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Preface

This volume collects the papers accepted for presentation at MIRAGE 2009.
The MIRAGE conference is continuing to receive international recognition,

with this year’s presentations coming from 25 countries despite the large world-
wide financial crisis. This time Asia submitted far fewer papers than previously
and fewer than Europe. France proved to be the most active scientifically with a
total of 16 submitted papers. Germany came second (10 submitted papers) and
China third (8 papers).

We received a total of 83 submissions and accepted 41 as oral presentations,
over the three-day event. All papers were reviewed by three to four members of
the Program Committee. The final selection was made by the Conference Chairs.

At this point, we wish to thank the Program Committee and additional
referees for their timely and high-quality reviews. We also thank the invited
speakers Luc Van Gool, Frank Multon and Raquel Urtasun for kindly accepting
to present very interesting talks.

mirage 2009 was organized by inria Rocquencourt and took place at inria,
Rocquencourt, close to Versailles. We believe that the conference proved to be
a stimulating experience for all.

March 2009 A. Gagalowicz
W. Philips
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Tracking Human Motion with Multiple Cameras

Using an Articulated Model

Davide Moschini and Andrea Fusiello

Dipartimento di Informatica, Università di Verona,
Strada Le Grazie 15, 37134 Verona, Italy

davide.moschini@gmail.com

andrea.fusiello@univr.it

Abstract. This paper presents a markerless motion capture pipeline
based on volumetric reconstruction, skeletonization and articulated ICP
with hard constraints. The skeletonization produces a set of 3D points
roughly distributed around the limbs’ medial axes. Then, the ICP-based
algorithm fits an articulated skeletal model (stick figure) of the human
body. The algorithm fits each stick to a limb in a hierarchical fashion,
traversing the body’s kinematic chain, while preserving the connection of
the sticks at the joints. Experimental results with real data demonstrate
the performances of the algorithm.

1 Introduction

Tracking or capturing the motion of a human subject is a problem that has a
long history in Computer Vision (see [1] for a survey) and several real-world
applications, such as human-computer interfaces, motion transfer, animation
of virtual characters, activity/gesture/gait recognition, biomechanical studies.
Marker-based commercial systems are available that work at very high frame
rates and very high precision. While it is out of doubt that such speed/accuracy
combination is necessary in biomechanics, it is questionable whether it is needed
when animating a virtual character in a videogame or building a user-interface.
Therefore, there is a niche for less expensive markerless systems that work at a
reduced speed. In this paper we present some preliminary results of an ongoing
project aimed at building a system with those characteristics.

The literature on markerless body tracking in three dimensions can be broadly
split into two groups: those using a stick model for the human body [2,3], roughly
corresponding to its skeleton, and those using a full 3D model of the body’s
shape, in the form of a polygonal mesh or a volumetric model [4,5,6]. Since we
aim at a real-time system, we are forced to work with a stick model. Indeed, a
stick (or skeletal) model has fewer dependencies on anthropometric parameters
than a shape model and can be tracked much faster because of its simplicity.

Our system bases on volumetric reconstruction from multiple cameras (shape
from silhouette [7]) followed by skeletonization and model fitting. Proper skele-
tonization algorithms, like [8,9], are too computationally demanding to process

A. Gagalowicz and W. Philips (Eds.): MIRAGE 2009, LNCS 5496, pp. 1–12, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 D. Moschini and A. Fusiello

more than a few images per second, hence we are proposing here a novel strategy
that produces a very coarse – but fast – approximation of the centerline of the
human body.

The model fitting is based on the well-known Iterative Closest Point (ICP)
algorithm [10]: the model is an articulated stick figure representing the body and
it’s kinematics, the data are 3D points roughly distributed around the centerline
of the limbs. The data are registered to the model using a hierarchical approach
that proceeds by traversing the kinematic chain.

Previous work on using ICP on articulated bodies include [11,6,12]. In [11]
each segment is aligned independently to the data and articulated constraints
are enforced a-posteriori by projection on the constraints surface. Likewise, [6]
uses ICP to find a solution to a problem with relaxed joint constraints, and then
forces hard constraints on that solution, thereby interfering with the result of
ICP, which is optimal in the least-squares sense. Differently from these works we
enforce joints constraint during the registration process. The only work with this
feature is [12], that have been independently proposed. For the sake of clarity,
the discussion on the differences is postponed to Section 5.

Other related approaches include those that optimize the same objective func-
tion as the articulated ICP (namely: the sum of squared distance between data
and model with respect to the pose parameters of all the segments of the struc-
ture) with a different strategy, e.g. Expectation-Maximization [3] or Levenberg-
Marquardt. The first is too computationally demanding for a tracking applica-
tion, whereas the latter have been reported [12] to suffer from convergence to
local minima more than articulated ICP.

2 Human Body Model

In this section we describe the articulated model representing the human body
pose we used in the paper. It consists of a kinematic chain of ten sticks and nine
joints, as depicted in Figure 1. The torso is at the root of tree, children represents

Head

Torso

Arm

Forearm

Thigh

Leg Joint
Limb

Fig. 1. The stick figure body model



Tracking Human Motion with Multiple Cameras 3

limbs, each limb being described by a fixed-length stick and the corresponding
rotation from its parent. Hence, the motion of one body segment can be described
as the motion of the previous segment in the kinematic chain and an angular
motion around a body joint. Only the torso contains a translation that accounts
for the translation of the whole body. Rotations are represented with 3 × 3
matrices. For the sake of simplicity, all the joints are spherical (three d.o.f.) with
no angle limits.

3 Shape from Silhouette

Shape from silhouette consist in recovering a volumetric approximate descrip-
tion of the human body (the visual hull [13]) from its silhouettes projected
onto a number of cameras (three, in our case). Its main advantage over other

Fig. 2. a) Silhouettes; b) projection onto the sweeping plane; c) intersection (slice) d)
final volumetric reconstruction
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reconstruction techniques is that it seamlessly integrates the information from
multiple cameras. Moreover, implementations have been demonstrated that
achieves real-time performances [14] by exploiting the graphical hardware.

Silhouettes are obtained by background subtraction with the software dis-
tributed with the HumanEva dataset [15]. The reconstruction is accomplished
using the technique described in [16,14], with a plane parallel to the floor sweep-
ing the working volume (see Fig. 2). At each step the silhouettes are projected
onto the current plane, using the projective texture mapping feature of OpenGL
and the GPU acceleration, as described in [17]. The slice of the volume corre-
sponding to the plane is reconstructed by doing the intersection of the projected
silhouettes.

4 Skeletonization

The medial axis (or skeleton) of a 3D object is the locus of the centers of maximal
spheres contained in the object. In principle it is a surface, even if it can degen-
erate to a curve or a point. A close relative is the centerline (or curve-skeleton)
that is a curve in 3D space that captures the main object’s symmetry axes and
roughly runs along the middle of an object. This definition matches with the
stick-figures model, hence the data onto which the model is to be registered will
be points on the body’s centerline.

There are many techniques in literature to find skeletons or centerlines of a 3D
object (see [18] for a survey). However, they are too computationally demanding
to fit our design, hence we introduce a new method based on slicing the volume
along three axis-parallel directions (see Fig. 3). In each slice – which is a binary
image – we compute the centroid of every connected component and add it to
the set of centerline points. The slicing along the Z-axis comes for free from the
previous volumetric reconstruction stage, whereas slicing along X and Y must
be done expressly, but uses the same procedure with GPU acceleration.

Our method is similar to [16] which computes the centerline of a body by
finding the centroids of the blobs produced by intersecting the body with planes
orthogonal to Z-axes. Using a single sweep direction has some problems with
some configurations of the body. Consider for example the “T” pose: using only
the scan along the Z-axes we completely loose the arms because by cutting the
body at the arms height produces one single elongated blob containing a slice of
the torso and the two arms, whose centroid is located on the vertebral column.

Our method solves this problem using three sweeps, thus it can be considered
as a refinement of [16]. On the other hand, it can also be regarded as a coarse ap-
proximation of [19], where first 2D skeletons are extracted for each axis-parallel
2D slice of the 3D volume and then they are intersected to obtain the 3D cen-
terline of the object. When the centroid belongs to the centerline our method
returns a subsampling of the centerline, and this is approximately the case for
most configurations of the human body. Yet, when the 2D shape is strongly non
convex and the centroid falls outside the shape itself the method yields spurious
points. However, the subsequent fitting procedure, that will be described in the
following section, has been designed to be robust with respect to outliers.
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Fig. 3. a) slices along Z; b) slices along X and Y; c) centerline points with the stick
figure overlaid

5 Hierarchical Articulated ICP

This section describes the Hierarchical Articulated ICP algorithm for registering
an articulate stick model to a cloud of points. It is based on the well-known
Iterative Closest Point (ICP) [20,10] that estimates the rigid motion between a
given set of 3D data points and a set of 3D model points.

We assume that the data are 3D points distributed roughly around the center-
line of the body’s segments. The data are registered to the model using a hierar-
chical approach that starts from the torso and traverse the kinematic chain down
to the extremities. At each step ICP computes the best rigid transformation of
the current limb that fits the data while preserving the articulated structure.

The closest point search works from the data to the model, by computing for
each data point its closest point on the body segments. Only the matches with the
current segment are considered, all the other should be – in principle – discarded.
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However, the rotation in 3D space of a line segment cannot be computed
unambiguously, for the rotation around the axis is undetermined. In order to cope
with this problem we formulate a Weighted Extended Orthogonal Procrustes
Problem and give a small but non-zero weight also to points that match the
descendants of the current segment in the kinematic chain. In this way they
contribute to constrain the rotation around the segment axis. Think, for example,
of the torso: by weighting the points that match the limbs as well, even if they
cannot be aligned with single rigid transformation, the coronal (aka frontal)
plane can be correctly recovered.

In order to improve ICP robustness against false matches and spurious points,
following [21], we discard closest pairs whose distance is larger than a threshold
computed using the X84 rejection rule. Let ei be the closest-point distances, a
robust scale estimator is the Median Absolute Deviation (MAD):

σ∗ = 1.4826 medi |ei − medj ej|. (1)

The X84 rejection rule prescribes to discard those pairs such that |ei−medj ej | >
3.5σ∗.

The Hierarchical Articulate ICP is is described step by step in Algorithm 1.

Algorithm 1. Hierarchical Articulate ICP

Input: The model S composed by segments and the data set A of 3D points
Output: a set of rigid motions (referred to the kinematic chain) that brings the model
onto the data

1. Traverse the body model tree structure using a level-order or a preorder traversal
method.

2. Let sj ∈ S be the current body segment.
3. Compute the closest points:

(a) For each data point ai ∈ A and for each segment s� ∈ S compute its projection
pi� onto the line containing s� ;

(b) if pi� ∈ s� then add pi� to M (the set of the closest-point candidates), other-
wise add the endpoint of s� to M.

(c) Find bi, the closet point to ai in M.
4. Weight the points: If bi belongs to sj than its weight is 1, otherwise it is ε (chosen

heuristically) for all the descendant and 0 for all the others.
5. If the distance of bi to ai is above the X84 threshold then the weight is set to 0.
6. Solve for the transformation of sj .
7. Apply the transformation to sj and its descendants.
8. Repeat from step 3 until the weighted average distance between closest points

points is less than a given threshold.

Point 6, where a transformation is computed given some putative correspon-
dences, deserves to be expanded, in order to make the paper self-contained. The
problem to be solved is an instance of the Extended Orthogonal Procrustes Prob-
lem (EOPP) [22], which can be stated as follows: transform a given matrix A into a
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given matrix B by a similarity transformation (rotation, translation and scale) in
such a way to minimize the sum of squares of the residual matrix. More precisely,
since we introduced weights on the points, we shall consider instead the Weighted
Extended Orthogonal Procrustes Problem (WEOPP) problem. In formulae:

arg min
R

∥∥(cRA + tu� − B)W
∥∥2

F
subject to RT R = I (2)

where matrices A and B are (3 × p) matrices containing p corresponding point
in 3-D space, R is (3 × 3) orthogonal rotation matrix, t is a (3 × 1) translation
vector, c is scale factor, u is a p×1 vector of ones, W is a (p×p) diagonal matrix
weighting the p points, and ‖·‖F denotes the Frobenius norm.

The solution to the the problem (derived in [23]) is based on the Singular
Value Decomposition (SVD). Let

UDV � = Aw

(
Ip − uwu�

w

u�
wuw

)
B�

w (3)

be the SVD decomposition of the matrix on the right-hand side1, where Aw =
AW , Bw = BW , and uw = Wu. The sought transformation is given by (we
omit the scale c that is not needed in our case):

R = V

⎡⎣1 0 0
0 1 0
0 0 det(V UT )

⎤⎦U� (4)

t = (Bw − RAw)
uw

u�
wuw

(5)

The diagonal matrix in (4) is needed to ensure that the resulting matrix is a
rotation [24]

The Weighted Orthogonal Procrustes Problem (WOPP) problem is a special
case of WEOPP and the solution can be derived straightforwardly by setting
u = 0. In our case we use WEOPP for the torso and WOPP (only rotation) for
the limbs.

The hierarchical articulate ICP is deterministic, every limb is considered only
once and brought into alignment with ICP. The transformation that aligns a
limb sj is determined mostly by the points the matches sj and secondarily by
the points that matches its descendants. The transformation is applied to sj and
its descendants, considered as a rigid structure. The output of the algorithm
represents the pose of the body. In a tracking framework, the pose obtained at
the previous time-step is used as the initial pose for the current frame.

A similar algorithm has been independently proposed in [12]. The main dif-
ference is in the way the basic ICP is applied to the articulated structure, which
leads to different schema. In [12] at each step of the algorithm the subtree of the

1 Please note that A
uwu�

w

u�
wuw

is a matrix of the same size as A with identical columns,

each of them equal to the centroid of the points contained in A.



8 D. Moschini and A. Fusiello

selected joint is rigidly aligned using ICP with no weights, i.e., all the descen-
dants of the joint plays the same role in the minimization. As a result, the same
joint needs to be considered more than once to converge to the final solution. In
this regard our approach is less computationally demanding. On the other hand
one error in the alignment of a limb propagates downward without recovery,
whereas in [12] a subsequent sweep may be able to correct the error, hence [12]
seems to be more tolerant to a looser initialization.

6 Experimental Results

The body tracker has been tested on sequences taken from the HumanEva-I
dataset [15]. All the sequences in HumanEva-I have been calibrated using the
Vicon’s proprietary software and the motion data saved in the common c3d file
format. The dataset contains multiple subjects performing a variety of actions
like walking, running, boxing, etc. In particular we used the sequences called “S2
Jog”, “S2 Throwcatch”. Figures 4 and 5 show some sample frames from these
sequences together with the output of the silhouette extraction.

Fig. 4. Sample frames of “S2 Jog” and silhouettes

Validation of the algorithm is done by comparing the angles of the ground-
truth with the angles of the computed model. Figure 6 reports the ground truth
and estimated joint angles of the torso, right shoulder and right elbow in the
two sequences. It can be seen that the estimated angles follows fairly closely the
ground truth. There some spikes where the error grows but the tracker is able
to recover in the subsequent frames. We expect that a Kalman filter will be able
to smooth out significantly those spikes.

This results are remarkable if one considers the coarseness of the volumetric
reconstruction, due to the small number of cameras (three) and the poor quality
of image silhouettes.
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Fig. 5. Sample frames of “S2 Throwcatch” and silhouettes
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Fig. 6. Plots comparing ground truth and estimated joint angles of the torso, right
shoulder and right elbow in the two sequences used for the experiments (the sequence
name is on the right).

For a quantitative comparison we computed the following angular error for
each joint, in each frame of the sequence:

e(R1, R2) = ∠(R1R
�
2 ) (6)

where ∠(·) denotes the angle of the axis-angle representation of the rotation,
and can be computed with ∠(R) = arccos((tr(R) − 1)/2).
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Table 1. Mean and standard deviation of the errors (in radians) for each joint of the
body for the sequences used in the experiments

S2 Jog S2
Throw-
catch

Torso
Mean 0.29 0.21
Std. dev. 0.40 0.57

Neck
Mean 0.59 0.82
Std. dev. 0.74 1.09

Left shoulder
Mean 0.73 0.44
Std. dev. 0.81 0.61

Right shoulder
Mean 0.63 0.53
Std. dev. 0.79 0.53

Left hip
Mean 0.96 0.56
Std. dev. 0.12 0.87

Right hip
Mean 0.76 1.66
Std. dev. 1.08 1.67

Left elbow
Mean 0.68 0.55
Std. dev. 0.81 0.80

Right elbow
Mean 0.48 0.56
Std. dev. 0.65 0.81

Left knee
Mean 0.51 0.25
Std. dev. 0.70 0.25

Right knee
Mean 0.33 0.70
Std. dev. 0.38 0.77

Mean and standard deviation of the error are shown in Table 1. The magnitude
of the error is still higher than the target standard, which is about three degrees,
as reported in [25]. We expect, however, that a Kalman filter will be able to
smooth out significantly the aforementioned spikes and thus reduce significantly
the error.

7 Conclusions and Future Work

This paper has proposed a new ICP-based algorithm for tracking articulated
skeletal model of a human body. The proposed algorithm takes as input multi-
ple calibrated views of the subject, computes a volumetric reconstruction and the
centerlines of the body and fits the skeletal body model in each frame using a hi-
erarchic tree traversal version of the ICP algorithm that preserves the connection
of the segments at the joints. The proposed approach uses only the kinematic
constraints and no other assumptions are made on the position of the body.
This implies that we can recognize potentially all the body configuration.

The results presented here demonstrate the feasibility of the approach, which
is is intended to be used in complete system for vision-based markerless human
body tracking.
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The current Matlab implementation takes about 4 seconds to process a frame
on a laptop with an Intel Core Duo Processor T2250. However, being the algo-
rithm still in a prototypal stage, we are confident that a careful implementation
in C/C++ could achieve nearly real-time performances. Indeed all the design
choices focused on computational efficiency: the use of a simple stick model, the
volumetric reconstruction on the GPU, the fast approximated skeletonization,
the hierarchical ICP.

Future work will be aimed at optimizing the implementation and tackling the
issue of pose initialization.
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Abstract. Shape recovery of specular surface is a challenging task; camera im-
ages of these surfaces are difficult to interpret because they are often character-
ized by highlights. Structured Highlight approach is a classic and effective way 
for specular inspection, this paper suggests a new strategy to recover dense 
normals of a specular surface and reconstruct its shape by combining the ideas 
of Structured Highlight, color source coding, highlight stripe and its transla-
tions. Point sources with different colors are positioned on orbits to illuminate a 
specular object surface. These point sources are scanned, and highlights on the 
object surface resulting from each point source are used to derive local surface 
orientation. Dense normal information can be recovered by translating these or-
bits. Some experimental system configurations are given. The simulation results 
show that the new method is feasible and can be used to reconstruct shape of 
specular surface in a high precision. 

1   Introduction 

The problem of shape from shading has received great attention from the computer 
vision community. The brightness pattern of one or more images depends intricately 
on the prior knowledge of surface properties, imaging geometry, and lighting condi-
tions. Most approaches to this problem have assumed that surfaces are Lambertian, 
that is, incident light is scattered by the surface so that the perceived brightness is 
independent of the direction of view. In order to reconstruct non-lambertian surfaces, 
many works have been done in the area of reconstructing or estimating surfaces from 
specularities[1~9]. In recent papers , Magda et al. [10] and Zickler et al. [11] have 
successfully made use of Helmholtz reciprocity in stereo reconstruction. This princi-
ple determines that the bidirectional reflectance distribution function (BRDF) of a 
surface is symmetric on the incoming and outgoing angles. [12] introduces a novel 
reconstruction algorithm for continuous surfaces that makes use of Helmholtz recip-
rocity without resorting to multiple image pairs. 

Many practical tasks in robot vision and inspection require interpretation of images 
of specular, or shiny, surfaces where the perceived brightness becomes a very strong 
function of viewing direction due to highlights or reflections from the source.  
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For a purely specular surface, light is reflected such that the angle of incidence 
equals the angle of reflection. Therefore, illumination of a specular surface using a 
point source of light does not produce smooth shading on the surface. Camera im-
ages of such surfaces are difficult to interpret because they are characterized by 
bright points or highlights, and inspection and reconstruction of surface shape are 
challenging tasks. The structured highlight technique [13,14] uses a large number of 
point sources to illuminate the inspected object. The point sources are uniformly 
distributed around the object, and images of the object are obtained by using a cam-
era. The binary-coded point sources are scanned, and highlights on the object surface 
resulting from each point source are used to derive local surface orientation. Some 
features of this approach include: 1) monochromatic point sources are distributed on 
a semi-sphere; 2) the recovered surface normals are sparse, which can be used in 
surface inspection but are not sufficient to reconstruct surface in a high precision. 
Zheng et al. proposes surface reconstruction of an object on a turn table from specu-
larities [15], where highlight stripes are used to estimate surface normals. This 
method can be used to reconstruct specular objects such as metallic and plastic sur-
faces through object rotations by using a series of input images. However it is not an 
effective way for much curved objects such as sphere. Recently, shape from distor-
tion [16] is introduced. It integrated the interference of patterns with different fre-
quencies and the reconstruction of the surface from the environment matte to obtain 
the shape in a high accuracy. 

In this paper, we propose a new approach to obtain 3D information of specular sur-
face using color highlight stripe and point source coding. This method can estimate 
dense surface normals by using the binary coding scheme of point sources with dif-
ferent primitive colors, color highlight stripe and its translations. Not only does it 
adopt the algorithm based on Structured Highlight, but also combines with the idea of 
highlight stripe and its translation.  

The rest of this paper is organized as follows. Sec.2 describes algorithm principle 
using color highlight stripe and its translations; Sec.3 describes two implementation 
schemes and the simulation experiments. Experimental results are given in Sec. 4 , 
discussions and  conclusions are given in Sec. 5 and Sec. 6. 

2   Algorithm Principle 

The structured highlight method in [14] is difficult to obtain dense normal informa-
tion of a specular surface since the limited point sources located on the semi-sphere in 
practice. In order to obtain dense normals of a specular surface by imaging the surface 
as few as possible, we propose new ways to estimate surface 3D information of a 
specular object by combining light source binary coding scheme, color highlight 
stripes and their translations.  

In our initial design, the linear light consists of 2 1N −  point light sources, where 
N=4 or 5 is enough. When the point sources are scanned, the highlight stripe is gener-
ated by the linear light. According to [14], by using the binary coding scheme and 

taking N images of the specular surface, 2 1N −  normals can be estimated from the 
highlight stripe. Then, by translating the linear light at a distance and taking another N 
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images of the surface, the other 2 1N −  point normals can be obtained. Therefore, 
dense surface normals can be recovered by translating highlight stripe again and again.  

One characteristics of specular surface is that the color of received reflection light 
is the same as the color of incident light source. By using this property, we can utilize 
color point sources to improve the above algorithm, which allows us to take fewer 
photos while keep the count of recovered point normals. 

The system configuration is shown in Fig. 1, where the specular object is placed on 
a plane, and some point light sources are put above it in a line, we call this line “Light 
Stick”, which can be moved from left to right. One camera is put just above the ob-
ject. The point sources are distant from the object surface so that the size of the object 
is small compared with the distance between each point source and the object. Under 
this assumption, the angle of incidence of illumination is determined only by the posi-
tion of the source and does not depend on the relative position of illumination on the 
object surface. 

 

Fig. 1. System configuration illustration 

The light sources on the light stick may have different colors, such as red, green and 
blue, and binary coding scheme for point sources is used for different colors separately. 
Our simulation test shows that the surface normal recovery algorithm with light trans-
lation is feasible and it is especially effective for less curved object. However, since the 
light stick is located above the object and it only translates on the plane parallel to the 
plane that object lies in, so the range of object lighted by the light sources is limited. 
To overcome the disadvantage, we further improve this scheme. That is, two orbits are 
used to fix the light sources (Fig.2a); each orbit is a bow which consists of three light 
sticks as depicted in Fig.2b. For each orbit, its height is half of its width. 

In order to get well-distributed highlights on the specular surface, the light sources 
should be positioned in a particular way. Fig.2a shows the red light sources and green 
ones are fixed alternately. Fig.2b illustrates the simple principle we used to fix the 
light sources evenly on the orbit. 

During the process of normal recovery, one orbit will translate along the X-axis 
(Fig.2a), and it will stop in several positions so that the camera can take photos. For 
convenience, we will use X-Orbit to indicate the orbit which moves along the X-Axis. 
Y-Orbit is named similarly. By moving the X-Orbit and the Y-Orbit in sequence, that 
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(a) 

 

(b) 

Fig. 2. (a) Two orbits used to fix the light sources (b) Distribution of light sources on an orbit 

is, when the X-Orbit is moving, all the lights on the Y-Orbit are turned off, we can 
estimate the surface normals by using the binary coding scheme for different color 
sources on one orbit separately. 

To reduce the photo number, a natural way is to translate the X-orbit and the Y-orbit 
simultaneously. But this made difficult to estimate surface normals if light sources on 
each orbit are binary-coded separately. For example, there will be two red specular 
speckles lighten by point source k (actually each orbit has a point source coded as k), 
and it can’t be told which speckle is lighten by which point source. One solution is to 
change the color scheme: fix all the red color sources in one orbit and fix all the green 
sources in the other orbit so that we can tell which speckle is lighten by which point 
source by checking the color of the speckle. Yet this method has its drawback. First, 
when the number of point sources is fixed, putting all the same color lights in one orbit 
will reduce the estimation precision of surface normal because the distance between 
adjacent speckles is smaller, in the worst case they may mix up into a bigger speckle. 
Second, at most three orbits can be used because there are only three independent color 
components - red, green and blue. To solve this problem thoroughly, we introduce a 
new coding scheme, called united-coding, that is, we code point sources according to 
its color and ignore the orbit they are fixed on. With the united-coding scheme, light 
sources with different colors are placed alternately in each orbit, and the number of 
orbits can be set by our need. Another advantage is that the adjacent speckles will have 
different colors, so the center of them can be estimated more accurately. 

To sum, we introduce the following new ideas to estimate normals and shape of a 
specular surface: 1) Replacing linear light with orbit so that highlight stripe is gener-
ated by orbit which consists of point sources; 2) Different color light sources are used 
to reduce the number of imaging the specular surface while the amount of the recov-
ered normals remain the same; 3) United-coding scheme is introduced so that we can 
take advantage of the color information while break the limitation of 3 independent 
color components; 4) Point sources with different colors are located alternately in 
each orbit so that center of speckles can be estimated more accurately. 
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3   Implementation 

The Radiance software [17] is used to render the specular object and image it. In our 
simulation tests, a top-half metal sphere is created and the material of the sphere sur-
face is listed in Table 1. The low diffuse, high specular and low coarseness parame-
ters means the object is a high specular object. 

Table 1. The material parameter for the specular object in Radiance 

Color Diffuse Specular Coarseness 

(0.6 0.62 0.64) 0.05 0.95 0.02 

3.1   United Binary Coding Scheme with Two Kinds of Color Sources 

In the system setup shown in Fig.3, the 30 light sources with 15 reds and 15 greens 
are alternately fixed on each orbit. The X-orbit translates alone the X-axis, and pauses 
in predefined stops. The two X-orbits keep a distance of a fixed number of stops and 
translate toward the same direction simultaneously. The two Y-orbits are similar. In 
this implementation, the two X-orbits and the two Y-orbits are moving in sequence. 

 

(a) (b) 

Fig. 3. System setup with two kinds of color sources  

 
Applying the united-coding scheme, we code green point sources in two X-orbits 

(two Y-orbits) as a whole. For example, the red point sources in the X-orbit 1 are 
coded from 1 to 15, and the red point sources in the X-orbit 2 are coded from 16 to 
30. According to the binary code scheme, to recover normals of 30 red speckles, 5 
pictures are needed to be taken. Furthermore, these 5 pictures can also be used to 
recover normals of 30 green speckles. So we totally recover normals of 60 color 
speckles with 5 pictures. To recover 1440 normals, 120 pictures are taken and 24 
translation times are done. Two sample input images are shown in Fig.4. 
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(a) (b) 

Fig. 4. Sample input images with red and green sources 

 

(a) 

 

(b) 

Fig. 5. (a) Illustration of the recovered normals (b) Recovered normals’ distribution 

 
The recovered 1440 normals are illustrated in Fig.5a, their distribution is dense and 

uniformly, as is shown in Fig.5b. 

3.2   United Binary Coding Scheme with 3 Kinds of Color Sources 

In the system setup shown in Fig.6a, the 45 light sources with 15 red, 15 green and 15 
blue ones are fixed alternately in each orbit. Other configurations are the same as the 
setup of the Fig. 3. 
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(a) 

 

(b) 

Fig. 6. (a) System setup with three color sources (b) Sample input images with three kinds of 
color sources 

 
Applying the United-coding, to recover the 90 normals of colored speckles, only 5 

pictures are needed too. One of the pictures taken is given in Fig.6b. 
To recover 1440 surface normals, 80 pictures are taken, and 16 translation times are 

done. Since the speckles are much closer in this case, few normals of speckles were 
not able to be recovered because they are mixed up by more than one concolorous 
speckles. In our test, 1369 normals are recovered.  

4   Result Evaluations 

4.1   Evaluation Methods 

Two different evaluation approaches are used to evaluate the accuracy of the result; 
they are Normal Error approach and Height error approach. In the Normal Error ap-
proach, the average dot product error and average angle error between real normal and 
the recovered normal on each speckle are measured.  

 

Fig. 7. The reconstructed shape of the specular semi-sphere surface 
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In the Height error approach, firstly the spline interpolation method is utilized to es-
timate the other normals on the specular surface. And then the height of every point 
on the semi-sphere surface is obtained using a gauss kernel integration approach [18]. 
The reconstructed shape is depicted in Fig.7. The relative height error between the 
real object and the recovered object is computed. 

4.2   Experiment Results 

We use the Normal Error approach and Height error approach to evaluate the results 
of our experiments. The results (Table 2) show that the recovered shape is in a high 
precision. 

Table 2. The experimental results 

 
Average angle 

err (deg) 
Max angle err 

(deg) heightE  

Scheme in Sec. 3.1 0.6628 1.6206 0.500% 

Scheme in Sec. 3.2 0.6917 1.8119 0.467% 

5   Further Discussions 

A more efficient solution is described here. Translate several orbits simultaneously 
both in X-axis and Y-axis can recover normals with even fewer images and less trans-
lation times. For example, we can place 45 light sources with 15 red, 15 green and 15 
blue ones alternately in each orbit. Let the two parallel Y-orbits and the two parallel 
X-orbits translate simultaneously (Fig.8). In this case, taking 6 photos can recover 180 
normals. If all the orbits translate 8 times, 48 photos are taken and up to 1440 normals 
can be recovered in theory.  

 

Fig. 8. System setup with the two X-orbits and the two Y-orbits translating simultaneously 
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6   Conclusions 

Specular surface recovery is a challenging task. By combining the ideas of Structured 
Highlight, color source coding, highlight stripe and its translations, we propose a new 
strategy to recover dense specular surface normals and reconstruct its shape in a high 
precision. This method can be applied to both much curved and less curved specular 
objects in principle. Simulation test shows that this method is feasible and practical.  
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Abstract. We present a 3D mesh denoising method based on kernel
density estimation. The proposed approach is able to reduce the over-
smoothing effect and effectively remove undesirable noise while preserv-
ing prominent geometric features of a 3D mesh such as curved surface
regions, sharp edges, and fine details. The experimental results demon-
strate the effectiveness of the proposed approach in comparison to exist-
ing mesh denoising techniques.

Keywords: Mesh denoising; kernel density; anisotropic diffusion.

1 Introduction

Recent advances in computer and information technology have increased the use
of 3D models in many fields including medicine, the media, art and entertain-
ment. With the increasing use of 3D scanners to create 3D models, which are
usually represented as triangle meshes, there is a rising need for robust mesh
denoising techniques to remove inevitable noise in the measurements. Even with
high-fidelity scanners, the acquired 3D models are usually contaminated by noise,
and therefore a reliable mesh denoising technique is often required.

In recent years, a variety of techniques have been proposed to tackle the 3D
mesh denoising problem [1–5]. The most commonly used mesh denoising method
is the so-called Laplacian flow which repeatedly and simultaneously adjusts the
location of each mesh vertex to the geometric center of its neighboring vertices [1].
Although the Laplacian smoothing flow is simple and fast, it produces, however,
the shrinking effect and an oversmoothing result. The most recent mesh denois-
ing techniques include the mean, median, and bilateral filters [6–8] which are
all adopted from the image processing literature. Also, a number of anisotropic
diffusion methods for triangle meshes and implicit surfaces have been proposed
recently. Desbrun et al. [9, 10] introduce a weighted Laplacian smoothing tech-
nique by choosing new edge weights based on curvature flow operators. This mesh
denoising method avoids the undesirable edge equalization from Laplacian flow
and helps preserve curvature for constant curvature areas. However, re-computing
new edge weights after each iteration results in a more expensive computational
cost. Clarenz et al. [11] propose a multiscale surface smoothing method based on
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the anisotropic curvature evolution problem. By discretizing nonlinear partial dif-
ferential equations, this method aims to detect and preserve sharp edges by two
user defined parameters which are a regularization parameter for filtering out high
frequency noisy and a threshold for edge detection. This multiscale method was
also extended to the texture mapped surfaces [12] in order to enhance edge type
features of the texture maps. Different regularization parameters and edge detec-
tion threshold values, however, need to be defined by users onto noisy surfaces
and textures respectively before the smoothing process. Bajaj et al. [13] present
a unified anisotropic diffusion for 3D mesh smoothing by treating discrete sur-
face data as a discretized version of a 2D Riemannian manifold and establishing
a partial differential equation (PDE) diffusion model for such a manifold. This
method helps enhance sharp features while filtering out noise by considering 3-
ring neighbors of each vertex to achieve a nonlinear approach of the smoothing
process. Tasdizen et al. [14, 15] introduce a two-step surface smoothing method
by solving a set of coupled second-order PDEs on level set surface models. In-
stead of filtering the positions of points on a mesh, this method operates on the
normal map of a surface and manipulates the surface to fit the processed normals.
All the surface normals are processed by solving second-order equations using im-
plicit surfaces. In [16], Hildebrandt et al. present a mesh smoothing method by
using a prescribed mean curvature flow for simplicial surfaces. This method de-
velops an improved anisotropic diffusion algorithm by defining a discrete shape
operator and principal curvatures of simplicial surfaces.

Roughly speaking, mesh denoising techniques can be defined as the require-
ment to adjust vertex positions without changing the connectivity of the 3D
mesh, and may be classified into two main categories: one-step and two-step
approaches. The one-step approaches directly update vertex positions using the
original vertex coordinates and a neighborhood around the current vertex, and
sometimes face normals too. On the other hand, the two-step approaches first
adjust face normals and then update vertex positions using some error minimiza-
tion criterion based on the adjusted normals. In many cases, a single pass of a
one-step or two-step approach does not yield a satisfactory result, and there-
fore iterated operations are performed. In this paper, we present a 3D mesh
denoising method based on kernel density estimation. The proposed technique
falls into the category of one-step approaches. The main idea is to use Laplacian
smoothing algorithm combined with Gaussian kernel density estimators in order
to reduce the over-smoothing problem and remove the noise effectively while
preserving the nonlinear features of the 3D mesh such as curved surface regions,
sharp edges, and fine details.

The rest of this paper is organized as follows. In the next section, we briefly
recall some basic concepts of 3D mesh data, and then a general formulation
of the 3D mesh denoising problem is stated. In Section 3, a kernel-based non-
linear diffusion is introduced. In Section 4, we provide experimental results to
demonstrate a much improved performance of the proposed method in 3D mesh
denoising. Finally, some conclusions are included in Section 5.
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2 Problem Formulation

In computer graphics and geometric-aided design, triangle meshes have become
the de facto standard representation of 3D objects. A triangle mesh M may
be defined as M = (V , E) or M = (V , T ), where V = {v1, . . . , vm} is the set of
vertices, E = {eij} is the set of edges, and T = {t1, . . . , tn} is the set of triangles.
Each edge eij = [vi, vj ] connects a pair of vertices {vi, vj}. Two distinct vertices
vi, vj ∈ V are adjacent (denoted by vi ∼ vj or simply i ∼ j) if they are connected
by an edge, i.e. eij ∈ E . The neighborhood (also referred to as a ring) of a vertex
vi is the set v�

i = {vj ∈ V : vi ∼ vj}. The degree di of a vertex vi is simply
the cardinality of v�

i . Fig. 1 depicts an example of a neighborhood v�
i , where the

degree di of the vertex vi is equal to 6.

vi

Fig. 1. Illustration of vertex neighborhood v�
i

The mean edge length �̄ of the mesh M is given by

�̄ =
1
|E|
∑

eij∈E
‖eij‖, (1)

where ‖eij‖ = ‖vi − vj‖ if vi ∼ vj , and ‖eij‖ = 0 otherwise.

2.1 Mesh Denoising Model

In all real applications, measurements are perturbed by noise. In the course of
acquiring, transmitting or processing a 3D model for example, the noise-induced
degradation often yields a resulting vertex observation model, and the most
commonly used is the additive one,

v = u + η, (2)



26 K. Tarmissi and A.B. Hamza

where the observed vertex v includes the original vertex u, and the random noise
process η which is usually assumed to be Gaussian with zero mean and standard
deviation σ.

Mesh smoothing refers to the process of recovering a 3D model contaminated
by noise. The challenge of the problem of interest lies in recovering the vertex u
from the observed vertex v, and furthering the estimation by making use of any
prior knowledge/assumptions about the noise process η.

Generally, 3D mesh denoising methods may be classified into two major cat-
egories: isotropic and anisotropic. The former techniques filter the noisy data
independently of direction, while the latter methods modify the diffusion equa-
tion to make it nonlinear or anisotropic in order to preserve the sharp features
of a 3D mesh. Most of these nonlinear methods were inspired by anisotropic-
type diffusions in the image processing literature. The diagram shown in Fig. 2
summarizes the main classification of 3D mesh denoising approaches.

comprises
an assortment

of other
methods

based on
anisotropic
geometric
diffusion

based on
bilateral

filters

Mesh
Denoising

Isotropic
Denoising

Anisotropic
Denoising

based on
normal

filtering and
vertex position

updating

Fig. 2. Classification of 3D mesh denoising techniques

3 Proposed Method

Kernel density estimates are output as smooth curves with the amount of smooth-
ing governed by a bandwidth value used during calculation [18]. Densities are
calculated by placing kernels over the distribution of data points [18]. Ker-
nels that overlap one another increase density values in shared areas of the
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distribution. For univariate and multivariate data, the Gaussian kernel is the
most commonly used one. In particular, for 3D data, the Gaussian kernel is
given by

K(x) =
1

(2π)
3
2

exp
(
−‖x‖2

2

)
, ∀x ∈ R3. (3)

The proposed approach updates iteratively each mesh vertex according to the
following rule

vi ← vi +
∑

vj∈v�
i

KHi(vi − vj)
1√
di

(
vj√
dj

− vi√
di

)
(4)

where
KHi(vi − vj) =

1
det(Hi)

K
(
H−1

i (vi − vj)
)

(5)

and Hi is a symmetric positive semi-definite matrix, which defines the covariance
matrix around the neighborhood of vertex vi, and it is given by

Hi =
∑
j∼i

(vj − ci)(vj − ci)T , where ci =
1
di

∑
j∼i

vj . (6)

It is worth pointing out that Hi is also called the bandwidth matrix in the
context of kernel smoothing and it measures the amount of smoothing.

4 Experimental Results

This section presents experimental results where the mean filtering [6], angle
median filtering [6], Laplacian flow [1], weighted Laplacian flow [9, 10], geometric
diffusion [11], bilateral filtering [7], and the proposed method are applied to noisy

Fig. 3. Output results of our proposed mesh denoising approach for different values of
the regularization parameter. The number of iterations is set to 5.
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Fig. 4. Output results of our proposed mesh denoising approach at different iteration
numbers. The regularization parameter is set to λ = 0.8.

(a) (b)

Fig. 5. (a) Noisy model; (b) output result of our proposed approach with λ = 0.8. The
number of iterations is set to 6.

3D models obtained by adding Gaussian noise to the original 3D models. The
standard deviation of the noise was set to 2% of the mean edge length, that is
σ = 0.02 �̄, where �̄ is given by Eq. (1).
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In practical applications, the covariance matrix Hi given by Eq. (6) may be-
come singular. To circumvent this singularity problem and also to ensure the sta-
bility of the proposed algorithm, we use a regularized covariance matrix as follows

H̃i = Hi + λ I (7)

where I is a 3 × 3 identity matrix and λ is a positive regularization parameter.
Fig. 3 displays the mesh denoising results obtained by our proposed method for

different values of the regularization parameter λ, where the number of iterations
was to set to 5. As can be seen in Fig. 3, the value λ = 0.4 gives the best denoising
result for the 3D rabbit model. And as a the value of λ increases, the rabbit model
becomes more noisier. Also, we noticed through extensive experimentation that
a smaller value of λ often tends to produce a distorted shape of the 3D object.
Therefore, the regularization parameter should be tuned to be small enough to
capture the intrinsic shape of a 3D object and large enough not to recapture noise.

Fig. 4 depicts the output results of the proposed approach at different iteration
numbers. These results show that using the proposed approach, the noise can
be removed with just a small number of iterations and that the sharp features
are well preserved when the regularization parameter is appropriately chosen.

4.1 Qualitative Evaluation of the Proposed Method

Fig. 5(b) depicts the output result of the proposed algorithm on an enlarged
view of the noisy 3D cow model’s head shown in Fig. 5(a). Note that the geo-
metric structures and the fine details around the eye and the ear of the denoised
cow model are very well preserved. Fig. 6(c) through Fig. 6(h) show the denois-
ing results obtained via Laplacian flow, weighted Laplacian flow, mean filtering,
angle median filtering, bilateral filtering, and the proposed method respectively.
These results clearly show that our method outperforms all the mesh filtering
techniques used for comparison. Moreover, the proposed method is simple and
easy to implement. One main advantage of the proposed algorithm is that it
requires only a few iterations to smooth out the noise, whereas the weighted
Laplacian flow, the mean and the angle median filters require substantial com-
putational time. This better performance is in fact consistent with a variety of
3D models used for experimentation. Fig. 7 shows the denoising results for the
3D Igea model.

4.2 Quantitative Evaluation of the Proposed Method

Let M and M̂ be the original model and the denoised model, with vertex sets
V = {vi}m

i=1 and V̂ = {v̂i}m
i=1 respectively. To quantify the performance of the

proposed approach, we compute the visual error metric [19] given by

E =
1

2m

(
m∑

i=1

‖vi − v̂i‖2 +
m∑

i=1

‖I(vi) − I(v̂i)‖2

)
, (8)
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Fig. 6. Denoising results for the 3D rabbit model: (a) original model; (b) noisy model;
(c) Laplacian flow; (d) weighted Laplacian flow; (e) mean filtering; (f) angle median
filtering; (g) bilateral mesh flow; (h) our proposed approach. The number of iterations
is set to 3.

where I is the geometric Laplacian operator defined as

I(vi) = vi −
1
di

∑
vj∈v�

i

vj .

The values of visual error metric for some denoising experiments are depicted
in Fig. 8(a) and Fig. 8(b) which clearly show that the proposed method gives
the best results, indicating the consistency with the subjective comparison.



Geometric Mesh Denoising via Multivariate Kernel Diffusion 31

Fig. 7. Denoising results for the 3D Igea model: (a) original model; (b) noisy model;
(c) Laplacian flow; (d) weighted Laplacian flow; (e) mean filtering; (f) angle median
filtering; (g) bilateral mesh flow; (h) our proposed approach. The number of iterations
is set to 6.
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Fig. 8. Visual error comparison results between the proposed approach and other meth-
ods for the (a) rabbit and (b) cow models
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Fig. 9. Visual error vs. regularization parameter with different number of iterations
for the (a) rabbit and (b) cow models

4.3 Choice of the Regularization Parameter

The regularization parameter should be tuned to be small enough to capture
the intrinsic shape of a 3D object and large enough not to recapture noise. This
parameter may be estimated experimentally using the visual error as shown in
Fig. 9(a) and Fig. 9(b), which display the plots of the visual error vs. the regu-
larization parameter for different iteration numbers of the proposed approach.

5 Conclusions

In this paper, we introduced a simple and fast 3D mesh denoising method using
the concept of multivariate kernel density estimation. The main idea behind our
proposed approach is to use a regularized bandwidth matrix of the kernel density
in order to avoid over-smoothing and to fully preserve the geometric structure of
the 3D mesh data, while effectively removing undesirable noise. The experimental
results showed that our proposed method outperforms existing mesh denoising
techniques.
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Abstract. In this paper we present a method for the automatic pro-
cessing of scanned human body data consisting of an algorithm for the
extraction of curve skeletons of the 3D models acquired and a procedure
for the automatic segmentation of skeleton branches. Models used in our
experiments are obtained with a whole-body scanner based on struc-
tured light (Breuckmann bodySCAN, owned by the Faculty of Exercise
and Sport Science of the University of Verona), providing triangulated
meshes that are then preprocessed in order to remove holes and cre-
ate clean watertight surfaces. Curve skeletons are then extracted with a
novel technique based on voxel coding and active contours driven by a
distance map and vector flow. The skeleton-based segmentation is based
on a hierarchical search of feature points along the skeleton tree.

Our method is able to obtain on the curve skeleton a pose-independent
subdivision of the main parts of the human body (trunk, head-neck re-
gion and partitioned limbs) that can be extended to the mesh surface
and internal volume and can be exploited to estimate the pose and to
locate more easily anthropometric features.

The curve skeleton algorithm applied allows control on the number of
branches extracted and on the resolution of the volume discretization, so
the procedure could be then repeated on subparts in order to refine the
segmentation and build more complex hierarchical models.

Keywords: Whole-body scanner, Curve skeleton, segmentation.

1 Introduction

Recent advances on scanning techniques make possible to acquire high resolu-
tion models of the human body that can be extremely useful for anthropometric
studies and for other applications like medical diagnosis, clothing design, com-
puter animation and entertainment. Most of these applications could benefit of
an automatic processing of the scanner data able to segment and recognize the
different parts of the body and to locate reference points useful, for example,
to perform anthropometric measurements. In this paper we present a processing
pipeline based on the analysis of the curve skeletons of acquired models that can
be used for this task.
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The skeleton is extracted as a tree structure with curve segments joined at
the extrema and the segmentation is performed by detecting features on the
extracted branches using a priori information on the body structure. The result
is a labelling of the curve skeleton and of the original mesh that can be used for
several applications: feature points can be located on the basis of the functional
decomposition obtained and a stick figure representing the pose of an articulated
human model can be easily computed and used to control mesh animation or to
fit an articulated deformable model over the data.

The paper is structured as follows: section 2 presents the state of the art of
whole body scanner technology, section 3 a short literature review on scanned
body data segmentation, section 4 deals with the curve skeleton extraction prob-
lem and describes the method we developed for this task. In section 5 the seg-
mentation procedure is finally described and experimental results are presented
in section 6.

2 Whole-Body Scanner Technology

Whole-body scanners are used to build models applied in a wide range of applica-
tions such as ergonomic design, creation of sizing charts for clothing manufacture,
creation of avatars for computer games and animation industry, anthropometric
surveys, medical diagnosis.

Roughly speaking there are two main categories of technologies employed
in whole-body scanning [16]: laser-based and Moiré-fringing-based technologies.
In the former a laser stripe is projected onto the body surface. Then, the
laser stripe is detected from several cameras and the set of 3D points repre-
senting the body shape are recovered by triangulation. Examples of this kind
are the scanners developed by Cyberware (www.cyberware.com), Hamamatsu
(www.hamamatsu.com) and Vitronic (www.vitronic.de).

In the latter, a white light source projects contour patterns, e.g. sinusoidal
fringes, on the body surface. Therefore, a 3D cloud of points is estimated by
observing the pattern deformations on the body surface, again from a set of
cameras. Both technologies avoid direct contact with the body and fall into
the category of shape from multiple views approach. The performance of dif-
ferent body scanners differ by resolution, accuracy, acquisition time, and or-
ganization of cameras position [16]. Examples of this kind are the scanners
developed by Textile and Clothing Technology Corporation (www.dh.aist.go.jp),
inSpeck (http://www.inspeck.com), and the product used for our experiments,
i.e. the bodySCAN developed by Breuckmann GmbH (www.breuckmann.com).
A bodySCAN typical acquisition creates a triangulated mesh with about 400.000
nodes and a resolution varying from 0.2 mm to 1.4 mm. The acquisition time
ranges between 2.5 and 5.5 seconds. We found in our experiment that this time
is sufficient to obtain an acceptable mesh quality (limited motion artifacts).
Meshes, however, present various types of defects like holes, non manifold edges,
bad shaped triangles and outliers, that should be corrected during the processing.
The scanner also provides grayscale information. We do not use this informa-
tion in our pipeline, but it may be extremely important to acquire, for example,
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Fig. 1. Three meshes generated by the Breuckmann bodySCAN. It is possible to ob-
serve missing parts in shadowed regions and in correspondence with clothing and hair.

markers positions useful to validate automatic measurements. Fig. 1, shows ex-
amples of acquired textured models. It is possible to see holes and inaccuracies
caused by occlusions and reflective materials.

3 Related Work

A huge literature is available on mesh segmentation. However, not so many paper
deal with the reliable partitioning of a human body model into semantically
consistent parts. A recent detailed review on scanned human body processing
methods [16], presents and compare only few methods applied in literature to
perform this task, most of them limited to standard postures, except for those
developed by the authors, based on Reeb Graphs [17,15].

Mortara et al. [7] proposed the use of a surface point classification called
plumber in order to identify tubular region and extract body parts, performing
also anthropometric measurements. Yu et al. [19] proposed a method able to find
automatically joints by computing specific measurements on volume sections.
The method, however, requires a previous detection of body landmarks and
limbs direction.

Our approach also uses similar ideas, but starts its automatic processing by
first extracting and segmenting the curve skeleton of the model. In this way it
is possible to process the curve skeleton branches corresponding, for example to
the limbs and to perform local measurements useful to locate landmarks or joints
without slicing in pre-defined directions the surface. Recently, we discovered that
this segmentation approach is close to that proposed by Reniers and Telea [2],
who implemented a generic method for skeleton-based mesh segmentation. Our
method differs from theirs because it exploits a priori information on human
body structure in order to simplify the curve skeleton and to recognize its parts
and for the use a feature point search on skeleton branches in order to define cut
points for the skeleton.
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4 Curve Skeleton Extraction

The literature on curve skeleton extraction is also huge and research on this topic
is still active. Despite its apparent simplicity, in fact, the extraction of a 1D con-
nected curve skeleton from volume data presents several problems, and even the
definition of a curve skeleton is not easy, as pointed out by Cornea et al. [10].

The first methods successfully applied were those based on topological thin-
ning [11], i.e. the iterative removal of external voxels preserving the topology
or on the computation of distance maps from the border as in the voxel coding
method [18]. They gave useful results, especially in the medical field, where the
estimation of a centerline path in vessels is fundamental their characterization
and measurement. These techniques, however, usually required interaction to
place seed points or extremal points of the skeleton to be preserved. Further-
more results obtained were usually not reliable for non tubular objects.

A variety of approaches has then been proposed to overcome these problems.
Telea and van Wijk [1] used the intersection of 2d skeletons for a fast 3D skele-
ton extraction, Cornea et al. [9] used a fast marching method, Sharf et al. [13]
obtained the skeleton “on the fly” while reconstructing the mesh with a surface
growth. Shapira et al. [12] used a function defined on the surface (Shape Diame-
ter Function) in order to find approximate skeletal points then fitted into curves.
Dey and Sun [4] removed ambiguities in curve-skeleton definition by considering
it as the subset of the medial axis where a function called Medial Geodesic Func-
tion can be defined and is singular. A similar approach, but defined on voxelized
volumes has been used by Reniers et al. [3]. Drawbacks of these approaches are
the complexity of the discretization steps and the computational weight of the
geodesic path evaluation.

For our mesh processing pipeline we adopted for the curve skeleton extraction
a novel method based on voxel coding and active contours that strongly improves
and extends to general objects the one used in [5] for vascular reconstruction.
This method is good for our task because it allows a fast extraction of a connected
structure, thin and smooth, well centered in tubular regions and with no closed
loops by construction. Furthermore, it is possible to limit a priori the number
of branches to extract neglecting shorter ones and to define the resolution of
the curve skeleton, an useful feature for the hierarchical processing of parts and
subparts of the human body we plan to develop.

Let us describe the method in more detail. The process starts with a raw
extraction of a tree structure with a voxel coding method, like in [18]. The mesh is
discretized in a 3D grid of given dimension (the resolution can be adapted to the
level of detail, for human body we start with 5 mm of voxel size). Border voxels
are then extracted and a distance map computing the distance of internal voxels
from the border (DFB map) is generated. The classical voxel coding method
by Zhou and Toga then extracts iteratively branches by giving a seed point,
computing the “distance from seeds” (DFS) map and then using it to compute
the shortest voxel path joining the farthest point to the seed. The path is then
centered by replacing each voxel of the chain with the voxel obtained by first
finding the cluster of the connected voxels with the same distance from the seed,
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Fig. 2. Examples of curve skeletons extracted on human body models, meshes are rep-
resented as transparent surfaces, non-centered paths are represented in black, centered
and cleaned trees are represented in gray. Examples are chosen in order to underline
that the characterization obtained is almost pose-independent.

and then taking the voxel with the highest distance from border. It has been
shown in [5] that this centering procedure can give very bad results in case of
non tubular shapes because clusters can be large and the curve may result not
continuous. We therefore do not use this method to center the branches (we just
perform optionally this step as pre processing), but exploit an active contour
approach instead.

Our method consists of first creating a tree structure joining several branches.
After the extraction of the first branch as the shortest path joining a seed placed
near the mesh border and the farthest voxel of the volume, and its rough cen-
tering, a recursive shortest path extraction is done in the same way updating
the distance from seed at each iteration as the distance from the previously ex-
tracted skeleton point. The procedure can be iterated until branches are shorter
than a threshold or a sufficient number if branches has been found (this is our
case). The skeleton, consisting of nodes with floating point coordinates and links
is then centered moving iteratively the nodes according to external forces driving
the contour and other constraints. In detail:

– two image based forces are applied to the skeleton points: the first is directed
as the gradient of the interpolated DFB map, the other is generated with a
fast propagation of the internal normal vector at the boundaries. This last
force is used not to have ambiguous stationary points in the medial surface.

– The internal forces are generated by a mass-spring model, with masses at
the node positions and zero length springs connecting them.

– During the curve evolution, terminal nodes are kept fixed, links are preserved
and new nodes are inserted when the distance between neighbors is higher
than a threshold and removed when it is lower than another threshold.
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– If two curve segments are partially superimposed, the duplicated part is
removed and new links created.

– The iterative procedure is stopped when the global displacement is lower
than a threshold.

In our implementation, after the mesh discretization, the seed point for the
extraction of the first branch is taken as the surface voxel with the highest z
coordinate. Rules chosen for the curve evolution makes, in any case, the results
substantially independent on this choice. Weights for the snake forces have been
set by trial and error.

Results obtained are satisfactory: the algorithm is fast and robust and curve
skeletons obtained are well centered (see Fig. 2). The active contour approach
presents the big advantage of keeping the curves smooth, avoiding the discon-
tinuity problems of classical methods based on local geometrical properties and
clustering.

5 Curve-Skeleton Based Segmentation

The curve skeleton is then subdivided in segments, i.e. chains with no links
except at the extremal nodes. Segments can be divided in leaves, i.e. chains with
links at only one of the extremal nodes, and internal segments, i.e. chains with
links at two extremal nodes (Figure 3 A).

The processing pipeline consists then in two steps: first the candidate skeleton
branches containing the main body structures are isolated, then they are pro-
cessed in order to find feature points used to segment them correctly. In order
to find the human body components we process the skeleton as follows: first we
remove the shortest leaves as follows:
-leaves are put in a list ordered by length
-the shortest leaf is removed and if its endpoint is linked to two segments, these
segments are merged. The procedure is ended when the list includes only 5
leaves. Each leaf should include the complete skeleton of one structure among
the limbs and to the head/neck (Fig 3 B). Finally, a simple decision tree based

Fig. 3. The procedure used to purge the skeleton tree preserving the five main leaves
including the parts to be segmented. A: original skeleton. B Shortest leaf is removed
and the connected branches merged. C: The procedure is stopped with five leaves left.
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on length and distance functions of the leaves is able to label them according to
the structure included (arm, leg, head).

5.1 Feature Extraction on the Curve-Skeleton

Leaves, i.e. candidate skeleton branches that should include limbs and head/neck,
are then processed in order to find the optimal position of feature points. These
points are the approximate location of limbs an neck attachments to the trunk,
and the approximate position of knee and elbow joints, wrist and ankle joints.
In order to approximately locate these points on the curve skeleton we consid-
ered the behavior of four selected scalar values along the leaves extracted: the
local interpolated distance from border (obtained from the map), estimates of
local average diameter and eccentricity of the section perpendicular to the curve
(obtained from a number of sample rays traced on that plane), and an estimate
of the local principla curvature. Fig. 4 shows examples of the typical behavior
of the first three values on leaves including arm, leg and head/neck. Curvature
is not reported being pose-dependent, so its behavior is not characteristic. It is
possible to see that the interpolated DFB is a slow-varying measure and can cap-
ture the general trend of the diameter of the mesh around the evaluated branch.
Mean diameter is more sensitive to the local structure (and to noise) and can be
used used to capture subtle features. Particularly interesting is the eccentricity
estimate, well-suitable for joint feature extraction as also reported in [19].

Our segmentation method is hierarchical: first the attachments of the limb
or of the neck to the trunk are found starting from the middle of the branches
and moving towards the trunk until the eccentricity value presents a big step
edge. Currently we place the starting point of limbs in the location where the
value becomes stationary. Wrists and ankles are then searched by finding in the
lower part of the branches the local minimum of the section diameter following
the large local maximum corresponding to forearm/calf muscles. Feature points
are then located in the subsequent edge in the section diameter (location of
maximum of the diameter increase). More difficult is to locate accurately elbows
and knee. They are currently identified by the maximum in the curvature if well
characterized, otherwise they are located at the extrema of the deviation of the
diameter and of the distance value from the linear growth. If the feature point
is not clearly visible in this way we locate first a different feature point, i.e.
the location where the forearm/calf muscles starts, characterized by a minimum
in the local diameter, and the position is then refined by shifting the detected
point on the path of a distance proportional to the average distance on the two
feature points on test cases and to the leg length. The position of the detected
points is then finally refined with an iterative procedure adding the constraints of
symmetry between left-right legs and arms. Finally, we locate the feature point
used to separate the head from the trunk by extracting from the eccentricity
plot not only the edge corresponding to the beginning of the neck but also the
one corresponding to the neck attachment to the head and put the feature point
in the middle of the neck.
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Fig. 4. Example of the behavior of selected scalar measures computed on curve skeleton
points on the different skeleton leaves. A: The original mesh, with the curve skeleton
extracted. Leaves are represented with different intensities. B,C,D: Plots of DFB, av-
erage section radius and eccentricity along the leaf including an arm, a leg and head
and neck. Dots indicate the approximate extracted position of the feature points.

When a reasonable number of scans will be available, we plan to build statis-
tical models of the behavior of the computed values near the interested points
and to locate them fitting the models to the data.

5.2 Mesh Segmentation

Mesh points can be easily labelled according to the skeleton partitioning. We
label the discretized space computing a distance map of the volume voxels from
the final skeleton. Triangles of the mesh are then labelled according to the label of
the voxel including its center. Being the space partitioning not depending on the
mesh triangulation, the mesh labelling can be performed also on the processed
mesh as well as on the original one.

5.3 Pose Estimation

Human pose estimation can be achieved by finding the best fit an articulated
stick figure over the acquired data. This is extremely simple in our case, having a
rough estimation of the positions of the nodes of the articulated model from the
skeleton analysis. It is therefore immediate to calculate a rough pose estimate
by connecting the detected feature points with segments. Methods based on
hierarchical articulated model fitting (like, for example, the method described
in [8]) could be applied as well.



42 C. Lovato, U. Castellani, and A. Giachetti

6 Experimental Results

We tested our pipeline on 8 meshes acquired with the Breuckmann scanner. A
pre-processing is performed by generating a closed volume from the original in-
complete mesh. This step is currently done using Polymender, a fully automated
software for mesh repairing based on the procedures described in [6]. Algorithm
and package have been chosen due to their simplicity and robustness, it must
however considered that the reconstruction is obviously not accurate where the
original mesh presents large holes due to occlusions (i.e. at limb joints, under the
shoulders and between the legs). In these regions, the repaired meshes do not
follow the natural curvature of the skin as would be expected. However, being
our processing pipeline based on the curve skeleton and not on surface features,
the effects of this inaccuracy are limited.

Fig. 5. Examples of curve skeleton partitioning on data obtained from the Breuckmann
body-scanner

On all the acquired mesh the curve skeletons automatically extracted appear
correctly located, smooth and well centered in the tubular parts.

Fig. 5 shows example partitioned curve skeletons extracted on the Breuck-
mann scanner models. The labelling of the body parts is correct for all the
datasets tested. The position of the feature points is, of course, rough and also
more influenced by holes and inaccuracies of the original meshes. Only in a few
cases, however, points appears a bit shifted from the expected position. Despite
these limits in the accuracy, the body partitioning obtained can be extremely
useful for several practical tasks, like fitting hierarchical models or stick figures
to the data or reducing the search space for anatomical features on the mesh
surface.

In order to evaluate the robustness of the curve-skeleton extraction and label-
ing methods against pose variations, we also tested the body partitioning on five
watertight meshes representing human body in different poses, available from
the Aim@Shape Watertight dataset[14]. Results obtained (see Fig. 6) show that
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Fig. 6. Results obtained on human body meshes from the aim@shape database

Fig. 7. Left: Examples of mesh labelling derived from the skeleton partitioning. Right:
A stick figure obtained from the feature points located with the described technique.

the recognition of the body parts and the location of feature points is possible
independently on the pose (but obviously requiring the sphere-like topology).

The left part of Fig. 7 shows examples of mesh labelling induced by the skele-
ton segmentation. The accuracy of the surface boundaries is obviously limited,
we plan, however, to refine the segmentation using surface information. The right
part of the figure shows an example of stick figure obtained from the processed
skeletons superimposed to the original meshes. Results may be improved by
considering that the feature point at the beginning of the limbs are not exactly
corresponding to the articulation, and should be slightly displaced. The articu-
lated models obtained seem, however, suitable for articulated model fitting and
computer animation.
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7 Conclusions

We presented a pipeline for the fully automated segmentation of volumetric data
acquired with a whole body scanner. This pipeline is intended as a first step on
order to have an automatic extraction of useful information for anthropometric
studies. The original contribution proposed in this paper consists mainly of
-A novel algorithm for curve-skeleton extraction, based on voxel coding and ac-
tive contours driven by a distance map and vector flow.
-A curve-skeleton based body segmentation algorithm, based on a priori infor-
mation and the search of feature points on scalar functions computed on skeleton
points.

An interesting aspect of the procedure proposed is that it can be performed
iteratively on the segmented parts, increasing the resolution of the curve skeleton
extraction in order to have more detailed models after the first rough classifica-
tion of the parts. We plan to segment automatically in this way hands and feet.
Results obtained are promising even if preliminary and a lot of further work is
planned to carry on the whole body scanner segmentation pipeline. We plan,
in fact, to characterize better the position of the characteristic points on the
curve-skeleton by building statistical models of the skeleton features and reg-
istering them with the acquired data for a precise localization. We should also
improve the mesh segmentation derived by the skeleton labeling by making the
boundaries computed on the surface attracted by curvature edges. To perform
anthropometric measurements, we plan to develop algorithms for the detection
of meaningful features on the surface, exploiting the a priori information ac-
quired with the mesh partitioning to simplify the problem narrowing the search
space. Finally, we want to improve and exploit the pose estimation obtained
from the curve skeleton in order to fit generic human body models to the scan-
ner data. This procedure could greatly enhance the quality of the human models
automatically reconstructed from the scanner data, providing directly realistic
watertight meshes also when the acquired data are incomplete or not reliable.
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Abstract. Human action recognition is an important research area in
the field of computer vision having a great number of real-world appli-
cations. This paper presents a multi-view action recognition framework
able to extract human silhouette clues from different synchronized static
cameras and then to validate them by analyzing scene dynamics. Two
different algorithmic procedures were introduced: the first one performs,
in each acquired image, the neural recognition of the human body config-
uration by using a novel mathematical tool called Contourlet transform.
The second procedure performs, instead, 3D ball and player motion anal-
ysis. The outcomes of both procedures are then merged to accomplish
the final player action recognition task. Experiments were carried out
on several image sequences acquired during some matches of the Italian
“Serie A” soccer championship.

Keywords: Human Pose Estimation, Contourlet Transform, Neural
Networks, Soccer Player Action Recognition.

1 Introduction

Human action recognition aims at automatically ascertaining the activity of a
person, i.e. to identify if someone is walking, dancing, or performing other types
of actions. It is an important area of research in the field of computer vision and
the ever growing interest in it is fueled, in part, by the great number of real-
world applications such as surveillance scenarios, content-based image retrieval,
human-robot interaction, sport video analysis, smart rooms etc.

Human action recognition has been widely studied (for an extensive review
see [2]). In general human activity recognition approaches are categorized on the
basis of the representation of the human body: representation can be extracted
either from a still image or a dynamic video sequence.

In [1] three dimensional space-time shapes such as local space-time saliency,
action dynamics, shape structure, and orientation are extracted from silhouette
images of humans and they are used to classify actions. In [3], shape and motion
cues are used for the action recognition of two different actions in the movie
“Coffee and Cigarettes”. [4] introduces instead a biologically inspired action
recognition approach which uses hierarchically ordered spatio-temporal feature
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detectors. In [5] an unsupervised learning method for human action categories
is presented. A video sequence is represented as a collection of spatial-temporal
words by extracting space-time interest points. In [6] two types of features are
fused treating different features as nodes in a graph, where weighted edges be-
tween the nodes represent the strength of the relationship between entities.

In general action recognition extracted from video sequences requires complex
models to understand the dynamics. On the other hand recent studies demon-
strated that a static human pose encapsulates many useful clues for recognizing
the ongoing activity.

In [7], a bag-of-rectangles method is used for action recognition, effectively
modeling human poses for individual frames and thereby recognizing various
action categories. [8] use Principal Component Analysis (PCA) to extract eigen-
shapes from silhouette images for behavior classification. Other static pose de-
scriptors were suggested in [9] [10] and [11]. Unfortunately, due to possible large
variations in body appearance, both static and dynamic representations have a
considerable failure rate unless specific databases are used.

In this paper we introduce a new multi-view action recognition framework
that extracts human silhouette clues from different synchronized static cameras
and then validates them by analyzing scene dynamics. In particular this paper
deals with the challenging problem of player action recognition in soccer games
from images acquired by 6 fixed cameras placed around the playing field. The
proposed framework combines human body representation and the motion in-
formation of the scene. It consists of two different algorithmic procedures: the
first one runs on the processing unit dedicated to each camera and it is an evolu-
tion of the classical action recognition methods based on a static representation
of the human body. In particular its main novelty is the use of the Contourlet
transform to obtain a more suitable body representation to be given as input to
a neural classifier. The second procedure runs on a unit with supervisor function
and it performs ball and player motion analysis: in particular it reconstructs the
3D ball trajectories and projects them onto a virtual playing-field where players
are also localized. The outcomes of both procedures are then merged to accom-
plish the player action recognition task. Experiments were carried out on several
image sequences acquired during some matches of the Italian “Serie A” soccer
championship.

2 System Overview

Six high resolution cameras (labeled as FGi, where i indicates the i− th camera)
were placed on the two sides of the pitch assuring double coverage of almost all the
areas by either adjacent or opposite cameras. In figure 1 the location of the cam-
eras is shown. The acquired images are transferred to six processing nodes by fiber
optic cables. The acquisition process is guided by a central trigger generator that
guarantees synchronized acquisition between all the cameras. Each node, using
two hyper-threading processors, records all the images of the match on its inter-
nal storage unit, displays the acquired images and, simultaneously, processes them
with parallel threads, in an asynchronous way with respect to the other nodes.
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Fig. 1. The location of the cameras around the pitch

The six processing nodes, are connected to a central node, which has having
the supervisor function. It synchronizes the data coming from nodes and per-
forms high level processing.

Each node uses a background subtraction algorithm for motion detection. It
is based on a modified version of a well known approach for background cre-
ation and maintenance [12]. Information relative to moving objects is then sent
to two parallel processing threads: the first one performs human blob detection,
classification [13] and tracking [14] as well as neural player action recognition
using static representation by Contourlet transform; the second one performs
ball detection by means of a correlation based approach using six reference sets
containing some ball examples acquired in different positions with respect to
the camera (near, far, very far) and in different lighting conditions (sunny days,
evening or cloudy days).

At each trigger pulse, the outcomes of the algorithmic procedures running
on each processing node, are sent to the central node which analyzes them in
order to localize the ball and the players on a virtual play-field, to compute their
trajectories and to validate player action by using motion information.

3 Player Body Posture Estimation

The first step in the proposed framework deals with the recognition of the player
body configuration (postures) in each of the different cameras. For this purpose,
in this paper, a learning based approach is used: first of all the player silhouettes
are binarized, mirrored (only those coming from the three cameras FG2, FG4 and
FG6) in order to use the same left-right labeling system for body configuration,
re-sized to avoid scaling effects, and described by using Contourlet coefficients
that are extracted via a double iterated filter bank structure providing a flexible
multi-resolution, local and directional image expansion [15].

The new Contourlet representation is then provided as input to a back prop-
agation neural network able to recognize (after a training phase with about 20
positive examples for each class) seven different human configurations associated
with seven player actions: walking, running left, running right, running front-
back, still, shooting left, shooting right.
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Fig. 2. The binarized player silhouette (on the left) and its Contourlet representation
(on the right)

The neural network architecture (experimentally set) consists of three process-
ing layers: 30 hidden neurons with sigmoidal activation functions and 6 output
neurons with softmax activation functions [16] are used. The neural output val-
ues are managed as follows: the greatest output value is considered and if it is
greater than th = 0, 5 the input patch is labeled by the corresponding action,
otherwise it is labeled as undetermined. In figure 2, on the left the initial bi-
nary silhouette of a running player is reported whereas on the right the relative
Contourlet representation is shown.

4 Ball and Player Trajectory Computation

The second algorithmic procedure runs on the processing unit with the supervisor
function. The supervisor makes use of a virtual play-field (having the same dimen-
sion as the real play-field) to project the extracted information: in particular the
player and referee data are projected onto the virtual play-field by homographic
transformation assuming that their feet are always in contact with the ground.
However, the projection of the same player using data relative to different cam-
eras are not coincident due to the different segmentations into the image planes
caused by different appearances of the same player (different position with re-
spect the camera, different lighting conditions, shadows and so on). To overcome
this drawback, the mid-point of the line connecting the different projections of
the player in the virtual play-field is considered for further processing.

The projection of the ball position onto the virtual play-field requires, instead,
a different procedure which considers that the ball is not always in contact with
the ground. The 3D ball position then has to be firstly recovered by triangulation
(if ball information coming from two opposite or adjacent views is available) and
then its projection onto the virtual play-field can be performed. Assuming that
the ball is observed from two cameras c1 and c2, we obtain the corresponding
projections b1 and b2 on the ground plane using homography. Let l1 and l2 be
the two lines from c1 to b1 and c2 to b2, respectively. Theoretically, the inter-
section point between l1 and l2 should correspond to the 3D ball position but, in
practice l1 and l2 do not intersect due to errors caused by camera calibration and
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Fig. 3. The virtual play-field

object detection. Thus, the 3D ball position, can be estimated by assuming the
camera error of both cameras is of the same order, and fixing the ball position
P (x, y, z) as the mid-point of the minimum distance segment between l1 and l2.
The projection of P (x, y, z) into the virtual play-field is finally obtained setting
to 0 the z-component i.e. P (x, y, 0).

In figure 3 the virtual play-field is reported. The red and cyan rectangles indi-
cate the player positions computed by merging data coming from two opposite
or adjacent views (relative IDs assigned from nodes are also reported) whereas
the ball position is indicated by the yellow cross. The white lines behind each
object indicate recent ball and player displacements.

Starting from the estimated ball and player positions their temporal trajec-
tories can be computed. The player trajectories in the virtual play-field cannot
be mathematically modeled by straight lines or curves; they vary continuously
in an unpredictable way and so they can be represented only by collecting the
player positions into the play-field.

For the ball trajectories in the virtual play-field can be approximated by
straight lines: this allows the system to predict the successive positions, to re-
cover missed intermediate ones, and to introduce high level reasonings useful for
understanding the soccer game developing. For the sake of precision we have to
explain that we dispose of both 3D and 2D ball trajectories. In order to detect
shots, as abrupt changes of trajectories, we consider in this paper only 2D tra-
jectories, obtained by projecting the 3D ball positions onto the virtual play-field.
This simplification allows the system to avoid false shot detections when there
are ball rebounds on the field.

5 Multi-view Player Action Recognition

Finally the outcomes of the algorithmic procedures described in sections 3 and
4 are given as input to a higher level functional step running on the supervi-
sor unit that performs a multi-view player action recognition. To do that, first of
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all, the supervisor processing unit merges body posture information coming from
different views of the same player: the M available estimation scores extracted
by the single view procedure (one for each camera acquiring the considered
player) for the i− th player are averaged to obtain k values of MPV (Multi-view
P robability V alue) :

(MPV )k = P (Xk|z1...zM ) =
1
M

M∑
i=1

p(Xk|zi) k = 1, ...N

where X is the player posture class, zi are the single view estimated configu-
rations and N indicates the maximum number of body configuration classes to
be recognized. In this way a global estimation score is obtained for each of the
k configuration classes. The problem now becomes how to decide which body
configuration class has to be associated to the i − th player on the basis of the
relative available (MPV )k with k = 1, ...N .

To solve this problem a preliminary statistical evaluation of the neural out-
comes is done: these values are evaluated for both correct and incorrect oc-
currences during a preliminary experimental phase and they are then used to
estimate the relative gaussian probability distributions (respectively in red and
blue in figure 4). Notice that the most probable values in the case of correct body
configuration estimations in a single view are close to 0.85, whereas in the case
of wrong estimations they are close to 0.5. Starting from this statistical consid-
eration a multi-view decision rule, based on available MPVs, is introduced: the
player’s body configuration K is associated to the i − th player if

{(K = arg max
k=1,...N

Pk) ∧ (PK > th) ∧ (Pi < th, i = {1...N, i 	= K})

where th is the intersection point of the estimated pdfs in figure 4. If these con-
ditions are not simultaneously satisfied the considered player body configuration
is labeled as undetermined.

Fig. 4. Probability distribution of the winning neural output in case of correct (red)
and uncorrect (blue) action recognition from binarized player silhouette
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5.1 Integration of Motion Information

After that, a static multi-view player action estimation is available for each player
in the scene and it can be validated by using motion information. In particular
‘running’, ‘walking’ and ‘still’ actions are validated by using the motion infor-
mation of the relative player, whereas ’shooting’ action is validated taking into
consideration also the 3D ball trajectory. In fact for an estimated ‘still’ player
the system checks his motion: if, considering the last three frames, his position
in the virtual playing field does not significatively change, the player action is
definitively labeled as ‘still’. The same approach, based on the analysis of po-
sition changes in the play-field, is also used for validating estimated ‘running’
and ‘walking’ players: in this case the estimated player body action is validated
if player position (considering the last three frames) changes according to the
common running and walking velocity values for a human being whereas run-
ning directions (left, right, front-back) are validated considering the recovered
player trajectory in the play-field. In particular a player is validated as ’walk-
ing’ if this velocity in the virtual play-field varies between 3 km/h and 6 km/h;
running action is instead validated if the velocity of the relative player is greater
than 6 km/h.

A quite different approach is finally used for validating estimated ‘shooting’
players: in this case both ball and player motion information are used. In fact,
‘shooting’ player is validated if : 1) the 3D ball trajectory indicates that the
ball is really going away from the considered player (as expected for the kicking
player) 2) the player is near (at lest 2 meters) to P (xs, ys), i.e. the intersection
point of two consecutive validated ball trajectories.

Four different situations can happen: 1)classified actions are validated by mo-
tion and definitively labeled 2)undetermined actions (two or more multi-view
scores greater than th) are solved if only one of them is validated by motion
information; 3)Undetermined actions (No multi-view score greater than th) are
solved if the maximum score (independently from th) is validated by motion
information 4)classifications are not validated and become undetermined;

In this way motion information helps to improve player action recognition
but, at the same time, could solve some of the previously unclassified action
occurrences.

6 Experimental Results

The proposed multi-steps method was applied to several image sequences ac-
quired during some matches of the Italian “Serie A” championship. Experi-
ments were carried out on a set of 5000 different pairs of synchronized patches
(10000 total patches) relative to players acquired during different soccer matches.
These patches were preliminarily labeled by a human operator who assigned to
each pair one of the seven considered actions: Running right side; Running left
side; Running front-back; Walking; Still; Shooting left side; Shooting right side.

The ground truth relative to the 10000 patches is reported in table 1.
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Table 1. The ground truth relative to the 10000 considered binary patches used in the
experimental phase

Running
right side

Running
left side

Running
front-back

Walking Still Shooting
left side

Shooting
right side

1930 2304 622 2590 1358 674 522

The first step of the experimental phase concentrates on the recognition of
the human action on each single image by using Contourlet representation and
a neural classifier as described in section 3.

The results of this first experiment are reported in table 2.

Table 2. The scatter matrix relative to the first experiment regarding the recognition
of the player action recognition in a single image

Running
right side

Running
left side

Running
front-back

Walking Still Shooting
left side

Shooting
right side

Und.

1459 14 228 164 0 0 0 65

0 1999 0 179 120 0 0 6

0 0 461 41 45 47 0 28

0 0 25 2396 42 68 0 59

0 33 69 0 1193 0 0 63

12 0 24 0 0 613 0 25

18 11 9 0 0 0 462 22

The experimental results reported in table 2 were very encouraging: almost
86% of the testing patches were automatically labeled by the system in the
same way as the human operator. Some miss-classifications happened due to
the similarity of appearance, under certain conditions, of the body silhouettes
relative to players performing different actions. For example, in figure 5, three
wrongly classified patches are reported: the player on the left was classified
as running towards the camera by the human operator whereas the automatic
system consider him as running right. The player in the center was instead
classified as running towards the camera by the human operator whereas the

Fig. 5. Three different cases where the proposed system missrecognized player body
configurations
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Table 3. Action recognition performance integrating information coming from different
camera views. The test set consists of 5000 pairs of binary patches.

Running
right side

Running
left side

Running
front-back

Walking Still Shooting
left side

Shooting
right side

Und.

929 7 5 8 0 0 7 9

0 1108 0 16 12 8 0 8

0 0 271 8 12 12 0 8

0 0 14 1226 16 18 0 21

0 17 11 0 632 0 0 19

0 0 9 0 0 311 0 17

7 0 13 0 0 0 230 11

automatic system classified him as still. Finally, the player on the right was
labeled as kicking by the human operator and running right by the automatic
system. As you can see in this cases it is not easy to definitively decide real
player configurations and then you have to consider that experimental results
strongly depend, on the operator that generated the ground truth.

The action data coming from this first experimental step were then merged,
for each pair of opposite cameras, by using the procedure described in section 5.
In table 3 the multi-view action estimation results on the 5000 pairs of binary
patches are reported.

Fig. 6. Different pairs of patches containing the same player acquired from different
cameras

More than 94% of the 5000 tested pairs were correctly recognized. Less than
2% of the tested patches were not classified due to the ambiguities in the prob-
ability values provided by the neural algorithms running on the images coming
from each camera.

In figure 6, the two pictures on the left report the player’s silhouettes acquired
by two opposite cameras at a shot instant. In this case the analysis of human
body configuration performed on each view agreed and they indicated that the
player was shooting the ball with probability values respectively of 0.97 and
0.89. The two pictures on the right show, instead, a case in which the proce-
dure running on each single view disagreed: one camera recognized the player as
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Table 4. Action recognition performance after validation by motion information

Running
right side

Running
left side

Running
front-back

Walking Still Shooting
left side

Shooting
right side

Und.

954 0 0 0 0 0 3 8

0 1135 0 4 2 0 0 11

0 0 295 0 4 0 0 12

0 0 4 1274 3 0 0 14

0 3 3 0 654 0 0 19

0 0 0 0 0 324 0 13

0 0 0 0 0 0 250 11

Fig. 7. Two examples in which motion information overcome drawback of the neural
approach for player action recognition

Fig. 8. An example in which motion information did not solve action miss-classification

walking (probability value 0.87) and the other one as still (probability value
0.54). The multi-view approach solved this ambiguity and labeled the player
“walking” as the human operator also did. Finally, the remaining 3% of the
tested patches were miss-classified.

Finally the validation procedure based on motion information described in
section 5.1 was tested in order to verify its capability to improve player action
recognition. The final results of the proposed player action recognition approach
are then reported in table 4.
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Introducing action validation by motion information drastically reduces both
uncertainty occurrences and increases correct classification. In figure 7 two exam-
ples pointing out the benefits of using motion information are reported. On the
left two patches (acquired from FG3 and FG4) are relative to a player kicking the
ball. The neural approach did not classify player action because, for the patch on
the left, it rightly recognizes the player as shooting left but, for the patch on the
right, it erroneously classifies the player as running left. Introducing reasonings
about motion and ball proximity the system verified that both the ball was close
to the player and the distance of the player from the intersection point of the ball
trajectory was very small. For these reasons the player was correctly classified as
shooting the ball. On the right the two patches are relative to a player running
right (acquired from FG5 and FG6). Unfortunately both patches were classified
as “walking” by the neural approach based on Contourlet representation (most
probably due to perspective distortions). The motion validation procedure did
not validate the player as walking due to his velocity on the pitch (9 km/h) and
then his action was considered as “undermined” avoiding a wrong classification.

Finally in figure 8 an example in which motion information did not solve
miss-classification is reported. The two players were, actually, both classified as
shooting right by the multi-view approach described in section 5.

7 Conclusion

In this paper we present a multi-view action recognition framework able to ex-
tract human silhouette clues from different synchronized static cameras and then
to validate them by analyzing scene dynamics. A number of experiments were
carried out on several image sequences acquired during some matches of the Ital-
ian “Serie A” soccer championship and they demonstrated that action recogni-
tion performance increased by both merging player posture information coming
from different overlapped camera views and introducing motion constraints. Fu-
ture works will deal with the analysis of the action relationship between a player
and his neighbors, as well as on the temporal analysis of the player postures.
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Abstract. This paper proposes a segmentation method of heart cavities
based on neural networks. Firstly, the ultrasound image is simplified with
a homogeneity measure based on the variance. Secondly, the simplified
image is classified using a multilayer perceptron trained to produce an ad-
equate generalization. Thirdly, results from classification are improved by
using simple image processing techniques. The method makes it possible
to detect the edges of cavities in an image sequence, selecting data for net-
work training from a single image of the sequence. Besides, our proposal
permits detection of cavity contours with techniques of a low computa-
tional cost, in a robust and accurate way, with a high degree of autonomy.

1 Introduction

Ultrasound images are characterized by low contrast and high level of speckle
noise. Such characteristics make it difficult to process and to analyze the images.
Cavity edge detection is a complex task, the noise present in ultrasound images
causes errors when detecting contours. Besides, the low contrast makes cavity
contours imperceptible in certain zones.

There are approaches of the most varied nature proposed in ultrasound image
segmentation literature [1], particularly artificial intelligence techniques such as
neural networks have been reported. Ultrasound image segmentation methods
based on back-propagation neural networks are proposed in [2,3,4], Kohonen
networks in [5,6], radial basis neural networks in [7], models of incremental net-
works in [8], hybrid neural networks trained with genetic algorithms are pro-
posed in [9,10], cellular neural networks in [11], and support vector machines are
adopted in [12].

In this paper we propose a method that combine supervised neural networks
with different image processing techniques. Our approach is made up by three
main stages. During the first stage, an original representation of the ultrasound
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image is proposed, which is obtained after applying to the image a neighborhood
homogeneity operator based on the variance. We adopted such homogeneity
operator mainly for simplifying the images and differentiating its zones.

In the second stage, ultrasound image segmentation is formulated as a classifi-
cation problem. A Multilayer Perceptron (MLP) is adopted since it corresponds
to a universal function estimator [13]. It is also considered a more efficient ver-
sion than the classical back-propagation algorithm for its training. In fact, the
Levenberg-Marquardt optimization algorithm is adopted [14] so as to improve
the training convergence speed. The computation of network parameters is car-
ried out by adding to the traditional cost function (the sum of squared errors)
a term which corresponds to the sum of squares of the network weight [15]. The
cost function parameters are automatically computed by using a Bayesian ap-
proximation [16], and for the estimation of hidden layer neurons the effective
parameters of the network are considered [17]. To solve the classification prob-
lem, we formulated the hypothesis that after the representation stage, the image
remains constituted by three kinds of pixels; those exterior to the cavity, of con-
tour, and inside the cavity. The MLP is also trained to recognize neighborhoods
and not pixels, in order to propose a robust solution.

The final stage consists in improving classification through a simple and fast se-
quence of image processing techniques such as erosion, dilation, median filtering,
and size segmentation [18], establishing an order in the application of operators
which has a general validity. All in all, our method allows to detect contours in a
robust and accurate way, with techniques of a low computational cost.

This article is structured as follows. In part 2, the stages of our method are
detailed. Part 3 shows results considering the classification of original intensity
image, and the classification of the proposed for the ultrasound image represen-
tation. Both approximations are compared through a FOM indicator. Finally,
part 4 presents the conclusions of the paper.

2 Cavity Segmentation Method Using a MLP

This section presents the detail of all three stages of our proposal, that is to say,
image representation, classification and improvements.

2.1 Ultrasound Image Representation

Our method proposes to represent the ultrasound image by using a homogeneity
measure based on the variance in pixel neighborhoods [18]. The image based on
the variance corresponds to:

Ivar(Ii,j) =
1

1 + var(Vi,j)
(1)

where var corresponds to the variance operator, and Vi,j corresponds to a pixel
neighborhood (i, j) in the image Ii,j . The values of Ivar(Ii,j) belong to the
interval (0, 1].



60 M. Mora, J. Leiva, and M. Olivares

We have proposed such representation for the ultrasound image since it permits
to simplify the image without going through a noise iterative filtering process.
Besides, the fact that pixels of an image based on the variance are between 0 and
1, allows limiting the image value variability, which facilitates the classification.

2.2 Classification of Ultrasound Image Representation

For the problem, we formulated the hypothesis that in image representation we
can find three kinds of pixels: the class of those outside the cavity, those on the
edge, and others inside the cavity. In experimentations done during the research,
this hypothesis was verified adequate for the problem. The patterns to be clas-
sified correspond to vectors representing the neighborhood of a pixel (i, j). This
means that the classifier has as many inputs as elements has the neighborhood,
and as many outputs as classes of neighborhoods defined for the problem. Figure
1 shows the adopted neural classifier, which considers a 3 × 3 neighborhood of
the image, meaning 9 inputs. Besides, the classifier has 3 outputs; s1, s2 and s3,
representing the exterior, edge, and interior classes respectively.

Fig. 1. MLP based Classifier

The network operation is represented in table 1, in which it is possible to
observe the values designated to outputs depending on the pattern type which
is being classified.

Table 1. Network Operation

Pattern s1 s2 s3

Exterior class 1 0 0
Edge class 0 1 0

Interior class 0 0 1

For training the network, a procedure based on effective network parameters
is considered, which permits establishing the number of neurons in the hidden
layer [17], and also, to regularize the network interpolation in order to improve
the MLP generalization. The procedure consists in training the network with
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more neurons in the hidden layer each time, starting with 1 neuron. Getting to
a certain number of neurons in such layer, the effective parameters will stabilize
and will not increase even when the number of neurons does. The smallest value
permitting stabilization of effective parameters is considered to be an adequate
number of neurons.

2.3 Classification Improvements

For improving results of the classification stage we propose the following sequence
of image processing operations [18]:

– Erosion of the classified image, which permits disconnecting objects from
the main object’s body.

– Size segmentation, which allows eliminating small bodies.
– A median filtering, to round up object contours.
– Dilation of the filtered image, to recuperate original size before erosion.

After the mentioned operation sequence, object contours are detected with the
Sobel operator [18]. The classification improvement sequence can be generalized;
this means it can be applied to several images without altering the order of the
operations. In this sense, we can talk about an automatic improvement.

3 Results

Results in contour detection on the intensity image and on the variance-based
image are presented. For each representation of the ultrasound image, a training
set is built, selecting neighborhoods outside, on the edge, and inside the cavity.
The MLP is trained, and with the obtained parameters the image is classified.
Also, an image sequence whose neighborhoods haven’t been considered in the
training set is classified using the same network.

To numerically evaluate the results of our method, the Pratts merit figure
(FOM) is used [19]. The FOM indicator is a similarity measure between two
curves whose values are between 0 and 1. If the curves are similar, the FOM
is close to 1, and if the curves are way different, their value is closer to 0. The
FOM expression is next:

FOM =
1

max(II , IE)

IA∑
i=1

1
(1 + a ∗ d2(i))

(2)

where II and IE represent the number of pixels of the real contour (traced by
the specialist) and that of the found contour respectively, and a is a scale factor
(usually 1/9). Finally, d(i) is the distance which separates a pixel i of the found
contour from its nearest over the real contour. It is important to notice that this
indicator can only be used if the real contour is available.
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3.1 Results in Training Set Image

Figure 2 shows images from which training set have been obtained. Figure 2(a)
shows the intensity image, and figure 2(b) shows the image based on the variance.
Figure 2(c) shows a manually traced contour considered as reference contour.
The resulting contour will be compared respecting this last curve.

(a) (b) (c)

Fig. 2. Initial images: (a) original image (b) representation based on variance (c) ref-
erence contour

Tables 2 and 3 show the training sequences that allow determining the number
of neurons of the hidden layer, for the intensity image and for the variance
based image respectively. In such table Epochs (first column), correspond to
the number of epochs required for training; S (second column), corresponds to
the number of neurons in the hidden layer; ED (third column), corresponds
to the sum of squared errors; EW (fourth column), is the sum of squares of
the network weights; γ (fifth column), the effective parameters; and N (sixth
column), the number of total parameters. For the case of intensity image, table 2
shows that effective network parameters stabilize starting from 4 neurons in the
hidden layer. For the case of variance based image, table 3 shows that effective
parameter stabilization starts from 3 neurons. Then, for intensity image, the

Table 2. Hidden layer neuron selection for intensity image

Epochs S ED EW γ N

162/5000 1 80.8333 3962.29 12.471 16
508/5000 2 16.1596 25381.9 15.287 29
526/5000 3 16.1898 23810.8 17.316 42

4744/5000 4 16.2309 22849.3 19.971 55
5000/5000 5 16.2314 22560.8 19.993 68
5000/5000 6 16.284 22038.6 20.535 81
5000/5000 7 16.2319 22308.5 20.112 94
5000/5000 8 16.2597 22309.7 21.318 107
5000/5000 9 16.2602 22310.3 21.708 120
5000/5000 10 30.1469 22.2403 22.240 133
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Table 3. Hidden layer neuron selection for variance based image

Epocas S ED EW γ N

45/5000 1 120.834 15.0006 7.506 16
2337/5000 2 120.984 16.3345 7.951 29
400/5000 3 118.026 17.682 9.610 42
828/5000 4 118.119 16.8845 9.503 55
895/5000 5 118.134 16.5869 9.442 68
2914/5000 6 118.134 16.4341 9.450 81
5000/5000 7 118.258 15.8473 9.331 94
1568/5000 8 118.323 15.5152 9.379 107
2042/5000 9 118.318 15.4438 9.358 120
3241/5000 10 118.353 15.2545 9.343 133

(a) (b)

Fig. 3. Training curves: (a) original image (b) variance based image

selected architecture is 9-4-3 neurons, and for variance based image the selected
architecture is 9-3-3 neurons.

The training curves considering the amount of neurons in the hidden layer
established thanks to tables 2 and 3 are shown in figure 3. Figure 3(a) corre-
sponds to training for intensity image, and figure 3(b) to training for variance
based image. The curve on the upper part corresponds to the evolution of the
sum of squared errors (SSE), the center curve corresponds to the the sum of
squares of the network weights (SSW), and the lower curve corresponds to the
evolution of effective parameters. For both images it is observed that all curves
have stabilized in the last iterations of the training. This means that the network
has been correctly trained.
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(a) (b) (c)

Fig. 4. Intensity image classification: (a) exterior class (b) edge class (c) interior class

After training, we proceeded to classify image neighborhoods. Figure 4 shows
the direct classification of intensity image from figure 2(a). Figure 4(a) corre-
sponds to the exterior class; figure 4(b) corresponds to edge class; and figure
4(c) corresponds to interior class. It is observed we accomplish the hypothesis
that heart image can be split up in three kinds of neighborhoods. Besides, the
figure shows that interior class allows a better visualization of the cavity.

Figure 5 shows variance based image classification from figure 2(b). Figure
5(a) corresponds to exterior class; figure 5(b) corresponds to edge class; and
figure 5(c) corresponds to interior class. We confirm again the hypothesis that
in the image we are able to find three types of pixel neighborhoods. It is also
observed that the exterior class results in low noise, but in the interior class the
cavity size is closer to that determined by the reference edge. Because of the
previously exposed reasons, we adopted the interior class image to be improved.

(a) (b) (c)

Fig. 5. Variance based image classification: (a) exterior class (b) edge class (c) interior
class

Figures 6 and 7 show the sequence of improvements made to the classification
of intensity image and variance based image respectively. For both figures the
first image corresponds to interior class; second image corresponds to erosion; the
third one corresponds to size segmentation; the fourth corresponds to dilatation;
the fifth corresponds to a median filtering; and the last image corresponds to
the final contour.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Improvements to intensity image: (a) interior class (b) erosion (c) size segmen-
tation (d) dilation (e) median filtering (f) resulting contour (g) final contour

(a) (b) (c)

(d) (e) (f)

Fig. 7. Improvements applied to variance based image: (a) interior class (b) erosion
(c) size segmentation (d) dilation (e) average filter (f) final contour
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Fig. 8. Sequence of images

Table 4 shows the FOM indicator of images obtained for intensity image, and
for variance based image. It is observed that the FOM for the variance based image
is closer to the unit, which reflects that the resulting contour is closer to the de-
sired contour. What was said before shows that variance based image yields better
results in contrast with intensity image when it comes to contour detection.
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Table 4. FOM for intensity and variance based image contour

Intensity Variance
Class image based image

Interior 0.6475 0.7677

3.2 Results over a Sequence of Images

From the previous section, it has been determined that the variance based image
permits better results in cavity contour detection, and that the neural network
which allows classifying this kind of patterns has three neurons in the hidden
layer. Using this neuronal network, we have classified an ultrasound image se-
quences. It is important to notice that the neighborhoods of such images do
not belong to the training set. Figure 8 shows the sequence of 8 images of a
heart cavity in motion. Each line shows the sequence of improvements applied
to the interior class of the variance based representation, for each of the eight
images. The first image of the sequence corresponds to the original image, and
the rest to the interior class of the variance based image, erosion, size segmenta-
tion, dilation, median filtering and final contour, respectively. It is observed that
our method has granted us to obtain the contours of all the images correctly.
The method behaving in the same manner for these multiple images and for the
training set image as well.

4 Conclusions

This paper has presented an original ultrasound image segmentation method
based on a MLP. The proposed method presents different aspects of interest.
A variance based ultrasound image representation has been proposed, which
has led all the images to a same value range, permitting a simplification of
the segmentation process by classification. The adopted training method allows
a correct generalization and to establish the amount of neurons in the hidden
layer, being determined the network architecture by using an objective criterion.
Finally, an image processing operations sequence has been established to improve
the result from classification. This sequence can be generalized to other images.

Another interesting aspect of the proposed method is that it does not consider
a noise model of the image, nor the geometrical shape of the cavities, or any kind
of a priori knowledge, which gives it higher degree of autonomy and simplicity
to the solution.

At last, a method has been conceived that allows classifying multiple images,
obtaining data for the training of only one of them. This is possible thanks to
the standardization given by variance based representation, and by the technique
adopted for the MLP training.

All in all, the characteristics of the proposed approximation allow solving the
ultrasound image cavity segmentation problem in a robust and accurate way,
with techniques of a low computational cost.
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Abstract. We propose an automatic method for person-independent fit-
ting of a deformable 3D face mask model under varying illumination con-
ditions. Principle Component Analysis is utilised to build a face model
which is then used within a particle filter based approach to fit the mask
to the image. By subdividing a coarse mask and using a novel texture
mapping technique, we further apply the 3D face model to fit into lower
resolution images. The illumination invariance is achieved by represent-
ing each face as a combination of harmonic images within the weighting
function of the particle filter. We demonstrate the performance of our ap-
proach on the IMM Face Database and the Extended Yale Face Database
B and show that it outperforms the Active Shape Models approach [6].

Keywords: Deformable Face Mask, Eigenfaces, PCA, ASM.

1 Introduction

Accurately detecting faces and geometrically aligning key features of the face is
an important pre-requisite for many face recognition algorithms. The appear-
ances of faces can be affected by the rotation of the face (both in-plane and
out-of-plane rotations), image resolution and lighting conditions which all make
the face detection problem even more challenging. Although some of these factors
may not be an issue in a controlled indoor environment (e.g. access control sys-
tem), it become profoundly important when dealing with outdoor environment
and conditions where CCTV cameras are becoming more prevalent. In this pa-
per, we propose a solution to accurately localise a face by automatically aligning
the key landmarks of the face with a 3D face model. The proposed technique is
designed to cope with low image resolution and varying illumination conditions.

The problem of fitting a deformable mask to an image has previously been
addressed by finding facial features first and fitting the face mask to these points
afterwards [16]. Active Shape Models (ASM) are commonly used for detecting
facial feature points. ASM is a statistical model of the shape of a class of object.
During the model matching process the position of landmark points along the
contour lines of the shape are optimised. First proposed by [6], the ASM has

A. Gagalowicz and W. Philips (Eds.): MIRAGE 2009, LNCS 5496, pp. 69–81, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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been extended by [19] using an hierarchical CONDENSATION (particle filter)
framework and by [24], where the shape estimation problem is formulated in a
Bayesian framework.

While the ASM only optimises around the contour lines of the object, Active
Appearance Models (AAM) [11] represent both shape and texture of a given
class of object. During the training process a generative model is built such that
both shape and texture are controlled by a set of parameters. AAM have been
extended to fit faces in low resolution images [7]. The authors therefore incorpo-
rated the image formation process into the fitting criterion. In [22], AAMs were
combined with 3D Morphable Models to allow for a three-dimensional fitting.
Furthermore in [2], AAMs have been extended to incorporate lighting changes
using the work of [3].

Our approach differs from AAMs in that the possible shape deformations are
already given by the 3D mask mesh we are utilising. We do not attempt to learn
them from a set of training images. By using a 3D face mask for fitting instead of
a 2D AAM we also incorporate three-dimensional information about the shape
and the pose of the face. Furthermore we do not aim to generate a 3D model
of the face like in [23,4,14], since the utilised face mask is not flexible enough to
adapt to slight differences in bone structure.

This work addresses the problem of automatically fitting a deformable face
mask to a previously unseen near frontal image of a face and thus implicitly finding
facial feature. We use Principle Component Analysis (PCA) and a novel texture
mapping technique to build a face model which is then used by a particle filter.
Once the model is build offline it can be applied to input image resolutions that
differ from the resolution of the training images. We achieve lighting invariance
by incorporating the work of [3] into the weighting function of the particle filter.

Accurate detection of facial feature points is a pre-processing step for a num-
ber of applications, like fitting a deformable model for tracking [18] or 3D face
modelling and recognition [4]. While feature point detection is feasible in high
resolution images of faces under neutral lighting conditions most approaches
struggle in low resolution and changing lighting. We therefore propose a method
that estimates the pose parameters as well as person-specific shape parameters
to fit a deformable 3D face model to a previously unseen image, instead of de-
tecting facial feature points and then fitting a mask. This approach is applicable
in low resolution and in arbitrary lighting conditions.

The significance of the proposed method is (1) automatic fitting, (2) light in-
variance, (3) automatic face shape fitting. By automatically fitting a deformable
face mask model to a near frontal face, important facial feature points are lo-
cated implicitly. Thus avoiding laborious manual feature point selection or man-
ual mask alignment. The work of [3] is incorporated into the weighting function
of the particle filter in order to compensate for arbitrary illumination, which
makes our approach more robust and increases its application. The particle fil-
ter is used to estimate the person specific shape parameters to fit a deformable
face mask to previously unseen faces. There are no information about the person
required, which again increases the robustness and applicability of our approach.
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2 Method

Our proposed method first builds a face model by fitting a deformable mask
to a set of different face images. Using PCA a set of principle components,
the so called Eigenfaces, are then calculated from these textured masks. During
runtime a particle filter is used to estimate the pose and the shape parameters of
the mask given a single image of a new face. Illumination invariance is achieved
by incorporating the work of [3] into the weighting function of the particle filter.

2.1 The Face Model

The offline step includes building a face model from a set of training images
using principle component analysis (PCA) [20]. Instead of using vectorised 2D
face images we fit a deformable mask to near frontal faces and apply PCA on a
vector comprising the grey values of each mask triangle.

We utilise the CANDIDE-3 face model [1]. This 3D deformable face model
consists of 104 vertices Pi, i = 1, .., n, where Pi are the 3D coordinates of the
ith vertex. These vertices form the complete mesh that consists of 184 triangles
which are described by the vector g

g = g + Sγ (1)

where g is the neutral face and the columns of S are the shape parameters that
are controlled by γk ∈ [−1, .., 1]. Each shape parameter is a list of vertices and
their displacement that result in the corresponding shape deformation. The orig-
inal model allows for 14 different shape parameters; we reduce this number to 7,
namely ‘eyebrows vertical position’, ‘eyes vertical position’, ‘eyes width’, ‘eye separa-

tion distance’, ‘nose vertical position’, ‘mouth vertical position’ and ‘mouth width’ . This

is done because we are mainly interested in the actual position of the facial features

with respect to the face rather than the exact shape of the overall face. The number

of parameters and the deformability of the mask do not allow for a precise estimation

of a person-independent face shape.

(a) mask 0 (b) mask 1 (c) mask 2 (d) mask 3

Fig. 1. (a) Original CANDIDE-3 face mask, (b), (c) and (d) are subdivided masks
after 1, 2 and 3 subdivision steps respectively. Source: [15] c© 2008 IEEE.
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This face mask is subdivided using the Modified Butterfly algorithm [26] three
times to finally produce 5984 vertices and 11776 triangles. This subdivision of
the mask allows for different mask resolutions varying from only a few triangles
to a very fine mask mesh when projected into the image. Fig. 1 shows the result.

After the mask is fitted to a particular face by adjusting the elements of γ,
the middle of each mask triangle is projected into the image

I = P(g, T ) with T = [Tint, Text] (2)

where Tint are the intrinsic camera parameters determined using camera calibra-
tion techniques as in [25], Text are the extrinsic camera parameters, ie translation
and rotation and P the projection of the face mask model g into the image using
T . The resulting vector I contains one grey value for each mask triangle. This
differs from standard texture mapping techniques that usually require warping
and interpolating the texture to fit the 3D model. This model has been applied
previously for super-resolving faces in low resolution images [15]. By using a face
mask model and a vector I of concatenated grey values no geometric normalisa-
tion is required, the face masks of different persons are aligned implicitly.

These texture vectors of concatenated grey values I are then used to calculate
the average face x and a set of principle components X, the so called Eigenfaces,
using PCA [20]. A new face Inew can then be represented as Î, reconstructed
from a combination of principle components X

Î = x + XXT (Inew − x) (3)

2.2 Light-Invariant Automatic Head Pose and Shape Initialisation

After the face model is built offline it is used to fit the mask to new unseen
faces. We therefore utilise the algorithm developed by [21] to detect near frontal
faces, the first step of our approach. The image is then cropped according to the
detection result. We initialise the face mask to fit this window by centralising
the neutral face mask g such that it fills out the whole window.

Since every face might be cropped differently this first rough initialisation is
further refined by a fast grid-search, to get a better approximation of the z-
value, that controls the depth, ie size of the face mask. Starting from the initial
z-value, we assign z with 14 different values in the range of ±5% of the inital
mask size and solve for the best x and y using a locally exhaustive and direct
search as proposed by [9]. The error function e, that guides this search is the
reconstruction error in face space

e(Text, γ) = ||I − Î||2 (4)

with γ = 0 and the rotation parameters within Text set to 0, since we assume a
near frontal face. The set of pose parameters (x, y, z) that results in the smallest
reconstruction error is then used for initialisation. To refine this initial pose a
particle filter [10] is then used to converge to the correct pose (Text) and person-
specific shape parameters γ by ‘tracking’ repeatedly on a single image, essentially
performing an incremental randomised search for the global maximum.
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The reconstruction error in face space (Eq. 4) serves as the weighting function
for the particle filter. Illumination invariance is achieved by incorporating the
work of [3]. They have proven that an image J can be expressed as a linear
combination of so called harmonic images bnm

Ji =
∞∑

n=0

n∑
m=−n

αnmbnm(pi) (5)

where αnm are the linear coefficients. Given a 3D model of the object, each
harmonic image is a function of the albedo and the surface normal of each
surface point pi. Throughout this paper we use the first nine harmonic images [3].
Equation 5 is rewritten for simplicity as

J =
9∑

j=1

βjVj(n, ρ) (6)

where βj is the jth coefficient and the function Vj returns the ith harmonic image
given the surface normals n and the albedo ρ of all surface points of the 3D model.

2.3 Particle Filter Refinement

Particle filters are a statistical model commonly used in tracking [10]. They
are based on the idea of Monte Carlo sampling to approximate the posterior
probability distribution of a state – in our case the pose and shape parameters
of the human face. This posterior is factorised as follows

P (xt|y1:t) ∝ P (x1)
T∏

t=1

P (yt|xt)
T∏

t=2

P (xt|xt−1) (7)

where xt is the state at time t (consisting of {Text, γ1:K}) and yt is the observation
at time t. For the bootstrap particle filter, Monte Carlo samples x

(i)
t can be drawn

as follows [10]

x
(i)
t ∼ P (xt|xt−1) (8)

w̃
(i)
t = P (yt|xt), w

(i)
t =

w̃
(i)
t∑

i

w̃
(i)
t

(9)

where ∼ means “sample from” and w
(i)
t is the weight associated with particle i.

For this paper we set P (xt|xt−1) = N (xt; xt−1, Σ), that is we are sampling
in the neighbourhood of the previous state. Σ is a diagonal covariance, ie the
dimensions are sampled independently, with values set heuristically. In terms of
standard deviation, 3D position is set to equal a shift of about one sixth of the
face size, 3D rotation is 15◦ and the shape parameters γk are all set to 0.3.

These parameters are then used to deform the neutral face mask g accord-
ing to Eq. 1 and project it into the image using Eq. 2. The face image vector I
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is extracted according to Eq. 3 and the distance in feature space is then defined
as the norm of the difference between the retrieved image I and the illumination-
adjusted, reconstructed image Î.

d(xt) = min
β

||I − βV (n, Î)||2 (10)

where n are the surface normals of the face mask that has been deformed by γ
and the reconstructed face Î is used as the reference albedo. Using this distance
d, the weighting function P (yt|xt) is defined as a normalised vector

w̃
(i)
t = [η − d(x(i)

t )]λ (11)

where η = maxi(d(x(i)
t )) and λ is an annealing factor to increase the spread

of the particle weights [8], empirically set to λ=4. Note that we provide the
particle filter with the same image at every t, which essentially performs an
incremental refinement of the face mask fit rather than a tracking task. This
utilises the genetic-algorithm-like nature of particle filters [8]. In order to ensure
a convergence, we adjust Σ so that it declines as per Σ(t) = 0.8 · Σ(t − 1).

3 Experiments

We use two face databases to perform our experiments, namely the the IMM
Face Database [17] and the Extended Yale Face Database B [12]. The IMM
Face Database consists of 240 images of 40 individuals, 6 images per individual,
each exhibiting variations in pose, expression and lighting. We only use the first
image (‘full frontal face, neutral expression, diffuse light’) and the fifth image
(‘full frontal face, neutral expression, spot light added at the person’s left side’)
of each person and we do not incorporate any prior knowledge on the lighting
conditions in our model.

Each image of the IMM Face Database is labelled with 58 landmarks at vari-
ous facial feature points, which can be used to automatically fit the CANDIDE-3

(a)
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Fig. 2. (a) Sample image of the IMM face database with annotated facial landmarks,
(b) CANDIDE-3 mask, red dots indicate point-to-point correspondences



Automatic Fitting of a Deformable Face Mask Using a Single Image 75

mask as a ground truth. We therefore assigned point-to-point-correspondences
between these landmarks and the corresponding mask vertices as shown in Fig. 2.
The pose Text and shape parameters γ of the deformable face mask are estimated
by utilising the Levenberg-Marquardt algorithm to minimise the Euclidean dis-
tance between the landmarks and the mask vertices. This mask fitting is per-
formed on the first image of each of the 40 persons in the IMM Face Database
which are used for training purpose as well as creating the ground truth.

(a) mask 0 (b) mask 1 (c) mask 2 (d) mask 3

Fig. 3. Mean face for each mask sized used after applying PCA to the first image of
each of the 40 individuals of the IMM Face Database

After the fitting process each mask triangle is projected onto the image and
its grey value is extracted to form the face image vector I for each of the 40
person. These vectors of concatenated grey values are then used to calculate the
Eigenfaces as described in Section 2.1. We calculate the Eigenfaces and the mean
face x for each mask size, varying from coarse to fine as shown in Fig. 3. We
keep the top 70% of all eigenvectors, using the Matlab code provided by [5].

Using this face model we conducted the following experiments on IMM Face
Database: (1) testing on training, (2) leave one out, (3) testing on different
lighting condition and (4) comparison with ASM. The progressive results of the
proposed algorithm are shown in Fig. 4.

For experiment number one we used the first image of each person, the same
that was used for calculating the face model, for fitting each of the four different
mask sizes, from coarse (mask 0) to fine (mask 3). Additionally we divided the
initial image resolution of 640×480 in half three times resulting in images of
size 320×240, 160×120 and 80×60 pixels, generating corresponding average face
sizes of 250×160, 125×80, 60×40 and 30×20 pixels.

In the second experiment we calculated the mean face and the Eigenfaces
using only 39 persons, the first image of each person. Using this model the mask
is fit the image of the person that was left out. Experiment number three uses
the face model, that is trained on the first image of each person, to fit the
mask to the fifth image of each of the 40 persons, which are illuminated with
a spotlight. Again we use all 4 different masks as well as dividing the original
image resolution of 640×480 pixels in half three times.
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(a) (b) (c) (d)

Fig. 4. (a) Result after face detection [white rectangle] and mask initialisation, (b)
Result after refined initialisation using grid-search, (c) Final result of our approach,
(c) Ground truth mask that was fitted to the labelled landmarks

In the last experiment on the IMM Face Database we compared our method
with the method proposed in [16]. The approach finds significant facial feature
points using an Active Shape Model (ASM) first and then a 3D mesh model is
fitted to these points. We therefore used the 58 landmarks of the first image of
each person in the IMM Face Database to train the ASM [6]. We use the ASM
Matlab code provided by [13]. This trained ASM model is then used to retrieve
these 58 landmarks in each of the 40 images again. The ASM face model is ini-
tialised to fill the cropped image window found by the frontal face detector [21].
After the landmarks are retrieved by ASM, the CANDIDE-3 mask is fitted to
these landmarks as described earlier.

Table 1. Mean Euclidean vertex point differences in pixel on images of size 640×480,
using mask 2 and 10,000 particles. The mean error of the ASM is calculated for only
26 acceptable mask fits and for the subset 2 of the Yale Face Database only 433 mask
fits were reasonable. The face model that was used to fit the mask to the Yale Face
Database was trained entirely from the IMM Face Database.

Mean Vertex Difference

IMM Face Database

(1) Testing on training 2.6 pixels

(2) Leave one out 4.2 pixels

(3) Lighting variety 4.8 pixels

(4) ASM comparison 6.2 pixels (26/40)

Yale Face Database

Subset 1 6.5 pixels

Subset 2 6.2 pixels (433/456)

We further use the Yale Face Database B and its extension to conduct more
experiments. This database contains images of 10 persons under 9 different poses
and 64 different illumination conditions; the extended Yale Face Database B
contains additional 28 persons under the same pose and lighting conditions. We
use both sets. Furthermore the images for each person are divided into subsets
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according to the angle between the light source and the camera axis. We use
subsets 1 which contains 7 images of each person with spot lights at up to 12◦

and subset 2 which contains 12 images with angles up to 25◦. The greater the
angle the longer the shadows on the person’s face.

We used the face model that was built from 40 images of 40 persons in the
IMM Face Database to fit the mask to all 266 images of the first subset. Again
the resolution of the images (640×480 pixels), it is cut in half three times to
result in images of size 320×240, 160×120 and 80×60 pixels, with corresponding
average face sizes of 250×160, 125×80, 60×40 and 30×20 pixels. We also fitted
the mask to the second subset, consisting of 456 images, 12 for each person using
the original image resolution of 640×480 pixels.

As a ground truth we fitted the mask to all 38 individuals of the Yale Face
Database B and its extension manually by adjusting the pose and shape pa-
rameters. We thereby assume that the pose and shape of each face remained
constant across different lighting settings. Again we use the mean Euclidean dis-
tance between the manually fitted and the automatically detected mask vertices
as a quality measurement.

Our results are summarized in table 1. The error is the mean Euclidean dis-
tance in pixels between the manually fitted and the automatically detected mask
vertices. Images are 640×480 pixels, we use mask 2 and 10,000 particles.

We tested the number of particles versus the processing time needed to achieve
best results and found that 10,000 particles is the best trade off between accuracy
and speed. The processing time depends on the size of the mask, ie the number
of mask triangles. The evaluation of 10,000 particles in Matlab on a Intel Core
2 Quad 2.33GHz PC (using only a single core) takes about 9 s, 20 s, 66 s and
315 s for mask 0, 1, 2 and 3 respectively. The face detection algorithm in Matlab
takes 0.40 s and the fast grid-search takes about 0.15 s per image.
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Fig. 5. Mean vertex point difference for different input resolutions and different mask
sizes used for (a) testing on training and (b) testing on different lighting condition

Fig. 5 shows our results for the testing on training experiment and the testing
on different lighting condition in more detail. The graph shows the mean vertex
point differences averaging over 40 persons for different image resolutions and
mask sizes. It shows that the original mask 0 is too coarse and results in the least
accurate fitting. Since the mean vertex point difference depends on the image
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resolution we calculated it with respect to a image resolution of 640×480 in
order to make the results comparable. Therefore the recovered pose and shape
parameters for resolutions 320×240 and below are used to project the mask
into the image of size 640×480. The graph shows more clearly that the error
increases with decreasing image resolution as well as with decreasing mask size.
The finer the mask and the higher the resolution of the input image the better
the estimation of the mask fit.

We use seven different shape parameters from which some are estimated bet-
ter than others. Shape parameters controlling positions, namely ‘eyes vertical
position’, ‘eye separation distance’, ‘nose vertical position’, ‘mouth vertical po-
sition’, are estimated more precisely than shape parameters that only apply to
a few number of triangles, like ‘eyebrows vertical position’, ‘eyes width’, ‘mouth
width’, which are more difficult to estimate.

(a) 640×480 (b) 320×240 (c) 160×120 (d) 80×60

Fig. 6. Result of the testing on training for different image resolutions

Figure 6 shows the result of testing on training experiment for one person
of the IMM Face Database using different image resolutions. The mean vertex
point differences are 1.86, 0.54, 0.77 and 0.31 for image resolutions of 640×480,
320×240, 160×120 and 80×60 pixels respectively. Note that the face model is
only trained with images of resolution 640×480 but by using different mask sizes
it can also be applied to image resolutions different from the training resolution.

(a) 640×480 (b) 320×240 (c) 160×120 (d) 80×60

Fig. 7. Result of the proposed automatic fitting for different image resolutions
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In comparison Fig. 5(b) shows the results for the testing on different lighting
condition, using the fifths image of each person. Again masks 1, 2 and 3 achieve
best results for images resolutions of 640×480 and 320×240 pixels. But modelling
the lighting condition is more difficult in low resolution, so the performance
decreases for images of size 160×120 and below. On average the mean vertex
difference increases by about two pixel when fitting the mask to images that
exhibit spot lights compared to images with diffuse lighting only. Fig. 7 shows
the result for one person of the IMM Face Database for all 4 different resolutions.

When comparing our results with the ASM, we found that the ASM is very
sensitive to the initialisation and the parameters used. We found that is it was
only able to find the facial feature points of 26 persons correctly, in 14 out of
40 images the ASM drifted completely off the face region using the original
resolution of 640×480. After fitting the face mask the mean vertex distance for
these 26 persons amounted to 6.2 pixels compared to 2.7 pixels achieved by our
approach. As it must be trained on the original image resolution, the ASM was
unable to find the facial feature points in resolutions that differ from the training
resolution, unlike our approach.

The generalisation of our approach is shown in experiment number 2 and the
experiments on the Yale Face Database. The mean vertex point difference for
the leave one out experiment is 4.2 pixels as shown in table reftab:results. This
is only an increase of 1.6 pixels compared to testing on training. The results on
the subset 1 of the Yale Face Database show another increase of two pixels. But
non of the 38 persons in the Yale Face Database B are included in the face model
and all images are recorded under different non-diffuse lighting conditions.

When using the second subset of the Yale Face Database, consisting of 456
images, 12 for each person, our approach was able to correctly fit the mask to
433 of these images, using the original resolution and mask size 2. The mean
vertex difference amounts to 6.2 pixels, compared to 6.5 pixels for full resolution
images of the first subset. Results will decrease with decreasing resolution and
more extreme lighting conditions.

4 Conclusion

We proposed a new method for automatic fitting of a deformable face mask to
a previous unseen face. By subdividing a coarse mask mesh to produce different
mask sizes we are able to fit this mask to different input image resolutions. The
face model is built with the highest image resolution and can then be applied to
any smaller resolution unlike ASM. Using different mask sizes we are able to fit
a deformable mask to faces with average face sizes of down to 30×20.

Traditional approaches usually find facial features first before fitting a face
mask to these points whereas our method combines these two steps. The fit-
ting of a deformable face mask implies the detection of facial feature points. By
incorporating the work of [3] the proposed method can handle different light-
ing conditions as shown in experiments on the IMM and the extended Yale Face
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Database. The approach is shown to generalise well even when testing on a
completely different data set to the training data. Future work involves extending
the approach to handle facial expressions and partial occlusions of the face.

References

1. Ahlberg, J.: CANDIDE-3 - an updated parameterized face. Technical Report LiTH-
ISY-R-2326, Dept. of Elec. Eng., Linkoping University, Sweden (2001)

2. Ayala Raggi, S., Altamirano Robles, L., Cruz Enriquez, J.: Towards an
illumination-based 3D active appearance model for fast face alignment. In: Ruiz-
Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 568–575.
Springer, Heidelberg (2008)

3. Basri, R., Jacobs, D.W.: Lambertian reflectance and linear subspaces. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 25, 218–233 (2003)

4. Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model.
IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1063–1074 (2003)

5. Cai, D.: Codes and datasets for subspace learning (2007),
http://www.cs.uiuc.edu/homes/dengcai2/Data/data.html (retrieved, October
2007)

6. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their
training and application. Comp. Vis. Image Underst. 61(1), 38–59 (1995)

7. Dedeoglu, G., Baker, S., Kanade, T.: Resolution-aware fitting of active appearance
models to low-resolution images. In: Leonardis, A., Bischof, H., Pinz, A. (eds.)
ECCV 2006. LNCS, vol. 3952, pp. 83–97. Springer, Heidelberg (2006)

8. Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. In-
ternational Journal of Computer Vision 61(2), 185–205 (2005)

9. Dornaika, F., Ahlberg, J.: Fitting 3D face models for tracking and Active Appear-
ance Model training. Image and Vision Computing 24(9), 1010–1024 (2006)

10. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods
for Bayesian filtering. Statistics and Computing 10(3), 197–208 (2000)

11. Edwards, G.J., Taylor, C.J., Cootes, T.F.: Interpreting face images using active
appearance models. In: Face & Gesture Recognition, p. 300. IEEE, Los Alamitos
(1998)

12. Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination
cone models for face recognition under variable lighting and pose. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 23(6), 643–660 (2001)

13. Hamarneh, G.: Multi-resolution active shape models (2008),
http://www.cs.sfu.ca/~hamarneh/software/asm/index.html (retrieved, Febru-
ary 2008)

14. Kalinkina, D., Gagalowicz, A., Roussel, R.: 3d reconstruction of a human face
from images using morphological adaptation. In: Gagalowicz, A., Philips, W. (eds.)
MIRAGE 2007. LNCS, vol. 4418, pp. 212–224. Springer, Heidelberg (2007)

15. Kuhl, A., Tan, T., Venkatesh, S.: Model-based combined tracking and resolution
enhancement. In: Intl. Conf. on Pattern Recognition. IEEE, Los Alamitos (2008)

16. Lu, L., Zhang, Z., Shum, H.-Y., Liu, Z., Chen, H.: Model- and exemplar-based
robust head pose tracking under occlusion and varying expression. In: IEEE Work-
shop on Models versus Exemplars in Computer Vision (2001)

17. Nordstrøm, M.M., Larsen, M., Sierakowski, J., Stegmann, M.B.: The IMM face
database - an annotated dataset of 240 face images. Technical report, Technical
University of Denmark, DTU (May 2004)

http://www.cs.uiuc.edu/homes/dengcai2/Data/data.html
http://www.cs.sfu.ca/~hamarneh/software/asm/index.html


Automatic Fitting of a Deformable Face Mask Using a Single Image 81

18. Tang, H., Huang, T.S.: MPEG4 performance-driven avatar via robust facial motion
tracking. In: IEEE International Conference on Image Processing (2008)

19. Tu, J., Zhang, Z., Zeng, Z., Huang, T.: Face localization via hierarchical conden-
sation with fisher boosting feature selection. In: CVPR, pp. II: 719–724 (2004)

20. Turk, M., Pentland, A.: Face recognition using eigenfaces. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 586–591 (1991)

21. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: IEEE Conference on Computer Vision and Pattern Recognition (2001)

22. Xiao, J., Baker, S., Matthews, I., Kanade, T.: Real-time combined 2D+3D active
appearance models. In: IEEE Comp. Vis. and Pattern Recog., pp. 535–542 (2004)

23. Xin, L., Wang, Q., Tao, J., Tang, X., Tan, T., Shum, H.: Automatic 3D face
modeling from video. In: International Conference on Computer Vision, October
2005, vol. 2, pp. 1193–1199. IEEE, Los Alamitos (2005)

24. Yan, S., Li, M., Zhang, H., Cheng, Q.: Ranking prior likelihood distributions for
bayesian shape localization framework. In: Intl. Conf. on Comp. Vis. IEEE, Los
Alamitos (2003)

25. Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on
Pattern Analysis and Machine Intelligence 22(11), 1330–1334 (2000)

26. Zorin, D., Schroder, P.: Subdivision for modeling and animation. In: Subdivision
for modeling and animation, Computer Graphics and Interactive Techniques. ACM
Siggraph, vol. 36 (July 2000)



Re-projective Pose Estimation of a Planar

Prototype

Georg Pisinger and Georg Maier

University of Passau,
Innstr. 43, 94032 Passau, Germany

{georg.pisinger,georg.maier}@uni-passau.de

Abstract. We present an approach for robust pose estimation of a pla-
nar prototype. In fact, there are many applications in computer graphics
in which camera pose tracking from planar targets is necessary. Unlike
many other approaches our method minimizes the Euclidean error to
re-projected image points. There is a number of recent pose estimation
methods, but all of these algorithms suffer from pose ambiguities. If we
know the positions of some points on the plane we can describe the 3D
position of the planar prototype as a solution of an optimization prob-
lem over two parameters. Based on this formulation we develop a new
algorithm for pose estimation of a planar prototype. Its robustness is
illustrated by simulations and experiments with real images.

Keywords: Pose estimation, absolute orientation.

1 Introduction

Computation of the position and orientation of a camera from a single image with
respect to a known object is crucial for many computer and robot vision tasks.
Camera calibration, object recognition and self-localization of mobile robots are
typical examples for the use of pose estimation ([1,2]).

At least three point correspondences are needed to solve the pose estima-
tion problem. For every 3D object point expressed in world coordinates its 2D
projection expressed in image coordinates must be given. For three or four non-
collinear 3D object points an analytical solution can be found ([3,4]). Therefore
a fourth or fifth-degree polynomial system can be formulated and the problem
can be solved by finding roots of the polynomial system. However, this method
can be only applied to three or four 3D object points and the roots of the poly-
nomial systems are susceptible to noise. There is no closed form solution for
more than four 3D object points. The classical approach is to formulate the pose
estimation problem as a nonlinear least-squares problem. A local minimum of
this problem can be computed by using nonlinear optimizations algorithm, e.g.
the Gauss-Newton method proposed by Lowe [5] or the globally convergent iter-
ative method of Lu [6]. But the solution of such optimization methods does not
necessarily correspond to the global minimum or correct pose. They always find
only a local minimum which depends on the initial values.
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c© Springer-Verlag Berlin Heidelberg 2009
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This paper focuses on the special case in which the object points are coplanar.
A main area of application of vision based tracking systems which are based on
planar targets is Augmented Reality ([2]).

For this case there are also closed form solutions for three and four coplanar
object points ([3,4]). These methods can be applied to more points by taking
subsets and finding common solutions to several polynomial systems. But the
results are highly sensitive to noise. There are iterative methods based on mini-
mizing the error, either on the image (image space error) or in R3 (object space
error). The magnitudes and the positions of local minima are very similar for
both error functions ([7]). In this paper we consider the object space error since
this is easier to parameterize. There are some iterative methods ([6,7,8,9]) but
most of them have problems to determine the correct pose since the error func-
tion typically has multiple local minima. In [7] it is shown by tests that, in
general, there are two local minima of the object space error function. To de-
termine such a minimum the roots of a multivariate polynomial of order five in
three variables must be computed.

However, before we start describing the particular approaches to get the cor-
rect minimum of the object space error function, we will first define our camera
model and its parametrization (section 2). In section 3 we show that the object
space error function with 6 degrees of freedom can be formulated as a func-
tion with only two variables. Therefore the graph of this function can be easily
visualized. Based on this simplification, we develop our new robust pose esti-
mation algorithm. Section 4 presents experimental results and comparison with
state-of-the-art pose algorithms.

2 The Camera Model

2.1 The Projective Camera Mapping

In our context the term “camera” means an image capturing device including
the lens, a CCD camera, a frame grabber and the displayed image. The camera
mapping K : R3 → R2 defines the way by which an object point p ∈ R3 will
be transformed into the image coordinate system. The common way to model
the camera mapping K : R3 → R2 in computer vision is to use a rigid motion
T : R3 → R3 followed by a dimension reducing mapping Π : R3 → R2, resulting
in K = Π ◦ T .

The so called extrinsic parameters of the rigid motion T define the transfor-
mation from a given world coordinate system to the camera coordinate system.
Since we are interested in the pose and orientation of a planar prototype with
respect to the camera only we assume T = id.

Π is a central projection followed by a coordinate system transformation. For
theoretical analysis many authors consider only a pure pinhole camera model.
But for a realistic camera modelling a distortion mapping in the image plane has
to be considered. This leads to a pinhole camera model with distortion ([10]).

The first part of Π describes the projection of 3D points on the camera plane.
Let P3 : R2 × (R \ {0}) → R2, (x, y, z) �→ (x

z , y
z ) denote the central projection
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with respect to the third coordinate. The distortion mapping δ : R2 → R2 is
defined in the camera plane with respect to the camera coordinate system. The
most common distortion model uses only radial distortions

δ

((
u

v

))
=
(

u + u · r
v + v · r

)
, r =

D∑
i=1

ki(u2 + v2)i (1)

with parameters k1, . . . , kD ∈ R (usually D = 2).
The last step accomplishes the change of the camera coordinate system to the

image coordinate system. This is also a change of units: from metric to pixel
geometry. We set

P : R2 → R2 :
(

u
v

)
�→
(

α γ
0 β

)(
u
v

)
+
(

u0
v0

)
, (2)

where (u0, v0) is the principal point. If f is the focal length of the camera and
du × dv is the dimension of a single sensor element, then the parameters α and
β can be interpreted as α = f

du
and β = f

dv
. γ describes the skewness between

the axes of the pixel coordinate system. If γ is zero the coordinate axis of the
image coordinate system are perpendicular.

After all, our camera mapping K can be modelled by K = P ◦ δ ◦ P3 ◦ T . All
parameters which describe the mapping Π = P ◦δ◦P3 are called intrinsic camera
parameters. We further assume the intrinsic camera parameters are known by
calibration using for example the algorithm of Zhang [10].

2.2 Re-projection of Image Points

As one can see from the last section each point in the image plane determines a
straight line in the reference coordinate system intersecting the projection center
of the camera by re-projection. Let A ⊆ R2 be the image plane of the camera,
then the re-projected ray of a point i ∈ A is defined by the pre-image of i under
K. In our camera model K−1({i}) is a straight line (the so called viewing ray).

For (u, v) ∈ R2 the set P−1
3 ({(u, v)}) = {s(u, v, 1)|s ∈ R\{0}} is a straight line

in R3 with direction (u, v, 1) without the origin. In order to construct a functional
section of the relation P−1

3 we choose a suitable representative of P−1
3 ({(u, v)})

by setting P−1
3 ((u, v)) := 1√

u2+v2+1
(u, v, 1) . Note that this representative has

norm 1 and it is the direction of the viewing ray. Then we can define Π−1 =
(P ◦ δ ◦ P3)

−1 = P−1
3 ◦ δ−1 ◦ P−1.

3 Euclidean Pose Determination

3.1 Problem Formulation

For the re-projective pose estimation we are able to formulate the pose deter-
mination problem, which is optimal in the Euclidean sense. This means that
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the distance of the determined pose of the planar prototype points to the re-
projected observed points is minimal.

Let P = {p1, . . . , pm} ⊆ R3 be a finite set of coplanar points with respect to
the reference coordinate system. P is called prototype. Without loss of generality
let pj = (xj , yj, 0)tr ∈ R3 for all pj ∈ P. For every pj ∈ P we denote ipj ∈ A
for the observed projection of pj in the image plane A ⊆ R2 with respect to the
image coordinate system and define nj = Π−1(ipj ). Furthermore, we assume
that not all ipj are equal and P is not collinear.

For a direction n ∈ S2 := {x ∈ R3 | ‖x‖ = 1} we define Ln := {αn |α ∈ R} as
the line with direction n containing the origin. It is easy to show that for every
point p ∈ R3

dist(p, Ln)2 = ‖(I − Nn)p‖2 (3)

holds, where Nn is the observed line-of-sight projection matrix defined as Nn =
n ntr and I is the 3× 3 identity matrix. The Euclidean pose estimation problem
is to obtain R ∈ SO(3) := {U ∈ R3×3 | det(U) = 1 ∧ UU tr = I} and t ∈ R3

minimizing the least-squares sum

Eos(R, t) =
m∑

j=1

dist(Rpj + t, Lnj )
2 . (4)

Eos is called object-space error function. With r1, r2, r3 denoting the column
vectors of R, r =

(
r1
r2

)
∈ R6 and

Qj =

⎛⎝xj 0 0 yj 0 0
0 xj 0 0 yj 0
0 0 xj 0 0 yj

⎞⎠ ∈ R3×6 (5)

we have Rpj + t = xj · r1 + yj · r2 + t = Qjr + t. Using (3) we get

m∑
j=1

dist(Rpj + t, Lnj)
2 =

m∑
j=1

‖(I − Nnj)(Qjr + t)‖2

=
m∑

j=1

(rtrQtr
j + ttr)(I − Nnj )(Qjr + t) = rtr

⎛⎝ m∑
j=1

Qtr
j (I − Nnj )Qj

⎞⎠ r +

2rtr

⎛⎝ m∑
j=1

Qtr
j (I − Nnj )

⎞⎠ t + ttr

⎛⎝ m∑
j=1

(I − Nnj )

⎞⎠ t (6)

since I − Nnj is symmetric and idempotent. Using the abbreviations

M1 =
m∑

j=1

Qtr
j (I − Nnj )Qj , M2 =

m∑
j=1

Qtr
j (I − Nnj ), M3 =

m∑
j=1

(I − Nnj ) (7)
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the Euclidean pose determination problem is to obtain r =
(
r1
r2

)
with r1, r2 ∈ S2,

rtr
1 r2 = 0 and t ∈ R3 minimizing

rtrM1r + 2rtrM2t + ttrM3t . (8)

Since this minimization problem is quadratic in t, given a fixed vector r the
optimal value for t can be computed in closed form as

t = −M−1
3 M tr

2 r . (9)

For (9) to be well-defined, M3 must be positive definite, which can be verified
as follows: Let ‖X‖ denote the Frobenius norm of a matrix X ∈ R3×3. For any
x ∈ R3 \ {0}

xtrM3x = xtr

⎛⎝ m∑
j=1

(I − Nnj)

⎞⎠ x =
m∑

j=1

(‖x‖2 − xtrN tr
nj

Nnj x) =

=
m∑

j=1

(‖x‖2 − ‖Nnj x‖2) ≥
m∑

j=1

(‖x‖2 − ‖Nnj‖2 · ‖x‖2) = 0. (10)

Since ‖x‖ = ‖Nnj x‖ implies that x is a eigenvector to the eigenvalue 1 of Nnj

not all terms ‖x‖2−‖Nnjx‖2 can be equal to zero unless all image points ipj are
equal. Since this case is excluded, xtrM3x is strictly greater than zero in every
case. Therefore positive definiteness of M3 follows.

Using equation (9) and the symmetry of M3 we have

rtrM1r + 2rtrM2(−M−1
3 M tr

2 r) + (−M−1
3 M tr

2 r)trM3(−M−1
3 M tr

2 r)
= rtrM1r − 2rtrM2M

−1
3 M tr

2 r + rtrM2M
−1
3 M3M

−1
3 M tr

2 r

= rtrM1r − rtrM2M
−1
3 M tr

2 r = rtr(M1 − M2M
−1
3 M tr

2 )r . (11)

Since M1−M2M
−1
3 M tr

2 ∈ R6×6 is also symmetric, there are symmetric matrices
A, C ∈ R3×3 and a matrix B ∈ R3×3 with

M1 − M2M
−1
3 M tr

2 =
(

A B
Btr C

)
(12)

and problem (8) is equivalent to the determination of r1, r2 ∈ S2, rtr
1 r2 = 0,

such that
rtr
1 Ar1 + 2rtr

1 Br2 + rtr
2 Cr2 . (13)

becomes minimal.

3.2 Estimation of a Global Minimum for r2

Before we start describing our new approach to get a minimum of problem (13),
we will first explain how an optimal r2 ∈ S2 with rtr

1 r2 = 0 can be computed
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for every r1 ∈ S2. Since problem (13) is symmetric in r1 and r2 this method can
also be applied to compute an optimal r1 ∈ S2 with rtr

1 r2 = 0 for every r2 ∈ S2.
Assume r1 ∈ S2 is fixed then there are v1, v2 ∈ S2 with vtr

1 r1 = vtr
2 r1 =

vtr
1 v2 = 0. Then every r2 ∈ S2 with rtr

1 r2 = 0 can be written as r2 = λv1 + μv2
with λ2 + μ2 = 1. Therefore

rtr
1 Ar1 + 2rtr

1 Br2 + rtr
2 Cr2 =

rtr
1 Ar1 + 2(rtr

1 Bv1, r
tr
1 Bv2)

(
λ

μ

)
+ (λ, μ)

(
vtr
1 Cv1 vtr

1 Cv2
vtr
1 Cv2 vtr

2 Cv2

)(
λ

μ

)
=

(λ, μ, 1)

⎛⎝vtr
1 Cv1 vtr

1 Cv2 rtr
1 Bv1

vtr
1 Cv2 vtr

2 Cv2 rtr
1 Bv2

rtr
1 Bv1 rtr

1 Bv2 rtr
1 Ar1

⎞⎠⎛⎝λ
μ
1

⎞⎠ =: (λ, μ, 1)E

⎛⎝λ
μ
1

⎞⎠ . (14)

Since rtr
1 Ar1 + 2rtr

1 Br2 + rtr
2 Cr2 ≥ 0 for all r1, r2 ∈ R3 the matrix E is

positive semi-definite. Then there is an unitary matrix U ∈ R3×3 and a diagonal
matrix D ∈ R3×3 with non-negative diagonal elements such that E = U trDU . D
contains the eigenvalues of E and U the corresponding eigenvectors with norm
1. Let

D =

⎛⎝d1 0 0
0 d2 0
0 0 d3

⎞⎠ , D
1
2 =

⎛⎝√d1 0 0
0

√
d2 0

0 0
√

d3

⎞⎠ , zλ,μ =

⎛⎝λ
μ
1

⎞⎠ (15)

we obtain λ, μ with λ2 + μ2 = 1 minimizing

ztr
λ,μEzλ,μ = ztr

λ,μU trD
1
2 D

1
2 Uzλ,μ =

∥∥∥D 1
2 Uzλ,μ

∥∥∥2 . (16)

Let U = (u1, u2, u3) then λD
1
2 u1 + μD

1
2 u2 describes an ellipse in the plane

spanned by the vectors {D 1
2 u1, D

1
2 u2} through the point D

1
2 u3. Let n ∈ S2 be a

normal vector of this plane. Then
{
x ∈ R3

∣∣∣ xtrn = (D
1
2 u3)trn

}
is the set of all

points in this plane and ((D
1
2 u3)trn)n is the orthogonal projection of the origin

into this plane, hence

∥∥∥D 1
2 Uzλ,μ

∥∥∥2 =
∥∥∥D 1

2 Uzλ,μ − ((D
1
2 u3)trn)n

∥∥∥2 +
∥∥∥((D 1

2 u3)trn)n
∥∥∥2 . (17)

The left term is minimal with respect to λ2 + μ2 = 1 if the point λD
1
2 u1 +

μD
1
2 u2+D

1
2 u3 is the point on the ellipse with minimal distance to ((D

1
2 u3)trn)n.

This problem can be solved easily and numerical stable by computing the largest
root of a quartic polynomial ([11]).

So for every r1 ∈ S2 a r2 ∈ S2 can be computed to minimize problem (13).
This defines a function r2(r1). Now consider Ẽos : S2 → R, r1 �→ rtr

1 Ar1 +
2rtr

1 Br2(r1) + (r2(r1))trCr2(r1). To estimate local minima of Ẽos the vector
r1 can be parameterized as follows: r1 = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)) for
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θ ∈ [0, π], ϕ ∈ [0, 2π]. Since if r1 is a local minimum of Ẽos then −r1 is also a local
minimum. From this w.l.o.g. let cos(θ) ∈ [0, 1] and therefore it is sufficient to
analyze the optimization problem for θ ∈ [0, π

2 ]. Since there are only two degrees
of freedom the graph of the error function Ẽos can be visualized graphically.
We want to mention explicitly that the original problem (4) is identical to the
transformed Ẽos. Figure 1 shows the graph representing an example.

θ

ϕ

Fig. 1. Graph of a typical object space error function Ẽos which now depends only
from ϕ ∈ [0, 2π] and θ ∈ [0, π

2
]. This function has one local minimum (�) and one

global minimum in front (+).

To estimate the local minima of Ẽos the intervals [0, π
2 ] and [0, 2π] are divided

into 20 subintervals and Ẽos is evaluated at the border of the intervals. The
corresponding rotation matrix and translation vector to the minimum values are
chosen as initial value for an iterative minimization algorithm. In our experi-
ments we used the iterative algorithm proposed by [6]. As a final step, the global
minimum is selected.

3.3 New Robust Pose Estimation Algorithm

In order to get a fast pose estimation algorithm a set of collinear points is
generated. If P = {p1, . . . , pm} is our prototype w.l.o.g. let p1 and p2 be the two
points with maximal distance between each other, i.e.

‖p1 − p2‖ = max {‖pi − pj‖ | i, j = 1, . . . , m} .

Furthermore let l(p1, p2) be the line through p1 and p2 and w.l.o.g. pm be the
point with maximal distance from l(p1, p2). If this distance is 0 all points are
already collinear. Otherwise let pj be the point of intersection between l(p1, p2)
and l(pm, pj) for j = 1, . . . , m − 1.

Since for a line l the image P3(l) is also a line the same construction can also
be made for the observed projection points qj := (δ−1 ◦ P−1)(ipj ): let l(q1, q2)
be the line through q1 and q2 and qj the point of intersection between l(q1, q2)
and l(qm, qj) for j = 1, . . . , m − 1.
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For collinear points a closed-form solution can be formulated ([12]). Without
loss of generality let pj = (xj , 0, 0)tr ∈ R3 for all j ∈ {1, . . . , m − 1}. Using
nj = P−1

3 (qj), (6) and (7) we get the following problem

Eos(R, t) =
m−1∑
j=1

dist(Rpj + t, Lnj)
2 = M1 − M2M

−1
3 M tr

2 , (18)

where

M1 =
m−1∑
j=1

(
xjI

0

)
(I − Nnj

)(xjI, 0) =

⎛⎝m−1∑
j=1

x2
j (I − Nnj) 0

0 0

⎞⎠ , (19)

M2 =

⎛⎝m−1∑
j=1

xj(I − Nnj )

0

⎞⎠ and M3 =
m−1∑
j=1

(I − Nnj
).

Then using M4 =
m−1∑
j=1

x2
j (I − Nnj) and M5 =

m−1∑
j=1

xj(I − Nnj ) it holds

M1 − M2M
−1
3 M tr

2 =
(

M4 − M5M
−1
3 M5 0

0 0

)
. (20)

With the notation of the last section we get B = C = 0. The optimization
problem can be rewritten as

min
r1∈S2

rtr
1 (M4 − M5M

−1
3 M5)r1 . (21)

Since M4 − M5M
−1
3 M5 is a symmetric matrix, this is a eigenvalue problem,

where a normalized eigenvector to the smallest eigenvalue of M4 − M5M
−1
3 M5

is a solution. Fast and numerical stable algorithms are wellknown ([13]).
This leads to our new pose estimation algorithm:

1. Estimate the first column r1 of the rotation matrix R by (21) using the set
of generated collinear points.

2. Compute an optimal r2 with respect to r1 applying the algorithm of sec-
tion 3.2 using all points of the planar prototype.

3. Compute r3 = r1 × r2 and the translation vector t (equation (9)).
4. Use R = (r1, r2, r3), t as an initial value for an iterative pose estimation al-

gorithm. In our experiments we used the iterative algorithm proposed by [6].

4 Experimental Results

In order to assess the performance of the pose estimation algorithm, both syn-
thetic and real-world tests were carried out.
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For all experiments with synthetic data, we used the following setup:

1. For each test, we generated a random prototype consisting of 10 coplanar
points pj = (xj , yj , 0)tr for j ∈ {1, . . . , 10} in the range xj ∈ [−1.0, 1.0] and
yj ∈ [−1.0, 1.0].

2. For each test, we generated a random rotation matrix R using Euler an-
gles and a random translation vector t = (t1, t2, t3)tr in the range t1, t2 ∈
[−5.0, 5.0] and t3 ∈ [1.0, 10.0].

3. To compute each image point ipj = K(Rpj + t) the camera mapping of
section 2 is used. Furthermore Gaussian noise was added and the result was
rounded to a nearby integer value.

The intrinsic camera parameters for the camera mapping K are set as follows:
α = 240, β = 240, γ = 0.0, u0 = 320, v0 = 240, D = 2, k1 = −0.2, k2 = 0.18.

4.1 New Pose Estimation Algorithm

To test the method presented in the last section we considered 13 different noise
levels reaching from zero to 6 pixels. For each noise level, we generated 1000
random models and poses. In Figure 2, the results of our algorithm are compared
to two other state-of-the-art methods. The solid line shows the results of our
algorithm. In the noise-free case (Gaussian noise = 0 pixels) we obtain a rate of
99 percent to find the correct pose (the global minimum of Eos). With increasing
noise, the rate decreases down to 97 percent for 6 pixels Gaussian noise. Results
for an existing iterative pose estimation algorithm ([6]) and an algorithm locating
two local minima ([7]) are given. The error function Eos is minimized by both
methods. Because there are most of the time two local minima of Eos, the rate
of finding the correct pose with an iterative method is just about 67 percent.
Only the algorithm of Schweighofer [7] maintains two solutions. But this method
is less robust since the rate decreases from 92 down to 89 percent for 6 pixels
Gaussian noise.

In Figure 2, we plot also the number of iterations required for the 13 different
noise levels. Each point represents results averaged over 1000 random models
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Fig. 2. Rate of choosing the correct pose (left) and number of iterations needed (right)
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and poses. The iterative algorithm proposed by [6] is initialized with a weak-
perspective approximation. In our case this algorithm is initialized with the
results of Step 1 to Step 3 of our method. Since in the algorithm of [7] the
iterative method must be applied twice the number of iterations required is
significantly higher. As a result, for low noise a better initial estimate can be
computed by our algorithm and thus the number of iterations needed during
minimization are reduced.
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Fig. 3. Rotation and translation error versus number of points used for pose estimation
with 2 pixels Gaussian noise

Figure 3 shows the relative translation and rotation error for our algorithm
and the two others where the number of points used for pose estimation vary
from 7 to 15. We add 2 pixels Gaussian noise to all images. If the correct pose
is given by R and t and the determined pose is given by Rx and tx then the
relative translation error is computed as 2 ‖t−tx‖

‖t‖+‖tx‖ . If q is the unit quaternion of
R and qx is the unit quaternion of Rx, respectively, then the relative rotation
error is computed as the absolute error in the unit quaternion ‖q − qx‖. Note,
that our algorithm outperforms both others.

4.2 Real Data

To test the new method with real data we compared our algorithm with a stan-
dard technique to obtain a starting value for the non-linear pose calculation
problem where the observed homography is exploited. Since the points of the
prototype P are coplanar the following approach can be applied.

Let H ∈ R3×3 be the homography describing the movement of the pro-
totype P to the observed image points (i.e. H minimizes the error function∑m

j=1 ‖P3(Hp̃j) − ip‖2 with p̃j = (xj , yj , 1)tr). Obviously H can be determined
only up to scale factor. The determination of H requires a non-linear optimiza-
tion to achieve an appropriate solution (see for example [10]). For cameras sat-
isfying the pinhole equation we have μH = P̃ (r1, r2, t) for a μ ∈ R (see e. g.
[14]), where R = (r1, r2, r3) and t determine the transformation of the observed
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prototype P. For a calibrated camera we know P̃ =

⎛⎝α β u0
0 γ v0
0 0 1

⎞⎠ (see (2)) yielding

(r1, r2, t) = μP̃−1H =: A for a μ ∈ R. Since the first two columns of (r1, r2, t)

must be orthonormal and tz ≥ 0 should hold, we set c =
√

A2
1,1 + A2

2,1 + A2
3,1

and

Ã =
{ 1

cA , if A3,3 > 0 holds
− 1

cA , otherwise . (22)

The first two columns of R and t can be obtained by the equality (r1, r2, t) = Ã
and r3 = r1 × r2.

For our experiments we chose a standard CCD camera with a 1/3” chip and
8mm lenses. To calibrate our camera we use the calibration algorithm described
by Zhang ([10]) including radial distortion parameters k1, k2 determining the
radial distortion δ(u, v). We use a 9 × 5 grid of equidistant (5 cm) tiny points,
which define our prototype P. We use a standard point extraction algorithm
([15]) to get the image points.

Since the correct pose was not known the following test is made: We compare
the estimated transformation from Step 3 of our algorithm and the transforma-
tion obtained by the standard approach with the ground truth: The ground truth
is defined by the transformation minimizing (R, t) �→

∑
p∈P ‖ip − Π(Rp + t)‖2

which we determine using the non-linear optimization method of Levenberg and
Marquardt. In our coordinate system the x- and y-axis are the axis of the cam-
era plane. The z-axis (depth) is perpendicular to them. We used 12 different
positions of the prototype P. Let Rs, ts and Rn, tn be the solution of the ini-
tial value of the standard pose estimation and the new method, respectively.
The reconstruction error is defined as 1

m

∑m
j=1 ‖(Rpj + t) − (Rxpj + tx)‖2 for

x ∈ {s, n}.
Figure 4 shows the reconstruction error for the standard technique and the

proposed method. We obtained the parameters in the matrix P̃ and the ra-
dial distortion parameters by the calibration algorithm due to Zhang [10]. The
estimated radial distortion parameters are: k1 = −0.19612, k2 = 0.17438.

Fig. 4. Reconstruction errors for the setup for 12 different positions, where the proto-
type plane is nearly parallel to the camera plane (left). The middle and right diagram
are associated with a little and big skewness between prototype plane and camera
plane. Left columns: standard pose estimation, right columns: proposed method.
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One can see that for almost all cases the proposed method leads to a rotation
matrix and a translation vector such that the transformed prototype P is closer
to the ground truth than the standard approach does. The values show that the
reconstruction error is increasing if the angle between the z-axis and the camera
plane is decreasing.

5 Conclusions

Our goal was to develop an efficient and robust pose estimation algorithm for a
finite planar point set with known relative positions. The new method is based
on the construction of collinear points, where a closed form solution can be
formulated. This solution is a good initial value for an iterative method. We
show results that our algorithm is robust and avoid the problems associated with
local minima for iterative algorithms. This new algorithm should be relevant for
many applications in computer vision.
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Abstract. In this paper, we describe a dynamic texture overlay method from
monocular images for real-time visualization of garments in a virtual mirror en-
vironment. Similar to looking into a mirror when trying on clothes, we create
the same impression but for virtually textured garments. The mirror is replaced
by a large display that shows the mirrored image of a camera capturing e.g. the
upper body part of a person. By estimating the elastic deformations of the cloth
from a single camera in the 2D image plane and recovering the illumination of
the textured surface of a shirt in real time, an arbitrary virtual texture can be real-
istically augmented onto the moving garment such that the person seems to wear
the virtual clothing. The result is a combination of the real video and the new
augmented model yielding a realistic impression of the virtual piece of cloth.

Keywords: Cloth Tracking and Augmentation, Augmented Reality, Virtual
Clothing.

1 Introduction

Merging computer generated objects with real video sequences is an important tech-
nique for many applications such as special effects in movies and augmented reality
applications. In many cases this is time-consuming and processing is done off-line.
Real-time applications would make processing easier and open new areas of applica-
tion. We developed a method for real-time dynamic texture overlay for garments. A
single camera captures a moving person in front of a display that shows the mirrored
input image. Camera and display are mounted such that the user has the impression of
looking into a mirror showing his upper part of the body. Color and texture of the mov-
ing garment are exchanged by a virtual one, such that the user seems to wear the virtual
cloth in the mirror (see Figure 1). For that purpose we developed a dynamic retextur-
ing method for garments that estimates elastic movements of a surface from monocular
images and renders a virtual texture onto the moving garment with correct deformation
and realistic illumination.

Deformable tracking and retexturing of surfaces from monocular sequences with-
out 3D reconstruction of the surface encounters the problem of self-occlusions during
tracking and realistic lighting during retexturing. We propose a real-time method based
on optical-flow that can handle those problems. We address the important problem of
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c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. The Virtual Mirror system replaces color and texture of a t-shirt in real time

self-occlusions during tracking of deformations in 2D using a two-dimensional mo-
tion model to regularize the optical flow field and define smoothing constraints locally
according to the self-occlusion of a region. Occlusion estimates are established from
shrinking regions in the mesh. In order to achieve realistic lighting, we exploit the fact
that the original image contains all shadows and illumination to be rendered onto the vir-
tual texture. Hence, shadows and wrinkles are realistically recovered from the original
video frame using a simple impainting algorithm. This enhances the realistic appear-
ance of the augmented garment. Additionally, we segment the shirt and can change the
color of the non-textured part of the apparel.

One important characteristic of our system is that we achieve very realistic results in
real-time with simple hardware, like a regular PC, a single camera and a display. The
deformation estimation is very robust and correct illumination and shading enhance
the realistic experience such that the user has the impression of actually wearing the
augmented shirt.

The remainder of this paper is structured as follows. Section 2 briefly sums up the re-
lated work in garment tracking and retexturing and states the contribution of this paper.
Section 3 describes our system as a whole. Section 4 explains the automatic detection
and segmentation of the shirt. Section 5 describes the tracking approach for deformable
surfaces in monocular sequences used for garment tracking. Section 6 describes the
recovery of shading and illumination and the rendering approach. Section 7 presents
experimental results.

2 Related Work and Contribution

Garment tracking and retexturing has been addressed lately by a number of researchers.
Most researchers focused on multi-view systems [11], [4], [15], [19] for cloth track-
ing but little research has been done in real-time garment tracking from monocular
sequences.

Pritchard and Heidrich [11] introduced a feature-based approach to cloth motion
capturing with a calibrated stereo camera pair to acquire 3D. They recovered geometry
from stereo correspondences using SIFT features. Scholz and Magnor [15] presented a
method that uses optical flow to calculate three dimensional scene flow in a multi-view
system. They use a cloth model that is matched to the surface, minimizing the deforma-
tion energy of the patch. Drift is countered by constraining the edge of the simulation
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to the silhouette of the real cloth. Guskov et al. [4] introduced a multi-view real-time
system based on color-coded markers with a limited size of codewords. Their system
needs small motions and the markers have to be quite large. Scholz et al. [16] improved
upon Guskov et al. by using a color-code with more codewords using a pseudo random
colored dots pattern. The algorithm identifies the exact position of colored ellipses on
the cloth by examining their local neighborhood and makes use of a-priori knowledge
on the surface connectivity. The three-dimensional geometry is reconstructed using a
multi-view setup. Their approach achieves remarkable results and can cope with fast
motion. White et al. [21] presented an extension to the approach based on a stereo-
setup to reconstruct a random pattern of colored triangles printed on a cloth. Hasler et
al. [5] used an analysis-by-synthesis approach and they, too, relay on markers in the
form of the patterned cloth. Recently, Bradley et al. [1] introduced a marker-free ap-
proach to capturing garments from sixteen views. However, their method needs some
user-assisted key-framing.

All these multi-view methods yield impressive results in 3D reconstruction. How-
ever, they need sophisticated acquisition setups and have a high computational cost. We
strive for a different goal, i.e. to create an augmented reality in real-time with as little
hardware as possible. For that purpose we are interested in deformable tracking from
single-view video. Little research has been done in monocular garment tracking and
augmentation. One approach in tracking deformable surfaces in monocular sequences
is to formulate deformations in 3D [13], [18]. However, recovering 3D position and
deformation from monocular surfaces is an ill-posed problem. Another approach is to
make use of deformation models in 2D and track the elastic deformations in the image
plane. In this case special care has to be taken considering self-occlusion e.g. if a sur-
face is bent or deformed in a way that parts of it occlude other parts or due to the image
projection. Furthermore, to retexture the surface shadows and illumination have to be
recovered from single images.

Scholz and Magnor [14] modified their approach for multi-view setups using the
color-code for garment tracking in monocular sequences. To recover shading maps they
interpolate the color coded pattern using thin-plate splines. However, their system needs
user interaction and the computation time is quite high.

White and Forsyth [20] presented a method for retexturing non-rigid objects from a
single viewpoint without reconstructing 3D geometry using color markers. They limited
their method to recover irradiance to screen printing techniques with a finite number of
colors. Pilet et al. [9] proposed a feature-based method for deformable object detec-
tion and tracking in monocular image sequences that uses a wide baseline matching
algorithm to establish correspondences. They continued their work by taking shadows
and illumination into account by assuming Lambertian illumination in the reference
frame [10]. Gay-Bellile et al. [3] proposed a direct non-rigid registration method and
address the problem of self-occlusions by detecting them as shrinking areas in the 2D
warp. The warp is forced to shrink by penalizing a variation in the sign of the partial
derivatives of the warp along some directions. A binary decision excludes self-occluded
pixels from consideration in the error function.

Some researchers have also addressed virtual clothing scenarios [12], [17], [2]. Saito
and Hoshino [12] propose a technique to merge computer generated apparels with
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human video by 3D human pose estimation in off-line video sequences. Taguchi et
al. [17] use two-dimensional plane models and the 2D shape of the garment to recover
the 3D shape. Ehara and Saito [2] proposed a texture overlay method for virtual clothing
systems. The deformation of the surface of the shirt was estimated from its silhouette
in the input image based on a pre-collected database of a number of shapes of the same
shirt. Their system needs homogeneous background and markers on the shirt. Unfortu-
nately, they do not take illumination into account.

In [6] we presented an optical-flow based approach for single-view video using a
mesh-based motion model together with smoothing constraints that are formulated lo-
cally on the mesh. Self-occlusions are taken into account by weighting the smoothness
constraints locally according to the occlusion of a region. Thereby we force the mesh
to shrink instead of fold in presence of self-occlusion.

The main contribution of this paper lies in a real-time tracking and retexturing
method for elastically deforming surfaces in monocular image sequences. The method
uses direct image information instead of features to track the deformation in the im-
age plane. The markerless tracking approach can be applied to any surface that is rich
enough in detail to exploit optical flow constraints if the initial state of the surface is
known. Therefore, we combine this method with a simple detection method for ini-
tialization that is based only on a-priori knowledge of the color of the shirt and the
knowledge that there is a textured region on the shirt. Additionally, we recover illu-
mination and shadows from the original image. The new virtual texture is deformed
in real-time in the 2D image plane and relighted with the recovered shading map. The
result is a real-time system with little hardware that exchanges the color and texture of
the shirt very realistically while the person in front of the system can move freely.

3 System Overview

The system consists of a regular PC, a single camera and a display that shows a com-
bination of real video and computer generated content. The XGA-firewire camera is
mounted on top of the display and captures the upper part of the user’s body. The place-
ment of the display and the viewing direction of the camera are chosen such that an
average sized person sees about the same as he/she would expect when looking in a real
mirror located at the same position as the display. Lights are mounted on either side
of the display to be more independent from surrounding lighting conditions. As user
interface we use a touchscreen on which the user can modify the augmentation result
and choose between different colors and textures. In the test scenarios the user wears
a green shirt with a rectangular drawing from Picasso as textured region (see Figure 2)
to be more independent from the background. Our system does not require that specific
pattern. The only assumption we make is that the shirt is green and there is a highly
textured rectangular region on the shirt. Other suitable assumptions are possible. Once
the line pattern is detected all its movements and deformations are tracked and replaced
by any virtual texture while the person can move freely in front of the display. Addi-
tionally, we recover illumination and shadows from the original image using a simple
impainting method.

The algorithm consists of several parts that all run on a single PC in real-time. Ba-
sically, we distinguish two modes. In the Detection Mode the shirt is detected and
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Fig. 2. Work Flow: Input image, mesh used for tracking, mirrored augmented output images (left
to right). The texture on the shirt is exchanged with a new one and the shirt is re-colored.

the mesh that is used for tracking is initialized. Once the shirt is detected the sys-
tem switches into the Tracking Mode. This mode consists of several parts, that will
be described in the following sections: Shirt segmentation and image preprocessing
(Section 4), deformable surface tracking (Section 5) and illumination recovery and ren-
dering (Section 6).

4 Shirt Segmentation and Image Preprocessing

During the Detection Mode the algorithm searches for the shirt in the image using
the a-priori knowledge of the color of the shirt and the assumption that it contains a
rectangular highly textured region. Additionally, in this mode the mesh that is used as
motion model to estimate the deformation of the texture in the 2D image plane (see
Section 5) is initialized. During the Tracking Mode we segment the shirt region in order
to give it a new color. We assume that if the shirt is in the image, it is the largest area
of that color and all parts of the shirt are connected. With these assumptions we can use
a very simple but efficient approach to detect and segment the shirt in the image that is
robust against illumination changes and changing background.

First, we transform all pixels in the image into the normalized RGB-colorspace
which is more invariant to changes of surface orientation relatively to the light source.
We find the largest blob by evaluating the normalized pixel values and fill all holes
in that region. Using this very general method for segmentation ensures that all parts
of the shirt are segmented, including dark shadows or highlighted regions. During the
Tracking Mode we use this segmentation mask to recolor the untextured part of the
shirt.

In the Detection Mode we proceed further by searching for a highly textured region in
the detected green region to initialize the mesh used for tracking. We find and sample the
contours of the texture defining the positions of the border mesh vertices and interpolate
all inner vertex position points (see Figure 2). By this method we assure that if the
texture is already deformed in the model frame, we get an idea about the deformation at
the beginning knowing the rectangular shape of the undeformed texture. The mesh and
the texture in this frame are used as model in the optical-flow-based tracking method
(see Section 5).
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5 Deformable Surface Tracking

Once the shirt has been detected and the mesh has been initialized we track the tex-
tured region of the shirt in an optical-flow based approach. We exploit the optical flow
constraint equation [8] and regularize the optical flow field with a predefined mesh-
based motion model. The best transformation can then be determined by minimizing a
quadratic error:

E =
n∑

i=1

(
∇I (xi, yi) · d (xi, yi) +

∂I

∂t
(xi, yi)

)2

(1)

where ∇I (xi, yi) denotes the spatial derivatives of the image I at pixel position
[xi, yi]

T and ∂I
∂t (xi, yi) denotes the temporal gradient between two images. d (xi, yi)

denotes the displacement vector at position [xi, yi]
T and is defined by the motion model

described in Section 5.1. n is the number of pixels selected for contribution to the error
function, i.e. pixels where the gradient is non-zero.

The optical flow equation has some requirements that have to be fulfilled. First, it is
valid only for small displacements between two successive frames because it is derived
assuming the image intensity to be linear. To account for larger displacements we use a
hierarchical framework.

Second, the optical flow equation assumes uniform Lambertian illumination. Illumi-
nation changes are taken into account by using highpass-filtered images. By that, high
frequencies like sharp edges used by the optical flow algorithm are preserved whereas
low frequencies like soft intensity changes due to illumination changes are filtered out
and the difference between the two frame are mostly due to motion.

The aperture problem will be addressed by the motion model and the smoothing
constraints in the following section.

Drift is countered by using the frame, in which the mesh was initialized, as model
represented by the initial mesh. For each frame we estimate the elastic motion from
the model frame, that is warped with the previous estimate of the previous frame, to the
current frame. Using this model-to-frame tracking approach instead of a frame-to-frame
tracking approach avoids error accumulation in the estimation and allows us to recover
from small inaccuracies.

5.1 Motion Parameterization

The optical flow equation provides one equation for two unknowns, i.e. the displace-
ment in x− and y− direction at each pixel position. To overcome this problem we need
additional constraints on the pixel displacement. Therefore, we introduce a 2D trian-
gulated regular mesh with K vertices vk, (k = 1...K), as motion model to regularize
the optical flow field. The position of each vertex vk is given by its image coordinates
pk = [xk, yk]T . Each pixel pi = [xi, yi]

T in the image can be represented by the
barycentric coordinates of the enclosing three vertices.

[xi, yi]
T =

3∑
j=1

vj∈vk

Bjt (xi, yi) · vj,
3∑

j=1

Bj (xi, yi) = 1, 0 ≤ Bj ≤ 1 (2)
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Fig. 3. Pixel displacement parameterization used as regularization of the optical flow field (left)
and neighborhood of a vertex in the model (right)

where Bj (xi, yi) , (j = 1, 2, 3) are the three barycentric coordinates of pixel [xi, yi]
T

and vj are the three enclosing vertices. With a mesh deformation, [xi, yi]
T is mapped

onto [x′
i, y

′
i]

T . Thus, we are looking for a deformation of the mesh, i.e. a displacement
of each vertex vk to v′

k such that the barycentric coordinates of [x′
i, y

′
i]

T are those of
[xi, yi]

T . The deformation model then yields [7]:

d (xi, yi) =
3∑

j=1
tj∈tk

Bj (xi, yi) · δvj (3)

where δvj are the three vertex displacements of the enclosing triangle. Inserting the
motion models into equation (1) leads to an overdetermined linear equation system that
can be efficiently solved in a linear least-squares sense.

Additionally, we incorporate smoothing constraints for the vertex displacement field.
This yields the following error functional to be minimized:

E =
n∑

i=1

(
∇I (xi, yi) · d (xi, yi) +

∂I

∂t
(xi, yi)

)2

+ λ

K∑
k=1

wkEs (δvk) (4)

where K is the number of vertices and λ is the regularization parameter. Es(δvk) is a
local smoothing function for the displacement δvk of a vertex vk between two succes-
sive frames weighted by wk. We choose Es(δvk) to be

Es(δvk) =

(
δvk − 1∑

n∈Nk

1
dn

∑
n∈Nk

1
dn

· δvn

)2

(5)

where Nk denotes the neighborhood of vertex vk and δvn denote the neighboring ver-
tex displacements. dn denotes the distance between vertex vk and the neighbor vertex
vn. Hereby, nearer neighbors have a higher influence on the displacement of vertex vk

than neighbors with a larger distance. For example, in Figure 3 vertex v2 has a larger
impact on the displacement of vertex vk than vertex v6 due to its smaller distance
to vertex vk. Es(δvk) is a measure of vertex displacement deviation to the displace-
ments of its neighbors. It regularizes the optical flow field. Especially, it is necessary if
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Fig. 4. Occlusion handling. Original image, occlusion map, detail of the deformed mesh without
and with occlusion handling (left to right). Without occlusion handling the 2D mesh folds at the
occlusion boundary which leads to inaccuracies during tracking because the triangles at the oc-
clusion boundary contain wrong texture regions. Dark colors in the occlusion map mark occluded
regions.

a vertex displacement is completely unconstrained by the optical flow equation due to
lack of image gradient in the surrounding triangles. The less a vertex displacement is
constrained by the optical flow equation the more it is constrained by the smoothness
constraint. Furthermore, defining it locally on the mesh allows us to weight it accord-
ing to the occlusion of a region to overcome the problem of self-occlusion that usually
appears during deformable tracking in 2D (see Section 5.2).

5.2 Handling Self-occlusions

2-dimensional deformation estimation in presence of self-occlusion is a very challeng-
ing problem. In the image plane self-occlusion can also appear in parts that are not
occluded in 3D due to projection. Naturally, a 2D mesh folds under these conditions
which causes inaccuracies during tracking because the mesh triangles contain wrong
texture regions (see Figure 4). This is an undefined status in 2D because a texture point
cannot uniquely be assigned to one triangle in the mesh. Especially, when the surface
is unfolded again the mesh is not able to unfold having reached this undefined status
in 2D. We addressed this problem in our previous work [6] but repeat it briefly here
because it is essential for the robustness of the presented real-time scenario. One so-
lution to the problem of self-occlusion is to force the mesh to shrink instead of fold in
occluded regions [3] because the mesh tracks the visible surface in the 2D image projec-
tion plane. We account for the problem of self-occlusions by weighting the smoothness
constraints locally according to the occlusion of a region. In Section 5.1we defined the
smoothing constraints locally on the mesh. This allows us to weight them according
to the occlusion of a region. This penalizes fold overs and forces the mesh to shrink
instead of fold as this results in a smoother deformation field [6].

We estimate an occlusion map from shrinking areas in the deformed mesh (see Figure
4). For each vertex vk in the mesh we calculate the average distance to its vertical and
horizontal neighbors and scale it by the initial vertex distance in the reference mesh:

Dk =
1

2 |Nvk|Dv

∑
n∈Nvk

‖vk − vn‖2 +
1

2 |Nhk|Dh

∑
n∈Nhk

‖vk − vn‖2 (6)

where Nvk and Nhk are the vertical and horizontal neighborhoods of vertex vk and Dv

and Dh denote the initial vertical and horizontal distances between two neighboring
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vertices in the regular reference mesh. By interpolating the average distances that
present local mesh shrinking estimates over the entire surface we can establish an es-
timate of occluded regions in an occlusion map. The occlusion maps are used to adapt
the weight wk in equation (4) for vertex vk to the degree of its occlusion. Vertices in
occluded regions are assigned a higher weight to the smoothness constraint than ver-
tices in non-occluded regions, i.e. the smaller the distance of a vertex to its neighbors
the more its displacement is constrained by the surrounding displacements. Hereby,
we counter foldings because vertices in mesh shrinking regions are forced to behave
like their neighbors. Additionally, when unfolding the surface the increased smoothing
weight in occluded regions causes the shrunk (i.e. occluded) region of the mesh to be
stretched by the vertices at the occlusion boundary whose displacements are constrained
by the optical flow equation. We choose wk to be

wk ∝ 1
D′

k

(7)

where D′
k equals Dk after the vector of all Dk is normalized so that the maximum of

all Dk is one and zero-values have been set to a value ε close to zero. Hereby, we do not
adapt the weight to the smoothness constraint if the mesh expands or shrinks uniformly,
e.g. due to a movement toward or away from the camera.

6 Illumination Recovery and Rendering

As we use a monocular video sequence without 3D reconstruction of the surface an
estimation of shading and illumination is needed to enhance the augmented reality ex-
perience. For the real-time scenario we use a green t-shirt with a texture that consists
of black curves. This allows us to establish a shading map in a very simple but effi-
cient way by interpolating the texture pixels from neighboring pixels while preserving
main wrinkles and fold overs. Here, we use the fact that the real-world illumination and
shadows that should be cast onto the virtual texture are already visible in the original
image. That means, the input image exhibits the exact shadows to be rendered onto the
virtual texture in the image intensities. The idea is to determine a shading map from the
intensity of the original image after the texture lines have been removed. As we know
the position of the texture from the tracking process we can easily identify the pixels
belonging to the line pattern. We identify the texture pixels as pixels that differ from the
mean color of the pixel neighborhood. The intensities of these pixels are then iteratively
interpolated from neighboring pixels resulting in a smooth shading map that preserves
shadows at main wrinkles and fold overs. Hereby, we preserve smooth intensity changes
that result from illumination and shading and filter out the sharp edges of the texture.
Figure 5 shows an example where the intensities are represented as height fields. The
left height field represents the intensities of the original image. The right height field il-
lustrates the intensities after the texture pixels have been interpolated from neighboring
pixels iteratively. It shows a smooth intensity field that still exhibits smooth intensity
changes at wrinkles and fold overs. Finally, the texture is rendered into the real scene
using an OpenGL shader where the intensity of the filtered image is used to modulate
the RGB/A texture.
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Fig. 5. Recovering shading and illumination. Representation of intensities as height fields be-
fore (left) and after (right) interpolation. The result yields a smooth intensity field and preserves
smooth intensity changes at main folds and wrinkles.

7 Results and Application

Our system has already been tested in our lab and in public at an exhibition. In the
environment at the exhibition hall the system was tested under natural conditions like
lighting changes, changing background and users unfamiliar with the system. We use

Fig. 6. Real-time cloth tracking: Mesh on the moving garment (left) and virtually augmented
textures and colors. The addition of real lighting increases the perception that the cloth is truly
exhibiting the virtual texture.
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a XGA-Firewire camera with a resolution of 1024 × 768 and process 25 frames per
second. The system is robust against lighting changes and changing backgrounds. Users
can move freely in front of the system and perform elastic deformations with the cloth,
i.e. stretching and bending it. Rotation is possible as long as the texture on the shirt is
visible. Figure 2 shows the work flow of the deformation estimation. The first image
shows the input image of the camera. The second image depicts the position of the
mesh and the last two images show tracking and retexturing results. The method is able
to recover even strong deformations and incorporating the shading maps enhances the
realistic impression of the augmented texture.

Figure 6 shows tracking and retexturing results of different deformations in the image
plane. These examples demonstrate that although the elastic deformation is estimated in
the 2D image plane the result is a three-dimensional impression. The first two rows of
Figure 6 demonstrate realistic augmentation results under self-occlusion. The addition
of realistic lighting increases the perception of spatial relations between real and virtual
objects. This is even more visible in the second row of Figure 6 that shows a few close
ups of the virtually augmented textures demonstrating the correct deformation and il-
lumination of these textures. Note that in Figure 2 and Figure 6 also the segmentation
result is visible from the re-colored shirt.

8 Conclusion

We presented a robust real-time deformable surface tracking and retexturing approach
for monocular image sequences that is incorporated into a Virtual Mirror setup. The
system exchanges the color and the texture of a shirt while the person wearing the shirt
can move freely in front of the mirror and even perform elastic deformations of the cloth
like stretching and bending or move toward or away from the camera. The deformations
are estimated in the 2D image plane using an optical-flow based approach and a mesh-
based motion model. By taking illumination and shadows into account we achieve very
realistic augmentation results. Besides these results, one important characteristic of our
system is that it uses very simple hardware.
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Abstract. In this paper, we propose a novel Spatio-Temporal Analysis and Re-
trieval model to extract attributes for video category classification. First, the 
spatial relationships and temporal nature of the video object in a frame is coded 
as the sequence of binary string –VRstring. Then, the similarity between shots 
is matched as sequential features in hyperspaces. The results show that 
VRstring allows us to define higher level semantic features capturing the main 
narrative structures of the video. We also compare our algorithm with state of 
the art longest common substring finding video retrieval model by Adjeroh 
et.al.[1] on the Minerva international video benchmark.  

1   Introduction 

Advances in video compression technology have brought new perspectives as well as 
new aspirations. With decreasing cost of capture and storage devices, many new digital 
video applications and services are increasingly emerging such as digital TV, digital 
video conferencing, mobile TV, interactive multimedia, video surveillance, intelligent 
traffic control etc. The size of multimedia data collection has drastically expanded, not 
only for the professional and commercial content providers’ repositories but also for 
the personal archives. Accessing and manipulating the information with such a tre-
mendously large amount of data has become a challenging and timely issue. There are 
various increasing real requirements for the effective techniques for indexing large 
video achieves. The key to these techniques involve the similarity measure among the 
videos. The similarity comparison based on low-level visual information has been in-
tensively addressed, while the similarity based on spatio-temporal information remains 
a difficult problem that has not yet been fully explored. 

Video retrieval is the task of finding a set of most similar videos from a database to 
a query. We can classify existing video similarity comparison approaches into two 
types:  

(a) Feature based similarity: In such systems, each video frame (or the key-frames 
only) is analysed based on those low-level features in terms of colour, texture, shape 
and motion features.  Retrieval techniques work on indexing video by treating video 
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sequences as collections of still images, extracting relevant key-frames, and compar-
ing their low-level features. Image matching methods are used to compare the scenes 
of the videos. The match between two videos becomes as the comparison of two im-
ages. In the past decade, a large number of researches including most video retrieval 
systems well established focus on such approaches. The examples include QBIC [1], 
Virage [2], VideoQ [3], WebSEEk [4] and Video Scout [5]. There is a big issue  
in here. A key characteristic of video data is its associated spatial and temporal infor-
mation that delivers semantically coherent narrative. The temporal ordering of frames  
in the shot cannot be left out. The better solutions are needed that match all frames 
across videos. However, a relatively few algorithms for general-purpose video  
retrieval that consider temporal constraints and use sequence matching have been in-
vestigated. Kim and Park [6] evaluate the similarity between video sequences by em-
ploying the directed divergence on Y,U and V colour histogram. Adjeroh et al. [7] 
quantize and map low-level features of each of frames into symbols. The sequence of 
frames is transformed as a string - vstrings. Then they used edit distance to measure 
the dissimilarity between videos by sequence-to-sequence matching.   
(b) Region based similarity, i.e. video object similarity.  VOs (Video objects) are 
formally introduced in international video coding standard MPEG4 and Video de-
scription standard MPEG7. VOs activities in a video sequence can provide an accu-
rate cue to scene description and content-based semantic interpretation. It is realised 
as powerful tooling for video analysis and retrieval. However, current researches only 
investigate VO motion trajectory such as [8], [9],[10], and Netra-V [11]. The evolu-
tion of object motions represent VO trajectory, while evolution of spatial constraints 
among VOs can be further interpreted as high-level semantic events and delivers 
story. However, it is not addressed yet.    

In this paper, a novel model STVR is proposed to retrieve video by fusing spatio-
temporal information. Spatio-temporal information fusion can be expressed as the 
temporal evolution of an object which changes its position and/or extent over time, 
and the evolution of spatial relations among objects over time. To facilitate subse-
quent user-centric browsing, searching and retrieval, more important is, our focus has 
been shifted from designing sophisticated low-level feature based system to attempt-
ing toward filling the ‘semantic gap’ from the visual descriptions of videos to the 
high-level semantic concepts. We also compare the retrieval results with the state-of-
the-art Adjeroh’s video retrieval model [1]. 

This paper is organized as follows: The next section describes a model of spatio-
temporal reasoning –VRstring. Section 3 details our STVR model. Section 4 details 
Adjeroh’s[1] model and section 5 demonstrates the experimental results and finally in 
section 6 we conclude the findings. 

2   Feature Description of STVR Model - VRstring 

Spatio-temporal modelling in video retrieval is a crucial step for deciphering semantic 
information. This information can be embedded in the video representation and used 
for similarity computation between query and database videos. However, how to ef-
fectively model and represent spatio-temporal information is not straightforward. In 
this paper a model is presented to capture the spatial and temporal information, which 
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integrates and formats them as binary string VRstring for video retrieval. Our model 
first identifies the physical structure of the video and then partition the video into 
physically meaningful units (shots). This is followed by modelling the spatial rela-
tionships among objects in each frame. A final step analyses the temporal evolution of 
spatial relationships among objects over temporal intervals in each shot as well as in 
the whole video sequence. The model is detailed as follows. 

2.1   Temporal Model Using Machine Leaning 

We believe that such temporal information is of vital importance for video retrieval. 
In order to obtain this information we develop an automated machine-learning based 
predictive system [12].  

We extract a set of colour, texture, shape, motion and statistical features by com-
paring difference between frame pairs to train a system that can predict transitions on 
unseen test data.  Machine learning methods such as neural network and k-NN (Near-
est Neighbour) are used to automatically detect video transition between video scenes 
such as cut, fade-in, fade-out, dissolve; at same time, camera motion: pan-left, pan-
right, tilt-up, tilt-down, camera-still are captured and analysed. By estimating camera 
movement and acquiring local object motion, we are able to track the trajectories of 
multiple objects and automatically label the corresponding regions.  

2.2   Spatial Model Using Spatial Reasoning 

Our spatial model addresses the handling of video object-to-object relationships that 
are crucial in video content description. In this case, which objects (VOs ) present in 
the video are first identified (Detailed in [13]). In most scenarios, including our study, 
developing a completely automated classifier for recognising complex objects in gen-
eral-purpose videos is impossible, since it is short of prior knowledge to build models 
for machine learning. Thus, we use a semi-automatic object labelling scheme. First, 
an automated video segmentation identification scheme is applied to extract key-
frames. Each key-frame then is first segmented and each object is manually labelled. 
An automated object tracking scheme thereafter transfers the labels across frames 
between two key-frames by using spatial attributions such as colour, texture, shape, 
motion, and temporal hierarchical attributes among video objects. 

A total of eight topological relations are designed to use between two object pairs (p, 
q) with eight bits {Up, Down, Left, Right, Touch, Front, Contain, Overlap}, which cor-
respond to eight binary values. The value is ‘1’ if the relation holds and ‘0’ otherwise.  

For each frame, a concatenated string can be calculated that encodes the spatial, 
temporal and object information in that frame. A given frame in video is represented 
by a VRstring feature vector g . We can transform the sequence of frames in a video 

clip into VRstrings using these string vectors.  
Given that we have a total of N image objects within the video, the number of pos-

sible spatial relationships between all object pairs is ( )4 1N N − . The length of g  is 

set to 4 ( 1) 11N N K− + + , where the number 11 are obtained from the temporal  
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model predication for test data. And the number K  of values are used to weight ob-
jects turning up as object part bits. Therefore, ),...,2,1( tbbbg = , where each binary 

value can be 0 or 1. In a given frame, not all objects appear simultaneously, and thus 
the multidimensional representation of g for all frames is fairly sparse. 

3   Video Retrieval Based on STVR 

A spatio-temporal model, more importantly, should suggest a practical solution for 
effective indexing and comparison.  The following we detail how to use our STVR 
model for video indexing.  

3.1   STVR Video Retrieval Algorithm 

Task: To find the closest video to query video 
qV  from a database video set. 

1) Given a query video qV , and database videos 
1
,...,

Nd dV V . 

2) Segment the videos into scenes (shots), so that: 

qV : Scenes are: 
1 2
, , ...

m
S S S  

1dV : Scenes are: 
1 1 1 11 2, ,...d d d nT T T  

 and so on till NdV  Scenes are: 1 2, ,...,
N N N Nd d d nT T T  

3) If we wish to find similarity between videos 
qV  and 

jdV , we need to find the simi-

larity between their shot-pairs and match shots between two videos.  Calculate 
each shot pair similarity 

i kS Tϑ by MCF, ∀ 1 i m≤ ≤ , 1 jk n≤ ≤  and 1 j N≤ ≤ . It 

will be detailed in section 3.2. 
4) Calculate the similarity between video pairs 

1
( , )q dV V , 

2
( , )q dV V , …, ( , )

Nq dV V .  It 

is taken two steps as follows. 
Step 1.  If the similarity between shot pair ( , )

i jq d kS T , is given by ( )ik qSϑ , 

then the spatio-temporal similarity between video pair (
qV ,

jdV ) can be further 

computed by MCF based on considering their shot sets as bipartite network.  Let 

us denote this distance as. ( )
q jV V qVϑ  

Step 2. The overall similarity ( , )
jq dV VΨ  between videos 

qV and 
jdV , which 

should includes spatio-temporal part and object part similarities, is given by:   
 

1 2( , ) ( ) (1 )
jq d v vV V X Zω ωΨ = + −  (1) 

 

where 1ω  and 2ω are weights. vX  is defined as the overall spatio-temporal simi-

larity between videos over all shot pairs. 

( )
q jv V V qX Vϑ=  
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vZ  is the average object dissimilarity between videos. Suppose that video 

and, qV  has ( )a bn n+   objects and video 
jdV  has  ( )a cn n+  objects.  an  is the 

number of common objects in the two videos. Object dissimilarity vZ  between 

two videos can be calculated as follows. 

2
b c

v
a b c

n n
Z

n n n

+=
∗ + +

 (2) 

3.2   Shot Similarity Algorithm 

Each shot in a clip is considered as a collection of discrete feature points.  Hence, the 
similarity between shots is further characterised as a distance between discrete feature 
point sets in a hyperspace. The shot similarity measure problem can be formalised as 
bipartite network problem and be solved by finding Minimum Cost Flow (MCF) be-
tween the networks. The MCF problem is to find a cheapest possible way to send a 
certain amount of shipment through a flow network. It is most commonly used to dis-
pose the various type management problems. It is introduced to video retrieval here. 
STVR similarity takes these two matrices (or two point sets) as input and generates 
the similarity STϑ  as output. The STϑ is calculated by first discussing the nature of 

MCF. 

Consider shot S
r

 and T
r

 as two observations, containing a total of 1N  and 2N  fi-

nite point sets (or observations), respectively.  
( ) ( ) ( ) ( ){ }1 1 2 2, , , ,... , ,..., ,i i m mS x x x xρ ρ ρ ρ=

r r r r r  

( ) ( ) ( ) ( ){ }1 1 2 2, , , ,..., , ,..., ,j j n nT y y y yλ λ λ λ=
r r r r r  

The observation S
r

 is assumed to be a set of sources, associated with an amount of 

supply or weight iρ  of source ix
r

, ∀ 1,...,i m= . The T
r

 observation is assumed to be 

a set of destinations with the total capacity or a weight jλ  of destination jy
r

, 

∀ 1,2,...,j n= . While ijc is the cost of shipping a unit of supply from Xxi

r
∈   to 

Yy j

r
∈ .  

We want to find a set of flows ijf  that minimises the overall transportation cost: 

m n

ij ij
i j

c fϑ =∑∑  (3) 

This is subject to the following constraints: 

(1) 0ijf ≥ ; 

(2)  
n

ij i
j

f ρ≤∑ ;   
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(3) 
m

ij j
i

f λ≤∑ ; and  

(4) min ,
m n m n

ij i j
i j i j

f ρ λ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∑∑ ∑ ∑ . 

To balance among different shipments, the overall transportation cost is normal-
ized by the total flows: 

min ,

m n

ij ij
i j

m n

i j
i j

c f

ϑ
ρ λ

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑∑

∑ ∑
 (4) 

4    Adjeroh’s Video Retrieval Model 

Adjeroh et al. [1] video retrieval model uses 23 features which include 18 colour fea-
tures extracted from Lab colour (Plataniotis and Venetsanopoulos, 2000) histogram 
with 18 bins ( 2 3 3× × ) and 5 texture features extracted from co-occurrence matrix 
(Haralick  et al., 1973). The co-occurrence matrix P is calculated for four orientations 
( 0o , 45o , 90o and 135o ). This is an

g gN N× matrix (with Ng representing the number 

of distinct grey levels in the quantised image) and Pij is defined as the joint probabil-
ity of occurrence of  a pair of neighbouring pixels, one with grey-level i and the other 
with grey-level j, occur in the image under the four specific angular relationships. 
From each matrix, five statistical features are determined (angular second moment, 
contrast, correlation, variance and entropy). The average values of these features over 
the four orientations are the final features.      

The first step is to transform features into of symbols using quantisation. This in-
volves the following: 

Let Σ  be the number of bins  or number of  alphabet symbols, vf  be a feature 

value, and max vf  and min vf  be the respective maximum and minimum values for 

a given index feature. The quantisation step size is given by  

max minv vf f−Δ =
Σ

 

The quantisation level to which a given vf  belongs is then obtained using:  

( )vq f i=  if ( )1 vi f i− ⋅ Δ ≤ < ⋅ Δ ;  1,2,...,i = Σ . 

If a feature value belongs to the ith  quantisation level, we assign the ith  symbol 
to it. A given sample can now be represented as a string of these quantised symbols. 
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4.1   Video Retrieval Based on String Matching  

As the result of quantisation, a video frame is represented by set of M  symbols for 
M features. A query video and database videos are transferred to string representation. 

Videos need to be matched as a two step process. We first match shots between 
two videos. Consider the problem of matching two videos: 1 2,  V V  

1V  shots are: 
11 2, ,... MS S S &  

2V  shots are: 
21 2 3, , ,..., MT T T T  

Video Level Similarity 
The similarity between two videos, ignoring temporal information at video level, is 
given by 

1

1 Q

v s
s

X X
Q =

= ∑ , where Q  is the number of shot pairs. 1Q M=  if 1 2M M< , or 

2Q M=  if 2 1M M< .  sX  is the average shot level similarity across the shot pair s , 

where 1 s Q≤ ≤ . 

Shot Level Similarity 
How to find similarity u between two shots S and T ? 

S = 
11 2( , ,... , )i Nx x x x ; T =  

21 2( , ,..., ,... )j Ny y y y  

where x and y are the key-frames in each scene,  1 2N N≤ . 

We can represent two shots of length 1N  and 2N as matrices of size 1N M× and 

2N M× for M features. Each column of these matrices is now compared for similar-

ity using edit distance [1].  The average edit distance across all columns is calculated 
and used as sX .  

Given two strings A: 1 2... na a a  and B: 1 2... mb b b , which represent a feature column 

of shot S  and  shot T , respectively,  over an alphabet Σ  and a set of allowed edit 
operations,  the edit distance between A  and B  is calculated by the minimum num-
ber of edit operations needed to transform A  into B . Three basic types of edit op-
erations are used:  insertion, delete, and substitution. 

                                           

    

    

 
Fig. 1. Representative sample frames from videos of Minerva database 

Category 2 Wildlife 

       Category 3 City Tour          Category 4 Seaside 

  Category 1 News  
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5    Experimental Results 

The international video benchmark MINERVA is used for our analysis. MINERVA 
includes 250 videos with ten categories (See Fig.1): C1: News; C2:  Wildlife; C3: 
City Tour; C4: Seaside; C5: Sport; C6: Garden; C7: Stage Performance; C8: Train 
Station; C9: Car-Boot Sale; and C10: Traffic.  

24 low-level features are extracted for automatic video segmentation. A trained 
neural network is used to automatically classify video transition between different 
scenes and, at same time, to identify camera movements.  Adaptive thresholds were 
used to automatically select key frames. 

Our experiments employ a five fold cross validation strategy based on random 
sampling in each category to determine the true performance of the retrieval system. 
Validation data is used for optimising retrieval system parameters. Before sampling, 
data in each category must be randomised. We split our data for test, validation and 
training as partitions of size 20%, 20% and 60%, respectively.  By using the valida-
tion set, we find the optimised weight scheme, which indicates video similarity metric 
should integrate 2/3 spatio-temporal information with the remaining 1/3 information 
from VOs presenting.  

A total of 250 videos are used as query by using five fold cross-validation, and the 
percentages are based on how many videos matched from 25 per category are allo-
cated to each of the 10 semantic classes. From the Table 1, we can find that the di-
agonal elements of STVR model are very high.  The fact is that STVR does rather 
well on News and Sports videos but performs poorly on City Tour videos. From a 
retrieval perspective, we assume that a user querying with News Video for example 
should always get a News video as the best match. Finally, in Table 2 we find that the 
Adjeroh’s model also makes substantial mistakes. In particular, the performance on 
Seaside at 4% is the worst one. All other categories have variable performances rang-
ing between 24% to 76%. Considering these two models together, it appears that Car 
Boot videos are the most easy to retrieve whereas other categories are easier with 
SVTR model and highly variable with the baseline model. The other reason that the  

 
Table 1. Confusion matrix for STVR best matching video (%) 

Category 
News Wild-life 

City 
Tour 

Sea-
side 

Sports 
Gard-

en 
Stage 
Perf. 

Train 
Stn 

Car 
boot 

Traffic 

News 100% 0 0 0 0 0 0 0 0 0 

Wildlife 0 88% 0 0 4% 8% 0 0 0 0 

City Tour 4% 0 80% 0 4% 4% 0 0 0 8% 

Seaside 0 0 0 100% 0 0 0 0 0 0 

Sports 0 4% 0 0 88% 0 0 0 0 8% 

Garden 0 4% 0 0 0 92% 0 0 0 4% 
Performance 

Stage 0 0 0 0 0 0 100% 0 0 0 
Train  

Station 0 0 0 0 0 0 0 96% 0 4% 

Car boot 0 0 0 0 0 0 0 0 100% 0 

Traffic 0 0 0 0 0 0 0 0 0 100% 
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Adjeroh’s model represents bad results is because the longest common substring is 
not good enough to measure temporal similarity. Therefore, their poor performances 
are actually not that bad because texture and colour features vary tremendously across 
videos and should only be useful for a certain type of video, e.g. Sports where most 
videos show a green coloured pitch. Purely visual information is obviously not suffi-
cient as a basis for high-level semantic video scene categorisation. 

Table 2. Confusion matrix for Adjeroh et al. [1] (baseline model) best matching video (%) 

Category 
News 

Wild-
life 

City 
Tour 

Sea-
side 

Sports 
Gar-
den 

Stage 
Perf. 

Train 
St. 

Car 
boot 

Traffic 

News 44% 0 0 0 20% 4% 0 0 32% 0 

Wildlife 8% 24% 16% 4% 12% 24% 0 0 0 12% 

City Tour 16% 4% 60% 0 8% 4% 0 0 0 8% 

Seaside 8% 16% 32% 4% 4% 4% 0 12% 0 20% 

Sports 28% 0 0 0 64% 0 0 4% 4.% 0 

Garden 8% 0 0 0 32% 56% 0 0 0 4% 
Performance 

Stage 0 0 8% 0 4% 4% 56% 8% 20% 0 

Train Station 16% 0 0 0 8% 0 0 36% 20% 20% 

Car boot 0 0 0 0 12% 0 0 0 76% 12% 

Traffic 8% 0 12% 4.0% 8% 0 0 0 0 68% 

6    Conclusions 

In the paper, we propose a novel spatio-temporal model STVR to view on temporal 
continuity of video events and actions into high-level semantic categories based on 
evolutions of VOs’ spatial and temporal constraints. The fusion of the object relation-
ships and their temporal natures in a video are formulised into the sequence of string 
VRstring. Then, video matching problem is coded as bipartite network problem. The 
similarity between videos is computed as finding minimum cost flows between net-
works. The experimental result shows that our model is much superior to the state-of-
the-art approaches based on longest common string.   
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Abstract. In this paper we propose a novel framework for 3D object
categorization. The object is modeled it in terms of its sub-parts as
an histogram of 3D visual word occurrences. We introduce an effective
method for hierarchical 3D object segmentation driven by the minima
rule that combines spectral clustering – for the selection of seed-regions –
with region growing based on fast marching. The front propagation is
driven by local geometry features, namely the Shape Index. Finally, after
the coding of each object according to the Bag-of-Words paradigm, a
Support Vector Machine is learnt to classify different objects categories.
Several examples on two different datasets are shown which evidence the
effectiveness of the proposed framework.

1 Introduction

The availability of large collections of 3D models has increased the interest in
content-based 3D search and retrieval [1–3]. Typical object retrieval systems
require the user to define a query-model which output is a set of its most similar
objects in the database. In general, such approach requires the comparison of the
query-model with all the objects in the dataset according with a given matching
criterion, after the coding of the object with respect to some indexing technique.
Shape signatures [4] are commonly utilized as a fast indexing mechanism for
shape retrieval.

In this paper we present a 3D object categorization method based on a
learning-by-example approach [5]. Geometric features representing the query-
model are fed into a Support Vector Machine (SVM) which, after a learning
stage, is able to assign a category (or a class) to the query-model without an ex-
plicit comparison with all the models of the dataset. Our approach is inspired to
the Bag-of-Words framework for textual document classification and retrieval.
In this approach, a text is represented as an unordered collection of words, dis-
regarding grammar and even word order.

The extension of such approach to non-textual data requires the building of a
visual vocabulary, i.e., the set of all the visual analog of words. For example, in
[6] images are encoded by collecting interest points which represent local salient

A. Gagalowicz and W. Philips (Eds.): MIRAGE 2009, LNCS 5496, pp. 116–127, 2009.
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regions. This approach has been extended in [7] by introducing the concept
of pyramid kernel matching. Instead of building a fixed vocabulary, the visual
words are organized in a hierarchical fashion in order to reduce the conditioning
of the free parameter definition (i.e., the number of bins of the histogram). Re-
cently, in [8] the Bag-of-Words paradigm has been introduced for human actions
categorization from real movies. In this case, the visual words are the vector
quantization of spatiotemporal local features. The extension to 3D objects have
been proposed in few work [9, 10], to the best of our knowledge. In [9] range
images are synthetically generated from the full 3D model, then salient points
are extracted as for the 2D (intensity) images. In [10] Spin Images are chosen as
local shape descriptors after a random samples of the mesh vertices.

In our approach a 3D visual vocabulary is defined by extracting and grouping
the geometric features of the object sub-parts from the dataset, after a hierarchi-
cal 3D object segmentation. Thank to this part-based representation of the object
we achieve pose invariance, i.e., insensitivity to transformation which change the
skeletal articulations of the 3D object [11]. Moreover, our approach is able to
discriminate objects with similar skeletons, a feature that is shared by very few
other works [12]. Its main steps are:

Object segmentation (Sec. 2). Spectral clustering is used for the selection of
seed-regions. Being inspired by the minima-rule [13], the adjacency matrix
is defined purposely in order to allow convex regions to belong to the same
segment. Furthermore, a multiple-region growing approach is introduced to
expand the selected seed-regions. In particular, a weighted fast marching is
proposed by guiding the front propagation according to local geometry prop-
erties. In practice, the main idea consist on reducing the speed of the front
for concave areas which are more likely to belong to the region boundaries.
Then, the hierarchical segmentation is recovered by combining recursively
the seeds selection and the region-growing steps.

Object sub-parts description (Sec. 3). Local region signature are introduced
to define a compact representation of each sub-part. Working at the part
level, as opposed to the whole object level, enables a more flexible class
representation and allows scenarios in which the query model is significantly
transformed (e.g., deformed) to be classified. We focus on region signatures
easy to compute and partially available from the previous step (see [4] for
an exhaustive overview of shape descriptors).

3D visual vocabulary construction (Sec. 4). The set of region descriptors
are properly clustered in order to obtain a fixed number of 3D visual words
(i.e., the set of clusters centroids). In practice, the clustering defines a vector
quantization of the whole region descriptor space. Note that the vocabulary
should be large enough to distinguish relevant changes in image parts, but
not so large as to distinguish irrelevant variations such as noise.

Object categorization by SVM (Sec. 5). Each 3D object is encoded by as-
signing to each object sub-part the corresponding visual word. Indeed, a
Bag-of-Words representation is defined by counting the number of object
sub-parts assigned to each word. In practice, a histogram of visual words
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(a) Seed regions after spectral clus-
tering.

(b) Segmentation at depth 2 (left) and
depth 3 (right) of the hierarchy, with cor-
responding seed regions.

Fig. 1. Segmentation

occurrences is build for each 3D object which represent its global signature
[6]. Then, a SVM is trained by adopting a learning by example approach. In
particular, a suitable kernel function is defined in order to implicitly imple-
ment the sub-part matching.

2 Objects Segmentation

Due to its wide ranging applications, 3D object segmentation has received a great
attention lately. The recent survey by [14] and the comparative study by [15]
have thoroughly covered the several different approaches developed in literature.

In the following we present a novel mesh segmentation technique that provides
a consistent segmentation of similar meshes complying with the cognitive min-
ima rule [13]. In addition, the final segmentation is extracted in a hierarchical
structure in order to improve the flexibility in modeling the object sub-parts.

The segmentation proceeds top-down: starting with a root node correspond-
ing to the whole mesh, the segmentation is recursively created by partitioning
the current leaf nodes into two or more child nodes. The minima rule states
that human perception usually divides a surface into parts along the concave
discontinuity of the tangent plane [13]. Therefore this suggest to cluster in the
same set convex regions and to detect boundary parts as concave ones. A concise
way to express the type of shape in terms of principal curvatures is given by the
Shape Index (SI) [16].

SI = − 2
π

arctan
(

k1 + k2

k1 − k2

)
k1 > k2 (1)
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where k1, k2 are the principal curvatures of a generic vertex x ∈ V . The SI varies
in [−1, 1]: a negative value corresponds to concavities, whereas a positive value
represents a convex surface.

The key idea behind our algorithm is the synergy between two main phases:
(i) the detection of similar connected convex regions as seed -region, and (ii)
the expansion of these seed-regions using a multiple region growing approach.
According to the minima-rule the SI is employed for both the phases.

2.1 Seed-Regions Detection by Spectral Clustering

The extraction of the seed-regions is accomplished with Normalized Graph Cuts
[17]. It has been firstly applied to image segmentation although it is stated as a
general clustering method on weighted graphs. In our case, the weight matrix is
built using the SI at each vertex:

W (xi, xj) = e−|SI(xi)−SI(xj)| (2)

where the vertices with negative SI – i.e., those corresponding to concave re-
gions – have been previously discarded. In this way we cluster together vertices
representing the same convex shape.

Final clusters are not guaranteed to be connected. This happens because we
don’t take into account any (geodesic) distance information at this stage. Hence,
we impose connection as a post-processing step: the final seed regions are found
as connected components in the mesh graph, with vertices belonging to the same
cluster. An example of seed regions found by the algorithm is shown in Fig. 1(a).

2.2 Multiple Region Growing by Weighted Fast Marching

Once the overall seed regions are found we must establish a criteria to select
the starting seed regions of each node of the hierarchical segmentation tree. For
each tree node we consider only the seed regions that are contained in the parent
segmentation. We firstly find the two farthest seed regions. We then add more
regions until the distance from the regions already added is less than half the two
farthest seed regions. As explained next, the distance between two regions can
be efficiently calculated with the Fast Marching algorithm [18, 19]. In particular,
when the seed regions of the current tree node are found, we expand them using
a weighted geodesic distance. In formulae, given two vertices x0, x1 ∈ V , we
define the weighted geodesic distance d(x0, x1) as

d(x0, x1) = minγ

{∫ 1

0
‖γ′‖w(γ(t))dt

}
(3)

where w(·) = is a weight function (if w(·) = 1 this is the classic geodesic distance)
and γ is a piecewise regular curve with γ(0) = x0 and γ(1) = x1. Our weight
function is based on the Shape Index SI:

w(x) = eαSI(x) (4)
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Fig. 2. Examples of segmentation extracted on several meshes of the Aim@Shape
Dataset

where α is an arbitrary constant. An high α value heavily slow down the front
propagation where the concavity are more prominent. In our categorization
paradigm we used a fixed α = 5 to obtain consistent segmentations.

An example segmentation along with starting seed regions is shown in Fig. 1(b).
Several other examples of segmentation on different objects are shown in Fig. 2.

The overall hierarchical algorithm is summarized below:

Algorithm 1. Hierarchical clustering

1. Find all seed-regions S.
2. Initialize C as the entire mesh and place in the priority queue Q.
3. Get the current top cluster C ∈ Q and remove it from Q.
4. Find starting regions SC ∈ S

⋂
C.

If the starting regions are more than one go to next step else go to step 6.
5. Find final cluster starting from SC trough weighted geodesic distance and

add them to Q.
These are child cluster of C in the hierarchical tree.

6. If Q is empty stop, else go to step 3.

3 Segment Descriptors

We chose four type of descriptors to represent each extracted region. The first
two are based on SI and Curvedness [16]. Both encode local surface geometry
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properties for each vertex. In particular, the SI allows the classification of the
surface among peek, valley, saddle, and so on. The Curvedness CU instead, is a
concise way to measure the size of a local patch:

CU =
2
π

ln

√
k2
1 + k2

2

2
(5)

The two descriptors SIH and CUH are defined as the normalized histograms
of the observed SI and CU values in the region vertices, respectively.

The other two descriptors are normalized region histograms of vertex-distances
derived directly from our segmentation algorithm. The idea is to describe the
shape of a region in relationship with its starting seed. In practice, we compute
the geodesic distance and the weighted geodesic distance of each vertex of a
segment to its seed region. The point-to-seed-region distance is defined as the
geodesic distance between the point itself and its closest point belonging to the
seed region. The two descriptors GD and GDW are the normalized histograms
of such distances (respectively) over the vertices of the segment.

Note that GD can be interpreted as an approximation of the eccentricity [20],
and GDW , implicitly encodes also the local surface geometry information since
the weight function depends on the SI, according to Eq. (4).

Note further, that the number of bins chosen for each histogram is a critical
choice. A small number reduce the capability of the region descriptor in discrim-
inating among different segments. On the other hand, a high number increases
the noise conditioning. Hence we introduce, for each descriptor, histograms with
different number of bins in order to obtain a coarse-to-fine regions representation.

4 3D Visual Vocabulary Construction

The different sets of region descriptors must be clustered in order to obtain sev-
eral visual words. Since we start with a hierarchical segmentation and different
types of descriptors, we adopted a multi-clustering approach rather than merg-
ing descriptors in a bigger set. Before the clusterization, the sets of descriptors
are thus split in different subsets as illustrated in Fig. 3. The final clusters are
obtained with a k-means algorithm. Again, instead of setting a fixed free param-
eter k, namely the number of cluster, we carry out different clusterizations while
varying its value.

Once the different clusters are found we retain only their centroids, which
are our visual words. In Fig. 4 an example of descriptors subset clusterization
with relative distance from centroid is shown. Note that object sub-parts from
different categories may fall in the same cluster since they share similar shape.

More in details, at the end of this phase we obtain the set of visual vocabularies
V d,b,c

l,s , where:

– l identifies the region level of the hierarchical 3D segmentation (l ∈ {2, 3}),
– s identifies the index of the multiple 3D segmentation (variable segmentation

parameter s ∈ {4, 8, 12}),
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Fig. 3. The Vocabulary construction is performed in a multilevel way. At the beginning
we have all region extracted for different numbers of seed regions (variable segmentation
parameter). The regions are divided by the different segmentations and by the different
depth of the segmentation tree. For every region, different descriptors are attached. The
different region descriptors are divided by the type of descriptor and its number of bins.
The final clusterizations are obtained with varying number of clusters. At the end of
the process we obtain different Bag-of-Words histograms for each mesh.

Fig. 4. Example of a Bag-of-Words cluster for SI descriptors. The centroid is high-
lighted with red and others region in the same cluster are sorted by distance from
centroid. Note that sub-parts of meshes from different categories may fall in the same
cluster since they share similar shape.
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– d identifies the region descriptor types (d ∈ {SIH, CUH, GD, GDW}),
– b identifies the refined level of the region descriptor (number of histogram

bins b ∈ {10, 25, 50, 100, 200}),
– c identifies the refined level of the vocabulary construction (number of clus-

ters c ∈ {20, 40, 60, 80}).

In order to construct a Bag-of-Words histogram of a new 3D object, we
compare its regions descriptors with the visual words of the associated visual
vocabularies.

5 Object Categorization by SVM

One of the most powerful classifier for object categorization is the Support Vec-
tor Machine (SVM) (see [21] for a tutorial). The SVM works in a vector space,
hence the Bag-of-Words approach fits very well, since it provides a vector repre-
sentation for objects. In our case, since we work with multiple vocabularies, we
define the following positive-semi-definite kernel function:

K(A, B) =
∑

l,s,d,b,c

k(φd,b,c
l,s (A), φd,b,c

l,s (B)), (6)

where (A, B) is a pair of 3D models, and φd,b,c
l,s (·) is a function which returns the

Bag-of-Words histogram with respect to the visual vocabulary V d,b,c
l,s . The func-

tion k(·, ·) is in turn a kernel which measures the similarity between histograms
hA, hB:

k(hA, hB) =
c∑

i=1

min(hA
i , hB

i ), (7)

where hA
i denotes the count of the ith bin of the histogram hA with c bins. Such

kernel is called histogram intersection function and it is shown to be a valid
kernel [7]. Histograms are assumed to be normalized such that

∑n
i=1 hi = 1.

Note that, as observed in [7] the proposed kernel implicitly encodes the sub-
parts matching since corresponding segments are likely to belong to the same
histogram bin. Indeed, the histogram intersection function counts the number of
sub-parts matching being intermediated by the visual vocabulary.

Finally, since the SVM is a binary classifier, in order to obtain an extension
to a multi-class framework, a one-against-all approach [5] is followed.

6 Results

We tested our categorization paradigm with two different datasets. For each
dataset we performed a Leave-One-Out cross validation [5].
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6.1 TOSCA Non Rigid Shape Dataset

The TOSCA dataset [22–24], publicly available1, contains various non-rigid shapes
in a variety of poses divided by category. The dataset is composed by: 9 cats,
8 men, 9 dogs, 21 gorillas, 17 horses and 9 women. The meshes used are shown
in Fig. 5. Please note that each category is composed by the same model with
different pose. Furthermore, some classes are very similar, e.g. men and women,
and contains a number of elements very variable.

In this case, our categorization algorithm works perfectly in each category
with a rate of success of 100%. This experiment shows that our system copes
finely with the categorization of objects that present high inter-class similarity.
Nevertheless, the methods is robust with objects that appear with different poses,
by varying strongly their skeletal articulations (e.g., the gorillas).

Fig. 5. TOSCA Non rigid Shape Dataset models, divided by category. Overall success
rate of categorization is 100%.

6.2 Aim@Shape Watertight

The Aim@Shape Watertight dataset has been used for various retrieval contests
[25]. This dataset contains 20 categories each composed of 20 meshes. The en-
tire dataset is shown in Fig. 6 together with the categorization results. In this
case the algorithm fails with some meshes, but the overall rate of success is still
fairly good. The dataset is tough since there are many categories and objects
inside the same category can be very different. We can notice that the system is
less accurate when the shapes are CAD-like (e.g. mechanics, bearings and tables).

1 http://tosca.cs.technion.ac.il/data_3d.html

http://tosca.cs.technion.ac.il/data_3d.html
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Category % of success

Human 80
Cup 85

Glasses 95
Airplane 90

Ant 100
Chair 95

Octopus 95
Table 80
Teddy 100
Hand 80
Plier 100
Fish 85
Bird 80

Spring 95
Armadillo 100

Buste 95
Mechanic 75
Bearing 60

Vase 75
Four Legs 80

Fig. 6. Aim@Shape Watertight Dataset objects, divided by category and success rate
of categorization. Overall the rate is 87.25%.

This suggests that the descriptors based on curvature may not discriminate
enough these kind of regions. Future improvements of the system can be obtained
by adding more descriptors.

6.3 Timing

The categorization pipeline is computationally efficient in each sub-part. We
used an entry level laptop at 1.66Ghz to perform tests. The code is written in
Matlab with some parts in C. An entire mesh segmentation of 3500 vertices,
with a maximum hierarchical depth of four is computed in less than a minute.
Precisely, ∼ 8s are necessary to extract all the seed regions, while ∼ 50s are
needed to compute the entire hierarchical segmentation. Region descriptors are
computed efficiently. On the average it only takes ∼ 0.2s to extract all the
four descriptors of a single region. Also the k-means clusterizations are not time
consuming. For example 10 clusters for 300 points each composed of 200 feature
are extracted in less than one second. Finally, the time needed to train a SVM
with 400 elements is ∼ 80s, while the time needed to validate a single element
is about ∼ 2s.
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7 Conclusions

In this paper a new approach for 3D object categorization is introduced basing
on the Bag-of-Words paradigm. The main steps of the involved categorization
pipeline have been carefully designed by focusing on both the effectiveness and
efficiency.

The Bag-of-Words approach allows naturally the object sub-parts encoding
by combining effectively sub-part descriptors into several visual vocabularies.
Moreover, we have proposed a Learning-by-Example approach by introducing a
local kernel which implicitly performs the object sub-parts matching. In particu-
lar, the object categories are inferred without an exhaustive pairwise comparison
between all the models.

The experimental results are encouraging. In particular, our framework is able
to categorize objects which heavily deform their shape and change significantly
their pose. Nevertheless, the method is able to distinguish also categories with
the same skeletal structure (e.g., a man from a woman).

Acknowledgments

This paper was partially supported by PRIN 2006 project 3-SHIRT. Thanks to
the anonymous reviewers for useful remarks and suggestions.

References

1. Iyer, N., Jayanti, S., Lou, K., Kalynaraman, Y., Ramani, K.: Three dimensional
shape searching: State-of-the-art review and future trend. Computer Aided De-
sign 5(37), 509–530 (2005)

2. Funkhouser, T., Kazhdan, M., Patrick, M., Shilane, P.: Shape-based retrieval and
analysis of 3D models. Communications of the ACM 48(6), 58–64 (2005)

3. Tangelder, J.W., Veltkamp, R.C.: A survey of content based 3d shape retrieval
methods. In: International Conference on Shape Modelling and Applications (2004)

4. Shilane, P., Funkhouser, T.: Selecting distinctive 3D shape descriptors for similarity
retrieval. In: International Conference on Shape Modelling and Applications. IEEE
Computer Society Press, Los Alamitos (2006)

5. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. John Wiley and
Sons, Chichester (2001)

6. Cruska, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization
with bags of keypoints. In: ECCV Workshop on Statistical Learning in Computer
Vision (2004)

7. Grauman, K., Darrell, T.: The pyramid match kernel: Efficient learning with sets
of features. Journal of Machine Learning Research 8(2), 725–760 (2007)

8. Laptev, I., Marsza, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions
from movies. In: IEEE Conference on Computer Vision and Pattern Recognition
(2008)

9. Ohbuchi, R., Osada, k., Furuya, T., Banno, T.: Salient local visual features for
shape-based 3d model retrieval. In: International Conference on Shape Modelling
and Applications (2008)



A Bag of Words Approach for 3D Object Categorization 127

10. Li, Y., Zha, H., Qin, H.: Sapetopics: A compact representation and new algorithm
for 3d partial shape retrieval. In: International Conference on Computer Vision
and Pattern Recognition (2006)

11. Gal, R., Shamir, A., Cohen-Or, D.: Pose-oblivious shape signature. IEEE Trans-
action on Visualization and Computer Graphics 13(2), 261–271 (2007)

12. Tam, G.K.L., Lau, W.H.R.: Deformable model retrieval based on topological and
geometric signatures. IEEE Transaction on Visualization and Computer Graph-
ics 13(3), 470–482 (2007)

13. Hoffman, D.D., Richards, W.A.: Parts of recognition. Cognition, 65–96 (1987)
14. Shamir, A.: A survey on mesh segmentation techniques. Computer Graphics Fo-

rum 27, 1539–1556 (2008)
15. Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M., Tal, A.: Mesh

segmentation - a comparative study. In: Proceedings of the IEEE International
Conference on Shape Modeling and Applications. IEEE Computer Society Press,
Los Alamitos (2006)

16. Petitjean, S.: A survey of methods for recovering quadrics in triangle meshes. ACM
Computing Surveys 34(2), 211–265 (2002)

17. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

18. Sethian, J.: A fast marching level set method for monotonically advancing fronts.
In: Proceedings of the National Academy of Sciences, vol. 93 (1996)

19. Kimmel, R., Sethian, J.: Computing geodesic paths on manifolds. In: Proceedings
of the National Academy of Sciences, vol. 95 (1998)

20. Ion, A., Artner, N.M., Peyr, G., Marmol, S.B.L., Kropatsch, W.G., Cohen, L.: 3d
shape matching by geodesic eccentricity. In: Proceedings of S3D Workshop (2008)

21. Burges, C.: A tutorial on support vector machine for pattern recognition. Data
Mining and Knowledge Discovery 2, 121–167 (1998)

22. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical geometry of non-rigid
shapes. Springer, Heidelberg (2007)

23. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Calculus of non-rigid surfaces for
geometry and texture manipulation. Transactions on Visualization and Computer
Graphics 13(5), 902–913 (2007)

24. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Efficient computation of isometry-
invariant distances between surfaces. SIAM Journal of Scientific Computing 28(5),
1812–1836 (2006)

25. Veltkamp, R.C., ter Haar, F.B.: Shrec 2007 3d retrieval contest. Technical Report
UU-CS-2007-015, Department of Information and Computing Sciences (2007)



A. Gagalowicz and W. Philips (Eds.): MIRAGE 2009, LNCS 5496, pp. 128–139, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

An Improved Structured Light Inspection of Specular 
Surfaces Based on Quaternary Coding 

Chengkun Xue and Yankui Sun  

Department of Computer Science and Technology, Tsinghua University, 
Beijing 100084, P.R. China 

syk@mails.tsinghua.edu.cn 

Abstract. Structured light techniques with binary coding are practical to inspect 
the specular surfaces. The structured light approaches use a scanned array of 
point sources and images of the resulting reflected highlights to compute local 
surface orientation. Binary coding scheme is the classic scheme for efficiently 
coding the light sources. This paper proposes a novel quaternary coding scheme 
which is much more efficient than the classic binary coding scheme. In this 
scheme, polychromatic light sources are utilized and coded in quaternary 
scheme. Our experimental system is described in detail. The problem caused by 
the polychromatic light sources is discussed too. To solve the problem, we drew 
lesson from the erosion operator from the Mathematical Morphology and de-
signed an effective algorithm. The experiment results show the new quaternary 
coding scheme not only keeps a very high accuracy, but also greatly improves 
the efficiency of the inspection of specular surface. 

1   Introduction 

Many practical tasks in inspection require interpretation of images of specular sur-
faces where the perceived brightness becomes a very strong function of viewing di-
rection due to highlights or reflections from the source. Many works have been done 
in the area of inspecting or estimating non-lambertian surfaces from specularities 
[1~7]. For a purely specular surface, light is reflected such that the angle of incidence 
equals the angle of reflection. Therefore, illumination of a specular surface using  
a point source of light does not produce smooth shading on the surface. Camera im-
ages of such surfaces are difficult to interpret because they are characterized by bright 
points or highlights, and inspection and reconstruction of surface shape are challeng-
ing tasks.  

The structured light method includes both projected coded light and sinusoidal 
fringe [8~9] techniques have been proposed to address these problems. [10~11] use a 
scanned array of point sources and images of the resulting reflected highlights to 
compute local surface height and orientation. Some applications prove structured light 
techniques are practical for many industrial tasks including inspection of machined 
parts and inspection of solder joints.  

Because multiple scans can’t be avoided in the structure light techniques, the effi-
ciency of these kinds of systems is critical as it is usually under the constraint of the 
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speed of the product-line. As we all know, the exposure time is usually a constant 
factor after the camera and environment lighting are determined. Having fixed num-
ber of cameras in a structure light system, the total shooting time can be reduced only 
if the scans can be reduced. To reduce the scans while at the same time keep the in-
spection accurate is an interesting topic. In this paper, we introduced polychromatic 
light sources and proposed a quaternary coding scheme. With this coding scheme, we 
can collect more surface orientation information with the same number of input im-
ages or collect the same surface orientation information with less input images. As 
polychromatic sources are introduced, new problem occurs. To solve the problem, we 
drew lesson from the erosion operator from the Mathematical Morphology and design 
an effective algorithm. 

The rest of this paper is organized as follows. Sec.2 introduces the principle of the 
quaternary coding scheme; Sec.3 gives the implementation of the quaternary coding 
scheme and the problem & solution. Experimental results and evaluation are given in 
Sec. 4 and conclusions are given in Sec. 5. 

2   Quaternary Coding 

The classic binary coding scheme [11] was firstly proposed by Arthur C. In his 
scheme, monochromatic point sources are distributed on a semi-sphere and the bi-
nary-coded point sources are scanned, and highlights on the object surface resulting 
from each point source are used to derive local surface orientation. Comparing with 
the sequential scanning, the most significant advantage of the binary coding is that it 
is far more efficient. Quaternary coding scheme, which will be introduced in this 
article, is a brand new coding scheme which again greatly improves the coding effi-
ciency even comparing with the binary scheme. 

2.1   Algorithm Principle 

In fact, one point source can give off variety of colored light (usually in different 
conditions, such as variety of voltage). Assuming one point light source is able to give 
off r colors (under this assuming, the original binary encoding approach is the special 
case when r = 1). Take r = 3 as an example, suppose the light sources can emit 3 dif-
ferent colors: Green, Blue and Red. We map the color Green to 1, Blue to 2 and Red 
to 3, while 0 represents non-luminous. Fig.1 shows the principle of the quaternary 
coding scheme. Two images are required to be grabbed in order to get the orientation 
information of 15 points on the surface. 

In this example, 15 point sources are shown. The source numbers are converted 
into their corresponding quaternary codes. The numbers from 1 through 15 can each 
be uniquely expressed in quaternary by using 2 digits, namely Digit (1) and Digit (2), 
For the first scan, namely Scan (1), all point sources that have value of 1, 2 and 3 in 
Digit (1) are controlled to turn Green, Blue and Red respectively, and the remaining 
sources which have value of 0 for this digit are turned off. An image of the surface is 
grabbed into the frame buffer of the computer and converted to a 4-level gray image 
(A pixel in this image can only have a value from 0, 1, 2 and 3). The converting  
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Fig. 1. Using two grabbed images to calculate 15 orientation of points on the surface 

principles are: each pixel ),( jip in the image has a RGB representation (r, g, b), firstly 
the dominant color component whose intensity is higher than other two color com-
ments is selected as the color of this pixel.  

Then a threshold is used. If the color of a pixel is green and its green component is 
greater than the threshold, then this pixel is set to ‘1’ in the 4-level gray image corre-
sponding to a green highlight. With the similar principle, a pixel can be set to ‘2’ in the 
4-level gray image corresponding to a blue highlight and a pixel can be set to ‘3’ corre-
sponding to a red highlight. If a pixel is not set to any value among ‘1’, ’2’ and ’3’, the 
‘0’ is set which means no highlight. The 4-level gray image corresponding to Scan (1) 
is obtained after we traverse all the pixels. In a similar manner, the 4-level gray image 
(2) is obtained for Scan (2). By reading the contents of the same pixel at location ),( ji  
in the two 4-level images, we obtain a 2-digit pattern, namely, (1, 3) in the example. 
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Here we assume only a single point source can generate a highlight at any particular 
point on the surface due to high surface specularity. Therefore, the digit pattern (1, 3) 
in the 4-level gray images could result only if the surface point corresponding to image 
point ),( ji reflected light from point 7 into the camera. The surface orientation at point 

),( ji is then computed by using the knowing direction of source 7, the viewing direc-
tion of the camera, and the specular reflectance model.  

It is can be proved that taking n  photos, we can get at most ( 1) 1nr + −  orientations 
on the surface.  

2.2   Coding Efficiency 

It is obviously we can get more surface normal information using quaternary code 
comparing to binary code with the same count of input images. As a deduction of the 
theory in [11], using r  

(2 1)nr • −  (1) 

Using the same r color and n images but quaternary code, the maximum count of 
surface normals is: 

( 1) 1nr + −  (2) 

Define λ to be the ratio of the above expression: 

(2) ( 1) 1

(1) (2 1)

n

n

r

r
λ

+ −
= =

⋅ −
 (3) 

It is easy to prove for any r >=2 and n>=2, λ >1. Table 1 shows some typical values 
of λ . The λ  exponentially increases with the n proved that the quarternay coding 
scheme is much more efficient than binary coding scheme.  

Table 1. The λ  exponentially increase with the n 

         n 
r  

2 3 4 5 6 7 8 9 

2 1.33 1.86 2.67 3.90 5.78 8.61 12.9 19.3 

3 1.67 3.00 5.67 11.0 21.7 43.0 85.7 171 

Here we limit r equal or less than 3 because in a RGB color space, we have only 3 
independent color components R, G and B. If we use more than 3 colors in the sys-
tem, at least one color can be represented by the linear combination of the other three  
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colors. Then in some case we can’t find the correspondence between the highlight in 
the specular object and the source point because there may be more than one candi-
date source points. 

2.3   Industrial Practical 

It is need to point out that the efficiency is essentially important for a structure lights 
solution in industry. If each frame grab takes about 30 ms (30fps, a typical time for 
most CCDs), then sequential scanning of 252 point sources would take a total of 7.56 
s. Using the binary coding scheme, the total time is reduced to 0.24s; Using quater-
nary coding scheme, the total time is reduced to 0.12s. For many high-speed applica-
tions such as solder inspection, the speed of the production-line can’t be change, the 
quicker the inspection system works, the wider ranges of production-lines the system 
can be applied. 

In the other hand, the lighting engineering develops fast. The RGB LED [12~13] 
and multi-color LED [14] is industrial practical. RGB LEDs usually contain red, 
green and blue emitters, generally using a four-wire connection with one common 
lead (anode or cathode). In the other hand, the color CCD technique improved rapidly 
these years [15], some commercial products like SONY XCL-U1000C and Dalsa 
4M60 can be employed to carry out the quaternary coding scheme. In a word, it is 
realistic for us to realize the quaternary code system.  

3   Implementation 

3.1   System Configuration 

Fig.2 shows the system configuration. The specular object is centered at the origin; 
the point sources are uniformly distributed around the object and a single camera is 
used to view the reflected highlights. The point sources are activated, and highlights 
on the object surface are used to compute local surface orientations.  

For a uniform distribution of the light sources in the virtual semi-sphere, we place 
them in such a manner: from the top to the bottom of the semi-sphere, we place 7 
layers of the source lights, each layer can be imagined as a plane which is parallel to 
the XY-plane. Each layer intersects with the virtual semi-sphere and the points of 
intersection form a circle, namely, , [1,2,3,4,5,6,7]iC i ∈ . In the Euclidean coordi-

nate, the radius of iC is: 

i 2 cos= iR Rπ θ  (4) 

Where the R is the radius of the virtual semi-sphere, and iθ is the angle between vec-

tor iv  and the XY-plane. iv  is the vector from the origin to a point source in iC , 

because iC  is parallel to the XY-plane, the iθ for all the point sources in iC  is the 

same. Meanwhile, for any i ji j θ θ≠ ⇒ ≠ . From equation 4 we can see, for any 

i jθ θ> , we get i jR R< . So we place less source points in the top circles and more in  
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Fig. 2. System configuration 

the bottom circles. In our experiment, from the top to the bottom, each circle has a 
total number of point source of 4, 8, 16, 32, 48, 64, 80 respectively. So the total point 
sources are 252.  

We assume that the point sources are distant from the specular surface, that the sur-
face is at a fixed reference height and that the extent of the specular surface from the 
origin is much smaller than the distance to the source. Under this assumption, the 
angle of incidence of illumination is determined only by the position of the source and 
does not depend on the relative position of illumination on the surface. 

During the scanning process, each light ray emitted by a point source is reflected 
off the specular surface such that the angle of incidence equals the angle of reflection. 
The fixed camera on the top of the specular object images the reflected light ray only 
if it is positioned and oriented such that it is admitted by the camera’s projective axis, 
the orthographic projection is used here to simplify the process, for practical use, the 
perspective projection can also be used with the additional camera calibration. Once 
the reflected light ray is observed as a highlight in the camera image, and the direction 
of the incident ray is known, the orientation of the surface element where the light 
was reflected can be found. 

The Radiance software [16] is used to render the specular object and image it. In 
our experiment, a top-half metal sphere is created and the martial of the sphere sur-
face is listed in Table 2. The low diffuse, high specular and low coarseness parame-
ters make the object a high specular object. Also we listed two trials with different 
coarseness in order to show how the coarseness of the specular object affects of the 
final image. 
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Table 2. The martial parameters for the specular object in Radiance 

            params 
trials 

Reflectance (R,G,B) Diffuse Specular Coarseness 

1 (0.6 0.62 0.64) 0.05 0.95 0.01 

2 (0.6 0.62 0.64) 0.05 0.95 0.02 
 
The resulting reflectance maps for some scans are shown in Fig.3.  

 
(a) 

 
(b) 

Fig. 3. (a) The grabbed image with the object coarseness = 0.01 (b) The grabbed image with the 
object coarseness = 0.02 

The two sample grabbed images show the distribution of the elliptical contours  
depend on the surface specularity and the spacing of the discrete point sources. An 
effective way is to properly arrange point sources to span the reflectance map, effec-
tively sampling the space of orientations of the target specular surface. Although we 
have done this by places all our point sources in 7 space layers, and accurately calcu-
late the numbers of point sources for each layer, we can’t control the coarseness of the 
inspected object. Fig.3 shows two inspected objects with different coarseness; it can 
be seen the more specular the object is the smaller elliptical contours we get.  
A small elliptical contour is less likely to mix with other elliptical contour, while at 
the same time a too small elliptical contour may make difficulties for the camera to 
capture it. 

3.2   Obtain the Surface Orientation 

Consider a series of scanning images in one experiment shown in Fig. 4, we expect to 
recover 252 surface orientations from them based on quaternary coding scheme.  
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(a) 

 
(b) 

 

(c) 

 

(d) 

Fig. 4. A series of scanning images in one experiment 

Take the highlight elliptical contours surrounded with the white circle near center 
in Fig.4(d) for example, let’s see how to get the surface orientation of this small area. 
Note this small elliptical contours is blue in Fig.4(d), blue in Fig.4(c), green in 
Fig.4(b) and red in Fig.4(a). This means the point source that produces this highlight 
is blue in scan (1), blue in scan (2), green in scan (3) and red in scan (4). This series of 
states imply this point source’s quaternary code is ‘3122’ (remember we mapped the 
color Green to 1, Blue to 2 and Red to 3). So the correspondent decimal number 
is 3 64 1 16 2 4 2 1 218× + × + × + × = , as we know the position of the point source num-
bered with 218, we can calculate the surface orientation in this small area.  
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3.3   Problem and Solution 

If every highlight area only occupies one pixel in the same coordinate in every scan-
ning image, we know this pixel’s surface orientation now. However, because the light 
source illuminates an elliptical contour which contains several pixels in all the four 
images we get four set of pixels. The four corresponding small areas after threshold 
are extracted and magnified as shown in Fig.5. To obtain the surface orientation we 
read the values of each pixel in the four 4-level images, for each pixel we obtain a 4-
digit pattern as shown in Fig.6(a) .  
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Fig. 5. The same small areas extract from four images shown in Fig. 4, each cell represents a 
pixel in the 4-level image 
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  218    
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   218   

      
 

(a) (b) (c) 

Fig. 6. (a) Overlap the four areas of Fig. 5, the codes in each pixel are in quaternary 
representation. (b) decimal code, some pixels near the border are wrongly coded (c) the result 
of the erosion operator. 

In ideal condition, all the four images in Fig.5 should have the same pixel set 
which are illuminated by light 218 because the light source never change its position 
during the scans. But there are three reasons for the different illuminated pixel set: 1) 
The light source change its colors during scans, the inspected object may have differ-
ent reflectance coefficient for different colors; 2) the color CCD usually has different 
response curves for different colors; 3) System noise. As a result, there will always be 
variance in the border of any illuminated area as shown in Fig.6(b). This kind of vari-
ance will decrease the system accuracy. To solve this problem, we drew lesson from 
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the erosion operator from the Mathematical Morphology [17]. The classic erosion 
operator is used in binary image. Let E be an Euclidean space or an integer grid, the 
erosion of the binary image A in E by the structuring element B is defined by: 

{ | }zA B z E B AΘ = ∈ ⊆  (5) 

where zB  is the translation of B by the vector z, i.e. { | },zB b z b B z E= + ∈ ∀ ∈ . 

In our application, the image is actually a 4-level image, so we extend the 
algorithm in such a manner: each pixel in the image is detected, if the pixel is the 
same with all its 4 neighbors, we preserve this pixel; otherwise we set this pixel to be 
0. By doing this, we actually set the structure element B to be a 5 pixel cross. The 
result of Fig.6(b) after the erosion operator is shown in Fig.6(c). Our experiment 
results (Table 3) show that with the erosion operator, the average angle reduced much. 

4   Result Evaluations 

4.1   Evaluation Method 

To evaluation the result, we measured the error between real surface normal and the 
recovered surface normal on each highlight point. Let 

,r nE v v=< >  (6) 

where rv  and nv  denote the recovered surface normal and the real surface normal of 

the same highlight point on the surface respectively;
 

,< >  means dot product of two 

3D vectors.  So the average normal error is, 

,
, [0, )

ir in
i
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v v
E i N

N

< >
= ∀ ∈
∑

 (7) 

where irv  is the recovery normal vector for ith highlight, inv  is the real normal vector 

for ith highlight. The average angle error is, 

arccos( , )
, [0, )

ir in
i

avgangle

v v
E i N

N

< >
= ∀ ∈
∑

 (8) 

And the Maximum angular error is, 

max max(arccos( , )), [0, )angle ir in
i

E v v i N= < > ∀ ∈  (9) 

4.2   Experiment Results 

Firstly, the new quaternary scheme recovered 252 surface normals with only 4 input 
images. In [11], with the classic binary coding scheme, 127 surface normals are re-
covered with 7 input images. The new quaternary scheme is proved to be much more 
efficient than the classic binary coding scheme. 
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Secondly, we use the evaluation approach described in Sec.4.1 to evaluate the ac-
curacy of our experiments. Table 3 shows that the recovered surface orientations are 
in a high precision. The results also show that with the erosion operator, the average 
angle error reduced from 4.0697 degree to 0.8459 degree for trial 1 and from 5.8874 
degree to 0.8465 degree for trial 2. The worst angle errors are effectively controlled 
into a reasonable range. 

These results prove that the new coding scheme not only keeps a very high accu-
racy, but also greatly improves the efficiency of the inspection of specular surface. 

Table 3. The accuracy of our experiments, the parameters for each trials are shown in Table 2 

                      err 
trials avgE  avgangleE   

(degree) 
max angleE   

(degree) 

1    (no erosion) 0.997471 4.0697 22.7946 

2    (no erosion) 0.994713 5.8874 30.4242 

1 (with erosion) 0.999891 0.8459 1.1459 

2 (with erosion) 0. 999891 0.8459 1.1459 

5   Conclusions 

Structured light techniques with the classic binary coding are practical and efficient to 
inspect the specular surfaces. With introducing the polychromatic light sources, we 
proposed a novel quaternary coding scheme which is much more efficient than the 
classic binary coding scheme. We also designed an effective algorithm to solve the 
problem caused by the polychromatic light sources. The experiment results show the 
new coding scheme not only keeps a very high accuracy, but also greatly improves 
the efficiency of the inspection of specular surface. 
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Abstract. This paper presents an algorithm for detecting multiple moving  
objects in an uncalibrated image sequence by integrating their 2D and 3D in-
formation. The result describes the moving objects in terms of their number, 
relative position and motion. First, the objects are represented by image feature 
points, and the major group of point correspondences over two consecutive im-
ages is established by Random Sample Consensus (RANSAC). Then, their cor-
responding 3D points are reconstructed and clustering is performed on them to 
validate those belonging to the same object. This process is repeated until all 
objects are detected. This method is reliable on tracking multiple moving ob-
jects, even with partial occlusions and similar motions. Experiments on real im-
age sequences are presented to validate the proposed algorithm. Applications of 
interest are video surveillance, augmented reality, robot navigation and scene 
recognition. 

1   Introduction 

Tracking of multiple moving objects means detection of their trajectories in image 
sequences. Its main steps are the following two: first, detect moving features and 
second, cluster them to validate the number of moving objects available. 

Different kinds of feature tracking algorithms have been proposed such as tracking 
of affine invariant pieces of level lines (AIPLL) [1], scale invariant feature transform 
(SIFT) [2] and Kanade-Lucas-Tomasi feature (KLT) [3]. These characteristic image 
features are local and allow us to cope with partial occlusion, mild intensity change of 
light source, and moderate projective deformation. However, since the tracking prin-
ciple is based only on pixel information to find out apparent image features between 
an image pair, it is possible that such methods track apparent image features which 
are out of the original objects. Therefore, feature tracking requires not only accuracy 
in pixel information but also geometric property. 

Other algorithms have been proposed, such as that by Helmholtz, Desolneux, 
Moisan and Morel [4] where an unsupervised detection principle without parameter 
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tuning is described. Thomas Veit, Frédéric Cao and Patrick Bouthemy [5] have applied 
it into tracking. They placed image position coordinate (x,y) and polar form velocity 
(r,θ) into “a contrario” [4] framework to perform clustering. They even clustered over-
lapped objects moving in opposite direction successfully. However, with overlapped 
objects moving in the same direction, the method [5] has difficulty in distinguishing 
them because of lacking in depth information. Therefore, clustering of moving feature 
points in 3D Euclidian space is needed to cope with this situation. 

In this paper, we propose an algorithm to track multiple moving objects, which is 
able to cope also with partial occlusions and similar motions. This paper is organized 
as follows: Section 2 briefly explains the overall strategy of the proposed algorithm. 
Section 3 describes the extraction of features. Section 4 describes the robust matching 
by RANSAC. Section 5 describes the 3D reconstruction. Section 6 describes the “a 
contrario” clustering. The experimental results are reported in Section 7. 

2   Overall Strategy 

Given a sequence of images, we aim to extract feature points of moving objects from 
successive images and cluster them into groups. The strategy we propose is an itera-
tive process including four major steps, as shown in Figure 1. 

 

Fig. 1. Algorithm of multiple objects detection 

 

A set of 3D points 

Clusters

Robust matching by RANSAC

3D reconstruction

“a contrario” clustering

Extraction of features

An original set of features 
detected 

A set of features satisfying the 
same epipolar geometry 

 

Loop until number of points in the 
major group < threshold or No 
solution from RANSAC 

“a contrario” clustering

Remove points on the 
major group from the 
original set. 
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The role of these four steps is as follows: 

1) Extraction of features: Objects are represented by feature points, and SIFT [2] is 
applied to extract an original set of feature points because it can withstand partial 
occlusions, mild intensity change, and similarity deformation satisfactorily. 

2) Robust matching by RANSAC: Robust point correspondences over two consecu-
tive images are established by Random Sample Consensus (RANSAC) [6], and  
a major set of matched feature points satisfying the same epipolar geometry is  
detected. 

3) 3D reconstruction: With matched feature points, projective reconstruction is per-
formed [7] to find out their relative coordinates in 3D projective space, and then 
the projective reconstruction is upgraded to Euclidean space. Thus a set of 3D 
points is obtained. 

4) “a contrario” clustering: The reconstructed 3D points usually contain outliers. To 
cluster valid groups of points together and remove outliers, “a contrario” frame-
work [4] is adopted and a major group of points representing a moving object is 
finally detected. 

Once a moving object is detected, the corresponding set of points is removed from 
the original set, and steps 2) – 4) are repeated to detect another moving object. By 
iterations, the matched features in the original set will gradually reduce. The algo-
rithm stops when there are no valid solutions from RANSAC or the number of points 
in the major group after clustering is smaller than a threshold. After iterations, there 
are several major groups detected, and we perform “a contrario” clustering again to 
validate the number of valid objects. 

3   Extraction of Features 

Features extracted should be local enough to cope with partial occlusion, mild inten-
sity change of light source, and moderate projective deformation through image se-
quences. SIFT [2] feature point is chosen because it is invariant to the above criterion 
in certain extent. SIFT feature points are extracted by the convolution of the differ-
ence of Gaussian (DoG), with the image I(x,y) at multiple scales (σ): 

)y,x(I*)),y,x(G)k,y,x(G(),y,x(D σ−σ=σ  (1) 

k is a constant multiplicative factor of Gaussian, G(x,y,σ), and * is the convolution 
operator. 

The extrema around 26 neighbors in 3×3 regions at the current and two adjacent 
scales are chosen. However, some of them should be rejected because they are sensi-
tive to noise with low contrast and strong edge response. Therefore, the interpolated 
location of the maximum is performed to improve the stability of feature points. 

The interpolation is performed by the quadratic Taylor expansion of (1) with the 
candidate feature point as the origin: 
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In (2) x = (x,y). The location of feature point x’ is determined by the zeros of the 
derivative of (2): 
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Substitute (3) into (2) to obtain the function value of feature point: 
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If | D(x’) | is less than a threshold, feature point x’ is rejected. 
By (1) – (4), feature points sensitive to noise with low contrast are rejected. In or-

der to remove those with strong edge response, a 2×2 Hessian matrix, H, is computed 
at the position of feature points: 
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Dxx, Dxy and Dyy are the respective second derivatives of (1) and feature points with 
strong edge response are identified with the method proposed by Harris and Stephens 
[8]: 

)H(det
)H(trace

C
2

=  (6) 

If C is less than a threshold, the corresponding feature point is rejected. 
By (1) – (6), SIFT feature points with high contrast and weak edge response are ex-

tracted. Then, the description vector representing the image property of the corre-
sponding feature point is obtained by computing the gradient of the 16×16 sample 
array around it. Then a 4×4 descriptor array of histograms with 8 orientations bins is 
computed from the sample array. Therefore, every description vector consists of 
4×4×8 = 128 elements. 

A set of SIFT feature points si(xi,yi,σi,vi) containing image position (xi,yi), scale 
(σi) and description vector (vi) is computed. 

4   Robust Matching by RANSAC 

Once the image features in the two images are extracted, it is required to find out the 
correspondence between them, i.e. to know where one image point in one image is in 
the other image. This can be done via RANSAC by identification of a majority of 
points satisfying the same epipolar geometry with a fundamental matrix F.  
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First, || vi – vj ||, the Euclidean norm of the difference of the corresponding descrip-
tion vector of SIFT feature points si and sj is chosen as the putative match. Then, 
randomly select 7 pairs of point correspondences to form a set of linear equations: 

1 1 1 1 1 1 1 1 1 1 1 1

7 7 7 7 7 7 7 7 7 7 7 7

1

0
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 (7) 

(xi,yi) and (x’i,y’i) represent the i-th pair of feature point correspondence and the 
9×1vector f represents the entries of F. By singular value decomposition (SVD) of 
matrix A = UDVT, the last column of V is chosen as the least-squares solution for f. 

Then, Sampson approximate error di┴ representing the reprojection error of point 
correspondence (xi,x’i) is computed: 
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(Fxi)j
2 is the square of the j-th entry of vector Fxi. If di┴ is less than a threshold, that 

point is considered as an inlier of F and an outlier otherwise. 
A set of inliers is used to re-estimate F by minimizing the sum of di┴ for all inliers 

with Levenberg–Marquardt algorithm [9]. With the re-estimated F, a search strip 
about the epipolar line is defined to determine further interested point correspon-
dences. By iterations, F is repeatedly estimated and a set of inliers is also repeatedly 
updated. The number of iteration, k, is defined as follow: 

)wlog(1
)p1log(

k
n−

−=  (9) 

n is the least number of points required to estimate F so that n = 7. p is the probability 
of producing a valid result and w is the ratio of the number of inliers to the number of 
whole data points. After iterations, a set of points satisfying the same epipolar geome-
try with F is extracted.  

5   3D Reconstruction 

RANSAC does not guarantee that the set of points extracted represents the same object 
because RANSAC includes as many point correspondences as possible to satisfy the 
same F representing relative motion between them. Therefore, if points of multiple 
objects have similar relative motions, there will be a F satisfying their epipolar geome-
try. Therefore, in order to distinguish them and remove outliers, their relative position 
in 3D Euclidian space should be obtained by 3D reconstruction. In this paper, we apply 
the algorithm proposed in [7] to establish the projective reconstruction over two views 
with minimization of the 2D reprojection error. This algorithm reformulates the projec-
tive reconstruction problem into a sequence of weighted least-squares problems, where 
a control parameter is gradually increased to force the final solution to approach a 
minimum point of the 2D reprojection error. By solving this minimization problem, the 
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3D positions of points and the projection matrices can be recovered simultaneously. 
Furthermore, the algorithm does not require any information from camera calibration. 
In order to measure the relative positions of points in 3D Euclidian space, it is neces-
sary to upgrade the reconstructed scene from the projective frame to the Euclidean 
frame. This is performed by means of a linear subspace algorithm [10].  

6   “a contrario” Clustering 

After 3D reconstruction, a set of 3D points {x1, x2,…,xM} is obtained. “a contrario” 
framework [4] is adopted to find out valid groups of points from a hierarchical binary 
tree. Its principle is to compare the density of the distribution of the set of points with 
a given independent and identical distributed (i.i.d) background model. If it has higher 
density than that model, this set will be considered as a valid group.  

This framework can answer two questions about the distribution of 3D points. 

1) Is a candidate group valid in the binary tree? 
2) If two sibling groups and their parent group are all valid in the binary tree, which 

one will be more valid? 

For 1), the validity of a candidate group G in the binary tree is defined as follow: 
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M is the total number of 3D points. n is the number of points in the candidate group. R 
is the subset of region set ℜ  where the largest region in ℜ  contains all 3D points. 
π(x+R) is the probability distribution function centered on 3D position x in region R. 
|ℜ | is the cardinality of region set ℜ. If NFA(G) < 1, the candidate group G is consid-
ered as a valid group. Lower NFA(G) represents higher validity of candidate group G. 

For 2) the validity of two sibling groups G1 and G2 in the binary tree is defined as 
follow: 
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k1 and k2 are the number of points in candidate groups G1 and G2 respectively. π1 and 
π2 are their respective probability distribution function centered on (x1,x2) in regions 
(R1,R2) respectively. Then, we compare the validity of two sibling groups (G1,G2), 
and their parent group G, where G1 + G2 ⊂ G. If NFA(G) < NFAg(G1,G2), G is more 
valid and (G1, G2) are more valid otherwise. 

By answering these two questions, the number of present groups can be validated. 
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7   Experimental Result  

In order to validate the proposed algorithm for multiple moving objects detection and 
tracking, we show the experimental results on both synthetic and real image se-
quences. In the first synthetic image sequence generated by Pov Ray, a plane and two  
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Fig. 2(a-b): Detected SIFT feature (c-d): Extraction of the point correspondences by RANSAC 
(e): Reconstructed 3D points and clustering in “a contrario” framework (f-g): Extraction of the 
major set of point correspondences (h-i): A set of point correspondences extracted after 5 itera-
tions (j-l): Three objects detected after 3D reconstruction and clustering 
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trucks with respective orientations are moving in different directions, while in the 
second real image sequence, two moving cars are detected, and in the third real image 
sequence, two cars are moving together like one rigid object. The experimental results 
show that all moving objects are detected and tracked successfully. 

7.1   Detection of Objects Moving in Different Directions 

In Figure 2, a truck is moving towards right; another truck is moving forwards with 
right turn and a plane is moving backwards with left turn. Extracted features belong to 
two trucks, the plane and background respectively, as shown in Figures 2 (a) and 2 
(b). After robust matching by RANSAC, a set of point correspondences satisfying the 
same F is extracted, as shown in Figures 2 (c) and (d) which show that point corre-
spondences come from two trucks, the plane and the background respectively. There 
fore, by reconstructing the 3D feature points and clustering them in 3D space by  
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            g                                            h 

Fig. 3(a-b): Detected SIFT feature (c-d): Extraction of the first object (a racing car) (e-f): Re-
peated extraction of the second object (a taxi) (g-h): Two objects with different motions de-
tected after 5 iterations 
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“a contrario” framework [5] (Figure 2(e)), the major set of point correspondences is 
extracted (Figure 2(f) and (g)). After five iterations, a set of point correspondences is  
extracted (Figure 2(h) and (i)). With reconstruction of 3D feature points and cluster-
ing in “a contrario” framework [5] (Figure 2(j)), all moving objects (two trucks and 
the plane) are detected (Figure 2(k) and (l)). 

In Figure 3, a racing car (left) is moving towards left and a taxi (right) is moving 
towards right in two consecutive images. Extracted features belong to the racing car, 
taxi and background respectively, as shown in Figures 3 (a) and 3 (b). After the first 
iteration, the major group representing the racing car is detected, as shown in Figures 
2 (c) and 2 (d). Then, remove the feature points representing the racing car and repeat 
the process, the taxi is detected afterwards (Figures 2 (e) and 2 (f)). The process is 
iterated until there are no meaningful groups detected. Finally, two moving objects, 
the racing car and taxi, were detected (Figures 2 (g) and 2 (h)). 

7.2   Detection of Overlapped Objects 

The major advantage of the algorithm proposed in this paper is capable of detecting 
overlapped objects moving in the same direction. In Figure 4 (a) and (b), the racing 
car and taxi moving in the same direction are overlapped. Therefore, method [5] has 
difficulty in distinguishing them due to lacking in depth information. This problem 
has been solved by reconstructing the 3D feature points and clustering them in 3D 
space by “a contrario” framework [5] (Figure 3(e)). Finally, two overlapped cars are 
detected (Figure 3(c) and (d)). 
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Fig. 4(a-b): Both racing car and taxi detected by RANSAC at the same time due to similar 
motion (c-d): Two overlapped objects distinguished by “a contrario” clustering in 3D space. 
(e): Reconstructed 3D points  
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8   Conclusion 

This paper presents an algorithm to detect and track multiple moving objects in image 
sequences. It involves feature extraction, feature matching, 3D reconstruction and clus-
tering. The result is the descriptions of dynamic contents in terms of moving objects, 
their number, relative position and motion in 3D space without being distracted by over-
lapping of objects and background features. This multiple objects detection is able to 
apply to surveillance, augmented reality, robot navigation and scene recognition.  

A defect of this algorithm is the randomness of the fundamental matrix estimation 
by RANSAC which causes the extraction of the point correspondences not determi-
nistic. A deterministic estimation of fundamental matrix is the further improvement of 
this algorithm. 
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Abstract. The article presents the steps required to reconstruct a 3D
trajectory of a golf ball flight, bounces and roll in short game. Two video
cameras were used to capture the last parts of the trajectories including
the bounces and roll. Each video sequence is processed and the ball is
detected and tracked until is stops. Detected positions from both video
sequences are then matched and 3D trajectory is obtained and presented
as an X3D model.

Keywords: tracking, golf, stereo, trajectory, 3D, video.

1 Introduction

Video analysis is nowadays an important tool not only for professional athletes
but also for amateurs in various sports. It gives them visual information of what
they are doing and can help them improve by seeing their (not perfect) moves
and the consequences, that they cause. There are a lot of golf accessories on the
market, probably more than in any other sport. On the other hand, golf ball
tracking articles are not so common. To detect and display the trajectory of the
golf ball, usually some expensive equipment like radars is used. While there is
no doubt, that the trajectory obtained that way is accurate, its price tag is out
of the range of the average user.

In the area of golf video tracking there has been a research of golf club tracking
during the swing [1] and tracking of the position of the golf club and the ball using
markers [2]. Ball tracking in tennis [3,4], on the other hand, has been studied ex-
tensively and the successful results can be seen on the television during the tennis
broadcasts. There are also quite a lot of articles about soccer ball detection [5,6],
but these are not as widely used in practice as the ones from tennis.

2 Motivation

Golf is a sport full of variety. Because of different course condition, flag position,
weather and tactics, every shot is different. The player is faced with the choice
of what kind of shot to play before each shot. The number of options increases

A. Gagalowicz and W. Philips (Eds.): MIRAGE 2009, LNCS 5496, pp. 150–160, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Automatic Golf Ball Trajectory Reconstruction and Visualization 151

when the player gets closer to the hole. When the ball lies e.g. 50 meters from
the hole, the player’s wish is to make a good shot, that will get the ball as close
to the hole as possible to increase the possibility of a good score.

At that distance, he has many options of the shots he can make. He can use
a very lofted club and fly it on a high trajectory. In that case, the high angle of
impact causes the ball to stop near the point, where it touches the ground. If
the flag is on the back of the green, he can make a lower flying shot, land the
ball on the front of the green and let it roll to the hole(Fig. 1).

Fig. 1. Two possible approach shot trajectories

If a player wants to get close to the hole, he has to have a good understanding
of how the ball bounces and rolls, to know what kind of shot to make and
exactly where to land the ball to increase his chance of making a low score. This
knowledge is usually absorbed through extensive practice. This process could be
accelerated by showing him a 2D trajectory drawn over the actual video or by
generating a 3D trajectory model, which would hopefully help him improve in
much shorter time.

3 Algorithm Input

Static cameras were positioned in a way to grab only the last part of the trajec-
tories – the part that is important for the player – angle of impact, bounces and
roll. One camera was rotated approximately 90 degrees compared to the other
camera and was positioned at a larger distance from the player.

Video acquisition was done using one consumer DV camcorder and one con-
sumer HDV camcorder. DV recording was interlaced, therefore a software filter
was used to deinterlace the stream. Streams were later manually synchronized
on the computer, but an automatic synchronization would be possible.

4 Obtaining the Position of the Ball

4.1 Background Registration and Subtraction

Using the static cameras gives us the possibility to generate the background from
multiple frames. When we subtract such background from the current frame, we
obtain only the difference – the pixels that have changed. If the background was
also static, the difference would contain only the moving ball. Since the nature
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is not static, the difference also contains e.g. some moving leafs on the trees and
parts of the image, where the brightness has changed.

In this case we can not use the static background, but we have to use multiple
consequent frames to generate a dynamic one and adjust it continuously to the
present conditions. The pixel in image is tagged as background, if its value has not
changed for a predefined number of frames. Each frame of the stream is processed
and the background value of each pixel is saved, if such value already exists.

The difference image is then obtained by subtracting the background from the
current frame. If a pixel does not have a background value, we use the value of
the pixel at the same position in the previous frame. More detailed description
of this background registration technique can be found in [7].

4.2 Problematic Pixels

Some pixels’ values are constantly changing and that can cause problems if this
issue is not addressed. The change can be caused by physical movement because
of the wind or some other factor, but it can happen also by static objects, that
diffuse light and cause the value of pixels to be different in each frame. For such
pixel, a reliable background value can not be set, because any value we choose,
causes a non zero pixel value in subsequent difference images. Therefore we count
the number of frames in which the value of such pixel in the difference image is
above some predefined threshold. If that number is too high, we tag that pixel
as problematic and exclude it from further processing.

A pixel in the difference image that represents a ball can not have a high
value for a long time. If the ball moves, it causes high values of the pixels in the
difference image at the position of the ball. At subsequent frames, the ball is
at the new positions and after a few frames the pixels from the previous frame
can not have high values anymore. When the ball comes to a stop, its values in
the difference image stay high until the background is updated to include the
stopped ball.

4.3 Ball Hypothesis Generation

Possible ball positions are obtained by analyzing the points in the difference
image. Ball is usually quite different from the background, so we check if the pixel
value in the difference image is above a threshold. By calculating the weighted
sum of values in the area around that pixel and a preset low threshold, we remove
objects smaller than a golf ball. After that the RGB values of the image around
the pixel are checked to add a color constraint. Golf balls are usually white, so
we compare red, green and blue components of the pixel and test if they are
approximately the same.

If one pixel is set as a ball candidate in a percentage of the frames, that is
too high, that pixel is discarded. High values in the difference image are usually
caused by changing light coming from reflective surface, that is bright only for
some frames.

If all the above conditions are satisfied, then the pixel is tagged as a hypothesis.
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4.4 Adding Hypothesis

The image of the ball consists of many pixels, that could be tagged as hypotheses.
Since we want to have one hypothesis for each possible position, we group hy-
potheses, that belong to the same position. Each hypothesis has a group number
and the pixel position. We add hypothesis A to the list according to the following
pseudo-code:

for each hypothesis C in the list
if A.position is close to C.position

A.group = C.group;
list.add(A);
break;

end;
end;
if A.group not defined yet

create new group number G;
A.group = G;
list.add(A);

end;

4.5 Group Size Restriction

Previous step provides us grouped hypotheses. Each group may contain several
hypotheses, which cover a certain area. Using the positions of the hypotheses
we calculate the smallest non rotated rectangle(group area) that contains all the
hypotheses in a group.

To remove objects that are too large to be a golf ball, we check the size of the
group area. In case it is too large, the whole group of hypotheses is discarded.

4.6 Restricting Hypothesis Search Space Using Kalman Filter

Searching for the ball can be made more effective by reducing the search area.
The ball moves according to the laws of physics and there is no reason to search
in the area, where the ball can not be. The ball can enter the frame only at one
of the edges(we don’t use the videos where the player hitting the ball is visible)
and then travel on a quite predictable trajectory, that can be predicted using the
ball speed and position in the previous frames. Using that information, the size
and position of the search window is determined. The equations of the moving
ball in the frame k are as follows:

x(k) = x(k − 1) + vx(k − 1) (1)
y(k) = y(k − 1) + vy(k − 1) (2)

vx(k) = drag ∗ vx(k − 1) (3)
vy(k) = drag ∗ vy(k − 1) + ay(k − 1) (4)
ay(k) = ay(k − 1) (5)
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Fig. 2. Trajectory consisting of selected hypothesis points connected by lines drawn
over the image. Sand wedge from the distance approx. 30 meters was used.

Although this model is just an approximation of the real physical model, the
error is small enough to get useful results. One difference between the real and
this model are the equations for the velocity. In reality the velocity should be
subtracted by drag, while in this model, we multiply it by drag. This simplifi-
cation does not induce a large error but makes the programming easier. In this
equations time interval is not used, since it is assumed to be equal to 1.

The drag and acceleration constants were defined experimentally, but their
accuracy is not that important, since these equations are used only when the
ball in the previous frame has not been found. We use this model to construct
a Kalman filter [8,9], which is then used to predict the position of the ball
in the next frame. The predicted position is used to place the search window
on the image and the size of the search window can be set larger to compensate
the positioning error. This model does not expect the ball to bounce, but only
to move forward on the trajectory, so we have to make the size of the search
window large enough to include the balls after the unpredicted bounce.

4.7 Selecting the Hypothesis

When there is no already detected moving ball present in the frame, the hypoth-
esis list is scanned, searching for the positions at the borders of the frame. After
the matching hypothesis is found, the search window is set to a large value to
be able to find the ball in the next frame. Having the positions of the ball in two
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consecutive frames allows us to initialize the Kalman filter using the position of
the ball in the previous frame and the speed in pixels the ball has traveled from
one frame to another.

The next position can now be predicted using the constructed Kalman filter.
We search for the ball in the search window, which size is determined by the
speed of the ball in the previous frame. After the hypothesis representing the ball
is found, the filter is corrected using the measurement obtained from the image
(the position and the speed of the ball). Since the found position of the ball
is certain, we set the Kalman filter’s measurement noise covariance to be 0.

Figure 2 presents trajectory overlaid over the last frame of the sequence, after
the ball stops on the green.

5 Using Two Cameras

Using two or more cameras enables us to generate a 3D trajectory model. Cam-
eras were positioned at the right side of the green with the angle around 90
degrees between them(Fig. 3). Video was acquisited from both cameras and
later manually synchronized in time on a computer up to ±0.5 frame interval
of 20ms (25 frames per second). Obtained ball positions of both streams were
then used to generate 3D trajectories. Video processing was done using Direct-
Show and Visual c++ and stereo algorithms were implemented in Matlab. 3D
trajectories can then be displayed in Matlab or exported to the visually more
appealing X3D model, that also includes a green with the flag.

5.1 Synchronization

Cameras were not synchronized at the acquisition time. Stream from each camera
was taken separately. We needed to find some points in the trajectories of the
balls, that could be taken for synchronization reference points. Since the angle

Fig. 3. Position of the cameras
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Fig. 4. Trajectories (t=0 on bot-
tom left), where the synchroniza-
tion has been changed by ±0.3
frames

Fig. 5. Trajectories (t=0 on bot-
tom left), where the synchroniza-
tion has been changed by ±0.5
frames

of the camera and field of view was different in each camera, we could not set
the frame, where the ball entered the frame or the frame where the ball stopped
as a reference point. For that reason the frame, where the ball first touched the
ground (or just after that) was selected. Since the cameras record at only 25
frames per second, the synchronization was not perfect, but sufficient for our
case. To test the effect of synchronization on the results, we interpolated the
trajectory. Between each two points of the 2D trajectory of each camera, 9 new
points were inserted. We changed the synchronization between the two videos
by shifting one sequence of 2D points. Figures 4 and 5 show the effect of shifting
one sequence by 3 and 5 points, which corresponds to 0.3 and 0.5 frames. The
difference is mostly visible in the part, where the ball has the highest speed -
before it hits the ground for the first time.

5.2 Calibration

Calibration was done manually. Camera matrices K1,K2 were obtained using
Camera Calibration Toolbox for Matlab [10]. During video acquisition, we moved
the flag stick to several locations, that were seen by both cameras. The flag stick
had stripes of red and white color, that gave us the possibility to use more points
than just top and bottom of the flag stick as correspondence points between two
cameras. These were then input into the normalized 8 point algorithm [11,12]
and the fundamental matrix F was obtained. Using the matrices F ,K1 and K2
we computed the essential matrix E:

E = KT
1 · F · K2 (6)
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Fig. 6. Image of a trajectory as seen from the first camera

5.3 Structure Reconstruction

To compute structure, we first have to obtain rotation matrix R and translation
vector t from E. This is done by computing singular value decomposition (SVD)
of E:

E = U · Σ · V T (7)

Pairs R and t̂ can then be obtained:1

W =

⎡⎣0 −1 0
1 0 0
0 0 1

⎤⎦ Z =

⎡⎣ 0 1 0
−1 0 0
0 0 0

⎤⎦ (8)

R1 = R3 = U · W · V T (9)
R2 = R4 = U · W T · V T (10)

t̂1 = t̂2 = U · Z · UT (11)
t̂3 = t̂4 = −U · Z · UT (12)

We have to ensure, that the determinants of R matrices are positive. If it is
negative, those matrices are negated. Only one pair out of these four gives us

1ˆis an operator that generates a matrix û from a vector u such that u × v = û · v
holds [13].
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Fig. 7. Image of a trajectory as seen from the second camera

Fig. 8. Image of a view of multiple 3D trajectories in X3D viewer

the result, that places the observed points in front of both cameras. To find out
which pair is the right one, we compute depth of points and check it is positive
for both cameras.

Now that we have a matrix R, vector t and n pairs of correspondence points
< pi

1, p
i
2 >, we can compute the depth of the points[14] by solving the equation:

M · λ = 0 (13)
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where the vector λ is defined as λ = [λ1
1, λ

2
1, . . . , λ

n
1 , γ] and matrix M as:

M
.=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p̂1
2 · R · p1

1 0 0 0 0 p̂1
2 · t

0 p̂2
2 · R · p2

1 0 0 0 p̂2
2 · t

0 0
. . . 0 0

...

0 0 0 p̂n−1
2 · R · pn−1

1 0 p̂n−1
2 · t

0 0 0 0 p̂n
2 · R · pn

1 p̂n
2 · t

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(14)

The equation is solved by computing the eigenvector of MT ·M that corresponds
to its smallest eigenvalue, which gives us the least-squares estimate of λ. 3-D
point coordinate Xi of a point pi

1 accurate up to a scale is computed as:

Xi = λipi
1 (15)

The images from both cameras for one trajectory can be seen on Figs. 6,7. Image
of the reconstructed X3D model with multiple trajectories is shown on Fig. 8.

6 Results

Using the described algorithm we successfully obtained ball positions in each
video. There were some problems with detection in the areas, where the back-
ground is very similar to the ball. In that case Kalman filter gave us the estimate,
which was then used as a ball position. In order to make detection work, some
parameters needed to be set manually. Since the size of the ball is dependent on
the camera position and its view angle, those parameters include the size of the
ball, as well as the ball/background contrast and the ball color.

To test the synchronization effect on the 3D trajectory we interpolated the
points between the captured ones in both cameras to make them more dense and
shifted the synchronization by a few points. There was no major visual effect
noticed. There was a minor change in the trajectory at the points where the ball
was moving fast – before it hit the ground, but that was not relevant for our
case as the angle of impact, bounces and roll remained visually the same.

7 Future Work

Setting the parameters manually takes some time, especially if we have videos
shot from different positions or at different light conditions. We are researching a
possibility of a semi-automatic parameter discovery, that would reduce the effort
needed.

Visualization could be used for replays of short game shots on the tourna-
ments. We could show different trajectories on the same image to show the
viewer or to study the different tactics, that were used by different players.

Using some known length, e.g. the length of a flag stick, we could use the
results to measure distances. In that case many usable statistics could be ob-
tained. We could make games like closer to the hole, measure the average and
deviation of the accuracy of different golfers, the distance between the point of
impact and the point, where the ball stopped etc.
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8 Conclusion

The article has described a useful application of the computer vision in golf.
Players trying to improve their short game accuracy and consistency can see the
trajectory of their shot and learn from it.

Displaying the ball trajectory in 3D gives them the possibility to view the shot
from different angles. In that case they can see how their shot curved, looking
from the view position they want. Visual trajectory representation is important
for easier understanding of the bounces and rolling of the ball and surely helps
getting the right feeling for selection of the right type of shot, when faced with
the same situation on the golf course.
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Abstract. Digital Image Correlation (DIC) is a powerful technique to
provide full-field displacement measurements for mechanical tests of ma-
terials and structures. The displacement fields may be further processed
as an entry for identification procedures giving access to parameters of
constitutive laws. A new implementation of a Finite Element based In-
tegrated Digital Image Correlation (I-DIC) method is presented, where
the two stages (image correlation and mechanical identification) are cou-
pled. This coupling allows one to minimize information losses, even in
case of low signal-to-noise ratios. A case study for elastic properties of a
composite material illustrates the approach, and highlights the accuracy
of the results. Implementations on GPUs (using CUDA) leads to high
speed performance while preserving the versatility of the methodology.

Keywords: Digital Image Correlation, Finite Element Method, GPU,
material property identification.

1 Introduction

Among full field measurement techniques used in Solid Mechanics [1], white-
light correlation based methods are emerging because of their versatility and
simplicity of use. Digital Image Correlation (DIC) softwares give access to dense
displacement fields by matching digital images shot at distinct stages of loading
in a mechanical test. Initiated in the early 1980s [2,3], DIC is an alternative to
classical extensometry in many occasions, for instance, to study soft materials,
measure large strain levels, analyze localized phenomena or heterogeneous tests.
In addition, DIC underwent many rapid developments in different directions:

– Many softwares are currently available for performing stereo-correlation (to
evaluate 3D displacements on the surface of samples or structures [4]).

– Because of the progress of high-speed digital cameras, these methods now
tend to be applied to dynamic problems and transient phenomena [5].

– New full 3D-DIC developments are proposed. 3D imaging techniques (such
as computed microtomography, μCT, and Magnetic Resonance Imaging, or
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MRI) are mainly used for imaging purposes. Recent progress in scanning
and reconstruction techniques allows one to get images of textured materials
whose quality is sufficient to measure 3D displacements between two de-
formed states [6,7,8,9,12]. The challenge is now to process the large amount
of image data in a reasonable time, and to exploit the measured displacement
fields.

– Nowadays, DIC can also be used to drive (complex) experiments [13].

In Solid Mechanics, most of the used techniques are based on local matching
procedures [4]. It consists in maximizing the cross-correlation function. Con-
versely, variational formulations may be used. They are mainly based on the
brightness conservation equation [14,15,16]. A spatial regularization was intro-
duced by Horn and Schunck [15] and consists in looking for smooth displacement
solutions. However, this method is not appropriate for problems dealing with dis-
continuities in the apparent displacement [17]. In the latter case, the quadratic
penalization is replaced by “smoother” ones based, for example, on robust statis-
tics [18,19]. Furthermore, when dealing with deformable solids, other regulariza-
tion techniques are introduced such as that based on the strain energy [20]. It
can be noted that problems as complex as face tracking with three dimensional
motions and deformations are handled by using ad hoc procedures [21].

However, the most attractive development of DIC in Solid Mechanics lies in
its ability to identify parameters of constitutive laws [22] characterizing the me-
chanical behavior of materials or structures. Among the proposed identification
methods [23], a widespread technique consists in updating the material proper-
ties in a Finite Element simulation (also referred to as Finite Element Model
Updating, or FEMU) to reduce the difference between measured displacements
and simulated ones [24]. The present paper focuses on this objective, and presents
a novel method that conciliates the best of DIC and FEMU, while avoiding most
of intermediate steps, together with a specific GPU implementation leading to
considerable computation time savings.

The DIC method used herein is based on the Brightness Conservation (BC)
assumption [14] written on a global level. However, instead of introducing spa-
tial regularizations [15,18,17,19,20,21] with no or remote mechanical content,
one rather takes advantage of meaningful (i.e., mechanical) bases to decompose
the sought displacement field. The chosen DIC formulation [9,25] is such that
any displacement basis is easily incorporated in the formulation. Among those,
the simplest (without much mechanical content though), is the Finite Element
(FE) Method. The structure is discretized using a set of finite elements and as-
sociated mesh. In that case, the DIC problem consists in looking for the nodal
displacements minimizing a weak form of the BC functional. In each element,
piecewise polynomial basis functions are used. The same formulation is used in
3D cases [12], where the challenge consists in performing time efficient compu-
tations, and also in dealing with a considerable amount of data (scans reach
2000× 2000 × 2000 voxels with 16-bit deep graylevel encoding).

General purpose graphics cards may then constitute a cost effective solu-
tion for performing massive parallel treatment using a standard PC. Graphics
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Processing Units (GPUs) are for example more and more used for scientific pur-
poses [26,27,28]. This new trend is referred to as General Purpose computation
on Graphics Processing Unit (GPGPU). Considering the increasing need for fast
and accurate Digital Image Correlation methods, usually highly parallelizable,
a prototype of GPU-devoted DIC was developed.

The aim of the paper is to present the consequences of this kind of imple-
mentation in terms of applications and performances, in the field of mechanical
analyses. The principle of the used FE-DIC method is first presented. In the sec-
ond part, a specific form of the updating technique for identification (FEMU) is
presented on a first application where kinematic fields are input data to identify
material properties. In the third part, a new coupled DIC-FEMU procedure, de-
signed to minimize the effect of a low Signal-to-Noise Ratio (SNR) is introduced.
In the last part, implementation details are explained, including comments on
speed performances.

2 Digital Image Correlation

2.1 Principle of the Proposed FE Scheme

The analysis of two gray level images f and g (f being the reference picture,
and g the deformed one) is performed using the BC hypothesis that means that
the image texture is passively advected by a displacement field u, or

g(x) = f(x + u(x)) (1)

The problem consists in identifying the best displacement field by minimizing
the correlation residual functional, Φ2,

Φ2[u] =
∫

Ω

ϕ(x)2dx (2)

where
ϕ(x) = |f(x + u(x)) − g(x)| (3)

The minimization of Φ is intrinsically a non-linear and ill-posed problem. For
these reasons, a discrete and weak format is preferred by adopting a general
discretization scheme

u(x) =
∑
n∈N

unψψψn(x) = [ψψψ(x)]{u} (4)

where ψψψn are the vector shape functions, and un their associated degrees of
freedom. In a matrix-vector format, [ψψψ] is a row vector containing the values of
the shape functions ψψψn and {u} the column vector of the degrees of freedom. At
this level of generality, one may choose to decompose the displacement field u(x)
on a more or less “mechanically rich” basis. One can for example use classical FE
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shape functions Nn(x). In an element Ωe, the interpolated displacement ue(x)
then reads

ue(x) =
ne∑

n=1

∑
α

ae
αnNn(x)eα (5)

where ne is the number of nodes and ae
αn the unknown nodal displacements. If

one now minimizes the global residual Φ2, one obtains a linear system Ma =
b, where a is the vector of unknown nodal displacements. The matrix M and
the right hand side vector b are respectively assembled using their elementary
components Me and be

Me
αnβm =

∫
Ωe

[Nm(x)Nn(x)∂αf(x)∂βf(x)]dx (6)

and
be

αn =
∫

Ωe

[f(x) − g(x)]Nn(x)∂αf(x)dx (7)

Up to now, classical bilinear shape functions associated with quadrilateral 4-node
(Q4) or cubic 8-node elements (C8) were chosen for treating 2D (Q4-DIC [25])
and 3D images (C8-DIC [9]). In presence of discontinuous displacement fields
(e.g., cracks), one may use enriched interpolation schemes such as those proposed
in X-FEM approaches [10]. The method was tested with 4-node elements in
2D (XQ4-DIC [11]) and 8-node elements in 3D (XC8-DIC [12]). The method
can naturally be generalized to any other kind of element in terms of type or
interpolation degree. The reader is referred to the above mentioned references
for further information concerning the DIC methodology, such as a multiscale
procedure that is essential for robust convergence.

In the convenient framework of the in-house developed “LMT platform,”
one simply selects the type of elements used, and the associated interpolation
schemes will be automatically generated [29].

3 Two-Stage Identification Procedure

The measured displacement fields can be used as input data for an identifica-
tion procedure, e.g., to tune the parameters of a constitutive law. The elastic
problem illustrated in Figure 1 is chosen as an example. A first snapshot of a
Region Of Interest (ROI) is taken before the specimen is loaded biaxially, and a
second picture is captured during loading. Digital Image Correlation allows one
to measure the displacement field of the specimen.

The FEMU method [24] is a convenient way to identify mechanical properties,
starting only from a picture sequence. It consists in using the displacement fields
on the non free nodes of the mesh boundary as Dirichlet conditions for mechani-
cal simulations. Simulations are run with varying parameter sets, until DIC and
numerical displacements match at best. It is worth recalling that the accuracy
of nodal displacements obtained from the DIC procedure is spatially varying as
a result of the texture being non uniform. “Low contrasted” areas lead to high



Integrated DIC for the Identification of Mechanical Properties 165

Fig. 1. First step of a two-stage material property identification procedure. Displace-
ments are obtained on a mesh that is subsequently used for comparison with FE nu-
merical simulations.

noise sensitivity, and should carry a smaller weight than “high contrasted” ones.
One can prove that the best scalar product to quantify the matching between
DIC and computed nodal displacements is

〈a,b〉M = 〈a,Mb〉 (8)

where M is the assembled DIC matrix (see Equation (6)), which is symmetric
and positive by construction.

In the case of fully differentiable energies, one can compute the derivatives
of the simulated nodal displacement vector, us, with respect to each material
parameter, pi. Let ud denote the nodal displacement vector obtained from DIC.
The following functional

T (pi) = ‖us(pi) − ud‖M (9)

is to be minimized. This is achieved iteratively through successive linearizations

M

(∑
i

∂us

∂pi

(pn+1
i − pn

i ) + us(pn
i ) − ud

)
= 0 (10)

Figure 3 shows the change in p parameters, Δpn. In that case, only Poisson’s
ratio was searched for, using data shown in Figure 2. The convergence rate,
log10(Δpn+1/Δpn) is approximately 1.3. Only one local minimum is found.

One has to emphasize that material properties identification may become far
more complex. Strong non-linearities may lead to several local minima and a
degradation of the convergence rate. For illustrative examples and solutions, one
may refer to Ref. [30]. In all cases, this two-step procedure leads to a trade-off
to manage image noise. Coarse meshes are less subject to noise but cannot cap-
ture accurately the actual kinematics. Fine meshes allow one to represent com-
plex displacement fields but the uncertainty level becomes detrimental. Figure 4
illustrates this point.
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4 Coupled Correlation and Identification

Using the two-stage procedure (pure correlation and subsequent mechanical anal-
ysis), the noise sensitivity becomes dominant for small element sizes (Figure 4)
yielding solutions, if it converges, that might correspond to local minima. Un-
fortunately, small elements are mandatory when dealing with “complex” geome-
tries, e.g., with small corner radii (as those in Figure 2) or small angles, which are
not uncommon. However, as one can do with any Finite Element representation,
it is possible to use meshes refined only around “complex” borders. Nonetheless,
for those elements, the noise sensitivity problem remains prominent.

The approach presented in this section originates from the idea that, at the
end of the identification, the internal displacements are not needed, namely, they

Fig. 2. Example of measured (left) and computed (right) displacement fields. The
distance, defined in Equation (8), between these fields was minimized with respect to
elastic parameters.

Fig. 3. Semi-log plot of the change in Δpn parameters versus iteration number n. The
data points are depicted by (•), whereas the dotted line shows a regression onto an
exponential decrease (for evaluation of Poisson’s ratio, using data from the previous
figure).
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Fig. 4. Fitted Poisson’s ratio vs. mesh size (in pixels). Coarse meshes lead to poor
kinematic representations whereas fine meshes lead to high noise sensitivity.

Fig. 5. Example of a mesh used for the coupled DIC-FEMU procedure. Element size
is a decreasing function of ‖∂us/∂pi‖.

are only intermediate data, within a global procedure whose final goal is to find
material properties. For mechanical simulations, one needs at least the Dirichlet
boundary conditions (displacements) on non free borders. Thus, it is possible to
contract the correlation problem such as the remaining unknowns are only the
displacements on the non free borders, which are simple curves and do not need
fine representations, and the material properties. For the experiment shown in
Figure 2, one may for example use meshes like that of Figure 5.

Taking advantage of the freedom of using any displacement basis for the DIC
analysis, one can compute with those fields directly from the FE modeling, in-
stead of using a standard FE representation. In that case, the displacement basis
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Fig. 6. Poisson’s ratio versus element size (in pixels) around the free borders (elements
on the non free border are of constant sizes) as obtained from the coupled DIC-FEMU
procedure (+). The • symbols show the same quantity obtained with a uniform element
size using the two-step procedure.

has a strong mechanical content. Figure 6 shows the change of Poisson’s ratio
ν versus the element size on high pi sensitive zones. The non free borders are
meshed with elements coarse enough to minimize the noise sensitivity. The sta-
bility of ν-estimates is quite spectacular as compared to the previous approach.
Within the explored range of element size, ν = 0.308 ± 0.003.

5 CPU and GPU Implementation

Speed is a major concern. For this application, standard tools may lead to pro-
hibitive running times. One had to look for specific implementations. We present
here the main concepts behind the tools used for a GPU (CUDA compatible [31])
implementation.

5.1 Code Generation

A Finite Element representation implies an important set of assumptions but
the user is free to choose the type of element. It would be possible to write each
specific subroutine by hand, but hard-coding is a time consuming task. In the
end, when one has to manage specific cases, actual running times are always
a compromise between what a machine can do (e.g., in terms of floating point
operations per second), and what a developer can do (in terms of available time).

Symbolic computing and automatic code generation is an attractive route to
push farther the limits imposed by this trade-off. The main idea is to provide
the computer with non degenerated information to let a pre-compiler manipulate
the expressions, and choose the best options to generate an efficient code. For
instance, in the LMT platform (an in-house built software platform dedicated to
solid mechanics applications [29]), a triangular element is defined by a code like
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class Triangle inherits NameElement
static points := [[0,0],[1,0],[0,1]] # ref space
static def interval_var_inter( vi )

return [ [0,1], [0,1-vi[0]] ]

This is sufficient to find, e.g., the shape functions and inverse functions, or at least
ways to generated a code to find the values of the shape functions, starting from
a pixel position. In the case of a triangle, the functions are linear, allowing for the
generation of a code without any loops nor tests. For higher order elements, the
code generator writes loops for all types of possible outputs. Up to now, C++,
CUDA, x86 and x86 64 codes may be generated, allowing for an adaptation to
different kinds of hardware.

Given a particular symbolic (representative) element e, one uses for example
the following code to get some of the expressions to be generated (see Equa-
tions (6) and (7))

# e is of type SymbolicElement (e.g., triangle , ...)
var_inter := e.var_inter_for_pos( P )
mask := e.var_inter_is_inside( var_inter )
phi := e.shape_functions.subs( var_inter ) * mask

5.2 GPU Specific Optimizations

Working with NVIDIA boards, CUDA programming language is a natural choice.
A multiprocessor manages one element at a time while threads manage one pixel
inside the element of the corresponding multiprocessor. Registers and shared
memory are fully used to store intermediate values. The tex2D instruction is
of primary importance to get high efficiency, as cache and interpolations are
automatically managed. With the current implementation of the procedure, the
construction of matrix M for 10242-pixel pictures meshed by regular quads with
sizes greater than 64 pixels requires about 2 ms. For a triangular mesh, one needs
approximately 5 ms for the same picture at a medium precision, unless element
sizes become small (leading to poor parallelism). The complete procedure from
the pictures to the estimate of Poisson’s ratio for the example reported in this
study requires, 600, 30 and 650 ms, respectively for the DIC, FEMU, and cou-
pled DIC-FEMU analyses. A new implementation for small element sizes is in
progress.

6 Conclusions

A specific global Digital Image Correlation procedure was proposed. It is based
on arbitrary Finite Element mesh and shape functions. This allows one to ex-
press the measured displacement field with the same description as that used
for numerical computations. The identification of constitutive parameter based
on DIC measurements was presented. The latter makes use of a specific scalar
product issued from DIC that minimizes the sensitivity to noise.
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Furthermore, the flexibility of the finite element representation offers a way to
couple DIC and FEMU for enhanced accuracy and robustness of the identifica-
tion. A simple elastic identification was presented as an illustration of the present
procedure. However, the presentation of the methodology has been kept as gen-
eral as possible to encompass within the same formalism non-linear constitutive
laws.

Last, thanks to GPU computing and automatic code generation, the actual
implementation leads to computation times within 1 second for Mbyte images.
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Abstract. An approach to recover a 3D solar magnetic field model pa-
rameter using intensity images of the Sun’s corona is introduced. The
approach is a quantitative approach in which the 3D model parameter is
determined via an image structure matching scheme. The image struc-
ture matching measures the positional divergence (i.e., pixel-by-pixel
shortest Euclidean distance) between the real coronal loop structures
in a 2D image to sets of modeled magnetic field structures to determine
the best model parameter for a given region on the Sun. The approach’s
effectiveness is evaluated through experiments on synthetic images and
a real image.

keywords: Structure Matching, Image-based Modeling, 3D Parameter
Recovery.

1 Introduction and Background

Structure matching has been utilized in many problem domains, including pat-
tern/object recognition (e.g., [4,8,23]), registration (e.g., [16]), image retrieval
(e.g., [17]), etc. It may further be extended to derive underlying characteristics
of an object or a physical model. In this paper, exploitation of an image structure
matching scheme in recovering a 3D model parameter is described.

The target application of our work is the Sun’s magnetism. Since the Sun is
the most important source for life on Earth and its dynamic activities strongly
impact our geo-space environment (e.g., solar storms can change the orbits of
satellites and shorten satellite mission lifetimes [11]), study of the Sun is a high
interest research topic. In particular, study of the solar magnetic field is the focus
of important solar research since the Sun’s dynamics are driven by its magnetic
free energy.

3D magnetic field models are often used to aid the investigation of the solar
magnetic field. One way these models are used is for hypothesizing properties of
the solar magnetic field based on model properties (e.g., [7]). Thus, modeling of
3D magnetic field which well-characterizes the true solar magnetic field is crucial.
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Currently, solar scientists often employ a 3D magnetic field model with its
key parameter (called non-potentiality) determined using a model parameter
recovery method that considers only the Sun’s 2D magnetic information near
the surface (e.g., [5,6,7,15]). (This widely-used 3D solar magnetic field model and
its parameter are discussed later in this section.) In particular, the parameter
recovery method determines the magnetic field’s non-potentiality using a vector
magnetogram (i.e., a 2D photospheric image of local magnetic field direction and
strength). However, since a vector magnetogram only contains 2D information
near the solar surface, the measures from it may not be reliable bases to estimate
the entire 3D field’s non-potentiality.

In this paper, a model parameter recovery approach for the widely-used so-
lar magnetic field model is investigated. The approach is based on a matching
scheme which compares real 3D solar magnetic field structures in a 2D image
with a set of possible magnetic field structures to recover the model param-
eter. Our approach extends the work of Carcedo et al. [3] and Wiegelmann et
al. [21,22] to exploit the traces of 3D solar magnetic field in recovering the model
parameter.

Next, some background of our focused solar magnetic field model is discussed.

1.1 3D Solar Magnetic Field Model

One of the most widely-used solar magnetic field models (which is the focus of
our work) is the model introduced by Alissandrakis [1]. The model is called the
constant α force-free magnetic field model. The model produces an estimate of
the 3D magnetic field by applying the Fourier Transform to an image of the
solar surface magnetic field (i.e., the magnetogram) which contains the magnetic
flux density of the solar surface. The Fourier components of the Alissandrakis
model’s magnetic field are shown within Equation (1), which is a magnetic flux
density expression:

Bx(u, v, z) =
−i(uk − vα)
2π(u2 + v2)

e−kzBz(u, v, 0),

By(u, v, z) =
−i(vk − uα)
2π(u2 + v2)

e−kzBz(u, v, 0),

Bz(u, v, z) = e−kzBz(u, v, 0),

(1)

where u and v are the variables in the Fourier domain (i.e., spatial frequency
variables) for the x and y Cartesian coordinates, α is a magnetic field
model parameter which represents the non-potentiality of the field,
k = ±

√
4π2(u2 + v2) − α, and Bx, By, and Bz are the transformed x, y, and

z magnetic flux density components, respectively. As shown in Equation (1), α
is the key free parameter when modeling a 3D solar magnetic field using the
Alissandrakis model [1].
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Non-potentiality (e.g., α in Equation (1)) of a magnetic field describes the
amount of electric current flowing parallel to the magnetic field [19]. Non-potentia
-lity can also be considered as a measure to describe the amount of twisting of
the magnetic field, since magnetic current determines how much a magnetic field
is twisted [19].

2 Related Work

In this section, the parameter recovery method [5] using the vector magnetogram
is discussed briefly.

As mentioned previously, a vector magnetogram is a 2D image of local mag-
netic direction near the Sun’s surface (i.e., in the innermost layer of the Sun’s
atmosphere). From a vector magnetogram, the net electric current (often de-
noted as I

N
) flowing up (or down) from one of the magnetic bipolar regions

(e.g., a positive pole or a negative pole) and the magnetic flux content (often
denoted as Φ) of the active region of interest on the Sun can be determined.
Using these measures, the non-potentiality (i.e., α) of the whole solar magnetic
field is estimated using Equation (2):

α =
μ I

N

Φ
, (2)

where μ is a constant (called the permeability of free space) of 4π × 10−7.
However, the non-potentiality determined from Equation (2) may not be good

one to represent the non-potentiality for the entire 3D solar magnetic field since
the bases of the equation were measured only from near the Sun’s surface.

3 Our Approach

Next, we describe our model parameter recovery approach for the constant α
force-free magnetic field model [1].

As mentioned previously, our work extends the work of Carcedo et al. [3] and
Wiegelmann et al. [22,21]. Carcedo et al. [3] attempted to determine the model
parameter based on the normal directional divergences of magnetic field struc-
tures. Wiegelmann et al. [22] determined the model parameters for different loop
sets of a solar region based on an iterative minimization process using a distance
measure. Later, Wiegelmann et al. [21] compared the magnetic field structures
generated from different magnetic field models using the same distance measure.
(We note that Wiegelmann has also introduced a magnetic field reconstruction
method [20] for other types of 3D solar magnetic field models.) Our approach
extends these works by employing a new structure matching scheme using a high
resolution solar image.

The approach introduced here differs from previous methods (that use only
the vector magnetogram) by utilizing the real solar loop structures in the inten-
sity images of the Sun’s uppermost atmosphere, the corona. Figure 1 shows an
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Fig. 1. Example of TRACE Coronal Intensity Image of the EUV Emission Above an
Active Bipolar Region on the Sun

example coronal image of the Sun (taken from NASA’s on going TRACE satel-
lite mission [18]). In the figure, the tube-like thin arc structures are the coronal
loop structures. The coronal loops structures are the visible traces of the 3D so-
lar magnetic field [10]. Thus, fields with a higher magnitude of non-potentiality
have coronal loop structures that appear more twisted than loops in a field with
lower magnitude of non-potentiality.

The key part of our approach is to exploit the appearance (i.e., shapes) of
the coronal loop structures in determining the non-potentiality using a new
image structure matching scheme. Specifically, our structure matching scheme
performs structure-by-structure comparisons between the loop structures in a
coronal image and sets of possible magnetic field structures generated from the
Alissandrakis model [1] to recover the α parameter.

α = X1

α = X2

α = Xn

α = Xn−1

Intensity Image

TRACE Coronal

Coronal Loops

Segmented

Segmentation
Apply Loop Set n

Set n−1

Set 2

Set 1

Mo
de
le
d 
Ma
gn
et
ic
 F
ie
ld
 S
tr
uc
tu
re
s

Structure Mathcing &
PSED Measuring

Fig. 2. Illustration of Our Model Parameter Recovery Approach
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The model parameter recovery approach determines the α parameter of the
magnetic field model by measuring the positional divergence between the real
loop structures in the TRACE corona image and sets of possible magnetic field
structures generated from the Alissandrakis model [1]. Specifically, this involves
generating different sets of magnetic field structures using possible α values in
the Alissandrakis model [1]. (The range of possible α values for modeling the
solar magnetic field is discussed later in Section 4.) Each generated set are then
compared with the real loop structures. The α value that generates a set of
magnetic field structures which has the minimum divergence from the real loop
structures is determined as the model parameter for the solar magnetic field.
In particular, a set of modeled 3D magnetic field structures using a possible
α value is projected onto a 2D image plane and the positional divergence is
measured from the segmented real loop structures in the TRACE image to these
projected magnetic field structures. We use pixel-by-pixel shortest Euclidean
distances from the real loop structures to the modeled magnetic field structures
as the positional divergence measure. We denote this distance measure the PSED
measure.

Figure 2 shows an illustration of the new structure matching for our model
parameter recovery approach. Each set of modeled magnetic field structures
(generated with a different α value) is compared with the real coronal loop
structures using structure matching scheme. Then, the α value of a magnetic
field structure set that has the smallest overall PSED measure is determined as
the model parameter.

The approach determines an overall PSED measure for the set of magnetic
field structures associated with each possible α value. It is computed by first
finding the average PSED for one particular structure of the set of modeled
magnetic field structures associated with the α value. This one is the closest
magnetic field structure (of each set) to the real coronal loop. It is selected by
considering evenly-spaced small regions along the real loop. Whichever of each
modeled set’s magnetic field structures passes through the highest number of
these regions is determined to be the closest one to the real loop. If there are
multiple structures in the modeled set that pass through the same number of
regions, average PSEDs for all of those magnetic field structures (to the real
loop) is determined and the one with the smallest average PSED is determined
to be the closest magnetic field structure. (If no structure passes through the
regions, the small regions is increased in size until at least one structure passes
through the regions.) The number of evenly-spaced small regions along the real
loop structure can vary with the loop length (e.g., more small regions are used
for a longer loop).

The PSEDs of the selected magnetic field structures for all real corona loops
are then computed. The average of the selected structure’s PSEDs is considered
as its set’s overall PSED. The α value for the set with the minimum associated
overall PSED measure is determined as the best model parameter for the solar
magnetic field.
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(a) (b)

Fig. 3. Example of Closest Magnetic Field Structure Selection

The closest structure selection is illustrated using an example in Figure 3.
In the figure, the solid curves represent the real coronal loops and the dotted
curves represent the set of modeled magnetic field structures associated with one
α value using the Alissandrakis model [1]. Figure 3 (a) shows the real loop and
the modeled structures. The evenly-spaced small regions used in the structure
matching process are shown as square boxes in Figure 3 (a). The real loop
structure and the selected closest magnetic field structure for this case are shown
in Figure 3 (b).

4 Experimental Results

We have evaluated the effectiveness of the new model parameter recovery ap-
proach using synthetic datasets and a real coronal image.

The first set of experiments using synthetic datasets involved creating 13
synthetic image datasets (each resulting from a different α value (±0.012,±0.010,
±0.008, ±0.006, ±0.004, ±0.002, and 0.000 in units of inverse pixel lengths) in
the Alissandrakis model [1]) and recovering the α parameter for each synthetic
dataset. The α values used were reasonable since they are valid α values for the
solar magnetic field (as described later). The synthetic images were created by
first generating 3D magnetic field structures from the model and then projecting
them onto a 2D image plane. These 2D projected modeled structures were used
as the “real” image in our benchmarking.

The maximum magnitude of α, |α|, for the solar magnetic field can be deter-
mined with respect to the size of the solar region viewed in a solar image [9].
Specifically, |α| should be less than 2π/L, where L is the image size of the so-
lar region viewed in pixel units. We have used a range of [-0.012, 0.012] for the
possible α values in the testing as this range is suitable for the size of the solar
region viewed in the TRACE images (i.e., L = 512 for the TRACE images; thus,
|α| < (2π/512) ≈ 0.0122).
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Fig. 4. Average PSED Measures for Two Synthetic Data

Table 1. Falsely Recovered α Values using Perturbed Synthetic Datasets

σ = 10 σ = 20

True α Recovered α True α Recovered α

-0.002 0.000 0.002 0.000
- - -0.002 -0.004
- - -0.006 -0.004
- - -0.008 -0.006
- - -0.010 -0.006

We have applied the new model parameter recovery approach to the 13 syn-
thetic images. The loops in each synthetic image were compared to sets of mag-
netic field structures with different α values to determine the overall PSED
measure. (Here, we note that the positions of the “modeled” magnetic field
structures were slightly different from the “real” loops used for comparison since
we assumed that the positions of “real” loops in 3D space were not known—the
end points of the “modeled” structures may not coincide with the end points for
the “real” loops.) Then, the best model parameter for each dataset was recovered
by choosing the α value which has the smallest overall PSED measure.

Figure 4 shows the overall PSED measures determined by the new model
parameter recovery approach for two of the 13 synthetic images (i.e., datasets
generated using α values of -0.002 and 0.000). (Here, we note that the figure
includes additional unit for solar scientists.) In the figure, a solid curve is used
to show the overall PSED measures for the α = 0.000 dataset. A dotted curve
is used for the α = -0.002 dataset. As shown in the figure, the overall PSED
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(a) (b)

Fig. 5. Real TRACE Image Testing: (a) Segmented Coronal Loops (i.e., overlaid blue
curves) for TRACE Image shown in Figure 1 and (b) Modeled Magnetic Field Struc-
tures (i.e., overlaid orange curves) with α = −0.006

measures were the smallest for the true α values. Similar results were observed
for the other 11 synthetic datasets; thus, our approach recovered all true α values
for this set of testings.

The second set of experiments using the synthetic datasets included applying
our approach to positionally-perturbed versions of the 13 synthetic datasets used
previously. We perturbed the positions of real loops in each synthetic dataset by
four levels of Gaussian noise. The added Gaussian noise has zero mean and σ
of 1, 5, 10, and 20 (i.e., total number of 52 “perturbed” synthetic datasets were
tested).

Using the perturbed synthetic datasets, our approach recovered the true α
value for 46 cases. Table 1 shows the cases where our approach falsely recovered
the α values. As shown in the table, our approach missed to recover the true α
value for only one case of synthetic datasets with σ = 10 and only five cases of
synthetic datasets with σ = 20.

We have also applied our model parameter recovery approach using one real
coronal image and then visually-examined the correctness of recovered α value.
Using TRACE corona image shown in Figure 1, we first manually-segmented the
real coronal loops and then performed our structure matching scheme to deter-
mine PSED measures. (We used manual segmentation since existing automated
coronal loop segmentation methods have some limitations.) In Figure 5 (a), the
segmented loops are shown as blue overlays. For this real dataset, our approach
determined -0.006 as the α value to model the solar magnetic field. The mod-
eled magnetic field structures (with α = −0.006) are shown as orange overlays
in Figure 5 (b). As shown in the figure, the modeled magnetic field structure
reasonably well-matches the coronal loop structures (which are the traces of the
solar magnetic field). (Here, we note that the modeled structures shown in Fig-
ure 5 (b) include corresponding structures and other modeled structures to show
how well all the modeled structures match with the coronal loop structures in
the TRACE image.)
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5 Conclusion

We have presented a parameter recovery approach for 3D solar magnetic field
which employs an image structure matching scheme using a real solar image. The
approach attempts to recover the non-potentiality parameter using the traces of
3D solar magnetic field. Through evaluation of the approach using synthetic
datasets and a real dataset, we have shown that the approach can provide con-
sistent and reasonable parameter recovery results.

For the future work, more complex cases can be considered. This can include
result comparisons against the previous method’s [5] results (which may include
creating synthetic vector magnetograms). In addition, we may fully-automate
our approach by incorporating (and extending) existing automated solar loop
segmentation methods (e.g., [13,14,12,2]). Extending our parameter recovery ap-
proach to other solar magnetic field models may also be possible.
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Abstract. With the large development of computer graphics hardware
and virtual cloth simulation techniques, virtual try-on of garments has
become possible. An Internet-based shop will reduce significantly the cost
of garment manufacturing as only paid garments will be manufactured.
On top of that, a client will also be able to buy exactly what he wants and
garments will be fitted to him/her. In this paper, we describe a virtual
try-on system that allows a particular user to try garments easily. After
loading his/her 3D digital model, he will be able to select the clothes
he wants from a data base and see himself/herself wearing it virtually
in 3D. The proposed system consists of two major parts : first, the 2D
positioning part which requires a designer’s interaction; second, a 3D
part, fully automatic which will be installed in the user’s computer, which
allows tim to access a garments’catalog and see himself wearing virtually
the chosen garment.

Keywords: Cloth simulation, garment, interactive positioning, virtual
try on, database, web interface.

1 Introduction and Motivation

For more than two decades, the research area of virtual garment simulation
received much attention and was applied in a wide domain, from movie industry
to fashion and games.

In recent years, major advances have been achieved due to a deeper under-
standing of the physical behavior of cloth, major improvements in the control of
the stability and accuracy of numerical computations. Much progress has been
made towards visually pleasing and fast as well as correct simulations. With the
quick evolution of computer graphics hardware nowadays, a garment simulation
process can be realized within a short time. Efficient cooperations between cloth
manufacturing industry and computer graphics have become possible. A ma-
jor interesting research is dedicated to the realization of a ‘virtual fitting room’,
where techniques and technologies for virtual garment management, cloth assem-
bly, try-on evaluation and buying have to be developed. The goal is to reduce
cloth manufacturing and stock costs by using internet facilities. We want to cover
the whole process leading to this technology.

A. Gagalowicz and W. Philips (Eds.): MIRAGE 2009, LNCS 5496, pp. 182–194, 2009.
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Fig. 1. Scenario of a virtual garment try-on system

In figure 1, we propose a natural computer-based scenario to try virtual
clothes. This scenario does not require any complex 3D interaction of the user.
The first step is to enter user’s 3D geometry to the system. Such data can be
obtained from actual 3D sensors. The only problem is that these sensors usually
do not furnish REGULAR 3D surfaces (mainly due to the presence of holes) but
regular surfaces are necessary to run 3D garment simulations. User’s size mea-
surements will be extracted automatically from this data and this information
will be used to generate garment 2D patterns adapted to the user’s body. The
next step for the user will be to select a garment type and style from a data
base furnished by the retailer , than choose a material. He will have then to see
himself in 3D wearing the garment he chose.

Many systems, allowing to simulate virtual garments have been already devel-
oped. However, most of the efforts made in this area are related to the realism of
the garment simulation but very few has been done at the level of automatic pre-
positioning of garments on the client body model. simulate a garment specific
well positioned around the 3D model. This pre-positioning, requires very good
interaction skills usually of a specialized 3D graphics designer. It is inconceivable
to ask such a performance from average clients.

In this paper, we describe a ‘virtual garment try-on system that enables the
user to try clothes without any 3D interaction skills. Pre-positioning of garment
is done automatically and serves as initialization to the 3D garment simulator.

2 Related Works

In cloth modeling and animation, many researches have been made, from sim-
plified cloth models [15], [11], to more accurate ones [1] [2] [7] [9]. Some surveys
and comparisons of recent works are available in [21], [14].
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In the last years, major efforts have been made in order to achieve fast and
stable simulation of textile. Particle systems appear to be the most developed
trend. Baraff and Witkin [1] have introduced an implicit method, that allows
to control effectively the simulation using large time steps. Most of simulation
engines nowadays work using their implicit-based model.

In order to use the simulation engines in everyday-life applications, garment
have to be positioned around a digital body automatically. This pre-positioning
is a difficult and challenging problem. Some approaches for dressmaking have
been proposed. Some have been introduced in the literature [2], [13].

But these methods do not allow the automatic access to the garment simula-
tion as some interaction is necessary. Towards the ‘virtual fitting room’ direction,
majors research has been done by MIRALab [8] or MVM (My Virtual Model)
[20]. To avoid the pre-positioning step in end-user’s computer, their system uses
a generic 3D model and they position clothes interactively on the generic model
beforehand. The generic model is transformed corresponding to the user’s shape
or by using a photo-cloned method. Once the transformation has been done, gar-
ments, which were attached to generic model mesh, will be also transformed in
order to produce the final result. In our opinion, this approach can give a result
within a short time because only a simple 3D transformation is need. However,
there is no flexibility regarding the type of garment shape desired by a client as
pre-positioning is done beforehand.

Our system uses an automatic virtual dressing technique, which allows a par-
ticular user to use a realistic body scan model and to try virtual garments. This
technique proposes a 2D manipulation method which will be coupled to a 3D
mapping technique allowing to reach the final positioning.

The remainder of this paper is organized as follows: Section 3 describes the
virtual garment positioning technique used in our system. Section 4 and Section
5 details our system components. We present briefly our simulation engine in
Section 6, discuss our future work in section 7 before concluding in Section 8.

3 Overview of the Automatic Virtual Garment
Positioning Method

The system proposed in this paper allows users to use their 3D digital body
model as an input. This digital model contains detail information of user like
sizes, textures, hair, eyes,... will help to produce a realistic scene. The challenge
of such a system is the positioning of garment automatically around the 3D dig-
ital model. To perform the task, we divide the system in two different parts: the
2D part will help tailors to manipulate 2D pattern pieces, to define sewing infor-
mation, and to specify pattern positions relatively in human body. The 3D part
uses the output of 2D part as input. This part produces garment corresponding
to user’s sizes then place the garment around the 3D digital model. These two
parts share the same data base over Internet.

Our idea is to use two generic silhouettes in 2D to describe the human body.
In order to define the position of garment in the general human body, tailors



From Interactive Positioning to Automatic Try-On of Garments 185

only need to assign the garment to their position in two figurines. These two fig-
urines, which correspond to two views (front and back) of the garment, present
approximatively how the garment looks like finally. Once the 3D digital model
of the user is analyzed, we reconstruct the user’s silhouettes and calculate its
transformation function (transforms the generic to the real silhouette). We then
use this function to transform the figurines (with garment) to the user’s silhou-
ettes. Sewing is then performed automatically in 3D and the simulation engine
will finish the job. More details can be found in [18].

4 Tailor Interactive Tool

We provided a set of basic functions in our 2D interaction tool. This tool allows
tailors to import 2D pattern from industrial textile software. Tailors can also
edit/delete the redundant patterns if needs.

Fig. 2. Tailor Interaction Tool Interface

Implementing the 2D tool is a time consuming task because we aim to use
the output data coming from various CAD/CAM textile software. Even through
they use the same DXF format (Data eXchange Format), garments definition
can vary from system to system.

Currently, our system supports the Nurb/Bezier/Polyline definition of 2D
patterns curves. After a standardization phase, every garment is presented in
Bezier form with control knots. This presentation allows editing or even creating
a new garment easily.
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4.1 Figurines and Cloth Positioning

2D figurines (front and back) are used as key element in our method 3. The
figurines should be provided to the tailor or selected from a database. It’s possible
that a 2D pattern will be visible in the two views (front and back) of the cloth,
so this pattern will be cut in two smaller pieces corresponding to each view. Note
that, this action does not require a precise cut; the original pattern will always
be reconstructed from its two small pieces used in the cloth simulation engine.

Fig. 3. Example of a skirt input data; left-top: two figurines; left-bottom: 2D patterns;
right: 2D patterns were edited and were positioned

First, the figurines are placed over the generic silhouette (see figure 4). They
can be edited to always be ‘larger’ than the silhouette. Next, a mapping between
the garment patterns and the polygon in the figurine is done to prepare the pre-
positioning.

Fig. 4. Example of mapping between the garment patterns and the polygons of the
figurines, each pattern and its correspondent are assigned with the same number
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Note that the tailor has to provide two figurines so that each pattern piece and
its correspondent polygon must have the same number of line segments (except
segments containing clamp). With the 2D interaction tool, the tailor can add or
modify a figurine easily to match his requirements.

4.2 Sewing Definition

In order to simplify the tailor’s work, cloth clamps are detected automatically
thanks to their specific structure : the end-angle between two successive line
segments is always smaller than a predefined threshold and the two lines have
the same length.

In addition, a color is assigned to each line segment which refers to its sewing
attribute:

– Red color for segments sewn with an other segment;
– Green color if it corresponds to a pattern divided in two smaller pieces;
– Gray color if the segment is a free border (see an example of the coloring in

figure 4).

With this intuitive coloring , our system can detect the sewing information au-
tomatically and check for the consistency of the garment construction.thanks to
the figurine structures. If two polygons in the figurine (corresponding to two 2D
patterns) share a same Red or Green segment, they are sewn over the segment.
The sewing cross-over plan between front and back patterns can be determined
based on Red/Green segments.

Of course, tailors can correct the sewing information if needed but it’s very
rare except when tailors want to test the behavior of special complicated gar-
ments. Furthermore, Tailors can furnish or adjust gradation information in order
to produce a correct garment for a specific size. Textures of garments could be
added for the realistic rendering of the final scene. Retailers will have to furnish
the textures using scanned images of all pieces of cloth that are susceptible to
offer or from a predefined database.

Next, garments, figurines and seam information are sent to a server which acts
like a clothes database center. Tailors need to assign an icon presenting the gar-
ment. This icon allows end-user to figure out easily how the garment looks like.

Until this step, our system does not require any 3D interaction of tailor. He
is used to work in 2D CAD/CAM environments, thus any tailor will use our 2D
interaction tool without difficulty.

5 3D Interaction Tool

5.1 Interface

We provide to the end-user an interaction tool that combines a Web panel inter-
face, a pre-positioning automatic module and a cloth simulation engine. Figure
5 presents the interface of our 3D interaction tool installed in an end-user’s com-
puter. This tool allows the user to select a garment and the material used to
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Fig. 5. 3D Interaction Tools Interface. The garment icons are shown in the left panel.
Once the user clicks on an icon, its virtual garment will be shown in the right panel.

design it by clicking on simple icons and see himself/herself in 3D wearing the
garment corresponding the user’s size and choice.

– In the first step the user has to enter his own 3D digital shape(+texture).
This data can be obtained is from a body scanner or simply from a cus-
tomizable body modeling tool.

– Next, the user clicks on an icon of a garment he would like to buy. Through
this simple click,the 2D patterns corresponding to the chosen garment will
be fetched from a database server installed in the seller’s site.

– Finally, he clicks on the icon corresponding to the material (color and type)
he selects for his garment. Another, more informative type of interaction con-
sists of the furniture by the seller of o booklet of samples of the material that
are available for the garment production. The client will be able to touch it
and transmit the code written on it to the system. When doing so, the client
will, once again, call other databases, one containing the digital image of the
chosen material, the other one will contain the Kawabata characteristic curves
(tension, shear and flexion) which will be used to design the mechanical non
linear and hysteretic mass/spring model of the chosen material.

In the next sessions, we will describe our method allowing to extract the user’s
size and to position the garment around the 3D digital character automatically.

5.2 Manipulations with the 3D Digital Mannequin of the User

Our system uses the 3D digital model (geometry + texture)of the client as input
of the 3D interaction tool; this model is fundamental to simulate realistically the
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Fig. 6. Study of the biggest sections. a) the biggest horizontal sections, b) lengths of
the sections, c) variations of the section lengths : Ci = (li − li−1)

2. d) the feature point
positions of the input model shown in its silhouette.

client. An acceptable model must have two extended arms. The angles between
these extended arms and the body should be large enough so that there is no
contact between them and the body.

First, we need to understand this 3D shape and find its size (and other mea-
surements). We compute the inertia matrix of the shape and the eigenvalues
and associated eigenvectors give us the main directions of the shape (vertical
direction, and then the two lateral directions of the body). than it becomes easy
to determine the front part and the back part of the body. We then slice the
body in horizontal sections and compute the lengths of all these sections. The
inspection of the maxima of these sections give us the major characteristic lines
(including the size) as shown in figure 6.

These 3D measurements lines are equivalent to the measuring tool that the
dressmaker places around the body of a person to take his measurements (such as
neck, bust, pelvis, hip, etc.). Here, we performed the same task (automatically)
as the dressmaker.

The detected feature lines will be used to determine the operations to put
the garment around the 3D character, which will be described in the next para-
graphs.

5.3 Transformation of the Tailor-Made Figurine to the User
Silhouette

With the set of feature lines detected, we build a graph containing a fix number
of polygons as shown in figure 7a, 7b. We then determine the transformation
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Fig. 7. Feature point graphs. a) feature point graph in the generic silhouette; b) fea-
ture point graph on a real silhouette; c) Figurines of a shirt positioned in the generic
silhouette; d, e) Figurines transformed in the client silhouettes.

between the generic silhouette and the real one. This transformation will help
to reconstruct the figurines on the real silhouette as well.

This problem is easy to solve since we know the generic feature points posi-
tions and their matches in the real silhouette. We can use the projective plan
method or the moving least-square method to get the transformation function.
We then simply extrapolate the transformation computed on the silhouettes to
the figurines

Note that, with the projective plan transformation method, only polygon and
its correspondent is used to calculate the local transformation function regardless
of its neighbors, this can cause some undesired results for the transformation of
figurines.

We then divide the silhouette contour (of each polygon) in a fixed number of
small segments. These segments are used as inputs to determine the transfor-
mation function. The moving least-square method gives us valid results.

5.4 Transformation of Garment Onto the Real Figurine

In our proposed method, each garment 2D pattern has one correspondent poly-
gon in the figurines. Since the figurines are transformed over the real silhouettes
(with their polygons), the 2D patterns can be fitted over their correspondents
in the client silhouettes in order to build the garment in 3D.

Firstly, the figurine 2D pattern garments are meshed along horizontal and
vertical directions. Next, each original 2D pattern is meshed along the warp/weft
directions. Moving least-square method will be used to determine the position
of each practical mass (of the garment 2D) in the polygon. To perform the task,
line segments (of the original 2D pattern) and their matches (of the figurine
patterns) were divided in a fix number of small segments. These pairs of small
segments are then used as input of the moving least-square method. Figure 8
shows the transformation between a 2D figurine pattern and its corresponding
3D pattern. (once again, more details can be found in [18]).
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Fig. 8. Transformation between 2D patterns of the garment and their matches. a)
each 2D pattern of the tailor figurines (drawn by him) is meshed; b) meshing of the
original garment 2D pattern obtained by the mapping of a); c meshing of the original
2D pattern (with the clamps) along the WARP/WEFT directions. d) use of a, b) and
c) to determine the 3D location of each mass from c)on the 3D mannequin. e) clamping
of the 2D pattern obtained in d).

Once all the 2D patterns of the garment are transformed from their figurine
positions, only a simple sewing process is needed to produce the final result.

6 Cloth Simulation Engine EMILION

In this paragraph, we briefly describe the cloth simulation engine EMILION that
is used to compute the final shape of the garment (output of our 3D tool).

EMILION is developed in the MIRAGES project, part of the National Re-
search Institute in Computer Science and Automatic Control (INRIA) to simu-
late the exact draping of cloth and its correct fit on digitized human bodies. The
emphasis in the development of EMILION was to produce physically correct me-
chanical models suitable for the textile industry and fast numerical algorithms
to solve the equations of dynamics derived. The basis of the simulation system is
a non linear hysteretic mass/spring network. The stiff differential equations are
solved by an implicit-modified ordinary differential equation solver in order to
enable large time steps [1]. Collision detection in EMILION is based on k-DOP
hierarchies [25], collision response is realized by constraints as described in [1].
EMILION includes the integration of physical material parameters gained from
Kawabata experiments [17,19] in order to insure the realism of the simulation
result including the implementation of hysteresis effects and buckling [5].

Because of its physical basis and the possibility to use large time steps to
solve the equation of dynamics, the EMILION garment simulation system fits
for virtual try-on applications. Even though we use this particular simulator, our
application is independent of the choice of the simulation engine, and it would
be easy to integrate any other simulator because of its flexible architecture.
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7 Future Works

The application described in this work is intended to be a complete virtual try-
on system. The whole process from the design over the tailoring to the try-on
and customization of virtual garments shall be supported by 2D interaction tool
and 3D automatic simulation techniques. The specificity of this technique is that
no interaction (except simple clicks) are required from the user.

We are currently implementing basic tailor tools like drawing pens, scissors,
measurement tools for designing the patterns and figurines. Sewing information
and even material parameters were also implemented providing an easy work
environment for tailors. However, the current 2D interaction tool does not sup-
port multi-layers garments that need to be incorporated in the near future. But
we are lack of any mechanical friction parameters between different material if
such simulation has to be realized.

An important topic of future research will be the implementation of techniques
for speeding up the simulation engine; GPU computing is a good choice since
robust graphics cards are highly developed and this technology became very
popular today.

8 Conclusion

In this paper we have discussed the implementation of a system allowing virtual
try-on. We have presented first a 2D interaction tool that is meant to be used
by tailors and a 3D module, providing the drape of garments on the 3D digital
model of the user.

The 2D pattern garment manipulation tool allows to select, cut, create new
figurines and to define garment position relatively on human body. In this tool,
sewing information was extracted automatically based on the structure definition
of garment and figurines. We provide two generic silhouettes representing the
two views (front and back) of a generic human body. Since the figurines are
positioned in the generic silhouettes, no interaction with the real client body
are necessary. This way garments are automatically positioned around the 3D
digital mannequin of any client without difficulty.

Our 3D interaction tool provides a web interface combined with a prepo-
sitioning module and a garment simulation engine. The web interface allows
communicating with a Database server in order to retrieve the 2D patterns of a
chosen garment. The pre-positioning module creates automatically the 2D pat-
terns corresponding to user’s size and sews these patterns to produce the final
garment around the 3D mannequin. Finally, the cloth simulation engine will
drape the garment to produce a realistic result of the client wearing virtually
the garment he/she has not yet bought.
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Abstract. We address the problem of segmenting bone structures from
CT scans of the knee joint, in the level set framework. Our method is
based on intensity profiles along the normals to the evolving contour.
The evolution is guided by the similarity of image intensity profiles to
profile models. The evolution stops when the intensity profiles closely
match the model. The profile models are built using a manually labelled
training sample.

Keywords: Image segmentation, Medical images, Level Sets.

1 Introduction

Digital medical imaging devices are becoming more and more valuable for diag-
nosis, pre-operative planning, and post-operative outcome evaluation of a surgi-
cal intervention. Acquiring data of internal organs by means of medical imaging
devices is common clinical practice both for diagnosis and pre-operative plan-
ning. Although this information could be fruitfully exploited for quantitative
measurements, in current clinical practice it is mainly employed for qualitative
observation. Computer-aided procedures for planning and evaluation are desired
to allow quantitative evaluation and information interchange among surgeons.

Digital models of the involved organs or tissues can be of great value for
this purpose. In particular, planning and evaluation often involve the creation
of a model from patient-specific data, acquired by means of CT, MRI, and so
on. We have recently employed models of human body parts to select the best-
fitting prosthesis for knee joint replacement [1] and to compute ad-hoc geometric
measurements for breast plastic and reconstructive surgery [2].

A systematic use of digital models for quantitative analysis is far from being
reached. This is mostly due to the lack of robust and reliable systems to build
accurate models of the structures of interest. A large variety of segmentation
methods have been developed for medical image processing and segmentation.
Nonetheless, ad-hoc solutions are often preferred to properly detect complex
structures, such as vessels, organs, or skeletal structures.

In this paper, we address the problem of segmenting bone structures from
CT scans of the knee joint. A CT scan is a stack of 2D sections of the imaged
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body part, called slices. Each slice can be considered as a greylevel image, where
intensity values (measured in Hounsfield Units, HU) are roughly proportional to
the density of the material in the sampled volume associated to the pixel. This
is of great help for segmentation of tissues on the basis of their density. However,
the HU ranges for different tissues often overlap, and can vary between different
patients and between different slices of the same study (e.g., the density of a
femur is remarkably lower close to the articulation than in its central area). This
is especially true at articulations and for soft tissues and trabecular bone in aged
patients, where osteoporosis reduces the density of bones.

As a result, the boundaries of bones, as well as other anatomical structures,
may not be clearly distinguishable from neighbouring tissues. Most standard
segmentation algorithms do not take into account the geometry of the segmented
structures, leading to broken boundaries that are difficult to cope with e.g., for
simulations [1].

Level Sets [3] have been fruitfully employed in the segmentation of medi-
cal images, thanks to their ability to easily enforce smoothness constraints on
the boundaries between regions. Binary segmentation is obtained evolving the
boundary towards a rest position that minimises an energy functional. The
boundary is implicitly represented by an embedding function, Φ, usually cho-
sen as the signed distance function from the contour. The level set equation is

∂Φ

∂t
= −∇Φ · dx

dt
= −∇Φ ·F (1)

where F is a function encompassing the partial derivatives of Φ evaluated at x,
and drives the evolution of the contour. Equation 1 is evaluated at the nodes of
a finite grid. Resolution anisotropy is easily dealt with by using an appropriate
grid spacing.

The level set framework can be easily employed for segmentation by defining
a function F such that Equation 1 goes to zero close to the boundaries of the
interest objects in the image. A regularisation term is often contained in F, such
as local curvature. Most of the level set segmentation algorithms in the literature
are based on two different approaches: edge-based, and region-based. The edge-
based method, introduced by Caselles et al. [4], employs an image gradient term
to stop the evolution of the contour close to image intensity edges. The region-
based method, proposed by Chan and Vese [5], employs global statistics about
the inner and outer regions of the evolving contour to segment the image into
two homogenous regions. These basic methods are intrinsically bimodal. Multi-
region segmentation can be obtained by simultaneously evolving a number of
different contours.

Medical image segmentation is probably one of the most successful appli-
cations of level sets. Due to regularisation terms, level sets tend to show a
nice smooth structure. The curvature term drives the contour towards a cir-
cular shape. Hence, level set methods are particularly suited for segmentation
of convex objects. Effective results are reported for the segmentation of organs
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with (almost) convex sections, such as colon, liver, heart, and the like (see for
example [6,7]). Level sets have also been used to segment complex shapes, such
as brain sections [8,9] and vascular structures [10,11,12,13] in noisy images.

The difficulty of segmenting bone structures is often underestimated since
bones are usually well distinguished from other tissues. This is often true, espe-
cially for young individuals and for stiff bones. Most interesting clinical cases,
however, look like that in Figure 2. A CT study is shown of an aged patient
affected by osteoporosis, before undergoing a surgical operation for total knee
replacement. Due to age and osteoporosis, bone stiffness is much lower compared
to that of young people. The slice represents a section of the articulation, where
the bone tissue is less dense than at the middle part of long bones. Clearly, the
boundary of the bone is difficult to outline even for expert medical staff. If the
bone model is intended for simulation (e.g., [1]) the accurate segmentation of
those blurred regions is of much importance.

A common problem with CT images is resolution. It is often the case that
distinct bones are too close with respect to the imaging resolution, leading to
merging of distinct contours. A topology-preserving level set method is presented
in [17]. The Narrow Band algorithm is modified in order to forbid unwanted
topology changes. In [18], a sort of inter-contour skeleton is defined between the
initial contours, and evolved together with the level set to keep the contours
separated. A comparison of generic methods applied to segmentation of bones
in CT images is presented in [19].

One of the first attempts to include a specific image term for bone data is due
to Lorigo et al. [14]. It is as simple as local variance to describe trabecular bone
in MRI images, but it shows an early interest in effective bone segmentation.
In [15], probability density functions (PDFs) are generated at various distances
from the contour using the implicit representation Φ. Each PDF encodes the
probability to find a certain pixel value at a given distance from the contour.
The same authors propose a similar concept in [16], where a typical intensity
profile along the normal to the contour is matched against the true profiles.

We propose a segmentation method funded on the edge-based level set frame-
work, in which the evolution is guided by the similarity of contour normal profiles
to a profile model. Our method resembles in spirit the methods proposed in [15]
and [16]. However, the former compares curvatures along the contour rather than
profiles normal to it, while the latter models the ideal profile as a Gaussian, with-
out specifying the true shape for a specific application. The main contribution
of this paper with respect to these methods is to employ profile models learned
from the medical data at hand, rather than generic profiles e.g., with Gaussian
shape. Bone probability distribution is also exploited by means of an area-based
stopping term, based on single pixel classification.

2 Segmentation by Matching Normal Profile Models

The basic idea of our method is as follows. Given an input image, we compare a
profile model with the intensity profile along the normals to the evolving contour.



198 G. Impoco

The evolution stops when the image intensity profiles match the model. In order
to build a profile model which is consistent with the medical data at hand, a
labelled training set is used to compute the typical profile across the boundaries
of cortical bones.

The evolution equation used in our method is

∂Φ

∂t
= δε(Φ)[(ν − μ · κ + λΥI,Ω) · ΨI,P (Φ)] |∇Φ| (2)

where κ is the local curvature, I is the input image, and ν, μ and λ are constants.
The term (ν − μ · κ) encompasses a common regularisation force, the curvature
κ (weighted by μ), and an inflation force ν. The function ΥI,Ω is related to the
probability of a HU value to belong to bone

ΥI,Ω(x) = (p(x) − pin)2 − (p(x) − pout)2 (3)

where p(x) = p(I(x) ∈ cbone|Ω) is the probability of x to be a bone pixel,
conditioned by its neighbourhood Ω. This probability is weighted by the mean
probability values, pin and pout, respectively inside and outside the contour. This
equation recalls Chan and Vese’s region-based method [20] with pixel probabil-
ities used in place of grey levels.

The term ΨI,P (Φ) relates the intensity profile of the image I along the contour
normal to a profile model P , and is defined as

ΨI,P (Φ) = 1 − |cc(XI , P )| (4)

Here, XI is the intensity profile of radius r of the image I along the normal to the
contour, P if a profile model of the same length, and the function cc(XI , P ) is
the correlation coefficient of the two vectors XI and P . For a perfect correlation
(i.e., the vectors are identical) the correlation coefficient cc(XI , P ) = ±1, while
it goes to zero for extremely different distributions. Hence, ΨI,P (Φ) ∈ [0, 1] and is
minimum for highly correlated profiles. Finally, the function δε(Φ) is a smoothed
Dirac delta such that δε(Φ) = 1 at Φ(x) = 0, which prevents topology changes
to occur far from the contour.

From Equations 2 and 4 it should be clear that the evolution stops when
the image intensity profiles perfectly match the profile model. In applications,
however, ΨI,P (Φ) rarely comes close to zero because of several reasons, such as
acquisition noise and bone density (i.e., intensity) variability due to age, gender,
and so on. This may draw the contour across the desired bone boundaries. A
simple solution is to set a threshold τ to introduce a tolerance to profile similarity
strength. Equation 4 is rewritten as

ΨI,P (Φ) = max((1 − τ) − |cc(XI , P )|, 0) (5)

where the maximum prevents ΨI,P (Φ) from taking negative values.
Notice that the correlation coefficient cc(XI , P ), being normalised with re-

spect to the vector means, compares the deviations of profile points from the
mean values. Thus, the function ΨI,P (Φ) does not take into account the abso-
lute intensity values of the profile. This can be an advantage when working with
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datasets showing a wide range of variation of bone densities. However, pixels
having a profile similar to the model, but different absolute intensity, can be
misclassified as bone.

3 Profile Models

Profile models are computed from a training set of CT scans. The radiologists of
the Radiology Department of the Vittorio Emanuele Hospital of Catania were
asked to manually label each scan of the training set. An interface was pro-
vided containing thresholding controls as well as the possibility to label single
image areas. For labelling purposes, pixels are grouped using a region growing
segmentation method, in order to let the users easily select image areas.

The labelling procedure has three main steps. First, the radiologists set two
thresholds on HU (intensity) values to label soft tissue, trabecular bone, and
cortical bone. Background is automatically excluded from labelling, using a stan-
dard automatic thresholding technique. These thresholds are selected by looking
at a single slice and then are propagated to the whole dataset. They are used
as a basis for further manual refinement in the second step, where misclassified
regions can be selected separately and singularly re-labelled. In the third step,
cortical bone is reduced to a single contour line.

The labelling software also provided a HU tolerance when selecting regions.
However, the users found it of little use and its concept tricky to understand.
Hence, this feature was not used. Finally, in order to make the labelling en-
vironment more familiar to the radiologists, we show three panels containing
the original slice, its segmented version (used to select regions), and the current
annotation.

The contour normals are computed for all contour points and then averaged
with the weighted contribution of neighbouring normals, in order to obtain a
more robust estimation. Intensity profiles of radius r are computed by interpo-
lating pixel values along each contour normal. Finally, the mean profile is used
as a representative profile model.

Two models were generated: one for slices close to the knee joint, Pd, and one
for the others, Pm. We made this distinction because the bone density distribu-
tions of these two classes are widely different (see Figures 1 and 2). The model
Pd is obtained as the mean profile of all intensity profiles in slices of distal femur
and proximal tibia. Pm is generated from the remaining slices.

Finally, a pixel probability model was generated by computing the PDF of
bone pixels. In our current model, we approximate the probability term ΥI,Ω

in Equation 3 by assuming that pixel values are statistically independent. The
neighbourhood Ω is thus empty. Bayesian classification is used to compute the
posterior probability.

4 Results and Discussion

Nine knee datasets were imaged at the Radiology Department of the Vittorio
Emanuele Hospital of Catania, giving a total of 849 slices, a sample rich enough
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Table 1. Parameter settings used for the acquisition of the knee CT data employed in
our experiments

Parameter Value

Exposure 200 Sv
kVp 140 kiloVolt
Slice thickness 1.3 mm
Slice spacing 0.6 mm
Slice resolution 512 × 512 pixels
Number of slices 70–140

for testing 2D segmentation. The data was captured by means of a Multidetector
CT Scanning (MDCT) device in spiral mode, using the acquisition parameters
reported in Table 1. The age of the patients ranged from 70 to 80 years and all
of them suffer from osteoporosis and arthrosis. This choice is motivated by the
fact that this is one of the most difficult cases (due both to age and to severe
osteoporosis and arthrosis) and the most widespread in clinical cases of knee
replacement surgery [1]. The acquired datasets were manually labelled by expert
radiologists of the Vittorio Emanuele Hospital. 50% of the labelled datasets were
used for learning, and the remaining were employed for testing.

In our experiments, we place the initial contour around the interest structure
and let it shrink. The inflation force ν in Equation 2 could be accordingly set
to zero. We set it to a small value, ν = 0.05, to push the contour beyond
small isolated, misclassified features. A small value, μ = 0.1, is assigned to the
curvature term, as well. The probability term has a predominant weight, λ = 1.
Choosing a convenient value of τ in Equation 5 is less obvious, since it strongly
affects the convergence of the level set to the bone contours. We experimentally
found that τ = 0.4 works well for most of our data. Finally, the profile radius
was set to r = 10. These settings are used in all our experiments.

Figure 1 shows the segmentation of a femur of an aged patient. The slice lies
close to the condyles (i.e., the two projections on the lower extremity of femur).
Here the bone density is higher than the density of soft tissues but the intensity
gradient is low. Most segmentation algorithms fail with this kind of data, because
they do not model the real intensity variations around the edges of the interest
object.

A more challenging case is shown in Figure 2. This slice shows a section of
the condyles of a femur at the knee joint. Due to osteoporosis, the density of
cortical bone is as low as that of trabecular bone, and very close to the density
of soft tissues. Here we use a different profile model, Pd, that fits better this data
(see Section 3).

The segmentation of two slices is compared to the ground truth in Figure 3.
In these examples, the level set flows over the real bone boundary (to be precise,
the level set stops before reaching the true contour). We observed this trend in
most of the classified slices. This is probably due to the choice of the parameter
τ in Equation 5, since it relates the evolution speed to the probability of getting
close to the bone.
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(a) Initial position of the contour. (b) Detail of the structure of interest.

(c) Final contour. (d) Resulting segmentation using the
model Pm.

Fig. 1. Segmentation of a slice close to the distal end of a femur of a 70 years old
patient. The detail shows that the cortical bone appears blurred, especially at the base
of the condyles.

As already discussed in Section 2, the function ΨI,P (Φ) in Equation 5 does
not take into account the absolute intensity values of the profile. This can be
considered a sort of invariance with respect to absolute intensity. The algorithm
benefits from this invariance being more robust to variations of bone densities
between slices. On the other hand, pixels can be found which match the profile
model but their absolute density is much lower than bone pixels. Due to this
invariance, this term alone has no means to discriminate those pixels from true
bone pixels.
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(a) Initial position of the contour. (b) Detail of the structure of interest.

(c) Final contour. (d) Resulting segmentation using the
model Pd.

Fig. 2. Segmentation of a slice crossing the condyles of a femur of a 70 years old patient.
The detail shows that the cortical bone is almost undistinguishable from trabecular
bone and soft tissues.

Figure 4(b) shows an example of this effect. An area classified as bone is clearly
part of soft tissues. We overcome this problem using the term ΥI,Ω defined in
Equation 3. Here, the intensity level (HU value) is directly used to compute the
probability of being bone.

Figure 5 shows another example of the performance of this term. Poor results
are obtained using the profile term alone (Figure 5(b)). In particular, the con-
tour leaks into the bone at some blurred areas, since the profile here does not
match the model, being almost flat. The probability term greatly improves the
segmentation quality.

Pixel misclassification could also be avoided by modifying the matching func-
tion in Equation 5. An explicit term could be added to weight the absolute
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(a) Input slice with ground
truth overlayed.

(b) Result of classification. (c) Difference (DICE coef-
ficient: 0.9516).

(d) Input slice with
ground truth overlayed.

(e) Result of classification. (f) Difference (DICE coef-
ficient: 0.9307).

Fig. 3. Qualitative comparison of the automatic classification of two slices against the
manually-labelled ground truth

(a) Input image. (b) Segmentation without
the probability term ΥI,Ω

(λ = 0)).

(c) Segmentation using
the full model.

Fig. 4. Segmentation of a slice in the middle the femur of an aged patient. Some regions
of soft tissue are misclassified as bone. Adding the probability term ΥI,Ω helps removing
most of them.

intensity of the profile. Other matching functions can also be used in place of
cross correlation, computing the absolute intensity difference with respect to
the profile model. One such function is the sum of squared error (SSE), which is
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(a) Input image. (b) Segmentation without
the probability term ΥI,Ω

(λ = 0)).

(c) Segmentation using
the full model.

Fig. 5. Segmentation of a slice in the middle the femur of an aged patient. Without the
probability term ΥI,Ω the contour leaks into the bone. Notice that the small isolated
region correctly represents the patella.

(a) Input image. (b) Segmentation without
the profile term ΨI,P

(ΨI,P = 1)).

(c) Segmentation using
the full model.

(d) Input image (detail). (e) Segmentation without
the profile term (detail).

(f) Segmentation using
the full model (detail).

Fig. 6. The same slice as in Figure 4. Contribution of the profile term ΨI,P .

minimised for perfectly matching profiles and is high for similar profiles with dif-
ferent mean value. Preliminary experiments with SSE, however, showed a worse
performance with respect to cross correlation. Probably, a better option is to
use the labelled data to learn a statistical model of intensity profiles. The con-
tour evolution would be driven in order to maximise the probability of observing
certain intensity profiles. This seems a promising direction for future work.
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Figure 6(b) shows the segmentation of an image without using the profile
term ΨI,P . For the sake of comparison, the same slice as in Figure 4 is used.
Clearly, the contour leaks into the bone, even if it stops close to the cortical
part. This is due to the fact that the statistical distribution of cortical bone HU
values is highly different from the statistics of trabecular bone. Profile models
are thus a useful stopping criterion to avoid contour leaks. As an important side
effect, profile matching enforces smoothness of the segmented contour (compare
the results in Figure 6(e) and Figure 6(f)).

We deem important one final remark about the scale of bone structures in
the image. Our method is not scale invariant as it is, since the shape of intensity
profiles is dependent on scale. However, the thickness of bones is strongly related
to the size of their section. If the scale is known, the profiles can be easily scaled to
the data. The scale can be set by the user simply by drawing an axis connecting
opposite points in the bone contour. This is a common measurement procedure
in the clinical practice.
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Abstract. This paper describes an approach for detecting overlapped ellipses by 
combining region and edge data. The Principle Component Analysis method is 
used to give the shape and position of an ellipse. A region based EM iterative 
algorithm is proposed to calculate the number of ellipses and their initial shapes 
in the overlapped region. As a result, every edge point is assigned to a certain 
ellipse by statistics decision. Then an edge fitting algorithm is employed to  
refine the ellipses’ geometric parameters based on the edge data. Above coarse-
to-fine algorithm is applied to detect the overlapped fruits and the moving tar-
gets. The result is stable and accurate. 

1   Introduction 

Overlapped ellipses detection is frequently met in computer vision and can be applied 
to fruits segmentation, articulated object detection, overlapped object distinguishing, 
etc.  

There are two broad methods proposed to extract the overlapped ellipses. The first is 
region based method, which use Gaussian mixture model to fit overlapped regions sup-
posed that the number of ellipses is known [1][2]. Region based method is stable, but 
has no apparent relation with the region’s edge. Hence the result is coarse. The difficulty 
to use the Gaussian mixture method is how to calculate the number of ellipses.  

The second is the edge based method, which employs some ellipses to fit the re-
gion’s edge. The edge based method gives an accurate description of the target’s 
edge, but the result is sensitive to the noise and outliers because edge pixels are rare. 
R. A. McLaughlin proposes a Randomized Hough Transform (RHT) edge based 
method to find overlapped ellipses [3]. T.C. Chen presents a Randomized Circle De-
tection (RCD) method to detect overlapped circles [4]. These two methods are all 
time wasting. A. Fitzgibbon proposed a direct least square method to fit partial data, 
which has a good fitting result and run rapid [5]. 

In this paper, the region and edge features are used together and a coarse-to-fine 
algorithm is proposed to detect irregular overlapped ellipses adaptively. At the coarse 
stage, an Expectation-Maximization algorithm is designed to calculate the number of 
ellipses in this region, initial shapes of the ellipses and the weights of every edge 
point with all ellipses. Then every edge point is assigned to an ellipse. As a result, all 
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ellipses get an edge point set respectively. At the fine stage, an edge fitting technol-
ogy is employed to refine the ellipses by fitting above edge point sets. 

The proposed method has two advantages. First it can calculate the number of el-
lipses correctly and adaptively. Second it has an accurate fitting to the image. 

This paper is arranged as following. In section 2, an ellipse description method 
based on Principal Component Analysis (PCA) is introduced. In section 3, a region 
based Expectation-Maximization (EM) algorithm is designed to calculate the number 
of ellipses. Edge feature is used to get an accurate result of the ellipses in section 4. In 
section 5, some experiments are presented to show the efficiency of this method. 

2   Description of an Ellipse with PCA 

Since an ellipse coincides with a 2D Gaussian distribution on shape, Gaussian distri-
bution is employed to describe an ellipse in this paper. Let 

LjyxX T
jjj ,,2,1,],[ L==  be a pixel in a region, and ijP  be the probability 

of this pixel belonging to the i -th ellipse, Ni ,,2,1 L= . By statistical analysis, the 

mean of the i -th ellipse is calculated by equation (1): 
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and the covariance matrix is calculated by equation (2): 
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According to paper [6], we can compute the two eigen-values of iΣ : 
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and the two eigenvectors, i.e. the principle components: the long one Tvv ],[ 21 and 

the short one Tvv ],[ 12 − . where 
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The angle between the long major axis and x-axis is  

)/arctan( 12 vv=φ                                                      (7) 

As introduced in paper [1], the ellipse to envelop the region has the following form: 

)()sincos( 21 yjxetjatajyx j +++=+ φ                       (8) 

Where ),( yx  is an edge point of the ellipse.  iia λ2=  is the half axis. t  is the 

rotation angle from the long major axis to the point ),( yx  anti-clockwise. Referring 

to figure 1, there are some examples of single ellipse detection with PCA. 

 

Fig. 1. Ellipse description with PCA. (a) Coins;  (b) Lemon;  (c) Watermelon. 

3   Overlapped Ellipses Detection by EM 

To calculate the number of the ellipses in the image, a region based EM method is 
proposed. As a result, every edge point is assigned to an ellipse, belonging to which 
this edge point has the highest probability. 

3.1   EM Algorithm for Parameter Estimation 

Let U be the observed samples, ℑ  be the number of classes, Θ  be the parameters of 
all classes, J  be the relation between samples and classes. U and J  form the com-

plete data. The estimation of Θ  based on Maximum a Posterior (MAP) is: 

b 

c 

a 
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Which is a marginal probability over J . 
If we know the relation J  between the samples and classes, every class can be cal-

culated by its sample set directly. This is a complete data problem. 
In fact, incomplete data problem always exists i.e. J  is unknown. For example, a 

camera can be employed to detect fruits on the fruit packing line. One of the detected 
foreground regions may contain several fruits because of the occlusion. This arise a 
problem to determine how many fruits in the region and which fruit any pixel in the 
region belongs to. 

It is difficult to solve the equation (9) with analytic method because of so many un-
knowns. Hence some methods are proposed to simplify it. Supposed the initial Θ  is 
correct, it is easy to compute which class a sample belongs to i.e. get the initial esti-
mation of J based on the equation (9). This step is called Expectation. Then supposed 

J  is correct, and the parameter model Θ  is refined by using the equation (9), which 
is called Maximization. By cycling back and forth between the Expectation and the 
Maximization, Θ  and J  will converge. This idea is called EM [7]. 

3.2   Design of EM for Overlapped Ellipses Detection 

An extracted isolated foreground region may contain only one target, such as in figure 
1. In this situation, one ellipse is enough to describe it with little error. But sometimes 
the region consists of several targets which occlude each other. The error between the 
region and the ellipse is large, and more ellipses are demanded. 

To solve the problem, an EM iterative algorithm based on region statistical charac-
ter is proposed to calculate the number of ellipses and estimate the coarse geometric 
parameters for all the ellipses: 

Step1: At the initial, one ellipse is used to fit the foreground. The number of ellip-
ses is 1=M . PCA method is employed to calculate the statistics, the centre, major 
axis and half axis of the ellipse. 

Step2: Compute the error between the foreground region regionS  and ellipse region 

EllipseS : 

gion

EllipsegionregionEllipse
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SSdiffSSdiff

Re

Re )()( −+−
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where )( Re gionEllipse SSdiff − is the areas in ellipses but not in foreground. 

)( Re Ellipsegion SSdiff −  is the areas in foreground but not in ellipses. 

Step3: If the error is less than a threshold 1T , end the program; Otherwise, the el-

lipse which has the largest error among all ellipses is divided into two parts by its 

short axis. Set 1+= MM . 
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Step4: Compute the weights in Expectation step: 
Supposed the statistics and geometric parameters of ellipses are correct, compute 

the normalized weight of a foreground pixel jP  with i-th ellipse, Mi ,,2,1 L= : 
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Step5: Refine parameters in Maximization Step: 

According to the probabilities of all pixels with an ellipse, recalculate the geometric 

parameters of the ellipse by equation (1)~(7). 

Step6: If there is no change for all geometric parameters, go to step 2 to decide if a 

new ellipse is needed. Otherwise go to step 4 for another EM iteration. 

The threshold 1T  relates with the likelihood to be an ellipse. Normally we can set 

2.0~1.01 =T  as a prior knowledge when the target has a high likelihood to an 

ellipse. 

3.2.1   Update Weights in Overlapped Areas 
As we can see, the weights are normalized in equation (10) and summed to 1. This 
introduces a problem: the ellipses, which overlap each other, have a weight far less 
than 1 in the overlapped region. Hence the ellipses will undervalue these overlapped 
regions in computing the mean and variance. This problem becomes more serious 
when the overlapped region occupies a high ratio of the object, such as the ellipse at 
the top-left in figure 2(a), (c). There is an obvious error between the estimated ellipse 
and the real object in figure 2(c). 

To solve this problem, the weights are set as 1 for all concerned targets in the over-
lapped region, shown in figure 2(b), and recalculate the statistics in two or three final 
iterations. The reconstructed ellipses are show in figure 2(d), where the top left and 
bottom right ellipses are closer to the edge than in figure 2(c). 

3.2.2   Combine Overlapped Ellipses 
During the EM optimization process, the ellipses may be captured by some local 
minimum and some new ellipses are added to help the algorithm reach the global  
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Fig. 2. Weight Update in Overlapped areas. (a) The weigh for Top-Left ellipse before update; 
(b) The weigh for Top-Left ellipse after update; (c) The fitting before update; (d) The fitting 
after update. 

minimum with little error. As a result, the ellipses may be over complete. It is reason-
able to combine some of these ellipses. For example, the two ellipses at the bottom of 
figure 6(b) have a high ratio of overlap and similar directions. It is reasonable to unit 
them as a complete canoe. 

In this paper, a probability P  is designed to decide whether or not the two over-
lapped ellipses will be merged, which is an error function as in figure 3(a): 

   ))()(( BAO SPWerfP ∩⋅= θ                                              (12) 

where, },min{)(
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SSP ∩
∩ =  is the probability that A overlaps B. AS  

and BS  is the area of ellipse A and B respectively. BAS ∩  is their overlapped area.  

)(θW  is the direction coincidence degree of the major axis of ellipse A and B, 

which has the following form: 
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where, θ  is the angle between the major axis of the two ellipses. ]2/,0[ πθ ∈C  

sets the valid angle which excludes larger values. Usually set 4/πθ =C . β  gives a 

0-1 decision according to the ratio of long half axis to short half axis: 
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Which means that the influence of direction coincidence can be neglected as either of 
the two ellipses approximates to a circle. )(θW  has the shape as figure 3b. 

 
                                          (a)                                         (b) 

Fig. 3. (a) Error function; (b) Direction coincidence degree 

Setting a threshold MT . If MM TP ≥ ，the ellipse A will be merged into the el-

lipse B . Then ABB SSS += , and AjBjBj PPP +=  for any pixel jP in the over-

lapped area.  

Since equation (12) is nonlinear, MT  is difficult to calculate analytically. By ex-

perience method, MT  is selected in the range [0.6, 0.8]. 

4   Refine Ellipses by Edge Fitting 

The ellipses are closer to the edge after the weight update, as in figure 2(d). But some 
error remains because the region based method has no direct relation with the object 
edge. 

An edge based ellipse refine method is proposed to remove above error after region 
based method. Because ellipses are very close to the edge after the region based EM, 
most edge points have a heavy weight with its own ellipse. Hence an edge fitting 
method is designed as following: 

Step1:For any edge pixel ),( jjj yxP = , Lj ,,2,1 L= ,  decide which ellipse it 

is from: 

ij
i

Wi maxarg=∗                                            (15) 
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The result is shown in figure 4(a), (b), (c). Every ellipse has a distinguished edge 
point set. 

Step2: direct least square fitting method (DLS) is employed to refine every ellipse 
by fitting the corresponding edge sample set [5]. The result is shown in figure 4(d), (e), 
(f) and 4(g), which has a high accuracy than in figure 2. 

 

Fig. 4. Refine Ellipse by Edge Fitting. (a), (b), (c) edge point set for the ellipses respectively; 
(d),(e),(f) edge fitting result respectively; (g) fitting result in original image 

5   Experiments 

(1) Detect overlapped fruits 
In figure 5, several fruits occlude each other. In figure 5(a), 3 ellipses are used, which 
leads to some error. In figure 5(b), 5 ellipses are used and the error becomes very 
small. 

 
(a) (b) 

Fig. 5. Detect overlapped fruits. (a) Fitting with 3 ellipses; (b) Fitting with 5 ellipses 

f e d 

c b 

g 

a 
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(2) Detect canoe and player 
In figure 6(a), the canoe and player are extracted with a statistical method introduced 
in paper [8]. The segmented result is rough because of splashed water. In this situa-
tion, region based EM gives a good initial estimation for canoe and operator. In figure 
6(b), three ellipses are used. By overlapped ellipses combining technology, two ellip-
ses at bottom are merged. 

In the edge fitting refine stage, direct least square fitting method is employed to de-
tect the two ellipses. The result is shown in figure 6(c). 

(
c)

(
b)

(
a)

a b

c  

Fig. 6. Extract canoe and player. (a) Canoe and operator pointed out by a rectangle; (b) fitting 
with 3 ellipses; (c) edge fitting result with 2 ellipses. 

6   Conclusion 

In this paper, a coarse-to-fine multi-ellipse target detection algorithm is proposed by 
using region and edge data. In the coarse stage, a region based EM algorithm is de-
signed to calculate the number of ellipses in a foreground and provide a good initial 
shape for every ellipse. Then an edge fitting technology is employed to refine ellipses.   

This algorithm is used in several situations. The experiments show it is stable and 
accurate. 
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Abstract. Flash light of digital cameras is a very useful way to picture
scenes with low quality illumination. Nevertheless, especially low-end
cameras integrated flash lights are considered as not reliable for high
quality images, due to known artifacts (sharp shadows, highlights, un-
even lighting) generated in images. Moreover, a mathematical model of
this kind of light seems difficult to create. In this paper we present a color
correction space which, given some information about the geometry of
the pictured scene, is able to provide a space-dependent correction of
each pixel of the image. The correction space can be calculated once in a
lifetime using a quite fast acquisition procedure; after 3D spatial calibra-
tion, obtained color correction function can be applied to every image
where flash is the dominant illuminant. The correction space presents
several advantages: it is independent from the kind of light used (pro-
vided that it is bound to the camera), it gives the possibly to correct
only determinate artifacts (for example color deviation) introduced by
flash light, and it has a wide range of possible applications, from image
enhancement to material color estimation.

Keywords: Color, shading, shadowing, and texture.

1 Introduction

The vast diffusion of digital cameras started a revolution in the way photogra-
phy is used to measure the appearance of real-world objects. However, despite
the significant improvements of this kind of devices, there are several issues,
regarding the correctness of the acquired data, that need a careful evaluation.
Particularly, the setup and calibration of the lighting environment is often one
of the most limiting aspects for simplified appearance acquisition techniques.

All cameras are equipped with a flash: this tool can provide a practical, easy,
cheap controlled lighting environment. Unfortunately, built-in flashes usually
produce a variety of undesirable effects, like uneven lighting (overexposed in the
near field and dark in the distance), highlights and distracting sharp shadows.
Moreover, ”white balance” setting for flash is not effective because it applies the
same correction throughout the image. More interesting results could be obtained
by knowing the geometry of the scene, and using a model of the behavior of flash
light. However, a mathematical modeling of flash light spatial behavior can be

A. Gagalowicz and W. Philips (Eds.): MIRAGE 2009, LNCS 5496, pp. 217–229, 2009.
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hard to be obtained, because of the large variety of camera/flash models, and the
irregular spatial light distribution produced by the flash reflectors and lenses.

For these reasons we propose Flash Lighting Space Sampling (FLiSS), a cor-
rection space where a correction matrix is associated to each point in the camera
field of view. Once that basic information about the geometry of the scene is
known, the proposed structure permits to correct each pixel according to the po-
sition of the corresponding point in space. This structure proves to be simple and
effective, and it has several advantages, which will be presented and discussed
during the analysis of results and the concluding remarks.

2 Related Work

The work proposed in this paper shares some aspects with various subjects, such
as computational photography, image enhancement and lighting modeling and
estimation. Some of the most interesting and related works will be presented.

Flash/No-Flash Digital Photography. The use of flash/no-flash pairs to en-
hance the appearance of photographs is a relatively recent research topic where
several interesting works appeared. The continuous flash [17] was a seminal work,
where flash and no-flash pairs were combined to create adjustable images. Two
almost contemporaneous papers [9,23] proposed techniques to enhance details
and reduce noise in ambient images, by using flash/no-flash pairs. These works
provide features for detail transfer, color and noise correction, shadows and high-
lights removal. While the systems are not completely automatic, very interesting
results can be easily obtained. The goal of a more recent work [1] is to enhance
flash photography by introducing a flash imaging model and a gradient projec-
tion scheme, to reduce the visual effects of noise. Flash/no-flash pairs are used
by [21] to detect and remove ambient shadows.

Color constancy and white balance. White balance is a key issue in the
context of the color constancy problem, that studies the constancy of perceived
colors of surfaces under changes in the intensity and spectral composition of the
illumination. Several works in this field rely on the assumption that a single
illuminant is present: the enhancement of photos can be based on geometric
models of color spaces [10], statistical analysis of lights and colors [11] or natural
images [12], study of the edges of the image [25].

Another group of papers deals with mixed lighting conditions. Methods can
be semi-automatic [20] or automatic. Automatic methods usually work well un-
der quite strong assumptions, like hard shadows and black-body radiators lights
[19] or localized gray-world model [8]. A very recent work [18] proposes a white
balance technique which renders visually pleasing images by recovering a set
of dominant material colors using the technique proposed by [22]. One of the
assumptions is that no more than two light types (specified by the user) illumi-
nate the scene. Most of the cited works share some of the main hypotheses of our



Flash Lighting Space Sampling 219

method. Nevertheless, the knowledge of some information about the geometry of
the scene eliminates the need for other restricting assumptions (such as smooth
illumination, gray-world theory, need of user interaction).

Illumination estimation and light models. The works in the field of illu-
mination estimation have two principal aims: the estimation of the lighting of
an environment [7,24] or the measure of the characteristics of a luminary. Our
work is more related to the second group.

One of the first attempts to model both the distant and the near behavior of a
light source is the near-field photometry approach of Ashdown [2]. Near-field pho-
tometry regards the acquisition of a luminary by positioning a number of pinhole
cameras (or moving a single camera) around it, and measuring the incident irradi-
ance on a CCD sensor. The results are mapped onto an hemicube that represents
the final model of the luminary acquired. Heidrich et al used a similar method
[16] by moving the camera on a virtual plane and representing the light sources
with a Lumigraph [14]. This representation was named canned light source. More
recently, Goesele et al. [13] improved the near-field photometric approach using a
correction filter to compensate the fact that a digital camera is not a real pinhole
camera. Our approach recalls near-field photometry; the main difference is that
we estimate the data to “correct” the effect of the light source on known colors,
instead of building a model of the light source of interest.

3 Definition of FLiSS

The aim of our work is to build a spatial color correction function that associates
a specific color correction procedure to each point in the camera frustum space.
We call this particular data structure color correction space. Such an approach
allows to override the limitations assumed in most of the color correction ap-
proaches [3,4], that is that the illumination is constant, or easily model-able,
across the scene. Our main assumptions are: flash light can be considered the
dominant illumination in the scene; the light interaction can be described using
just sRGB space (we do not account full spectra data); surfaces are non-emitting.
These hypotheses are common among existing techniques which deal with single
illumination, and they cover most of the real cases. Typically, the color calibra-
tion of digital photographs consists in taking a snapshot of a pre-defined color
reference target, such as a Macbeth ColorCheckerTM or an AGFA IT8TM, placed
near the subject of interest, and estimating the parameters of a transformation
that maps the colors of the reference target in the image into its real colors.

A quite simple to model the correction is a linear affine transformation c′ =
Ac + B. Obviously, due to the nonlinear nature of image color formation, this
kind of correction is a rough approximation and many other approaches could be
used [3,4]. Moreover, the correction is effective for the image parts that are close
(and with a similar illumination) to the reference target. On the other hand, in
practice, this simple and compact approach works reasonably well in most cases.
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The linear transformation can be written as a 4 × 3 matrix:

⎛⎝R′

G′

B′

⎞⎠ =

⎡⎣ c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

⎤⎦
⎛⎜⎜⎝

R
G
B
1

⎞⎟⎟⎠ (1)

In the following we refer to this matrix as the color correction matrix C and
to its elements as the correction parameters. We explain how we estimate C in
Section 4.

Roughly speaking, the parameters of C have the following meaning: (c11, c22,
c33) are related to the change in contrast of the color; (c12, c13, c21, c23, c31, c32)
are related to the color deviation caused by the color of the flash light (if the
flash is purely white light, these components tend to zero); (c14, c24, c34) are
related to the intensity offset. We use the term contrast in the sense that the
multiplication for the coefficients expands the range of values of the channels.

Given the assumptions above, we can finally define FLiSS. Flash Lighting
Space Sampling is a color correction space where a color correction matrix is
associated to each point in a camera frustum. The correction space will be cal-
culated starting from several sampled points in the camera space. The process of
correcting an image will, for each pixel in the image, use the appropriate correc-
tion matrix according its corresponding position in the camera space. Due the
continuous nature of the correction space, the correction will prove to be reliable
even without a precise digital model of the scene, so that an approximate recon-
struction such as the ones generated, for example, by stereo matching could be
used as well.

4 Acquisition Procedure and Data Processing

The aim of our work was to try to build a procedure which could be used in a
general case, without using prototypal or expensive devices. The computation of
our color correction space is necessary only once (or very few times) in a cam-
era lifetime. But even with this assumption, it was important to define some as
simple and fast as possible acquisition procedures. Hence, we decided to sample
the camera space view frustum by taking flash lighted photos of a small color
target, calculating the correction matrix in those points and subsequently build-
ing the entire space by interpolation. We performed the acquisition with three
different models of digital cameras, shown in Figure 1(left). These models are
representative of three categories of non-professional cameras: compact, digital
SLR (single-lens reflex) and digital SLR with external flash.

As a color target we used a Mini Macbeth ColorChecker; its size (about
3.5′′ × 2.5′′) allows the assumption that the light variation across it is negli-
gible. To sample the view frustum of the camera we sliced it with several planes
of acquisition at different distances, moving the Mini Macbeth in different posi-
tions for each plane. We divided a distance range between 50 and 220 cm in 7
planes, with 25 positions for each plane, as shown in Figure 1(right). The color
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Fig. 1. Left: Digital cameras used for light space sampling. Right: the scheme of ac-
quisition for flash space sampling, with a snapshot of the acquisition setup.

target was placed on a tripod, and always faced towards the camera. For each
position multiple snapshots were taken, in order to deal with the known vari-
ability of flash behavior, and keeping a fixed exposure time and aperture during
the entire procedure.

The snapshots were acquired in sRGB RAW format to avoid any other internal
processing by the digital camera, except for the Casio compact camera, with
which we were forced to use JPEG images. The acquisition procedure of all the
needed images for each model took a couple of hours. The processing of acquired
data was subdivided in two main phases. In the first one we calibrated all the
acquired images, using the color target reference. In the second phase we built
the color correction space through parameters interpolation. Figure 2 shows a
schematization of the entire data processing.

Color Calibration
The color calibration was done using the calibration model explained in Sec-
tion 3. The parameters of the matrix C were estimated by solving a linear system
with the cij as unknowns. Our parameter estimation algorithm takes inspiration
from the RANSAC approach.

Since four colors could be sufficient to write a system with 12 equations and
12 unknowns, several random combinations of colors are used to find the best
solution in terms of quality. The quality of the color correction is evaluated

Fig. 2. Data processing. Left: The acquired color targets are calibrated generating
a set of color correction matrices, and then interpolated on each plane. Right: Each
correction parameter is interpolated to fill the whole camera space.
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considering the CIELab distance [6] between the real colors and the corrected
ones. Hence, after extracting the Mini Macbeth in a semi-automatic way and
segmenting each color patch, several permutations of the colors are tried in order
to find the best estimation in terms of quality. This robust approach produces
better results from a perceptual point of view than a standard least square
approach.

After calibration, each image is associated to: the 12 parameters of the matrix
C, the position of the Mini Macbeth relative to the camera view and the distance
at which the image has been taken. Since several shots of the same position of the
target are taken, obtained values are the means of all the obtained estimations.
Before this, the data are further processed with a statistical analysis [15] to
remove the outliers from the acquired data.

Data Interpolation
Starting from a set of color correction matrices for several points in the space, we
could try either to fit a mathematical function or to calculate the intermediate
color correction matrix through interpolation. Here, we opt for interpolation,
leaving the first approach as an interesting direction of future research. Given a
point p in camera space, we calculate the corresponding color correction matrix
as the linear interpolation in the squared distance between the camera center O
and the point p in the following way:

Cij(p) = Cij(p1) + (d2 − d2
1)
Cij(p2) − Cij(p1)

d2
2 − d2

1
(2)

where C(x) indicates the color correction matrix at the point x; p1 and p2 are
the intersection points between the line starting from O and passing through p.
These points lie on the acquisition plane immediately before and after p (Figure
2right); d1, d and d2 are the distances between the point O and p1, p and p2.

Since C(p1) and C(p2) are not known in advance, they have to be estimated to
evaluate (2). In fact, only few positions on the acquisition plane are measured:
hence another interpolation is required. For this planar interpolation we use
radial basis method, with gaussians centered on each sample: standard deviation
σ defines how much each sample influences the neighbors. In formulas:

Cij(p) =

N∑
i=1

Cij(Pi) exp
[
− (p − Pi)2

σ2

]
N∑

i=1

exp−
[
(p − Pi)2

σ2

] (3)

where N is the total number of samples for the plane and Pi are the positions
of samples.

In conclusion, in order to calculate a color correction matrix for a point in the
camera space, we first need to calculate two linear interpolations in the acquisi-
tion planes, then a linear squared interpolation for the final result.
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Regarding the practical implementation, the pre-computed interpolation
planes are stored as floating point textures plus, for each texture, some ad-
ditional information (the distance from the camera center and a scale factor).
With this representation, the correction algorithm can be entirely implemented
on the GPU, and the pre-computation of the interpolation planes reduces the
evaluation of Cij(p1) and Cij(p2) in (2) to two texture lookups.

5 Data Analysis

The analysis of the data obtained from the acquisition was performed before
the validation of results. A first analysis was on the value ranges obtained for
the single coefficients of the matrix. Table 1 shows the statistics relative to
all the coefficients calculated for the Nikon camera. The single mean values of

Table 1. Statistics of single coefficients for Nikon camera

Contrast Intensity offset Color deviation

Coefficient c11 c22 c33 c14 c24 c34 c12 c13 c21 c23 c31 c32

Mean value 1.20 1.25 1.33 52.07 50.90 50.47 .07 -.06 .005 -.12 .07 -.31
Variance 0.06 0.09 0.09 81.57 123.5 141.3 .001 .003 .002 .009 .001 .012
Min value 0.83 0.84 0.87 27.5 15.4 14.2 -.06 -.43 -.29 -.67 -.21 -.85
Max value 2.59 2.84 2.86 72.0 75.0 76.8 .23 .01 .08 .01 .12 -.11

each group are very similar, and variance describes a general stability of data.
Moreover, color deviation coefficients describe the flash as very near to a white
light (with a slight deviation in green channel). Contrast and Intensity offset
groups show quite low values in variance, but, as it could be expected, the
needed modification of color values increases a lot with the distance. Further
information about the properties of flash light can be inferred from the analysis
of the azimuthal and normal sections of the correction space. In Figure 3 the
planes associated to coefficient c11 are shown: isolines help in understanding the
shape of the light. The light wavefront is quite similar for all the models, but
several differences arise as well. The most regular profile is the one associated
to the external flash (Canon camera): this is probably the most reliable kind of
illumination. Nevertheless, the isolines show that the shape of the light is not
similar to a sphere, but it could be better approximated with series of lobes.
Moreover, it can be noted that the maximum value of the coefficient is higher
respect to the other two examples: this is because the external flash was set
with the largest possible field of view, resulting in a very bright illumination
for near points, with the need of more correction for the far ones. The Casio
associated space is the less regular one, and this is probably due to the fact that
the camera model was the least expensive one, and the images were processed
and stored directly in JPEG format. Anyway, an interesting observation is that
the correction space seems to be slightly shifted on the right, like the position
of the flash with respect to the lens (Figure 1).
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Fig. 3. Azimuthal and normal plane for parameter c11 in camera space. (Left) Nikon
camera. (Center) Canon camera. (Right) Casio camera.

6 Results

In order to evaluate the results of the correction introduced by FLiSS, we created
a setup where the color values in selected regions were known in advance: the
scene was formed by a series of identical objects, set at different distances from
the camera. The reference objects were simple structures (formed by bricks of
different colors) of LEGO DUPLO c©, whose size and color are known to be prac-
tically identical for all components. The reference RGB color value of each brick
was calculated by calibration with the Mini Macbeth. Seven blocks of LEGO c©
bricks were put in a setting shown in Figure 4(left), and the corresponding 3D
model of this configuration was created. This scene has the advantage that, in
every single photos, identical elements are present in different parts of the image
and at different distances in space. Images were aligned to the 3D model using
a registration tool: thus color correction was performed on each pixel which was
framing a structure.

One possible criticism to our work could be: would a simple model, for ex-
ample a point light, be enough to provide a good correction? For this reason,
we modeled the flash as a point light and we corrected the same images using
this model. We obtained an acceptable estimation of the intensity of the light,
by modeling the light degradation with a quadratic law and taking into account
the knowledge of the distance of each pixel in the scene, and its reference color:
we used this light estimation to correct the color value. Results of corrections on
one of the images are shown in Figure 4(left): the original, the Fliss corrected,
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and the point light corrected images are shown. While in both cases the colors
across the scene seem similar, obtained color values are clearly different between
the two results. In order to check the accuracy of color correction we measured
the perceptual distance between produced colors and the previously calculated
reference colors. We chose the CIE76 Delta E measure, which is the Euclidean
distance between the CIELAB values associated to two colors. If Delta E is
smaller than one, colors are perceived as identical; for values smaller than eight-
ten, the colors can be considered as very similar.

Figure 4 shows the results of the calculation of these distance values. The top
boxes display reference colors, then for each piece (each line is associated to the
piece number indicated in Figure 4 left) the three columns represent the average
color value for original, Fliss corrected and point light corrected image. The Delta
E value for each color shows the distance with respect to the reference. It is quite
clear that, although producing similar colors, the point light correction returns
results which are different respect to the reference: only red color is accurately
corrected. Slight improvements are introduced only for distant objects. In order
to achieve better results, probably a different modeling for each channel would
be necessary. On the contrary, Fliss correction proves to be very reliable, with
an average Delta E value which is always smaller than ten. Only in the case of
block number 1 the correction is less effective: this can be due to the fact that
the object is out of focus, or the color in the original image may be saturated.

A second validation experiment was performed in order to show that the
correction introduced by Fliss ca be reliable also with low quality geometric
information of the scene. We reconstructed the geometry of a common scene
starting from a few photos, using the Arc3D web service [26]. Figure 5 shows the

Fig. 4. Left: example of images used for validation: top, original; center, Fliss corrected;
bottom, point light model corrected. Only the Lego blocks part of the image was
corrected. Right: correction accuracy estimation: for each Lego block, average color and
Delta E value (respect to reference) in original (left column), Fliss corrected (center
column) and Point Light corrected (right column) images are shown.
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Fig. 5. Example of color correction using low quality geometry: Top left, original flash
image; Top right, a snapshot of the extracted geometry; Bottom, Fliss corrected image

starting image, together with the geometry obtained, and the corrected image
(the correction was applied only where geometry data was present). While the
obtained 3D model is only an approximated representation of the geometry in
the image, the result of FLiSS use is satisfying: for example the color of the
tablecloth after correction is the same throughout the scene.

Analysis of validation tests brings us to three main conclusions: first of all,
Fliss is a very reliable way to correct images; moreover, simpler light models are
not able to achieve comparable results. Finally, the approach is reliable regardless
of the quality of the geometry associated to the image.

7 A Practical Application

To further show the potentiality of FLiSS, we tested its impact in the framework
of a photographic mapping tool for 3D scanned models. The tool follows the ap-
proach described in [5] where the color assigned to each vertex of the 3D model
is computed as weighted sum of the contributions of all the photos which project
on that vertex. These weights are calculated by considering several metrics and
their use guarantees the better quality data to prevail, obtaining a smooth tran-
sition between photos, without loss of detail. This mapping approach is fast,
robust and easy to be implemented, but the artifacts produced by flash, like
highlights, hard shadows and non uniform illumination cannot be automatically
corrected.
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Fig. 6. Top: an example of color correction on a flash photograph: the original image
(left); a normalized map of the offset correction on the image (center); the corrected
image (right). Bottom: a colored 3D model, visualized with no illumination (only color
values assigned to vertices). Color correction OFF in left image, ON in right one.

We selected a test set of objects (colored Nativity statues of different heights
and materials), to assess the quality and the impact of the flash light correction.
We generated the 3D models of the statues with a Minolta 3D scanner and the
photos with the Nikon D40x and flash light as the principal illuminant. Images
were aligned on the models, and each image of the set was corrected using FLiSS:
an example of color correction on a single image is shown in Figure 6.

With an accurate estimation of light position (obtained with a simple proce-
dure involving a simple LEGO c© calibration rig), it was also easy to detect the
zones where shadows and highlights were present, and remove them by using the
redundancy of data provided by the images of the set.

The effects of color correction on a final 3D Model can be seen in Figure
6: the model on the right, obtained with color correction, appears much more
”flat” with respect to the model produced without color correction and artifact
removal (left). In conclusion, these images show one of the possible applications
of our color correction space, where the effectiveness of results is strengthened
by the fact that acquisition of color information was fast and easy.
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8 Concluding Remarks and Future Work

We presented FLiSS, a novel structure to apply a spatial color correction on
images taken using flash light. The method requires basic information of the
geometry of the scene, and it’s able to automatically correct the color values in
the image. FLiSS needs to be estimated only once in a camera lifetime, and this
calibration procedure is adequately fast and easy. FLiSS has several advantages:
it is robust and flexible, and although its use best fits with the case of flash light,
the structure can be used with any kind of light which is bound to the camera.
Future work can include both improvements in the proposed structure and ex-
ploitation of its possible uses. Regarding the first issue, further effort could be
put in trying to find even simpler acquisition procedures, or reduce the num-
ber of samples positions. Regarding possible future applications, FLiSS could be
used in the context of image enhancement, by applying for example only part of
the elements of the correction matrix to obtain visual pleasantness or enhanced
readability. Moreover, by working on different flash-lighted images and extract-
ing the local illumination data from the FLiSS, it should be possible to recover
simple models of the optical properties of a surface. Finally, while the simple
point light model for flash exhibits strong limitations, FLiSS data could be used
to obtain a more complex model that could approximate in a very accurate way
the behavior of the flash light.
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Abstract. This paper addresses the problem of the propagation of
input data errors in the stereovision process and its influence on the qual-
ity of reconstructed 3D points. We consider only those particular cam-
era calibration and 3D reconstruction algorithms which employ singular
value decomposition (SVD) methods. Using the SVD Jacobian estima-
tion method developed by Papadopoulo and Lourakis, we determine all
the partial derivatives of outputs with respect to the inputs and present
a set of tests applying them in various stereovision conditions in order
to evaluate their impact on the quality of 3D reconstruction.

Keywords: Stereovision, sensitivity, projection matrix, 3D reconstruc-
tion.

1 Introduction

Many applications require stereovision algorithms to work within a given toler-
ance of error. The problem of precision in 3D reconstruction has been studied by
many authors. For example, in [1] the authors investigate the error of a 3D point
reconstructed by triangulation in the case of parallel image planes and derive the
probability that the results are within a specified error margin. The precision
analysis of 3D reconstruction from image sequences including the covariance ma-
trix method and the evaluation of 3D reconstruction error have been thoroughly
discussed in [6]. The latter is also considered in [4] in the sense of confidence in-
tervals for the coordinates of the 3D point reconstructed from the cameras set in
normal configuration and using disparity maps. Another approach is presented
in [9], where the method of bounding boxes is used in the uncertainty analysis
of 3D reconstruction. The sensitivity of 3D reconstruction of a specific kind of
scene is analyzed in [2]. Hartley and Zisserman [3] analyzed the uncertainties in
identifying a homography between two 2D images based on given points, using
the best approximation in terms of the Mahalanobis distance between given and
reconstructed coordinates. While not directly representing stereo vision, their
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findings resemble ours (see Section 3) in that error increases with the distance
of points from the origin of the coordinate system.

In this paper we present yet another approach to the problem by performing
sensitivity analysis of SVD-based stereovision algorithms.

The paper is organized as follows. Section 2 introduces the calculation models
for camera calibration and 3D reconstruction, and gives a detailed sensitivity
analysis of both processes. In Section 3 we evaluate the sensitivity of the algo-
rithm for different configurations of scene images varying with respect to camera
positioning. The paper concludes with a discussion of the results.

2 Sensitivity Analysis of the Stereovision Process

2.1 Calculation Model

A 3D scene and its 2D image are mathematically represented as a set of pairs of
corresponding 2D and 3D points, one being a projection of the other. Throughout
this work, we will denote 2D coordinates with lowercase letters, and the corre-
sponding 3D coordinates with capital letters. The homogeneous coordinates of
x = [sx, sy, s] and X = [X, Y, Z, 1], where x is the projection of X, are related
by the projection matrix P:

s

⎡⎣x
y
1

⎤⎦ = P

⎡⎢⎢⎣
X
Y
Z
1

⎤⎥⎥⎦ , (1)

Calibration uses a set of known 3D points and their 2D images to determine
the projection matrix. The equation (1) then leads to a system of equations
which are linear with respect to entries of the projection matrix P and hence
can be written in the form:

MR = 0. (2)

M is a 2p × 12 matrix, where p ≥ 6 is the number of pairs of points (xi, yi)
and (Xi, Yi, Zi, 1), i = 1, 2, ..., p used for calibration, and R is a column vector
composed of the entries of P written row by row:

M =

⎡⎢⎢⎣
· · · · · · · · ·
Xi 0 0 0 0 −xiXi

0 0 0 0 Xi −yiXi
· · · · · · · · ·

⎤⎥⎥⎦ , (3)

R = [P1,P2,P3]T . (4)

The equation (2) usually does not have an exact nonzero solution, as in most
cases it is over-determined. An approximate (least-squares) solution is found by
using singular value decomposition.
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The approximate solution Ra to (2) is determined as

M = UDVT (SVD), Ra = [V1,12,V2,12, ...,V11,12,V12,12]T (5)

Ra minimizes the norm

‖MR‖ =
2p∑

i=1

(MR)2i

among all vectors R of unit length.
To restore the matrix P we need only to rearrange the entries of Ra.
The reconstruction of the 3D scene is the process of recovering unknown 3D

coordinates from K ≥ 2 2D images of the scene made from different points of
view. We assume at least two calibrated cameras are used to take pictures of the
scene, and the calibration stage performed for each of the cameras has yielded
the projection matrices P(1),P(2), ...,P(K). Let [x(i), y(i)] be the Euclidean co-
ordinates of the 2D projections of the unknown 3D point [X, Y, Z], in the image
produced by the camera with projection matrix P(i) (i = 1, 2, ..., K).

Recalling equation (1) for each camera and the pair of 2D and 3D coordinate
vectors, we obtain a system of equations

s(i)

⎡⎣x(i)

y(i)

1

⎤⎦ = P(i)

⎡⎢⎢⎣
X
Y
Z
1

⎤⎥⎥⎦ , i = 1, 2, ..., K (6)

Usually, having K ≥ 2 views ensures that the system of equations (6) is
(over)determined with respect to the unknown 3D coordinates, and therefore it
has a unique (possibly least-squares approximate) solution. An under-determined
system of equations can result from inappropriate camera positioning and it will
not be covered here. We will, however, deal with ”almost-under-determined” sys-
tems, which appear to be quite frequent in real life 3D reconstruction processes.

After rearranging the system of equations (6), we obtain the following matrix
equation:

L

⎡⎣X
Y
Z

⎤⎦ = B (7)

for L being a matrix of dimension 2K × 3:

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

P(1)
1,1 − x(1)P(1)

3,1 P(1)
1,2 − x(1)P(1)

3,2 P(1)
1,3 − x(1)P(1)

3,3

P(1)
2,1 − y(1)P(1)

3,1 P(1)
2,2 − y(1)P(1)

3,2 P(1)
2,3 − y(1)P(1)

3,3

P(2)
1,1 − x(2)P(2)

3,1 P(2)
1,2 − x(2)P(2)

3,2 P(2)
1,3 − x(2)P(2)

3,3

P(2)
2,1 − y(2)P(2)

3,1 P(2)
2,2 − y(2)P(2)

3,2 P(2)
2,3 − y(2)P(2)

3,3
· · · · · · · · ·

P(K)
2,1 − y(K)P(K)

3,1 P(K)
2,2 − y(K)P(K)

3,2 P(K)
2,3 − y(K)P(K)

3,3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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and B the column vector of size 2K:

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(1)P(1)
3,4 − P(1)

1,4

y(1)P(1)
3,4 − P(1)

2,4

x(2)P(2)
3,4 − P(2)

1,4

y(2)P(2)
3,4 − P(2)

2,4
...

y(K)P(K)
3,4 − P(K)

2,4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Equation (7) can be solved for the unknown Euclidean vector [X, Y, Z] using
the pseudo-inverse matrix, which leads to the least-squares solution:⎡⎣X

Y
Z

⎤⎦
ls

= L+B, (8)

where L+ denotes the Moore-Penrose pseudo-inverse of matrix L. The vector
[X, Y, Z]Tls minimizes the least-squares norm:

2K∑
j=1

(
(L[X, Y, Z]T )j − Bj

)2
.

2.2 Sensitivity of Camera Calibration

At the calibration stage we assume that the 3D coordinates of the points Xi

are known accurately, while the 2D coordinates of their projection xi are read
from the images with some error. We give here the analysis of propagation of
the measurement errors to the entries of the resulting projection matrix.

In Section 2.1 we calibrated the cameras using the SVD method to solve
a system of linear equations (2). Now we will examine the sensitivity of this
method to input errors. The dependencies of SVD outputs (the entries of the
three matrix components) on the entries of the input matrix were thoroughly
discussed in [7]. The method proposed by Papadopoulo and Lourakis allows the
Jacobian of the SVD components to be determined with respect to the entries
of the matrix being decomposed, considering the SVD as a transformation of
the matrix entries. We apply this method to estimate calibration error. Assume
that M = [mij ] defined in Section 2.1 contains both accurate inputs and error-
burdened ones. Let M have the SV decomposition defined in (5). Then, following
Equation (9) in [7], we have:

∂V
∂mi,j

= −VΩij
V,

∂U
∂mi,j

= UΩij
U,

where Ωij
U and Ωij

V are matrices of size 2p × 2p and 12 × 12, respectively, and
their entries can be determined as solutions of the following systems:{

dlΩ
ij
Ukl + dkΩ

ij
Vkl = uikvjl,

dkΩ
ij
Ukl + dlΩ

ij
Vkl = −uilvjk.

(9)
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In this notation, di is the i-th diagonal entry of the D component in SVD, while
ui,j and vi,j are the entries of matrices U and V.

If dk 	= dl, then the obtained entries of matrix Ωij
V have the form:

Ωij
Vkl =

dluilvjk + dkuikvjl

d2
k − d2

l

If two or more singular values are equal, then - as suggested in [7] - the equations
(9) related to those values have to be solved with a least squares method in
order to obtain the Jacobian with the smallest possible norm. Then the partial
derivatives can be determined from the equation:

∂vkl

∂mij
= −

12∑
s=1

vksΩ
ij
Vsl. (10)

Returning to the notation of the projection matrix we have:

∂Pk,l

∂mi,j
=

∂v4(k−1)+l,12

∂mi,j
, (11)

hence, if (xs, ys) is the 2D image of the s-th 3D point (Xs, Ys, Zs, 1),

∂Pk,l

∂xs
=
∑
(i,j)

∂Pk,l

∂mi,j
· ∂mi,j

∂xs
=

= −Xs · ∂Pk,l

∂m2s−1,9
− Ys · ∂Pk,l

∂m2s−1,10
− Zs · ∂Pk,l

∂m2s−1,11
− ∂Pk,l

∂m2s−1,12
=

= −Xs · ∂v4(k−1)+l,12

∂m2s−1,9
− Ys · ∂v4(k−1)+l,12

∂m2s−1,10
− Zs · ∂v4(k−1)+l,12

∂m2s−1,11
−

−∂v4(k−1)+l,12

∂m2s−1,12

(12)

and

∂Pk,l

∂ys
=
∑
(i,j)

∂Pk,l

∂mi,j
· ∂mi,j

∂ys
=

= −Xs ·
∂v4(k−1)+l,12

∂m2s,9
− Ys ·

∂v4(k−1)+l,12

∂m2s,10
− Zs ·

∂v4(k−1)+l,12

∂m2s,11
−

−∂v4(k−1)+l,12

∂m2s,12
,

(13)

where the partial derivatives ∂v4(k−1)+l,12

∂m2s−1,9
, ∂v4(k−1)+l,12

∂m2s−1,10
, ∂v4(k−1)+l,12

∂m2s−1,11
, ∂v4(k−1)+l,12

∂m2s−1,12
,

∂v4(k−1)+l,12

∂m2s,9
, ∂v4(k−1)+l,12

∂m2s,10
, ∂v4(k−1)+l,12

∂m2s,11
and ∂v4(k−1)+l,12

∂m2s,12
are determined from equa-

tions (10).

2.3 Sensitivity of 3D Reconstruction

Having determined the projection matrices of the cameras and given the 2D
coordinates, in the images, of a feature point, we can use formula (8) to recover
its 3D coordinates. Note that projection matrices as well as 2D coordinates are
burdened with errors. The uncertainty of the entries of the projection matrices
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were derived in the previous section. For now, we assume that the projection
matrices are given with their uncertainties as P(i) ±�P(i) and we are not inter-
ested in the sourceof these errors. At the same time, we consider the errors of
reading the 2D coordinates (x(i), y(i)) of a feature point X = [X, Y, Z]T .

Recall the solution (8) to the 3D reconstruction problem given in section 2.1.
We are now interested in the partial derivatives of the reconstructed coordinates
with respect to any of the inputs that can be burdened with errors.

∂X
∂r

=
∂(L+B)

∂r
=

∂L+

∂r
B + L+ ∂B

∂r
, (14)

where r represents any of the parameters Pk,l, x(i), y(i). Clearly, vector ∂B
∂r can

be determined directly from the vector B, as for i = 1, 2, ..., K we have

∂B2i−1

∂P(i)
3,4

= x(i), ∂B2i−1

∂P(i)
1,4

= −1, ∂B2i

∂P(i)
3,4

= y(i), ∂B2i

∂P(i)
1,4

= −1,

∂B2i−1

∂x(i) = P3,4
(i), ∂B2i

∂y(i) = P3,4
(i),

and
∂Bj

∂P(i)
k,l

=
∂Bj

∂x(i) =
∂Bj

∂y(i) = 0

elsewhere. Likewise, the derivatives for the entries of the matrix L are:

∂L2i−1,j

∂P(i)
1,j

= 1,
∂L2i,j

∂P(i)
2,j

= 1,
∂L2i−1,j

∂P(i)
3,j

= −x(i),
∂L2i,j

∂P(i)
3,j

= −y(i), j = 1, 2, 3,

∂L2i−1,1

∂x(i) = −P3,1
(i),

∂L2i−1,2

∂x(i) = −P3,2
(i),

∂L2i−1,3

∂x(i) = −P3,3
(i),

∂L2i,1

∂y(i) = −P3,1
(i),

∂L2i,2

∂y(i) = −P3,2
(i),

∂L2i,3

∂y(i) = −P3,3
(i),

while all other derivatives ∂Ls,t

∂P(i)
k,l

, ∂Ls,t

∂x(i) , ∂Ls,t

∂y(i) are zeros.

The study of ∂L+

∂r needs more complicated analysis. Recall from section 2.1
that L+ = VΣ+UT, hence for every pair of indices (i, j):

∂L+

∂li,j
=

∂V
∂li,j

Σ+UT + V
∂Σ+

∂li,j
UT + VΣ+ ∂UT

∂li,j
. (15)

Since all entries of the diagonal matrix Σ+ are the reciprocals of the entries
of matrix Σ, except for those equal to zero, which remain unchanged, we obtain:

∂Σ+
k,k

∂li,j
= − 1

(Σk,k)2
· ∂Σk,k

∂li,j
,

if Σk,k 	= 0, and
∂Σ+

k,k

∂li,j
= 0

otherwise. Additionally, for the case of Σk,k 	= 0, following the relations in [7]
we have:

∂Σ+
k,k

∂li,j
= − 1

(Σk,k)2
·Ui,kVj,k.
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The rest we get from [7]:

∂U
∂li,j

= UΩij
U,

∂V
∂li,j

= −VΩij
V,

where Ωij
U and Ωij

V are matrices defined for the decomposition L = UΣV T and
their entries can be obtained from the systems of equations analogous to (9).

Applying all these relations to the formula (15), we determine the derivatives
of the entries of L+ with respect to particular entries of matrix L. Now, for
parameter r, which represents one of parameters Pk,l, x(i), y(i), we obtain:

∂L+

∂r
=

∂L+

∂L
· ∂L

∂r
, (16)

and more precisely
∂L+

∂r
=
∑
(i,j)

∂L+

∂Li,j
· ∂Li,j

∂r
.

Finally, we have all the derivatives needed to compute ∂X
∂r using equation (14):

∂X
∂r

=

⎛⎝∑
(i,j)

∂L+

∂Li,j
· ∂Li,j

∂r

⎞⎠B + L+ ∂B
∂r

. (17)

3 Practical Applications

The purpose of the tests performed on the simulated 3D scene and its images is to
confront the theory presented in the previous section with an actual stereovision
process. We used POV-Ray (Persistence of Vision Ray-Tracer) to generate photo-
realistic images from descriptions of scenes and camera positions. An important
advantage of a virtual scene is that accurate 3D coordinates are known and can
be used as a reference when evaluating the results of 3D reconstruction.

Fig. 1. Images obtained in POV-Ray
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Fig. 2. Image 11.jpg and vertex
labels

Our test scene consisted of a tetrahedron, a
cuboid and a cube, all of a similar size, standing
on a plane. For testing purposes, 11 pictures of
the scene were created in POVRay, each from a
different point of view and camera direction. Ten
of them are presented in Figure 1. The eleventh
is shown in Figure 2 along with the labeling of
the vertices.

All the resulting images were next subjected
to calibration. The seven visible vertices of the
cube served as calibration points. Using formulas
12 and 13 derived in the previous section, we de-
termined the derivatives ∂P(i)

∂xj
and ∂P(i)

∂yj
, which

are the derivative matrices of the i-th projection
matrix with respect to the x and y coordinate of
the j-th calibration point in the i-th image.

In the following analysis, the measure of the sensitivity Sj(P (i)) of the pro-
jection matrix P(i) to error in the j-th calibration point is defined as the sum of
squares of all entries of matrices ∂P(i)

∂xj
and ∂P(i)

∂yj
:

Sj(P (i)) :=
∑
k,l

⎡⎣(∂P(i)
k,l

∂xj

)2

+

(
∂P(i)

k,l

∂yj

)2⎤⎦ .

Such definition seems reasonable as it gathers the influence of both coordinates
on the whole projection matrix. It has, however, some drawbacks. As the compo-
nents in the sum are taken with equal weights, their impact on further processing
is not taken into account. This sum cannot therefore be regarded as a measure
of calibration quality, which should be considered from the point of view of the
quality of the whole stereovision process.

Table 1 presents the sensitivities of projection matrices to all calibration points
separately and combined sensitivity to errors in coordinates of all calibration
points, calculated as square root of the sum of squares of sensitivities to partic-
ular points.

The implementation of the differential method presented in the previous sec-
tion allowed us to determine those of all eleven projection matrices which are
the most sensitive to input errors, and those calibration points which influence
the most and the least the precision of calibration. One can observe that some
calibration points have significantly smaller impact on projection matrices than
others. Moreover, the three worst calibration sensitivity measures are achieved
for the images for which the calibration process is performed with all cube ver-
tices except the one which is least distant to the origin of the scene.

Considering the distances of those particular calibration points from the origin
of the 3D scene coordinate system, a general tendency can be observed. The
points lying furthest from the origin have the greatest impact on the projection
matrix entries, in other words, calibration is more sensitive to the points lying
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Table 1. Calibration sensitivity to individual calibration points and combined sensi-
tivity to all calibration points (multiplied by 104)

Image \ Point E F G H M N O P Combined

01.jpg 2 3 21 1 - 5 1 5 22.5
02.jpg 31 92 19 25 17 50 17 - 116.15
03.jpg 21 3 6 14 - 10 17 2 32.8
04.jpg 16 2 0 5 4 - 3 1 17.63
05.jpg 12 1 0 4 4 - 5 1 14.25
06.jpg 2 1 0 1 1 - 0 0 2.65
07.jpg 7 6 1 1 2 6 - 3 12.04
08.jpg 1 2 2 2 0 0 - 2 4.12
09.jpg 0 13 1 8 9 5 - 1 18.47
10.jpg 18 10 3 50 5 24 10 - 60.28
11.jpg 288 115 8 27 2 112 35 - 332.8

further from the origin. A possible reason for this is that the absolute values
of coordinates are multipliers in the formulas for projection matrix derivatives.
Therefore, if they are smaller, they lead to smaller derivatives. Indeed, translating
the system of 3D coordinates so that the center of the base of the cube was close
to the origin resulted in a calibration error that was a fraction of its previous
value, i.e. the projection matrix entries appeared to be less sensitive to input
errors. Conversely, setting the system of 3D coordinates so that the cube was
standing further from the origin resulted in a calibration error that was a multiple
of its original value.

A more detailed examination of the results revealed that for almost all images
and points the entries P1,4 and P2,4 are the most sensitive to errors in the x(k)

and y(k) coordinate.
The tests can however only serve as an illustration of the observed tendency

and cannot be treated as a proof for the hypothesis. Even if the tendency is con-
sidered as a rule, one can ask whether a small sensitivity of the projection matrix
to calibration inputs is desirable or not. Moreover, if the calibration points are
located far from the camera, a small difference in 2D image coordinates results
in a large difference in 3D scene coordinates. This especially applies to picture
06.jpg, where the distance between the cube vertices used for calibration and
the camera is definitely the greatest among all the images. ¿From the presented
point of view, a small sensitivity to input errors works against the quality of the
process in the sense of precise reconstruction. This feature of camera calibration
should then be taken into account, when choosing the camera position for best
reconstruction results.

3D reconstruction was performed for every pair among the 11 views, i.e. for
a total of 55 pairs. In general, 8 feature points - the vertices of the tetrahedron
and cuboid - were subject to 3D reconstruction. However, due to the fact that
not all of these points are visible in all pictures, the number of reconstructed
points varied from five to eight. Each pair of images was used for reconstruction
and yielded data which we used to evaluate error propagation.
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We begin the analysis of results by comparing the reconstructed 3D coordi-
nates with the ideal ones taken from POVRay. In order to measure the quality
of each 3D reconstruction, we calculated the mean-square error of all 3D coor-
dinates reconstructed for a given pair. The results are shown in Table 2.

Table 2. The quality of 3D reconstruction

Image 01.jpg 02.jpg 03.jpg 04.jpg 05.jpg 06.jpg 07.jpg 08.jpg 0.9.jpg 10.jpg 11.jpg

01.jpg 0.0018 0.0017 0.0101 0.0022 0.0202 0.0025 0.0062 0.0025 0.0018 0.0016
02.jpg 0.0018 0.0004 0.0021 0.0013 0.0286 0.0020 0.0007 0.0019 0.0011 0.0104
03.jpg 0.0017 0.0004 0.0017 0.0005 0.0098 0.0018 0.0005 0.0013 0.0002 0.0009
04.jpg 0.0101 0.0021 0.0017 1.2742 0.2662 0.0041 0.0011 0.0015 0.0010 0.0013
05.jpg 0.0022 0.0013 0.0005 1.2742 0.0867 0.0031 0.0005 0.0018 0.0003 0.0005
06.jpg 0.0202 0.0286 0.0098 0.2662 0.0867 0.0219 0.0133 0.0160 0.0114 0.0198
07.jpg 0.0025 0.0020 0.0018 0.0041 0.0031 0.0219 0.0115 0.0026 0.0021 0.0020
08.jpg 0.0062 0.0007 0.0005 0.0011 0.0005 0.0133 0.0115 0.0127 0.0001 0.0007
09.jpg 0.0025 0.0019 0.0013 0.0015 0.0018 0.0160 0.0026 0.0127 0.0058 0.0016
10.jpg 0.0018 0.0011 0.0002 0.0010 0.0003 0.0114 0.0021 0.0001 0.0058 0.0017
11.jpg 0.0016 0.0104 0.0009 0.0013 0.0005 0.0198 0.0020 0.0007 0.0016 0.0017

Two facts can be observed. First, the pair of images taken from points of view
that differed least (04.jpg and 05.jpg) resulted in the least precise reconstruction.
The reason for this is that narrowly spaced viewpoints lead to small angles
between gaze directions. Therefore, a slight inaccuracy in image coordinates
results in a large change of reconstructed 3D location, especially the depth. In
the extreme case of coincident cameras, 3D reconstruction is impossible.

The theoretically calculated sensitivity of reconstructed points to errors in
the input 2D coordinates - according to formula (16) - is also highest for this
image pair.

The second observation regarding the quality of reconstruction with use of
picture 06.jpg, the one with the projection matrix least sensitive to input data
errors, is quite surprising. This image yields the worst performance (in terms of
overall error in pairs with every other image). This shows that a small sensitivity
of the estimated projection matrix to input data errors does not guarantee a
good reconstruction. We should emphasize that while talking about calibration
precision, we mean the precision of the estimation of the projection matrix and
disregard the impact of its entries on the reconstruction quality.

All the 11 projection matrices obtained in the calibration stage were examined
regarding the sensitivity of their entries to input 2D coordinates of the calibration
points. The most sensitive entry was identified for every image, feature point,
and coordinate. In 133 cases out of 154, this was either P1,4 or P2,4. Most of
the rest have single deviations from that rule and there are only two projection
matrices having more than two. A question arises how this influences the quality
of reconstruction.
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We also considered the accuracy of 3D reconstruction of individual points. We
found that the points most distant from origin were reconstructed less accurately.
Using the differential method as above, the sensitivity of these reconstructed 3D
points (points J and K on Fig. 1) to errors in the 2D inputs was determined for
all reconstruction image pairs. Pairs including picture 06.jpg turned out to be
slightly more sensitive to the errors than others. The same was true, to a lesser
extent, about reconstructed points other than J and K.

Our next experiment used an analytical model of camera pairs and a scene.
The scene consisted of a cube and tetrahedron, each with an edge length of 13

cm, both centered at the origin of the 3D coordinate system. This meant they
overlapped, but in a simulated environment this was not a problem.

The intrinsic parameters of the cameras represented a focal distance (35mm
equivalent) of 52mm and an image sensor with 3072 x 2048 pixels (for an aspect
ratio of 3:2), placed symmetrically with respect to the optical axis.

The extrinsic parameters positioned the camera to look directly at the origin
of the 3D coordinates from a distance of 100 cm. 72 such virtual cameras were
placed on a horizontal circle (the Y axis being vertical) around the origin.

Each camera was virtually calibrated using seven of the vertices of the cube,
imitating a real scene where it is impossible to see all 8. The first camera was
then paired with every other one, resulting in 71 pairs. For each pair, the 3D
position of the vertices of the tetrahedron were reconstructed from their coordi-
nates projected by the two cameras. The camera parameters and the simulation
results were substituted to the formulas of Sections 2.2 and 2.3 to compute the
sensitivities of reconstructed 3D points to errors in the 2D coordinates used for
either calibration or reconstruction. Results are presented in Figure 3.

Fig. 3. Sensitivity of reconstruction as function of choice of second camera

The horizontal axis is the number (2 through 72) of the camera forming a pair
with Camera 1. The central point (camera 37) represents a pair of cameras facing
each other across the scene. The sensitivity on the vertical axis is expressed in
centimeters of reconstruction error per pixel of error in image coordinate.
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It can be seen that the sensitivity increases dramatically when the optical
axes of the two cameras are close to each other, whether gazing in the same or
opposite directions. There is also an unexpected, smaller increase in sensitivity to
2D coordinate error in calibration, occurring for perpendicular cameras. In this
position, the optical axes of both cameras are parallel to edges of the calibration
cube, which may have affected the stability of our matrix computations. Further
experiments will be needed to clarify this.

To summarize: the experiments and theoretical analysis have brought some
valuable observations, which may serve as material for further and more detailed
discussion of the factors that condition the quality of the whole stereovision
process, as well as its particular stages. The main observations are:

– The choice of calibration points influences the precision of the recovered
projection matrix. Points closer to the origin of the assumed system of 3D
coordinates have a smaller impact on the projection matrix entries.

– Increasing the distance between the camera and the scene increases the im-
pact of 2D reconstruction input errors on the quality of the process.

– Bringing the two cameras closer together, or facing each other, decreases
the 3D reconstruction quality and increases the impact of 2D reconstruction
input errors on the quality of the process.
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Abstract. This report contributes a new approach for the robust tracking of hu-
mans’ heads and faces based on a spatio-temporal scene analysis. The frame-
work comprises aspects of structure and motion problems, as there are feature 
extraction, spatial and temporal matching, re-calibration, tracking, and recon-
struction. The scene is acquired through a calibrated stereo sensor. A cue proc-
essor extracts invariant features in both views, which are spatially matched by 
geometric relations. The temporal matching takes place via prediction from the 
tracking module and a sixmilarity transformation of the features’ 2D locations 
between both views. The head is reconstructed and tracked in 3D. The re-
projection of the predicted structure limits the search space of both the cue 
processor as well as the re-construction procedure. Due to the focused applica-
tion, the instability of calibration of the stereo sensor is limited to the relative 
extrinsic parameters that are re-calibrated during the re-construction process. 
The framework is practically applied and proven. First experimental results will 
be discussed and further steps of development within the project are presented. 

1   Introduction and Motivation 

Scene analysis in the current context comprises the process of modeling objects ob-
served in a scene. This is generally based on the recognition and localization of picto-
rial and iconic image features indicating sought objects. These can be low-level or 
mid-level features such as shapes or areal patches in a certain feature space. The aim 
is to fit a certain object model from the extracted features to infer certain knowledge 
about the objects. The states inferred from said fitted models, for example position 
and orientation in object space, cover large errors, especially with generic models 
applied to a wide range of scenes. 

Most methods for scene analysis are based on exemplar features [14, 15]. Those ap-
proaches extract low-level features and compare found candidates with previously 
learned exemplars. Scene analysis based on low-level feature models has the character-
istic that its performance is highly influenced by the states of extracted features such  
as location and orientation in case of geometric states. The visual information in un-
constrained environments might be uncertain due to large camera angles causing strong 
perspectivity, bad lighting conditions, or motion blur. In such cases an exemplar 
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method will generally fail in accuracy. However, in other cases such as pure recogni-
tion tasks based on coded templates the data might be sufficient. 

When analyzing the process of fitting an object model to indicator features, it be-
comes apparent that all indicator features are inherently linked to a semantic being an 
assumed characteristic of focused objects. For example geometries explicitly related 
to eyes or nostrils in facial images. The recognition and localization step is always 
restricted to said indicator features. Knowledge from other sources, which are not 
semantically related to the objects under observation, is neglected. 

To increase the accuracy of inferred states the amount of independent information 
has to be increased. This will lead to a more robust scene analysis in case the curse of 
dimensionality is respected, that is, no redundant information is used. Assuming that 
the set of indicator features is complete, one can think of utilizing generic features 
from the overall scene besides indicator features and higher contextual information. 
One of several questions arising is how to combine information from different sources 
so that the objects can be modeled more accurate. 

Contextual information is studied in the field of scene understanding. It is a high-
level process inferring knowledge about the scene in a semantic form. Early ap-
proaches are based on exemplar methods only. Due to inherent limitations of exemplar 
methods regarding accuracy and robustness, early studies in the area of image under-
standing were developed for constrained environments such as medical image and 
document analysis. With the help of high-level contextual information, such as the 
correlation between location and object or between activity and object, current ap-
proaches try to solve the problems of understanding complex scenes in the presence of 
insufficient and inaccurate information [1, 2, 3]. Although current methods inferring 
knowledge from unconstrained environments and dynamic scenes are still limited, the 
underlying concepts are tackling the same issue of inaccurate feature states. 

This new framework adapts concepts from high-level scene understanding to low-
level scene analysis. That is, instead of inferring high-level semantic knowledge from 
the scene and establishing relations to the objects, accurate knowledge of the low-
level scene structure is to be related to the objects over time. This is motivated by the 
fact that the inaccuracy of the object models are caused by insufficient and inaccurate 
information, while the entropy in structure is generally higher due to less constraints 
in feature selection. The former set of indicator features, inherently determined by a 
pre-defined semantic, is augmented by accurate structural knowledge. Consequently, 
besides defining instruments for the extraction of accurate scene structure, new con-
cepts for object modeling are needed which incorporate the structural knowledge in 
such a way that the accuracy of estimated states is increased. The focus is therefore on 
fusing knowledge from different domains. 

The basic idea of this current research work is to additionally observe generic cues 
in a scene that are good to track and not a-priori related to any specific object. Such 
cues can be seen as the structure of the scene and further relations between said cues 
follow certain syntax, such like position and motion [19-21, 22]. The aim is to identify 
and observe those structure cues which are capable of increasing the accuracy of the 
inferred states of the object-related semantic models. Since current investigations are 
focusing on accuracy of 3D localization and orientation, the structure cues must cover 
high accurate spatial states, both in space and time. There are several ways of fusing 
information of structure cues and semantic features. High interest is attracted to the fact 
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that it is possible to accurately estimate states of temporally occluded semantic features 
due to certain relations between semantic and structure. This is achieved by organizing 
structure cues in a pyramid giving different levels of abstraction and relations. The 
basic assumption is that there are weak relations between semantic and structure. This 
is in opposite to current scene analysis methods which always assume strong relations 
between semantic objects and indicator features. That is, the difference between scene 
structure and semantic features is basically not taken into account. 

In this paper the previous concept, as was partly proposed in [4], will be imple-
mented into a system (Figure 1) for the spatio-temporal analysis of articulated faces. 
Here, focus is put on the entire process for the analysis of the scene structure. That is, 
object modeling is not discussed. Further the fusion of structure and semantic knowl-
edge will be published in a next paper. The current system is based on methods for 
stereo motion, graph theory, adaptive information fusion and multi-hypotheses-tracking 
(for discussion see section 2). The current system will be demonstrated (section 3) and 
examined (section 4). Future work will be discussed in section 5. 

 

Fig. 1. Concept for Spatio-Temporal Scene Analysis comprising stereo sensor, cue processor, 
modeler and tracker 

2   Previous Work 

Methodically, the presented system is based on methods from structure and stereo 
motion like in [11, 12, 13], about spatio-temporal tracking of faces such as [14, 15], 
evolution of cues [16], cue fusion and tracking like in [17, 18], and graph-based mod-
eling of partly-rigid objects such as [19, 20, 21, 22]. 

In all other studies no structure-based concept was developed like the one origi-
nally proposed in section 1. This report further contributes a detailed implementation 
of parts of the framework (section 3) and discusses experimental results (section 4). 
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3   System Design and Outline 

3.1   Preliminaries 

The system will incorporate a stereo sensor with verged cameras which are strongly 
calibrated as described in [23]. The imagers can be full-spectrum or infrared sensors. 
During operation, it is expected that only the relative camera motion becomes un-
calibrated, that is, it is assumed that the sensors reside calibrated intrinsically. 

The general framework as presented in Figure 1 will be implemented with one type 
of structure cue, a simple graph covering the spatial positions and dynamics (i.e. ve-
locities). Tracking will be performed with a Kalman filter and a linear motion model, 
while re-calibration is performed via an overall skew measure of the reconstructed 
rays. The specific implementation is shown in Figure 2. 

3.2   Feature Detection and Extraction 

Detecting points of interest is one significant task in the framework. Of special inter-
est in this work is the observation of human faces. Important structural characteristics 
of human faces show radial symmetric properties such as eye corners, nostrils, tip of 
the nose, mouth corners, and birth marks. The Fast Radial Symmetry Transform 
(FRST) is well suited for detecting such cues of interest. 
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Fig. 2. Applied concept for tracking of faces 
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Fig. 3. Reducing the search space of a human face with an ellipse in one view 

To reduce the search space in the images, a mask indicating the area of interest is 
evolved over the time. In this context, an ellipse (Figure 3) is suitable which was also 
demonstrated in other works [24]. Consequently, all subsequent steps are limited to 
this area and no further background model is needed currently. 

The FRST, further developed by Gareth Loy and Alexander Zelinsky [5], deter-
mines radial symmetric elements in an image based on a corresponding gradient im-
age. This algorithm is based on evaluating a gradient image and judging the symmetry 
contribution of each pixel to a certain centre of symmetry. 

The transform can be split into three parts (Figure 4). From a given image the gra-
dient image is produced (1). Based on this gradient image, a magnitude and orienta-
tion image is build for a radii subset of radii of interest (2). Based on the resultant 
orientation and magnitude image, a resultant image is assembled, which encodes the 
radial symmetric components (3). The mathematical relations would exceed the cur-
rent scope. 

The transform according to [5] was extended by applying a post-processing step 
which normalizes the transformed images. The transformation’s output is a signed 
intensity image according to the gradient’s direction. To be able to compare consecu-
tive frames, both ranges of intensities are normalized independently. This measure 
yields illumination invariant characteristics. 
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Fig. 4. Data flow of the Fast Radial Symmetry Transform (FRST) 

3.3   Temporal and Spatial Matching 

Two cases of matches are to be established: the temporal (inter-view) and stereo 
matches. 

Due to the two cameras, two image sequences are available. Applying FRST on 
two consecutive images in the left view, as well as in the right view, gives a bunch of 
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features through all images. Further, the tracking module gives information of former 
and new positions of known features. 

The first task is to find repetitive appearing features in the left sequence. The same 
is true for the right stream. The second task is defined by establishing the correspon-
dence between features from one left image in the right view. 

Temporal matching is based on the Procrustes Analysis, which can be implemented 
via an adapted Singular Value Decomposition (SVD) of a proximity matrix G  as 
shown in [7] and [6]. The basic idea is to find a rotational relation between two planar 
shapes in a least-squares sense. The pairing problem fulfills the classical principles of 

similarity, proximity, and exclusion. The similarity (proximity) ,i jG  between two 

features i and j is given by: 

2 2
, /2

,
i jr

i jG e σ−=
 ,(0 1)i jG≤ ≤

 
(1) 

where r  is the distance between any two features in 2D and σ  is a free parameter to 
be adapted. To account for the appearance, in [6] the areal normalized correlation 

index ,i jC  was introduced: 
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The output of the algorithm is a feature pairing according to their locations in 2D 
between two shifted frames in time from one view. The similarity factor indicates the 
quality of fit between two features. 

Spatial matching takes place with a correlation method combined with epipolar 
properties to accelerate the entire search process as a consequence of shrinking the 
search space to epipolar lines. Some authors like in [6] also apply SVD-based match-
ing for the stereo correspondence, but this method only works well under strict setups, 
that are fronto-parallel retinas, so that both views show similar perspectives. There-
fore, a rectification into the fronto-parallel setup is needed. But since no dense match-
ing (dense disparity estimation) takes place [23], the correspondence search along 
epipolar lines is suitable. 

The process of finding a corresponding feature in the other view is carried out in 
three steps: First a window around the feature is extracted giving the template. Usu-
ally, the template shape is chosen as a square. Good results for matching are gained 
here for edge length between 8 and 11 pixel. As a second part of the correlation ap-
proach, the template is searched for along the corresponding epipolar line of the fea-
ture in the other view (Figure 6). According to the cost function (correlation score) the 
matched feature is found, otherwise none is found due to occlusions. 

Taking only features from FRST in the other view along the epipolar lines into ac-
count lead to less matches since due to perspectivity both views cover features which 
are not detected in the other view. 
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3.4   Reconstruction 

The spatial reconstruction takes place via triangulation with the found correspon-
dences in both views. In a fully calibrated system, the solution of finding the world 
coordinates of a point can be formulated as a least-square problem which can be 
solved via singular value decomposition (SVD). In Figure 10, the graph of a recon-
structed pair of views is shown. 

3.5   Tracking 

This approach is characterized by a 3D feature position estimation, which is carried 
out by a Kalman filter currently. An introductory description of the filter can be found 
in [8]. A diagram of the currently used filter is shown in Figure 5. 
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Fig. 5. Kalman Filter as block diagram [10] Fig. 6. Spatio-Temporal Tracking using Kal-
man-Filter 

A window around the back-projected estimated feature in 2D reduces the search 
space for the temporal as well as the spatial correspondence search in the successive 
images. Consequently, computational costs for detecting the corresponding features 
are limited. Figure 6 illustrates this shortly described approach. 

Furthermore, features which are temporarily occluded can be tracked over time in 
case they can be classified as belonging to a group of rigidly connected features. The 
graph and the cue processor can estimate their states from the state of the clique to 
which the occluded feature belongs. 

The Kalman filter comprises a reliable process model. Here, currently a linear 
model is chosen. Since the face moves in a three dimensional world, the state vector 
contains the current X-, Y- and Z-position. Furthermore, in order to give the possibil-
ity of modeling the current facial velocity, velocity components in all directions are 
also components of the state vector. Thus, the state is the following 6-vector: 
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(3) 

The process matrix A  maps the previous position with the velocity multiplied by the 
time step to the new position: 

1t t t t+ = + ΔVP P
 

(4) 

The velocities are mapped one-to-one. The measurement matrix H  maps the posi-
tions from x  identically to the world coordinates in z . 

3.6   Re-calibration 

Currently, the re-calibration of the relative camera motion (relative extrinsic parame-
ters) is optimized in a least-squares sense in such a way that the distance of the recon-
structed skew rays is minimized. The intrinsic parameters are held fixed. 

4   Experimental Results 

An image sequence of 40 frames is taken exemplarily here. The face as seen in the 
sequence moves from the left to the right and vice versa. The eyes are directed into 
the cameras, while in some frames the gaze is shifting away. 

4.1   Feature Detection 

The first part of the evaluation proves the announced property and should verify the 
ability of locating radial symmetric elements, especially in faces. In first evaluation 
sequences, the radius is the varying element by a fixed radial strictness parameter al-
pha. The algorithm yields the exemplarily transformed images seen in Figures 7 and 8. 

 

 

Fig. 7. Performing FRST by varying the subset of radii and fixed strictness parameter (radius 
increases). Dark and bright pixels are features with a high radial symmetric property. 

 

Fig. 8. Performing FRST by varying the strictness parameter alpha and fixed radius (alpha 
increases) 
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The images are processed by the earlier described FRST algorithm. The parameter 
for the FRST is a radii subset of one up to 15 pixels. The radial strictness parameter is 
2.4. With exceeding a radius value of 15 pixels, the positions of the pupils is high-
lighted clearly. The same is true for the nostrils. By exceeding the radius of 6, the 
areas of the nostrils are affected accurately and therefore apparently emphasized. 

The influence of the strictness parameter alpha is significant as the image sequence 
in Figure 8 reveals. The higher the strictness parameter, the more contour fading can 
be noticed. According to the task of finding features in human faces, the contours 
have no contribution. Thus, to mask this undesired effect for this test image, the 
strictness parameter was chosen around 3. 

The transform was further examined under varying illumination and perspective. 
The internal parameters were optimized accordingly with different sets of face im-
ages. The results obtained are conforming to those in [5]. 

4.2   Matching 

The temporal matching is performed as described with the above mentioned FRST 
parameters via the modified SVD method based on the Procrustes Analysis. Figure 10 
shows one example of the spatial matching in this sequence, where 21 characteristic 
features were extracted. 

4.3   Reconstruction 

The following presents based on sample images the quality of the matching tech-
niques and the resultant reconstructions. Therefore, on a face image, the FRST algo-
rithm is applied. The matching process on the corresponding right image is performed 
by applying areal correlation along epipolar lines. More sophisticated approaches are 
presented in another paper [9]. Furthermore, as explained in the previous section, a 
reconstruction by triangulation is performed. 

Figure 9 shows the left and right view, which is the basis for reconstruction. As 
one can see, due to applying the FRST algorithm, 21 enumerated features are de-
tected. The reconstruction based on the corresponding right view is shown in Figure 
10. As one can see, almost the entire bunch of features from the left view (Figure 9, 
top) is also assigned in the right image. Due to the different camera perspective, fea-
ture 1 and 21 are not covered on the right image and consequently not matched.  
Although the correlation assignment criteria is quite simple, namely the maximum 
correlation value along an epipolar line combined with a threshold value, this method 
yields a good matching success. All features, except the stumble of feature 18, are 
assigned correctly. Due to the wrong pairing, the relative relations between those two 
coordinates are not given by the epipolar geometry. Accordingly, a wrong triangula-
tion and consequently a wrong reconstruction of feature 18 is the outcome as one can 
inspect in Figure 10. 

4.4   Tracking 

In this paragraph the tracking approach will be evaluated. The previous sequence of 
40 frames was tracked. 
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Fig. 9. Left Image with applied FRST, serves 
as basis for reconstruction (top); the corre-
sponding right image (bottom) 

Fig. 10. Reconstructed scene graph of world 
points from a pair of views selected for re-
construction (scene dynamics excluded for 
brevity). Best viewed in color. 

The covariance matrices are currently deduced experimentally. This way the filter 
works stable over all frames. The prediction by the filter and the measurements have 
common trajectory. However, the chosen motion model is only suitable for relatively 
smooth motions. 

The estimates of the filter were used to further reduce the search space of the fea-
tures in the frame. The centroid of all features in 2D was used as an estimate of the 
center of the ellipse. 

5   Future Work 

At the moment there are different areas under research. Here, only some important 
should be named: robust dense stereo matching, cue processor incorporating fusion, 
scene graphs, model fusion, auto- and re-calibration. 

6   Summary and Discussion 

This report introduces current issues on driver assistance systems and presents a novel 
framework designed for this kind of application. Different aspects of a system for 
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spatio-temporal tracking of faces are demonstrated. Methods for feature detection, for 
tracking in the 3D world, and reconstruction utilizing graphs were presented. 

While all methods are at a simple level, the overall potentials of the approach could 
be demonstrated. All modules are incorporated into a working system. Future work is 
indicated. 
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Abstract. We propose a novel framework in the context of structure and motion 
for representing and analyzing three-dimensional motions particularly for hu-
man heads and faces. They are captured via a stereo camera system and a scene 
graph is constructed that contains low and high-level vision information. It 
represents and describes the observed scene of each frame. By creating graphs 
of successive frames it is possible to match, track and segment main important 
features and objects as a structure of each scene and reconstruct these features 
into the three dimensional space. The cue-processor extracts feature information 
like 2D- and 3D-position, velocity, age, neighborhood, condition, or relation-
ship among features that are stored in the vertices and weights of the graph to 
improve the estimation and detection of the features and/or objects in the con-
tinuous frames. The structure and change of the graph leads to a robust deter-
mination and analysis of changes in the scene and to segment and determine 
these changes even for temporal and partial occluded objects over a long image 
sequence. 

1   Introduction 

Tracking and segmentation by using graph matching is well known and common in 
the field of computer vision and pattern recognition. Due to enormous requirements in 
performance by applying heuristic segmentation and tracking methods in the field of 
stereo vision, one new aspect is to apply graph algorithms to segment and track fea-
tures and objects over a long image sequence. 

This paper presents a new aspect to segment and track scene objects particularly of 
human heads and faces based on the approaches by [1, 2, 3, 6]. These approaches 
concentrate on using graph matching algorithms especially for stereo vision images. 
Former approaches usually applied graph-based methods only on monocular camera 
systems [13] whereat the proposed approach combines the advantages of the graph-
based algorithms with the additional information that a stereo camera system is able 
to deduce. 

This additional information is inferred by using a cue processor [8], which is the 
main source of information for the attributed relational graph (ARG) [5]. The cue 
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processor is used to transform relevant scene information into valid feature and object 
information that are the main data for the ARG. 

The ARG is constructed to find and detect correspondences between objects of 
successive frames and ensures the tracking of human head and face segments over a 
long image sequence. Therefore, the ARG comprises vertices and edges whereby the 
vertices describe relevant objects that are delivered by the cue processor and the edges 
contain significant relationships between them. 

Since the graphs are constructed from the actual and previous frames, the object 
recognition process is viewed as an inexact graph matching problem, which consists 
of finding correspondences between the set of vertices of the previous graph and the 
actual graph. This step is accomplished through an optimization algorithm that is 
based on the minimization of a cost function related to the weights of the edges. 

The last step of the tracking process is based on the results of the segmentation, 
and a graph pyramid [6] is used to cluster nodes of the lower level segmentation 
graph, which belongs to similar rigid or articulated objects of the scene. Conse-
quently, graphs from higher levels ensure the ability of tracking partial occluded ob-
jects since a motion model can be constructed of visible features that can be related to 
other partially occluded objects. Even objects that disappeared from the scene entirely 
can be tracked by using these higher level graphs as long as these objects reoccur 
again within a defined time frame. 

2   Related Work 

There is a variety of publications on segmentation and tracking by using graph-based 
algorithms, dating back over 30 years, with applications in many fields. In this section, 
we briefly consider some related work that is most relevant to the proposed approach. 

Early graph-based methods were mainly focused on segmentation rather than 
tracking objects over a long image sequence because of the huge amount of computa-
tions involved. 

Due to rapid progress in computer engineering and increasing computational power 
the graph-based methods become more popular and nowadays tracking via graph-
based algorithms is well established [5, 6, 7]. 

Hence, the technique proposed herein was mainly motivated by the results and 
theoretical discussions presented in [1, 2, 3] and the idea of using a graph pyramid for 
tracking objects over long image sequences was proposed in [6]. 

The idea presented in [1, 2, 3] is to create so-called interval graphs that will contain 
nodes according to the 3D feature points extracted from stereo image sequences and 
weighted edges between them that represent the 3D distance between each node. 

Whenever the distance between nodes changes over time, it leads to a change of 
weights for nodes that are not rigidly connected to each other and the edges between 
them will be dissolved. According to the relationship of nodes and feature points from 
the scene, non-broken edges can be seen as a rigid cluster of nodes that represent a 
rigid object in the real scene. Consequently, it is possible to segment and identify 
rigid objects in the scene and to track these objects over successive frames. 
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According to the NP-hard problem of using complete graphs for tracking feature 
points over continuous frames, this paper extends the method by integrating the idea 
from [6] to handle the correspondence problem in tracking by graphs. Thus, the pre-
sent framework can be seen as a hybrid method that combines the benefits of both 
approaches. 

The idea presented in [6] is to create a so called graph pyramid that is build up hi-
erarchically from lower level graphs to higher level graphs, whereat higher level 
graphs contain and cluster main important information of lower level graphs. There-
fore, it is possible to track rigid objects even if there is partial occlusion and to avoid 
the NP-hard problem because of the fewer nodes and complexity of higher level 
graphs. 

Further tracking methods that use the Kalman or similar filtering algorithms are 
quite common but these kinds of methods are more feasible at dealing with single 
points rather than whole objects that describe entire segments in the image scene. 

Therefore, graph-based approaches are more suitable for such tasks and are already 
adapted in [4, 5, 11, 12]. However, most of these methods are working with monocu-
lar images and were applied only to synthetic or laboratory scenes. 

The primary goal of the present project is to apply graph-based tracking onto real-
world scenes so to track human face and head movements in 3D space under varying 
lighting condition. 

 

Fig. 1. Methodical overview of the graph-based tracking approach 

This paper is organized as follows. An overview of the entire approach for recogniz-
ing and tracking objects over long image sequences is described in section 3. Section 4 
concentrates on the cue processor [7] that will transform and provide all relevant scene 
information to be utilized within the graphs. The subsequent section gives a more de-
tailed overview of the scene representation, which contains the structure and builds up 
the graph. Section 6 handles object segmentation, whereas object tracking over a long 
image sequence is explained in section 7. Section 8 describes the current status from 
this early stage of the project and finally section 9 and section 10 conclude the paper 
and present issues for future work. 
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Graph  
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3   Methodological Overview 

The complete methodology can be seen in Figure 1, whereas it can be divided into 
four subtasks: (a) extract relevant features from the frame by using a cue processor, 
(b) fuse features to create an ARG to assign graph attributes between continuous 
frames, (c) to create a graph pyramid to cluster main objects for tracking, and (d) to 
estimate a motion model of rigid scene objects over a long image sequence. 

This framework is based on the concept of spatio-temporal scene analysis, which is 
proposed in [7] for the identification, segmentation and tracking of features from 
successive frames in the field of stereo vision. 

The ability to utilize the 3D scene analysis is a significant improvement over tradi-
tional feature tracking techniques. Monocular tracking analysis is restricted to the 
image plane, which leads to the loss of the depth information, whereas this approach 
consequently incorporates spatial information. 

The introduced subtasks will be explained in more detail in the following sections. 

4   Cue Processor 

The cue processor, which was proposed first time in [8], extracts cues and depth in-
formation from the scene. Additionally this processor captures the feedback of the 
graph segmentation and tracking methods to improve the feature extraction proce-
dures. It incorporates information like the age of the feature (e.g. number of frames 
since the feature occurred the first time), status of feature (see section 6.1), and an 
adaptive motion model. 

In former papers only focus was put on feature-based or intensity-based methods 
for segmentation and tracking. Here, the cue processor handles both, intensity- and 
feature-based methods for extracting features from the scene. Hence, the present 
graph-based tracking and segmentation process is provided with holistic information 
which leads to higher accuracy. 

5   Scene Representation 

The scene is analyzed by several feature- and intensity-based methods within the cue 
processor. This cue processor was presented in the previews section. It delivers all 
important features that are necessary for the graph-based approach. In this section we 
describe how to incorporate the scene information into a graph that gives the ability to 
recognize the scene over continuous frames without loss of information. 

5.1   Graph Representation 

Graph-based feature tracking techniques generally represent the problem in terms of a 
graph. A graph ( , )G V E , characterized by a set of vertices (nodes) V  and edges 

E , whereby each node v V∈  corresponds to a feature in the scene, and the edges 
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e E∈  connect certain pairs of neighboring features or objects. Several details about 
the extracted feature are stored in the corresponding node. 

The weights of the edges represent, based on the requirements of the graph-based 
approach, different relationship between their nodes. Currently edges are described by 
the related feature position in the 3D scene based on the idea in [1]. Additional feature 
information like age, neighborhood, similarity etc. influences the weights. 

6   Stereo-Motion Segmentation 

In this section we briefly explain the idea of this present work to recognize objects, 
extracted by using the cue processor, over successive frames by applying some kind 
of motion correspondence between our implemented graphs. 

6.1   Graph-Based Matching 

To recognize the graph between continuous frames, a well known method is used 
called graph matching. Graph matching compares two graphs by establishing a corre-
spondence between their nodes and edges that reflect the structure. In the current 
work, the constructed graph from the previous frame is compared with the graph that 
is constructed from the actual frame and algorithms like the Hungarian method or 
Delaunay triangulation are applied to find the correspondence between their nodes 
and edges. 

The proposed graph matching algorithm is called weighted graph matching 
(WGM) because of the weights of the edges and the goal to find the correspondence 
between sub-graphs with the smallest possible total weight. Therefore we describe the 
matching by using a bipartite graph, whereas this graph contains nodes from graph 

1tG −  and tG  (actual frame). Figure 2 outlines the graph matching process by using a 

bipartite graph. 

 

Fig. 2. Example of graph matching process by using a bipartite graph to find correspondences 
between successive frames 
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The connections between the nodes represent the smallest total weights that corre-

spond with the correct assignment of nodes from 1tG −  and tG . Further information 

about this assignment method is described in section 6.3. 
Often the number of nodes in the graph changes dynamically because of random 

scene changes. Thus it is crucial to maintain an invariant property to assure that there 
is an even number of nodes in the bipartite graph to handle the matching problem. 
The change of nodes can occur e.g. related to occlusion, failed feature detection 
and/or objects that disappear from the field of view and reappear after several frames. 
Hence, a method is used to recognize these occluded features in the case of reappear-
ance. Graph-based methods are able to handle these dynamical changes by classifying 
nodes into visible and invisible. In case some nodes of the early frames do not corre-
spond with the actual graph, these nodes are added to the actual graph, yet, with the 
status invisible. In case of reappearance the status will change to visible again, thus 
the tracking process is not interrupted. Former methods that incorporate similar ideas 
are using so called dummy nodes [4, 10]. 

6.2   Objects with Slightly Elastic Behaviors 

Especially for the application of the present work, to segment and track human heads 
and faces in three dimensional spaces, the objects have slightly elastic behaviors. 
Hence objects based on our graph-based tracking approach need the ability to handle 
this kind of elastic deformations. Therefore we add some dissimilarity to the bipartite-
graph by using e.g. interval arithmetic, which is also established in [2, 3]. 

The nodes of the graph represent the three dimensional location of feature points 
and the weights describe the distance between them. When some weights change over 
time it means that the represented features move away from each other and hence these 
features do not belong to the same rigid object. By using this simple idea it is possible 
to segment objects over a long period of time. Applied to the present work objects 
cover some elastic behavior, thus positions of objects in 3D space can be represented 
by interval measures. By using interval arithmetic features that belong to rigid objects 
are assigned correctly even if they slightly vary from the optimal position. 

 

 

Fig. 3. Segmentation of rigid objects based on (I) Graph representation, (II) Delaunay triangula-
tion, (III) Elimination of changing weights, (IV) final segmentation of two rigid objects 
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However, after each frame the graph information about the distance must be up-
dated and weights that contain empty intervals are related to a different rigid object. 

6.3   Assignment Problem 

In general, nodes of a graph are unsorted, which means for finding correspondences 
between two different graphs a method has to be applied that maps nodes of two dif-
ferent graphs. This special assignment is known as the assignment problem and can 
be solved by several methods. In this present work, the Hungarian method is used to 
assign nodes of two different graphs. Therefore, the bipartite graph structure, which is 
described in the previouss chapter, is used as input for this method. More precisely 
the number of nodes and the weights are used to create a cost matrix M. 

( ),i j
i j

M w v v=∑∑
 

(1) 

Where 1i tv V −∈  are nodes of 1tG −  and j tv V∈  are nodes of tG . Now the Hungar-

ian method performs a minimization on the elements of the cost matrix to find the 
optimal correspondence. With the constraint that motion between two frames is small, 

weights are constructed by calculating the distance between 1tV −  and tV . 

6.4   Delaunay Triangulation 

To increase the speed of segmenting rigid objects, a Delaunay triangulation is applied 
based on the 3D model of the scene, which is reconstructed by the stereo data. 

In the previews sections the method to segment rigid objects is explained but in 
general it needs several frames and not all edges can be eliminated between two dif-
ferent rigid objects. Hence a hypothesis is taken into account whereby the rigid object 
is described by planar areas and these areas can be constructed with finite number of 
triangles. This method is called triangulation and was also proposed in [2, 3]. 

The whole segmentation process is shown in Figure 3 and contains the transformed 
scene representation into graph notation and the applied Hungarian method, Interval 
arithmetic and Delaunay triangulation to correctly assign the corresponding nodes, 
and extraction of two independent rigid objects by deleting non-related weights. 

Hence, the present work proposed a quick segmentation process by combining 
various common segmentation and optimization algorithm. 

7   Object Tracking 

Beside accuracy in tracking objects, a real-time requirement is another very important 
demand especially for online applications in tracking at video frame. Most of the 
former papers perform object tracking with pixel-by-pixel approaches but do not 
fulfill the requirements of real-time because of high computing delays. 

The present work contains an algorithm that is based on a graph pyramidal decom-
position of the scene according to the ideas in [6, 9]. 
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The ability to compute 3D-motion is a significant improvement over traditional 
motion analysis techniques. Monocular motion analysis is restricted to the image 
plane that yields the loss of the depth information. The present work avoids this loss 
of information because of the stereo reconstruction, which is performed by the cue 
processor. 

Therefore, motion of objects is more sophisticated and related to clusters of coher-
ent features it is also possible to track partial occluded objects. In the following sec-
tions the process of the described method is explained in more detailed. 

7.1   Graph Pyramid 

To increase the performance of the tracking process it is quite useful to cluster similar 
objects and/or nodes that belong to the same rigid object into a single object. This 
process can be accomplished by using graph pyramids that is also used in frameworks 
such as [6, 9]. The graph representation of the scene is called a low level graph and a 
graph that clusters similar nodes is called high level graph because of the fewer nodes, 
less complexity, and higher level of abstraction. In Figure 4 a typical graph pyramid 
construction is shown. 

 

 

Fig. 4. Hierarchical graph pyramid representation 

It is quite clear that by using graph pyramids, nodes that belong to the same objects 
are merged together and are represented by only one single node that contains all 
information that belongs to the rigid object like age, motion, etc. 

7.2   Motion Model 

To enhance the tracking of objects over long image sequences a motion model is 
incorporated based on the graph pyramid and the individual correspondences between 
nodes in the bipartite graph. After the graph-based optimization methods have as-
signed the corresponding nodes in the bipartite graph, each feature is reconstructed by 
using stereo triangulation to extract the actual position in 3D space. After that, the 
actual position is compared with the previous position and a 3D motion model is 
established for each feature. Equation 2 covers the 3D motion model. 
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R t Rω= − − ×&
 (2) 

Where ( ), ,x y zR V V V=&  is the velocity of each feature, ( ), ,
T

R X Y Z=  is the 

feature position in 3D space, ( ), ,
T

x y zt t t t=  is the translational velocity and 

( ), ,
T

x y zω ω ω ω=  is the rotational velocity. 

With this additional information of each feature node, the cost matrix, which is 
used for the assignment problem, is adapted yielding better matching results. 

7.3   Tracking of Partial Occluded Objects 

Occlusion represents one of the most difficult problems in motion analysis. In this 
section the idea of [2, 3] and the proposed hybrid motion estimator for partial oc-
cluded objects will be explained in more detail. 

Over a long image sequence it is quite usual that features disappear and reappear in 
the scene. This can happen when objects overlap or objects disappear and reappear 
from field of view. In this section we briefly describe how to handle these kinds of 
occlusions. 

For tracking features that are disappeared over a limited number of frames, the 
graph pyramid and motion model process is used to estimate the position of these 
features in the current and next frames. The nodes of the high level graph contain 
shared information like the motion model that belongs to grouped nodes of the lower 
level graph. However, this low level graph represents corresponding features that 
belong to objects in the scene. That means that each node of the high level graph 
represents single objects. By the assumption that features of rigid objects are de-
scribed by the same motion model, the current method estimates the 3D-postion of 
features that disappeared in the current frame by using the corresponding motion 
model of the high level graph. 

Therefore, this process estimates the position of occluded or disappeared features 
as long as similar features reappear close to the estimated position. Otherwise after a 
limited number of frames the feature is finally discarded from the low level graph. 

8   Experimental Evaluation 

At time of writing, experiments with laboratory scenes were acquired only under 
stable lighting conditions and un-textured backgrounds. Partially occluded tracking 
was considered conceptually within the present framework rather than implemented 
in experiments. 

We are currently investigating into adding other stable features to enhance the 
tracking performance and extending the algorithm for tracking objects in real-world 
environments rather than synthetic and/or laboratory scenes. 
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9   Summary 

This paper describes the early stages of a research project in combining spatial and 
temporal analysis for a more accurate tracking and segmentation of partly rigid ob-
jects over a long image sequence. 

The main important part and original work in this report is the additional usage of 
the 3D information that can be used to segment and track objects over a long image 
sequence and ensures high accuracy especially on partial occluded objects. Objects 
that move apart from each other can be recognized and identified as two separate 
objects by using stereo vision and graph-based segmentation. Traditional graph-based 
tracking approaches are monocular systems, which are not able to handle depth in-
formation. Using stereo vision higher computing performance is required. Certainly a 
further aim of the whole project is to implement the cue processor into dedicated 
hardware, such as field programmable hardware like FPGAs, that extract stereo fea-
tures in real-time. 

Work on graph-based matching moves into the focus because of increasing com-
puting resources. Graph-based matching does not only compute and estimate posi-
tions of objects based on current measurements, further information of previous 
frames (such as age, state of occluded features etc.) are also integrated. This is done 
by calculating the weights of the graph and defining a proper cost function that de-
scribes the relationship of objects between consecutive frames. Hence graph-based 
optimization and assignment methods are the basis of future systems covering the 
ability of taking the scene structure into account. 

Until now performance tests were not accomplished because of the early stage of 
this project and the primary relevant aim of accuracy and stability. At time of writing 
there are no experimental results for partial occluded objects and only experiments 
with laboratory scenes instead of real-world human head and face scenes were used. 

10   Future Work 

The next stage in this present framework is to improve the results in rigid object 
tracking with relation to robustness, accuracy and performance. The present project 
will concentrate on human face tracking under random scene changes. A further as-
pect of future work will be the implementation of the graph concepts in software. 
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Abstract. A method for 3D human body modeling from a set of 2D
images is proposed. This method is based upon the deformation of a
predefined generic polygonal human mesh towards a specific one which
should be very similar with the subject when projected on the input
images. Firstly the user defines several feature points on the 3D generic
model. Then a rough specific model is obtained via matching the 3D fea-
ture points of the 3D model to the corresponding ones of the images and
deforming the generic model. Secondly the reconstruction is improved
by matching the silhouette of the deformed ”d model to those of the
images. Thirdly, the result is refined by adopting three filters. Finally
texture mapping and skinning are implemented.

1 Introduction

Realistic human body models play a crucial role in many applications such as
multimedia games, virtual reality, teleconferencing, digital art and towards the
future for free viewpoint video, e.g. Carranza et al[1]. Precise and accurate 3D
human body models are needed especially in many computer vision-based motion
tracking system e.g.[3], [4], [5], [6].In the work by [7], [8], they also stressed the
importance of the quality 3D model. However, obtain quality customized 3D
model is a longstanding problem in animation and much work should still be
realized before a near-realistic performance is achieved. This paper presents an
algorithm for accurate 3D human body reconstruction from a small set of images.
It is the first step for future precise 3D tracking. Although some interactive
operations are involved for a trade-off between efficiency in use and feasibility
in practice, experiment results indicate that our modeling system is much more
efficient than using existing manual modeling tools. The obtained customized
model is very realistic and accurate. It could also be further used, for example,
for low cost model-based human motion tracking in video.

1.1 State of Art

In the literature, the existing vision-based reconstruction systems can be broadly
divided into 2 categories:active and passive methods. When active methods use
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c© Springer-Verlag Berlin Heidelberg 2009
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an optical pattern projected into the scene, such as laser scanning system which
is made of laser transmitter and receiver, passive techniques use the images of
the patterns.

The 3D laser-scanner systems capture the entire surface of the human body
in about 15 to 20 seconds with resolution of 1 to 2mm. However these devices
are very expensive and require expert knowledge to interpret the data and build
animated model [2]. Another drawback of this sort of system is it requires the
subject to stay still and rigid for the whole duration of scanning (about 15
seconds for full body coverage) which is quite impossible in practice. It is well
established that humans can stay still no more than 4–5 seconds.

Our approach is passive and it is a very low-cost reconstruction method due
to its greater flexibility in scene capturing. Most of the existing methods e.g.
by Hilton et al[14] or by Weik[15] make use of shape-from-silhouette related ap-
proaches, which require the subject to be segmented from the image background
and the cameras to be calibrated beforehand by using a calibration tool of any
kind. More recently Remondino[16] proposed a 3D calibration method from un-
calibrated views, which uses feature correspondents, but requires the subject to
remain still and rigid for about 40 seconds for capturing the whole body. In
addition, the model reconstructed by such methods can contain non-manifold
problem e.g. holes and open edges.

1.2 System Input

The goal of the proposed modeling system is to find a low-cost method to re-
construct accurately a 3D customized human body model, being given ONLY a
small set of images taken from different viewpoints and also uses a 3D generic
model with 24067 vertices and 48130 triangular faces. Figure 1 shows the input
of this modeling system.

Fig. 1. System input: A generic model and six images taken from different views

The strategy of our framework is motivated by the method in [17], which
was used for the construction of human faces. We brought many improvements
described in this paper while keeping the same general idea.
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2 Camera Calibration and Model Reconstruction

The principle of the first part of our modeling system is to deform the generic
model according to several reconstructed characteristic points. The following
subsections will describe all this procedure step-by-step.

2.1 Characteristic Points Selection

Figure 2 shows an example of the selected feature points on the 2D images cor-
responding to the 3D points. These correspondences can be established via an
interactive point matching tool that we have developed. Although automatic
body part recognition had been studied in e.g. Yaniz et al[19], however in our
wide-baseline and cluttered environment, automatic feature detection becomes
unstable. In our set-up, we utilize a set of 32 surface characteristic points. These
characteristic points will provide an over-determined set of information and suf-
ficient view coverage for camera calibration and reconstruction of points.

Fig. 2. Example of features points on
3D generic model corresponding on the
2D image

Fig. 3. Triangulation of projected
rays,when the rays do not intersect im-
ages (R is the reconstructed point)

2.2 Interactive Calibration and Characteristic Points
Reconstruction

The adopted technique for camera calibration is based upon POSIT by
DeMenthon[9]. POSIT algorithm minimizes the difference between the projec-
tion position of 3D points and their 2D positions in the image until the error
which is the maximum difference of pixel location is less than a threshold or
when it reaches a maximum number of iterations. The POSIT method furnishes
each camera’s extrinsic parameters. Our way to determine the intrinsic param-
eters is to consider POSIT as a function of the intrinsic parameters, a function
we minimize using the simplex algorithm. Obviously, one of the advantages of
our camera calibration set-up is that the calibration tool is the subject itself.
Thus, we do not need any special calibration tool.

The reconstruction of 3D characteristic points is performed using the triangu-
lation of projected rays which start from the optical center of the camera and go
through the characteristic points in the image. The algorithm takes into account
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that the rays may not intersect exactly due to the fact that calibration is not per-
fect. To reconstruct the points, we minimize the sum of the squares of distances
to the rays from all possible views. It only can be done when the points are seen
in more than one image. Figure 3 shows an example of the reconstruction.

As Figure 4 shows when one pass 3D characteristic points reconstruction is
finished, we can apply POSIT to gain a more precise camera calibration data
and then perform 3D reconstruction. Repeat this loop. Figure 5 shows that the
iterative process converges after about 30 iterations. The re-projection error at
convergence is about 1.1 pixels with a standard deviation of 0.9 pixels.

Fig. 4. Iterative process of calibra-
tion/reconstruction

Fig. 5. The convergence of the calibra-
tion/reconstruction loop

2.3 Interpolating the Deformation

Until this moment, we have obtained the position of reconstructed characteristic
points and their original position on the generic model. Now we need to deform
the rest of the vertices. The radial basis functions (RBF) are adopted to achieve
this goal. The distance between each vertex and each characteristic point is
chosen as a value of the function, because it provides a smooth interpolation.
Using RBF for data interpolation has been researched and used successfully
in e.g. Ruprecht el al[12]. More details about RBF technique can be found in
[10][11].

2.4 Silhouette Contour Adaption

After the deformation of the generic model based on characteristic points we
obtain only a geometry of body. However, some local parts such as the curves
on the arms and legs of the subject are not precisely reconstructed. In order to
correct this defect, the adaption by using silhouette contours of the 3D model and
the limbs of each image is performed. The following describes the approximate
process of the algorithm.

– Automatic extracting of silhouette contours from the 3D mesh.
– Interactively extracting the silhouette from 2D images by using Bezier curves

drawing tools. Because we are working in a clutter environment, so the auto-
matic
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edge detection algorithm for image segmentation, e.g. Canny et al[18], does
not work perfectly here.

– Finding a good correspondent for each projected silhouette vertex with re-
spect to the image curves by using a recursive subdivision matching algo-
rithm.

– Use RBF to adapt the initial specific model.

More details about silhouette adaption can be found in [13]. The results of
reconstruction are shown in fig.6

Fig. 6. Reconstruction results of front and back-side view

3 Filters

The method above enables us to obtain a global surface geometry of the subject.
However, as figure 7 shows, there are some local distortions on the geometry
surface because of the non perfect camera calibration and small errors in the
silhouette matching.

Fig. 7. Local distortions on geometry

To resolve these problems, we analyzed the distortions and classified them
into three categories which are vertical bulges, large-scale and small-scale twists.
Three sorts of filters are designed to solve the corresponding distortions: smooth-
ing filters, slice filters and neighbor triangle normal filters.

3.1 Smoothing Filter

Some noticeable vertical bulges can be spotted on the arm surface in the middle
of figure 7. We would like to eliminate the bulges and meanwhile preserve the
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correct body features as much as possible. So we designed a smoothing filter to
deal with this sort of problem. A vertex of the specific geometry is denoted as
P (x, y, z), Qi(x, y, z) is the neighbor vertices of P ,set

P
′
(x, y, z) =

1
N

N∑
i=1

Qi(x, y, z)

Set D as the distance from P to P
′
, if D is greater than a threshold ρ whose

value is set to the mean value of the sum of D, then replace P with P
′
. The

result of applying smooth filter to the whole body is shown in figure 8.

Fig. 8. Left:before smoothing; Right:after smoothing

3.2 Slice Filter

A very serious distortion can be noticed on the feet of the specific model. Because
of the large distorted range, the smoothing filter does not work. The basic idea
for detecting and fixing this problem is to slice the mesh of generic and specific
model along the axis of every part of body. Then locate the distorted part of
mesh by comparing each pair of slice. The following shows the detailed process
of the slice filter.

– Segment whole body into several parts including head,neck,arms,legs and
bust. The axis of every part is estimated by using principle component anal-
ysis(PCA) method.

– Each part is segmented in many slices orthogonal to its axis via calculating
the intersection of the geometry and the cutting planes . To ensure the
success of comparison, the number of slices on the generic model and specific
model are equal. Figure 9 shows one typical sliced curve of each part.

– Overlap every pair of sliced curves and compare the variation of the distance
between the two borders. A slice will be marked as ”bad” one if the maximum
distance between the two curves is greater than a threshold whose value is
related to the mean distance of one pair slice. We can spot that the pair of
slices on the feet is distorted seriously.

– After all the bad slices are detected, all vertices of each bad slice are replaced
by a scaled copy of the slice of the generic model.

Figure 10 shows a result after using the slice filter for the feet.
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Fig. 9. Example of slice on every part. The distortion on the feet of specific model can
be detected by comparing the shapes of their slices.

Fig. 10. Result using the slice filter on the feet

3.3 Neighbor Triangle Normal Filters

Some small area distortions are hard to be detected and corrected by using
the two filters introduced above. For example a face with a twisted nose and
a defective mouse even if the remaining is normal. To solve this problem a
neighbor triangle normal filter denoted as NTNF is presented here. To use NTNF
a precondition must be that on small matched areas the generic and the specific
geometry are similar and fortunately it is the case for most human body parts. To
each vertex P on the generic and its equivalent on the specific model, we compute
the angle difference between the normals of the matched triangles attached to
P and its equivalent. If the maximum angle is greater than a threshold, than P
will be denoted a suspicious vertex. After checking all the vertices on the specific
model, we obtain several suspicious vertex groups and their corresponding vertex
groups of the generic model. According to a chosen bounding box of each pair
of vertex groups, a scaled replacement is performed from the generic model to

Fig. 11. The suspicious vertex groups(marked in blue) and their bounding boxes
(marked in red). Left: Initial detected suspicious vertex groups. Right: Plot of the
number of suspicious vertex group vs the number of iterations.
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Fig. 12. Left: Finally suspicious vertex groups after using NTNF. Right: Green
face(non-filtered) vs Red face(Filtered).

the specific one in order to suppress those suspicious vertex groups. After one
pass of this replacement, we can reiterate the process on remaining suspicious
vertex groups. Figure 11 shows that the number of suspicious vertex group stop
decreasing after 45 iterations.

Figure 12 shows the effects on the body and face after having used NTNF.

4 Texture Mapping

In order to perform a model-based 3D tracking of a human body movement with
feedback it is fundamental to dispose of a precise textured model of the person.
Due to illumination variations, it is difficult to obtain a consistent one which is
really necessary for a good tracker performance. We have been investigating two
kinds of texture mapping methods.

4.1 View Point Independent Method

Because for almost each patch on the reconstructed model, its texture can be
obtained from several views. The idea is to select the best view. We adopt the
view point independent algorithm to solve this problem. The principle of this
algorithm is the following: a view will be regarded as the best one if the angle
between the camera viewing direction and the normal of the patch is maximum.
Figure 13 shows the texture mapping results by using this method with 6 images.

Fig. 13. Texture mapping via view point independent method
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4.2 Cylinder Unwrapping Method

From figure 13 we observed that the texture is not consistent because the illu-
minations in the 6 images are very different. To deal with this problem we are
designing a cylindrical unwrapping method. It is implemented in the following
way:

Fig. 14. Examples of generating texture by slicing the model. Left two images: The
front view slicing and its generated texture. Right two images: The side view slicing
and its generated texture. The definition of the texture is 512 width and 1024 height.

Fig. 15. Synthesized Texture

– Estimate first the 3D vertical axis of the specific model centered around the
inertia center of the body volume

– construct the vertical cutting plane containing the camera focal center and
this axis.

– Slice vertically the specific model with 2 vertical planes, one to the left of the
cutting plane and the other one to the right side of this cutting plane. These
planes are indexed by the angles -teta1 and +teta2 (they may be equal or
not). This defines an angular portion of the 3D human body (see figure 14.

– We sample the interval [-teta1, +teta2] with N1 values, and the body total
height by N2 values and build a N1xN2 image containing the color of the
point corresponding to its height N2 and its angle N1 on the 3D body.

– we perform the same operation for the next view in order to cover the com-
plete [0, 360] interval and chose each teta1 and Teta2 value such that the
corresponding [height, teta] images overlap and finally perform a linear angu-
lar interpolation between neighboring images.Figure14 shows a 2D [height,
teta] image corresponding to the left part of the figure. The full [0, 360]
blending of the images is shown in in Figure 15.
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Fig. 16. Texture mapping with Synthesized Texture

– Finally we perform the texture mapping using the former image. The final
result is shown in Figure 16.

This work is still underway as we have to detect occlusions and adapt the
technique (using multi-layer visibility considerations) in order to use multiple
[height, teta] images for the same view. Occluded parts of one view will be tex-
tured by the other views and angular interpolation will be run on these multiple
images in parallel.

5 Skinning

For our future work on 3D human body tracking, the skinning is implemented
via adopting a vertex blending algorithm [20]. A specific skeleton is obtained
after deforming the generic skeleton with RBF. The weighting parameters used
for connecting the skin to the skeleton can be set in 3DS Max and exported into
a XML files. Figure 17 shows the result of skinning of one arm. However, this
skin deformation technique sometimes produces non-natural results. For future
work, dual quaternion algorithm [21] will be adopted to obtain better skinning
results.

Fig. 17. Skinning

6 Conclusion

In this paper a new technique for modeling a 3D human body of a particular
person based on a limited set of images acquired from different viewpoints with
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wide baseline has been introduced. First, characteristic points clicked both on
a generic model and on these images are required. Then we establish an initial
model by using a camera calibration/feature-point reconstruction loop and inter-
polating the sparse reconstructed points using RBF. The initial model is refined
by using a silhouette contour adaption which consists in matching the projec-
tion of silhouette edges of the initial model with the image limbs. To obtain a
higher quality model, three filter are implemented to eliminate different defects
distributed on the mesh. Finally the model is texture-mapped by using a novel
method which synthesizes images used for reconstruction to yield an integrated
texture with continuous illumination changes. Furthermore, a vertex blending
skinning is implemented as the foundation for future motion tracking.

In the future, we are planing to improve the quality of texture mapping via
automatically adapting slice angle according to silhouette of 3D model and in-
corporating occlusion considerations. Then we will use this customized model to
track the target subject.
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Abstract. In this paper, a fuzzy based impulse noise removal technique
has been proposed. The proposed filter is based on noise detection, fuzzy
set construction, histogram estimation and fuzzy filtering process. Noise
detection process is used to identify the set of noisy pixels which are used
for estimating the histogram of the original image. Estimated histogram
of the original image is used for fuzzy set construction using fuzzy number
construction algorithm. Fuzzy filtering process is the main component of
the proposed technique. It consists of fuzzification, defuzzification and
predicted intensity processes to remove impulse noise. Sensitivity analy-
sis of the proposed technique has been performed by varying the number
of fuzzy sets. Experimental results demonstrate that the proposed tech-
nique achieves much better performance than state-of-the-art filters. The
comparison of the results is based on global error measure as well as lo-
cal error measures i.e. mean square error (MSE) and structural similarity
index measure (SSIM).

Keywords: Image restoration, fuzzy logic, structural similarity index,
impulse noise.

1 Introduction

Image restoration is an important branch of image processing, which deals with
the reconstruction of images by removing noise and blurriness, and making them
suitable for human perception. Images can become corrupted during any of the
acquisition, pre-processing, compression, transmission, storage and/or reproduc-
tion phases of processing [1],[2]. Spatial image restoration technique can be di-
vided into two broad categories namely conventional and blind image restoration
techniques [3]. Information about the degradation process is generally known in
case of conventional image restoration techniques. This known information can
be used in developing a model which is further used to restore the corrupted im-
age back to its original form. Conventional techniques are used to solve motion
blur, system distortions, geometrical degradations and additive noise problems.
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Recently, more focus has been placed on the blind image restoration [3], where
the image has to be restored directly from the degraded image without any prior
knowledge about the degradation process. Main objectives in developing blind
image restoration technique are to remove noise along with preserving the image
details. Smoothing a region of the degraded image might destroy an edge and/or
texture information while sharpening edges might lead to amplification of un-
necessary noise. In the sequel, we present a spatial image restoration technique
which is based on histogram statistics and fuzzy logic to remove impulse noise
along with edge preservation.

A number of approaches have been developed for the impulse noise removal.
Tukey [4], Astola et al. [5], and Pitas et al. [6] have used median filtering to
remove impulse noise. It has been observed that the median based filter cannot
give good results when noise rate is high. Furthermore, number of fuzzy based
image restoration techniques has been developed for impulse noise removal. For
instance, the histogram based fuzzy filter (HFF) [7], novel fuzzy filter (NFF) [8]
and genetic based fuzzy image filter (GFIF) [9] are the examples of the most
recent fuzzy filters. HFF is able to outperform the rank-order filter (such as
median filter) for the whole range of the corruption rate ranging from 0.1 to 0.9
without any training. NFF gives superior performance than the median filter
for highly corrupted images, however it does not preserve the image details well.
NFF also uses histogram of the original image or image database to find the fuzzy
parameters, which shows that it is not a pure blind technique. GFIF performs
well for the whole range of corrupted images but the major drawback of GFIF
is its extensive training as well as original image or image database is required
to calculate the fuzzy sets.

In this paper, we propose a modified histogram based fuzzy filter (MHFF) to
remove impulse noise from low as well as highly corrupted images.The proposed
filter consist of noise detection, fuzzy set construction through fuzzy number
construction algorithm, histogram estimation and fuzzy filtering process. Exper-
imental results show that MHFF gives much better results than state-of-the-art
fuzzy based filters as well as median filter for impulse noise removal. Main Con-
tribution of the proposed technique includes:

– It is a pure blind image restoration technique which gives better results than
state-of-the-art filters without any training.

– Proposed technique uses the fuzzy number construction algorithm[8] instead
of principle of histogram potential[7] to construct fuzzy sets.

– Sensitivity analysis of the proposed technique is performed by varying the
number of fuzzy sets.

The rest of the paper is organized as follows. In section 2, system architecture of
the MHFF is presented. Section 3 presents the fuzzy filtering process. Fuzzy set
construction has been discussed in section 4. Experimental results and sensitivity
analysis of the proposed technique are described in section 5. Finally conclusion
is drawn in section 6.
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2 System Architecture of the MHFF

In this section, system architecture and its working are presented. Block diagram
of the system is shown in figure 1. In the first step, set of noisy pixels Npixels are
detected using noise detection process. To determine Npixels , noise detection
process scan the image using a window of size 3x3 from left to right and top
to bottom. The central pixel of the sub-image will belong to the set Npixels if
it is minimum, maximum, less than some threshold T or greater than 1-T. The
set of noisy pixels and the corrupted image histograms are used to estimate the
histogram of the original image using the following equation.

Hest(i) =
Hcorr(i) − Hnoisy(i)

255∑
g=0

(Hcorr(g) − Hnoisy(g))
(1)

where Hcorr and Hnoisy are the histograms of the corrupted image and set of
noisy pixels respectively. Hest represent the estimated histogram of the original
image. We have considered 8-bit gray scale images so gray level ranges from 0
to 255.

Estimated histogram of the original image is used to construct fuzzy sets.
MHFF is designed to create five fuzzy membership functions namely very dark
(vdk), dark (dk), medium (md), bright (br) and very bright (vbr). Therefore,
each intensity pixel under the considered window is treated as the fuzzy variable
with membership degree in the fuzzy set vdk, dk, md, br and vbr. Member-
ship functions identify the degree of brightness for each input pixel. Following
equation shows the trapezoidal shaped membership function used in MHFF [11].

fA(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0,
(x−aA)
(bA−aA) ,

1,
(dA−x)
(dA−cA) ,

0,

x < aA

aA ≤ x < bA

bA ≤ x < cA

cA ≤ x < dA

x ≥ dA

(2)

The trapezoidal function of fuzzy set A ε vdk, dk, md, br, and vbr. This fuzzy
set is denoted by the parameters

[
aA bA cA dA

]
Section 3 presents the details

about the calculation of these parameters through fuzzy number construction
algorithm [8].

3 Fuzzy Filtering Process

Fuzzy sets (Section 4) and estimated histogram are used in fuzzy filtering process.
Fuzzy filtering process consists of fuzzification, de-fuzzification and predicted
intensity calculation processes. These components of fuzzy filtering process are
described one by one as follows:

Fuzzification. A window of size 3x3 is used to scan the image from left to right
and top to bottom. In each window where the central pixel is detected noisy
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by the noise detection process is considered as the candidate for fuzzy filtering
process. In the first step, each pixel under the candidate window is considered as a
fuzzy variable and its degree of brightness is calculated using fuzzy membership
functions. This process of calculating the degree of membership is known as
fuzzification process.

Defuzzification. In this step, all the outputs from the previous step belonging
to each membership function are separately used for defuzzification. Resultantly,
the outputs of this step will be five crisp values, calculated using equation 3 [11].

DA =

⎧⎪⎪⎨⎪⎪⎩
9∑

i=1
fA(xi)∗xi

9∑
i=1

fA(xi)
if

9∑
i=1

fA(xi) > 0

0 otherwise

(3)

where DA represents output of the defuzzification process associated with fuzzy
membership function having fuzzy set A ε vdk, dk, md, br, and vbr. This fuzzy set
is denoted by the parameters

[
aA bA cA dA

]
where xi denotes the corresponding

pixel value i = 1, 2, . . . , 9 where fA(xi) represent the membership degree of xi

in fuzzy set A.

Predicted Intensity Process. Finally in order to choose best estimate of the
corrupted pixel under the considered window, predicted intensity is computed. It
is calculated using the mean of the non-noisy pixels under the 3x3 pixel window
as shown in figure 1.

4 Fuzzy Set Construction

The proposed technique uses the fuzzy number construction algorithm [8] instead
of using the principle of histogram potential [7] to calculate the parameters of
the trapezoidal fuzzy membership functions. Estimated histogram of the original
image and the number of fuzzy sets to be constructed are given as input to the
algorithm. This algorithm gives the parameters of the fuzzy sets as output.

In this paper, we use the luminance fuzzy variables with five linguistic terms.
The fuzzy sets for an image include very dark (vdk), dark (dk), medium (md),
bright (br) and very bright (vbr). These fuzzy sets can be represented by the
following equation.

vdk =
[
avdk bvdk cvdk dvdk

]
dk =

[
adk bdk cdk ddk

]
md =

[
amd bmd cmd dmd

]
br =

[
abr bbr cbr dbr

]
vbr =

[
avbr bvbr cvbr dvbr

]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4)

The detailed algorithm for constructing the fuzzy sets can be found in [9].



Modified Histogram Based Fuzzy Filter 281

Fig. 1. Block Diagram of MHFF

5 Experimental Results and Sensitivity Analysis

In order to test the quality of the proposed technique, we compare MHFF with
the other state-of-the-art filtering techniques such as HFF, NFF and median fil-
ter. The quantitative measures used for comparison are mean square error (MSE)
and structural similarity index measure (SSIM) [10]. Representative results for
a typical ”Lena” image are shown in table 1, where the image is corrupted
with impulse noise (salt and pepper) with noise level ranging from 0.1 to 0.9.
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Table 1. Comparison of de-noising methods for Lena image degraded with salt and
pepper noise having corruption rate varying from 0.1 to 0.9

Method Quality Noise Corruption Rate
measure

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

NFF MSE 40.6 59.6 82.4 125.17 222.04 561.7 1475.9 4964.3 13655

SSIM 0.9 0.8 0.8 0.79 0.72 0.58 0.38 0.16 0.05

HFF MSE 85.2 89.2 101.5 119 177.82 375.61 1095.1 3382.3 8899.2

SSIM 0.8 0.8 0.8 0.84 0.8 0.69 0.44 0.19 0.06

MF MSE 68.1 133.2 325.8 1028.4 2210.2 4326 7597.7 11509 16342

SSIM 0.8 0.8 0.7 0.49 0.28 0.15 0.07 0.04 0.02

MHFF MSE 31.1 39.1 52.5 74.91 135.99 333.28 999.51 3185 8379.3

SSIM 0.9 0.9 0.9 0.91 0.86 0.75 0.48 0.21 0.06

Fig. 2. (a) Original Lena image (b) Image corrupted with 30% impulse noise (c) After
the HFF method (MSE=101.59)(d) After NFF method (MSE=82.48) (e) After MF
method (MSE=325.82) (f) After the proposed MHFF method (MSE=52.52)

Results show that the MHFF gives much better results for low as well as highly
corrupted images.

Visual performance of MHFF is shown in figure 2, which shows that the
proposed technique (Fig. 4(f)) removes the impulse noise and preserves the image
details better than the other competitive techniques. Sensitivity analysis of the
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Fig. 3. Sensitivity Analysis of the proposed technique based on number of fuzzy sets

proposed technique is performed on the basis of number of fuzzy sets constructed
through fuzzy number construction algorithm. Figure 3 compares the MHFF
results with three and five fuzzy sets. It can be seen that MHFF with five fuzzy
sets gives better performance but difference is quite less which shows that the
proposed technique is robust against number of fuzzy sets used.

6 Conclusion

In this paper, a modified histogram based fuzzy filter (MHFF) is introduced.
MHFF consists of noise detection, histogram estimation, fuzzy set construction
and fuzzy filtering process. From the experimental results, we observed that
the proposed filter gives much better results than the other filtering techniques.
Sensitivity analysis of MHFF is also presented in this paper which is based on
varying the number of fuzzy sets. In sensitivity analysis it has been proved that
MHFF with five fuzzy sets gives better results than having three fuzzy sets but
the difference is quite less which shows the robustness of the proposed technique
against the number of fuzzy sets used. In future, we will extend this technique
for uniform impulse noise removal.
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Abstract. In this paper, we propose the method which transfers the color style 
of a source image into an arbitrary given reference image. Misidentification 
problem of color cause wrong indexing in low saturation. Therefore, the pro-
posed method does indexing after image separating chromatic and achromatic 
color from saturation. The proposed method is composed of the following four 
steps. In the first step, using threshold, pixels in image are separated chromatic 
and achromatic color components from saturation. In the second step, separated 
pixels are indexed using cylindrical metric. In the third step, the number and 
positional dispersion of pixel decide the order of priority for each index color. 
And average and standard deviation of each index color be calculated. In the fi-
nal step, color be transferred in Lab color space, and post processing to removal 
noise and pseudo-contour. Experimental results show that the proposed method 
is effective on indexing and color transfer.  

1   Introduction 

Recently as the multi-media technology has been developing rapidly, numerous piec-
es of information are made into digital signals and multimedia formats, digital com-
position tools such as digital cameras and scanners are getting better and better, and 
interests in the creation and modification of multimedia contents have been increasing 
steadily. However, it is not easy to express one’s uniqueness freely by using the pro-
fessional tools for multimedia such as Photoshop, Paintshop, Painter, and Image 
Ready, etc. Moreover, even if those composition tools for digital contents are widely 
developed for use, it is not easy to achieve an image with style that you really want 
unless you are an expert. Therefore, there have been on-going efforts for develop-
ments of a method that can transfer styles by using color, one of elements that exhibit 
style of an image. This can be achieved by transferring the colors of an original image 
in to colors of a reference image, and the style of the original image can be transferred 
very close to the reference image. In the previous studies on the color transfer of  
an image[1], a composer created by being influenced by the characteristics of the 
same composer, but a color transfer method by using a painting image that invokes 
different feeling has been investigated. However, if color is transferred by using the 
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existing methods for a nature image as an object instead of a painting image, many 
problems can occur. Recently, color transfer methods that use nature images have 
been frequently investigated, but in most cases, the number of colors used in nature 
images as application objects may be too small or change in color may not be drastic. 
Therefore, we need to develop a color transfer method for nature images in more 
various environments. This paper proposes a color transfer method that uses an image 
indexed by distinguishing chromatic and achromatic colors. There are several meth-
ods in the literature for color transfer; the color transfer method that uses the entire 
image as the object [2]; one that uses newly generated palette by extracting represen-
tative colors of an input image [3]; and, lastly, one that uses a cumulative histogram. 
The method that uses the entire image as an object for color transfer uses simple sta-
tistical tools to speed up the computational processing. It is effective to transfer color 
in an image with small number of colors, but, because it can not reflect the character-
istics of a local color with increase in the number of colors, a mix up problem occurs 
with this method [2]. The method of color transfer that generates palette after extract-
ing representative colors of an input image employs a painting image as an object. 
After being extracted from an input image, representative colors that dominate the 
overall style of an input image are selected, and from this color is transferred. How-
ever, after an image is segmented, representative colors are extracted by using down 
sampling method. Regions with the same colors are transferred in to different colors, 
and therefore, pseudo-contours that do not exist in the original image are generated. 
For this reason, one shortcoming of this method can be the unnatural resultant image 
[3]. In the method of cumulative histogram, histograms of original and reference 
images are matched for color transfer. Since this method uses the number of pixels, it 
does provide the information on space of an image, but due to lack of the information 
on space, a problem with this method is the generation of noise and pseudo-contour 
[4]. This paper proposes a method of color transfer that generates indexing by separat-
ing chromatic and achromatic colors of image in order to reflect the characteristics of 
a local color of an image.  Also this method can be applied to not only nature images, 
painting images. By extracting the edge region from non-edge one, pseudo-contours 
and noise are removed by post-processing the non-edge region. This paper will ex-
plain the existing color transfer methods in the second chapter, and the method that 
we propose in the third chapter. The proposed method consists of four steps. A step 
that separates chromatic and achromatic colors by using threshold of saturation; a step 
that generates indexing of 11 index colors by using cylindrical metric for the sepa-
rated pixels; a step that prioritizes each index colors and calculates the average and 
the standard deviation; and lastly a post-processing step that transfers colors by using 
channel a and channel b in the lab color space, and that eliminates the pseudo-
contours and the noise of an image. The fourth chapter will analyze the proposed 
method through experimental results, and the fifth chapter presents the conclusion and 
the future projects.  

2   Previous Works 

In this chapter, we will survey the existing methods such as the method that transfers 
color by using the average and the standard deviation in the lab space, the method that 
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uses palette, and the method that uses a cumulative histogram, as well as their charac-
teristics and problems associated with each method. 

Reinhard et al. proposed a transfer method of the original and reference images that 
uses the average of each channel in the Lab color space and the standard deviation of 
each pixel [1]. This method takes the entire image as an object, and uses the average 
and the standard deviation of sum of two images for color transfer. Therefore, the 
method is very efficient because it employs a simple computation that takes only  
1 or 2 seconds. However, since it calculates the average and the standard deviation for 
the whole image, there are only one average and one standard deviation for the entire 
image. For this reason when we use an image with various colors, because the value 
of mixed colors are calculated for one average and one standard deviation, the origi-
nal image will not be transferred in to the color that represents the reference image. 
Also by having one average and one standard deviation, there is a limitation for ex-
pressing the characteristics of local color of an image.  

Greenfield et al. proposed a color transfer method that divides an image into 
pieces, extracts palette by using representative colors through down sampling, and use 
the result of extraction for color transfer [3]. This method used only oil painting im-
ages as its objects for a color transfer purpose.  Therefore, they use only channel a 
that reflects the color information of red and green, and channel b that reflects the 
color information of blue and yellow, but do not use channel L that indicates the light-
ing out of all channels in the Lab space. Also because colors of palette from an input 
image are extracted, we are able to extract the colors that represent the image. How-
ever, among the colors of the original and reference images, by transferring colors 
that are close in space, the regions with similar colors are separated in to different 
regions and go through color transfer. Therefore, the resultant image becomes unnatu-
ral, and pseudo-contours that are not present in the original image can be created. 

Neumann proposed a color transfer method by calculating cumulative histograms 
of hue, saturation, and intensity channels in the HSI color space and by using a func-
tion obtained from the probability density function and the cumulative density func-
tion [4]. In the method, we may notice that the cumulative histogram distributions in 
the resultant image and the reference image are the same if you transfer color by using 
a cumulative histogram in the first dimension. In the method that uses cumulative 
histograms for color transfer, there is no space information due to its use of the num-
ber of pixels for each channel, and because of this, a lot of pseudo-contours and noise 
are generated. 

3   Proposed Method 

The proposed method comprises of the following.  

1. Separate chromatic and achromatic colors after measuring the saturation of 
an input image in order to prevent indexing error in the low saturation region. 

2. In order to reflect the characteristics of local colors in an image, generate in-
dexes into 11 index color by using the separated pixels. For the distance cal-
culation, the cylindrical metric is used. 

3. In order to transfer colors by grouping dominant colors in an image, each 
color index is prioritized by using the number of pixels and the degree of 
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dispersion. The average and the standard deviation for each color index are 
calculated. 

4. Implement the color transfer by using channels a and b in the Lab color 
space. Also, in order to eliminate the noise and the pseudo-contours of an 
image, implement blurring after extracting the non-edge region. 

3.1   Separating Chromatic and Achromatic Colors by Using Saturation 

In this paper, in order to prevent indexing in to inappropriate colors under low satura-
tion of each pixel of an image, the color index for each pixel is generated by separat-
ing chromatic and achromatic colors. For separation of chromatic and achromatic 
colors, threshold of saturation is used. Chromatic colors denote the colors that have 
saturation and have all three elements of color, which are hue, saturation, and inten-
sity. In an achromatic color, there is only intensity but no hue and saturation. How-
ever, it is very rare that a common image is completely devoid of hue and saturation 
altogether, and, moreover, ‘hue’ one of elements that divide a color into chromatic 
and achromatic, is independent of the intensity component. Therefore, it has the most 
distinguishing power among three HSI channels of the color space (hue, intensity, and 
saturation). However, for the low saturation, the function that separates color gets 
very low, and the distinguishing power becomes unstable. Therefore, this paper pre-
sents a method that is able to separate chromatic and achromatic colors by using 
threshold of saturation [5], [6]. As saturation approaches to 0, it gets closer to inten-
sity and it is hard to distinguish hue. As saturation approaches to 1, it gets closer hue 
and it is hard to distinguish intensity. Also, human eyes respond less sensitive to a 
change in saturation. Through these facts we can realize that hue and intensity are 
more important to the recognition of human eyes. Therefore, in order to limit changes 
in saturation, we need to separate an image into chromatic and achromatic colors for 
color transfer. The threshold value for saturation is set to 0.2 [7], [8]. Formula (1) 
shows the definition of the threshold for saturation. 
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Here, sT  denotes the threshold value for saturation that separates chromatic and ach-

romatic colors, and sP  pixel of an image. Using the threshold for saturation, colors 

are separated in to chromatic and achromatic colors, and indexes are generated with 
the separation by applying them to 11 index colors for an input image. 

3.2   Indexing by Using Cylindrical Metric 

Indexes are generated in order to reflect the characteristics of local colors of an image, 
and the cylindrical metric method is used to do this. The cylindrical metric is calcu-
lated in the HSI color space; that is, because this is a model that is more susceptible to 
the human sense by user-oriented expression, unlike the RGB color space that pro-
vides hardware-oriented expression such as CRT monitors, it enables generation of 
indexing in to appropriate colors that a user may be able to recognize easily [9], [10]. 
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Index colors used to generate indexes employ the Basic Color Terms, first proposed 
by Berlin et al., who reported general Basic Color Terms by investigating similar 
types and the color range through 98 languages. Basic Color Terms are composed of 
red, green, yellow, blue, brown, purple, pink, orange, black, white, and gray [11], 
[12]. In order to measure the similarities between the pixels that are divided into 
chromatic and achromatic colors and 11 index colors, the cylindrical metric method is 
used to measure the distance between pixels in the HSI color space. The distance 

),( yxDcyl  between two pixels x and y can be calculated through formula (2), (3), 

(4), and (5). 
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Here, H denotes the hue value of a pixel, S the saturation value of a pixel, and I the 
intensity value of a pixel. By calculating similarities between each pixel and index 
colors, what color index each pixel belongs to is determined. For this, since genera-
tion of indexes excludes surrounding pixels when the distance between each pixel and 
index color is calculated, it is likely that a pixel is similar to the surrounding pixels, 
but has a different index because of a different index color value. In order to compen-
sate this, a mask can be used to verify the index color of surrounding pixels and the 
central pixel. Through the verification procedure, the numbers of the central pixel and 
the surrounding pixels that have different index color are calculated. If there are more 
than 7 calculated values, it is considered a wrong index. Therefore, cases where sur-
rounding pixels have more than 7 index colors should be sought for, and the index 
color at the time is modified. Of course, when the number of calculated surrounding 
pixels is than 7, index colors for the central pixel are used without modification. This 
is repeated until there is no index color that needs compensation. 

3.3   Prioritizing Color Index 

Priorities of index colors are determined in order to first transfer color for index color 
that dominates the overall style of an image, and in order to do this, the variation 
according to the number of pixels and configuration is used and calculated. When 
only the number of pixels pertaining to each index color is considered, and when the 
degree of scattering is big even though there are many pixels inside an image, the 
color that does not dominate the overall style of image may dominate, and a transfer 
color with an inappropriate order may occur. In order to solve this problem, priorities 
of variation calculated according to the locations between pixels that belong to each 
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index color are determined. By variation according to the locations it means the calcu-
lation of distance between pixels in an image. For the purpose of color transfer, the 
average and standard deviation of the pixels that belong to each index color are calcu-
lated. Formula 6 is the average of pixels that belong to each index color, and formula 
7 is the standard deviation of pixels that belong to each index color. 
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Here, i denotes the number according to each index color, iμ  the average of i-th 

index color, iσ  the standard deviation of i-th index color, and P the pixel of an im-
age. When the number of index color in the original image is the same as that in the 
reference image, or when the number of index color in the reference image is more 
than that in the original image, there is no error that may be caused by the empty 
index color. However, if there is more index color in the original image, leaving emp-
ty the corresponding index color in the reference image, there will be a problem dur-
ing the color transfer. In order to solve this problem, the average and the standard 
deviation are calculated by using index color existing in an image, and this kind of 
process will be implemented unless it damages the overall style of an image. Formula 
(8) calculates the average of empty index colors, and formula (9) calculates the stan-
dard deviation of empty index colors.  
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Here, i
BCTsP  denotes the value of the index color that corresponds to the i-th index 

color. 

3.4   Color Transfer in Lab Color Space 

There is also a color transfer method proposed by Reinhard et al. [2], who used the 
average and the standard deviation in the lab color space. They used the calculated 
values for color transfer, but this paper proposes a method of color transfer by using 
only channel a that represents red and green, and channel b that represents blue and 
yellow color information, but by omitting channel L that represents lighting in the Lab 
color space. Formula (10) is the color transfer formula for this method. 
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Because the color transfer method in this paper does not consider the relationship with 
the adjacent region, there will be the pseudo-contours and that noise that do not exist 
in the original image. The adaptive sobel filter that Chi Eun Mi et al. proposed can be 
used in order to solve this problem [13]. By locating edge using ASF, non-edge re-
gions are smoothed by using the median filter. In general, a fixed threshold is used in 
order to determine the existence of edge. This kind of method has the drawback that it 
can not control the amount of edge depending on the change of intensity in an input 
image. In order to solve this, after a non-edge region is determined by using sobel 
edge filter, which determines a threshold value according to the local characteristics 
of the region that matches the mask and that applies to an image, the median filter is 
applied. Edges in the horizontal and vertical directions are extracted through the sobel 
mask, and are divided by the average intensity. If the divided value is greater than 1, it 
is an edge area; if it is smaller than 1, it is classified as non-edge. For the value that is 
classified as non-edge the median filter is applied. When the strength of vertical and 
horizontal edges obtained by the sobel mask is high, or when the average intensity is 
high, more edge is extracted. On the contrary when the strength of edge is low, or 
when the average intensity is low, less edge is extracted. That is, depending on the 
degree of change in light intensity within the mask region, each pixel is determined 
for whether it is edge or not. Therefore, we can obtain the edge extraction result that 
is more robust to change in light density, compared to the edge extraction obtained by 
using fixed threshold. The median filter is a method that takes the median value 
among those pixels by having surrounding pixels stand in a line, and that is very ef-
fective in eliminating impulse noises. 

4   Experimental Result 

In this paper, for the comparison purpose of the proposed method, tests for color 
transfer of an original image into a reference image by using a painting image of 
WebMuseum.Paris and Artframed, images of nature from Corel Database, and nature 
images collected from the Web [14], [15], [16]. 

4.1   Indexing Result 

Figure 1 shows the result of index generation using such various methods. It can be 
seen that the color of the building in the original image is bearing light yellow. How-
ever, in the result from generation of index using Euclidean and cylindrical distances 
without applying chromatic separation, the building appears to bear yellow and white 
index colors. Also, if you look at the color of the sky, regardless of the fact that it 
went through chromatic separation or not, a color that is not blue is generated in the 
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area where index is generated by using Euclidian distance. Also, in the resultant im-
age that index color is generated by using cylindrical distance without undergoing 
chromatic separation, you can see that in the region of the sky the indexing is divided 
in to two different regions.  Therefore, when indexing is generated without chromatic 
separation, two index colors can be generated in the image that gradation is applied 
to, or we can identify such generation that two improper index colors are generated 
for low saturation. In order to solve this, chromatic separation is applied, and in figure 
4 we can identify that the index color for blue region and the color of the building’s 
wall are effectively generated if you look at the result of indexing with chromatic 
separation. 

 
(a) 

 
(b)                             (c)                             (d)                             (e) 

Fig. 1. The indexing results (a) original image (b) proposed method(separation and cylindrical 
distance) (c) separation and Euclidean distance (d) no separation and cylindrical distance (e) no 
separation and Euclidean distance 

 
(a) 

    
(b)                                         (c) 

Fig. 2. The indexing result (a) original image (b) separation and cylindrical distance (c) no 
separation and cylindrical distance 

As can be seen in figure 2, the colors of clothes, background, and blue jean and 
skirt on the laundry rope all have the same blue kind of color. These colors may look 
as if they are generated as blue index color in the proposed method. However, genera-
tion of index using the cylindrical distance without chromatic separation results in the 
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white index color such as clouds, other than blue index color in the background with 
low saturation. Also, the color of the socks to the left of the character, results in the 
wrong index as the red index color due to low saturation. 

4.2   Color Transfer Result 

Figure 3 is the result of the method by Reinhard et al. that utilizes one average and one 
standard deviation in an original image and a painting image for color transfer. Domi-
nant colors of the original and painting images are similar. However, because it uses 
one average and one standard deviation in the method that Reinhard et al. proposed, 
the color of the background and the color of the dinosaur in the reference image are 
mixed up resulting in the increase in the image intensity. Since the method that this 
paper proposes utilizes a method that separates saturation and generates index, it looks 
as though the color of the reference image is a lot better after color transfer. 

 
(a)                           (b)                           (c)                         (d) 

Fig. 3. The color transfer result (a) original image (b) reference image (c) Reinhard’s method 
(d) proposed method 

 
(a)                           (b)                          (c)                           (d) 

Fig. 4. The color transfer result (a) original image (b) reference image (c) Reinhard’s method 
(d) proposed method 

As can be seen in figure 4, the method that Reinhard et al. proposed mixes up blue, 
the color of rocks, and the color of stones in the reference image, and results in the 
transfer to the red color that does not exist in the reference image. In the method this 
paper proposed, the dominant green color in the original image and the dominant blue 
color in the reference image are properly matched during color transfer. Figure 5 and 
6 shows the original and reference images and the result of the color transfer methods. 

As can be seen in figure 5 (d), the background of the original image transferred 
into a similar color. However, you can see improper colors in the upper right and the 
lower left of the image. This kind of problem occurs when similar regions are divided 
into different regions and transferred into different colors, due to the region-based 
image segmentation, a kind of area-based segmentation. Also, if you look at figure 5 
(e), the resultant image looks more natural because the kinds of color in the original  
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(a)                           (b) 

       
(c)                          (d)                           (e) 

Fig. 5. The color transfer result (a) original image (b) reference image (c) proposed method (d) 
Greenfield’s method (e) Reinhard’s method 

image and the reference image are similar. However, since only one average and one 
standard deviation are used and the characteristics of local colors of the image were 
not reflected, most of the colors in the resultant image exhibit a kind of yellow color. 
This problem can be solved by segmenting similar regions in to different colors, as 
shown in figure 5 (c) that used separation method of saturation-hue from indexing by 
using separation of saturation-hue by pixels. Also, because colors are indexed accord-
ing to the index color item, you can identify that the color transfer was done effec-
tively by applying the characteristics of local colors of an image. 

     
(a)                     (b)                    (c)                      (d)                     (e) 

Fig. 6. The color transfer result (a) original image (b) reference image (c) proposed method (d) 
Greenfield’s method (e) Reinhard’s method 

The reference image in figure 6 (b) has mostly yellowish kind of a color with high 
intensity, but the background has the dark kind of a color. In the result that Greenfield 
et al. employed, saturation of an image is low due to the color of background, and a 
brown kind, instead of a yellow kind, are the majority of the color. Likewise, most of 
the color in figure 5 which is the result by using the method that Reinhard et al. pro-
posed indicates the yellow kind, one of the representative colors of the reference im-
age. Also, in the results of methods that Greenfield et al. and Reinhard et al. employed, 
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changes in intensity occur many times, and because of this, you can notice that a lot of 
detailed description of length or bottom of tree disappears. In the result of the proposed 
method, by using indexing through saturation-hue separation, overall style of an image 
is maintained yellow, and the detailed description of an image is effectively shown by 
keeping the local characteristics of a color. 

5   Conclusion 

In this paper, a color transfer method of an image that generates indexing by using the 
threshold of saturation has been proposed. This proposed method can be applied not 
only to a painting image but also to a nature image, and it separates chromatic and 
achromatic colors by using the threshold of saturation. Therefore, indexing to a proper 
color is generated even in a low saturation environment that reduces the distinguish-
ing power. Also, by using an adaptive edge mask and the median filter, the noises and 
pseudo-contours caused during the color transfer can be eliminated. However, in 
addition to hue there are many elements that affects the style of an image, and there-
fore, we need to investigate further color transfer methods on the style of an image by 
taking into consideration of other elements such as lighting other than color elements. 
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Abstract. Being able to produce realistic facial animation is crucial for
many speech applications in language learning technologies. Reaching
realism needs to acquire and to animate dense 3D models of the face
which are often acquired with 3D scanners. However, acquiring the dy-
namics of the speech from 3D scans is difficult as the acquisition time
generally allows only sustained sounds to be recorded. On the contrary,
acquiring the speech dynamics on a sparse set of points is easy using
a stereovision recording a talker with markers painted on his/her face.
In this paper, we propose an approach to animate a very realistic dense
talking head which makes use of a reduced set of 3D dense meshes ac-
quired for sustained sounds as well as the speech dynamics learned on
a talker painted with white markers. The contributions of the paper
are twofold: We first propose an appropriate principal component anal-
ysis (PCA) with missing data techniques in order to compute the basic
modes of the speech dynamics despite possible unobservable points in
the sparse meshes obtained by the stereovision system. We then propose
a method for densifying the modes, that is a method for computing the
dense modes for spatial animation from the sparse modes learned by the
stereovision system. Examples prove the effectiveness of the approach
and the high realism obtained with our method.

Keywords: Face animation, densification, PCA with missing data.

1 Introduction

There is a strong evidence that the view of speaker’s face visual information
noticeably improves the speech intelligibility. Hence, having a realistic talking
head could help language learning technology in giving the student a feedback
on how to change articulation in order to achieve a correct pronunciation. In
[7], Munhall and Vatikiotis provide evidence that lip and jaw motions affect the
entire facial structure below the eyes. High levels of details are thus required to
obtain highly realistic and perceptibly correct facial animation of the complete
face.

Though the utility of visual information to speech perception has been known
for a long time, progresses to develop talking faces which both look real and
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convey linguistic relevant information are more slower. What causes the intelli-
gibility enhancement afforded by the visible component of speech is difficult to
determine. For these reasons, many works argued the necessity for animating
face directly from visible articulatory data either in 2D [3] or in 3D [2,4,5,6].
Most of these data are 3D meshes of the face which can be sparse -when they
are acquired using markers or sensors glued on the face- or dense using laser
scanner acquisition. It must be noted that do not operate with a sufficient speed
for speech acquisition (an acquisition rate of 120 Hz is required to acquire fast
articulatory gestures of consonants). As a result, high resolution scanners can be
used for sustained sounds as vowels but it is not obvious that they can be used
to acquire all the dynamics of speech production.

Most methods for animating face are based on the extraction of the basic
modes of spatial deformations during speech using principal component analysis
(PCA). They span a space which describes at best all the plausible face deforma-
tions corresponding to speech production. Constructing such a space requires to
physically match the points of the meshes at each time instant. This task is easy
when sparse meshes are considered but it becomes complex for dense meshes.
In this latter case, a generic head template is generally used [5,6] to align all
the scans using prominent features such eyes, nose. Obtaining rough alignment
is largely automatic but accurate alignment requires a manual adaptation of
the model to the speaker specificities. In this paper, we favor a fully automatic
method and propose an automatic matching process guided by the sparse stereo
meshes.

Though PCA can be used both on sparse or dense meshes, it is difficult to
obtain the speech dynamics from dense meshes since the set of visemes that can
be acquired is limited to sustained sounds due to technical limitations in scanner
acquisition. It is thus not obvious to recover the complete speech dynamics from a
reduced set of 3D scans. For these reasons, we propose in this paper an approach
that makes use both of a small set of 3D scans acquired for sustained sounds and
of the speech dynamics learned from a stereovision sequence of the face painted
with markers. The main idea is to transfer the dynamics learned on the sparse
meshes onto the 3D dense meshes in order to generate realistic dense animations
of the face. This paper is an extension of our previous work [1]. In this past work,
only one dense mesh was used which turned out to be not accurate enough for
generating sounds which are too far from the reference dense mesh. We thus
propose in this paper significant extensions of the work in order to transfer the
dynamics learned from the sparse meshes onto the dense face.

Computing PCA modes for face animation from sparse meshes acquired by
stereovision is difficult because all the markers may not be observable at every
time instant. When the mouth is closed, points may become invisible, or at least
not sufficiently visible, to be correctly detected and reconstructed. Though this
difficulty is often ignored in the literature, this make the PCA more complex
and needs to resort to PCA with missing data techniques [8]. A novel way of
computing the face modes taking into account possible unobservable points is
thus presented in section 3.
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Our approach for computing the dense modes is presented in section 4. It
borrows concepts from transfer techniques [10] used in computer graphics to
map an object onto another. We specifically used this technique in section to
physically and automatically match the dense meshes using the underlying sparse
mesh to guide the transfer. This avoids doing manual adaptation of a generic
mesh to our talker. Finally, we propose a densification method which allows the
basic modes of the dense head to be computed from the sparse modes computed
from the learning sequence. As a result, this allows us to animate a dense head
using only a reduced set of 3D scans.

We demonstrate experimentally in section 5 that the proposed method is
efficient and allows us to obtain very realistic dense faces.

2 System Overview

Our method requires the acquisition of a set of 3D dense meshes of the talker.
In our study, these dense meshes were acquired with the Inspeck mega capturor
(www.inspeck.com) for 15 sustained sounds (vowels, fricatives and lip closure).
These dense meshes are also called visemes in the following.

In order to learn the face kinematics, a classical stereovision system with two
cameras was used to record a corpus. The acquisition rate of the cameras is 120
images/frames which is sufficient to capture fast movements of the articulators
(further details on this system can be found in [11]). Markers were painted on
the talker’s face in order to make the matching and the reconstruction stage
automatic. With 45 points on the lips and a total of 209 points on the part of
the face that is influenced by speech, the recovery of face kinematics is quite
detailed. Our experiments proves that between 5 to 7 PCA modes are sufficient
to describe the face kinematics.

The experimental set-up and the input data are shown in Fig.1. The first raw
exhibits a stereo image pair of the talker. Note that the points located on the
top of the head are used to compensate for head motions. Fig. 1.c is an example
of a sparse mesh obtained with the stereo system. Finally, Fig.1.d is the dense
mesh acquired for the /a/ sound.

3 PCA with Missing Data for Computing the Sparse
Modes

The 3D coordinates of each marker can theoretically be computed at each time
instant of the learning sequence using the stereovision system. In the following,
the 3D sparse mesh of the face computed at time instant t (t ∈ [1..T ]) are
denoted Xt = [X1,t, ..., XN,t], where N is the number of markers and Xi,t are
the 3D coordinates of the marker i at time instant t. Here, N=209 markers were
painted on the face. The duration of the corpus recorded for learning kinematics
was 6 minutes, giving rise to T=39000 stereo pairs.
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a. b.

c. d.

Fig. 1. Input data of the system: (a and b) a couple of stereovision images. White
points/markers were painted on the face ; (c): reconstruction of the sparse mesh; (d):
the 3D dense map obtained for the /a/ sound.

However, some markers may become unobservable during uttering when the
lips are very close. Practically, these markers may not be reliably detected in the
images by low level algorithms. It is especially the case for sounds like /u/, /o/,
/i/. Markers may also become unobservable in one of the image pair due to slight
head motions which make some points disappear from the field of view. Stereo
reconstruction is thus not possible for these points. Practically speaking, 77% of
the markers are always observable and thus reconstructed. 17% of the markers
have a reconstruction rate in the range [70%, 95%] and 6% of the markers have
a reconstruction rate less than 50% and are mainly located on lips (Fig .2). As
a result, some data are may be missing in the Xt data.

Most of the algorithms for building principal subspaces are based on the de-
composition of the covariance matrix of the input data and cannot be used when
some data are missing, as in the present case. However, there exist probabilis-
tic approaches where PCA is considered as a limiting case of a linear Gaussian
model. Principal axis can then be computed using Expectation-Maximisation
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(EM) algorithms [8]. Such algorithms can be extended to handle the problem of
missing data [9,8].

In this paper, we adapt these ideas to our particular problem in order to
compute the sparse modes. These ideas are also used in section 4 to compute
the dense modes. We first compute the principal components for the markers
R which are always reconstructed over the sequence. The components can be
easily computed with classical methods since all the data are available for these
markers. We then complete the entries of the principal components by intro-
ducing the markers which are not observable at every time instant using EM
techniques.

Let {ur
k}k≤q ∈ Rr, be the q principal components computed from the set of

markers which are always observable and let X̄r be the mean of these meshes.
Let u ∈ RN be the extended basis we are looking for. Given a mesh Xt ac-
quired at time instant t, let Xr

t be the reduced mesh, where only the markers
always reconstructed are considered. Xr

t can be approximated on the q principal
components as:

Xr
t ≈ X̄r +

q∑
k=1

αk,tu
r
k t = 1..T (1)

The goal of the complete components is to approximate any mesh as a linear
combination:

Xt ≈ X̄ +
q∑

k=1

βk,tuk t = 1..T (2)

As Xr
t is a sub-vector of Xt - 77% of entries of Xt are the entries of Xr

t in
our set-up- , it is likely that βk = αk is very close to the mean square solution
of (2). In the same way, we can consider that the entries of X̄ which correspond
to always reconstructed markers are identical to the entries of X̄r.

We then build a linear system which incorporates all the observations on
the non always observable markers. For each observation of a marker i at time
instant t, equation (2) gives rise to the following linear equation :

Xi,t = X̄i +
q∑

k=1

αk,tuk,i

Stacking all the equations for each visible marker at each time instant t leads
to a linear system where the unknowns are the missing uk,i (i /∈ R) and the
missing components of the mean X̄. The αk,t are computed by projecting the
reduced meshes onto the reduced components {ur

k} . Considering all the markers
which can be reconstructed at some instant of the sequence, we obtained a set
of linear equations which can be solved in the least square sense, giving rise to
the missing entries of the principal components and of the mean.
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Fig. 2. The markers in black are the ones which are reconstructed in every frame
and are taken into account in the reduced PCA. The markers in red are not always
reconstructed in the sequence and are considered in the computation of the principal
components using an iterative EM algorithm.

The principal components are then refined using the classical EM algorithm:

– Given the components uk and X̄, compute the coefficients αt,i for all the
meshes available in the sequence.

– given the αt,i, refine the uk,i and X̄ by solving for each i the system of linear
equations:

Xi,t = X̄i +
q∑

k=1

αk,tuk,i, t = 1..T

in the least square sense.

4 Generating Dense Modes from Sparse Modes

Dynamic realism is needed for linguistic expressions. Achieving realism needs to
have a high resolution 3D model as well as knowledge about the facial kinematics.
In our case, high resolution scanners of the face can only be obtained for sustained
sounds as vowels. We thus propose in this paper to transfer the change in shape
exhibited on the sparse meshes onto the dense mesh and to infer dense animation
modes from the sparse ones.

Here gain, as in the computation of the sparse mode, we use a densification
process to compute the dense modes from the sparse ones.

4.1 Overview

Let Xdense
1 , .., Xdense

d be the set of d dense visemes which were scanned. This
set contains 15 visemes of the french vowels as well as a neutral expression and
a face with closed mouth.
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We first suppose that these meshes physically matched, which means that the
vertex i in every mesh fits the same physical point in all the dense meshes. Ad-
ditionally, we also suppose that the dense and the sparse meshes are registered.
How to obtain such data will be considered in the next section.

The aim of PCA is to express each viseme as a linear combination of the dense
modes:

Xdense
i ≈ X̄dense +

∑
k=1..q

βi
kudense

k , i = 1..d (3)

The space spanned by the sparse modes is built so as to describe the plausible
appearances of a face. There thus exists a sparse mesh Xi which best fits each
dense mesh Xdense

i . Hence, we can compute coefficient αk,i such that:

Xi ≈ X̄ +
q∑

k=1

αk,iuk (4)

where uk is the set of sparse modes computed in section 3.
Unlike the preceding case, X is not dense in Xdense: the number of vertices of

the sparse mesh is 209 whereas the dense mesh contains around 13000 vertices.
However the vertices of the sparse mesh are distributed on the whole face and
vertices are more present in mobile areas of the face during articulation. For
these reasons, we also consider that βk = αk can be considered as a fair least
square solution of equation (3).

These first estimates of β are then use to solve (3) in the least mean sense in
the unknown modes udense

k and the mean X̄dense . Note that we estimate less
than 7 modes. As we have 15 dense visemes, the system always has a solution.

4.2 Obtaining Physically Matched Dense Visemes

Dense visemes are recorded with a laser scanner and the recovered meshes do
not physically match. Remeshing of the visemes must thus be performed.

However, physically matching points between deformable surfaces is known as
a very difficult problem. We thus take advantage of the underlying sparse model
to obtain a physically coherent parametrization.

The first step is to identify the sparse mesh which best fits each dense viseme.
As the sparse shapes are described using a reduced number of sparse modes, this
can be done by computing the rigid displacement which minimizes the distance
between the dense mesh and the sparse mesh thank to an iterative closest point
algorithm. We are thus looking for the displacement T and the coefficient α
which minimize:

MinT ,α1,..,αqdistance(T −1(X̄ +
∑

αkuk), Dense Mesh)
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Fig. 3. How a physically registered dense mesh is obtained using the underlying sparse
meshes

Doing this, we both identify the sparse mesh which best fits the dense viseme
as well as the displacement between the two surfaces. For sake of simplicity, the
registered dense visemes T (V dense) are still denoted V dense in the following.

It is important to note that the registered visemes contains all the vertices of
the sparse model. This property is used to physically match the dense visemes
under the control of the sparse meshes. We here consider the /a/ viseme as the
reference mesh. Remeshing is achieved with respect to this reference viseme and
is performed on the basis of an extended affine matching between each pair of
corresponding facets for the sparse visemes.

Given a facet ABC of the sparse reference viseme and its 3D position A′B′C′

in the viseme to be matched (see figure 3), let M be a point of the reference dense
visem. Each point of the dense mesh is associated to a sparse facet using the
algorithm we described in [1]. The main idea is to define M as a function of the
vertices of the facet and of the normals. The line HM , with H belonging to the
facet, is affinely defined with respect to the facet: H is defined as the point with
affine coordinates (α, β, 1−α−β) such that HM and αNa +βNb +(1−α−β)Nc

are collinear. We then define H ′M ′ as the line with the same affine coordinates
with respect to the facet A′B′C′ and its normals. M ′ is finally obtained as the
intersection of this line with the dense mesh.

5 Results

Figure 4 shows the first dense mode computed from the sparse mode. Fig 4.a
shows the mean shape of the sparse meshes and Fig. 4.b the computed dense
mean shape. The second row exhibits the sparse first modes as well as the com-
puted corresponding dense modes.

Figure 5 shows examples of dense faces computed from the corresponding sparse
meshes. Given faces randomly taken within the sparse meshes in the database,
the coefficients of the sparsemesh onto the sparse mode were computed. The dense
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Fig. 4. First row: the mean shape of the sparse meshes and the computed dense mean
mode. Second row: mean−3×u1 and mean+3×u1 are exhibited for the sparse modes
and the computed dense modes.

face was then reconstructed from these coefficients using the computed dense
modes. The first row 5 shows the sparse mesh and the corresponding dense face.
Other reconstructed dense faces are shown in the second and third row. These
examples prove the high realism of the obtained face with a global motion of the
face under the eyes coherent with the speech gesture.

A full dense sequence is available on the webpage of the authors at
http://www.loria.fr/˜berger/teteParlante. Given a speech sequence of our cor-
pus, the PCA coefficients were computed using the sparse modes and the dense
head was generated for each image. The visual impression of the resulting se-
quence is very good and proved that our method is able to produce realistic
facial animation.

It must be noted that the reconstruction is somehow incomplete in the inner
region of the lips. This is due to the fact that the transfer procedure only allows
the dense face in the neighborhood of the sparse mesh to be computed. We plan
to investigate in future works methods to complete the lips from the acquired
dense meshes. Lip modeling as realized in [5] is a possible research direction.
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Fig. 5. Examples of dense faces generated using 7 dense modes. First row: a sparse
mesh and the corresponding dense mesh. Second and third row: examples of dense faces
computed from various sparse meshes.
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6 Conclusion

We have proposed an approach that produces automatically highly realistic face
animation. This method does not require expensive materials: two cameras are
required for the stereovision system and only a reduced set of 3D scans of the
talker are needed. The main strength of the approach is to transfer the speech
dynamics which can be easily learned on sparse data onto the dense face. To
this aim, we have proposed an original densification approach which allows to
compute the dense modes from the sparse modes. This method produces highly
realistic dense postures. In the near future, we plan to conduct perceptive eval-
uation of the head with the aim to prove that this very realistic face improves
speech intelligibility.
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Abstract. A systematic description of a novel physically-based virtual
cloth simulation method using meshless models is carried out in this pa-
per. This method is based upon continuum mechanics and discretized
without explicit connections between nodes. The mechanical behavior
of this cloth model is consistent and is independent of the resolution.
Kirchhoff-Love (KL) thin shell theory is used as the basis of the cloth
model. Approaches to the parametrization and boundary sewing prob-
lems are presented to suit with meshless models. Furthermore, a co-
rotational method is proposed in order to take care of large deformation
problems. As for the collision solution, a new shape-function-based colli-
sion detection method is developed for meshless parameterized surfaces.
The experimental results show that our cloth simulation model based
upon meshless methods can produce natural and realistic results.

Keywords: Cloth simulation, meshless methods, collision handling.

1 Introduction

Cloth simulation has become a very popular research topic in recent years in
computer animation and textile industry domain.

Till now, mass-spring methods are the traditional models for cloth simula-
tion. However this new meshless method has advantages that the mass-spring
methods do not have. The mass-spring approach has the advantage of easy im-
plementation and low computation. But it has the natural drawbacks related
to non-continuum configuration. For instance, the material cannot be simulated
consistently and the results depend on the mesh resolution; the spring param-
eters do not reflect well the physical behavior of textile. In the textile industry
realistic cloth behavior is required. A possibility relies on the use of continuum
mechanics such as finite element methods [7] or meshless methods [4], to solve
the problem. By continuum methods, material behavior can be reproduced ac-
curately, independently of discretization.

Meshless methods have been introduced in computer graphics in recent years
and gained increasing attentions as alternative computational methods [8,12]
to the traditional mesh-based methods, such as FEM . Meshless methods have
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attracted more and more attention due to their flexibility in solving engineer-
ing problems. Among these methods, Meshless Local Petrov-Galerkin method
(MLPG) [2] has been considered as a general framework or a general basis for
the other meshless methods [1].

In this paper, we present a new meshless cloth simulator with Kirchhoff-Love
(KL) thin shell theory. The special features of cloth require the use of a thin
shell approach which bring several problems to traditional meshless methods.
For instance, cloth has different stiffness as in-plane and bending directions.
In most of cloth simulation approaches, the treatments of bending models is
done by an angular expression which is not accurate [13]. This means that re-
alistic material parameters and resolution independence cannot be expected.
However, our method can provide both accuracy and continuum representation.
The discretization is based upon a meshless method, which means that the dis-
cretization is independent of the geometric subdivision into finite elements. The
requirements of consistency are met by the use of a polynomial basis of quadratic
or higher order.

Another advantage of meshless models with KL theory is that the parametric
coordinates are fixed during the dynamic simulation, due to the fact that the
relative position of neighbor nodes on the background of the cloth surface will
not change unless the cloth topology is changed (e.g. tearing cloth). As general
meshless methods without KL model (i.e. without parametric space) use the
global Euclidian space as background coordinate system, so they don’t have
fixed background coordinates when displacement exists. The fixed parametric
coordinates of KL model speeds up the search of local neighbors of nodes and
simplifies the 3 dimensional problem to be solved to a 2 dimension one.

When large deformations are involved, the nonlinear equations make the sim-
ulations costly. The finite strain, known as geometrical nonlinearity, is closely
linked to the invariance of the measure under rotations. We use co-rotational
formulation to attach the parameterized local coordinate system of nodes. In
addition, we compute the rotation field by an efficient iteration scheme. This
allows us to use stable co-rotated strains.

The collision problem is a difficult problem for the meshless method, since the
model has not the explicit connections and triangles. It makes the traditional
collision detection invalid. We propose a detection method based upon the mo-
ment matrix from shape functions. The shape functions construct the meshless
approximation and provide a natural indicator to track the surface. The detec-
tion method presented in this paper can detect a contact region using a simple
criterion.

This meshless cloth simulation approach can both profit by the mechanics
foundation and produce realistic simulation results.

2 Meshless Models for Cloth Simulation

Kirchhoff-Love (KL) theory is used to define the cloth surface and a meshless dis-
cretization and interpolation of KL surface is also presented to simulate physical
behavior of cloth.
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2.1 Thin-Shell Model

The Kirchhoff-Love (KL) theory assumes the shell to be thin which suits for
cloth. The shell in the 3D space is described in a global cartesian coordinate
system EI . The idea of the thin shell is mapping the 3D cloth space to a 2D thin
shell space since cloth is thin. Figure 1 illustrates the model of KL thin shell
theory. The pair (ϕ, a3) defines the position of an arbitrary point of the shell,
ϕ gives the position of a point on the shell mid-surface, and a3 is a unit vector
(normal to the shell surface). The configuration Ω can be put down as

Ω =
{
x ∈ R3|x = ϕ(ξ1, ξ2) + ξ3a3(ξ1, ξ2)

}
, (1)

with ξ1, ξ2 ∈ Λ and ξ3 ∈< h−, h+ >. Here Λ denotes the parametric surface,
< h−, h+ > are the distances of the ”lower” and ”upper” surfaces of the shell
from the reference surface. ξ1, ξ2 can be used to describe the cloth surface.

In the parametric surface Λ, we define

aα =
∂ϕ(ξ1, ξ2)

∂ξα
, a3 =

a1 × a2

|a1 × a2|
, (2)

where Greek indices take the values 1 and 2. The details and deductions can be
found in [15].

2.2 Meshless Interpolation

For a so-called meshless implementation, a meshless interpolation scheme is re-
quired, in order to approximate the trial function over the solution domain.

Figure 1 illustrates the KL thin shell representation and the meshless sub-
domains. Consider a sub-domain Ωs, the neighborhood of a point x, which is
local in the solution domain. To approximate the distribution of function u in Ωs,
i.e. position, displacement or body force, over a number of scattered nodes

Fig. 1. Thin shell model and discretization
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{xi} , (i = 1, 2, ..., n) (with ξ1
i , ξ2

i as the parametric coordinates), the local inter-
polation u of ∀x ∈ Ωs (with ξ1, ξ2 as the parametric coordinates), by augmented
radial basis function (RBF) can be expressed in a standard form. With Φ(ξ1, ξ2)
being the shape functions:

ΦT (ξ1, ξ2) =
[
RT (ξ1, ξ2),PT (ξ1, ξ2)

]
(n+m) G(n+m)∗(n+m), (3)

where the square brackets denote to composite a new matrix or vector by a set of
elements. A subscript with round brackets denotes the dimension of the matrix
or vector. RT (ξ1, ξ2) =

[
R1(ξ1, ξ2), R2(ξ1, ξ2), ..., Rn(ξ1, ξ2)

]
(n) is a set of RBFs

centered around the n scattered nodes,
PT (ξ1, ξ2) =

[
p1(ξ1, ξ2), p2(ξ1, ξ2), ..., pm(ξ1, ξ2)

]
(m) is a monomial basis of order

m. The monomial basis is used to overcome the lack of completeness. G is a
matrix composited by R and p at the scattered nodes:

G =
[

A B
BT 0

]−1

(n+m)∗(n+m)
,

the elements of matrix A and B are defined as:

Ai,j = Rj(ξ1
i , ξ2

i ), Bi,j = pj(ξ1
i , ξ2

i ), i, j = 1, 2, ..., n. (4)

The interpolation of u can be expressed as:

u(ξ1, ξ2) =
n∑

i=1

Φi(ξ1, ξ2)ui, (5)

where Φi is the ith element of the shape functions Φ and ui is the given value
of function u at node i. Note that to evaluate the derivatives of the function
u(ξ1, ξ2) one needs only to differentiate the shape functions Φ(ξ1, ξ2). This
means that the smoothness of the displacement approximation depends on the
smoothness of the shape function. To compute the strains one needs only second
order derivatives of displacement with respect to the parameters ξ1, ξ2.

In comparison, the finite element method approximates the field variables
within an element by interpolating their values only at the nodes on the element.
For non-continuum methods such as mass-spring methods, variables of a node
are computed explicitly and do not have interpolation schemes.

2.3 Acquisition and Parametrization of Models

The model data of the cloth model could be obtained from a CAD system.
To form a garment in a CAD system, all the pieces of cloth 2D patterns are
defined and sewing information is added. 2D patterns are simple shapes. In the
parametric surface, a 2D pattern should have:
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– An exterior boundary described by a single, non-self-intersecting curve of
arbitrary shape.

– Any number of interior boundaries (holes) of arbitrary shape without self-
intersection.

So that the intrinsic coordinates of each patch are single-valued.
In order to be able to use the meshless surface approximation, the surface

must be parameterized, i.e. the parametric surface Λ of equation (1) must be
defined to build the shape function in ξ1, ξ2.

A good choice seems to be the intrinsic coordinates defined for simple surfaces
(e.g. quadrics), but they are difficult to define for general surfaces (e.g. the
cylinder shape of a sleeve). The approach used in the present work is based
upon the fact that a polygonalization of the cloth surface at hand is usually
readily available in form of the 2D patterns that buildup arbitrary garments,
with any number of holes and both closed and open surfaces. Therefore, the
direct and simple way to parameterize the cloth surface is to use the warp and
weft directions on every single patch. Therefore, the parametrization is easy to
implement. Another advantage of using the warp and weft directions is that from
these two directions, it is easy to build an anisotropic cloth.

2.4 Border Sewing

A garment can be obtained by combination of one or several 2D patterns. The
first step to construct the garment is to identify the position of the pieces in
the 3D model and to sew them together. Then we need to connect the sewing
line in the cloth in order to have a continuum movement. Lagrange multipli-
ers can be used to constrain the sewing points to have same displacement. As
discussed before, although cloth has been sewed together, each patch needs to
be parameterized separately, i.e., for a garment composited by several pieces of
cloth, the shape function needs to be computed in each single piece, and not
computed across the neighboring pieces. The global stiffness matrix can be com-
bined with all pieces of the cloth. Because the Lagrange Multipliers enlarge the
global stiffness matrix, we only use lagrange multipliers method to constrain the
sewing borders. Since the constraint condition is an implicit constraint, we can
get the explicit condition after the equation is solved. As for another type of
constraint which is used for solving the collision response, we use the method
presented by Baraff[3]. This method applies the filtering process to the stiffness
matrix and velocity matrix, which is an explicit constraint and will not enlarge
the stiffness matrix.

Compared to the method based upon mesh, such as mass-spring method or
finite element method, the meshless method has great advantages in dealing
with the variational topology, since it does not need to destroy and rebuild
the meshes when topology changes. While for the mass-spring method and the
finite element method, the re-meshing processing will cause big problems to the
computation.
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3 Collision Detection of Meshless Cloth Models

Collision is an essential aspect in cloth simulation. As the meshless methods
do not maintain the mesh of the surface, the only way to use the conventional
mesh-based collision detection methods is to define segments between nodes
in neighborhood and use the segment-to-segment detection in self-collision of
cloth or segment-to-face detection of cloth-body collision (suppose that only
cloth is simulated in meshless, i.e., the body is based upon polygonal meshes).
Unfortunately, in self-collision of cloth, segment-to-segment detection alone is
not sufficient. The problem will be resolved if we have a segment-to-meshless-
surface collision detection method.

Therefore, we proposed a new segment-to-meshless-surface collision detection
method based upon shape functions for meshless surfaces. The segment in this
method can be defined both from two nodes in a local domain of cloth and from
a segment of mesh-based body model. This method should be applied in one
frame, that only the current configuration is needed for collision detection.

At first we assume a general parametric surface
︷︸︸︷
Λ which is defined by all

the discrete nodes via the approximation function (RBF in our implementation)

over the local domain of cloth. We get Λ ⊂
︷︸︸︷
Λ and ∀M ∈

︷︸︸︷
Λ is defined with

the discrete point in Λ.
Take a segment PQ as an example, as shown in figure 2. If PQ penetrates︷︸︸︷

Λ , we assume the intersection point is M . Then the problem can be separated
into two steps. At first we determine whether the intersection point M exists and

compute the parametric coordinates of M ; Secondly, on
︷︸︸︷
Λ , determine whether

M is inside Λ.
At first we search a node X as a minimum of |1− XP ·aX

3
|XP | | and X 	= P , which

implies that PX almost perpendicular to the sub-surface near X . Define P ′ as the

real projection of P on
︷︸︸︷
Λ , i.e. P = P ′(ξ1, ξ2)+ξaP ′

3 (ξ1, ξ2). Therefore P ′ is near
to X and the parametric coordinates of P ′ can be written as (ξ1

X +XP ·aX
1 , ξ2

X +
XP ·aX

2 ). Then we can easily draw the conclusion that if XP ·aX
3 have the same

sign with QP ·aX
3 and |XP ·aX

3 | ≥ |QP ·aX
3 | (note that |XP ·aX

3 | = |MP ·aX
3 |),

then PQ will have an intersecting point M with
︷︸︸︷
Λ , and the position of M

will be M = P + PQ |PM|
|PQ| = P + PQ

XP ·aX
3

PQ·aX
3

. So the parametric coordinates of

M can be expressed as (ξ1
X + XM · aX

1 , ξ2
X + XM · aX

2 ). Figure 2 illustrates the
algorithm of finding M as described above.

So soon as we get the parametric coordinates of M , the second step is simpli-
fied to a collision problem of meshless domain in a two dimensional space.

In our meshless interpolation methods, the construction of shape function of
RBF method requires the computation of matrix

N = G−1 =
[
R0 P0
PT

0 0

]
(6)
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Fig. 2. Collision detection of meshless surface

It has been found that this matrix provides a natural indicator to track the
surface of the continuum object. Based upon the matrix N from shape function,
the collision detection in the two dimensional parameterized space can be done
simply and accurately. [11] proved that the internal position of a continuum
domain and the external can be distinguished by checking the determinant of
the matrix N. Inside the continuum domain of any shape, det {N(x)} has a
positive value, and outside the domain det {N(x)} → 0. The usefulness of above
property is that one can accurately track the position of any continuum without
knowing the exact shape of its boundary, which is almost impossible to know in
general meshless models. Therefore we can track if the intersection point M is
on the internal cloth domain or on the outside (or holes on cloth).

The collision response is available through different approaches. Physically,
it can be done by adding a penalty force or constraints between the contacting
nodes. The a3 of the intersection point M (choose between a3 and −a3 according
to the position of P ) can be used as an indication of the direction to eliminate
collisions and τ = |PQ|

|PM| , the ratio of crossed part of PQ, as an indication of the
amount of penalty force or position of constraints.

4 System Solving

As deduced in [15], the Green-Lagrange strain tensor of the shell is found to be
of the form:

EIJ = MIJ − ξBIJ , (7)

the non-zero components of the tensors MIJ and BIJ are in turn related to the
deformation of the shell, where in this section uppercase Latin indices take the
values 1, 2 and 3. The following contents will use upper-script to denote variables
in the reference configuration. For instance ϕ̄ is a point on the reference surface;
and in the current configuration, variables are without upper-scripts.
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we can write the non-zero part of in-plane and bending strains as:

Mαβ =
1
2
(āα · u,β + u,α · āβ), (8)

Bαβ = −u,αβ · ā3

+
1

|ā1 × ā2|
[u,1 · (āα,β × ā2) + u,2 · (ā1 × āα,β)]

+
ā3 · āα,β

|ā1 × ā2|
[u,1 · (ā2 × ā3) + u,2 · (ā3 × ā1)], (9)

where α and β take the values 1 and 2, and a comma followed by a subscript
indicates partial differentiation with respect to the corresponding coordinate.
The only variable of equation (8) and (9) is the displacement field u of the
middle surface, therefor u furnishes a complete description of the deformation
of the shell. So we regard u as the primary unknowns of the analysis. It follows
from these relations that, by virtue of the assumed Kirchhoff-Love kinematics,
all the strain measures of interest may be deduced from the deformation of the
middle surface of the shell.

Owning to the linear relationship between M, B and u from equation (8) to
(9), and the approximation of displacement u by the nodal displacement uI in
equation (5), we obtain:

M(ξ1, ξ2) =
n∑

i=1

Ri
m(ξ1, ξ2)ui, (10)

B(ξ1, ξ2) =
n∑

i=1

Ri
b(ξ

1, ξ2)ui, (11)

where Ri
m and Ri

b are matrices relating nodal displacement to in-plane and
bending strain.

The dynamics equation in form of the second order ordinary differential equa-
tion in time is:

Mü + Du̇ + Ku = f , (12)

where M is the diagonal nodal mass matrix, D is the viscosity matrix and K is
the stiffness matrix, with the nodal displacement vector u and forces vector f .

In MLPG approaches [2], one may write a weak form over a local sub-domain
Ωs of a point xk, which may have an arbitrary shape. As deduced in [15], after
definition of the in-plane and bending strains and stress, the elastic strain energy
can be rewritten, and a generalized local weak form corresponding to the stiffness
matrix and nodal force vector of equation (12) will be:

KIJ
k =

∫
Ωs

[
(RI

m)T HmRJ
m + (RI

b)
T HbRJ

b

]
dΩ, (13)

f I
k =
∫

Ωs

ΦIqdΩ. (14)
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where Hm and Hb are matrices corresponding to the in-plane and bending part
of the material law, which are the same as finite element method [6]. q denotes
the applied force. The stiffness matrix is evaluated by numerical integration in
the local domain Ωs. Usually, Gaussian integration will be applied. Due to the
arbitrary shape of the local domain, we do not need any mesh or background
mesh for the integration of the weak forms.

4.1 Co-rotation Deformation

When considering a finite strain, the strain is nonlinear which leads to a nonlin-
ear system. The solving of a nonlinear system is very costly. The co-rotational
formulation aims at the elimination of the geometrical nonlinearity. The idea is
to keep track of a rotated local coordinate system of every nodes of the body.

We linearized the strain so the strain in the former kinematic description is
linear in displacement but not rotationally invariant anymore. However, if the
rotation field R is known, the co-rotational strain formulation can be used and
we obtain the rotated linear strain tensor on the rotated current configuration.

Via polar decomposition the deformation gradient tensor F can be split into
a rotational tensor R and a pure deformation U as F = RU .

[9] proposed an efficient, quadratically convergent iteration scheme to extract
rotation field from deformation gradient

R0 : = F (15)

Rn+1 : =
1
2
(
Rn + (Rn)−T

)
. (16)

This allows a very fast and accuracy controlled method of computing R. The
iteration is defined for square, nonsingular matrices only, but [9] also presents a
preliminary QR decomposition enables the treatment of singular matrix.

With the rotated field R, the stiffness matrix Ku becomes RKuR, where in
the nodal view of node I , uR

J = RT
I (x̄J +uJ −xI)+(xI − x̄J) is the displacement

influence nodes J . Therefore, the dynamics system equation can be rewritten as

Mü + Du̇ + RKRTu = f + RK(RT − I)(xnode − x). (17)

Now the system to be solved in each time step remains linear. Compared to
classical linear meshless methods, the linear system change over time, when the
reference configurations are updated.

Compared to co-rational approach of finite element [10] which remove rota-
tions for each triangle separately, we treat rotations for each node on the local
sub-domain and produced a continuous co-rotated deformation field instead of
the element separated non-continuous field in finite element method. The com-
puting of polar decomposition in this paper is carried out by a fast iteration
method, while [10] compute the eigenvalues and eigenvectors of U2.
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4.2 Efficient Solving

For numerical solutions, the dynamics equations are translated into first order
ODEs and any time integration scheme can be applied. The coefficient matrix
of the arising linear system of equations with nodal velocities as primary un-
knowns is sparse and does have an almost symmetric distribution of non-zeros.
We call this kind of matrix a quasi-unsymmetric sparse matrix (QUSM), which
has a restriction of symmetric nonzero locations compared to general unsymmet-
ric matrices. For simplicity only the system stiffness matrix which has positive
principal minors is considered. In fact QUSM provides most of the advantages
of symmetric matrix in the solution process.

General sparse solvers may be mainly divided into two categories: symmetric
solvers and unsymmetric solvers. The symmetric solvers do not suit for meshless
methods. Although a QUSM can be treated as general unsymmetric matrix and
solved by general unsymmetric solvers, the solver proposed in this paper takes
advantage of the properties of QUSM arising in meshless methods and delivers
significantly higher efficiency.

In order to solve the system, we developed a direct solution method for
the QUSM arising in the meshless methods. The new solver provides higher
efficiency for LDU factorization on benchmark tests, so it speeds up the so-
lution processes for linear systems of equations. This solver is accelerated by
two-level unrolling techniques that employ the concept of master equations and
searches for appropriate depths of unrolling during factorization (see details in
[14]). The new solver for the QUSM can increase the efficiency of the solving of
meshless methods.

5 Experimental Results

In this section we present our experimental results on our meshless cloth simula-
tor. In our algorithm, since the shape function is computed in the parameterized
surface Λ, R(ξ1, ξ2) and P(ξ1, ξ2) and G for a point is constant. So we store
them in order to accelerate the whole computation process. When computing
the neighbors id of x in the sub-domain Ωs, the searching computation can be
processed only once in the initialization. These conditions are due to the fact
that the parameterized space and surface Λ is constant.

As for the selection of material parameter, the elasticity coefficient (Young’s
modulus) E= 10000N/m and Poisson’s ratio ν = 0.3. The real parameters in
continuum mechanics present the behavior of material constantly and directly,
but they are hard to be obtained though experiments for cloth. Cloth has nonlin-
ear curves of the parameters. Solutions by Kawabata evaluation system (KES),
which contains a group of standard equipments which measure the physical pa-
rameters of the textile, have already developed for mass-spring methods [5].
KES includes 16 parameters, containing stretching, shearing, bending, compres-
sion and friction aspects of the textile. These parameters reflect the physical
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(a) Computing nodes and sampling points

(b) Results of cylindrical sleeves with twisting forces

(c) Results of a cloth dropping on a pole

(d) Results of a cylindrical cloth draping on its middle
line

Fig. 3. Results of meshless clothes
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character of the specific textile. Therefore, with these KES parameters we can
get deep understanding of the textile behavior and make the animation more
vivid. KES parameters are considered to adopt in our meshless cloth simulation
system in the future work, in order to make the animation meets more physical
behavior. Nevertheless, the Poisson’s ratio cannot be obtained from KES. The
relationship between Poisson’s ratio and KES parameters should be constructed
in order to make the animation have more physical fundamental.

In the first example, we simulate a cylindrical sleeve constrained by a twisting
force. Cylindrical sleeves are often used in cloth simulation research and can well
judge the validity for buckling and folds for the simulator. Cylindrical sleeves are
also the basic elements of virtual garments and available results can prove poten-
tial capabilities for virtual try-on. Figure 3(a) shows the original computational
nodes with the local coordinates drawn in each node, and the thicker sampling
points for rendering. In figure 3(b), the folds are clearly reproduced and the
process of twisting produces realistic behaviors as observed with the real fabrics.
The realistic shapes of meshless cloth simulation results are obtained because we
use continuum physics and consistent way to model cloth. Sampling and rending
of meshless surfaces can take advantage of the research achievements in point
based graphics.

Another experiment is the cloth dropping on a pole. Figure 3(c) shows the
dynamic behavior of the results. Figure 3(d) shows a cylindrical cloth without
sewing which is hanging on its middle line. The examples below show small
buckles and wrinkles produced by the simulator.

6 Discussion

This paper developed a meshless cloth simulation method combining the KL
thin shell representation. The system is solved with collision handling. Meshless
methods are usually computationally costly but as a continuum method, it has
a more smooth interpolation field and a natural mechanical behavior. Neverthe-
less, the computation cost was reduced by the fact that KL model reduces a 3
dimensional cloth to a 2 dimensional parametric space as shown in Fig. 1.

We have to mention that although meshless methods present many aspects
positive compared to mass-spring methods on cloth simulation, a major differ-
ence with the mass-spring method is that it needs to overcome the large defor-
mation problem using co-rotational formula. While non-continuum methods as
mass-spring methods have a natural property to treat large deformation because
they measure strains by the state of springs instead of the difference of current
configuration and reference configuration in continuum mechanics.

Overall, the proposed meshless method for virtual cloth simulation has theo-
retical fundamentals with the thin shell theory and meshless solving, at the same
time the experimental results proves that this method can make the natural cloth
simulation.
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New Human Face Expression Tracking 
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Abstract. In this paper we propose a new method for precise face expression 
tracking in a video sequence which uses a hierarchical animation system built 
over a morphable polygonal 3D face model. Its low-level animation mechanism 
is based upon MPEG-4 specification which is implemented via local point-
driven mesh deformations adaptive to the face geometry. The set of MPEG-4 
animation parameters is in its turn controlled by a higher-level system based 
upon facial muscles structure. That allows us to perform precise tracking of 
complicated facial expressions as well as to produce face-to-face retargeting by 
transmitting the expression parameters to the different faces.  

1   Introduction 

Tracking of human face is an essential task for a large number of applications in com-
puter vision, such as teleconferencing, post-production for the film industry, video 
games, human-computer interaction and others. Although this research domain has 
received much attention over the last twenty years, reliable human face tracking in a 
complex environment still remains a challenge due to the great variations of the ap-
pearance of the face within a video sequence which can be caused by changes in fa-
cial expression, head movements, variations of lighting properties, etc. 

There have been many publications dedicated to recovering facial motion from 
video – from simple coarse face localization to precise detection of the head pose with 
or without facial expressions. 

Methods of coarse localization are generally based on probabilistic frameworks 
and use skin color distribution [10] or more sophisticated region-based level-set seg-
mentation approaches [11]. Being very fast they can provide only planar head dis-
placements and easily lose their target in case of occlusions since they don’t possess 
any information about the properties of the 3D shape of the object they track. 

There are a big number of techniques that use vision-based approaches for tracking 
also in 3D, and some of them are in addition capable to recognize seven basic facial 
expressions [20]: happiness, sadness, surprise, fear, anger, disgust, and the neutral 
one. Methods of this kind can for example be based on feature or edge detection [12, 
13] (here a simplified 3D model is used to determine 2D-3D correspondences needed 
for camera calibration and thus to estimate the spatial position of the object in each 
frame), deformable patches [17], active contours [14, 15] or active shape models [16]. 

Usage of the 3D face model may give more flexibility and robustness to the 
tracker. In [18] authors employ a technique similar to ours by using a texture-based 
criteria for pose detection but their model is simplified to an ellipse roughly adapted 
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to the face dimensions during initialization. The same basic idea but with a more 
sophisticated parameterized 3D model is proposed in [19] which allows detecting not 
only the head pose, but also the speech-related facial mimics. In [23] optical flow is 
used as a constraint on the motion of a deformable 3D model. Technique based upon 
the active appearance models [21, 22] works in real-time but is sensitive to lighting 
changes and occlusions and requires a preliminary learning process for every new 
face to track. In respect to parameterization of facial expressions a large group of 
methods can be distinguished that represent non-rigid deformation of the face as a 
linear combination of several basic shapes defined directly on the mesh [25, 27], or 
captured from special training video sequences [26]. Providing this way a compact 
representation for non-rigid tracking parameters, this approach however doesn’t cover 
the whole range of possible facial expressions. 

Many existing algorithms give good tracking results but still lack in precision that 
is necessary for post-production purposes, especially in capturing complex facial 
expressions. Development of an algorithm that would allow a completely automatic 
and robust realistic face-to-face retargeting from any kinds of video (without any 
constraints on the head movements or environment) still remains an open problem. 

Our work focuses in particular on precise head pose and facial expression detection 
aiming at further use of tracking results in rotoscoping. In order to be able to detect 
complex expressions we’ve adopted a highly parameterized MPEG-4 face animation 
mechanism as a basis of our animation system. In addition our implementation is 
completely compliant with the virtual conversational agent “Greta” developed by the 
team of prof. Catherine Pelachaud [4] but unlike Greta’s one it is parameterized with 
respect to the face geometry which makes it applicable to any kinds of faces produced 
on basis of our generic face model. This gives us two advantages: firstly it allows to 
refine our tracking algorithm by validating it on synthesized Greta-animated video 
sequences and secondly – to do the retargeting of any facial expression from the rich 
hierarchical semantic library of facial expressions that is used for Greta’s animation to 
other faces.  

The remainder of this paper is organized as follows. In the next section we will re-
view the work already done in this field. Then we’ll shortly describe the general idea 
of the tracking algorithm. In section 3 we’ll speak about our face animation system 
and its employment in tracking. Section 4 is dedicated to GPU-acceleration of the 
algorithm, and, finally, the last section presents some results and future research  
directions. 

2   Face Tracking Framework 

The goal of the proposed algorithm is to perform automatic tracking of the human face 
in a video sequence providing as an output the head position and the facial expression 
in each image of the sequence. The general scheme of the algorithm framework is 
presented in Fig. 1. It is based upon an analysis/synthesis collaboration approach using 
a textured 3D model as a tool to detect face position and expression in each frame of 
the sequence by minimizing the mean-square error between the generated synthetic 
image of the face and the real one. 



 New Human Face Expression Tracking 323 

The performance of tracking (precision and stability of detection) relies heavily on 
the precision of the 3D model used. Such a 3D specific model is obtained through the 
deformation of a generic one and is positioned interactively on the first image of the 
sequence. 

The following subsections will describe all these procedures step by step. 

Get texture from the current frame

Switch to the next frame

Update a sub-set of system 
parameters

Perform the per-pixel 
comparison of the projected 
model and the frame image

Build the specific 3D model, position 
it in the first frame 

(adjust expression if needed)

Save result 

yes

Minimization finished?

no

Texture 
update 
flag?

no

yes

no

Minimization

Another sub-set 
to minimize?

yes

 

Fig. 1. Global tracking framework 

2.1   System Initialization 

The very first step of the algorithm is interactive and consists of building the specific 
3D model of the person to be tracked. In order to perform full tracking of the head 
pose including strong rotations we need to construct a precise model and so some 
additional images of the person’s head taken from different views are required. How-
ever if the face in the video always remains in the frontal position we can directly use 
only one of the sequence images.  

The reconstruction of the specific face is performed in a semi-automatic way and 
consists of two basic steps. First, we adapt the generic model at the feature point level 
by iteratively performing 3D stereo reconstruction of the 2D characteristic points 
defined manually on the images followed by recalibration of the cameras related to 
each image. After that the adaptation is carried out at the silhouette level by matching 
the projection of the 3D contours of the model with the manually drawn 2D contours 
of the face on the image. At each step we compute the deformation vector for only a 
subset of vertices, interpolating the deformation over the rest of the mesh by the 
means of radial basis functions. The detailed description of the 3D reconstruction 
process which can be found in [1, 2]. 
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As soon as the specific model has been obtained it acquires texture from the first 
frame of the sequence. Thus the algorithm adapts to the video capture lighting condi-
tions. To do the texturing, the model should be accurately positioned on the sequence 
image so that the texture coordinates for all the visible vertices could be computed by 
projecting them onto the image plane. Being interactive, the positioning is however 
facilitated by using the automatic calibration system POSIT based upon 2D-3D point 
correspondences [6]. Due to occasional changes in lighting or possible head rotations 
that make appear previously hidden and therefore untextured facets, this procedure is 
repeated every 100 frames which is normally equal to 4 sec. of video stream. 

2.2   Iterative Pose and Expression Detection 

For each frame of the video sequence our algorithm searches for an optimal set of the 
system parameters , where  and  are 
the global head translation and rotation vectors respectively and  is the vector of 
parameters that control facial expression, by using an iterative minimization tool. The 
error function is represented by the per-pixel difference between the current video 
frame image and the textured projection of the 3D model which has been updated 
with respect to the new values of the parameter vector . Per-pixel difference is com-
puted only for those pixels that are covered by the textured model projection and is 
represented by the Euclidean norm on the RGB components of the image. Mathemati-
cally the error function can be expressed as: 

 , where (1) 

 , (2) 

 and  being the values of the th pixel in the generated and the ana-
lyzed images respectively.  

In order to avoid getting trapped in local minimum we use the simulated annealing 
minimization algorithm [8]. 

Due to the large total number of parameters to optimize we split them into several 
independent groups and perform minimization over each group separately. These 
groups are:  

(1) rigid tracking (translation and rotation), which is performed in the first  
instance; 

(2) expression tracking – mouth part (lips, jaw); 
(3) expression tracking – eyes part (eyelids, eyeballs, eye squint);  
(4) expression tracking – eyebrows part; 
(5) expression tracking – nose, tongue (optional).  

For groups (2)-(3) the error is computed only from the sub-image that represents 
the part of the face in question. 
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3   Facial Animation Parameterization 

Our approach to the parameterization of the facial expression is based upon a hierar-
chical combination of two different animation systems: one is based upon the facial 
animation parameters specified by MPEG-4 standard and the other – upon the facial 
muscular structure. First we’ll talk about how MPEG-4 standard defines the specifica-
tion for the animation of a face model and our implementation of this specification, 
and then we’ll describe our combined animation system in detail. 

3.1   Facial Animation System Based upon MPEG-4 Standard 

In MPEG-4 standard facial animation is defined by two types of parameters [5]: a set 
of Facial Definition Parameters (FDPs) that reflects the geometry of the 3D model, 
and 68 Facial Animation Parameters (FAPs) that specify the animation part and are 
closely related to muscle action. At the same time MPEG-4 only defines the action 
related to each FAP leaving to the users its interpretation in terms of actual deforma-
tion of the 3D mesh. 

As a basis of our implementation of the MPEG-4 facial animation system we’ve 
chosen that one that is used for animating the virtual conversational agent “Greta” 
created by the team of prof. Catherine Pelachaud [4]. This allowed us not only to 
obtain parameters for expressive tracking but also to greatly refine tracking precision 
in comparison with our previously used muscle-based parameterization [3] by learn-
ing from Greta’s rich facial expression library. 

In respect to the Greta’s MPEG-4 implementation [9] we’ve constrained the action 
of each FAP by splitting the surface of our generic model into 68 semantic zones, 
each FAP affecting only a specified sub-set of them. The region of influence of each 
FAP within this sub-set is in its turn defined as an ellipsoid centered at the control 
point (FDP) corresponding to this FAP. The deformation magnitude  of each vertex 

 inside this ellipsoid can be expressed by the following formula: 

 , where (3) 

  (4) 

is the normalized distance to the control point ; ,  and  are the 
radii of the ellipsoids of influence and  is the parameter that defines the shape of the 
deformation function. Being set as absolute values in Greta, ,  and  didn’t allow 
any transfer of Greta’s animation mechanism to the facial models of other dimen-
sions/geometry because the visual effect of the animation of a FAP greatly depends 
on the dimensions of its region of influence with respect to the 3D model (see Fig. 2 
(a, b) for example). Since our goal was to build an animation system that would work 
for any kind of faces produced from our generic model, we’ve created geometrical 
dependencies for all the ellipsoids radii, so that the system could adapt automatically 
to any face given as an input. At the same time our system should provide the same 
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effect on the Greta model reconstructed from our generic 3D face, as it does on real 
Greta. Video that demonstrates the validation of our adaptation of the Greta’s MPEG-4 
facial animation system on our generic model will be shown at the conference (it can 
be as well downloaded from ftp://ftp.inria.fr/incoming/mirages / daria/ comp_ v4. avi). 

3.2   Hierarchical Animation System  

Although MPEG-4 parameterization is potentially capable of reproducing a rich palette 
of realistic expressions, it has several significant drawbacks which makes it difficult to 
use FAPs directly as parameters for tracking. Firstly it gives too many parameters to 
minimize – especially in the mouth region where animation is controlled by a total of 
28 FAPs! – that would lead to huge computing time and would make minimization 
more sensitive to local minimum traps. Secondly it doesn’t provide any global con-
straints for the FDP’s displacements: all of them cause only local deformation and are 
completely independent which means that a minimization tool will waste a lot of time 
on searching the optimum in the aggregate of non-existent facial expressions that can-
not be reproduced by a real person. At last, the deformation function (3) being general-
ized doesn’t take into account particular properties of the mesh geometry and thus is 
capable of producing unrealistic expressions as shown, for example, on Fig. 2 (c). 

We’ve solved the problems described above by applying the specific spatial con-
straints onto the mesh deformation. 

3.11 3.7
. . . . . .3.1. . .

         a)                      b)       c) 
 

Fig. 2. a) Correct animation of the eyelid (FDP 3.1 being the center of the deformation); b) 
Region of influence is not adapted to the mesh dimensions (here the ellipsoid of influence has a 
smaller X-dimension than it should; as a consequence the deformation becomes zero before 
reaching the borders of the eye – FDPs 3.11 and 3.7 – causing gaps between the under-eye part 
and the eyelid); c) Deformation function is not adapted to the mesh geometry (here the ellipsoid 
has the correct size but due to the specificity of the eyelid geometry the Y-deformation on the 
left should be stronger than on the right, so being uniform in all directions it leads to the gap 
visible on the left) 

Mouth. In case of the mouth region our goal is to reduce the dimension of the pa-
rameter space. What we propose is to limit its degrees of freedom by constraining the 
displacements of the FAPs by the curves that are built on the 3D mesh surface with 
respect to the facial muscles structure in a way that all together they contain all the 
FDPs related to the mouth region (Fig. 3). Each curve is represented by a Bezier patch 
attached to the mesh vertices and therefore its shape can be controlled by four pa-
rameters: two control points and two tangent vectors. Being defined only once on our 
generic 3D model, these curves can be easily transferred to the specific model (which 
is actually used for tracking) by applying the same RBF interpolation matrix that was  
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Fig. 3. Deformable curves in the mouth region; tangent vectors are shown in black color (num-
bered points refer to FDPs) 

used at the modeling phase to its control points and tangents (see [2] for details) and 
thus adapt the curves to the new geometry. 

Above the deformable curve structure we’ve built a higher-level animation mecha-
nism – a set of expression units. Each expression unit controls simultaneously several 
curves providing their coherent deformations in respect to different facial expressions 
(Fig. 4). Currently we use four expression units: “mouth width” (wide/narrow), 
“mouth corners up/down”, “lower lip up/down” and “upper lip up/down” which can 
be extended to six if we want to track asymmetric lip movements. 

   

         a)                                                  b)                                                  c) 

Fig. 4. Examples of expression units and corresponding curve deformations (curves are shown 
in white with black tangents): a) neutral position; b) “mouth width” expression unit activated; 
c) all the expression units activated to a certain degree to emulate a smiling expression 

These expression units are the parameters that replace FAPs in our mouth tracker. 
At each iteration of the minimization tool we compute “virtual” displacements of the 
FDPs from the deformed curves shape, than derive the corresponding FAPs values 
and apply them. So we still use MPEG-4 animation but indirectly. In that way we 
reduce the number of system parameters from 28 to 4 (6) but of course loose in preci-
sion. Since we aim at the precise detection of lips movements, we use the curve 
parameterization only as an approximation (which is sufficient in most cases) leaving 
the possibility to refine the result afterwards using FAPs directly on a more local 
level. The scheme of the mouth tracking algorithm is presented in the Fig. 5. 

Eyes. We apply the same muscle-based approach to eyes animation as well but for a 
different reason. Here there’s no need to reduce parameter space since we have only  
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Fig. 5. Mouth tracking framework 

two FAPs per eye (one for the eyelid and one for the under-eye region), so the pur-
pose of using curves as constraints serves in this case to ensure the realism of the eye 
movement regardless of mesh geometry by exact matching of the upper and the lower 
eye boundaries. Eye-curves and their effect on mesh deformation are illustrated on 
Fig. 6. 

 

Fig. 6. Correction of the eyelid movement using deformable curves. Now the deformation of 
the eye boundaries is controlled by the curves and not by the FAP deformation function, so the 
eyelid matches exactly the under-eye boundary eliminating the problem illustrated in Fig. 2 c) 
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Fig. 7. Operations performed at each iteration and the GPU acceleration scheme 

4   GPU Acceleration 

Being very precise and stable our algorithm is however far from real-time requiring 
computational time of around 1,8 minutes per frame due to multiple cycles of mini-
mization for a single image each containing 300-400 iterations. This time however 
can be reduced to 1 minute by transmitting a part of the computation to the GPU. 
Indeed if we look closely at the operations performed at each iteration (Fig. 7) we’ll 
see that the most “expensive” one from the computational point of view is reading 
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back the image with the textured projection from the GPU memory for comparison 
with the frame image. So the idea was to perform this operation directly on the GPU 
by using GPGPU reduction algorithm [24] and to transfer only the error value. Mask-
ing of the neglible pixels is done through the alpha-component and all the GPU-
computation is implemented using pixel shaders. 

 

Fig. 8. Tracking result on the generated video sequence of Greta. The first row represents the 
frames from the original sequence; the second row – the reconstructed 3D model of Greta 
animated with the parameters detected by the tracker; and the last row – the same model with-
out texture superpositioned over the frame images. 

5   Conclusion 

In this paper we proposed an algorithm for facial tracking in video based upon analy-
sis/synthesis collaboration approach providing a new animation parameterization for 
capturing facial expression based upon MPEG-4 specification. Our algorithm was 
tested on a synthesized video sequence containing Greta’s face animated with various 
types of facial expressions taken from the library that was developed by the team of 
Catherine Pelachaud and showed very good results (some screenshots from the se-
quence are presented in Fig. 8; the complete sequence can be downloaded from 
ftp://ftp.inria.fr/incoming/mirages/daria/tr_greta_res.avi). Our current research is 
dedicated to the texture update issue in order to make it more flexible (adaptive to 
changes in lighting conditions/head pose rather that fixed to the frames counter) and 
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more robust to occasional tracking errors, because once texture is updated with wrong 
pixels, as it’s our unique criterion, it will propagate the error over the whole sequence. 
Apart from that we’re investigating other possibilities to accelerate our algorithm, for 
instance using pose prediction from statistical image analysis. 
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Abstract. Human body scanners can quickly provide clouds of more
than 200 000 points representing the human body’s surface. Many new
applications can be derived from the ability to build a 3D model of
a real person, especially in the textile industry allowing virtual try-on
approachs. However, getting a regular model, suitable for these applica-
tions from scanned data is not a straightforward task. In this paper, we
propose a model-based approach to model a specific person. We use a
generic model whitch is segmented and points are organized in slices. We
adapt the sizes of each body limb and then fit each slice on the data,
limb by limber.

Keywords: Human body modeling, model-based modeling.

1 Introduction and Related Works

Today, several scanning techniques can digitalize 3D human bodies. Yet, data
provided by the devices are not immediately suitable for higher-level applica-
tions. Most of the time data are noisy, contain holes in the parts that the beam
of the scanner cannot reach and, in our case, some parts of the body are missing
completely (feet) or partially (see Fig 1 top of the head).

Several works have tackled the problem of reconstructing and repairing the
scanned surface. An exhaustive survey of techniques concerning modeling and
segmentation of human body from scan data can be found in [1]. So we will focus
on some techniques directly related to our problem. We assume that people are
asked to stay in a specific position during the scan ; therefore all our models will
be static in a reference position (roughly the same that we chose for the generic
model). Our aim is to fit the model to the available data and fill the missing part
with it, by deforming the generic model so that the deformed model matches the
available data, but keeps the topology of the generic model.

In order to fill the missing parts in scanned data, [2] proposed to define im-
plicitly the surface defined by the point cloud, they fit a RBF function so that
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Fig. 1. A sample of reconstruction provided by SYMCAD [11]. Noise appears where
the feet should be and on the head and also on many other places. This is why we need
a generic model to be able to fill the missing parts.

the value of the function is 0 on the point cloud and then reconstruct the zero set
using a marching tetrahedra variant. This method has shown precise results and
can be adapted to take into account the noise in the point cloud. The limit of
this approach in our case is that data are filled smoothly, this might not always
be be the best and the most realistic solution, for example if we want to repair
the sole of the feet. Furthermore, since the feet are completely missing in our
data, we need more than a smooth filling of existing points.

Using a generic model to fill the parts where data are lacking has been done
in [3] for faces. In this method, the target shape is tagged interactively with
a set of landmarks corresponding to a similar set in the template model. A
deformation is computed to fit this set, then the set is automatically refined
to reach a higher level of precision. But for our application, we need to build
a completely automatic system, therefore the manual (or even semi-automatic)
selection of landmarks should be avoided.

Reconstruction of the complete human body using a generic model from un-
calibrated wide baseline views was done by [4]. A set of 32 characteristic points
is used. Camera calibration and 3D location of characteristic points is deter-
mined through an analysis-synthesis loop. The 3D location is calculated with
the calibration estimation at each step, each view where a characteristic point
is visible defines a ray in 3D space, the intersection of the rays is the location of
the point. To deal with imperfect calibration a least square solution minimizing
the distance to the projected rays is adopted. This leads to a set of deformation
vectors for each characteristic point. Then, complete deformation is obtained by
interpolating these deformation with RBF. After that, surface is refined using
silhouette information: silhouettes’ curves are extracted from each view, and a
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curve matching technique is employed to find deformation vectors. These defor-
mation are also interpolated with RBF to get the refined surface. This approach
has also been used with success for faces in [5].

A complete fitting technique of a template model on scanned data using auto-
matically detected landmarks can be found in [6]. Here, the CAESAR database
has been used, 74 landmarks have been put on people before they were scanned.
An energy term to be minimized is defined as a weighted sum of errors (data,
smoothness and markers error) and an optimization is performed at low and
high resolution to fit the surfaces. PCA analysis was also proposed for marker-
less matching in the same article and also in [7] where the scanned bodies are
aligned inside a fixed volume. A voxelisation of the volume is then computed
where each voxel has the value of the signed distance to the surface, PCA is
computed on this voxel grid to get the variability of shapes. Yet, this method
requires processing to eliminate holes, gaps and noise before PCA. Both meth-
ods also rely on the database to get the eigenvectors to reconstruct specific
bodies after.

When no markers are available on the scanned data, it is possible to detect
landmarks automatically. [8], [9] propose a method based on fuzzy logic to locate
feature points defined as sharp angles on 2D contours given by intersecting the
data with a plane. [10] tried to find mathematical definitions of the human body
features defined in ASTM and ISO. Then these features are located using image
processing techniques. To be able to use image processing techniques, the point
cloud is encoded as a 2D depth map. 21 features points an 35 lines have been
extracted with this approach.

2 Our Approach

This paper is organized as follows. Section 2.1 describes our approach to fit a
generic model to scanned data, section 2.2 explains how we adjust the number
of slices in the limbs, section 2.3 describes how we fit each curve in simple cases,
in section 2.4 we propose a solution for some problematic slices and in section
2.5, we discuss the current results and future work.

2.1 Fitting Technique

Our data come from a 3D-scanner using structured light called SYMCAD [11]
and produced by a french company: Telmat [12]. The technique developped here
is designed specifically for this scanner. Telmat is our partner in SimulVET, an
ANR funded project for virtual try-on applications. Different types of output
are available from the scanner: the point clouds (one for the front view and
one for the back view), segmented surfaces (one triangulated surface for each
member in each view) and a segmented model where in each member the points
are organized in slices, one slice per centimeter. Segmentation was computed
on 2D images, using a matching procedure between 2D pixels and 3D points.
The segmentation distinguishes 5 parts: left and right leg, left and right arm and
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Fig. 2. Here are different outputs of SYMCAD [11] for a single acquisition. Top-left, a
zoom on a part of the point cloud, top-right, the segmented surfaces with a specific color
for each member and, at the bottom, the sliced model with one slice per centimeter.
This last one is a zoom of the model in Fig 1.

torso. The sliced model is composed of 5 independent closed meshes, curves have
been fitted to each segmented surface to link points from the two views and to
form a single mesh of each member (see Fig 2).

We developed a fitting technique on this segmented model. Our textile appli-
cation application needs a single regular mesh without holes to work correctly.
So we built a generic model (see Fig 3) with the following properties:

1. It is a single mesh of the complete human body.
2. It has the right topology for our application.
3. It is segmented (left and right feet, legs, hands and arms, torso and head),

a specific color was manually assigned to every point of each member.
4. Arms, legs and torso are organized in slices like the data coming from the

scanner.

2.2 Adjusting the Number of Slices

A first step is to establish a correspondence between the slices of the generic
model and the slices of the data. According to the size and the proportions



336 T. Luginbühl, P. Guerlain, and A. Gagalowicz

Fig. 3. Our generic model. We chose a specific color for each limb and we organized
the points in slices as shown at the bottom of Fig 2. This mesh is regular with a correct
topology that we intend to use for our virtual try-on application.

of a specific person we may need to add or remove some slices. Therefore two
functions were created: addSlice and removeSlice. Both of them rely on a third
one: buildFacesBetweenSlices.

buildFacesBetweenSlices builds the faces between two consecutive curves. We
consider 2 consecutive curves of a limb, we read them couter-clockwise. Fig 4
shows two examples of the principle in 2D. In each cell we represent points from
the lower and upper curve. A first triangle is build by taking a point on the lower
curve, its closest point on the upper and the next point on the lower (the triangle
is in white on the picture). Last points used in each curve are shown in yellow.
We build new triangles while moving around the lower curve and finding the
closest points on the upper. The first two cells show the case where the closest
upper point of the next point of the lower curve is the current upper yellow
point. In this case, we build a single triangle as shown in the second cell. The
third and fourth cell explains what we do when the closest upper point is not
the current yellow point. In this case, we consider all the intermediate points of
the upper curve and link them to their closest neighbor on the lower curve. We
finally build the corresponding triangles as shown in the last cell.

addSlice enables to add a slice between two others in a limb. It first deletes
the faces that were existing between the two slices, then makes a copy of the
lower slice and builds new faces between the new consecutive slices. The new
points are placed in a middle position between their upper and lower neighbors
so that the surface remains smooth.

removeSlice deletes the faces between the previous and the next slice, builds
new faces between these two slices and delete the points of the slice to be removed.

After adding or removing a slice, points are translated to keep the regularity
of the spacing between slices. When several slices need to be added or removed,



A Model-Based Approach for Human Body Reconstruction 337

Fig. 4. Two examples of triangulation between two slices. In yellow we show the last
current points on each curve used to build a triangle. In the first case we read the next
point on the lower curve, its closest point on the upper curve is the current yellow
point so we build a single triangle and go on reading the lower curve. In the second
case, there are several points to insert on the upper curve, each point is linked to its
closest point and the triangles are built as shown in the picture.

we add/delete them at different heights in the member and not where there is
a joint such as the knee, the elbow or the shoulder not to deform too much a
specific part of the member.

The number of slices to add or remove is determined automatically for each
member. The scanner provides the position of the crotch ; with it we can know
the height of the legs and then the number of slices needed since the spacing is a
constant. For the arms and torso we just have to put the same number of slices
as in the data.

2.3 Fitting Each Slice

After the previous adjustments we have almost everywhere a 1 by 1 correspon-
dence between the slices on the model and the slices of the data. The only slices
that have still and important difference are the ones linking the shoulders to the
torso, those slices will be treated differently than with the following method.

For all the other slices we start by aligning the center of the curve of the
generic model to the center of the curve of the data. Then, for each point of
the slice of the generic model, we consider the ray starting from the center and
going through the point. We move the point to the intersection of the ray and
the curve on the data (see Fig 5).

However, this approach can’t be used for the slices where the arms and the
torso are involved. Fig 6 shows how these slices look like on the generic model
and the data. In the generic model, we have one single curve going through the
three limbs. On the other hand, as we have one mesh per limb in the data, there
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Fig. 5. This picture shows the different steps of the fitting. The points of the data are
in red and those of the model are in green. First we have the curves in their initial
position, we fit the bounding box of the generic model to the data, then for each point
we draw a ray (here in blue) from the center to a point of the generic model, we move
each point to its intersection with the data.

are three closed curves for each slice and those curves have overlapping parts.
Furthermore, we see in Fig 6 that the segmentation is not precise enough because
a large part of the torso is in the arm member. This, added to the fact that such
slices do not correspond to a cylindrical shape and therefore don’t have a usable
center for our approach, makes it clear that we need to find another way.

To deal with these slices, we built an envelope of the points at the height of the
curve we want to fit. Then we moved each point of the generic model according
to the normal direction at the point, and found the closest intersection with the
envelope. We define a threshold to avoid moving points which are too far from
their original position. However, results were not good enough for this part. That
is why we propose another technique for these slices using B-splines.

2.4 Fitting Problematic Slices Using B-splines

In order to find a solution for the slices where arms and torso are joining, we
propose the use of B-splines. Our idea is to fit a B-spline functions to the 2D
points, and use the parametric equation to move the points of the generic model.

First we need to fit a B-spline to the data points. Lower and upper envelopes
of the slice are computed using the CGAL library [13]. The two envelopes are
linked to get a complete envelope of the slice with points organized counter-
clockwise. Let m be the number of points of this envelope. We set the closest
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Fig. 6. Here are two curves where arms and torso are meeting. The first one corresponds
to the generic model and the second one to the data. The first one is a single closed
curve, we just added color to highlight front and back parts. The second is composed of
3 closed curves (left and right arm, torso) the red points inside enable to guess how each
curve is closed. We can also see that the segmentation provided by the scanner is not
precise enough in that area: red points, that show the limits of the segmented meshes,
are far from the points with sharp angles which correspond to the real boundary.

point to the axis x = 0 with highest y coordinate as the origin of the curve. For
each point Ai, 0 ≤ i ≤ m−1 on the envelope, we compute its chordal distance di

defined by : d0 = 0 and for 1 ≤ i ≤ m − 1, di = di−1 + ||Ai − Ai−1|| (it is a first
order approximation of the arc length). We define dm = dm−1 + ||Am−1 − A0||
and we finally divide all the values by dm to have a parametric representation
in [0, 1].

Then, we compute a least-square approximation B-spline function. We choose
a degree d and a number of control points n. We build a periodic knot vector
because we want to represent a closed curve :

tk =
k − d

n − d
, 0 ≤ k ≤ n + d (1)

The B-spline curve will be

C(t) =
n−1∑
k=0

Bk,d(t)Pk (2)

where Pk, 0 ≤ k ≤ n − 1 are the control points to be found and Bk,d is the
basis B-spline function defined for d = 0 by

Bk,0(t) = χ[tk,tk+1[ (3)
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with χI the characteristic function of the interval I and otherwise by the Cox-de
Boor formula

Bk,d(t) =
t − tk

tk+d − tk
Bk,d−1(t) +

tk+d+1 − t

tk+d+1 − tk+1
Bk+1,d−1(t) (4)

Using all the points of the envelope, we get a linear system,⎛⎜⎝ B0,d(d0) B1,d(d0) . . . Bn−1,d(d0)
...

...
. . .

...
B0,d(dm−1) B1,d(dm−1) . . . Bn−1,d(dm−1)

⎞⎟⎠
⎛⎜⎝ P0

...
Pn−1

⎞⎟⎠ =

⎛⎜⎝ A0
...

Am−1

⎞⎟⎠
We use B-splines of the third degree. For this degree we found that choosing

n between 30 and 40 is enough to get a good approximation of all curves of
the human body in our examples. We are in the case where m > n, because the
envelopes contain at least more than 100 points. So we choose the pseudo-inverse
solution of the system.

With it we get the control points of the fitted B-spline. Now we have to move
the points of the generic model. We consider for the curve of the generic model
the same kind of parametrization that we use for the envelope (between 0 and 1
and with the origin at x = 0 with maximum z value). We build it the same way
as we explained. We evaluate the fitted B-spline to all parameters of the points
of the generic model and move them to the found value. Fig 7 shows the fitted
B-spline to a curve from data, we see how it smooths some sharp angles.

Fig. 7. An example of a fitted B-spline with n = 35 d = 3. In green the data curve, in
red the fitted B-spline.
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2.5 Results and Future Work

Once the slices are fitted, some parts of the generic model are translated in order
to be aligned with the new positions (feet and hands). We took the hands of the
generic model because data is too imprecise to make a correct fitting of this
part. Fig 8 shows the results on a scanned person without using B-splines. First
the data are shown then curves are fitted and finally a laplacian smoothing is
used. Since the last curves of each limb in the data are often used to close the
meshes, they contain some non-reliable points as we see in the third model in
Fig 8, at the link between the legs and the torso. To solve this problem we put
all the points of these curves at the middle position between their upper and
lower neighbors.

Fig. 8. From left to right: the data from the scanner, the generic model, the model after
the fitting, the model after smoothing. Those results are without the use of B-splines.

Fig 9 shows the result around the shoulders of the 3D model with the use of
B-splines, the approach gives promising results, there is no more self intersection
as with previous method. However we still have to find a solution when there is
an asymmetry (for example when an arm is higher than the other we may have
curve where right arm and torso meet but not left arm and torso or vice versa).

The main problems we have to deal with now are the head and the links with
parts taken from the generic model (links between legs and feet or arms and
hands for example). Work is still in progress. For these parts, we will use more
3D information instead of 2D curves only, relations between a set of consecutive
curves can be explored to improve regularity. Comparison with the original point
cloud can also be used to refine the result after this step.

Several filtering techniques have also been developed in our team. These tech-
niques may be useful to treat difficult parts like the linking regions between
parts fitted to the data and parts taken completely from the generic model.
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Fig. 9. Here we see the difference between the case where we don’t use B-splines to fit
the curves (left) and the result when B-splines are used with d = 3 n = 35 (right)

Those filtering techniques use information from the original generic model be-
fore the deformation. For example, a slice filter computes slices orthogonal to
the principal axis of each member in the original model and in the deformed
model, the variation of the distance between correspondent slices is computed,
if the maximum variation is more than a threshold, a scaled copy of the original
model is made for this slice. Another filter for smaller distortions can also be
used, for each vertex on the original and its correspondent one on the deformed
model, we consider the incident triangles and compute the angle between their
normals. If this angle is more than a threshold a scaled copy of the original model
is used to replace the vertices of the deformed model.

Finally, after the full geometry is recovered, the next step is to get texture
information from the pictures taken in the scanner.
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Abstract. 3D human motion capture by real-time monocular vision
without using markers can be achieved by registering a 3D articulated
model on a video. Registration consists in iteratively optimizing the match
between primitives extracted from the model and the images with respect
to the model position and joint angles. We extend a previous color-based
registration algorithm with a more precise edge-based registration step.
We present an experimental analysis of the residual error vs. the compu-
tation time and we discuss the balance between both approaches.

Keywords: 3D motion capture, monocular vision, 3D / 2D registration,
region matching, edges matching.

1 Introduction

Research in motion capture by computer vision has been motivated by many tar-
get applications: human-computer interfaces, animation, interaction with virtual
environments, video surveillance, games, etc. We focus on 3D human motion cap-
ture in real-time without markers [8]. This is a difficult problem because of the
ambiguities resulting of the lack of depth information, partial occlusion of human
body parts, high number of degrees of freedom, variations in the proportions of
the human body and different clothing of each person [14].

In this work, we extend a previous work for 3D human motion capture by
registering a 3D articulated human body model on video sequences using a
color-based step followed by an edge-based step [7]. In this work we shall exper-
imentally characterize the contribution of color and edge information to model
matching. We present a detailed analysis of the precision and processing time
achieved by the color-based registration and the edge-based registration steps.

This paper is organized as follows. First, in section 2, we describe previous works
related to 3D human motion capture by computer vision. In section 3, we intro-
duce our 2 steps approach based on matching color regions and the edges. Then,
our performance characterization experiments and the results obtained are pre-
sented in section 4. Finally, in section 5, we conclude and discuss how a balance
can be found between both steps while facing limited computation resource.

A. Gagalowicz and W. Philips (Eds.): MIRAGE 2009, LNCS 5496, pp. 344–355, 2009.
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2 Previous Work for 3D Human Motion Capture

Previous works rely on various appearance features such as color [10], [6], [7],
edge [6], [7], [15], shape [1], [11], and motion [15], [9]. They can be divided into
two main approaches: model-based and model-free approaches [14].

The model-based approaches use a 3D model of a human body and a matching
cost function to find the 3D pose that best matches input images. Estimating
the 3D pose from monocular images, is achieved by searching for the pose that
minimizes some matching cost function [8]; some other works use human body
part detectors to assemble the 3D pose using physical and proximity constraints
[3]. Temporal coherence can be enforced with particle filters that allow multi-
ple hypotheses matching [6], [15]. Some works use motion priors [16] to guide
tracking within a motion model previously learned [16], or to learn a mapping
between the pose space and a low-dimensional latent space in which the tracking
occurs [13].

Model-free approaches do not use any 3D explicit human body model. Instead,
they try to infer directly 3D poses from images. The learning-based approaches
rely on training data to learn a function that maps the image observation to the
3D pose space [1]. Example-based approaches avoid this learning by saving in
a database a collection of examples of 3D poses with their corresponding image
descriptors and by searching this database and interpolating candidate poses for
a 3D pose similar to the input image [11].

3 Our Approach for 3D Human Motion Capture

Our method consists in registering a 3D articulated model of upper human
body on video sequences [8], [10]. Our 3D human model (figure 2a) has 3 global
position parameters and 20 joint angles of the upper-body part (chest, arms,
forearms, hands, neck and head). A 3D human pose is represented by a vector
of parameters of the joint angles.

For each captured image frame, we extract color regions and edges. A col-
ored silhouette and occluding edges are also computed for each candidate pose
of the model. Our registration process consists in searching for the best match-
ing correspondence between these primitives. We iteratively optimize registra-
tion using a color region-based criterion and then an edge-based registration
(fig. 1) [7].

3.1 3D Human Model Calibration and Pose Initialization

To registering the 3D upper-body human model on a video sequence requires
calibrating the body model to make it similar to the actor captured in the video.
This is done by adjusting manually the 20 joint angles of the 3D model taking as
reference the pose of the human in the first image and the dimensions (length,
width and height) of each body part of the 3D model by watching the overlapping
between each body part of the projected model and the human in the captured
image (figure 2b).
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Fig. 1. Our prototype for 3D human motion capture. The images are respectively:
the captured image, the segmented image, the edges in the foreground and finally the
projection of the registered 3D human body model.

Fig. 2. 3D human model calibration step: a general design of our 3D human upper-
body model with the 20 degrees (a), the 3D model projection superposed with the
human in order to adjust the parameters of the model in the calibration and pose
initialization steps (b)

3.2 Region-Based Registration

The human silhouette is detected by comparing the captured image with a refer-
ence image of the background. This silhouette (foreground) is segmented in two
color classes (skin and clothes color). Color samples are extracted automatically
from the first captured image. A skin color sample is taken in the face region
found with Adaboost face detector [17]. A clothes sample is taken under the face.
We model each sample using a simple gaussian model in a HSV color space. For
each image, we project the 3D model [18] (using OpenGL API) according to the
pose described in the vector of parameters. The 3D model is projected by render-
ing the skin and clothes colors. The matching between the 3D model projection
and the segmented image is evaluated using a non-overlapping ratio:

F (q) =
m∏

c=1

(
|Ac ∪ Bc(q)| − |Ac ∩ Bc(q)|

|Ac ∪ Bc(q)|

) 1
m

. (1)

where q is the vector of parameters describing a candidate 3D pose, m is the
number of color classes, Ac is the set of pixels with the c color class in the
segmented image, Bc(q) is the set of pixels with the c color in the projection of
the 3D model and |X| represent the number of pixels in X.

This cost function is minimized using a downhill simplex algorithm [12] under
biomechanical constraints. Further details can be found in [10].
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Fig. 3. Limited precision of the region-based registration. The images are respectively:
the captured image, the segmented image, the projection of the registered 3D human
body model and finally the projection of the 3D model superposed with the segmented
image. The pose of the 3D model differs from the pose of the actor because the region-
based registration is not precise.

It is important to note that for convergence towards a position approximately
correct, this method initially requires only a partial overlapping between colored
regions. However, it is not precise because the number of pixels in the border
regions is few compared to the number of pixels inside the region (fig. 3).

3.3 Edge-Based Registration

We propose a further edge-based registration step to improve the precision. It
works by matching edges of the captured image and occluding edges of the 3D
model [9], [15]. The initial 3D pose of this step is the final state output by the
region-based registration. Edges in the input video image are extracted with a
Deriche filter [4] in the foreground region of the image. Then, a chamfer algorithm
[2] allows computing a map of the distance between each pixel of the image and
the nearest edge.

The occluding edges of the 3D model are the lines of the surface where the
observation direction is tangent to the surface [5]. These occluding edges can
easily and efficiently be extracted with the OpenGL API by rendering the sur-
face mesh with culling based on the normal orientation. First, the back facing
triangles and their edges are rendered with some foreground color while the front
facing triangles are eliminated, then the inside of front facing triangles is ren-
dered with background color while the back facing triangles are eliminated, so
only the occluding edges remain highlighted in the image. Then the mean dis-
tance between the projected occluding edges of the model and the edges in the
input video image is computed by masking the previous distance map with the
projected binary image of the 3D model occluding edges:

Dc =
1

Np

∑
i

IDT (pi) . (2)

where Dc is the mean edge distance, IDT is the distance transform image, pi are
the pixels in the projected occluding edges of the 3D model. We minimize this
function with the downhill simplex algorithm [12] as previously in the region-
based registration step.

Our registration process basically consists in using downhill simplex opti-
mization algorithm [12] to minimize the non-overlapping ratio and the mean
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edge distance. The downhill simplex method has the advantage that it requires
computing only values of the function to be optimized rather than its derivates.
We use a measure of the size of the simplex (defined by the ratio between the
highest and lowest value of the simplex) as a convergence criterion.

4 The Optimization Process

Iterative optimization in a high dimensional space usually requires a large vari-
able number of iterations to converge. Because we are interested in real-time
motion capture, we have to limit the computation time and thus, the number of
iterations per image. Unfortunately, limiting the number of iterations decreases
the precision of the registration process (fig. 4). For this reason, we experimen-
tally analyzed the performance (precision and process time) of our registration
process by varying the number of iterations of both registration step (region-
based and edge-based), searching for an optimal balance between the precision
and processing time in both registration steps (region-based and edge-based).

Fig. 4. Effect of a limited number of iterations on the residual error (ordinates). The
abscissa is the image number in the video sequence. The left chart corresponds to the
non-overlapping ratio minimized by region-based registration. The right chart corre-
sponds to the mean edge distance minimized by edge-based registration. Black lines
are the residual error at convergence while the gray line is limited to 30 iterations. A
limited number of iterations decrease both the precision and robustness of registration.

We aim at real time tracking, so the available computation time for each
captured image must be shared between the two steps of the registration process.

We used 6 video sequences showing various gestures with occlusions (e.g. arms
crossed), fast movements, including in the depth direction (fig.5) and a person
possibly not exactly facing the camera. These 160 x 120 pixels video sequences
were captured using a Logitech QuickCam Pro 5000 webcam. The computation
time varies with the number of iterations, the central processor (CPU) and the
graphics card (GPU). Table 1 shows the computation time on two platforms1

with varying number of iterations shared in our two-steps registration process.

1 Experiments were run on a CPU Intel Pentium 4 3.6 GHz and a GPU NVIDIA
Quadro FX 1400 (platform 1) and a CPU Intel Pentium M 1.4 GHz and a GPU
NVIDIA GeForce 4200 Go (platform 2).
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Fig. 5. The video sequences used in our experiments. The video sequence 1 (top left),
the video sequence 2 (top center), the video sequence 3 (top right), the video sequence 4
(bottom left), the video sequence 5 (bottom center) and the video sequence 6 (bottom
right) contains respectively 290 frames, 1497 frames, 1433 frames, 887 frames, 1032
frames and 551 frames. The first three sequences include various types of gesture.
The sequence 4 includes principally gestures when arms are crossing each other. In
the sequence 5, the person is not facing directly the camera. The sequence 6 includes
movements in which the person is turning around himself.

Table 1. Computation time in milliseconds (average and standard deviation) with
respect to the number of iterations shared in our two-step registration process on two
platforms. In these experiments, 50% of the total number of iterations is given to
each step.

Number of Avg. Time Std. Dev. Time Avg. Time Std. Dev. Time
iterations Platform 1 (ms) Platform 2 (ms) Platform 2 (ms) Platform 2 (ms)

40 22.34 ±6.58 88.18 ±9.16
100 35.61 ±6.68 137.24 ±16.07
200 57.99 ±6.84 223.30 ±27.51
300 78.69 ±6.90 300.13 ±32.74
400 97.25 ±7.12 370.06 ±35.81
500 100.59 ±9.80 436.21 ±48.72

Table 2 shows the computation time of our 3D motion capture prototype2

for images with higher definition. From these experiments, we found that the
performance of the registration process with respect to the non overlapping ratio
and the mean edge distance is similar for images with larger number of pixels
(higher resolutions) since our approach does not require much accuracy in the
segmentation and edge extraction.

4.1 Edge-Based Registration Precision Experiments

We recall that the region-based registration is used to initialize the registration
process because is more robust, then, the edge-based registration is used to
2 Computation times on a CPU Intel Pentium 4 3.0 GHz and a GPU NVIDIA GeForce

9600 GT.
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Table 2. Average computation time in milliseconds for images with higher resolution.
The image processing part includes background subtraction algorithm, color segmen-
tation, edges extraction and distance transform computation. We show also the com-
putation time of each matching cost function (non overlapping ratio and mean edge
distance).

Image Avg. Time (ms) Avg. Time (ms) Avg. Time (ms)
Resolution Image processing Non Overlapping Mean Edge

Ratio Distance

160 x 120 92.45 1.05 0.97
256 x 256 323.53 1.89 1.86
326 x 240 381.19 2.08 2.09
480 x 480 1187.92 3.09 3.05
512 x 512 1353.84 3.74 3.82
640 x 480 1581.86 5.29 5.58

improve the precision. In order to verify the increase of the precision given by
the edge-based registration step with respect to the region-based registration,
we experimentally compared the residual edge distance achieved by each step of
the registration process (region-based and edge-based). Here, we iterated until
convergence. Our results (fig. 6) show that the edge-based registration step allows
correcting, for some images, incorrect region-based registrations that appear as
peaks in the residual distance between edges. The figure 7 illustrates an example
of such a correction.

Fig. 6. Residual distance between edges achieved by the region-based registration (gray
line) and the edge-based registration (black line)

4.2 Difficulties Encountered in Edge-Based Registration

After limiting the maximum number of iterations in the edge-based registra-
tion step, we encountered some difficulties related to the high instability and
imprecision in the results. This is because the edges extracted from the image
are not necessarily matched with the correct model edges by registration pro-
cess, so the registration process is trapped in some local optimum. This issue
can be limited by initializing the edge-based registration step using the usually
smaller simplex after final iteration of the region-based registration step. Thus,
the edge-based registration will start to search in a reduced search-space starting
from the solution achieved by the previous step (region-based) avoiding being
trapped in some local incorrect minimum. We can see the experimental results
of the solution proposed in the figure 8.
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Fig. 7. Incorrect region-based registration corrected by the edge-based registration.
The images are respectively: the captured image, the projection of the 3D model su-
perposed with the segmented image that shows an incorrect region-based registration,
the 3D model occluding edges that shows the correction by the edge-based registration
and finally the 3D model projection showing the corrected 3D pose.

Fig. 8. Residual distance between edges on a video sequence. The abscissas is the
number of iterations of the edge-based registration step (other iterations are devoted
to the region-based registration step). The black line is the residual error with final
simplex at step 1 (region) used as initial simplex at step 2 (edges). The gray line is
the residual error using a large initial simplex. The residual distance between edges by
reducing the size of the simplex (black line) is smaller because it can avoid more local
wrong minimums.

4.3 Performance Experiments in Our Registration Process

In order to analyze the performance of our approach, we considered, for each
experiment, the residual values of each evaluation function and also the number
of failures (mistrackings) with varying numbers of iterations in the registration
process.

We were interested in analyzing the performance from 1 to 500 iterations be-
cause the computation time is below 100 milliseconds (see table 1), thus allowing
tracking at 10 Hz or more. In each experiment, we sampled the residual value of
the non-overlapping ratio and the residual value of the mean edge distance. We
considered only the mean residual for all the images in a video sequence. A way
of measuring the robustness in each registration step is to count the number of
failures for each experiment. We consider as failures or mistrackings the residual
values above a defined threshold (a “peak”) for each evaluation function. In this
way, if the residual value is relatively large, we consider that the solution output
by the optimization algorithm is a “bad” registration. We show the experiments
results for the video sequence 2 in the next figures (fig. 9, 10, 11 and 12).
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Fig. 9. Mean residual of the non-overlapping ratio (z-axis) with respect to the number
of iterations of the region-based registration (x-axis) and the number of iterations of the
edge-based registration (y-axis) achieved on video sequence 2. Experiments on video
sequences 1, 3, 4, 5 and 6 showed similar results.

Fig. 10. Mean residual of the mean edge distance (z-axis) with respect to the number
of iterations of the region-based registration (x-axis) and the number of iterations of the
edge-based registration (y-axis) achieved on video sequence 2. Experiments on video
sequences 1, 3, 4, 5 and 6 showed similar results.
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Fig. 11. Number of failures of the non-overlapping ratio (z-axis) with relation to the
number of iterations of the region-based registration (x-axis) and the number of itera-
tions of the edge-based registration (y-axis) obtained on the video sequence 2. Experi-
ments on video sequences 1, 3, 4, 5 and 6 showed similar results.

Fig. 12. Number of failures of the mean edge distance (z-axis) with relation to the num-
ber of iterations of the region-based registration (x-axis) and the number of iterations
of the edge-based registration (y-axis) obtained on the video sequence 2. Experiments
on video sequences 1, 3, 4, 5 and 6 showed similar results.

5 Conclusions

We have presented a 3D human motion capture algorithm by monocular vi-
sion in real-time, based on registering a 3D articulated model on color regions
and then an edge distance criterion. Through experimental results (the surfaces
3D displayed above), we can understand the performance of the region-based
and edge-based registration steps. From figure 9 and 10 we can see how the
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region-based registration step reaches to convergence faster that the edge-based
registration step. The figures 11 and 12 show the instability of the edge-based
registration step compared to the stability of the region-based registration step.
So we need to combine the robustness and stability of the region-based registra-
tion and the precision of the edge-based registration.

In order to have the best performance in real-time for our approach, we de-
cided to give priority to the stability of the registration when the number of
iterations is below 200 (found experimentally from figure 11), thus, in this case,
all the total iterations will be executed by the region based step. However, when
the total number of iterations is above 200, the number of failures in region-based
step registration is relatively small (figure 11), thus, we can take advantage of the
precision achieved by the edge based step (figure 6 and 7) by sharing in the same
proportion the total number of iterations between each step (50% of iterations
for region-based step and 50% of iterations for edge-based step). Although the
performance variation (fig. 9, 10, 11 and 12) was similar for all tested videos, the
video sequence 6 (fig. 5) presented the highest number of failures (mistrackings)
due to the ambiguity caused by the limited depth information in monocular im-
ages. Our future work aims at estimate the gradient of the edge distance in order
to use a gradient descent optimization algorithm to improve the precision of our
approach.
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monoscopique en temps réel. In: Conférence MajecSTIC 2008, Marseille, France
(2008)

8. Horain, P., Bomb, M.: 3D Model Based Gesture Acquisition Using a Single Camera.
In: Proceedings of IEEE Workshop on Applications of Computer Vision WACV
2002, Orlando, Florida, December 3-4, pp. 158–162 (2002)

9. Lu, S., Huang, G., Samaras, D., Metaxas, D.: Model-based integration of visual
cues for hand tracking. In: Proceedings of IEEE workshop on Motion and Video
Computing, Orlando, Florida, pp. 119–124 (2002)



Region-Based vs. Edge-Based Registration 355

10. Marques Soares, J., Horain, P., Bideau, A., Nguyen, M.H.: Acquisition 3D du geste
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Abstract. Coronary artery disease has been described as one of the curses of
the western world, as it is one of the most important causes of mortality. There-
fore, clinicians seek to improve diagnostic procedures, especially those that allow
them to reach reliable early diagnoses. In the clinical setting, coronary artery dis-
ease diagnostics is typically performed in a stepwise manner. The four diagnostic
levels consist of evaluation of (1) signs and symptoms of the disease and ECG
(electrocardiogram) at rest, (2) sequential ECG testing during the controlled exer-
cise, (3) myocardial perfusion scintigraphy, and finally (4) coronary angiography,
that is considered as the “gold standard” reference method. Our study focuses
on improving diagnostic performance of the third diagnostic level. Myocardial
scintigraphy is non invasive; it results in a series of medical images that are rel-
atively inexpensively obtained. In clinical practice, these images are manually
described (parameterized) by expert physicians. In the paper we present an in-
novative alternative to manual image evaluation – an automatic image parame-
terization in multiple resolutions, based on texture description with specialized
association rules. Extracted image parameters are combined into more informa-
tive composite parameters by means of principle component analysis, and finally
used to build automatic classifiers with machine learning methods. Our experi-
ments with synthetic datasets show that association-rule-based multi-resolution
image parameterization equals or surpasses other state-of-the-art methods for
finding multiple informative resolutions. Experimental results in coronary artery
disease diagnostics confirm these results as our approach significantly improves
the clinical results in terms of quality of image parameters as well as diagnostic
performance.

Keywords: machine learning, coronary artery disease, medical diagnostics,
multi-resolution image parameterization, association rules, principal component
analysis.

1 Introduction

Image parameterization is a technique for describing bitmapped images with numerical
parameters – features or attributes. Traditionally popular image features are first- and
second-order statistics, structural and spectral properties, and several others. Image pa-
rameterization is very useful in quality control, identification, image grouping, surveil-
lance, image storage and retrieval, and image querying. Over the past few decades we
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observe extensive use of image parameterization in medical domains where texture clas-
sification is closely related to diagnostic process [4]. This complements medical prac-
tice, where manual image parameterization (evaluation of medical images by expert
physicians) frequently plays an important role in diagnostic process.

Coronary artery disease (CAD) is one of the world’s most frequent cause of mor-
tality, and there is an ongoing research for improving diagnostic procedures. The usual
clinical process of coronary artery disease diagnostics is stepwise, consisting of four
diagnostic levels (1) evaluation of signs and symptoms of the disease and ECG (elec-
trocardiogram) at rest, (2) ECG testing during the controlled exercise, (3) myocardial
scintigraphy, and (4) coronary angiography.

In this process, the fourth diagnostic level (coronary angiography) is considered as
the “gold standard” reference method. As this diagnostic procedure is invasive and
rather unpleasant, as well as relatively expensive, there is a tendency to improve di-
agnostic performance of earlier diagnostic levels, especially of myocardial scintigraphy
[9]. State of the art approaches used for this purpose include applications of neural
networks [16], expert systems [5], subgroup mining, statistical techniques [19], and
rule-based approaches [11]. In our study we focus on various aspects of improving the
diagnostic performance of myocardial scintigraphy.

Results of myocardial scintigraphy consist of a series of medical images that are
taken both during rest and a controlled exercise. These images can be relatively cheaply
obtained and the imaging procedure does not represent a threat to patients’ health. In
clinical practice, expert physicians use their medical knowledge and experience as well
as the image processing capabilities provided by various imaging software to manually
describe (parameterize) and evaluate the images.

We propose an innovative alternative to manual image evaluation – automatic multi-
resolution image parameterization, based on texture description with specialized as-
sociation rules, coupled with image evaluation with machine learning methods. Since
this approach yields a large number of relatively low-level features (though much more
informative than simple pixel intensity values), we recommend using it in conjunction
with additional dimensionality reduction techniques, either by discarding some features
(feature selection), or combining them into more informative, high-level features (fea-
ture extraction). Our results show that multi-resolution image parameterization equals
or even outperforms the physicians in terms of the quality of image parameters. By
using both manual and automatic image description parameters at the same time, diag-
nostic performance can be significantly improved with respect to the results of clinical
practice.

2 Methods

In image processing, a lot of work has been channeled into automatic (machine) recog-
nition, description, classification, segmentation, retrieval, and grouping of patterns [20].
These are important problems in a variety of engineering and scientific disciplines such
as biology, psychology, medicine, marketing, computer vision, artificial intelligence,
and remote sensing [6].
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An important issue in image parameterization in general, and in our approach with
association rules in particular, is to select appropriate resolution(s) for extracting most
informative textural features. Structural algorithms use descriptors of some local rela-
tions between image pixels where the search perimeter is bounded to a certain size. This
means that they can give different results at different resolutions. The resolution used
for extracting parameters is important and depends on the properties of the observed
images.

We developed the algorithm (ARes) that finds suitable resolutions at which image
parameterization algorithms achieve more informative features. From our experiments
with synthetic data we observe that using parameterization-produced features at several
different resolutions usually improves the classification accuracy of machine learning
classifiers [21]. This parameterization approach is very effective in analyzing myocar-
dial scintigraphy images used for CAD diagnostics in the stepwise process.

The obtained high quality image parameters can be used for several purposes, among
others to describe images with a relatively small number of features, and use them in
machine learning process. Images corresponding to patients with known correct final
diagnosis can be used as learning data that, in conjunction with the applied machine
learning methods, produces reliable decision support tools (classifiers) for the diagnos-
tic problem at hand.

2.1 Image Parameterization

Image parameterization transforms the image from the matrix form into a set of numeric
or discrete features (parameters) that convey useful high-level (compared to simple
pixel intensities) information for discriminating between classes. Most texture features
are based on structural, statistical or spectral properties of the image. For the purpose of
diagnosis from medical images it seems that structural description is most appropriate
[22]. For this we use the ArTex algorithm (described in Sec. 2.3) for textural attributes
which are based on spatial association rules. The association rules algorithms can be
used for describing textures if an appropriate texture representation formalism is used.
This representation has several good properties like invariance to global brightness and
invariance to rotation.

2.2 Image Classification with Machine Learning Methods

The ultimate goal of medical image analysis is decision about the diagnosis. When
images are described with informative numerical attributes, we can use various machine
learning algorithms [8] for generating a classification system (classifier) that produces
diagnoses of the patients, whose images are being processed. For that purpose one can
choose from multitude of machine learning methods. Based on our previous experience
in medical diagnostics [9], we decided to use decision trees, naive Bayesian classifiers,
Bayesian networks, K-nearest neighbors, and Support Vector Machines. Our early work
in the problem of diagnosing the coronary artery disease from myocardial scintigraphy
images [10] indicates that the naive Bayesian classifier gives the best results. Our results
conform with several others [7] who also find out that in medical diagnosis the naive
Bayesian classifier frequently outperforms other, often much more complex classifiers.
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2.3 The ArTex Algorithm

Most texture features are based on structural, statistical or spectral properties of the im-
age. The most frequently used space transformations are Fourier, Laws [12], Gabor [15]
and wavelet transform. However, the ArTex algorithm that was used in our experiments
is based on association rules. A full and detailed explanation of the ArTex algorithm
can be found in [21]. Association rules capture structural and statistical information
and are very convenient to identify the structures that occur frequently, and have most
discriminative characteristic. Representation of texture with spatial association rules
substitutes the precise information of location and intensity of the adjacent pixels with
more general information – the distance and the relative intensity of neighboring pix-
els. This description is rotation-invariant and is suitable for processing with general
association rule algorithms. Using association rules on textures allows to extract a set
of features (attributes) for a particular domain of textures. Beside the basic parameters
(interestingness measure, support and confidence) other parameters were used [21].

2.4 Multi-resolution Parameterization

Why use more resolutions? Digital images are stored in the matrix form and algorithms
for pattern parameterization basically use some relations between image pixels (usually
first or second order statistics). By using only a single resolution, we may miss the big
picture, and proverbially not see the forest because of the trees (Figure 1). Since it is
too computationally complex to observe all possible relations between at least any two
pixels in the image, we have to limit the search to some predefined neighborhood. This
limitation makes relations vary considerably over different resolutions. This means that
we may get completely different image parameterization attributes for the same image
at different scales.

(a) An inadequate resolution (b) An adequate resolution

Fig. 1. Detecting patterns at different scales. Taken from [21] with permission from authors.

Parameters from many resolutions. In different existing multi-resolution approaches
[17], authors are using only a few fixed resolutions independently of the image con-
tents. Usually, only two or three resolutions are used. Authors report better classifica-
tion results when using more resolutions and also observe that when using more than
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three resolutions, the classification accuracy starts to deteriorate. In many cases authors
use a set of resolutions by exponentially decreasing the resolution size (100/2i, i =
0 . . . n − 1). However, we found that in many cases [21] geometric selection of resolu-
tions (100i/n, i = 1 . . . n where n is the number of resolutions used) gives better re-
sults. When using exponential form of resolutions, less pattern content is examined and
consecutively less informative attributes are derived. Another frequently used “multi-
resolution” approach is the wavelet transform [1], which describes textures with mea-
sures calculated with iterative image division. All the procedures mentioned above do
not observe the image contents.

Automatic selection of a small subset of relevant resolutions. The idea for the algo-
rithm for automatic selection of a small subset of relevant resolutions is derived from
the well known SIFT algorithm [14]. SIFT is designed as a stable local feature detector
which is a fundamental component of many image registration and object recognition
algorithms. Since we are not interested in detecting stable image key-points but rather
in detecting resolutions at which the observed image has most extremes, we devised a
new algorithm ARes (Algorithm 1) for determining most informative resolutions. The
algorithm was designed for the use with the ArTex parameterization algorithm.

The ARes algorithm scales down each image from 100% to some predefined lowest
threshold at some fixed step while detecting appropriate resolutions. Both the lowest
threshold and the resolution step are determined using the observed image dataset. At
each resize step (matrix transform representing an affine scaling transformation) the
peaks are counted. Peaks are defined as pixels which differ from their neighborhood
either by the highest or the lowest intensity. This algorithm can be implemented also
with DOG (Difference-Of-Gaussian) [14] method which improves the time complexity
with lower number of actual resizes required to search the entire resolution space.

The detected peak counts are recorded over all resolutions as a histogram (Figure 2).
From the histogram the best resolutions are detected by the highest counts of peaks. The
number of resolutions we want to use in our parameterization is either predefined by the
user, or can be determined by some heuristic method (such as the Minimum Description
Length criterion). When there are several equal counts we chose as diverse resolutions
as possible. Our experiments show that ArTex/ARes significantly outperforms other
approaches [21].

2.5 Dimensionality Reduction with Principal Component Analysis

Dimensionality reduction is a mapping from a multidimensional space into a space of
fewer dimensions. It is often the case that data analysis can be carried out in the reduced
space more accurately than in the original space. More formally, the dimensionality
reduction problem can be stated as follows: given the a-dimensional random variable
x = (x1, . . . , xa) find a lower dimensional representation of it, s = (s1, . . . , sk) with
k < a, that captures the content in the original data, according to some criterion.

Principal components analysis (PCA) is a linear transformation that chooses a new
coordinate system for the data such that the greatest variance by any projection of the
data set lies on the first axis (called the first principal component), the second greatest
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Fig. 2. The detected peak counts over all resolutions as a histogram

Algorithm 1. Algorithm ARes for detecting a small subset of relevant resolutions
INPUT: set of input images Θ with known classes, number of desired resolutions η, num-

ber of images to inspect in each class γ, radius φ which the parameterization algorithm uses
later on in the process

OUTPUT: subset of resolutions Π
1:

Wmax =
|Θ|

max
i=1

(Θi(width)), Hmax =
|Θ|

max
i=1

(Θi(height))

{find the biggest image height and width}
2: extend the image sizes Θi ∈ Θ to Wmax × Hmax with adding a frame of intensity equal

to the average intensity of the original image Θi. New resized images are saved in the set
Θ′ {image sizes must be unified in order to be able to compare resolutions over different
images}

3: δ = 2∗φ
3

· 1
min{Wmax,Hmax} {set the resize step}

4: for each class add γ randomly selected images from the set Θ′ into the set Θ1

5: Ω = {}
6: for (∀θ ∈ Θ1) do
7: ν = 1.0 {start with 100% resolution}
8: while (min{Wmax, Hmax} · ν > 3 · φ) do
9: θ1 = resize(θ, ν) {change the observed image’s size}

10: find local peaks in θ1 with comparing each pixel’s neighborhood inside [3×3] window

11: add the pair {ν, number of peaks} into the set Ω
12: ν = ν − δ
13: end while
14: end for
15: order the set Ω by the number of descending peaks and resolutions
16: add first η resolutions from the ordered set Ω into the final set Π
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variance on the second axis, and so on. PCA can be used for reducing dimensionality
in a dataset while retaining those characteristics of the dataset that contribute most to
its variance by eliminating the lesser principal components (by a more or less heuristic
decision).

PCA is sometimes used to extract features directly from images in matrix form,
where pixel intensity values are used as primary features. Our experiments with using
such a feature extraction on CAD images produced such dismal results of machine
learning (on par with a simple majority classifier) that we were discouraged to further
pursue in this direction. So in the case of CAD diagnostics from scintigraphic images,
several thousands of ArTex-generated image features are used as an input for PCA.

2.6 Experimental Methodology

Experiments were performed in the following manner. First, 10 learning examples (im-
ages or sets of nine images for CAD) were excluded for data preprocessing and cali-
bration of ArTex/ARes. Images from the remaining examples were parameterized; only
the obtained parameters were subsequently used for evaluation. Further testing was per-
formed in the ten-fold cross-validation setting: at each step 90% of examples were used
for building a classifier, and the remaining 10% of examples for testing.

In CAD diagnostics that combines generated parameters for nine images, number of
parameters (attributes) was reduced either with feature extraction – by applying PCA
and retaining only the best principal components (those that together accounted for not
less than 70% of data variance, amounting to the best 10 components), or with feature
selection – by applying ReliefF [18] attribute quality estimation and again retaining
only the best 10 (most important) ArTex/ARes generated, or physician-provided, at-
tributes. In either case, besides the described 10 components, an equal number of the
best attributes provided by physicians was used as estimated by ReliefF.

In each cross-validation step the real-valued attributes were discretized in advance by
using the Fayyad-Irani [3] algorithm, if the applied method (such as the naive Bayesian
classifier) required solely discrete attributes.

We applied four popular machine learning algorithms: naive Bayesian classifier,
tree-augmented Bayesian network, support vector machine (SMO using RBF kernel),
and J4.8 (C4.5) decision tree. We performed experiments with Weka (www.cs.waikato.
ac.nz/ml/weka) machine learning toolkit. For CAD diagnostics, aggregated results of
the coronary angiography (CAD negative/CAD positive) were used as the class vari-
able. The results of clinical practice were validated by careful blind evaluation of im-
ages by an independent expert physician. Significance of differences to clinical results
was evaluated by using the McNemar’s test.

3 Materials

In our CAD study we use a dataset of 288 patients with performed clinical and labora-
tory examinations, exercise ECG, myocardial scintigraphy (including complete image
sets) and coronary angiography because of suspected CAD. The features from the ECG
an scintigraphy data were extracted manually by the clinicians. 10 patients were ex-
cluded for data pre-processing and calibration required by ArTex/ARes, so only 278
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patients (66 females, 212 males, average age 60 years) were used in actual experi-
ments. In 149 cases the disease was angiographically confirmed and in 129 cases it was
excluded. The patients were selected from a population of several thousands patients
who were examined at the Nuclear Medicine Department between 2001 and 2006. We
selected only the patients with complete diagnostic procedures (all four levels), and for
whom the imaging data was readily accessible. Some characteristics of the dataset are
shown in Table 1.

Table 1. CAD data for different diagnostic levels. Of the attributes belonging to the coronary
angiography diagnostic level, only the final diagnosis – the two-valued class – was used in
experiments

Diagnostic level Number of attributes
Nominal Numeric Total

1. Signs and symptoms 22 5 27
2. Exercise ECG 11 7 18
3. Myocardial scintigraphy 8 2 10

(+9 image series)
4. Coronary angiography 1 6 1

Class distribution 129 (46.40%) CAD negative
149 (53.60%) CAD positive

It must be noted that our patients represent a highly specific population, since several
had already undergone cardiac surgery or dilatation of coronary vessels. This clearly
reflects the situation in Central Europe with its aging population. It is therefore not
surprising that both the population and the diagnostic performance are considerably
different than that of our previous study, where data were collected between years 1991
and 1994 [9]. Our results are therefore not applicable to the general population, and
vice versa, general findings only partially apply to our population.

Fore each patient a series of images was taken with the General Electric eNTEGRA
SPECT camera, both at rest and after a controlled exercise, thus producing the total of
64 grayscale images in resolution of 64 × 64 8-bit pixels. Because of patients’ move-
ments and partial obscuring of the heart muscle by other internal organs, these images
are not suitable for further use without heavy pre-processing. For this purpose, the EC-
Toolbox workstation software [2] was used, and one of its outputs, a series of 9 polar
map (bull’s eye) images was taken for each patient. Polar maps were chosen because
previous work in this field [13] had shown that they have useful diagnostic value.

4 Results

4.1 Results in CAD Diagnostics

As described before, out of the 288 patients, 10 were excluded for data preprocessing
and calibration required by ArTex/ARes. These patients were not used in further exper-
iments. The remaining 278 patients with 9 images each were parameterized for three
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resolutions in advance. ARes proposed three1 resolutions: 0.95×, 0.80×, and 0.30× of
the original resolution, producing together 2944 additional attributes (features, param-
eters). Since this number is too large for most practical purposes, it was reduced either
by applying feature selection (with ReliefF) or by feature extraction (with PCA). We
also performed some experiments with other image parameterization approaches such
as wavelet and DFT transform (Haar and Laws), Gabor filters and SIFT features; they,
however, invariably performed significantly worse than ArTex.

Experimental results were compared with diagnostic accuracy, specificity and sensi-
tivity of expert physicians after evaluation of scintigraphic images. Results of clinical
practice were validated by careful blind evaluation of images by the expert physician.

In machine learning experiments we experimented with several different settings;
due to lack of space we describe here only the most advanced one, namely evalua-
tion of the best 10 attributes (accounting for 70% of data variance) extracted by PCA
from ArTex/ARres-generated attributes, used with and without the best 10 attributes,
provided by physicians (as estimated by the ReliefF algorithm [18])

Evaluation of the best attributes extracted by PCA from ArTex/ARres-generated
attributes. We extracted the best 10 principal components (linear combinations of
original 2944 ArTex/ARes attributes) by PCA, or select the best 10 original attributes
with ReliefF from the set of 2944 ArTex/ARes attributes. Additionally, we also enriched
the data representation by using the same number (10) of the best physicians’ attributes
as evaluated by ReliefF (i.e. sex, diabetes, low HDL, LKB, exercise LCX, exercise
RCA, exercise APEX, rest LCX, LUEF), and compared their results with results of
machine learning.

Table 2. Experimental results of machine learning classifiers on parameterized images obtained
by selecting only the best 10 attributes from ArTex/ARes (also combined with the best 10 at-
tributes provided by physicians). Classification accurracy results that are significantly better
(p < 0.05) than clinical results are emphasized.

ArTex/ARes ArTex/ARes+physicians
Accurracy Specificity Sensitivity Accuracy Specificity Sensitivity

Naive Bayes 69.4% 58.9% 78.5% 74.8% 70.5% 78.5%
Bayes Net 69.4% 58.9% 78.5% 74.4% 69.8% 78.5%

SMO (RBF) 71.9% 65.1% 77.9% 73.4% 65.9% 79.9%
J4.8 70.9% 61.2% 79.2% 68.0% 63.6% 71.8%

Clinical 64.0% 71.1% 55.8% 64.0% 71.1% 55.8%

Tables 2 and 3 and Figure 3 depict the results. It is gratifying to see that — without
any special tuning of learning parameters — the results are in all cases significantly
better than the results of physicians in terms of classification (diagnostic) accuracy. Es-
pecially good results are that of the naive Bayesian classifier (Table 3), that improve
in all three criteria: diagnostic accuracy, sensitivity and specificity. Another interesting
issue is that including the best attributes provided by a physician does not necessarily

1 A resolution of 0.30× means 0.30 · 64 × 0.30 · 64 pixels instead of 64 × 64 pixels.
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Table 3. Experimental results of machine learning classifiers on parameterized images obtained
by selecting only the best 10 attributes from PCA on ArTex/ARes (also combined with the best
10 attributes provided by physicians). Classification accuracy results that are significantly better
(p < 0.05) than clinical results are emphasized.

PCA on ArTex/ARes PCA on ArTex/ARes+physicians
Accurracy Specificity Sensitivity Accuracy Specificity Sensitivity

Naive Bayes 81.3% 83.7% 79.2% 79.1% 82.9% 75.8%
Bayes Net 71.9% 69.0% 74.5% 79.1% 83.7% 75.2%

SMO (RBF) 78.4% 76.0% 80.1% 76.6% 77.5% 75.8%
J4.8 75.2% 78.3% 72.5% 74.1% 73.6% 74.5%

Clinical 64.0% 71.1% 55.8% 64.0% 71.1% 55.8%
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Fig. 3. Comparison of clinical results and results of machine learning classifiers on parameterized
images from Table 3

improve diagnostic performance (SMO, J4.8 in Table 3). It seems that there is some
level of redundancy between physicians’ and principal components generated from Ar-
Tex/ARes attributes, that bothers some methods more than the others. Consequently, it
seems that some of automatically generated attributes are (from the diagnostic perfor-
mance point of view) at least as good as the physician-provided ones, and may therefore
represent new knowledge about CAD diagnostics.

5 Discussion

In clinical practice, expert physicians use their medical knowledge and experience as
well as image processing capabilities provided by various imaging software to man-
ually describe (parameterize) and evaluated the images. We describe an innovative
alternative to manual image evaluation - automatic multi-resolution image parameteri-
zation based on spatial association rules (ArTex/ARes) supplemented with feature se-
lection or (preferably) feature extraction. Our results show that multi-resolution image
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parameterization equals or even betters the physicians in terms of diagnostic quality of
image parameters. By using these parameters for building machine learning classifiers,
diagnostic performance can be significantly improved with respect to the results of clin-
ical practice. We also explore relations between newly generated image attributes and
physicians’ description of images. Our findings indicate that ArTex/ARes with PCA is
likely to extract more useful information from images than the physicians do, as it sig-
nificantly outperforms them in terms of diagnostic accuracy, specificity and sensitivity.

Utilizing machine learning methods can help less experienced physicians evaluate
medical images and thus improve their performance (in terms of accuracy, sensitivity
and specificity). From the practical use of described approaches two-fold improvements
of the diagnostic procedure can be expected. Higher diagnostic accuracy (up to 17%)
is by itself a very considerable gain. Due to higher specificity of tests (up to 12%),
fewer patients without the disease would have to be examined with coronary angiogra-
phy which is invasive and therefore dangerous method. Together with higher sensitivity
this would save money and shorten the waiting times of the truly ill patients. Also, new
attributes, generated by ArTex/ARes with PCA had invoked considerable interest from
expert physicians, as they significantly contribute to increased diagnostic performance
and may therefore convey some novel medical knowledge of the CAD diagnostics
problem.

And finally, we need to emphasize again, that the results of our study are obtained on
a significantly restricted population and therefore may not be generally applicable to the
normal population, i.e. to all the patients coming to the Nuclear Medicine Department,
University Clinical Centre Ljubljana, Slovenia.

5.1 Future Work

The presented algorithms for pattern parameterization open a new research area of
multi-resolution image parameterization and enable many applications in medical, in-
dustrial and other domains where textures or texture-like surfaces are classified. The
algorithm ARes can be improved with additional resolution search refinements which
would be more domain oriented, and with heuristic methods for controlling selection of
resolutions.

In the CAD diagnostics problem we intend to focus even more on improving the di-
agnostic performance of the third diagnostic level (myocardial perfusion scintigraphy),
and assess different criteria for resolution quality. We will study the relations between
automatically generated attributes (PCA on ArTex/ARes attributes), and attributes pro-
vided by a physician, and try to establish the correspondence between them (if exist-
ing). All of possible improvements of the parameterization and classification scheme
will be used in the post-test probability estimation setting for evaluation of reliability of
machine-generated diagnoses.
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Abstract. We present a fast and robust iterative method for interpret-
ing face images under non-uniform lighting conditions by using a fit-
ting algorithm which utilizes an illumination-based 3D active appearance
model in order to fit a face model to an input face image. Our method is
based on improving the Jacobian each iteration using the parameters of
lighting that have been estimated in preceding iterations. In the training
stage, we precalculate a set of synthetic face images of basis reflectances
and albedo generated from displacing one at the time, each one of the
model parameters, and subsequently, in the fitting stage, we use all these
images in combination with lighting parameters for assembling a Jaco-
bian matrix adapted to the illumination estimated in the last iteration.
In contrast to other works where an initial pose is required to begin
the fit, our approach only uses a simple initialization in translation and
scale. At the end of the fitting process, our algorithm obtains a compact
set of parameters of albedo, 3D shape, 3D pose and illumination which
describe the appearance of the input face image.

Keywords: Active appearance models, face interpreting, face alignment,
3D model fitting, face modeling.

1 Introduction

Determining the 3D shape, texture, 3D pose and illumination of a face from
a single image is one of the main goals in face image interpretation. Several
authors have shown that the approaches based on the “interpretation through
synthesis” are effective for interpreting faces in novel images [3]. The aim is to
explain novel images by generating synthetic ones that are as similar as possible.
This process is also known as face alignment. 3D Morphable Models (3DMM),
detailed in [2],[3], [4], and [6] are photo-realistic methods for accurate face mod-
eling and alignment, despite their accuracy, they are slow because they handle
the face surface with a dense model and require a large number of parameters
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[8]. In addition, they require some anchor points manually placed over key fea-
tures of the face to indicate the algorithm the rough initial pose and location
of the face to fit. Concerning to illumination, the 3DMM approach handles only
directed light using the Phong’s reflectance model (Lambertian and specular),
and is unable to model multiple illuminants and diffuse lighting. On the other
hand, Active Appearance Models [7],[8], (AAMs) are sparse generative models
for fast 2D face alignment often required in real time applications. Even though
their speed, classical AAMs are 2D and very sensitive to lighting, particulary
when the lighting during the testing stage is different from illumination during
the training stage. Great efforts have been done mainly on improving the qual-
ity of the alignment in 2D AAMs and maintaining their speed by always using
a constant Jacobian during the fitting process. Baker and Matthews et al. in
[1] and [10], propose an inverse compositional optimization method for fitting
active appearance models. They point out that the essentially additive method
of updating the parameters in the basic framework [8] can be problematic, how-
ever ICIA (Inverse Compositional Image Alignment) has a limited domain of
application. It is a fitting algorithm for 2D AAM , hence cannot handle out of
the image plane rotation and directed light [5]. Less attention has been given
in simultaneously handling illumination, 3D pose and 3D shape in AAMs. Xiao
et al. [9] propose a 2D+3D AAM which exploits the 2D shape and 3D shape
models simultaneously. The shape instance generated by 2D AAM is varied to
be consistent with a possible 3D shape. This constraint is formulated as a part
of the cost function. To combine this constraint into the original cost function, a
balancing weighting is added. The value of this weighting constant is determined
manually. Therefore, it is not a natural and direct way for estimating 3D pose
and shape. These last mentioned works do not consider the problem of illumi-
nation. In [11] and [12], authors propose methods for 2D face alignment under
different illumination conditions by preprocessing the image to eliminate the ef-
fect of lighting before applying classical AAM fitting, however their approaches
are not able to recover 3D shape and lighting after the fitting process. Kahra-
man et al in [13], propose an approach which integrates the classical AAM model
(shape and texture) with a statistical illumination model. Their model, called
AIA (Active Illumination Appearance model) is 2D and consists of two linear
subspaces: one for illumination, and another for identity. In [14], it is proposed a
3D algorithm for face tracking in video sequences based on AAM models which
uses a generic 3D human shape frame called Candide developed at Linköping
University and does not include the problem of illumination. In [15], Sattar et
al. propose a fast face alignment method based on a 2.5D AAM model opti-
mized by Simplex. This technique does not consider illumination. On the other
hand, there are some works on lighting modeling for effective face recognition
under non-uniform illumination conditions [18],[19],[20]. A widely used method
on illumination modeling was proposed by Basri et al. [16], this model is known
as 9D subspace model and is useful for its ability to model directed and non-
directed light (multiple lights and diffuse light). According to this approach, any
reflectance over a face can be approximated in 97.96% of accuracy using a linear
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combination of 9 spherical harmonic reflectances, obtained from the surface nor-
mals and the albedos of the face surface. Based on the reviewed work, we notice
that AAM models have been used for fast 2D face alignment under variable
conditions of lighting but not for estimation of 3D pose, 3D shape, albedo and
illumination under non-uniform lighting conditions, which is still a challenging
problem. In contrast, some authors have proposed 3D AAMs for estimating 3D
pose and shape but do not include illumination. In our work we propose to con-
struct a 3D Active Appearance Model based on the 9D subspace illumination
model. We present an efficient optimization method that matches 3D shape, 3D
pose, albedo, and illumination simultaneously in each iteration, in a rapid and
accurate approach. As a natural extension of 2D Active Appearance Models,
our method is capable of estimating 3D pose, 3D shape, and illumination by
fitting a 3D face model to a novel image. For modeling illumination, we use
harmonic reflectances obtained from the surface normals and albedos maps of
faces. In the training stage, our algorithm learns a linear model of the correlation
between variation of parameters and induced residuals without considering light-
ing (whose parameters are not in a limited range). In the fitting stage, we use
the estimated lighting parameters obtained in preceding iterations for updating
the Jacobian and also the reference mean model. Instead of using a constant
Jacobian as in [8], we use an adaptive one. Using the fact that a face image can
be represented as a multiplication of a matrix containing basis reflectances by
a vector of lighting parameters, it is possible to recalculate “on line” the Jaco-
bian according to lighting parameters. For this purpose, we precalculate a set
of matrices of basis reflectances during the training phase. For each parameter
displaced in a suitable quantity from its mean state, we compute a corresponding
matrix of basis reflectances. The importance of this work is its contribution with
a promising and easy technique to fit a complete (3D pose and shape, albedo
and illumination) parametric 3D face model to difficult face images with any
kind of illumination (directed, multiple and diffuse) for interpretation purposes.

2 Modeling Lighting

In [16], Basri et al. show that any illumination over a face can be represented by
a linear combination of n basis images,

I = BHT L (1)

where L is a vector containing n arbitrary parameters and B is a matrix which
columns are nine spherical harmonic images constructed by using an albedos
map and a surface normals map. Columns in H contain samples of the har-
monic functions, whereas its rows contain the spherical harmonics transform of
delta functions (punctual light sources). To obtain a good approximation we
should use a large set of n punctual lights uniformly distributed around the
sphere. However, in [17], Lee et al., showed that it is possible to achieve good
results in face recognition using only n = 9 punctual sources of light strategically
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distributed. This distribution can approximate any reflectance on a face. Thus,
we can construct a matrix H using nine deltas in order to project them into the
spherical harmonics subspace.

3 Face Synthesis Using an Illumination-Based 3D Active
Appearance Model (3D-IAAM)

For constructing parametric models of 3D shape and 2D albedos, we need the
3D face surfaces of the individuals, and their corresponding 2D albedos maps.
For recovering the surfaces, we used a technique based on shape from shading.
Using 11 different images per individual, each one illuminated by a different
punctual light source, it is posible to simultaneously estimate surface normals
maps and albedos maps. This is accomplished by using minimum squares for
solving a linear system of 11 equations, each one expressing the pixel intensity
as a function of the direction of the incident light (Lambert’s cosine law), for each
pixel. From surface normals maps it is possible to reconstruct the surface of each
face by using shapelets [21]. We define a shape model as the set of landmarks
over a face surface. In order to obtain a statistical 3D shape model, first we
have to place 3D landmarks over the surface of multiple faces with different
identity. Then, we align the 3D shape models and apply PCA to the set in
order to obtain the principal modes of variation of 3D shape. We can generate
an arbitrary model using the following expression

s = s̄ + Qsc (2)

where s̄ is the mean shape model and Qs is a matrix which contains the ba-
sis shapes (also known as eigenshapes) and c is a vector with arbitrary shape
parameters. Similarly, we apply PCA to the set of shape-normalized 2D albe-
dos maps. Before applying PCA, the albedos map of each training face must be
shape-normalized (using the bidimensional projection of the mean shape frame).
A triangulation is designed to warp original images to the mean shape frame.
Finally, any shape-normalized albedos image can be generated with

λ = λ̄ + Qλa (3)

where λ̄ is the mean albedos image, Qλ is a matrix which contains principal
albedo variation modes and a is a vector of arbitrary parameters. Using the
previous expression (eq. 3), it is possible to synthesize an arbitrary albedo and
then warp it to the 2D projection of an arbitrary shape generated with eq. 2. In
this way, we have a new face with an arbitrary albedo and shape. This new face
is not illuminated yet. In the process of warping albedos to the new shape, it is
also possible to warp a shape-normalized mean 2D map of surface normals, which
was calculated during the training stage. Now, we have an albedos image and
a surface normals map shaped over the new shape. Using these maps (albedos
and normals), we can create 9 basis reflectance images. Any illumination can be
generated by a linear combination of these basis images using eq. 1. To give a
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Fig. 1. Synthesizing arbitrary faces using the direct 3D-IAAM model

pose to the model, we use the 3D landmarks of the new generated 3D shape. By
applying a rigid body transformation (T,R,s) to these landmarks it is possible to
give any pose and size to the created face. Finally, we warp the frontal illuminated
face to the 2D projection of the transformed 3D shape, as shown on Fig. 1.

4 Face Alignment Using 3D-IAAM Model

We can consider the face synthesizer as a transformation of the mean face which
can result in an arbitrary face, f = T3D−IAAM (̄f), where f̄ is the mean face, and
f is the resulting synthetic face with arbitrary shape, albedo, illumination and
pose. Following the same notation, we should use an inverse transformation for
the alignment process:

r = T−1
3D−IAAM (I) − f̄ (4)

Here, I represents a sampled region from the input image, and r, the error
or residual image whose energy is a quantity to minimize by the optimization
algorithm. We propose an extension of the iterative fitting algorithm in [8]. Our
technique uses the 3D − IAAM inverse model in each iteration. During the fit,
according to the parameters of the inverse model, the pixels inside a region in
the image are sampled and transformed. So, the residuals image computed with
(4) is a function of the model parameters p. The first order Taylor expansion
of (4) gives r(p + δp) = r(p) + δr

δpδp, here, pT = (TT |RT |sT |cT |aT |LT ), and
the ij − th element of the matrix δr

δp is δri

δpj
. We desire to choose δp such that it

minimize |r(p + δp)|2. Equating r(p + δp) to zero leads to the solution

δp = −Rr(p) where R = (
δrT

δp
δr
δp

)−1 δrT

δp
(5)

δr
δp is actually a gradient matrix or simply a Jacobian changing in each iteration.
Recalculating it at every step is expensive. Cootes et al. in [8], assume it to be
constant since it is been computed in a normalized reference frame. This assump-
tion is valid when we are only considering variations of texture, and lighting is
ignored because it is uniform. Since texture parameters do not present a large
variation between training faces, then, it is possible to compute a weighted av-
erage of the residuals images for each displaced parameter in order to obtain an
average constant Jacobian. In our case, we are dealing with non-uniform illumi-
nation, therefore we propose to construct an adaptive Jacobian as is explained
further.
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4.1 Inverse 3D-IAAM Model

Basri [16], shows that the albedos map is actually a constant matrix which
multiplies component by component to each one of the harmonic reflectance
images. Thus, if we denote basis reflectances matrix as β = BHT , then eq. 1 can
be expressed as

Iilluminated face = βL = ([λ..λ] ·Φ)L (6)

where λ is the albedos map represented as a column vector repeated in order
to form a matrix with the same dimensions as the basis reflectances matrix
without albedo, represented by Φ. These two matrices are multiplied component
by component (Hadamard product). Then, Iilluminated face can be rewritten as

Iilluminated face = λ · (ΦL) (7)

Normalization of shape, pose and albedo. Cootes et al. [8] propose to nor-
malize in shape a sampled region in order to compare it with a shape-normalized
model in each iteration of the fitting algorithm. Because this comparison is al-
ways done in a fixed reference frame, it is possible to think that Jacobian is
roughly constant during all the fitting process. Our model has a greater dimen-
sionality because instead of only using texture and 2D shape parameters, we have
included parameters of 3D pose, albedo and lighting. In particular, we know that
lighting affects the appearance of a face more than identity and has an infinite
number of degrees of freedom. In our case, it is not appropriate to use a constant
Jacobian. Perhaps, it will be suitable if at the beginning of the fitting process,
the algorithm is close to the convergence. However, when the lighting of the face
is quite different from the initial illumination of the model, then it is difficult for
Jacobian to remain constant. We propose to evolve the mean reference model
only in lighting each iteration and use an appropriate Jacobian computed from
that current lighting. Then, for comparing the sampled region with our reference
model, we have to normalize the sampled region in shape, pose, and albedo.

Pose and shape normalization. Using the rigid body transformation param-
eters (T,R, s) and the shape parameters c, we sample a region in the image, and
warp this region to the mean shape frame. This new shape-normalized image is
denoted as Ishape aligned.

Albedo normalization. If we could know the illumination of the face into the
sampled region, then albedo can be estimated using eq. 7

λ̂ = (Ishape aligned)./ΦL̂ (8)

Here, ./ denotes the element-wise division. Using this estimated albedos map,
we can derive an approximated mean albedos map

λ̃ ≈ λ̂ − Qλa (9)
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Finally, the image normalized in albedo is

Ialigned = (λ̃) · (ΦL̂) (10)

where L̂ is a vector containing the current estimated illumination parameters.
Finally, we can rewrite eq. 10 as

Ialigned = [Ishape aligned./(ΦL̂) − Qλa] · (ΦL̂) (11)

and the expression to minimize will be

‖r‖2 = ‖Ialigned − λ̄ · (ΦL̂)‖2 (12)

The inverse model used during alignment is shown in Fig. 2.

Fig. 2. Inverse 3D-IAAM model

4.2 Iterative Fitting Algorithm

In [8], the fitting process consists of computing a constant Jacobian matrix which
is used during all the fitting process. In each iteration, a sampled region of the
image is compared with a reference face image normalized in shape which is
updated only in texture according to the current estimated parameters. This
constant Jacobian works well in uniform lighting conditions, because texture
variation is small. However, in both the Cootes approach and our method, when
the lighting of the input face is harsh and very different from the lighting used
in the training stage, the alignment fails if we use a constant Jacobian. The opti-
mum procedure would be to recalculate the Jacobian each iteration by displacing
parameters of albedo and illumination from their current estimated values, and
displacing 3D shape and pose parameters from their mean state values, in or-
der to synthesize the required images for computing residuals. Then, residuals
and parameters displacements can be used for computing the Jacobian. That
would be an expensive operation. Here, we propose to sample a region of the
image and normalize it in shape and albedo. Then, we have only to relight the
reference mean model (a model with mean shape and albedo) each iteration and
relight a constant Jacobian using the current estimated lighting. Therefore, our
reference model will be a face image with mean shape, mean albedo, mean pose
and variable illumination. Updating the Jacobian with the current estimated
illumination is an easy and computationally light step, because we use the fact
that lighting and albedo are separated vectors and they are independent of basis
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reflectance images, see eq. 7. In the training phase, we construct a set of dis-
placed images for using in the fitting phase to update the Jacobian. We know
that basis reflectances Φ (without albedo) are not affected by albedo displace-
ments, but they can be modified by pose and shape increments. Our model uses
33 parameters: 6 for pose, 9 for 3D shape, 9 for illumination, and 9 for albedo.
We construct 6 + 9 = 15 basis reflectance matrices Φpi+Δpi by displacing in a
suitable quantity each one of the 15 parameter of pose and shape. In practice
we construct 30 basis reflectance matrices because we consider 15 positive dis-
placements and 15 negative displacements. In a similar way, by displacing each
parameter with a suitable increment pi + Δpi (positive and negative) we obtain
30 albedo images for positive and negative increments in pose and shape pa-
rameters, and 18 albedo images for positive and negative increments in albedo
parameters. These albedo images do not have information about lighting. These
30 reflectance matrices and 48 albedo images are created during the training
phase (off-line). During the alignment phase we can create a Jacobian on-line
according to the current parameters of illumination L, δr

δp = [ δr1
δp1

. . . δr33
δp33

] where
δri

δpi
= [ δri

δpi (Δ+)
+ δri

δpi (Δ−)
] × 1

2 and

δri

δpi (Δ+)
=

λpi+Δpi · [Φpi+ΔpiL] − λpi · [ΦpiL]
Δpi

(13)

δri

δpi (Δ−)
=

λpi−Δpi · [Φpi−ΔpiL] − λpi · [ΦpiL]
−Δpi

(14)

Into the Jacobian matrix, the columns corresponding to illumination parameters
are maintained fixed during the fitting process and they are precalculated from
a mean state of uniform lighting. One step of the iterative refinement process is
as follows:

1. Project the sampled region into the mean-shape model frame using Ialigned =
T−1

3D−IAAM (I). This implies a pose, shape and albedo normalization using the
mean lighting parameters in the first iteration.

2. Compute the residual, r = Ialigned − Imean−shape, and the current error,
E = |r|2.

3. If it is the first iteration use a constant precalculated jacobian J, else, as-
semble it by using the precomputed images of basis reflectance and albedo
in combination with the estimated parameters L computed in last iteration,
see eqs. 13 and 14.

4. Compute the predicted displacements, δp = −Rr(p). Here R is the Moore-
Penrose pseudoinverse matrix of Jacobian. In the first iteration, we use a
constant Jacobian and an adaptive one in subsequent iterations.

5. Update the model parameters p −→ p + kδp, where initially k = 1.
6. Using the new parameters, calculate the new face structure X and the new

mean-shape reference model Imean−shape by using the estimated lighting
parameters L

7. Normalize in pose, shape and albedo a region in the image:
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– Pose and shape normalization: Sample the image using X and warp it
to the mean frame

– Albedo normalization: Use eq. 11 to normalize in albedo the shape nor-
malized image

8. Calculate a new error vector r′ = I′aligned − I′mean−shape

9. If |r′|2 < E, then accept the new estimate; otherwise, try at k = 0.5, k = 0.25,
etc.

In practice, we have implemented this algorithm for two resolution levels.
Using a pyramid of two different resolutions improves the convergence of the
algorithm and we can situate the initial model farther from the actual face than
using a single resolution.

5 Experimental Results

We utilized Yale database, which contains ten different identities with different
poses and illuminations. For training the 3D shape model, we manually placed 50
landmarks over each face surface. On the other hand, all 2D surface normals maps
belonging to each individual, were reshaped over the 2D projection of the mean
shape in order to obtain a mean map of surface normals. This mean map was
used for face synthesis during the training stage for constructing the set of basis
reflectances matrices Φ. We evaluated our model qualitatively by synthesizing
each one of the training faces in different poses and different lightings. Fig. 3
shows nine synthetic faces produced by our model and each one illuminated by
a basis light source.

Fig. 3. Identity number 1 (from Yale database) illuminated by each one of the nine
basis light sources

We tested the fitting algorithm over 60 real images (with a size of 320 × 240
pixels) taken from Yale database in the following manner: all images have the
pose number 6 which presents a similar angle in azimuth to the left and eleva-
tion up. This pose has an angle of 24 degrees from the camera axis. We choose
6 different illuminations for each one of the identities, see table 1. The initial
conditions of the model at the beginning of the fitting process were manually
setup only in translation and scale. The rest of the parameters: rotations, 3D
shape, illumination and albedo were initiated always in their mean state for all
the alignments. For the 60 alignments, the translation and scale parameters were
initialized using the output parameters of a manual pose detector developed by
us which uses three landmarks placed by hand in both external eye corners and
the tip of the nose in order to calculate translation and scale by using 3D
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Table 1. Illuminations used for experiments

L1 L2 L3 L4 L5 L6
A + 50E + 00 A + 35E + 15 A + 10E + 00 A − 10E + 00 A − 35E + 15 A − 50E + 00

Fig. 4. Evolution of the synthetic face produced by the model during five iterations of
the fitting algorithm

Fig. 5. Face alignments obtained by using pose number 6 and illumination L6

geometry. The translation computed in this way is a rough estimation with an
error of ±4 pixels. Fig. 4 shows the evolution of the model during five iterations
of the fitting process. Fig. 5 shows 10 alignments for each one of the identities us-
ing pose number 6 and illumination L6. Here, the first and fourth columns show
the original face images, whereas the second and fifth columns show the syn-
thetic faces produced by the fitting process. As a measure of similarity between
the original face images and the synthetic images produced by our algorithm
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Fig. 6. Evolution of RMS error in intensity difference

during the fit, we have used the RMS (Root Mean Square) error. In order to
show that our algorithm converged in all the test alignments, we obtained a
mean RMS error for each one of the first five iterations of the algorithm. Fig. 6
shows a decreasing RMS error depicted by the central blue curve line, whereas
perpendicular straight line segments represent the standard deviation associated
to each mean RMS error. We observe a mean RMS error of 11 gray levels at
the first iteration and a mean RMS error of 4 gray levels at the fifth iteration.
The same thing occurs with the standard deviation from ±3 in the first iteration
to ±1 in the fifth one.

6 Discussion

We presented a fast method for 3D face alignment, which is robust to non-
uniform lighting conditions, and is able to fit to different identities with differ-
ent albedo, shape, pose and illumination. Our model is based on learning the
correlation between variation of albedo, shape, and pose parameters and the re-
sulting residuals when the mean model is deformed by each one of the mentioned
parameters. Illumination, which affects appearance more than identity is used
to update an adaptive Jacobian and a mean reference model. The main contri-
bution of this work, is a fitting algorithm which uses a novel way to normalize
the albedo, according to the last estimated illumination parameters, and a novel
method for recalculating the Jacobian by using the same illumination param-
eters and a set of precalculated albedo images and basis reflectances matrices.
Our model could be used for face recognition under arbitrary pose and illumi-
nation, and it would be able of synthesizing new poses and new illuminations of
an aligned face.
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Abstract. Human electroencephalograph (EEG) data driven animation is often 
used in neurofeedback systems for concentration training in children and adults. 
Visualization of the time-series data could be used in neurofeedback and for the 
data analysis. The paper proposes a novel method of 3D mapping of EEG data 
and describes visualization system VisBrain that was developed for EEG data 
analysis. We employed a concept of a dynamic 3D volumetric shape for show-
ing how the electrical signal changes through time. For the shape, a time-
dependent solid blobby object was used. This object is defined using implicit 
functions. Besides just a visual comparison, we propose to apply set-theoretic 
(“Boolean”) operations to the moving shapes to isolate activities common for 
both of them per time point, as well as those that are unique for either one. The 
advantages of the method are demonstrated with real EEG experiments exam-
ples. New emerging applications of EEG data driven animation in e-learning, 
games, entertainment, and medical applications are discussed. 

1   Introduction 

Traditionally, EEG-based technology has been applied in medical applications. Human 
electroencephalograph (EEG) signals are the records of electrical potential produced 
by the brain along with its activities. The signal is usually processed and analyzed from 
real-time EEG readings in frequency domain. Visualization of EEG signals is widely 
used in different applications. EEG is a time-series signal that can be visualized di-
rectly as a graph or 3D mapping on the model of the head/brain [1]. It can be also 
processed with signal processing algorithms (noise reduction, filtering and other proc-
essing) and the resulting values can be fed back to the system and depending on the 
application, can be used to walk through in 3D collaborative environments [2], for 
engaging avatars, in 3D art visualization, etc. 

Currently, EEG driven animation is mostly used for visual feedback to the user of 
neurofeedback systems and for EEG data analysis in brain study. Neurofeedback is a 
process of displaying involuntary physiological processes obtained by electronic in-
strumentation, and then learning to voluntarily influence those processes by making 
changes in condition. Neurofeedback, as a therapy, treats health problems like atten-
tion deficit disorders, hyperactivity disorders and sleeping problems instead of sup-
pressing such diseases with medication [3]. Based on visual feedback showing the 
user’s brain activity, the user’s mind could be trained to bridge new connections and 
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to either increase or decrease the use of specific brain functions. Intensive colors, 
game characters, or other visual effects can be used as visual feedback to the user. 

In our works [4-7], we proposed to process EEG signals using fractal dimension 
model and implemented a novel algorithm to process EEG signals evoked by odor 
stimuli and music stimuli. In work [6], we studied brain responses to six basic olfac-
tory stimuli given to the subjects in our experiments. In this paper, we propose a novel 
method of 3D modeling and mapping of EEG signals and describe the visualization 
systems we developed for visual analysis in brain study. The implemented system can 
be used as visual feedback in neurofeedback systems as well. We carried out series of 
experiments to study brain responses to external stimuli and analyzed the real experi-
mental EEG data with the developed software. The results of this research open new 
perspectives of future application of EEG driven real time animation in human-
computer interfaces that could be used to enhance the user interaction with digital 
media. Furthermore, new forms of human-centric and human-driven interaction with 
digital media that have the potential of revolutionizing entertainment, learning, and 
many other areas of life could be proposed. 

In Section 2.1, a time dependent “blobby” model is proposed for 3D mapping of 
EEG signal. The set-theoretic operations that could be applied over the time-
depending shapes are proposed. Visualization system VisBrain and its visualization 
modes are described in Section 2.2. In Section 3, experiments on brain responses to 
external stimuli and visual analysis of the results are described. Section 4 discusses 
future applications in human-computer interfaces. 

2   3D Mapping and Visualization of EEG 

We propose a novel method of 3D mapping of EEG data and describe visualization 
system VisBrain that was developed for EEG data visual analysis. We have employed 
a concept of a dynamic 3D volumetric “blobby” shape to visualize the electrical sig-
nal changes through time. The blob-like objects were firstly introduced in work [8] 
and further developed in [9]. A time-dependent “blobby” object is defined using im-
plicit functions that allow us to propose and implement set-theoretic operations over 
the time changing shapes. 

2.1   3D Mapping of EEG 

We employed a concept of a dynamic 3D volumetric shape for visualization of the 
time-series data. For the shape, a time-dependent “blobby” object was used. This 
object is defined using so-called FRep representation [10] by the following formula: 
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where a is a scale factor, b is an exponent scale factor changing over time and g is a 
threshold value.  
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At any given point (x, y, z, t), function f can take negative, positive or zero values. 
The point is considered on the surface of the object if the function value is zero, inside 
the object if the function value is positive, and outside the object otherwise. In our 
case, the blobby function is built on the 24 potential functions resulting from the EEG 
electrodes positions on the head. The shape changes through time due to the variable 
values of the exponent factor b according to the signal. Its size and appearance visu-
ally reflect the brain activity. For a better visual impression, the blobby shape is su-
perimposed on a 3D head model. 

Besides just a visual comparison, we propose to apply set-theoretic (“Boolean”) 
operations to the moving shapes to isolate activities common for both of them per 
time point, as well as those that are unique for either one. Furthermore, the group set-
theoretic operations applied to the individual time frames of the moving shape allow 
us to isolate idle parts of the brain as well as to estimate an average level of the brain 
activity. The set-theoretic operations over two moving shapes defined with functions 
f1(x, y, z, t) and f2(x, y, z, t) are implemented as follows: 
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The proposed operations could be applied over one or/and over two datasets. On 
one data set, we can do intersection of all shapes to show constant activity, and union 
of all shapes to show the overall maximum activity. On two data sets, we could apply 
an intersection to show common activity, union to show overall maximum activity 
and subtraction to show activities which are characteristic to one set. 

2.2   Visualization System VisBrain 

The visualization system VisBrain was developed for visual analysis of EEG signal. 
VTK visualization toolkit [11] was used for developing the visualization software in 
C++ language. Three types of the visualization are implemented as follows: conven-
tional visualization with color fields on 3D model of a head, 3D time-dependent 
blobby shapes based on the model described in the previous Section, and 3D moving 
“pins” placed on the head in the locations of electrodes. The developed software is  
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an interactive program, which visualizes one or several signals by modeling the 
respective visualization type around the 3D human head. In Figure 1, graphical user 
interface of the system is shown. The locations of electrodes and the surfaces of the 
moving EEG shapes could be visualized with different colors. The parameters of the 
formula (1) describing blobby shapes could be tuned. Depending on the problem 
solved, the blobby objects can be built more isolated or more overlapped. 

  

Fig. 1. Graphical User Interface of VisBrain 

Two different semi-opaque moving blobby shapes corresponding to two different 
EEG signals can be visualized concurrently to visually analyze the difference between 
the respective brain activities. In fact, this method of visualization lets us notice sev-
eral phenomena, which could not be possibly noticed if we used common ways of 
analyzing the EEG. Thus, in Figure 2, we display the minimum and maximum brain’s 
activity by intersecting and unifying through the given time all the EEG shapes. The 
intersection (left image) shows those parts of the brain, which are engaged all the 
time. The right image (union) shows the maximum activity ever registered for the 
given time interval. It also shows that there are certain parts of the brain which are 
always idle for the given case and time interval. 

In addition to “blobby” objects, “pin” objects could be used for EEG visualization. 
In Figure 3, an example of two signal visualization on two 3D head model is shown. 
Two signals can be superposed on one head model with different colors as well. An-
other mode of visualization, color 3D mapping is shown in Figure 4. Here the color 
scale could be assigned to the original signal values or for example, to fractal dimen-
sion values calculated by our fractal dimension method described in [4-5]. 
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Fig. 2. Intersection (left) and union (right) of one EEG set 

 

Fig. 3. “Pin” visualization of two EEG on two head model 

 

Fig. 4. Color mapping visualization of EEG. The color reflects the intensity of brain signals. 
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3   Experiments and Results 

We proposed and carried out experiments to study brain responses to external stimuli 
like. We applied fractal dimension method described in [4-5] and visualization system 
VisBrain to analyze experiments results and validate our hypothesis. Let us describe 
experiments on brain responses to music stimuli, “yes/no” answers and visual analysis 
of the result. 

3.1   Music Experiments 

As human brain is processing the external information at a tremendous speed, the real 
time EEG signal should be sampled with a reasonably high sampling frequency. In 
our experiments, the equipment used for EEG signal recording, called MINDSET24, 
records 256 EEG samples per second for every single channel. There are 24 channels 
in total covering the entire scalp of the head. We proposed and conducted experiments 
using different music stimuli. We had series of experiments using spiritual (religious), 
hard rock music, classical music, and hip-hop music as external stimuli. The ques-
tionnaire was proposed to record emotional state of subjects to discover correlation 
between fractal dimension values and mental state induced by music. The subjects 
investigated in our experiments were the university students, both males and females 
22-25 years old. The results of experiments were processed with the implemented 
dynamic fractal dimension algorithm [4-7] and were analyzed with our VisBrain sys-
tem. Fractal dimension value changing over time was visualized using color mapping 
mode of the system. In Figure 4, dynamic fractal dimension values from two EEG 
signals recorded for two subjects listening one song are shown. By visual assessment, 
one could notice that fractal dimension values on some channels are different in two 
subjects. “Blobby” mode was used for validation of hypothesis that “The subjects’ 
EEG responses do not depend on gender”. By subtraction of “male” and “female” 
signals were shown that the same parts of the brain are responding to music in males 
and females and fractal dimension values on the channels depend only on music edu-
cation of subjects. In Figure 3, fractal dimension values are represented by changing 
in heights “pins” showing which channels are active and how active they are during 
listening to music. The results of the processing confirmed our hypothesis that it is 
possible to recognize happiness and sadness emotions by computing fractal dimension 
values. The experiments and validated hypothesis were elaborated in our work [7]. By 
processing and visual analysis of the EEG it was also shown that fractal dimension 
model and visualization can be used to differ between concentration/relaxation states 
of the mind. 

3.2   “Yes/No” Experiments 

We carried out “yes/no” experiment and analyzed the results with dynamic fractal 
dimension method and visualization system VisBrain. The EEG samples were meas-
ured from 20 healthy humans – 10 females and 10 males – each of whom was to  
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Fig. 5. “Yes/No” signals per different time frames 

answer either ‘yes’ or ‘no’ to 12 questions by clicking either ‘YES’ or ‘NO’ button on a 
computer screen. 3D visualization of the brain activity proved to be a useful instrument 
while combined with the fractal dimension method. In particular, the visualization tool  
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provides a clear picture of the asymmetric activity of the brain while performing  
symmetrical tasks with different emotional content. Thus, we noticed that the brain is 
more active while giving positive responses. Also, we observed that although it requires 
less mental activity in the course of responding, giving a negative response is more 
stressful, because it is followed by prolonged activation of the cerebral cortex and par-
tial activation of the visual cortex of the brain. It is necessary to point out here that the 
latter conclusion can be drawn only thanks to the volume visualization; by means of the 
methods discussed in the preceding sections. In Figure 5, an example of visualization of 
two EEG signals corresponding to “yes” (blue) and “no” (red) answers are superposed 
at two time frames. 

4   Conclusion and Future Work 

In this paper, we proposed the model and implemented the system of 3D mapping and 
visualization of EEG data. An application of the VisBrain to analyze brain responses 
to external music stimuli and “yes/no” experiments was described. The results of our 
research and the implemented system VisBrain could be used in neurofeedback sys-
tems and in future development of new generation of human-computer interfaces. The 
music stimuli could induce human emotions and level of concentration that could be 
quantified and implemented as feedback in games and/or in virtual 3D spaces. Real 
time EEG data processing that is used in neurofeedback systems and in Brain-
Computer Interfaces research can be a part of a novel human-centric and human-
driven interface with digital media. In such interfaces, the content could be driven by 
monitoring of emotions and level of engagement/concentration, and, depending on the 
application (entertainment, learning, medical application, etc), different software tools 
should be engaged in real time.  

The result of our research would contribute to the new forms of human-computer 
interaction leading to the next generation of interactive media. Now, new affordable 
electro-encephalograph cap devices with wireless data transmission are entering the 
market that could encourage wide spread of new applications that would bring the 
concentration-based and even emotion-based personalized digital experience to any 
user’s location making such applications more mobile. 

A short video about the current state of research on EEG data driven animation and 
brain study presented in this paper can be seen at http://intune.ntu.edu.sg/ SCE/ 
courses/Alexei/webpage/visualbrain.wmv 
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Abstract. In this paper, we reverse engineer facade design from single
rectified image of existing building facade by the use of similarity and
hierarchy features of man-made objects. The inferred design is encoded
into parametric grammar rules, named as ArchSys, which draw a com-
pact and semantically meaningful characterization of the building struc-
ture and can be considered to support the design of other architectures.
Combining with Gradient-based Mutual Information measure, we pro-
pose a rough-fine template-based similarity detection method to extract
the structure patterns in a hierarchical way, which reduces computation
time while increases robustness of the whole system. Our approach can
be applied to various architectural typologies to detect not only symmet-
rical features but also similar patterns in one facade image. A feedback
loop is built to refine the facade structure analysis and rule sets’ param-
eters. Experimental results illustrate that our method is of robustness
and general applications.

Keywords: template, similarity detection, grammar rules, single recti-
fied image.

1 Introduction

Cities are of multi-dimensions, high functional and visual complexity. They are
the concentration of history, culture, economy, and ecology, etc. Modeling and
visualizing 3D city lies at the junction of various disciplines and is a real challenge
for researchers from different domains. The modeling of 3D cities drives major
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economical and cultural stakes and open wide market opportunities in fields
ranging from the information society (3D GIS, urban planning, e-administration,
navigation and nomad’s services, simulation, security and defense ...) to digital
content creation (tourism, museography, education, video-game, ...).

As one kind of ubiquitous and prevalent realizations in cities, buildings dif-
fer from one another in many aspects depending on their architectural styles,
dimensions and appearances, while sharing regularity (symmetry, parallelism,
orthogonality, etc.) and repetitive hierarchical structures inherent to man-made
constructions. This observation remains at different scales from the overall fa-
cade subdivision down to the structure of inner architectural features. A typical
example is windows, many of which are usually of identical and parameteriz-
able shapes. They are commonly organized in logical hierarchies in a facade.
So, all identical windows can then be represented by a single window symbol
instead of a variable number of symbols, and the whole complex facade can be
described with a few parametric symbols in a hierarchical and semantical unam-
biguous way. Buildings can be decomposed into roof and facades, and facades
into floors composed of tiles (walls, windows, doors, . . . ). Many applications re-
quire inferring and modeling the detailed facade structure without the support of
external CAD/CAM information, which is the topic of this paper. Accurate fa-
cade segmentation and description is needed to achieve an efficient visualization
of large scale architectural projects, and this is also the core of numerous sim-
ulation applications (acoustic, thermic, illumination, ...) where functional roles
and physical materials must be differentiated.

For modeling such kind of objects as facades with rich redundancy, procedural
modeling method like L-systems [15] and shape grammars [21] is good choice. Up
to now, there are many works in procedural architectural modeling [1], [13], [15],
[17], [24]. Most of the works initialize the modeling process by manually defining
and selecting seed rules or productions for specific buildings. Although this is
a successful strategy for some applications, as we mentioned before, there are
various building structures with quite different architectural styles, and therefore
manual definition and selection will be time- and labor-consuming task; further-
more, regarding the existing constructions, the fidelity constraints during the
interactive modeling process is difficult to be quantified. Therefore, automatic
rule extraction based on existing information of the given facade is demanded.
Müller, et. al [17] mimic the procedural modeling pipeline to automatically infer
shape grammar rule sets from single facade image. But this method is only valid
for detecting symmetrical structures and meanwhile sensitive to image noise and
illumination.

Sharing a similar workflow as that in [17], our method intends to automatically
reverse engineer facade design from single rectified image of existing building
facade. The inferred structure will be encoded into grammar rules as a source of
new designs, a way to parameterize building structure, a mean to generalize the
modeling scheme as well as a pre-step to optimize the reconstructed architectural
models. Here, architectural knowledge, like height of floor, dimension of tile,
and other reasonable constraints on the architecture typology will be considered
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in order to achieve plausible results. Since the quality and complexity of the
input information cannot perfectly meet our requirements (usually there are
heavy image noise, measurement errors, small irregular artifacts, etc.), Gradient-
weighted Mutual Information(GMI) and rough-fine template-based method are
introduced to detect the similarity existing in the facade structure, which could
improve the robustness, accuracy and generality of our reconstruction method.
This is the main contribution of this paper. We also propose the use of an
optimization process to refine the facade subdivision results and the parameters
of the extracted rule sets.

The rest of the paper is structured in the following way. In Section 2, we
review the related work. Section 3 details our method. In Section 4, experimental
results are given. The paper is concluded in Section 5 by pointing out the space
for improvements of our work.

2 Related Work

Automatic reconstruction of buildings from multiple images [6], [23], [5], [9], [11]
has been extensively explored in both photogrammetry and computer vision
research areas. However, it is not always possible to obtain multiple images of
the architectural scene. Methods for 3D building reconstruction from a single
image do exist [4], [8], [17], [10], but most of them [4] need some manual labors
and are not fully automatic. While of particular interest, the method in [17]
is also semi-automatic in some cases and requests an interactive offsetting of
characterized architectural features.

Grammar-based modeling methods have also been tried in the field of archi-
tecture. Stiny [21] introduced the notion of shape grammars, in which production
rules represent 2D/3D shape transformations. They have been successfully used
by the architectural community to generate different kinds of architectures [2],
[7], [24]. However, the application of rules regulated by the derivation process
is not automatic since the guiding rules are mostly chosen by the user. [17] au-
tomatically extracts shape grammar rules from facade images only if there are
symmetrical structures in the facade images, which is one of the limitations of
this method. Our work intends to infer grammar rules from images based on
similarity detection under more general hypothesis.

Image similarity detection is a mean to estimate how much information in
one image is contained in another one(s). Generally, it is grounded on the visual
features such as color histogram, texture, points, lines, shapes, edges, and so
on. Typical intensity-based similarity measures include Cross-correlation [12],
Correlation Coefficient(CC), Mutual Information(MI) [17], Normalized Mutual
Information(NMI) [22], Gradient-weighted Mutual Information(GMI) [19], Re-
gional Mutual Information(RMI) [20], and so on. CC measures the dispersion
of the joint intensities along a line. This is a reasonable hypothesis in case of
mono-modal image registration. MI is related to the entropy of the joint his-
togram and based on the marginal and joint image intensity distribution while
not considering spatial information. NMI is a symmetric and normalized ver-
sion of MI. GMI is a variant of MI. This measure introduces spatial information
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into MI by combining MI with image gradient, therefore it is more robust and
accurate for similarity detection. In this paper, we will adopt GMI to find the
repetitive patterns in one image.

Our method will work in four steps: 1) repetitive structure detection; 2) ele-
ment parameterization; 3) rule extraction; 4) optimization of facade subdivision.
The input is a single rectified image from ground-based imagery, and the output
is a reconstructed 2D facade image and a set of shape grammar rules which can
be reusable to thereby create a large variety of facades. In this paper, our work is
centered on 2D image analysis and synthesis, and the 3D reconstruction will be
done by introducing depth information into the reconstructed 2D image, which
will not be covered in this paper. Furthermore, the registration of 2D image and
3D reconstructed model will be detailed in another paper.

3 Facade Structure Parameterizations Based on
Similarity Detection

As mentioned above, at different scales, facade components refine in repetitive
structures such as windows and doors within a tile; therefore, in order to simplify
the description of facade structure, we consider template as a mean to model
construction elements that share similar shapes and dimensions. In order to
characterize these templates, we adopt the similarity measure, GMI, to detect
the repetitive structures hidden in a facade image.

3.1 Gradient-Weighted Mutual Information

MI is an accurate measure for rigid and affine mono- and multi-modality image
registration. This measure is expressed in terms of the histogram entropy of the
images. Given two images I and J, their MI is defined by their marginal histogram
entropies H(I) and H(J), and joint histogram entropy H(I, J) (See Equation 1).

MI(I, J) = H(I) + H(J) − H(I, J) (1)

Unlike measures based on correlation of grey values or differences of grey
values, MI does not assume a linear relationship between the grey values in
the images. However, this measure lacks spatial information, which may lead to
local maxima in some cases, for example, when the images are of low resolutions,
when the images contain little information, or when there is only a small region of
overlap. Conversely, image gradient is computed on a certain spatial scale. GMI
thus extends MI measures to spatial information in images by integrating MI
with image gradients. It builds on a combination of the mutual information cost
function and a gradient-weighting function calculated from gradient magnitude
and angle values from the images. For pair of corresponding pixels i and j in two
images Ii and Ij , we have Equation 2 to define their spatial similarity:

f(i, j) =
2(Δi · Δj)(‖Δi × Δj‖)

(‖Δi‖‖Δj‖)2
(2)
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Here, Δi and Δj are the gradients at pixels i and j, Δi·Δj is their scalar
production, Δi×Δj the vector production, and ‖Δi‖ the module of Δi. Note
that the value of f(i, j) varies in the range [0, 1] with the direction similarity
of the two gradients Δi and Δj , and if they are of similar direction, f(i, j)
approaches to 1. GMI thus takes function 2 into conventional MI as a measure
of spatial strength of an image in a given direction. Based on Equation 1 and 2,
GMI can be expressed as following:

GMI(I, J) = MI(I, J)f(I, J) (3)

Comparing with the conventional MI, GMI combines intensity and gradient
information from the images to achieve a more robust and accurate similar-
ity matching. Therefore, in this paper, we adopt GMI to detect most similar
structures/regions in one facade image separately along horizontal and vertical
directions.

3.2 Rough-Fine Template-Based Similarity Detection

Pure GMI-based similarity detection is quite time-consuming. In order to speed
up our method, we adopt rough-fine template-based scheme under the right-
handed coordinate system originating from the left-bottom of the rectified facade
image with x axis parallel to and y axis perpendicular to the ground baseline
of the facade. Here, a template is such a geometric and semantic model that
represents a class of architectural structures with same or similar geometric
shape and same architectural function.

Fig. 1. Left: Edge profile in yellow and splitting lines in red

Considering that the ground floors of commercial buildings always lack simi-
larity with the other floors due to wall covering and vitrified decoration, we first
tackle vertical similarity detection by analyzing the similarity among different
facade floors. Depicting the vertical similarity detection as illustration, we use
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vertical edge profile (in y axis direction) [12] to get N initial estimates of the
positions of the horizontal splitting lines y(x) at the mid-positions yi of two ad-
jacent valleys in the vertical edge profile, i.e. y(x) = yi (see Fig. 1). If there is no
valley locating at the top and/or bottom margin(s) of the image, we add the top
and/or bottom margin(s) as the first and/or last splitting line(s), which means
that y0 is always equal to 0 and yN always the total height of the whole facade.

Data: N Template candidates
Result: Build template library
Initialize template library as empty ;1

Initialize a temporary template floor as NULL;2

Set all template candidates as unchecked;3

for i=N-1:0:-1 do4

if floori is unchecked then5

Assign floori to floor;6

Set floori as checked;7

j=i-1;8

while floorj is unchecked, and j � 0 do9

if GMI(floor, floorj) � τGMI then10

Set floorj as checked;11

Get a new template floorij by averaging floor and floorj ;12

Assign floorij to floor;13

end14

j=j-1;15

end16

end17

if floor is not NULL then18

Put floor into the template library;19

end20

end21

Algorithm 1. Rough-Fine Template-based Similarity Detection

According to the assumptions about the considered architectural typologies,
the floor height h is variable in an interval [2.5m, 5.5m], so the facade can be de-
composed into a set of floors with heights hi ∈ [2.5m, 5.5m]. Each floor is given an
ID, i.e. an integer i starting from 0. In another words, 0 corresponds to the ground
floor, i the i-th floor. In order to generalize our method and meanwhile simplify
our grammar rules, we now run a pick-out process — Rough-Fine Template-based
Similarity Detection as shown in Algorithm 1 to build a floor template library
without repetitive floor structures inside. Each template candidate is named with
the combination of the template function type and an ID number. For example,
floori represents a floor template with ID number i. Each template is parameter-
ized with its ID i, width wi, and height hi, in the form of floor(i, wi, hi). Initially,
regard all the floor structures as floor template candidates.
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We exhaust all possible similar template candidates using Algorithm 1 in
the vertical direction. Now, in the same way, similarity detection is performed
in the horizontal direction separately on the floor templates derived from the
vertical analysis. This stage successfully achieves the characterization of the
basic architectural elements structuring the facade (See Fig. 2 Middle). Through
this similarity detection process, a parametric floor and tile template library is
generated, and each individual facade region(tile and floor. See Fig. 2 Right) is
parameterized with its position, i.e., the coordinate of its top-left corner (xij , yij)
in the facade, and ID number. In the next step, we will detail the tile(window,
door) structure.

Fig. 2. Left: Original image with global edge profile in yellow. Middle: Tile templates.
Right: Subdivision based on edge profile and GMI (splitting lines in red).

3.3 Architectural Element Analysis

Up to now, we have already subdivided facade structure into floors and further
tiles, and obtained floor and tile template library in Section 3.2. At this stage,
we will get the interior structures of the tiles. We first obtain the edge profile
projection of the tile template (Fig. 3 Left). Based on this profile and the win-
dow/door frame width, we could detail the tile template structure by locating the
frame which is centered at the valley of its edge profile projection (Fig. 3 Right).
Since we have already parameterized each individual tile with its template ID
number, we can match the tile with the corresponding template. Considering
the influence of image noise and image distortion, we utilize the local(tile) and
global(floor in horizontal direction and parcel in vertical direction) edge profile
projection to slightly tune the positions of the mapped structures.

Our method is intuitive and meanwhile effective for reconstructing rectangle-
shaped windows and doors. But, in fact, there are a lot of buildings with other
different and complicated window and door structures other than rectangle,
therefore in the cases when the geometric shapes of windows and doors are com-
plex, the extracted outer rectangle is just the outline of the whole shape. We
need further to perform edge detection in the region to get the inner structures.
Here, Canny detector [3] is employed to approach the accurate shape structure.
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Fig. 3. Left: Tile edge profile in yellow. Right: Extracted window structure in blue.

3.4 Rules Extraction

Since the previous procedures are hierarchical and semantic, which share the
same features with shape grammar rules [21], it is easy to extract the shape
grammar rules through these analyses. As mentioned above, grammar rules are
very flexible and could help our method realize its potential in various appli-
cations. Therefore, our system draws a complete rule set that describes the
segmented facade from the subdivision process. The extracted rule set can be
applied to different dimensional facades with different styles, or as an initial state
for reconstructed facade optimization.

Fig. 4. Left: Original image(512*512. This image is taken from [25]). Right: An example
of our rule file extracted from the test image on the left.

Fig. 4(Right) shows an example of the grammar rules extracted from Fig. 4
(Left). Here, we named our grammar as ArchSys grammar, which is one variation
of shape grammar. As shown in the example rule file, comments lines begin with
the symbol #, and four rules with a rule ID number 1, 2, 3, 4 at the beginning
are inferred from the test image. The first rule is the Subdiv operation, which
means along y axis, the facade in the test image is divided into 1 floor0(one
kind of floor structure) with floor height 94-pixel, 3 floor1 with floor height
100-pixel and 1 floor3 with floor height 118-pixel. Here, | is used to separate
symbol between different architectural patterns/structures, and all the values
are defined under the xoy right-handed image coordinate system originated from
the left-bottom of the test image. The left 3 rules are the Repeat operations. For



Facade Structure Parameterization 397

example, Rule2 tells us that floor0 is composed of tile0 which is of 64-pixel width
and is repeated 8 times in x direction. The symbol between ’ and ’ represents a
terminal shape stored in shape library. One rule is ended by a terminal symbol
even though the object indicated by this symbol can be further decomposed
into other components. In such a way, we can control the level of detail of the
reconstructed structure.

In order to describe similar while not symmetry structures, we exploit Trans-
lation operator T(dx, dy, dz) in front of a structure, for example T(dx, dy,
dz){tile0.obj}, to translate this structure from the current position(x0, y0,z0)
to the desired position(x0+dx, y0+dy,z0+dz). Considering generalization and
extension of our method, we provide Insert operator I(objectname) to insert
particular object represented by the parameter objectname somewhere, Scale
operator S(a, b, c) to scale an object with factors a, b and c separately in x,
y and z direction, and Rotate operator R(x, y, z, θ) to rotate an object with
angle θ around the axis OP, P(x, y, z). For now, we didn’t introduce the depth
information into the rules, i.e., all the z values are equal to 0, which can be done
later after our subdivision results are optimized.

3.5 Optimization of the Facade Subdivision

From the extracted rules and without the support of a depth information, we
can derive a 2D reconstruction of the facade image. Due to distortions in the
original image and errors produced during facade subdivision, the reconstructed
2D image differs from the original image to some degree. In order to optimize the
subdivision results, we project the reconstructed 2D image Ir back to the original
one Io, and get a difference image IΔ = Io - Ir. This difference image is adopted
to locally adjust the rule parameters, namely, the vertical and horizontal offset
of the splitting lines and the center positions of the terminal shapes (windows,
doors, etc..). This optimization loop breaks when all the position errors are less
than 2 pixels.

4 Experimental Results

We implemented our system in C++ using a PC with Intel(R) Core(TM) dual-
CPU, T7200, 2GHZ, and different facade images from buildings at Paris were
chosen to test our method. The average running time of the whole system for a
512*512 image is about 1 minute.

For comparison with the method proposed in [17], Fig. 5 shows an original
image(Left, 396*480) with tree in front of the building, and the subdivision re-
sults by using our method (Middle) and the method proposed in [17](Right).
The results in Fig. 5 demonstrate that our method is insensitive to image noise,
and more robust and accurate than the one in [17]. Fig. 6 shows an original
image(Left) with the resolution of 512*512, the reconstructed results before op-
timization (Middle) and after optimization (Right). Obviously, after the opti-
mization process, the windows are more accurately located.
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Fig. 5. Left: Original image with strong noise. Middle: Subdivision result using con-
ventional MI-based method [17]. Right: Subdivision result using our method.

Fig. 6. Left: Original image[25]. Middle: Reconstructed 2D facade image before opti-
mization. Right: Reconstructed 2D facade image after optimization.

5 Conclusions

Our method is targeting facade reconstruction based on a single rectified im-
age. We introduce a Rough-Fine Template-based Similarity Detection scheme
making use of Gradient-weighted Mutual Information to increase the robust-
ness and accuracy of the reconstruction process and to extend the applicability
considering less regular architecture style and degraded image assumption of our
method. This proposal also contributes to improve the efficiency and to speed up
the whole system. By providing a feedback of the reconstructed 2D image to the
original one, we build a close loop between the facade structure analysis and the
parameterization of the grammar rules. This optimization process can improve
the reconstruction accuracy and meanwhile lessen the risk of misregistration.

Our image-based subdivision technique results in sets of parametric gram-
mar rules which form plausible estimates and variable constraints to consider
the facade reconstruction under a model-based paradigm. Future works will also
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introduce depth information and consider coupled 2D-3D registration to auto-
mate the 3D facade reconstruction.

Acknowledgments. In this paper, the original image in Fig. 1, 4 and 6 is
taken from the project site of Peter Wonka (http://www.cg.tuwien.ac.at/
research/vr/urbanmodels/index.html).
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Abstract. A novel epipolar angular representation for camera pose is
introduced. It leads to a factorisation of the pose rotation matrix into
three canonical rotations: around the dual epipole for the second camera,
around the z axis, and around the dual epipole for the first camera. If
the rotation around the z axis is increased by 90◦ and followed by the or-
thogonal projection on xy plane then the factorisation of essential matrix
is produced. The proposed five parameter representation of the essential
matrix is minimal. It exhibits the fast convergence in LMM optimization
algorithm used for camera pose calibration. In such parametrisation the
constraints based on the distance to the epipolar plane appeared slightly
more accurate than constraints based on the distance to the epipolar
line.

Keywords: epipolar geometry, essential matrix, angular factorisation,
camera pose calibration.

1 Introduction

Essential matrix is important concept in projective geometry explored from lin-
ear algebra perspective [1,2,3,4,5]. The matrix is usually defined for two pinhole
cameras using the hat notation for cross vector operator E

.= ûR, where (R, u)
is so called camera pose. The matrix R translates the second camera coordinates
to the first one and u is the direction (‖u‖ = 1) of translation of the second
camera w.r.t. the first one. Coordinates of u are expressed in the first camera
coordinates.

If both camera Cartesian systems are orthonormal, then R is an orthonormal
matrix and the essential matrix E is in a sense a unique representation of cam-
era pose (R, u). Actually there are always four camera poses having the same
essential matrix, but three of them are inconsistent with image points.

The essential matrix E is a link between images xk, yk of the same spatial
points acquired by two pinhole cameras. Mathematically this link is expressed
by the bilinear form:

xt
kEyk = 0, k = 1, . . . , K

The essential matrix is of rank two and the vector u spans its row kernel
as the line which intersects the projective plane of the first camera in the so
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called epipole. It means also that the epipole of the first camera is an abstract
image of the second camera centre. The image in the second camera for the first
camera centre is also called the epipole and it spans the column kernel of E.
Thus epipoles lie on projective planes on the line joining camera centres points
(cf. Fig.1). This line is called the epipole line and any plane including this line is
called the epipolar plane while its intersection with any projective plane is called
the the epipolar line (cf. the plane Πk and line Li

k, Lj
k of Fig.1 not to be confused

with epipole line CiCj which is unique).

Ci

L i

k I I

I

kL j

k

Cj

Fig. 1. Epipolar planes determined by epipole line joining pinholes Ci and Cj

Since the bilinear relation is linear w.r.t. elements of E then having K ≥ 8
point images (xk, yk) makes possible to find an estimate of the matrix E. Next
an estimate of the camera pose (R, u) is found using for instance SVD (Sin-
gular Value Decomposition [6]) of the essential matrix. The obtained estimate
is considered as the starting point for an iterative process of a nonlinear opti-
mization procedure. For optimization a solution space must be defined w.r.t. the
admissible space. In our case the admissible space is defined as:

E .= {ûR : u ∈ R3, ‖u‖ = 1, R ∈ R3×3, RtR = I3, det(R) = 1}

There are usually two approaches considered for solution space design:

1. The admissible space is embedded into higher dimensionality solution space
where it is identified by a number of constraints – in our case 12 dimensional
space with 7 constraints is feasible.

2. The admissible space is parameterised using minimal number of parameters
with no constraints on them and the parameter space becomes the solution
space – in our case five angular parameters (two for u and three for R) define
five dimensional solution space.

Probably dealing with trigonometric functions which are more complex than
linear operations is the reason that in the literature we could find only recom-
mendations for the first approach. To ensure keeping iteration on manifolds of
constraints implicitly the work is performed in 12 + 7 = 19 dimensional space
what requires slower and less accurate high dimensional approaches.
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In this paper we propose to consider the representation of essential matri-
ces in angular space based on angles directly related to camera epipoles. The
epipolar angles are spherical angles of epipole vectors in their camera Cartesian
systems. Beside 2+2 = 4 spherical angles an angle of rotation around the z axis
must be added to complete characterisation. The representation is based on a
factorisation of the essential matrix which separates five independent angles into
three groups (2 + 1 + 2). This special factorisation we call the epipolar angular
factorisation of the essential matrix. The pose calibration procedure is described
with two possible options for optimised goal function based on squared distances
from epipolar line and epipolar plane. Both functions are optimised using angular
factorisation of essential matrix.

In section 2 we discuss angular factorisation of any rotation matrix. While
the epipolar angular factorisation can be obtained from SVD of the essential
matrix E = ûR, in section 3 such factorisation is directly obtained from pose
(R, u). In section 4 goal functions are defined for essential matrix identification
and their form optimised for computational efficiency. Finally, section 5 includes
experimental results.

2 Angular Factorisation of Rotation Matrix

In further discussion we will need a notation on specific rotation matrices and
related formula.

Theorem 1 (Rodriguez formula[3])
The rotation matrix Rw,α by the angle α ∈ [−π, π] around the axis spanned by
the unit vector w, is equal to I3 + sin(α)ŵ + (1 − cos(α))ŵ2.

The following properties of spherical angles of a vector u and its related relations
will be useful, too.

Lemma 1
If u ∈ R3 has spherical angles μ(u), λ(u) such that

u = [cosμ(u) sin λ(u), sin μ(u) sin λ(u), cosλ(u)]t

then
λ(u) + λ(−u) = π, −λ(−u) = λ(u) − π (1)

If u⊥ .= e3 × u then

Ru⊥,λ(u)e3 = u, Rt
u⊥,λ(u)u = e3

Rt
u⊥,π = Ru⊥,−π = Ru⊥,π, Ru⊥,πe3 = −e3, Ru⊥,πu = −u

(−u)⊥ = −(u⊥) = −u⊥, R(−u)⊥,λ(−u) = Ru⊥,λ(u)−π = Ru⊥,πRu⊥,λ(u)

(2)

If U ∈ R3×3 is any rotation matrix and u
.= Ue3 then this rotation can be

performed in two steps:

1. rotate around e3 (z-axis) by an angle α0 – performed by the matrix Re3,α0 ;
2. rotate around u⊥ by the angle λ(u) – performed by the matrix Ru⊥,λ(u).
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In order to find α0 we compute the rotation matrix U0 and apply the inverse
Rodriguez formula: U0

.= Rt
u⊥,λ(u)U, cosα0 = (trace(U0) − 1)/2. If the inverse

Rodriguez formula returns the vector −e3 as the axis then we change the sign
of α0 still keeping its value in the interval [−π, +π].

The above recipe is valid if U0 is the rotation matrix around the axis spanned
by e3. This true if and only if U0e3 = e3 : U0e3 = Rt

u⊥,λ(u)Ue3 = Rt
u⊥,λ(u)u = e3.

The theory [3] shows that the essential matrices have always the same singular
values 1, 1, 0. Therefore its SVD is of the form:

E = ±UI0V
t, I0

.=

⎡⎣1 0 0
0 1 0
0 0 0

⎤⎦ , U tU = I3, det(U) = 1, V tV = I3, det(V ) = 1

The sign change of E may happen as the SVD itself does not guarantee the
positive orientation of orthonormal factors.

Having SVD for E = UI0V
t we get the angular factorisation of the essential

matrix from the angular factorisations of rotation matrices U, V :

E = UI0V
t =Ru⊥,λ(u)Re3,α0I0Re3,−α′

0
Rt

v⊥,λ(v) = Ru⊥,λ(u)I0Re3,α0−α′
0
Rt

v⊥,λ(v)

where u
.= Ue3, v

.= V e3. Since Etu = 0 and Ev = 0 then u spans the row
kernel of E and v spans the column kernel of E. Therefore u and v are either
epipolar vectors or their negations. In conclusion: singular value decomposition
of the essential matrix leads to the angular factorisation of the essential matrix
and indirectly produces angular representation for the camera pose. In the next
section we show that the same parameters for the pose (R, u) can be obtained
without using of SVD.

3 Epipolar Representation of Camera Pose

The second camera pose (R, u) is identified if we know the rotation matrix
R and the directional (unit) vector u for the camera translation w.r.t. the first
camera coordinate system. The columns of the matrix R describe axes of camera
coordinate system. In this coordinate system the vector v describes the inverse
translation if and only if Rv = −u. Note that unit vectors u, v point to the
epipoles of the first and the second camera, respectively. Both of them determine
the epipoles line but in different coordinate systems.

From the parametrisation point of view the rotation matrix R and the epipolar
(unit) vector u are independent. You may move cameras apart keeping parallel
cameras axes and you may rotate the camera axis by keeping its centre fixed.
However, R depends on the pair of epipolar vectors since two equivalent epipolar
conditions are true:

Rv = −u, Rtu = −v (3)

For a convenience the vector u⊥ is called the dual epipole vector of the epipole
vector u.
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Obviously, for the fixed pair of vectors u, v there are many rotation matrices
R satisfying the epipolar condition. Let us denote by Fu,v the set of all such
matrices:

Fu,v
.= {R ∈ R3×3 : RtR = I, det(R) = 1, Rv = −u}

Assuming that u and v are not parallel to e3, i.e. u⊥ 	= 0, v⊥ 	= 0, it appears
that the matrix family Fu,v is the one dimensional set, and there exist the
scalar parameter τ which is interpreted as the rotational angle around the z axis
determined by the vector e3. To this goal let us define the two helpful matrix
families explicitly parameterised by τ :

F+−
u,v

.=
{
Ru⊥,λ(u)Re3,τRv⊥,πRt

v⊥,λ(v) : τ ∈ [−π, π]
}

F−+
u,v

.=
{
Ru⊥,λ(u)Ru⊥,πRe3,τRt

v⊥,λ(v) : τ ∈ [−π, π]
}

The upper indices ± were fixed according the signs which appear in the fol-
lowing relations:

Ru⊥,λ(u)Re3,τRv⊥,πRt
v⊥,λ(v) = Ru⊥,λ(u)Re3,τRt

(−v)⊥,λ(−v)

Ru⊥,λ(u)Ru⊥,πRe3,τRt
v⊥,λ(v) = R(−u)⊥,λ(−u)Re3,τRt

v⊥,λ(v)

The above equalities follow directly from the properties collected in the lemma
1. The following theorem shows the parametrisation of the matrices related by
the pair of epipolar unit vectors (u, v).

Theorem 2 (on parameterisation of epipolar matrices)
Let F t denotes the family of the transposed matrices of F . Then the characteri-
sation of the matrix families Fu,v and F t

u,v follows:

F+−
u,v = Fu,v = F−+

u,v

F t
u,v = F−+

v,u = Fv,u

F t
v,u = F+−

u,v = Fu,v

Again the lemma 1 helps to prove the theorem. Just to illustrate the approach
let us prove the inclusion Fu,v ⊂ F+−

u,v . Let R0
.= Rt

u⊥,λ(u)RR(−v)⊥,λ(−v) :

R(−v)⊥,λ(−v)e3 = −v, Rv = −u −→ R(−v) = u −→ R0e3 = Rt
u⊥,λ(u)u = e3

Since R0e3 = e3 then e3 spans the rotation axis for R0. Therefore there exists
τ0 ∈ [−π, π] such that R0 = Re3,τ0 −→ R = Rt

u⊥,λ(u)R0Rt
(−v)⊥,λ(−v) ∈ F+−

u,v .

The unknown parameter τ can be easily found from the inverse Rodriguez
formula.

Let us observe that the proposed parametrisation is actually the factorisation
of the rotation matrix R into three rotation matrices:

1. the rotation around u⊥ by the angle λ(u);
2. the rotation around e3 by the angle τ0;
3. the rotation around −v by the angle −λ(−v).
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This type of factorisation is called epipolar angular factorisation. Having the
angular factorisation for the rotation matrix we may attempt to build the fac-
torisation for the essential matrix E = ûR. Firstly, the factorisation of the hat
matrix is performed based on the following lemma.

Lemma 2 (on factorisation of hat matrix)
Let I0 = [e1, e2, 03] be the diagonal matrix created from I3 by replacing the last
column by zeros. Then

ê3 = I0Re3,π/2

and
û = Ru⊥,λ(u)ê3Rt

u⊥,λ(u)

The factorisation of ê3 is obvious. However, the proof for û follows directly from
the deep formula frequently exploited in the epipolar geometry:

A ∈ R3×3, det(A) 	= 0 −→ AtÂuA = det(A)û

by substituting A
.= Ru⊥,λ(u) and using equality u = Ae3.

Combining factorisations for û and for R ∈ F+−
uv we obtain:

E = ûR = Ru⊥,λ(u)ê3Rt
u⊥,λ(u)Ru⊥,λ(u)Re3,τRt

(−v)⊥,λ(−v)

= Ru⊥,λ(u)ê3Re3,τRt
(−v)⊥,λ(−v) = Ru⊥,λ(u)I0Re3,τ+π/2Rt

(−v)⊥,λ(−v)

= Ru⊥,λ(u)Re3,τ+π/2I0Rt
(−v)⊥,λ(−v)

The last equality follows from commutativity of I0 with the rotation matrix
around the z axis.

We conclude that the factorisation of the essential matrix differs slightly from
the factorisation of the rotation matrix – there is factor I0 which nullifies the z
component and there is the rotation angle around the z axis increased by 90◦.
Namely, the following steps are identified in factorisation of the essential matrix
E :

1. the rotation around −v by the angle −λ(−v);
2. the rotation around e3 by the angle τ0 + π/2;
3. the nullifying of z component – I0[x, y, z]t = [x, y, 0]t

4. the rotation around u⊥ by the angle λ(u).

Note that steps two and three can be interchanged. The above can be concluded
in the theorem.

Theorem 3 (on factorisation of essential matrix)
Let u⊥ 	= 0, v⊥ 	= 0. We consider all essential matrices for all camera poses
(R, u) such that Rv = −u :

Eu,v
.= {E ∈ R3×3 : E = ûR, RtR = I, det(R) = 1, Rv = −u}

Let us define the parameterised family of the essential matrices:

E+−
u,v

.= {ûR : R ∈ F+−
u,v }
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Then the following characterisation of essential matrices from Eu,v is valid:

Eu,v = E+−
u,v =

{
Ru⊥,λ(u)I0Re3,τ+π/2Rv⊥,πRt

v⊥,λ(v) : τ ∈ [−π, π]
}

Let us observe that the above representation of the camera pose (R, u) and its
essential matrix E = ûR is the implicit angular representation:

(R, u) �→ E �→ [α0, . . . , α4]t

where α1
.= μ(u), α2

.= λ(u), α3
.= μ(−v), α4

.= λ(−v) and α0 is obtained by
the inverse Rodriguez formula for the matrix R0 :

R0
.= Rt

u⊥,λ(u)RR(−v)⊥,λ(−v)

To conclude this section let us justify and emphasise its title by the following
theorem.

Theorem 4 (on single point correspondence for pose identification)
Let us consider two cameras with arbitrary relative pose. If both epipoles u, v are
known and two images x, y of an unknown spatial point are measured in the local
camera coordinates then the pose (R, u) is identified by finding the missing angle
α0 in the epipolar angular factorisation of R :

1. Rotate x : [x1, x2, x3]t ← Rt
u⊥,λ(u)x;

2. Rotate y : [y1, y2, y3]t ← Rt
(−v)⊥,λ(−v)y;

3. If a1 = x1y1 − x2y2, a2 = x2y1 + x1y2 then α0 = arctan2(±a1,∓a2).

The change of sign in α0 formula exhibits the epipolar ambiguity of rotations R
and R′ .= Ru,πR.

4 Application for Essential Matrix Identification

Essential matrix identification is performed by fitting its parameters to K points
xk in the image from the first camera and the corresponding points in the image
of the second camera, k = 1, . . . , K. The error term contributed by point image
pair (x, y) is based on the distance from the measured point either to the epipolar
line or to the epipolar plane (Fig. 2):

1. The error εxy of bilinear form xtEy : εxy
.= xtEy.

2. The distance δxy from the point x to the epipolar line determined by the vec-
tor Ey and the distance δyx from the point y to the epipolar line determined
by the vector Etx :

δxy
.=

|εxy|
‖Ey‖ , δyx

.=
|εxy|
‖Etx‖

3. The distance Δxy from the point x to the epipolar plane y belongs to, and
the distance Δyx from the point y to the epipolar plane x belongs to:

Δxx′
.=
|εxx′|
‖x′‖ , Δx′x

.=
|εxx′ |
‖x‖
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C C’

X

B B’

x’
X

Fig. 2. Shows distances from the point image x (x′) to the epipolar line and to the
epipolar plane of its counterpart image

Since each image point pair (x, y) contributes two distances, the K point
pairs makes total of 2K error terms for LMM (Levenberg Marquardt Method
[7]). However, in case of plane distance since the nominators are equal and the
denominators are parameter free, the two terms can be combined into one term.

1. For the distance to the epipolar line, two components of error function ε2k−1
and ε2k are evaluated for k = 1, . . . , K :

ε2k−1 ← xt
kEx′

k

‖Ex′
k‖

; ε2k ← xt
kEx′

k

‖Etxk‖

2. For the distance to the epipolar plane, one component of error function εk

is evaluated for k = 1, . . . , K :

εk ← xt
kEx′

k

√
1

‖xk‖2 +
1

‖x′
k‖2

The epipolar angular factorisation of the essential matrix gives us an oppor-
tunity to optimize the design of the algorithm.

Let E = R1I0R0R
t
2 be the epipolar angular factorisation of the essential

matrix E :
R1

.= Ru⊥,λ(u), R2
.= R(−v)⊥,λ(−v)

The error term for a least square method which brings a matched pair (x, y)
of point images can be separated as follows:

xtEy = (Rt
1x)t(I0R0)(Rt

2y) = (Q1x)t(Q∗
2y)

where Qi ∈ R2×3 is Rt
i with the third row dropped i = 1, 2 :

Q∗
2

.= R∗
0Q2, R∗

0
.=
[

c −s
s c

]
, c = cosα0, s = sin α0
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The special form of rotation matrix Qi enables saving a number of algebraic
operations:

1. Evaluate the epipolar vector u = [u1, u2, u3]t from its spherical coordinates:

u1 ← cosα1 sin α2, u2 ← sin α1 sin α2, u3 = cosα2

2. Compute Q1 :

Q1 ← [I2,−[u1, u2]t] −
[
[u1, u2]t[u1, u2]

1 + u3
, [0, 0]t

]
3. Evaluate the negated epipolar vector −v = [v1, v2, v3]t from its spherical

coordinates:

v1 = cosα3 sinα4, v2 = sin α3 sin α4, v3 = cosα4

4. Compute Q2 :

Q2 ← [I2,−[v1, v2]t] −
[
[v1, v2]t[v1, v2]

1 + v3
, [0, 0]t

]
Further improvements we seek in norm computations for the vectors Ey, Etx :

1. The norm of Ey is computed w.r.t. the epipolar vector v :

‖Ey‖2 = ytEtEy = yt(R2I0R
t
0R

t
1)(R1R0I0R

t
2)y =

yt(R2I0R
t
2)y = yt[I3 − vvt]y = ‖y‖2 − (vty)2

2. The norm of Ey is computed w.r.t. the epipolar vector u :

‖Etx‖2 = xtEEtx = xt(R1I0R0R
t
2)(R2R

t
0I0R

t
1)x =

xt(R1I0R
t
1)x = xt[I3 − uut]x = ‖x‖2 − (utx)2

Finally the optimized algorithm for camera pose identification has the form:

1. Input: K projections (xk, y′
k), k = 1, . . . , K, K ≥ 8.

2. For the distance to
(a) the epipolar line two components of error function ε2k−1 and ε2k are

evaluated for k = 1, . . . , K :

ε2k−1 ← (Q1xk)tQ∗
2yk√

‖yk‖2 − (vtyk)2
; ε2k ← (Q1xk)tQ∗

2yk√
‖xk‖2 − (utxk)2

(b) the epipolar plane one component of error function εk is evaluated for
k = 1, . . . , K :

εk ← (Q1xk)tQ∗
2yk

√
1

‖yk‖2 +
1

‖xk‖2

3. Output: result of the LMM procedure (Levenberg Marquardt Method) ap-
plied to find the five angular parameters by nonlinear optimization (init
LMM by the angular parameters obtained from the output of the eight-point
algorithm).
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5 Experimental Results

To verify the correctness of the pose identification procedure the following sim-
ulation procedure has been implemented.

Random camera poses were generated M = 1600 times. For each camera pose
K = 9 random spatial points were generated and their perfect projections onto
the image planes were applied.

The imperfect pixel measurements are simulated by normal random noise
clamped to exponentially decreasing ranges. The geometric sequence of ranges is
initialised to [−0.01, +0.01] w.r.t. the image size, e.g. for the resolution 1024×756
the first noise range is large – about ±10 pixels. The next range is half of the
previous one. Such 20 ranges cover the interval [10−7, 10−2] and therefore include
the pixel resolutions for nowadays and future digital cameras.

The following averaged measures were analysed for the above goal functions
and for the eight-point algorithm.
dE : the Frobenius norm for the difference of original and reconstructed essential
matrices and its relative error w.r.t. the eight-point algorithm ddE = (1− dE

dE8
) ·

100.

dR : the Frobenius norm for the difference of original and reconstructed rotation
matrices and its relative error w.r.t. the eight-point algorithm ddR = (1− dR

dR8
) ·

100.

du : the Frobenius norm for the difference of original and reconstructed epipolar
vector and its relative error w.r.t. the eight-point algorithm ddu = (1− du

du8
)·100.
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We see that in the logarithmic range of errors in [−4,−2] corresponding to
the current practice, the distance to the epipolar plane is slightly better than
the distance to the epipolar line.

Additionally two graphs has been generated: the number of iterations (error
function calls) in LMM and the actual relative decrease of goal functions if we
switch from the result of the eight-point algorithm to the one produced by LMM.

Both techniques in time complexity measured by the number of error function
calls in the LMM algorithm are equivalent. Note also that about 95% of the
initial error produced by the eight-point algorithm, i.e. the value of the goal
function is reduced by LMM. It means that the nonlinear optimization is very
efficient – takes almost all overhead introduced by the eight-point method. Why
this level of improvement is not transferred to the pose parameters for which the
improvements are three times lower? The reason is in the continuity of essential
matrix space and the continuity of the corresponding camera pose manifold –
randomly disturbed parameters correspond to feasible poses which differ from
perfect poses. The convergence of pose to true value occurs when the measure-
ment error tends to zero. However, the speed of convergence for pose, counted
per one component, is about one order of magnitude slower.

6 Conclusion

The epipolar angular representation for camera pose leads to a factorisation of
the pose rotation matrix into three canonical rotations: around the dual epipole
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for the second camera, around the z axis, and around the dual epipole for the
first camera. If the rotation around the z axis is increased by 90◦ and followed by
the orthogonal projection on xy plane then the factorisation of essential matrix
is produced.

The proposed five parameter representation of the essential matrix is minimal.
It exhibits the fast convergence in LMM optimization algorithm used for camera
pose calibration.

In such a parametrisation the constraints based on the distance to the epipo-
lar plane appeared to be slightly more accurate than constraints based on the
distance to the epipolar line.
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Abstract. Most of image processing algorithms assume that an image has an 
additive white Gaussian noise (AWGN). However, since the real noise is not 
AWGN, such algorithms are not effective with real images acquired by image 
sensors for digital camera. In this paper, we present an integrated noise model 
for image sensors that can handle shot noise, dark-current noise and fixed-
pattern noise together. In addition, unlike most noise modeling methods,  
parameters for the model do not need to be re-configured depending on input 
images once it is made. Thus the proposed noise model is best suitable for vari-
ous imaging devices. We introduce two applications of our noise model: edge 
detection and noise reduction in image sensors. The experimental results show 
how effective our noise model is for both applications.  

1   Introduction 

Many image processing algorithms assume that noise is an additive white Gaussian 
noise (AWGN) with some constant standard deviation. However, the noise of real 
images acquired by image sensors for digital camera is not AWGN. In fact, the noise 
of real images has some spatial correlation (not white), the dependency of intensity 
values (not constant standard deviation) and non-Gaussian distribution. Therefore, 
many image processing algorithms using AWGN assumption are not effective and 
need to adjust parameters manually with real images acquired by such image sensors.  

We characterized image sensor noise model from Bayer domain images. Since we 
focus on dark-current noise, shot noise and fixed-pattern noise together, the precise 
noise level can be estimated using the model without under-estimation problem. 

The paper is organized as follows. We review related works in section 2. In section 3, 
we describe how to build the integrated image sensor noise model using Bayer domain 
images. We provide experimental results in section 4 and apply our integrated image 
sensor noise model to two image processing algorithms in section 5. We conclude in 
section 6. 
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2   Related Work 

Many image denoising methods have been proposed using various techniques, such as 
wavelet [1], anisotropic diffusion [2] and bilateral filtering [3], etc. With these meth-
ods it is assumed that the noise is AWGN with constant standard deviation for vary-
ing intensity values. Thus, they are not efficient to remove real noise and need to 
adjust parameters manually [5]. On the other hand, the study of noise modeling is 
very limited. Most image noise modeling methods use multiple images [4]. However, 
since noise estimation using multiple images suffers from the over-constrained prob-
lem [6], noise estimation methods using a single image have been studied [4][6][7]. In 
[4], Hwang et al. modeled shot noise, the dominant noise of image sensor, as the 
Skellam distribution from a single image. In general, shot noise is often characterized 
by the Poisson distribution. However, in many noise estimation methods shot noise is 
modeled as Gaussian distribution on the assumption that photon arrival rate is high 
enough. Thus, when the intensity value of image is low, treating the shot noise as 
Gaussian distribution may not be proper. Skellam distribution, the discrete probability 
distribution of the difference between two random variables having Poisson distribu-
tions, was proposed by Hwang et al. as the shot noise model for intensity difference. 
However, as mentioned in [7][9][10], since noise characteristics tends to be distorted 
due to the post-processing of camera pipeline such as demosaicing, gamma correc-
tion, and white balancing, it was difficult to find a proper noise model in terms of 
Intensity-Skellam line. To avoid such distortions of noise characteristics, Liu et al. [6] 
suggested the noise model, called noise level function based on the piecewise smooth 
image prior. They built the space of noise level functions and use the Bayesian MAP 
inference to infer the noise level function from a single image. However, in Liu et 
al.’s method parameters for the model had to be re-estimated for each input image. 
For that reason, that method was difficult to be used for consumer imaging devices 
such as digital camera, phone camera, etc. In [7], Yoo et al. proposed Gaussian and 
impulsive noise reduction method. They estimated the parameters for the noise model 
in Bayer domain to avoid the distortion of noise characteristics, and then adaptively 
determined the filter coefficients using their model. However, due to modeling shot 
noise only, Yoo et al.’s method becomes imprecise when intensity is high. 

3   Integrated Noise Modeling 

In this section, we model the image sensor noise characteristic using Bayer domain 
images. 

As mentioned in [8], there are mainly five different types of noise sources, namely 
fixed-pattern noise, dark-current noise, shot noise, amplifier noise and quantization 
noise. Among these different noise sources, we ignore amplifier noise and quantiza-
tion noise because these two types of noise are not only very small but also can usu-
ally be considerably reduced by built-in image processors [4]. Most of noise modeling 
methods deals with shot noise only. However, when the image intensity is high or 
low, fixed-pattern or dark-current noise becomes a dominant source, respectively [9]. 
Therefore, we propose an integrated noise modeling that can cope with dark-current 
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noise, shot noise and fixed-pattern noise simultaneously to build the precise noise 
model of image sensors for digital cameras. 

3.1   Noise Modeling in Bayer Domain 

Generally, noise modeling means the process of modeling the noise level as a func-
tion of image intensity. In many noise modeling methods, noise level samples are 
collected from homogeneous patches within an input image. Fig. 1 shows such noise 
samples in our experiment as described in [4], where a line equation was fitted to the 
samples for building noise model. However, as Fig. 1 shows, it is hard to see any 
linear relationship between noise samples. The reason for this non-linearity is caused 
by the post processing of camera pipeline as discussed above [6][9][10][13]. Fig. 2 
shows a typical camera pipeline structure. As Fig. 2 illustrates, an image in image 
domain from an imaging device is generated by a series of post-processing of the 
image sensor output. In Fig. 2, the camera response function (CRF) including gamma 
correction and white balance makes that the noise level bears non-linear characteris-
tics [6][9]. In addition, demosaicing process for Bayer pattern makes the noise to have 
the correlation among color channels, as well as a spatial correlation [10]. Therefore, 
it is difficult to build the precise noise model from an image in image domain. 

 

   
(a) R channel (b) G channel (c) B channel 

Fig. 1. Non-linear characteristics of noise in image domain 

To build the precise yet simple noise model, we propose the following form of in-
tegrated noise model for image sensors using Bayer domain images. 

( )int egratedI f L n= +  (1) 

Here, L and I are the intensity in Bayer domain and image domain, respectively, and 
nintegrated is noise estimated by our integrated noise model. f is a CRF that transforms the 
intensity in Bayer domain into the intensity in image domain. In general, photon arrival 
obeys Poisson distribution. However, when photon arrival rate is high, Poisson distri-
bution can be approximated to Gaussian distribution [7]. Therefore, we can assume 
that integrated noise term has zero mean additive Gaussian noise given by Eq. (2). 

( ) ( ) ( )( )( )2 2 2 2
int int~ 0, , , ,egrated egrated D S F biasn N t L L dσ σ σ σ  

In Eq. (2), ( )2
D tσ  is the variance of the dark-current noise as a function of expo-

sure time(t), ( )2
S Lσ  is the variance of the shot noise as a function of intensity (L) in 
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Fig. 2. Camera Pipeline 

  
(a) (b) 

Fig. 3. (a) is the intensity value of dark frames as a function of exposure time and (b) is the 
noise variance of dark frames as a function of exposure time 

Bayer domain, ( )2
F Lσ  is the variance of the fixed-pattern noise as a function of in-

tensity in Bayer domain, and dbias denotes dark-current bias intensity. 

3.2   Dark-Current Noise Modeling 

When there is no light projected on the sensor, the output signal from image sensor 
should be zero. However, the actual output signal from image sensor is more than 
zero and has dark-current noise because of dark current electrons. 

To model dark-current noise, we captured dark frame images with respect to expo-
sure time. Dark frame images were captured by closing the lens cap of camera in the 
dark room. We then computed global mean intensity values from dark frame images. 
As Fig. 3(a) shows, global mean intensity values of dark frame images are almost the 
same (σ = 0.1) even though the exposure time (tn) is changed. However the standard 
deviation (σDn) of the dark current noise has linear relationship with exposure time (tn) 
as shown in Fig. 3(b). Therefore, we modeled the dark-current noise σD(t) by fitting a 
line to the dark-current noise samples (tn, σDn) using the least square regression. 

3.3   Shot Noise Modeling 

Shot noise or photon shot noise is caused by the inherent natural variation of incident 
photon flux. To model the shot noise, we acquired the single color checker image as 
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shown in Fig. 4(a). Then we extracted 24 homogeneous color patches from the color 
checker image and collected the shot noise samples (Ln, σ2

Sn) by computing mean (Ln) 
and variance (σ2

Sn) of each patch. As Fig. 4(b) indicates, we could find the linear 
relationship of the shot noise samples (Ln, σ2

Sn). Therefore, we build the shot noise 
model ( )2

S Lσ  again by fitting a line to the shot noise samples (Ln, σ2
Sn) using the 

same method.  

 

 
 

(a) (b) 

Fig. 4. (a) is GretagMacbethTM color checker chart for modeling shot noise and (b) is the shot 
noise model obtained by fitting a line to the shot noise samples marked “+” (Ln, σ2

Sn) 

3.4   Fixed-Pattern Noise Modeling 

Fixed-pattern noise (FPN) is caused by the difference of pixel response. Therefore, 
FPN is usually a dominant source when the intensity is high. According to the noise 
measurement method specified by ISO 15739 standard [14], FPN standard deviation 
of some intensity was obtained by averaging a sequence of n images to reduce ran-
dom noise as Eq. (3). 

2 21

1fp ave diffn
σ σ σ= −

−
 (3) 

Here, 2
aveσ is the variance of mean image computed by averaging an image se-

quence, 2
diffσ is the average value of variance computed from the difference images 

between the mean image and each one in the sequence. In our experiment, eight ho-
mogeneous images were acquired by taking pictures of white paper, and the FPN 
standard deviation (σfp) and mean intensity value (Lfp) were computed. Since FPN is 
caused by the difference of pixel response, we checked five different pixel responses 
which are selected randomly. Since the pixel response increased linearly as shown in 
Fig. 5(a), we assumed that the FPN standard deviation increased linearly with respect 
to intensity. Therefore, as Fig. 5(b) shows, we used a line equation that passes through 
the origin and (Lfp, σfp) as the fixed-pattern noise model, σF(L). 
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(a) (b) 

Fig. 5. (a) is 5 randomly selected pixels’ response and (b) is the FPN standard deviation mod-

el ( )F Lσ  

3.5   Integrated Noise Terms 

Now, we integrate the dark current noise model, shot noise model and fixed-pattern 
noise model discussed above altogether. The standard deviation of the integrated 
noise model as function of intensity and exposure time is given by Eq. (4). 

( ) ( )
( ) ( ) ( )

int

2 2
int

      ( )  ,

                    ,

bias egrated D

egrated S F

if L d L t t

else L t L L

σ σ

σ σ σ

< =

= +
 (4) 

In Eq. (4), when intensity is lower than dbias, image is only corrupted by dark-current 
noise. On the other hand, when intensity is higher than dbias, the integrated noise 
should consist of dark current noise, shot noise and fixed-pattern noise. However, 
since shot noise is associated with the portion of dark current [15], only shot noise 
term and fixed-pattern noise term are added when intensity is higher than dbias. 

4   Experimental Results and Discussion 

To verify our noise model, we performed experiments on both real and synthetic 
noise images, and tested how our noise model behaves depending on the camera set-
ting. All images for the experiment were acquired by CanonTM EOS 400D. Since our 
noise modeling method uses Bayer domain images, we acquired RAW images and 
used a software dcraw to extract Bayer domain images from RAW files. dcraw is the 
open source program which is able to read numerous raw image formats [11]. 

4.1   Robustness of Integrated Noise Model 

We ran some experiments to see how our noise model works due to the changes in 
camera parameter settings such as aperture, shutter speed, and ISO. At first, we fixed 
ISO and changed aperture and shutter speed. The result is shown Fig. 6 and Table 1. 
As Fig. 6 indicates, although the aperture and shutter speed is changed, our noise 
model has very little variation. Table 1 shows the RMSE value between the maximum 
and minimum noise standard deviation with respect to intensity values, respectively. 
In Table 1, intensity is normalized between 0 and 1. 
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Fig. 6. The integrated noise model for R-channel. The integrated noise model is not changed 
even at different camera settings, The red solid line is for the setting with f11 and 1/6s, the 
green dash line indicates the setting with f9 and 0.3s, and the blue dot line corresponds to the 
setting with f11 and 0.6s.  

Table 1. The variation of integrated noise model corresponding to aperture and shutter speed 
change 

 R channel GR channel GB channel B channel 
RMSE 0.00055 0.000281 0.000438 0.000235 

In the same manner, the result of our noise model variation with different ISO’s is 
shown in Fig. 7. As Fig. 7 indicates, our noise model was only changed by image 
sensor gain, i.e. ISO. This property means that our noise model does not need to be 
reconfigured with different input images if it is done once. Therefore, our compact 
noise model according to each ISO setting can be applicable to consumer imaging 
device in forms of LUT. 

 

 

   
(a) (b) (c) 

Fig. 7. The integrated noise model at different ISO settings, (a) is ISO 400, (b) is ISO 800 and 
(c) is ISO 1600 

4.2   Comparison with Ground-Truth Noise Sample 

To collect ground-truth noise samples, we acquired 52 color checker images with 
various exposure times and computed mean and standard deviation of 24 patches 
from each color checker image. Then, we compared our noise model with the ground-
truth noise samples. The result is shown in Fig. 8. As anticipated, our noise model 
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estimated upper-boundary of ground-truth noise samples with success as shown in 
Fig. 8. The figure shows that the ground-truth noise samples are scattered when the 
intensity is high. This is caused by FPN, i.e. the upper-boundary noise samples are 
corrupted by FPN. On the other hand, the lower boundary noise samples that have 
only shot noise were bounded by the proposed shot noise model (blue dash line).  

 

 
Fig. 8. The ground-truth noise samples and our noise model 

4.3   Comparison with Synthetic Noise Model 

To generate the synthetic noise images as shown in Fig. 9, we specified the synthetic 
integrated noise model. To build FPN model, we generated eight synthetic images.  

 

 

Fig. 9. The synthetic image with pre-defined integrated noise 

   
(a) (b) (c) 

Fig. 10. Comparison between our noise model and the synthetic noise model. Red solid line is 
our estimated noise model and blue dash line is the synthetic noise model. 
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Table 2. The RMSE error between our estimated noise model and the synthetic noise model 

 R channel G channel B channel 
RMSE 0.00814 0.000887 0.000897 

The result, as shown Fig. 10, our noise model is very close to the defined synthetic 
noise model. Table 2 shows the RMSE value between our noise model and synthetic 
noise model. In table 2, intensity values are normalized from 0 to 1. 

5   Image Processing Applications 

Many image processing algorithms are noise-dependent. Therefore, our noise model 
allows them robust against noise. In this section, we introduce two typical applica-
tions of our noise model: a noise removal and edge detection. 

5.1   Adaptive Bilateral Filter 

Bilateral filtering [3] is a well-known algorithm for edge-preserving image smooth-
ing. Bilateral filter expressed in Eq. (5) is defined as the product of domain filter and 
range filter.  
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Here, Ω is the neighborhood set of bilateral filter kernel, s is the center pixel posi-
tion and p is the neighborhood pixel position in bilateral filter kernel. 

The coefficient of domain filter, wd is computed based on the spatial distance as 
Eq. (6). Thus, the domain filter performs the image smoothing. On the other hand, the 
coefficient of range filter, wr is computed based on the intensity difference as Eq. (7) 
to preserve edges. 
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As mentioned above, since the real noise is not AWGN with a constant standard 
deviation, the original bilateral filter with a fixed rσ  in Eq. (7) is not efficient for real 

images. 
To apply our noise model to bilateral filter, we change rσ  to ( )int ,egrated sL tσ . 

Since our noise model and adaptive bilateral filter are defined in Bayer domain, we 
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used bilinear interpolation as demosaicing process and estimated the CRF of CanonTM 
EOD 400D to change the result image in Bayer domain into the image in image do-
main. The result of an adaptive bilateral filtering is shown in Fig. 11(c). For compari-
son, the result of original bilateral filter with constant parameter setting dσ =3 and 

rσ =10 is shown in Fig. 11(b). As Fig. 11 illustrates, bilateral filter with our noise 

model showed better performance of removing noise while preserving details. 

5.2   Canny Edge Detection 

The basic idea of Canny edge detection [12] is to find an optimal filter so that the 
most salient edges can be found in the presence of noise. The optimal filter is de-
signed for theoretically independent of noise, but thresholds are noise dependent [6]. 

Generally, noise model can give us the probability that the magnitude of gradient is 
caused by whether noise or edge. In this section, we simply apply our noise model for 
the threshold of Canny edge detector. The high threshold was set to 6 int egratedσ , where 

int egratedσ  is the average of integrated noise standard deviation. The lower threshold is 

set to be 0.4 of higher threshold. The result is shown in Fig. 12(c). For comparison, 
the result of Canny edge detection with an automatic parameter setting in MAT-
LABTM is shown in Fig. 12(b). The same low-pass filters are used for both methods.  
As Fig. 12 indicates, the performance of Canny edge detector was enhanced by our 
noise model despite of heavy noise. 

 

   
   

   
(a) (b) (c) 

Fig. 11. (a) Is the original image, (b) Is the result of bilateral filter and (c) Is the result of our 
adaptive bilateral filter. The bottom row shows enlarged patches for the top row images. 
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(a) (b) (c) 

Fig. 12. (a) Is original image, (b) Is the result of Canny edge detector in MATLABTM and (c) Is 
the result of Canny edge detector with adaptive thresholds incorporated with our noise model 

6   Conclusion 

In this paper, we proposed the integrated noise model for digital camera sensors using 
Bayer domain images. To build the accurate noise model, our noise model defined in 
Bayer domain incorporated dark-current noise, shot noise and fixed-pattern noise 
together. In the experimental results, we showed that our noise model was changing 
only by image sensor gain. It means that our noise model does not need to be recon-
figured if it is done once, and is best suited for consumer imaging devices such as 
digital camera, phone camera, etc. Also, we showed that our noise model estimated 
real noise accurately by comparing with ground-truth noise samples and synthetic 
noise model. In addition, we showed that the performance of some image processing 
algorithms were enhanced using our noise model. 
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Abstract. Many image processing algorithms rely on nearest neighbor
(NN) or on the k nearest neighbor (kNN) search problem. Several meth-
ods have been proposed to reduce the computation time, for instance
using space partitionning. However, these methods are very slow in high
dimensional space. In this paper, we propose a fast implementation of
the brute-force algorithm using GPU (Graphics Processing Units) pro-
gramming. We show that our implementation is up to 150 times faster
than the classical approaches on synthetic data, and up to 75 times faster
on real image processing algorithms (finding similar patches in images
and texture synthesis).

Keywords: kNN, GPU programming, NVIDIA CUDA, image process-
ing, finding similar patches, texture synthesis.

1 Introduction

Many image processing algorithms rely on nearest neighbor (NN) or on the k
nearest neighbor (kNN) search problem. Typical applications are for instance
finding similar patches in images [12], texture synthesis [8], object tracking [5],
content based image indexing [15], deblurring [3,2], image filtering, etc.

The simplest way to solve the kNN search problem is the brute-force algo-
rithm, also known as exhaustive search. However, the main issue of this algo-
rithm is its huge complexity. Several methods have been proposed to reduce the
computation time. For instance, a kd-tree [4] creates a partition of the point
sets using a tree structure. The kNN search problem can take advantage of this
structure by computing the distances between a given query point and a sub-
set of the reference points. Another famous approach, named LSH (for Locality
Sensitive Hashing) [11,9,6,1], uses hash functions to compute the distances be-
tween a given query point and a subset of the reference points. However, both of
these approaches are inefficient (in terms of computation time) in many image
processing algorithms because they still are very slow in high-dimensional space.

In this paper, we propose a fast implementation of the brute-force algorithm
using GPU (Graphics Processing Units) programming. We show first that our

A. Gagalowicz and W. Philips (Eds.): MIRAGE 2009, LNCS 5496, pp. 425–436, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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implementation is up to 150 times faster than classical approaches (tree based) on
synthetic data. Second, we apply our GPU implementation to two different image
processing algorithms: finding similar patches in images and texture synthesis.
These algorithms both use points in high-dimensional spaces (respectively up
to 1323 and 660). In comparison to classical approaches (tree based), our GPU
implementation is up to 75 times faster for finding similar patches in images,
and up to 50 times faster for texture synthesis.

2 K Nearest Neighbor Search

2.1 Problem Definition

Let R = {r1, r2, · · · , rm} be a set of m reference points with values in �d, and
let Q = {q1, q2, · · · , qn} be a set of n query points in the same space. The kNN
search problem consists in finding the k nearest neighbors of each query point
qi ∈ Q in the reference set R given a specific distance. Commonly, the Euclidean
or the Manhattan distance is used but any other distance can be used instead
such as the Chebyshev norm or the Mahalanobis distance. Figure 1 illustrates
the kNN problem with k = 3 and for a point set with values in �2.

Fig. 1. Illustration of the kNN search problem for k = 3. The blue points correspond
to the reference points and the red cross corresponds to the query point. The circle
gives the distance between the query point and the third closest reference point.

2.2 Classical Approaches

Brute force The kNN search problem can be solved using the basic brute force
algorithm (noted BF) and also called exhaustive search. Basically, for a given
query point qi, this algorithm consists in computing all the distances between
qi and the reference points and to select the k reference points providing the
smallest distances. To be more precise, the BF algorithm is the following:

1. Compute all the distances between qi and rj , ∀j ∈ [1, m].
2. Sort the computed distances.
3. Select the k reference points corresponding to the k smallest distances.
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The main issue of this algorithm is its huge complexity: O(nmd) for the nm
distances computed (approximately 2nmd additions/subtractions and nmd mul-
tiplications) and O(nm log m) for the n sorts performed (mean number of com-
parisons).

Space partitionning Several kNN algorithms have been proposed in order to
reduce the computation time. Generally, the idea is to reduce the number of
distances computed [13]. A kd-tree [4] is a partition of the point sets using a
tree structure. The kNN search problem can take advantage of this structure
by computing the distances between a given query point and a subset of the
reference points: only distances within nearby volumes are computed. Mount
and Arya propose [14] a highly optimized implementation (written in C++)
of the kNN search using a kd-tree structure. Their library, nammed ANN (for
Approximate Nearest Neighbor) supports both exact and approximate nearest
neighbor searching in spaces of various dimensions. ANN is currently one of the
fastest kNN search using space partionning.

Locality-Sensitive Hashing (LSH) For methods based on space partition-
ning (e.g. using kd-tree), it has been shown [16] that the kNN search in a high
dimensional space was comparable to the BF algorithm. Andoni et al. have
proposed [11,9,6,1] a kNN search method, nammed LSH (for Locality Sensitive
Hashing), very efficient for such a dimension. The basic idea is the following:
two closed points are hashed in the same bucket (collision) with high probabil-
ity. Basically, the authors propose to use a set of hash functions to compute the
buckets related to the reference points. Then, the hash functions are applied
for each query point. A simple hash table allows to find quickly the reference
points closed to the considered query point. Finally, the distances are computed
only between the current query point and the selected reference points. LSH is
known to be faster than ANN in high dimensional space. Indeed, the computa-
tion of hash function value is very fast. However, the construction of the buckets
should be preprocessed due to its slowness. However, in many image processing
applications, buckets cannot be preprocessed.

3 GPU Programming and Application to kNN Search

Through the C-based API CUDA (Compute Unified Device Architecture),
NVIDIA1 recently brought the power of parallel computing on Graphics
Processing Units (GPU) to general-purpose algorithmic [7,10]. This opportunity
represents a promising alternative to solve the kNN problem in reasonable time.
In this paper, we propose a CUDA implementation for solving the brute force
kNN search problem. We compared its performances to several CPU-based im-
plementations. Besides being faster by up to two orders of magnitude, we noticed

1 http://www.nvidia.com/page/home.html

http://www.nvidia.com/object/cuda home.html
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that the dimension of the sample points has only a small impact on the compu-
tation time with the proposed CUDA implementation, contrary to the C-based
implementations.

The BF method is by nature highly-parallelizable. This property makes the
BF method perfectly suitable for a GPU implementation. Let us remind that
the BF method has two steps: the distance computation and the sorting. For
simplicity, let us assume here that the reference and query sets both contain n
points.

The computation of the n2 distances can be fully parallelized since the dis-
tances between pairs of points are independent. Two kinds of memory are used:
global memory and texture memory. The global memory has a huge bandwith
but the performances decrease if the memory accesses are non-coalesced. In such
a case, the texture memory is a good option because there are less penalties for
non-coalesced readings. As a consequence, we use global memory for storing the
query set (coalesced readings), and texture memory for the reference set (non-
coalesced readings). Therefore, we obtain better performances than when using
global memory and shared memory2 as proposed in the matrix multiplication
example provided in the CUDA SDK.

The n sortings can also be parallelized while the operations performed during
a given sorting of n values are clearly not independent of each other. Each thread
sorts all the distances computed for a given query point. The sorting consists in
comparing and exchanging many distances in a non-predictable order. Therefore,
the memory accesses are not coalesced, indicating that the texture memory could
be appropriate. However, it is a read-only memory. Only the global memory
allows readings and writings. This penalizes the sorting performance.

The Quicksort is a popular algorithm because it is one of the fastest algo-
rithms. However, it is recursive and CUDA does not allow recursive functions.
As a consequence, it cannot be used in our implementation. The comb sort com-
plexity is O(n log n) both in the worst and average cases. It is also among the
fastest algorithms and simple to implement. Nevertheless, keeping in mind that
we are only interested in the k smallest elements, k being usually very small
compared to n, we consider an insertion sort variant which only outputs the k
smallest elements. As illustrated in figure 2, this algorithm is faster than the
comb sort for small values of parameter k. For this experiment, n = 4800 points
(both reference and query sets) drawn uniformly in a 64 dimensional space were
used. Using the comb sort, the computation time is constant whatever the value
k because all the distances are sorted. On the contrary, using the insertion sort,
the computation time linearly increases with k. We define k0 as follow: the comb
sort and the insertion sort are performed in the same computation time for
k = k0. k0 is the abscissa value of the intersection of the two straight lines
shown in figure 2. For k < k0, the insertion sort is faster than comb sort. Beyond
k0, the comb sort is the fastest. Figure 3 shows the value of k0 as a function of the

2 Memory shared by a set of threads with high bandwidth and no penalties for random
memory accesses.
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size of sets. k0 approximately increases linearly. According to our experiments,
the affine function approximating this increase, computed by linear regression,
is given by:

k0(n) = 0.0247n + 1.3404 (1)

where n is the size of the reference and query sets. The judicious choice of the
sorting algorithm used depends both on the size of sets and on the parameter k.
In our experiments, we used the insertion sort because it provided the smallest
computation time due to the value of k and the size of point sets used.

Fig. 2. Evolution of the computation time for comb sort (blue line) and insertion sort
(red line) algorithms as a function of parameter k. For this experiment, 4800 points
(reference and query sets) are used in a 64 dimensional space. The computation time
is constant for the comb sort and linearly increases for the insertion sort.

4 Experimental Results

In this section, we consider two sets of n points (reference and query points) in
a d dimensional space. These points are drawn uniformly in [0, 1]d. The values
n and d are specified bellow.

The initial goal of our work was to speed up the kNN search process in a Mat-
lab program. In order to speed up computations, Matlab allows to use external
C functions (Mex functions). Likewise, a recent Matlab plug-in allows to use
external CUDA functions. In this section, we show, through a computation time
comparison, that CUDA greatly accelerates the kNN search process. We com-
pare three different implementations of the BF method and one method based
on kd-tree (ANN). The methods compared are:

– BF method implemented in Matlab (noted BF-Matlab)
– BF method implemented in C (noted BF-C)
– BF method implemented in CUDA (noted BF-CUDA)
– ANN C++ library (noted ANN-C++)
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Fig. 3. Evolution of k0 as a function of the size of sets in a 64 dimensional space. The
red dashed line is the linear approximation of the experimental curve (blue solid line)
computed by linear regression. Bellow this line, the insertion sort is faster than the
comb sort algorithm, and above this line, comb sort is the fastest algorithm.

The computer used to do these experimentations is a Pentium 4 3.4 GHz with
2GB of DDR2 memory PC2-5300 (4×512MB dual-channel memory). The
graphic card used is a NVIDIA GeForce 8800 GTX with 768MB of DDR3 mem-
ory and 16 multiprocessors (128 processors) interfaced with a PCI-express 1.1
port.

The table 1 presents the computation time of the kNN search process for
each method and implementation listed before. This time depends on the size
of the point sets (reference and query sets), on the space dimension, and on
the parameter k. In this paper, k was set to 20. The computation time, given
in seconds, corresponds respectively to the methods BF-Matlab, BF-C, ANN-
C++, and BF-CUDA. The chosen values for n and d are typical values that can
be found in papers using the kNN search.

The main result of this paper is that CUDA allows to greatly reduce the
time needed to resolve the kNN search problem. According to the table 1, BF-
CUDA is up to 407 times faster than BF-Matlab, 295 times faster than BF-C,
and 148 times faster than ANN-C++. For instance, with 38400 reference and
query points in a 96 dimensional space, the computation time is 57 minutes for
BF-Matlab, 44 minutes for BF-C, 22 minutes for the ANN-C++, and less than
10 seconds for the BF-CUDA. The considerable speed up we obtain comes from
the highly-parallelizable property of the BF method.

The figure 4 shows the evolution of the computation time as a function of
the dimension d for sets of n = 4800 points. The dimension d influences only
the duration of the distance computation process. The computation time seems
to increase linearly with the dimension of the points. The major difference be-
tween these methods is the slope of the increase. For sets of 4800 points, the
slope is 0.54 for BF-Matlab method, 0.45 for BF-C method, 0.20 for ANN-C++
method, and quasi-null (actually 0.001) for BF-CUDA method. In other words,
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Table 1. Comparison of the computation time, given in seconds, of the methods BF-
Matlab, BF-C, ANN-C++, and BF-CUDA. BF-CUDA is up to 407 times faster than
BF-Matlab, 295 times faster than BF-C, and 148 times faster than ANN-C++.

Methods n=1200 n=2400 n=4800 n=9600 n=19200 n=38400

d=8 BF-Matlab 0.51 1.69 7.84 35.08 148.01 629.90
BF-C 0.13 0.49 1.90 7.53 29.21 127.16
ANN-C++ 0.13 0.33 0.81 2.43 6.82 18.38
BF-CUDA 0.01 0.02 0.04 0.13 0.43 1.89

d=16 BF-Matlab 0.74 2.98 12.60 51.64 210.90 893.61
BF-C 0.22 0.87 3.45 13.82 56.29 233.88
ANN-C++ 0.26 1.06 5.04 23.97 91.33 319.01
BF-CUDA 0.01 0.02 0.06 0.17 0.60 2.51

d=32 BF-Matlab 1.03 5.00 21.00 84.33 323.47 1400.61
BF-C 0.45 1.79 7.51 30.23 116.35 568.53
ANN-C++ 0.39 1.78 9.21 39.37 166.98 688.55
BF-CUDA 0.01 0.03 0.08 0.24 0.94 3.89

d=64 BF-Matlab 2.24 9.37 38.16 149.76 606.71 2353.40
BF-C 1.71 7.28 26.11 111.91 455.49 1680.37
ANN-C++ 0.78 3.56 14.66 59.28 242.98 1008.84
BF-CUDA 0.02 0.04 0.11 0.40 1.57 6.65

d=80 BF-Matlab 2.35 11.53 47.11 188.10 729.52 2852.68
BF-C 2.13 8.43 33.40 145.07 530.44 2127.08
ANN-C++ 0.98 4.29 17.22 73.22 302.44 1176.39
BF-CUDA 0.02 0.04 0.13 0.48 1.98 8.17

d=96 BF-Matlab 3.30 13.89 55.77 231.69 901.38 3390.45
BF-C 2.54 10.56 39.26 168.58 674.88 2649.24
ANN-C++ 1.20 4.96 19.68 82.45 339.81 1334.35
BF-CUDA 0.02 0.05 0.15 0.57 2.29 9.61

all the methods are sensitive to the space dimension in term of computation time.
However, regarding to the tested methods, the impact of the dimension on the
performances is quasi-negligible for the method BF-CUDA. This characteristic
is particularly useful for applications using high dimensional space.

The figure 5 shows the evolution of the computation time as a function of
the number of points n in a d = 32 dimensional space. The number of points
n influences the duration of both the distance computation process and the
sorting process. The computation time increases polynomially with n. Indeed,
n2 distances are computed. However, the impact of n is one more time quasi-
negligible for the method BF-CUDA in comparison to other tested methods.

The figure 6 shows the evolution of the computation time as a function of
the parameter k for sets of n = 4800 points in a d = 32 dimensional space. The
parameter k influences the duration of the sorting process. The computation
time increases linearly with k. BF-CUDA is less sensitive to k than other tested
methods.
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Fig. 4. Evolution of the computation time as a function of the point dimension for
methods BF-Matlab, BF-C, BF-CUDA, and ANN-C++ for a set of 4800 points, k = 20.
The computation time linearly increases with the dimension of the points whatever the
method used. However, the increase is quasi-null with the BF-CUDA.

Fig. 5. Evolution of the computation time as a function of the number of points for
methods BF-Matlab, BF-C, BF-CUDA, and ANN-C++ for a set in a d = 32 dimen-
sional space, k = 20. The computation time polynomially increases with n whatever
the method used. However, the increase is negligible with the BF-CUDA in comparison
to other tested methods.

5 Application to Image Processing Problems

5.1 Finding Similar Patches in Images

The search of similar patches in images is a crucial problem in many computer
vision algoriths. Given an initial hand edited patch in a image, the problem
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consists in finding the k most similar patches in the considered image. By treat-
ing each image patch as a point in a high-dimensional space, we can use a
kNN algorithm to find the k most similar patches. In this context, Kumar et
al. [12] study many different kNN search algorithms. They conclude that the
tree based algorithms (vantage point trees [17]) have the best overall construc-
tion and search performance.

In this part, we compare our CUDA implementation of the BF method to
ANN-C++. The initial patch size is 21× 21 and the image size is 128× 128. So,
the problem of finding similar patches consists in finding the k nearest neighbors
among 16384 points in a 441 dimensional space for gray level images and in
a 1323 dimensional space for color images. Note that k is set at k = 10. For
gray level images (dimension=441), the kNN search process takes 3.55 seconds
with ANN-C++ and 0.06 seconds with BF-CUDA. In this case, BF-CUDA is
60 times faster than ANN-C++. For color images (dimension=1323), the kNN
search process takes 11.03 seconds with ANN-C++ and 0.15 seconds with BF-
CUDA. In this case, BF-CUDA is 75 times faster than ANN-C++.

Fig. 6. Evolution of the computation time as a function of the parameter k for methods
BF-Matlab, BF-C, BF-CUDA, and ANN-C++ for a set of 4800 points in a d = 32 di-
mensional space. The computation time linearly increases with k whatever the method
used. However, BF-CUDA is less sensitive to k than other tested methods.

5.2 Texture Synthesis

Efros and Leung proposed in [8] a very simple but very efficient texture synthe-
sis algorithm. Consider the problem of synthesizing a large picture It (of size
wt × ht) given a small texture sample Is (of size ws × hs). The synthesis algo-
rithm first starts by filling the target image by random-colored pixels, and then
synthesis the target image It by (re)assigning pixel colors, pixel by pixel, follow-
ing the horizontal scaline order. For a given pixel position (x, y) ∈ It, we consider
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a square window centered at (x, y) of side 2s + 1 where s denotes an integer pa-
rameter defining the neighborhood size and related to texture synthesis quality.
In that window, note that 2s2 + 2s pixels have already been synthesized. These
pixels form an L-shape. For assigning the color of the pixel (x, y) in the It, we
search for the best match of the current L-shape in the image Is (see figure 7).
The best match is defined as the matching position in Is that minimizes the sum
of square differences. Each L-shape can be map into a high dimensional vector
where d = 2s2 + 2s (see figure 8).

We consider small texture samples (Is) of size 64 × 64 pixels and we want to
create a large picture (It) of size 128×128 pixels. The window size used is 21×21
pixels (s = 10). For gray level images (dimension=220), the kNN search process
takes 0.72 seconds with ANN-C++ and 0.018 seconds with BF-CUDA. In this
case, BF-CUDA is 40 faster than ANN-C++. For color images (dimension=660),
the kNN search process takes 2.00 seconds with ANN-C++ and 0.04 seconds with
BF-CUDA. In this case, BF-CUDA is 50 faster than ANN-C++.

Source Image Is Target Image It

Scanline

s

2s + 1
L-shape window

Fig. 7. Synthesis of a 2D texture image

2s + 1 = 5

c−1,0c−2,0

c−2,−2 c−1,−2 c0,−2 c1,−2 c2,−2

c−2,−1 c−1,−1 c0,−1 c1,−1 c2,−1

Linearization d = 2(s2 + s).

c−2,−2 c−1,−2 c0,−2 c1,−2 c2,−2 c−2,−1 c−1,−1 c0,−1 c1,−1 c2,−1 c−2,0 c−1,0

Fig. 8. Linearization of a L-shape into a high dimensional vector

6 Conclusion

In this paper, we have proposed a fast, parallel k nearest neighbor (kNN) search
implementation using a graphics processing units (GPU). We have shown that
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the use of the NVIDIA CUDA API accelerates the kNN search by up to a factor
of 150 compared to a classical tree-based approach on synthetic data. Likewise,
our implementation is up to 75 times faster on real image processing algorithms
(finding similar patches in images and texture synthesis).
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Luginbühl, Thibault 332

Mai, Fei 140
Maier, Georg 82
Mazzeo, Pier Luigi 46
Mirza, Anwar M. 277
Moon, Young Shik 285
Mora, Marco 58
Morton, Danny 242, 254
Moschini, Davide 1

Nazir, Muhammad 277
Nielsen, Frank 425

Olivares, Mauricio 58
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