty,
the idea is to pass to complex frequencies ω living in the open lower half-plane
{ω ∈ C : �(ω) < 0}, that is, we set ω := η− εi where η is a real number and ε > 0
This yields the damped oscillation

e−iω = e−iηte−εt, t ∈ R.

Explicitly,

a(ω) = lim
N→∞

ie−ηiωe−εω

ω
√

2π

˛

˛

˛

˛

N

0

=
1

iω
√

2π
.

The function a = a(ω) is called the Fourier–Laplace transform of the Heaviside
function θ; it is holomorphic in the open lower half-plane of the complex frequency
plane. Let us consider the following two examples.

(a) Mnemonically, for the Dirac delta function δ, the Fourier–Laplace transform
looks like

a(ω) :=
1√
2π

Z ∞

−∞
δ(t)e−iωtdt =

1√
2π

, ω ∈ C.

Rigorously, we set eω(t) := e−iωt, and

a(ω) :=
δ(eω)√

2π
.

Hence a(ω) = eω(0)√
2π

= 1√
2π

for all ω ∈ C.
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(b) For a smooth function g : R → C with compact support, the Fourier–Laplace
transform

a(ω) :=
1√
2π

Z ∞

−∞
g(t)e−iωtdt, ω ∈ C

is holomorphic on the complex frequency plane.

The Paley–Wiener–Schwartz theorem. This famous theorem of analysis
shows that distributions with compact support and entire analytic functions with
appropriate growth conditions are indeed the same via Fourier–Laplace transform.
In what follows, let n = 1, 2, . . . , and R > 0. To fix the terminology, recall that the
symbol D(Rn) denotes the set of all smooth functions f : R

n → C with compact
support. The symbol B

n
R is used for the closed ball {x ∈ R

n : ||x|| ≤ R}. Finally,
for each p ∈ C

n, we set

ep(x) := e−i〈x|p〉, x ∈ R
n

where we use the convention 〈x|p〉 :=
Pn

j=1 x
jpj .

(i) The Paley–Wiener theorem for smooth functions with compact support: For each
function f ∈ D(Rn) with support in the ball B

n
R, the Fourier–Laplace transform

a(p) :=
1

(2π)n/2

Z

Rn

f(x)ep(x)dnx, p ∈ C
n

is holomorphic on the complex momentum space C
n, and it satisfies the fol-

lowing decay condition at infinity:

|a(p)| ≤ const(N) · eR|�(p)|

(1 + ||p||)N
(11.111)

for all p ∈ C
n and all exponents N = 1, 2, . . . The crucial point is that the

converse is also true. Explicitly, if the function a : C
n → C is holomorphic and

satisfies the decay condition (11.111), then it is the Fourier–Laplace transform
of a function f ∈ D(Rn) with support in the ball B

n
R.

(ii) The Schwartz theorem for distributions with compact support: For each distri-
bution F ∈ D′(Rn) with support in the ball B

n
R, the Fourier–Laplace transform

a(p) := F (ep), p ∈ C
n

is holomorphic on the complex momentum space C
n, and it satisfies the fol-

lowing polynomial growth condition:

|a(p)| ≤ const · (1 + ||p||)N eR|�(p)| (11.112)

for all p ∈ C
n and some fixed natural number N .52 The converse is also true.

Explicitly, if the function a : C
n → C is holomorphic and satisfies the growth

condition (11.112), then it is the Fourier–Laplace transform of a distribution
F ∈ D′(Rn) with support in the ball B

n
R.

(iii) Polynomials: Suppose that the support of the distribution F ∈ D′(Rn) consists
precisely of the origin. Then, there exists a natural number N such that

F =
X

|α|≤N

aα∂
αδ,

52 Naturally enough, the restriction of a(p) to real momenta p coincides with the
usual Fourier transform for tempered distributions.
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where aα denotes a complex number. This tells us that F is a finite sum of
partial derivatives of Dirac’s delta distribution. The Fourier–Laplace transform
reads then as

a(p) =
X

|α|≤N

1

(2π)n/2
· i|α|aαp

α, p ∈ C
n.

Conversely, each polynomial a = a(p) on the complex momentum space C
n is

the Fourier–Laplace transform of a distribution which has precisely the origin
as support. This shows that the Dirac delta distribution and its partial deriva-
tives are quite natural objects, from the point of view of the Fourier–Laplace
transform. For example, the distribution

F = aδ + bδ′ + cδ′′

on the real line R with complex numbers a, b, c has the Fourier–Laplace trans-
form

1√
2π
· (a+ ibp− cp2), for all p ∈ C.

The proofs of statements (i)-(iii) above can be found in Hörmander (1983), Vol. 1,
Sect. 7.3. As we will show in Volume IV, statement (iii) plays a crucial role in the
Epstein–Glaser approach to the renormalization of quantum field theories.

11.9.2 The Riemann–Hilbert Problem

Let us decompose the complex plane C into the real line, the open upper half-plane

C> := {z ∈ C : �(z) > 0},

and the open lower half-plane C< := {z ∈ C : �(z) < 0}.We also set z = x+yi, that
is, x and y are the real and imaginary part of the complex number z, respectively.53

The prototype of the Riemann–Hilbert problem reads as follows. We are given the
function f ∈ D(R). We are looking for a complex-valued function F which has the
following properties:

(i) F is holomorphic on both the open half-planes C> and C<.
(ii) For each point x on the real line, we have the following jump condition

lim
y→+0

F (x+ yi)− lim
y→−0

F (x+ yi) = f(x)

for the boundary values of F on the real line.54

Theorem 11.31 The Riemann–Hilbert problem has the solution

F =
i

2
· H(f).

53 The closed upper half-plane is defined by C≥ := {z ∈ C : �(z) ≥ 0}.
54 We tacitly assume that the limits exist.
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Explicitly, H(f) is given as follows. Fix the function f ∈ D(R). For arbitrary
complex number z, define

H(f)(z) :=
1

π
· PV

Z

R

f(ξ)dξ

z − ξ
.

If z lies on the real line (resp. not on the real line), then the integral is to be
understood in the sense of Cauchy’s principal value (resp. in the classical sense).
Theorem 11.31 follows now from the following two statements.

(P1) The function H(f) is holomorphic on C> and C<.
(P2) For all points on the real line, x ∈ R, we have the Sokhotski formula

lim
y→±0

H(f)(x+ iy) = H(f)(x)∓ if(x). (11.113)

Proof. Ad (P1). This is a standard result for holomorphic functions. It follows from
the Weierstrass theorem on sequences of holomorphic functions which converge on
a compact set. See Remmert (1991), p. 249.

Ad (P2). This follows from Theorem 11.16 on page 622. �

11.9.3 The Hilbert Transform

Let us restrict the operator H to the real line. That is, we consider the function
z �→ H(f)(z) on the real line. We then get the operator

H : D(R) → L2(R).

It turns out that this operator can be uniquely extended to a linear continuous
operator

H : L2(R) → L2(R)

which is called the Hilbert transform. This operator has the following crucial prop-
erty concerning the boundary values of holomorphic functions.

Theorem 11.32 Let F : C> → C be a holomorphic function on the open upper
half-plane such that we have the following growth restriction

sup
y>0

Z ∞

−∞
|F (x+ yi)|2dx <∞.

Then the limit u(x) + iv(x) := limy→+0 F (x + yi) exists for almost all x ∈ R.
Moreover, the real part u and the imaginary part v of the boundary values of the
function F on the real line lie in the Hilbert space L2(R), and they are related to
each other by the Hilbert transform. Explicitly,

v = Hu and u = −Hv.

The proof can be found in Titchmarsh (1967). For the Hilbert transform in distri-
bution theory, we refer to Pandey (1996).

Example. The assumptions of Theorem 11.32 are satisfied if

F (z) :=
a

(z − b)n
, z ∈ C \ {b}

where a and b are complex numbers with �(b) < 0, and n = 1, 2, . . .
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11.9.4 Symmetry and Special Functions

The experience of mathematicians and physicists shows that

Behind special functions, there lurk symmetry groups.

Roughly speaking, all of the important special functions that appear in mathemati-
cal physics are governed by symmetries. For example, we have shown in Sect. 7.20.3
on page 411 that the addition theorem for the exponential function

ei(θ+ϕ) = eiθeiϕ for all θ, ϕ ∈ R (11.114)

is closely related to the group of rotations in the plane. By the Euler formula

eiθ = cos θ + i sin θ for all θ ∈ R,

we get the addition theorem

sin(θ + ϕ) = sin θ cosϕ+ sinϕ cos θ for all θ, ϕ ∈ R

for the sine function. Symmetry groups will be carefully studied in the later volumes.
At this point, let us only sketch the relation between the exponential function ez

(resp. the function zα) and the corresponding Haar measures. The existence of an
invariant measure for Lie groups was proven by Haar (1885–1933) in the year of his
death. This result had far-reaching consequences for harmonic analysis.

(i) The additive group R of real numbers: This group is isomorphic to the group
of translations on the real line. It follows from the addition theorem for the
exponential function ei(p+r)x = eipxeirx that for each fixed x ∈ R, the map

p �→ eixp (11.115)

is a group morphism from the additive group R onto the multiplicative group
U(1). Superposition of these exponential functions,

f(x) =

Z

R

a(p)eipxdμ(p), x ∈ R,

generates the Fourier transform with the Haar measure

Z b

a

dμ(p) =

Z b

a

dp = b− a, a, b ∈ R.

This measure has the characteristic property that it is invariant under the
group action a �→ a + c, b �→ b + c for each fixed c ∈ R. Note that the Haar
measure of the additive group R coincides with the classical Lebesgue measure
on the real line.

(ii) The additive group Z of integers: The map (11.115) is a group morphism from
the additive group Z into the multiplicative group U(1). The superposition

f(x) =

Z

R

a(p)e2πipxdμ(p) =

∞
X

n=−∞
a(n)e2πinx

generates the discrete Fourier transform. Here, in contrast to (i), the Haar
measure μ of the group Z corresponds to a mass distribution on the real line
which assigns the unit mass to each point of Z.
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Fig. 11.5. The solid forward light cone

(iii) The multiplicative group R
×
+ of positive real numbers: Let p, r, x > 0. It follows

from the product rule (pr)x = pxrx that, for each fixed x ∈ R
×
+, the map

p �→ px

is a group morphism from the multiplicative group R
×
+ into itself. The Haar

measure μ of the group R
×
+ is given by

Z b

a

dμ(p) =

Z b

a

d ln p = ln
b

a
, b > a > 0.

This measure has the characteristic property that it is invariant under the
group action a �→ ac, b �→ bc for each c ∈ R

×
+. The superposition

f(x) =

Z ∞

0

a(p)pxd ln p =

Z ∞

0

a(p)px−1dp, x > 0

generates the Mellin transform (6.18) on page 292.

The Laplace transform is obtained from (i) and (ii) by restricting the measure μ to
the interval [0,∞[ and the set {0, 1, 2, . . .}, respectively.

This summary shows that the simplest groups R,Z and R
×
+ already provide

us with a rich harmonic analysis. Observe that the group Z ⊗ Z yields the large
class of double-periodic (i.e., elliptic) functions. Much material on the relations
between symmetry groups and special functions can be found in the four-volume
treatise by Vilenkin and Klimyk (1991). We also refer to Zagier (1995) (modular
functions), Ford (1972) (automorphic functions), Knapp (1986) and Gelfand (1989)
(non-compact groups).

11.9.5 Tempered Distributions as Boundary Values of Analytic
Functions

Consider the equation
t2 − x2

1 − . . .− x2
n = 0

of the light cone in the (n+1)-dimensional space-time R
n+1 where n = 1, 2, . . . The

set
C+ := {(x, t) ∈ R

n+1 : t ≥ 0, t2 − x2
1 − . . .− x2

n ≥ 0}
is called the solid forward light cone (Fig. 11.5).

Theorem 11.33 Let T be a given tempered distribution on R
n+1 with support in

the solid forward light cone C+. Then there exists always a holomorphic function
T : R

n+1 − iC+ → C such that
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lim
ε→+0

T (x, t− iε) = T (x, t),

in the sense of tempered distributions on R
n+1.

Explicitly, this means that

lim
ε→+0

Z

Rn+1
T (x, t− iε)ϕ(x, t)dnxdt = T (ϕ)

for all test functions ϕ ∈ S(Rn+1). The proof can be found in Reed and Simon, Vol.
2, Sect. IX.3.

11.10 The Trouble with the Euclidean Trick

The passage t �→ −it from real time t in quantum physics to imaginary time −it is
called the Euclidean trick. For example, this transformation sends the Schrödinger
equation to the diffusion equation (see (11.16) on page 591). The experience of
physicists shows that this trick is quite useful. From the mathematical point of
view, note that

The Euclidean trick has to be handled very carefully.

Let us discuss two typical difficulties.

(i) Oscillating kernels. If we apply the Euclidean trick to the free quantum particle,
then the heat kernel and the Feynman propagator kernel behave quite differ-
ently. Typically, this difference can be reduced to the fact that the Gaussian
integral

Z ∞

−∞
e−

x2
2 −iaxdx =

√
2π e−

a2
2 , a ∈ R

is convergent, whereas the oscillating Fourier integral

Z ∞

−∞
eixdx =

Z ∞

−∞
(cosx+ i sinx)dx

is divergent. The heat kernel is of the first type, whereas the Feynman propaga-
tor kernel corresponds to an oscillating integral. In the history of mathematics
and physics, the following two oscillating integrals

Z ∞

−∞
eix2

dx = (1 + i)

r

π

2

and
Z ∞

−∞

sinx

x
dx = π

played an important role in geometric optics and the theory of the Fourier
integral, respectively. These two integrals are called the Fresnel integral and
the sDirichlet integral, respectively.55 The existence of these two integrals is
closely related to the method of stationary phase (see Sect. 12.5.3 on page 717)
which plays a crucial role for Feynman path integrals.

55 Fresnel (1788–1827), Dirichlet (1805–1859).
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(ii) Shock waves. Applying the Euclidean trick t �→ −it to the wave equation

∂2ψ

∂x2
− 1

c2
∂2ψ

∂t2
= 0 (11.116)

and changing the notation, y := ct, we get the Laplace equation

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0. (11.117)

Note that both equations describe completely different physical processes,
namely,
• the wave propagation of a mass density ψ on the real line, and
• the stationary temperature distribution ψ on the Euclidean plane R

2.
Whereas the wave equation (11.116) allows the propagation of discontinuities,
the solutions of the stationary heat equation (Laplace equation) (11.117) are
always smooth. More precisely, the following hold true.
• The function

ψ(x, t) := θ(x− ct)

is a solution of the wave equation (11.116) on R
2 in the sense of distributions,

by the argument given on page 616. This solution describes the propagation
of a singularity located at the point x = ct at time t (see Fig. 11.3 on page
616).

• If the temperature function ψ : R
2 → R is absolutely integrable over every

disk and satisfies the stationary heat equation (11.117) on R
2 in the sense

of distributions, then ψ is smooth on R
2. More generally, the Weyl lemma

on page 614 tells us that each distribution ψ ∈ D′(R2) with Δψ = 0 is a
smooth function on R

2.

Example (ii) above tells us that

The Euclidean trick can never be used for describing shock waves.

This fact limits the use of the Euclidean trick in quantum field theory. In terms of
mathematics, it is not possible to reduce the theory of hyperbolic partial differen-
tial equations to the much simpler theory of elliptic partial differential equations.
Observe that quantum fields possess the typical character of hyperbolic partial
differential equations.

A far-reaching mathematical analysis of propagating singularities can be based
on the modern notion of the wave front set of a distribution (see Sect. 12.5.2 on
page 708). In this setting, the wave front set of the solution of a homogeneous
elliptic partial differential equation (e.g., the stationary heat equation) is empty,
whereas the solutions of hyperbolic partial differential equations (e.g., the wave
equation) possess nontrivial wave front sets which are related to the intuitive notion
of propagating discontinuities.
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12.1 The Discrete Dirac Calculus

For understanding the Dirac calculus used by physicists, it is useful to start with
a discrete variant of this calculus. This also helps to avoid divergent expressions,
say, in quantum electrodynamics. In this chapter, we will use the international SI
system of units.

12.1.1 Lattices

The basic idea is to use a truncated lattice in momentum space. To discuss this,
let

x = x1i + x2j + x3k

be the position vector with respect to a right-handed (x1, x2, x3)-Cartesian coordi-
nate system. Here, i, j,k is a right-handed orthonormal system of vectors. Consider
the cube

C(L) :=
˘

(x1, x2, x3) ∈ R
3 : −L

2
≤ x1, x2, x3 ≤ L

2

¯

of side length L > 0. It is our goal to put the given physical field in the cube
C(L) and to assume that the field has the period L with respect to the Cartesian
coordinates x1, x2, x3. The cube C(L) has the volume V = L3 which is called the
normalization volume in physics. Furthermore, let G be a lattice in momentum
space. Explicitly, let G be the set of all momentum vectors

p :=
2π�

L
·m (12.1)

with the lattice vectors m = m1i +m2j +m3k where m1,m2,m3 are integers.

The following terminology is chosen in such a way that it fits well the Dirac
calculus to be introduced below.

Orthogonality relation. For each momentum vector p ∈ G, the function

f(x) := eipx/�

has the period L with respect to the Cartesian coordinates x1, x2, x3. Introducing
the symbol d3x := dx1dx2dx3, we have the orthogonality relation

1

L3

Z

C(L)

ei(p−q)x/� d3x = δpq, p,q ∈ G. (12.2)

E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics,
c© Springer-Verlag Berlin Heidelberg 2006, Corrected 2nd printing 2009
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−Δp−2Δp 0 Δp 2Δp

Fig. 12.1. Lattice in one-dimensional momentum space

Here, we set δpq := 0 (resp. =1) if p �= q (resp. p = q).
The truncated lattice in momentum space. For N = 1, 2, 3, . . ., let G(N)

denote the set of all momentum vectors (12.1) with

|m1|, |m2|, |m3| ≤ N.

For given complex numbers ap, the function

f(x) :=
1

p

(2π�)3

X

p∈G(N)

ap eipx/� Δ3p (12.3)

has the period L with respect to the variables x1, x2, x3. Here, we set

Δ3p := Δp1Δp2Δp3, Δpj :=
2π�

L
, j = 1, 2, 3.

By the orthogonality relation (12.2),

ap =
1

p

(2π�)3

Z

C(L)

f(x)e−ipx/� d3x. (12.4)

We call (12.3) and (12.4) the discrete Fourier transform and the inverse discrete
Fourier transform with respect to the lattice G(N), respectively. Note that

f(x)† :=
1

p

(2π�)3

X

p∈G(N)

a†pe−ipx/� Δ3p.

Therefore, if the function f is real-valued, then

f(x) :=
1

2
p

(2π�)3

X

p∈G(N)

(apeipx/� + a†pe−ipx/�) Δ3p.

12.1.2 The Four-Dimensional Discrete Dirac Delta Function

The discrete delta function in position space. For arbitrary position vectors
x and y, define

δC(L)(y − x) :=
1

(2π�)3

X

p∈G(N)

ei(y−x)p/�Δ3p. (12.5)

The symmetry of the lattice G(N) under reflections at the origin allows us to replace
p by −p. Hence
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δG(N)(y − x) = δG(N)(x− y)

for all position vectors x and y. For each function f of the form (12.3), we get the
typical property

f(y) =

Z

C(L)

δC(L)(y − x)f(x)d3x (12.6)

for all position vectors y. This follows from the orthogonality relation (12.2).
The discrete delta function in momentum space. Let p,q ∈ G(N) be

arbitrary lattice points. We define

δG(N)(q− p) =
1

(2π�)3

Z

C(L)

ei(p−q)x/� d3x. (12.7)

By the orthogonality relation (12.2),

δG(N)(p− q) :=
δpq

Δ3p
.

This is a rescaled Kronecker symbol. Obviously,

δG(N)(q− p) = δG(N)(p− q) for all q,p ∈ G(N).

For each function g : G(N) → C, this implies

g(q) =
X

p∈G(N)

δG(N)(q− p)g(p) Δ3p (12.8)

for all lattice points q ∈ G(N).
The 4-dimensional discrete delta function. Consider the 4-dimensional

momentum vector
p = (p0,p)

where p0 := E/c. Here, E denotes energy. Fix time T > 0. The discrete Dirac delta
function δdis in the 4-dimensional momentum space is defined by the product

δdis(p) := δcT (p0) · δG(N)(p)

with the discrete Dirac delta function δG(N) : G(N) → R in 3-dimensional momen-
tum space,

δG(N)(p) :=

(

1
Δ3p

= V
(2π�)3

if p = 0,

0 if p �= 0,
(12.9)

and the discrete Dirac delta function δcT : R → R in the energy space given by

δcT (p0) :=
1

2π�

Z cT/2

−cT/2

eip0x0/�dx0.

Recall that x0 := ct and p0 := E/c. Explicitly,

δcT (p0) =

(

cT
2π�

if p0 = 0,
sin(cTp0/2�)

πp0 if p0 �= 0.

Typical properties. For the computation of cross sections for scattering pro-
cesses later on, we will use the following key relations.
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Proposition 12.1 (i) For all test functions ϕ ∈ S(R),

lim
T→+∞

Z

R

δcT (p0)ϕ(p0)dp0 = ϕ(0).

This means that limT→+∞ δcT = δ, in the sense of tempered distributions on the
real line. Moreover,

lim
T→+∞

δcT (p0)

cT
=

(

1
2π�

if p0 = 0,

0 if p0 �= 0.
(12.10)

(ii) For all p ∈ R
4, as T → +∞,

δdis(p)
2 =

cTV
(2π�)4

· δdis(p) (1 + o(1)). (12.11)

(iii) For all real numbers p0
1 and p0

2, as T → +∞,
Z

R

δcT (p0 − p0
1) · δcT (p0 − p0

2)dp
0 = δcT (p0

1 − p0
2) (1 + o(1)).

For the proof, see Problem 12.6 on page 737. In applications, one frequently uses
the energetic system. In this case, the formulas above are simplified by setting
c = � = 1 and x0 = t (time), as well as p0 = E (energy).

Fourier transform. Recall that px = p0x0 − px. It follows from
Z cT/2

−cT/2

eip0x0/�dx0

Z

C(L)

e−ipx/�d3x = (2π�)4δcT (p0) · δG(N)(p)

that

1

(2π�)4

Z

Ω

eipx/�d4x = δdis(p) (12.12)

where Ω := [− cT
2
, cT

2
] × C(L). This is a rigorous discrete variant of the mnemonic

formula
1

(2π�)4

Z

R4
eipx/�d4x = δ4(p)

used by physicists.
The magic square of the Dirac delta function in quantum field theory.

In order to compute cross sections, the formula (12.11) is frequently applied by
physicists in the following mnemonic form:

δ4(p)2 =
cTV

(2π�)4
· δ4(p). (12.13)

In fact, physicists always use the replacement

δ4(p) ⇒ cTV
(2π�)4

where V and T are a typical volume and a typical time, respectively. We will show
in Volume II on quantum electrodynamics that the final cross sections computed
via Feynman diagrams do not depend on the choice of the normalization volume V
and the normalization time T .

In this context, let us mention that we will show on page 732 that the square
of the Dirac delta distribution does not exist as a reasonable mathematical object.
Therefore, we will use the strategy of discrete approximations in this treatise.
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12.1.3 Rigorous Discrete Dirac Calculus

Mnemonically, all the discrete formulas above can be elegantly obtained from the
following two formal completeness relations in position space and momentum space:

(C1)
R

C(L)
|x〉〈x| d3x = I,

(C2)
P

p∈G(N) |p〉〈p| Δ
3p = I.

Formal relations. From these formal completeness relations, we immediately
obtain the following relations.

(i) Discrete Fourier transform: 〈x|f〉 =
P

p∈G(N)〈x|p〉〈p|f〉 Δ
3p.

(ii) Inverse discrete Fourier transform: 〈p|f〉 =
R

C(L)
〈p|x〉〈x|f〉 d3x.

(iii) Dirac’s discrete delta function in position space:

〈y|x〉 =

Z

p∈G(N)

〈y|p〉〈p|x〉Δ3p

and 〈y|f〉 =
R

C(L)
〈y|x〉〈x|f〉 d3x.

(iv) Dirac’s discrete delta function in momentum space:

〈q|p〉 =

Z

C(N)

〈q|x〉〈x|p〉 d3x

and 〈q|f〉 =
R

p∈G(N)
〈q|p〉〈p|f〉 Δ3p.

Rigorous formulas. The formal relations (i)-(iv) above correspond to rigorous
formulas if we introduce the following notation:

• 〈x|f〉 := f(x) and 〈f |x〉 = 〈x|f〉†,
• 〈p|f〉 := ap and 〈f |p〉 = 〈p|f〉†,
• 〈x|p〉 := eixp/�/(2π�)3/2 and 〈p|x〉 = 〈x|p〉†,
• 〈y|x〉 := δC(L)(y − x),
• 〈q|p〉 := δG(N)(q− p).

Furthermore, the fact that 〈y|x〉 ∈ R implies the symmetry property

〈y|x〉 = 〈y|x〉† = 〈x|y〉.

Similarly, 〈q|p〉 = 〈q|p〉† = 〈p|q〉.

12.1.4 The Formal Continuum Limit

Mnemonically, Dirac’s delta function is the formal lattice limit of the dis-
crete Dirac delta function.

Folklore

Later on we will carry out the following two limits.

(H) High-energy limit: N → +∞.
(L) Low-energy limit: L→ +∞.

In terms of the momentum vector p, observe that the limits (H) and (L) correspond
to |p| → ∞ and Δpj → 0, respectively.

Our notation has to be chosen in such a way that these two limits lead to
the classical formulas for the Fourier integral.
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In fact, from (12.3) and (12.4) we get the Fourier transform

f(x) :=
1

p

(2π�)3

Z

R3
ap eipx/� d3p

along with the inverse Fourier transform

ap =
1

p

(2π�)3

Z

R3
f(x)e−ipx/� d3x.

Applying the limits N → +∞ and L → +∞ to (12.5) and (12.6), physicists write
formally

δ(y − x) :=
1

(2π�)3

Z

R3
ei(y−x)p/�d3p (12.14)

and

f(y) =

Z

R3
δ(y − x)f(x) d3x. (12.15)

Formula (12.7) in momentum space passes over to

δ(q− p) =
1

(2π�)3

Z

R3
ei(p−q)x/� d3x.

Finally, from (12.8) we get

g(q) =

Z

R3
δ(q− p) g(p)d3p.

This coincides with (12.14) and (12.15), respectively, by using the substitution
x⇒ −x.

In a straightforward manner, the discrete Dirac calculus can be generalized to
the continuous case by carrying out the limits N → ∞ and L → +∞ in a formal
way. In particular, discrete delta functions in position and momentum space pass
over to Dirac’s delta function. Formally,

δC(L)(x)→ δ(x), δG(N)(p) → δ(p).

The discrete completeness relations pass over to the following formal continuous
completeness relations:

(C1)
R

R3 |x〉〈x| d3x = I,

(C2)
R

R3 |p〉〈p| d3p = I.

From these completeness relations, we formally obtain the following relations.

(i) Fourier transform: 〈x|f〉 =
R

R3〈x|p〉〈p|f〉 d3p.

(ii) Inverse Fourier transform: 〈p|f〉 =
R

R3〈p|x〉〈x|f〉 d3x.
(iii) Dirac’s delta function in position space:

〈y|x〉 =

Z

R3
〈y|p〉〈p|x〉d3p

and 〈y|f〉 =
R

R3〈y|x〉〈x|f〉 d3x.
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(iv) Dirac’s delta function in momentum space:

〈q|p〉 =

Z

R3
〈q|x〉〈x|p〉 d3x

and 〈q|f〉 =
R

R3〈q|p〉〈p|f〉 d3p.

This corresponds to the classical formulas for the Fourier transform if we introduce
the following notation:

• 〈x|f〉 := f(x) and 〈f |x〉 = 〈x|f〉†,
• 〈p|f〉 := ap and 〈f |p〉 = 〈p|f〉†,
• 〈x|p〉 := eixp/�/(2π�)3/2 and 〈p|x〉 = 〈x|p〉†,
• 〈y|x〉 := δ(y − x),
• 〈q|p〉 := δ(q− p).

Moreover, 〈y|x〉 = 〈y|x〉† = 〈x|y〉 and 〈q|p〉 = 〈q|p〉† = 〈p|q〉.

12.2 Rigorous General Dirac Calculus

We now want to show how the formal Dirac calculus introduced in Sect. 11.2 on
page 592 can be given a rigorous meaning by using the notion of a Gelfand triplet
(also called rigging of a Hilbert space).

12.2.1 Eigendistributions

The chain of inclusions
S(R) ⊂ L2(R) ⊂ S ′(R)

is called a Gelfand triplet with respect to the Hilbert space L2(R) (or a rigging of
L2(R)). Let us introduce the momentum operator

P : S(R)→ S(R)

given by (Pϕ)(x) := −i� d
dx
ϕ(x) and the position operator

X : S(R)→ S(R)

given by (Xϕ)(x) := xϕ(x) for all x ∈ R and all functions ϕ ∈ S(R). For a quantum
particle on the real line, the position operator X and the momentum operator P
do not possess eigenfunctions which lie in the Hilbert space L2(R). For example,

setting ϕp(x) := eipx/�/
√

2π�, we get

Pϕp = pϕp for all p ∈ R,

but
R

R
|ϕp(x)|2dx =∞. Hence ϕp /∈ L2(R). However, we will show that there exists

a complete system of eigendistributions.
The momentum operator. Define Fp(ϕ) :=

R

R
ϕp(x)†ϕ(x)dx for all test

functions ϕ ∈ S(R). Then, Fp ∈ S ′(R).

The family {Fp}p∈R of tempered distributions Fp forms a complete system
of eigendistributions of the momentum operator P.

Explicitly, this means the following.
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(i) Eigenvalue relation: For each real number p, we have

Fp(Pϕ) = pFp(ϕ) for all ϕ ∈ S(R). (12.16)

(ii) Completeness relation: If

Fp(ϕ) = 0 for all p ∈ R

and fixed ϕ ∈ S(R), then ϕ = 0.

Let us prove this. Integration by parts yields
Z

R

e−ipx/�(−i�ϕ′(x))dx = p

Z

R

e−ipx/�ϕ(x)dx.

This implies (i). Moreover, in order to prove (ii) let

Fp(ϕ) =
1√
2π�

Z

R

e−ipx/�ϕ(x)dx = 0 for all p ∈ R.

For the Fourier transform, ϕ̂(p) = Fp(ϕ) = 0. Hence ϕ = 0. Using Dirac’s notation
to be thoroughly discussed on page 683, equation (12.16) is equivalent to

P |Fp〉 = p|Fp〉 for all p ∈ R.

Physicists briefly write |p〉 instead of |Fp〉.
The position operator. Similarly, we obtain that

The family {δx}x∈R of tempered distributions δx forms a complete system
of eigendistributions of the position operator X.

Explicitly, this means the following.

(i) Eigenvalue relation: For each number x ∈ R, we get

δx(Xϕ) = xδx(ϕ) for all ϕ ∈ S(R). (12.17)

(ii) Completeness relation: If δx(ϕ) = 0 for all x ∈ X and fixed ϕ ∈ S(R), then
ϕ = 0.

This follows from δx(ϕ) = ϕ(x) and δx(Xϕ) = xϕ(x). Using Dirac’s notation to be
introduced on page 683, equation (12.17) is equivalent to

X|δx〉 = x|δx〉 for all x ∈ R.

Physicists briefly write |x〉 instead of |δx〉.
The energy operator. Define the Hamiltonian H : S(R)→ S(R) by setting

H :=
P 2

2me
.

This is the energy operator for the free motion of an electron of mass me on the
real line.

The family {Fp}p∈R represents a complete system of eigendistributions.

Explicitly, this means the following:
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(i) Eigenvalue relation: For each real number p, we have

Fp(Hϕ) = E(p)Fp(ϕ) for all ϕ ∈ S(R). (12.18)

Here, the eigenvalue E(p) := p2/2me is the energy of a free particle of momen-
tum p.

(ii) Completeness relation: If

Fp(ϕ) = 0 for all p ∈ R

and fixed ϕ ∈ S(R), then ϕ = 0.

Using Dirac’s notation, equation (12.18) is equivalent to

H|p〉 = E(p)|p〉 for all p ∈ R.

12.2.2 Self-Adjoint Operators

It was discovered by John von Neumann around 1928 that the notion of self-adjoint
operator on a Hilbert space plays a fundamental role in the mathematical approach
to quantum physics. LetX be a complex Hilbert space. The operator A : D(A)→ X
is called self-adjoint iff

• the domain of definition D(A) is a linear subspace of the Hilbert space X which
is dense, that is, for each ϕ ∈ X, there exists a sequence (ϕn) in D(A) such that
limn→∞ ϕn = ϕ in X;

• the operator A is linear and formally self-adjoint, that is,

〈ϕ|Aψ〉 = 〈Aϕ|ψ〉 for all ϕ,ψ ∈ D(A);

• the two operators (A± iI) : D(A)→ X are surjective.

The operator B : D(B) → X is called essentially self-adjoint iff there exists precisely
one self-adjoint operator A : D(A) → X which is an extension of B, that is,
D(B) ⊆ D(A) ⊆ X and Aϕ = Bϕ for all ϕ ∈ D(B).

Proposition 12.2 The three operators

P,X,H : S(R)→ L2(R) (12.19)

introduced in the preceding section are essentially self-adjoint on the Hilbert space
L2(R).

The idea of proof is the following.1 We first consider the natural extensions

P,X,H : S ′(R)→ S ′(R) (12.20)

where derivative and multiplication are to be understood in the sense of tempered
distributions. We then introduce the restricted domains of definition:

• D(P ) := {ϕ ∈ L2(R) : Pϕ ∈ L2(R)};
• D(X) := {ϕ ∈ L2(R) : Xϕ ∈ L2(R)};
• D(H) := {ϕ ∈ L2(R) : Hϕ ∈ L2(R)}.
The corresponding restrictions of the operators from (12.20), namely,

P : D(P ) → L2(R), X : D(X) → L2(R), H : D(H) → L2(R)

are then the desired self-adjoint extensions of the operators from (12.19).

1 The details can be found in Zeidler (1995), Vol. 1, p. 263ff and p. 414ff.
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12.2.3 The von Neumann Spectral Theorem

The classical Fourier transform sends differentiation to multiplication. This nice
property is crucial for the investigation of differential equations. John von Neumann
showed around 1930 that the Fourier transform can be generalized to self-adjoint
operators in Hilbert spaces. The two key relations read as follows:

(i) Parseval equation:

〈ϕ|ψ〉 =

Z

M
ϕ̂(m)†ψ̂(m)dμ(m) for all ϕ,ψ ∈ X.

(ii) Multiplication operator:

(Âϕ̂)(m) = λ(m)ϕ̂(m) for all m ∈M

where λ : M→ R is a fixed function. We also set

ϕ̂(m) := (Fϕ)(m) for all m ∈M.

The function ϕ̂ : M → C is called the generalized Fourier transform of the
element ϕ in the Hilbert space X.

A Hilbert space X is called separable iff there exists a sequence ϕ1, ϕ2, . . . in X
such that for each element ϕ of X, there exists a subsequence ϕ1′ , ϕ2′ , . . . which
converges to ϕ in X. For example, the Hilbert space L2(R

N ) is separable for all
N = 1, 2, . . . .

Theorem 12.3 Let A : D(A) → X be a linear self-adjoint operator defined on the
dense subset D(A) of the complex separable Hilbert space X. Then there exist both
a Hilbert space L2(M, μ) and a unitary operator

F : X → L2(M, μ)

such that the operator A is transformed into the multiplication operator Â given by
(ii) above.

Let us explain the precise meaning of this theorem. We start with a measure μ on
the nonempty setM. By definition, the space L2(M, μ) consists of all μ-measurable
functions

ϕ̂ :M→ C

such that
R

M |ϕ̂(m)|2dμ(m) <∞. The space L2(M, μ) becomes a complex Hilbert
space with respect to the inner product

〈ϕ|ψ〉 :=

Z

M
ϕ(m)†ψ(m)dμ(m).

Here, two functions ϕ and ψ represent the same element of the Hilbert space
L2(M, μ) iff they differ on a set of μ-measure zero. Equation (ii) above is to be
understood in the sense of the following commutative diagram:

D(A)
A ��

F
��

X

F
��

D(Â)
Â �� L2(M, μ).
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By definition, the function ϕ̂ belongs to the set D(Â) iff

ϕ̂ ∈ L2(M, μ) and λϕ̂ ∈ L2(M, μ).

It turns out that D(Â) = F(D(A)). Moreover, Â = FAF−1.
For the proof of Theorem 12.3, we refer to Reed, Simon (1972), Vol. 1, Sect.

VIII.3 and Berezin, Shubin (1991), supplement 1. The latter proof is elegantly based
on the Riemann–Hilbert problem.

12.2.4 The Gelfand–Kostyuchenko Spectral Theorem

We now want to consider a refinement of the von Neumann spectral theorem which
generalizes the results from Sect. 12.2.1 on eigendistributions. For the dimensions
N = 1, 2, . . . we will use the Gelfand triplet

S(RN ) ⊂ L2(R
N ) ⊂ S ′(RN ).

The following theorem is a special case of a general result obtained by Gelfand and
Kostyuchenko in 1955. The proof can be found in Gelfand and Shilov (1964), Vol.
4, Sect. I.4.2

Theorem 12.4 Let A : S(RN ) → S(RN ) be a linear, sequentially continuous oper-
ator which is essentially self-adjoint with respect to the Hilbert space L2(R

N ). Then,
this operator has a complete system {Fm}m∈M of eigendistributions.

Explicitly, this means the following. There exists a nonempty set M such that
Fm ∈ S ′(RN ) for all indices m ∈M.

(i) Eigendistributions: There exists a function λ :M→ R such that

Fm(Aϕ) = λ(m)Fm(ϕ)

for all indices m ∈M and all test functions ϕ ∈ S(RN ).
(ii) Completeness: If Fm(ϕ) = 0 for all m ∈M and fixed ϕ ∈ S(RN ), then ϕ = 0.

The function ϕ̂ : M→ C defined by

ϕ̂(m) := Fm(ϕ) for all m ∈M

is called the generalized Fourier transform of the function ϕ ∈ S(RN ), with respect
to the operator A.

12.2.5 The Duality Map

As a preparation for the formulation of the rigorous Dirac calculus in the next
section, let us discuss the two key inclusion chains

S(RN ) ⊂ L2(R
N ) ⊂ S ′(RN ) (12.21)

2 It is frequently necessary to replace the space S(RN ) of test functions by more
general spaces together with more general Gelfand triplets. This will be studied
in Volume III. See also Faris (1971).
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and

S(RN ) ⊂ L2(R
N ) ⊂ S ′

a(RN ) (12.22)

along with the duality map

J : L2(R
N )→ S ′(RN ) (12.23)

and the antiduality map

Ja : S ′(RN )→ S ′
a(RN ). (12.24)

Here, N = 1, 2, . . . . Let us summarize the relevant definitions.

(i) The Hilbert space L2(R
N ). Recall that the inner product on L2(R

N ) is given
by

〈ϕ|ψ〉 :=

Z

RN

ϕ(x)†ψ(x)dNx for all ϕ,ψ ∈ L2(R
N ).

It is our goal below to extend this inner product to more general mathemat-
ical objects called costates and generalized states. The set S(RN ) of rapidly
increasing functions is dense in L2(R

N ).
(ii) Duality map: For each function ψ ∈ L2(R

N ), define

J(ψ)(ϕ) := 〈ψ|ϕ〉 for all ϕ ∈ S(RN ).

For all ψ, χ ∈ L2(R
N ) and all complex numbers α, β,

J(αψ + βχ) = α†Jψ + β†Jχ.

Moreover, if Jψ = 0, then ψ = 0. These relations tell us that the duality map
J : L2(R

N )→ S ′(RN ) is antilinear and injective.
(iii) The antiduality map. By definition, the space of antidistributions S ′

a(RN )
consists of all antilinear, sequentially continuous maps3 G : S(RN ) → C. For
each tempered distribution F ∈ S ′(RN ), define

(JaF )(ϕ) := F (ϕ)† for all ϕ ∈ S(RN ).

Then, JaF ∈ S ′
a(RN ). For all F,H ∈ S ′(RN ) and all α, β ∈ C,

Ja(αF + βH) = α†JaF + β†JaH.

Thus, the antiduality map Ja : S ′(RN )→ S ′
a(RN ) is antilinear and bijective.

3 By definition, G is antilinear iff G(αϕ+βψ) = α†G(ϕ)+β†G(ψ) for all complex
numbers α, β and all ϕ,ψ ∈ S(RN ).
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12.2.6 Dirac’s Notation

Concerning the Gelfand triplet S(RN ) ⊂ L2(R
N ) ⊂ S ′(RN ), let us introduce the

following terminology.

• Each function ψ ∈ L2(R
N ) is called a state. We write |ψ〉 instead of ψ.

• Each linear functional F ∈ S ′(RN ) is called a costate. We write 〈F | instead of
F .

• Each antilinear functional G ∈ S ′
a(RN ) is called a generalized state. We write

|G〉 instead of G.

To each state ψ ∈ L2(R
N ), we assign the costate 〈ψ| given by the linear functional

ϕ �→ 〈ψ|ϕ〉. Thus, the map

|ψ〉 �→ 〈ψ|

is identical to the duality map ψ �→ Jψ. Furthermore, to each costate 〈F | we assign
the generalized state |F 〉 given by the antilinear functional ϕ �→ F (ϕ)†. Thus, the
map

〈F | �→ |F 〉

is equal to the antiduality map F �→ JaF. Let the map A : S(RN ) → S(RN ) be
formally self-adjoint with respect to the Hilbert space L2(R

N ). This means that

〈ϕ|Aψ〉 = 〈Aϕ|ψ〉 for all ϕ,ψ ∈ S(RN ).

We extend this by setting

〈ϕ|A|G〉 := 〈Aϕ|G〉 for all ϕ ∈ S(RN ), G ∈ S ′
a(RN ).

This defines the generalized state A|G〉 given by the antilinear functional

ϕ �→ 〈Aϕ|G〉.

In particular, fix F ∈ S ′(RN ) and the real number λ. Then, the equation

F (Aϕ) = λF (ϕ) for all ϕ ∈ S(RN ) (12.25)

is equivalent to the following three equations to be considered for all functions
ϕ ∈ S(RN ) :

• 〈F |Aϕ〉 = λ〈F |ϕ〉;
• 〈F |Aϕ〉† = λ〈F |ϕ〉†;
• 〈Aϕ|F 〉 = λ〈ϕ|F 〉.
Therefore, equation (12.25) is equivalent to A|F 〉 = λ|F 〉.

12.2.7 The Schwartz Kernel Theorem

Consider the integral operator χ = Kϕ given by

χ(x) =

Z

R2
K(x, y)ϕ(y)dy, x ∈ R.

The function K is called the kernel of the operator K. More precisely, if the function
K : R

2 → C is Lebesgue measurable and
R

R2 |K(x, y)|2dxdy <∞, then the operator
K : L2(R)→ L2(R) is linear and continuous. Setting
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B(ψ,ϕ) :=

Z

R2
K(x, y)ψ(x)ϕ(y)dxdy,

we obtain a bilinear functional B : S(R) × S(R) → C. The following theorem is
a far-reaching generalization of this result. It shows that a broad class of bilin-
ear functionals have tempered distributions as their generalized kernels. The key
formula reads as follows:

B(ψ,ϕ) = F (ψ ⊗ ϕ) for all ψ ∈ S(RN ), ϕ ∈ S(RM ). (12.26)

Theorem 12.5 Let N,M = 1, 2, . . . , and assume that the functional

B : S(RN )× S(RM )→ C

is both linear and sequentially continuous with respect to each argument. Then,
there exists a tempered distribution F ∈ S ′(RN+M ) such that B can be represented
by (12.26).

This theorem is the special case of a general kernel theorem valid in nuclear spaces.
See Gelfand and Shilov (1964), Vol. 3, Chap. 1.

12.3 Fundamental Limits in Physics

Limits play a crucial role in physics. The idea is to approximate complicated phe-
nomena by simpler ones. For example, we have the following limits:

• high-energy limit,
• low-energy-limit,
• thermodynamic limit and phase transitions,
• adiabatic limit and regularization,
• the limit from wave optics to geometric optics for short wavelengths of light,
• the limit from Einstein’s relativistic physics to Newton’s non-relativistic physics

for sufficiently low velocities, and
• the limit from quantum physics to classical physics for sufficiently large action.

Let us discuss some of the basic ideas.

12.3.1 High-Energy Limit

Experiments in particle accelerators are carried out at a fixed energy scale E per
particle. The high-energy limit corresponds to E → +∞. Such extremely high
energies were present in the early universe shortly after the Big Bang. However,
the high-energy limit and the low-energy limit E → +0 are also crucial in quantum
field theory in order to pass from lattices to the continuum limit. This is related to
the procedure of renormalization. For example, quarks behave like free particles at
very high particle energies.
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Fig. 12.2. Liquid-vapor isothermal line

12.3.2 Thermodynamic Limit and Phase Transitions

The most spectacular phenomena of thermodynamic systems are phase transitions.
For example, the freezing of water to ice at the temperature 0◦ Celsius represents
a phase transition. Mathematically, phase transitions can be studied by singulari-
ties (e.g. jumps) of thermodynamic quantities. As a rule, such singularities do not
appear in thermodynamic systems of finite volume. One has to perform the limit

V →∞,

i.e., the volume V of the system has to go to infinity. This limit is called the
thermodynamic limit. The importance of this limit in mathematical physics was
emphasized by David Ruelle in his monograph Statistical Mechanics: Rigorous Re-
sults, New York, 1969. We also recommend the survey article by Griffith (1972)
(rigorous results) and the monograph by Minlos (2000) (mathematical statistical
physics). An extensive bibliography on statistical physics can be found in Emch
and Liu (2002) (1500 references). A collection of seminal papers in 20th century
statistical physics is contained in Stroke (1995).

The condensation of a gas. If one increases the pressure of a real gas at
a fixed, sufficiently low temperature, then the gas condenses into a liquid. This is
pictured schematically in Fig. 12.2. Here, p denotes the pressure, and v denotes the
specific volume (i.e., volume per molecule).

The Yang–Lee condensation model. In order to understand Fig. 12.2 in
terms of statistical physics, let us consider a purely mathematical model which is
simple, but far from physical reality.4 Let us start with the partition function

Z(T, V, μ) =
2V
X

N=0

zN
N
X

j=0

 

V

N − j

!

= (1 + z)V 1− zV +1

1− z

where z := eμ/kT . Here, we use the following notation: T temperature, μ chemical
potential, V volume, k Boltzmann constant. Choose V = 1, 2, . . . By statistical
mechanics, we get the pressure p and the mean particle number per volume, N/V ,
by the formula

p = kT
∂ lnZ

∂V
(12.27)

together with the following formula

4 More general results can be found in the following two papers:
C. Yang and T. Lee, Statistical theory of equations of state and phase transitions.
I. Theory of condensation. II. Lattice gas and Ising model, Phys. Rev. 87 (1952),
404–409, 410–419.
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N

V
=
kT

V

∂ lnZ

∂μ
= z

∂

∂z

„

lnZ

V

«

. (12.28)

Letting V → +∞, we will replace the pressure by the limit

p(z) := kT lim
V →+∞

lnZ

V
.

Moreover, motivated by (12.28) as V → +∞, we set

1

v(z)
=
N

V
:= z

∂

∂z

„

p(z)

kT

«

.

An elementary computation yields

p(z)

kT
=

(

ln(1 + z) if |z| < 1,

ln(1 + z)z if |z| > 1,

and

v(z) =

8

>

<

>

:

1 + z

z
if |z| < 1,

1 + z

1 + 2z
if |z| > 1.

Let us discuss this. The physical region of the fugacity z = eμ/kT is given by μ ∈ R

and T > 0. Hence 0 < z <∞. Equation (12.27) shows that

The zeros of the partition function Z are critical.

Explicitly, the zeros of Z = (1 + z)V 1−zV +1

1−z
are given by the equation

1− zV +1 = 0

except for z = 1. The zeros lie on the unit circle. As V →∞, the zeros fill a dense
subset of the unit circle. This is the mechanism for getting a phase transition at
z = 1 in the thermodynamic limit V →∞. In fact, the pressure remains continuous
at z = 1, but the specific volume v jumps at z = 1, namely,

lim
z→1+0

v(z) = 2, lim
z→1−0

v(z) = 2
3
.

This allows us to regard the region 1 < z < ∞ as gas (resp. 0 < z < 1 as liquid).
The jump of v corresponds to the condensation of the gas. This reflects the obvious
fact that the specific volume of a gas is larger than that of a liquid. Moreover, the
equation of state p = f(v, T ) reads as

p =

8

>

>

<

>

>

:

kT ln
v

v − 1
if |z| < 1,

kT ln
v(1− v)

(2v − 1)2
if |z| > 1.

This is pictured in Fig. 12.2 on page 685 for fixed temperature T.
The importance of phase transitions in high technology processes.

Phase transitions play a crucial role in understanding strange properties of matter.
For example, at sufficiently low temperatures one observes
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• superconductivity,
• superfluidity (e.g., liquid helium), and
• condensation of Bose–Einstein gases.

For example, Cornell, Ketterle, and Wieman were awarded the Nobel prize in
physics in 2001 for the achievement of Bose–Einstein condensation in dilute gases
of alkali atoms. As an introduction to the statistical physics of these phenomena,
we recommend the classical lectures given by Feynman (1998) (14th edition).

Phase transitions in the early universe. Physicists also assume that the
cooling of the universe after the Big Bang caused several phase transitions which
were responsible for the splitting of the original unified force into gravitational,
strong, weak, and electromagnetic interaction. In the setting of the inflationary
theory, it is assumed that shortly after the Big Bang, a phase transition caused
an enormous sudden expansion of the universe which is responsible for the almost
flatness of the present universe. Moreover, the strange properties of the ground
state of Fermi gases lead to the existence of neutron stars and white dwarfs which
possess extreme mass densities. For this, we refer to Straumann (2004).

12.3.3 Adiabatic Limit

The basic idea is to compute integrals as limits of regularized integrals. The key
formula reads as

Z ∞

0

a(t)dt = lim
ε→+0

Z ∞

0

a(t)e−εtdt. (12.29)

This means the following. In order to compute the integral
R∞
0
a(t)dt, we consider

the regularized integral

A(ε) :=

Z ∞

0

a(t)e−εtdt, ε > 0,

and we compute the limit (12.29). In terms of physics, we switch on the perturbation
a(t) ⇒ a(t)e−εt. For each time t ≥ 0,

lim
ε→+0

a(t)e−εt = a(t).

In addition, for each parameter ε > 0, limt→+∞ e−εt = 1. Physicists call this adia-
batic perturbation. The point is that the adiabatic limit (12.29) does not always ex-
ist. In terms of mathematics, the function A = A(ε) is called the Laplace transform
of the given time-dependent function a = a(t). The justification of the limit (12.29)
corresponds to sophisticated Tauberian theorems for the Laplace transform.5 As a
typical example, consider the integral

J := lim
T→+∞

Z T

0

sin t

t
dt.

We will show below that

5 N. Wiener, Tauberian theorems, Ann. Math. 33 (2) (1933), 1–100.
J. Korevaar, Tauberian Theory: A Century of Developments, Springer, Berlin,
2004.
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J = lim
ε→+0

Z ∞

0

sin t

t
· e−εt dt =

π

2
.

This famous integral was used by Dirichlet (1809–1859) in order to investigate the
convergence of Fourier integrals. Observe the following peculiarity. The integral

A(ε) :=

Z ∞

0

sin t

t
e−εtdt

exists as Lebesgue integral for each complex number ε with �(ε) > 0. This follows
from

Z ∞

0

˛

˛

˛

˛

sin t

t
e−εt

˛

˛

˛

˛

dt ≤ const

Z ∞

0

e−t�(ε) dt <∞,

by the majorant criterion on page 531. Moreover, the function A = A(ε) is holo-
morphic on the open upper half-plane {ε ∈ C : �(ε) > 0}. The situation changes
critically at the value ε = 0. Then

Z ∞

0

˛

˛

˛

˛

sin t

t

˛

˛

˛

˛

dt = ∞.

Therefore, the integral A(0) is not absolutely convergent, and hence it does not
exist as a Lebesgue integral; it is a so-called improper integral.

Newman’s adiabatic limit theorem. The following theorem due to Newman
(1980) is a crucial ingredient in the proof of the prime number theorem on page
293.

Theorem 12.6 Let a : [0,∞[→ R be a continuous (or, more generally, locally
integrable) and bounded function. Suppose that the function

A(ε) :=

Z ∞

0

a(t)e−εt dt, �(ε) > 0

extends holomorphically to an open neighborhood of the closed upper half-plane given
by {ε ∈ C : �(ε) ≥ 0}. Then, the integral

Z ∞

0

a(t)dt

is convergent. Moreover, this integral is equal to A(0).

Since the extended function A is continuous at the origin, we get
Z ∞

0

a(t)dt = lim
ε→+0

A(ε).

Proof. Our proof follows Zagier (1996). For T > 0 set

AT (z) :=

Z T

0

a(t)e−ztdt, z ∈ C.

This function is clearly holomorphic on the complex plane. We must show that
limT→+∞AT (0) = A(0) where A(0) denotes the extended value of the original
function ε �→ A(ε).

Let the radius R be a large real number and let C be the boundary of the
compact set
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D := {z ∈ C : |z| ≤ R, �(z) ≥ −δ, }
where δ > 0 is small enough (depending on R) so that the extended function A is
holomorphic on an open neighborhood of D. Then

A(0)−AT (0) =
1

2πi

Z

C

(A(z)−AT (z))ezT

„

1 +
z2

R2

«

dz

z
. (12.30)

This key formula is a special case of Cauchy’s integral formula for the representation
of a holomorphic function by its boundary values (see (4.3) page 215). We now study
the integral (12.30) on different parts of the curve C.

(I) On the semicircle C+ := C ∩ {z ∈ C : �(z) > 0}, the integrand is bounded
by 2B/R2, where B := supt≥0 |a(t)|, because

|A(z)−AT (z)| =
˛

˛

˛

˛

Z ∞

T

a(t)e−ztdt

˛

˛

˛

˛

≤ B

Z ∞

T

|e−zt|dt =
Be−�(z)T

�(z)

if �(z) > 0. Furthermore,6

˛

˛

˛

˛

ezT

„

1 +
z2

R2

«

1

z

˛

˛

˛

˛

= e�(z)T · 2�(z)

R2
.

Hence the contribution to A(0) − AT (0) from the integral over C+ is bounded in
absolute value by B/R.

(II) For the integral over C− := C ∩ {z ∈ C : �(z) < 0}, we look at A(z)
and AT (z) separately. Since AT is holomorphic on the complex plane, the path of
integration for the integral involving AT can be replaced by the semicircle

C′
− := {z ∈ C : |z| = R, �(z) < 0},

and the integral over C′
− is then bounded in absolute value by 2πB/R by exactly

the same estimate as before since

|AT (z)| =
˛

˛

˛

˛

Z T

0

a(t)e−ztdt

˛

˛

˛

˛

≤ B

Z T

−∞
|e−zt|dt =

Be−�(z)T

|�(z)| , �(z) < 0.

(III) Finally, the remaining integral over C− tends to zero as T → +∞ because

the integrand is the product of the function A(z)(1 + z2

R2 ) 1
z
, which is independent

of T , and the function ezT , which goes to zero rapidly and uniformly on compact
sets as T → +∞ in the half-plane {z ∈ C : �(z) < 0}. Hence

lim sup
T→+∞

|A(0)−AT (0)| ≤ 2B

R
.

Since R is arbitrary, this proves the theorem. �

Adiabatic limit theorem of Hardy–Littlewood type. The following result
is the special case of a fundamental Tauberian theorem for the Laplace transform
which can be found in Korevaar (2004), p. 30.

6 Note that z = Reiϕ, with the angle −π/2 < ϕ < π/2, implies

˛

˛

˛

˛

1

z
+

z

R

˛

˛

˛

˛

=
1

R

˛

˛

˛

e−iϕ + eiϕ
˛

˛

˛

=
2 cosϕ

R
=

2�(z)

R2
.
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Theorem 12.7 The large-time limit

lim
T→+∞

Z T

0

a(t)dt = A(+0)

exists if the following conditions are satisfied.

(H1) The function a : [0,∞[→ R is continuous, and the large-time limit

A(ε) := lim
T→+∞

Z T

0

a(t)e−tεdt.

exists for each positive number ε.
(H2) The finite limit A(+0) = limε→+0A(ε) exists.
(H3) inft>0 ta(t) > −∞.

Application to the Dirichlet integral. For each ε > 0, consider the regu-
larized Dirichlet integral

A(ε) :=

Z ∞

0

sin t

t
e−εtdt.

Then

A′(ε) = −
Z ∞

0

e−εt sin t dt = − 1

1 + ε2
, ε > 0.

This implies

A(ε) = −
Z ∞

ε

A′(η)dη = lim
η→+∞

(arctan η − arctan ε) =
π

2
− arctan ε.

Setting a(t) := sin t
t
, it follows from Theorem 12.7 that

lim
T→+∞

Z T

0

sin t

t
dt = lim

ε→+0
A(ε) =

π

2
.

We will show in Problem 12.2 that the same result can be obtained for the Dirichlet
integral by using Cauchy’s residue method.

Adiabatic regularization of the Fourier transform of the Heaviside
function. Typically, if ω is real parameter, then the oscillating integral

1√
2π

Z ∞

−∞
θ(t)eiω dt =

1√
2π

Z ∞

0

eiω dt

does not exist in the classical sense. Consequently, the classical Fourier transform of
the Heaviside function does not exist. However, the Heaviside function θ represents
a tempered distribution given by

Θ(ϕ) :=

Z ∞

−∞
θ(t)ϕ(t)dt

for all test functions ϕ ∈ S(R). This implies the existence of the Fourier transform
F(Θ) as a tempered distribution. To simplify notation, we will write F(θ) instead
of F(Θ). The basic trick of our approach is to replace the Heaviside function θ by
the adiabatic approximation

θε(t) := θ(t)e−εt, t ∈ R,
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and to study the limit ε→ +0. In mathematics, this is called Abelian regularization
due to Abel (1802–1829). Physicists speak of adiabatic regularization introduced
by Gell-Mann and Low (1951) for studying bound quantum states via S-matrix.
The classical Fourier transform of θε reads as

F(θε)(ω) =
1√
2π

Z ∞

0

ei(ω+iε)tdt =
i√
2π
· 1

ω + εi

for all real numbers ω.

Proposition 12.8 For the Fourier transform of the Heaviside function θ,

F(θ) = lim
ε→+0

F(θε) =
i√
2π
· 1

ω + 0+i
,

in the sense of tempered distributions.

Proof. For each test function ϕ ∈ S(R),

lim
ε→+0

Z ∞

−∞
θε(t)ϕ(t)dt =

Z ∞

−∞
θ(t)ϕ(t)dt.

Thus, θε → θ as ε→ +0, in the sense of tempered distributions. Since the Fourier
transform F : S ′(R)→ S ′(R) is sequentially continuous,

F(θ) = lim
ε→+0

F(θε).

�

Recall that the Sokhotski formula (11.51) on page 623 tells us that

1

ω + 0+i
= P

„

1

ω

«

− iπδ.

12.3.4 Singular Limit

There exist the following crucial limiting processes:

(i) λ→ 0 (the wave length of light goes to zero): the passage from Maxwell’s theory
of electromagnetism to Fermat’s geometric optics;

(ii) � → 0 (the Planck constant goes to zero): the passage from quantum mechanics
to classical mechanics;

(iii) c → ∞ (the velocity of light goes to infinity): the passage from the theory of
relativity to classical mechanics.

Since the quantities λ, �, c carry physical dimensions, they depend on the choice
of the unit system. Thus, more precisely, one has to use relative dimensionless
quantities. For example, consider a physical experiment with visible light. Let L be
a typical length scale of the experiment, and let λ be the wave length of light. The
limit (i) corresponds then to

λ

L
→ 0.

In (ii) and (iii), we need a typical velocity V and a typical action S (energy times
time), respectively, and we have to study the limits
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V

c
→ 0,

�

S
→ 0.

In daily life, we have the following typical ratios

λ

L
∼ 10−6,

V

c
∼ 10−8,

�

S
∼ 10−34.

Here, we use the length L = 1m, the velocity V = 1m/s, and the action

S = 1kg ·m · s.

Consequently, relativistic effects and quantum effects can be neglected in daily life,
and we can approximately apply the methods of geometric optics. For radio waves,
X rays, γ-rays, and cosmic rays, we have

λ

L
∼ l

with l = 103, 10−10, 10−12, 10−15, respectively. Again, L := 1m. The singular
limits (i)-(iii) play an important role in physics. We will study them later on. For
example, the short-wavelength limit for electromagnetic waves will be investigated
in Sect. 12.5.4 on page 720. This is the prototype of a singular limit.

12.4 Duality in Physics

The concept of duality is crucial in both mathematics and physics.
Folklore

The goal is to relate apparently different problems to each other via duality in order
to simplify the mathematical treatment.7 There exist the following fundamental
dualities in quantum physics related to the Fourier transform and the Laplace
transform:

• particles and waves,
• time and frequency,
• time and energy,
• position and momentum,
• causality and analyticity,
• strong and weak interaction.

Let us sketch the basic ideas.

12.4.1 Particles and de Broglie’s Matter Waves

De Broglies fundamental duality principle. Particles and waves are funda-
mental objects in physics for describing the transport of energy.

For quantum particles, there exists a duality between particle properties
and wave properties.

7 A general duality theory with many application to problems in mathematics and
physics can be found in Zeidler (1986), Vols. III and IV.
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In 1905 Einstein postulated that the frequency ν and the wave length λ of an
electromagnetic light wave are related to the energy E and the momentum vector
p of the corresponding light particle (photon) by

E = hν, p =
h

λ
n

with the unit vector n. Equivalently,

E = �ω, p = �k. (12.31)

In his famous 1924 dissertation at the Sorbonne in Paris, de Broglie postulated
that the duality principle (12.31) represents a universal law in quantum physics.
In particular, he claimed that each massive or massless quantum particle possesses
wave properties. For an electron of rest mass m0 and velocity vector v, Einstein’s
theory of special relativity tells us that

p =
m0v

p

1− v2/c2
.

Suppose that the electron moves slowly compared with the velocity of light, that is,
|v|/c " 1. Then we get the non-relativistic approximation p = m0v. Introducing
the Compton wave length of the electron, λC := h/m0c, we obtain

λ =
c

|v| λC =
c

|v| · 2.43 · 10−12m

for the wave length λ of the electron. In 1927 Davisson, Germer, Thomson, and
Reid demonstrated de Broglie’s hypothesis on the wave character of the electron
by studying the diffraction of electrons at crystals experimentally.8 The powerful
electron microscope is based on the wave character of the electron. The smallest
wave length of visible light is about 400 · 10−9 m = 400 nanometers. The wave
length of the electron in an electron microscope is about 5 ·10−9m = 5 nanometers.
Therefore, an electron microscope is much more effective than a light microscope.
The enlargement factor of an electron microscope is about 1 000 000.9

The Klein–Gordon equation for matter waves. De Broglie’s matter wave
can be formally described by a complex-valued wave function

ψ(x, t) = Aei(px−Et)/� (12.32)

along with E = �ω,p = �k and the Einstein relation

E2 = m2
0c

4 + c2p2. (12.33)

The latter plays the role of a dispersion relation. Differentiation of ψ yields

i�
∂ψ

∂t
= Eψ, −i�∂ψ = pψ.

8 Prince Louis-Victor de Broglie was awarded the 1929 Nobel prize in physics for
his discovery of the wave nature of electrons; Clinton Davisson and Sir George
Thomson were awarded the 1937 Nobel prize in physics for their electron diffrac-
tion experiments.

9 Ernst Ruska was awarded the 1986 Nobel prize in physics for designing the
first electron microscope in 1933, and Gerd Binnig and Heinrich Rohrer were
awarded the 1986 Nobel prize in physics for their design of the scanning tunneling
microscope in 1981, which is based on the quantum tunneling of particles.
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Consequently, if we use the substitution

E ⇒ i�
∂

∂t
, p⇒ −i�∂, (12.34)

then from the Einstein relation (12.33) we obtain the so-called Klein–Gordon equa-
tion

“ 1

c2
∂2

∂2t
− ∂2 +

m2
0c

2

�2

”

ψ = 0. (12.35)

This construction guarantees that the wave function ψ from (12.32) is a solution of
the Klein–Gordon equation. Explicitly, the Klein–Gordon equation can be written
as

1

c2
ψtt − ψxx − ψyy − ψzz +

m2
0c

2

�2
ψ = 0.

The substitution (12.34) is of great importance for quantum physics. As we will
show later on, this elegant quantization rule also generates both the Schrödinger
equation for non-relativistic electrons and the Dirac equation for relativistic elec-
trons.

12.4.2 Time and Frequency

Many time-dependent processes in physics and engineering become simple
in the frequency space via the Fourier transform.

Folklore

Let f ∈ S(R). The function a : R → C given by

a(ω) :=
1√
2π

Z ∞

−∞
f(t) eiωt dt for all ω ∈ R

is called the Fourier transform of the function f from time space to angular fre-
quency space. Recall that a ∈ S(R). The inverse transformation is given by

f(t) =
1√
2π

Z ∞

−∞
a(ω)e−iωt dω for all t ∈ R.

This transformation represents a duality between time and frequency.

12.4.3 Time and Energy

Setting E := �ω and b(E) := a
`

E
�

´

/
√

�, we get

b(E) =
1√
2π�

Z ∞

−∞
f(t)eiEt/�dt, for all E ∈ R.

The map f �→ b is called the Fourier transform from time space to energy space.
The inverse transformation reads as

f(t) =
1√
2π�

Z ∞

−∞
b(E)e−iEt/�dE for all t ∈ R. (12.36)
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For each real number E, we have

i�
d

dt

„

e−iEt/�

√
2π�

«

= E · e−iEt/�

√
2π�

for all t ∈ R.

Formula (12.36) represents the time-dependent function f ∈ S(R) as a superposi-
tion of the eigenfunctions of Schrödinger’s energy operator i� d

dt
.

12.4.4 Position and Momentum

In terms of quantum physics, the Fourier transform relates the position
space to the momentum space.

Folklore

We are given the function ψ : R → C which lies in the space S(R). Define

c(p) :=
1√
2π�

Z ∞

−∞
ψ(x)e−ipx/� dx for all p ∈ R. (12.37)

Then, we have c ∈ S(R). The map ψ �→ c is called the Fourier transform from the
1-dimensional position space to the 1-dimensional momentum space. The inverse
transformation reads as

ψ(x) =
1√
2π�

Z ∞

−∞
c(p) eipx/�dp for all x ∈ R. (12.38)

For each real number p, we have

− i�
d

dx

„

eipx/�

√
2π�

«

= p · eipx/�

√
2π�

for all p ∈ R. (12.39)

Formula (12.38) represents the position function ψ ∈ S(R) as a superposition of the
eigenfunctions of the momentum operator −i� d

dx
. The normalization factor 1√

2π
is

chosen in such a way that we have the following formal continuous orthonormality
condition

Z ∞

−∞

e−ipx/�

√
2π�

· eip0x/�

√
2π�

dx = δ(p− p0) for all p, p0 ∈ R.

Quantum particle on the real line. We want to show that the Fourier trans-
form represents a duality between position and momentum in quantum mechanics
which culminates in the Heisenberg uncertainty relation. To begin with, consider
the Hilbert space L2(R) with the inner product

〈χ|ψ〉 :=

Z ∞

−∞
χ(x)†ψ(x) dx

and the norm

‖ψ‖2 := 〈ψ|ψ〉 =

Z ∞

−∞
|ψ(x)|2 dx.

Each function ψ : R → C with ψ ∈ L2(R) and the normalization condition ‖ψ‖ = 1
describes the state of a quantum particle on the real line where
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Z b

a

|ψ(x)|2 dx

is the probability for finding the particle on the interval [a, b]. Let us introduce the
position operator X : S(R) → S(R),

`

Xψ
´

(x) := xψ(x) for all x ∈ R,

and the momentum operator P : S(R)→ S(R),

`

Pψ
´

(x) := −i�
dψ(x)

dx
for all x ∈ R.

Then, for the particle state ψ ∈ S(R), the quantities

x̄ := 〈ψ|Xψ〉, (Δx)2 := 〈ψ|(X − x̄)2ψ〉

and
p̄ := 〈ψ|Pψ〉, (Δp)2 := 〈ψ|(P − p̄)2ψ〉

represent the mean value x̄ and the mean fluctuation Δx of the particle position, as
well as the mean value p̄ and the mean fluctuation Δp of the particle momentum.
Explicitly,

x̄ =

Z ∞

−∞
x |ψ(x)|2 dx, (Δx)2 =

Z ∞

−∞
(x− x̄)2|ψ(x)|2 dx.

Using the Fourier transform,

p̄ =

Z ∞

−∞
p |c(p)|2 dp, (Δp)2 =

Z ∞

−∞
(p− p̄)2|c(p)|2 dp.

By the Parseval equality,
R∞
−∞ |c(p)|

2 dp =
R∞
−∞ |ψ(x)|2 dx = 1. In the terminology

of probability theory, the two functions

x �→ |ψ(x)|2 and p �→ |c(p)|2

are the probability density functions of the random variables position x and mo-
mentum p of the quantum particle on the real line in the state ψ, respectively. The
two functions

x �→
Z x

−∞
|ψ(ξ)|2 dξ and p �→

Z p

−∞
|c(η)|2 dη

are the distribution functions of position x and momentum p of the quantum particle
in the state ψ, respectively.

The Gaussian distribution. The most important distribution function in
the the theory of probability is the Gaussian distribution. The central limit theo-
rem due to Chebyshev (1821–1894) tells us that, roughly speaking, the Gaussian
probability distribution always appears if the random variable under consideration
is the superposition of many independent random effects. Explicitly, consider the
quantum state

ψ(x) :=
e
− (x−μ)2

4σ2

√
σ 4
√

2π
. (12.40)
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(a)

�
x

�
|ψ|2

x̄ x̄+Δxx̄−Δx

(b)

�
p

�

Δp

|c|2

Fig. 12.3. Gaussian distribution

We then obtain the Gaussian distribution

|ψ(x)|2 =
e
− (x−μ)2

2σ2

σ
√

2π
, x ∈ R

with the mean value x̄ = μ and the mean fluctuation Δx = σ (Fig. 12.3). For the
Fourier transform of the function ψ, we get

c(p) =
e
− p2

4σ′2
√
σ′ 4
√

2π
eix̄p/�

with σ′ = �/2σ. After rescaling, this follows from the well-known fact that the nor-

malized Gaussian distribution e
− x2

2√
2π

remains invariant under the Fourier transform.

Hence

|c(p)|2 =
e
− p2

2σ′2

σ′
√

2π
for all p ∈ R.

Therefore, the Gauss state ψ from (12.40) possesses the mean momentum p̄ = 0
and the momentum fluctuation

Δp =
�

2Δx
.

If Δx is small, then Δp is large. In other words, for a sharply located quantum
particle, the momentum values p fluctuate strongly. This is a special case of the
Heisenberg uncertainty relation

ΔxΔp ≥ �

2

which is valid for each state ϕ ∈ S(R) (see Prop. 10.3 on page 525). The relation
between harmonic analysis and Heisenberg’s uncertainty inequality is thoroughly
discussed in the article by Fefferman (1983).

12.4.5 Causality and Analyticity

Linear response and causality force analyticity, and hence the Kramers–
Kronig dispersion relations.

Folklore
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In the 1940s, physicists discovered that the polarization of the ground state of the
quantum field in quantum electrodynamics is responsible for crucial physical effects
(e.g., the Lamb shift of the hydrogen spectrum). In the late 1950s, physicists used
dispersion relations for describing scattering processes for elementary particles via
analyticity properties of the S-matrix. This led to the emergence of string theory
in the 1970s. Let us discuss the basic ideas going back to classical electrodynamics.
The key words are

• electric dipole and polarization,
• dielectricity of material media, and
• dispersion of light.

Our goal is to discuss the Kramers–Kronig dispersion relations which play a crucial
role in all physical processes which are governed by linear response and causality.
This concerns a broad class of phenomena in physics and engineering. Heisenberg’s
foundation of quantum mechanics in 1925 was strongly influenced by his joint 1924
paper with Kramers on the dispersion of light and earlier papers by Kramers.10

Generally, dispersion means that processes depend on the energy spectrum. Singu-
larities arise in the energy space which are generated by resonances. For scattering
processes of elementary particles, resonance appears for the energies of stable or
unstable bound states of particles.

The Maxwell equations for material media. The basic equations read as

div D = !, div B = 0,

∂D

∂t
= curlH− J,

∂B

∂t
= − curlE

(12.41)

along with the constitutive laws

P = P(E), M = M(B) (12.42)

and

D = ε0E + P(E), H =
1

μ0
(B−M(B)

´

. (12.43)

Here, we use the following notation:

• E electric field vector,,
• B magnetic field vector,
• ! electric charge density,
• J electric current density vector,
• P polarization (electric dipole moment density),
• M magnetization (magnetic dipole moment density),
• D electric intensity,
• H magnetic intensity,
• ε0 electric field constant of a vacuum, and
• μ0 magnetic field constant of a vacuum.

For the velocity of light in a vacuum,

c =
1√
ε0μ0

.

10 These papers along with historical comments can be found in the collection of
articles edited by van der Waerden (1968).
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In the SI system, μ0 = 4π · 10−7Vs/Am. Hence ε0 = 1/μ0c
2. Naturally enough, in

a vacuum we have P ≡ 0 and M ≡ 0. Therefore,

D = ε0E, B = μ0H.

In material media, the molecules generate additional dipole moments described by
P and M which depend on the electric field E and the magnetic field B. Observe
that the four Maxwell equations (12.41) are divided into two pairs of equations.

The two Maxwell equations from (12.41) which contain sources (i.e., elec-
tric charge density ! and electric current density vector J) depend on the
field intensities D and H; the remaining two Maxwell equations depend on
the fields E and B.

In Volume III on gauge field theory, we will study the relativistic formulation of
the Maxwell equations (12.41). It turns out that E and B form the electric field
tensor in Minkowski space, whereas D and H form the Weyl density tensor. The
constitutive law (12.43) is a map of the form (E,B) �→ (D,H).

Energy. The conservation laws of the Maxwell equations will be thoroughly
studied in Volume III, along with conservation laws for other important field theo-
ries in physics (like the Standard Model in particle physics and the theory of general
relativity). At this point, let us only mention that

η =
1

2

`

ED + BH
´

represents the energy density of the electromagnetic field, and the Poynting vector
E×H represents the energy current density vector.

Linear material media. If we have the constitutive laws

P = χeE, M = χmB,

then we speak of linear material media. Here, the material constants χe and χm are
called the electric and magnetic susceptibility. From the constitutive law (12.43)
we obtain a relation between the electric field E and the electric intensity D (resp.
the magnetic field B and the magnetic intensity H). Explicitly,

D = εE, H =
1

μ
B.

Here, ε and μ are called the electric field constant and the magnetic field constant
of the material medium. It follows as in Sect. 2.2.4 on page 87 that the velocity of
light in the material medium is given by

c =
1√
εμ

.

It is crucial that ε and μ often depend on the angular frequency ω of the incom-
ing electromagnetic wave. This way, the velocity of light in the material medium
depends on the angular frequency, that is,

c = c(ω).

This physical effect is called dispersion. As an example, consider water. For a con-
stant field E (i.e., ω = 0), we get χe = ε0, and hence
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�
O

d Q

−Q

Fig. 12.4. Electric dipole

ε = ε0 + χe = 2ε0.

For visible light, we obtain χe = 80 ε0, and hence

ε = ε0 + χe = 81ε0.

In what follows, let us study the phenomenon of dispersion.
Polarization. An electric charge Q at the origin generates the electric potential

U(x) =
Q

4πε0r

and the electric Coulomb field

E(x) = −gradU(x) =
Q

4πε0r2
· x

‖x‖

where r := ‖x‖. The Coulomb force

F(x) = qE(x)

acts on an electric charge q at the point x. Now consider the situation pictured in
Fig. 12.4. There is a positive electric charge Q at the point d and a negative electric
charge −Q at the origin. If the distance ‖d‖ between the two charges is small, then
we get the electric potential

U(x) =
Q

4πε0‖x− d‖ −
Q

4πε0‖x‖
=

px

4πε0r3
+O(‖d‖2), d→ 0

where p := Qd is called the dipole moment of the configuration.
More generally, consider a smooth electric charge density ! which vanishes out-

side some ball B about the origin. By superposition, the function ! generates the
electric potential

U(x) =

Z

B

!(y)

4πε0‖x− y‖ d
3y .

For large distances r = ‖x‖,

U(x) =
Q

4πε0r
+

px

4πε0r3
+

3
X

k,l=1

xkQklxl

8πε0r5
+O

„

1

r4

«

, r →∞

with the dipole moment

p =

Z

B
!(x)x d3x

and the quadrupole moments
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Qkl =

Z

B

`

3xkxl − x2δkl

´

!(x) d3x, k, l = 1, 2, 3.

Here, x1, x2, x3 are the Cartesian coordinates of the position vector x.
The Maxwell equation for the electric intensity. We want to motivate

the Maxwell equation (12.45) below. To this end, consider the electric potential

U(x) =

Z

R3

!(y)

4πε0‖x− y‖ d
3y +

Z

R3

P(y)(x− y)

4πε0‖x− y‖3 d
3y. (12.44)

By the superposition principle, this potential corresponds to an electric charge
density !(y) and a dipole distribution with the polarization P(y) (electric dipole
moment density) at the point y. Suppose that the functions ! and P are smooth,
and that they vanish outside some ball. By the methods of classical potential theory,
the smooth function U satisfies the Poisson equation11

ε0ΔU = !− div P.

Noting that E = −gradU and ΔU = − div gradU ,

ε0 div E = !− div P.

Finally, introducing D = ε0E + P, we obtain the desired Maxwell equation

div D = !. (12.45)

Let us now translate this argument from electric fields to magnetic fields.
The Maxwell equation for the magnetic intensity. Traditionally, the po-

tential
U(x) =

mx

4πμ0r3

describes the magnetic field intensity H = −gradU . Now equation (12.44) passes
over to

U(x) =

Z

R3

!magnetic(y)

4πε0‖x− y‖ d
3y +

Z

R3

M(y)(x− y)

4πμ0‖x− y‖3 d
3y

where we use the following notation:

• !magnetic(y) magnetic charge density at the point y, and
• M(y) magnetization (magnetic dipole moment density) at the point y.

As above for electric fields,

μ0ΔU = !magnetic − div M.

Electric and magnetic charges are called electric and magnetic monopoles, respec-
tively. The experience of physicists show that

There are no magnetic monopoles in classical electrodynamics.

Hence !magnetic ≡ 0. Letting H = −gradU , we get

μ0 div H = − div M.

Introducing the magnetic field B = μ0H + M, we obtain the Maxwell equation

11 For example, the proof of this classical result can be found in Courant and Hilbert
(1989), Vol. II.
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div B = 0. (12.46)

Magnetic monopoles. There exists the hypothesis that the high energy of the
early universe caused the production of magnetic monopoles. Mathematically, the
equations of gauge field theory possess solutions which can be regarded as general-
ized magnetic monopoles. The existence of such particles was predicted mathemat-
ically by Dirac in 1931.12 We will study this in Volume III on gauge field theory. It
turns out that the existence of monopoles is closely related to topology. We refer
to the following monographs:

A. Jaffe and C. Taubes (1980). Vortices and Monopoles: The Structure of
Static Gauge Fields, Birkhäuser, Boston.

W. Nahm, N. Craigie, and P. Goddard, Monopoles in Quantum Field The-
ory, World Scientific, Singapore, 1982.

M. Atiyah and M. Hitchin, The Geometry and Dynamics of Magnetic
Monopoles, Princeton University Press, 1988.

G. Naber, Topology, Geometry, and Gauge Fields, Springer, New York,
1997.

B. Felsager, Geometry, Particles, and Fields, Springer, New York, 1998.

Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer, New
York, 2001.

Ya. Shuir, Magnetic Monopoles, Springer, Berlin, 2005.

C. Klein and O. Richter, Ernst Equation and Riemann Surfaces: Analyt-
ical and Numerical Methods, Springer, Berlin, 2005 (application to thin
rotating discs of cosmic dust in the universe).

T. Dauxois and M. Peyrard, Physics of Solitons, Cambridge University
Press, 2006 (the classical Fermi–Pasta–Ulam problem; solitons in hydrody-
namics, solid state physics, atomic physics, magnetic systems, conducting
polymers, Bose–Einstein condensates, biological molecules; energy local-
ization and transfer in proteins, DNA).

Dispersion of light. The equation

me

`

ẍ + 2γẋ + ω2
0x
´

= −eE

describes the classical motion x = x(t) of an electron of mass me and electric charge
−e in a molecule under the influence of an oscillating external electric field

E(t) = E0e
−iωt (12.47)

which corresponds to an electric wave of angular frequency ω. For the friction
constant γ, we assume that 0 < γ < ω0. The solution

x(t) =
e

me
· E0e

−iωt

ω2 + 2γωi− ω2
0

is uniquely determined by the property that it vanishes if the external field E
vanishes. The so-called characteristic equation

12 P. Dirac, Quantized singularities in the electromagnetic field, Proc. Royal Soc.
A 133 (1931), 60–72.
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ω2 + 2γωi− ω2
0 = 0

has the zeros ω± = −γi ±
p

ω2
0 − γ2 which lie in the open lower half-plane. We

assign the dipole moment
p(t) = −e�(x(t))

to the oscillating electron. If there are N electrons in the volume V , then we get
the polarization P(t) = Np(t)/V . Using polar coordinates, we have

1

ω2 + 2iγω − ω2
0

= − e−iα(ω)

|ω2 + 2γωi− ω2
0 |
.

Thus, we obtain the key formula for the polarization

P(t) =
Ne2 �

`

E0e
−i(ωt+α(ω))

´

meV |ω2 + 2γi− ω2
0 |

.

Note that the singularities of the function P = P(t) lie in the open lower half-plane.
If the friction constant γ is sufficiently small, then we can use the approximation
γ = 0 along with α(ω) ≡ 0. This yields

P(t) = χe(ω)�(E(t))

with the electric susceptibility χe(ω) = Ne2/meV |ω2−ω2
0 |. For the electric intensity,

we get

D(t) = ε0E(t) + P(t) = ε(ω)E(t)

with the electric field constant ε(ω) = ε0 + χe(ω) of the material medium. Here, in
order to simplify notation we replace �(E(t)) by E(t).

Linear response and causality. Let us now describe a more general approach
based on linear response theory. We assume that the relation between the electric
field E and the induced polarization P is given by the equation

P(t) =

Z ∞

−∞
χ(t− τ)E(τ) dτ. (12.48)

It is important that the linear response equation (12.48) between E and P has the
following crucial additional property.

It follows from causality that χ(t) = 0 for all times t < 0.

In fact, this implies

P(t) =

Z t

−∞
χ(t− τ)E(τ) dτ,

telling us that the polarization P(t) at time t only depends on the values of the
electric field E(τ) at the earlier time points τ ≤ t.

The Fourier–Laplace transform. In order to study the function χ = χ(t), we
will use the rescaled Fourier–Laplace transform from the time space to the angular
frequency space given by the integral formula

χ(t) =
1

2π

Z ∞

−∞
χ̂(ω)e−iωtdω for all t ∈ R

together with the inverse integral formula
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χ̂(ω) :=

Z ∞

−∞
χ(t)eiωtdt, �(ω) > 0.

Suppose that χ ∈ S(R). The causality condition χ(t) = 0 if t < 0 implies that the
function

χ̂(ω) =

Z ∞

0

χ(t)eiωt dt, �(ω) > 0

is holomorphic on the open upper half-plane, and χ̂ ∈ S(R) on the real line. Anal-
ogously, we introduce the rescaled Fourier–Laplace transform

Ê(ω) :=

Z ∞

−∞
E(t)eiωt dt, P̂(ω) :=

Z ∞

−∞
P(t)eiωt dt for all ω ∈ R.

The linear response equation (12.48) can be written as the convolution

P = χ ∗E.

By the convolution rule for the Fourier transform, we get the product relation

P̂(ω) = χ̂(ω)Ê(ω) for all ω ∈ R. (12.49)

This implies that D̂(ω) = ε̂(ω)Ê(ω), where ε̂(ω) := ε0 + χ̂(ω).
The Hilbert transform and the Kramers–Kronig dispersion relations.

By Sect. 11.9.3 on page 666, we obtain

χ̂(ω) =
1

2πi

Z

R

χ̂(ξ)

ξ − ω
dξ

for all complex numbers ω with �(ω) > 0. Furthermore, for the boundary values of
the function χ̂ on the real line, we obtain

�(χ̂(ω)) =
1

π
PV

Z

R

�(χ̂(ξ))

ω − ξ
dξ for all ω ∈ R (12.50)

and

�(χ̂(ω)) = − 1

π
PV

Z

R

�(χ̂(ξ))

ω − ξ
dξ for all ω ∈ R. (12.51)

Recall that Cauchy’s principal value of the integral is to be understood in the sense
of the following limit:

PV

Z

R

g(ξ)

ω − ξ
dξ := lim

ε→+0

„

Z ω−ε

−∞

g(ξ)

ω − ξ
dξ +

Z ∞

ω+ε

g(ξ)

ω − ξ
dξ

«

.

The importance of the so-called dispersion relations (12.50) and (12.51) for physics
was discovered independently by Kramers and Kronig in 1926. Let us mention the
following two points.

(i) Energy dissipation: As a rule, the imaginary part �(χ̂) is responsible for energy
dissipation. Therefore, the Kramers–Kronig dispersion relations (12.50) and
(12.51) tell us that causality restricts possible energy dissipation.

(ii) Iterative method: Starting with a reasonable first approximation �(χ̂)0, we get
�(χ̂)0 by (12.50). In turn, this yields �(χ̂)1 by (12.51), and so on.
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Perspectives. Further information can be found in the following monographs:

• López and Zanette (1999) (dispersion in classical optics),
• Mandel and Wolf (1995) (dispersion in laser optics),
• Landau and Lifshitz (1982), Vol. 3 (dispersion and energy singularities in

quantum-mechanical scattering processes),
• Bogoliubov et al. (1958), Bjorken and Drell (1965) (dispersion relations in high-

energy physics),
• Chew (1962) (S-matrix theory, analyticity, and strong interaction),
• Bogoliubov et al. (1990) (dispersion relations in axiomatic quantum field theory),
• Todorov (1971) (analytic properties of Feynman diagrams),
• Nolting (2002), Vol. 6 (linear response theory),
• Schwabl (2003) and Landau, Lifshitz (1982), Vol. 9 (general fluctuation-dissipa-

tion theorem in statistical physics),
• van der Waerden (1968) (the importance of dispersion theory in the prehistory

of Heisenberg’s quantum mechanics).

12.4.6 Strong and Weak Interaction

We speak of strong or weak interaction if the coupling constant κ is large or small,
respectively. In the case of weak interaction, physicists successfully use the method
of perturbation theory. As a rule, this method fails for strong interaction.

In string theory, one studies models which are based on a duality between strong
and weak interaction by using, roughly speaking, the replacement

κ⇒ 1

κ

in the framework of so-called T-duality and mirror symmetry. Physicists hope that,
in the future, this will allow us to reduce difficult problems in strong interaction
to the method of perturbation theory. We refer to Zwiebach (2004), Chap. 17, and
Polchinski (1998), Vol. 2, Chap. 19.

12.5 Microlocal Analysis

Classical wave optics culminates in microlocal analysis.
Folklore

Generalizing the efforts made by physicists and mathematicians in the 19th and
20th century for understanding the propagation of physical effects in terms of the
Fourier transform (e.g., in optics), microlocal analysis was founded by the following
papers:

J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators,
Comm. Pure Appl. Math. 18 (1965), 269–305.

L. Hörmander, On the singularities of the solutions of partial differential
equations, Comm. Pure Appl. Math. 23 (1970), 329–358 (wave front set).

V. Maslov, Théorie de perturbations et méthodes asymptotiques, Dunod,
Paris, 1972 (translated from the 1965 Russian edition).

L. Hörmander, Fourier integral operators I, Acta Math. 127 (1971), 79–
123.

J. Duistermaat and L. Hörmander, Fourier integral operators II, Acta
Math. 128, (1972), 183–269.
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As an introduction to microlocal analysis and its applications to partial differential
equations, we recommend the comprehensive survey:

Yu. Egorov, A. Komech, and M. Shubin, Elements of the Modern The-
ory of Partial Differential Equations, Springer, New York, 1999 (pseudo-
differential operators and Fourier integral operators).

The relations of microlocal analysis to wave optics are studied in the monograph:

V. Guillemin and S. Sternberg, Geometric Asymptotics, Amer. Math. Soc.
Providence, Rhode Island, 1989.

Much material can be found in the treatise:

L. Hörmander, The Analysis of Linear Partial Differential Operators, Vols.
1–4, Springer, New York, 1983.

The theory of Fourier integral operators is essentially based on symplectic differen-
tial geometry, which is fundamental for understanding the mathematical structure
of geometric optics, classical mechanics, and quantum mechanics. This will be thor-
oughly studied in Volume II. We also refer to the following monographs:

V. Guillemin and S. Sternberg (1990), Symplectic Techniques in Physics,
Cambridge University Press, 1990.

V. Arnold (1978), Mathematical Theory of Classical Mechanics, Springer,
Berlin, 1978.

R. Abraham and J. Marsden, Foundations of Mechanics, Addison-Wesley,
Reading, Massachusetts, 1978.

In terms of wave optics, singularities appear if light rays intersect each other (focal
points) or they form an envelope line or envelope surface (caustic). The mathemat-
ical classification of singularities including caustics can be found in the monograph:

V. Arnold, S. Gusein-Zade, and A. Varchenko, Singularities of Differen-
tiable Maps, Vols. 1, 2, Birkhäuser, Basel, 1985.

Singularities can be handled by using the notion of a wave front set for distributions,
which is of general importance for the theory of distributions. Two crucial results
concern

• the propagation of singularities of the solutions of linear partial differential equa-
tions with smooth coefficients (Theorem 12.9 on page 713) and

• the multiplication of distributions (Theorem 12.11 on page 734).

These theorems play an important role in quantum field theory for

• analyzing the singularities of the Feynman propagator and
• renormalizing the singularities in the framework of the Epstein–Glaser approach.

This will be studied in Volume II in the physical context of quantum electrody-
namics.

Hörmander’s notion of wave front set introduced in 1970 fits the needs of
physics in an optimal way. The wave front set describes a spectral analysis
of singularities.

In what follows, let us sketch the basic ideas. The proofs can be found in Hörmander
(1983), Vol. 1. We speak of microlocal analysis, since we will study

• the local behavior of a distribution and
• the structure of its Fourier transform at infinity (the asymptotics for short wave

lengths, high frequencies, and high energies).
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In the sense of the terminology introduced below, microlocal analysis is local anal-
ysis in the cotangent bundle. The creation of microlocal analysis was one of the
major achievements of the development of analysis in the 20th century. Microlocal
analysis is also important for quantum field theory:

• It was discovered by Radzikowski (1996) in his Princeton thesis supervised by
Arthur Wightman that the methods of microlocal analysis are very useful for
quantum field theory for characterizing so-called Hadamard states which, roughly
speaking, represent stable quantum states on curved 4-dimensional space-time
manifolds (quantum gravity).

• This idea was further developed by Brunetti, Fredenhagen, and Köhler (1996),
and Brunetti, Fredenhagen (2000).

12.5.1 Singular Support of a Distribution

We are given a distribution G ∈ D′(RN ) where N = 1, 2, . . . Recall that G vanishes
locally at the point x0 ∈ R

N iff there exists some open neighborhood U of x0 such
that13

G(ϕ) = 0 for all ϕ ∈ D(U).

Similarly, the distribution G is called locally smooth at the point x0 ∈ R
N iff there

exists some smooth function g : U → C on some open neighborhood U of the point
x0 such that

G(ϕ) =

Z

RN

g(x)ϕ(x)dNx for all ϕ ∈ D(U).

Naturally enough, this leads us to the following definitions.

(a) Support supp(G) : The point x0 lies in the support of the distribution G iff the
distribution is not locally zero at x0.

(b) Singular support sing supp(G) : The point x0 lies in the singular support of
the distribution G iff x0 ∈ supp(G) and G is not locally smooth at x0.

Examples. The following examples show the relation of classical wave propa-
gation to the singular support of distributions.

(a) The Heaviside function θ : R → R has a jump at the point x = 0 (see Fig. 11.1
on page 579). Hence

supp(θ) = [0,∞[, sing supp(θ) = {0}.

For the Dirac delta distribution δ ∈ D′(RN ),

supp(δ) = sing supp(δ) = {0}.
This reflects the fact that the singularity of the Dirac delta function is located
at the origin.

(b) Wave propagation on the real line: Define the function

f(x, t) := θ(x− ct) for all (x, t) ∈ R
2

which describes the propagation of a discontinuity with the speed c > 0. Ex-
plicitly, the discontinuity is at the position x = ct at time t. For the wave
function f ,

sing supp(f) = {(x, t) ∈ R
2 : x− ct = 0}.

This is a straight line in R
2.

13 Recall that the space D(U) consists of all smooth functions ϕ : U → C which
have compact support.
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(c) Wave propagation in the 3-dimensional Euclidean space: Define

g(x, t) := θ(nx− ct) for all (x, t) ∈ R
4.

This describes the propagation of a discontinuity in direction of the given unit
vector n with the speed c > 0. The equation

nx− ct = 0, (x, t) ∈ R
4 (12.52)

is called the classical wave front equation in R
4. This describes a hyperplane

in R
4 which is orthogonal to the 4-dimensional vector (n,−c). Note that in the

3-dimensional space of our intuition, equation (12.52) describes a plane which
moves with the velocity c in direction of its unit normal vector n. If we regard
g as a physical quantity (e.g., one component of the electric field vector), then
this quantity jumps at the points of the moving plane. For the singular support
of the function g, we have

sing supp(g) = {(x, t) ∈ R
4 : nx− ct = 0}.

12.5.2 Wave Front Set

The wave front set WF (G) of a given distribution G ∈ D′(RN ) represents a refine-
ment of the notion of singular support. The definition below will be chosen in such
a way that the following statements hold true.

(i) The wave front set WF (G) is a subset of the product set

{(x, k) : x ∈ sing supp(G), k ∈ R
N \ {0}}. (12.53)

Intuitively, x ∈ R
N and k ∈ R

N can be regarded as N -dimensional position
point and wave vector, respectively. Roughly speaking, large values of ||k||
correspond to small wave lengths (high energies).

(ii) If (x, k) ∈WF (G), then (x, γk) ∈WF (G) for all γ > 0 (homogeneity).
(iii) If x ∈ supp sing(G), then there exists a nonzero wave vector k ∈ R

N such that
(x, k) ∈WF (G).

The relation to the cotangent bundle. In modern mathematics, the set

T ∗
R

N := {(x, k) : x ∈ R
N , k ∈ R

N}

is called the cotangent bundle of the position space {x : x ∈ R
N}. We also introduce

the dual pairing14

〈k|x〉 := kjx
j , (x, k) ∈ T ∗

R
N ,

and the differential form

Ω(k) := −kjdx
j , k ∈ R

N

with its derivative
dΩ = dxj ∧ dkj .

The differential form dΩ equips the cotangent bundle T ∗
R

N with a natural sym-
plectic structure. By a change of coordinates of the cotangent bundle, we mean the
matrix transformation

14 In what follows, we sum over equal upper and lower indices from 1 to N .
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x′ = Ax, k′ = (A−1)dk

where A is a real invertible (N × N)-matrix, and (A−1)d denotes the dual (or
transposed) matrix to the inverse matrix A−1. The point is that 〈k|x〉 and Ω, −dΩ
are invariant under coordinate changes of the cotangent bundle. This means that

〈k′|x′〉 = 〈k|x〉, Ω′(k′) = Ω(k), dΩ′ = dΩ

for all x, k ∈ R
N . This invariance property follows immediately from a general

mathematical principle in tensor calculus called the principle of the right index
picture (see page 771). Alternatively, an explicit computation shows that

〈k′|x′〉 = (k′)dx′ = kdA−1Ax = kdx = 〈k|x〉.

Similarly, we get Ω′(k′) = Ω(k). Finally, the Cartan derivative dΩ is invariant
under coordinate transformations. Hence dΩ′ = dΩ.

For fixed position x, the set Fx := {(x, k) : k ∈ R
N} is called the fiber of

the cotangent bundle T ∗
R

N at the base point x. Intuitively, this fiber describes all
possible wave vectors k at the position x.

Summarizing, the wave front set of a distribution is a subset of the cotan-
gent bundle of the position space.

In terms of fibers, we can write

WF (G) ⊆ ∪x∈supp sing(G) Fx \ {0}.

The notion of cotangent bundle is important if one wants to generalize the
notion of wave front set to functions and distributions that are defined on manifolds.
Fiber bundles play a fundamental role in modern mathematics and physics. This
will be thoroughly studied in Volume III on gauge field theory.

Prototypes. For the convenience of the reader, before giving the precise defi-
nition of the wave front set, let us present some examples.

(i) Smooth functions: The wave front set of a smooth function g : R
N → C is

empty.
(ii) Heaviside function: The wave front set of the function θ = θ(x) reads as

WF (θ) = {(x, k) ∈ R
2 : x = 0, k ∈ R \ {0}}.

(iii) Dirac’s delta distribution δ in D′(RN ):

WF (δ) = {(x, k) ∈ R
N × R

N : x = 0, k ∈ R
N \ {0}}.

(iv) Propagation of a discontinuity: We are given the unit vector n and the velocity
c > 0. The function

g(x, t) := θ(nx− ct), x ∈ R
3, t ∈ R

describes the propagation of a discontinuity in direction of the vector n with
the velocity c. Set x := (x0,x) and k := (k0,k) with x0 := ct. The hyperplane

W := {x ∈ R
4 : nx− ct = 0}
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in the 4-dimensional space-time R
4 is called the classical wave front. The jumps

of the function g correspond to the points of W. The set

NW := {(x, k) ∈ R
4 × R

4 : x ∈ W, k⊥W, k �= 0}

is called the normal bundle of the hyperplane W. Geometrically, NW consists
of all the pairs (x, k) where x lies on the hyperplane W, and k is a nonzero
normal vector of W at the point x. This means that

〈k|x〉 = k0x
0 + kx = 0.

Explicitly, k = γ(−1,n) for all nonzero real numbers γ. We now have

sing supp(g) = W, WF (g) = NW.

Thus, the singular support of the function g is equal to the hyperplane W
(classical wave front plane), and the wave front set of g coincides with the
normal bundle of W.

(v) Let P be a plane through the origin in the 3-dimensional Euclidean space with
the normal unit vector n. Define the distribution

G(ϕ) :=

Z

P
g(x)ϕ(x)dS

for all test functions ϕ ∈ D(R3) where the function g : P → C is smooth, and
dS refers to the surface area on the plane P. The wave front set of G consists
of all pairs

(x, γn)

where x lies in the support of the function g, and γ is an arbitrary nonzero
real number.

(vi) Oscillating integral (superposition of plane waves): Define

g(x) :=

Z

RN

ei〈k|x〉 a(k)dNk, x ∈ R.

We assume that the amplitude function a : R
N → C is measurable (e.g.,

continuous) and
R

RN |a(k)| dNk <∞. Then

WF (g) = {(0, k) : x ∈ R
N , k ∈ R

N \ {0}}.

The function ϕ(x, y) := 〈x|y〉 is called phase function. In particular ϕx(x, y) = y
and ϕy(x, y) = x. The following example generalizes this situation.

(vii) Oscillating integral (caustic): Define

f(x) :=

Z

RN

eiϕ(x,y) a(y) dNy.

We make the following assumptions.
• The phase function ϕ : R

N × R
N → R is smooth. For all x, y ∈ R

N and
γ > 0, we have ϕ(x, γy) = γϕ(x, y).

• (ϕx(x, y), ϕy(x, y)) �= 0 for all x, y ∈ R
N with y �= 0.

• The amplitude function a : R
N → C is measurable (e.g., continuous) and

R

RN |a(y)| dNy <∞.
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For fixed y ∈ R
N , the surface

ϕ(x, y) = 0, x ∈ R
N (12.54)

is called the phase surface. The critical points x of this surface are given by

ϕy(x, y) = 0. (12.55)

The vector k is called a critical wave vector iff

k = ϕx(x, y), ϕy(x, y) = 0. (12.56)

Then the wave front set WF (f) of the function f is given by the set of all pairs

(x, k) with x, k ∈ R
N , k �= 0

where the wave vector k is critical, that is, condition (12.56) is satisfied for
some y ∈ R

N . Intuitively, this is related to the phenomenon of caustic surfaces.
In fact, equation (12.54) describes a family of phase surfaces. If it is possible
to solve the equation (12.55) by y = y(x), then the equation ϕ(x, y(x)) = 0
represents the envelope surface of the surface family (12.54). The points of this
envelope surface form the caustic surfaces in geometric optics.

(viii) If G ∈ D′(R), then
WF (G′) = WF (G).

For example, θ′ = δ implies WF (δ) = WF (θ).

Note that if G ∈ D′(RN ) with N > 1 in (viii), then the situation changes essentially.
A general result will be formulated in Theorem 12.9 on page 713.

Galaxies as gravitational lenses. Geometric optics was founded by Fermat
(1601–1665). Recently, geometric optics has also played a crucial role in quasar
astronomy. In fact, if light rays coming from a distant quasar pass through a galaxy,
then the gravitational force of the galaxy acts like a lens. For example, astronomers
observe several quasars instead of the original single quasar. This is the famous
Einstein cross. Interestingly enough, caustic effects are also observed. We refer to
the monograph:

J. Ehlers, E. Falco, and P. Schneider, Gravitational Lenses, Springer, New
York, 1992.

Motivation of the wave front set. As a motivation for the general definition
below, let us consider the Heaviside function θ. By Fourier transform,

χ(x)θ(x) =
1√
2π

Z

R

F(χθ)(k) eikxdk, x ∈ R (12.57)

and

F(χθ) =
1√
2π

Z

R

χ(x)θ(x) e−ikxdx, k ∈ R. (12.58)

Choose the fixed point x0 on the real line.

• Regular case: x0 �= 0. In order to localize the behavior of the function θ at the
point x0, we choose a sufficiently small neighborhood U of x0 and a function
χ ∈ D(U) such that χθ ∈ D(U). By the Paley–Wiener–Schwartz theorem on
page 664,
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|F(χθ)(k)| = O

„

1

|k|r

«

, |k| → ∞, r = 1, 2, . . . . (12.59)

That is, the Fourier transform F(χθ) decreases rapidly as the wave number |k|
goes to infinity. In particular, there exists a sufficiently large number k∞ such
that the function

θk∞(x) :=
1√
2π

Z k∞

−k∞

F(χθ)(k)eikxdk for all x ∈ U (12.60)

represents a reasonable approximation of the localization χθ of the function θ
near the point x0. Since the wave number k is related to the wave length λ by the
equation k = 2π/λ, formula (12.60) also represents a cutoff for the wave length
near zero. That is, sufficiently small wavelengths can be neglected.

• Singular case: x0 = 0. Now choose an open neighborhood U =]−ε, ε[ of the point
x0 and a nonnegative function χ ∈ D(U). Then

F(χθ)(k) = O

„

1

|k|

«

, |k| → ∞.

This means that, as |k| → ∞, the Fourier transform does not decrease as rapidly
as in (12.59). To prove this, observe that, by the mean theorem, there exists a
number η ∈ U such that

F(χθ)(k) =
χ(η)√

2π

Z ε

0

eikx dx =
χ(η)(eiε − 1)

i
√

2π
· 1

k
.

Definition of the wave front set. By an open cone C in R
N , we understand

an open subset of R
N \ {0} which has the additional property that

k ∈ C implies γk ∈ C for all γ > 0.

Motivated by the preceding example, let us base the definition of the wave front
set WF (G) of a distribution G ∈ D′(RN ) on the violation of the following key
condition:

|F(χG)(k)| ≤ const(r)

(1 + ||k||)r
, r = 1, 2, . . . (12.61)

The pair (x0, k0) with x0, k0 ∈ R
N and k0 �= 0 is called a regular microlocal pair of

the distribution G iff

• there exists a test function χ ∈ D(RN ) with χ(x0) �= 0 and
• an open cone C in R

N with k0 ∈ C
such that the condition (12.61) is valid for all k ∈ C and all indices r. This means
that the localization χG of the distribution G near the point x0 has a Fourier
transform which decays rapidly with respect to wave numbers k that lie in the
open cone C near k0.

The wave front set WF (G) consists of all pairs (x0, k0) with x0, k0 ∈ R
N and

k0 �= 0 which are not regular microlocal pairs of the distribution G.
Propagation of singularities. Choose N = 1, 2, , . . . and m = 1, 2, . . . . Let

Lu(x) :=
X

|α|≤m

aα(x)∂αu(x)
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be a linear differential operator of order m = 1, 2, . . . with smooth coefficients
aα : R

N → C for all multi-indices α. The replacement

∂

∂xj
⇒ ikj , j = 1, . . . , N

sends the differential operator L to its symbol

P (x, k) :=
X

|α|≤m

aαi|α|kα, x, k ∈ R
N .

The principal symbol of L is defined by

Pm(x, k) :=
X

|α|=m

aαi|α|kα, x, k ∈ R
N .

If the coefficients aα are constants, then P (x, k) is independent of x, and Fourier
transform tells us that

F(Lu)(k) = P (k)F(u)(k) for all k ∈ R
N

and all functions u ∈ S(RN ). The set

Char(L) := {(x, k) ∈ R
N × R

N : Pm(x, k) = 0, k �= 0}

is called the characteristic set of the differential operator L. In particular, the
differential operator L is called elliptic iff Char(L) is empty. The following theorem
is one of the most important theorems in the theory of linear partial differential
equations.

Theorem 12.9 We are given the distribution f ∈ D′(RN ). Suppose that the dis-
tribution u ∈ D′(RN ) is a solution of the linear differential equation

Lu = f.

Then
WF (u) ⊆WF (f) ∪ Char(L).

If L is elliptic, then WF (u) = WF (f) and sing supp(u) = sing supp(f).

If we choose f = δ, then the solution G of LG = δ is a fundamental solution of
L. In this special case,

WF (G) ⊆WF (δ) ∪ Char(L).

Here, WF (δ) = {(0, k) : k ∈ R
N \ {0}}. Observe that Green’s functions are always

fundamental solutions. As two typical examples let us consider the elliptic Pois-
son equation and the hyperbolic Klein–Gordon equation which contains the wave
equation as a special case.

The elliptic Poisson equation. This equation reads as

ε0ΔU = ! on R
3. (12.62)

Here, we use a Cartesian (x, y, z)-system, and we introduce the Laplacian



714 12. Distributions and Physics

Δ := − ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
.

The distribution ! = !(x, y, z) describes the electric charge density, and the dis-
tribution U = U(x, y, z) represents the electrostatic potential. An electric point
charge of strength Q at the origin corresponds to

! = Qδ

where δ is the Dirac delta distribution. The symbol of the Laplacian is given by

P (k) = k2 for all k ∈ R
3.

Consequently, the Laplacian is elliptic. For given distribution ! ∈ D′(R3), let the
distribution U ∈ D′(R3) be a solution of the Poisson equation (12.62). Then, for
the wave front sets,

WF (U) = WF (!).

For the singular support,

sing supp(U) = sing supp(!).

In particular, if the electric charge density ! : R
3 → R is smooth, then so is the

electrostatic potential U , since the singular supports of ! and U are empty. In the
special case of a point charge at the origin, ! = Qδ, the singular support of ! is
equal to the origin , and so is the singular support of the corresponding electrostatic
potential U . Explicitly,

U(x) =
Q

4πε0||x||
+ V (x) for all x ∈ R

3,x �= 0.

Here, the function V is an arbitrary smooth solution of the homogeneous equation
ΔV = 0 on R

3.
The hyperbolic Klein–Gordon equation. For fixed m0 > 0, this equation

reads as

1

c2
∂2ψ

∂t2
+Δψ +

m2
0c

2

�2
ψ = χ on R

4. (12.63)

Introducing the wave operator � := 1
c2

∂2

∂t2
+Δ, the Klein–Gordon can be written

as
„

� +
m2

0c
2

�2

«

ψ = χ.

Here, we use the following notation: ψ = ψ(x, y, z, t) is the wave function of the
Yukawa meson of rest mass m0 > 0, c is the velocity of light in vacuum, h is the
Planck constant, and � := h/2π. In the special case where m0 = 0, the Klein–
Gordon equation passes over to the wave equation

1

c2
∂2U

∂t2
+ΔU =

!

ε0
on R

4 (12.64)

where the distributions ! = !(x, y, z, t) and U = U(x, y, z, t) are the time-dependent
electric charge density and electric potential, respectively.

Set x := (x0,x) and k := (k0,k) where x0 := ct. Using the replacement
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∂

∂xj
⇒ ikj , j = 0, 1, 2, 3,

we assign the symbol

P (x, k) := −k2
0 + k2 +

m2
0c

2

�2

to the Klein–Gordon equation. By definition, the critical set Char(�+
m2

0c2

�2 ) of the
Klein–Gordon operator is equal to the set of all the pairs

(x, k) ∈ R
4 × R

4 with P (x, k) = −k2
0 + k2 = 0, k �= 0.

The solutions x = x(τ), k = k(τ) of the system of ordinary differential equations

ẋ = Pk(x, k), k̇ = Px(x, k)

are called the bicharacteristics of the Klein–Gordon equation. Explicitly,

ẋ0 = −2k0, ẋj = 2kj , k̇l = 0, j = 1, 2, 3, l = 0, 1, 2, 3.

Therefore, the bicharacteristics are straight lines of the form

k0, kj = const, x0(τ) = −2k0τ + x0(0), xj(τ) = 2kj(τ) + xj(0)

for all τ ∈ R and j = 1, 2, 3. Using the energy E and the momentum vector
p := p1e1 + p2e2 + p3e3 with respect to the right-handed orthonormal system
e1, e2, e3, physicists introduce the 4-momentum

p = �k

along with p0 = p0 := E/c and pj = −pj if j = 1, 2, 3. Then, the point (x, k) lies
in the characteristic set of the Klein–Gordon equation iff we satisfy the Einstein
energy-momentum equation

E2 = c2m2
0 + c2p2.

This equation describes the so-called mass shell in the energy-momentum space
corresponding to the mass parameter m0. For m0 = 0, the mass shell E2 = c2p2 is
the counterpart to the light cone

c2t2 = x2, x ∈ R
3, t ∈ R.

For a given distribution χ ∈ D′(R4), let ψ ∈ D′(R4) be a solution of the Klein–
Gordon equation. Then, for the wave front set, we have the following two properties:

(i) WF (ψ) ⊆WF (χ) ∪ Char
“

� +
m2

0c2

�2

”

.

(ii) Let f = 0. If the point (x, k) lies in the wave front set WF (u), then the same
is true for all points of the bicharacteristics through the point (x, k).

In terms of physics, the appearance of the critical set Char(� +
m2

0c2

�2 ) corresponds
to the propagation of discontinuous wave fronts. This phenomenon does not appear
for the Poisson equation, since this equation describes stationary processes.

Retarded and advanced fundamental solutions of the Klein–Gordon
equation. Let m0 ≥ 0. We have

„

� +
m2

0c
2

�2

«

G± = δ on R
4
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with the so-called retarded fundamental solution

G+(x, t) :=
θ(t)

2πc
δ(c2t2 − r2)− m0θ(ct− r)

2π�
·
J1

“

m0c2

�

q

t2 − r2

c2

”

√
c2t2 − r2

and the so-called advanced fundamental solution

G−(x, t) :=
θ(−t)
2πc

δ(c2t2 − r2)− m0θ(−ct− r)

2π�
·
J1

“

m0c2

�

q

t2 − r2

c2

”

√
c2t2 − r2

.

Here, we use the radius r := ||x|| and the Bessel function15

J1(z) :=

∞
X

r=0

(−1)r z2r+1

22r+1r!(r + 1)!
for all z ∈ C.

The sophisticated proof can be found in Komech (1999), Chap. 4. The proof uses
the classical method of Marcel Riesz (1886–1969) on the regularization of singular
integrals by introducing a regularizing parameter and using analytic continuation
with respect to this parameter.16

Remark on the notation used by physicists. The formal expression

f+(x, t) := θ(t)δ(c2t2 − r2)

stands for the rigorous distribution F+ ∈ D′(R4) given by

F+(ϕ) :=
c2

2

Z ∞

0

dt · t
Z

S2
dSP ϕ(r, P, t)|r=ct (12.65)

for all test functions ϕ ∈ D(R4). Similarly, for f−(x, t) := θ(t)δ(c2t2 − r2) we get

F−(ϕ) :=
c2

2

Z 0

−∞
dt · t

Z

S2
dSP ϕ(r, P, t)|r=−ct (12.66)

for all ϕ ∈ D(R4). Define the forward light cone

C+ := {(x, t) ∈ R
4 : t ≥ 0, ||x||2 = c2t2}

and the backward light cone C− := {(x, t) ∈ R
4 : t ≤ 0, ||x||2 = c2t2}. Observe

that the retarded (resp. advanced) distribution F+ (resp. F−) only depends on the
values of the test function ϕ on the forward (resp. backward) light cone.

Mnemonically, this is obtained as follows. For fixed time t, the light-cone equa-
tion c2t2 − r2 = 0 has the zeros r = ±ct. By Sect. 11.2.4 on page 598,

δ(c2t2 − r2) =
δ(r − ct)

2r
+
δ(r + ct)

2r
. (12.67)

15 See G. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Uni-
versity Press, 1944.

16 M. Riesz, L’intégrale de Riemann–Liouville et le problème de Cauchy (The
Riemann-Liouville integral and the initial-value problem for wave equations),
Acta Math. 81 (1949), 1–223. See also Gelfand et al. (1964), Vol. 1, Chap. 3
(special types of distributions).
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Using spherical coordinates, the test function ϕ = ϕ(r, P, t) depends on the radius
r, the point P on the unit sphere S

2, and time t. Now formal integration tells us
that

F+(ϕ) =

Z

R4
f+(x, t)ϕ(x, t) dxdydzd(ct)

=

Z ∞

−∞
cdt

Z ∞

0

r2dr

Z

S2
dSP θ(t)δ(c2t2 − r2)ϕ(r, P, t).

Applying the decomposition formula (12.67) and integrating over the radius r, we
get the desired representation formula (12.65).

12.5.3 The Method of Stationary Phase

The method of stationary phase has its roots in wave optics. Nowadays
it is a magic tool in the hands of Edward Witten for studying quantum-
field models in terms of the Feynman functional integral and for producing
deep topological invariants. Here, the Feynman functional integral plays
the role of a generating functional.

Folklore

Rapidly oscillating integrals. In physics, one frequently encounters integrals
which posses an integrand that oscillates with high frequency. The integral repre-
sents the mean value over a high-frequency process in nature or technology, and the
task is to compute such mean values. Alternatively, one has to compute integrals
which represent the mean value over short-wave processes. In quantum mechanics,
one encounters integrals of the type

Z ∞

−∞
eiS(x)/� a(x)dx

In the semiclassical case, the Planck constant h and hence � := h/2π can be assumed
to be small. The Feynman functional integral

Z

ψ∈X

eiS(ψ)/� D(ψ)

is also of this type. Here X denotes the space of all quantum fields ψ, and the
symbol D stands for a formal measure on the space X.

Two classical standard examples and Dirac’s delta function. Fix ε > 0.
In what follows, we take

ω =
1

ε
, λ = ε, � = ε.

Examples are given by

eiωt = eit/ε, e2πix/λ eiEt/� , eipx/� .

Here, we use the following notation: t time, x space variable, E energy, and p
momentum. Small values of ε correspond to situations where the angular frequency
ω is high, the wave length λ is small, or the Planck’s constant of action h is small.
Two typical examples are the Dirichlet integral
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Z ∞

−∞

sin
`

x
ε

´

x
dx = π, ε > 0,

and the Fresnel integrals

Z ∞

−∞
sin

„

x2

2ε

«

dx =

Z ∞

−∞
cos

„

x2

2ε

«

dx =
√
πε, ε > 0.

It is not obvious at first that these integrals are convergent. In fact, each of the
integrands oscillates, and it turns out that many of the positive and negative con-
tributions to the integral cancel each other. For the computation of these integrals
via Cauchy’s famous residue method, see Problems 12.2 and 12.3.

The Dirichlet integral played a key role in the classical convergence theory for
both Fourier series and Fourier integrals due to Dirichlet (1805–1859).17 Dirichlet
used his integral for proving that

lim
ε→+0

Z a

0

sin
`

x
ε

´

x
f(x)dx =

π

2
lim

x→+0
f(x) (12.68)

if the function f : [0, a] → R is monotone increasing and bounded on the compact
interval [0, a] with a > 0. This is called the Dirichlet lemma. Let ϕ ∈ D(R). This
function is smooth and hence of bounded variation. Consequently, the function ϕ
is the difference of two continuous monotone increasing functions. Introducing the
Dirichlet function

δε(x) :=
sin
`

x
ε

´

πx
, x ∈ R \ {0},

and δε(0) := 1
πε
, it follows from (12.68) that

lim
ε→+0

Z ∞

−∞
δε(x)ϕ(x)dx = ϕ(0)

for all test functions ϕ ∈ D(R). Therefore,

lim
ε→+0

δε(x) = δ(x),

in the sense of distributions on D′(R). Consequently, the Dirichlet function family
{δε}ε>0 represents a forerunner of Dirac’s delta function introduced by Dirac around
1930. For small parameter ε > 0, the function δε is only concentrated near the
origin. The method of stationary phase below will allow us to construct many such
functions which possess the crucial property of concentration. Such function always
appear for physical processes which are focused. A typical example of focusing is
the patterns obtained by diffraction of light at a small slit.

The Fresnel integrals were used by Fresnel (1788–1827) in order to compute
sophisticated second-order diffraction effects for light (see Sect. 12.5.5). Introducing
the principal value integral

PV

Z ∞

−∞
f(x)dx := lim

ε→+0

„

Z −ε

−∞
f(x)dx+

Z ∞

ε

f(x)dx

«

,

we get the key formula

17 See Fikhtengol’ts (1965), Vol. 3, Chap. XIX.
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PV

Z ∞

−∞

cos
`

x
ε

´

x
dx = 0, ε > 0,

since the cosine function is even, and hence the integrand is odd. Using Euler’s
formula eiα = cosα+ i sinα, we obtain

PV

Z ∞

−∞

eix/εdx

x
= iπ,

and
1√
2πε

Z ∞

−∞
eix2/2εdx =

1 + i√
2
, ε > 0.

Kelvin’s idea. Let a ∈ D(R) be a test function. That is, a : R → C is smooth
and has compact support. The key formula of the method of stationary phase looks
like

1√
2πε

Z ∞

−∞
a(x)eix2/2ε dx =

1 + i√
2

a(0) +O(ε), (12.69)

as ε→ +0. This means that the main contributions to the integral come from the
value of the test function a at the origin. This is a consequence of the fact that the
Fresnel functions

δε(x) :=
eix2/2ε

(1 + i)
√
πε
, x ∈ R

are concentrated near the origin if the parameter ε is small. Therefore, like the
Dirichlet function family, the Fresnel function family {δε}ε>0 also represents an
approximation of the Dirac delta function, i.e., δε → δ as ε → +0, in the sense of
distributions on D′(R). Generalizing this, consider the integral

J(ε) :=

Z

Rn

eiϕ(p)/εa(p)dnp, ε > 0.

Our goal is to study the asymptotic behavior of this integral as ε→ +0. The method
of stationary phase due to Lord Kelvin (1824–1907) tells us that the main contri-
butions come only from momenta p for which the phase function ϕ is stationary,
that is,

ϕ′(p) = 0.

We assume that both the amplitude function a : R
n → C and the phase function

ϕ : R
n → R are smooth, and that the amplitude function a has compact support.

Prototypes. To begin with, let us study some typical examples.

(i) Choose n = 1. Fix the nonzero real number x. Then, for each N = 1, 2, . . . ,
Z

R

eipx/εa(p)dp = O(εN ) as ε→ +0.

This tells us that the integral decreases very rapidly as ε → +0. This is an
immediate consequence of the Paley–Wiener theorem. A completely elementary
proof can be based on integration by parts. In fact, as ε→ +0, this integral is
equal to

Z

R

ε

ix

„

d

dp
eipx/ε

«

a(p)dp = − ε

ix

Z

R

eipx/εa′(p)dp = O(ε).
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(ii) Let n = 1.The phase function ϕ(p) := p2/2ε has a critical point at p = 0, since
ϕ′(0) = 0. The modified Fresnel formula tells us that, as ε→ +0,

1√
2πε

Z

R

e±ip2/2εa(p)dp =
(1± i)a(0)√

2
+O(ε).

(iii) Let n = 1, 2, . . . Suppose that the real (n × n)-matrix A is self-adjoint and
detA �= 0. Then, as ε→ +0,

1
p

(2πε)n

Z

Rn

ei〈p|Ap〉/2εa(p)dnp =
1 + i sgnA
p

2|detA|
a(0) +O(ε).

Here sgnA, the signature of A, is equal to the number of positive eigenvalues
of A minus the number of negative eigenvalues.

The main theorem. Suppose that the equation ϕ′(p) = 0 has precisely the
zeros p1, . . . , pm on the support of the amplitude function a, and these zeros are
regular, i.e., detϕ′′(pj) �= 0 for j = 1, . . . ,m.18 Then, as ε→ +0,

1
p

(2πε)n

Z

Rn

eiϕ(p)/εa(p)dnp =

m
X

j=1

(1 + i sgnϕ′′(pj)) · eiϕ(pj)/εa(pj)
p

2| detϕ′′(pj)|
,

up to terms of order O(ε). The proof can be found in Evans (1998) and Guillemin
and Sternberg (1989). More general results on the higher asymptotics and degen-
erate critical phases are contained in the monograph by Hörmander (1983), Vol. 1,
Sect. 7.7.

12.5.4 Short-Wave Asymptotics for Electromagnetic Waves

Let us study the singular limit, λ→ 0, where the wave length of light goes to zero.
We want to explain the relations between the following differential equations:

• the Maxwell equations for the electromagnetic field,
• the wave front equation for the Maxwell system (characteristics),
• the characteristics of the wave front equation (bicharacteristics of the Maxwell

system which correspond to light rays),
• the wave front equation (characteristics) for the wave equation,
• short waves, the eikonal equation, and the transport equations,
• Fermat’s principle of shortest travelling time for light, the Euler–Lagrange equa-

tions for light rays, the Hamilton canonical equations along with the Hamilton–
Jacobi partial differential equation.

18 Recall that ϕ′(p) = 0 means that all of the first-order partial derivatives of the
phase function ϕ vanish at the point p,

∂kϕ(p) = 0, k = 1, . . . , n;

the Hessian detϕ′′(p) is equal to the determinant of the second partial derivatives
of the function ϕ at the point p.
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We start with the Maxwell equations

ε div E = !, div B = 0,

curlE = Ḃ, curlB = μJ + εμĖ.
(12.70)

These equations refer to homogeneous and isotropic material with electric field
constant ε and magnetic field constant μ. Moreover, the quantities possess the
following physical meaning: electric field E, magnetic field B, electric charge density
!, electric current density vector J. Let c = 1/

√
ε0μ0 denote the velocity of light in

a vacuum. The velocity of light in the material is then given by

cmat =
1√
εμ

=
n

c
.

Here, n is called the refractive index of the material. We are first looking for wave
fronts given by the equation

χ(x, t) = const

such that discontinuities of the electric field E or the magnetic field B propagate
along this wave front. It turns out that the function χ has to satisfy the wave front
equation

c2mat(gradχ)2 = χ̇2 (12.71)

or χ̇ = 0. The dot denotes partial derivative with respect time t. This equation is
also called the characteristic equation to the Maxwell equations.19 Special solutions
of the wave front equation are

χ(x, t) := ex− cmatt

where e is a fixed unit vector, and

χ(x, t) :=
p

x2 + y2 + z2 − cmatt.

The equation χ(x, t) = const describes then the propagation of both plane waves
(in direction of the vector e) and spherical waves with the velocity cmat.

(a) Plane waves: We are given the unit vector e. Suppose that ! ≡ 0,J ≡ 0 (no
external electric charges and no external electric currents). Then, the Maxwell
equations possess the following solutions:20

E(x, t) := E0e
ikex−iωt, B(x, t) := B0e

ikex−iωt. (12.72)

This electromagnetic wave propagates in direction of e with the velocity cmat.
The constant vector E0 cannot be prescribed completely arbitrarily; it has to
be perpendicular to the direction e of propagation (transversal wave). Further-
more,

B0 =
1

cmat
(e×E0).

19 The characteristic equations for systems of partial differential equations and their
applications to basic problems in mathematical physics are considered in Zeidler
(2004), Sect. 1.13.3. See also Smirnov (1964), Vol. 4, Sect. III.3.

20 In order to get real electric and magnetic fields, we have to take the real part
(resp. imaginary part) of E(x, t) and B(x, t).
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The plane wave has the wave length

λ =
2π

k

where k is called the wave number. For the relation between frequency ν,
angular frequency ω, and velocity of propagation cmat, we get the so-called
dispersion relation

ν =
ω

2π
=
cmat

λ
.

(b) Spherical waves: Let r := ||x|| and er := x/r. The homogeneous wave equation

ψ̈ + c2matΔψ = 0 (12.73)

has solutions of the form

ψ+(x, t) :=
w(r − cmatt)

r
, x ∈ R

3, t > 0,

and

ψ−(x, t) :=
w(r + cmatt)

r
, x ∈ R

3, t < 0

called outgoing and incoming spherical waves, respectively. We are given the
smooth function w :]0,∞[→ R. In order to get such types of waves for the
electromagnetic field, we use the scalar potential U and the vector potential
potential A which satisfy the wave equations

Ü + c2matΔU =
c2mat!

ε
, Ä + c2matΔA = μc2matJ

along with the Lorentz gauge condition

U̇ + c2mat div A = 0.

We are given smooth functions ! and J with compact support which satisfy
the continuity equation !t + div J = 0. For x ∈ R

3 and t ∈ R
3, define

U(x, t) :=
1

4πε

Z

R3

!(y, tret)

||x− y|| d
3y,

A(x, t) :=
μ

4π

Z

R3

J(y, tret)

||x− y|| d
3y

with the retarded time tret := t−||x−y||/cmat. Then, the electromagnetic field

E := −gradU − Ȧ, B := curlA

is a solution of the Maxwell equations (12.70).
(c) The Hertz dipole (the electromagnetic field of an antenna): Consider a negative

electric charge −Q at the origin and a positive electric charge Q at the position
x(t) near the origin at time t. Introduce the dipole moment

d(t) := Qx(t).

This situation generates an electromagnetic field. At large distances from the
origin, this electromagnetic field looks approximately like



12.5 Microlocal Analysis 723

B(x, t) =
μ

4πcmatr

„

d̈

„

t− r

cmat

«

× er

«

,

E(x, t) = cmatB(x, t)× er.

The eikonal equation and the transport equation. Suppose that we are
given ! ≡ 0,J ≡ 0. Each smooth solution E,B of the Maxwell equations satisfies
the wave equations

Ë + c2matΔE = 0, B̈ + c2matΔB = 0.

However, the converse is not true. Making the ansatz

E(x, t) = eiωt E0(x), B(x, t) = eiωt B0(x),

and using the the wave equations, we obtain the Helmholtz equations

ΔE0 = k2E0, ΔB0 = k2B0

where k = ω/cmat. In order to study the short-wave asymptotics of the solutions of
the Maxwell equations, we now make the crucial ansatz

E(x, t) = E0(x)eiωS(x)e−iωt +

∞
X

r=1

„

i

ω

«r

Er(x)eiωS(x)eiωt.

For the angular frequency, we get

ω =
2πcmat

λ
.

We now assume that the wave length λ is small. Substituting this into the wave
equation and equating coefficients, we obtain the nonlinear first-order eikonal equa-
tion

c2mat(gradS)2 = 1 (12.74)

for eikonal S, and the linear first-order transport equation

E0ΔS − 2gradS gradE0 = 0

for the amplitude E0. The remaining amplitudes E1,E2, . . . follow recursively from
the linear first-order transport equations

ErΔS − 2gradS gradEr = ΔEr−1, r = 1, 2, . . .

Replacing the electric field E by the magnetic field B, we get analogous formu-
las. This way, we obtain approximate solutions of the Maxwell equations (12.70)
which describe short electromagnetic waves. The limit case λ → 0 corresponds to
geometric optics founded by Fermat (1601–1665). We now want to discuss that

There exists a duality between wave fronts and light rays which can be
traced back to Huygens (1625–1695).

This duality was fully developed by the following authors:

• Cauchy (1789–1857) (solution theory for first-order partial differential equations
via characteristic curves),
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• Hamilton (1805–1865) (canonical equations),
• Jacobi (1804–1851) (Hamilton–Jacobi partial differential equation),
• Lie (1842–1899) (contact transformations),
• Hilbert (1862–1943) (invariant integral),

• Poincaré (1854–1912) and Élie Cartan (1859–1951) (integral invariants),
• Carathéodory (1873–1950) (field theory and the royal road to the calculus of

variations), and
• Hölder (1901–1990) (Hölder’s contact transformation and the Huygens principle).

We will study this in Volume II. It turns out that:

• Wave fronts are related to the Hamilton–Jacobi partial differential equation
(eikonal equation), whereas

• light rays are described by the Euler–Lagrange ordinary differential equations to
the Fermat variational principle (and, alternatively, by the Hamilton canonical
equations.) The eikonal is the minimal time that is need by light in order to pass
from a fixed point (e.g., the origin) to all the other points.

• In the 1950s, this duality played a fundamental role in the foundations of op-
timal control for dynamical systems. Bellman (1920–1984) based his dynamic
programming on the notion of wave fronts (the Hamilton-Jacobi–Bellman equa-
tion), whereas Pontryagin (1908–1988) invented his maximum principle which is
related to light rays (the canonical Hamilton–Pontryagin equations).21

In terms of mathematics,

• the wave fronts of the Maxwell equations correspond to solutions of the charac-
teristic equation of the Maxwell system, and

• the light rays correspond to the solutions of the bicharacteristic system, which
is Cauchy’s characteristic system to the characteristic equation of the Maxwell
system.

Let us sketch some basic ideas. To simplify notation, we rescale time in such a way
that

cmat := 1.

The wave front equation (12.71) is a first-order partial differential equation. Ac-
cording to Cauchy, to each such equation there exists a characteristic system of
ordinary differential equations.22 Explicitly, if χ is a solution of the wave front
equation (12.71), then the solutions of the following system

21 These interrelationships between the calculus of variations and optimization the-
ory are thoroughly investigated in Zeidler (1986), Vol. 3.

22 Let x ∈ R
n. Recall that for a solution ψ = ψ(x) of the first-order partial differ-

ential equation

F (x, ψ(x), ψ′(x)) = 0, (12.75)

Cauchy’s characteristic curve system reads as

ẋ = Fψ′ , ṗ = −Fx − pFψ, ψ̇ = ψ′Fψ′ . (12.76)

Here, the symbol ψ′ stands for the tupel of first-order partial derivatives of ψ and
the dot denotes the derivative with respect to the curve parameter. Explicitly,

ẋ(τ) = Fψ′(x(τ), ψ(x(τ)), ψ′(x(τ))), τ ∈ R,

and so on. The characteristics can be used in order to construct solutions ψ(x)
of (12.75). See Zeidler (2004), Sect. 1.13.3.



12.5 Microlocal Analysis 725

�
x

�z

�y

��
light rays

S = const

Fig. 12.5. Light rays and wave fronts

ẋ(τ) = −gradχ(x(τ), t(τ)), ṫ(τ) = χt(x(τ), t(τ)) (12.77)

for all τ ∈ R are called characteristics of the wave front equation or bicharacteristics
of the Maxwell system.23 Now consider a solution S = S(x) of the eikonal equation
(12.74). Then

χ(x, t) := t− S(x)

is a solution of the wavefront equation (12.71). Then χt = 1. Thus, t = τ , and the
corresponding bicharacteristics have the form

ẋ(t) = −gradS(x(t)), t ∈ R.

At fixed time t, the wave front t − S(x) = const has the normal vector gradS(x)
at the point x. This tells us the crucial fact that

The bicharacteristics are orthogonal to the wave fronts (Fig. 12.5).

For a given wave front S(x) = 0, we construct the family of wave fronts

t− S(x) = 0

which move with velocity one. The corresponding light rays are perpendicular to
the wave fronts. They are straight lines. This simple construction is precisely the
special case of Cauchy’s general method of characteristics for solving the wave front
equation (12.71).

We now want to discuss the relation to both Fermat’s classical principle of
shortest travelling time for light and the Hamilton–Jacobi theory.

(i) Fermat’s principle: Consider the variational problem

Z x1

0

p

1 + y′(x)2dx = min! (12.78)

with the boundary condition y(0) = 0, y(x1) = y1. We are looking for a curve
y = y(x) which connects the initial point (0, 0) with the end point (x1, y1) such
that the arc length is minimal. Since the velocity of light is assumed to be equal
to 1, we are looking for a light ray which connects the two points in shortest
time. This is Fermat’s principle. Intuitively, the solution must be a straight
line. Rigorously, let us apply the mathematical formalism of the calculus of
variations.

23 Naturally enough, it turns out that the wave front equation (12.71) is also the
characteristic equation to the wave equation (12.73).
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(ii) The Euler–Lagrange equation: Introducing the Lagrangian,

L(x, y, y′) :=
p

1 + y′2,

each solution of (12.78) satisfies the Euler–Lagrange equation

d

dx
Ly′ = Ly. (12.79)

This means that y′′/
p

1 + y′2 = 0, and hence y′′ = 0. Thus, the solutions are
straight lines.

(iii) Hamilton’s canonical equations: Introducing the momentum p := Ly′ and the
Hamiltonian

H(x, y, p) := py′ − L(x, y, y′) = −
p

1− p2,

the Euler–Lagrange equations are transformed into

ṗ = −Hy, ẏ = −Hp. (12.80)

The dot denotes the derivative with respect to the curve parameter x.
(iv) The Hamilton–Jacobi differential equation: Let us define the eikonal S(x1, y1).

This is the time needed by a light ray which travels from the point (0, 0) to
the point (x1, y1). Explicitly,

S(x, y) =
p

x2 + y2.

Thus, S is a solution of the Hamilton–Jacobi differential equation

Sx +H(x, S, Sy) = 0. (12.81)

In fact, S2
x + S2

y = 1.

Note that the canonical equations (12.80) correspond to Cauchy’s characteristic
curve equations (12.77) for the Hamilton–Jacobi partial differential equation.

The experience of physicists and mathematicians has been that this method
can be applied to a broad class of problems in classical mechanics and geometry.
We refer to Zeidler (1986), Vols. 3 and 4, Arnold (1978), Scheck (2000), Vol. 1,
Boccaletti and Pucacco (1998), Vols. 1, 2 (theory of orbits in celestial mechanics).

12.5.5 Diffraction of Light

Diffraction problems for light were studied by Fraunhofer (1787–1826),
Fresnel (1788–1827), Helmholtz (1821–1894), Kelvin (1824–1907), Kirch-
hoff (1824–1887), Rayleigh (1842–1919), Poincaré (1854–1912), and Som-
merfeld (1868–1951). In his famous lectures on light, Poincaré used Kelvin’s
method of stationary phase. In the 20th century, the rigorous mathemat-
ical treatment of diffraction problems was a challenge for the theory of
integral equations. The Kirchhoff–Green representation formula is closely
related to the Born approximation and the Lippmann–Schwinger integral
equation for scattering processes in quantum physics. The Feynman path
integral from the 1940s generalizes wave optics.

Folklore
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We want to sketch some basic ideas in diffraction theory. In particular, we want to
show why rapidly oscillating integrals (e.g., Fresnel integrals) arise in connection
with the diffraction of light.

The Kirchhoff–Green representation formula for the Helmholtz equa-
tion. Let Ω be a nonempty bounded open connected set in the 3-dimensional Eu-
clidean space such that cl(Ω) is a manifold with boundary. For a fixed real wave
number k, let E be a solution of the Helmholtz equation

ΔE − k2E = 0 on Ω. (12.82)

which is smooth up to the boundary, E ∈ C∞(Ω). Then the function E satisfies
the following Kirchhoff–Green representation formula

E(x1) =

Z

∂Ω

G(x1 − x)
∂E(x)

∂n
− ∂G(x1 − x)

∂n
E(x) dS (12.83)

for all points x1 ∈ Ω. We integrate over x. This equation is fundamental for ap-
proximatively solving diffraction problems for light and sound. Here, we use the
Helmholtz potential

G(x) :=
e−ikr

4πr

with r := ||x||, and k = 2π/λ. For k = 0, the Helmholtz potential passes over to
the Coulomb potential. Note that

ΔG − k2G = δ,

in the sense of distributions (see Problem 10.8). In modern language,the Helmholtz
potential is a Yukawa potential with imaginary mass m := ik.The Kirchhoff–Green
representation formula is a precise formulation of the Huygens principle: The value
of the component E(x1) of the electric field at the point x1 is obtained by a super-
position of “waves” related to G which start at the boundary points x ∈ ∂Ω. For
a modern survey on the Hyugens principle, see the article by Belger, Günther, and
Schimming (1997).

Sommerfeld’s outgoing radiation condition. For fixed real wave number
k, the asymptotic condition at infinity,

E(x) = O

„

1

r

«

,

„

∂

∂r
+ ik

«

E(x) = o

„

1

r

«

, as r →∞,

is called Sommerfeld’s outgoing radiation condition. Mnemonically, the Helmholtz
potential G has precisely this asymptotic behavior at infinity. This condition guar-
antees the uniqueness of the boundary-value problem for the Helmholtz equation.
To explain this, suppose that, for fixed k ∈ R, we are given a smooth function
E0 : ∂Ω → C. Then the following are met:

(i) Internal boundary-value problem: The Helmholtz equation (12.82) has precisely
one smooth solution E : Ω ∪ ∂Ω → C which attains the given values E0 on the
boundary ∂Ω.

(ii) External boundary-value problem: The Helmholtz equation (12.82) has pre-
cisely one solution

E : R
3 \Ω → C

which attains the given values E0 on the boundary Ω and which satisfies Som-
merfeld’s outgoing radiation condition.
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Fig. 12.6. Diffraction of light at a slit

In the 20th century, mathematicians learned how to solve such elliptic problems
which generalize the corresponding problems for the Laplace equation. There exist
the following methods:

(a) Integral equations (see Kupradse (1956), Smirnov (1964), and Triebel (1989));
(b) Hilbert space methods, Sobolev spaces, and the regularity properties of gener-

alized solutions (see Zeidler (1986), Vols. IIA, IIB, Zeidler (1995), Vol. I, Chap.
2, Evans (1998), and Jost (2002b));

(c) Schauder estimates and the continuation method (see Zeidler (1986), Vol. I,
Chap. 6, and Jost (2002b)).

This program was initiated by Hilbert’s problem number twenty that he formulated
in his famous 1900 Paris lecture (see Hilbert (1900)).

The slit formula. We now want to apply the Kirchhoff–Green representation
formula in order to approximately solve a diffraction problem for light as pictured
in Fig. 12.6. We assume that the (y, z)-plane forms a screen which has a slit

Σ := {(y, z) ∈ R
2 : − 1

2
a ≤ y ≤ 1

2
a, − 1

2
b ≤ z ≤ 1

2
b}.

Electromagnetic light waves start at the source point x0; they pass through an
arbitrary point x of the slit, and they are observed at the point x1. We choose

x0 := −r0i, x1 := x1i + y1x2 + z1k.

Furthermore, we introduce the unit vectors e0 := x0/r0 and e1 := x1/r1. We
want to compute the electromagnetic field E(x1),B(x1) at the final point x1. More
precisely, we are interested in the intensity of the light given by the energy density

I := 1
2
ε(|E(x)|2 + c2mat|B(x)|2)

at the point x. To simplify the approach, we restrict ourselves to a fixed component
of the electric harmonic waves

E(x) = E0(x)e−iωt

with angular frequency ω. For the wave number and the wave length, we have

k =
ω

cmat
, λ =

2π

k
=
cmat

ω
.

Here, cmat is the velocity of light in the medium (e.g., air). For example, we set
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E(x) := (E0)y(x),

that is, we study the y-component of the electric field. Then, E is a solution of the
Helmholtz equation (12.82). Since E will be complex-valued, we will measure the
intensity of light I at the point x by the quantity

I =
ε

2
|E(x)|2.

Physical experiments show that diffraction patterns may look rather complicated.
Our approximate approach is based on the following assumptions.

(a) The source point x0 sends a wave E(x) = G(x− x0) to the point x of the slit.
(b) The wave observed at the final point x1 only depends on the light that comes

from the points x of the slit Σ. By the Kirchhoff–Green representation formula,

E(x1) =

Z

Σ

„

G(x− x1)
∂G(x− x0)

∂n
− ∂G(x− x1)

∂n
G(x− x0)

«

dS.

This is the desired formula for the electric field component E(x1) at the point
x1 of the observer.

(c) To simplify the approximate computation of the integral for E(x1), we assume
that

a

λ
∼ b

λ
∼ 1,

r0
λ
! 1,

r1
λ
! 1,

that is, the width of the slit a, b is of the magnitude of the wave length λ, and
the distance between the source (resp. the observer) and the screen is large
compared with the wave length λ. For visible light, λ ∼ 6 · 10−7m. By Taylor
expansion, we get the following approximation

E(x1) = −e−ikr0

4πr0
· e−ikr1

4πr1
· ikA

„

1 +
y1

r1

«

(12.84)

along with

A :=

Z

Σ

e−kig(x)dSx

and g(x) := ||x − x0|| + ||x − x1|| − r0 − r1. Again by Taylor expansion, we
obtain

g(x) = −(e0 + e1)x +
(e0 × x)2

2r0
+

(e1 × x)2

2r1
,

up to terms of order O( 1
r2
0
) +O( 1

r2
1
) as r0, r1 →∞.

Fraunhofer diffraction. For a point x = xi + yj of the slit, we use the first-
order approximation

g(x) = −(e0 + e1)x = −y1y − z1z.

Hence

A =

Z

1
2

a

− 1
2

a

Z

1
2

b

− 1
2

b

eiky+ikzdydz =
sin(κya)

κy
· sin(κzb)

κz

where
κy :=

π

λ
· y1

r1
, κz :=

π

λ
· z1
r1
.
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For the intensity of the light I = 1
2
ε|E(x)1|2 at the point x1, we get

I = I0
sin2(κya)

κ2
y

· sin2(κzb)

κ2
z

along with

I0 =
ε

132π2λ2r20r
2
1

„

1 +
x1

r1

«2

.

Fresnel diffraction. In the special case where we have

x0 = −x1

for the source point x0 and the observer point x1 in Fig. 12.6 on 728, we get g(x) = 0
in first-order approximation. That is, the Fraunhofer approximation of diffraction
vanishes. In order to describe the diffraction observed in physical experiments, we
now have to take the second-order approximation

g(x) =
(i× x)2

r0
=
y2 + z2

r0

into account, which corresponds to Fresnel diffraction. In this case, we get the
electric field (12.84) with

A =

Z

1
2

a

− 1
2

a

e−iky2/r0dy

Z

1
2

b

− 1
2

b

e−ikz2/r0dz,

and k = 2π/λ. This is a product of Fresnel integrals. For a more detailed study of
diffraction problems, we refer to the following monographs:

W. Macke, Wellen (Waves) (in German), Geest & Portig, Leipzig, 1959.

G. Scharf, From Electrostatics to Optics, Springer, Berlin, 1994.

M. Born and E. Wolf, Principles of Optics, 4th edn., Pergamon Press, New
York, 1970 (classic).

Our computations above on Fraunhofer diffraction and Fresnel diffraction follow
the monograph by Macke.

12.5.6 Pseudo-Differential Operators

To explain the basic idea, consider the linear differential operator

(Lu)(t) := a(t)
dk

dtk
u(t), t ∈ R

of order k = 1, 2, . . . with smooth coefficient function a : R → R. For all functions
u ∈ S(R), we have the Fourier transform

u(t) =
1√
2π

Z

R

eiωtF(u)(ω)dω.

Hence

(Lu)(t) =
1√
2π

Z

R

eiωts(t, ω)F(u)(ω)dω
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where the smooth function

s(t, ω) := a(t)(iω)k, t, ω ∈ R

is called the symbol of the differential operator L. Generally, a pseudo-differential
operator P is given by an expression of the form

(Pu)(x) :=
1

p

(2π)n

Z

Rn

ei〈x|p〉 s(x, p)F(u)(p) dnp, x ∈ R
n.

The theory of pseudo-differential operators studies the properties of such operators
in terms of the properties of the symbol s(x, p). For example,

• linear partial differential operators with smooth coefficient functions and
• important classes of regular and singular integral operators

are pseudo-differential operators. In the history of mathematics and physics, ef-
forts were made to reduce the solution of differential equations to the solution of
simpler algebraic problems. Such efforts are due to Leibniz (1646–1716), Laplace
(1749–1827), Fourier (1768–1830), and the British engineer Heaviside (1850–1925)
to mention a few names. Nowadays this development has culminated in the theory
of pseudo-differential operators.

12.5.7 Fourier Integral Operators

The replacement

ei〈x|p〉 ⇒ eiϕ(x,p)

leads us immediately to the notion of Fourier integral operator,

(Pu)(x) :=
1

p

(2π)n

Z

Rn

eiϕ(x,p) s(x, p)F(u)(p) dnp, x ∈ R
n.

Here, we assume that the phase function ϕ : R
n × R

n → R has the following
properties:

(i) Homogeneity: ϕ(x, λp) = λϕ(x, p) for all λ > 0 and all x, p ∈ R
n.

(ii) Smoothness: ϕ(x, p) is smooth for all x, p ∈ R
n with p �= 0.

(iii) Nondegeneracy: ϕx(x, p) �= 0 for all x, p ∈ R
n with p �= 0.

Observe that the conditions (i)-(iii) are satisfied in the special case where the phase
function is given by ϕ(x, p) := 〈x|p〉.

Typical application. Consider the initial- value problem for the wave equa-
tion:

Utt(x, t) +ΔU(x, t) = 0, x ∈ R
3, t ≥ 0

U(x, 0) = U0(x), Ut(x, 0) = U1(x), x ∈ R
3.

We are given the smooth functions U0, U1 : R
3 → R with compact support. Then

there exists a unique smooth solution given by

U(x, t) =
1

2
p

(2π)3

Z

R3

1
X

s=0

eixp+i(−1)st|k|
„

V0(p)− (−1)si
V1(p)

|p|

«

d3p
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where V0 and V1 are the Fourier transform of U0 and U1, respectively. Note that the
solution U is represented as the sum of two Fourier integral operators. To motivate
this formula, let us use the classical Fourier method. To begin with, we introduce
the Fourier transform of U with respect to the variable x,

V (x, t) =
1

p

(2π)3

Z

R3
e−ixp U(x, t)d3x.

The wave equation implies

Vtt(p, t) = −p2V (p, t)

along with the initial conditions V (p, 0) = V0(p) and Vt(p, 0) = V1(p). This yields

V (p, t) =
1

2

1
X

s=0

V0(p)− i(−1)s V1(p)

|p| .

Finally, by the inverse Fourier transform,

U(x, t) =
1

p

(2π)3

Z

R3
eixp V (p, t) d3p.

It turns out that

Fourier integral operators play a fundamental role in quantum field theory
for describing the propagation of physical effects.

Recommendations for further reading on both pseudo-differential operators and
Fourier integral operators can be found on page 705.

12.6 Multiplication of Distributions

In a naive setting of quantum field theory, one encounters the square δ(x)2 of
Dirac’s delta function when computing cross sections of scattering processes. In
1954 Laurent Schwartz showed that it is not possible to construct a perfect theory
of products FG for distributions F,G ∈ D′(R) without leaving the space D′(R) of
distributions.

12.6.1 Laurent Schwartz’s Counterexample

Intelligence consists of this; that we recognize the similarity of different
things and the difference between similar ones.

Baron de la Brède et de Montesquieu (1689–1755)

Consider the space D(R) of smooth functions ϕ : R → C which have compact
support, and let D′(R) be the corresponding space of distributions. To each function
f ∈ D(R), there can be assigned a unique distribution F given by

F (ϕ) :=

Z

R

f(x)ϕ(x)dx for all ϕ ∈ D(R).

With respect to the usual product fg of functions, the space D(R) is a commutative
and associative algebra with Leibniz rule. Explicitly, this means the following:
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(i) Linearity: D(R) is a complex linear space.
(ii)) Product: If f, g ∈ D(R), then there exists a product fg ∈ D(R).
(iii)) Distributivity: f(αg+βh) = αfg+βfh for all f, g, h ∈ D(R) and all complex

numbers α, β.
(iv) Commutativity: fg = gf for all f, g ∈ D(R).
(v) Associativity: (fg)h = f(gh) for all f, g, h ∈ D(R).
(vi) Leibniz rule: The derivative D is a linear operator on D(R), and we have

D(fg) = (Df)g + f(Dg) for all f, g ∈ D(R).

The following theorem was proved by Laurent Schwartz.24

Theorem 12.10 It is not possible to equip the complex linear space D′(R) of distri-
butions with a product such that it becomes a quite natural extension of the function
algebra D(R).

More precisely, the function algebra D(R) cannot be extended to a commutative
and associative algebra D′(R) with Leibniz rule

D(FG) = (DF )G+ F (DG) for all F,G ∈ D′(R),

where D denotes the usual derivative for distributions.
Proof. We will argue by contradiction. Suppose that there exists a product on

D′(R) which has the desired properties, that is, there hold true the distributive law,
the commutative law, the associative law, and the Leibniz rule.

(I) The Dirac delta functional. The basic trick is to consider the following func-
tions:

• f(x) := x and g(x) := |x| for all x ∈ R.
• h(x) := ln |x| − 1 for all x ∈ R \ {0}.
Classically, the derivative (x|x|)′ = 2|x| exists for all x ∈ R. Hence

Df = 1 and D(fg) = 2g.

Using the Heaviside function θ, we get

Dg = −1 + 2θ and hence D2g = 2δ.

To obtain the desired contradiction, we will show that our assumption implies

D2g = 0. (12.85)

(II) By the presupposed Leibniz rule on D′(R),

D(fg) = (Df)g + fDg = g + fDg.

Thus, again by the Leibniz rule,

D2(fg) = 2Dg + fD2g. (12.86)

On the other hand, from D(fg) = 2g we get D2(fg) = 2Dg. Combining this with
(12.86), we obtain the key relation

24 L. Schwartz, Sur l’impossibilité de la multiplication des distributions. Comptes
Rendus Acad. Sci. Paris 239 (1954), 847–848.
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fD2g = 0.

This yields the desired equation (12.85) if the following claim is true for all distri-
butions G ∈ D′(R) :

fG = 0 implies G = 0. (12.87)

It remains to prove (12.87).
(III) Observe that (12.87) follows from

fD2(fh) = 1. (12.88)

In fact, if fG = 0, then Gf = 0, by commutativity. Associativity tells us that

0 = GfD2(fh) = G · 1,

and hence G = 0. It remains to prove (12.88).
(IV) Proof of (12.88). Classically, (x2(ln |x| − 1))′ = 2x(ln |x| − 1) + x for all

x ∈ R. Equivalently,

D(f2h) = 2fh+ f. (12.89)

By the presupposed Leibniz rule on D′(R) along with Df = 1, we obtain

D(f2h) = D(f · fh) = fh+ fD(fh).

Therefore, by the Leibniz rule, D2(f2h) = 2D(fh) + fD2(fh), and hence

fD2(fh) = D2(f2h)− 2D(fh).

Finally, again by the Leibniz rule, it follows from (12.89) that

fD2(fh) = 2D(fh) + 1− 2D(fh) = 1.

�

12.6.2 Hörmander’s Causal Product

Causality is crucial for quantum field theory.
Folklore

Based on his notion of the wave front set of a distribution, Hörmander proved the
following theorem in 1970.

Theorem 12.11 It is possible to define the product GH of two given distributions
G,H ∈ D′(RN ) if the wave front sets WF (G) and WF (H) possess the following
crucial momentum property:

(x, k) ∈WF (G), always implies (x,−k) /∈WF (H). (12.90)

It turns out that this condition is satisfied in the Epstein–Glaser approach to quan-
tum field theory, because of the validity of the causality principle for the S-matrix.
This will be studied in Volume IV.

For two functions g, h ∈ D(RN ), we have the convolution rule for the Fourier
transform:
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F(gh) =
1

(2π)N/2
· F(g) ∗ F(h).

Naturally enough, the product GH is given in a similar way after localization.
Explicitly, for each point x ∈ R

N there exists a function χ ∈ D(RN ) such that χ = 1
in some open neighborhood of x, and for the Fourier transform of the localizations
we have the convolution rule

F(χ2GH) =
1

(2π)N/2
· F(χG) ∗ F(χH). (12.91)

As a counterexample, consider the Dirac delta distribution δ on R. For the wave
frontset

WF (δ) = {(0, k) : k ∈ R, k �= 0}.
Therefore, condition (12.90) is violated for G = H := δ. In this case, it is not
possible to define the product δ2.

The theory of products for distributions can be found in Reed and Simon (1972),
Vol. II, Sect. IX.10, and in Hörmander (1983), Vol. I, Sect. 8.2. In order to get a
general theory of products, one has to extend the class of Schwartz distributions
to a broader class of generalized functions. In this connection, we refer to the
monographs:

J. Colombeau, New Generalized Functions and Multiplication of Distribu-
tions, North-Holland, Amsterdam, 1984.

M. Oberguggenberger, Multiplication of Distributions and Applications to
Partial Differential Equations, Longman, Harlow, 1992.

Problems

12.1 Cauchy’s residue method. Prove that for each real number ω0 and each ε > 0,

Z ∞

−∞

dω

ω2 − (ω0 + εi)2
=

πi

ω0 + εi
.

Solution: Set ω1 := ω0 + εi. Then

1

ω2 − ω2
1

=
1

2ω1

„

1

ω − ω1
− 1

ω + ω1

«

.

Using the semicircle C pictured in Fig. 12.7(a), Cauchy’s residue theorem on
page 216 tells us that

Z

C

dω

ω2 − ω2
1

=
πi

ω1
.

Note that
Z

C

f(ω) dω =

Z R

−R

f(x) dx+

Z π

0

f(Reiϕ)iReiϕdϕ.

Letting R→∞, the second integral goes to zero, since (ω2−ω2
1)−1 = O(R−2).
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(a)

�

�ω

−R R

 

�
ω0

ω0 + εi

C

(b)

r−r−R R

 

�
0

C

Fig. 12.7. Cauchy’s residue method

12.2 The classical Dirichlet integral. Use Cauchy’s residue method in order to prove
that

Z ∞

−∞

sin(αx)

x
dx = π sgnα for all α ∈ R.

Solution: By rescaling x �→ αx, it is sufficient to consider the case where α = 1.
Using the closed curve C from Fig. 12.7(b),

Z

C

eizdz

z
= 0,

since the integrand is analytic inside C. For the semicircle of radius R,

lim
R→∞

Z π

0

eiR cos ϕe−R sin ϕiReiϕdϕ

Reiϕ
= 0,

because of limR→∞ e−R sin ϕ = 0. For the semicircle of radius r,

lim
r→0

Z 0

π

eir cos ϕe−r sin ϕireiϕdϕ

reiϕ
=

Z 0

π

i dϕ = −iπ.

Hence the sum
Z −r

−R

cosx+ i sinx

x
dx+

Z r

R

cosx+ i sinx

x
dx

goes to iπ as R→ +∞ and r → +0.
12.3 The classical Fresnel integral. Use Cauchy’s residue method in order to prove

that
Z ∞

−∞
eix2

dx =

Z ∞

−∞
(cosx2 + i sinx2)dx = (1 + i)

r

π

2
.

Hint: See Smirnov (1964), Vol. III/2, Sect. 56.
12.4 The Dirichlet relation. Prove that for each function ϕ ∈ S(R),

lim
ω→+∞

Z ∞

−∞

sinωt

πt
ϕ(t)dt = ϕ(0).

This means that

lim
ω→+∞

sinωt

πt
= δ,

in the sense of tempered distributions.
Hint: Justify the following limit
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lim
ω→+∞

Z ∞

−∞

sinωt

πt
ϕ(t)dt = lim

ω→+∞

Z ∞

−∞

sin τ

πτ
ϕ
“ τ

ω

”

dτ =

Z ∞

−∞

sin τ

πτ
ϕ(0)dτ.

The latter integral is equal to ϕ(0). See also the proof given by Gelfand et al.
(1964), Vol. 1, Sect. I.2.

12.5 The Fourier relation. Show that

lim
P→+∞

1

2π�

Z P

−P

eipx/� dp = δ, (12.92)

in the sense of tempered distributions. Mnemonically, we write

1

2π�

Z ∞

−∞
eipx/�dp = δ(x).

Solution: Use Problem 11.4 and note that

1

2π�

Z P

−P

eipx/�dp =
sin(Px/�)

πx
.

12.6 Proof of Proposition 12.1 on page 674 about the discrete Dirac function.
Solution: To simplify notation, we work in the energetic system. Then, p0 = E
and c = � = 1.
Ad (i). Use Problem 11.4.
Ad (ii). Use (12.9) and (12.10) on page 674.
Ad (iii). We have to show that

lim
T→+∞

R∞
−∞ δT (E − E1) · δT (E − E2)dE

δT (E1 − E2)
= 1.

For E1 = E2, this is the classical formula

Z ∞

−∞

2

πTE2
sin2

„

TE

2

«

dE = 1

which follows from
Z ∞

−∞

sin2 x

πx2
dx = 1.

In the case where E1 �= E2, let T be sufficiently large. Intuitively, the function
E �→ δT (E − E1) is sharply concentrated at the point E1, and

Z ∞

−∞
δT (E − E1)dE = 1.

Hence, up to some small error,

Z ∞

−∞
δT (E − E1) · δT (E − E2)dt = δT (E1 − E2).

This intuitive argument can be made precise by using appropriate estimates.
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12.7 Proof of Proposition 11.12 on page 618. Solution: Set

|ϕ|k := sup
x∈RN

(1 + ||x||k)|ϕ(x)|.

If we choose the integer k sufficiently large, then

|f(ϕ) | ≤ const · pk(ϕ) for all ϕ ∈ S(RN ).

In fact,

|f(ϕ)| =
˛

˛

˛

˛

Z

RN

f(x)(1 + ||x||k)−1ϕ(x)(1 + ||x||k)dNx

˛

˛

˛

˛

≤ pk(ϕ)

Z

RN

|f(x)|(1 + ||x||k)−1dNx.

If ϕn → ϕ as n→∞ in S(RN ), then pk(ϕn − ϕ) → 0. Hence

|f(ϕn)− f(ϕ) | = |f(ϕn − ϕ) | ≤ const · pk(ϕn − ϕ) → 0.

12.8 Special distribution. We want to generalize the classical relation

d ln |x|
dx

=
1

x
for all x ∈ R \ {0}.

To this end, we set

P(ln |x|)(ϕ) :=

Z ∞

−∞
(ϕ(x)− ϕ(0)) ln |x| dx for all ϕ ∈ S(R).

Show that this is a tempered distribution along with the derivative

d

dx
P(ln |x|) = P

„

1

x

«

in the space S ′(R).
Solution: Let ϕ ∈ S(R). Note that ϕ(x) − ϕ(0) = O(x) as x → 0 and
limx→0 x ln |x| = 0. By Problem 12.7, P(ln |x|) is a tempered distribution.
Furthermore, P(ln |x|)(ϕ) is equal to

lim
ε→+0

„

Z −ε

−∞
(ϕ(x)− ϕ(0)) ln |x| dx+

Z ∞

ε

(ϕ(x)− ϕ(0)) ln |x| dx
«

.

Integration by parts yields that P(ln |x|)(−ϕ′) is equal to

− lim
ε→+0

„

Z −ε

−∞
(ϕ′(x)− ϕ′(0)) ln |x| dx+

Z ∞

ε

(ϕ′(x)− ϕ′(0)) ln |x| dx
«

= lim
ε→+0

„

Z −ε

−∞

ϕ(x)− ϕ(0)

x
dx+

Z ∞

ε

ϕ(x)− ϕ(0)

x
dx

«

= P
„

1

x

«

.

Note that the boundary terms vanish as ε→ +0 because of

lim
ε→+0

(ϕ(±ε)− ϕ(0)) ln | ± ε| = 0.
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12.9 The jump trick for ordinary differential equations. Let a, b, c : R → C be given
smooth functions. Suppose that the smooth function g : R → C is a solution
of the ordinary differential equation

ag′′ + bg′ + cg = 0 on R
2

with the initial conditions g(0) = 0 and g′(0) = 1. Show that the function

q(t) := θ(t)g(t) for all t ∈ R

satisfies the differential equation

aq′′ + bq′ + cq = aδ on R
2,

in the sense of distributions.
Solution: Let us start with a formal argument. Since q(0) = 0, qδ = 0. Thus,
by the product rule,
(i) q′ = θ′g + θg′ = gδ + θg′ = θg′, and
(ii) q′′ = θ′g′ + θg′′ = g′δ + θg′′ = δ + θg′′.
This yields the claim. To get a rigorous proof, we have to show that (i) and (ii)
are valid in the sense of distributions.
Ad (i). Since g(0) = 0 and θ(t) = 0 if t < 0, integration by parts yields

−
Z ∞

−∞
ϕ′(t)θ(t)g(t) dt =

Z ∞

−∞
ϕ(t)θ(t)g′(t) dt

for all test functions ϕ ∈ D(R).
Ad(ii). We have to show that, for all ϕ ∈ D(R),

Z ∞

−∞
ϕ′′(t)θ(t)g(t) dt = ϕ(0) +

Z ∞

−∞
ϕ(t)θ(t)g′′(t) dt.

This is equivalent to
Z ∞

0

ϕ′′(t)g(t) dt = ϕ(0) +

Z ∞

0

ϕ(t)g′′(t) dt.

However, this follows from applying integration by parts twice. Note that
g(0) = 0 and g′(0) = 1.

12.10 Proof of Proposition 11.21 on page 630. Complete the proof in the general
case where the given function F lies in the Banach space C−

π . Use the methods
of functional analysis.
Hint: Let us sketch the main ideas. We will use results from the author’s text-
books, Zeidler (1995), Vols. 1, 2. The notation is the same as introduced in
Sect. 11.5 on page 628. To begin with, we define the function space C−

2,π which
contains precisely the π-periodic functions f : R → C which are odd. In addi-
tion, we assume that f is twice continuously differentiable on the interval [0, π].
Equipped with the norm

||f ||2,π := ||f ||π + ||f ′||π + ||f ′′||π,

the space C−
2,π becomes a complex Banach space. For fixed ω ≥ 0, define

Aωq := q′′ + ω2q, q ∈ C−
2,π.

This is a linear continuous operator
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Aω : C−
2,π → C−

π . (12.93)

To begin with, let ω = 0. For given F ∈ C−
π , the equation

A0q = F, q ∈ C−
2,π (12.94)

is equivalent to the boundary-value problem

q′′ = F, q(0) = q(π) = 0.

This problem has a unique solution. Consequently, the operator A0 from (12.93)
is a Fredholm operator of index zero. Since the embedding C−

2,π ⊆ C−
π is com-

pact, the operator Aω from (12.93) represents a compact perturbation of the
operator A0, and hence it is also a Fredholm operator of index zero (see Zeidler
(1995), Vol. 2, Sect. 5.8).
We are now given ω > 0 with ω �= k for all k = 1, 2, . . . Then

Aωq = 0, q ∈ C−
2,π

implies q = 0. Since Aω has index zero, the inverse operator

A−1
ω : C−

π → C−
2,π

is linear and continuous. Let F ∈ C−
π be given. By the Fejér theorem on page

627, there exists a sequence (Fn) of finite Fourier series such that

lim
n→∞

Fn = F in C−
π .

Set qn := A−1
ω Fn and q := A−1

ω F. Then

Aωqn = Fn, qn ∈ C−
2,π.

This means that

q′′n + ω2qn = Fn, qn(0) = qn(π) = 0

along with q′′ + ω2q = F, q(0) = q(π) = 0. Since qn is a finite Fourier series,
the argument used in the proof of Prop. 11.21 on page 630 shows that

qn(t) =

Z π

0

G(t, τ ;ω)Fn(τ)dτ. (12.95)

Letting n→∞, the continuity of the operator A−1
ω yields the existence of the

limit
q = lim

n→∞
qn in C−

2,π.

Since the Green’s function G is continuous, it follows from (12.95) that

q(t) = lim
n→∞

qn(t) = lim
n→∞

Z π

0

G(t, τ ;ω)Fn(τ)dτ =

Z π

0

G(t, τ ;ω)F (τ)dτ.



13. Basic Strategies in Quantum Field Theory

If one does not sometimes think the illogical, one will never discover new
ideas in science.

Max Planck (1858–1947)

Mathematics is not a deductive science – that’s a cliché. When you try
to prove a theorem, you don’t just list the hypotheses, and then start to
reason. What you do is trial-and-error, experimentation, and guess work.

Paul Halmos (1916–2006)

“I think, this is so”, says Cicha, “in the fight for new insights, the breaking
brigades are marching in the front row. The vanguard that does not look
to left nor to right, but simply forges ahead – those are the physicists.
And behind them there are following the various canteen men, all kinds
of stretcher bearers, who clear the dead bodies away, or simply put, get
things in order. Well, those are the mathematicians.”

From the criminal novel Death Loves Poetry of the
Czech physicist Jan Klima (born in 1938)1

Whatever the future may bring, it is safe to assert that the theoretical ad-
vances made in the unravelling of the constitution of matter since World
War II (1939–1945) comprise one of the greatest intellectual achievements
of mankind. They were based on the ground secured by Tomonaga, Bethe,
Schwinger, Feynman, and Dyson to quantum field theory and renormal-
ization theory in the period from 1946 to 1951.

Silvan Schweber, 1994
QED and the Men Who Made it2

The mathematical language of physicists is formal, like a short-hand writ-
ing, but this is extremely useful for getting very quickly the desired results
that are related to the outcome of physical experiments. It is then the hard
task of mathematicians to give rigorous proofs for the heuristic arguments of
physicists. The flow of ideas from physics to mathematics is an indispensable
source of inspiration for mathematicians.

Warning to the reader. In the following chapters, we will summarize
the most important heuristic formulas used in quantum field theory.
1 Reprinted with permission.
2 Princeton University Press, 1994 (reprinted with permission).

E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics,
c© Springer-Verlag Berlin Heidelberg 2006, Corrected 2nd printing 2009
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These heuristic formulas are not to be understood in the sense of
rigorous mathematics.

Nevertheless, this approach should help the reader to understand the lan-
guage of physicists and to find his/her own way in the jungle of literature,
which is full of inconsistencies and pseudo-proofs.

In Chaps. 14 and 15, the heuristic formulas are motivated by ap-
plying the formal continuum limit to the rigorous finite-dimensional
approach from Chap. 7.

The elegance of the mnemonic language of physicists. Mathe-
maticians should note that the language of physicists is optimal from the
mnemonic point of view. Therefore, physicists are not willing to give up their
language despite the mathematical shortcomings.

In each order of perturbation theory, the heuristic formulas used by
physicists can be given a rigorous mathematical meaning.

This will be investigated in the following volumes of this monograph. Un-
fortunately, as a rule, the rigorous mathematical approach is equipped with
technical details which obscure the basic ideas, in contrast to the language
of physicists. Therefore, it is important for mathematicians to know the lan-
guage of physicists as a guide to the rigorous approach. We will use the fol-
lowing two approaches in order to pass from heuristic quantum field theory
to rigorous quantum field theory in each order of perturbation theory.

(D) Discretization: The idea is to pass from the heuristic continuum formu-
las to rigorous formulas by discretization of space, time, and momentum.
We then supplement the finite formulas by additional terms called coun-
terterms in order to guarantee the existence of the continuum limit. This
second step is called renormalization.

(G) Generalized functions: We avoid discretization by using tempered dis-
tributions from the very beginning. This is the so-called Epstein–Glaser
approach.

Survey on different approaches. Roughly speaking, there exist the
following approaches to quantum field theory:

(i) the response approach based on the generating functional for correlation
functions, the magic quantum action reduction formula, and the magic
LSZ reduction formula for the S-matrix (Sects. 14.2.4 and 14.2.5);

(ii) the response approach based on the global quantum action principle via
functional integrals, which implies (i) (Sect. 14.2.7);

(iii) the operator approach based on Dyson’s S-matrix along with creation
and annihilation operators for particles (Chap. 15);

(iv) gauge fields, functional integrals, Faddeev–Popov ghosts, and BRST
symmetry (Chap. 16);
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(v) functional integrals and quantum field theory at finite temperature (Sect.
13.8);

(vi) the rigorous Epstein–Glaser approach via the S-matrix as a tempered
operator-valued distribution (Sect. 15.4.4);

(vii) the rigorous global approach of axiomatic and algebraic quantum field
theory (Sect. 15.6);

(viii) the Ashtekar program based on the transport of quantum information
along loops and holonomy (loop quantum gravity).3

In (i) through (vi), we get formal power series expansions which can be re-
garded as asymptotic series, by the classical Ritt theorem (Sect. 15.5.2). In
higher-order perturbation theory, the expressions are rather involved from the
analytical point of view. These expressions can be represented graphically by
Feynman diagrams. This helps very much to get insight into the structure of
perturbation theory and its renormalization. In this context,

• Zimmermann’s forest formula and
• Kreimer’s Hopf algebra play a crucial role (see Sect. 15.4.6).

Surprisingly enough, as a rule of thumb, the experience of physicists shows
that the apparently different approaches (i) through (vi) above yield the same
numerical results when applied to the measurements of concrete physical
effects. It is the task for the future to understand this equivalence in the
framework of a general mathematical theory. Hints for further reading on
quantum field theory can be found on page 909ff.

Historical remarks. Originally, Heisenberg and Pauli started quantum
field theory in 1929 by representing quantum fields as operator-valued func-
tions

ϕ = ϕ(x, t)

depending on the position vector x and time t. Here, the value ϕ(x, t) lies in
a Hilbert space. However, it turned out that this approach is full of contradic-
tions caused, for example, by not knowing the right commutation relations
for interacting quantum fields from the very beginning.

Therefore, Feynman and Schwinger moved to a pragmatic point of
view and tried to completely avoid the notion of operators in Hilbert
space.

The approaches (i) and (ii) above will be formulated independently of oper-
ator theory.

The idea is to relate the classical principle of critical action to corre-
lation functions which describe the correlations of the quantum field
at different space points and time points.

3 We will study this in Volume VI on quantum gravitation. We recommend the
survey article by Ashtekar and Lewandowski (2004), and the monographs by
Rovelli (2004) and Thiemann (2007). See also the ‘Living reviews’ quoted on
page 946.
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In Wightman’s axiomatic approach to quantum field theory from 1956, quan-
tum fields are tempered distributions with values in a Hilbert space. In al-
gebraic quantum field theory dating back to Segal in 1947, the fundamental
notions are

• observables (elements of an operator algebra), and
• states (positive functionals on the operator algebra).

This notion was generalized by Haag and Kastler in 1967, by passing to so-
called nets of local operator algebras. As the standard textbook, we recom-
mend R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer,
New York, 1996. Roughly speaking, a local operator net assigns an operator
algebra to each open subset of the 4-dimensional space-time manifold. This
operator algebra represents physical observables. It is important that this
universal approach can be extended to many-particle systems in statistical
physics and to curved space-time manifolds in order to include quantum grav-
itation. In this setting, it is possible to mathematically introduce two types
of distinguished physical states, namely,

• Kubo–Martin–Schwinger (KMS) states which describe thermodynamic
equilibrium states of many-particle systems, and

• Hadamard states which play a fundamental role in curved space–time man-
ifolds.

For example, the theory of KMS states is equivalent to the Tomita–Takesaki
theory for von Neumann algebras. It is also possible to formulate Einstein’s
principle of general relativity (or the covariance principle) in terms of both

• algebraic quantum field theory and
• the Ashtekar program.

In the framework of string theory, quantum field theory is a low-energy ap-
proximation of

• vibrating strings and
• higher-dimensional vibrating membranes called D-branes.

This is closely related to the theory of minimal surfaces and Riemannian
geometry in mathematics. We will study this in Volume VI.

13.1 The Method of Moments and Correlation
Functions

The family of moments knows all about a given random phenomenon in
nature.

Folklore
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We expect that a quantum field possesses a random structure depending on
space and time with an infinite number of degrees of freedom. The idea of
physicists is to describe the quantum field by its local moments which depend
on position and time. For the local moments, physicists use the following
notions synonymously:

• n-point correlation function,
• n-point Green’s function, and
• n-point Feynman propagator.

To be honest, the formal definitions of these notions differ in the literature.
But, roughly speaking, the physics behind these notions is the same in each
order of perturbation theory. This follows from the nontrivial fact that the
computations based on Feynman diagrams and the corresponding Feynman
rules are the same. Observe the following. We have to carefully distinguish
between

• free quantum fields, and
• full quantum fields.

Here, free quantum fields are free of interactions, whereas full quantum fields
describe interactions. Naturally enough, the mathematics of free quantum
fields is much simpler than the mathematics of full quantum fields. From the
physical point of view, our main interest is to understand full quantum fields.
As with quantum fields, we distinguish between

• free correlation functions, and
• full correlation functions.

Correlation functions of free quantum fields. In terms of functional
integrals, the free n-point correlation function of a free quantum field ϕfree is
formally defined by

Cn,free(x1, x2, . . . , xn) :=
∫
ϕfree(x1)ϕfree(x2) · · ·ϕfree(xn)eiSfree[ϕfree]/�Dϕ

∫
eiSfree[ϕfree]/�Dϕ .

Here, Sfree[ϕfree] is the classical action of the free quantum field ϕfree. The
symbol

xj := (xj , tj), j = 1, . . . , n

denotes a space-time point with the position vector xj and time tj , in an
inertial system. The free n-point Green’s function of ϕfree is defined by

Gn,free(x1, x2, . . . , xn) := 〈0|T {ϕfree(x1)ϕfree(x2) · · ·ϕfree(xn)}|0〉

where the symbol |0〉 denotes the ground state of the free quantum field ϕfree.
Therefore, the free n-point Green’s function describes the vacuum expectation
value of time-ordered products of free field operators. It turns out that on a
formal level,
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Cn,free = Gn,free, n = 1, 2, , . . . .

This relates the functional-integral approach to the operator approach in
quantum field theory.

Observe that, by definition, the chronological operator T orders time.
Explicitly, for the quantum field ϕ, the definition of the operator T reads as

T {ϕ(x1)ϕ(x2)} := ϕ(x1)ϕ(x2) if t1 ≥ t2.

This has to be replaced by

T {ϕ(x1)ϕ(x2)} := ηϕ(x2)ϕ(x1) if t2 > t1.

Here, we have to choose the sign η := 1 for bosonic fields (e.g., photons), and
η := −1 for fermionic fields (e.g., electrons). For example, the free 2-point
Green’s function (resp. correlation function) reads as

G2,free(x, t;y, s) := 〈0|T {ϕfree(x, t)ϕfree(y, s)}|0〉.

This function is also frequently called the Feynman propagator of the free
quantum field ϕ. Similarly, we define the chronological operator for n-factors.

The chronological operator T takes causality into account.

Correlation functions of full quantum fields. Let us now consider
quantum fields under interactions. The full n-point correlation function of
the quantum field ϕ is formally defined by

Cn(x1, x2, . . . , xn) :=
∫
ϕ(x1)ϕ(x2) · · ·ϕ(xn)eiS[ϕ]/�Dϕ

∫
eiS[ϕ]/�Dϕ

where S[ϕ] denotes the classical action of the quantum field ϕ. In contrast
to the free action Sfree[ϕfree], the action S[ϕ] includes nonlinear terms with
respect to ϕ which describe the interactions. The full n-point Green’s function
of the quantum field ϕ is formally defined by

Gn(x1, x2, . . . , xn) := 〈0int|T {ϕ(x1)ϕ(x2) · · ·ϕ(xn)}|0int〉.

Here, the symbol |0int〉 denotes the ground state of the full quantum field
which, as a rule, differs from the ground state |0〉 of the free quantum field.
Note that the formulas for Cn and Gn are only mnemonic formulas. On a
formal level, we have

Cn = Gn, n = 1, 2, , . . . .

Intuitively, the n-point Green’s functions (and hence the correlation func-
tions) describe vacuum fluctuations of the quantum field.
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The philosophy is that vacuum fluctuations know all about the quan-
tum field.

Advantages and disadvantages of different approaches. The ad-
vantage of the correlation functions C1, C2, . . . is that they only depend on the
classical action S, but not on operators in Hilbert space. The disadvantage is
that functional integrals are beautiful mnemonic tools, but not well-defined
mathematical objects, as a rule.

The advantage of the Green’s functions G1, G2, . . . is that no ill-defined
functional integrals appear, but operators in Hilbert space. The disadvan-
tage is that the operators ϕ(x) are highly singular objects. Furthermore, the
commutation (resp. anticommutation) relations are not known a priori for
interacting quantum fields, but they have to be determined. In particular,
the naive assumption that the commutation (resp. anticommutation) rela-
tions for interacting quantum fields are the same as for free quantum fields
does not hold.

The idea of local averaging over space and time. It turns out that,
as a rule, the correlation functions Cn are not well-defined as classical local
functions of the space-time variables. Intuitively, however, averages of the
form ∫

Cn(x1, . . . , ;xn)χ1(x1) · · ·χn(xn)d4x1 · · · d4xn

make sense where χ1, . . . , χn are suitable test functions. More precisely, the
n-point correlation functions are distributions. Note that distributions are
linear mathematical objects and the multiplicative structure of distributions
is subtle, according to Laurent Schwartz. Therefore, the case of nonlinear in-
teracting quantum fields has to be handled very carefully. In this connection,
the Epstein–Glaser approach works successfully.

The philosophy behind the use of averages is that physical experiments
are based on measurement devices which are only able to measure
mean values.

The discussion of the method of moments in quantum field theory will be con-
tinued in Sect. 13.6 in terms of generating functions for moments, generating
functionals, and external physical sources.

13.2 The Power of the S-Matrix

In particle accelerators, physicists measure the following quantities:

• cross sections of scattering processes;
• masses of stable particles;
• lifetimes of unstable particles;
• magnetic moments of elementary particles.
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The task is to theoretically predict the measured values. To this end, physi-
cists use two concepts, namely,

• the S-matrix and
• n-point correlation functions.

Roughly speaking, the two concepts are equivalent.4 The S-matrix encodes
the transition probabilities of scattering processes. In fact, the S-matrix
knows all about elementary particles.

• The S-matrix enables us to compute the cross sections of scattering pro-
cesses.

• The singularities of the S-matrix refer to the masses of stable particles.
• Analytic continuation of the S-matrix in momentum space tells us the

masses of unstable particles (also called resonances) and their lifetimes.
• The S-matrix allows us to compute the full correlation functions by the

magic Gell-Mann–Low formula. This way, for example, we get so-called
form factors which yield the magnetic moments of elementary particles
(e.g., the anomalous magnetic moment of the electron and the muon).

13.3 The Relation Between the S-Matrix and the
Correlation Functions

We expect that there exists a close connection between the S-matrix and the
full correlation functions. This is indeed the case. In the 1950s, physicists de-
veloped magic formulas in order to pass from the S-matrix to the correlation
functions and vice versa.

The response approach. This will be studied in Chap. 14. The two
magic formulas read as follows.

(QA) The quantum action reduction formula (14.38): computation of the full
correlation functions by means of the free correlation functions.

(LSZ) The Lehmann–Symanzik–Zimmermann reduction formula (14.41):
computation of the S-matrix by using the full correlation functions ob-
tained by (QA).

The basic formulas (QA) and (LSZ) can be obtained from the global quan-
tum action principle which is based on Feynman’s magic functional-integral
formula (14.44). This functional integral describes quantum fluctuations by
averaging over all possible classical fields. The statistical weight depends on
the classical action.
4 However, in the setting of quantum gravitation on curved space-time manifolds,

correlation functions are basic, but scattering processes and hence the S-matrix
are not always well defined, since the notion of asymptotically free incoming and
outgoing particles fails.
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(a) S-matrix diagrams

γ γ
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(b) Amputated S-matrix diagrams
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Fig. 13.1. Feynman diagrams for Compton scattering of electrons and photons

The operator approach. This approach will be studied in Chap. 15; it
will be based on the following two magic formulas.

(D) The Dyson formula (15.12): computation of the S-matrix by means of
free quantum fields and the interaction terms of the classical action.

(GL) The Gell-Mann–Low formula (15.28): computation of the full correla-
tion functions by using the S-matrix.

Roughly speaking, the response approach (QA), (LSZ) and the operator ap-
proach (D), (GL) are equivalent. This means that they lead to the same
physical results.

Full quantum fields. The question arises of how to compute full quan-
tum fields. In fact, this can be done by using Bogoliubov’s formula (15.35)
which allows us to compute the full quantum field as a functional derivative
of the S-matrix formulated in the language of tempered distributions. In this
setting, the S-matrix is a primary object, whereas the quantum field is a
derived object.

13.4 Perturbation Theory and Feynman Diagrams

The magic formulas from the preceding section allow us to elegantly compute
the S-matrix and the full correlation functions in terms of

• free correlation functions, and
• the wave functions of free particles.

To this end, we use the method of perturbation theory. The higher-order ap-
proximations yield rather complex analytic expressions. Fortunately enough,
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these expressions are structured, and they can be represented graphically
by diagrams first introduced by Feynman. In elementary particle physics,
physicists use

• Feynman diagrams and Feynman rules.

The Feynman rules yield analytic expressions for the S-matrix and the cor-
relation functions in a very effective way. Figure 13.1 on page 749 shows
some Feynman diagrams for the Compton scattering where a photon hits an
electron. Observe the following:

• The number of nodes tells us the approximation order of perturbation
theory. This causes the increasing complexity of Feynman diagrams when
passing to higher-order approximations.

• The Feynman diagrams of the S-matrix contain external lines which cor-
respond to incoming and outgoing particles of the scattering process. The
internal lines can be regarded as virtual particles which are related to
quantum fluctuations of the ground state.

• The amputated S-matrix diagrams are independent of the incoming and
outgoing particles; these diagrams correspond to the magic LSZ formula
(14.41) which relates the S-matrix to the correlation functions.

13.5 The Trouble with Interacting Quantum Fields

Let us now discuss a crucial difficulty which arises for full quantum fields.
From the mathematical point of view, free quantum fields are well-understood
mathematical objects; they are tempered distributions with values in a
Hilbert space. In contrast to this, the experience of physicists and mathe-
maticians shows that the notion of a full quantum field causes mathematical
trouble. The partial differential equations for full quantum fields can be easily
written down, as in the classical case. However, one has to add commutation
(resp. anticommutation) relations for the field operators. The following ques-
tion arises:

What are the right commutation (resp. anticommutation) relations
for full quantum fields?

If one uses the same commutation (resp. anticommutation) relations as for
free fields, then one gets contradictions. In most physics textbooks, it is as-
sumed that the full quantum field is unitarily equivalent to the free quan-
tum field. This is used along with Dirac’s interaction picture in order to
get the S-matrix in the framework of perturbation theory. However, this as-
sumption is completely wrong. Unitarily equivalent Hilbert space theories
describe the same quantum physics. Intuitively, however, free quantum fields
and full quantum fields correspond to different physical situations. In fact,



13.6 External Sources and the Generating Functional 751

Haag proved in 1955 that under appropriate assumptions, such a unitary
equivalence along with Dirac’s interaction picture does not exist. This is the
famous Haag theorem.5

We have shown in Sect. 7.19.3 that the Dirac interaction picture exists
in finite-dimensional Hilbert spaces. The point is that this does not remain
true for infinite-dimensional Hilbert spaces. Therefore, we will never use the
infinite-dimensional Dirac interaction picture in this monograph. To overcome
this difficulty, one can apply the finite-dimensional Dirac interaction picture
as an approximation. One then has to study the limit of passing to infinite
dimensions. One expects that this limit does not exist for quantum fields, but
the limit exists for those quantities that can be measured in physical exper-
iments (e.g., cross sections). We will show later on that this approximation
method works well.

Note that the right commutation (resp. anticommutation) relations for
full quantum fields are unknown at the very beginning. They have to be
determined at the end of the solution process. In the setting of the Epstein–
Glaser approach, the basic idea is to determine the S-matrix as an operator-
valued tempered distribution S = S(g) by an iterative process, in each order
of perturbation theory. The full quantum field Φ = Φ(g) is then obtained from
the S-matrix by using the Bogoliubov formula (15.35) on page 859 based on
functional differentiation. This approach is rigorous on a perturbative level.

13.6 External Sources and the Generating Functional

Study the response of physical systems under the influence of external
sources.

Folklore

In the classical theory of probability, one studies generating functions for the
moments. These generating functions know all about the random situation
under consideration (see page 58).

The generating functional. In quantum field theory, the classical gen-
erating function is replaced by the generating functional for the correlation
functions given by

Z(J) : = 1 +
i
�

∫

R4
C1(x)J(x)d4x− 1

2�2

∫

R8
C2(x, y)J(x)J(y)d4xd4y

+
∞∑

n=3

in

n!�n

∫

R4n

Cn(x1, · · ·xn)J(x1) · · ·J(xn)d4x1 · · · d4xn. (13.1)

This functional depends on the function J . Following Schwinger, this function
is called an external source.6 It remains to compute the functional Z(J). This
5 See R. Haag, On quantum field theories, Dan. Mat. Medd. 29 (1955), No. 12,

and the textbook by N. Bogoliubov et al., General Principles of Quantum Field
Theory, Kluwer, Dordrecht, 1990, p. 388ff.

6 A general approach can be found in Schwinger (1970).
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will be done on page 755 by means of the magic Feynman formula (13.7).
This formula is based on a functional integral which depends on the classical
action. Similarly, we introduce the free generating functional,

Zfree(J) : = 1 +
∞∑

n=1

in

n!�n

∫

R4n

Cn,free(x1, · · ·xn)J(x1) · · ·J(xn)d4x1 · · · d4xn.

Volterra’s differential calculus. Generalizing the classical Taylor ex-
pansion, functionals of the type Z(J) were investigated in mathematics by
Volterra (1860-1950) around 1900. Motivated by classical partial derivatives,
Volterra introduced partial functional derivatives in such a way that

δZ(J)
δJ(x)

|J=0 :=
i
�
C1(x), (13.2)

and

δnZ(J)
δJ(x1) · · · δJ(xn)

|J=0 :=
in

�n
Cn(x1, . . . , xn), n = 2, 3, . . .

Similarly,

δnZfree(J)
δJ(x1) · · · δJ(xn)

|J=0 :=
in

�n
Cn,free(x1, . . . , xn), n = 2, 3, . . .

The definition of partial functional derivatives can be found in Sect. 7.20.2
on page 404. Partial functional derivatives are also called local functional
derivatives. The formulas above are well-defined, since we tacitly assume
that the correlation functions are symmetric with respect to the variables
x1, x2, . . .

Cumulants and reduced correlation functions. In order to simplify
computations, physicists introduce the so-called reduced generating func-
tional by setting

Zred(J) := lnZ(J).

In particular, Z(0) = 1 implies Zred(0) = 0. Conversely,

Z(J) = eZred(J).

The so-called reduced (or connected) correlation functions, Cn,red are given
by the following expansion

Zred(J) :=
∞∑

n=1

in

n!�n

∫

R4n

Cn,red(x1, · · ·xn)J(x1) · · · J(xn)d4x1 · · · d4xn.

Passing from Z(J) to Zred(J) eliminates redundant quantities and simplifies
computations. In terms of Feynman graphs, connected correlation functions
correspond to connected Feynman graphs. Thus, the passage to connected



13.6 External Sources and the Generating Functional 753

correlation functions avoids the use of redundant disconnected Feynman di-
agrams.

The method of connected correlation functions in physics corresponds
to the method of cumulants in mathematics. Classical moments can be ex-
pressed by cumulants (or semi-invariants) and vice versa. This simplifies the
computation of moments. See Shiryaev (1996), Sect. II.12. We also recom-
mend the classic monograph on the problem of moments by Shohat and
Tamarkin (1950). The problem of moments concerns the reconstruction of a
mass (or probability) distribution from its moments. This classical problem
can be solved by using the Hahn–Banach theorem from functional analysis.
This can be found in both Zeidler (1995), Vol. 2, Sect. 1.4 and Lax (2002).

The mean field approximation. The local functional derivative

ϕmean(x) :=
�

i
δZred(J)
δJ(x)

|J=0

is called the mean field of the quantum field. The experience of physicists
shows that mean fields serve as a semi-classical approximation for describing
quantum fields.

Effective quantum action. The expression

V (ϕmean) :=
�

i
Zred(J) −

∫

R4
ϕmean(x)J(x)d4x

is called the effective quantum action. The expansion

V (ϕmean) = 1 +
∫

R4
V1(x)ϕmean(x)d4x

+
∞∑

n=2

1
n!

∫

R4n

Vn(x1, · · ·xn)ϕmean(x1) · · ·ϕmean(xn)d4x1 · · · d4xn

defines the so-called irreducible n-point vertex function Vn. It turns out that
vertex functions correspond to Feynman diagrams which have a minimal
redundance. We will study this in later volumes. We also refer to Greiner
and Reinhardt (1996b), Sect. 12.7.

Correlation functions represent a basic tool for studying physical processes
in both elementary particle physics and solid state physics. There exists a
wealth of physical phenomena which have to be explained. Physicists use
both

• the mean field ϕmean and
• the effective quantum action V (ϕmean)

as approximations for describing quantum corrections.
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13.7 The Beauty of Functional Integrals

The action knows all about a quantum system via functional integrals.
Folklore

In modern elementary particle physics, most physicists prefer the use of func-
tional integrals because of their mnemonic elegance. Functional integrals al-
low us the economical formulation of basic principles in quantum field theory.

13.7.1 The Principle of Critical Action

It is quite interesting that many physical phenomena in nature are governed
by the principle of critical action. As the prototype, consider a real field
ϕ : R

4 → R. We define the action S by setting

S[ϕ] :=
∫

Ω

L(ϕ(x), ϕx(x), ϕ̇(x)) d4x.

Here, x = (x, t). The derivative ϕx stands for the tupel (ϕx1 , ϕx2 , ϕx3) of
partial derivatives, and ϕ̇ denotes the partial time derivative ϕt. Moreover,
the domain of integration is given by the product set

Ω := C × [t0, t1]

where C is a nonempty bounded open subset of R
3 (e.g., a cube), and [t0, t1]

is a finite time interval. The function L is called the Lagrangian density. The
principle of critical action for the field ϕ reads as

S[ϕ] = critical! (13.3)

We have to add the boundary condition ϕ = fixed on ∂Ω. Each smooth
solution ϕ of the variational problem (13.3) satisfies the following Euler–
Lagrange equation

∂

∂t

∂L
∂ϕ̇

+
3∑

j=1

∂

∂xj

∂L
∂ϕxj

=
∂L
∂ϕ

. (13.4)

The proof will be given in Problem 14.2 on page 807. This equation gener-
alizes Newton’s classical equation of motion in mechanics: time derivative of
momentum equals force. For example, if we choose the Lagrangian density

L(ϕ,ϕx, ϕ̇) :=
ϕ̇2

2c2
− 1

2

3∑

j=1

ϕ2
xj

− m2
0c

2ϕ2

2�2
− κϕ4

4
, (13.5)

then the Euler–Lagrange equation reads as
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ϕtt

c2
−

3∑

j=1

ϕxjxj +
m2

0c
2

�2
ϕ+ κϕ3 = 0. (13.6)

This is the so-called ϕ4-model (or the nonlinear Klein–Gordon equation).
The nonnegative real number κ is called the coupling constant. If κ = 0,
then we get the linear Klein–Gordon equation. The nonlinear Klein-Gordon
equation is a model for an uncharged spinless particle of mass m0 (e.g., a
meson). The κ-term models the self-interaction of the particle. Introducing
the wave operator � := 1

c2
∂2

∂t2 +Δ, the nonlinear Klein–Gordon equation can
be written as

�ϕ+
m2

0c
2

�2
ϕ+ κϕ3 = 0.

This equation can be obtained in the following way. The energy E of a rela-
tivistic particle with rest mass m0 and momentum vector p is given by the
Einstein relation

E2 = m2
0c

4 + c2p2.

Motivated by Schrödinger quantization, let us use the replacement

E ⇒ i�
∂

∂t
, p ⇒ −i�∂.

Hence �ϕ+ m2
0c2

�2 ϕ = 0. This is the linear Klein–Gordon equation.

13.7.2 The Magic Feynman Representation Formula

The fundamental generating functional Z(J) for the full correlation functions
is given by the magic Feynman formula

Z(J) = N
∫

F
eiS[ϕ]/� eiJ[ϕ]/� Dϕ. (13.7)

This is also called the global quantum action principle. Here, we set

J [ϕ] :=
∫

Ω

J(x)ϕ(x)d4x.

The normalization factor N is uniquely determined by the normalization con-
dition Z(0) = 1. Concerning the functional integral from (13.7), we integrate
over all possible classical fields ϕ which satisfy the same boundary condition
as in the principle of critical action (13.3). These classical fields ϕ form the
space F . Observe that the symbol Dϕ stands for a formal measure on the
function space F . Formula (13.7) is one of the most beautiful and most use-
ful formulas in theoretical physics. It relates the classical action of a physical
field ϕ to the full generating functional Z(J) which describes the quantum
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fluctuations of the corresponding quantized field. Therefore, we call formula
(13.7) the global quantum action principle (or the integral quantum action
principle).7

13.7.3 Perturbation Theory

Let us assume that the Lagrangian density has the form

L = Lfree + κLint

where κ is a sufficiently small nonnegative number called the coupling con-
stant. Here, Lfree and κLint describe the free field and the interaction, respec-
tively. Assume that the function Lint only depends on the field function ϕ,
but not on its partial derivatives. In the special case (13.5), the interaction
term κLint(ϕ) is equal to −κϕ4/4. Setting

Sfree[ϕ] :=
∫

Ω

Lfree(ϕ(x), ϕx(x), ϕ̇(x)) d4x

and Sint :=
∫

Ω
Lint(ϕ(x)) d4x, we get

S[ϕ] := Sfree[ϕ] + κSint[ϕ].

By (13.7), the free generating functional reads as

Zfree(J) = Nfree

∫

F
eiSfree[ϕ]/� eiJ[ϕ]/� Dϕ.

The normalization factor Nfree is uniquely determined by the normalization
condition Zfree(0) = 1. The key formula reads as

Z(J) = N exp
{
− i

�

∫

Ω

d4x · κLint

(
�

i
δ

δJ(x)

)}
Zfree(J). (13.8)

This formula shows us how to reduce the full generating functional to the
free generating functional. This means that the full correlation functions can
be computed by means of the free correlation functions. The normalization
factor N is uniquely determined by the normalization condition Z(0) = 1.
Observe that formula (13.8) is independent of the use of functional integrals.
7 In mathematics, measure integrals are denoted by

Z(J) = N
Z

F
eiS[ϕ]/� eiJ[ϕ]/� dμ[ϕ].

To simplify notation, physicists use the symbol Dϕ instead of dμ[ϕ]. Mnemon-
ically, the symbol Dϕ resembles the Leibniz notation,

R

f(x)dx, for classical
integrals. It was shown by Cameron (1960) that the Feynman functional integral
does not exist as a measure integral, in the sense of mathematics. For the the-
ory of functional integrals, we recommend Roepstorff (1996), Grosche and Steiner
(1998) (handbook), Johnson and Lapidus (2000), Klauder (2000), Chaichian and
Demichev (2001), Vols. 1, 2.
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Fig. 13.2. Critical Feynman diagrams in quantum electrodynamics

13.7.4 Renormalization

As we will show in Volume II on quantum electrodynamics, there are ap-
proximations obtained by perturbation theory which are in good agreement
with physical experiments. For example, this concerns Compton scattering
(see the Feynman diagram in Fig. 13.1(a) on page 749.) However, there are
also processes which lead to divergent expressions in low-order perturbation
theory. Typical processes of this kind in quantum electrodynamics are pic-
tured in Fig. 13.2. In order to extract values from the divergent expression
which coincide with those values obtained in physical experiments, one has
to use the methods of renormalization theory (see Sect. 15.4).

13.7.5 Transition Amplitudes

Fix the finite time interval [s, t]. We are given the classical field ϕ0 = ϕ0(x)
at the initial time s and the classical field ϕ1 = ϕ1(x) at the final time t. We
assume that there exists a Hamiltonian operator (energy operator) H to the
quantized version of the classical system with the action S. We are interested
in the transition probability

|〈ϕ1|e−iH(t−s)/�|ϕ0〉|2

from the quantum state ϕ0 at time s to the quantum state ϕ1 at time t.
Feynman’s main hypothesis tells us that we have the key formula

〈ϕ1|e−iH(t−s)/�|ϕ0〉 =
∫

F
eiS[ϕ]/� Dϕ. (13.9)

Here, the functional integral sums over all classical fields ϕ = ϕ(x, τ) which
satisfy the boundary conditions

ϕ(x, s) = ϕ0(x), ϕ(x, t) = ϕ1(x) for all x ∈ R
3

at time s and t, respectively. The inner product 〈ϕ1|e−i(t−s)H/�ϕ0〉 is called
the transition amplitude. It turns out that transition amplitudes play a crucial
role in quantum field theory. The importance of transition amplitudes for the
computation of quantum processes was emphasized by Feynman in the 1940s.
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13.7.6 The Magic Trace Formula

In statistical physics, the trace of operators plays a crucial role. Let us discuss
the key formulas.

Propagator. For the trace of the operator e−i(t−s)H/�, we will use the
formula

tr e−iH(t−s)/� =
∫

Fperiodic

eiS[ϕ]/� Dϕ. (13.10)

Here, the functional integral sums over all classical fields ϕ which satisfy the
following periodicity condition:

ϕ(x, s) = ϕ(x, t) for all x ∈ R
3.

Formula (13.10) is motivated by applying a formal limit to the rigorous trace
formula (7.87).

Statistical physics. Replacing i/� by 1/�, we get

tr e−H/kT =
∫

Fperiodic

eS[ϕ]/� Dϕ. (13.11)

Here, the temperature T is equal to �/k(t−s) where k denotes the Boltzmann
constant. In other words, the passage from the propagator to the partition
function corresponds to the replacement

i(t− s)
�

⇒ 1
kT

(13.12)

which sends imaginary time to inverse temperature. Planck’s quantum of
action, �, and the Boltzmann constant, k, guarantee that the quantities have
the correct physical dimensions.

The fundamental transformation (13.12) is responsible for the close
connection between quantum field theory and statistical physics.

Summarizing, the three key formulas (13.9), (13.10), and (13.11) above relate
the action S of the classical field ϕ to the Hamiltonian operator H of the
corresponding quantized field. Observe that the key formulas do not give us
the Hamiltonian operator H itself, but only the transition probabilities as
an averaging over classical fields. However, this is very useful for computing
physical effects. A special model will be considered in Sect. 13.8.3.

The reader should observe that in quantum field theory, one has to dis-
tinguish between

(i) processes which are independent of temperature (e.g., scattering processes
in particle accelerators) and

(ii) processes which critically depend on the temperature (e.g., processes in
stars or in the early universe).

In case (ii), we speak of quantum fields at finite temperature.
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13.8 Quantum Field Theory at Finite Temperature

In mathematics and physics, many-particle systems are described by gen-
erating functions. Physicists call them partition functions.

Folklore

What happens when ordinary matter is so greatly compressed that the
electrons form a relativistic degenerate gas, as in a white dwarf? What
happens when the matter is compressed even further so that atomic nuclei
overlap to form superdense nuclear matter, as in a neutron star? What
happens when nuclear matter is heated to such great temperatures that
the nucleons and pions melt into quarks and gluons, as in high-energy
nucleus-nucleus collisions? What happened to the spontaneous symmetry
breaking of the unified theory of the weak and electromagnetic interactions
during the big bang? Questions such as these have been fascinated me for
the past ten years. One reason is that a study of such systems involves sta-
tistical physics, elementary particle physics, nuclear physics, astrophysics,
and cosmology, all of which I find interesting.

Joseph Kapusta, 1993
Finite-Temperature Field Theory8

Quantum statistics concerns many-particle systems (e.g., gases, systems of
elementary particles, condensed matter). We want to show that the theory of
such systems is governed by a single function, namely, the partition function
Z. Both

• the generating functional Z(J) (see Sect. 13.7.2) and
• the partition function Z (see Sect. 13.8.3)

can be represented by functional integrals. This underlines the close relation
between quantum field theory and statistical physics. In order to emphasize
this relationship, physicists use the same symbol Z.9 Therefore, generating
functionals Z(J) are also called partition functionals. Interesting physical
applications will be considered in the later volumes.

We have seen in Chap. 6 that the notion of partition function also plays
a fundamental role in mathematics, for example, in number theory. Edward
Witten uses partition functions in an ingenious manner in order to get deep
insight into mathematics by using models motivated by physics.

13.8.1 The Partition Function

The general scheme of quantum statistics. Many-particle quantum sys-
tems are described by two operators in a Hilbert space, namely,

• the energy operator H (also called Hamiltonian), and
• the particle number operator N .
8 Cambridge University Press, 1993 (reprinted with permission).
9 Mnemonically, the symbol ‘Z’ refers to the German word ‘Zustandssumme’ which

means ‘partition function’.
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In addition, we use the following three real parameters:

• the absolute temperature T ,
• the chemical potential μ, and
• the size (volume) V of the system.

More generally, we want to describe s species of particles (e.g., electrons,
photons, etc.) Therefore, we use s particle number operators

N1, N2, . . . , Ns

along with the chemical potentials μ1, . . . , μs. Here, Nj refers to the jth
species of particles. We start with the statistical operator

�̂ := eβ(
Ps

j=1 μjNj−H). (13.13)

Here, β := 1/kT, where k denotes the Boltzmann constant. This yields both
the partition sum

Z := tr �̂ (13.14)

and von Neumann’s density operator � := �̂
Z .

Mean values of observables. The density operator � is related to the
measurements of physical observables. Let A and B be observables (i.e., self-
adjoint operators on the Hilbert space X). Then the mean value of the ob-
servable A measured in an experiment is given by

A := tr(�A).

This allows us to introduce the nonnegative mean fluctuation ΔA of the
observable A by setting

(ΔA)2 = (A−A)2.

In addition, we introduce the correlation coefficient

γ :=
(A−A)(B −B)

ΔA ·ΔB

of the two observables A and B. For a many-particle system related to the
operator-valued function ϕ = ϕ(x, t) of a quantum field, we set

Cn(x1, . . . , xn) := tr(�̂T {ϕ(x1)ϕ2(x) · · ·ϕ(xn)})

with xj := (xj , tj). The chronological operator T refers to time t1, . . . , tn.
This is called the n-point correlation function. Note that physicists use the
terms n-point correlation function, n-point Green’s function and n-point
Feynman propagator synonymously. We define
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• the mean energy E := tr(�H),
• the mean particle number, N j of the jth species,
• the entropy S = −k ln � = −k tr(� ln �), and
• the free energy F := E − TS.

Physical quantities. We want to show that all of the interesting physical
quantities of a many-particle system can be computed if we know its partition
function Z. To this end, we introduce the statistical potential

Γ (T, μ1, . . . , μs, V ) := −kT · lnZ(T, μ1, . . . , μs, V ).

The partition function Z, and hence Γ, depends on the variables T (temper-
ature), μ1, . . . , μs (chemical potentials) and V (volume). The corresponding
partial derivatives yield the following physical quantities:

• entropy: S = −ΓT ;
• mean particle numbers: N j = −Γμj , j = 1, . . . , s;
• pressure P = −ΓV ;
• free energy F = Γ +

∑s
j=1 μjN j ;

• mean (inner) energy E = F + TS;
• free enthalpy G = F + PV ;
• enthalpy: E + PV.

In the 19th century, these quantities were introduced first in phenomeno-
logical thermodynamics. The relations between these quantities and their
physical interpretation are thoroughly discussed in Zeidler (1986), Vol. IV,
p. 387.

Finite-dimensional prototype. Let |E1〉, . . . , |Em〉 be an orthonormal
basis of the complex Hilbert space X. We set

• energy operator: H :=
∑m

k=1 Ek|Ek〉;
• particle number operator Nj :=

∑m
k=1 njk|Ek〉 of the jth species where

j = 1, . . . , s;
• density operator: � :=

∑m
k=1 pk|Ek〉.

For the statistical operator, we get

�̂ = eβ(
Ps

j=1 μjNj−H) =
m∑

k=1

eβ(
Ps

j=1 μjnjk−Ek)|Ek〉〈Ek|.

This yields the partition sum

Z = tr �̂ =
m∑

k=1

eβ(
Ps

j=1 μjnjk−Ek)

and the density operator � = �̂
Z . Hence
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pk :=
eβ(
Ps

j=1 μjnjk−Ek)

Z
, k = 1, . . . ,m.

For the mean value of energy, we have

E =
m∑

k=1

Ekpk.

Similarly, the mean particle number of the jth species is given by

N j =
m∑

k=1

njkpk, j = 1, . . . , s.

For the state |Ek〉,

H|Ek〉 = Ek|Ek〉, Nj |Ek〉 = njk|Ek〉.

Here, k = 1, . . . ,m and j = 1, . . . , s. Intuitively, the state |Ek〉 describes one
particle of energy Ek. In this state, there are njk particles of the jth species.
The probability for realizing this situation is equal to pk. This will be studied
in greater detail along with physical applications in Volume IV on quantum
mathematics.

13.8.2 The Classical Hamiltonian Approach

As preparation for the magic Feynman formula in Sect. 13.8.3, let us sketch
the passage from the Lagrangian approach to the Hamiltonian approach.10

Special case. Choose the Lagrangian density L from the nonlinear Klein–
Gordon model (13.5). Explicitly,

L(ϕ,ϕx, ϕ̇) :=
ϕ̇2

2c2
− ϕ2

x

2
− m2

0c
2ϕ2

2�2
− κϕ4

4
.

We proceed in the following steps:

(I) Legendre transformation: Define the generalized momentum density

π :=
∂L
∂ϕ̇

.

Explicitly, π = ϕ̇/c2. This allows us to eliminate the time derivative ϕ̇.
(II) The Hamiltonian density H: Define

H := πϕ̇− L(ϕ,ϕx, ϕ̇)

10 We will show in Volume II that symplectic geometry plays a crucial role in the
Hamiltonian approach to physics.
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where we eliminate ϕ̇ with the help of π. Hence H only depends on ϕ,ϕx,
and π. Explicitly,

H(ϕ, π) =
c2π2

2
+
ϕ2

x

2
+
m2

0c
2ϕ2

2�2
+
κϕ4

4
.

We set
H(t;ϕ, π) :=

∫

C
H(ϕ(x, t), ϕx(x, t), π(x, t)) d3x.

This is the total energy of the field in the 3-dimensional open bounded
set C at time t. Thus, H represents the energy density of the field. The
energy density is positive, as expected.

(III) The Hamiltonian equations of motion reads as

π̇(x, t) = −δH(t;ϕ, π)
δϕ(x)

, ϕ̇(x, t) =
δH(t;ϕ, π)
δπ(x)

.

Here, we use the local functional derivative at the point x,

δH(t;ϕ, π)
δϕ(x)

:=
∂H(P )
∂ϕ

− ∂

∂x
∂H(P )
∂ϕx

, (13.15)

along with P := (ϕ(x), ϕx(x), π(x)) and x := (x, t). Replacing ϕ by π,
we get the corresponding local functional derivative with respect to π.
Explicitly,

π̇ = −m2
0c

2

�2
− κϕ3 + ϕxx, ϕ̇ = c2π.

This is equivalent to the nonlinear Klein–Gordon equation (13.6).
(iv) The local functional derivative of the Hamiltonian density H is obtained

as follows. Consider an arbitrary smooth test function h = h(x) which has
compact support on the 3-dimensional bounded open set C. Differentiate
the functional H(t;ϕ+ εh, π) with respect to the real parameter ε at the
point ε = 0. Using integration by parts, we get

δH(t;ϕ, π)
δϕ

(h) =
∫

C

δH(t;ϕ, π)
δϕ(x)

· h(x) d3x

where δH(t;ϕ,π)
δϕ(x) coincides with (13.15).

13.8.3 The Magic Feynman Functional Integral for the Partition
Function

The partition function is given by the following magic formula

Z(T, μ) =
∫

Pperiodic

eS[ϕ,π;T,μ] DϕDπ. (13.16)
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Here, T is the absolute temperature, μ is the chemical potential, and k is the
Boltzmann constant. Furthermore, we set

S[ϕ, π;T, μ] :=
∫ 1/kT

0

dτ

(∫

C
π · i

�

∂ϕ

∂τ
−H(ϕ,ϕx, π) + μN (ϕ, π) d3x

)

.

Here, the arguments of the functions ϕ and π are (x, τ). The function N is
the particle number density, that is,

N [ϕ, π] :=
∫

C
N (ϕ(x), π(x))d3x

is the number of particles in the 3-dimensional set C. The functional integral
from (13.16) refers to the function space Pperiodic which consists of all the
functions

ϕ, π : C × R → R

of the argument (x, τ). In addition, we assume that ϕ is periodic with respect
to the variable τ , that is,

ϕ(x, 0) = ϕ

(

x,
1
kT

)

for all x ∈ C.

Let us motivate the magic Feynman formula (13.16).

(a) The action functional for the classical field: In terms of classical field
theory, the action functional reads as follows:

S[ϕ, π] =
∫ t1

t0

dt

(∫

C
π
∂ϕ

∂t
−H(ϕ, π) d3x.

)

To simplify notation, we set t0 := 0. This yields the magic Feynman
functional integral

Z =
∫

P
eiS[ϕ,π]/� DϕDπ (13.17)

where we sum over all functions ϕ and π which satisfy appropriate side
conditions to be specified in (d) below.

(b) The passage from time t to temperature T : Motivated by (13.12) on page
758, we use the replacement

it
�
⇒ 1

kT
.

To this end, we set t := −i�τ with τ := 1/kT. This yields

S[ϕ, π] = −i�
∫ 1/kT

0

dτ

(∫

C
π · i

�

∂ϕ

∂τ
−H(ϕ, π) d3x

)

.
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(c) The passage from fixed particle number to variable particle number: Mo-
tivated by the basic formula (13.13) of statistical physics on page 760,
we use the replacement

energy ⇒ energy − μ · particle number.

For the density functions, this means H ⇒ H− μN .
(d) The trace formula and the periodicity condition for the field ϕ : Accord-

ing to (13.14) on page 760, the partition function corresponds to some
trace. Motivated by the magic trace formula (13.10) on page 758, we use
periodic fields ϕ. Summarizing this, the desired magic formula (13.16) is
obtained from (13.17).

Applications of the magic partition function formula (13.16) will be consid-
ered in later volumes. We also refer to the textbooks by Feynman (1998)
(14th edition) and Kapusta (1989).

13.8.4 The Thermodynamic Limit

In order to investigate phase transitions, one has to study the so-called ther-
modynamic limit where the volume of the system goes to infinity. Typical
thermodynamic quantities of the system then become singular, which indi-
cates the appearance of a phase transition.



14. The Response Approach

All dynamical information about a quantum system may be extracted by
studying the response of the ground state (vacuum state) of the field to
an arbitrary external source J .

Julian Schwinger, 19701

The two magic formulas in quantum field theory. It is fascinating that
the huge field of quantum field theory can be based on two magic formulas,
namely,

(QA) the quantum action reduction formula for full correlation functions,
(LSZ) and the Lehmann–Symanzik–Zimmermann reduction formula for the

scattering matrix (also called S-matrix).

Since the 1950s, physicists have discovered different ways of formulating these
two magic formulas.

In this chapter, our basic strategy is to generalize the rigorous finite-
dimensional results from Sect. 7.24 to infinite dimensions by carrying
out a formal limit.

In Sect. 7.24 on page 440, we started with discrete functional integrals in
order to derive the two magic formulas (QA) and (LSZ) by means of the
principle of stationary phase.

In this chapter, we will start with the two magic formulas (QA) and
(LSZ) as basic principles.

The situation is similar to Newton’s equation of motion in mechanics and
to Maxwell’s equations in electrodynamics. It is possible to motivate these
equations by using physical and formal mathematical arguments; but one
can also postulate the validity of these equations as the starting point of the
theory. The prototypes of (QA) and (LSZ) can be found in the following two
basic papers:

M. Gell-Mann and F. Low, Bound states in quantum field theory. Phys.
Rev. 84 (1951), 350–354.

1 The importance of the source approach to quantum field theory is emphasized in
J. Schwinger, Sources, Particles, and Fields, Vols. 1–3, Addison–Wesley, Reading,
Massachusetts, 1970.

E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics,
c© Springer-Verlag Berlin Heidelberg 2006, Corrected 2nd printing 2009
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H. Lehmann, K. Symanzik, and W. Zimmermann, The formulation of

quantized field theories, Nuovo Cimento 1 (1955), 205–225 and 6 (1957),

319–333.

In the first paper, Gell-Mann and Low reduced the computation of the full
correlation functions to the free correlation functions. The paper by Lehmann,
Symanzik, and Zimmermann showed how to reduce Heisenberg’s S-matrix to
the full correlation functions. In fact, this chapter combines several important
contributions made to quantum field theory by Feynman, Schwinger, Dyson,
Gell-Mann and Low. We will proceed as follows.

(i) We start with the classical principle of critical action

S[ϕ] = critical!

Here, the action depends on an additional source term which describes the
influence of an external source on the quantum system. For our approach,
it is crucial that the action of the free field is a quadratic form. This allows
us then to apply the methods of Gaussian integrals.

(ii) From (i) we get the classical field equation (Euler–Lagrange equation)

Dϕ = −κLint(ϕ) − J

by using the classical calculus of variations.
(iii) Switching off the interaction by setting κ = 0, we get the so-called

response equation,

Dϕ = −J, (14.1)

which tells us the response ϕ of the classical field ϕ in the presence of an
arbitrary external source J. We replace this by the regularized equation

(D + iεI)ϕ = −J (14.2)

with the small regularization parameter ε > 0, and we assume that the
inverse operator (D + iεI)−1 exists. Setting Rε := −(D + iεI)−1, the
unique solution of the response equation reads as ϕ = RεJ. In addition,
we assume that the response operator can be represented by the following
integral formula

ϕ(x) =
∫

R4
Rε(x− y)J(y)d4y

for the space-time points x = (x, t). The kernel Rε is called the response
function. Up to some normalization factor, the response function coin-
cides with the Feynman propagator.2

2 In gauge field theories, one has to modify the classical action by adding a
Lagrange-multiplier term in order to guarantee the existence of the inverse op-
erator (D + iεI)−1.
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(iv) Interestingly enough, the response function Rε knows all about the quan-
tized field, which differs from the classical field by quantum fluctuations.
In fact, from the response function Rε we get the free 2-point correlation
function

C2,free(x, y) := −i�Rε(x− y), x, y ∈ M
4.

The magic quantum action reduction formula (QA) then tells us how to
obtain the full n-point correlation function, Cn, of the quantum field from
the 2-point free correlation function, C2,free. Finally, the magic reduction
formula (LSZ) tells us how to reduce the S-matrix to the full correlation
functions, Cn, and the free particle functions which are solutions of the
classical free Euler–Lagrange equations.3

(v) From the S-matrix we will obtain the cross sections of scattering pro-
cesses.

(vi) In each order of perturbation theory with respect to powers of the cou-
pling constant κ, the analytic expressions of the magic formulas (QA)
and (LSZ) can be graphically represented by Feynman diagrams.

The physical idea behind this approach is the following one. The physics of a
quantum field differs from the physics of the corresponding classical field by
additional quantum fluctuations of the ground state of the quantum field.

Physicists use the following intuitive picture: quantum fluctuations
are caused by virtual particles which jump from the ground state (also
called vacuum state) of the quantum field to the real world and back
to the ground state. These particles are called virtual, since they vi-
olate energy-momentum conservation. In the language of Feynman
diagrams, the virtual particles correspond to internal lines.

By the method of moments, we have to compute the moments of the stochas-
tic quantum fluctuations of the ground state. To this end, we use perturbed
infinite-dimensional Gaussian integrals where the Gaussian kernel depends
on the classical action and the external source. The perturbation of the ideal
Gaussian is governed by the interaction term of the Lagrangian density. This
yields the global quantum action principle. The moments are given by the
n-point correlation functions, Cn.

It is crucial that the magic formulas (QA) and (LSZ) have to be supple-
mented by the following procedures.

(a) Causality and response: The response function Rε refers not to the clas-
sical Euler–Lagrange equation for the motion of the field, but to the
regularized Euler–Lagrange equation (14.2). This guarantees the validity

3 In Chap. 15, we will introduce the full n-point Green’s function Gn. It turns
out that Gn coincides with the full n-point correlation function Cn. Therefore,
physicists use synonymously the terms ‘n-point correlation function’ and ‘n-point
Green’s function.’
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of the causality principle and uniquely determines the response function
in Fourier space.

(b) Renormalization: As a rule, the magic formulas (QA) and (LSZ) in-
clude divergent integrals. The fundamental method of renormalization
extracts physical information from these divergent integrals. The idea of
the Bogoliubov–Parasiuk–Hepp–Zimmermann (BPHZ) renormalization
method is to regularize the divergent integrals by adding counterterms
to the Lagrangian and by changing the original parameters4 into effec-
tive parameters which can be measured in physical experiments (e.g.,
the effective electron mass, the effective electron charge, and the effective
coupling constant in quantum electrodynamics). Effective parameters are
also called renormalized parameters.

(c) The Faddeev–Popov–De Witt technique in gauge theory: The Standard
Model in particle physics represents a gauge theory. In the quantization
of gauge theories, the presence of the local symmetry group (gauge group)
causes difficulties. According to Faddeev and Popov, in order to overcome
the difficulties one has to modify the generating functional by taking the
side condition (gauge condition) into account. This leads to additional
fields called ghosts which will be discussed in Sect. 16.6.

Notation. In the last chapters of this book, we will use the energetic
system of units, that is, we simplify the formulas by setting c = � = ε0 := 1.
Moreover, we will use the following terminology.

(i) Inertial system: We choose a fixed inertial system with right-handed
Cartesian position coordinates x1, x2, x3, and time t. The Cartesian co-
ordinates refer to a fixed right-handed orthonormal system e1, e2, e3. For
the position vector,

x = x1e1 + x2e2 + x3e3,

we briefly write x = xkek. That is, we sum over the upper and lower
Latin index k from 1 to 3. This is a special case of the Einstein summation
convention described below.

(ii) Space-time point: Set x0 := t, and

x = (x0, x1, x2, x3).

Furthermore, introduce the partial derivative ∂μf := ∂f
∂xμ .

(iii) The Minkowski metric: The final goal is to formulate physics in such a
way that it respects Einstein’s principle of special relativity, that is, the
physical processes do not depend on the choice of the inertial system.
To this end, in terms of mathematics, one has to use the methods of the
theory of invariants applied to the Poincaré group. This will be studied
in Volume III on general gauge theory. At this point, we only emphasize

4 The original parameters are also called bare parameters.
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that it is important to distinguish between upper and lower indices. For
example, we define

x1 := −x1, x2 := −x2, x3 := −x3, x0 := x0. (14.3)

To systemize this, we introduce the Minkowski symbol ημν for the indices
μ, ν = 0, 1, 2, 3. Explicitly,

η00 := 1, η11 = η22 = η33 := −1,

along with ημν = 0 if μ �= ν. Moreover, we set ημν := ημν for all μ, ν. The
space of all space-time points x coincides with R

4. However, in order to
indicate that there is an additional structure induced by the Minkowski
symbol (ημν), we will denote the space of space-time points x by the
symbol M

4. This refers to Minkowski (1864–1909). In 1908 he emphasized
the role of non-classical geometry for describing the structure of the four-
dimensional space-time. Nowadays we use the terms Minkowski space and
Minkowski geometry.

(iv) The Einstein summation convention: We sum over equal upper and lower
Greek indices from 0 to 3. For example,

aμb
μ :=

3∑

μ=0

aμb
μ.

In particular, we will use the Minkowski symbol ημν in order to lift and
to lower indices. For example, xμ := ημνx

ν , and

∂μ := ημν∂ν , ∂μ = ημν∂
ν , Fμν := ημαηνβFαβ .

Furthermore, if not stated otherwise, we sum over equal upper and lower
Latin indices from 1 to 3. In particular, for the electric field E and the
magnetic field B, we write E = Ekek =

∑3
k=1 E

kek and B = Bkek.
(v) The principle of the right index picture: This very convenient principle

tells us that an expression represents an invariant under the transforma-
tions of the Poincaré group if it has no free indices. For example, set

xy := xμyμ.

Here, we sum over the upper and lower index μ. There is no free index
anymore. Consequently, the inner product xy is an invariant under the
Poincaré group. Such invariants are independent of the choice of the
inertial system, and hence they possess a physical meaning. As another
example, note that

FμνF
μν

has no free index, and hence it is an invariant under the Poincaré group.
We will show below that this is equal to B2 − E2. More generally, if an
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equation has the right index picture, that is, the free indices on both
sides of the equation are the same, then this equation is relativistically
invariant, that is, it possesses the right transformation behavior under a
change of inertial systems. For example, the equation

∂μ∂
μAν = Jν

QED (14.4)

has the right index picture because we have the free index ν on both
sides of the equation. Equation (14.4) is one of the equations of motion
in quantum electrodynamics to be considered in Sect. 14.3.

The principle of the right index picture exists for general transfor-
mations including transformations of tensors, spinors and fiber
bundles.

This principle is very useful for physics; it will be justified in Volume III
on gauge theory.

14.1 The Fourier–Minkowski Transform

In quantum field theory, it is very useful to pass to momentum space via
Fourier–Minkowski transform.

Folklore

For the convenience of the reader, let us summarize the most important
properties of the Fourier–Minkowski transform in the energetic system of
units.

Definition. Recall that x = (x, t). Similarly, p = (p, E), and

px := Et− px.

For each function g ∈ S(M4), the Fourier–Minkowski transform is defined by

(FMg)(p) :=
α

(2π)2

∫

M4
g(x)eipx d4x, p ∈ M

4 (14.5)

along with the inverse transformation5

g(x) =
1

(2π)2α

∫

M4
(FMg)(p) e−ipx d4p, x ∈ M

4.

The normalization factor α will be fixed in (14.12) below. We also write the
symbol f̂ for the Fourier–Minkowski transform FMf of the function f . This
transformation has the following properties:
5 Recall that the spaces M

4 and R
4 coincide as linear spaces. Therefore, we have

S(M4) = S(R4) and L2(M
4) = L2(R

4).
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(i) The operator FM : S(M4) → S(M4) is linear, bijective, and sequentially
continuous.

(ii) Parseval equation: For all g, h ∈ S(M4),

〈FMg|FMh〉L2(M4) = α2〈g|h〉L2(M4). (14.6)

Here, we use the inner product 〈g|h〉L2(M4) :=
∫

M4 g(x)†h(x)d4x.
(iii) Duality: For all g, h ∈ S(M4),

〈FMg|h〉 = 〈g|FMh〉. (14.7)

Here, we introduce the duality pairing 〈g|h〉 :=
∫

M4 g(x)h(x)d4x. In other
words, the operator FM is self-dual with respect to the duality pairing
〈.|.〉. For all f, ϕ ∈ S(M4), this implies

∫

M4
f(x)ϕ(x)d4x =

∫

M4
(FMf)(p)(F−1

M ϕ)(p)d4p.

Equivalently,
∫

M4
f(x)ϕ(x)d4x =

1
α2

∫

M4
f̂(p)ĝ(−p)d4p. (14.8)

(iv) Partial derivatives: For all p ∈ M
4 and all μ = 0, 1, 2, 3,

FM (i∂μg)(p) = pμ(FMg)(p).

Similarly, (F−1
M )(i∂μg)(p) = −pμ(F−1

M g)(p).
(v) Convolution: For all g, h ∈ S(R4),

FM (g ∗ h) =
(2π)2

α
(FMg)(FMh). (14.9)

(vi) Dirac’s delta distribution:

FMδ =
α

(2π)2
.

This means that for all test functions ϕ ∈ S(M4), we have δ(ϕ) = ϕ(0)
along with

(FMδ)(ϕ) =
∫

M4

α

(2π)2
ϕ(x) d4x

and
δ(ϕ) =

∫

M4

α

(2π)2
(F−1

M ϕ)(p) d4p.

This is a special case of the general definition (14.10) below.
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Let us study the simple relation between the Euclidean Fourier transform, F ,
and the Fourier–Minkowski transform, FM . By Sect. 10.3.3, the Euclidean
Fourier transform looks like

(Fg)(p) =
1

(2π)2

∫

M4
g(x) e−iEte−ipxd4x.

Define the time reflection operator operator R(x, t) := (x,−t). Since

(FRg)(p) =
1

(2π)2

∫

M4
g(x,−t)e−iEte−ipxd4x

=
1

(2π)2

∫

M4
g(x, t)eiEte−ipxd4x,

we obtain
FMg = αFRg, g ∈ S(R4).

Therefore, the statements (i)-(vi) above are immediate consequences of the
properties of the Euclidean Fourier transform, F .

The Fourier–Minkowski transform, FMT, of a tempered distribution T ∈
S ′(R4) is defined by

(FMT )(ϕ) := T (FMϕ) for all ϕ ∈ S(R4). (14.10)

As an example, fix a continuous rational function f̂ : M
4 → C. Define

T (ϕ) :=
∫

M4
f̂(p)(F−1

M ϕ)(p) d4p

for all test functions ϕ ∈ S(R4). Equivalently,

T (ϕ) :=
1
α2

∫

M4
f̂(p)ϕ̂(−p) d4p. (14.11)

Then, T is a tempered distribution, T ∈ S ′(R4), and the Fourier–Minkowski
transform of T corresponds to the function f̂ . Explicitly,

(FMT )(ϕ) = T (FMϕ) =
∫

R4
f̂(p)ϕ(p)d4p, for all ϕ ∈ S(R4).

Convention. In this monograph, the normalization factor α of the
Fourier–Minkowski transform (14.5) is chosen as

α := 1. (14.12)

By (i) above, this convention guarantees a simple form of the Parseval equa-
tion. This implies that the operator FM can be uniquely continued to a
unitary operator
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FM : L2(M4) → L2(M4)

on the Hilbert space L2(M4). Let us note that physicists frequently use the
convention α = (2π)2. In this case, the convolution rule becomes simple, but
the unitarity of the Fourier transform is destroyed. In quantum theory, uni-
tary operators preserve the physics. In particular, probabilities, mean values,
and mean fluctuations are preserved. This underlines the importance of uni-
tary operators in quantum theory. The disadvantage of our convention is that
the Feynman propagators get additional factors in momentum space.

14.2 The ϕ4-Model

We are going to study the nonlinear Klein–Gordon equation

�ϕ+m2
0ϕ+ 4κϕ3 = J (14.13)

on an inertial system. Explicitly, �ϕ := ϕtt + Δϕ = ϕtt −
∑3

j=1 ϕxjxj . We
are looking for a function ϕ : M

4 → R. This is a model for an uncharged
meson with spin zero and rest mass m0 > 0. The constant κ ≥ 0 is called the
coupling constant of the self-interaction of the particle. The given smooth
function J : R

4 → R describes an external source. Let κ = 0. For a given
momentum vector p, define the energy

Ep :=
√

p2 +m2
0.

Then the function

up(x, t) := const · ei(px−Ept) (14.14)

is a solution of equation (14.13) with κ = 0. This function describes a free
meson of rest mass m0, momentum vector p, and energy Ep. In particular,
if p = 0, then E0 = m0.

Now choose κ = 0, and let μ > 0. The damped oscillation

ϕ(t) = const · e−i(E0−iμ)t = const · e−iE0te−μt, t ∈ R

is a solution of the equation

�ϕ+ (m0 − iμ)2ϕ = 0.

Setting ε := 2μm0 and assuming that ε is small, then we get the approxima-
tive equation

�ϕ+m2
0ϕ− iεϕ = 0.

This argument motivates the negative sign of the regularizing term −iεϕ.
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14.2.1 The Classical Principle of Critical Action

Let Ω be a nonempty bounded open subset of R
4. Choose ε > 0. The action

functional of the meson reads as

S[ϕ, J ] :=
∫

Ω

L(ϕ, ∂ϕ, J) d4x

with the Lagrangian density

L(ϕ, ∂ϕ, J) :=
1
2
ϕ(D + iε)ϕ+ κLint(ϕ) + ϕJ.

Here, we set D := −� −m2
0, and Lint(ϕ) := −ϕ4. The variational problem

S[ϕ, J ] = critical! (14.15)

with the boundary condition ϕ = 0 on ∂Ω is called the principle of critical
action for the meson. By Theorem 7.42 on page 463, each smooth solution of
(14.15) satisfies the following regularized meson equation

�ϕ+m2
0ϕ− iεϕ+ 4κϕ3 = J. (14.16)

Integration by parts yields

S[ϕ, J ] =
∫

Ω

(
1
2
∂μϕ∂

μϕ+ κLint(ϕ) +
1
2
iεϕ2 + ϕJ

)

d4x.

14.2.2 The Response Function and the Feynman Propagator

In physics, use the right approximations and the right limits.
The golden rule

Switching off the interaction by setting κ = 0, we get the so-called response
equation

�ϕ+m2
0ϕ− iεϕ = J. (14.17)

It is our goal to study this equation in rigorous terms by using the theory of
tempered distributions and the Fourier–Minkowski transform. To motivate
this, let us first apply formal arguments.

Formal response kernel function. We want to use the formal Fourier–
Minkowski transform in order to solve equation (14.17). We will show in a
formal manner that the solution of (14.17) can be written as

ϕ(x) =
∫

M4
Rε(x− y)J(y)d4y, x ∈ M

4 (14.18)

with the response kernel function
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Rε(x) := − 1
(2π)4

∫

M4

e−ipx

p2 −m2
0 + iε

d4p. (14.19)

This function is also called the response function for mesons. The formal
proof goes like this. We will use the Fourier–Minkowski transform from Sect.
14.1. Define ϕ̂ := FMϕ, Ĵ := FMJ, and R̂ε := FMRε Since

FM (−∂μ∂
μϕ) = pμp

μϕ̂(p) = p2ϕ̂(p),

it follows from the response equation (14.17) that

(−p2 +m2
0 − iε)ϕ̂(p) = Ĵ(p).

Hence

ϕ̂(p) = − Ĵ(p)
p2 −m2

0 + iε
.

Applying the convolution formula (14.9) to (14.18), we obtain

ϕ̂(p) = (2π)2R̂ε(p)Ĵ(p).

Therefore,

R̂ε(p) = − 1
(2π)2(p2 −m2

0 + iε)
. (14.20)

This implies (14.19). Choosing J(x) := δ4(x), we get formally that

(� +m2
0 − iε)Rε(x) = δ4(x). (14.21)

The Feynman propagator and the free 2-point correlation func-
tion. Set

GF,m0,ε(x) := −iRε(x)

along with

C2,free,ε(x, y) := GF,m0,ε(x− y), x, y ∈ M
4.

The function GF,m0,ε is called the Feynman propagator of the regularized
Klein–Gordon equation (or the meson propagator).6 Note that the definition
of the free 2-point correlation function C2,free,ε is motivated by the discrete
ϕ4-model on page 468. By (14.19),

GF,m0,ε(x) =
i

(2π)4

∫

M4

e−ipx

p2 −m2
0 + iε

d4p. (14.22)

6 Unfortunately, for historical reasons, there are different definitions of the Feyn-
man propagator in the literature which differ by the factor i.
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The Fourier–Minkowski transform of GF,m0,ε is given by

ĜF,m0,ε(p) = −iR̂ε(p) =
i

(2π)2(p2 −m2
0 + iε)

. (14.23)

It follows formally from the duality relation (14.8) that
∫

M4
GF,m0,ε(x)ϕ(x)d4x =

∫

M4

iϕ̂(−p)
(2π)2(p2 −m2

0 + iε)
d4p (14.24)

for all test functions ϕ ∈ S(R4).
Warning to the reader. Observe that formulas (14.19), (14.22) look

very elegantly, but they are meaningless, since the integrals do not exist in
the classical sense. In fact, the integrands decrease too slowly at infinity.

In contrast to this bad behavior in position space, both Rε and GF,m0,ε

are well-defined objects in momentum space, by (14.20).

This fact can be used in order to define Rε and GF,m0,ε as well-defined tem-
pered distributions on position space. In particular, we will show that for-
mulas (14.19), (14.22) are valid in the theory of tempered distributions. In
order to find the rigorous approach, we will use formulas (14.19), (14.22) as
mnemonic tools.

The rigorous response operator. Setting D := −�−m2
0, the response

equation (14.17) reads as

(D + iε)ϕ = −J.

If ϕ ∈ S(R4), then (D + iεI)ϕ ∈ S(R4).Therefore the linear operator

D + iεI : S(R4) → S(R4)

is well-defined.

Proposition 14.1 The operator D + iεI is invertible.

Proof. We will use the Fourier–Minkowski transform along with the following
diagram:

S(R4)

FM

��

D+iεI �� S(R4)
−Rε

��

S(R4)
(D+iεI)b�� S(R4)

F−1
M

��

− bRε

��

(14.25)

(I) Fourier space (momentum space). For each function ϕ̂ ∈ S(R4), define

(R̂εϕ̂)(p) := − ϕ̂(p)
p2 −m2

0 + iε
, p ∈ M

4.
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The linear operator R̂ε : S(R4) → S(R4) is well-defined and invertible. For
the inverse operator, we have

(R̂−1
ε Ĵ)(p) = −(p2 −m2

0 + iε)Ĵ(p), p ∈ M
4.

This corresponds to the operator −(D + iεI) in momentum space.
(II) Original position space. Using the inverse Fourier–Minkowski trans-

form, we define
Rε := F−1

M R̂εFM .

Obviously, (D + iεI) = −R−1
ε . Hence Rε = −(D + iεI)−1. �

The rigorous response distribution. We now want to show that the
response kernel function x �→ Rε(x) and hence the Feynman propagator

x �→ GF,m0,ε(x)

exist as tempered distributions, and the response integral relation (14.18) is
to be understood in the sense of the convolution of distributions. Motivated
by (14.24), we define

GF,m0,ε(ϕ) :=
∫

M4

iϕ̂(−p)
(2π)2(p2 −m2

0 + iε)
d4p (14.26)

for all test functions ϕ ∈ S(R4). This is a tempered distribution. In addition,
we define the tempered response distribution by setting

Rε := iGF,m0 .

According to (14.11), taking α = 1, the Fourier-Minkowski transforms of the
tempered distributions GF,m0,ε and Rε are given by (14.23).

Theorem 14.2 (i) The tempered distribution Rε is a fundamental solution
of the special response equation,

(� +m2
0 − iε)Rε = δ.

(ii) For each source function J ∈ D(R4), the distribution

ϕ := Rε ∗ J (14.27)

is a solution of the response equation: (� +m2
0 − iε)ϕ = J.

Proof. Ad (i). Obviously,

−
∫

M4

{−p2 +m2
0 − iε}(F−1

M ϕ)(p)
(2π)2(p2 −m2

0 + iε)
d4p

is equal to
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1
(2π)2

∫

M4
(F−1

M ϕ)(p) d4p = ϕ(0).

Note that the Fourier transform sends differential operators to multiplication
operators. Explicitly,

F−1
M ({� +m2

0 − iε}ϕ) = {−p2 +m2
0 − iε}F−1

M ϕ

at the point p. Noting that (F−1
M ϕ)(p) = ϕ̂(−p) it follows from (14.26) that

Rε({� +m2
0 − iε}ϕ) = ϕ(0) = δ(ϕ)

for all test functions ϕ ∈ S(R4). This is the claim.
Ad (ii). This is a special case of Theorem 11.27 on page 648. �

The rigorous Feynman propagator distribution. The distribution
GF,m0,ε depends on the regularizing parameter ε > 0. In order to obtain a
propagator distribution which is independent of ε, let us study the limit

GF,m0(ϕ) := lim
ε→+0

GF,m0,ε(ϕ) (14.28)

for all test functions ϕ ∈ S(R4). This is the limit in the space S ′(R4) of
tempered distributions. The idea is to use Schwinger’s integration trick

i
(2π)2(p2 −m2

0 + iε)
=

1
4(2π)2

∫ ∞

0

exp
{

i(p2 −m2
0 + iε)

4ξ

}
dξ

ξ2
.

In fact, if ε > 0 and a ∈ R, then the substitution η := 1/4ξ yields

1
4

∫ ∞

0

e−ε/4ξ eia/4ξ dξ

ξ2
= −

∫ ∞

0

e−εη eiaη dη =
4i

a+ iε
.

Note the appearance of the damping factor e−εη. Hence GF,m0,ε(ϕ) is equal
to the following integral

1
4(2π)2

∫

M4
d4p ϕ̂(p)

∫ ∞

0

exp
{

i(p2 −m2
0 + iε)

4ξ

}
dξ

ξ2

along with the Fourier–Minkowski transform ϕ̂(p) = (2π)−2
∫

M4 ϕ(x)eipxd4x.
For the proof of the following theorem, see Problem 14.13 on page 813.

Theorem 14.3 The limit (14.28) exists and defines the tempered distribution
GF,m0 . Explicitly,

GF,m0(ϕ) =
1

4πi

∫

M4
δ(t2 − x2)ϕ(x)d4x+ i

∫

M4
A(x)ϕ(x)d4x

with
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A(x) :=
m0θ(x2)
8π

√
x2

(
J1(m0

√
x2) − iN1(m0

√
x2)

)
+

+
im0 θ(−x2)
8π

√
−x2

(J1(im0

√
−x2) + iN1(im0

√
−x2))

where x = (x, t) and x2 := t2−x2. Here, J1 and N1 are Bessel and Neumann
functions, respectively, and θ denotes the Heaviside function.

The tempered distribution GF,m0 is called the Feynman propagator of the
Klein–Gordon equation (or the Feynman propagator for mesons). Note that
we define the square root by

√
−l := i

√
l if l > 0. Moreover, according to

Sect. 11.2.4 on page 598, we use the following convention
∫

M4
δ(t2 − x2)ϕ(x)d4x :=

∑

σ=±1

∫

R3

ϕ(x, σ||x||)
2||x|| d3x.

Mnemonically, we write

GF,m0(ϕ) =
∫

M4
GF,m0(x)ϕ(x)d4x

along with

GF,m0(x) :=
δ(x2)
4πi

+ iA(x).

This shows that in the position space, the main singularities of the distribu-
tion GF are concentrated on the light cone given by the equation t2−x2 = 0.
The Bessel and Neumann functions possess the following behavior near the
origin z = 0 in the complex plane:

J1(z) =
z

2
− z3

16
+O(z5), z → 0,

N1(z) = − 2
πz

+
z

π

(
ln
z

2
+ 1

)
+O(z3).

Consequently, for small values x2 = t2 − x2, we obtain

GF,m0(x) =
δ(x2)
4πi

+
im2

0θ(x
2)

16π
−

− 1
4π2x2

+
m2

0

8π2
ln
m0

√
|x2|

2
(14.29)

up to terms of higher order with respect to x2. This formula describes pre-
cisely the behavior of the Feynman propagator distribution near the light
cone.

Finally, let us introduce some notation which is frequently used. For each
tempered distribution, there exists the Fourier–Minkowski transform. Moti-
vated by the investigations above, the Fourier–Minkowski transform of the
tempered distribution GF,m0 is denoted by
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i
(2π)2(p2 −m2

0 + 0+i)
:= FM (GF,m0).

Applying the inverse transformation, we get

GF,m0 = F−1
M

(
i

(2π)2(p2 −m2
0 + 0+i)

)

.

Mnemonically, we write

GF,m0 =
i

(2π)4

∫

M4

e−ipx

p2 −m2
0 + 0+i

d4p. (14.30)

Furthermore, using the equality Rε = iGF,m0 along with Theorem 14.2, we
have

(� +m2
0)GF,m0 = −iδ. (14.31)

Singularities of the free 2-point correlation function. Motivated
by the limit ε → +0, we define the free 2-point correlation function of the
ϕ4-model by setting

C2,free(x, y) := GF,m0(x− y), x, y ∈ M
4.

If (x− y)2 = (t− τ)2 − (x− y)2 is small, then there arise singularities given
by (14.29). Explicitly,

C2,free(x, y) =
δ((x− y)2)

4πi
+

im2
0 θ((x− y)2)

16π
−

− 1
4π2(x− y)2

+
m2

0

8π2
ln
m0

√
|(x− y)2|
2

.

This is true for small values of (x − y)2 up to terms of higher order with
respect to (x − y)2. In other words, consider the quantum field ϕ at the
position x at time t and at the position y at time τ. Then the correlation of
the quantum field between these two events is very large if (t− τ)2− (x−y)2

is very small. In the limit case where (t− τ)2 − (x− y)2 = 0, the two events
can be connected by a light signal.

The singularities of the correlation function C2,free are related to
causality.

The vertex distribution. We define the free 2-point vertex distribution
by

V2,free(ϕ) :=
∫

M4
(p2 −m2

0)ϕ̂(−p) d4p
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for all test functions ϕ ∈ S(R4). Let us motivate this definition by using a
formal argument. Recall first the response equation

(� +m2
0 − iε)ϕ = J

along with its formal solution

ϕ(x) =
∫

M4
Rε(x− y)J(y)d4y, x ∈ M

4. (14.32)

Using the Fourier–Minkowski transform,

ϕ̂(p) = − Ĵ(p)
(2π)2(p2 −m2

0 + iε)
.

Motivated by (7.157) on page 477, we introduce the vertex function V2,free

by writing

J(x) = −
∫

M4
V2,free(x− y)ϕ(y)d4y, x ∈ M

4. (14.33)

Up to sign, this is the inverse transformation to (14.32). Using the Fourier–
Minkowski transform,

Ĵ(p) = −(2π)2V̂2,free(p)ϕ̂(p).

Hence V̂2,free(p) = p2−m2
0, after letting ε → +0. We now define the tempered

distribution V2,free in such a way that its Fourier–Minkowski transform cor-
responds to V̂2,free. This is the definition given above, by (14.11) with α = 1.

The Feynman propagator distribution for massless particles. The
definition of GF,m0 also makes sense if we set m0 = 0 (vanishing mass). Then,
all the formulas above remain valid by setting

m0 = 0, m2
0 lnm0 := 0.

Instead of GF,m0=0, we briefly write GF . In particular,

�GF = −iδ, (14.34)

and

GF =
i

(2π)4

∫

M4

e−ipx

p2 + 0+i
d4p. (14.35)

In what follows, we will study the extended quantum action functional, the
magic quantum action reduction formula for correlation functions, the magic
LSZ reduction formula for the S-matrix, and the local quantum action prin-
ciple.
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14.2.3 The Extended Quantum Action Functional

The extended quantum action functional knows all about the quantum
field.

Folklore

We define the extended quantum action functional (J, ϕ) �→ Z(J, ϕ) of the
ϕ4-model by setting

Z(J, ϕ) := exp
{

iκ
∫

M4
d4x Lint

(
1
i

δ

δJ(x)

)}
· Zfree,source(J, ϕ)

where

Zfree,source(J, ϕ) := Zfree(J) eZsource(J). (14.36)

Here, we set
Zfree(J) := e

1
2 i〈J|RεJ〉

along with the response functional

〈J |RεJ〉 :=
∫

M4×M4
J(x)Rε(x− y)J(y)d4xd4y.

Moreover,

Zsource(ϕ, J) :=
∫

M4
ϕ(x)J(x) d4x.

Finally, Lint(ϕ) := −ϕ4. Hence

Lint

(
1
i

δ

δJ(x)

)

= − δ4

δJ(x)4
.

14.2.4 The Magic Quantum Action Reduction Formula for
Correlation Functions

The full correlation functions. Using the extended quantum action func-
tional Z = Z(J, ϕ), we define the quantum action functional Z = Z(J) by
setting

Z(J) :=
Z(J, 0)
Z(0, 0)

. (14.37)

Explicitly,

Z(J) = N exp
{

−κi
∫

M4
d4x

δ4

δJ(x)4

}

· Zfree(J) (14.38)
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along with
Zfree(J) = e

1
2 i
R

M4×M4 J(x)Rε(x−y)J(y)d4xd4y.

The normalization constant N has to be chosen in such a way that we get
Z(0) = 1. The full correlation functions Cn are defined by the following
functional derivatives

Cn(x1, . . . , xn) :=
1
in

δnZ(J)
δJ(x1) · · · δJ(xn)

| J=0. (14.39)

This formula allows us to reduce the computation of the correlation functions
C1, C2, . . . to the response function Rε. Equivalently, we get

Z(J) := 1 +
∞∑

n=1

in

n!

∫

M4n

Cn(x1, . . . , xn)J(x1) · · ·J(xn)d4x1 · · · d4xn.

For each n = 1, 2, . . ., the full correlation function Cn is symmetric with re-
spect to the variables x1, . . . , xn. This means that the quantum action func-
tional Z = Z(J) represents the generating functional for the family of full
correlation functions C1, C2, . . . . The operator

exp
{
−iκ

∫

M4
d4x

δ4

δJ(x)4
}

is equal to

1 − iκ
∫

M4
d4x

δ4

δJ(x)4
− κ2

2!

(∫

M4
d4x

δ4

δJ(x)4

)2

+ . . .

This can be written as

1 − iκ
∫

M4
d4x

δ4

δJ(x)4
− κ2

2!

∫

M4
d4x

δ4

δJ(x)4

∫

M4
d4y

δ4

δJ(y)4
+ . . .

Switching off the interaction by setting κ = 0, we get Z(J) = Zfree(J). This
way we obtain the free correlation functions by

Cn,free(x1, . . . , xn) :=
1
in

δnZfree(J)
δJ(x1) · · · δJ(xn)

| J=0.

Formula (14.38) allows us to reduce the computation of the full correlation
functions C1, C2, . . . to the free correlation functions C1,free, C2,free, . . . In par-
ticular, we get Cn ≡ 0 for n = 1, 3, 5 . . .

The quantum action axiom. Formula (14.39) is called the magic quan-
tum action reduction formula for the correlation functions of the ϕ4-model.
In our approach above, we use this formula in order to define the correlation
functions. From the physical point of view, we postulate the validity of this
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magic formula as an axiom called the quantum action axiom (or the QA
axiom) of the ϕ4-model.

Motivation. In Sect. 7.24.6 on page 450, we studied the discrete ϕ4-
model in rigorous terms. The formal passage to infinite dimensions yields the
formulas for Z(ϕ, J) and Cn above.

Warning to the reader. Let ε > 0, and let Ω be a fixed nonempty
bounded open subset of the 4-dimensional momentum space M

4. The integral

Rε(x) = − 1
(2π)4

∫

M4

e−ipx

p2 −m2
0 + iε

d4p, x ∈ M
4

for the response function Rε is divergent at infinity. Therefore, let us replace
Rε by the cut-off function

Rε,Ω(x) := − 1
(2π)4

∫

Ω

e−ipx

p2 −m2
0 + iε

d4p, x ∈ M
4.

This is a convergent integral. More general, we replace all of the integrals∫
M4 . . . by

∫
Ω
. . . This implies that the magic formula (14.39) is well-defined

as a formal power series expansion with respect to the coupling constant κ.

This means that, in each order of perturbation theory with respect to
the coupling κ, we get well-defined correlation functions.

However, these functions depend on the regularization parameter ε and the
cut-off set Ω.

It remains to study the two limits ε → +0 and Ω → R
4.

It turns out that this limit leads to divergent expressions. Therefore, physi-
cists invented the method of renormalization. The idea is

• to add counterterms to the Lagrangian density κLint and
• to replace the bare mass m0 by an renormalized (or effective) mass mren.

The goal is to get convergent expressions in each order of perturbation theory,
as ε → +0 and Ω → R

4. We refer to Sects. 15.3ff on page 849ff.

The experience of physicists shows that one only needs the quantum
action axiom and the LSZ axiom below, combined with the procedure
of renormalization, in order to successfully compute a large number
of physical processes for elementary particles such that the computed
values coincide with the values measured in experiments.

Applications to the computation of concrete physical effects will be considered
in Volume II and in the later volumes.
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14.2.5 The Magic LSZ Reduction Formula for the S-Matrix

Scattering functions. Parallel to the generating functional Z(J) for the
correlation functions, let us define the so-called scattering functional

S(ϕ) :=
Z(0, ϕ)
Z(0, 0)

(14.40)

by using the extended quantum action functional Z = Z(J, ϕ) from Sect.
14.2.3. The scattering functional is normalized by S(0) = 1. Furthermore, for
n = 1, 2, . . . , let us define the scattering functions by setting

Sn(x1, . . . , xn) :=
δnS(ϕ)

δϕ(x1) · · · δϕ(xn)
| ϕ=0.

The scattering functions Sn(x1, . . . , xn) are symmetric with respect to the
variables x1, . . . , xn. Equivalently, we get

S(ϕ) := 1 +
∞∑

n=1

1
n!

∫

M4n

Sn(x1, . . . , xn)ϕ(x1) · · ·ϕ(xn)d4x1 · · · d4xn.

This means that the scattering functional S is the generating functional for
the family of scattering functions S1,S2, . . . .

The modified scattering functions. Let n = 1, 2, . . . Motivated by
Theorem 7.39 on page 452, we introduce the modified scattering functions by
setting

Ŝn(x1, . . . , xn) =
1
in

{
n∏

k=1

(Dxk
+ iεI)

}

Cn(x1, . . . , xn). (14.41)

Here, we define
Dxk

:= −�xk
−m2

0.

Note that the wave operator �xk
acts on the variable xk of the full correlation

function Cn.
S-matrix elements. Let us now briefly discuss the physical meaning of

the modified scattering functions. By (14.14), the function

up(x, t) :=
ei(px−Ept)

√
V

is a solution of the free Klein–Gordon equation (� +m2
0)ϕ = 0. Here, we set

Ep :=
√
m2

0 + p2.

The normalization factor V > 0 is chosen in such a way that
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∫

C
|up(x, t))|2 d3x =

∫

C
d3x = 1

where C is an arbitrary bounded open subset of R
3. In terms of physics, the

function up describes a homogenous stream of free mesons of particle number
density 1/V. In other words, there is precisely one particle in the box C of
volume V. Each particle has the momentum vector p and the energy Ep.
Now consider a scattering process in the box C with

• n incoming particle streams of free mesons at remote past, t = −∞, de-
scribed by the functions

up1 , . . . , upn

of momentum vectors p1, . . . ,pn, respectively.
• After scattering, there appear m outgoing particle streams of free mesons

at remote future, t = +∞, described by the functions

upn+1 , . . . , upn+m

of momentum vectors pn+1, . . . ,pn+m, respectively.

Set vpk
:= upk

, k = 1, . . . , n and vpl
:= u†pl

, l = n+ 1, . . . , n+m. We define

Sp1,...,pn+m :=
∫

M4(n+m)
Ŝn+m(x1, . . . , xn+m)

n+m∏

k=1

vpk
(xk) d4xk. (14.42)

This is called the S-matrix element of the scattering process. The real number

|Sp1,...pn+m |2

is the so-called transition probability of the scattering process. This tran-
sition probability can be used in order to compute the cross section of the
scattering process. This is precisely the quantity which can be measured in
scattering experiments. Many applications to concrete physical processes will
be considered in the following volumes.

The LSZ axiom. We postulate that the elements of the S-matrix are
obtained by formula (14.42) together with the LSZ reduction formula (14.41).
This is the so-called LSZ axiom.

Renormalization. The LSZ reduction formula (14.41) tells us how to re-
duce the modified scattering functions Ŝn+m from (14.42) to the correlation
functions Cn+m. By Sect. 14.2.4, we have to pass to the renormalized corre-
lation functions. Therefore, physicists replace the correlation functions in the
magic formulas (14.41), (14.42) by the renormalized correlation functions.

This way, physicists get the renormalized scattering functions, and
hence the renormalized S-matrix elements.
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Remark. Note the following. Physicists use different (formal) approaches
for computing the S-matrix. It turns out that all of these approaches yield
the same S-matrix elements, and hence we obtain the same cross sections
for scattering processes in (renormalized) perturbation theory. This will be
thoroughly studied in the following volumes together with additional physical
motivations.

14.2.6 The Local Quantum Action Principle

The Dyson–Schwinger equation of the ϕ4-model reads as follows:

δZ

δJ(x)
=

∫

M4
Rε(x, y)

(

iJ(x)Z(J) + 4κi
δ3Z(J)
δJ(x)3

)

d4x. (14.43)

Formally, this yields

(�x +m2
0 − iε)

δZ

δJ(x)
= iJ(x)Z(J) + 4κi

δ3Z(J)
δJ(x)3

.

These two equations are motivated by Theorem 7.40 on page 455.

14.2.7 The Mnemonic Functional Integral

The global quantum action principle. The formula

Z(J) = N
∫

S(R4)

eiS[ϕ,J] Dϕ (14.44)

is called the global quantum action principle. The normalization factor N
is uniquely determined by the normalization condition Z(0) = 1. Here, we
integrate over all possible classical fields ϕ which lie in the function space
S(R4) of rapidly decreasing smooth functions. The action functional is given
by (14.15), that is,

S[ϕ, J ] :=
∫

M4

1
2ϕ(−� −m2

0 + iε)ϕ− κϕ4 + ϕJ d4x.

Explicitly computing the normalization factor, the global quantum action
principle reads as

Z(J) =

∫
S(R4)

eiS[ϕ,J] Dϕ
∫
S(R4)

eiS[ϕ,0] Dϕ . (14.45)

Let n = 1, 2, . . . . For the correlation functions,

Cn(x1, . . . , xn) :=
δnZ(J)

δJ(x1) · · · δJ(xn)
| J=0,
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we get

Cn(x1, . . . , xn) =

∫
S(R4)

ϕ(x1) · · ·ϕ(xn)eiS[ϕ,0] Dϕ
∫
S(R4)

eiS[ϕ,0] Dϕ .

These integrals are to be understood as formal limits of finite-dimensional
integrals where the dimension of the integrals goes to infinity. Symbolically,

Dϕ =
∏

x∈M4

dϕ(x).

Formal motivation of the magic formulas. In rigorous terms, we have
shown in Sect. 7.25 on page 463 that finite-dimensional functional integrals
can be used in order to justify both

• the magic quantum action reduction formula and
• the magic LSZ reduction formula.

In the case of the present continuum ϕ4-model, the same arguments can
be applied formally to (14.45) in order to get the magic formulas (14.38)
and (14.41) from Sects. 14.2.4 and 14.2.5, respectively. Observe that this
represents only a formal approach, since the infinite-dimensional functional
integral (14.45) is not a well-defined mathematical object.

14.2.8 Bose–Einstein Condensation of Dilute Gases

The ϕ4-model as a toy model in particle physics. From the modern
point of view of elementary particle physics, the ϕ4-model is only a toy model.
It describes the interactions of elementary particles in the wrong way. It was
discovered by physicists in the 1960s and in the early 1970s that

The Standard Model in particle physics has to be based on the idea
of gauge field theory.

Here, in contrast to the ϕ4-model, the interactions between elementary par-
ticles are not described by self-interactions of the quantum field ϕ itself, but
by additional gauge fields which correspond to particles called gauge bosons
(photons, vector bosons W+,W−, Z0, and eight gluons).

• The prototype of the Standard Model is quantum electrodynamics. In Sect.
14.3, we will sketch the basic ideas of quantum electrodynamics. In terms
of gauge field theory, quantum electrodynamics refers to the commutative
gauge group U(1). A detailed study of quantum electrodynamics will be
carried out in Volume II.

• The Standard Model in particle physics refers to the product gauge group
U(1)× SU(2)× SU(3). This has to be supplemented by the Higgs mecha-
nism which equips the vector bosons W+,W−, Z0 with large masses com-
pared with the proton mass. The point is that the gauge groups SU(2)
and SU(3) are not commutative, in contrast to U(1). The prototype of the
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Standard Model in the form of a SU(N)-gauge field theory will be stud-
ied in Sect. 16.2 on page 880. In particular, in the case where N = 3, we
get quantum chromodynamics which describes strong interactions based
on quarks and gluons. A detailed study of the Standard Model in particle
physics can be found in Volume III (gauge field theory) and Volume V
(physics of the Standard Model).

Many physicists believe that the ϕ4-model in 4-dimensional space-time M
4

describes only a trivial free quantum field after renormalization. This means
that the influence of the interaction term κLint vanishes after renormaliza-
tion. In terms of physics, quantum fluctuations destroy the interaction. Rec-
ommendations for further reading can be found on page 873 (triviality of
the ϕ4-model). It is thinkable that a variant of the ϕ4-model on a modified
4-dimensional space-time (in the setting of noncommutative geometry) cor-
responds to a nontrivial quantum field. This is the subject of recent research.

The ϕ4-model as an effective theory for Bose–Einstein conden-
sation. It was conjectured by Gross and Pitaevskii that the ϕ4-model can
be used in order to describe Bose–Einstein condensation of dilute gases, in
the sense of an effective potential. This conjecture was rigorously proven in
the fundamental paper by

E. Lieb and R. Seiringer, Proof of Bose–Einstein condensation for dilute
trapped gases, Phys. Rev. Lett. 88 (2002), No. 170409.
Internet: http://www.arXiv math-ph/0112032

14.3 A Glance at Quantum Electrodynamics

Quantum electrodynamics studies the interactions between electrons, their
antiparticles (positrons), and photons (gauge bosons). Quantum electrody-
namics was created by Heisenberg and Pauli in 1929.7 The final theory was es-
tablished by Feynman, Schwinger, and Tomonaga in the 1940s and completed
by Dyson in 1949.8 At this point, let us only sketch a few basic ideas. For
7 P. Dirac, The quantum theory of the emission and absorption of radiation, Proc.

Royal Soc. of London A114, (1927), 243–265.
P. Dirac, The quantum theory of the electron, Proc. Royal Soc. London A117
(1928), 610–624; A118, 351–361.
W. Heisenberg and W. Pauli, On the quantum electrodynamics of wave fields
(in German), Z. Phys. 56 (1929), 1–61; 59 (1930), 108–190.

8 F. Dyson, The radiation theories of Tomonaga, Schwinger, and Feynman, Phys.
Rev. 75 (1949), 406–502; The S-matrix in quantum electrodynamics, Phys. Rev.
75 (1949), 1736–1755; The renormalization method in quantum electrodynamics,
Proc Royal Soc. 207 (1951), 395–401.
A collection of important papers in quantum electrodynamics can be found in J.
Schwinger (Ed.), Quantum Electrodynamics: 34 Selected Articles, Dover, New
York, 1958.



792 14. The Response Approach

a detailed study of concrete physical processes between electrons, positrons
and photons, we refer to Volume II.

Notation. In addition to the notations introduced at the beginning of
this chapter, we will use the following symbols.

(i) The Dirac–Pauli matrices are given by

γ0 :=

(
σ0 0
0 −σ0

)

, γj :=

(
0 σj

−σj 0

)

, j = 1, 2, 3, (14.46)

along with the Pauli matrices

σ0 :=

(
1 0
0 1

)

, σ1 :=

(
0 1
1 0

)

, σ2 :=

(
0 −i
i 0

)

, σ3 :=

(
1 0
0 −1

)

.

The Pauli matrices are self-adjoint, that is (σμ)† = σμ for μ = 0, 1, 2, 3.
Moreover, we have the commutation relations

σ1σ2 − σ2σ1 = 2iσ3, σ2σ3 − σ3σ2 = 2iσ1, σ3σ1 − σ1σ3 = 2iσ2,

and the anticommutation relations

σrσs + σsσr = 2δrsI, r, s = 1, 2, 3. (14.47)

This implies tr(σrσs) = 2δrs for r, s = 1, 2, 3. Furthermore, we introduce
the chiral matrix

γ5 := iγ0γ1γ2γ3 =

(
0 σ0

σ0 0

)

.

The choice of the Dirac–Pauli matrices is called the standard represen-
tation of the following Clifford anticommutation relations:

γμγν + γνγμ = 2ημνI, μ, ν = 0, 1, 2, 3.

The symbol ημν is defined on page 771.
(ii) The four-potential of the electromagnetic field is given by

A(x) = (A0(x), A1(x), A2(x), A3(x)).

Each component is a smooth real-valued function Aμ : M
4 → R.

(iii) The electron field ψ has the form of a column matrix

ψ(x) :=

⎛

⎜
⎜
⎜
⎝

ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)

⎞

⎟
⎟
⎟
⎠
.
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Here, each component is a smooth complex-valued function ψk : M
4 → C.

Furthermore, the adjoint matrix reads as

ψ(x)† = (ψ1(x)†, ψ2(x)†, ψ3(x)†, ψ4(x)†).

Following Dirac,9 we define ψ(x) := ψ(x)†γ0.

14.3.1 The Equations of Motion

In quantum electrodynamics, the classical field equations with respect to a
fixed inertial system read as follows.

(E1) The Maxwell equations for the electromagnetic field tensor Fαβ : For
all α, β, γ = 0, 1, 2, 3, we have the Bianchi identity

∂αFβγ + ∂βFγα + ∂γFαβ = 0. (14.48)

Moreover, for all β = 0, 1, 2, 3, the electromagnetic field tensor is related
to the electric current generated by the electron field according to

∂αF
αβ = Jβ

QED. (14.49)

Explicitly, the electric 4-current density vector is given by

Jβ
QED(x) := −eψ(x)γβψ(x).

Here, −e is the negative electric charge of the electron, and me denotes
the rest mass of the electron.

(E2) Dirac equation:

iγα∂αψ −meψ = −eAαγ
αψ. (14.50)

Here, the four-potential Aα, α = 0, 1, 2, 3, is related to the electromag-
netic field tensor by the equation

Fαβ = ∂αAβ − ∂βAα, α, β = 0, 1, 2, 3.

We assume that the equations (i) and (ii) above are valid on M
4. If we

introduce the covariant derivative

∇α := ∂α − ieAα,

9 In mathematics, one frequently uses the symbol z for the conjugate complex
number to the complex number z. In quantum field theory, the symbol ψ is fixed
by the Dirac convention which is standard in the literature. Therefore, we use
the symbol z† for the conjugate complex of z.
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and the Feynman dagger symbol � ∇ := γα∇α, then the Dirac equation (E2)
can be elegantly written as

(i �∇ −me)ψ = 0.

The language of vector calculus. For the electric field vector E and
the magnetic field vector B, set

E := Ekek, B := Bkek.

In addition, let U := A0,A := Akek, as well as

� := J0
QED, JQED := Jk

QEDek.

Here, � is the electric charge density, and JQED is the electric current density
vector. The equation Fαβ = ∂αAβ − ∂βAα corresponds to10

B := curlA, E := −gradU − Ȧ

along with

F01 = −E1 = E1, F12 = B3 = −B3. (14.51)

The remaining expressions are obtained by the cyclic permutation 1 �→ 2 �→
3 �→ 1. The Maxwell equations (14.48) and (14.49) read as

div E = �, div B = 0
curlE = −Ḃ, curlB = JQED + Ė.

In addition, this implies the continuity equation �̇+ div JQED = 0.
The importance of quantum fluctuations. The reader should observe

that

The classical equations of motion in quantum electrodynamics do not
know all about the quantum system. It is crucial to include additional
quantum fluctuations.

This is the highly nontrivial process of quantizing the classical theory. This
will be studied below. The mathematical difficulties of quantum field theory
refer precisely to the quantization of the Standard Model in particle physics.

10 The dot denotes the partial derivative with respect to time t.
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14.3.2 The Principle of Critical Action

Our goal is to obtain the equations of motion in quantum electrodynamics
from a variational principle. Let Ω be a nonempty bounded open subset of
the 4-dimensional space-time M

4 (e.g., a 4-dimensional cube). Set

S[A,ψ] :=
∫

Ω

L d4x

along with the Lagrangian density

L = −1
4FαβF

αβ + ψ(i∇αγ
α −me)ψ.

This can be written as

L = −1
4FαβF

αβ + ψ(i∂αγ
α −me)ψ + eLint.

The crucial term

eLint := −Jα
QEDAα (14.52)

describes the interaction between the electromagnetic field A and the electron
field ψ. The principle of critical action in quantum electrodynamics reads as
follows:

S[A,ψ] = critical! (14.53)

along with the boundary condition A = fixed on ∂Ω and ψ = fixed on ∂Ω.
The proof of the following theorem will be given in Problem 14.12.

Theorem 14.4 Each smooth solution of (14.53) satisfies the equations of
motion (E1), (E2) in quantum electrodynamics given above.

Relativistic invariance. According to Einstein’s principle of special rel-
ativity, quantum electrodynamics has to be independent of the choice of the
inertial system. This is indeed the case for the equations of motion (E1), (E2)
from Sect. 14.3.1. More precisely, for a change of inertial systems, note the
following:

• in 1905 Einstein discovered the correct transformation law for space-time
coordinates and the electromagnetic field tensor Fαβ ;

• in 1928 Dirac discovered the correct transformation law for the electron
field spinor ψ.

The transformation law for space-time coordinates is given by the Poincaré
group, whereas the transformations laws for Fαβ and ψ refer to represen-
tations of the Poincaré group. This will be studied in Volume III on gauge
theory.
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Discrete symmetries. The equations of motion (E1), (E2) are invariant
under space reflection, time reflection, and charge conjugation. This will be
studied in Volume III in connection with the Standard Model in particle
physics.

Gauge symmetry. Finally, note that the equations of motion (E1), (E2)
are invariant under the gauge transformation

ψg(x) = eiθ(x)ψ(x), Ag
α(x) := Aα(x) +

1
e
∂αθ(x)

for all space-time points x ∈ M
4, and all α = 0, 1, 2, 3. Here, the phase

function
θ : M

4 → R

is assumed to be smooth. In fact, the covariant derivative ∇αψ transforms in
the same way as the electron field ψ. Explicitly,

∇g
αψ

g(x) = eiθ(x)∇αψ(x). (14.54)

This follows from the product rule ∂αψ
g = ieiθ∂αθ · ψ + eiθ∂αψ, and hence

∇g
αψ

g = (∂α − ieAg)ψg = eiθ(∂α − ieAα)ψ.

In terms of physics, the gauge transformation (14.54) corresponds to a change
of the phase of the electron field ψ.

It is typical for gauge field theory that the phase change of the electron
field, ψ(x) �→ eiθ(x)ψ(x), given by the function θ = θ(x) depends on
space and time.

14.3.3 The Gauge Field Approach

In quantum field theory, try to fix gauge potentials by using convenient
gauge conditions.

Folklore

It turns out that the computation of physical effects in quantum electrody-
namics is easier to handle if we pass to a special variant of the equations
of motion based on a special choice of the four-potential (also called gauge
potential) A0, A1, A2, A3. This procedure will allow us to use the classical
wave equation and to reduce the study of photons, electrons, and positrons
to interacting harmonic oscillators (see Volume II). The Lorentz condition
(14.55) below is the prototype of a gauge condition.

Special variant of the equations of motion in quantum electrody-
namics. Our goal is to modify the equations of motion (E1), (E2) in quantum
electrodynamics on page 793. To this end, recall the 4-current density vector
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Jα
QED(x) := −eψ(x)γαψ(x)

and the wave operator � := ∂α∂
α = ∂2

0 − ∂2
1 − ∂2

2 − ∂2
3 . Now choose a fixed

function λ : R → R, and consider the following equations.

(M1) Wave equations for the gauge potential (photon field):

�Aα(x) + (λ(x) − 1)∂α∂βA
β(x) = Jα

QED(x), α = 0, 1, 2, 3.

(M2) Dirac equation for the electron field:

iγα∂αψ(x) −meψ(x) = −eAα(x)γαψ(x).

Furthermore, we define Fαβ := ∂αAβ − ∂βAα. The equations above refer to
all space-time points x ∈ M

4.

Proposition 14.5 Each smooth solution of the system (M1), (M2) which
satisfies the Lorentz condition

∂αA
α(x) = 0 on M

4 (14.55)

is a solution of the equations of motion (E1), (E2) in quantum electrodynam-
ics.

Proof. The Bianchi identity (14.48) follows immediately from the definition
of Fαβ , by antisymmetry. Furthermore, by the Lorentz condition,

∂αF
αβ = ∂α(∂αAβ − ∂βAα) = �Aβ = Jβ

QED.

This is the Maxwell system (14.49). �

In order to simplify the approach as much as possible, physicists prefer
to use the gauge function λ(x) := 1. This is called the Feynman gauge.
Generally, we expect that

Physical processes in quantum electrodynamics are invariant under
gauge transformations.

This fundamental principle is called the gauge invariance principle. In partic-
ular, we expect that the fixing of the gauge potential by some gauge condition
does not influence the final physical results that can be measured in physi-
cal experiments (e.g., cross sections in scattering processes or the energies of
bound states.)

Special variant of the principle of critical action. Again let Ω be a
nonempty bounded open subset of the 4-dimensional space-time M

4. Set

SQED[A,ψ] :=
∫

Ω

LQED d4x
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along with the Lagrangian density

LQED := Lfree + eLint

where eLint := −Jα
QEDAα, and

Lfree := 1
2Aα�Aα + 1

2 (1 − λ(x))(∂βA
β)2 + ψ(iγα∂α −me)ψ.

Here, the smooth function λ : R → R is fixed. Now consider the variational
problem

SQED[ψ,A, ψ] = critical! (14.56)

along with fixed boundary values of A and ψ on ∂Ω.

Theorem 14.6 (i) Each smooth solution A,ψ of (14.56) satisfies both the
wave equation (M1) and the Dirac equation (M2) on Ω.

(ii) If, in addition, the Lorentz condition ∂βA
β = 0 on Ω is fulfilled, then

A,ψ satisfies the equations of motion (E1), (E2) in quantum electrodynamics.

Proof. Ad (i). Choose smooth test functions hα : Ω → R, α = 0, 1, 2, 3,
which have compact support, that is, hα ∈ D(Ω). Define the function

J (τ) := SQED[A+ τh, ψ], τ ∈ R.

The variational problem (14.56) is equivalent to J̇ (0) = 0 for all test functions
hα ∈ D(Ω), α = 0, 1, 2, 3. Explicitly,

∫

Ω

(
1
2hα�Aα + 1

2Aα�hα + (1 − λ(x))∂βA
β · ∂αh

α − Jα
QEDhα

)
d4x = 0.

Integration by parts yields
∫

Ω

Aα�hαd4x =
∫

Ω

(�Aα)hα d4x.

Since (�Aα)hα = (�Aα)hα,
∫

Ω

(
�Aα − (1 − λ(x))∂α∂βA

β − JQED

)
hα d4x = 0.

By the real variational lemma from Sect. 10.4.1 on page 544,

�Aα − (1 − λ(x))∂α∂βA
β − Jα

QED = 0.

This is the wave equation (M1). In order to get the Dirac equation (M2), we
set

J (τ) := SQED[A,ψ + τh], τ ∈ R
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where hj ∈ D(Ω) for j = 1, 2, 3, 4. We now argue as in Problem 14.11.
Ad (ii). Use Proposition 14.5. �

Motivation of the action functional in quantum electrodynamics.
Let Ω be a bounded open subset of M

4. Choose the Lagrangian density

L := −1
4FαβF

αβ + ψ(iγα∇α −me)ψ,

and consider the principle of critical action
∫

Ω

L d4x = critical! (14.57)

along with given boundary values of A and ψ on ∂Ω and the side condition

∂αA
α(x) = 0 on Ω. (14.58)

This problem is obtained from the original problem (14.53) by adding the
Lorentz condition (14.58). Motivated by the Lagrange multiplier rule, we
introduce the modified Lagrangian density

Lλ := L − 1
2λ(x)(∂βA

β(x))2,

and we study the modified unconstrained variational problem
∫

Ω

Lλ d4x = critical! (14.59)

along with given boundary values of A and ψ on ∂Ω.

Proposition 14.7 For given smooth function λ : R → R, the variational
problem (14.59) is equivalent to the principle of critical action (14.56) in
quantum electrodynamics.

Proof. We have to show that
∫

Ω

Lλd
4x =

∫

Ω

LQED d4x+ const

for fixed boundary values of A and ψ on ∂Ω. Here, the constant depends
on the boundary values. In other words, we have to prove that the two La-
grangian densities Lλ and LQED only differ by a null Lagrangian density (see
Problem 14.5). In fact,

FαβF
αβ = (∂αAβ − ∂βAα)(∂αAβ − ∂βAα)

= 2∂αAβ · ∂αAβ − 2∂αAβ · ∂βAα.

Integration by parts yields
∫

Ω

FαβF
αβ d4x = −2

∫

Ω

Aβ∂α∂
αAβ + ∂αA

α · ∂βA
β d4x+ const

where the constant corresponds to the boundary terms. Hence
∫

Ω

−1
4FαβF

αβ d4x =
∫

Ω

1
2Aβ�Aβ + 1

2 (∂βA
β)2 d4x+ const.

The other terms of Lλ and LQED remain unchanged. �
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14.3.4 The Extended Action Functional with Source Term

We now want to apply the response approach to quantum electrodynamics.
In fact, we will use a combination of

• the bosonic model from Sect. 7.24 for photons and
• the fermionic model from Sect. 9.7 for electrons and positrons.

To this end, we replace the principle of critical action (14.53) by the extended
principle of critical action

SQED,ext[A,ψ] = critical! (14.60)

by adding source terms. We are looking for smooth functions A and ψ whose
components lie in the space S(R4). Here, we set

SQED,ext := SQED + Ssource (14.61)

with

SQED :=
∫

M4
(Lfree + eLint)d4x, Ssource :=

∫

M4
Lsource d

4x.

The corresponding Lagrangian densities are given by

Lfree : = 1
2Aαη

αβ�Aβ + ψ(iγα∂α −me)ψ,

eLint : = −Jα
QEDAα = eψAαγ

αψ,

Lsource : = Aα(x)Jα
A(x) + J (x)ψ(x) + ψ(x)J(x).

Observe that we use the Feynman gauge, λ(x) ≡ 1. The source terms are
given by

J(x) :=

⎛

⎜
⎜
⎜
⎝

J1(x)
J2(x)
J3(x)
J4(x)

⎞

⎟
⎟
⎟
⎠
, J (x) :=

⎛

⎜
⎜
⎜
⎝

J 1(x)
J 2(x)
J 3(x)
J 4(x)

⎞

⎟
⎟
⎟
⎠
.

Moreover, we set ψ := ψ†γ0 and J := J †γ0. The modulus e of the electric
charge of the electron plays the role of the coupling constant. In our energetic
system of units introduced on page 770, we have

e2 = 4πα =
4π

137.04

where α is the fine structure constant. This means that the dimensionless
coupling constant κ = e is small in quantum electrodynamics.
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Theorem 14.8 Each smooth solution of the extended principle of critical
action (14.60) satisfies the following equations.

(i) Photon field:

ηαβ�Aβ = −Jα
A − eψγαψ, α = 0, 1, 2, 3.

(ii) Electron field:

(iγα∂α −me)ψ = −J − eAαγ
αψ.

(iii) Positron field:

ψ(iγα∂α +me) = J + eψAαγ
α.

By convention, the differential operator ∂α acts on the function ψ in (iii).
The proof proceeds similarly to the proof of Theorem 14.6.

14.3.5 The Response Function for Photons

Let us switch off the interaction between the electromagnetic field and the
electron field by setting the coupling constant equal to zero, that is, e = 0.
From the photon field equation of Theorem 14.8(i) we obtain the following
regularized response equation

ηαβ(� − iε)Aβ = −Jα
A, α = 0, 1, 2, 3

along with the regularizing parameter ε > 0. For the solution, we formally
write

Aα(x) =
∫

M4
Rαβ,ε(x− y)Jβ

A(y)d4y, x ∈ M
4, α = 0, 1, 2, 3.

The matrix function (Rαβ,ε) is called the response function for photons.
Explicitly,

Rαβ,ε(x) := −ηαβRε(x). (14.62)

Recall that

Rε(x) := − 1
(2π)4

∫

M4

e−ipx

p2 + iε
d4p, x ∈ M

4.

We also define Dαβ,ε(x) := −iRαβ,ε(x). Hence

Dαβ,ε(x) = − iηαβ

(2π)4

∫

M4

e−ipx

p2 + iε
d4p, x ∈ M

4. (14.63)

Formal motivation for the response function. It follows from
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(� − iε)Aα = −Jα
A

along with (14.18) on page 776 that

Aα(x) = −
∫

M4
Rε(x− y)Jα

A(y)d4p.

This yields (14.62).
Rigorous definition of the Feynman propagator for photons. Mo-

tivated by the formal considerations above, for α, β = 0, 1, 2, 3, we define the
tempered distributions

Dαβ
F := −ηαβGF .

The matrix DF := (Dαβ
F ) is called the Feynman propagator for photons. By

(14.34) and (14.35) on page 783, we get

�Dαβ
F = iηαβδ (14.64)

along with

Dαβ
F = − iηαβ

(2π)4

∫

M4

e−ipx

p2 + 0+i
d4p, α, β = 0, 1, 2, 3. (14.65)

Finally, we define the tempered distributions Rαβ := iDαβ
F . As desired by the

formal motivation (14.63), this definition yields

Rαβ =
ηαβ

(2π)4

∫

M4

e−ipx

p2 + 0+i
d4p.

14.3.6 The Response Function for Electrons

Set e = 0. From Theorem 14.8(ii) we get the following linearized response
equation for the electron:

(iγα∂α −me)ψ = −J.

We will show below that the formal solution looks like

ψ(x) =
∫

M4
Rel(x− y)J(y)d4y, x ∈ M

4

along with the definition of the response function for electrons:

Rel(x) := (iγα∂α +me)Rε(x), x ∈ M
4. (14.66)

We also define SF (x) := −iRel(x). Formally, this yields



14.3 A Glance at Quantum Electrodynamics 803

SF (x) =
i

(2π)4
· (iγα∂α +me)

∫

M4

e−ipx

p2 −m2
e + iε

d4p.

Here, we choose the regularization parameter ε > 0. Hence

SF (x) =
i

(2π)4

∫

M4

iγαpα +meI

p2 −m2
e + iε

· e−ipx d4p.

Formal motivation of the response function for electrons. First
set ε = 0. By (14.21) on page 777,

(� +m2
e)R(x) = δ(4)(x), x ∈ M

4.

For the Dirac–Pauli matrices, γαγβ + γβγα = 2ηαβI. This implies Dirac’s
magic formula

(iγα∂α −me)(iγβ∂β +me) = −� −m2
e. (14.67)

In fact, the product (iγα∂α −me)(iγβ∂β +me) is equal to

−1
2 (γαγβ + γβγλ)∂α∂β −m2

e = −ηαβ∂α∂β −m2
e = −� −m2

e.

Hence
(iγα∂α −me)Rel(x) = −(� +m2

e)R(x) = −δ(4)(x).

Secondly, the formal definition (14.66) represents a regularization of the ex-
pression obtained by the formal proof.

Rigorous definition of the Feynman propagator for electrons.
Motivated by the formal considerations above, we define the tempered dis-
tribution

SF := (iγα∂α +me)GF,me . (14.68)

By (14.30) and (14.31) on page 782, this implies

(iγα∂α −me)SF = iIδ

along with the Fourier representation

SF =
i

(2π)4

∫

M4

γαpα +meI

p2 −m2
e + 0+i

· e−ipxd4p. (14.69)

14.3.7 The Extended Quantum Action Functional

By definition, the extended quantum action functional of quantum electro-
dynamics,

Z(J , JA, J ;ψ,A, ψ) (14.70)
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is given by

exp
{

ie
∫

M4
d4x Lint

(
1
i

δ

δJ (x)
,
1
i

δ

δJA(x)
,
1
i

δ

δJ(x)

)}

Zfree,source

along with

Zfree,source(J , JA, J ;ψ,A, ψ) := Zfree(J , JA, J) eZsource(J ,JA,J; ψ,A,ψ).

Here, we set

Zfree(J , JA, J) := eZfree,red(J ,JA,J)

where we introduce

Zfree,red :=
∫

M4×M4

1
2J

α
A(x)iRαβ,ε(x− y)Jβ

A(y) d4xd4y

+
∫

M4×M4
J (x)iRel(x− y)J(y) d4xd4y (14.71)

and
Zsource := i

∫

M4
J (x)ψ(x) + ψ(x)J(x) + Jα

A(x)Aα(x) d4x.

This is related to the Feynman propagators for photons and electrons by

iRαβ,ε = −Dαβ,ε, iRel = −SF , (14.72)

respectively. For the interaction term, we get

Lint(ψ,A, ψ) := ψγαAαψ.

This yields

Lint

(
1
i

δ

δJ (x)
,
1
i

δ

δJA(x)
,
1
i

δ

δJ(x)

)

=
1
i3

δ

δJ (x)
· γα · δ

δJα
A(x)

· δ

δJ(x)
.

Bosonic variables. The variables A0, A1, A2, A3 of the photon field and
the components J0

A, J
1
A, J

2
A, J

3
A of the source JA are complex numbers.

Fermionic variables. Introduce the matrices

ψ =

⎛

⎜
⎜
⎜
⎝

ψ1

ψ2

ψ3

ψ4

⎞

⎟
⎟
⎟
⎠
, J =

⎛

⎜
⎜
⎜
⎝

J1

J2

J3

J4

⎞

⎟
⎟
⎟
⎠
,

and
ψ = (ψ̄1, ψ̄2, ψ̄3, ψ̄4), J = (J̄ 1, J̄ 2, J̄ 3, J̄ 4).
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We assume that the components

ψ1, ψ2, ψ3, ψ4, ψ̄1, ψ̄2, ψ̄3, ψ̄4, J1, J2, J3, J4, J̄ 1, J̄ 2, J̄ 3, J̄ 4

of the fermionic fields ψ and ψ (electron and positron field) and the sources
J and J are independent Grassmann variables. This means that if we denote
these variables by ζ1, . . . ζ16, then

ζkζm = −ζmζk, k,m = 1, . . . , 16.

Note that for Grassmann variables, we have to distinguish between left and
right partial functional derivatives. We assume that

δ

δJ (x)

(

resp.
δ

δJ(x)

)

is a left (resp. right) partial functional derivative.

14.3.8 The Magic Quantum Action Reduction Formula

The quantum action axiom. Using the extended quantum action func-
tional

Z(J , JA, J ;ψ,A, ψ)

from Sect. 14.3.7, we define the quantum action functional in quantum elec-
trodynamics by setting

Z(J , JA, J) :=
Z(J , JA, J ; 0, 0, 0)
Z(0, 0, 0; 0, 0, 0)

.

By definition, the correlation functions are the functional derivatives of the
generating functional (J , JA, J) �→ Z(J , JA, J) at vanishing source terms,
J = 0 and JA = 0, J = 0. In other words, the functional Z = Z(J , JA, J) is
the generating functional for the correlation functions in quantum electrody-
namics. For example, switching off the interaction by setting e = 0, we get
the Feynman propagators for photons and electrons. Explicitly, by (14.71)
and (14.72),

Dαβ,ε(x− y) =
1
i2

δ2Zfree

δJα
A(x)δJβ

A(y)
| J=JA=J=0, α, β = 0, 1, 2, 3,

and

SF (x− y) =
1
i2

δ2Zfree

δJ(x)δJ (y)
| J=JA=J=0.
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14.3.9 The Mnemonic Functional Integral

The basic functional integral of quantum electrodynamics reads as follows:

Z(J , JA, J) = N
∫

eiSQED,ext Dψ DA Dψ. (14.73)

The explicit form of the extended action functional

SQED,ext[ψ,A, ψ;J , JA, J ]

can be found in (14.61) on page 800. The factor N has to be chosen in such
a way that

Z(0, 0, 0) = 1.

Concerning the functional integral (14.73), the components of the photon
field A have to be integrated over the space S(R4). Furthermore, the com-
ponents of ψ,ψ, J,J represent independent Grassmann variables. Extending
the rigorous arguments from Sect. 7.26 on page 481 and Sect. 9.7 on page
521 in a formal manner to infinite dimensions, we obtain the magic quantum
action formula from Sect. 14.3.8. Therefore, the functional integral (14.73) is
called the global quantum action principle of quantum electrodynamics.

Let us emphasize again that the functional integral (14.73) is only
to be understood as a very convenient mnemonic tool, but not as a
rigorous mathematical object.

For a detailed study of the approach to quantum field theory via functional
integrals, we refer to Faddeev and Slavnov (1980). In particular, Faddeev and
Slavnov compute the S-matrix as the limit of evolution operators by using an
operator calculus based on the so-called holomorphic representation, which
diagonalizes creation and annihilation operators.

In the next chapter, we will study the operator approach to quantum
field theory. We will show there how the S-matrix arises as a quite natural
consequence of the Dyson series which is closely related to Lagrange’s classical
variation-of-the-parameter method. A detailed investigation of the S-matrix
in quantum electrodynamics can be found in Volume II.

Problems

The principle of critical action is the most important method in physics in order
to derive basic equations in a very effective way.11 The following problems concern

11 A compendium of the action principle for classical fields along with Green’s
functions can be found in Burgess (2002).
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important examples. All of the functions are assumed to be smooth if the opposite
is not stated explicitly. In addition, the set Ω is tacitly assumed to be nonempty.
First recall the following classical definition. For a smooth function J : R → R, the
point τ0 is called a critical point of J iff J̇ (τ0) = 0. By definition, the solutions of
the problem

J (τ) = critical!, τ ∈ R

are precisely the critical points of J . For example, the function J (τ) := τ3 has the

unique critical point τ0 = 0. Let us now generalize this to variational problems. In

what follows, we will use the real and the complex variational lemma from Sect.

10.4.1 on page 544.

14.1 The principle of critical action for the vibrating string. Let Ω be a bounded
open set in R

2. Show that each smooth solution u : cl(Ω)→ R of the variational
problem

Z

Ω

(u2
t − u2

x + 2fu)dxdt = critical! (14.74)

with the boundary condition u = fixed on ∂Ω satisfies the wave equation

utt − uxx = f on Ω.

Solution: We argue similarly to the proof of Theorem 10.17 on page 550. Choose
a smooth test function h : Ω → R which has compact support, i.e., h ∈ D(Ω).
Let u be a solution. Replacing u by u+ τh, we get

J (τ) :=

Z

Ω

{(ut + τht)
2 − (ux + τhx)2 + 2f(u+ τh)} dxdt, τ ∈ R.

By definition, the function u is a solution of the variational problem (14.74) iff
the function J has a critical point at τ = 0, for each test function h ∈ D(Ω).

Hence J̇ (0) = 0. Explicitly,

Z

Ω

(utht − uxhx + fh) dxdt = 0.

Integration by parts yields
Z

Ω

(−utt + uxx + f)h dxdt = 0

for all h ∈ D(Ω). By the real variational lemma from Sect. 10.4.1, we get
−utt + uxx + f = 0 on Ω.

14.2 General Lagrangian. Consider the Lagrangian density

L = L(u, ux, uy, x, y).

We are given a bounded open subset Ω of R
2. Show that each smooth solution

u : cl(Ω)→ R of the variational problem

Z

Ω

L(u(x, y), ux(x, y), uy(x, y), x, y) dxdy = critical!
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with the boundary condition u = fixed on ∂Ω satisfies the following Euler–
Lagrange equation

∂

∂x
Lux +

∂

∂y
Luy = Lu on Ω. (14.75)

Solution: Choose a test function h ∈ D(Ω). Let u be a solution. Replacing u
by u+ τh, we get

J (τ) :=

Z

Ω

L(u+ τh, ux + τhx, uy + τhy, x, y) dxdy.

By definition, u is a solution of the variational problem iff J̇ (0) = 0, for each
h ∈ D(Ω). Hence

Z

Ω

(Luh+ Luxhx + Luyhy)dxdy = 0.

Integration by parts yields

Z

Ω

„

Lu −
∂

∂x
Lux −

∂

∂y
Luy

«

h dxdy = 0.

Finally, use the variational lemma from Sect. 10.4.1.
14.3 Lagrangian depending on several field functions. Replace the Lagrangian den-

sity from Problem 14.2 by

L = L(u, ux, uy; v, vx, vy, x, y).

Show that the Euler–Lagrange equation (14.75) has to be replaced by the
system

∂

∂x
Lux +

∂

∂y
Luy = Lu,

∂

∂x
Lvx +

∂

∂y
Lvy = Lv on Ω.

Solution: Fix the function v (resp. u) and apply the argument from the pre-
ceding Problem 14.2 to u (resp. v).

14.4 The principle of critical action for the real nonlinear Klein–Gordon equation.
We are given a bounded open subset Ω of R

4. Let F : R → R be a smooth
function. Show that each smooth solution u : cl(Ω) → R of the variational
problem

Z

Ω

(u2
t − u2

x − u2
y − u2

z + 2F (u)) dxdydzdt = critical!

with the boundary condition u = fixed on ∂Ω satisfies the equation

utt − uxx − uyy − uzz = F ′(u) on Ω.

Solution: Argue as in Problem 14.2. Each solution u satisfies the Euler–
Lagrange equation

∂

∂t
Lut +

∂

∂x
Lux +

∂

∂y
Luy +

∂

∂z
Luz = Lu on Ω.

This yields the claim.
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14.5 Equivalent Lagrangian densities. Modify the variational problem from Prob-
lem 14.2 by considering

Z

Ω

L(u, ux, uy, x, y) + L0(u, ux, uy, x, y) dxdy = critical! (14.76)

with the boundary condition u = fixed on ∂Ω. We assume that the additional
Lagrangian density L0 is a null Lagarangian density, that is,

Z

Ω

L0(u(x, y), ux(x, y), uy(x, y), x, y) dxdy = const

for all smooth functions u : cl(Ω) → R with u = fixed on ∂Ω. Show that each
smooth solution u = u(x, y) of problem (14.76) satisfies the Euler–Lagrange
equation (14.75) which is independent of the choice of the null Lagrangian
density L0. Give examples for null Lagrangian densities.
Solution: Note that each solution of (14.76) is also a solution of the correspond-
ing problem with L0 ≡ 0. Moreover, for given smooth functions A,B : R

3 → R,
the function

L0 := Ax(x, y, u) +Au(x, y, u)ux +By(x, y, u) +Bu(x, y, u)uy

is a null Lagrangian density. In fact, substituting the function u = u(x, y) into
L0, we get

L0 :=
∂

∂x
A(x, y, u(x, y)) +

∂

∂y
B(x, y, u(x, y)).

Integration by parts yields
Z

Ω

L0dxdy =

Z

∂Ω

A(x, y, u(x, y))dy −B(x, y, u(x, y))dx.

This is a boundary integral which only depends on the values of the function
u on the boundary ∂Ω. These boundary values of u are fixed.

14.6 The Euler–Lagrange equation for complex fields. Choose −∞ < t0 < t1 <∞.
Let ϕ : [t0, t1] → C be a complex-valued smooth function which is a solution
of the variational problem

Z t1

t0

L(ϕ(t), ϕ̇(t), ϕ(t)†, ϕ̇(t)†, t) dt = critical! (14.77)

with fixed boundary values ϕ(t0) = ϕ0 and ϕ(t1) = ϕ1. Show that the function
ϕ satisfies the following Euler–Lagrange equations

d

dt
Lϕ̇ = Lϕ,

d

dt
Lϕ̇† = Lϕ† on [t0, t1].

Solution: Choose a smooth function h :]t0, t1[→ C which has compact support,
that is, h ∈ D(t0, t1). Let ϕ be a solution. Replacing ϕ by ϕ+ τh, we get

J (τ) :=

Z t1

t0

L(ϕ+ τh, . . .)dt, τ ∈ R.

By definition, the function ϕ is a solution of the variational problem iff J̇ (0) = 0
for all h ∈ D(t0, t1). Hence
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Z

Ω

(Lϕh+ Lϕ̇ḣ+ Lϕ†h
† + Lϕ̇† ḣ

†) dt = 0.

Integration by parts yields
Z

Ω

„

Lϕ −
d

dt
Lϕ̇

«

h+

„

Lϕ† − d

dt
Lϕ̇†

«

h† dt = 0.

By the complex variational lemma from Sect. 10.4.1,

Lϕ −
d

dt
Lϕ̇ = 0, Lϕ† − d

dt
Lϕ̇† = 0.

14.7 General Lagrangian for complex-valued fields. Consider the Lagrangian density

L = L(ψ,ψx, ψy, ψ
†, ψ†

x, ψ
†
y, x, y).

We are given the bounded open subset Ω of R
2. Show that each smooth solution

ψ : cl(Ω)→ C of the variational problem
Z

Ω

L dxdy = critical!

with the boundary condition ψ = fixed on ∂Ω satisfies the equations

∂

∂x
Lψx +

∂

∂y
Lψy = Lψ on Ω

and
∂

∂x
L

ψ
†
x

+
∂

∂y
L

ψ
†
y

= Lψ† on Ω.

Solution: Argue as in Problem 14.2 by using the complex variational lemma.
14.8 The principle of critical action for the complex nonlinear Klein–Gordon equa-

tion. Choose n = 2, 3, ... and a real coupling constant κ. Let Ω be a bounded
open set in R

4. Show that each smooth solution ψ : cl(Ω)→ C of the variational
problem

Z

Ω

(|ψt|2 − |ψx|2 − |ψy|2 − |ψz|2 + κ|ψ|n)) dxdydzdt = critical!

with the boundary condition ψ = fixed on ∂Ω satisfies the equations

ψtt − ψxx − ψyy − ψzz = κnψ|ψ|n−1 on Ω (14.78)

and

ψ†
tt − ψ†

xx − ψ†
yy − ψ†

zz = κnψ†|ψ|n−1 on Ω. (14.79)

Observe that (14.79) is the conjugate-complex equation to (14.78).
Solution: Set

L := ψtψ
†
t − ψxψ

†
x − ψyψ

†
y − ψzψ

†
z + κ(ψψ†)n.

By Problem 14.7, the solution ψ satisfies the equations

∂

∂t
L

ψ
†
t

+
∂

∂x
L

ψ
†
x

+
∂

∂y
L

ψ
†
y

+
∂

∂z
L

ψ
†
z

= Lψ† on Ω,

and
∂

∂t
Lψt +

∂

∂x
Lψx +

∂

∂y
Lψy +

∂

∂z
Lψz = Lψ on Ω.
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14.9 The principle of critical action for the stationary Schrödinger equation. Let
Ω be a bounded open interval on the real line. We are given the continuous
real-valued function U : cl(Ω) → R, and the positive mass m. Introduce the
Lagrangian density

L :=
ϕxϕ

†
x

2m
+ Uϕϕ†.

Show that each smooth solution of the variational problem
Z

Ω

L dx = critical!

with fixed values of ϕ on the boundary ∂Ω satisfies the stationary Schrödinger
equation

−ϕxx

2m
+ Uϕ = 0 on Ω,

and the conjugate-complex equation

−ϕ
†
xx

2m
+ Uϕ† = 0 on Ω.

Solution: By Problem 14.7, the Euler–Lagrange equations read as

∂

∂x
L

ϕ
†
x

= Lϕ† ,
∂

∂x
Lϕx = Lϕ.

The first equation coincides with the stationary Schrödinger equation, whereas
the second equation is the conjugate-complex equation to the stationary
Schrödinger equation.

14.10 The principle of critical action for the Maxwell equations in classical electro-
dynamics. Let Ω be a bounded open subset of R

4. We are given the continuous
functions J0, J1, J2, J3 : cl(Ω)→ R. Introduce the Lagrangian density

LMaxwell := − 1
4
FαβF

αβ − JαAα

where the components of the electromagnetic field tensor Fαβare given by

Fαβ := ∂αAβ − ∂βAα (14.80)

in terms of the four-potential Aα, α = 0, 1, 2, 3. Show that each smooth solution
A0, A1, A2, A3 : cl(Ω)→ R of the variational problem

Z

Ω

LMaxwell d
4x = critical!

with fixed values of A0, A1, A2, A3 on the boundary ∂Ω satisfies the Maxwell
equations

∂αF
αβ = Jβ on Ω, β = 0, 1, 2, 3.

In addition, we have the Bianchi identity

∂αFβγ + ∂βFγα + ∂γFαβ = 0, α, β, γ = 0, 1, 2, 3

which follows immediately from (14.80), by antisymmetry.
Solution: Choose smooth test functions hα : cl(Ω) → R which have compact
support on Ω, α = 0, 1, 2, 3. Replacing Aα by Aα + τhα, we get
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J (τ) :=

Z

Ω

− 1
4
(∂αAβ + τ∂αhβ − ∂βAα − τ∂βhα)

×(∂αAβ + τ∂αhβ − ∂βAα − τ∂βhα)− Jβ(Aβ + τhβ) d4x

for τ ∈ R. Suppose that A0, A1, A2, A3 is a solution of the variational problem.
Then J̇ (0) = 0. Hence

Z

Ω

{− 1
4
(∂αhβ − ∂βhα)Fαβ − 1

4
Fαβ(∂αhβ − ∂βhα)− Jβhβ} d4x = 0.

It follows from Fαβ = −Fβα and Fαβh
αβ = Fαβhαβ that

Z

Ω

{−Fαβ∂αhβ − Jβhβ} d4x = 0.

Integration by parts yields
Z

Ω

(∂αF
αβ − Jβ)hβ d4x = 0.

By the real variational lemma from Sect. 10.4.1, ∂αF
αβ − Jβ = 0.

14.11 The principle of critical action for the Dirac equation for the relativistic
electron. Let Ω be a bounded open subset of R

4. We are given the continuous
functions A0, A1, A2, A3 : cl(Ω)→ R. Introduce the Lagrangian density

LDirac := ψ(iγα∇α −me)ψ

with the covariant derivative ∇α := ∂α − ieAα, and ∇−
α := ∂α + ieAα. Recall

the definition of the Dirac adjoint ψ := ψ†γ0. Show that each smooth solution
ψ : cl(Ω)→ C

4 of the variational problem

Z

Ω

LDirac d
4x = critical!

along with the boundary condition ψ = fixed on ∂Ω satisfies the Dirac equation

iγα∇αψ = meψ on Ω, (14.81)

and the adjoint equation

− i∇−
α ψγα = meψ on Ω. (14.82)

Prove that (14.82) is a consequence of (14.81).
Solution: Choose smooth test functions hμ : cl(Ω) → C which have compact
support on Ω, i.e., hμ ∈ D(Ω) for μ = 0, 1, 2, 3. Replacing ψμ by ψμ + τhμ, we
get

J (τ) :=

Z

Ω

L(ψ + τh, ψ† + τh†) d4x, τ ∈ R.

Suppose that ψ is a solution of the variational problem. Then J̇ (0) = 0. Hence

Z

Ω

{h†γ0(iγα∇α −me)ψ + ψ(iγα∇α −me)h} d4x = 0.

Integration by parts yields
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Z

Ω

{h†γ0(iγα∇α −me)ψ + (−i∂αψγ
α + eAαψγ

α − ψme)h} d4x = 0.

By the complex variational lemma from Sect. 10.4.1,

γ0(iγα∇α −me)ψ = 0, −i∂αψγ
α + eAαψγ

α − ψme = 0.

Since the inverse matrix to γ0 exists, we get the Dirac equation (14.81) and its
adjoint equation (14.82). Finally, let us show that (14.82) is a consequence of
(14.81). In fact, equation (14.81) reads as

γα(i∂αψ + eAα)ψ = meψ.

Applying the operator † to this equation,

(−i∂αψ
† + eAαψ

†)γα† = meψ
†.

Multiplying this by γ0 from the right and using

γ0† = γ0, γj† = −γj , γjγ0 = −γjγ0, j = 1, 2, 3,

we obtain
(−i∂αψ

†γ0 + eAαψ
†γ0)γα = meψ

†γ0.

This is (14.82).
14.12 The equations of motion in quantum electrodynamics. Let Ω be a bounded

open subset of R
4. Introduce the Lagrangian density

L = − 1
4
FαβF

αβ + ψ(i∂αγ
α −me)ψ + eLint

with eLint := −Jα
QEDAα and Jα

QED := −eψγαψ. Show that each smooth solu-

tion tuple A0, A1, A2, A3 : cl(Ω) → R and ψ : cl(Ω) → C
4 of the variational

problem
Z

Ω

L d4x = critical!

with fixed boundary values of A0, A1, A2, A3 and ψ satisfies the Maxwell–Dirac
system

∂αF
αβ = Jβ

QED, iγα∇αψ = meψ on Ω, β = 0, 1, 2, 3.

Solution: Use Problems 14.10 and 14.11. Note that ψ(i∂αγ
α −me)ψ + eLint is

equal to ψ(i∇αγ
α −me)ψ.

14.13 Proof of Theorem 14.3. Hint: See Bogoliubov, Logunov, and Todorov (1975),
p. 71. One has to use some classical integrals which can be found in Gradshtein
and Ryshik (1980).

Further important applications of the principle of critical action to modern physics
can be found in Volume III on gauge field theory in physics:

• geodesics, Einstein’s theory of general relativity, and the Hilbert action,
• the Ginzburg–Landau equation, the Higgs particle, and the Standard Model in

particle physics,
• minimal surfaces, harmonic maps, and string theory,
• the Yang–Mills equation and the Chern–Simons equation,
• the Seiberg–Witten equation,
• supersymmetry and the Wess–Zumino model.



15. The Operator Approach

Dyson’s magic formula for the S-matrix represents a far-reaching gener-
alization of Lagrange’s variation-of-the-parameter method in celestial me-
chanics.

Folklore

In Chap. 14, we have described the approach to quantum field theory which
can be traced back to Feynman’s approach in the 1940s based on the Feynman
rules for Feynman diagrams and the representation of propagators by func-
tional integrals. Typically, this approach does not use operators in Hilbert
spaces, that is, the methods of functional analysis do not play any role. His-
torically, in the 1920s quantum mechanics was first based on operator theory
by Heisenberg, Born, Jordan, Dirac, Pauli, and von Neumann. In order to
understand Feynman’s very effective approach, Dyson related this to opera-
tor theory via the magic Dyson formula for the S-matrix.1 Conceptually, the
advantage of operator theory is that the duality between particles and waves
is formulated in a very transparent manner.

• The waves appear as solutions of classical wave equations. These equations
arise as equations of motion from the classical principle of critical action.

• The particles appear after introducing creation and annihilation operators.
• The free quantum field is a linear combination of creation and annihila-

tion operators where the coefficients are classical wave functions (that is,
solutions of the free equations of motion).

The disadvantage of operator theory is the fact that there arise serious math-
ematical difficulties in applying the rigorous theory of functional analysis to
quantum electrodynamics and the Standard Model in particle physics. These
difficulties are caused by the interactions which are related to nonlinearities.

Basic strategy. Let us describe the main steps of the approach in this
chapter. In what follows, we will use
1 For the exciting history of Dyson’s discovery, see the quotation on page 27.

E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics,
c© Springer-Verlag Berlin Heidelberg 2006, Corrected 2nd printing 2009
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• a finite number of creation and annihilation operators,
• the quantized finite Fourier series for the free quantum field (Fourier quan-

tization),
• the computation of the 2-point Green’s function of the free quantum field

via Cauchy’s residue theorem,
• the magic Dyson formula for the S-matrix as an axiom,
• the Wick theorem in order to compute S-matrix elements and to represent

them as Feynman diagrams which are very close to physical intuition.

Finally, we will show how one can compute cross sections of scattering pro-
cesses by means of S-matrix elements. In order to get rigorous formulas in
each order of perturbation theory, we put the system in a box of finite volume,
we consider a finite time interval, and we use a finite lattice in 4-dimensional
space (i.e., energy space and 3-dimensional momentum space).

This is the best approach to scattering processes in quantum field
theory from the point of view of physical intuition.

This approach has to be complemented by the method of renormalization.
This means that we have to study the so-called continuum limit where

• the box goes to R
3,

• the finite time interval goes to R,
• the finite energy interval goes to R, and
• the finite lattice in 4-dimensional momentum space goes to R

4.

Explicitly, we have to add counterterms in order force the existence of the
continuum limit.

System of units. In this chapter, we will use the energetic system of
units with � = c = 1.

15.1 The ϕ4-Model

Quantum field theory studies the creation and annihilation of particles.
Folklore

Let us again consider the nonlinear Klein–Gordon equation

�ϕ+m2
0ϕ+ 4κϕ3 = 0 (15.1)

with the coupling constant κ ≥ 0 and Lint(ϕ) := −ϕ4. This equation describes
an uncharged meson of rest mass m0 > 0. Setting κ = 0, we get the linearized
equation

�ϕ+m2
0ϕ = 0 (15.2)

which is called the Klein–Gordon equation.



15.1 The ϕ4-Model 817

15.1.1 The Lattice Approximation

Be wise and discretize.
Folklore

In what follows we will use the notation for lattices introduced in Sect. 12.1.1
on page 671.

• We put the quantum field in a box C(L) in 3-dimensional Euclidean position
space. The box has side length L and volume V = L3; the position vectors
of C(L) have the form

x = x1i + x2j + x3k, x1, x2, x3 ∈ [−L
2 ,

L
2 ]

where i, j,k is a right-handed orthonormal system of vectors.
• We observe the quantum field during the time interval [−T

2 ,
T
2 ] of length

T > 0.
• The set C(L) × [−T

2 ,
T
2 ] lies in the 4-dimensional space-time M

4.
• The truncated lattice G(N) in the 3-dimensional momentum space consists

of all the momentum vectors

p = (m1i +m2j +m3k) ·Δp

where m1,m2,m3 are integers with |m1|, |m2|, |m3| ≤ N and Δp := 2π/L.

Finally, recall that the discrete Dirac delta function of the lattice G(N) is
given by2

δG(N)(p) :=
δp,0

Δ3p
, p ∈ G(N)

where

Δ3p := (Δp)3 =
(2π)3

L3
=

(2π)3

V .

Hence
δG(N)(p − q) =

δp,q

Δ3p
, p,q ∈ G(N).

We also introduce the truncated Dirac delta function in the energy space,

δT (E) :=
1
2π

∫ T/2

−T/2

eiEt dt.

For all p,q ∈ G(N), we have the orthogonality relation

1
V

∫

C(L)

ei(p−q)x d3x = δp,q. (15.3)

We also introduce the 4-dimensional discrete Dirac delta function
2 Note that δp,q := 1 if p = q, and δp,q := 0 if p �= q.
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δdis(p) := δG(N)(p)δT (p0)

where p = (p0,p) with p ∈ G(N) and p0 ∈ R. By (15.3),

δdisc(p) =
1

(2π)4

∫ T/2

−T/2

dt

∫

C(L)

d3x eipx. (15.4)

Note that δdis(−p) = δdis(p) for all p.
Key relation for scattering theory. By Sect. 12.1.2 on page 672, for

all 4-vectors p,

δdis(p)2 =
VT

(2π)4
· δdis(p)(1 + o(1)), T → +∞. (15.5)

Thus, for large time T , we can use the approximation

δdis(p)2 =
VT

(2π)4
· δdis(p).

We will frequently use this formula when computing cross sections of scat-
tering processes. Mnemonically, physicists write

(δ4(p))2 =
VT

(2π)4
· δ4(p).

Action functional. The action functional on the cube C(L) is given by

S[ϕ] :=
∫

C(L)

−1
2ϕ(� +m2

0)ϕ+ κLint(ϕ) d3x

for all smooth functions ϕ : C(L) → C which have the period L with respect
to the three position variables x1, x2, x3. Here, Lint(ϕ) := −ϕ4.

Energy. By Sect. 13.8.2 on page 762, the energy of the field ϕ in the cube
C(L) at time t is equal to

H(t) =
∫

C(L)

1
2 ϕ̇(x, t)2 + 1

2 (∂ϕ(x, t))2 + 1
2m

2
0ϕ(x, t)2 + κϕ(x, t)4 d3x.

Truncation of energy. For the length of the momentum vectors of the
lattice, we have

|p| ≤ Pmax for all p ∈ G(N)

where we set Pmax := 3N if L ≥ 2π. This yields

Emax :=
√
m2

0 + P 2
max =

√
m2

0 + 9N2

which is an upper bound for the energy of a single particle.
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15.1.2 Fourier Quantization

The idea of Fourier quantization is to consider solutions of the Klein–Gordon
equation in the form of finite Fourier series and to replace the Fourier coeffi-
cients by creation and annihilation operators. This way we obtain free quan-
tum fields. Later on, we will use the free quantum field in order to construct
the S-matrix operator S(T ) by using Dyson’s magic formula. The operator S
allows us to compute transition probabilities for scattering processes.

Classical solution of the linearized equation of motion. The fol-
lowing finite sum

ϕfree(x, t) =
∑

p∈G(N)

(apeipx e−iEpt + a†pe−ipx eiEpt)Np (15.6)

with the normalization constant

Np :=
1

√
2EpV

is a real solution of the Klein–Gordon equation (15.2) which has the period L
with respect to x1, x2, x3. Physically, this solution represents a superposition
of mesons of momentum p and energy Ep :=

√
m2

0 + p2. We will show below
that our choice of the normalization constant Np yields the right energy
operator of the quantized field.

Quantized solution. We now replace the complex-valued Fourier coef-
ficients ap, a

†
p by operators which satisfy the following crucial commutation

relations3

[ap, a
†
q]− = δp,qI for all p,q ∈ G(N) (15.7)

along with

[ap, aq]− = 0, [a†p, a
†
q]− = 0 for all p,q ∈ G(N).

Recall that [A,B]− := AB −BA. Explicitly, we get

apa
†
q = a†qap + δp,qI, apaq = aqap, a†pa

†
q = a†qa

†
p. (15.8)

We also postulate the existence of a state Φ0 such that 〈Φ0|Φ0〉 = 1 and

apΦ0 = 0 for all p ∈ G(N). (15.9)

After this replacement, the operator-valued function ϕfree from (15.6) de-
scribes a free quantum field of meson particles. As we will motivate below,
3 Recall that the symbol I denotes the identity operator.
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• the state Φ0 is called ground state (or vacuum state) of the free quantum
field,

• the operator ap is called annihilation operator, and
• the adjoint operator a†p is called creation operator.

The properties of these operators will be studied thoroughly in Volume II.
Such operators arose in the early days of quantum mechanics in connection
with the quantization of systems of uncoupled harmonic oscillators. It follows
from (15.8) and (15.9) that

〈a†pΦ0|a†pΦ0〉 = 〈Φ0|apa
†
pΦ0〉 = 〈Φ0|(I + a†pap)Φ0〉 = 〈Φ0|Φ0〉 = 1.

The energy operator. Motivated by Sect. 15.1.1, the energy operator
of the free quantum field ϕfree is given by

H :=
∫

C(L)

1
2 ϕ̇free(x, t)2 + 1

2 (∂ϕfree(x, t))2 + 1
2m

2
0ϕfree(x, t)2 d3x.

Let us show that

H =
∑

p∈G(N)

Epa
†
pap + 1

2EpI. (15.10)

In fact, for the time derivative,

ϕ̇free(x, t) = i
∑

p∈G(N)

Ep(−apeipx e−iEpt + a†pe−ipx eiEpt)Np.

Similarly, for the derivative with respect to the position vector x,

∂ϕfree(x, t) = i
∑

p∈G(N)

p(apeipx e−iEpt − a†pe−ipx eiEpt)Np.

By the orthogonality relation (15.3),

H = −1
2

∑

p∈G(N)

(
apa−pe−2Ept + a†pa

†
−pe2Ept

)
VN 2

p(E2
p − p2 −m2

0)

+
1
2

∑

p∈G(N)

(apa
†
p + a†pap) ·

E2
p + p2 +m2

0

2Ep
.

Since E2
p = p2 +m2

0 and apa
†
p = a†pap + I, we get the claim (15.10).

The vacuum energy. For the mean energy of the quantum field in a
vacuum, it follows from apΦ0 = 0 that

Evacuum = 〈Φ0|HΦ0〉 =
1
2

∑

p∈G(N)

Ep.
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Observe that the mean vacuum energy Evacuum becomes infinite if N → +∞.
That is, if the number of grid points in momentum space goes to infinity.
This fact is one of the reasons for the appearance of infinities in quantum
field theory.

The Stone–von Neumann theorem. Note the following crucial fact.

It is dangerous to postulate the existence of mathematical objects
which have prescribed properties.

The point is that such objects may not exist. To illustrate this, let us first
show that the commutation relations for creation and annihilation operators
postulated above cannot be realized in a finite-dimensional4 Hilbert space
X. To this end, assume that there are linear operators apj : X → X which
satisfy the commutation relations

apj
a†pk

− a†pk
apj

= αδjkI, j, k = 1, . . . , n

where α is a nonzero complex number. Computing the trace,

αδjk tr(I) = tr(apja
†
pk

) − tr(a†pk
apj ) = 0.

This implies α = 0, a contradiction.
However, we will show in Volume II that there exists a realization of

the finite number of creation and annihilation operators ap, a
†
p indexed by

p ∈ G(N) which satisfies the commutation relations postulated above. These
operators are linear and unbounded operators on some infinite-dimensional
Hilbert space, and they are uniquely determined up to unitary equivalence.
This is the content of the famous Stone–von Neumann theorem.5

It was shown by G̊arding and Wightman in 1954 that the uniqueness
result fails for an infinite number of creation and annihilation operators.6

This is one of the typical mathematical difficulties in quantum field theory.
To circumvent this difficulty, we will use

• the lattice approximation with a finite number of creation and annihilation
operators

• combined with a passage to the continuum limit (see Sect. 15.1.8).

If, in contrast to the lattice approach, one starts with the continuum model,
then one has to fix the representation of the infinite family of creation and
annihilation operators. However, since there exist unitarily inequivalent rep-
resentations of the commutation relations, there is an element of arbitrariness.
4 We exclude the trivial space X = {0}.
5 J. von Neumann, The uniqueness of the Schrödinger operators (in German),

Math. Ann. 104 (1931), 570–578. See also D. Kastler, The C∗-algebra of a free
boson field, Commun. Math. Phys. 1 (1965), 14–48.

6 L. G̊arding and A. Wightman, Representations of the commutation relations,
Proc. Natl. Acad. Sci. U.S.A. 40, 622–625. See also I. Gelfand and N. Vilenkin,
Generalized Functions, Vol. IV, Sect. 4.5, Academic Press, New York, 1964.
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15.1.3 The Free 2-Point Green’s Function

Using the free meson quantum field ϕ from (15.6), we define

G2,G(N),free(x, t;y, s) := 〈0|T (ϕfree(x, t)ϕfree(y, s))|0〉.

This function is called the free 2-point Green’s function of the meson quantum
field ϕfree with respect to the lattice G(N) in momentum space. Let us set
p = (p, p0). The definition of the chronological operator T can be found on
page 746.

Theorem 15.1 For all space-time points x = (x, t) and y = (y, s) in M
4

with t �= s and regularization parameter ε > 0,

G2,G(N),free(x, y) = lim
ε→+0

i
(2π)4

∫ ∞

−∞
dp0

∑

p∈G(N)

e−ip(x−y)

p2 −m2
0 + iε

Δ3p.

Proof. (I) Commutation relation. First let t > s. Then

G2,G(N),free(x, y) = 〈Φ0|ϕfree(x, t)ϕfree(y, s)Φ0〉.

Since apΦ0 = 0, we get 〈Φ0|a†pΦ〉 = 〈apΦ0|Φ〉 = 0. Hence

〈Φ0|apaqΦ0〉 = 〈Φ0|a†paqΦ0〉 = 〈Φ0|a†pa†qΦ0〉 = 0.

Furthermore, it follows from apa
†
q = δp,qI + a†qap and 〈Φ0|Φ0〉 = 1 that

〈Φ0|apa
†
qΦ0〉 = δp,q.

Thus, by (15.6) along with Δ3p = (2π)3/V,

G2,G(N),free(x, y) =
1

2(2π)3
∑

p∈G(N)

eip(x−y) e−iEp(t−s)

Ep
Δ3p.

(II) Secondly, let t < s. Then

G2,G(N),free(x, y) = 〈Φ0|ϕfree(y, s)ϕfree(x, t)Φ0〉.

Interchanging x with y and replacing p by −p, we get

G2,G(N),free(x, y) =
1

2(2π)3
∑

p∈G(N)

eip(x−y) e−iEp(s−t)

Ep
Δ3p.

(III) Cauchy’s residue theorem. Let t < s. Using the curve C pictured in
Fig. 15.1(a), we claim that
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(a)

�(p0)
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�(p0)

�(p0)

−Ep

Ep�

Cdef

Fig. 15.1. Contour of integration

1
2πi

∫

C

e−ip0(t−s)

(p0 − Ep)(p0 +Ep)
dp0 = −eiEp(t−s)

2Ep
.

To prove this, consider the closed curve CR pictured in Fig. 15.1(b). Applying
Cauchy’s residue theorem, we get

1
2πi

∫

CR

e−ip0(t−s)

(p0 − Ep)(p0 +Ep)
dp0 = −eiEp(t−s)

2Ep
.

Here, the decisive role is played by the pole at the point p0 = −Ep. Finally,
letting R → +∞, the contribution coming from the semicircle of radius R in
the upper half-plane goes to zero. In this connection, note that

|e−ip0(t−s)| = e−(s−t)�(p0)

where s− t > 0 and �(p0) > 0 in the open upper half-plane.
If t > s, then we replace the upper semi-circle by a lower semi-circle. This

way we get

1
2πi

∫

C

e−ip0(t−s)

(p0 − Ep)(p0 +Ep)
dp0 = −e−iEp(t−s)

2Ep
.

The contribution to this integral comes from the pole at the point p0 = Ep.
Observe that

p2
0 − E2

p = p2
0 − p2 −m2

0 = p2 −m2
0.

Moreover, p(x− y) = p0(t− s) − p(x − y). Summarizing, we obtain

G2,G(N),free(x, y) =
i

(2π)4

∫

C

dp0

∑

p∈G(N)

e−ip(x−y)

p2 −m2
0

Δ3p. (15.11)

(IV) Deformation of the integration contour. The equation p2
0−E2

p+iε = 0
has the two zeros

p0 = ±Ep

√

1 − iε
E2

p

= ±Ep

(

1 − iε
2E2

p

)

+ o(ε), ε → +0.
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Consequently, the zero Ep (resp. −Ep) moves to the lower (resp. upper) half-
plane (Fig. 15.1(c)). Now replace p2 −m2

0 by p2 −m2
0 + iε and the contour C

by the real axis. Then the modified integral

i
(2π)4

∫ ∞

−∞
dp0

∑

p∈G(N)

e−ip(x−y)

p2 −m2
0 + iε

Δ3p

can be computed parallel to (III) via Cauchy’s residue theorem, and this
integral converges to the integral (15.11) as ε → +0.

�

The truncated Green’s function. It is convenient to use the replace-
ment ∫ ∞

−∞
dp0 ⇒

∫ Emax

−Emax

dp0

for the energy integration. This way we obtain the truncated Green’s function
G2,G(N),free used in Table 15.1 on page 833. To simplify notation, we do not
introduce a new symbol.

15.1.4 The Magic Dyson Formula for the S-Matrix

The S-matrix knows all about scattering processes of elementary particles.
Folklore

The Dyson formula for the S-matrix operator on the finite time-interval
[−T

2 ,
T
2 ] reads as follows:

S(T ) := T exp

{

−iκ
∫ T/2

−T/2

dt : Lint(ϕfree)(t) :

}

. (15.12)

Here, we set

Lint(ϕfree)(t) :=
∫

C(L)

Lint(ϕfree(x, t)) d3x

where Lint(ϕ) = −ϕ4. For the definition of the chronological operator T , we
refer to page 746. The free quantum field ϕfree can be found in (15.6) on
page 819. In particular, Lint is a polynomial with respect to creation and
annihilation operators. The symbol

: Lint(ϕfree)(t) :

denotes the normal product of Lint(ϕfree)(t). By definition, the normal prod-
uct is obtained by reordering the terms in such a way that all of the annihi-
lation operators stand on the right of the creation operators. For example,

: apa
†
q : = a†qap, : a†qap : = a†qap, (15.13)

and : apa
†
qar : = a†qapar. Normal products will be studied in Sect. 15.1.5

below. Observe the following crucial fact.



15.1 The ϕ4-Model 825

The S-matrix operator describes interactions of the quantum field
in powers of the coupling constant by using nonlinear terms which
depend on the known free quantum field.

This way, in the setting of perturbation theory, interactions can be reduced
to the interaction-free situation. Formula (15.12) is motivated by the rigorous
finite-dimensional formula (7.53) on page 392 which follows from Lagrange’s
variation-of-the-parameter method.

In the present case, we will use formula (15.12) as the definition for
the crucial S-matrix operator S(T ).

The Dyson series. Explicitly, formula (15.12) reads as

S(T ) = I − iκ
∫ T/2

−T/2

dt : Lint(ϕfree)(t) : (15.14)

+
(−iκ)2

2!

∫ T/2

−T/2

dt1

∫ T/2

−T/2

dt2 T {: Lint(ϕfree)(t1) :: Lint(ϕfree)(t2) :} + . . .

This is the famous Dyson series in quantum field theory.
Transition probabilities. Let Φ and Ψ be two normalized states. This

means that 〈Φ|Φ〉 = 〈Ψ |Ψ〉 = 1. The complex number

〈Ψ | S(T )Φ〉

is called the transition amplitude from the state Φ to the state Ψ during the
time interval [−T

2 ,
T
2 ]. Furthermore, the nonnegative number

|〈Ψ | S(T )Φ〉|2

is called the transition probability from the state Φ to the state Ψ during the
time interval [−T

2 ,
T
2 ]. In what follows, we will discuss

• how to compute transition amplitudes, and hence
• transition probabilities.

We will reduce this to the computation of vacuum expectation values.
Basic tricks for computing vacuum expectation values. The fol-

lowing relations are crucial.

(R1) For the ground state, 〈Φ0|Φ0〉 = 1.
(R2) 〈Φ0|A1A2 · · ·AnΦ0〉 = 0 if A1 is a creation operator a†p or An is an

annihilation operator aq.
(R3) apa

†
q = [ap, a

†
q]− + a†qap.

(R4) [ap, a
†
q]− = δp,qI.

(R5) 〈Φ0|apa
†
qΦ0〉 = 〈Φ0| [ap, a

†
q]− Φ0〉 = δp,q.
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Let B1, . . . , Bn be creation or annihilation operators. For computing the vac-
uum expectation value

〈Φ0|B1B2 · · ·BnΦ0〉,
we will use (R3) along with (R4) in order to achieve (R1) or (R2).

Example 15.2 For all p,q, r ∈ G(N), we have 〈Φ0|apa
†
qa

†
rΦ0〉 = 0.

Proof. By (R3), apa
†
qa

†
r = [ap, a

†
q]− a†r + a†qapa

†
r. Using (R3) again,

apa
†
qa

†
r = [ap, a

†
q]− a†r + a†q[ap, a

†
r]− + a†qa

†
rap.

Hence

apa
†
qa

†
r = δp,q a

†
r + δp,ra

†
q + a†qa

†
rap. (15.15)

By (R2), the vacuum expectation values of all the terms vanish. �

Example 15.3 For all s,p,q, r ∈ G(N),

〈Φ0|asapa
†
qa

†
rΦ0〉 = δp,qδs,r + δp,rδs,q.

Proof. It follows from (15.15) that,

asapa
†
qa

†
r = δp,q asa

†
r + δp,rasa

†
q + asa

†
qa

†
rap.

Finally, use (R2) and (R5). �

15.1.5 The Main Wick Theorem

The main Wick theorem is the basis for computing scattering processes
via Feynman diagrams.

Folklore

Recall that, by definition, the normal product

: A1A2 · · ·An :

of creation and annihilation operators is obtained by moving the annihilation
operators from left to right. For example,

: a†sapaqa
†
r : = a†sa

†
rapaq.

Normal products have the following two properties.

(P1) Normal product principle: The vacuum expectation value of a normal
product vanishes,

〈Φ0| : A1A2 · · ·An : Φ0〉 = 0.

This follows from (R2) above.
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(P2) Normal products are invariant under permutations of the factors.

The last statement follows from the commutation relations

apaq = aqap, a†pa
†
q = a†qa

†
p.

Contractions. Let A,B be creation or annihilation operators. The con-
traction C(AB) of A with B is defined by

C(AB) := 〈Φ0|ABΦ0〉.

Explicitly, by (R2) above,

C(apa
†
q) = 〈Φ0|(apa

†
q − a†qap)Φ0〉 = δp,q.

Furthermore, again by (R2),

C(a†paq) = C(a†pa
†
q) = C(apaq) = 0.

Paired normal products. It is useful to consider normal products where
pairs of factors are replaced by contractions. Generally, we define

Ckl : A1A2 · · ·An : = C(AkAl) : A1 · · ·Ak−1Ak+1 . . . Al−1Al+1 · · ·An : .

For example, C12 : AB : = C(AB)I, and

C34 : ABCD : = C(CD) : AB : .

We will also consider iterations of this procedure. For example,

C12C35 : ABCDE : = C(AB)C(CE) : D : .

Trivially, : D := D. As we will show below,

BC = : BC : +C12 : BC : (15.16)

and

ABC = : ABC : +C12 : ABC : +C13 : ABC : +C23 : ABC : . (15.17)

Furthermore,

ABCD = : ABCD : +C12 : ABCD : +C13 : ABCD : (15.18)
+C14 : ABCD : +C23 : ABCD : +C24 : ABCD : +C34 : ABCD :
+C12C34 : ABCD : +C13C24 : ABCD : +C14C23 : ABCD : .

These are special cases of the following first Wick theorem.
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Proposition 15.4 Each product of creation and annihilation operators is
the sum of all possible paired normal products.

Proof. Ad (15.16). Note that [ap, a
†
q]− = C(apa

†
q) I. Hence

apa
†
q = a†qap + [ap, a

†
q]− = : apa

†
q : +C(apa

†
q) I.

If BC is any one of a†paq, apaq or a†pa
†
q, then BC = : BC : and C(BC) = 0.

Ad (15.17). (I) Let A := a†p. By (15.16),

ABC = A : BC : +AC12 : BC :

Moreover, A : BC : = : ABC : and C(AB) = C(AC) = 0.
(II) Let A := ap. Then : ABC : = : BC : A. By (15.16),

: ABC : = BCA− C12 : BC : A.

Hence
BCA = : ABC : +C12 : BC : A.

Using the commutator, BCA = B [C,A]− +BAC. Hence

BCA = B [C,A]− + [B,A]− C +ABC

= −C(AC) : B : −C(AB) : C : +ABC.

This yields (15.17). For n factors, we proceed by induction. �

By the normal product principle (P1) on page 826, the vacuum expecta-
tion value of a normal product vanishes. Therefore, it follows from (15.18)
that

〈Φ0|ABCDΦ0〉 = C(AB)C(CD) + C(AC)C(BD) + C(AD)C(BD).

This is the sum of all possible total pairings. Moreover, it follows from (15.17)
that

〈Φ0|ABCΦ0〉 = 0.

This means that the first Wick theorem substantially simplifies the compu-
tation of vacuum expectation values by cancelling redundant terms. For the
general situation

τ := 〈Φ0| : A1A2 · · ·An : Φ0〉, n = 1, 2, . . . ,

the same argument yields the following second Wick theorem.

Proposition 15.5 If n is odd, then τ = 0. If n is even, then τ is equal to
the sum of all possible products

〈Φ0|Ai1Ai2Φ0〉〈Φ0|Ai3Ai4Φ0〉 · · · 〈Φ0|Ain−1AinΦ0〉

where i1, i2, . . . in is a permutation of 1, 2, . . . , n. Moreover, ij < ij+1 for odd
indices j = 1, 3, . . . n− 1 and i1 < i3 < i5 < . . . < in−1.
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This corresponds to all possible total contractions of the normal product.
Total contractions are also called total pairings.

Time-ordered products. Our next goal is the main Wick theorem below
which refers to the vacuum expectation values of time-ordered products. We
assume the following.

(A) The functions A,B,C,D and Aj , j = 1, . . . , n, are finite linear combi-
nations of creation and annihilation operators where the coefficients are
complex-valued functions depending on space and time.

For example, the function A(x) := ϕfree(x) satisfies this assumption. Define
the time-ordered contraction between A and B by

C(AB)(x, y) := 〈Φ0|T (A(x)B(y))Φ0〉.

For example,
C(ϕfree(x)φfree(y)) = G2,free,G(N)(x, y).

Moreover, define time-ordered paired normal products by setting

Ckl : A1A2 · · ·An : = C(AkAl) : A1 · · ·Ak−1Ak+1 . . . Al−1Al+1 · · ·An : .

For time-ordered contractions, there holds the relation

T (BC) = : BC : +C12 : BC : (15.19)

along with

T (ABC) = : ABC : +C12 : ABC : +C13 : ABC : +C23 : ABC :

and

T (ABCD) = : ABCD : +C12 : ABCD : +C13 : ABCD : +C14 : ABCD :
+ C23 : ABCD : +C24 : ABCD : +C34 : ABCD :
+ C12C34 : ABCD : +C13C24 : ABCD : +C14C23 : ABCD : .

Let us prove (15.19). In fact, by (15.16),

B(x, t)C(y, s) = : B(x, t)C(y, s) : +C12 : B(x, t)C(y, s) :

along with

C(y, s)B(x, t) = : C(y, s)B(x, t) : +C12 : C(y, s)B(x, t) : .

Since normal products are invariant under permutations of the factors, we
get

C(y, s)B(x, t) = : B(x, t)C(y, s) : +C12 : C(y, s)B(x, t) : .

By the definition of the chronological operator T on page 746, we obtain
(15.19). Similarly, we get the expressions above for T (ABC) and T (ABCD).
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In general, the first and second Wick theorem remain valid if we replace
products (resp. contractions) by time-ordered products (resp. time-ordered
contractions). In particular, we obtain the following result.

The main Wick theorem. Consider the vacuum expectation value of
the following time-ordered product

τ := 〈Φ0|T (A1A2 · · ·An)Φ0〉, n = 1, 2, . . .

where Aj = Aj(x), j = 1, 2, . . . , n, are operator-valued functions which sat-
isfy assumption (A) above.

Theorem 15.6 If n is odd, then τ = 0. If n is even, then τ is equal to the
sum of all possible products

〈Φ0|T (Ai1Ai2)Φ0〉〈Φ0|T (Ai3Ai4)Φ0〉 · · · 〈Φ0|T (Ain−1Ain)Φ0〉

where i1, i2, . . . in is a permutation of 1, 2, . . . n. Moreover, ij < ij+1 for odd
indices j = 1, 3, . . . n− 1 and i1 < i3 < i5 < . . . < in−1.

Special notation. In order to best understand the language of Feynman
diagrams to be introduced below, let us change the notation. We write

AB := C(AB) = 〈Φ0|T (AB)Φ0〉

and

〈Φ0|T (A1 · · ·Aj · · ·Ak · · ·An)Φ0〉

= AjAk〈Φ0|T (A1 · · ·Aj−1Aj+1 · · ·Ak−1Ak+1 · · ·An)Φ0〉.

For example, the main Wick theorem (Theorem 15.6 ) tells us that

〈Φ0|T (ABCD)Φ0〉

is equal to the sum of all possible total pairings:

〈Φ0|T (ABCD)Φ0〉 + 〈Φ0|T (ABCD)Φ0〉 + 〈Φ0|T (ABCD)Φ0〉

= AB · CD +AC ·BD +AD ·BC.

Such total pairings will be used systematically in the proof of Prop. 15.8
below.

We now want to investigate the fundamental relation of the Wick theo-
rem to transition amplitudes, transition probabilities, and cross sections of
scattering processes.
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Fig. 15.2. Feynman diagrams

15.1.6 Transition Amplitude

Let us study the following scattering process (Fig. 15.2(a)).

• There are two ingoing particles with momentum vectors pin and qin and
• two outgoing particles with momentum vectors pout and qout.

We introduce the ingoing particle state

Φin := αa†pin
a†qin

Φ0

and the outgoing particle state

Φout := βa†pout
a†qout

Φ0.

Here, the unit vector Φ0 denotes the ground state (vacuum state). Moreover,
we set α := 1 if pin �= qin. Otherwise, α := 1/2. Similarly, we choose β := 1
if pout �= qout. Otherwise, β := 1/2.

Proposition 15.7 (i) 〈Φin|Φin〉 = 1 and 〈Φout|Φout〉 = 1.
(ii) 〈Φout|Φin〉 = 0 if the momentum vectors of the incoming particles are

different from the momentum vectors of the outgoing particles.

Proof. By Prop. 15.5 on page 828,

〈a†pa†qΦ0|a†ra†sΦ0〉 = 〈Φ0|aqapa
†
ra

†
sΦ0〉 = δq,rδp,s + δq,sδp,r.

For example, if p = r and q = s along with r �= s, then we get the value 1. �

Let us now study the transition amplitude

τ := 〈Φout| S(T )Φin〉.

By the Dyson series (15.14), we obtain

τ = τ0 + κτ1 + κ2τ2 + . . .

with τ0 := 〈Φout|Φin〉. Explicitly,
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τ1 := i
∫ T/2

−T/2

dt

∫

C(L)

d3x f(x)

with x = (x, t) and

f(x) := 〈Φ0|apoutaqout : ϕfree(x)4 : a†pin
a†qin

Φ0〉.

Furthermore,

τ2 := −1
2

∫ T/2

−T/2

dt1

∫

C(L)

d3x1

∫ T/2

−T/2

dt2

∫

C(L)

d3x2 g(x1, x2)

with

g(x1, x2) := 〈Φ0|apoutaqoutT {: ϕfree(x1)4 :: ϕfree(x2)4 :} a†pin
a†qin

Φ0〉.

Theorem 15.8 (i) The first order approximation reads as

τ1 =
6(2π)4i δdisc(pin + qin − pout − qout)

V2
√
EpinEqinEpoutEqout

.

(ii) The second order approximation reads as τ2 = 4τ21 + 4τ22. Here, for
j=1,2, we set

τ2j :=
∫ Emax

−Emax

dp0

∫ Emax

−Emax

dq0
∑

p∈G(N)

Δ3p
∑

q∈G(N)

Δ3p · αj

along with

α1 := − (2π)8 δdisc(p+ q − pout − qout) δdisc(pin + qin − p− q)
8V2(p2 −m2

0 + iε)(q2 −m2
0 + iε)

√
EpinEqinEpoutEqout

and

α2 := − (2π)8 δdisc(p+ q + qin − pout) δdisc(pin − qout − p− q)
8V2(p2 −m2

0 + iε)(q2 −m2
0 + iε)

√
EpinEqinEpoutEqout

.

Note that the appearance of the delta functions reflects conservation of
momentum and energy for the scattering process in the case of the contin-
uum limit. Here, α1 (resp. α2) correspond to the left-hand (resp. right-hand)
Feynman diagram from Fig. 15.2(b) on page 831.

Relativistic invariance. Note that the formulas for τ1 and τ2 above
are not relativistically invariant; they depend on the choice of the inertial
system and the corresponding discretization by the lattice in momentum
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Table 15.1. Feynman rules

pairing Feynman diagram

ϕfree(x)a
†
p = e−ipxNp

�
x

p

apϕfree(x) = eipxNp �
x

p

ϕfree(x)ϕfree(y) = G2,G(N),free(x, y)  
x y

p

G2,G(N),free(x, y) = lim
ε→+0

i

(2π)4

Z Emax

−Emax

dp0

X

p∈G(N)

e−ipxeipy

p2 −m2
0 + iε

Δ3p

Np =
1

p

2EpV

space. However, the continuum limit is relativistically invariant, at least on
a formal level. To this end, we have to use the replacements

δdis(p) ⇒ δ4(p)

and ∫ T/2

−T/2

dp0

∑

p∈G(N)

Δ3p . . . ⇒
∫

R4
d4p . . .

Proof of Theorem 15.8. To simplify notation, we write the symbol ϕ
instead of ϕfree. The basic ideas of the proof are the following ones.

• We apply the main Wick theorem to the S-matrix elements.
• This way, vacuum expectation values of time-ordered products are reduced

to products of time-ordered contractions.
• The time-ordered contractions can be represented graphically as the basic

elements of Feynman diagrams (see Table 15.1).
• The products of time-ordered contractions can be represented graphically

by Feynman diagrams (see Figs. 15.3-15.5 on page 837).

Ad (i). By the main Wick theorem (Theorem 15.6) on page 830,

f(x) = 〈Φ0|apoutaqout : ϕ(x)ϕ(x)ϕ(x)ϕ(x) : a†pin
a†qin

Φ0〉 + . . .
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We have to sum over all possible total pairings. The dots stand for the re-
maining total pairings. Note the crucial fact that pairings between operators
of a normal product vanish. Therefore,

〈Φ0| . . . : ϕ(x)ϕ(x)ϕ(x)ϕ(x) : . . . Φ0〉 = 0.

Consequently, such pairings drop out. Hence

f(x) = apoutϕ(x) · aqoutϕ(x) · ϕ(x)a†pin
· ϕ(x)a†qin

+ . . .

Using the expression for the free field ϕ from (15.6) on page 819,

apϕ(x) = apa
†
peipxNp = eipxNp.

Similarly, we obtain the remaining formulas of Table 15.1 on page 833. Hence

f(x) =
e−ix(pin+qin−pout−qout)

4V2
√
EpoutEqoutEpinEqin

+ . . .

Finally, we have to integrate over t and x,

τ1 = i
∫ T/2

−T/2

dt

∫

C(L)

d3x f(x) + . . .

By (15.4) on page 818,

τ1 =
(2π)4i δdisc(pin + qin − pout − qout)

4V2
√
EpinEqinEpoutEqout

+ . . . .

This is the claim (i) up to the factor 24. In order to understand the appearance
of the symmetry factor 24, we will use the following graphical language which
is the prototype of the method of Feynman diagrams.

• Draw a vertex along with four free arms (Fig. 15.2(a) on page 831).
• Equip one of the arms with both the symbol pin and an incoming arrow.

Mathematically, this corresponds to the contraction7

ϕ(x)a†pin

Physically, this represents an incoming particle with momentum vector pin.
• Similarly, we equip the remaining arms with the symbols

qin, pout, qout

and one incoming arrow and two outgoing arrows, respectively. Mathemat-
ically, this corresponds to the contractions

7 See Table 15.1 on page 833. Recall that we write ϕ instead of ϕfree.
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ϕ(x)a†qin
, apoutϕ(x), aqoutϕ(x),

respectively. Physically, this represents an incoming particle and two out-
going particles with momentum vectors qin,pout,qout, respectively. For
example, the Feynman diagram from Fig. 15.2(a) on page 831 corresponds
to the product

apoutϕ(x) · aqoutϕ(x) · ϕ(x)a†pin
· ϕ(x)a†qin

.

All of the remaining total pairings are obtained by using all possible permu-
tations of the arms. Finally, each of these 4! = 24 total pairings yields the
same contribution to τ1.

Ad (ii). We obtain

g(x1, x2) = a(x1, x2) + b(x1, x2) + . . . (15.20)

By definition, a(x1, x2) is equal to the total pairing

〈Φ0|T (apoutaqout : ϕ(x1)ϕ(x1)ϕ(x1)ϕ(x1) :: ϕ(x2)ϕ(x2)

× ϕ(x2)ϕ(x2) : a†pin
a†qin

)Φ0〉.

Therefore, a(x1, x2) is equal to the following product of time-ordered con-
tractions:

apoutϕ(x1)aqoutϕ(x1)ϕ(x1)ϕ(x2)ϕ(x1)ϕ(x2)ϕ(x2)a†pin
ϕ(x2)a†qin

.

This corresponds to the left-hand diagram of Fig. 15.2(b) on page 831. Fur-
thermore, by definition, b(x1, x2) is equal to

apoutϕ(x1)aqoutϕ(x2)ϕ(x1)ϕ(x2)ϕ(x1)ϕ(x2)ϕ(x2)a†pin
ϕ(x1)a†qin

.

This corresponds to the right-hand diagram of Fig. 15.2(b). The dots from
(15.20) stand for the sum of the remaining total pairings. As in the proof
of (i) above, all of the terms vanish which contain pairings inside a normal
product. For example,

〈Φ0|T (. . . : ϕ(x1)ϕ(x1)ϕ(x1)ϕ(x1) :: ϕ(x2)ϕ(x2)ϕ(x2)ϕ(x2) : . . .)Φ0〉 = 0.

and

〈Φ0|T (. . . : ϕ(x1)ϕ(x1)ϕ(x1)ϕ(x1) :: ϕ(x2)ϕ(x2)ϕ(x2)ϕ(x2) : . . .)Φ0〉 = 0.

Such pairings drop out in (15.20).
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(I) Computation of a. By Table 15.1 on page 833, the product of time-
ordered contractions

apoutϕ(x1)aqoutϕ(x1)ϕ(x1)ϕ(x2)ϕ(x1)ϕ(x2)ϕ(x2)a†pin
ϕ(x2)a†qin

.

is equal to

a(x1, x2) =
eix1(pout+qout) e−ix2(pin+qin)

4V2
√
EpinEqinEpoutEqout

·G2,G(N),free(x1, x2)2.

Hence

a(x1, x2) =
∫ Emax

−Emax

dp0

∫ Emax

−Emax

dq0
∑

p∈G(N)

Δ3p
∑

q∈G(N)

Δ3p · A(x1, x2)

along with

A(x1, x2) :=
eix1(pout+qout−p−q) e−ix2(pin+qin−p−q)

4V2(p2 −m2
0 + iε)(q2 −m2

0 + iε)
√
EpinEqinEpoutEqout

.

Carrying out the integration

τ21 = −1
2

∫ T/2

−T/2

dt1

∫ T/2

−T/2

dt2

∫

C(L)

d3x1

∫

C(L)

d3x2 · a(x1, x2),

it follows from (15.4) on page 818 that

τ21 =
∫ Emax

−Emax

dp0

∫ Emax

−Emax

dq0
∑

p∈G(N)

Δ3p
∑

q∈G(N)

Δ3p · α1

with

α1 = − (2π)8 δdisc(p+ q − pout − qout) δdisc(pin + qin − p− q)
8V2(p2 −m2

0 + iε)(q2 −m2
0 + iε)

√
EpinEqinEpoutEqout

.

This is the claim of Theorem 15.8(ii) for j = 1, up to the symmetry factor 4
of the term 4τ21, which will be discussed below. Graphically, the transition
amplitude τ21 corresponds to the left-hand diagram of Fig. 15.2(b) on page
831.

(II) Computation of b. Similarly, we get

τ22 = −1
2

∫ T/2

−T/2

dt1

∫ T/2

−T/2

dt2

∫

C(L)

d3x1

∫

C(L)

d3x2 · b(x1, x2).

Computing this integral as above, we get the claim of Theorem 15.8 (ii) for
j = 2, up to the symmetry factor 4 of the term 4τ22. Graphically, the transi-
tion amplitude τ22 corresponds to the right-hand diagram of Fig. 15.2(b).
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Fig. 15.3. Feynman rules (external lines)
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Fig. 15.4. Feynman rules (internal lines)
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Fig. 15.5. Equivalent Feynman diagrams

(III) Symmetry factors and Feynman diagrams. In Theorem 15.8 (ii) on
page 832, we claim that

τ2 = 4τ21 + 4τ22.

The symmetry factor comes from the remaining total pairings. In order to
compute the remaining total pairings from (15.20), we will use the elegant and
highly effective graphical language of Feynman diagrams which is pictured
in Figs. 15.3–15.5. This language is the key to modern elementary particle
physics.
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Now to the point. All the possible total pairings can be obtained in the
following way.

• Draw two vertices equipped with the symbols x1 and x2. Each vertex has
four arms.

• Select four arms and equip them with the symbols pin,pout,qin, and qout.
This way we get the external lines (Fig. 15.3 on page 837).

• Consider all possible pairs of free arms which belong to different vertices
and connect them. This way we get the internal lines. There are two pos-
sibilities in Fig. 15.4(b), (c) on page 837.

• Equip the two internal lines with the 4-momentum symbols p and q.
• Introduce arrows. We attribute ingoing (resp. outgoing) arrows to pin,qin

(resp. pout,qout). The arrows of the internal lines point from x2 to x1.
• Finally, draw all diagrams that can be constructed by the method described

above. Totally, we get 8 diagrams which correspond to all total pairings
from (15.20).

The external lines correspond to real particles. The internal lines are called
virtual particles, by physicists. Similarly, as in (I) above, we assign the tran-
sition amplitude

∫ Emax

−Emax

dp0

∫ Emax

−Emax

dq0
∑

p∈G(N)

Δ3p
∑

q∈G(N)

Δ3p · α

to each Feynman diagram. Explicitly,

α :=
δdis

(∑4
j=1 ±p

(1)
j

)
δdis

(∑4
j=1 ±p

(2)
j

)

4V2(p2 −m2
0 + iε)(q2 −m2

0 + iε)
√
EpinEqinEpoutEqout

.

Here, δdis

(∑4
j=1 ±p

(r)
j

)
corresponds to the vertex xr with r = 1, 2. The

symbol

4∑

j=1

±p(r)
j

represents the sum of the 4-momentum vectors p(r)
j = (p(r)

j , p
(r)
0j ) of the real

and virtual particles at the vertex xr. Ingoing (resp. outgoing) particles are
equipped with the positive (resp. negative) sign.

Let us now study the phenomenon of equivalent Feynman diagrams.

The point is that different Feynman diagrams may generate the same transi-
tion amplitude. For example, one checks easily that each of the eight possible
Feynman diagrams yields the same transition amplitude as one of the two
diagrams from Fig. 15.2(b) on page 831. This produces the symmetry factor
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4 of τ2 = 4τ21 + 4τ22 in Theorem 15.8(ii). For example, the two diagrams
from Fig. 15.5 on page 837 yield the following two transition amplitudes

χk :=
∫ Emax

−Emax

dp0

∫ Emax

−Emax

dq0
∑

p∈G(N)

Δ3p
∑

q∈G(N)

Δ3p · βk, k = 1, 2

with

β1 :=
δdis(p+ q − pout − qout) δdis(pin + qin − p− q)

4V2(p2 −m2
0 + iε)(q2 −m2

0 + iε)
√
EpinEqinEpoutEqout

and

β2 :=
δdis(pin + qin + p+ q) δdis(−p− q − pout − qout)

4V2(p2 −m2
0 + iε)(q2 −m2

0 + iε)
√
EpinEqinEpoutEqout

.

Using the substitution, p ⇒ −p and q ⇒ −q, we get

χ1 = χ2.

The two diagrams (a) and (b) from Fig. 15.5 on page 837 are called equivalent.
They differ by a permutation of the vertices x1 and x2. �

15.1.7 Transition Probability

We want to discuss how one passes from transition amplitudes to transition
probabilities, which are crucial for the computation of cross sections.

To this end, we will use the quantization of the classical phase space.

Let us consider the scattering process from Sect. 15.1.6 pictured in Fig.
15.2(a) on page 831. In terms of classical mechanics, we have conservation of
momentum vectors,

pout + qout = pin + qin, (15.21)

and conservation of energy,

Epout +Eqout = Epin +Eqin (15.22)

where Ep :=
√
m2

0 + p2. Let us consider a proper scattering process. This
means that pout �= pin. This implies qout �= qin.

The key formula for the transition probability. Consider the mo-
mentum vector p = p1i + p2j + p3k, and set

pout +Δ3p := {p : pj
out ≤ pj ≤ pj

out +Δp, j = 1, 2, 3}.

By definition, the number
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W(T,V) :=
VΔ3p
(2π)3

· VΔ
3p

(2π)3
|〈a†pout

a†qout
Φ0|S(T )a†pin

a†qin
Φ0〉|2 (15.23)

is the probability for the following event that happens in the large cell C(L)
of volume V during the large time interval [−T

2 ,
T
2 ] :

• Two ingoing particles P and Q having momentum vectors pin and qin,
respectively, are scattered such that

• the momentum vectors of the outgoing particles P and Q are living in the
cell pout +Δ3p and qout +Δ3p, respectively.

Motivation of the key formula. In finite-dimensional Hilbert spaces,
the square of the modulus of the transition amplitude yields the correspond-
ing transition probability. However, in the present case, there arises a contin-
uum of states. Therefore, we have to modify the definition of the transition
probability. To this end, let x = xout(t) and y = yout(t), t ∈ [−T

2 ,
T
2 ] be

the classical trajectories of the outgoing particles P and Q in position space,
respectively. The corresponding trajectory of the particle pair in phase space
reads as

x = xout(t), p = pout(t), y = yout(t), q = qout(t), t ∈ [−T
2 ,

T
2 ].

This trajectory lives in the subset

P := (C(L) × pout +Δ3p) × (C(L) × qout +Δ3p)

of the 12-dimensional phase space. The set P has the volume

measP = VΔ3p · VΔ3p.

Now to the point. In the SI system, the quantity length ×momentum has
the physical dimension of action. Therefore, the volume measP has the same
physical dimension as h6 where h denotes the Planck constant. According to
semi-classical quantum statistics, the dimensionless quantity

measP
h6

=
VΔ3p
(2π�)3

· VΔ
3p

(2π�)3

is the number of quantum states, which corresponds to the phase volume of
the set P. By convention, we use the energetic system in this chapter. Here,
� = 1. This motivates the definition of W(T,V) from (15.23).

Total probability for scattering. By the key formula (15.23) above,
the number

Wtot(T,V) :=
∑′

pout∈G(N)

VΔ3p
(2π)3

∑′

qout∈G(N)

VΔ3p
(2π)3

× |〈a†pout
a†qout

Φ0|S(T )a†pin
a†qin

Φ0〉|2 (15.24)
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qin

pin

pout

qout

�  
�

�ϑ

Fig. 15.6. Scattering process in the center-of-mass system

is equal to the probability of the event that the incoming particles P and Q
are scattered. The symbol

∑′ indicates that the trivial non-scattering case
given by pout = pin,qout = qin is excluded.

The goal. The total probability Wtot(T,V) depends on the large length
T of the time interval [−T

2 ,−
T
2 ], the large volume V of the box C(L), and

the small length Δp of the lattice in momentum space. We are looking for a
quantity which describes the asymptotic behavior of Wtot(T,V) as T → ∞
and V → ∞. We will show in the next section that in the center-of-mass
system, there exists the limit

σtot := lim
T→∞, V→∞

Wtot(T,V)V
vrelT

where vrel is the relativistic relative velocity of the two ingoing particles. Since
the probability Wtot(T,V) is dimensionless, the so-called total cross section
σtot has the physical dimension of area.

15.1.8 Scattering Cross Section

Consider a scattering process where a homogeneous stream of ingoing parti-
cles P hits a homogeneous stream of ingoing particles Q. Physicists measure
the number Nin of ingoing particles P and the number Nout of outgoing (scat-
tered) particles P . These numbers refer to a box C(L) of large volume V and
a time interval [−T

2 ,
T
2 ] of large length T . We will work in the center-of-mass

system which will be discussed below (Fig. 15.6).
The first key formula. It is our goal to show that

Nout =
vrelNintT

V · σtot (15.25)

with the total cross section

σtot :=
∫ π/2

−π/2

dσ(ϑ)
dϑ

· dϑ

and the so-called differential cross section

dσ(ϑ)
dϑ

=
|M(ϑ)|2

256π2E2
pin

· 2π cosϑ, σ(0) = 0.
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For a small coupling constant κ, we will get M = 24κ in first order of
perturbation theory. The general definition of M(ϑ) will be given below.

Formula (15.25) represents an approximation which is valid for large vol-
ume V, large length T of the time interval[−T

2 ,
T
2 ], and small coupling con-

stant κ.

The differential cross section is crucial in physics, since it does not
depend on the volume V of the box, the time interval [−T

2 ,
T
2 ], and

the relative velocity vrel.

Using the differential dΩ = 2π cosϑ · dϑ of the solid angle, physicists also
write

dσ =
|M(ϑ)|2

256π2E2
pin

dΩ.

Recall that the integral

∫

dΩ =
∫ 2π

0

∫ π/2

−π/2

cosϑ · dϕ dϑ =
∫ π/2

−π/2

2π cosϑ · dϑ = 4π2

represents the surface measure of the unit sphere.
The second key formula. In greater detail, we obtain

Nout([ϑ1, ϑ2]) =
vrelNintT

V

∫ ϑ2

ϑ1

dσ(ϑ)
dϑ

· dϑ. (15.26)

Terminology. Let us explain the notation used above. The first (resp.
second) homogeneous incoming particle beam consists of particles P (resp.
Q) of mass m0 and momentum vector pin (resp. qin). After scattering, the
particle P (resp. Q) has the momentum vector pout (resp. qout). In the center-
of-mass system, classical conservation of momentum and energy yields

pout + qout = pin + qin = 0

and Epout + Eqout = Epin + Eqin with Ep :=
√
m2

0 + p2. This implies

pin = −qin, pout = −qout

along with Epout = Eqout = Epin = Eqin . Hence,

|pin| = |qin| = |pout| = |qout|.

Let ϑ denote the scattering angle (see Fig. 15.6 on page 841). Explicitly,

pinpout = |pin| · |pout| cosϑ = |pin|2 · cosϑ.

Furthermore, let us use the following notation for particle numbers.



15.1 The ϕ4-Model 843

• Let Nin be the number of incoming particle pairs P,Q in the box C(L) of
volume V = L3 during the time interval [−T

2 ,
T
2 ]. For the particle density

of P (resp. Q), we get �P = �Q = Nin/V.
• Let Nout be the number of scattered particle pairs P,Q in the box C(L)

during the time interval [−T
2 ,

T
2 ].

• Let Nout([ϑ1, ϑ2]) be the number of scattered particle pairs P,Q, in the
box C(L) during the time interval [−T

2 ,
T
2 ], whose scattering angle lies in

the interval [ϑ1, ϑ2].

By definition, the relativistic relative velocity between the incoming particles
P and Q is equal to

vrel :=

√
pinqin −m4

0

EpinEqin

.

Equivalently, vrel = 2|pin|/
√
m2

0 + p2
in. If |pin| is small, then we get the ap-

proximation vrel = 2|pin|/m0, which is the non-relativistic relative velocity.
If we introduce the current density

jin := vrel�P =
vrelNin

V ,

then it follows from (15.25) that the total cross section is given by

σtot =
Nout

jinT
.

Motivation of the first key formula. To simplify notation, we intro-
duce the quantity M by setting

〈a†pout
a†qout

Φ0|S(T )a†pin
a†qin

Φ0〉 = (2π)4iNpinNqinNpoutNqout

× δdis(pin + qin − pout − qout) M.

Here, we use the normalization factor Np := 1/
√

2VEp. For example, it
follows from Theorem 15.8(i) on page 832 that M = 24κ, in first-order per-
turbation theory. In the general case, M depends on qout and pout. We write

M = M(pout,qout).

By (15.24) on page 840,

Nout = Wtot(T,V)Nin

where

Wtot(T,V) =
∑′

pout∈G(N)

VΔ3p
(2π)3

∑′

qout∈G(N)

VΔ3p
(2π)3

· γ

along with
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γ := (2π)8N 2
pin

N 2
qin

N 2
pout

N 2
qout

· δdis(pin + qin − pout − qout)2 |M|2.

It remains to compute the discrete integrals.
(I) Square of the discrete Dirac delta function. By (15.5) on page 818,

δdis(p)2 =
VT

(2π)4
· δdis(p) =

VT
(2π)4

· δG(N)(p) δT (Ep).

Noting that pin + qin = 0 and Epin = Eqin , we obtain

δdis(pin + qin − pout − qout)2 = δG(N)(pout + qout) δT (Epout +Eqout − 2Epin).

(II) Discrete integration over qout. Note that
∑

qout∈G(N)

Δ3p f(qout)δG(N)(pout + qout) = f(−pout).

Hence,

Wtot(T,V) =
∑

pout∈G(N)

Δ3p
T

64π2VE2
pout

E2
pin

· δT (2Epout − 2Epin) · |M|2.

Here, the symbol M stands for M(pout,−pout).
(III) Discrete integration over pout. Set r := |pout|. Introducing spherical

coordinates, we get

Δ3p = r2
∑

Δϕ,Δϑ

cosϑ Δϕ Δϑ = 2πr2
∑

Δϑ

cosϑ Δϑ.

Recall that vrel = 2|pin|/Epin . Hence,

Wtot(T,V)V
Tvrel

=
∑

Δϑ,r

g(r, ϑ)δT (f(r)) 2π cosϑ Δϑ Δr

along with

g(r, ϑ) :=
r2|M(r, ϑ)|2

128π2|pin|Epout(r)2Epin

, Epout(r) =
√
m2

0 + r2,

and f(r) := 2Epout(r) − 2Epin .
(IV) Continuum limit. We now carry out the limit T → ∞,V → ∞ in a

formal way. This yields

σtot := lim
T→∞,V→∞

Wtot(T,V)V
Tvrel

along with
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σtot =
∫ π/2

−π/2

dϑ 2π cosϑ
(∫ ∞

0

dr g(r, ϑ)δ(f(r))
)

.

The equation f(r) = 0 has precisely one positive zero r0 which corresponds
to the energy Epout = Epin . Explicitly, r0 = |pin|. Using the formal rule

∫ ∞

0

h(r)δ(f(r))dr =
h(r0)
|f ′(r0)|

for the Dirac delta function, we obtain

σtot =
∫ π/2

−π/2

dϑ g(r0, ϑ) ·
√
m2

0 + r20
2r0

· 2π cosϑ.

This yields the first key formula (15.25) on page 841.
Motivation of the second key formula. We only have to replace the

integral
∫ π/2

−π/2
dϑ . . . by the integral

∫ ϑ2

ϑ1
dϑ . . .

15.1.9 General Feynman Rules for Particle Scattering

Feynman diagrams represent graphically the Wick theorem.
Folklore

The arguments used in the proof of Theorem 15.8 on page 832 can be im-
mediately generalized to an arbitrary order of perturbation theory. Let us
discuss this. We are given

• k ingoing particles of mass m0 with pairwise disjoint momentum vectors
p1,in, . . . ,pk,in and

• l outgoing particles of mass m0 with pairwise disjoint momentum vectors
p1,out, . . . ,pl,out. Let k + l be even.

We want to compute the transition amplitude

〈Φout|S(T )Φin〉 =
∞∑

n=1

κnτn

with the unit states Φin := a†p1,in
a†p2,in

· · · a†pk,in
Φ0 and

Φout := a†p1,out
a†p2,out

· · · a†pl,out
Φ0.

We want to study a proper scattering process. That is, we assume that
Φin �= Φout. For fixed n = 1, 2, . . . , it is our goal to determine the coeffi-
cient τn. Parallel to Sect. 15.1.8, the transition probability can be obtained
by multiplying |〈Φout|S(T )Φin〉|2 with the number of cells in the phase space.

Feynman diagrams. We will use Feynman diagrams with k ingoing
particles, l outgoing particles, and m internal lines such that 4n = k+ l+2m.
Proceed as follows.
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• Draw n vertices equipped with the symbols x1, . . . , xn. Each vertex has
four arms.

• Select k + l arms and equip them with the symbols

p1,in, . . . ,pk,in,p1,out, . . . ,pl,out.

This yields the external lines corresponding to external particles.
• Consider all possible pairs of free arms which belong to different vertices

and connect them. This yields the internal lines. To different internal lines,
we assign different 4-momentum vectors p, q, . . . In contrast to the external
particles, the components of the 4-momentum vectors p, q, . . . are not cou-
pled by the energy relation. For example, p0 is independent of p. Therefore,
we say that the internal lines correspond to virtual particles which violate
the usual relation Ep =

√
m2

0 + p2 between energy and momentum of real
particles.

• Introduce arrows. We attribute ingoing arrows (resp. outgoing arrows) to
the momentum vectors p1,in, . . . ,pk,in (resp. p1,out, . . . ,pl,out). The arrows
of internal lines point from xi to xj where i > j.

• Finally, draw all possible diagrams that can be constructed by the method
described above.

Feynman rules. To each Feynman diagram with n vertices we assign a
product function

α :=
(−i)n(2π)4n

n!
abc · · · (15.27)

where the factors a, b, . . . depend on the vertices and the internal lines. Inte-
gration over the internal lines then yields a complex number β. Finally, the
desired coefficient τn is the sum of all possible numbers β. The number β is
obtained in the following way. Let us first describe the factors a, b, c, . . . from
(15.27).

• An ingoing particle with momentum vector pin corresponds to the factor

Npin :=
1

√
2VEpin

where Epin :=
√
m2

0 + p2
in.

• An outgoing particle with momentum vector pout corresponds to the factor
Npout .

• Each vertex xk generates the factor

δdis

⎛

⎝
4∑

j=1

±pj

⎞

⎠

where p1, p2, p3, p4 are the 4-momentum vectors of the particles at the
vertex xk. The positive (resp. negative) sign belongs to ingoing (resp. out-
going) particles.
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• Each internal line with 4-momentum vector p corresponds to the factor

1
p2 −m2

0 + iε

with the small regularization parameter ε > 0.
• Finally, we integrate the product function α. Explicitly, to each internal

line with 4-momentum vector p = (p0,p), we assign the 4-dimensional
integration

∫ Emax

−Emax

dp0

∑

p∈G(N)

Δ3p . . .

Summarizing, concerning the m internal lines, we get an integration of
dimension 4m.

Symmetry factors. Two Feynman diagrams are called equivalent iff
they only differ by a permutation of the vertices. Equivalent Feynman dia-
grams make the same contribution to the transition amplitude. To simplify
the approach, we only consider one representative of each class of equiva-
lent Feynman diagrams. We compensate this by cancelling the factor n! from
(15.27).

It is possible that additional symmetries of the Feynman diagrams are
responsible for the fact that further Feynman diagrams make the same con-
tribution to the transition amplitude. This simplifies the computation by
taking additional symmetry factors into account. For example, the 4! = 24
permutations of the four arms of Fig. 15.2(a) on page 831 generate the sym-
metry factor 24.

Formal continuum limit. To simplify the approach, physicists pass over
to the formal continuum limit. To this end, they use the Feynman rules above
by applying the replacements

δdis(p) ⇒ δ(p)

and ∫ Emax

−Emax

dp0

∑

p∈G(N)

Δ3p . . . ⇒
∫

R4
d4p . . .

when computing transition amplitudes. For obtaining transition probabilities,
physicists use the formal rule

{δ4(p)}2 =
VT

(2π)4
δ4(p).

15.1.10 The Magic Gell-Mann–Low Reduction Formula for
Green’s Functions

The Dyson formula (15.12) on page 824 for the S-matrix operator S can be
used in order to construct the full n-point Green’s function for n = 1, 2, . . . .
Explicitly,
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Gn(x1, x2, . . . , xn) =
〈0|T {ϕfree(x1)ϕfree(x2) · · ·ϕfree(xn)S}|0〉

〈0|S|0〉 . (15.28)

Here, the symbols ϕfree and |0〉 denote the free quantum field and the ground
state of the free quantum field, respectively. In addition, T {. . .} represents the
chronological operator. Formula (15.28) is motivated by the rigorous discrete
formula from Theorem 7.33 on page 429, which is a consequence of Wick
rotation. Generalizing this theorem in a formal sense, we write

Gn(x1, . . . , xn) = lim
ε→+0

lim
T→+∞

Gn(x1, . . . , xn;T, ε) (15.29)

along with the regularized full n-point Green’s function

Gn(x1, . . . , xn;T, ε) :=
〈0|T {ϕfree(x1) · · ·ϕfree(xn)S(T (1 − iε))}|0〉

〈0|S(T (1 − iε))|0〉 .

Formula (15.29) is called the Gell-Mann–Low reduction formula for Green’s
functions. In the sense of Sect. 7.22 on page 426, we will also write

Gn(x1, . . . , xn) = 〈0int|T (ϕ(x1) · · ·ϕ(xn))|0int〉

where the symbols ϕ and |0int〉 formally denote the interacting quantum field
and the ground state of the interacting quantum field, respectively. A critical
discussion of these notions can be found in Sect. 13.5 on page 750.

15.2 A Glance at Quantum Electrodynamics

The application of the operator approach to quantum electrodynamics in-
cluding Feynman rules and renormalization will be studied in Volume II.

We will use creation and annihilation operators for electrons,
positrons, and photons.

Let us only mention the following points concerning renormalization. In quan-
tum electrodynamics, the original bare mass me and the bare charge −e of
the electron are replaced by the renormalized electron mass mren and the
renormalized electron charge −eren which coincide with the values measured
in physical experiments. The bare quantities me and −e only appear at the
very beginning of the renormalization process, but they are eliminated after
renormalization. We call this mass and charge renormalization. The physical
philosophy behind this reads as follows:

• The original Lagrangian density does not include quantum fluctuations.
• In contrast to the classical theory, mass and electric charge of the electron

are the result of complicated quantum interaction processes. This yields
the values mren and eren which are observed in physical experiments.
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• The method of renormalization allows us to introduce renormalized param-
eters mren and −eren along with so-called radiative corrections to Feynman
diagrams. This way, we get close agreement with physical experiments. For
example, this allows us to compute the fine structure of the spectrum of
the hydrogen atom (the Lamb shift) and the anomalous magnetic moment
of both the electron and the muon.

The renormalized parameters mren and −eren are also called effective param-
eters.

15.3 The Role of Effective Quantities in Physics

An important task of physics is to compute effective physical constants
which average microphysical effects on a macroscopic scale.

Folklore

There is a fundamental phenomenon which appears in all fields of physics:

Physical constants change under interactions.

This means that the interactions are of such a nice type that the typical
feature of the theory remains unchanged, but only a few physical constants
change their values. We use the term effective (or renormalized) physical con-
stants. As a classical example, consider the propagation of light in a vacuum.
The speed of light is given by

c =
1

√
ε0μ0

where ε0 and μ0 are the electric and magnetic field constants of a vacuum,
respectively. There are many materials where the interaction between light
and the molecules of the material is of such a type that the speed of light in
the material is given by

cmaterial =
1

√
εμ
.

Here, ε = εrelε0 and μ = μrelμ0 are the electric and magnetic field constants
of the material, respectively. More precisely, the Maxwell equations do not
change their structure. On a microscopic level, there are complicated inter-
actions between the electromagnetic field and the molecules of the material.
Fortunately enough, on a macroscopic level, this can be described by the
simple replacement

ε0 ⇒ ε, μ0 ⇒ μ

in the Maxwell equations. The finite factors

εrel = 1 + χel, μrel = 1 + χmagn
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are called renormalization factors. Moreover, χel and χmagn are called electric
and magnetic susceptibility, respectively.8

The point is that the renormalization factors are infinite in quantum
field theory.

This dramatically complicates the situation and calls for a very careful math-
ematical approach.

15.4 A Glance at Renormalization

The subject of interacting quantum fields is full of nonsense.9

Paul Dirac, 1981

Renormalization theory is a notoriously complicated and technical sub-
ject. . . I want to tell stories with a moral for the earnest student: Renor-
malization theory has a history of egregious errors by distinguished sa-
vants. It has a justified reputation for perversity; a method that works up
to 13th order in the perturbation theory fails in the 14th order. Arguments
that sound plausible often dissolve into mush when examined closely. The
worst that can happen often happens. The prudent student would do well
to distinguish sharply between what has been proved and what has been
plausible, and in general he should watch out!10

Artur Wightman, 1976

In 1951 Matthews and Salam11 formulated a requirement for renormaliza-
tion procedures that has become popularly known as the Salam criterion:
“The difficulty, as in all this work, is to find a notation which is both concise
and intelligible to at least two persons, of whom one may be an author.”
Possibly there are many proofs of the renormalizability of quantum elec-
trodynamics which satisfy the Salam criterion. But we must confess that
none of us has yet qualified as that other person who is the guarantor of
the criterion. While there are today many standard texts which discuss
the renormalizability of quantum electrodynamics, we are not aware of
any which represents a complete proof and in particular justifies the claim
that only gauge invariant counterterms are required. We here submit to
you a direct and complete proof and we invite you to judge whether you
can vouch for the Salam criterion.12

Joel Feldman, Thomas Hurd, Lon Rosen, and Jill Wright, 1988

8 For a thorough discussion of constitutive laws, we refer to R. Balian, From Mi-
crophysics to Macrophysics, Springer, Berlin, 1991.

9 P. Dirac, Does renormalization make sense? In: D. Duke and J. Owens (Eds.),
Perturbative Quantum Chromodynamics, Amer. Institute of Physics, New York,
1981.

10 A. Wightman, Orientation. In: Renormalization Theory, pp. 1–20. Edited by G.
Velo and A. Wightman (Eds.), Reidel, Dordrecht, 1976 (reprinted with permis-
sion). We recommend this volume as an introduction to renormalization theory
which covers a broad spectrum of topics.

11 Rev. Mod. Phys. 23 (1951), 311–314.
12 J. Feldman, T. Hurd, L. Rosen, and J. Wright, QED (Quantum Electrodynam-

ics): A Proof of Renormalizability, Springer, Berlin 1988 (reprinted with permis-
sion).
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I shall roughly divide the history of renormalization theory into two main
chapters.
First the structure of the infinities or “divergences” in physical quantum
field theory such as electrodynamics was elucidated. A recursive process,
due to Bogoliubov and his followers,13 was found to hide these infinities
into unobservable “bare ” parameters that describe the fundamental laws
of physics at experimentally inaccessible extremely short distances. Al-
though technically very ingenious, this solution left many physicists and
probably most mathematicians under the impression that a real difficulty
had been “pulled under the rug”.

It would be unfortunate however to remain under this impression. Indeed
the second chapter of the story, known under the curious and slightly
inaccurate name of the “renormalization group”, truly solved the difficulty.
It was correctly recognized by Wilson and followers that in a quantum
theory with many scales involved, the change of parameters from bare to
renormalized values is a phenomenon too complex to be described in a
single step.
Just like the trajectory of a complicated dynamical system, it must be
instead studied step by step through a local evolution rule. The change of
scale in the renormalization group plays the role of time in dynamical sys-
tems. This analogy is deep. There is a natural arrow of time, related to the
second principle of thermodynamics, and there is similarly a natural arrow
for the renormalization group evolution: microscopic laws are expected to
determine macroscopic laws, not the converse. The renormalization group
erases unnecessary detailed short scale information. . .
If we consider the universal character of the action principle both at the
classical and quantum level, and observe that the relation between micro-
scopic and macroscopic laws is perhaps the most central of all physical
questions, it is probably not an exaggeration to conclude that the renor-
malization group is in some deep sense the “soul” of physics.14

Vincent Rivasseau, 2002

Renormalization theory will play a crucial role in the following volumes.
At this point, we only want to discuss a few basic ideas. As an introduc-
tion into renormalization theory formulated in the language of physicists, we
recommend the textbooks by Nash (1978), Collins (1984), Veltman (1995),
Kugo (1997), Ryder (1999), and Zinn–Justin (2004). Renormalization theory
in terms of mathematics can be found in Manoukian (1983) and Rivasseau
(1991).

13 This is called the Bogoliubov–Parasiuk–Hepp–Zimmermann (BPHZ) approach
to renormalization based on the introduction of counterterms which regularize
the divergent integrals by subtracting suitable integrands.

14 V. Rivasseau, An introduction to renormalization. In: B. Duplantier and V.
Rivasseau (Eds.), Poincaré Seminar 2002: Vacuum Energy – Renormalization.
Birkhäuser, Basel, 2003, pp. 139–177 (reprinted with permission).
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15.4.1 The Trouble with the Continuum Limit

To illustrate the typical situation, let us consider the lattice ϕ4-model from
Sect. 15.1.2 on page 819. In order to get the continuum model, we have to
carry out the following limits.15

(i) High energy limit: N → +∞. This implies Emax → +∞.
(ii) Low-energy limit: V → +∞. This implies Δp → +0.
(iii) Large-time limit: T → +∞.
(iv) Regularization limit: ε → +0.

This corresponds to a passage from a finite number to an infinite number
of degrees of freedom. Since light of low (resp. high) energy is violet (resp.
red), the high-energy (resp. the low-energy) limit is also called the ultraviolet
(resp. infrared) limit by physicists. The trouble is that, as a rule, these limits
do not exist.

To overcome this trouble, the main idea is to change the classical
Lagrangian by adding counterterms.

The mathematical prototypes of this technique are the Weierstrass theorem
and the Mittag–Leffler theorem considered in Sect. 8.5.1 on page 512. From
the physical point of view, the philosophy is that there arise additional quan-
tum fluctuations in a quantum field theory. Such quantum fluctuations can
be described by the counterterms of the classical Lagrangian density.

15.4.2 Basic Ideas of Renormalization

The crucial point is that from the physical point of view, renormalization the-
ory allows us to pass from microscopic quantities to macroscopic quantities.
In contrast to the microscopic quantities, the macroscopic quantities can be
measured in physical experiments which depend on the available scale (e.g.,
the energy scale). In this context, the following two ideas play the decisive
role:

(i) The idea of counterterms.
(ii) The idea of essential and inessential scales.

Let us briefly discuss this.
Counterterms. As a prototype, consider the ϕ4-model. Here, we replace

the classical Lagrangian density

L(ϕ, ∂ϕ) := 1
2ϕ(−� −m2

0 + iε)ϕ− κϕ4 (15.30)

by the renormalized Lagrangian density
15 Recall that N is the number of lattice points, V is the volume of the box, and
Δp = 2π/L with V = L3. Moreover, we use the time interval [−T

2
, T

2
].
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Lren = 1
2ϕren(−� −m2

ren + iε)ϕren − κrenλ
δϕ4

ren + Lcounter (15.31)

along with the counterterms

Lcounter := 1
2 (1 − Zϕ)ϕren�ϕren +

+1
2m

2
ren(1 − Zm)ϕ2

ren + (1 − Zκ)κrenλ
δϕ4

ren.

In order to motivate this, we want to sketch the method of dimensional
renormalization. This method was introduced by ’t Hooft and Veltman in
order to renormalize the electroweak Standard Model in particle physics.16

We start with the classical Lagrangian density L in 4-dimensional space-
time (Minkowski space M

4) given in (15.30). In each order of perturbation
theory, we use the Feynman rules for the S-matrix elements. This way, we
get discrete integrals over the lattice in momentum space. Furthermore, the
formal continuum limit

N → +∞, V → +∞, Δp → +0

sends the discrete integrals to integrals over the 4-dimensional Minkowski
space. The point is that some of these integrals are divergent. This is caused
by the fact that the integrands decrease too slowly at infinity. To overcome
this difficulty, physicists proceed in the following two steps.

Step 1: Dimensional regularization of integrals. We pass to the n-dimen-
sional Minkowski space M

n. To this end, we modify the Lagrangian density
by setting

Ln(ϕ, ∂ϕ) := 1
2ϕ(−� −m2

0 + iε)ϕ− κλ4−nϕ4 (15.32)

with the parameter λ > 0 and n < 4. It is convenient to work in the mo-
mentum space (Fourier space). For low dimension n = 1, the integrals are
convergent. The point is that the integrals I(n) lead to functions which can
be continued analytically with respect to the complex variable n. For

n = 4 − δ,

we get analytic expressions with respect to δ which posses singularities at
δ = 0; this corresponds to the physically relevant dimension n = 4. A simple
example for dimensional regularization of algebraic Feynman integrals can be
found in Sect. 11.6.2 on page 639.

Step 2: Compensation for singularities by introducing counterterms into
the Lagrangian density. Explicitly, we start with the bare Lagrangian density
Ln from (15.32), and we set

mren := (m0 +Δm)
√
Zϕ, κren = (κ+Δκ)Z2

ϕ, ϕren =
ϕ

√
Zϕ

.

16 G. ’t Hooft and M. Veltman, Nuclear Physics B 44 (1972), 189–213.
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Here, Δm and Δκ are real parameters which correct the bare mass m0 and
the bare coupling constant κ, respectively. We call mren, κren, and ϕren the
renormalized mass, the renormalized coupling constant, and the renormalized
quantum field, respectively. Using multipliers, we write

mren =
m0

√
Zϕ√

Zm

, κren =
κZ2

ϕ

Zκ
.

Hence
ϕ = ϕren

√
Zϕ, m2

0 = m2
ren

Zm

Zϕ
, κ = κren

Zκ

Z2
ϕ

.

Using this substitution, the original Lagrangian density Ln(ϕ, ∂ϕ,m0) is
transformed into the renormalized Lagrangian density

Lren(ϕren, ∂ϕren,mren)

from (15.31) above. The point is that the counterterms can be chosen in such
a way that the divergent terms can be cancelled after carrying out the limits
δ → 0 and ε → 0. The final result only depends on

• the renormalized meson mass mren and
• the renormalized coupling constant κren.

The renormalized mass mren and the renormalized coupling constant κren are
unknown finite quantities. They have to be determined by physical experi-
ments.17

Observe the following peculiarity. The multiplicative renormalization con-
stant Zm depends on δ, and we have the limit Zm → +∞ as δ → +0. This
means that m0 → +∞. Consequently, it is impossible to determine the pa-
rameter m0 from the renormalized mass mren measured in a physical experi-
ment. This means that the original bare mass parameter m0 has no physical
meaning at all. The following remarks are in order:

• The counterterms lead to additional Feynman diagrams.
• The procedure of renormalization is not uniquely determined. However,

the experience of physicists shows that different renormalization methods
yield the same physics.

• There exist rescalings of the renormalized Lagrangian density which corre-
spond to the same S-matrix. Such rescalings form the so-called renormal-
ization group, which is extremely useful.

The method of dimensional renormalizaton method is widely used by physi-
cists in elementary particle physics. Interestingly enough, this method also
works extremely well for computing higher-order post-Newtonian approxima-
tions in gravitational physics (Einstein’s theory of general relativity). Such
computations are necessary in order to compute the collision of binary neu-
tron stars or binary black holes. This can be found in the paper by
17 Explicit computations can be found in Ryder (1999), pp. 308–329.
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T. Damour, P. Jaranowski, and G. Schäfer, Dimensional regularization of
the gravitational interaction of point masses, Physics Letters B 513 (2001),
147–155.

We also recommend the survey article by G. Schäfer, Gravitation: geometry
and dynamics, Ann. Phys. (Leipzig) 14 (2005), 148–164.

Essential and inessential scales. If one wants to pass from microscopic
quantities to macroscopic quantities, one has to distinguish between the es-
sential scale and the inessential scale. The behavior of the physical system on
the inessential scale can be replaced by suitable averages. This idea is used
systematically in the method of the renormalization group.18

Methods of renormalization theory. The most important methods
in renormalization theory read as follows:

(a) BPHZ renormalization and the Weinberg power-counting theorem.
(b) Pauli–Villars regularization by introducing fictitious masses.
(c) Dimensional regularization.
(d) The BRST symmetry and algebraic renormalization.
(e) The renormalization group approach.
(f) The Epstein–Glaser approach.
(g) The Zimmermann forest formula and the importance of Hopf algebras.
(h) Gauge symmetries of functional integrals and the Ward–Takehashi iden-

tities and the Taylor–Slavnov identities for Green’s functions.

In what follows, we will discuss some basic ideas.

15.4.3 The BPHZ Renormalization

The important BPHZ renormalization method due to Bogoliubov, Parasiuk,
Hepp, and Zimmermann proceeds in the following steps.

(i) Feynman rules: We start with our lattice approach. In each order of
perturbation theory, we get well-defined discrete integrals for the S-
matrix elements. Carrying out the formal continuum limit, we obtain
multi-dimensional integrals over products of the 4-dimensional momen-
tum space. The point is that some of the integrals are divergent, because
the integrands decrease too slowly at infinity.

(ii) Regularization of divergent integrals: We subtract regularization terms
from the integrands of the divergent integrals. These regularization terms
correspond to suitable first terms of the Taylor expansion of the inte-
grands. Prototypes can be found in Sect. 8.5.3 on page 513. The con-
vergence of the regularized integrals is guaranteed by Weinberg’s power-
counting theorem.

(iii) Renormalization: Add counterterms to the classical Lagrangian density
in order to compensate for the regularization terms. This leads to renor-
malized macroscopic physical parameters.

18 We recommend Duplantier and Rivasseau (2003).
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If this approach works well, the quantum field theory is called renormalizable.
The basic papers of BPHZ renormalization are the following:

N. Bogoliubov and O. Parasiuk, On the multiplication of propagators in
quantum field theory (in German), Acta Math. 97 (1957), 227–326.

S. Weinberg, High energy behavior in quantum field theory, Phys. Rev.
118 (1969) 838–849 (the power-counting theorem).

K. Hepp, Proof of the Bogoliubov–Parasiuk theorem on renormalization,
Commun. Math. Phys. 2 (1966), 301–326.

W. Zimmermann, Convergence of Bogoliubov’s method of renormalization
in momentum space, Commun. Math. Phys. 15 (1969), 208–234.

G. ’t Hooft, Renormalization of massless Yang-Mills fields, Nuclear Phys.
B 33 (1971), 173–199.

G. ’t Hooft and M. Veltman, Regularization and renormalization of gauge
fields, Nucl. Phys. B 44 (1972), 189–213.

G.’t Hooft and M. Veltman, Diagrammar, CERN, Diagrammar, CERN,
Report 73/9 (1973).

Internet: http://doc.cern.ch/yellowrep/1973/1973-009/p1.pdf

The mathematics of the BPHZ renormalization method can be found in

I. Manoukian, Renormalization, Academic Press, New York, 1983.

We also recommend the lectures given by

P. Cartier, Mathemagics: A tribute to L. Euler and R. Feynman, Séminaire
Lotharingien 44 (2000), 1–71.

15.4.4 The Epstein–Glaser Approach

In the BPHZ approach, there arise divergent integrals which have to be reg-
ularized. In 1973 Epstein and Glaser developed an alternative approach to
quantum field theory which completely avoids divergent integrals for high en-
ergies.19 In terms of mathematics, this is an advantage of the Epstein–Glaser
approach.

By using the mathematical theory of tempered generalized functions,
ill-defined quantities never appear.

We will study this in Volume IV. The basic ideas read as follows.

(i) The iterative method for the generalized S-matrix: As the fundamental
object, we choose the generalized S-matrix,

S = S(g) for all g ∈ S(R4).

This is an operator-valued tempered generalized function. That is, to
each test function g ∈ S(R4), we assign a linear operator

19 H. Epstein and V. Glaser, The role of locality in perturbation theory, Ann. Inst.
Poincaré A 19(3) (1973), 211–295.
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S(g) : X → X

on the complex Hilbert space X. Using first physical principles (e.g.,
causality and pseudo-unitarity), we get an iterative method for comput-
ing the S-matrix,

S(g) = I + κS1(g) + κ2S2(g) + ..., (15.33)

in each order of perturbation theory. Here, κ denotes the coupling con-
stant which measures the strength of the interaction. The first-order
approximation S1(g) is determined by the interaction term of the La-
grangian density of the corresponding classical field theory. It is crucial
that

All of the higher-order terms S2(g), S3(g), ... depend on the
first-order term S1(g) by using the iterative method mentioned
above.

It turns out that the generalized S-matrix S = S(g) contains all the in-
formation about the interacting quantum field under consideration. Ex-
plicitly, this concerns the computation of the following quantities:

• cross sections for scattering processes of elementary particles,
• decay rates of elementary particles,
• energies of bound states of elementary particles, and
• interacting quantum fields Ψ.

Therefore, it remains to compute the components S2, S3, ... of the gener-
alized S-matrix.

(ii) Regularization of tempered distributions: The following observation is
crucial for understanding renormalization theory. To emphasize the basic
idea, let us simplify the following considerations by dropping out details.
Roughly speaking, in each order of perturbation theory, the iterative
method determines the generalized S-matrix only up to a finite linear
combination of Dirac’s delta distribution and its derivatives, that is, we
obtain

Sn = (Sn)reg + cn0δ + cn1δ
′ + ...+ cnmδ

(m). (15.34)

In other words, first physical principles do not determine the general-
ized scattering matrix S in a unique manner, but only up to certain
generalized functions which are not classical functions. Equivalently, this
means that, after Fourier transformation, the S-matrix component Sn is
determined up to a polynomial of order m in momentum space.20 The

20 In contrast to the classical 1949 Dyson approach, the Epstein–Glaser approach
avoids the ill-defined time-ordered product based on the crucial chronological
operator T . The singular part of (15.34) is caused by the singularities of the
Green’s functions.
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expression (15.34) is obtained in the following way. We first restrict our-
selves to test functions g which vanish outside a small disc Dr of radius
r about the origin. This choice of test functions allows us to perform the
iterative method in a natural way. We then study the limit r → 0 by
using the sophisticated Steinmann renormalization theorem from Sect.
11.4.3 on page 623.

(iii) High-energy (ultraviolet) renormalization: The generalized S-matrix
S(g) depends on the free constants cn0, cn1, ... along with physical pa-
rameters, e.g., the bare electron mass me and the bare electron charge −e
in quantum electrodynamics. Our goal is to replace cn0, ..., cnm,me,−e
by effective quantities that can be measured in a physical experiment,
e.g., the renormalized electron mass mren and the renormalized electron
charge −eren. To this end, we need additional physical information. In
this connection, the Ward identities and their generalizations play a cru-
cial role. These identities follow from additional quantum symmetries
(gauge symmetries).

(iv) Low-energy (infrared) renormalization: Note that the constant function
g ≡ 1 does not lie in the space S(R4) of test functions. In terms of
physics, this means that the approach (i) above corresponds to quantum
fields which are contained in a box of finite volume V. It remains to study
the limit V → +∞. In terms of test functions, this corresponds to the
limit

lim
k→∞

gk(x) = 1 for all x ∈ R
4

where the test functions g1, g2, ... lie in the space S(R4). Finally, we have
to study the limit limk→∞ S(gk). For example, in quantum electrody-
namics, infrared renormalization corresponds to the limit

λ → +∞

where λ denotes the photon wave length. Such a limit is not always
reasonable from the physical point of view. In particular, if the universe
has a finite volume, then there exists a natural bound R for the photon
wave length,

λ ≤ R,

where R denotes the maximal distance within the universe. Here, R is
a natural cut-off for the photon wave length λ. In this case, infrared
infinities do not appear. It is thinkable that the infrared problem will
be settled in the framework of a unified theory for all four fundamental
interactions which relates the global structure of the universe to local
quantum physics. For concrete physical situations in quantum electro-
dynamics, infrared divergences do not arise, since they are compensated
for by so-called braking radiation (bremsstrahlung) caused by low-energy
photons. More precisely, the divergences only vanish after summing over
all of the Feynman diagrams which are related to this process.
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(v) Computation of quantum fields: Suppose that we know the generalized
S-matrix

S = S(g, J)

as a functional of the test function g and the external source J . Then,
the corresponding interacting quantum field Φ can be obtained by means
of the following functional derivative,

Φ(χ, J) := S(0, J)−1 δS(0, J)
δg

(χ). (15.35)

This definition dates back to Bogoliubov. In this setting, the interacting
quantum field Φ is an operator-valued generalized function. That is, to
each test function χ ∈ S(R4) and each external source J , we assign the
linear operator

Φ(χ, J) : X → X

on the Hilbert space X.
(vi) The convergence problem in perturbation theory: In 1951 Dyson in-

vented a heuristic physical argument which suggested that the pertur-
bation series (15.33) does not converge for small values of the coupling
constant κ. However, the classical 1916 Ritt theorem in complex function
theory tells us that each formal power series of the form (15.33) can be
viewed as an asymptotic series of some function f = f(κ) which is ana-
lytic on a circular sector in the complex plane. Here, the sector contains
sufficiently small values κ > 0 of the coupling constant κ. This will be
discussed in Sect. 15.5 on page 862.

A detailed application of the Epstein–Glaser approach to quantum electro-
dynamics including Bogoliubov’s formula (15.35) can be found in the mono-
graph by

G. Scharf, Finite Quantum Electrodynamics: the Causal Approach,
Springer, New York, 1995.

Summarizing, the Epstein–Glaser approach tells us that renormalization the-
ory is related in a quite natural way to the theory of tempered distributions.

Historical remarks. Concerning the Bogoliubov formula (15.35) for
defining full quantum fields in the Epstein–Glaser approach, let us make
the following comment. To simplify notation, set J = 0 in what follows. In
1929, Heisenberg and Pauli based quantum field theory on the notion of a
local operator-valued quantum field ϕ = ϕ(x). Here, to each space-time point
x = (x, t) they assigned an operator

ϕ(x) : X → X

on the Hilbert space X. In the framework of canonical quantization, the
quantum field ϕ has to satisfy additional commutation (resp. anticommuta-
tion) rules. However, it turns out that such a notion is contradictory from
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the mathematical point of view. In 1943 Heisenberg introduced the S-matrix
as a substitute for the quantum field ϕ. In the Epstein–Glaser approach, the
quantum field Φ is not a primary object, but it can be derived from the
generalized S-matrix. Formally, the relation between ϕ and Φ is given by

Φ(χ) =
∫

R4
ϕ(x)χ(x)d4x for all χ ∈ S(R4).

Intuitively, the quantum field ϕ is a highly singular object. By forming mean
values over test functions χ, we arrive at a less singular mathematical object
denoted by Φ. The functional

χ �→ Φ(χ)

on the space S(R4) of test functions with values in a Hilbert space is called
a Hilbert space-valued generalized function (or a Wightman functional). The
representation of quantum fields by such functionals was studied first by
Arthur Wightman21 in 1956.

15.4.5 Algebraic Renormalization

In 1974 it was recognized by Becchi, Rouet, and Stora, in their work on the
BRST symmetry invariance of gauge theories, that the use of the quan-
tum action principle leads to the possibility of a fully algebraic proof of
renormalizability of a theory characterized by a set of local rigid invari-
ances. . . The quantum action principle allows one to control the breaking
of a symmetry induced by a noninvariant subtraction scheme, helping then
to give an algebraic answer of restoring the symmetry through the addi-
tion of compensating noninvariant local counterterms. It is worthwhile to
emphasize that such algebraic proofs do not rely on the existence of a
regularization preserving of symmetries.

Olivier Piguet and Silvio Sorella, 1995
Algebraic Renormalization:

Perturbative Renormalization, Symmetries, and Anomalies22

As a rule of thumb, quantum field theories related to elementary particles are
renormalizable, but the quantized gravitational force is not renormalizable in
the usual setting. This is one of the fundamental problems in the foundation
of a unified theory for all four fundamental forces in nature. A detailed proof
of the renormalizability of the electroweak Standard Model can be found in
the following paper:

E. Kraus, Renormalization of the electroweak standard model to all orders,

Ann. Phys. (NY) 262 (1998), 155–259.

21 Quantum field theories in terms of vacuum expectation values, Phys. Rev. 101
(1956), 860–866.

22 Springer, Berlin, 1995 (reprinted with permission).
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This paper uses the elegant and very effective method of algebraic renor-
malization. This method combines the quantum action principle (that is,
the Dyson–Schwinger equation for the full generating functional) with the
method of BRST symmetry to be discussed in Sect. 16.7 on page 892.23

The method of algebraic renormalization can also be used in order to prove
the renormalizability of the simplest supersymmetric variant of the Stan-
dard Model in particle physics, called the minimal supersymmetric standard
model. We refer to the basic paper by

W. Hollik, E. Kraus, M. Roth, C. Rupp, K. Sibold, and D. Stöckinger,
Renormalization of the minimal supersymmetric standard model, Nuclear
Physics B639 (2002), 3–65.

Unfortunately, renormalization proofs are highly technical and rather in-
volved. For the renomalization of quantum electrodynamics in a Euclidean
setting, we recommend

J. Feldman, T. Hurd, L. Rosen, and J. Wright, QED: A Proof of Renor-
malizability, Springer, Berlin, 1988.

15.4.6 The Importance of Hopf Algebras

Behind renormalization there lurks a monster called the motivic Galois
group. This monster is responsible for the rich mathematical structure of
renormalization theory.

Folklore

It was discovered by Kreimer in 1994 that behind renormalization theory
there exists a symmetry encoded into some Hopf algebra.24 As an introduc-
tion, we recommend

D. Kreimer, Knots and Feynman Diagrams, Cambridge University Press,
2000.

The crucial point is as follows. In the BPHZ renormalization method, it was
discovered by Zimmermann that Bogoliubov’s iterative method for determing
the regularized integrals can be formulated in terms of some global forest
formula which elegantly describes the structure of the additional Feynman
diagrams.25 Kreimer discovered that Zimmermann’s forest formula can be un-
derstood best by using the coinverse (also called the antipode) of a suitable
Hopf algebra which is related to Feynman diagrams. Furthermore, Connes
23 We recommend O. Piguet and S. Sorella, Algebraic Renormalization, Springer,

Berlin, 1995.
24 Note that, roughly speaking, Hopf algebras are dual constructions to algebras.

They appear at several places in mathematics (e.g., combinatorics, differential
operators, power series expansions, representation theory of groups, and algebraic
topology). See Chapter 3 of Volume II.

25 See the monograph by Collins (1984).
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and Kreimer discovered that the basic mathematical structure of renormal-
ization theory is closely related to the famous Riemann–Hilbert problem. We
refer to

A. Connes and H. Moscovici, Hopf algebras, cyclic cohomology and the
transverse index theorem, Commun. Math. Phys. 198 (1998), 199–246.

A. Connes and D. Kreimer, Hopf algebras, renormalization and noncom-
mutative geometry, Comm. Math. Phys. 199 (1998), 203–242.

A. Connes and D. Kreimer, Renormalization in quantum field theory and
the Riemann–Hilbert problem I: The Hopf algebra structure of graphs and
the main theorem, Commun. Math. Phys. 210 (2000), 249–273.

A. Connes and D. Kreimer, Renormalization in quantum field theory and
the Riemann–Hilbert problem II: The beta function, diffeomorphisms, and
the renormalization group, Commun. Math. Phys. 216 (2000), 215–241.

As a survey, we recommend

A. Connes, Symmétries galoisiennes et renormalisation. In: Duplantier and
Rivasseau (2003), pp. 241–264.

The final breakthrough can be found in the monograph by

A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields,
and Motives, Amer. Math. Soc., Providence, Rhode Island, 2008.

The basic philosophy is the following one. The experience of physicists shows
that renormalization theory is full of symmetries reflected by marvellous re-
lations. The experience of mathematicians shows that symmetries are always
governed by an appropriate symmetry group. In terms of renormalization
theory, the symmetry group was discovered by Connes and Marcolli in an
abstract way by using the theory of categories. This huge group is called the
motivic Galois group of renormalization. The renormalization groups used by
physicists in specific situations are representations of one-dimensional sub-
groups of the motivic Galois group.

15.5 The Convergence Problem in Quantum Field
Theory

15.5.1 Dyson’s No-Go Argument

In 1951 Dyson discovered a simple argument which suggested that the
S-matrix series diverges. His reasoning was the following: Suppose one
were to calculate a physical observable in a power series in the coupling
constant, κ. If this series is convergent for some positive value of κ, it
must converge in some circle of radius κ. The series must therefore also
converge on some interval of the negative real axis. Now a negative coupling
constant κ corresponds to a world in which like charges would attract
one another and opposite charges would repel each other. However, if κ
is negative, then a state which contains a large number N , of electron-
positron pairs in which the electrons are clustered together in a region
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Ω1 and the positrons are clustered together in another region Ω2 of space
far from Ω1, would have an energy lower than that of the ground state
(vacuum) for N large enough. . . The ground state is therefore unstable
relative to such states. Since the larger the number of pairs, the more
pronounced the effect becomes, the higher order terms in the power series
expansion must become more and more important so that the series cannot
converge. . . Quantum electrodynamics was over for Dyson in 1951, when
he found this heuristic argument that the perturbation theory diverges.

Silvan Schweber
QED and the Men Who Made it: Dyson, Feynman,

Schwinger, and Tomonaga26

15.5.2 The Power of the Classical Ritt Theorem in Quantum
Field Theory

The question of what conditions a formal power series must satisfy in order
to occur as an asymptotic development has a surprisingly simple answer
for circular sectors at the origin: there are no such conditions.

Reinhold Remmert, 1991
Theory of Complex Functions27

Let a0, a1, ... be a sequence of complex numbers. The convergent or divergent
power series expansion

a0 + a1κ+ a2κ
2 + ...

is called a formal power series expansion. The following Ritt theorem shows
that each formal power series expansion is the asymptotic series of an ap-
propriate analytic function f = f(κ). Observe that the function f is not
determined uniquely by the formal power series expansion. In physical ap-
plications, the variable κ represents the coupling constant. We are given the
circular sector

C := {κ ∈ C : 0 < |κ| < r, −η < arg κ < η}

where the radius r is a fixed positive number, and the positive angle η is less
than π (Fig. 15.7 on page 864).

Theorem 15.9 To each formal power series expansion
∑∞

n=0 anκ
n, there

exists a holomorphic function f : S → C such that

f(κ) ∼
∞∑

n=0

anκ
n on S,

in the sense of an asymptotic power series expansion.
26 Princeton University Press, 1994 (reprinted with permission).
27 Springer, New York, 1991 (reprinted with permission).
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Fig. 15.7. Circular sector

Explicitly, this means that we have

f(κ) = a0 + a1κ+ . . .+ anκ
n + rn(κ) for all κ ∈ S

and each n = 0, 1, 2, . . . where the remainder is of the form rn(κ) = εn(κ)κn

with εn(κ) → 0 as κ → 0 on S. This theorem was obtained by Ritt in 1916.28

The proof can be found in Remmert (1991), Vol. 1, p. 300. The idea of the
proof is to construct the function

f(κ) :=
∞∑

n=0

ancn(κ)κn

with convergence factors of the form cn(κ) := 1− e−bn/
√

κ. Observe that the
function f is not holomorphic in a small neighborhood of the origin κ = 0,
but only on a circular sector. The 1916 Ritt theorem is closely related to
Dyson’s ‘no go’ argument from Sect. 15.5.1.29

15.6 Rigorous Perspectives

Suggested reading. For a rigorous mathematical approach to the classic
ϕ4-model, we recommend the following two modern surveys:

P. Federbush, Quantum field theory in ninety minutes, Bull. Amer. Math.
Soc. 17 (1) (1987), 93–103.

B. Duplantier and V. Rivasseau (Eds.), Poincaré Seminar 2002: Vacuum
Energy – Renormalization, Birkhäuser, Basel, 2003

and the following monographs:

B. Simon, The P (ϕ)2-Euclidean Quantum Field Theory, Princeton Uni-
versity Press, 1974.

J. Glimm and A. Jaffe, Mathematical Methods of Quantum Physics: A
Functional Integral Point of View, Springer, New York, 1981.

28 J. Ritt, On the derivatives of a function at a point, Annals of Math. 18(2) (1916),
18–23.

29 As an introduction to Poincaré’s theory of asymptotic expansions, we recommend
the monographs by Erdélyi (1965), Wasow (1965), and Ramis (1993).
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J. Glimm and A. Jaffe, Quantum Field Theory and Statistical Mechanics:
Expositions, Birkhäuser, Boston, 1985.

E. Seiler, Gauge Theories as a Problem of Constructive Quantum Field
Theory and Statistical Mechanics, Springer, Berlin, 1982.

H. Grosse, Models in Statistical Physics and Quantum Field Theory,
Springer, New York, 1988.

R. Balian, From Microphysics to Macrophysics, Springer, New York, 1991.

V. Rivasseau, From Perturbative to Constructive Renormalization, Prince-
ton University Press, 1991.

J. Fröhlich, Non-Perturbative Quantum Field Theory: Mathematical As-
pects and Applications (a collection of papers), World Scientific, Singapore,
1992.

J. Fröhlich, Scaling and Self-Similarity in Physics: Renormalization in Sta-
tistical Physics, Birkhäuser, Basel, 1993.

R. Fernández, J. Fröhlich, and D. Sokal, Random Walks, Critical Phenom-
ena, and Triviality in Quantum Field Theory, Springer, Berlin, 1992.

G. Benfatto and G. Gallavotti, Renormalization Group, Princeton Univer-
sity Press, 1995.

L. Vázquez, L. Streit, and V. Pérez-Garćıa (Eds.), Nonlinear Klein–Gordon
and Schrödinger Systems: Theory and Applications, World Scientific, Sin-
gapore, 1996.

I. Montvay and G. Münster, Quantum Fields on a Lattice, Cambridge
University Press, 1997.

C. Kopper, Renormalization with Flow Equations (in German), Shaker,
Aachen, 1998.

G. Battle, Wavelets and Renormalization, World Scientific, Singapore,
1999.

M. Salmhofer, Renormalization: An Introduction, Springer, Berlin, 1999.

J. Klauder, Beyond Conventional Quantization, Cambridge University
Press, 2000.

A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti, and S. Zerbini, Analytic
Aspects of Quantum Fields, World Scientific, Singapore, 2003.

J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon
Press, Oxford, 2003.

Much material about two-dimensional models in quantum field theory can
be found in:

E. Abdalla, M. Abdalla, and K. Rothe, Non-Perturbative Methods in Two-
Dimensional Quantum Field Theory, World Scientific, Singapore, 2001.

S. Lundquist, G. Morandi, Yu Lu (Eds.), Low-Dimensional Quantum Field
Theories for Condensed Matter Physicists, World Scientific, Singapore,
1995.

S. Carnip, Quantum Gravitation in 2+1 Dimensions, Cambridge Univer-
sity Press, 1998.

P. Fre and P. Soriani, The N = 2 Wonderland: From Calabi–Yau Manifolds
to Topological Field Theories, World Scientific, Singapore, 2004.
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An impressive series of ten rigorous papers on the statistical physics of two-
dimensional Fermi liquids and renormalization is accessible on the Internet:

J. Feldman, H. Knörrer, and E. Trubowitz, A two-dimensional Fermi liq-
uid, 2003. Internet: http://www.math.ubc.ca/∼feldman/fl.htlm

Finally, let us mention a pedagogical survey on the relations between classical
perturbation theory in celestial mechanics (the Poincaré–Lindstedt series)
and modern renormalization theory:

J. Feldman and E. Trubowitz, Renormalization in classical mechanics and
many body quantum field theory, Jerusalem J. d’Analyse Mathématique
52 (1992), 213–247.
Internet: http://www.math.ubc.ca.∼feldman/research.html

Minkowskian versus Euclidean models. First we are going to fix
the terminology. Let us choose D = 2, 3, . . . (dimension of the space-time
manifold), and let N = 3, 4, . . . (order of nonlinearity). We will distinguish
between the

• Minkowskian case (indefinite metric on the D-dimensional space-time), and
• the Euclidean space (definite metric on the D-dimensional space-time).

The Euclidean case is much simpler to treat mathematically than the
Minkowskian case. The Euclidean case allows us to apply the well-elaborated
machinery of stochastic processes and probabilistic calculus. The passage
from the Minkowskian case to the Euclidean case corresponds to the passage

t �→ −it (15.36)

from real time to imaginary time.

(M) The Minkowskian ϕN
D -model: Choose σ := 1 and α := 1. This model is

based on the following action functional

S[ϕ] := α(Sfree[ϕ] + κSint[ϕ]) (15.37)

with the free action

Sfree[ϕ] :=
1
2

∫

RD

(

−σϕtt +
D−1∑

k=1

ϕxkxk
−m2

0ϕ
2

)

dDx,

and the interacting part of the action

κSint[ϕ] := κ

∫

RD

(λϕ− ϕN ) dDx.

Here, the coupling constant κ ≥ 0 and the real potential parameter λ
are fixed. The Euler–Lagrange equation corresponding to the principle of
critical action,

S[ϕ] = critical!, ϕ ∈ S(RD)
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reads as

σϕtt −
D−1∑

k=1

ϕxkxk
+m2

0ϕ+NκϕN−1 − κλ = 0. (15.38)

This is a nonlinear Klein–Gordon equation (meson model).
(E) The Euclidean ϕN

D -model: We use the action functional S[ϕ] along with
equation (15.38) by setting σ := −1. According to the time transforma-
tion (15.36), the differential dDx passes over to −idDx. Therefore, we
choose now α := −i.

In the general case, the correlation functions read as

Cn(x1, . . . , xn) :=

∫
S(RD)

ϕ(x1) · · ·ϕ(xn) eiακSint[ϕ] · eiαSfree[ϕ] Dϕ
∫
S(RD)

eiακSint[ϕ] · eiαSfree[ϕ] Dϕ

where n = 1, 2, . . . Setting dμ := eiαSfree[ϕ]Dϕ, we get

Cn(x1, . . . , xn) :=

∫
S(RD)

∏n
k=1 ϕ(xk) · eiακSint[ϕ] dμ(ϕ)

∫
S(RD)

eiακSint[ϕ] dμ(ϕ)
.

In the Euclidean case (E), we obtain

Cn(x1, . . . , xn) =

∫
S(RD)

∏n
k=1 ϕ(xk) · eκSint[ϕ] dμ(ϕ)

∫
S(RD)

eκSint[ϕ] dμ(ϕ)

along with
dμ(ϕ) := eSfree[ϕ] Dϕ

where

Sfree[ϕ] =
1
2

∫

RD

(

ϕtt +
D−1∑

k=1

ϕxkxk
−m2

0ϕ
2

)

dDx.

In this case, the formula for the correlation function Cn(x1, . . . , xn) (also
called Schwinger function) is well-defined if we use a probabilistic measure μ
on the function space S(RD) (or, more generally, on the space S ′(RD) of tem-
pered distributions). Such measures generalize the Wiener measure which was
introduced by Wiener in 1923 in order to rigorously describe the probabilis-
tic structure of the Brownian motion.30 Multiplying the function Cn by test
functions, f1, . . . , fn ∈ S(RD) and setting ϕ(fk) :=

∫
RD ϕ(xk)f(xk) dDxk, we

obtain that the integral
30 We refer to Gelfand et al (1964), Vol. IV (measures on linear topological spaces

and generalized stochastic processes), Yeh (1973), Simon (1974), (1979), and
Glimm, Jaffe (1987).
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Cn[f1, . . . , fn] :=
∫

Cn(x1, . . . , xn)
n∏

k=1

f(xk)
n∏

k=1

dDxk

is equal to ∫
S(RD)

∏n
k=1 ϕ(fk) · eκSint[ϕ] dμ(ϕ)

∫
S(RD)

eκSint[ϕ] dμ(ϕ)
.

This motivates the more general definition

Cn[f1, . . . , fn] :=

∫
S′(RD)

∏n
k=1 ϕ(fk) dν(ϕ)

∫
S′(RD)

dν(ϕ)
(15.39)

of correlation distributions. Here, let n = 1, 2, . . ., and let the symbol ν denote
a probabilistic measure on the space S ′(RD) of tempered distributions, which
is an extension of the measure

dν(ϕ) := eκSfree(ϕ)dμ(ϕ)

on the space S(RD) of test functions. Concerning (15.39), we integrate over
all tempered distributions ϕ ∈ S ′(RD).

15.6.1 Axiomatic Quantum Field Theory

In 1964, G̊arding and Wightman formulated axioms for relativistic quantum
fields.31 We will study the axiomatic approach to quantum field theory in
Volume IV on quantum mathematics. Essential ingredients of the axiomatic
approach to quantum field theory concern

• the 1956 Wightman axioms for vacuum expectation values,
• the Wightman reconstruction theorem for quantum fields,
• the 1964 G̊arding–Wightman axioms,
• the 1973 Osterwalder–Schrader axioms on Schwinger distributions,
• the Osterwalder–Schrader reconstruction theorem for quantum fields in the

Euclidean setting, and
• the 1964 Haag–Kastler axioms formulated in the language of nets of local
C∗-algebras (algebraic quantum field theory).

The Haag–Kastler approach elaborates the frame of local quantum theory in
Minkowski space. We refer to the monographs by Res Jost (1965), Streater
and Wightman (1968), Emch (1972), Reed and Simon (1972), Vols. 2, 3,
Simon (1974), Glimm and Jaffe (1981), Bogoliubov et al. (1975), (1990),

31 A. Wightman, Quantum field theory in terms of vacuum expectation values,
Phys. Rev. 101 (1956), 860–866.
A. Wightman and L. G̊arding, Fields as operator-valued distributions in rela-
tivistic quantum field theory, Arkiv för Fysik 28 (1964), 128–184.
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Baumgärtel and Wollenberg (1992), Iagolnitzer (1993), Baumgärtel (1995),
Haag (1996), and Araki (1999).

At this point, let us only sketch a few basic ideas. We will start with the
notion of Poincaré transformation

x′ = Ax+ a

between the space-time coordinates x := (x1, x2, x3, x0 = t) and x′ of two
arbitrary inertial systems. Here, the real invertible (4 × 4)-matrix A is the
superposition of a rotation of the space coordinates, a Lorentz boost,

x′1 =
x1 − vt√
1 − v2

, x′2 = x2, x′3 = x3, t′ =
t− vx1

√
1 − v2

,

and space or time reflections. The reflections may drop out. The parameter
v with 0 ≤ v < 1 describes the relative velocity between the two inertial
systems. Moreover, the map x �→ x+a represents a space translation or time
translation. Such a Poincaré transformation will be denoted by the symbol
(A, a). All of the Poincaré transformations form a group called the Poincaré
group.32 The G̊arding–Wightman axioms in the four-dimensional space-time
M

4 read as follows.33

(GW1) Relativistic symmetry. There exists both a complex Hilbert space X
called state space and a unit vector Ω0 called ground state (or vacuum).
Moreover, the relativistic Poincaré group acts as symmetry group on the
Hilbert space X. More precisely, there exists a map

(A, a) �→ U(A, a) (15.40)

which assigns a unitary operator U(A, a) : X → X to each element
(A, a) of the Poincaré group. The map (15.40) is a group morphism, that
is, it sends products of Poincaré transformations to products of unitary
operators.

(GW2) Spectral property. By the Stone theorem on one-parameter unitary
groups in Hilbert spaces, there exist self-adjoint operators

Pμ : dom(Pμ) ⊆ X → X, μ = 0, 1, 2, 3

such that
U(I, a) = ei

P3
μ=0 aμPμ

for all a = (a0, a1, a2, a3)d in R
4. The operator H := P0 is called the

Hamiltonian (or energy operator) of the quantum field. Moreover, the

32 This fundamental non-compact group and its representations will be studied in
Volume III on gauge field theory.

33 We use basic notions from functional analysis which can be found in Zeidler
(1995), Vol. 1.
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operators P1, P2, P3 are called the momentum operators of the quantum
field. We postulate that the spectral points p0, p1, p2, p3 of the operators
P0, P1, P2, P3, respectively, lie in the following forward cone:

p2
0 −

3∑

j=1

p2
j ≥ 0, p0 ≥ 0.

We also postulate that the energy of the ground state is equal to zero,
that is,

HΩ0 = 0.

Intuitively, the spectral points p0, p1, p2, p3 describe the possible energy
values E = p0 and the possible momentum vectors

p = p1e1 + p2e2 + p3e3

of the quantum field. Here, pj := −pj for j = 1, 2, 3, and e1, e2, e3 is a
right-handed orthonormal system of vectors.

(GW3) The generalized quantum field. There exists a linear map

f �→ ϕ[f ] (15.41)

which assigns a linear self-adjoint operator ϕ[f ] on the Hilbert space
X to each test function f ∈ S(RD). There exists a dense subset D of
the Hilbert space X such that the domain of definition of each operator
ϕ[f ] contains the set D. The generalized quantum field is relativistically
invariant. That is,

U(A, a)−1ϕ[f ] U(A, a) = ϕ[f(A,a)]

for all elements (A, a) of the Poincaré group. By definition, f(A,a)(x) is
equal to f(Ax+ a) for all x ∈ M

4. Intuitively, think of

ϕ[f ] :=
∫

M4
ϕ(x)f(x) d4x (15.42)

for all test function f ∈ S(R4). Let us briefly discuss this as a key point
to quantum field theory. Naively, a quantum field is an operator-valued
function

x �→ ϕ(x)

which assigns a self-adjoint operator ϕ(x) to each space-time point
x = (x, t). Unfortunately, this is a highly singular and ill-defined mathe-
matical object. Therefore, we consider first the integral ϕ[f ] from (15.42)
which is obtained by averaging over test functions f . This motivates the
more general definition where the generalized quantum field (15.41) is a
tempered operator-valued distribution; the values ϕ[f ] are operators on
the Hilbert space X.
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(GW4) Density of standard states. The ground state Ω0 lies in D, and the
set of standard states (

N∏

k=1

ϕ[fk]

)

Ω0

for all N = 1, 2, . . . and all test functions f1, . . . , fN ∈ S(R4) is dense in
the Hilbert space X. We say that the ground state Ω0 is a cyclic vector
of the Hilbert space X. Intuitively, the standard states correspond to
particle creation and particle annihilation.

(GW5) Locality of the generalized quantum field. If the supports of the two
test functions f, g ∈ S(R4) are space-like separated,34 then we have the
commutation property

(
ϕ[f ] · ϕ[g] − ϕ[g] · ϕ[f ]

)
θ = 0 for all θ ∈ D.

Intuitively, the events belonging to the supports of f and g cannot influ-
ence each other by physical effects. This locality property is a weak form
of causality.

In addition, we distinguish between the following two cases which are impor-
tant from the physical point of view.

• Uniqueness of the ground state: Up to a complex factor, the ground state
Ω0 is unique. Furthermore, the ground state Ω0 is relativistically invariant,
that is, for each element (A, a) of the Poincaré group, there exists a complex
number λ with |λ| = 1 such that U(A, a)Ω0 = λΩ0.

• A phase transition of the quantum field is possible: There are at least
two linearly independent ground states Ω0 and Ω1. Intuitively, by a phase
transition, we understand a passage from Ω0 to Ω1.

The model is called trivial if it behaves like a free model. Finally, the model
is called asymptotically free if it behaves like a free model as energy goes to
infinity.

In what follows, we will also consider quantum fields on a D-dimensional
space-time where D = 2, 3, 4, . . . In this case, one has to modify the axioms
(GW1) through (GW5) above in a natural way. In particular, it is necessary
to use the D-dimensional Poincaré group which consists of all the transfor-
mations

x′ = Ax+ a, x ∈ R
D

with arbitrary, but fixed element a of R
D, and a fixed invertible (D × D)-

matrix A with the property
34 This means that if x ∈ supp f and y ∈ supp g, then

(x− y)2 := (x0 − y0)2 −
3
X

k=1

(xk − y)k < 0.
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(Ax) · (Ax) = x · x for all x ∈ R
d.

Here, we write x · y := x0y0 −
∑D−1

k=1 xkyk.

15.6.2 The Euclidean Strategy in Constructive Quantum Field
Theory

The highly sophisticated mathematical task of constructive quantum field
theory is to construct models which satisfy the G̊arding–Wightman axioms
and which are related to given classical action functionals. The Euclidean
strategy reads as follows.

Step 1: Start with a classical action functional. Pass over to the Euclidean
version of the action. Discretize the Euclidean action. Study the dis-
cretized model with the methods of statistical physics (e.g., study the
Ising model which is related to random walks).

Step 2: Carry out the continuum limit of the lattice model, by using estimates
based on correlation inequalities. Show that the continuum limit satisfies
the Osterwalder–Schrader axioms for the Euclidean correlation functions
C1, C2, . . . Use the Osterwalder–Schrader reconstruction theorem in order
to construct the Wightman functions Wn, by analytic continuation with
respect to imaginary time. Intuitively,

Cn(x1, t1; . . . ,xn, tn) = Wn(x1, it1; . . . ,xn, itn)

for n = 2, 3, 4, . . .
Step 3: Prove that the Wightman functions (more precisely, the tempered

Wightman distributions) satisfy the Wightman axioms, and use the
Wightman reconstruction theorem in order to construct a model which
satisfies the G̊arding–Wightman axioms mentioned above. Intuitively, the
Wightman functions are given by

Wn(x1, t1; . . . ;xn, tn) := 〈Ω0|ϕ(x1, t1) · · ·ϕ(xn, tn)Ω0〉.

That is, the Wightman functions are vacuum expectation values of prod-
ucts of quantum field operators.

Step 4: Study the uniqueness of the ground state or the existence of phase
transitions between different ground states.

Step 5 : Study the existence of bound states (e.g., by using the Bethe–
Salpeter equation), and the existence of scattering processes (e.g., by
using the Haag–Ruelle theory for the S-matrix).

Examples. Let us consider some important examples which were studied
in fundamental papers by Glimm and Jaffe around 1970 and by their follow-
ers. As an introduction, we recommend the monographs by Simon (1974),
Glimm, Jaffe (1981), Grosse (1988), and Fernández, Fröhlich, Sokal (1992).
In what follows suppose that the coupling constant κ > 0 is sufficiently small.
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Furthermore, we assume that the additional potential parameter vanishes,
λ := 0.

(i) The Minkowskian ϕ4
2-model: The G̊arding–Wightman axioms are ful-

filled.35

(ii) The Minkowskian ϕ4
3-model: The G̊arding–Wightman axioms are ful-

filled.
(iii) Triviality of the Euclidean ϕ4

D model with D > 4 : Roughly speaking,
the model behaves like a free model. This crucial fact was proven in-
dependently by Aizenman and Fröhlich in 1982. Intuitively, this trivial
behavior depends on the fact that random walks do not intersect if the
dimension is larger than four.36

(iv) Triviality of the Euclidean ϕ4
4-model: Based on computer experiments

and partial rigorous results, most physicists expect that the ϕ4-model in
four-dimensional space-time has the surprising property of behaving like
a free model (after renormalization).

In addition to the monographs mentioned above, we refer to the following
papers:

K. Osterwalder and R. Schrader, Axioms for Euclidean Green’s functions,
Commun. Math. Phys. 31 (1973), 83–112; 42 (1975), 281–305.

H. Epstein and V. Glaser, The role of locality in perturbation theory, Ann.
Inst. Poincaré A19(3) (1973), 211–295.

T. Spencer and F. Zirilli, Scattering states and bound states in P (ϕ)2.
Commun. Math. Phys. 49 (1975), 1–16.

J. Eckmann, J. Magnen, and R. Sénéor, Decay properties and Borel
summability of the Schwinger functions in P (ϕ)2 theories, Commun. Math.
Phys. 39 (1975), 251–271.

K. Osterwalder and R. Sénéor, A nontrivial scattering matrix for weakly
coupled P (ϕ)2 models, Helv. Phys. Acta 49 (1976), 525–535.

J. Feldman and K. Osterwalder, The Wightman axioms and the mass gap
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ϕ4 theory, Nuclear Phys. B 290 (1987), 25–60.

15.6.3 The Renormalization Group Method

In very rough terms, this modern method in renormalization theory goes as
follows. Let us consider the Euclidean ϕ4

4-model. Our goal is to construct the
Fourier transform of the renormalized Euclidean correlation functions

Cn,ren(p1, . . . , pn) =
∞∑

m=0

C(m)
n,ren(p1, . . . , pn)κm, n = 1, 2, . . .

as a formal power series expansion with respect to the coupling constant κ.
Here, the momenta p1, . . . , pn lie in R

4. Moreover, p1 + . . .+pn = 0. The idea
is to use a limit of the form

C(m)
n,ren(p1, . . . , pn) = lim C(m)

n,Pmax,Pmin
(p1, . . . , pn) (15.43)

where

• Pmax → +∞ (high-energy limit or ultraviolet limit), and
• Pmin → +0 (low-energy limit or infrared limit).

To this end, we fix two positive numbers Pmax and Pmin, and we only consider
momenta p1, . . . , pn−1 ∈ R

4 which satisfy the following inequality

0 < P 2
min ≤

3∑

μ=0

(pμ
k)2 ≤ P 2

max, k = 1, . . . , n− 1.

We call this a cut-off in momentum space. Naively, correlation functions
are given by functional integrals. Motivated by this, we use the following
ingredients.
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(i) Finite functional integrals: We construct the approximation

C(m)
n,Pmax,Pmin

(p1, . . . , pn)

by using suitable functional integrals on a lattice. The definition of the
approximate functional integrals is motivated by physical arguments: in
terms of the language of Feynman diagrams, the internal lines correspond
to the truncated Euclidean propagator

1
(2π)2(p2 +m2

0)
·
(
e−(p2+m2

0)/P 2
max − e−(p2+m2

0)/P 2
min

)
,

whereas the vertices of the Feynman diagrams are determined by the
Lagrangian density of the interaction potential including counterterms.

(ii) The renormalization group equation: We postulate the validity of a first-
order partial differential equation for

∂C(m)
n,Pmax,Pmin

∂Pmax
.

This is the so-called renormalization group equation which determines
a semi-flow with respect to the flow parameter Pmax. Intuitively, this
differential equation describes natural rescaling properties of correlation
functions under multiplicative renormalization.

(iii) Boundary conditions: We add boundary conditions to equation (ii) at the
points Pmin = 0 and Pmax. For example, these boundary conditions help
to fix the counterterms. Therefore, they are also called renormalization
conditions.

The idea is to prove the convergence of (15.43) by using estimates coming
from an induction argument based on (ii) and (iii). An elegant proof can be
found in

C. Kopper, Renormalization with Flow Equations (in German), Shaker,
Aachen, 1998, pp. 18–21.

This proof avoids the use of huge, but redundant Feynman diagrams. For the
dimensions D = 2, 3, 4, a detailed study of the ϕ4

D-model is contained in the
book by

M. Salmhofer, Renormalization: An Introduction, Springer, Berlin, 1999,

along with a discussion of the relation to Feynman diagrams.
The Polchinski equation. Finally, let us mention that the approach

sketched above dates back to the fundamental paper by

J. Polchinski, Renormalization and effective Lagrangians, Nucl. Phys. B
231 (1984), 269–295.
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The idea of Polchinski is to consider the space of Lagrangian densities of
the ϕ4

4-model including counterterms and cut-offs in the momentum space.
The goal is to construct a semi-flow in this space which starts with the bare
Lagrangian density and ends up with the renormalized Lagrangian density.
The flow parameter is equal to Pmax, along with the high-energy limit

Pmax → +∞.

The basic trick is to obtain a partial differential equation called the semi-flow
equation (or renormalization group equation) which governs the semi-flow.
To this end, Polchinski uses the generating functional

Z(J ;Pmax, Pmin)

for the correlation functions in the form of a functional integral, and he
postulates the validity of the so-called Polchinski equation

∂Z(J ;Pmax, Pmin)
∂Pmax

= 0.

This elegantly yields the desired semi-flow equation.37 Finally, Polchinski
simplifies the semi-flow equation by assuming that the low-energy behavior,
Pmin → +0, has a simple structure. The Polchinski approach avoids the
trouble with overlapping divergences in the integrals of the BPHZ approach
to renormalization. The ingenious idea of considering semi-flows in the space
of physical theories (i.e., the space of Lagrangian densities) is due to Wilson.
We refer to

K. Wilson, Renormalization group and critical phenomena, I, II, Phys.
Rev. B 4 (1971), 3174–3183, 3184–3205.

K. Wilson and J. Kogut, The renormalization group and the ε-expansion,
Physics Reports 12C (1974), 75–199.

Renormalization in noncommutative geometry. Based on the pow-
erful Polchinski method, the renormalization of the Euclidean ϕ4-model on
the four-dimensional Moyal plane in noncommutative geometry was proven
for the first time by

H. Grosse and R. Wulkenhaar, Renormalisation of ϕ4 theory on noncom-
mutative R

4 to all orders. Internet: hep-th/0403232

H. Grosse and R. Wulkenhaar, Renormalisation of ϕ4 theory on noncom-
mutative R

4 in the matrix base, Commun. Math. Phys. 256 (2005), 305–
374. Internet: hep-th/0401128

A stronger version of this result can be found in

V. Rivasseau, F. Vignes-Tourneret, and R. Wulkenhaar, Renormalization
of noncommutative ϕ4 theory by multi-scale analysis.
Internet: hep-th/0501036

37 A simple variant of the Polchinski equation can be found in Sect. 8.5.4.
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For noncommutative geometry, we refer to the following monographs:

A. Connes, Noncommutative Geometry, Academic Press, New York, 1994.

J. Gracia-Bondia, J. Várilly, and H. Figueroa, Elements of Noncommuta-
tive Geometry, Birkhäuser, Boston, 2001.

F. Scheck, W. Wend, and H. Upmeier, Noncommutative Geometry and the
Standard Model of Elementary Particle Physics, Springer, Berlin, 2003.

Yu. Manin, Topics in Noncommutative Geometry, Princeton University
Press, 1991.



16. Peculiarities of Gauge Theories

The interactions between elementary particles in the Standard Model are
described by gauge field theories.

Folklore

16.1 Basic Difficulties

Observe the crucial fact that both quantum electrodynamics and the Stan-
dard Model in particle physics are gauge field theories. This means that

• the interacting particles (photons, gluons, and vector bosons) are described
by gauge potentials which are only determined up to local gauge transfor-
mations, and

• the Lagrangian density is invariant under local gauge transformations.

The typical difficulty is that the original response equations are not uniquely
solvable because of the local gauge invariance.

In order to get uniquely solvable response equations, one has to fix
the choice of the gauge potentials by adding side conditions.

This leads to additional terms in the Lagrangian density which enter the re-
sponse equations. This is called gauge fixing. The response equations depend
on the gauge fixing. We now proceed as follows.

• We fix the response equations by fixing the side conditions (gauge fixing),
• and we apply the universal approach to this special situation.

However, this approach only works well if the following two conditions are
fulfilled:

(G) Gauge invariance: The physics does not depend on the choice of the
gauge fixing.

(S) Unitarity condition: The S-matrix is unitary.

If the unitarity condition is violated, then the elements of the S-matrix cannot
be interpreted as transition probabilities. To guarantee condition (S) in gen-
eral gauge field theories, one has to introduce additional ghost and antighost
fields (see Sect. 16.6).

E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics,
c© Springer-Verlag Berlin Heidelberg 2006, Corrected 2nd printing 2009
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The general strategy. In the classical calculus of variations, constrained
problems are treated by means of Lagrange multipliers (see Sect. 7.28). Physi-
cists have developed several methods in order to generalize the method of
Lagrange multipliers to gauge field theories. The main idea is to introduce
additional quantities called Lagrange multipliers in mathematics; in physics
one speaks of ghosts, antighosts, and antifields. In the next sections, we will
sketch the basic ideas related to

• the Faddeev–Popov–De Witt ghost formalism,
• the Becchi–Rouet–Stora–Tyutin (BRST) ghost formalism, and
• the Batalin–Vilkovisky antifield formalism based on a master equation.

Summarizing, the basic ideas behind all of these formalisms read as follows:

• In order to compute physical processes in gauge field theories, the simplest
way is to fix the gauge potential by specifying a special gauge condition.
Then, one has to show that all of the computations including renormaliza-
tion via counterterms are independent of the choice of the gauge.

• To guarantee the unitarity of the S-matrix and hence the consistency of
transition probabilities for scattering processes, one has to introduce ad-
ditional fields (Lagrangian multipliers) that are called ghosts, antighosts,
or antifields. It is crucial that these additional fields do not appear as
real incoming or outgoing particles in scattering processes. This is a con-
sequence of cancellations governed by an additional symmetry related to
BRST symmetry or its generalizations.

We will discuss below that

Ghosts are closely related to the fundamental concept of cohomology
in mathematics.

As we will show in Volume II on the Gupta–Bleuler formalism in quantum
electrodynamics, real physical photons are polarized transversally; in contrast
to this, ghosts correspond to photons which possess an unphysical longitudi-
nal polarization. The formalisms mentioned above represent generalizations
of the Gupta–Bleuler formalism.

System of units. In this chapter, we use the energetic system of units
with � = c = 1.

16.2 The Principle of Critical Action

We want to discuss the basic ideas of generalizing quantum electrodynam-
ics to gauge theories having non-commutative gauge groups. The Standard
Model in particle physics is of this type. In what follows, let x ∈ M

4, and
choose μ, ν = 0, 1, 2, 3 along with the notation introduced on page 770. We
will use
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• a matter field ψ (fundamental particles), and
• a gauge field F (gauge bosons).

The fundamental particles are fermions (e.g., electrons or quarks). The gauge
bosons are responsible for the interaction between the fundamental particles
(e.g., photons or gluons). The gauge field F has a potential A called gauge
potential. Different choices of the potential A correspond to gauge transfor-
mations.

The theory has to be designed in such a way that it is invariant under
gauge transformations.

This is called the gauge invariance principle
Prototype 1: Quantum electrodynamics with the commutative gauge

group G = U(1) and the gauge Lie algebra u(1). In quantum electrodynamics,
the matter field ψ describes electrons, whereas the gauge field F corresponds
to photons (electromagnetic field).1 The covariant derivative reads as

∇μ := ∂μ − ieAμ, μ = 0, 1, 2, 3

where the real valued functions A0, A1, A2, A3 represent the 4-potential of
the electromagnetic field which is given by

Fμν := ∂μAν − ∂νAμ, μ, ν = 0, 1, 2, 3.

If we set
Aμ := −ieAμ, Fμν = −ieFμ,ν ,

then the following hold true for all μ, ν = 0, 1, 2, 3.

• Aμ ∈ u(1),
• ∇μ = ∂μ + Aμ,
• Fμν = ∇μ∇ν −∇ν∇μ,
• κ = e (coupling constant),
• Dirac equation: iγμ∇μψ = meψ (me bare rest mass of the electron).

Here, −e is the bare electric charge of the electron. Note that the bare mass
and the bare charge of the electron are used in order to construct the crucial
renormalized (effective) masses and charges of the electron which can be
measured in physical experiments. To this end, one uses the sophisticated
methods of renormalization theory. The complex (4×4)-matrices γ0, γ1, γ2, γ3

1 Recall that the Lie group U(1) consists of all complex numbers z with |z| = 1,
and the Lie algebra u(1) consists of all purely imaginary numbers αi where α is
a real number.
For N = 2, 3, . . ., the Lie group SU(N) consists of all complex (N ×N)-matrices
U with detU = 1 and U−1 = U† (special unitary group). Moreover, the corre-
sponding Lie algebra su(N) consists of all complex (N × N)-matrices A with
A = −A† and vanishing trace, tr(A) = 0.
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are the Dirac–Pauli matrices from page 792. Our goal is to replace U(1) by
more general gauge groups.

Prototype 2: Quantum chromodynamics with the non-commutative
gauge group G = SU(3) and the gauge Lie algebra su(3). The reader should
have in mind the matter field

ψ(x) =

⎛

⎜
⎝

ψ1(x)
ψ2(x)
ψ3(x)

⎞

⎟
⎠

of a quark. The components ψ1(x), ψ2(x), ψ3(x) are Dirac 4-spinors as in
Sect. 14.3 on page 791. They describe the three different color charges of
the quark (red, green, and blue). The gauge bosons correspond to the field
Fμν below. Parallel to quantum electrodynamics above, let us introduce the
following notions for all μ, ν = 0, 1, 2, 3.

• Aμ ∈ su(3) (gluon potential)
• ∇μ = ∂μ + Aμ (covariant derivative),
• Fμν = ∇μ∇ν −∇ν∇μ (gluon field tensor),
• Dirac equation: iγμ∇μψ = mψ (m bare rest mass of the quark).

Explicitly,

Fμν = ∂μAν − ∂νAμ + [Aμ,Aν ]−, μ, ν = 0, 1, 2, 3.

Recall that [Aμ,Aν ]− := AμAν −AνAμ. In contrast to quantum electrody-
namics, there arises the additional nonlinear term [Aμ, Aν ]− which describes
self-interaction of the gluon field. In order to get connect with the terminology
used in quantum electrodynamics, we introduce the rescaled gluon potential
Aμ and the rescaled gluon field tensor Fμν by setting

Aμ = −iκAμ, Fμν = −iκFμν

where κ > 0 is the coupling constant for the interaction between quarks and
gluons. This way, the Dirac equation reads as

iγμ(∂μ − iκAμ(x))ψ(x) = mψ(x), x ∈ M
4. (16.1)

Here, we set

Aμ(x)

⎛

⎜
⎝

ψ1(x)
ψ2(x)
ψ3(x)

⎞

⎟
⎠ =

⎛

⎜
⎝

ϕ1(x)
ϕ2(x)
ϕ3(x)

⎞

⎟
⎠ , γμAμ(x)ψ(x) =

⎛

⎜
⎝

γμϕ1(x)
γμϕ2(x)
γμϕ3(x)

⎞

⎟
⎠ .

Introducing Feynman’s dagger symbol �∇ := γμ∇μ, the Dirac equation (16.1)
can elegantly be written as
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(i �∇ −m)ψ = 0.

The real Lie algebra su(3) possesses an 8-dimensional basis B1, . . . ,B8. There-
fore,

Aμ(x) = κ(A1
μ(x)B1 + . . .+A8

μ(x)B8).

Set Bs := iBs. Then

Aμ(x) = A1
μ(x)B1 + . . .+A8

μ(x)B8.

Consequently, the gluon potential can be described by the following eight real
four-potentials

As
0(x), As

1(x), As
2(x), As

3(x), s = 1, . . . , 8,

in contrast to one real four-potential for the photon in quantum electrody-
namics.

This explains why there are eight gluons in quantum chromodynam-
ics.

Equation (16.1) does not fully describe the self-interactions of the quark-
gluon field (ψ,A). For formulating the final theory, we will use the principle
of critical action along with the Lagrangian density (16.2) below. Let us now
discuss this.

The SU(N)-gauge field model. We will proceed in the following steps.
Let N = 2, 3, . . . and μ, ν = 0, 1, 2, 3.

(i) Gauge Lie group G. We choose the Lie group G := SU(N) as our gauge
group.

(ii) Gauge Lie algebra LG. The real Lie algebra su(N) to the Lie group
SU(N) is called the gauge Lie algebra LG corresponding to the gauge
group G. The dimension of su(N) is equal to S := N2 − 1.

(iii) Gauge potential A of gauge bosons (e.g., gluons):

A(x) = (A0(x),A1(x),A2(x),A3(x)).

The components Aμ(x) lie in the gauge Lie algebra su(N). In particular,
they are complex (N × N)-matrices, but not complex numbers of the
form Aμ(x) = −ieAμ(x), as in quantum electrodynamics.

(iv) Covariant derivative: ∇μ := ∂μ + Aμ.
(v) Field tensor F of gauge bosons: Fμν := ∇μ∇ν −∇ν∇μ. Hence,

Fμν = ∂μAν − ∂νAμ + [Aμ,Aν ]−.
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(vi) Rescaling: In order to get connect with the notation used in quantum
electrodynamics, we introduce the rescaled gauge potential Aμ and the
rescaled field tensor Fμν by setting

Aμ = −iκAμ, Fμν = −iκFμν .

This implies ∇μ = ∂μ − iκAμ and

Fμν(x) := ∂μAν(x) − ∂νAμ(x) − iκ [Aμ(x), Aν(x)]−.

The constant κ > 0 is called the coupling constant. The rescaled field
tensor Fμν describes particles which are responsible for the interaction
between fundamental fermions (quarks and leptons).

(vii) Gauge transformation: For all x ∈ M
4 and μ = 0, 1, 2, 3,

Ag
μ(x) = G(x)Aμ(x)G(x)−1 − ∂μG(x) ·G(x)−1,

where G(x) ∈ G. Explicitly,

G(x) = exp

(
S∑

s=1

θs(x)Bs

)

.

Here, B1, . . . ,BS is a basis of su(N), and we set θ = (θ1, . . . , θS) with
real components θs. In order to indicate the dependence of the gauge
transformation on the function θ, we also write Aθ instead of Ag. For the
rescaled gauge potential, the gauge transformation reads as

Ag
μ(x) = G(x)Aμ(x)G(x)−1 − i

κ
∂μG(x) ·G(x)−1.

(viii) Matter field ψ: The field

ψ(x) =

⎛

⎜
⎜
⎝

ψ1(x)
...

ψN (x)

⎞

⎟
⎟
⎠

has N so-called color components. The index c = 1, . . . , N of ψc is called
color index. Each color component ψc is a Dirac 4-spinor, that is,

ψc(x) =

⎛

⎜
⎜
⎝

ψ1
c (x)
...

ψ4
c (x)

⎞

⎟
⎟
⎠ , c = 1, . . . , N

where each ψk
c (x) is a complex number. Using the complex (4×4)-Dirac–

Pauli matrices γ0, γ1, γ2, γ3 from Sect. 14.3, we set ψc(x) := ψc(x)†γ0

along with ψ(x) := (ψ1(x), . . . , ψN (x)).
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(ix) Source functional:

J [A,ψ] :=
∫

M4
{tr(Aμ(x)Jμ(x)) + J (x)ψ(x) + ψ(x)J (x)} d4x.

Here, we assume that iJμ(x) ∈ su(N) for all μ = 0, 1, 2, 3 and x ∈ M
4.

(x) Total action:

S[A,ψ] :=
∫

M4
L(A(x), ∂A(x), ψ(x), ∂ψ(x)) d4x.

Here we use the Lagrangian density

L := Lgauge boson + Lmatter + Lgauge fixing + Lghost (16.2)

along with the following expressions:2

• Lgauge boson := −1
4 tr(FμνF

μν),
• Lmatter := ψ(i �∇ −m)ψ,
• Lgauge fixing := 1

2ξ tr(∂μAμ · ∂νAν),
• Lghost := −ζd∂μ∇μη.
Fix the gauge parameter ξ > 0. Both the components of the ghost field

η(x) =

⎛

⎜
⎜
⎝

η1(x)
...

ηS(x)

⎞

⎟
⎟
⎠

and the components of the antighost field ζ(x)d = (ζ1(x), . . . , ζS(x)) are
Grassmann variables which satisfy the anticommuation relations (16.4)
on page 892.

Relation to modern differential geometry. In Volume III on gauge
theory, we will relate this gauge field approach to the language of modern
differential geometry. In this geometric setting, the following hold true.

• The gauge field tensor F represents the curvature of a principal fiber bundle
P = M

4 × G over the space-time manifold M
4 with structure group G.

• The gauge potential A is the corresponding connection which describes the
parallel transport in the principal fiber bundle P, and which generates the
covariant derivative ∇.

• The matter field ψ is the section of a vector bundle V which is associated
to the principal fiber bundle P.

• The gauge transformations correspond to the changing of bundle charts.

2 The partial action
R

M4 Lgauge bosond
4x is also called the Yang–Mills action.
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16.3 The Language of Physicists

Coordinates. We want to reformulate the theory above in terms of a basis
B1, . . . ,BS of the real gauge Lie algebra su(N). For the gauge potential,

Aμ = κ

S∑

s=1

As
μ(x)Bs, μ = 0, 1, 2, 3.

In order to simplify notation, we will use the following Einstein summation
convention: We sum over Latin (resp. Greek) indices from 1 to S (resp. from
0 to 3). For example, we will briefly write

Aμ(x) = κAs
μ(x)Bs, μ = 0, 1, 2, 3.

The components As
μ(x) are real numbers for all indices μ, s and all space-time

points x ∈ M
4. Therefore, the theory corresponds to S real four-potentials

As
0(x), As

1(x), As
2(x), As

3(x), s = 1, . . . , S

which describe S gauge bosons. The commutation relations for the basis
elements B1, . . . ,BS of the Lie algebra su(N) read as

[Ba,Bb]− = csabBs, a, b = 1, . . . , S.

The real numbers csab are called the structure constants of the Lie algebra
su(N). In particular, csab = −csba for a, b, s = 1, . . . S. It turns out that the
structure constants know all about the Lie algebra and about the local struc-
ture of the corresponding Lie group.

Observe that most physicists do not use Lie algebras in the sense of
mathematics, but they use a slight modification.

The reason for this is the fact that the elements B of the Lie algebra su(N)
are skew-adjoint matrices. However, observables in quantum theory are self-
adjoint matrices. Therefore, physicists pass from B to B := iB. Motivated by
this, physicists do not use the basis B1, . . .BS of the Lie algebra su(N), but
they introduce the self-adjoint matrices

Bs := iBs, s = 1, . . . , S.

We then get the commutation relations

[Ba, Bb]− = icsabBs, a, b = 1, . . . , S.

Here, [Ba, Bb]− = BaBb − BbBa is a modified Lie product, since Ba, Bb do
not lie in the Lie algebra su(N), but in i ⊗ su(N).
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To simplify computations, it is important that the matrices B1, . . . , BS

can be chosen in such a way that3

tr(BsBr) = δrs, s, r = 1, . . . , S.

We will also write δrs instead of δrs, and we will use the Kronecker symbols
δrs and δrs in order to lower and lift Latin indices, respectively. For example,
Bs := δsrBr. Using the matrices B1, . . . , BS , we write the rescaled gauge
potential as

Aμ(x) = As
μ(x)Bs, μ = 0, 1, 2, 3.

For the rescaled gauge field tensor Fμν(x) = F s
μν(x)Bs, we get

F s
μν(x) = ∂μAν(x) − ∂νAμ(x) + κcsabA

a
μA

b
ν(x), s = 1, . . . , S.

This means that the strength of the field tensor components F s
μν depends on

the structure constants csab of the gauge Lie algebra su(N). Setting ψ = 0,
the source functional reads as

J [A, 0] :=
∫

M4
Jμ

s (x)As
μ(x)d4x

where Jμ(x) = Js
μ(x)Bs, and Jμ

s (x) := ημνδsrJ
r
ν (x). The Lagrangian density

reads as

• Lgauge boson := −1
4F

s
μνF

μν
s .

• Lmatter := ψγμ(i∂μ + κAs
μBs)ψ.

• Lgauge fixing := 1
2ξ∂

μAs
μ∂

νAs
ν .

• Lghost := −ζd∂μ(∂μ − iκAs
μBs)η.

The response function of the gauge bosons: For fixed ε > 0, the
response function is given by the formal (divergent) Fourier integral

Rrs
μν(x− y) :=

1
(2π)4

∫

R4

e−ip(x−y)

p2 + εi

(

ημν + (ξ − 1)
pμpν

p2

)

δrs d4p.

3 This follows from a general theorem telling us that the negative Killing form of
the Lie algebra LG to a compact semisimple Lie group G represents an inner
product on the Lie algebra LG. For the proof, see Simon (1996), p. 171. In the
special case of the Lie algebra su(2), note that the Pauli matrices σ1, σ2, σ3 from
page 792 satisfy the commutation relations

[σ1, σ2]− = 2iσ3, [σ2, σ3]− = 2iσ1, [σ3, σ1]− = 2iσ2.

Furthermore, we have the following anticommutation relations

σrσs + σsσr = 2δrs, r, s = 1, 2, 3

which imply tr(σrσs) = 2δrs. Therefore, we choose Bs = Bs := 1√
2
σs, s = 1, 2, 3.
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The choice ξ := 1 (resp. ξ := 0) is called the Feynman gauge (resp. the
Landau gauge). An elegant approach to the response function can be based
on computing a functional integral.

In terms of the operator approach to quantum field theory, the quantized
fields As

μ(x) are operators, and we get the following vacuum expectation
values for time-ordered products of interacting quantum fields:

〈0int|T {Ar
μ(x)As

ν(y)}|0int〉 = Grs
μν(x− y).

These functions are also called the full 2-point correlation functions of the
gauge bosons (or the full 2-point Green’s functions/or the gauge boson prop-
agators). A detailed study along with interesting applications to elementary
particles can be found in Volume V on the physics of the Standard Model.
For a list of standard references, we refer to page 913.

If we replace the gauge Lie group SU(N) (resp. the gauge Lie algebra
su(N) by U(1) (resp. u(1)), then our model passes over to quantum electro-
dynamics.

16.4 The Importance of the Higgs Particle

The Lagrangian density L above does not contain a quadratic term with
respect to the gauge potential A. Such a missing term tells us that the gauge
bosons are massless. However, this contradicts experimental experience. In
1967 Weinberg solved this problem by introducing an additional field called
Higgs field.4 This field is responsible for the huge masses of the three gauge
bosons W+,W−, Z0 in electroweak interaction (nearly 90 proton masses).
The Higgs mechanism will be studied in Volume III on gauge theory. This
mechanism is closely related to the theory of phase transitions in solid state
physics.

16.5 Integration over Orbit Spaces

Count equivalent physical states only once.
Folklore

The Feynman functional integral sums over all possible physical states. Here,
it is crucial that equivalent physical states are counted only once. Therefore,
in the case where symmetries are present, one has to sum over the orbits of
the symmetry group, but not on the single points of the orbit. This is the
basic idea behind the Faddeev–Popov–De Witt ghost approach. To explain
this, let us start with a simple example from classical calculus.
4 S. Weinberg, A model of leptons, Phys. Rev. Lett. 19 (1967), 1264–1266. This

is one of the most quoted papers in elementary particle physics.
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(a)

�
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(b)
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y′ Ox′
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Fig. 16.1. Symmetry and orbits

Prototype of orbit summation. Using rotation symmetry, we want to
reduce the 2-dimensional integral

J :=
∫

R2
e−x2−y2

dxdy

to a one-dimensional integral. Observe that the integrand is invariant under
the rotation

x′ = x cos θ + y sin θ, y′ = y cos θ − x sin θ

of the (x, y)-coordinate system pictured in Fig. 16.1(a). These rotations about
the origin are called gauge transformations; they form the group SO(2). If
we apply all possible rotations to a given point, say (x, 0), then we obtain
the orbit Ox. We regard the points of each orbit as equivalent points.

It is our goal to simplify the given integral J by eliminating the con-
tributions coming from equivalent points.

To this end, we will proceed in two steps.

(i) Special gauge fixing (Fig. 16.1(a)): Choose first the special gauge angle
θ := 0. Using polar coordinates, the integral looks like

J =
∫ ∞

0

e−r2
rdr

∫ π

−π

dϕ.

This can be written as

J =
∫ ∞

0

e−x2
x

(∫

Ox

dθ

)

dx

which is the desired orbit summation. Equivalently,

J = π

∫ ∞

−∞
e−x2

|x| dx.

Using the Dirac delta function, this rigorous formula can be formally
written as5

J = π

∫

R2
e−x2−y2

δ(y)|x| dxdy.

5 Note that
R

R
f(x, y)δ(y)dy = f(x, 0).
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(ii) General gauge fixing (Fig. 16.1(b)): Now fix the angle θ. Introduce the
function

y′ = f(x, y, θ) := y cos θ − x sin θ.

The equation
f(x, y, θ) = 0

is called the gauge condition; it determines the x′-axis. We claim that

J = π

∫

R2
e−x2−y2

δ(f(x, y, θ)) |fθ(x, y, θ)| dxdy. (16.3)

This is the prototype of the magic Faddeev–Popov formula. Let us justify
this in a formal way. Observe first that the partial derivative reads as
fθ(x, y, θ) = −y sin θ − x cos θ = −x′. By (i),

J = π

∫

R2
e−x′2−y′2

δ(y′)|x′| dx′dy′.

Transforming this into the variables x, y and observing that

x′2 + y′2 = x2 + y2,
∂(x′, y′)
∂(x, y)

= 1,

we get J = π
∫

R2 e−x2−y2
δ(y′)|x′| dxdy. This is the claim (16.3).

16.6 The Magic Faddeev–Popov Formula and Ghosts

Gauge theory. We now consider the generating functional of a gauge theory
model

Z(J) :=
∫

eiS[A]+iJ[A] DA

with the action functional

S[A] :=
∫

M4
L(A(x), ∂A(x))d4x

and the source functional J [A] :=
∫

M4 J
μ
s (x)As

μ(x)d4x. We use the same no-
tation as in Sect. 16.2. In particular, the gauge field A = A(x) has four
components A0(x), A1(x), A2(x), A3(x) depending on the space-time point
x ∈ M

4. Each component Aμ(x) lies in the S-dimensional real Lie matrix
algebra LG which is related to the Lie matrix group6 G. The gauge transfor-
mations look like
6 For example, G = SU(N) and LG = su(N) with N = 2, 3, . . .. Then S = N2−1.
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Ag
μ(x) = G(x)Aμ(x)G(x)−1 − i

κ
∂μG(x) ·G(x)−1

for all μ = 0, 1, 2, 3 and x ∈ M
4. Here, G(x) ∈ G for all x. Explicitly,

G(x) = exp

(
S∑

s=1

θs(x)Bs

)

where B1, . . . ,BS is a basis of the gauge Lie algebra LG. Since the gauge
group element G(x) depends on the real functions θ1(x), . . . , θS(x), we write
Aθ instead of Ag. We regard the gauge potential A(x) and the transformed
gauge potential Aθ(x) as physically equivalent quantities. It is crucial that

The generating functional has to count equivalent gauge field quanti-
ties only once. Therefore, we have to modify the generating functional
Z(J).

In 1967 Faddeev and Popov proposed the following modification. The key
formulas read as follows:7

(i) Gauge condition:8 f(A(x)) = 0 for all x ∈ M
4.

(ii) The magic Faddeev–Popov formula:

ZFP(J) :=
∫

eiS[A]+iJ[A] δ(f(A)) det
(
δf(Aθ)
δθ

)

|θ=0

DA.

We replace the original generating functional Z(J) by the Faddeev–Popov
generating functional ZFP(J). The functional integral ZFP(J) is to be
understood as an infinite-dimensional integral of the form

ZFP(J) =
∫

eiS[A]+iJ[A]
∏

x∈M4

δ(f(A(x)) det
(
δf(Aθ)
δθ(x)

)

|θ=0

dA(x)

with the continuum of integration variables A(x) indexed by the space-
time points x.

(iii) Ghosts: Motivated by the determinant trick for Grassmann variables
from Sect. 9.5 on page 520, Faddeev and Popov defined the formal de-
terminant appearing in (ii) above by the formula

det
(
δf(Aθ)
δθ(x)

)

|θ=0

:=
∫

exp

(

ζ(x)d δf(Aθ)
δθ(x) |θ=0

η(x)

)

dη(x)dζ(x).

7 As an introduction, we recommend Faddeev and Slavnov (1980), Peskin and
Schroeder (1995), and Ryder (1999). We will study this in Volume V on the
physics of the Standard Model in particle physics.

8 For example, f(A) := ∂μAμ. This is the so-called Lorentz gauge condition.
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This determinant is called the Faddeev–Popov determinant. Here, we set

ζ(x)d := (ζ1(x), . . . , ζS(x)), η(x) :=

⎛

⎜
⎜
⎝

η1(x)
...

ηS(x)

⎞

⎟
⎟
⎠

where η1(x), . . . , ηS(x) and ζ1(x), . . . , ζS(x) are Grassmann variables de-
pending on the parameter x. For all r, s = 1, . . . , S and all x ∈ M

4, we
postulate the following anticommutation relations:

ηr(x)ηs(x) = −ηs(x)ηr(x), ζr(x)ζs(x) = −ζs(x)ζr(x),
ηr(x)ζs(x) + ζs(x)ηr(x) = δr

s . (16.4)

This way, the additional fields η = η(x) and ζ = ζ(x) are introduced,
which are called ghost fields and antighost fields, respectively. The point
is that the additional ghost and antighost fields force the unitarity of the
S-matrix.

16.7 The BRST Symmetry

Historically, the Lagrangian density (16.2) above was obtained by Faddeev
and Popov in 1967. They used the Feynman functional integral in order to
derive the Feynman rules for scattering processes in gauge theory.9 They in-
troduced ghosts and antighosts in order to cancel meaningless infinite factors
in the generating functional written as functional integral. We will discuss this
in Sect. 16.6. From the physical point of view, the most important quantity
is the S-matrix.

The S-matrix has to be unitary.

Otherwise, the entries of the S-matrix cannot be interpreted as transition
probabilities (see Sect. 7.15 on page 372). The introduction of the Faddeev–
Popov ghosts and antighosts is a formal mathematical trick in order to change
the S-matrix in such a way that it becomes a unitary operator.

In 1974 Becchi, Rouet, Stora and independently Tyutin noticed that
ghosts and antighosts are related to a new kind of symmetry in quantum
field theory that nowadays is called BRST symmetry.10 The idea is to re-
place the gauge fixing Lagrangian density Lgaugefixing from (16.2) by

LBRST := 1
2ξ tr(χ2) + tr(χ∂μAμ)

9 L. Faddeev and V. Popov, Phys. Lett. 25B (1967), 29–30.
See also B. De Witt, Phys. Rev. 162 (1967), 1195–1256.

10 C. Becchi, A. Rouet, and R. Stora, Phys. Lett. 52B (1974), 344–346; Commun.
Math. Phys. 42 (1975), 127–162.
M. Iofa and I. Tyutin, Theor. Math. Phys. 27 (1976), 316–322.
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where the additional field χ(x) = χs(x)Bs lives in the Lie algebra LG for each
space-time point x in M

4. Therefore, the complete Lagrangian density reads
as

L = Lgaugeboson + Lmatter + LBRST + Lghost.

The point is that this Lagrangian density is invariant under the following
infinitesimal transformations:

δAμ = εdAμ, δψ = εdψ,

δη = εdη, δζ = εdζ, δχ = εdχ.

Explicitly, the BRST operator d is defined in the following way:

dAμ : = ∇μη, dψ := iκ(ηsBs)ψ,
dηs : = iκcsabη

aηb, dζ := χ, dχ := 0.

The precise meaning of infinitesimal transformations is discussed in (7.69)
on page 412. The non-classical parameter ε anticommutes with all of the
ghost fields, antighost fields and fermionic matter fields. The point is that
the BRST operator d satisfies the relation11

d2 = 0.

The BRST symmetry will be studied in Volume V on the physics of the
Standard Model for elementary particles.

16.8 The Power of Cohomology

We want to show that the BRST symmetry is not an exotic mathematical
trick discovered by chance, but it is closely related to one of the deepest tools
in modern analysis, geometry, and topology called cohomology. Intuitively,
cohomology is rooted in

• the existence of potentials for physical fields,
• the integral theorems of Gauss, Green, and Stokes for physical fields,
• the Gauss–Bonnet theorem on the total curvature of two-dimensional sur-

faces and its generalization to higher dimensions by Chern,
• the theory of Abelian integrals and their Riemann surfaces,
• Poincaré’s dual triangulations of polyhedra, the Betti numbers, and the

Euler characteristic,
• the theory of differential forms developed by Élie Cartan and Poincaré at

the end of the 19th century and completed by de Rham in the 1930s (de
Rham cohomology),

11 We use the symbol d in order to emphasize the relation to cohomology theory in
mathematics. For historical reasons, physicists write Q instead of d.
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• the Hodge theory for higher-dimensional Riemann manifolds from the
1930s,

• the Riemann–Roch–Hirzebruch theorem from the 1950s,
• the Atiyah–Singer index theorem from the 1960s,
• and the Ritz combination principle for atomic spectra.

This will be studied in Volume IV on quantum mathematics. In particular,
we will show there that cohomology is intimately related to electric circuits
(the Kirchhoff rules), the Maxwell equations in electrodynamics, and Dirac’s
magnetic monopoles. Indeed, the integration of the Maxwell equations via
four-potentials is cohomology in action. At this point, we restrict ourselves
to sketching a few basic ideas.

Poincaré’s boundary operator ∂. In order to study the qualitative
(i.e., the topological) properties of geometric objects, Poincaré considered
the equation

S = ∂B. (16.5)

The set S is called the boundary of the set B. Moreover, a set C is called a
cycle iff it has no boundary. We write ∂C = 0. Typical cycles are circles and
spheres.

Poincaré studied cycles modulo boundaries. That is, he studied cycles
by putting boundaries equal to zero.

This leads to the concept of homology group which was introduced by Emmy
Noether in the 1920s.12 For example, if B is a ball in 3-dimensional space,
then S = ∂B is a sphere, and S is a cycle, that is, ∂S = 0. Therefore, we get
the crucial relation

∂2B = 0.

It turns out that operators D with the typical property D2 = 0 appear quite
often in mathematics and physics. In such cases, one can apply the methods
of homological algebra which lead to deep results.13

Élie Cartan’s coboundary operator d. As a further example, let us
consider the equation

ω = dμ (16.6)

for differential forms ω and μ. We are given the field ω, and we are looking
for a potential μ.14 The crucial Poincaré lemma tells us that
12 Henri Poincaré (1854–1912), Emmy Noether (1882–1935).
13 The classical standard text on homological algebra is the monograph by H. Car-

tan and S. Eilenberg, Homological Algebra, Princeton University Press, 1956.
We also recommend G. Bredon, Topology and Geometry, Springer, New York,
1993.

14 For a simple example, see equation (16.7) on page 897.
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d2 = 0.

Motivated by the boundary operator above, the field ω is called a cocycle iff
dω = 0. Moreover, the cocycle field ω is called trivial iff it is a coboundary,
that is, ω = dμ.

Cohomology theory studies cocycles modulo coboundaries. That is, it
studies cocycles by putting coboundaries equal to zero.

It turns out that there exists a crucial duality between homology and coho-
mology. In terms of physics, this duality relates the geometry of manifolds
(e.g., space-time manifolds) to the analytic structure of the physical fields on
manifolds (see Volume IV on quantum mathematics).

The BRST operator Q. In the BRST approach, physicists write Q
instead of d, and they use the operator Q in order to eliminate ghosts. Let
us discuss this.

16.8.1 Physical States, Unphysical States, and Cohomology

Use only essential physical states.
Folklore

Consider a linear space X over K = R (real space) or K = C (complex space).
Let Q : X → X be a linear operator which has the characteristic property

Q2 = 0.

The elements ω, μ, �, . . . of X are called states. The operator Q allows us to
classify states in the following way:

(i) Physical state ω: The state ω is called a physical state iff Qω = 0. Simi-
larly, a state ω is called an unphysical state (or a ghost) iff Qω �= 0.

(ii) Trivial physical states ω: Each state of the form ω = Qμ for some state
μ is a physical state.15 Such states are called trivial physical states.

(iii) Equivalent physical states: Two physical states ω and � are called equiv-
alent iff the difference ω − � is a trivial physical state. In other words,

ω ∼ � iff ω = �+Qμ for some state μ.

This equivalence relation respects linear combinations. Explicitly, for
physical states ω, ω′, �, �′ and numbers α, β ∈ K,16

ω ∼ ω′, � ∼ �′ implies αω + β� ∼ αω′ + β�′.

15 Note that Qω = Q2μ = 0.
16 In fact, if ω = ω′ +Qμ and ! = !′ +Qσ, then αω+β! = αω′ +β!′ +Q(αμ+βσ).
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(iv) Essential physical states [ω] : For each physical state ω, the symbol [ω]
denotes the set of all physical states which are equivalent to ω. In other
words,

[ω] := {ω +Q� : � ∈ X.}

The equivalence classes [ω] are called essential physical states.
(v) The essential state space X/Q : The space of all essential physical states

[ω] forms a linear space over K. This space is denoted by X/Q. The linear
combinations on X/Q are defined by

α[ω] + β[�] := [αω + β�]

for all physical states ω, � and all α, β ∈ K. This definition does not
depend on the choice of the representatives.17

In order to eliminate ghosts, we replace the original state space X by the
essential state space X/Q which is also called the cohomology space of X
with respect to the BRST operator Q. From the practical point of view, we
work with physical states by simply putting trivial physical states equal to
zero. For example, if ω, �, σ are physical states and σ is a trivial physical
state, then

αω + β�+ γσ = αω + β� for all α, β ∈ K.

16.8.2 Forces and Potentials

The calculus of differential forms was introduced by Élie Cartan (1869–1951)
at the end of the 19th century. This is the most important tool in modern
analysis, geometry, and mathematical physics. Let us discuss the basic ideas.
To this end, introduce the potential function U = U(x, y) and the force 1-form

F = a(x, y)dx+ b(x, y)dy

on the Euclidean (x, y)-plane R
2. Using the wedge product

dx ∧ dx = dy ∧ dy = 0, dx ∧ dy = −dy ∧ dx,

we define the derivative of differential forms:

• dU := Uxdx+ Uydy,
• da = axdx+ aydy and db = bxdx+ bydy;
• dF = da ∧ dx+ db ∧ dy = cdx ∧ dy where we set c := bx − ay;
• d(dU) = dUx ∧ dy + dUy ∧ dx = (Uyx − Uxy)dx ∧ dy = 0;
• d(dF ) = dc ∧ dx ∧ dy = cxdx ∧ dx ∧ dy + cydy ∧ dx ∧ dy = 0.

17 By (iii), if ω ∼ ω′ and ! ∼ !′, then α[ω] + β[!] = α[ω′] + β[!′].
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Hence d2 = 0. This is called the Poincaré lemma. The key equation reads as

F = −dU on Ω (16.7)

where Ω is an open subset of R
2. Explicitly,

a = −Ux, b = −Uy on Ω.

We are given the smooth force components a, b : Ω → R, and we are looking
for the smooth function U : Ω → R. Introducing the classical force vector
field F(x, y) := a(x, y)i + b(x, y)j, equation (16.7) reads as

F = −gradU on Ω.

In classical mechanics, the function U is called a potential of the given force
field F.

Necessary solution condition. If equation (16.7) has a smooth solution
U : Ω → R, then dF = −d(dU) = 0. This means that curlF = 0 on Ω, in
the language of vector analysis.

Sufficient solution condition. The point is that the necessary solution
condition is not always a sufficient condition. Let us discuss two different
situations.

(i) Choose Ω := R
2. Equation (16.7) has a smooth solution U : R

2 → R iff
curlF = 0 on R

2. The general solution then reads as

U(x) = const −
∫ x

x0

F(y)dy, x ∈ R
2. (16.8)

This integral does not depend on the choice of the smooth path in Ω
from the fixed initial point x0 to the final point x. In terms of physics,
the integral

∫ x

x0
F(y)dy is the work done by the force field F when moving

a particle from x0 to the point x.
(ii) Choose Ω := R

2 \ {0}. Since the force field F may have a singularity
at the origin, the curve integral (16.8) may depend on the choice of the
path from x0 to x in Ω. In terms of physics, this means that the work
done by the force field may be path-dependent. The precise result reads
as follows: Equation (16.7) has a smooth solution U : Ω → R iff both the
local condition curlF = 0 on Ω and the global condition

∫

S1
F(y)dy = 0

are satisfied. The general solution is then given by the path-independent
integral (16.8).

Let us reformulate this in terms of cocycles and coboundaries. First consider
the case where Ω := R

2 \ {0}.
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• The force field F is a cocycle iff dF = 0 on Ω. In terms of polar coordinates
ϕ, r, each cocycle can be represented as

F = dU + γdϕ on Ω

where γ is a real number. Explicitly, 2πγ =
∫

S1 F.
• The cocycle F is a coboundary iff γ = 0.
• The essential physical fields are cocycles by putting coboundaries equal to

zero. This yields
F = γdϕ, γ ∈ R.

Thus, the space H1(Ω) of essential 1-forms is isomorphic to R; we call
H1(Ω) the first de Rham cohomology group of Ω.

The situation changes completely for Ω = R
2. Then, each cocycle F , that is,

dF = 0 on R
2, can be represented as

F = dU on R
2.

The essential physical fields are cocycles by putting coboundaries equal to
zero. Hence F = 0. This corresponds to the trivial first cohomology group,
H1(R2) = 0. Roughly speaking, cohomology theory yields the following gen-
eral result:

The topological complexity of a manifold Ω can be measured by the
increasing number of independent physical fields on Ω that have no
potential.

16.8.3 The Cohomology of Geometric Objects

Differential topology studies the qualitative structure of smooth geometric
objects by considering differential forms (physical fields) on manifolds. The
idea is to assign real linear spaces

Hk(M), k = 0, 1, 2, . . .

to a compact manifold M . The space Hk(M) is called the kth cohomology
group of M . Furthermore, the dimension of Hk(M),

βk := dimHk(M),

is called the kth Betti number of M . Finally, the number

χ(M) = β0 − β1 + β2 − . . .

is called the Euler characteristic of M .
The cohomology of the unit circle. We want to use the general scheme

from Sect. 16.8.1 in order to compute the de Rham cohomology algebra of
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the unit circle. As usual in mathematics, we will write the symbol d instead
of Q. The points of the unit circle

S
1 := {z ∈ C : |z| = 1}

can be uniquely parametrized by the angle ϕ. Explicitly, we have z = eiϕ

where −π < ϕ ≤ π. Let C∞
2π(R) denote the set of all smooth functions

f : R → R

which possess the period 2π. The smooth functions f : S
1 → R can be

identified with the functions from C∞
2π(R).

(i) 0-cochains: The functions f from C∞
2π(R) are called the 0-chains of the

unit circle S
1. We define df := f ′(ϕ)dϕ.

(ii) 1-cochains: The 1-forms g(ϕ)dϕ with g ∈ C∞
2π(R) are called 1-cochains.

Using dϕ ∧ dϕ = 0, we define d(gdϕ) := g′dϕ ∧ dϕ = 0.
(iii) The Cartan algebra: The set of all differential forms

f + gdϕ, f, g ∈ C∞
2π(R).

forms the so-called Cartan algebra of the unit circle S
1. There exist two

operations, namely, the sum and the wedge product. For example,

(f1 + g1dϕ) ∧ (f2 + g2dϕ) = f1f2 + (f1g2 + g1f2)dϕ.

(iv) The de Rham cohomology algebra H(S1) of the unit circle: This algebra
consists of all the differential forms

α+ βdϕ, α, β ∈ R.

This will be computed below.
(v) Betti numbers and the Euler characteristic of the unit circle: Let Hk(S1)

denote the linear subspace of all the differential forms of H(S1) of order
k = 0, 1, This is called the kth cohomology group of S

1. Explicitly, the
first cohomology groupH1(S1) consists of all βdϕ with β ∈ R, andH0(S1)
consists of all real numbers α. For the Betti numbers of the unit circle,
we get

βk := dimHk(S1), k = 0, 1.

Explicitly, β0 = β1 = 1. For the Euler characteristic of the unit circle,
we have

χ(S1) = β0 − β1 = 0.

Finally, let us compute H(S1). The key to this is the differential equation

f ′ = g, f ∈ C∞
2π(R) (16.9)
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for a given function g ∈ C∞
2π(R). Integration of (16.9) yields

f(ϕ) = const +
∫ ϕ

0

g(θ)dθ. (16.10)

This is a 2π-periodic function iff
∫ 2π

0

g(θ)dθ = 0. (16.11)

Therefore, problem (16.9) has a solution iff condition (16.11) is satisfied.
Then, the general solution is given by (16.10).

• The 0-form f is called a cocycle iff df = 0. This means that f is constant.
• Each 1-form gdϕ is a cocycle, since d(gdϕ) = 0.
• The 1-form gdϕ is a coboundary iff the equation

gdϕ = df, f ∈ C∞
2π(R)

has a solution. By (16.9), this is equivalent to (16.11).
• By definition, the cohomology algebra H(S1) consists of all cocycles

α+ gdϕ

by putting coboundaries equal to zero. Let us write

α+ gdϕ = α+ (g − β)dϕ+ βdϕ

with β := 1
2π

∫ 2π

0
g(θ)dθ. Hence

∫ 2π

0

(g(θ) − β)dθ = 0.

Thus, (g − β)dϕ is a coboundary. Setting (g − β)dϕ = 0, we obtain that
α+ gdϕ is equal to α+ βdϕ. This is the claim from (iv) above.

The cohomology of the 2-dimensional unit sphere S
2. It can be

shown that the de Rham cohomology algebra H(S2) of the unit sphere S
2

consists of all the differential forms

α+ γdϕ ∧ dϑ, α, γ ∈ R

where ϕ and ϑ represent the geographic length and the geographic latitude
of the sphere, respectively. For example, the kth cohomology groups Hk(S2)
with k = 0, 1, 2 consist of

α with α ∈ R; 0; γdϕ ∧ dϑ with γ ∈ R,

respectively. This yields the Betti numbers βk := dimHk(S2). Explicitly,
β0 = β2 = 1 and β1 = 0. For the Euler characteristic of the unit sphere, we
obtain
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χ(S2) = β0 − β1 + β2 = 2.

Intuitive meaning of the Euler characteristic. We have computed
the Euler characteristic in terms of differential forms. An important result
of topology tells us that for compact finite-dimensional manifolds, the Euler
characteristic can be computed by means of triangulations or cell decompo-
sitions as in Sect. 5.6.2ff on page 244.

The cohomology of the 2-dimensional torus T
2 := S

1×S
1. It can be

shown that the de Rham cohomology algebra H(T2) of the torus T
2 consists

of all differential forms

α+ β1dϕ+ β2dϑ+ γdϕ ∧ dϑ, α, β1, β2, γ ∈ R.

Here, ϕ and ϑ represent the geographic length and the geographic latitude
of the torus, respectively. For example, the kth cohomology groups Hk(T2)
with k = 0, 1, 2 consist of

α with α ∈ R; β1dϕ+ β2dϑ, β1, β2 ∈ R; γdϕ ∧ dϑ, γ ∈ R,

respectively. This yields the Betti numbers β0 = β2 = 1 and β1 = 2 along
with the Euler characteristic

χ(T2) := β0 − β1 − β2 = 0.

The following fact is crucial.

If we replace the unit circle, the unit sphere, and the torus above by
diffeomorphic manifolds, then the Betti numbers, and hence the Euler
characteristic remain unchanged.

16.8.4 The Spectra of Atoms and Cohomology

As a prototype, consider the hydrogen atom. By Bohr’s model, the electron
of the hydrogen atom attains the energy levels E1 < E2 < E3 < . . . If the
electron jumps from the upper level Em to the lower level En with m > n,
then a photon of energy

�ωmn = Em −En (16.12)

is emitted.18 Using

• the energy 0-cochain E := {E1, E2, . . .} and
• the frequency 1-cochain ω := {ωmn},
18 Recall that we are using the energetic system in this chapter. Thus, � = 1.
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the energy-frequency relation (16.12) can elegantly be written as

�ω = dE.

This so-called Ritz combination principle tells us that the frequencies of a
radiating atom are not arbitrary, but there is a cohomological structure be-
hind them. Interestingly enough, this structure was used by Heisenberg in
order to establish quantum mechanics in 1925. This is one of the reasons why
cohomology plays a crucial role in quantum physics.

16.8.5 BRST Symmetry and the Cohomology of Lie Groups

As a further example, we want to show that the classical cohomology of Lie
groups is a special model of BRST symmetry. To this end, as in Sect. 16.2,
let us choose the gauge Lie group SU(N) with N = 2, 3, . . . and the corre-
sponding Lie algebra LG := su(N). In this setting, the following geometric
picture is behind BRST symmetry:

• antighosts are left-invariant velocity fields on the gauge group G;
• ghosts are dual objects to antighosts, that is, they are left-invariant cove-

locity fields on G;
• states are differential forms on G;
• the BRST operator Q coincides with the Cartan derivative d of states; this

implies d2 = 0;
• physical states are cocycles with respect to d;
• trivial physical states are coboundaries with respect to d;
• essential physical states are physical states by putting coboundaries equal

to zero; the essential physical states are also called the cohomology classes
with respect to d.

Let us sketch the basic ideas.19 Choose a fixed basis B1, . . . ,BS of the Lie
algebra LG. In what follows we will use the following Einstein summation
convention: We sum over equal upper and lower Latin indices from 1 to S.
For example, the equation

[Br,Bs]− = ckrsBk, r, s = 1, . . . , S

uniquely determines the real structure constants ckrs of the Lie algebra LG.
(i) Temperature field on the Lie group G. The symbol C∞(G,R) denotes the

set of all smooth functions

T : G → R.

For example, think of a temperature field on the Lie group G.
19 A detailed study of the analysis on manifolds and Lie groups can be found in

Choquet–Bruhat et al. (1996), Vol. 1. We also refer to Zeidler (2000a), Vol. 2,
Chap. 16 (differential calculus on manifolds) and Chap. 17 (Lie groups and Lie
algebras).
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(ii) Antighosts: For s = 1, . . . , S, define

vs(G) := GBs for all G ∈ G.

Since t �→ GetBs is a curve on the Lie group G, and we have the time
derivative

vs(G) =
d

dt
GetBs |t=0,

the vector vs(G) is a velocity vector (or tangent vector) of the Lie group
G at the point G. Let I denote the unit element of G. Since

vs(G) = Gvs(I) for all G ∈ G, s = 1, . . . , S,

the velocity field vs is called left-invariant. The left-invariant velocity
fields v1, . . . ,vS are called antighosts.
Let the symbol V(G) denote the set of all smooth, left-invariant velocity
fields on the Lie group G. Each vector field v ∈ V(G) can be uniquely
represented as

v(G) = vs(G)vs(G)

for all points G ∈ G. Here, the velocity components v1, . . . , vS lie in
the space C∞(G,R). The directional derivative of the temperature field
T ∈ C∞(G,R) at the point G with respect to the velocity field vs is
defined by

δT

δvs
(G) :=

d

dt
T (GetBs)|t=0.

As usual, we write vs(T ) instead of the functional derivative δT
δvs

.
(iii) Ghosts: Fix v ∈ V(G). For s = 1, . . . , S, define

θs(v1v1 + . . .+ vSvS) := vs.

The linear mappings θ1, . . . , θS : V(G) → C∞(G,R) are called ghosts. In
particular, θs(vr) = δs

r for all r, s = 1, . . . , S.
(iv) Key relations for ghosts and antighosts: For all r, s = 1, . . . , S,

θrθs = −θsθr, vrvs = −vsvr, θsvr + vrθ
s = δr

s . (16.13)

Let us explain this notation. For antighosts, we have the Lie product

[vr,vs](G) := G(v(I)w(I) − w(I)v(I)), r, s = 1, . . . , S.

To simplify notation, we write vrvs instead of [vr,vs]. For ghosts, there
exists the wedge product

(θr ∧ θs)(v,w) := θr(v)θs(w) − θr(w)θs(v)
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for all v,w ∈ V(G). We write briefly θrθs instead of θr ∧ θs. Finally, set
θrvs := θr(vs) = δr

s , and let vrθ
s denote the Lie derivative of θs with

respect to the velocity field vr. Since θs is constant along the velocity
field vr, we get

vrθ
s = 0, s, r = 1, . . . , S.

This yields the last formula from (16.13).
(v) States: By definition, a state is a differential form

α+ βsθ
s + γrsθ

rθs + μrstθ
rθsθt . . . (16.14)

on the Lie group G. This is a polynomial in the variables θ1, θ2, . . . with
coefficients α, βs, . . . in C∞(G,R). The products θrθs, θrθsθt, . . . are anti-
symmetric; that is, they change sign under a transposition of two factors.

(vi) The BRST operator d for ghosts: For each state θ, there exists the Cartan
derivative dθ, which can be computed in the following way:
• df := vs(f)θs if f ∈ C∞(G,R).
• Maurer–Cartan structure equation:

dθs := −1
2c

s
klθ

kθl. (16.15)

• By the product rule, d(θrθs) = dθr · θs − dθs · θr. Similarly,

d(θrθsθk) = dθr · θsθk − dθs · θrθk + dθk · θrθs,

and so on.
• Again by the product rule, d(βsθ

s) = dβs · θs + βsdθ
s. Similarly,

d(γrsθ
rθs) = dγrs · θrθs + γrsd(θrθs),

and so on. It turns out that d(dθ) = 0 for all states θ. Briefly,

d2 = 0.

(vii) The BRST operator d for antighosts: We define

dvs := vs − cksrθ
rvk. (16.16)

The point of this definition is that the operator d mixes ghosts and
antighosts.

(viii) Physical states: A state θ is called a physical state iff

dθ = 0,

that is, θ is a cocycle. By (16.15), ghosts are not physical states.
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(ix) The BRST transformation: Choose a parameter ε with ε2 = 0 and the
property that it anticommutes with ghosts and antighosts. By definition,
the infinitesimal BRST transformation for ghosts and antighosts is given
by

δθs := εdθs, δvs := εdvs, s = 1, . . . , S.

Explicitly, δθs := −1
2εc

s
klθ

kθl and δvs := ε(vs − cksrθ
rvk).

(x) Cohomology groups Hk(G): By a physical k-state we mean a k-form θ
with dθ = 0. The physical k-states form the kth cohomology group of
the Lie group G by putting coboundaries equal to zero, that is, if μ = d�,
then μ = 0.

Generalization via representation of the Lie algebra LG. The ap-
proach considered above can easily be generalized by passing to states with
values in the Lie algebra LG or, more generally, with values in a representa-
tion of LG.
(i) By a state with values in the Lie algebra LG, we mean a symbol of the

form
ωs ⊗ Bs

where ω1, . . . ωS are differential forms on the Lie group G as introduced
in (16.14) above. The BRST operator d is defined by

d(ωs ⊗ Bs) := dωs ⊗ Bs.

The Lie product of such states is defined by

[ωs ⊗ Bs, μ
r ⊗ Br] := (ωs ∧ μr) ⊗ [Br,Bs].

(ii) Let � : LG → L be a Lie algebra morphism into the Lie algebra L. By
a state with values in the Lie algebra �(LG), we mean a symbol of the
form

ωs ⊗ �(Bs).

In general, we replace Bs in (i) by �(Bs).

The goal of each BRST theory is to show that the S-matrix is unitary and the
theory is ghost-free; that is, ghosts are never physical states. Applications of
the BRST quantization method to quantum field theory and bosonic strings
can be found in Weinberg (1995), Vol. 2 and Jost (2001), respectively.

16.9 The Batalin–Vilkovisky Formalism

There exists a powerful general formalism for quantizing gauge field theories
which is called the Batalin–Vilkovisky formalism.20 This can be viewed as a
20 I. Batalin and G. Vilkovisky, Quantization of gauge theories with linearly depen-

dent generators, Phys. Rev. 28D (1983), 2567–2582.
For a review, see J. Gomis, J. Paris, and S. Samuel, Phys. Rep. 295 (1995).
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far-reaching generalization of the Lagrange multiplier method. The idea is to
introduce additional ghost fields, antighost fields, and antifields to all kind of
fields. Furthermore, the original classical action functional S is replaced by
the modified action functional

S + S1.

Here, the additional term S1 depends on all kind of fields and antifields.
The key of the Batalin–Vilkovisky formalism is the formulation of a master
equation for S + S1. This is a functional differential equation which is the
consequence of a generalized BRST symmetry. The functional derivatives of
S + S1 in the master equation refer to both fields and antifields. Roughly
speaking, the master equation encodes crucial relations between fields and
antifields. These relations are important for

• an effective renormalization procedure and
• for analyzing the violations of the symmetries of the action by quantum

effects (anomalies).

As an introduction to this, we recommend Weinberg (1995), Vol. 2, Sect. 15.9.
The geometric meaning of the master equation was clarified in the paper by

M. Aleksandrov, M. Kontsevich, A. Schwarz, and O. Zaboronsky, Geome-
try of the master equation, Int. J. Mod. Phys. A 12 (1997), 1405–1430.

In modern literature, one calls this the AKSZ master equation.

16.10 A Glance at Quantum Symmetries

Symmetries play a crucial role in the process of quantizing classical theories.
For example, the symmetry properties of functional integrals are very useful
for studying quantum fields:

• The invariance of functional integrals under gauge transformations leads
to identities for the Green’s functions called the Ward–Takehashi identities
and the Taylor–Slavnov identities.

• It is possible that the functional integral related to the action of a classical
field theory does not possess all the symmetry properties of the classical
theory. This leads to the so-called anomalies.

We will study this in Volume V on the physics of the Standard Model. We
recommend the following monographs:

M. Peskin and Schroeder, An Introduction to Quantum Field Theory,
Addison-Wesley, Reading, Massachusetts, 1995.

O. Piguet and S. Sorella, Algebraic Renormalization: Perturbative Renor-
malization, Symmetries, and Anomalies. Springer, Berlin, 1995.
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E. Evans and Y. Kawahigashi, Quantum Symmetries on Operator Alge-
bras, Clarendon Press, Oxford, 1998.

A. Zee, Quantum Field Theory in a Nutshell, Princeton University Press,
2003.

K. Fujikawa and H. Suzuki, Path Integrals and Quantum Anomalies, Ox-
ford University Press, 2004.



17. A Panorama of the Literature

There is no branch of mathematics, however abstract, which may not some
day be applied to phenomena of the real world.

Nikolai Lobatchevsky (1792–1856)

17.1 Introduction to Quantum Field Theory

From the mathematical point of view, we recommend the following books for
first reading in quantum mechanics:

• A. Komech, Quantum Mechanics for Mathematicians, Lecture Notes, Max Planck
Institute for Mathematics in the Sciences, Leipzig, Germany, 2005.
Internet: http://www.mis.mpg.de/preprints/ln/lecturenote-2505.pdf

• G. Teschl, Mathematical Methods in Quantum Mechanics: with Applications to
Schrödinger Operators, Lectures held at the University of Vienna, Austria, 2005.
Internet: htpp://www.mat.univie.ac.at/ gerald/ftpbook-Schroe/

• S. Gustafson and I. Sigal, Mathematical Concepts of Quantum Mechanics,
Springer, Berlin, 2003.

• F. Strocchi, An Introduction to the Mathematical Structure of Quantum Me-
chanics: A Short Course for Mathematicians, Lecture Notes, Scuola Normale
Superiore, Pisa (Italy), World Scientific, Singapore, 2005.

• S. Albeverio, R. Høegh-Krohn, and S. Mazzucchi, Mathematical Theory of Feyn-
man Path Integrals, Springer, Berlin, 2008.

• L. Takhtajan, Quantum Mechanics for Mathematicians, Amer. Math. Soc., Prov-
idence, Rhode Island, 2008.

• L. Faddeev and O. Yakubovskii, Lectures on Quantum Mechanics for Students
of Mathematics, Amer. Math. Soc., Providence, Rhode Island, 2009.

• M. Nielsen and I. Chuang, Quantum Computation and Quantum Information,
Cambridge University Press, 2001.

From the mathematical point of view, we recommend the following books for
first reading in quantum field theory:

• N. Bogoliubov and D. Shirkov, Quantum Fields, Benjamin, Reading, Mas-
sachusetts, 1983 (lectures held at the Moscow Lomonosov University).

• H. Araki, Mathematical Theory of Quantum Fields, Oxford University Press,
1999 (operator-algebraic approach).

• G. Folland, Quantum Field Theory: A Tourist Guide for Mathematicians, Amer.
Math. Soc., Providence, Rhode Island, 2008.

• J. Jost, Geometry and Physics, Springer, Berlin, 2009.

E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics,
c© Springer-Verlag Berlin Heidelberg 2006, Corrected 2nd printing 2009
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Concerning the rigorous approach to quantum field theory, we also refer to
Sect. 17.5 on page 921. From the physical point of view, we recommend the
following books for first reading in quantum field theory:1

• M. Maggiore, A Modern Introduction to Quantum Field Theory, Oxford Univer-
sity Press, 2006.

• A. Lahiri and B. Pal, A First Book of Quantum Field Theory, Alpha Science
International, Pangbourne, India, 2001.

• A. Das, Field Theory: A Path Integral Approach, World Scientific, Singapore,
2006.

• A. Das, Lectures on Quantum Field Theory, World Scientific, Singapore, 2008.
• V. Nair, Quantum Field Theory: A Modern Perspective, Springer, New York,

2005.
• A. Zee, Quantum Field Theory in a Nutshell, Princeton University Press, 2003.

Moreover, we refer to:

• L. Faddeev and A. Slavnov, Gauge Fields, Benjamin, Reading, Massachusetts,
1980.

• L. Ryder, Quantum Field Theory, Cambridge University Press, 1999.
• M. Le Bellac, Quantum and Statistical Field Theory, Clarendon Press, Oxford,

1991.
• W. Greiner and J. Reinhardt, Quantum Electrodynamics, Springer, Berlin, 1996.
• W. Greiner and J. Reinhardt, Field Quantization, Springer, Berlin, 1996.
• K. Huang, Quarks, Leptons, and Gauge Fields, World Scientific, Singapore, 1992.
• K. Huang, Quantum Field Theory: From Operators to Path Integrals, Wiley,

New York, 1998.
• T. Kugo, Gauge Field Theory, Springer, Berlin, 1997 (translated from Japanese

into German).
• F. Scheck, Quantized Fields: From Symmetries to Quantum Electrodynamics,

Springer, Berlin, 2000 (in German).
• N. Straumann, Relativistic Quantum Theory: An Introduction to Quantum Field

Theory, Springer, Berlin, 2005 (in German).
• W. McComb, Renormalization Methods: A Guide for Beginners, Oxford Univer-

sity Press, Oxford, 2007.
• A. Grozin, QED (Quantum Electrodynamics) and QCD (Quantum Chromo-

dynamics): Practical Calculation and Renormalization of One-and Multi-Loop
Feynman Diagrams, World Scientific, Singapore, 2007.

• T. Banks, Modern Quantum Field Theory: A Concise Introduction, Cambridge
University Press, 2008.

Here, the following books are based on the operator approach via Dyson
series:

• Folland (2008), Das (2008), Maggiore (2006), Lahiri and Pal (2001).

The following books are based on the Feynman path integral:

• Das (2006), Zee (2003), Ryder (1999), Faddeev and Slavnov (1980).

1 The modern standard references by Weinberg (1995), Vols. 1–3, and by Schroeder
and Peskin (1999) together with the classical monographs in quantum field theory
will be discussed in Sect. 17.4 on page 920.
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The interrelatioship between different approaches is emphasized in the fol-
lowing books:

• Nair (2005), Huang (1998), Kugo (1997), Greiner and Reinhardt (1996) (field

quantization).

About 200 problems together with solutions can be found in:

• V. Radovanović, Problem Book in Quantum Field Theory, Springer, Berlin, 2007.

As an introduction to string theory, we recommend the following books:

• R. Szabo, An Introduction to String Theory and D-Brane Dynamics, Imperial
College Press, London, 2004.

• M. Green, J. Schwarz, and E. Witten, Superstrings, Vols. 1, 2, Cambridge Uni-
versity Press, 1987.

• J. Polchinski, String Theory, Vols. 1, 2, Cambridge University Press, 1998.
• M. Kaku, Strings, Conformal Fields and M -Theory, Springer, New York, 2000.
• B. Zwiebach, A First Course in String Theory, Cambridge University Press, 2004.
• J. Schwarz (Ed.), Superstrings: The First 15 Years of Superstring Theory, Vols.

1, 2, World Scientific, Singapore, 1985 (a collection of basic papers).

Furthermore, we refer to:

• S. Albeverio, J. Jost, S. Paycha, and S. Scarlatti, A Mathematical Introduction
to String Theory, Cambridge University Press, 1997.

• J. Jost, The Bosonic String: A Mathematical Treatment, International Press,
Boston, 2001.

The following volumes contain survey articles about recent developments in
quantum field theory:

• D. Kastler, Algebraic quantum field theory: recollections and thoughts about the
future, Rev. Math. Phys. 4 (1992), Special Issue dedicated to Rudolf Haag, pp.
159–166.

• D. Kastler, Rudolf Haag – eighty years, Commun. Math. Phys. 237 (2003), 3–6.
• P. Deligne, P. Etingof, D. Freed, L. Jeffrey, D. Kazhdan, J. Morgan, D. Morrison,

and E. Witten (Eds.), Lectures on Quantum Field Theory: A Course for Math-
ematicians Given at the Institute for Advanced Study in Princeton, 1996–1997,
Vols. 1, 2, Amer. Math. Soc., Providence, Rhode Island, 1999.

• A. Mitra (Ed.), Quantum Field Theory: A 20th Century Profile, Indian National
Science Academy, Hindustan Book Agency, India, 2000.

• F. Scheck, W. Wend, and H. Upmeier (Eds.), Noncommutative Geometry and
the Standard Model of Elementary Particle Physics, Springer, Berlin, 2002.

• F. Scheck (Ed.), Theory of Renormalization and Regularization, Workshop Hes-
selberg (Germany), 2002.
Internet: http://www.thep.physik.uni.mainz.de∼ scheck/Hessbg02.html

• G. Buschhorn and J. Wess (Eds.), Fundamental Physics: Heisenberg and Beyond,
Springer, Berlin, 2004.

• D. Buchholz, D. Iagolnitzer, and U. Moschella (Eds.), Rigorous Quantum Field
Theory: A Festschrift for Jacques Bros, Birkhäuser, Basel, 2005.

• U. Carow-Watamura, Y. Maeda, and S. Watamura (Eds.), Quantum Field The-
ory and Noncommutative Geometry, Springer, Berlin, 2005.

• H. Ocampo, S. Paycha, and A. Vargas (Eds.), Geometric and Topological Meth-
ods for Quantum Field Theory, Springer, Berlin, 2005.
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• J. Asch and A. Joye (Eds.), Mathematical Physics of Quantum Mechanics: The
State of the Art in the Mathematical Physics of Quantum Systems, Springer,
Berlin, 2006 (quantum dynamics, quantum field theory and statistical mechan-
ics, quantum kinetics and Bose–Einstein condensation, disordered systems and
random operators, semiclassical analysis and quantum chaos).

• P. Cartier, B. Julia, P. Moussa, and P. Vanhoeve (Eds.), Frontiers in Number
Theory, Physics, and Geometry, Vols. 1, 2, Springer, Berlin, 2006.

• B. Fauser, J. Tolksdorf, and E. Zeidler (Eds.), Quantum Gravity: Mathematical
Models and Experimental Bounds, Birkhäuser, Basel, 2006.

• B. Fauser, J. Tolksdorf, and E. Zeidler (Eds.), Quantum Field Theory – Com-
petitive Methods, Birkhäuser, Basel, 2008.

• E. Seiler and K. Sibold (Eds.), Quantum Field Theory and Beyond: Essays in
Honor of Wolfhart Zimmermann on the occasion of his 80th birthday, World
Scientific, Singapore, 2008.

• P. Cartier, K. Ebrahimi-Fard, F. Patras, and J.-Y. Thibon (Eds.) (2009), Al-
gebraic and Combinatorial Structures in Quantum Field Theory, Workshop in
Cargese (Corsica, France) in April 2009.
http://www.math.unice.fr/∼patras/CargeseConference/index.html

For recent developments, we also refer to the following global survey articles:

• K. Fredenhagen, K. Rehren, and E. Seiler, Quantum field theory: where we are,
Lecture Notes in Physics 721 (2007), Springer, Berlin, pp. 61–87.

• R. Verch, The current status of quantum fields in curved spacetime. Lecture held
on the occasion of the 125th anniversary of Einstein’s birth, German Physical
Society, Ulm 2004. Preprint of the Max Planck Institute for Mathematics in the
Sciences, Leipzig, 2004. Internet: http://www.mis.mpg.de/preprints/

• S. Hollands and R. Wald, Quantum field theory is not merely quantum mechan-
ics applied to low energy effective degrees of freedom, General Relativity and
Classical Gravitation 36 (2004), 2595–2603.

• S. Hollands, Renormalized Yang–Mills fields in curved spacetime, Rev. Math.
Phys. 20 (2007), 1033–1172.

• A. Jaffe and E. Witten, Quantum Yang–Mills theory. In: J. Carlson, A. Jaffe, and
A. Wiles (Eds.), The Millenium Prize Problems, Amer. Math. Soc., Providence,
Rhode Island, 2006, pp. 129–152.

• A. Jaffe, Quantum theory and relativity, Contemporary Mathematics, Amer.
Math. Soc., Providence, Rhode Island, 2008, pp. 209–245.

Modern developments in quantum field theory are governed by the following
four approaches: the Epstein–Glaser theory, string theory, Connes’ noncom-
mutative geometry, and Ashtekhar’s loop quantum gravity. In this connec-
tion, we refer to the following monographs:

• G. Scharf, Finite Quantum Electrodynamics: the Causal Approach, Springer,
New York, 1995 (the Epstein–Glaser approach).

• K. Becker, M. Becker, and J. Schwarz, String Theory and M -Theory, Cambridge
University Press, 2006.

• A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields, and
Motives, Amer. Math. Soc., Providence, Rhode Island, 2008 (quantum fields,
Hopf algebras related to Feynman diagrams, the monster renormalization group
and the Tannakian category in algebraic geometry, the Riemann zeta function).

• T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge Uni-
versity Press, 2007 (loop quantum gravity).
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As an introduction to quantum field theory, we also recommend the following
books:

• A. Mandl, Introduction to Quantum Field Theory, Wiley, New York, 1966.
• C. Nash, Relativistic Quantum Fields, Academic Press, New York, 1978.
• N. Bogoliubov and D. Shirkov, Introduction to Quantum Field Theory, 3rd edn.,

Wiley, New York, 1980.
• P. Ramond, Field Theory: A Modern Primer, Addison-Wesley, Reading, Mas-

sachusetts, 1990.
• P. Schmüser, Feynman Graphs and Gauge Theories for Experimental Physicists,

Springer, Berlin, 1995 (in German).
• M. Veltman, Diagrammatica: the Path to Feynman Diagrams, Cambridge Uni-

versity Press, 1995.
• P. van Baal, A Course in Quantum Field Theory, 2000.

Internet: http://rulgm4.leidenuniv.nl/van-baal/FTcourse.html
• M. Srednicki, Quantum Field Theory, Cambridge University Press, 2007.
• J. Collins, Renormalization: An Introduction to Renormalization, the Renor-

malization Group, and the Operator-Product Expansion, Cambridge University
Press, 1984.

As an elementary introduction to the Standard Model of particle physics, we
recommend:

• W. Cottingham and D. Greenwood, An Introduction to the Standard Model of
Particle Physics, Cambridge University Press, 1998.

• K. Sibold, Theory of Elementary Particles, Teubner, Stuttgart, 2001 (in Ger-
man).

More detailed investigations on the Standard Model of particle physics can
be found in the following monographs:

• C. Burgess and G. Moore, The Standard Model: A Primer, Cambridge University
Press, 2007.

• M. Chaichian and N. Nelipa, Introduction to Gauge Field Theories, Springer,
Berlin, 1984.

• O. Nachtmann, Elementary Particle Physics: Concepts and Phenomena, Springer,
Berlin, 1990.

• M. Guidry, Gauge Field Theories: An Introduction with Applications, Wiley,
New York, 1991.

• W. Greiner and A. Schäfer, Quantum Chromodynamics, Springer, Berlin, 1994.
• W. Greiner and B. Müller, Gauge Theory of Weak Interactions, Springer, New

York, 1996.
• M. Böhm, A. Denner, and H. Joos, Gauge Theories of the Strong and Electroweak

Interaction, Teubner, Stuttgart, 2001.
• Yu. Dokshitzer, V. Khoze, A. Mueller, and S. Troyan, Basics of Perturbative

Quantum Chromodynamics (QCD), Editions Frontières, Singapore, 1991.
• F. Ynduráin, The Theory of Quark and Gluon Interactions, Springer, Berlin.

1992.
• T. Morii, C. Lim, and S. Mukherjee, The Physics of the Standard Model and

Beyond, World Scientific, Singapore, 2004.

• S. Narison, QCD (Quantum Chromodynamics) as a Theory of Hadrons: From

Partons to Confinement, Cambridge University Press, 2004.

As an introduction to statistical physics, we recommend:
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• R. Feynman, Statistical Physics, 14th edition, Addison Wesley, Reading, Mas-

sachusetts, 1998.

The interrelationship between quantum field theory and many-particle sys-
tems at an introductory level is studied in:

• H. Haken, Quantum Field Theory of Solids, North-Holland, Amsterdam, 1976
(electrons in crystals, superconductivity, laser).

• P. Martin and F. Rothen, Many-Body Problems and Quantum Field Theory,
Springer, Berlin, 2002 (electron gas, Cooper pairs and superconductivity, nucleon
pairing and the structure of the nucleus, superfluidity of liquid helium, quantized
sound waves (phonons) in solids).

• I. Sachs, S. Sen, and J. Sexton, Elements of Statistical Mechanics: With an
Introduction to Quantum Field Theory and Numerical Simulation, Cambridge
University Press, 2006.

Moreover, we refer to:

• A. Fetter and J. Walecka, Quantum Theory of Many-Particle Systems, McGraw-
Hill, New York, 1971.

• J. Kapusta, Quantum Field Theory at Finite Temperature, Cambridge University
Press, 1989.

• L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge
University Press, 1995.

• G. Parisi, Statistical Field Theory, Perseus Publishing, Reading Massachusetts,
1998.

• N. Nagaosa, Quantum Field Theory in Strongly Correlated Electronic Systems,
Springer, Berlin, 2000.

• M. Stone, The Physics of Quantum Fields, Springer, New York, 2000.
• J. Rammer, Quantum Transport Theory, Perseus Books, Reading, Massachusetts,

1998.
• J. Rammer, Quantum Field Theory of Non-Equilibrium States, Cambridge Uni-

versity Press, 2007.
• E. Calzetta and B. Hu, Non-Equilibrium Quantum Field Theory, Cambridge

University Press, 2008.
• M. Blasone, P. Jizba, and G. Vitiello, Quantum Field Theory and Its Macroscopic

Manifestations: Boson Condensation, Ordered Patterns and Topological Defects,
World Scientific, Singapore, 2009.

As an introduction to quantum mechanics from the physical point of view,
we recommend:

• G. Baym, Lectures on Quantum Mechanics, Benjamin, Menlo Park, California,
1969.

• A. Galindo and P. Pascual, Quantum Mechanics, Vols. 1, 2, Springer, Berlin,
1990.

• A. Peres, Concepts and Methods in Quantum Mechanics, Kluwer, Dordrecht,
1993.

• A. Bohm, Quantum Mechanics: Foundations and Applications, Springer, Berlin,
1994.

• A. Sudberry, Quantum Mechanics and the Particles of Nature, Cambridge Uni-
versity Press, 1996.

• J. Basdevant, The Quantum–Mechanics Solver: How to Apply Quantum Theory
to Modern Physics, Springer, Berlin, 2000.

• J. Basdevant and J. Dalibard, Quantum Mechanics, Springer, Berlin, 2002.
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• N. Straumann, Quantum Mechanics: a Basic Course of Non-relativistic Quantum
Theory, Springer, Berlin, 2002 (in German).

• K. Gottfried and Tung-Mow Yan, Quantum Mechanics: Fundamentals, Springer,

New York, 2003.

As an introduction to quantum mechanics from the mathematical point of
view, we refer to the references quoted on page 909 above. In addition, we
recommend:
• H. Triebel, Higher Analysis, Barth, Leipzig, 1989.
• M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol 1: Func-

tional Analysis, Vol. 2: Fourier Analysis and Self-Adjointness, Vol. 3: Scattering
Theory, Vol. 4: Analysis of Operators (Perturbation Theory), Academic Press,
New York, 1972/79.

• W. Thirring, Classical Mathematical Physics: Dynamical Systems and Fields,
Springer, New York, 1997.

• W. Thirring, Quantum Mathematical Physics: Atoms, Molecules, and Large Sys-
tems, Springer, New York, 2002.

• E. Lieb, The Stability of Matter: From Atoms to Stars, Selecta of Elliott Lieb.
Edited by W. Thirring, Springer, New York, 2002.

• K. Jörgens and F. Rellich, Eigenvalue Problems for Ordinary Differential Equa-
tions: Lectures held at Göttingen University by Rellich, Springer, Berlin, 1976
(in German).

• F. Berezin and M. Shubin, The Schrödinger Equation, Kluwer, Dordrecht, 1991.
• C. Sulem and P. Sulem, Nonlinear Schrödinger Equations: Self-Focusing and

Wave Collapse, Springer, New York, 1999.
• P. Hislop and I. Sigal, Introduction to Spectral Theory With Applications to

Schrödinger Operators, Springer, New York, 1996.
• I. Sigal, Scattering Theory for Many-Body Quantum Mechanical Systems: Rig-

orous Results, Springer, Berlin, 1983.
• L. Faddeev and S. Merkuryev, Quantum Scattering Theory for Several Particle

Systems, Kluwer, Dordrecht, 1996.

The most comprehensive textbook in theoretical physics is:
• L. Landau and E. Lifshitz, Course of Theoretical Physics,

– Vol. 1: Mechanics,
– Vol. 2: The Classical Theory of Fields,
– Vol. 3: Quantum Mechanics,
– Vol. 4: Quantum Electrodynamics,
– Vol. 5: Statistical Physics, Part 1,
– Vol. 6: Fluid Mechanics,
– Vol. 7: Theory of Elasticity,
– Vol. 8: Electrodynamics of Continuous Media,
– Vol. 9: Statistical Physics, Part 2,
– Vol. 10: Physical Kinetics,

Butterworth–Heinemann, Oxford, 1982.

For general physics, we recommend:
• R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures in Physics,

Addison-Wesley, Reading, Massachusetts, 1963.
• P. Tipler, Physics for Scientists and Engineers, Freeman, New York, 1999.
• C. Gerthsen, Gerthsen Physik. Edited by D. Meschede, Springer, Berlin, 2004

(in German).
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17.2 Quantum Gravity and Cosmology

The most comprehensive textbook on gravitation is:

• C. Misner, K. Thorne, and A. Wheeler, Gravitation, Freeman, San Francisco,

1973.

The standard reference in modern cosmology is the monograph by

• S. Weinberg, Cosmology, Oxford University Press, 2008.

Furthermore, we recommend:

• R. Wald, General Relativity, University of Chicago Press, 1984.
• R. Wald, Space, Time, and Gravity: The Theory of the Big Bang and Black

Holes, University of Chicago Press, 1992.
• R. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermo-

dynamics, The University of Chicago Press, 1994.
• G. Börner, The Early Universe: Facts and Fiction, Springer, Berlin, 2003.
• N. Straumann, General Relativity with Applications to Astrophysics, Springer,

New York, 2004.
• C. Kiefer, Quantum Gravity, Oxford University Press, 2004.
• C. Rovelli, Quantum Gravity, Cambridge University Press, 2004.
• T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge Uni-

versity Press, 2007 (loop quantum gravity) (900 references).
• C. Fewster, Lectures on Quantum Field Theory in Curved Space-Time, Depart-

ment of Mathematics, University of York, United Kingdom, 2008. Electronic
address: cjf3yor.ac.uk
See also the Lecture Notes series of the Max Planck Institute for Mathematics
in the Sciences, Leipzig. Internet: http://www.mis.mpg.de/preprints

• Ø. Grøn and S. Hervik, Einstein’s Theory of General Relativity: with Modern
Applications in Cosmology, Springer, New York, 2007.

• H. Hamber, Quantum Gravitation: The Feynman Path Integral Approach,
Springer, Berlin, 2009.

• L. Parker and D. Toms, Quantum Field Theory in Curved Spacetime and Gravity,

Cambridge University Press, 2009.

In addition, we recommend:

• F. Adams and G. Laughlin, A dying universe: the long-term fate and evolution
of astrophysical objects, Rev. Mod. Phys. 69 (1997), 337–372.

• F. Adams and G. Laughlin, The Five Ages of the Universe: Inside the Physics of
Eternity, Simon and Schuster, New York, 1999.

• N. Birell and P. Davies, Quantum Fields in Curved Space, Cambridge University
Press, 1982.

• S. Fulling, Aspects of Quantum Field Theory in Curved Space-Time, Cambridge,
University Press, 1989.

• M. Kriele, Space-Time: Foundations of General Relativity and Differential Ge-
ometry, Springer, Berlin, 2000.

• B. Schutz, Gravity from the Ground Up, Cambridge University Press, 2003.
• D. Giulini, C. Kiefer, and C. Lämmerzahl (Eds.), Quantum Gravity: From Theory

to Experimental Search, Springer, Berlin, 2003.
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• A. Rendall, Lectures on Nonlinear Hyperbolic Differential Equations (in Ger-
man), Max Planck Institute Albert Einstein for Gravitational Physics, Golm
(Potsdam), Germany, 1998.
Internet: http://www.aei-potsdam.mpg.de/rendall/vorlesung1.htlm

• P. Cruściel and H. Friedrich, The Einstein Equations and the Large Scale Be-
havior of Gravitational Fields: 50 Years of the Cauchy Problem2 in General
Relativity, Birkhäuser, Boston, 2004.

• Y. Choquet–Bruhat, General Relativity and the Einstein Equations, Oxford Uni-
versity Press, 2008.

• M. Maggiore, Gravitational Waves, Oxford University Press, Oxford, 2008.
• G. Naber, Space-Time and Singularities, Cambridge University Press, Cam-

bridge, United Kingdom, 1988.
• D. Liebscher, Cosmology, Springer, Berlin, 2005.
• V. Mukhanov, Physical Foundations of Cosmology, Cambridge University Press,

2005.

Concerning recent developments, we refer to:3

• Fauser, B., Tolksdorf, J., Zeidler, E. (Eds.), Quantum Gravity: Mathematical
Models and Experimental Bounds, Birkhäuser, Basel, 2006.

• F. Finster, The Principle of the Fermionic Projector, American Mathematical
Society and International Press, Boston, 2006.

• F. Finster, From discrete space-time to Minkowski space: basic mechanisms,
methods, and perspectives. In: B. Fauser, J. Tolksdorf, and E. Zeidler (Eds.),
Quantum Field Theory – Competitive Methods, Birkhäuser, Basel, 2008, pp.
235–260.

• F. Finster, N. Kamran, J. Smoller, and S. Yau, Linear waves in the Kerr geom-
etry: a mathematical voyage to black hole physics, 2008.
Internet: http://arxiv.org/0801.1423

• F. Finster and C. Hainzl, Quantum oscillations prevent the Big Bang singularities
in an Einstein–Dirac Cosmology, 2008.

Internet: http://arXiv.org/0809.1693

The following survey article describes the state of the art in applying loop
quantum gravity to cosmology:

• M. Bojowald, Loop quantum cosmology, Living Reviews 11/4 (2008), Max Planck
Institute Albert Einstein for Gravitational Physics, Golm/Potsdam, Germany.

Internet: http://relativity.livingreviews.org.Articles/Irr-2008-4

In particular, there exists a model in quantum loop cosmology which prevents
the Big Bang. This is described in:

• M. Bojowald, Follow the bouncing universe, Scientific American, October 2008,
pp. 44–51.

• M. Bojowald, Zurück vor den Urknall: die ganze Geschichte des Universums

(Back before the Big Bang – the complete history of the universe), Fischer,

Frankfurt/Main, 2009 (in German).

2 The Cauchy problem is also called the initial-value problem. Here, roughly speak-
ing, for given gravitational field at the initial time, we want to determine the
gravitational field in the future. This is a highly nontrivial task in the theory of
nonlinear hyperbolic partial differential equations (see Volume III).

3 See also the “recent developments” quoted on page 923.
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17.3 Exactly Soluble Models in Statistical Physics and
Quantum Field Theory

Exactly soluble models play a crucial role in physics for understanding
important phenomena in nature by considering simplified situations.

Folklore

As an introduction to exactly soluble models in quantum field theory, we
recommend:

• H. Grosse, Models in Statistical Physics and Quantum Field Theory, Springer,

New York, 1988 (elementary introduction);

• E. Abdalla, M. Abdalla, and K. Rothe, Non-Perturbative Methods in Two-

Dimensional Quantum Field Theory, World Scientific, Singapore, 2001 (e.g.,

Thirring model, Schwinger model in 1+1-dimensional quantum electrodynamics,

supersymmetric Wess–Zumino–Witten model, Gross–Neveu model, models with

an exact S-matrix, conformal field theory, two-dimensional quantum gravity)

together with

• C. Bratelli and D. Robinson, Operator Algebras and Quantum Statistical Me-
chanics, Vols. 1, 2, Springer, New York, 2002.

• B. Felsager, Geometry, Particles, and Fields, Springer, New York, 1997.
• A. Tsvelik, Quantum Field Theory in Condensed Matter Physics, Cambridge

University Press, 2003.
• A. Zee, Quantum Field Theory in a Nutshell, Princeton University Press, 2003.
• T. Dauxois and M. Peyrard, Physics of Solitons, Cambridge University Press,

2006.

We also refer to:

• S. Albeverio, Solvable Models in Quantum Mechanics, Springer, New York, 1988.

Further important material on exactly soluble models in statistical physics
and quantum field theory can be found in:

• E. Lieb and D. Mattis, Mathematical Physics in One Dimension: Exactly Soluble
Models of Interacting Particles (a collection of reprints), Academic Press, New
York, 1968.

• D. Mattis, The Many-Body Problem: An Encyclopedia of Exactly Solved One-
Dimensional Models, World Scientific, Singapore, 1993.

• D. Ruelle, Statistical Mechanics: Rigorous Results, Benjamin, New York, 1969.
• R. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, New

York, 1982.
• E. Lieb, Exact solution of the problem of the entropy of two-dimensional ice,

Phys. Rev. 18 (1967), 692–694.
• E. Lieb, Density functionals for Coulomb systems, Intern. J. of Quantum Chem-

istry 24 (1982), 243–277.
• H. Eschrig, The Fundamentals of Density Functional Theory, Teubner, Leipzig,

2003.
• E. Lieb and R. Seiringer, Proof of Bose–Einstein condensation for dilute trapped

gases, Phys. Rev. Lett. 88 (2002), No. 170409, pp. 1–4.
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• J. Fröhlich and T. Spencer, A rigorous approach to Anderson localization, Phys.
Rev. 103 (1984), 1–4, 9–25.

• M. Gaudin, La function d’onde de Bethe, Masson, Paris, 1983 (in French) (the
Bethe ansatz in statistical physics).

• M. Aizenman, Geometric analysis of ϕ4-fields and Ising models, Commun. Math.
Phys. 86 (1982), 1–48.

• H. Kleinert and V. Schulte-Frohlinde, Critical Properties of ϕ4-Theories, World
Scientific, New York, 2001.

• F. Bethuel, H. Brézis, and F. Hélein, Ginzburg–Landau Vortices, Birkhäuser,
Basel, 1994.

• A. Mielke, The Ginzburg–Landau equation in its role as a modulation equation.
In: Handbook of Dynamical Systems (2002), Vol. 2, pp. 759–834. Edited by B.
Fiedler, Elsevier, Amsterdam, 2002.

• B. Fauser, Clifford geometric quantization of inequivalent vacua, Math. Meth.
Appl. Sci. 24 (2001), 885–912 (quasi-particles).

• L. Faddeev, Integrable models in 1 + 1-dimensional quantum field theory, Les
Houches 1984, Session 43, pp. 561–608, North-Holland, Amsterdam, 1984.

• L. Faddeev and L. Takhtadzhian, Hamiltonian Method in the Theory of Solitons,
Springer, New York, 1987.

• H. De Vega, Integrable Quantum Field Theories and Statistical Models: Yang–
Baxter and Kac–Moody Algebras, World Scientific Singapore, 2000.

• W. Nahm, N. Craigie, and P. Goddard (Eds.), Monopoles in Quantum Field
Theory, World Scientific, Singapore, 1982 (collection of papers).

• W. Nahm, Quantum field theories in one and two dimensions, Duke Math. J. 54
(1987), 579–613.

• W. Nahm, Conformally Invariant Quantum Field Theories in Two Dimensions,
World Scientific, Singapore, 1996.

• P. Garbaczewski, Classical and Quantum Field Theory of Exactly Soluble Non-
linear Systems, World Scientific, Singapore, 1985.

• R. Rajaraman, An Introduction to Solitons and Instantons in Quantum Field
Theory, Elsevier, Amsterdam, 1987.

• M. Ge and Bao-Heng Zhao, Introduction to Quantum Groups and Integrable
Massive Models of Quantum Field Theory, World Scientific, Singapore, 1989.

• M. Toda, Nonlinear Waves and Solitons, Kluwer, Dordrecht, 1989.

• R. Fernández, J. Fröhlich, and D. Sokal, Random Walks, Critical Phenomena,
and Triviality in Quantum Field Theory, Springer, Berlin, 1992.

• J. Fröhlich, Scaling and Self-Similarity in Physics: Renormalization in Statistical
Physics, Birkhäuser, Basel, 1993.

• B. Hughes, Random Walks and Random Environments, Vols. 1, 2, Clarendon
Press, Oxford, 1995 (e.g., percolation).

• K. Efetov, Supersymmetry in Disorder and Chaos, Cambridge University Press,
1997 (solid state physics).

• S. Ketov, Quantum Non-Linear Sigma Models: From Quantum Field Theory to
Supersymmetry, Conformal Field Theory, Black Holes, and Strings, Springer,
Berlin, 2000.

• B. McCoy and Tai-Tsu Wu, The Two-Dimensional Ising Model, Harvard Uni-
versity Press, 1997.

• G. Moussardo, The Ising Model: Introduction to Quantum Field Theory and
Phase Transitions, Bollati Boringhieri, 2007 (in Italian).
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• P. Dorey, Exact S-Matrices in Two-Dimensional Quantum Field Theory: An
Introduction Through Affine Toda Models, Cambridge University Press, 1998.

• D. Thouless (Ed.), Topological Quantum Numbers in Non-relativistic Physics,
World Scientific, Singapore 1998 (collection of 40 important articles on superflu-
idity, quantum Hall effect, phase transitions, etc.)

• Bordag, M. (Ed.) (1999), The Casimir Effect 50 Years Later, World Scientific,
Singapore.

• M. Salmhofer, Renormalization: An Introduction, Springer, Berlin, 1999 (Fermi
liquids).

• J. Feldman, H. Knörrer, and E. Trubowitz, A two-dimensional Fermi liquid, 2003
(comprehensive investigation).
Internet: http://www.math.ubc.ca/∼feldman/fl.htlm

• S. Adler, Quantum Theory as an Emergent Phenomenon: the Statistical Me-
chanics of Matrix Models as the Precursor of Quantum Field Theory, Cambridge
University Press, 2004.

• D. Bigatti and L. Susskind, Review of matrix theory, 1997.
Internet: http://arXiv.org/hep-th/9712072

• H. Grosse, and R. Wulkenhaar, Renormalization of ϕ4-theory on noncommutative
R

4 in the matrix base, Commun. Math. Phys. 256 (2005), 305–374.

• F. Dyson, Statistical theory of the energy levels of complex systems, J. Math.
Phys. 3 (1962), 140–175.

• M. Mehta, Random Matrices, Academic Press, New York, 2004.
• T. Guhr, H. Müller-Groeling, and Weidenmüller (1998), Random-Matrix The-

ories in Quantum Physics: Common Concepts, Physics Reports 299, Numbers
4-6.

• Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer, New York,
2001.

• C. Klein and O, Richter, Ernst Equation and Riemann Surfaces: Analytical and
Numerical Methods, Springer, Berlin, 2005 (solitons and application to thin ro-
tating galaxies).

• T. Tao, Why are solitons stable? Bull. Amer. Math. Soc. 46(1) (2009), 1–34.

• H. Stephani et al., Exact Solutions of Einstein’s Field Equations, Cambridge
University Press, 2003.

• L. Randall and R. Sundrum, Large mass hierarchy from a small extra dimension
(of the universe), Phys. Rev. Lett. 83 (1999), 4690–4693.

• P. Mannheim, Brane-Localized Gravity, World Scientific, Singapore, 2005 (mod-
els of D-branes in cosmology).

• M. Bojowald, Canonical gravity and effective theory. In: B. Fauser, J. Tolksdorf,
and E. Zeidler (Eds), Quantum Field Theory – Competitive Models, Birkhäuser,
Basel, 2008, pp. 217–234.

17.4 Standard References in Quantum Field Theory

From the physical point of view, the modern approach to quantum field theory
is represented in the following two monographs:

• S. Weinberg, Quantum Field Theory, Vols. 1–3, Cambridge University Press,
1995.
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• M. Peskin and D. Schroeder, An Introduction to Quantum Field Theory, Addison-

Wesley, Reading, Massachusetts, 1999.

Weinberg’s treatise emphasizes the general structure of quantum field theo-
ries. The following monographs are classics in quantum field theory:

• G. Wentzel, Quantum Theory of Wave Fields, Interscience, New York, 1949.
• N. Bogoliubov and D. Shirkov, Introduction to Quantum Field Theory, 3rd edn.,

Wiley, New York, 1980 (the first Russian edition was published in 1957).
• S. Schweber, An Introduction to Relativistic Quantum Field Theory, Harper and

Row, New York, 1961.
• J. Bjorken and S. Drell, Relativistic Quantum Mechanics, McGraw-Hill, New

York, 1964.
• J. Bjorken and S. Drell, Relativistic Quantum Fields, McGraw-Hill, New York,

1965.
• D. Lurié, Particles and Fields, Wiley, New York, 1968.
• P. Roman, Introduction to Quantum Field Theory, Wiley, New York, 1969.
• C. Itzykson and J. Zuber, Quantum Field Theory, MacGraw-Hill, New York,

1980.
• C. Itzykson and J. Drouffe, Statistical Field Theory: From Brownian Motion to

Renormalization and Lattice Gauge Theory, Vols. 1, 2, Cambridge University
Press, 1991.

• J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press,
Oxford, 2004.

• J. Zinn-Justin, Phase Transitions and Renormalization Group, Oxford University
Press, 2007.

We also recommend the following monographs:

• A. Abrikosov, L. Gorkov, and I. Dzyaloshinskii, Methods of Quantum Field The-
ory in Statistical Physics, Prentice Hall, Englewood Cliffs, New Jersey, 1963.

• A. Barut, The Theory of the Scattering Matrix, MacMillan, New York, 1967.
• B. DeWitt, The Global Approach to Quantum Field Theory, Vols. 1, 2, Clarendon

Press, Oxford, 2003.
• H. Rothe, Lattice Gauge Theories, World Scientific Singapore, 2005.

17.5 Rigorous Approaches to Quantum Field Theory

Since the late 1950s, mathematicians and physicists have been tried to give
quantum field theory a sound mathematical basis. The basic papers on ax-
iomatic and algebraic quantum field theory are:

• I. Segal, Postulates for general quantum mechanics, Ann. of Math. 48 (1947),
930–948.

• A. Wightman, Quantum field theories in terms of vacuum expectation values,
Phys. Rev. 101 (1956), 860–866.

• A. Wightman and L. G̊arding, Fields as operator-valued distributions in rela-
tivistic quantum field theory, Arkiv för Fysik 28 (1964), 129–189.

• R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math.
Phys. 5 (1964), 848–861.

• H. Epstein and V. Glaser, The role of locality in perturbation theory, Ann. Inst.
Poincaré A19(3) (1973), 211–295.
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• K. Osterwalder and R. Schrader, Axioms for Euclidean Green’s functions I, II,
Commun. Math. Phys. 31 (1973), 83–112; 42 (1975), 281–305.

• J. Glimm and A. Jaffe, Quantum Physics: A Functional Integral Point of View,
Springer, New York, 1981.

• R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer, New

York, 1996.

In the following volumes, we will come back to this ambitious program. Typ-
ical mathematical tools are:

• operator algebras (C∗-algebras, von Neumann algebras),
• local nets of operator algebras,
• the theory of complex-valued analytic functions of several variables, and
• the theory of distributions with values in Hilbert spaces.

At this point, let us recommend the following monographs to the interested
reader.

(i) Axiomatic quantum field theory
• R. Streater and A. Wightman, PCT, Spin, Statistics, and All That, Ben-

jamin, New York, 1968.
• M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 2

(G̊arding–Wightman axioms for quantum fields, analyticity, PCT-theorem,
the Källén–Lehmann representation of the two-point function, free quantum
fields), Vol. 3 (Haag–Ruelle scattering theory for quantum fields), Academic
Press, New York, 1972/79.

• B. Simon, The P (ϕ)2-Euclidean Quantum Field Theory, Princeton Univer-
sity Press, 1974.

• N. Bogoliubov, A. Logunov, and I. Todorov, Introduction to Axiomatic
Quantum Field Theory, Benjamin, Reading, Massachusetts, 1975.

• N. Bogoliubov, A. Logunov, A. Orsak, and I. Todorov, General Principles of
Quantum Field Theory, Kluwer, Dordrecht, 1990 (1200 references).

• J. Glimm and A. Jaffe, Quantum Physics: A Functional Integral Point of
View, Springer, New York, 1987.

• D. Iagolnitzer, Scattering in Quantum Field Theory: The Axiomatic and

Constructive Approaches, Princeton University Press, 1993.

The relation between quantum theory and Hilbert’s theory of syzygies in alge-

braic geometry can be found in:

• M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton

University Press, 1993 (quantization of constrained systems).

The necessary mathematics is contained in:
• D. Eisenbud, Commutative Algebra with a View to Algebraic Geometry,

Springer, New York, 1994.

• D. Eisenbud, The Geometry of Syzygies: A Second Course in Commutative

Algebra and Algebraic Geometry, Springer, New York, 2005.

Furthermore, we recommend the following standard textbooks on algebraic

geometry:
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• P. Griffith and J. Harris, Principles of Algebraic Geometry, Wiley, New York,
1978.

• I. Shafarevich, Basic Algebraic Geometry, Vols. 1, 2, Springer, Berlin, 1994
(classical methods and modern methods based on Grothendieck’s schemes).

• R. Hartshorne, Algebraic Geometry, Springer, New York, 1994 (theory of
schemes).

See also the references to Riemann surfaces on page 932.

(ii) Operator algebras and algebraic quantum field theory
• R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer, New

York, 1996 (especially recommended).
• H. Araki, Mathematical Theory of Quantum Fields, Oxford University Press,

1999 (especially recommended).
• G. Emch, Algebraic Methods in Statistical Physics and Quantum Field The-

ory, Wiley, New York, 1972.
• R. Kadison and J. Ringrose, Fundamentals of the Theory of Operator Alge-

bras, Vols. 1–4, Academic Press, New York, 1983.
• H. Baumgärtel and M. Wollenberg, Causal Nets of Operator Algebras,

Akademie-Verlag, Berlin, 1992.
• H. Baumgärtel, Operator-Algebraic Methods in Quantum Field Theory,

Akademie-Verlag, Berlin, 1995.
• D. Buchholz and R. Verch, Scaling algebras and renormalization group in

algebraic quantum field theory, Rev. Math. Phys. 7 (1995), 1195–2040.

• G. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca

Raton, Florida, 1995.

(iii) Applications to models in statistical physics
• C. Bratelli and D. Robinson, Operator Algebras and Quantum Statistical

Mechanics, Vols. 1, 2, Springer, New York, 2002.

(iv) The Epstein–Glaser approach to quantum field theory
• G. Scharf, Finite Quantum Electrodynamics: the Causal Approach, Springer,

New York, 1995.

• G. Scharf, Quantum Gauge Theories: A True Ghost Story, Wiley, New York,

2001.

(v) Recent developments
• R. Brunetti and K. Fredenhagen, Micro-local analysis and interacting quan-

tum field theories: renormalization on physical backgrounds, Commun.
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Poincaré Seminar 2007: Quantum Spaces, Edited B. Duplantier and V. Rivasseau.
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• R. Godement, Théorie des faiseaux (sheaf theory), Hermann, Paris, 1964.
• G. Bredon, Sheaf Theory, Springer, New York, 1998.
• F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer, New York,

1966.
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• D. Mumford, Stability of projective varieties, L’Enseign. Math. 23 (1977), 39–
110.

• D. Mumford, Curves and their Jacobians, The University of Michigan Press, Ann
Arbor, 1975.

• D. Mumford, Geometric Invariant Theory, Springer, Berlin, 1982.
• D. Mumford, Tata Lectures on Theta I, II, Birkhäuser, Basel, 1983.
• E. Arbarello and M. Cornalba, The Picard group of the moduli space of curves,

Topology 26 (1987), 153–171.
• H. Rauch, Singularities of moduli spaces, Bull. Amer. Math. Soc. 68 (1962),

390–394.
• A. Polyakov, Gauge Fields and Strings, Harwood, Chur, Switzerland, 1987.
• A. Beilinson and Yu. Manin, The Mumford form and the Polyakov measure in

string theory, Commun. Math. Phys. 107 (1986), 359–376.
• A. Tromba, Teichmüller Theory in Riemannian Geometry, Birkhäuser, Basel,

1996.
• J. Jost, The Bosonic String: A Mathematical Treatment, International Press,

Boston, 2001.
• C. Hertling, Frobenius Manifolds and Moduli Spaces for Singularities, Cambridge

University Press, 2002.
• C. Hertling and M. Marcolli (Eds.), Frobenius Manifolds: Quantum Cohomology

and Singularities, Vieweg, Wiesbaden, 2004.

The Batalin–Vilkovisky Quantization

• I. Batalin and G. Vilkovisky, Gauge algebra and quantization, Phys. Lett. B102
(1981), 27–31.

• I. Batalin nad G. Vilkovisky, Quantization of gauge theories with linearly depen-
dent generators, Phys. Rev. D28 (1983), 2567–2582.

• I. Batalin and G. Vilkovisky, Closure of the gauge algebra, generalized Lie equa-
tions and Feynman rules, Nucl. Phys. B234 (1984), 106–124.

• M. Aleksandrov, M. Kontsevich, A. Schwarz, and O. Zaboronsky, Geometry of
the (Batalin–Vilkovisky) master equation, Int. J. Mod. Phys. A12 (1997), 1405–
1430.

• J. Huebschmann and J. Stasheff, Formal solution of the (Batalin–Vilkovysky)
master equation via homological perturbation theory and deformation theory,
Forum Mathematicum 14 (2002), 847–868.

• C. Albert, C. Bleile, and J. Fröhlich, Batalin–Vilkovisky integrals in finite di-
mensions, 35 pages. Internet: http://arXiv.org/0812.0464

Quantization of Poisson Structures

• M. Kontsevich, Deformation quantization of Poisson manifolds. Lett. Math.
Phys. 66(3) (2003), 157–216.

• A. Cattaneo and G. Felder, A path integral approach to the Kontsevich quanti-
zation formula, Commun. Math. Phys. 212 (2000), 591–611.

• P. Cartier, Mathemagics, A tribute to L. Euler and R. Feynman, Séminaire
Lotharingien 44 (2000), 1–71.

• P. Cartier, A mad day’s work: from Grothendieck to Connes and Kontsevich.
The evolution of concepts of space and symmetry. Bull. Amer. Math. Soc. 38(4)
(2001), 389–408.
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Path Integrals

• H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, and Polymer
Physics, World Scientific, River Edge, New York, 2004.

• C. Grosche and F. Steiner, Handbook of Feynman Path Integrals, Springer, New
York, 1998 (950 references).

• G. Johnson and M. Lapidus, The Feynman Integral and Feynman’s Operational
Calculus, Clarendon Press, Oxford, 2000.

• M. Chaichian and A. Demichev, Path Integrals in Physics, Vol. 1: Stochastic
Processes and Quantum Mechanics; Vol. 2: Quantum Field Theory, Statistical
Physics, and Other Modern Applications, Institute of Physics, Bristol, 2001.

• J. Klauder, Beyond Conventional Quantization, Cambridge University Press,
2000.

• S. Albeverio, R., Høegh-Krohn, and S. Mazzuchi, Mathematical Theory of Feyn-
man Path Integrals, Springer, Berlin, 2008.

• Duistermaat, J., Heckmann, G. (1983), On the variation in the cohomology in the
symplectic form of the reduced phase space, Invent. Math. 69 (1982), 259–268;
72 (1983), 153.

Symmetry Breaking and Anomalies

• A. Connes, K. Gawȩdzki, K., and J. Zinn-Justin (Eds.) (1998), Quantum Sym-
metries, Les Houches 1995, Elsevier, Sessin 64, Amsterdam, 1998.

• E. Evans and Y. Kawahigashi, Quantum Symmetries on Operator Algebras,
Clarendon Press, Oxford, 1998.

• R. Bertimann, Anomalies in Quantum Field Theories, Oxford University Press,
2000.

• K. Fujikawa and H. Suzuki, Path Integrals and Quantum Anomalies, Oxford
University Press, 2004.

• T. Fujita, Symmetry and its Breaking in Quantum Field Theory, Nova Science,
New York, 2007.

• S. Adler, Adventures in Theoretical Physics, Selected Papers with Commentaries,
World Scientific, Singapore, 2006.

Supersymmetry

• J. Lopuszanski, An Introduction to Symmetry and Supersymmetry in Quantum
Field Theory, World Scientific, Singapore, 1991.

• S. Martin, A supersymmetry primer. In: G. Kane (Ed.), Perspectives on Super-
symmetry II, World Scientific Singapore, 1997, pp. 1–98.

• J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton University
Press, 1991.

• S. Weinberg, Quantum Field Theory, Vol. 3, Cambridge University Press, 1995
(the supersymmetric standard model in particle physics and supergravity).

• P. Binétruy, Supersymmetry: Theory, Experiment, and Cosmology, Oxford Uni-
versity Press, 2006.

• V. Varadarajan, Supersymmetry for Mathematicians, Lecture Notes of the
Courant Institute, Amer. Math. Soc., Providence, Rhode Island, 2004.

• J. Jost, Geometry and Physics, Springer, Berlin, 2009.
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• J. Wess and B. Zumino, Supergauge transformations in four dimensions, Nucl.
Phys. B 70 (1974), 39–50 (basic paper on supersymmetry in elementary particle
physics).

• R. Haag, J. Lopuszanski, and M. Sohnius, All possible generators of supersym-
metries of the S-matrix, Nucl. Phys. B88 (1975), 257–274.

• W. Nahm, Supersymmetries and their representations, Nucl. Phys. B135 (1978),
149–166.

• J. Louis and B. de Wit, Supersymmetry and dualities in various dimensions,
Lectures given at the Nato Advanced Study Institute on Strings, Branes, and
Dualities, Cargèse, Corsica (France), 1997.
Internet: http://arXiv:hep-th/9801132

• W. Hollik, E. Kraus, M., Roth, C. Rupp, K. Sibold, and D. Stöckinger, Renor-
malization of the minimal supersymmetric standard model, Nuclear Physics B
639 (2002), 3–65.

• I. Buchbinder and S. Kuzenko, Ideas and Methods of Supersymmetry and Su-
pergravity or A Walk Through Superspace, Institute of Physics, Bristol, 1995.

• A. Khrennikov, Superanalysis, Kluwer, Dordrecht, 1999.
• G. Tynman, Supermanifolds and Supergroups: Basic Theory, Kluwer, Dordrecht,

2004.
• V. Guillemin and S. Sternberg, Supersymmetry and Equivariant de Rham The-

ory, Springer, Berlin, 1999.
• D. Freed, D. Morrison, and I. Singer, Quantum Field Theory, Supersymmetry,

and Enumerative Geometry, Amer. Math. Soc., Providence, Rhode Island, 2006.

• E. Witten, Supersymmetry and Morse theory, J. Diff. Geom. 17 (1982), 661-692.
• E. Getzler, A short proof of the local Atiyah–Singer index theorem, Topology 25

(1986), 111–117 (supersymmetric proof).

• M. Chaichian and R. Hagedorn, Symmetries in Quantum Mechanics: From An-
gular Momentum to Supersymmetry, Institute of Physics, Bristol, 1998.

• D. Bailin and A. Love, Supersymmetric Gauge Field Theory and String Theory,
Institute of Physics, Bristol, 1996.

• K. Efetov, Supersymmetry in Disorder and Chaos, Cambridge University Press,
1997.

• G. Juncker, Supersymmetric Methods in Quantum and Statistical Physics,
Springer, Berlin, New York, 1996.

• S. Bellucci, S. Ferrara, and A. Marrani, Supersymmetric Mechanics, Vol. 1:
Supersymmetry, Noncommutativity and Matrix Models, Vol. 2: The Attractor
Mechanism and Space Time Singularities, Springer, Berlin, 2006.

We will study these fascinating topics in later volumes.

17.7 The Monster Group, Vertex Algebras, and Physics

The finite Monster group brings together modern algebra and conformal
quantum field theory.

Folklore

The study of scattering processes for strings leads to fascinating mathemat-
ical structures like moduli spaces of Riemann surfaces, Kähler manifolds,
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Calabi–Yau manifolds, spectral geometry, zeta functions, Fock spaces, su-
per Lie algebras, Kac–Moody algebras, Heisenberg algebras, Virasoro al-
gebras, vertex operator algebras, modular forms, Hodge invariants and
mirror symmetry. This culminates in conformal quantum field theory.

Folklore

The finite Monster group. As an example of the interplay between mathe-
matics and modern physics, let us briefly discuss the monster group. Symme-
tries in nature are described by groups. There arises the problem of classifying
all possible symmetries (i.e., all possible groups). This problem is solved for

(i) all crystal symmetries,
(ii) all simple, simply connected, compact Lie groups,6 and
(iii) all finite simple groups.

A group G is called simple iff it has only trivial realizations. This means that
each group epimorphism χ : G → H is an isomorphism or H consists only of
the unit element. The study of finite groups dates back to

• the work of Gauss (1777–1855) on cyclotomic fields in 1796 (the construction of
the regular 17-polygon with ruler and compass)

• and the work of Galois (1811–1832) on the solvability of algebraic equations in

1831.

Around 1980, problem (iii) above was finally solved by a large group of math-
ematicians. The full proof contains about ten thousand pages. See the survey
article by

• D. Gorenstein, Classifying the finite simple groups, Bull. Amer. Math. Soc. 14

(1986), 1–98.

It turns out that there exist

(a) 16 infinite families of groups of Lie type (matrix groups over finite fields),
(b) the alternating groups of n letters with n ≥ 5, and
(c) 26 sporadic simple groups.

The largest finite simple sporadic group is called Monster; its number of
elements is equal to

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71.

The existence of the Monster was conjectured by Fischer and Griess in 1973.
Nine years later, Griess constructed the Monster group: .

• R. Griess, The friendly giant, Invent. Math. 69 (1982), 1–102.

The monstrous moonshine module. There arises the following ques-
tion:
6 For example, the gauge groups SU(2) and SU(3) of the Standard Model in

particle physics are of this type. The classification can be found in Simon (1996).
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Does the Monster group describe the symmetry of some mathematical
object?

This object is called monstrous moonshine. It turns out that the positive
answer to this question is closely related to appropriate models in string
theory of physicists. The highly sophisticated construction of the monstrous
moonshine module V as a vertex algebra can be found in

• I. Frenkel, J. Lepowski, and A. Meurman, Vertex Operator Algebras and the

Monster, Academic Press, New York, 1988.

The final, very detailed answer about the action of the Monster group on V
was given by

• R. Borcherds, Monstrous moonshine and monstrous Lie super algebras, Invent.

Math. 109 (1992), 405–444.

Borcherds was awarded the Fields medal in 1998. Let us sketch the basic
ideas.

(M) The monstrous moonshine module V : There exists an infinite direct sum

V =
∞⊕

n=−1

Vn

of finite dimensional linear spaces V−1, V0, V1, ... such that the Monster
group M acts as symmetry group on V . This means that, for each element
g of the Monster group, there exists a linear isomorphism

L(g) : V → V

which respects multiplication; that is, L(gh) = L(g)L(h) for all g, h ∈
M. In addition, each operator L(g) leaves invariant all of the subspaces
V−1, V0, V1, ....

(D) The dimension of the invariant subspaces: If we introduce the generating
function

dim(q) :=
∞∑

n=−1

(dimVn)qn,

then

dim(q) = j(τ) − 744 = q−1 + 196 884q + 21 492 760q2 + ...

For example, this yields dimV−1 = 1,dimV0 = 0, and

dimV1 = 196 884.

The famous classical modular function j = j(τ) is defined by
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j(τ) :=
(1 + 240

∑∞
n=1 σ3(n))3

qΠ∞
n=1(1 − qn)24

for all complex numbers τ with �(τ) > 0. Here, we set q := e2πτ , and
the function σ3(n) =

∑
d|n d

3 is the sum of the cubes of the divisors of n.
As an introduction to the theory of modular forms, we recommend the
survey article by Zagier (1995).

(R) Irreducible representation: There exists a nonzero element v ∈ V and a
decomposition

V1 = span{v} ⊕W

such that the monster group leaves the two linear subspaces span{v}
and W invariant. In addition, there does not exist any nontrivial linear
subspace of W which is invariant under the monster group. In other
words, the group of linear isomorphisms of W represents an irreducible
representation of the Monster group with dimW = 196 883.

(d) The characters of the monster representation: Let us introduce the Thom-
son series

Tg(q) :=
∞∑

n=−1

tr(L(g)|Vn)

where the symbol tr(L(g)|Vn) denotes the trace of the linear operator
L(g) on the linear space Vn. The numbers tr(L(g)|Vn) are called charac-
ters of the representation of the Monster group on Vn.

7 In 1992 Borcherds
showed that, for any element g of the Monster group, the Thomson series
Tg(q) is a so-called Hauptmodule for a genus zero subgroup of the Lie
group SL(2,R).

Borcherds calculated this Thomson series by using the monster Lie algebra.
This Lie algebra is constructed as the space of physical states of a bosonic
string moving in a Z2-orbifold M/Z2 of a 26-dimensional torus M .

Vertex operator algebras. For the investigation of the monstrous
moonshine module V, it is crucial that this module carries an additional
structure: V is a vertex operator algebra (briefly called vertex algebra). In
conformal quantum field theory, vertex algebras are called chiral algebras by
physicists. This is related to superstring theory. As an introduction to vertex
algebras, we recommend:

• V. Kac, Vertex Algebras for Beginners, Amer. Math. Soc., Providence, Rhode
Island, 1996.

• Xiaoping Xu, Introduction to Vertex Operator Superalgebras and Their Modules,
Kluwer, Dordrecht, 1998.

• I. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves, Amer. Math.
Soc., Providence, Rhode Island, 2001.

7 It is shown in representation theory that the irreducible representations of a
finite group are determined by the characters. See Simon (1996).
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A look at the history of string theory. In 1968, in an axiomatic way,
Veneziano formulated typical properties of the four-point scattering ampli-
tude of elementary particles in strong interaction.

• G. Veneziano, Construction of a crossing-symmetric, Regge-behaved amplitude

for linearly rising trajectories, Nuovo Cimento 57A (1968), 190–197.

He was looking for a function which satisfies his axioms, and he discovered
that the Euler beta function

B(x, y) =
∫ 1

0

tx−1(1 − t)y−1dt, x, y > 0

fits the axioms well. He also introduced vertex operators as a technical tool
for describing scattering amplitudes at a vertex of the Feynman diagrams.
He used this in order to prove factorization properties of the amplitudes for
n scattered particles. In 1970 Nambu and other physicists realized that the
scattering amplitudes could be understood in terms of quantized relativistic
strings. Around 1973 it was discovered that string theory can incorporate
gravitation:

• T. Yoneya, Quantum gravity and the zero-slope limit of the generalized Virasoro
model, Nuovo Cimento Lett. 8 (1973), 951–955.

• J. Scherk and J. Schwarz, Dual models for non-hadrons, Nucl. Phys. B 81, 118–

144.

This was the birth of string theory as a candidate for a theory of all fun-
damental interactions in nature. In 1981 Polyakov applied the idea of the
Feynman functional integral to string theory.

• A. Polyakov, Quantum geometry of bosonic strings, Phys. Lett 103B (1981),

207–211.

He constructed a bridge to the classical mathematical theory of Riemann sur-
faces. In this setting, the states of a bosonic string are described by Riemann
surfaces. Since the Lagrangian of string theory is invariant under conformal
transformations, we have to assume that two Riemann surfaces represent the
same string state iff they are conformally equivalent. Thus, the Feynman
functional integral has to be computed with respect to the conformal equiv-
alence classes of Riemann surfaces. In other words, one has to integrate over
Riemann’s classical moduli space. In 1984 Belevanin, Polyakov, and Zamolod-
chikov abstracted from string theory a general setting in terms of conformal
invariance.

• A. Belevanin, A. Polyakov, and A. Zamolodchikov, Infinite conformal symmetries

in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984), 333–380.

This was the birth of conformal quantum field theory. The nice properties
of conformal quantum field theory rely on the rich structure of conformal
transformations in two dimensions, which lies at the heart of the classical
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theory of complex analytic functions. Nowadays string theory is a rich source
for getting beautiful new ideas in mathematics. The questions and conjec-
tures formulated by physicists are very stimulating for recent mathematical
research. Important contributions are due to Edward Witten, who says that

String theory is twenty-first century physics that fell incidentally into
the twentieth century.

For the history of string theory, we recommend both the book by Brian
Greene (1999) (the two string revolutions) and the collection of important
papers in string theory edited by John Schwarz (1985).

17.8 Historical Development of Quantum Field Theory

For the history of modern cosmology and the history of the Standard Model
in particle physics, we recommend:

• E. Wigner, Philosophical Reflections and Sytheses. Annotated by G. Emch.
Edited by J. Mehra and A. Wightman, Springer, Berlin, 1995 (epistemology
of quantum mechanics, quantum-mechanical measuring process, consciousness,
symmetries, relativity, nuclear physics, philosophical essays).

• E. Wigner, The unreasonable effectiveness of mathematics in the natural sci-
ences, Richard Courant Lecture in Mathematical Sciences delivered at New York
University, May 11, 1959, Comm. Pure Appl. Math. 13 (1) (1960), 222–237.
Reprinted in the volume Wigner (1995) above, pp. 534–549.

• H. Kragh, Quantum Generations: A History of Physics in the Twentieth Century,
Princeton University Press, 2000.

• R. Omnès, The Interpretation of Quantum Mechanics, Princeton University
Press, Princeton, New Jersey, 1994.

• D. Graham, H. Brown, and R. Harre, Philosophical Foundations of Quantum
Field Theory, Clarendon Press, Oxford, 1990.

• Tian Yu Cao, Conceptual Developments of 20th Century Field Theories, Cam-
bridge University Press, 1998 (1100 References).

• S. Schweber, QED (Quantum Electrodynamics) and the Men Who Made It:
Dyson, Feynman, Schwinger, and Tomonaga, Princeton University Press, 1994
(1300 references).

• S. Schweber, In the Shadow of the Bomb: Bethe, Oppenheimer, and the Moral
Responsibility of the Scientist, Princeton University Press, 2000.

• S. Schweber, Einstein and Oppenheimer: the Meaning of Genius, Harvard Uni-
versity Press, 2008.

• L. O’Raifertaigh, The Dawning of Gauge Theory, Princeton University Press,
1997.

• G. Emch, Mathematical and Conceptual Foundations of 20th Century Physics,
North-Holland, Amsterdam, 1984.

• E. Regis, Who Got Einstein’s Office? Eccentricity and Genius at the Institute for
Advanced Study in Princeton, Addison-Wesley, Reading, Massachusetts, 1989.

• L. Brown (Ed.), Renormalization: From Lorentz to Landau and Beyond, Sprin-
ger, New York, 1993.

• G. Smoot and K. Davidson, Wrinkles in Time, Morrow, New York, 1993 (history
of modern cosmology).
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• K. Thorne, Black Holes & Time Warps, Einstein’s Outrageous Legacy, Norton,
New York, 1993.

• R. Brennan, Heisenberg Probably Slept Here: The Lives, Times, and Ideas of the
Great Physicists of the 20th Century, Wiley, New York, 1997.

• B. Greene, The Elegant Universe: Supersymmetric Strings, Hidden Dimensions,
and the Quest for the Ultimate Theory, Norton, New York, 1999.

• M. Veltman, Facts and Mysteries in Elementary Particle Physics, World Scien-
tific, Singapore, 2003.

• D. Kaiser, Drawing Theories Apart: The Dispersion of Feynman Diagrams in
Postwar Physics, The University of Chicago Press, 2005.

• R. Laughlin, A Different Universe: Reinventing Physics from the Bottom Down,
Basic Books, New York, 2005.

• J. Lacki et al. (Eds.), Stueckelberg: An Unconventional Figure of Twentieth Cen-
tury Physics. Selected Scientific Papers with Commentaries, Birkhäuser, Boston,
2008.

• L. Hoddeson, A. Kolb, and C. Westfall, FERMILAB: Physics, the Frontier and
Megascience, The University of Chicago Press, 2009.

A survey on the most important papers in quantum field theory can be found
on the author’s homepage: Internet: http://www.mis.mpg.de

17.9 General Literature in Mathematics and Physics

The most important literature can be found in the references to the single
volumes. A more comprehensive list can be found on the author’s homepage
in the Internet:

http://www.mis.mpg.de/

This list concerns the following broad field of topics:

• general physics,
• theoretical physics,
• mathematical physics,
• scientific computing and computational physics,
• quantum mechanics,
• the Standard Model in particle physics,
• the Standard Model in cosmology,
• quantum fields and strings,
• statistical physics and solid state physics,
• renormalization,
• symmetry and groups,
• algebra,
• number theory,
• geometry,
• topology,
• analysis,
• stochastics,
• collected works,
• history of mathematics,
• the mathematics of the 20th century,
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• history of physics,

• philosophy of the sciences.

17.10 Encyclopedias

Let us mention the following encyclopedias:

• Encyclopedia of Physics, Handbuch der Physik edited by S. Flügge, Vols. 1ff,
Springer, Berlin, 1956ff.

• Encyclopedia of Mathematics, Vols. 1–10. Edited by M. Hazewinkel, Kluwer,
Dordrecht, 1987ff.

• Encyclopedia of Mathematical Sciences, Vols. 1–142ff, Springer, Berlin, New
York, 1990ff.

• Encyclopedia Britannica, Vols. 1–32, Chicago, 1987ff.
• Lexikon der Physik, Vols. 1–6, Spektrum, Wiesbaden, 1998 (in German).
• Lexikon der Mathematik, Vols. 1–6, Spektrum, Wiesbaden, 2001 (in German).
• Lexicon of Physics, Vols. 1ff, Wiley, New York, 2000.
• Handbook of Differential Equations, Vols. 1, 2. Edited by C. Dafermos et al.,

Elsevier, Boston, 2005.
• Handbook of Dynamical Systems, Vols. 1A, 1B: Edited by B. Hasselblatt et al.;

Vol. 2: Edited by B. Fiedler, Elsevier, Amsterdam, 2002.
• Handbook of Nonlinear Partial Differential Equations. Edited by A. Polyanin

and V. Zaitsev, Chapman and Hall, Boca Raton, Florida, 2004.
• The Concise Handbook of Algebra. Edited by A. Mikhalev and G. Pilz, Kluwer,

Dordrecht, 2002.
• Handbook of Global Analysis. Edited by D. Krupka and D. Saunders, Elsevier,

Amsterdam, 2008.

Concerning mathematical physics, we draw the attention of the reader to:

• Encyclopedia of Mathematical Physics, Vols. 1–5. Edited by J. Françoise, G.
Naber, and T. Tsun, Elsevier, Oxford, 2006.

• Modern Encyclopedia of Mathematical Physics, Vols. 1ff. Edited by I. Aref’eva
and D. Sternheimer, Springer, Berlin, 2011 (to appear).

A glossary of modern physics is contained in the following monograph:

• J. Polchinski, String Theory, Vols. 1, 2, Cambridge University Press, 1998.

Translations of technical terms in mathematics and physics from English into
French, German, Russian and vice versa can be found in:

• G. Eisenreich and R. Sube, Mathematik A–Z, Verlag Technik, Berlin, 1985
(35 000 entries).

• R. Sube and G. Eisenreich, Physik A–Z, Vols. 1, 2, Verlag Technik, Berlin, 1985

(75 000 entries).

A panorama of modern mathematics and its applications to real life problems
is presented in:

• B. Engquist and W. Schmid (Eds.), Mathematics Unlimited – 2001 and Beyond,

Springer, New York, 2001 (80 articles written by leading experts).
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17.11 Highlights of Physics in the 20th Century

Many of the highly influential papers of 20th century physics along with
commentaries can be found in

• H. Stroke (Ed.), The Physical Review: The First 100 Years. A Selection of Sem-

inal Papers and Commentaries, American Institute of Physics, New York, 1995.

This monumental volume contains 1250 pages and one CD with about 1000
papers. The excellent commentaries concern the following fields:

• atomic physics,
• nuclear physics,
• statistical physics,
• gravity physics and cosmology,
• cosmic radiation,
• condensed matter,
• plasma physics,
• elementary particle physics experiments,
• particle theory,

• science and technology.

In December 1900, Max Planck lectured on his famous radiation law, which
initiated quantum physics in the 20th century. On the occasion of this an-
niversary, the German Physical Society organized an outstanding conference
entitled

Quantum Theory Centenary in Berlin in December 2000.

The survey lectures of this conference reflect the state of the art; they are
collected in the journal Annalen der Physik 9 (2000), 11/12 and 10 (2001),
1/2. On the occasion of Heisenberg’s 100th birthday, the Max Planck Institute
for Physics Werner Heisenberg in Munich organized a conference. The lectures
given by outstanding physicists can be found in

• G. Buschhorn and J. Wess (Eds.), Fundamental Physics: Heisenberg and Beyond,

Springer, Berlin, 2004.

Developments of contemporary theoretical and mathematical physics have
been summarized in the volumes of the

• Les Houches Lectures, North-Holland, Amsterdam, 1960ff.

Concerning the state of the art in mathematical physics, we refer to the
following proceedings:

• Proceedings of the XIIIth International Congress on Mathematical Physics, Lon-
don, United Kingdom, 2000. Edited by A. Fokal et al., Imperial College Press,
River Edge, New York.

• Proceedings of the XIVth International Congress on Mathematical Physics, Lis-
bon, Portugal, 2003. Edited by J. Zambrini, World Scientific, Singapore.

• New Trends in Mathematical Physics: Selected Contributions of the XVth Inter-
national Congress on Mathematical Physics, Rio de Janeiro, Brazil, 2006. Edited
by V. Sidoravicius, Springer, Berlin, 2009.
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The International Congress on Mathematical Physics (ICMP) takes place
every three years.

17.12 Actual Information

For non-specialists in physics who want to become familiar with recent de-
velopments in physics, we recommend reading the two journals Scientific
American and Physics Today. Specialists like to consult Physical Review Let-
ters and Physics Letters. The two mainstream journals in elementary particle
physics are The Physical Reviews D and Nuclear Physics B.

For non-specialists in mathematics, we recommend the Mathematical In-
telligencer and the Notices of the American Mathematical Society. The Bul-
letin of the American Mathematical Society contains important survey articles
along with nice referee reports about newly published books. These reports
emphasize the historical development of the subject. The standard journal on
rigorous approaches to questions in quantum field theory is Communications
in Mathematical Physics.

The Poincaré Seminar was founded in Paris in 2002. This seminar takes
place twice a year in Paris. The idea is to describe the state of the art of both
theoretical and experimental physics. The first volume,

• Poincaré Seminar 2002: Vacuum Energy – Renormalization, edited by B. Du-

plantier and V. Rivasseau, Birkhäuser, Basel,

concerns modern cosmology, dark matter, the cosmological constant problem
and vacuum energy, the Casimir effect, the anomalous magnetic moment of
the electron and the muon, modern collider physics (the new LHC collider
at CERN), renormalization in physics and mathematics, the renormalization
group in classical mechanics (KAM theory), statistical physics, and quantum
field theory. The next volumes concern the following topics:

• Poincaré Seminar 2003: Bose–Einstein Condensation/Entropy. Edited by J. Dal-
ibard, B. Duplantier, and V. Rivasseau, Birkhäuser, Basel.

• Poincaré Seminar 2004: The Quantum Hall Effect. Edited by B. Douçot, B.
Duplantier, V. Rivasseau, and V. Pasquier, Birkhäuser, Basel.

• Poincaré Seminar 2004: String Theory.
• Poincaré Seminar 2005: Einstein 1905–2005. Edited by T. Damour, O. Darrigol,

B. Duplantier, and V. Rivasseau, Birkhäuser, Basel, 2006.
• Poincaré Seminar 2005: Quantum Decoherence. Edited by B. Duplantier, J. Rai-

mond, and V. Rivasseau, Birkhäuser, Basel, 2006.
• Poincaré Seminar 2006: Gravitation and Experience.
• Poincaré Seminar 2007: Quantum Spaces. Edited by B. Duplantier and V. Ri-

vasseau. Birkhäuser, Basel, 2007.
• Poincaré Seminar 2007: Spin.

All of the lectures can be found on the Internet: http://www.bourbaphy.fr
Important fundamental constants in physics are updated by the Task

Group on Fundamental Constants of the Committee on Data for Science
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and Technology (CODATA) of the International Council of Scientific Unions
(ICSU). See CODATA Bulletin 63, November 1986, and E. Cohen and B.
Taylor, Review of Modern Physics 54(4) 1987.8 Particle properties are up-
dated by the Particle Data Group. The state of the art can be found on the
Internet:

http://pdg.lbl.gov

A lot of actual information can be obtained from the following web pages of
the leading centers in high energy physics:

CERN: http://www.cern.ch (Geneva, Switzerland),
DESY: http://www.desy.de (Hamburg, Germany),
FERMILAB: http//:www.fnal.gov (Batavia, Illinois, U.S.A.),
SLAC: htpp://www.slac.stanford.edu (Stanford University, Palo Alto, Califor-

nia, U.S.A.),

KEK: http://www.kek.jp (Tsukuba, Japan).

Information about Nobel prize laureates in physics can be found on the fol-
lowing Internet address:

htpp://www.nobel.se./physics/laureates/index.html

We also recommend:

• Nobel Prize Lectures, Nobel Foundation, Stockholm, 1954ff.
• M. Dardo, Nobel Laureates and Twentieth-Century Physics, Cambridge Univer-

sity Press, 2004.

• Harenberg Lexikon der Nobelpreisträger (Encyclopedia of Nobel prize laureates),

Harenberg Verlag, Dortmund, Germany, 2000 (in German).

For the Fields medal in Mathematics and the Wolf prize in mathematics, see

• M. Atiyah and D. Iagolnitzer (Eds.), Fields Medallists’ Lectures, World Scientific,
Singapore, 2003.

• S. Chern and F. Hirzebruch (Eds.), Wolf Prize in Mathematics, Vols. 1, 2, World

Scientific, Singapore, 2001.

Furthermore, we refer to

• M. Atiyah, Mathematics in the 20th century, Bull. London Math. Soc. 34 (2002),

1–15.

Concerning mathematical quantum field theory, we would like to recommend
the following web-sites:

• The “local quantum physics” web page by Detlev Buchholz and Klaus Rehren
at the University of Göttingen (Germany) reflects actual developments and gives
information on related web pages:

htpp://www.lqp.uni-goettingen.de

8 A list of important physical constants can be found at the end of Volume 1 of
the Handbook of Mathematics by Zeidler (2004).
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• The “algebraic quantum theory” web page of Stephen Summers at the University
of Florida in Gainesville (U.S.A.) refers to updated important literature:

htpp://www.math.ufl.edu/∼sjs/

The state of the art in the theory of gravitation including cosmology and
quantum gravity can be found in:

• Living Reviews in Relativity, Max Planck Institute Albert Einstein for Gravita-

tional Physics, Golm/Potsdam, Germany, 2001ff:

http://www.livingreviews.org

Software systems for computing algebraic Feynman integrals in higher orders
of perturbation theory (loop computations) can be found on the Internet:

• the ‘FORM’ website of the NIKHEF (National Institute for Nuclear Physics and
High Energy Physics) in Amsterdam, Netherlands:

http://www.nikhef.nl/∼form/

• Mathematica package with interface to ’FORM’

http://www.feynarts.de/formcalc/

• Mathematica package ’FEYNCALC’ for the Standard model in particle physics

http://www.feyncalc.org/

Important institutions and data banks in the sciences: Go to the
first page of the homepage of the Max Planck Institute for Mathematics in
the Sciences in Leipzig (Germany),

http://www.mis.mpg.de

and use the proposed links.
How to answer questions. The reader who is not familiar with some

notions or historical details in modern physics should consult:

• J. Gribbin, Q is for Quantum: Particle Physics from A–Z, Weidenfeld, London,
1998.

• J. Rohlf, Modern Physics from α to Z0, Wiley, New York, 1994.
• Encyclopedia of Mathematical Physics, Vols. 1–5. Edited by J. Françoise, G.

Naber, and T. Tsun, Elsevier, Oxford, 2006.
• Modern Encyclopedia of Mathematical Physics. Edited by I. Aref’eva and D.

Sternheimer, Springer, Berlin, 2011 (to appear).

Concerning a survey of modern mathematics, we refer to the following hand-
books:

• E. Zeidler (Ed.), Oxford User’s Guide to Mathematics, Oxford University Press,
New York, 2004 (English edition of the Teubner-Taschenbuch der Mathematik,
Teubner, Stuttgart/Leipzig, 2003).

• G. Grosche, D. Ziegler, V. Ziegler, and E. Zeidler (Eds.), Teubner-Taschenbuch

der Mathematik, Vol. 2, Teubner, Stuttgart/Leipzig, 2003 (in German). (English

edition in preparation.)



Appendix

For the convenience of the reader, let us collect basic material on the following
topics:

• notation,
• physical units, the Planck system, and the energetic system of units,
• the Gaussian system of units and the Heaviside system, and
• the method of dimensional analysis – a magic wand of physicists.

A comprehensive table on the units of the most important physical quantities can
be found at the end of the Appendix on page 967.

A.1 Notation

Sets and mappings. The abbreviation ‘iff’ stands for ‘if and only if’. To formulate
definitions, we use the symbol ‘:=’. For example, we write

f(x) := x2

iff the value f(x) of the function f at the point x is equal to x2, by definition.
The symbol U ⊆ V (resp. U ⊂ V ) means that U is a subset (resp. a proper

subset) of V . This convention resembles the symbols x ≤ y (resp. x < y) for real
numbers. A map

f : X → Y

sends each point x living in the set X to an image point f(x) living in the set Y . The
set X is also called the domain of definition, dom(f), of the map f . By definition,
the image, im(f), of the map f is the set of all image points f(x). Furthermore,
the set

f(U) := {f(x) : x ∈ U}
is called the image of the set U by the map f . In other words, by definition, the set
f(U) contains precisely all the points f(x) with the property that x is an element
of the set U . The set

f−1(V ) := {x ∈ X : f(x) ∈ V }
is called the pre-image of the set V by the map f .

• The map f is called surjective iff each point of the set Y is an image point. In
this case, we also say that f maps the set X ‘onto’ the set Y . The French word
‘sur’ means ‘onto’.

• The map f is called injective iff x1 �= x2 always implies f(x1) �= f(x2). Such
maps are also called ‘one-to-one’.

E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics,
c© Springer-Verlag Berlin Heidelberg 2006, Corrected 2nd printing 2009
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• The map f is called bijective iff it is both surjective and injective. Precisely in
this case, the inverse map f−1 : Y → X exists.

For each given point y in the set Y , consider the equation

f(x) = y, x ∈ X, (A.1)

that is, we are looking for a solution x in the set X. Observe that the map f
is surjective (resp. bijective) iff the equation (A.1) has always at least one (resp.
precisely one) solution. The map f is injective iff the equation has always at most
one solution.

Inverse map. If the map f : X → Y is bijective, then the inverse map

f−1 : Y → X

is defined by f−1(y) := x iff f(x) = y.
Sets of numbers. The symbol K always stands either for the set R of real

numbers or the set C of complex numbers. The real number x is called positive,
negative , nonnegative, non-positive iff

x > 0, x < 0, x ≥ 0, x ≤ 0,

respectively. The symbols

R
×, R>, R<, R≥, R≤

denote the set of nonzero real numbers, positive real numbers, negative real num-
bers, nonnegative real numbers, non-positive real numbers, respectively.9 Concern-
ing the sign of a real number, we write sgn(x) := 1,−1, 0 if x > 0, x < 0, x = 0,
respectively.

For a given complex number z = x+yi, we introduce both the conjugate complex
number z† := x− yi and the modulus

|z| :=
√
zz† =

p

x2 + y2.

The real (resp. imaginary) part of z is denoted by �(z) := x (resp. �(z) := y). The
definition of the principal argument, arg(z), of the complex number z can be found
on page 211. Traditionally,

• the symbol Z denotes the set of integers 0,±1,±2, . . . ,
• the symbol N denotes the set of nonnegative integers 0, 1, 2, . . . (also called natural

numbers),10

• the symbol N
× denotes the set of positive integers 1, 2, . . ., and

• the symbol Q denotes the set of rational numbers.

For closed, open, and half-open intervals, we use the notation

[a, b] := {x ∈ R : a ≤ x ≤ b}, ]a, b[:= {x ∈ R : a < x < b},

and ]a, b] := {x ∈ R : a < x ≤ b}, as well as [a, b[:= {x ∈ R : a ≤ x < b}.
The Landau symbols. Around 1900 the following symbols were introduced

by the number theorist Edmund Landau (1877–1938). We write

9 For the closed half-line R≥, one also uses the symbol R+.
10 For the set N, one also uses the symbol Z≥.
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f(x) = o(g(x)) as x→ a

iff f(x)/g(x) → 0 as x→ a. For example, x2 = o(x) as x→ 0. The symbol

f(x) = O(g(x)) as x→ a (A.2)

tells us that |f(x)| ≤ const |g(x)| in a sufficiently small, open neighborhood of the
point x = a. For example, 2x = O(x) as x→ 0. We write

f(x) � g(x), x→ a

iff f(x)/g(x) → 1 as x→ a. For example,

sinx � x, x→ 0.

Relativistic physics. In an inertial system, we set

x1 := x, x2 := y, x3 := z, x0 := ct

where x, y, z are right-handed Cartesian coordinates, t is time, and c is the velocity
of light in a vacuum. Generally,

• Latin indices run from 1 to 3 (e.g., i, j = 1, 2, 3), and
• Greek indices run from 0 to 3 (e.g., μ, ν = 0, 1, 2, 3).

In particular, we use the Kronecker symbols

δij = δij = δi
j :=

(

1 if i = j,

0 if i �= j,
(A.3)

and the Minkowski symbols

ημν = ημν :=

8

>

<

>

:

1 if μ = ν = 0,

−1 if μ = ν = 1, 2, 3,

0 if μ �= ν.

(A.4)

Einstein’s summation convention. In the Minkowski space-time, we always
sum over equal upper and lower Greek (resp. Latin) indices from 0 to 3 (resp. from
1 to 3). For example, for the position vector, we have

x = xjej :=

3
X

j=1

xjej ,

where e1, e2, e3 are orthonormal basis vectors of a right-handed orthonormal sys-
tem. Moreover,

ημνx
ν :=

3
X

ν=0

ημνx
ν .

Greek indices are lowered and lifted with the help of the Minkowski symbols. That
is,

xμ := ημνx
ν , xμ = ημνxν .

Hence

x0 = x0, xj = −xj , j = 1, 2, 3.
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For the indices α, β, γ, δ = 0, 1, 2, 3, we introduce the antisymmetric symbol εαβγδ

which is normalized by

ε0123 := 1, (A.5)

and which changes sign if two indices are transposed. In particular, εαβγδ = 0 if
two indices coincide. For example, ε0213 = −1 and ε0113 = 0. Lowering of indices
yields εαβγδ := −εαβγδ. For example, ε0123 := −1.

The Minkowski metric. Unfortunately, there exist two different conventions
in the literature, namely, the so-called west coast convention (W) which uses the
following Minkowski metric,

ημνx
μxν = c2t2 − x2 − y2 − z2, (A.6)

and the east coast convention (E) based on −c2t2 +x2 +y2 + z2. (This refers to the
east and west coast of the United States of America.) From the mathematical point
of view, the east coast convention has the advantage that there does not occur any
sign change when passing from the Euclidean metric

x2 + y2 + z2

to the Minkowski metric. From the physical point of view, the west coast convention
has the advantage that the Minkowski square of the momentum-energy 4-vector
(p, E/c) is positive,

ημνp
μpν =

E2

c2
− p2 = m2

0c
2. (A.7)

Here, m0 denotes the rest mass of the particle. Since most physicists and physics
textbooks use the west coast convention, we will follow this tradition, which dates
back to Einstein’s papers, Dirac’s 1930 monograph Foundations of Quantum Me-
chanics and Feynman’s papers. Concerning elementary particles, we use the same
terminology as in the standard textbook by Peskin and Schroeder (1995). One can
easily pass from our convention to the east coast convention by using the replace-
ments

ημν �→ −ημν , γμ �→ −iγμ

for the Minkowski metric and the Dirac-Pauli matrices, γμ, from the Dirac equation
(A.20), respectively.11

A.2 The International System of Units

The ultimate goal of physicists is to measure physical quantities in physical exper-
iments. To this end, physicists have to compare the quantity under consideration
with appropriate standard quantities. For example, the measurement of the length
of a distance can be obtained by comparing the length with the standard length m
(meter). This procedure leads to systems of physical units.

The SI system. In the international system of units, SI (for Système Interna-
tional in French), the following basic units are used:

11 For example, the east coast convention is used in Misner, Thorne, and Wheeler
(1973), and in Weinberg (1995).
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Table A.1. Prefixes in the SI system

10−1 deci d 10 deka D

10−2 centi c 102 hecto H

10−3 milli m 103 kilo K

10−6 micro μ 106 mega M

10−9 nano n 109 giga G

10−12 pico p 1012 tera T

10−15 femto f 1015 peta P

• length: m (meter),
• time: s (second),
• energy: J (Joule),
• electric charge: C (Coulomb),
• temperature: K (Kelvin).

Each physical quantity q can be uniquely represented as

q = qSI ·mαsβJγCμKν . (A.8)

Here, qSI is a real number, and the exponents α, β, γ, μ, ν are rational numbers.
Physicists say that the physical quantity q has the dimension

(length)α(time)β(energy)γ(electric charge)μ(temperature)ν .

Let us consider a few examples.

• The unit of mass is the kilogram, kg := Js2m−2.
• The unit of force is the Newton, N = Jm−1.
• The unit of electric current strength is the Ampere, A := Cs−1.

The physical dimensions of the most important physical quantities in the SI system
can be found in Table A.4 on page 967. Instead of meter one also uses kilometer,
nanometer, femtometer, and so on, which corresponds to

1000m, 10−9m, 10−15m,

respectively (see Table A.1).
The universal character of the SI system. Unfortunately, for historical

reasons, there exist many different systems of units used by physicists. In what
follows we want to help the reader to understand the relations between the different
systems. Let us explain the following.

If one knows the physical dimension of some quantity in the SI system,
then one can easily pass to every other system used in physics.

In particular, we will discuss

• the natural SI system,
• the Planck system, and
• the energetic system.
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The Planck system has the advantage that the fundamental physical constants
G, �, c, ε0, μ0, k do not appear explicitly in the basic equations (e.g., in elementary
particle physics and cosmology). In this system, all the physical quantities are
dimensionless.

The energetic system is mainly used in elementary particle physics. In this
system, all of the physical quantities are measured in powers of energy, and the
physical constants �, c, ε0, μ0, k do not appear explicitly.

A.3 The Planck System

All the systems of units which have hitherto been employed owe their origin
to the coincidence of accidental circumstances, inasmuch as the choice of
the units lying at the base of every system has been made, not according to
general points of view, but essentially with reference to the special needs
of our terrestrial civilization. . .
In contrast with this it might be of interest to note that we have the means
of establishing units which are independent of special bodies or substances.
The means of determining the units of length, mass, and time are given
by the action constant h, together with the magnitude of the velocity of
propagation of light in a vacuum c, and that of the constant of gravitation
G. . . These quantities must be found always the same, when measured
by the most widely differing intelligences according to the most widely
differing methods.

Max Planck, 1906
The Theory of Heat Radiation12

Fundamental constants. There exist the following universal constants in nature:

• G (gravitational constant),
• c (velocity of light in a vacuum),
• h (Planck’s quantum of action),
• ε0 (electric field constant of a vacuum),
• k (Boltzmann constant).

The explicit numerical values of these fundamental constants can be found in Table
A.3 on page 965. We also use the constants

• � := h/2π (reduced Planck’s quantum of action), and
• μ0 := 1/ε0c

2 (magnetic field constant of vacuum).

Basic laws in physics. These universal constants enter the following six basic
laws of physics.

(i) Einstein’s equivalence between rest mass m0 and rest energy E of a particle:
E = m0c

2.
(ii) Energy E of a photon with frequency ν: E = hν.
(iii) Gravitational force F between two masses M1 and M2 at distance r:

F =
GM1M2

r2
.

12 M. Planck, Theorie der Wärmestrahlung, Barth, Leipzig 1906. Reprinted by
Dover Publications, 1991.
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Table A.2. SI system

1 m = 0.63 · 1035m 1 m = l = 1.6 · 10−35m

1 s = 0.19 · 1044s 1 s = 5.3 · 10−44s

1 J = 0.51 · 10−9J 1 J = 1.97 · 109J

1 kg = 0.48 · 108kg 1 kg = 2.1 · 10−8kg

1 C = 0.19 · 1019C 1 C = 5.34 · 10−19C

1 K = 0.71 · 10−32K 1 K = 1.4 · 1032K

1 GeV = 109 eV = 1.602 · 10−10J

1 GeV/c2 = 1.78 · 10−27kg

(iv) Electric force F between two electric charges Q1 and Q2 at distance r:

F =
Q1Q2

4πε0r2
.

(v) Magnetic force F between two parallel electric currents of strength J1 and J2

in a wire of length L at distance r:

F =
μ0LJ1J2

2πr
.

(vi) Mean energy E corresponding to one degree of freedom in a many-particle
system at temperature T : E = kT.

In the SI system, the unit of electric current, called an ampere, is defined in such
a way that the magnetic field constant of a vacuum is given by

μ0 = 4π · 10−7 N

A2
.

By Table A.1 on prefixes, 1 MeV =106eV (mega electron volt).
Natural SI units. The five natural constants G, c, �, ε0, and k can be used to

systematically replace the SI units m, s, J, C, K by the following so-called natural
SI units:

• Planck length: m := l :=
p

�G/c3,
• Planck time: s := l/c,
• Planck energy: J := �c/l,
• Planck charge: C :=

√
c�ε0,

• Planck temperature: K := �c/kl.

Parallel to kg = Js2/m2, let us introduce the Planck mass

kg := Js2/m2 = �/cl.

The numerical values can be found in Table A.2. From (A.8) we obtain the repre-
sentation

q = qPl ·mαsβJγCμKν (A.9)

of the physical quantity q in natural SI units. Hence
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q = qPl · lα
„

l

c

«β „
�c

l

«γ

(c�ε0)
μ/2

„

�c

kl

«ν

.

This implies

q = qPl · lAcB
�

CεD
0 k

E . (A.10)

Explicitly,

A = α+ β − γ − ν, B = γ + ν − β + μ/2, C = γ + ν + μ/2,

and D = μ/2, E = −ν.
The Planck system of units. In this system, we set

l = c = � = ε0 = k := 1.

In particular, for the gravitational constant, this implies G = 1. By (A.10), q = qPl.

The Planck system is characterized by the fact that all the physical quan-
tities are dimensionless and their numerical values coincide with the nu-
merical values in natural SI units.

In order to go back from the Planck system to the SI system, one has to replace
each physical quantity q by

q ⇒ q

lAcB�CεD
0 k

E
(A.11)

according to (A.10). The corresponding exponents A,B, ... follow from (A.9) and
(A.10). These exponents can be found in Table A.4 on page 967.

Example 1. For the proton, we get

E = 0.77 · 10−19J = 1.5 · 10−10J = 0.938 GeV (rest energy)

along with

M = E/c2 = 0.77 · 10−19kg = 1.67 · 10−27kg (rest mass)

and
e =

√
4πα C = 0.30C = 1.6 · 10−19C (electric charge).

Therefore, EPl = MPl = 0.77 · 10−19, and ePl = 0.30. In the Planck system, this
implies

E = M = 0.77 · 10−19 and e = 0.30.

Example 2. Consider the Einstein relation

E = m0c
2 (A.12)

between the rest mass m0 and the rest energy E of a free relativistic particle in the
SI system. Letting c := 1, we obtain the corresponding equation

E = m0 (A.13)

in the Planck system. Here, E = EPl and m0 = MPl. In order to go back from
(A.13) to the SI system, one has to observe that

E = EPl · J, m0 = MPl · Js2m−2
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in natural SI units, by Table A.4 on page 967. Hence

E = EPl
�c

l
, m0 = MPl

�

lc
.

Thus, we have to replace E and m0 by

El

�c
and

m0lc

�
,

respectively. This way, we pass over from (A.13) to (A.12).
Example 3. In the SI system, the Maxwell equations in a vacuum are given by

div D = !, div B = 0,

curlE = −Ḃ, curlH = Ḋ + j
(A.14)

along with D = ε0E and B = μ0H. Moreover, c2 = 1/ε0μ0. Alternatively,

ε0 div E = !, div B = 0,

curlE = −Ḃ, c2 curlB = Ė + μ0c
2j.

(A.15)

Letting ε0 = μ0 = c := 1, we obtain the corresponding Maxwell equations in the
Planck system:

div E = !, div B = 0,

curlE = −Ḃ, curlB = Ė + j.
(A.16)

In order to transform equation (A.16) back to the SI system, we replace the quan-
tities x, t,E,B, !, j by

x

m
,

t

s
, E · mC

J
, B · m

2

sJ
, ! · m

3

C
, j · m

2

Cs
, (A.17)

respectively, according to Table A.4 on page 967. In addition, the partial derivatives
∂/∂xj , ∂/∂t have to be replaced by

m · ∂

∂xj
, s · ∂

∂t
,

respectively. Finally, we set

m := l, s :=
l

c
, C := (c�ε0)

1/2, J :=
�c

l
.

This way, we get (A.14). In fact, for example, the first Maxwell equation div E = !
from (A.16) means explicitly

∂jE
j = !,

in Cartesian coordinates. Here, ∂j = ∂/∂xj , and we sum over j = 1, 2, 3. By (A.17),
this is transformed into the equation

β · ∂jE
j = !,

where β := C2/Jm. Since β = c�ε0/c� = ε0, we obtain ε0 div E = !. This is the
first Maxwell equation from (A.15).

Example 4. In the SI system, the Schrödinger equation reads as
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i�
∂ψ

∂t
=

�
2

2m0
Δψ + Uψ. (A.18)

Here, m0 and U denote the mass of the particle and the potential energy, respec-
tively. Letting � = 1, we arrive at the Schrödinger equation

i
∂ψ

∂t
=

Δψ

2m0
+ Uψ (A.19)

in the Planck system. In a Cartesian (x, y, z)-system, the Laplacian is defined by

Δ := − ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
.

Note that our sign convention coincides with the use of the Laplacian in modern
differential geometry (Riemannian geometry) and string theory.13

In order to go back from the Planck system to the SI system14, we replace the
quantities x, t, U,m0, ψ by

x

m
,

t

s
,

U

J
, m0 ·

m2

Js2
, ψ ·m3/2,

respectively. The Laplacian contains spatial derivatives of second order. Thus, the
Laplacian Δ and the partial time derivative ∂/∂t have to be replaced by

m2 ·Δ, s · ∂
∂t
.

Consequently, equation (A.19) is transformed into

iJsψt =
(Js)2

2m0
Δψ + Uψ.

Since Js = �, we get (A.18).
Example 5. Let us start with the Dirac equation

iγμ∂μψ = m0ψ (A.20)

for the relativistic electron of rest mass m0 formulated in the Planck system. Here,
∂μ = ∂/∂xμ. Recall that we sum over μ from 0 to 3, by Einstein’s summation
convention. The definition of the Dirac–Pauli matrices γ0, γ1, γ2, γ3 can be found
on page 791. In order to pass over to the SI system, we replace the quantities
xμ,m0, ψ by

xμ

m
, m0 ·

m2

Js2
, m3/2 · ψ,

respectively, according to Table A.4 on page 967. Note that the dimension of the
wave function ψ in the SI system is the same as in the case of the Schrödinger
equation. Hence

iγμ∂μψ = σm0ψ

13 In classic textbooks, one has to replace Δ by −Δ.
14 The normalization condition

R

R3 ψψ
†d3x = 1 implies that the wave function ψ

has the dimension m−3/2 in the SI system.
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where σ := m/s2J. Since σ = c/�, in the SI system the Dirac equation reads as

i�γμ∂μψ = m0cψ. (A.21)

The quantity λe := h/cm0 is called the Compton wave length of the electron.
Classical systems of units. In the context of the Maxwell equations, physi-

cists frequently use the Gaussian system or the Heaviside system, for historical
reasons. Let us explain the relation of these two systems to the SI system. The idea
is to measure all of the physical quantities by meter, second, kilogram, and Kelvin.
That is, we do not introduce a specific unit for electric charge. In the Gaussian
system, the electric force F between two electric charges Q1 and Q2 at distance r
(Coulomb law) is given by

F =
Q1Q2

r2
.

Moreover, we use the Gaussian definition of the magnetic field

HG := cB.

This definition is motivated by the fact that the electric field E and the Gaussian
magnetic field HG possess the same physical dimension. In the Heaviside system,
we use the Coulomb law

F =
Q1Q2

4πr2
.

In contrast to the Gaussian system from the 1830s, the Heaviside system from
the 1880s has the advantage that the factor 4π does not appear in the Maxwell
equations.

The Heaviside system of units. We use the SI system and set

ε0 := 1.

In the SI system, each physical quantity q can be written as

q = qPl · lAcB
�

CεD
0 k

E ,

by (A.10) on page 954. Letting ε0 := 1, we get

q = qPl · lAcB
�

CkE ,

in the Heaviside system. Consequently,

q = qH ·masbkgcKd.

That is, each physical quantity can be described by powers of meter, second, kilo-
gram, and Kelvin. In the Heaviside system, the Maxwell equations read as follows:

div E = !, div HG = 0,

curlE = −1

c

∂HG

∂t
, curlHG =

1

c

∂E

∂t
+

j

c
.

(A.22)

To obtain this, start with the Maxwell equations in the SI system. By (A.15) along
with c2 = 1/ε0μ0,

ε0 div E = !, div(cB) = 0,

curlE = −1

c

∂(cB)

∂t
, curl(cB) =

1

c

∂E

∂t
+

j

ε0c
.
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Letting ε0 := 1 and HG := cB, we get (A.22).
The Gaussian system of units. Using the rescaling

E⇒ E

4π
, HG ⇒

HG

4π
,

the Heaviside system passes over to the Gaussian system. In particular, the Maxwell
equations in the Gaussian system read as follows:

div E = 4π!, div HG = 0,

curlE = −1

c

∂HG

∂t
, curlHG =

1

c

∂E

∂t
+

4πj

c
.

(A.23)

Observe that the variants (A.22) and (A.23) of the Maxwell equations differ by
the factor 4π. The Gaussian system is used in the 10-volume standard textbook on
theoretical physics by Landau and Lifshitz (1982).

A.4 The Energetic System

The most important physical quantity in elementary particle physics is given by
the energy of a particle accelerator. Therefore, particle physicists like to use energy
as basic unit. Let us discuss this. In the SI system, an arbitrary physical quantity
can be written as

q = qPl · lAcB
�

CεD
0 k

E ,

by (A.10). In the energetic system, we set15

c = � = ε0 = k := 1.

Hence

q = qPl · lA.

Consequently, each physical quantity has the physical dimension of some power of
length. In particular, for energy E we get

E = EPl · l−1
�c,

in the SI system. Hence
E = EPl · l−1,

in the energetic system. That is, energy has the physical dimension of inverse length.

Conversely, length has the physical dimension of inverse energy in the
energetic system of units.

In terms of natural SI units, each physical quantity can be written as

q = qPl ·mαsβJγCμKν .

It follows from c = � = ε0 = k := 1 that

15 In particular, this implies μ0 = 1.
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s = m = J−1, K = J, C = 1. (A.24)

This implies
q = qPl · JA,

where A = −α − β + γ + ν. This way, each physical quantity can be expressed by
powers of the Planck energy J. Using Table A.4 on page 967 along with (A.24),
we immediately obtain all the dimensions of important physical quantities in the
energetic system. For example, velocity has the dimension

v = vSI ·ms−1,

in the SI system. Thus, in natural SI units,

v = vPl ·ms−1.

In the energetic system m = s, by (A.24). Hence

v = vPl,

that is, velocity is dimensionless. Note that this follows more simply from the fact
that c := 1 in the energetic system; that is, the velocity of light is dimensionless.
Similarly, using the dimensionless quantities � = ε0 = μ0 = k := 1 along with
the basic physical laws (i)-(vi) on page 952, we encounter the following physical
dimensions in the energetic system:

• [mass] = [momentum] = [temperature] = [energy],

• [length] = [time] = [energy]−1,

• [cross section] = [area] = [length]2 = [energy]
−2
,

• [electric charge] = [velocity] = [action] = dimensionless,
• [force] = [electric field] = [magnetic field] = [energy]2,
• [potential] = [vector potential] = [energy],
• the coupling constants of quantum electrodynamics, quantum chromodynamics,

and electroweak interaction are dimensionless.

Since the electric charge and the coupling constants of the Standard Model in
particle physics are dimensionless in the energetic system, these quantities are in-
dependent of the rescaling of energy.

Examples. The Einstein relation E = m0c
2 reads as

E = m0

in the energetic system, since c := 1.

The Maxwell equations (A.16), the Schrödinger equation (A.19), and the
Dirac equation (A.20) coincide in the Planck system and in the energetic
system.

In elementary particle physics, physicists like to use GeV (giga electron volt), where

J = 1.98 · 1019 GeV.

This is called the Planck energy. Note that the rest energy of the proton is equal
to 0.938 GeV. Consequently, from Table A.2 on page 953, we obtain the following
conversion formulas between the SI system and the energetic system:
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1 m
.
= 5 · 1016 (GeV)−1,

1 s
.
= 1.5 · 1024 (GeV)−1,

1 J
.
= 6.3 · 109 GeV,

1 K
.
= 1.4 · 10−13 GeV,

1 C
.
= 1.9 · 1018.

Depending on the energy scale, physicists also use mega electron volt, MeV. Here,
1 GeV = 103 MeV.

The physical dimension of cross sections. Observe that

�c = 1.97327 · 10−13 MeV ·m.

This implies

m2 =
(�c)2

(1.97327)2
· 1026(MeV)−2.

In the SI system, the cross section σ is measured in m2. Setting

� = c := 1,

we get the cross section in the energetic system measured in (MeV)−2. Conversely,
the passage from the energetic system to the SI system can be easily obtained by
using the replacement

σ ⇒ σ

(�c)2
.

In fact, if σ = a in the energetic system, then σ = (�c)2a in the SI system.

A.5 The Beauty of Dimensional Analysis

Physicists use the dimensionality of physical quantities in order to get important
information. Let us illustrate this by considering three examples: the pendulum,
Newton’s gravitational law, and Kolmogorov’s law for turbulence.

The pendulum. Consider a pendulum of length l and mass m. We are looking
for a formula for the period of oscillation, T , of the pendulum. We expect that
T depends on l, m, and the gravitational acceleration g. Thus, we begin with the
ansatz

T = C · lαmβgγ

where C is a dimensionless constant. Passing to dimensions we get

s = mαkgβmγs−2γ .

This implies β = 0, γ = − 1
2
, and α = −γ = 1

2
, that is,

T = C

s

l

g
. (A.25)

The constant C has to be determined from experiment. The explicit solution of
the problem via elliptic integrals shows that, for small pendulum motions, equation
(A.25) is valid with C = 2π.
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Newton’s gravitational law. In 1619 Kepler discovered empirically that the
motion of a planet satisfies the law

T 2

a3
= const

where T is the period of revolution, and a is the great semi-axis of the elliptic orbit.
In order to guess Newton’s gravitational law from this information, let us make the
ansatz

mẍ = C|x|μx

for the motion x = x(t) of the planet. Here, m is the mass of the planet, and C is
a constant. We want to show that μ = −3 is the only natural choice. To this end,
consider the rescaled motion y(t) := αx(βt). Then

mÿ = β2α−μC|y|μy.

We postulate that the equation of motion and the third Kepler law are independent
of the rescaling. This means that β2α−μ = 1 and

(Tβ)2/(αa)3 = T 2/a3.

Hence μ = −3. Summarizing, we obtain Newton’s gravitational law

mẍ =
C

|x|2 ·
x

|x| .

The Kolmogorov law for energy dissipation in turbulent flows. It is
a typical property of turbulent flow that there exist eddies of different diameters
λ, where λmin ≤ λ ≤ λmax. One may think, for example, of clouds in the air
or of nebulas in astronomy. One finds that the large eddies tend to break down
into smaller eddies. This way, energy from large eddies flows to smaller eddies.
Here, physicists assume that the energy of the smallest eddies with λ = λmin is
transformed into heat by friction (energy dissipation). Viscosity is of significance
only for small eddies. We define

ε :=
loss of energy by dissipation

mass · time
.

This is the crucial physical quantity. Note that ε can be measured in experiments;
it is equal to the produced heat. Using the method of dimensional analysis, Kol-
mogorov obtained the law

ε =

Z λmax

λmin

s(λ)dλ

along with the spectral function

s(λ) := C

„

λ

λmin

«

ηε2/3

!
· 1

λ7/3
.

Here, η and ! are viscosity and mass density, respectively. The function C is di-
mensionless. For values λ near λmin, the function C can be approximated by a
constant. Therefore, physicists speak of Kolmogorov’s 7/3-law. The proof can be
found in Zeidler (1986), Vol. IV, p. 514.

It turns out that dimensional analysis represents a magic wand of physicists. In
this setting, a minimum of hypotheses provides us a maximum of information.
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A.6 The Similarity Principle in Physics

Rescaled SI units. Let us replace the SI units m, s, J, C, K with the rescaled
units

m∗, s∗, J∗,C∗,K∗,

where m∗ = m+ ·m, s∗ = s+ · s, . . . with the real numbers m+, s+, . . . Then, each
physical quantity q can be represented as

q = q∗ ·mα
∗ sβ

∗Jγ
∗Cμ

∗Kν
∗ = q∗ · [q].

The real number q∗ is called the numerical value of q, and [q] is called the dimension
of q with respect to this system of units. In practice, one chooses m∗, s∗, ... in such
a way that the numerical values of the physical quantities are neither too large nor
too small. For example, if we want to study thin layers, then it is convenient to use
m∗ := 10−9m = 1nm (nanometer). In astronomy, one uses light years for measuring
distances, and so on.

The role of small quantities in physics. It is impossible to speak of a small
length L in physics. In fact, if

L = 1 meter,

then passing to a new length scale, we get

L = 1015 femtometer.

Therefore, it makes sense to speak about smallness only for dimensionless quantities.
For example, choose the radius rE of earth and the radius rp of a proton. Then the
dimensionless ratio rp

rE
= 6 · 10−21

is a small quantity compared with 1.
The experience of physicists shows that two different theories are good approxi-

mations of each other if suitable dimensionless quantities are small. Let us consider
two crucial examples.

(i) Relativistic physics: Let v and c be the velocity of some particle and the velocity
of light, respectively. If the dimensionless quotient

v

c

is sufficiently small, then the relativistic motion of the particle can be described
approximately by Newton’s classical mechanics. For example, the relativistic
mass

m =
m0

p

1− v2/c2
= m0

„

1− v2

2c2
+ o

„

v2

c2

««

,
v2

c2
→ 0

is approximately equal to the rest mass m0 if the quotient v/c is sufficiently
small.

(ii) Quantum mechanics: Let S = E(t1 − t2) be the action for the motion of some
particle with constant energy E during a fixed reasonable time interval [t1, t2],
say, one hour. If the dimensionless ratio

S

�

is small, then the quantum motion of the particle can be approximately de-
scribed by Newton’s classical mechanics.
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In (i) and (ii), corrections to classical mechanics can be obtained by perturbation
theory if v/c and S/� are small. These are the post-Newtonian approximation and
the WKB approximation, respectively.

The fundamental similarity principle in physics. We postulate that

Physical processes are described by equations which are invariant under
rescaling of units. Explicitly, we demand that the laws of physics can be
written in such a way that, in a fixed system of units, they only depend on
the dimensionless quotients

q

[q]
,

r

[r]
, . . .

of all the physical quantities q, r, . . .

A special role is played by those physical quantities which are dimensionless in the
SI system. We expect that such quantities are related to important physical effects.
The experience of physicists confirms this. For example, the so-called fine structure
constant

α :=
e2

4πε0�c
=

1

137.04

represents the most important dimensionless quantity that can be constructed from
the universal constants. This constant measures the strength of the interaction be-
tween electrons, positrons, and photons in quantum electrodynamics. The smallness
of α is responsible for the fact that perturbation theory can be successfully applied
to quantum electrodynamics.

Example. Consider the Einstein relation

E = m0c
2

between rest mass m0 and rest energy E of a particle. In any rescaled SI system,

E = E∗ · J∗, m0 = (m0)∗ · J∗s
2
∗m

−2
∗ , c = c∗ ·m∗s

−1
∗ .

Hence E∗ = (m0)∗c
2
∗. Moreover, [E] = J∗, and

[m0][c]
2 = J∗s

2
∗m

−2
∗ ·m2

∗s
−2
∗ = J∗.

This means that
E

[E]
=

m0c
2

[m0][c]2
.

Physicists frequently use such dimension tests in order to check the correctness of
formulas.

Counterexample. Let x and t denote position and time, respectively. The
equation

x = sin t

is not allowed in the SI system, since it is not invariant under the rescaling x⇒ αx
and t⇒ βt for nonzero constants α and β. In contrast to this, the equation

x

x0
= sin

„

t

t0

«

is admissible in any system of units if x and x0 as well as t and t0 possess the same
dimensions.
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Application to Reynolds numbers in turbulence. The motion of a viscous
fluid in a 3-dimensional bounded domain G is governed by the so-called Navier–
Stokes equations16

!vt − νΔx v + !(v∇x)v = f −∇x p on G,
∇xv = 0 on G,

v = 0 on ∂G.
The symbols possess the following physical meaning: v velocity vector, ! mass
density, f force density vector, p pressure, ν viscosity constant, x position vector,
and t time. Set

x = X ·m∗, t = T · s∗, v = u ·m∗s
−1
∗ , ! = Ω · J∗s

2
∗m

−5
∗

and
f = F · J∗m

−4
∗ , p = P · J∗m

−3
∗ , ν = N · J∗m

−3
∗ ,

where the coefficients X, T, . . . are dimensionless. Furthermore, let d and v denote
the diameter of the domain G and a typical velocity of the fluid, respectively. Nat-
urally enough, we choose

m∗ := d, s∗ := dv−1, J∗ := !v2d−3.

This way, we obtain the rescaled dimensionless Navier–Stokes equations

ut − Re−1ΔX u + (u∇X)u = F−∇X P on H,
∇Xu = 0 on H,

u = 0 on ∂H
with the dimensionless Reynolds number

Re :=
!vd

ν
.

The rescaled domain H is obtained from the original domain G by replacing the
points x of G by d−1x. Physical experiments show that if the Reynolds number Re
is sufficiently large, then turbulence occurs.

The rescaled dimensionless Navier–Stokes equations reflect an important simi-
larity principle in hydrodynamics. Explicitly, if two physical situations in different
regions are governed by the same rescaled dimensionless Navier–Stokes equations,
then the physics is the same up to suitable similarity transformations.

Discovery of errors in physical computations. Physicists use physical
dimensions in order to detect errors in their computations. To explain this with a
simple example, suppose that we arrive at the equation

p = c3m0 (A.26)

after finishing some computation. Here, we use the following notation: pmomentum,
m0 particle mass, c velocity of light. We want to check this. In the SI system, we
have the following dimensions:

[p] = kg ·ms−1, [m0] = kg, [c] = ms−1.

Hence [p] = [c] · [m0]. It follows from (A.26) that [p] = [c]3[m0]. This implies
[c]2 = 1, which is a contradiction. Consequently, our result (A.26) is wrong. The
same argument can be used in the energetic system. However, we now have [c] = 1,
which does not lead to any contradiction. In other words, the energetic system of
units is too weak in order to detect that equation (A.26) is wrong, by checking
physical dimensions.

16 Navier (1785–1836), Stokes (1819–1903).
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Table A.3. Fundamental constants in nature

fundamental
constant

SI units natural SI units

velocity of light
in a vacuum

c = 2.998 · 108 m/s c = m/s

Planck’s action h = 6.626 · 10−34 Js � = Js
quantum � = h/2π

gravitational G = 6.673 · 10−11 m5/Js4 G = m5/Js4

constant = l2c3/�

electric field
constant

ε0 = 8.854 · 10−12 C2/Jm ε0 = C2/Jm

magnetic field μ0 = 1/ε0c
2 μ0 = Js2/C2m

constant = 4π · 10−7 Js2/C2m

Boltzmann constant k = 1.380 · 10−23 J/K k = J/K

fine structure α = e2/4πc�ε0 α = 1/137.04
constant (dimensionless)

charge of the e = 1.602 · 10−19 C e =
√

4παC
proton = 0.30C

rest energy of the Ep = 1.5 · 10−10 J Ep = 0.77 · 10−19 J
proton = 0.938 GeV

(giga electron volt)

rest mass of the mp = 1.672 · 10−27 kg mp = 0.77 · 10−19 kg
proton = 0.938 GeV/c2

Compton wave length λp = 1.32 · 10−15 m λp = 0.83 · 1020 m
of the proton = 1.32 fm
λp = h/mpc (femtometer)

rest energy of the Ee = 8.16 · 10−14 J Ee = Ep/1838.1
electron = 0.511 MeV

(mega electron volt)
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Table A.3. (continued)

rest mass of the
electron

me = 0.91 · 10−30 kg me = mp/1838.1

Compton wave length
of the electron λe = 2.43 · 10−12 m λe = 1838.1λp

λe = �/mpc

radius of the rp = 1.3 · 10−15 m rp = 0.882 · 1020 l
proton = 1.3 fm (femtometer)

fundamental
constant

SI units natural SI units

Bohr radius of the rB = 0.529 · 10−10 m rB = 40000 rp

hydrogen atom = 5.29 nm (nanometer)

Bohr magneton μB = −e�/2me μB = −mC/s
= −9.27 10−24 mC/s

magnetic moment
of the electron

μe =
`

1 + α
2π
− ...

´

μB μe = 1.001μB

nuclear magneton μn = e�/2mp μB = 1836.1μn

= 5.05 10−27 mC/s

magnetic moment
of the proton

μp = 2.79μn μp = 2.79μn

More precise values can be found in CODATA Bull. 63 (1986), and E. Cohen and B.
Taylor, Review of Modern Physics 59(4) (1986). A list of high-precision values can
also be found in the Appendix to Zeidler, Oxford User’s Guide to Mathematics,
Oxford University Press, 2004. In the following Table A.4, observe that the two
quantities E and cB, possess the same physical dimension in the SI system. The
same is true for cD and H. Here, we use the notation:

• E electric field vector,
• B magnetic field vector,
• D electric field intensity vector,
• H magnetic field intensity vector.

In the literature, the terminology with respect to E, B, D, H is not uniform, for
historical reasons. Since E and B generate the electromagnetic field tensor (see
(14.51) on page 794), it follows from Einstein’s theory of special relativity that the
vector fields E and B (resp. D and H) form a unit. The mean magnetic field of
earth has the strength Bearth = 0.5 Gauss = 0.5 · 10−4 Tesla.
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Table A.4. Units of physical quantities

Physical quantity
SI units

mαsβJγCμKν

natural SI units

mαsβJγCμKν

= lAcB
�

CεD
0 k

E

length m m = l

(meter) (Planck length)

time s s = l/c

(second) (Planck time)

energy, work J J = �c/l

(Joule) (Planck energy)

electric charge C C = (c�ε0)
1
2

(Coulomb) (Planck charge)

temperature K K = �c/lk

(Kelvin) (Planck temperature)

mass kg = Js2/m2 Js2/m2 = �/cl

(kilogram) (Planck mass)

electric current strength A = C/s C/s = c
3
2 (�ε0)

1
2 /l

(ampere)

voltage V = J/C J/C = (c�)
1
2 /lε

1
2
0

(volt)

action Js Js = �

(energy × time)

momentum Js/m Js/m = �/l

(mass × velocity)

power W = J/s J/s

(energy/time) (Watt)

force N = J/m J/m

(energy/length) (Newton)

frequency ν 1/s 1/s

(number of oscillations/time)

angular frequency ω = 2πν 1/s 1/s

pressure Pa = N/m2 J/m3

(force/area) = J/m3

area, cross section m2 m2 = l2

volume m3 m3 = l3
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Table A.4. (continued)

Physical quantity
SI units

mαsβJγCμKν

natural SI units

mαsβJγCμKν

= lAcB
�

CεD
0 k

E

velocity m/s m/s = c

acceleration m/s2 m/s2 = c2/l

mass density kg/m3 = Js2/m5 Js2/m5

electric charge density ρ C/m3 C/m3

(charge/volume)

electric current density vector C/m2s C/m2s

j = ρv

electric field vector E N/C = V/m J/mC

(force/charge) = J/mC

magnetic field vector B T = Vs/m2 Js/m2C

= Js/m2C

(Tesla)

magnetic flow
R

B df Wb = Vs Js/C

= Js/C

(Weber)

electric field C/m2 C/m2

intensity vector D

magnetic field A/m = C/sm C/sm
intensity vector H

electric dipole moment Cm Cm

magnetic dipole moment Am2 = m2C/s m2C/s

polarization P
(electric dipole moment C/m2 C/m2

density), D = ε0E + P

magnetization M
(magnetic dipole moment C/ms C/ms

density), B = μ0H + M

scalar potential U V = J/C J/C

(E = −gradU −At)

vector potential A Vs/m = Js/mC Js/mC

(B = curlA)

4-potential Aμ Js/mC Js/mC

(A0 = U/c, A = Ajej)
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Table A.4. (continued)

Physical quantity
SI units

mαsβJγCμKν

natural SI units

mαsβJγCμKν

= lAcB
�

CεD
0 k

E

electromagnetic field tensor Fμν Vs/m2 = Js/m2C Js/m2C

(Fμν = ∂μAν − ∂νAμ)

electric 4-current jμ C/m2s C/m2s

(j0 = cρ, j = jkek)

Schrödinger function ψ in

N space dimensions (solution m− N
2 m− N

2 = l−
N
2

of the Schrödinger equation)

Dirac function ψ (solution of

the Dirac equation, electron field, 1/ms
1
2 1/ms

1
2 = c

1
2 /l

3
2

quark field, fermion fields)

Lagrangian L
in classical mechanics J J = �c/l

action =

Z t1

t0

L(q, q̇, t) dt

Lagrangian density L
in relativistic field theory Js/m4 Js/m4 = �/l4

action =

Z

R4
L(ψ, ∂ψ, x) d4x

Hamiltonian H in classical J J = �c/l

mechanics, H = pq̇ − L

Hamiltonian density Js/m4 Js/m4 = �/l4

H = πψ̇ − L

4-potential Bμ of the gluon field Js/m Js/m = �/l

in QCD, (iBμ ∈ SU(3))

field tensor Gμν of the gluon field Js/m2 Js/m2 = �/l2
`

Gμν = ∂μBν − ∂νBμ + igs[Bμ, Bν ]
´



Epilogue

Mathematics is the gate and the key to the sciences.
Roger Bacon (1214–1294)

I love mathematics not only because it is applicable to technology but also
because it is beautiful.

Rósza Péter (1905–1977)

The perfection of mathematical beauty is such whatsoever is most beau-
tiful is also found to be most useful and excellent.

D’Arcy Wentworth Thompson (1860–1948)

The observation which comes closest to an explanation for the mathemat-
ical concepts cropping up in physics which I know is Einstein’s statement
that the only physical theories we are willing to accept are the beautiful
ones.

Eugene Wigner (1902–1995)

A truly realistic mathematics should be conceived, in line with physics, as
a branch of the theoretical construction of the one real world, and should
adopt the same sober and cautious attitude toward hypothetic extensions
of its foundations as is exhibited by physics.

Hermann Weyl (1885–1955)

The interplay between generality and individuality, deduction and con-
struction, logic and imagination – this is the profound essence of live math-
ematics.
Any one or another of the aspects can be at the center of a given achieve-
ment. In a far-reaching development all of them will be involved. Generally
speaking, such a development will start from the “concrete ground,” then
discard ballast by abstraction and rise to the lofty layers of thin air where
navigation and observations are easy; after this flight comes the crucial
test of landing and reaching specific goals in the newly surveyed low plains
of individual “reality.”
In brief, the flight into abstract generality must start from and return to
the concrete and specific.17

Richard Courant (1888–1972)

17 Mathematics in the modern world, Scientific American 211(3) (1964), 41–49
(reprinted with permission).
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There are mathematicians who reject a binding of mathematics to physics,
and who justify mathematical work solely by aesthetical satisfaction which,
besides all the difficulty of the material, mathematics is able to offer. Such
mathematicians are more likely to regard mathematics as a form of art
than science, and this point of view of mathematical unselfishness can be
characterized by the slogan “l’art pour l’art”.
On the other hand, there are physicists who regret that their science is so
much related to mathematics. They fear a loss of intuition in the natural
sciences. They consider the intimate relation with nature, the finding of
ideas in nature itself, which was given to Goethe (1749–1832) in such a
high degree, as being destroyed by mathematics, and their anger or sorrow
is the more serious the more they are forced to realize the inevitability of
mathematics.
Both points of view deserve serious consideration; because not only people
with narrow minds have expressed such opinions. Yes, one can say that
such a radical inclination to one side or the other, if not caused by a lack
of talent, is sometimes evidence of a deeper perception of science, as if
someone is interested in both sciences, but at the same time is satisfied
with obvious connections between mathematics and physics. . .
Mathematics is an organ of knowledge and an infinite refinement of lan-
guage. It grows from the usual language and world of intuitions as does
a plant from the soil, and its roots are the numbers and simple geomet-
rical intuitions. We do not know which kind of content mathematics (as
the only adequate language) requires; we cannot imagine into what depths
and distances this spiritual eye will lead us.18

Erich Kähler (1906–2000)

The most vitally characteristic fact about mathematics, in my opinion, is
its quite peculiar relationship to the natural sciences, or more generally, to
any science which interprets experience on a higher than purely descriptive
level. . .
I think that this is a relatively good approximation to truth – which is much
too complicated to allow anything but approximations – that mathematical
ideas originate in empirical facts, although the genealogy is sometimes long
and obscure. But, once they are so conceived, the subject begins to live a
peculiar life of its own and is better compared to a creative one, governed
by almost entirely aesthetic motivations, than to anything else and, in
particular, to an empirical science.
But there is a grave danger that the subject will develop along the line of
least resistance, that the stream, so far from its source, will separate into
a multitude of insignificant tributaries, and that the discipline will become
a disorganized mass of details and complexities. In other words, at a great
distance from its empirical sources or after much abstract inbreeding, a
mathematical object is in danger of degeneration. At the inception, the
style is usually classical; when it shows signs of becoming baroque, then
the danger signal is up. . .
Whenever this stage is reached, then the only remedy seems to be a re-
juvenating return to the source: the re-injection of more or less directly
empirical ideas. I am convinced that this is a necessary condition to con-

18 On the relations of mathematics to physics and astronomy (in German), Jahres-
berichte der Deutschen Mathematiker-Vereinigung 51 (1941), 52–63 (reprinted
with permission).
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serve the freshness and the vitality of the subject and that this will remain
equally true in the future.19

John von Neumann (1903–1957)

I want to say a word about the communication between mathematicians
and physicists.
It has been very bad in the past, and some of the blame is doubtless to be
laid on the physicist’s shoulders. We tend to be very vague, and we don’t
know what the problem is until we have already seen how to solve it. We
drive mathematicians crazy when we try to explain what our problems are.
When we write articles we don’t do a good enough job of specifying how
certain we are about our statements; we do not distinguish guesses from
theorems.
On the other hand, since I have said a lot of nice things about mathematics,
I have to say that the mathematicians carry an even greater burden of guilt
for this communication problem, largely because of their elitism. They
often have, it seems to me, as their ideal the savant who is understandable
only to a few co-specialists and who writes articles that one has to spend
years to try to fathom.
When physicists write articles, they generally start them with a paragraph
saying, “Up until now, this has been thought to be the case. Now, so –
and – so has pointed out this problem. In this article, we are going to
try to suggest a resolution of this difficulty.” On the other hand, I have
seen books of mathematics, not just articles but books, in which the first
sentence in the preface was, “Let H be a nilpotent subgroup of. . . ” These
books are written in what I would call a lapidary style. The idea seems
to be that there should be no word in the book that is not absolutely
necessary, that is inserted merely to help the reader to understand what
is going on.

I think this is getting much better. I find it is wonderful how mathemati-
cians these days are willing to explain their field to interested physicists.
This situation is improving, partly because as Iz Singer mentioned, we re-
alize now that in certain areas we have much more in common than we
had thought, but I think a lot more has to be done. There is still too much
mathematics written which is not only not understandable to experimental
or theoretical physicists, but is not even understandable to mathematicians
who are not the graduate students of the author.20

Steven Weinberg (born 1933)

Relations between mathematics and physics vary with time. Right now,
and for the past few years, harmony reigns and a honeymoon blossoms.
However, I have seen other times, times of divorce and bitter battles, when
the sister sciences declared each other as useless – or worse. The following
exchange between a famous theoretical physicist and an equally famous
mathematician might have been typical, some fifteen or twenty years ago:
Says the physicist: “I have no use for mathematics. All the mathematics I
ever need, I invent in one week.”

19 The Mathematician. In: The Works of the Mind, Vol. 1, pp. 180–196. Edited by
R. Heywood, University of Chicago Press, 1947 (reprinted with permission).

20 Mathematics: The unifying thread in science: Notices Amer. Math. Soc. 33
(1986), 716–733 (reprinted with permission).
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Answers the mathematician: “You must mean the seven days it took the
Lord to create the world.”
A slightly more reliable document is found in the preface of the first edi-
tion of Hermann Weyl’s book on group theory and quantum mechanics
from 1928. He writes: “I cannot abstain from playing the role of an (often
unwelcome) intermediary in this drama between mathematics and physics,
which fertilize each other in the dark, and deny and misconstrue one an-
other when face to face.”
This dramatic situation, described here by one of the great masters in both
sciences, is a result of recent times. At the time of Newton (1643–1727)
disharmony between mathematics and physics seemed unthinkable and un-
natural, since both were his brainchildren; and close symbiosis persisted
through the whole of the eighteenth century. The rift arose around 1800
and was caused by the development of pure mathematics (represented by
number theory) on the one hand, and of a new kind of physics, indepen-
dent of mathematics, which developed out of chemistry, electricity and
magnetism on the other. This rift was widened in Germany under the in-
fluence of Goethe (1749–1832) and his followers, Schelling (1775–1854) and
Hegel (1770–1831) and their “Naturphilosophie”.
Our protagonists are Carl Friedrich Gauss (1777–1855), as the creator of
modern number theory, and Michael Faraday (1791-1867) as the inventor
of physics without mathematics (in the strict sense of the word).
It would be foolish, of course, to claim the nonexistence of number theory
before Gauss. An amusing document may illustrate the historical develop-
ment. Erich Hecke’s famous Lectures on the Theory of Algebraic Numbers
has on its last page a “timetable”, which chronologically lists the names
and dates of the great number theoreticians, starting with Euclid (300
B.C.) and ending with Hermann Minkowski (1864–1909). As a physicist, I
am impressed to find so many familiar names in this Hall of Fame: Fermat
(1601–1665), Euler (1707–1783), Lagrange (1736–1813), Legendre (1752–
1833), Fourier (1768–1830), and Gauss. In fact, we cannot find a single
great number theoretician before Gauss, whom we would not count among
the great physicists, provided we disregard antiquity. Specialization starts
after 1800 with names like Kummer (1810–1891), Galois (1811–1832), and
Eisenstein (1823–1852); who were all under the great influence of Gauss’
Disquisitiones arithmeticae from 1801. In this specific sense, Gauss’ book
marks the dividing line between mathematics as a universal science and
mathematics as a union of special disciplines, and between the “géomètre”
as a universal “savant” in the sense of the eighteenth century and the
specialized “mathématicien” of modern times. As is typical for a man of
transition, Gauss does not belong to either category, he was universal and
specialized. The struggle raged within him – and made him suffer.

Res Jost (1918–1990)
Mathematics and physics since 1800: discord and sympathy21

By a particular prerogative, not only does each man advance day by day in
the sciences, but all men together make continual progress as the universe
ages. . . Thus, the entire body of mankind as a whole, over many centuries,
must be considered as a single man, who lives forever and continues to
learn.

Blaise Pascal (1623–1662)

21 In: R. Jost, The Fairy Tale about the Ivory Tower, essays and lectures. Edited by
K. Hepp, W. Hunziker, and W. Kohn, Springer, Berlin, pp. 219–240 (reprinted
with permission).



References

Abdalla, E., Abdalla, M., Rothe, K. (2001), Non-Perturbative Methods in Two-
Dimensional Quantum Field Theory, World Scientific, Singapore.1

Abraham, R., Marsden, J. (1978), Foundations of Mechanics, Addison-Wesley,
Reading, Massachusetts.

Abraham, R., Marsden, J., Ratiu, T. (1988), Manifolds, Tensor Analysis, and Ap-
plications, Springer, New York.

Abramowitz, M., Stegun, I. (Eds.) (1984), Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, Wiley, New York, and Na-
tional Bureau of Standards, Washington, DC.

Adams, C. (1994), The Knot Book, Cambridge University Press, Cambridge, United
Kingdom.

Adams, F., Laughlin, G. (1997), A dying universe: the long-term fate and evolution
of astrophysical objects, Rev. Mod. Phys. 69, 337–372.

Adams, F., Laughlin, G. (1999), The Five Ages of the Universe: Inside the Physics
of Eternity, Simon and Schuster, New York.

Adler, S. (2004), Quantum Theory as an Emergent Phenomenon: the Statistical
Mechanics of Matrix Models as the Precursor of Quantum Field Theory, Cam-
bridge University Press, Cmabridge, United Kingdom.

Adler, S. (2006), Adventures in Theoretical Physics, Selected Papers with Com-
mentaries, World Scientific, Singapore.

Agricola, I., Friedrich, T. (2002), Global Analysis: Differential Forms in Analysis,
Geometry and Physics, Amer. Math. Soc., Providence, Rhode Island (translated
from German into English).

Aizenman, M. (1982), Geometric analysis of ϕ4 fields and Ising models, Commun.
Math. Phys. 86, 1–48.
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Basel.

Bigatti, D., Susskind, L. (1997) Review of matrix theory.
Internet: http://arxiv.org/hep-th/9712072

http://arxiv.org/abs/hep-th/9712072


References 979

Bjorken, J., Drell, S. (1964), Relativistic Quantum Mechanics, McGraw-Hill, New
York.

Bjorken, J., Drell, S. (1965), Relativistic Quantum Fields, McGraw-Hill, New York.
Blasone, M., Jizba, P., Vitiello, G. (2009), Quantum Field Theory and Its Macro-

scopic Manifestations: Boson Condensation, Ordered Patterns and Topological
Defects, World Scientific, Singapore.

Blau, S., Visser, M., Wipf, A. (1988), Zeta functions and the Casimir energy, Nucl.
Phys. B 310, 163–180.

Bloch, S., Esnault, H., Kreimer, D. (2006), Motives associated to graph polynomials,
Commun. Math. Phys. 267(1), 181–225.
Internet: http://arxiv:math/0510011

Bocaletti, D., Pucacco, G. (1998), Theory of Orbits, Vol 1: Integrable Systems
and Non-Perturbative Methods, Vol. 2: Perturbative and Geometrical Methods,
Springer, Berlin.

Bodanis, D. (2000), E = mc2: A Biography of the World’s Most Famous Equation,
Walker, New York.

Bogoliubov, N., Shirkov, D. (1956), Charge renormalization group in quantum field
theory, Nuovo Cimento 3, 845–863
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Federbush, P. (1987), Quantum field theory in ninety minutes, Bull. Amer. Math.
Soc. 17(1), 93–103.

Fedosov, B. (1996), Deformation Quantization and Index Theory, Akademie-Verlag,
Berlin.

Fefferman, C. (1983), The uncertainty principle, Bull. Amer. Math. Soc. 9(2), 129–
206.

Fefferman, C. (1985), The atomic and molecular nature of matter, Revista Mat.
Iberoamer. 1(1), 1–44.

Fefferman, C., de la Llave, R. (1986), Relativistic stability of matter, Revista Mat.
Iberoamer. 2, 119–213.

http://arxiv.org/abs/hep-th/9510193
http://arxiv.org/abs/hep-th/9710047
http://arxiv.org/abs/hep-th/0007032


988 References

Fefferman C., Seco, L. (1994), On the Dirac and Schwinger corrections to the
ground-state energy of an atom, Advances in Math. 107(1), 1–185.

Feldman, J., Hurd, T., Rosen, L., Wright, J. (1988): QED: A Proof of Renormaliz-
ability, Springer, Berlin.

Feldman, J., Trubowitz, E. (1992), Renormalization in classical mechanics and
many body quantum field theory, Jerusalem J. d’Analyse Mathématique 52,
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Vol. XXV/2c, Springer, Berlin.

Hall, B. (2003), Lie Groups, Lie Algebras, and Representations: An Elementary
Introduction, Springer, New York.

Halzen, F., Martin, A. (1984), Quarks and Leptons, Wiley, New York.
Hamber, H. (2009), Quantum Gravitation, The Feynman Path Integral Approach,

Springer, Berlin.
Handbook of Differential Equations (2004), Evolutionary Equations, Vols. 1, 2.

Edited by C. Dafermos et al., Elsevier, Boston.
Handbook of Differential Equations (2004), Stationary Partial Differential Equa-

tions, Vols. 1, 2. Edited by M. Chipot and P. Quittner, Elsevier, Amsterdam.
Handbook of Differential Equations (2005), Ordinary Differential Equations, Vols.

1, 2. Edited by A. Canada et al., Elsevier, Amsterdam.
Handbook of Dynamical Systems (2002), Vols. 1A, 1B edited by B. Hasselblatt et

al., Vol. 2 edited by B. Fiedler, Elsevier, Amsterdam.
Handbook of Nonlinear Partial Differential Equations (2004). Edited by A. Polyanin

and V. Zaitsev, Chapman and Hall, Boca Raton, Florida.
Handbook of Mathematical Physics: See Encyclopedia of Mathematical Physics

(2006), and Modern Encyclopedia of Mathematical Physics (2011).



994 References

Handbook of Global Analysis (2008). Edited by D. Krupka and D. Saunders, Else-
vier, Amsterdam.
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3, 1113–1181.

Kac, V. (1996), Vertex Algebras for Beginners, Amer. Math. Soc., Providence,
Rhode Island.



998 References

Kadanoff, L. (1966), Scaling laws for Ising models near critical temperature, Physics
2, 263–272.

Kadanoff, L. (2000), Statistical Physics, World Scientific, Singapore.
Kadison, R., Ringrose, J. (1983), Fundamentals of the Theory of Operator Algebras,

Vols. 1–4, Academic Press, New York.
Kähler, E. (2003) Mathematische Werke – Mathematical Works. Edited by R.

Berndt and Oswald Riemenschneider, de Gruyter, Berlin.
Kaiser, D. (2005), Drawing Theories Apart: The Dispersion of Feynman Diagrams

in Postwar Physics, The University of Chicago Press, Chicago.
Kaku, M. (1999), Quantum Field Theory: A Modern Introduction, Oxford Univer-

sity Press, New York, 1999.
Kaku, M. (2000), Strings, Conformal Fields and M -Theory, Springer, New York.
Kalka, H., Soff, G. (1997), Supersymmetrie, Teubner, Stuttgart (in German).
Kane, G. (2000), Supersymmetry: Squarks, Photinos, and the Unveiling of the

Ultimate Laws of Nature, Perseus Publishing, Cambridge, Massachusetts.
Kapusta, J. (1989), Quantum Field Theory at Finite Temperature, Cambridge Uni-

versity Press, Cambridge, United Kingdom.
Kassel, C., Rosso, M., Turaev, V. (1997), Quantum Groups and Knot Invariants,
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f(x) := x2 (definition of f)
f(x) � g(x), x→ a (asymptotic equali-

ty); this means

limx→a
f(x)
g(x)

= 1, 949

f(x) = o(g(x)), x→ a (Landau sym-
bol); this means

limx→a
f(x)
g(x)

= 0, 949

f(x) = O(g(x)), x→ a, 949
f(x) ∼

P∞
n=0 anx

n (asymptotic expan-
sion), 308, 863

sgn(a) (sign of the real number a), 949
[a, b], ]a, b[, ]a, b] (intervals), 949
P∞

n=−∞ bn, 215

δij (Kronecker symbol), 949
δ11 := 1, δ12 := 0

δij = δij = δi
j , 949

δpq, 672
εij (skew-symmetric symbol)

ε12 = −ε21 = 1, ε11 = ε22 = 0, 337

x, y, z (right-handed Cartesian coordi-
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i, j,k (right-handed orthonormal basis)
x := xi + yj + zk (position vector)
||x|| (length (norm) of the vector x)

t (time)
x1 := x, x2 := y, x3 := z, x0 := ct

(space-time point in Minkowski
space), 949

μ = 0, 1, 2, 3 (indices for space-time
variables in Minkowski space), 949

j = 1, 2, 3 (indices for spatial variables
in Minkowski space), 949

ημν (Minkowski symbol), η00 := 1,
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μ, 949

εαβγδ, εαβγδ (skew-symmetric symbol)
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aμb
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μ=0 aμb

μ (Einstein’s conven-

tion in Minkowski space), 950
ζ(s) (zeta function), 280
Bn (Bernoulli number), 280

θ(t) (Heaviside function), 92, 579
δ(t) (Dirac delta function), 593
δ, δx (Dirac delta distribution), 612
δμ (Dirac delta function with respect to

the measure μ), 605
δΔt(t) (standard discrete Dirac delta

function), 582
δΔ4x, δC(L), δG(N), δT , δdis (discrete Dirac

delta functions), 443, 672
C(N) (cube in position space), 671
G(N) (grid in momentum space), 671
Δ3p, 672
V (normalization volume), 671
δ(x2 − a2) (special distribution), 598
P
`

1
x

´

(special distribution), 621
1

x±0+i
(special distribution), 623

P (ln |x|) (special distribution), 738

I, id (identity operator)
x ∈ U (the point x is an element of U)
U ⊆ V (U is a subset of V )
U ⊂ V (U is a proper subset of V ), 947
U∪V (the union of two given sets U and

V )
U ∩V (the intersection of two given sets

U and V )
U \ V (the difference of two sets U and

V , i.e., the set of elements of U not
belonging to V )

∂U (boundary of the set U)
int(U) (interior of U)
cl(U) ≡ U ∪ ∂U (closure of U), 545
∅ (empty set)
{x : x has the property P} (the set of all

things which have the property P)
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f : X → Y (map), 947
im(f) (image of the map f), 947
dom(f) (domain of f), 947
f−1 : Y → X (inverse map), 947
f(U) (image of the set U), 947
f−1(V ) (pre-image of the set V ), 947

z = x+ yi (complex number)
�(z) := x (real part of z)
�(z) := y (imaginary part of z)
|z| (modulus of z), 211
arg(z) (principal argument of z),

−π < arg(z) ≤ π, 211
arg∗(z) (argument of z), 211
z† := x− yi (conjugate complex num-

ber), 338
ln z (logarithmic function), 222
resz(f) (residue of the function f at the

point z), 215

R (set of real numbers)
C (set of complex numbers)

C (closed complex plane), 219
C> (open upper half-plane), 665
C≥ (closed upper-half plane)
C< (open lower half-plane), 665
K = R,C (set of real or complex

numbers)
Z (set of integers, 0,±1,±2, . . .)
N (set of natural numbers, 0, 1, 2, . . .)
Q (set of rational numbers)
R

N ,CN ,KN (N = 1, 2, . . .), 330
M

4 (Minkowski space), 771

R
× (set of nonzero real numbers)

N
× (set of nonzero natural

numbers, 1, 2, . . .)
C

× (set of nonzero complex numbers)
K

× (set of nonzero numbers in K)
R≥ (set of nonnegative real numbers,

x ≥ 0)
R> (set of positive real numbers, x > 0)
R≤ (set of non-positive real numbers,

x ≤ 0)
R< (set of negative real numbers, x < 0)
R+ (additive semigroup of nonnegative

real numbers)
R

×
+ (multiplicative group of positive

real numbers)

B
2 (closed unit disc)

int(B2) (open unit disc)

S
1 ≡ ∂B

2 (unit circle)
B

3 (closed 3-dimensional unit ball)
int(B3) (open 3-dimensional unit ball)
S

2 ≡ ∂B
3 (2-dimensional unit sphere)

B
n (closed n-dimensional unit ball), 270

S
n ≡ ∂B

n+1 (n-dimensional unit sphere)

Ā (mean value), 353
ΔA (mean fluctuation), 353

dimX (dimension of the linear
space X), 332

spanS (linear hull of the set S), 331
〈x|y〉 (inner product), 338
〈ϕ|, |ψ〉 (Dirac calculus), 361
||ϕ|| (norm), 338, 368
L(X,Y ) (space of linear operators), 334
Xd (dual space), 334

A† (adjoint operator), 359
Ad (dual operator), 359
A−1 (inverse operator), 947
Ac (conjugate complex operator); this

means (A†)d

A† (adjoint matrix), 343
Ad (dual or transposed matrix), 343
Ac (conjugate complex matrix), 343
A−1 (inverse matrix), 947
[A,B]− := AB −BA, 56
[A,B]+ := AB +BA,
tr(A) (trace), 343, 365
det(A) (determinant), 335
eA (exponential function), 347
lnA (logarithmic function), 348
σ(A) (spectrum), 367
!(A) = C \ σ(A) (resolvent set), 367

GL(X), SL(X), U(X), SU(X)
(Lie groups), 343

U(1), U(n), SU(n), O(n), SO(n),
GL(n,R), SL(n,R), GL(n,C),
SL(n,C) (matrix Lie groups), 343

gl(X), sl(X), u(X), su(X)
(Lie algebras), 344

u(n), su(n), o(n), so(n), gl(n,R),
sl(n,R), gl(n,C), sl(n,C)
(matrix Lie algebras), 345

TxM (tangent space), 350

limn→∞ ϕn = ϕ (limit), 339
f(+0), 95
curlE (curl of the vector field E), 172
div E (divergence of E), 172
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gradU (gradient of the scalar
field U), 172

∂ (vector differential operator), 172
Δ = −∂2 (Laplacian), 544
� (wave operator), 797
f∗ω (pull-back), 257

ψ̇(t) ≡ dψ(t)
dt

(time derivative)

f ′(x) ≡ df(x)
dx

(derivative)

∂μf ≡ ∂f
∂xμ (partial derivative)

∂αf (partial derivative of the
function f of order |α|), 538

∂αF (partial derivative of the
distribution F ), 613

α = (α1, . . . , αN ) (multi-index), 538
|α| = |α1|+ . . .+ |αN | (order of α), 538
α! = α1!α2! · · ·αN ! (factorial)
∇α (covariant derivative), 793
δF (ψ;h) (variation of the functional F

at the point ψ in direction of h), 398

F ′(ψ) ≡ δF (ψ)
δψ

(functional derivative of

F at the point ψ), 398
δZ(J)
δJ(x)

, δF (ψ)
δψ(x)

(local functional derivative

at the point x), 405, 444, 752, 763

R

f(x)dx (Lebesgue integral), 531
R

f(x)dμ(x) (measure integral), 531
R

f(λ)dEλ (Hilbert–von Neumann
spectral integral), 37, 371

PV
R∞
−∞ f(x)dx (principal value), 90,

621
R

F (q)dμ(q),
R

F (ϕ)Dϕ (functional inte-
gral), 418, 444, 755

ΠΔt(qin, qout) (space of curves), 422

zero(f), 611
supp(f) (support of the function f), 611
supp(F ) (support of the distribution F ),

613
supp(μ) (support of the measure μ), 605
sing supp(F ) (singular support of the

distribution F ), 707
Char(L) (characteristic set of the differ-

ential operator L), 713
WF (G) (wave front set of the distribu-

tion G), 712

Fg (Fourier transform of the function g),
537

FG (Fourier transform of the distribu-

tion G), 620
FMg (Fourier–Minkowski transform of

the function g), 774
Lg (Laplace transform of g), 94
f ∗ g (convolution of two functions), 95,

536
F ∗G (convolution of two distributions),

619
f ⊗ g (tensor product of two functions),

619
F ⊗G (tensor product of two distribu-

tions), 619

C[a, b] (space of continuous functions),
368

C1[a, b] (space of continuously differen-
tiable functions), 552

C∞(Ω) (space of smooth functions), 545

C∞(Ω), 545
C∞

0 (Ω) ≡ D(Ω), 545
Cα(Ω), Ck,α(Ω) (Hölder spaces), 556
C0,1(Ω), Ck,1(Ω) (Lipschitz spaces), 556

L2(Ω) (Lebesgue space), 533
L2(−π, π), 535
Lloc(R

N ), 612
l2 (classical Hilbert space), 536
L2(M), 443 (discrete Lebesgue space)

W 1
2 (Ω),

◦
W 1

2 (Ω) (Sobolev spaces), 559
W k

2 (Ω), 559

W
1/2
2 (Ω) (fractional Sobolev space), 559

D(Ω) ≡ C∞
0 (Ω) (space of smooth

test functions with compact
support), 545

S(RN ) (space of rapidly decreasing
test functions), 539

E(RN ) ≡ C∞(RN ) (space of smooth
test functions), 617

D′(RN ) (space of distributions), 611
S ′(RN ) (space of tempered distribu-

tions), 618
E ′(RN ) (space of distributions with

compact support), 617

γ0, γ1, γ2, γ3 (Dirac–Pauli matrices),
791

σ0, σ1, σ2, σ3 (Pauli matrices), 791

ψ ≡ ψ†γ0, 793
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�∂, �∇ (Feynman’s slash symbols), 794

c (velocity of light in a vacuum), 965
h (Planck’s quantum of action),

� ≡ h/2π, 965
k (Boltzmann constant), 965
G (gravitational constant), 965
ε0 (electric field constant of a vacuum),

965
μ0 (magnetic field constant of a

vacuum), 965
e (electric charge of the proton), 965
−e (electron charge)
me (electron mass), 965
α (fine structure constant), 965
λC (Compton wave length), 144
λC ≡ λC/2π (reduced Compton wave-

length), 144

m (meter), 950
s (second), 950
J (Joule), 950
C (Coulomb), 950
K (Kelvin), 950
m, s,J,C,K (Planck units), 953
eV (electron volt), 953
MeV (mega electron volt), 953
GeV (giga electron volt), 953

!̂ (statistical operator), 760
! (density operator), 760
β ≡ 1/kT , 760

P (t, s) (propagator), 385
P+(t, s) (retarded propagator), 386
P−(t, s) (advanced propagator), 386
S[ϕ] (action of the field ϕ), 754
S(s, t) (S-matrix on the time interval

[t, s]), 392

S(T ) (S-matrix on [−T
2
, T

2
]), 824

|0〉, Φ0 (ground state of a free quantum
field)

|0int〉, Φint (ground state of a quantum
field under interactions)

T (chronological operator), 390, 746
: AB : (normal product), 824

Z(J), Cn, Cn, Gn (discrete model of a
quantum field), 446

Z(J, ϕ), Zfree(J, ϕ), 450
Sn, 452
ϕmean, 459
Zred, 461
Vn, 462
Cn,free, 468

Z(J) (full generating functional), 751
Zfree(J) (free generating functional), 751
Cn (full n-point correlation function),

746
Cn,free (free n-point correlation func-

tion), 745
Gn (full n-point Green’s function), 746
Gn,free (free n-point Green’s function),

745

1
p2−m2

0+0+i
(special distribution), 782

GF,m0(Feynman propagator for mesons),
777

GF,m0 (Feynman propagator distribu-
tion for mesons), 780

GF ≡ GF,m0=0 (Feynman propagator
distribution for the wave equation)

Dαβ
F ≡ −ηαβGF (Feynman propagator

distribution for photons), 802
SF ≡ (iγα∂α +me)GF,me (Feynman

propagator distribution for elec-
trons), 802



Index

Abdera, 102
Abel, 222, 288, 691
– prize in mathematics, 75
Abelian
– function, 551
– group, 343
– integral, 221, 551
– regularization, 691
– theorem, 288
Abrikosov, 70
absolute time, 25
action, 22, 30, 31, 110, 404, 409, 411,

447, 463, 493, 692, 754, 768, 776,
795, 806, 818

actual information, 944
addition theorem, 212
additive group, 344
adiabatic
– limit, 623, 687
– regularization, 691
adjoint
– matrix, 342, 359
– operator, 358
Adler–Bell–Jackiw anomaly, 207
advanced
– fundamental solution, 715
– propagator, 386, 585
age of the universe, 82, 115
Aharonov, 73
Ahlfors, 71, 74
AKSZ (Aleksandrov, Kontsevich,

Schwarz, Zaboronsky), 906
– master equation, 906
Alferov, 71
Alfvén, 70
algebra, 334
algebraic
– Feynman integral, 636
– – software systems, 946
– integral, 221
– quantum field theory, 868, 921

– renormalization, 860
almost
– all, 533
– everywhere, 532
alpha rays, 131
amplitude, 84
analytic
– continuation, 220, 226
– operator function, 369
– S-matrix theory, 221, 226
analyticity, 211
Anderson, 69, 133, 186
angle-preserving map, 212
angular
– frequency, 26, 84
– momentum, 147
– quantum number, 182
anharmonic oscillator, 63
– renormalization, 628
annihilation operator, 51, 55, 820
anomalous magnetic moment of the

electron, 4
anomaly, 906, 934
anti-quark, 135
anticolor charge, 158
antidistribution, 682
antiduality map, 681
antifield, 906
antighost, 879, 885, 892, 903
antilinear, 682
antineutron, 133
antiparticle, 132, 133, 157
antisymmetric, 335
Apéry, 280
arc length, 250
Archimedes, 529
Archimedian ordering, 399
arcwise connected, 241
Ariadne’s thread, VIII
– in quantum field theory, 328
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– in scattering theory (see also Vol. II),
328

Arnold, 75, 499, 653
Artin, 60, 67
Ashtekar program, 744
asymptotic
– expansion, 308, 864
– freedom, 203
– freedom of quarks, 137
asymptotically free model in quantum

field theory, 871
Atiyah, 3, 71, 75, 259, 650, 925
Atiyah–Singer index theorem, 259, 894,

928
atom, 99
atomic
– model, 152
– number, 117, 152
axiomatic quantum field theory, 868,

922

background radiation, 114
backward light cone, 716
Bacon, 971
Baker, 71
Baker–Campbell–Hausdorff formula,

455, 497, 510
Balmer, 122
– series, 122
Banach
– fixed-point theorem, 368
– space, 368
Bardeen, 70, 577
bare parameters, 770
barn, 119, 130
baryon, 135, 158
– number, 156, 159
basic laws in physics, 952
basis, 332
Basov, 69, 128
Batalin–Vilkovisky quantization, 905,

933
Bednorz, 70
Belevanin, 939
Bellman, 724
Bénard cell, 184
Bequerel, 69, 130
Bernays, 67
Bernoulli
– Jakob, 20, 107, 280, 311, 549
– Johann, 549
– number, 108, 280, 311
– polynomial, 314, 320

Berry, 73
Besov space, 562
Bessel function, 716
beta function
– and renormalization group, 200
– of Euler, 292
Bethe, 69, 131, 741
– amplitude, 60
Bethe–Salpeter equation, 60
Betti, 253
– number, 253, 898
Bianchi identity, 811
bicharacteristic curves, 715
– and light rays, 724
bifurcation, 184, 505
– and renormalization, 633
– equation, 508, 634
– of a flow, 184
– theorem, 505
– theory, 504
biholomorphic, 213, 553
bijective, 948
bilinear functional, 335
Binnet, 289
Biot, 254
Birch and Swinnerton–Dyer conjecture,

79
Bjorken scaling, 203
black
– body, 104
– – radiation, 104
– hole, 143, 145
Blumenthal, 67, 543
Bochner theorem, 226
Böhm, 101
Bogoliubov, 577, 651, 855, 856
– formula, 859
Bohr, 61, 70, 122
– model of the hydrogen atom, 123
Boltzmann, 100, 284
– constant k, 142, 281, 760, 952
– statistics, 108
Bólyai, 21
Bolzano, 230
– existence principle, 231
Bombielli, 217
Bombieri, 72
Borcherds, 72, 937
Borel, 530
Born, 29, 33, 37, 48, 63, 64, 67, 70
– approximation, 41
Bose, 285
Bose–Einstein
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– condensation, 149, 687, 791
– statistics, 149, 285
boson, 147, 517
Bott, 75
bottomness, 156
bound state, 527
– of a quantum field, 60
boundary operator, 894
bounded
– operator, 368
– set, 368
Bourgain, 72
BPHZ (Bogoliubov, Parasiuk, Hepp,

Zimmermann), 856
– renormalization, 855
bra symbol, 361
Bragg, 69
braking radiation (bremsstrahlung),

858
brane, 230
Brattain, 70
Breit–Wigner lifetime, 144
Broglie, 65
Brout, 74
Brouwer, 232
Browder, 558
Brown, 513
Brownian motion, 397, 657, 663
BRST (Becchi, Rouet, Stora, Tyutin),

892
– quantization, 399
– symmetry, 892
– transformation, 904, 905
Brunetti, 623

Calabi–Yau manifold, 936
Calderon, 74
Callan–Symanzik equation, 505
Cambridge school, 547
canonical
– commutation relation, 54
– equation, 47
– transformation, 394
Carathéodory, 68, 724
Carleman, 22
Carleson, 74, 75
Cartan
– Élie, 187, 724, 893, 894, 896
– Henri, 74, 400
Cartier, 856
Casimir, 301
– effect, 301
– force, 301

Catalan, 311
– constant, 316
category theory, 14
Cauchy, 215, 359, 527, 653
– characteristic system, 724
– integral formula, 215
– problem in general relativity, 917
– residue method, 381, 735
– residue theorem, 216
– sequence, 339
causal
– convolution, 95
– correlation function, 355, 426
causality, 379
– and analyticity, 93, 697
Cavalieri, 577
Cavendish laboratory, 100, 102
cavity radiation, 105
Cayley, 267, 365
cell decomposition, 244
central limit theorem, 431, 696
CERN (European Organization for

Nuclear Research at Geneva,
Switzerland), 134, 138

Chadwick, 69, 100, 102, 130
Chamberlain, 70, 133
Chandrasekhar, 69
chaotic motion of asteroids, 290
character, 938
characteristic
– curves, 724
– equation, 367, 721
– set of a differential operator, 713
– surfaces and wave fronts, 721
– system, 413
charge conjugation, 174
charm, 156
chart map, 237
Chebyshev, 696
chemical potential, 281
Cherenkov, 69
Chern, 74, 251
– class, 251
– number, 249
Chern–Simons theory, 266, 813
Chew, 578
chiral matrix, 792
chirality, 147
chronological operator, 44, 384
Chu, 70
CKM (Cabibbo, Kobayashi, Maskawa)

mixing matrix, 161
Clay Mathematics Institute (CMI), 78
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closed, 238, 341
– complex plane, 219
– Jordan curve, 242
– upper half-plane, 665
COBE (Cosmic Background Explorer)

sky maps, 115
cobordism theory (see Vol. IV), 236
coboundary, 895
– operator, 894
cocycle, 123, 895
coercive, 571
Cohen, 71
cohomology, 123, 399, 400, 549, 893
– and physical states, 895
– functor, 14, 275
– group, 900
– of geometric objects, 898
– of Lie groups, 902
– ring, 14
color
– charge, 162
– of quarks, 162, 882
combinatorics and renormalization, 931
commutation relation, 48
commutative group, 343
compact
– subset, 611
– support, 545
– topological space, 241
compactification, 219
compactness, lack of, 572
complete
– measure, 530
– orthonormal system, 357, 534
completeness, 339, 368
– relation, 358, 534
complex
– curve, 237
– energy, 379
– number, 211
– plane, 211
complexity, 282
component, 242
Compton, 69, 114
– scattering (see also Vol. II), 5, 749
– wave length, 124, 136, 144, 957
– – reduced, 136, 144
condensation of a gas, 685
conditional probability, 40
conformal, 213, 237
– field theory, 172, 929, 939
– group, 77, 139
– quantum field theory, 939

conformally equivalent, 554
conjugate complex
– matrix, 342
– number, 948
connected
– correlation function, 470, 753
– Feynman graph, 470
connectedness, 241
connection, 186, 885
Connes, 72, 862, 929
Conrey, 298
conservation
– laws for quantum numbers, 158
– of energy, 31
constitutive law, 699
constrained variational problem, 490
constraining force, 493
continuous, 238
– spectrum, 527
continuum
– ϕ4-model, 463, 775
– limit, 852
contractible, 241
contraction, 827
convergence, 339, 368
convolution
– causal, 96
– of distributions, 619
– of functions, 536, 539
Cook, 133
– problem, 79
Cooper, 70, 577
– pair, 577
coordinates, 332, 356
– in gauge theory, 886
Cornell, 70, 687
correlation
– coefficient, 354, 761
– function, 57, 446, 449, 485, 888
– – n-point, 745
– – free, 471, 745
– – full, 471, 745, 784
cosmic strings, 140
cosmology, 916
costate, 351, 352, 599, 683
cotangent bundle, 708, 709
Coulomb
– field, 700
– force, 115, 700
counterterm, 511, 636, 852, 853, 860
coupling constant, 35, 409, 755, 884
Courant, 67, 971
– Institute, 67
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covariance principle, 744
covariant derivative, 185, 794
covering
– group, 268
– space, 238
CP (Charge Conjugation, Parity)

violation, 180
CPT (Charge Conjugation, Parity,

Time Reversal) symmetry principle,
173

creation operator, 51, 55, 820
Crick, 71
critical
– action, 806
– point, 410, 807
– – regular, 252
Cronin, 70, 180
cross section, 116, 119, 788, 841, 960
– differential, 841
– total, 841
crossing
– point, 265
– symmetry, 179
cumulant, 752, 753
Curie
– Marie, 69, 131
– Pierre, 131
Curl, 70, 247
curl of a vector field, 173
current density vector, 34
curvature, 185, 885
– in modern physics, 185
cycle, 894
cyclic vector, 871
cyclotomic field, 936

Dalton, 100
damped
– oscillation, 379
– wave, 91
Davies, 131
Davis, 74
de Broglie, 70, 114, 144, 693
de Gennes, 70, 73
de Giorgi, 74, 191
de la Valeé-Poussin, 295
de Rham cohomology, 399, 899
Debye, 69
Dedekind, 311
– eta function, 286
deformation
– invariance, 214
– quantization, 931

– retract, 241
degenerate quantum state, 181
Dehmelt, 70
Delbrück, 71
Deligne, 72, 75
Democritus, 100, 102
Denner, 101
dense set, 545, 679
density
– functional method, 155
– matrix, 283
– of a functional, 405
– operator, 760
DESY (Deutsches Elektronensyn-

chrotron), 135
determinant, 335, 337
– trick for Grassmann variables, 520,

891
Diesenhofer, 71
Dieudonné, 21, 546, 579
diffeomorphism, 236, 237
differential
– cross section, 116, 119, 841
– form, 518, 549, 896
– – pull-back, 256
– geometry and modern physics, 186,

251, 885
– topology, 236, 898
diffraction of light, 726
diffusion, 657
dilute gas, 790
dimension, 332
dimensional
– analysis, 960
– regularization, 638, 853, 855
dimensionless physical quantities, 962
Diophantus, 18
dipole moment, 700
Dirac, 29, 60, 62, 70, 130, 186, 285, 327,

357, 361, 527, 579, 702, 850
– calculus, 90, 261, 284, 361, 534, 599,

677
– completeness relation, 358, 534
– delta distribution, 612
– delta function, 98, 592, 677
– – see also discrete and truncated

Dirac delta function, 817
– equation, 152, 812, 956
– interaction picture, 43, 396
– magic formula, 803
– measure, 531
– notation, 682
– substitution trick, 362, 601
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Dirac–Fermi statistics, 285
Dirac–Pauli matrices, 792, 882
Dirichlet, 60, 259, 293, 299, 311, 544,

669, 688, 718
– L-function, 298
– function, 718
– integral, 669, 690, 717, 736
– principle, 542, 547, 558
– problem, 542, 544, 568
– series, 263, 311
discrete
– ϕ4-model, 466
– Dirac delta function, 443, 582, 672,

677, 817
– Fourier transform, 534, 672
– functional derivative, 444
– integral, 443
– Laplace transform, 287
– model in quantum field theory, 462
– symmetries, 796
discretization, 465
– lattice approximation in quantum

field theory, 817
disorder, 282
dispersion, 699
– relation, 26, 84, 93, 704
Disquisitiones arithmeticae, 298, 974
distribution, 611
– tempered, 617
divergence of a vector field, 173
Doetsch, 91
domain of holomorphy, 226
Donaldson, 72
Douglas, 71
Drinfeld, 72
dual
– basis, 518
– matrix, 342
– operator, 359, 364
– space, 352, 369
duality, 352
– between light rays and wave fronts,

723
– between strong and weak interaction,

705
– in physics, 692
– map, 681
Duhamel, 387, 610
– principle, 387, 610
Duistermaat, 705
Dynkin formula, 511
Dyson, 1, 2, 5, 27–29, 73, 578, 741, 863
– magic S-matrix formula, 392, 824

– no-go argument, 862
– series, 44, 390, 825
Dyson–Schwinger equation, 455, 789

early universe, 145
east coast convention, 950
effective
– coupling constant, 770
– electron charge, 196, 770
– electron mass, 770
– fine structure constant, 198
– quantities in physics, 849
– quantum action, 462, 486, 753
Ehresmann, 251
eigendistribution, 677
eigenstate, 353
eigenvalue, 353
eikonal, 724
– equation, 723
Eilenberg, 74
Einstein, 22, 24, 26, 29, 61, 67, 102,

113, 143, 172, 251, 327, 397
– light particle hypothesis, 113
– summation convention, 886, 949
– theory of
– – general relativity, 113
– – special relativity, 112
Eisenstein, 974
electric
– charge, 156, 158
– energy, 544
– field, 698
– field constant, 721, 849
– – of a vacuum ε0, 698, 952
– intensity, 698, 701
– potential, 700
– susceptibility, 699
electromagnetic
– field, 102
– force, 130
– wave, 25, 87, 720
electron
– lepton number, 156
– spin, 267
– volt, 959
electroweak force, 130, 135
elliptic
– curve, 19
– differential operator, 713
– function, 19, 244
– integral, 244
encyclopedias, 942
energetic
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– Fourier transform, 606
– system of units, 958
energy
– density of the early universe, 145
– of a relativistic particle, 25
– operator, 374, 606, 678, 820
– production on sun, 131
energy-frequency relation, 143
energy-mass relation, 143
energy-time uncertainty, 144
enthalpy, 761
entire function, 212, 512
entropy, 108, 168, 169, 282, 761
Epstein, 311
– zeta function, 304, 314
Epstein–Glaser approach, 751, 856
equation of motion, 793
equator, 250
Erdös, 74
Erlanger program, 365
Esaki, 70
essential map, 272
essentially self-adjoint operator, 679
Euclid, 293, 569
Euclidean
– Fourier transform, 540
– inner product, 338
– trick, 661, 669
Euler, 28, 30, 259, 279, 285, 294, 359,

513, 549, 974
– beta function, 292, 640, 939
– characteristic, 244, 245, 247–249,

259, 898, 899, 901
– constant, 197, 639
– exponential formula, 84
– numbers, 313
– partition function, 285
– polyhedra formula, 246
Euler–Lagrange equation, 31, 404, 410,

448, 549, 550, 754, 808, 809
Euler–Maclaurin summation formula,

321
evolution of the universe, 285
exponential
– function, 212, 347, 369, 370
– matrix function, 347
extended
– quantum action functional, 489, 784,

805
– response model, 481
extension strategy in mathematics, 625

Faddeev–Popov

– determinant, 892
– ghost formula, 891
Faddeev–Popov–De Witt ghost

approach, 888
Faltings, 72
Faraday, 102, 974
fast oscillating integral, 717
Faust, VII
Fefferman, 72
Feigenbaum, 73
Fejér theorem, 628
Feldman, 850
femto, 951
Fenn, 71
Fermat, 18, 577, 723
– last theorem, 18
Fermi, 69, 131, 285
– liquid, 920
fermi (unit of length), 129
Fermi–Dirac statistics, 149, 150
fermion, 147, 517
Fert, 71, 74
Feynman, 4, 27–29, 70, 329, 354, 397,

513, 569, 741, 863
– algebraic integral, 636, 946
– dagger symbol, 794
– gauge, 797
– integration trick, 645
– magic formula, 755
– rules, 834, 837, 846
– transition amplitude, 39
Feynman diagram, 5, 41, 463, 470, 750,

757, 775, 831, 834, 837, 838, 845
– equivalent, 838, 839
Feynman path integral, 32, 418, 419,

654, 726
– discrete, 418
– in string theory, 939
– main trouble, 663
Feynman propagator, 32, 57, 98, 421,

468, 579, 778, 781, 802, 803
– n-point, 745
– distribution, 779
– for electrons, 803
– for mesons, 781
– for photons, 802
– formula, 419
– kernel, 423, 590, 608, 662
Feynman–Kac formula, 657
fiber, 271, 709
– bundle, 885
Fibonacci, 288
– number, 289
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fibration, 271
Fields medal in mathematics, 71
fine structure constant, 4, 121, 963
finite
– measure, 530
– measure integral, 418
– part of a divergent integral, 621
Finnegans Wake, 100
first law of
– progress in theoretical physics, 81
– thermodynamics, 168
Fischer, 533
Fischer–Riesz theorem, 533
Fisher, 73
Fitch, 70, 180
five ages of the universe, 82
flow, 201
fluctuation, 34
– of energy, 38
Fock, 60
– space, 51, 56
– state, 51
force
– advanced, 584
– retarded, 584
form factor, 748
formally self-adjoint, 525, 679
forward light cone, 716
four-manifold, 927
Fourier, 28, 88, 259, 285, 374, 527, 535,

974
– coefficient, 356, 357
– integral operator, 731
– method, 259
– quantization, 49, 55, 819
– series, 357, 535
Fourier transform, 88, 89, 537, 538
– and Dirac calculus, 601
– discrete, 466, 672
– energetic, 606
– generalized, 680, 681
– terminology of the, 540
Fourier–Laplace transform, 542, 663,

703
Fourier–Minkowski transform, 464, 542,

774
Fowler, 69
Fréchet, 397
fractional Sobolev space, 559
Franck, 67, 69
Fraunhofer, 726
Fredenhagen, 623
Fredholm, 29, 543

free
– correlation function, 745
– energy, 761
– enthalpy, 761
– Green’s function, 745, 822
– quantum field, 745, 819
Freedman, 72
frequency, 83
Fresnel, 669, 718, 726
– integral, 669, 718, 736
Frey curve, 18
Friedman
– Herbert, 73
– Jerome, 70
Friedrichs, 67, 562
– extension, 562
Fritzsch, 81
fugacity, 282
Fukui, 70
full
– correlation function, 471, 745, 784
– generating functional, 751
– Green’s function, 746, 769, 847
– quantum field, 745, 750, 859
fullerene, 247
functional, 351
– calculus, 397
– derivative, 58, 397, 402, 594, 597, 752
– – discrete, 444
– – local, 594
– – partial, 403
– integral, 32, 57, 418, 654, 752
– – discrete, 418
– – generating, 789
– – global quantum action principle,

789
– – mnemonic beauty, 789
– – see also Feynman path integral, 789
functions of observables, 359
functor, 14
fundamental
– constants in nature, 952, 964
– interactions in nature, 129
– particle, 133
– solution, 580, 648
– theorem of
– – algebra, 217
– – calculus, 213, 547

Gabor, 69
Galilei transformation, 112
Galois, 12, 936, 974
– functor, 14
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– group (motivic), 862
gamma
– convergence, 191
– function, 292, 639
Gamow, 131
G̊arding, 150, 175, 921
G̊arding–Wightman axioms, 868
Gâteaux, 397
gauge
– boson, 135, 883
– boson propagator, 888
– condition, 796
– field tensor
– – of gauge bosons, 883
– – rescaled, 884, 887
– field theory, 186, 187, 251, 879
– – basic ideas, 882
– invariance principle, 797, 881
– lattice theory, 135
– Lie algebra, 883
– Lie group, 883
– potential, 796, 883
– – rescaled, 884
– transformation, 796, 884
– – of the Schrödinger–Maxwell

equation, 176
Gauss, 10, 20, 21, 30, 60, 217, 254, 293,

294, 298, 542, 544, 546, 548, 936, 974
– fundamental theorem of algebra, 217
– integral, 430, 521
– – infinite-dimensional, 660
– – main formula, 431
– integral theorem, 548
– method of least squares, 354, 534
– principle of critical constraint, 493
– prize, 73
– probability distribution, 431, 696
– system of units, 957
Gauss–Bonnet theorem, 248
Gauss–Bonnet–Chern theorem, 249
Gauss–Grassmann integral, 521
Gelfand, 74, 527
– triplet, 580, 677
Gelfand–Kostyuchenko spectral

theorem, 681
Gell-Mann, 70, 81, 100, 137, 156, 182,

691, 767
Gell-Mann–Low (GL) reduction

formula, 429, 847
general
– linear group, 343
– relativity, 251
generalized

– function, 611
– state, 599, 683
generating
– function, 58, 280, 285, 287
– functional, 751, 785, 787, 805
– – integral, 58, 789, 806
generations of elementary particles, 132
genus, 243, 247
geometric optics, 723
geometrization of physics, 327
Geyer, XI
ghost, 879, 885, 892, 895, 903
– field, 892
Giaconi, 73
Giaever, 70
Giaquinta, 571
Gibbs, 284
– potential, 282
giga, 951
– electronvolt (GeV), 959
Ginzburg, 70, 73
Ginzburg–Landau equation, 813
GL (Gell-Mann–Low) reduction

formula, 429, 847
Glashow, 3, 70, 81, 137
Glauber, 70
Glimm, 189, 872, 922
global
– properties of the universe, 229
– quantum action principle, 748
gluon, 132, 883
– field tensor, 882
– potential, 882
Goeppert-Mayer, 70
Goethe, VII, VIII, 20, 60, 974
Göttingen, 60
– tragedy, 67
golden ratio, 290
Goldhaber, 73
Goudsmit, 150
Gowers, 72
Grünberg, 71, 74
gradient of a vector field, 173
Grand Unified Theories (GUT), 207
Grassmann, 517
– calculus, 517, 519
– manifold, 276
– product, 517
– variable, 519, 805, 892
gravitation, 102
gravitational
– constant G, 952
– law, 961
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– lens, 711
– wave, 138
gravitino, 140
graviton, 135, 138, 139
Green, 29, 544, 546, 548, 577, 583
– integral formula, 548
– operator, 376, 500
– – regularized, 376
Green’s function, 32, 548, 579, 585, 648
– n-point, 745, 769, 848
– 2-point, 57, 426
– 4-point, 57
– advanced, 585
– free, 745, 822
– full, 746, 769, 847
– history of, 577
– in quantum field theory, 57
– prototype, 583
– renormalized, 636
– retarded, 98, 585
Griess, 936
Griffith, 75
Gromov, 74, 75
Gross, 70, 166, 203
Grothendieck, 71
ground state (vacuum), 55, 426, 819
– energy of
– – the electromagnetic quantum field,

301
– – the harmonic oscillator, 142
group, 342
– epimorphism, 342
– equation, 416
– isomorphism, 342
– morphism, 342
– simple, 936
– velocity, 84
Gudermann, 551
GUT (Grand Unified Theories), 207

Hänsch, 70
Haag, 868, 922
– theorem on quantum fields, 751
Haag–Kastler axioms, 869
Haag–Ruelle theory for the S-matrix,

872
Haar, 667
Haar measure, 667
Hackbusch, XI, 570
Hadamard, 295, 556, 621
– regularization of integrals, 621
– state, 744
hadron, 135

Hahn, 69, 73
Hall, 70
Halmos, 741
Halperin, 74
Hamilton, 29, 30, 267, 724
Hamilton–Jacobi differential equation,

726
Hamiltonian, 374
– approach to quantum field theory, 47
Hammurabi, 569
Har Gobind Khorana, 71
Hardy, 285, 288, 569
Hardy–Littlewood theorem, 689
Hardy–Ramanujan theorem, 286
harmonic
– analysis, 533
– map, 554, 813
– oscillator, 23, 45, 96, 409
– wave, 83
Hausdorff, 237
Hawking, 73
– temperature of a black hole, 145
heat conduction equation, 589
heat kernel, 259, 589, 590, 609, 928
– global, 263
– method, 263
Heaviside, 579
– function, 92, 303, 579, 663
– – adiabatic regularization, 690
– system of units, 957
Hecke, 285, 974
– algebra, 287
– operator, 287
Hegel, 974
Heisenberg, 23, 29, 34, 46, 47, 60, 62,

63, 70, 111, 122, 130, 142, 155, 523
– algebra, 936
– particle picture, 42
– philosophical principle, 47
– picture, 395
– S-matrix, 38
– uncertainty inequality, 525
Heisenberg–Born–Jordan commutation

relation, 42, 48, 64
helicity, 147
Helmholtz, 24, 254, 726
– equation, 723, 727
– potential, 727
Hepp, 855, 856
Herring, 73
Hershey, 71
Hertz
– dipole, 722
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– Gustav, 69
– Heinrich, 25
Hess, 69, 131
Hessian, 720
Hewish, 69
Higgs, 74
– mechanism, 183
– particle, 140, 183, 888
high-energy limit, 684, 852
highlights
– in the sciences, 69
– of physics in the 20th century, 943
Hilbert, 17, 21, 29, 67, 68, 337, 370,

527, 542, 544, 551, 724
– action, 813
– Paris lecture, 17
– problems, 17
– space morphism, 340
– spectral
– – family, 38, 370
– – integral, 371
– transform, 93, 666
Hilbert space, 337, 339, 527
– approach, 35
– isomorphism, 340
– rigged, 580
– separable, 680
Hildebrandt, XI, 544, 571
Hilton, 68
hints for further reading, 225, 226, 242,

300, 306, 533, 544, 549, 567, 568,
570, 580, 647, 653, 662, 702, 705,
791, 856, 864, 873, 877, 906, 909

hints for quick reading, 30
Hironaka, 71, 650, 653
– theorem on the resolution of

singularities, 650
Hironaka–Atiyah–Bernstein–Gelfand

(HABG) theorem, 653
Hirsh, 73
Hirzebruch, XI, 74, 925
historical remarks, 21, 60, 69, 71, 99,

106, 129, 137, 150, 186, 202, 246,
284, 527, 741, 743, 768, 815, 850,
856, 859, 860, 862, 892, 939

history of quantum mechanics, 60, 63
Hodge
– conjecture, 79
– homology, 399
– theory, 569, 926
Hölder
– continuous, 556
– Ernst, 724

– Otto, 557
– space, 556
Hörmander, 71, 74, 649
Hoffmann
– Karl-Heinz, XI
– Roald, 70
Hofstadter, 70
Holley, 71
Holmgren, 543
holomorphic, 211, 212, 221
– extension, 220
– function of several variables, 225
homeomorphism, 238
homological algebra, 399, 894
homology, 399
– functor, 14, 275
– group, 14
homotopic, 240
homotopically
– equivalent, 240
– trivial map, 240
homotopy
– class, 273
– functor, 275
– group πk(X), 273
Hopf, 270
– U(1)-bundle, 270
– algebra, 861
– fibration, 270
– map, 270
Hubble, 115
– law, 145
Huber, 71
Hulse, 69, 138
Hurd, 850
Hurwitz, 24, 311
– zeta function, 314
Huygens, 723
– duality, 723
– principle, 621, 727
hydrogen atom, 181, 527
– see also Vol. III (functional analytic

approach), 122
Hylleraas, 570
hypercharge, 156
hyperelliptic integral, 551

icosahedron, 247
iff (if and only if), 94
image, 947
imaginary part, 211, 948
implicit function theorem, 508
index, 260
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– of a stationary point, 247
– of an operator, 260
– picture, 772
indistinguishability principle, 149
induced topology, 238
inertial system, 111
infinitely large number, 399
infinitesimal
– rotation, 411, 412
– transformation, 351, 416, 893
infinitesimally small number, 399
infinitesimals, 398
information, 169, 282
infrared
– catastrophe, 230
– limit, 852
injective, 948
inner
– energy, 761
– product, 338
instanton, 927
Institute for Advanced Study in

Princeton, 67
integral, 530
– equation, 388
– on Riemann surfaces, 222
integration
– by parts, 546
– over orbit spaces, 888
– tricks, 643
interaction
– four fundamental forces in nature,

129
– picture, 43, 396, 751
– – Haag’s theorem, 751
– see also gauge field theory, 884
International Congress of Mathemati-

cians (ICM), 71
International Congress on Mathemati-

cal Physics (ICMP), 943
interplay between mathematics and

physics, 924
intersection number, 232
introductory literature on quantum

field theory, 909
invariant theory, 365
inverse
– Laplace transform, 374
– map, 948
inversion with respect to the unit

sphere, 564
irreducible vertex function, 753
irreversible, 167, 181

isolated pole, 512
isometric operator, 340
isomorphic Hilbert spaces, 340
isomorphism, 332, 345
isospin, 155
– number, 156
isotope, 152
Itô, 73, 74
iterative method, 368
Ivanenko, 114, 130

Jacobi, 19, 30, 259, 311, 551, 724
– inverse problem, 551
Jacobian, 275
Jaffe, 20, 78, 872, 922
Janke, XI
Jensen, 70
John, 215
Joliot, 69
Joliot-Curie, 69
Jones, 72
– polynomial, 266
Joos, 101
Jordan
– Camille, 242
– curve, 242
– – theorem, 242
– Pascual, 29, 49, 64
Jordan–Wigner bracket, 56
Jorgenson, 259
Josephson, 70
Jost
– Jürgen, XI, 191
– Res, 175, 225, 974
Joule, 23
Joyce, 100

Kähler
– geometry, 926
Kac–Moody algebra, 936
Kadanoff, 73
Kähler, 972
– manifold, 72, 277, 936
KAM (Kolmogorov, Arnold, Moser),

653
– theory, 290, 499, 653
Kammerlingh-Onnes, 70
Kant, VII
Kapusta, 759
Kastler, 821, 868, 922
Keller
– Gottfried, XI
– Joseph, 75
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Kelvin, 542, 547, 719
– transformation, 564
Kendall, 70
Kepler, 1, 182, 347, 961
kernel theorem, 683
ket symbol, 361
Ketterle, 70, 687
kick force, 586
Killing form, 887
Kirby, 71
Kirchhoff, 24, 105, 726
Kirchhoff–Green representation

formula, 727
Klein
– Felix, VII, 19, 60, 243, 247, 365, 552
– Oscar, 118
Klein–Gordon equation, 463, 714, 755,

808, 810, 816, 867
Klein–Nishina formula, 118, 121
Kleinberg, 73
Kleppner, 74
Klima, 741
Kline, 246, 547
KMS (Kubo, Martin, Schwinger), 744
– state, 744
knot
– classification, 265
– theory, 267
Kobayashi, 70
Kodaira, 71, 74
Koebe, 19
Kohn, 70, 155, 571
Kolmogorov, 74, 499, 530, 653
– law in turbulence, 961
Kontsevich, 72, 254, 906
Koshiba, 74
Kostyuchenko, 527
Kramers, 61
Kramers–Kronig dispersion relation,

704
Kreimer, 861
– Hopf algebra, 743, 861
Krein, 74
Kroemer, 71
Kronecker, 257
– integral, 257
– symbol, 56, 356, 949
– – generalized, 594
Kroto, 70, 247
Kummer, 974
Kusch, 70

Lafourge, 72

Lagrange, 28, 385, 548, 549, 653
Lagrangian, 30
– and the principle of critical action, 30
– approach to physics, 47
– density, 754, 776, 795, 799, 807
– multiplier, 490, 799, 879
Lamb, 69
Landau
– Edmund, 67, 948
– Lev, 60, 70, 285
– symbol, 948
Landau–Ginzburg potential, 182
Lang, 259
Langlands, 75
– program, 926
Laplace, 91, 254, 259, 285, 374, 544,

557
– transform, 91, 94, 288, 292
– – discrete, 285, 287, 291
Laplace transform, 379
– discrete, 287
Laplacian, 260, 544, 557, 561, 956
laser, 128
lattice, 671
– approximation, 817
– gauge theory, 206, 578
Laue, 69
Laughlin, 70
Lawrence, 69
laws of progress in theoretical physics,

81
Lax, 75
Le Verrier, 113
least-squares method, 354
Lebesgue, 528, 529
– integral, 532
– measure, 532
Lebowitz, 192
Lederman, 70, 73
Lee, 3, 70
left-handed neutrino, 147
left-invariant vector field, 903
Legendre, 294, 974
– transformation, 461, 486
Leggett, 70, 74
Lehmann, 441, 767
Leibniz, 1, 103, 254, 336, 397, 398, 547,

577, 578
Lenard, 1, 26, 69, 114
lepton, 132
– number, 156, 158
Leray, 74, 232, 400
Leucippus, 100



1038 Index

Lewis, 26, 114
Lewy, 74
LHC (Large Hadron Collider), 141
l’Huilier, 247
Libchaber, 73
Lichtenstein, 67
Lie, 24, 29, 60, 199, 347, 411, 724
– algebra, 24, 344
– – so(3), su(2), 269, 345
– – u(X), su(X), gl(X), sl(X), 345
– – basis of, 885
– – isomorphism, 345
– – morphism, 344
– – structure constants of, 885, 886
– bracket, 48, 56, 344
– – product, 269, 344
– functor, 14
– group, 349
– – SO(3), U(n), SU(n), Spin(3), 269,

344
– – U(X), SU(X), GL(X), SL(X), 344
– – basic ideas, 201
– – isomorphism, 350
– – morphism, 350
– – one-parameter, 201, 416
– linearization principle, 350
– subalgebra, 345
– theory for differential equations, 201
Lieb, 1
lifetime, 91, 380, 382
– of a black hole, 145
– of elementary particles, 136
light
– cone, 715
– particle (photon), 26
– ray, 725
– wave, 87
LIGO (Laser Interferometer

Gravitational-Wave Observatory),
139

limits in physics, 684
linear
– functional, 334, 351
– hull, 331
– isomorphism, 332
– material, 699
– morphism, 332
– operator, 332
– response and causality, 703
– response theory, 703
– space, 331
– subspace, 331
link, 265

linking number, 254
– and magnetic fields, 253
Lions, 72
Liouville, 527
– theorem, 220
Lippmann, 29
Lippmann–Schwinger integral equation,

40, 726
Lipschitz, 556
– continuous, 556
– space, 556
Lipschitz-continuous boundary, 548
LISA (Laser Interferometer Space

Antenna), 139
Listing, 254
Littlewood, 288
local
– degree of homogeneity, 624
– functional derivative, 594, 752
– properties of the universe, 229
– symmetry, 176
local-global principle, 220
locality, 871
locally
– holomorphic, 212, 221
– holomorphic at ∞, 219
logarithmic
– function, 222
– matrix function, 348
Lojasewicz, 649
loop, 242
– cosmology, 917
– gravity, 916
Lorentz, 69
– boost, 869
– condition, 797
– transformation, 112
Lovasz, 75
Low, 691, 767
low-energy limit, 852
lower
– half-plane, 665
– semicontinuous, 571
LSZ (Lehmann, Symanzik, Zimmer-

mann), 441, 767
– axiom, 788
– reduction formula, 446, 451, 485, 748,

767, 769, 786
Luria, 71
Lyapunov–Schmidt method, 634

Maclaurin, 311
macrocosmos, 229
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magic
– Dyson S-matrix formula, 824
– Dyson series for the propagator, 390
– Faddeev–Popov formula, 890
– Feynman formula, 419, 764
– formulas for the Green’s operator,

374
– Gell-Mann–Low formula, 429, 847
– LSZ reduction formula, 451, 485,

748, 767, 769, 786
– quantum action formula, 450
– quantum action reduction formula,

748, 767, 769, 784, 805
– survey on magic formulas, 328, 767
– trace formula, 758
– Wick formula, 427
– zeta function formula, 436
magnetic
– field, 698
– field constant, 721, 849
– – of a vacuum μ0, 698, 952
– intensity, 698, 701
– moment, 152
– – anomalous, 150
– – of the electron, 4
– – of the myon, 6
– monopole, 701, 702
– quantum number, 182
– susceptibility, 699
magnetic monopole, 927
magnetism, 152
magnetization, 698, 701, 968
Maiman, 73
majorant criterion, 496, 531
Mandelbrot, 73
manifold, 236, 237
– complex, 237
– oriented, 237
– with boundary, 548
Manin, 929, 1002
Mann, 180
mapping degree, 230
– and electric fields, 255
Marathe, 13, 254, 264
Marczewski, 67
Margulis, 72, 75
Maslov, 705
– index, 433
mass
– density, 594
– hyperboloid, 465
– of a relativistic particle, 25
– shell, 465, 637, 715

Masukawa, 70
mathematical physics, 13
matrix
– algebra, 342
– calculus, 336, 347, 348
– elements, 357
– – of an operator, 336
– group, 342
– mechanics, 64, 65
– rules, 342
Maupertius, 30
Maurin, 67, 569, 925
maximum principle, 261
Maxwell, 25, 102, 254, 284
– equations, 173, 721, 811, 955
– – for material media, 698
McMullen, 72
mean
– energy, 38
– field approximation, 459, 753
– fluctuation, 352, 761
– inner energy, 761
– lifetime, 379, 380
– particle number, 761
– value, 34, 352, 530, 761
mean-square convergence, 533
measurable function, 530
measure, 530
– integral, 418, 530, 605
– zero, 533
measurement of an observable, 356, 760
mega, 951
– electron volt (MeV), 960
Mellin, 292, 311
– transform, 263, 292, 307, 668
– – generalized, 307
– – normalized, 292
Mendeleev, 152
meridian, 250
meromorphic, 215
meson, 135, 158
– model, 463, 775, 867
messenger particle, 132, 133
method of
– least squares, 354, 534
– orthogonal projection, 566, 569
– quantum fluctuations, 658
– second quantization, 52
– stationary phase, 32, 432, 437, 717
metric tensor, 250
Meyer, 152
Michel, 71
Michelson, 25, 69
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micro, 951
microcosmos, 229
microlocal analysis, 705
microstructure, 191
Mikusiński calculus, 290
millennium prize problems, 78
milli, 951
millibarn, 130
Millikan, 26, 69, 114
Mills, 183, 187, 251
Milnor, 71, 74
minimal surface, 813
Minkowski, 24, 771, 974
– metric, 770, 950
– space, 771
– symbol, 771, 949
Minkowskian versus Euclidean model,

866
mirror symmetry, 705, 926, 927, 936
Mittag–Leffler theorem, 512
models
– exactly soluble, 918
– general relativity, 920
– matrix models, 920
– quantum field theory, 914
– random matrices, 920
– solitons, 914
– statistical physics, 914
modular
– curve, 19
– form, 286, 323
– function, 18
moduli space, 15, 225, 554, 932, 935,

939
modulus, 211, 948
Möbius, 243
Mößbauer, 70
– effect, 115
moment
– of a probability distribution, 58
– problem, 753
– trick, 434
momentum, 35, 147
– operator, 677
– – on the real line, 33
monomorphism, 345
monster group, 936
monstrous moonshine module, 936
Montesquieu, 732
moon landing, 491
Mori, 72
morphism, 332, 345
Morse, 253

– index, 252
– theorem, 252
– theory, 252
Moser, XI, 75, 499, 653
motivic Galois group, 862
Müller
– Karl, 70
– Stefan, XI, 191
multi-grid method, 570
multi-index, 538
multilinear functional, 334, 335
multiplicity, 506
Mumford, 72, 75
muon, 132
– lepton number, 156

Nambu, 70, 73, 939
nano, 951
Napier, 182, 347
NASA, 82
natural
– number, 948
– SI units, 953, 966
Navier, 964
Navier–Stokes equations, 79, 964
Ne’eman, 100
Néel, 70
negative
– energy, 380
– real number, 948
neighborhood, 238
– open, 238
net of local operator algebras, 744
Neumann
– Carl, 543
– John von (see von Neumann), 21
neutrino, 130–132
– mass, 147
– oscillations, 147
neutron, 102
Nevanlinna prize in computer sciences,

72
Newman, 295
– adiabatic theorem, 295, 688
Newton, 28, 102, 103, 129, 397, 398,

547, 577, 961
– equation of motion, 35
– polygon, 652
– potential, 557
Nirenberg
– Louis, 705
– Marshall, 71
Nishina, 118
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Nobel prize
– in chemistry, 69
– in physics, 69
Noether, 22, 29, 60, 67, 894
– theorem (see also Vol. II), 22, 31
non-degenerate ground state (vacuum),

426
non-positive, 948
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– transport, 186, 251
Parasiuk, 855, 856
parity, 156, 161
– transformation, 174
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photoelectric effect, 25, 26
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pico, 951
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Planck, 22, 26, 70, 100, 103, 285, 741,
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– time, 953
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Poincaré, 19, 21, 29, 229, 543, 549, 726,
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Poincaré–Friedrichs inequality, 573
Poincaré–Hopf index, 248
Poincaré–Hopf theorem, 247
Poincaré–Lindstedt series, 866
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Prigogine, 71
prime number, 293
– theorem, 293, 294
principal
– argument, 211
– axis theorem, 359
– branch, 222
– part of the square root, 85
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754, 776, 795, 806
– – summary, 806
– – under constraints, 492
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– general relativity, 113
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– special relativity, 112
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also Vol. II), 791, 795, 813, 848, 881,
888
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– in a nutshell, 26
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– Bogoliubov’s formula, 859
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921
– – Hadamard states, 744
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– Ashtekar program, 744
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– – G̊arding–Wightman, 868, 921
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– – Haag–Kastler, 921
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– – Dyson’s S-matrix formula, 824
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– basic strategies, 741, 815
– – Dyson’s operator approach, 815
– – Feynman’s functional integral
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– Becchi–Rouet–Stora–Tyutin (BRST)

symmetry, 892
– conformal, 939
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– Faddeev–Popov ghosts, 890
– Faddeev–Popov–De Witt ghost

approach, 888
– fascination of, 4
– Haag theorem, 751
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– references
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– renormalization (see also Vol. II), 850
– revolution of physics, 22
– rigorous
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reading), 975
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– differential equation, 200
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reversible, 167
Reynolds number, 964
Ricci flow, 928
Richter, 70
Riemann, 10, 19, 60, 222, 229, 259, 293,

551
– conjecture, 79
– curvature tensor, 250
– moduli space, 225
– – and string theory, 225
– sphere, 219
– surface, 19, 222, 237, 553, 932
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830
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– Melvin, 70
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– radiation condition, 727
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– singular, 707
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transformation theory, 327, 357
transition
– amplitude, 39, 353, 757, 825
– maps, 236
– probability, 40, 353, 788, 825
transport equation, 723
triangle inequality, 368
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upper half-plane, 286, 665

vacuum (ground state), 55, 183, 819
– energy, 302
– expectation value, 427
– polarization, 197
– state, 426
Valiant, 73
van der Meer, 70, 138

van der Waerden, 60
van Dyck, 243
Vandermonde, 254
vanishing measure, 533
Varadhan, 75
variation of the parameter, 385
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