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Preface

This book provides a review of image analysis techniques as they are applied
in the field of diagnostic and therapeutic nuclear medicine. Driven in part by
the remarkable sophistication of nuclear medicine instrumentation and in-
crease in computing power and its ready and inexpensive availability, this is
a relatively new yet rapidly expanding field. Likewise, although the use of
nuclear imaging for diagnosis and therapy has origins dating back almost to
the pioneering work of Dr G. de Hevesy, quantitative imaging has only
recently emerged as a promising approach for diagnosis and therapy of
many diseases. An effort has, therefore, been made to place the reviews
provided in this book in a broader context. The effort to do this is reflected
by the inclusion of introductory chapters that address basic principles of
nuclear medicine instrumentation and dual-modality imaging, followed by
overview of issues that are closely related to quantitative nuclear imaging
and its potential role in diagnostic and therapeutic applications. A brief
overview of each chapter is provided below.

Chapter 1 presents a general overview of nuclear medicine imaging physics
and instrumentation including planar scintigraphy, single-photon emission
computed tomography (SPECT) and positron emission tomography (PET).
Nowadays, patients’ diagnosis and therapy is rarely done without the use of
imaging technology. As such, imaging considerations are incorporated in
almost every chapter of the book. The development of dual-modality im-
aging systems is an emerging research field, which is addressed in chapter 2.
Different designs of combined tomographs were developed for diagnostic
purposes in clinical oncology and are now commercially available. Various
methods have been proposed to solve the problem of recovering the image
from the measured projection data sets. There are two major classes of image
reconstruction algorithms used: direct analytical methods and iterative
methods. Still at present, the most widely used methods of image reconstruc-
tion are direct analytical methods because they are relatively quick. How-
ever, the images tend to be ‘streaky’ and display interference between regions
of low and high tracer concentration. Images produced by iterative methods
are computationally much more intensive; however, with the development of
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parallel architectures and current generation PC clusters in the GHz range,
the potential for using these in conjunction with iterative techniques, the
problem becomes less awful. Chapters 3 and 4 describe the techniques and
associated algorithms used in the reconstruction of nuclear medicine tomo-
graphic images.

Nuclear medicine imaging offers the possibility of quantitative measure-
ments of tracer concentration in vivo. However, there are several issues that
must be considered in order to fully realize this potential. In practice, the
measured line integrals must be corrected for a number of background and
physical effects, the most significant being the blurring introduced by the
collimator response function (in SPECT), the limited spatial resolution and
associated partial volume effect, photon attenuation and the contribution in
the images of events arising from photons scattered in the object and the
collimator/gantry assembly. Chapters 5-8 review the fundamental aspects
related to the physics of these image degrading factors and algorithms and
methods used to compensate for their effect.

There is increasing interest in being able to automatically register medical
images from either the same or different modalities. Registered images
proved to be useful in a range of applications, not only by providing more
correlative information to aid in diagnosis, but also by assisting with the
planning and monitoring of therapy, both surgery and radiotherapy. The
objective of Chapter 9 is to present a general overview of medical image
registration with emphasis on the application and issues relevant to nuclear
medicine. Image segmentation plays a crucial role in many medical imaging
applications by automating or facilitating the delineation of structures or
organs and other regions of interest (e.g tumors). Chapter 10 examines
specific problems and implementation issues related to segmenting noisy
nuclear medicine images including transmission data obtained from external
radionuclide scanning sources. A critical appraisal of the current status of
semi-automated and automated methods for the segmentation of functional
medical images is presented. Current segmentation approaches are reviewed
with an emphasis placed on revealing the advantages and disadvantages of
these methods for nuclear medical imaging applications. The use of image
segmentation in other imaging modalities is also briefly discussed along with
the difficulties encountered in each modality.

Because of their importance in image quantification, chapter 11 provides a
comprehensive review of Monte Carlo modeling techniques relevant to
nuclear medicine imaging and describes Monte Carlo software packages
available for carrying out these complex and lengthy calculations. The
kinetics and biodistribution of internally administered radionuclides must
be measured for both diagnostic and therapeutic applications. The previous
chapters are essential in understanding the mathematical aspects critical to
the design of successful models for tracer kinetics described in chapter 12.
The use of whole-body imaging for the determination of the amount of
activity present in the body is of interest for the estimation of whole-body
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radiation dose. For total activity within an isolated organ or tumour, one
can use an imaging method that is simpler than 3D imaging with SPECT or
PET. That is, one can get the total activity using only two opposed views of
the patient, the so-called conjugate views, by sacrificing the knowledge about
the 3D spatial distribution of the activity. The different methods used for
quantification of planar nuclear medicine images are reviewed in chapter 13.
Chapters 14, 15 and 16 examine specific implementations of quantitative
functional imaging approaches in the special cases of brain, cardiac and
oncologic imaging, respectively. The role of quantitative imaging in provid-
ing a means for estimating and guiding the overall scheme of imaging-based,
patient-specific absorbed dose calculations is reviewed in chapter 17. This
chapter provides also a review of the traditional dose schema, developed by
the Medical Internal Radionuclide Dose (MIRD) Committee that is most
widely implemented for radionuclide dosimetry.

Finally, I would like to thank all of the contributors for their invaluable
hard work and for keeping to a very tight schedule. The topic of this book is
rapidly evolving and the editor felt it important to minimise the time re-
quired to get this book into press. That this problem was so very well
avoided speaks to the commitment and dedication of the contributors. I
found compilation of this book to be a rewarding and educational experi-
ence and hope that the reader is left with the same experience.

H. Zaidi
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Overview of Nuclear Medical
Imaging: Physics and Instrumentation

H. ZAr* aND B.H. HASEGAWA'

1. Introduction

Radionuclide imaging, including planar scintigraphy, single-photon emis-
sion computed tomography (SPECT) and positron emission tomography
(PET), relies on the tracer principle, in which a minute quantity of a radio-
pharmaceutical in introduced into the body to monitor the patient’s physio-
logical function. In a clinical environment, radionuclide images are
interpreted visually to assess the physiological function of tissues, organs,
and organ systems, or can be evaluated quantitatively to measure biochem-
ical and physiological processes of importance in both research and clinical
applications. Nuclear medicine relies on non-invasive measurements per-
formed with external (rather than internal) radiation sources and detectors
in a way that does not allow the radionuclide measurement to be isolated
from surrounding body tissues or cross-talk from radionuclide uptake in
non-target regions.

Within the spectrum of macroscopic medical imaging (Figure 1), sensitivity
ranges from the detection of millimolar concentrations of contrast media with
CT and MRI, to picomolar concentrations in PET: a 10° difference.! With CT
and MRI, contrast is produced by detecting differences in tissue density and
water content; however, with radionuclide imaging, contrast is conferred by
detection of a clearly identified molecule labelled with a radioactive isotope of
one of its natural constituent elements. Signal sensitivity is a prerequisite for
studies of biological pathways and binding sites which function at less than
the micromolar level. It also is important to avoid the pharmacological effects
of administering a labelled molecule to study its inherent biodistribution. The
sensitivity of in vivo tracer studies is achieved par excellence with PET, which
uses electronic collimation and thereby operates with a wide acceptance angle

*PD Dr H. Zaidi, Geneva University Hospital, Division of Nuclear Medicine,
CH-1211 Geneva, Switzerland

"Prof. B.H. Hasegawa, Department of Radiology, University of California,
San Francisco, CA, USA
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FIGURE 1. The wide spectrum of macroscopic medical imaging techniques (courtesy
of Prof. F. Deconinck, Vrije University, Belgium).

for detecting emitted annihilation photons. Consequently, the sensitivity of
PET per disintegration, with comparable axial fields of view, is two orders of
magnitude greater than that of SPECT. PET also benefits by detecting radio-
pharmaceuticals that have short physical half-lives and high specific activities,
which enable clinical and research studies to be performed at low radiation
doses and with low molecular concentrations of the tracer.

Both the academic community and the nuclear medicine industry main-
tain a continuous learning cycle and assessment of products quality to
advance the technology and the operational capabilities of both SPECT
and PET cameras. As PET has become integrated into clinical practice,
several design trends have developed; with systems now available with a
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spectrum of features, from those designed for “low cost’ clinical applica-
tions to others designed specifically for very high-resolution research appli-
cations. There also is a continual upward revision and refinement in both
hardware and software components for all of these systems. The develop-
ment of dual-modality imaging systems is an emerging research field (see
chapter 2) and now offers unique capabilities for the medical imaging
community and biomedical researchers. In this chapter, the physical prin-
ciples, basic features and performance parameters of nuclear medicine in-
strumentation are outlined, and some of the practical issues involved in
optimizing the design aspects discussed.

2. Planar Projection Imaging

2.1 The Anger Scintillation Camera

Virtually all commercial scintillation cameras used for imaging gamma-ray
emitting radiopharmaceuticals are based on the original design proposed by
Anger about 50 years ago, which is considered the working horse of con-
temporary nuclear medicine.” For these reasons, the scintillation camera
often is called an “Anger camera” or “gamma camera’’. Figure 2 illustrates
the principle and basic components of the Anger scintillation camera which
incorporates a large scintillation sodium iodide crystal doped with thallium
(Nal(Tl)), equipped with a parallel-hole collimator that limits the acceptance
angle and defines the spatial distribution of gamma radiation viewed by the
scintillator. Behind the crystal, a light guide is optically coupled to an array

shielding

Electronic
hardware

» light guide

collimator

Display

Patient

FIGURE 2. Schematic description of the principles and basic components of an Anger
scintillation camera.
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of light sensitive photomultiplier tubes (PMT’s) that proportionately con-
vert the distribution of scintillation light into electronic signals. The PMT’s
outputs then are processed using “Anger logic” electronics that generate
output signals representing the (x,y) spatial position and energy of the
individually detected gamma-rays on an event-by-event basis. Images dis-
played on the console represent the accumulation of the individual events
recorded during an imaging study. Depending on the size of the scintillation
camera, whole organs such as brain, heart and liver can be imaged. In many
cases, large scintillation cameras are capable of imaging the entire body and
are used, for example, in whole-body skeletal imaging.

2.2  Collimators

The parallel-hole collimator is configured as a honeycomb with lead or
tungsten septa that form thousands of straight parallel channels so that the
scintillation camera records only those photons that strike the detector
surface from an approximately perpendicular direction. A typical parallel-
hole collimator might have a bore diameter of roughly 2 mm, and a bore
length of approximately 4 cm giving a high degree of angular selectivity. In
this way, the collimator design is the most important factor in determining
the geometric efficiency or sensitivity of the imaging system. For example, a
typical Anger camera equipped with a low-energy parallel-hole collimator
detects roughly one in every ten thousand gamma rays emitted isotropically
by a point source in air. Even fewer gamma rays will be detected if the point
source is located within the body or other object, due to the effects of photon
attenuation by the material surrounding the source. Therefore, the system
sensitivity (obtained with the collimator) is always worse than intrinsic sen-
sitivity of the detector operated without the collimator. Similarly, the colli-
mator also largely determines the spatial resolution of the imaging system.
For example, a typical modern Anger camera has an “intrinsic”’ spatial
resolution of 3 to 4 millimetres, representing the precision of spatial local-
ization obtained for a point source placed directly on the camera surface
without a collimator. In comparison, the system spatial resolution obtained
with a collimator might be 7 to 12 millimetres at a detector-object distance of
10 cm, with the spatial resolution degrading linearly with distance. The
system spatial resolution depends heavily on the type of collimator used
and to a less extent the intrinsic resolution of the detector. For example, a
scintillation camera equipped with an ultra-high resolution parallel-hole
collimator can achieve a system spatial resolution in the range of 4 to §
millimetres.

Fortunately, the design of the collimator can be changed to improve
geometric sensitivity; however, this produces a corresponding loss of geo-
metric resolution. Alternatively, changing the collimator design to improve
collimator resolution will decrease collimator sensitivity. Therefore, re-
searchers must always consider this trade-off when working on new colli-
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mator designs since high resolution and great sensitivity are two paramount
(but often competing) goals of gamma camera imaging.> Obviously, sensi-
tivity has seen an overall improvement by the introduction of multi-detector
SPECT systems which now are common in clinical use.

There have been several collimator designs in the past fifteen years, which
optimised the trade-off between resolution and sensitivity for a given de-
tector design.* Converging-hole collimators, for example those configured
with fan-beam and cone-beam geometries® have been built to improve both
resolution and sensitivity by increasing the amount of the Anger camera that
is exposed to the radionuclide source. This increases the number of counts,
which improves sensitivity, but limits the field-of-view. Other types of colli-
mators with only one or a few channels, called pinhole collimators, have
been designed to image small organs and human extremities, such as the
wrist and thyroid gland, in addition to small animals.®’ The latter applica-
tion has received considerable attention during the last decade with the aim
of achieving spatial resolutions better than 1 mm.*'® More recent collimator
designs, such as planar-concave,'' half fan- and cone-beam'? and astig-
matic,'® have also been conceived. Other types of collimators have also
been reported, including rotating slit/slat collimators to increase the geomet-
ric efficiency resulting from the enlarged solid angle of acceptance afforded
by these designs.'*!’

2.3 Scintillation and Solid-State Detectors for
Gamma Cameras

The first systems for imaging radionuclides that emit gamma-rays and
positrons were designed with single large Nal(TI) scintillation crystals.
Nal(Tl) is the most common detector for scintillation cameras owing to its
relatively high atomic number and corresponding high probability of photo-
electric absorption for the energies involved in conventional nuclear medi-
cine imaging. The development of dedicated small field of view pixelated
cameras has received considerable attention during the last decade. The
pixelated crystal limits the degree to which the scintillation light spreads
laterally, and thereby can improve spatial resolution in comparison to
cameras that use continuous crystals.'® A typical design used 4 mm thick
CsI(TI) crystal with a 1.13 mm pixel pitch readout by position sensitive
PMT’s (PSPMT’s).'? It should be emphasized that such a design improves
spatial resolution at the expense of deteriorating the energy resolution
resulting from light losses in the pixelated crystal compared to that of a
single crystal. However, cameras with pixelated scintillators also can have
the scintillator segments coupled to individual photomultiplier tubes, allow-
ing them to be operated somewhat independently of one another to increase
count-rate capabilities for first-pass and other high count-rate imaging
applications.
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The development of strip solid-state detectors for medical imaging is
motivated by their excellent energy resolution and direct gamma radiation
conversion, thus removing the need for using PMT’s, and thereby allowing
the system to be more compact, lighter in weight, and more rugged. The
better energy resolution of semiconductor detectors is the consequence of the
lower energy needed to create an electron-hole pair (3-6 V) compared to the
energy required to create a scintillation photon (~ 30eV) in a conventional
Nal(T]) scintillation crystal. In addition, solid-state detectors obviously do
not suffer the light losses that occur between a scintillation crystal and the
PMT’s'> which also improves the signal generation process in the camera.
Among available semiconductor detectors, high-purity germanium (HPGe)
offers the best energy resolution and thereby allows efficient rejection of
Compton scattering in the patient.”® One such a system designed for clinical
applications had 154 (250 mm long, 1.62 mm wide, 12 mm thick) detector
strips collimated by parallel tungsten sheets perpendicular to the detector
face.”! However, due to its narrow energy band-gap, HPGe detectors must
be operated at cryogenic temperatures. As a consequence, the need for
cooling prevented their widespread applicability and encouraged the inves-
tigation of the potential of semiconductor detectors operating at room
temperature including mercuric iodide (Hgly), cadmium telluride (CdTe)
and cadmium zinc telluride (CdZnTe or CZT) either in the form of single
detectors or as segmented monolithic detectors.”? Both CdTe and CZT
currently are regarded as especially promising candidates for nuclear medi-
cine imaging applications with the aim of replacing the conventional Nal(Tl)
scintillator for clinical practice, especially for small-field applications such as
sentinel node detection and radiopharmaceutical-guided surgery.”*

One interesting design, the SOLid STate Imager with Compact Electron-
ics (SOLSTICE), has the potential of producing a quantum advance in the
performance of nuclear medicine instrumentation. This system uses a room-
temperature semiconductor detector (CdZnTe) to offer the excellent signal
characteristics obtained with direct gamma ray conversion. The system also
uses a novel rotating slat collimator (Figure 3) which improves both spatial
resolution and detection efficiency in a way that relaxes the performance
limitations imposed on scintillation cameras by conventional parallel-hole
collimators.>* While the instrument is in a development phase, some prom-
ising results have been achieved during the last few years, including studies
confirming the significant potential of this design for high resolution small
animal imaging.'® The practicality, clinical utility, and cost-effectiveness of
the system still needs to be demonstrated.

2.4  Photodetectors

In nuclear medicine, photodetectors are used to measure the light emanating
from the scintillation crystal, and must be used in a way that maintains the
spatial resolution, energy resolution, and detection efficiency of the entire
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Plane integral projection AXIS

FIGURE 3. Schematic illustration of the SOLSTICE prototype system. Plane integrals
are measured by the SOLSTICE imaging system for each projection angle in contrast
to line integrals measured in the conventional approach. A specially designed recon-
struction algorithm which handles this acquisition geometry has been developed for
this purpose. (Courtesy of Dr D. Gagnon, Philips Medical Systems).

imaging system. When the light output of the scintillator is small, the noise
of the photodetector can significantly contribute to the loss of energy reso-
lution. The emission wavelength of the scintillator light must be carefully
matched with the spectral response of the photodetector. Virtually all com-
mercial gamma camera imaging devices available operate by coupling the
scintillation crystal to an array of single channel PMT’s. However, special
cameras for imaging small organs (e.g., female breast) and small animals use
pixelated photodetectors for radionuclide imaging applications. In the near
future, it also is possible that multi-anode PSPMT’s, silicon p-i-n photodi-
odes (PDs) or avalanche photodiodes (APDs) will be incorporated into
scintillation cameras.

Solid-state photodiodes exhibit many advantages compared to conven-
tional PMT’s. They are relatively small, operate at much smaller voltage,
and more importantly exhibit higher quantum efficiencies. Furthermore,
photodiodes are insensitive to axial and transversal strong magnetic fields
and therefore have the potential to be operated within magnetic resonance
imaging systems. By using this technology, the sensitive area of the detector
could be read-out more efficiently taking advantage of recent developments
of monolithic pixelated photodetectors. Thanks to the progress made in the
microelectronic industry, high-purity detector grade silicon now is available
commercially and can be used to produce low-noise silicon planar photodi-
odes, avalanche photodiodes, and silicon drift photodetectors.”> Commer-
cially available APDs typically are not pixelated and can have a sensitive
area of ~ 20mm?. PDs and APDs also can be segmented to form a linear
or two-dimensional array of pixels on a single device.?® Their geometry can
be modified to suit specific applications, with the configuration of
the scintillator matrix adapted to the available read-out pixelation of the
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photodetector. However, given the current cost of solid-state photodiodes,
they need to offer very significant advantages to replace the currently
adopted technology.

Although not previously used in medical imaging, hybrid photodetectors
(HPDs) represent an interesting technology with potential for high reso-
lution photon detection.”” An HPD consists of a phototube with two key
components: a semi-transparent photocathode (deposited by vacuum evap-
oration on the entrance window) with high sensitivity for photons in the
visible and near UV range, and a silicon (Si) sensor which serves as the
anode.?® The photocathode receives light from a scintillator and converts
the incident photons to electrons. These photoelectrons are accelerated by an
electrostatic field (10-20 kV between cathode and anode), which is shaped by
a set of ring electrodes, onto the segmented Si sensor; the anode thereby
creates a signal proportional to the kinetic energy of the incident photoelec-
trons. In this way, the HPD combines the sensitivity to single photons of a
conventional PMT with the spatial and energy resolution of a solid-state
sensor. In addition, this design overcomes the intrinsic limitations of a
classical PMT with respect to the statistical fluctuations in the number of
electrons at the first dynodes. Proximity focused HPDs can be operated
in strong magnetic fields, as long as the field direction is aligned with the
tube axis. Axial magnetic fields have even the beneficial effect of reducing
the intrinsic spatial resolution of the device, which is a consequence of the
angular and energy distribution of the photoelectrons at emission from the
photocathode.”” HPDs have been incorporated as major components of a
PET camera design discussed in section 6.°° Nuclear medicine instrumenta-
tion continues to benefit from the ongoing advances in microelectronic
technologies, which have led to highly integrated CMOS front-end circuits,
fast data acquisition processors and ultra rapid field programmable gate
arrays (FPGAs).

3. Single-Photon Emission Computed Tomography

Planar radionuclide imaging (also called planar scintigraphy) is used exten-
sively in clinical routine practice and offers the advantage of fast acquisi-
tions over a large area at a relatively low cost. The drawback with this
technique is, however, the lack of information regarding the three-dimen-
sional spatial distribution of radioactivity in the body (see chapter 13).
Furthermore, the acquired images can exhibit limited contrast since the
radioactivity signal from the target often is combined with that from
overlapping structures. In contrast, SPECT produces images that represent
the three-dimensional distribution of radioactivity. This improves both
image quality as well as the potential for the quantification of the radio-
activity distribution in vivo. Transverse tomographic images can be recon-
structed from projection data acquired at discrete angles around the object
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using one of the algorithms described in chapters 3 and 4. There are,
however, multiple factors that must be considered in quantitative tomo-
graphic imaging. These factors include the system sensitivity and spatial
resolution, dead-time and pulse pile-up effects, the linear and angular
sampling intervals of the projections, the size of the object, and photon
attenuation, scatter, and partial volume effects, voluntary and involuntary
patient motion, kinetic effects, and filling of the bladder (and other normal
excretory routes) by the radiopharmaceutical. Since image quality in nu-
clear medicine is limited by the photon statistics of the acquired data, the
administered dose and the imaging time are extremely important. In prac-
tice, the limited count statistics in most clinical studies affect the accuracy
and precision of quantitative SPECT.

SPECT has become a major tool for the in vivo localisation of radio-
pharmaceuticals in nuclear medicine and now is performed routinely
with commercially available radiopharmaceuticals to answer important clin-
ical questions including those in cardiology, neurology, psychiatry, and
oncology. In conjunction with new and existing radiopharmaceuticals,
quantitative SPECT may be used noninvasively to measure blood-
flow, metabolic function, receptor density, and drug delivery. In oncology,
quantitative SPECT is important in radiation dosimetry and treat-
ment planning for internal radionuclide therapy and specifically for
radioimmunotherapy.®'

Advances in dedicated SPECT instrumentation may advance the use of
clinical high resolution imaging of the brain. These systems include the
recently marketed NeuroFocus® multi-conebeam imager (Neurophysics
Corporation, Shirley, MA), which produces radionuclide images with an
intrinsic resolution of ~ 3 mm. The operation of the NeuroFocus® scanner
follows the same principles as scanning optical microscopes to obtain high-
resolution, three-dimensional images of biological tissue. A highly focused
point of light is scanned mechanically in three dimensions to uniformly
sample the volume under observation. Since the energetic gamma rays
emitted by single-photon tracers cannot be focused by conventional optics,
NeuroFocus® uses proprietary “gamma-lenses®”” known as scanning focal-
point technology.

3.1 Compton Cameras

Except for those that use coded apertures, all collimated imaging systems
exhibit a limiting detection sensitivity that is inversely proportional to the
system’s spatial resolution. This fundamental trade-off has motivated the
development of Compton cameras (see Figure 4), which provide information
about the incoming photon direction electronically without any restriction
with respect to the solid detection angle.*> The mechanical collimation of the
Anger camera is thus replaced by “electronic collimation” hereby removing
the coupling between sensitivity and spatial resolution. This is achieved by



10 H. Zaidi and B.H. Hasegawa

Scattering solid-state detector
(Xi, Yi, AE)

Absorption scintillation detector
(X,Y, E)

FIGURE 4. General principle of the Compton camera approach showing the scattering
and absorption detectors.

having two detector modules where the gamma rays are first scattered in a
solid-state detector and then absorbed in a second scintillation detector.
After Compton scattering in the first detector, the scattered photon emerges
from the interaction point with less energy and in a different direction than
the incident photon. The tandem detectors in the Compton imager record
the energies and interaction coordinates of the incident and scattered
photons, respectively. This information can be used to calculate the scatter-
ing angle 6 and the direction of the incident gamma ray. The precision in the
measurement of the scattering angle 6 depends mainly on the energy reso-
lution of the first detector. The classical Compton equation expresses the
energy of the scattered-photon as a function of the initial photon energy and
the scattering angle 6, and assumes that the incident photon interacts with a
free electron at rest.** There are corrections to that equation which take into
account the fact that the electron actually is not at rest and is bound to an
atom. The result is that the photons that scattered through a given angle
actually have a distribution of energies sharply peaked about the value
calculated by the classical Compton equation.®* This effect, called Doppler
broadening, constitutes an inherent limitation for Compton cameras. In
Compton camera imaging, the measured scattering angle therefore is asso-
ciated with an uncertainty which degrades the spatial resolution of recon-
structed images. This uncertainty becomes bigger as the incident gamma ray
energy decreases, thereby motivating the development of appropriate com-
pensation methods for this effect.®

The first application of Compton imaging to nuclear medicine was pro-
posed in 1974.%° This was followed by series of seminal papers by Singh and
co-workers describing analytical and experimental results of a Compton
camera using pixelated germanium as the first detector and a standard
Anger camera as second detector.?” This work was continued at the Univer-
sity of Michigan in collaboration with CERN?® leading to the development
of the C-SPRINT: a prototype Compton camera system for low energy
gamma ray imaging >° and the design of a Compton camera for high energies
with CZT detectors.*® More recently, the potential of the Compton camera
approach for scintimammography has also been reported.*! It is also
expected that working Compton cameras based on silicon microstrips and
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segmented germanium detectors will be demonstrated in the near future.**?

In parallel, appropriate analytic*>** and iterative®® image reconstruction
algorithms were developed specifically for single-photon images acquired
with electronic collimation. Significant development still is required before
this technology can be considered to be practical and cost-effective in a
clinical arena owing to the complexity of the detector technologies, data
acquisition system, and image reconstruction techniques needed for Comp-
ton imaging. Nevertheless, significant progress has been made during the last
decade in demonstrating the feasibility of medical imaging with a Compton
camera.

4. Positron Emission Tomography

4.1 The Physical Principles of PET

When imaging positron-emitting radiopharmaceuticals, pairs of antiparallel
511 keV photons arising from electron-positron annihilations are recorded
by block detectors surrounding the patient. A positron emission tomograph
consists of a set of detectors usually arranged in adjacent rings that surround
the field-of-view in order to image the spatial distribution of a positron-
emitting radiopharmaceutical (Figure 5). In this case, the annihilation
photons traverse a total tissue thickness that is equal to the body thickness
intersected by the line between the two detector cells, also called the /ine of
response (LOR).

After being sorted into parallel projections, the LORs defined by the
coincidence channels are used to reconstruct the 3D distribution of the
positron-emitter tracer within the patient. An event is registered if both
crystals detect an annihilation photon within a fixed coincidence time win-
dow (between 6 and 12 ns) depending on the timing properties (decay time)
of the scintillator. A pair of detectors is sensitive only to events occurring in
the tube of response joining the two detectors, thereby registering direction
information (electronic collimation). The finite positron range and the non-
collinearity of the annihilation photons give rise to an inherent positional
inaccuracy not present in conventional single-photon emission techniques.
However, other characteristics of PET more than offset this disadvantage.
There are many advantages associated to coincidence detection compared to
single-photon detection devices; electronic collimation eliminates the need
for physical collimation, thereby significantly increasing sensitivity and im-
proving the spatial resolution. However, accurate corrections for the back-
ground and physical effects are essential to perform absolute measurements
of tissue tracer concentration with PET.*¢

Coincidence events in PET fall into 4 categories: trues, scattered, randoms
and multiples. A true coincidence is one in which both photons from a single
annihilation event are registered by detectors in coincidence. In this case
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FIGURE 5. Originating from the decay of the radionuclide, a positron travels a few
millimetres (depending on its energy and electronic tissue of the medium) before it
annihilates with a nearby atomic electron, producing two 511 keV photons emitted in
nearly opposite directions. A positron emission tomograph consists of a set of
detectors usually arranged in adjacent rings surrounding the FOV. Pairs of annihi-
lation photons are detected in coincidence. The size of the transaxial FOV is defined
by the number of opposite detectors in coincidence.

neither photon undergoes any form of interaction prior to detection, and no
other event is detected within the defined coincidence time window.
A scattered coincidence occurs when at least one of the detected annihilation
photons undergoes one or multiple Compton scatterings prior to detection.
Since the direction of the Compton-scattered photon is changed, the result-
ing coincidence event will be assigned to the wrong LOR, thus decreasing
the contrast and overestimating the activity concentration of the tracer.
When two uncorrelated photons (i.e., photons not arising from the same
annihilation event) are incident on block detectors within the system’s
coincidence time window, the coincidence is called random (or false). Fi-
nally, multiple coincidences occur when more than two photons are detected
in different crystals within the same coincidence window. In this situation,
it is not possible to determine the LOR to which the event should be
assigned, and the event is rejected. Multiple events can also cause event
mispositioning.*®
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4.2 Design Geometries for PET

There has been a remarkable progress in PET instrumentation design from a
single ring of bismuth germanate (BGO) crystals with a spatial resolution of
~ 15mm, to multiple rings of detector blocks resulting in a spatial resolution
of about 4-6 mm. Improvements in spatial resolution have been achieved by
the use of smaller crystals and the efficient use of light sharing schemes to
identify the active detector cell. Figure 6 illustrates possible geometric de-
signs of PET imaging systems adopted by scanner manufacturers. These
include large or pixelated detectors mounted on a rotating gantry, detectors
arranged in a partial or full multi-ring geometry, and detectors assembled in
a polygonal ring.?

Dedicated full-ring PET tomographs are still considered to provide state-
of-the-art performance for whole-body imaging but have evolved through at
least 4 generations since the design of the first PET scanner in the mid 1970s.
The improved performance of full-ring systems compared to camera-based
dual or triple-headed systems is due to higher overall system efficiency and

Dual-head coincidence
camera

R,

n00og
QQQQQ“ 0[70%
S (2
§ 2
(S |2}
5 (=]
% Hexagonal scanner g Rotating partial-ring scanner
% ; )
< N
2 §
2 R
Yaapmons™

FIGURE 6. Illustration of the range of different geometries of PET imaging systems.
The dual-head coincidence camera and partial ring tomographs require the rotation
of the detectors to collect a full 180° set of projection data. The hexagonal design
geometry could be designed using either continuous or pixelated crystals.
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count rate capability which provides the statistical realization of the physical
detector resolution and not a higher intrinsic physical detector resolution.*’
Obviously, this has some important design consequences since even if both
scanner designs provide the same physical spatial resolution, the full-ring
system will produce better quality images in patients as a result of its
improved sensitivity.* The most important aspect related to the outcome
of research performed in the field is the improvement of the cost/perform-
ance optimization of clinical PET systems.

A modern multi-ring tomograph with septa extended detects only ~ 0.5%
of the annihilation photons emitted isotropically from the activity within the
tomograph field-of-view. This increases to over 3% when the septa are
retracted.*® However, even if the detector system is 100% efficient for the
detection of annihilation photons, the angular acceptance of modern scan-
ners would record only 4-5% of the total coincidences. With the exception of
dedicated high resolution PET tomographs (e.g. the high resolution research
tomograph — HRRT*), the spatial resolution obtained with modern com-
mercial tomographs is currently limited to 4-6 mm in all three directions.

4.3 Scintillation Crystals for PET

The critical component of PET tomographs is the scintillation detector.>® The
scintillation process involves the conversion of photons energy into visible
light via interaction with a scintillating material. Photoelectric absorption and
Compton scatter generate electrons of differing energy distributions. When
scintillation detectors are exposed to a monoenergetic photon beam, the
measured energy is not that of the electron generated by the initial interaction,
but rather the total energy deposited by the photon in the detector through
one or more cascaded interactions. In small crystals, photons may escape after
depositing only part of their energy in the crystal. In practice, the energy
distribution is also blurred by the finite energy resolution of the detection
system as contributed by electronic noise and other effects. The energy reso-
lution (in percent) of the system is defined as the ratio of the full-width at half-
maximum (FWHM) of the photopeak and the mean (or peak) energy value of
the photopeak. Increased light yield, faster rise and decay times, greater
stopping power and improved energy resolution, in addition to low cost,
availability, mechanical strength, moisture resistance, and machinability are
the desired characteristics of scintillation crystals. Table 1 summarizes most of
these properties for selected scintillators currently in use or under develop-
ment for PET applications.’’>? Improvements in these characteristics enable
detectors to be divided into smaller elements, thus increasing resolution and
minimising dead-time losses.

The choice of the scintillator is a fundamental element of a PET design.
The selection is generally made after careful consideration of the physical
characteristics including light yield, energy resolution, linearity of response
with energy, light absorption coefficient at wavelength of emission,
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TaBLE 1. Characteristics of scintillation crystals under development and used in the
design of current generation PET imaging systems.

Scintillator BGO LSO GSO LuAP LaBr3; LYSO

Formula BiyGe3 0> Lu,SiOs: Ce Gd,SiOs: Ce LuAlO;: Ce LaBr;: Ce LuYSiOs: Ce

Density (g/cc) 7.13 7.4 6.71 8.34 5.3 7.1

Light yield 9 25 8 10 61 32
(photons/keV)

Effective Z 75 66 60 65 46.9 64

Principal decay 300 42 60 18 35 48
time (ns)

Peak wavelength 480 420 440 365 358 420
(nm)

Index of refraction  2.15 1.82 1.95 1.95 1.88 1.8

Photofraction (%)" 41.5 32.5 25 30.6 15 34.4

Attenuation 1.04 1.15 1.42 1.05 2.13 1.12
length (cm)”

Energy 12 9.1 7.9 11.4 33 7.1
resolution (%)"

Hygroscopic No No No No Yes No

‘@ 511 keV

mechanical properties and surface quality of crystals, availability and cost.”
BGO has a very high physical density and effective atomic number, and is
not hygroscopic. These properties rendered it the preferred scintillator for
commercial PET units in the 1990s. Its major disadvantages are, however,
the low light yield and only a moderately fast decay time that limits coinci-
dence timing and count rate performance.

New detection technologies that are emerging include the use of new cerium
doped crystals as alternatives to conventional BGO crystals, and the use of
layered crystals and other schemes for depth-of-interaction (DOI) determin-
ation. It appears that cerium doped lutetium orthosilicate (LSO:Ce) produced
by CTI Molecular Imaging (Knoxville, TN), lutetium yttrium orthosilicate
(LYSO:Ce) produced by Photonic Materials Ltd. (Bellshill, UK) and cerium
doped lanthanum bromide (LaBrj:Ce), under development by Saint Gobain
(France), are the most promising candidates. They combine high density and
high atomic number necessary for an efficient photoelectric conversion of the
annihilation photons, with a short decay time of the scintillation light, which is
a key requirement for high counting rates. Phoswich detectors received con-
siderable attention for the design of high resolution scanners dedicated for
brain, female breast (positron emission mammography — PEM) and small
animal imaging. This may be implemented with solid-state photodiode read-
outs, which also allows electronically collimated coincidence counting. Such a
design has been implemented on the ECAT high resolution research tomo-
graph (HRRT) with LSO crystals and PMT’s-based readout.*’ Figure 7
illustrates the principle of the conventional detector block>* and the phoswich
approach®® where two detectors are assembled in a sandwich-like design, the
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FIGURE 7. (a) Conventional block detector consisting of a set of crystals having cuts
of different depths acting as light guides and segmenting the block into 64 (8 x 8)
detection elements in this example. The block is optically coupled to four photo-
multiplier tubes at the back, and the crystal in which photon absorption occurs is
identified by comparing the outputs of the four photomultiplier tubes (Anger logic).
(b) Detector block consisting of a phoswich (detector 1 and 2) with depth-of-inter-
action measurement capability.

difference in decay time of the light is used to estimate depth in the crystal
where the interaction occurred.

The design of high resolution imaging devices imposes some additional
constraints with respect to the necessity for compact arrays of photodetec-
tors; in turn, this has stimulated the development and use of multichannel
PSPMT’s and APDs. For the same application, some technologies intro-
duced in the 1980s re-emerged, particularly the high density avalanche
chamber (HIDAC), which uses lead converters contained within a multiwire
proportional chamber.*® Similarly detectors based on hybrid photodetectors
and configurations using wavelength shifting fibres also have been devel-
oped.”’ Notwithstanding, the use of semiconductor detectors in PET is far
from reaching acceptance, these devices are regarded as especially promising
candidates for the design of PET cameras with the aim of overcoming the
drawbacks of conventional PMT-based PET instrumentation.*

4.4 2D and 3D PET Data Acquisition

Most state-of-the-art full-ring PET scanners can be operated in both 2D and
3D data collection modes whereas newer tomographs operate essentially in
fully 3D acquisition geometries. In the 2D mode, PET scanners have septa
between detector planes to limit the detection of scattered photons, improve
count rate performance and reduce random coincidence events. The use of



1. Overview of Nuclear Medical Imaging 17

septa also simplifies the tomographic algorithm needed to reconstruct the
data by requiring a technique that needs to account only for lines of response
that are contained within one or a few slices in a 2D geometry, rather than in
multiple slices as is needed for a 3D geometry. Figure 8 illustrates the
conceptual difference between conventional 2D acquisition and volume
data acquisition. In 2D PET, data acquisition is limited to coincidences
detected within the same detector or adjacent detector rings: each 2D trans-
verse section of the tracer distribution is reconstructed independently of
adjacent sections. With the information obtained from detectors belonging
to the same detector ring, images representing the tracer distribution in the
planes of the detector rings (direct planes) are obtained. With the information
obtained from detectors belonging to adjacent detector rings, we reconstruct

2D
collé;r object detector
or septa ring
_____________________ scanner's axis
direct plane
cross plane
Fully 3D
ANNRRENNRERREEEN
no septa

scanner's axis

FIGURE 8. Diagram (not to scale) of the axial section of a 16-ring cylindrical PET
tomograph operated in 2D mode (top) and 3D mode (bottom). In the 2D acquisition
mode, the rings are separated by annular shielding (septa) and only in-plane and
cross-plane LORs are allowed. In the 3D acquisition mode, the septa are retracted
and coincidences allowed between any 2 rings.
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images representing the tracer distribution in the planes between the detector
rings (cross planes). Hence, a 3D PET scanner consisting of N detector rings
gives (2N-1) images representing the tracer distribution in adjacent cross-
sections of a patient. Transverse sections of the image volume obtained are
then stacked together to allow the spatial distribution of the radiopharma-
ceutical to be viewed in 3D.

However, the use of septa also compromises the advantage of electronic
collimation which otherwise records coincidence events efficiently within a
cone-beam geometry and not just from the fan-beam geometry of the 2D
mode. Thus, the 3D mode increases coincidence efficiency by about a factor
of around five in comparison to a 2D acquisition. This can be accomplished
by removing the interplane septa, at the expense of increasing scattered
radiation. The septa themselves subtend an appreciable solid angle in the
camera FOV, and as a result they have a significant shadowing effect on the
detectors which can be as high as 50%. The geometric efficiency of the 3D
mode requires that the detector be designed with a high count rate perform-
ance, which must be considered carefully in the selection of detector material
(e.g. BGO have a relatively slow decay time). In fully 3D PET, the recon-
struction algorithm must account for both oblique LORs formed from
coincidences detected between different detector rings and for the increase
in number of LORs which in turn depends on the number of crystal rings
and degree of rebinning in comparison to 2D acquisitions. Different
methods are used by the various scanner manufacturers to account
for these characteristics. In addition, rebinning in 2D mode causes a vari-
ation in sensitivity along the axial FOV. In 3D mode, there is a much
stronger variation in sensitivity (Figure 9) which peaks in the centre of the
axial FOV.*®

Likewise, different trues and randoms rates and different levels of scatter
in 2D and 3D modes make it difficult to assess the real advantages of 3D
vs 2D imaging. In order to more realistically assess these advantages,
the concept of noise equivalent counts (NEC) has been proposed by
Strother et al.>® and was defined as:

[T(1 - SF)I
T +2fR

where T and R are the total (i.e. trues+scatter) and randoms rates, SF is the
scatter fraction and f'is the fraction of the maximum transaxial FOV sub-
tended by a centred 24 cm diameter field. The factor of two in the denom-
inator results from randoms subtraction using data collected in a delayed
coincidence window. The NEC quantifies the useful counts being acquired
after applying perfect correction techniques for the physical effects and can
be related to the global signal-to-noise ratio. As a result, the NEC has been
extensively used to assess the real improvement obtained from 3D vs. 2D
data collection strategies. The NEC does not, however, take into account all
design or operational parameters that affect image quality.

NEC = (1)
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FIGURE 9. Relative sensitivity from the number of LORs in 2D and 3D acquisitions as
a function of the plane number for a 16-ring PET tomograph. In this example,
acquisition data are formed by LORs that arise from detector rings having a differ-
ence in location of 3 in 2D mode and +15 in 3D mode. As can be seen, at the edge
of the axial FOV, 2D and 3D mode acquisitions have the same predicted sensitivity
but in the centre of the FOV, the sensitivity in 3D mode is significantly higher.

The measured NEC using a 20 cm diameter uniform cylinder following
the NEMA NU 2-2001 protocol® in different PET tomographs from the
same manufacturer including the ECAT EXACT HR+ operating with septa
extended and retracted is shown in Figure 10. It clearly shows that the
maximum NEC is obtained at a lower activity concentration in 3D than in
2D as expected from the behaviour of the true coincidence rate.’® As a result
the signal-to-noise ratio will be higher in the low activity concentration range
when operating in 3D mode than in 2D. This has important implications in
clinical studies where reduction of the injected activities and hence the
radiation dose to the patient is of concern.

5. Dedicated Small-Animal Imaging Devices

With the recent developments in radiochemistry and tracer production tech-
nology combined with progress made in molecular/cell biology, it has become
possible to design specific tracers to image events non-invasively in small
animals and humans to investigate disease processes in vivo. Murine models
now have an essential role in formulating modern concepts of mammalian
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FIGURE 10. Noise equivalent count rate (NEC) for various multi-ring PET tomo-
graphs using LSO (ACCEL) and BGO (EXACT and EXACT HR+) detector
technologies operating exclusively in 3D mode except the EXACT HR+ which is
operated both in 2D and fully 3D modes. The measurements have been obtained with
a 20 cm diameter uniform cylinder following the NEMA NU 2-2001 protocol.
Typical activity concentration in the field of view 1h following injection of about
550 MBq is also shown (dashed line).

biology and human disease, and provide us with a realistic means of develop-
ing and evaluating new diagnostic and therapeutic techniques.®’ Moreover,
transgenic and knock-out techniques now are available for manipulating the
genome in a way that allows us to tailor animal models that accurately
recapitulate biological and biochemical processes in the human. Mouse
models now are available that allow investigators to study the development
of tumors in mice in a way that represents virtually all major human cancers
including those of the lung,%*®* gastrointestinal system,**> nervous system,®®
breast,®”%® liver,® prostate,’® pancreas,”’ and reproductive system.’? Simi-
larly, in cardiovascular research,”*”’® animal models are important for study-
ing the hormonal pathways involved in regulation of hypertension and
hypertension therapy,”””’® cardiac electrophysiology,””*° mechanisms of
apoptosis,®! effects of exercise,®” lipid metabolism and insulin sensitivity,*%*
atherosclerosis,® and angiogenesis.*® Likewise, the prospective impact of
molecular imaging in many aspects of neuroscience research is well recog-
nized.®” The role of transgenic and knockout mice in biomedical research now
has become profound and widespread, and transgenic animals (mice and rats)
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at this time can be designed and created in a way that offers almost unlimited
possibilities for addressing questions concerning the genetic, molecular, and
cellular basis of biology and disease.®**°

With the ever increasing number and importance of human disease
models, particularly in the smaller animals such as mice and rats,***° the
potential of high resolution nuclear medicine imaging technologies to con-
tribute unique information is becoming apparent to many researchers.
Radionuclide imaging can be performed using in vitro autoradiography.
This technology offers exquisite spatial resolution, but is extremely time
consuming and labour intensive, particularly when large volumes of tissue
need to be sliced, exposed and digitized. However, unlike autoradiography,
SPECT and PET can deliver functional and kinetic data from large volumes
of tissue (in some cases the entire animal), with the results available within
minutes of the end of the study. SPECT and PET also offer the critical
advantage that they obtain functional information noninvasively, so each
animal can be studied repeatedly. This allows each animal to serve as its own
control in studies with a longitudinal design. Some animal models (particu-
larly those involving pharmacological or surgical intervention) can exhibit
high variability from one animal to another, thereby strongly supporting
study designs in which disease progression or therapeutic response must be
followed in an individual animal. The development of animal models often
involves a large investment in time and expertise (particularly transgenic
animals and study of gene therapy protocols). In these cases, researchers
would welcome a tool that can noninvasively assess biological function to
reduce study costs and to improve statistical power with limited numbers of
animals because an individual animal can serve as its own control.

For these reasons, significant attention has focused on the use of radio-
nuclide imaging for noninvasive investigations of cancer in small animals.
Small-bore microPET systems now are available commercially with spatial
resolutions nearing the fundamental limit of 1-2 mm for imaging tumour
metabolism with '®F-fluorodeoxyglucose, and can be used with other posi-
tron-emitting radionuclides when a radiochemistry laboratory and medical
cyclotron are available. MicroSPECT also has important capabilities for
cancer imaging in small animals using single-photon radiopharmaceuticals
that are relatively inexpensive and can be obtained from commercial radio-
pharmacies without the need for an on-site cyclotron. Small animal imaging
can be performed with widely available radiopharmaceuticals labelled with
technetium-99m and with other radionuclides such as iodine-123 and indium-
111 which also can be used to label disease-specific receptor-targeted agents
for experimental studies with small animals. Hundreds of '>’I-labeled bio-
chemicals are readily available from chemical supply companies (e.g., Fisher
Scientific International, Inc.) for in vitro assays and autoradiography; these
radiotracers also can be used for in vivo tumour localization studies in small
animals with microSPECT especially in cases where the long half-life
(60 days), relatively low specific activity, and higher-radiation dose of this
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radionuclide are compatible with the goals of the study. SPECT and micro-
SPECT imaging studies of small animals already are being used to investigate
numerous aspects of cancer including multidrug resistance in tumours of the
breast’! and lung,”® apoptosis as an early indicator of therapeutic outcome,”?
use of nucleoside analogs for imaging tissue proliferation,”® delineating the
role of anti-EGFR (epidermal growth factor receptor) in cell division, cancer
progression, angiogenesis, and metastasis’> and for development of pharma-
ceuticals for diagnosis, staging, and treatment of cancer.””® Other investiga-
tors have developed noninvasive methods using high resolution SPECT and
PET to assess cardiac volumes and ejection fraction,’’ progression of Parkin-
son’s disease,”® epilepsy,” development of pulmonary emboli and venous
thrombi,'”’ dopaminergic neurotransmission,'®’'** and development of
myocardial infarction.'® Finally, unlike microPET which can only detect
511 keV annihilation photons in coincidence, microSPECT can perform
dual-isotope imaging that allows multiple processes to be monitored simul-
taneously during a single imaging study.

The use of radionuclide imaging for biological research with small animals
presents several challenges beyond those faced in clinical nuclear medicine.
First, small animal imaging typically is utilized in a research laboratory
rather than a medical clinic. Therefore, the system should be reliable, easy
to use, and relatively low in cost. Second, small animal radionuclide imaging
must achieve millimeter, and ideally submillimeter spatial resolution to
detect small lesions including micrometastases. Finally, a high level of
detection efficiency allows procedures to be completed within 1 hour during
which the animal can be safely anesthetized. Excellent detection efficiency
also minimizes the amount of radiopharmaceutical needed for the study and
limits the radiation dose which at higher levels can change tumor character-
istics or cause lethality.'%

To achieve these goals, several investigators have developed several
methods to image single-photon radionuclides in small animals. High spatial
resolution projection data suitable for imaging small animals can be obtained
using pinhole collimation. The most direct approach simply adds a pinhole
collimator to a conventional scintillation camera®”!°*''3 and can provide
excellent spatial resolution and with reasonable detection efficiency. The
recent growth of pinhole SPECT-based cameras spurred the development of
appropriate modelling strategies to enable the characterization and optimize
the design of pinhole collimators.''%!'*113 Pinhole imaging also is performed
with special-purpose compact scintillation cameras,®''*'?? including the
commercially available system from Gamma Medica, Inc. (Northridge,
CA).3121122 These compact systems have a small footprint and offer im-
proved rotational stability for microSPECT which can be difficult to obtain
with bulky clinical cameras. However, Funk ez al.'® have shown that these
microSPECT systems require that the animal is administered with significant
levels of radioactivity that contribute radiation doses that can change gene
expression, and in some cases are near lethality for the animal. For these
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reasons, other investigators'®"'?12> have developed small animal SPECT
systems that offer both excellent spatial resolution and high detection effi-
ciency with multiple pinhole detectors. Multipinhole configurations include
those with multiple compact detectors each with an individual pinhole colli-
mator, or those with a clinical scintillation camera or other large radionuclide
imager with a multipinhole collimator. Several investigators have argued that
the best approach for small animal imaging would combine multipinhole
techniques with multiple compact detectors having a high level of intrinsic
spatial resolution including the use of very small scintillator elements (YAP,
CsI(T1), or LSO) read out by position sensitive or multi-channel PMT’s to
achieve high spatial resolution.'®'**'>3 While these advances in technology
have improved performance and reduced cost, the size and low quantum
efficiency of PMT’s are often limiting factors in these designs. In view of
this, solid-state detectors such as silicon p-i-n photodiodes (with unity gain)
and silicon avalanche photodiodes are being actively considered as replace-
ments for PMTs in nuclear medicine systems.

The demand for functional, metabolic, and molecular imaging of small
animals also has stimulated the development of dedicated small-bore high-
resolution PET systems for imaging mice, rats, small primates, and other
mammalian species.’®*'?*13* As in human imaging, both high detection
sensitivity and excellent spatial resolution are priorities for PET imaging
system design and are needed to achieve suitable levels of image quality and
quantitative accuracy.'*> Thus, different PET designs have been suggested
encompassing conventional small ring radius cylindrical block-detector
based design with DOI capability and APDs readout, a renewed interest in
the 3D HIDAC camera that achieves millimeter-scale spatial resolution®
along with many other designs.'*® Several high-resolution small animal
scanner designs have been or are being developed in both academic and
corporate settings, with more than six such devices (both SPECT and PET)
being offered commercially (Figure 11). More recently, advanced versions of
these technologies have begun to be used across the breadth of modern
biomedical research to study non-invasively small laboratory animals in a
myriad of experimental settings. The commercially available microPET
system,?”13% developed originally at UCLA, consists of a cylindrical ar-
rangement of 2 x 2 x 10mm?® LSO crystals read out by short optical fibres
to multi-channel PMTs. The latest development of this design uses ~ 1 mm
square crystals and achieves a spatial resolution of around 1 mm in the
center of the field-of-view using a statistical reconstruction algorithm in-
corporating accurate system modelling."**!3%!3* With the introduction of
commercial PET systems, small-animal imaging is becoming readily access-
ible and increasingly popular. The choice of a particular system being
dictated in most cases by technical specifications, special attention has to
be paid to methodologies followed when characterising system performance.
Standardisation of the assessment of performance characteristics is thus
highly desired.'®
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(a) (b) (c)

FIGURE 11. Photographs of dedicated small-animal PET scanners showing (a) the
Hamamatsu SHR-7700 PET scanner based on BGO detector blocks designed for
non-human primate imaging, (b) the multiwire proportional chamber technology-
based HIDAC system, and (¢) the microPET P4 scanner using LSO scintillation
crystals. (Photographs courtesy of Hamamatsu Photonics KK, Japan, Oxford Posi-
tron Systems, UK and Concorde Microsystems, USA, respectively).

In parallel to these developments, dual-modality imaging, an approach
where two different imaging techniques are integrated in a single unit that
allows a small-animal to be imaged with both approaches during a single
experimental procedure, such as SPECT/CT, PET/CT and PET/MRI are
under development by different research groups and scanner manufacturers,
and offer unique capabilities beyond those available from systems that
perform radionuclide imaging alone (see chapter 2).

6. Future Directions for Nuclear
Medicine Instrumentation

The capabilities of nuclear medicine instrumentation and techniques have
undergone continual, and sometimes abrupt, improvements in performance
and in their sophistication and complexity. A baseline of performance can be
assessed by physicists who use objective measures of spatial resolution,
energy resolution, count-rate response, and other parameters to assess
the technical capabilities of commercial (and sometimes research) systems.
The process of objective comparison has been facilitated by the wide accept-
ance and adoption of the NEMA standards, which provide an objective
measure of performance parameters for nuclear imaging systems. While
there may be only slight variations in image quality obtained in planar
imaging with modern scintillation cameras, in toto the assessment of image
quality is not as obvious given the wide variety of tasks encountered in the
clinical environment. For example, the noise equivalent count rate can be
measured to assess the physical performance of a PET scanner but does not
give a comprehensive indication of image quality. Even though the NEMA
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standards attempt to standardise the assessment of image quality using
carefully designed phantoms, the measurement of physical parameters can-
not account for special requirements of the clinical task being performed,
and therefore requires additional assessments of clinical applicability and
performance.'*°

The intrinsic physical performance of conventional radionuclide imaging
systems is approaching their fundamental limits, given the performance of
existing instrumentation and components. This has encouraged the develop-
ment of innovative approaches capable of providing improved performance
at a reduced or comparable cost to current technologies. For example,
Braem ez al.*® have proposed a novel detector design which provides full
3D reconstruction free of parallax errors with excellent spatial resolution
over the total detector volume. The key components are a matrix of long
scintillator crystals coupled on both ends to hybrid photodetectors (HPDs)
with matched segmentation and integrated readout electronics. Computer
simulations and Monte Carlo modeling predict that the detector will achieve
excellent spatial (x,y,z) and energy resolutions. The design also increases
detection efficiency by reconstructing a significant fraction of events that
undergo Compton scattering in the crystals. The 3D axial detector geometry
(Figure 12) is configured from a matrix of 208 (13 x 16) long crystals each
with a cross section of 3.2 x 3.2mm? and with an intercrystal spacing of
0.8 mm. Scintillation light produced after an interaction of an annihilation

FIGURE 12. Illustration of principles of data acquisition for a brain PET camera using
the proposed novel axial design based on 12 camera modules consisting of long scintil-
lation crystals readout on both sides by HPDs. Reprinted with permission from ref.*
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photon will propagate by total internal reflection to the ends of the crystal,
where it will be detected by the HPD photodetectors. The transaxial reso-
lution depends only on the crystal segmentation and not on its chemical
composition whereas the axial resolution is closely related to the scintillator
properties. The scintillator’s optical bulk absorption length should be
approximately equal to the crystal length to obtain both a high light yield
and a significant light asymmetry required to decode the axial coordinate z
of the photon interaction in the crystal matrix.

The design of whole-body PET imaging systems with larger axial field-of-
view also is receiving considerable attention. In particular, the use of rotat-
ing flat panel LSO-based detector arrays is a promising design that, if
successful, will enable a new generation of high-performance whole-body
PET scanners."*' The proposed design envisions several (3 to 5) panels
mounted in a hexagonal configuration that can be rotated to acquire a full
3D dataset for tomographic reconstruction. Each panel contains 10,080 LSO
crystals (4 x 4 x 20 mm®) coupled to an array of 88 PMT’s which can iden-
tify individual crystal elements via a light sharing scheme. The detector
panels will be coupled to electronics with fast detector readout and temporal
resolution, and will be configured in a system capable of imaging the
whole body significantly faster than is possible with current PET scanner
designs.>* !4

Finally, the field of nuclear medicine always has had a focus on objective
evaluation and optimization of image quality, and on quantitative assess-
ment of physiological parameters that can be extracted from radionuclide
image data. This perspective primarily is the consequence of the fact that
nuclear imaging has limited spatial resolution and signal-to-noise character-
istics relative to other radiological techniques such as CT and MRI, which
are excellent in depicting anatomical structure. Differences in performance
between various scanners, as well as the degradation in performance of a
single scanner, can be subtle and difficult to detect visually or by qualitative
methods. The need to monitor and correct these changes have compelled
both clinical users and research investigators to rely on objective measures of
performance for system intercomparisons, to assess the impact of design
changes, and for routine quality control and quality assurance tasks. The
quantitative perspective of nuclear medicine also has been motivated
strongly by its use in functional and metabolic assessments of biology and
disease. By its inherent nature as an in vivo tracer technique, radionuclide
imaging can be used to measure tissue perfusion, organ function, radio-
pharmaceutical biodistribution and kinetics, and other physiological param-
eters that require a level of quantification beyond anatomical metrics used
with other radiological imaging techniques.

In this chapter, we have provided a brief overview of current state-of-the
art developments in nuclear medicine instrumentation. We emphasize that
many different design paths have been and continue to be pursued in both
academic and corporate settings, that offer different trade-offs in terms of
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their performance. It still is uncertain which designs will be incorporated
into future clinical systems, but it is certain that technological advances will
continue and will enable new quantitative capabilities in nuclear medicine
imaging.
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Dual-Modality Imaging: More Than
the Sum of 1ts Components

B.H. HASEGAWA* AND H. ZAIDI'

1. Introduction

The field of diagnostic radiology encompasses a wealth of imaging techniques
that now are essential for evaluating and managing patients who need medical
care. Traditional imaging methods such as plain film radiography and more
recent techniques such as x-ray computed tomography (CT) and magnetic
resonance imaging (MRI) can be used to evaluate a patient’s anatomy with
submillimeter spatial resolution to discern structural abnormalities and to
evaluate the location and extent of disease. These methods also offer relatively
fast scan times, precise statistical characteristics, and good tissue contrast
especially when contrast media are administered to the patient. In addition,
x-ray fluoroscopy and angiography can be used to evaluate the patency of
blood vessels, the mechanical performance of the cardiovascular system, and
structural abnormalities in the gastrointestinal or genitourinary systems. Simi-
larly, CT and MRIcanbe performed with cardiac gatingto the heart at different
phases of the cardiac cycle. Computed tomography recently has experienced a
significant increase in utilization with the advent of multislice helical scanning
techniques that cover a large region of the patient’s anatomy within a single
breath-hold, with scan speeds that can capture both the arterial and venous
phases of the contrast bolus. These increased scan speeds also enhance patient
comfort, and contribute to patient throughput and cost effectiveness.

X-ray projection imaging, computed tomography, and magnetic reson-
ance imaging differentiate disease from normal tissue by revealing structural
differences or differences in regional perfusion of the administered contrast
media. The interpretation of the images can be complicated when normal
perfusion patterns are disrupted by prior surgery or radiation therapy, which
can lead to tissue damage or necrosis where contrast patterns can mimic
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those associated with neoplasia. This presents a significant challenge when
the imaging techniques are used to define the anatomical extent of disease as
is needed for planning highly conformal radiation treatment or for planning
highly targeted therapeutic regimes.

In comparison to the anatomical imaging techniques described above,
functional imaging methods including planar scintigraphy, single-photon
emission computed tomography (SPECT), positron emission tomography
(PET), and magnetic resonance spectroscopy (MRS), assess regional differ-
ences in the biochemical status of tissues."> In nuclear medicine, including
SPECT and PET, this is done by administering the patient with a biologic-
ally active molecule or pharmaceutical which is radiolabeled and accumu-
lated in response to its biochemical attributes. Radionuclide imaging and
nuclear medicine rely on the tracer principle in which a minute amount of a
radiopharmaceutical is administered to assess physiological function or the
biomolecular status of a tissue, tumour, or organ within the patient. The
amount of the radiopharmaceutical is sufficiently small so that its adminis-
tration does not perturb the normal function of the patient. However, the
radiopharmaceutical produces a radioactive signal that can be measured,
and ideally imaged, using an external array of radiation detectors. By design,
the radiopharmaceutical has a targeted action, allowing it to be imaged
to evaluate specific physiological processes in the body. There now are
many radiopharmaceuticals available for medical diagnosis, with additional
radiotracers available for in vivo as well as in vitro biological experi-
mentation.

Nuclear medicine relies on use of radionuclide tracers which emit radiation
in amounts proportional to their regional concentration within the body. For
this reason, radionuclide imaging often is called “‘emission” imaging. This is in
contrast to x-ray or ‘“‘transmission”’ imaging where an external radiation
source transmits radiation through the body and onto a set of opposing
detectors. The properties of emission imaging are best suited for imaging
functional processes, while transmission imaging is best suited for visualizing
anatomical structure. Because the amount of radiation that can be adminis-
tered internally to the patient is limited by considerations of radiation dose
and count rate, radionuclide images inherently have poor photon statistics,
are produced with only modest spatial resolution, and require relatively long
scan times. In addition, the visual quality of radionuclide images can be
degraded by physical factors such as photon attenuation and scatter radi-
ation.* ' In contrast, transmission images are produced with short scan times,
excellent signal-to-noise characteristics, and submillimeter spatial resolution,
but generally contain limited functional information. These considerations
illustrate that x-ray (transmission) and radionuclide (emission) imaging pro-
vide quite different but complementary information about the patient.!'*
This information can be interpreted by the diagnostician to detect, localize,
and diagnose diseases. Similarly, biomedical research scientists can analyze
these attributes to monitor and measure processes that are important for
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biological research, drug discovery, and development of new diagnostic and
therapeutic techniques in humans and animals.

Several investigators have developed methods which attempt to improve
the correlation between anatomical and physiological information obtained
using these x-ray transmission and radionuclide emission imaging studies.
Software-based image registration'>!” can fuse images from two or more
different studies after they are acquired separately. Commonly, image regis-
tration techniques produce a single “fused” or “combined” image in which,
for example, the radionuclide distribution is displayed in colour over a grey-
scale CT image of the same anatomical region. The simplest form of image
registration uses ‘‘rigid-body” translation and rotation to match the two
image data sets. These techniques can be applied most successfully to neuro-
logical studies,'®!” where the skull provides a rigid structure that maintains
the geometrical relationship of structures within the brain. The situation is
more complicated when image registration techniques are applied to other
areas of the body, for example the thorax and abdomen, where the body
can bend and flex, especially when the x-ray and radionuclide data are
captured using different machines in separate procedures, often on different
days (see chapter 9). Geometrical relationships between different anatomical
regions can be affected by the shape of the patient table, the orientation of the
body and limbs during the imaging procedure, and the respiratory state of the
patient.”® In these cases, image registration might match the patient anatomy
in one region of the body, but not in all anatomical regions. Image warping
can improve registration over a larger region of the patient’s anatomy, but in
most cases, software-based image registration can be challenging and, at most
institutions, is not used routinely for clinical procedures.'®!’

With the goal of improving the correlation of different types of image
data, other investigators have developed instrumentation which integrate
both x-ray and radionuclide imaging is in a single device."*'"* This tech-
nique, often called dual-modality imaging, can combine a PET or SPECT
system with a CT scanner, using a common patient table, computer, and
gantry so that both the x-ray and radionuclide image data are acquired
sequentially without removing the patient from the scanner. This technique
thereby produces anatomical and functional images with the patient in the
same position and during a single procedure, which simplifies the image
registration and fusion processes.!>>2%32:3436 Ty geeking to achieve accurate
registration of the anatomical and functional data, dual-modality imaging
offers several potential advantages over conventional imaging techniques.’’
First, the radionuclide and x-ray images are supplementary and complemen-
tary. Radionuclide data can identify areas of disease that are not apparent
on the x-ray images alone.'*¥**! X-ray images provide an anatomical con-
text that interpreters use to differentiate normal radionuclide uptake from
that indicating disease, and to help localize disease sites within the body.
Second, the x-ray data can be used to generate a patient-specific map of
attenuation coefficients and other a priori anatomical data which in turn is
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used to correct the radionuclide data for errors due to photon attenuation,
scatter radiation, and other physical effects.'->!2%2%-2742-44 1) these ways, the
x-ray data can be used to improve both the visual quality and the quantita-
tive accuracy of the correlated radionuclide data.

2. Brief History of Dual-Modality Imaging

Whereas the advent of dedicated dual-modality imaging systems designed
specifically for clinical use is relatively recent, the potential advantages of
combining anatomical and functional imaging has been recognized for several
decades by radiological scientists and physicians. Many of the pioneers of
nuclear medicine, including Mayneord,**” Anger,**° Cameron and Soren-
son,”® and Kuhl’' recognized that a radionuclide imaging system could be
augmented by adding an external radioisotope source to acquire transmission
data for anatomical correlation of the emission image. Furthermore, Kuhl
et al.>* added an external radionuclide source on his Mark IV brain scanner to
produce anatomical images useful for both localizing regions of radionuclide
uptake and to correct for soft tissue absorption in the radionuclide emission
data. In a 1974 review of photon attenuation, Budinger and Gullberg’* noted
that a patient-specific attenuation map could be produced from transmission
data acquired using an external radionuclide source or extracted from a
spatially correlated CT scan of the patient. A specific implementation of a
combined emission-transmission scanner was disclosed by Mirshanov>* who
produced an engineering concept diagram showing a semiconductor detector
to record radionuclide emission data and a strip scintillator to record coregis-
tered x-ray transmission data from a patient (Figure 1). In addition, Kaplan
et al.> proposed a high performance scintillation camera to record both
emission data from an internal radionuclide source and transmission data
from an external x-ray source. However these concepts were never reduced to
practice or implemented in either an experimental or a clinical setting.”®

In late 1980’s and early 1990’s, Hasegawa er al.>>?%>7% at the University
of California, San Francisco, pioneered the development of dedicated emis-
sion/transmission imaging systems which could record both radionuclide
and x-ray data for correlated functional/structural imaging. The first proto-
type, developed by Lang er al.>*® used an array of HPGe detectors (Figure
2) with sufficient energy discrimination and count-rate performance to
discriminate y-rays emitted by an internally distributed radiopharmaceutical
from x-rays transmitted through the body from an external x-ray source.
Phantom experiments with this first prototype led to the development of a
second prototype (Figure 3) having a 20-cm reconstruction diameter that
could record emission and transmission data from stationary animal or
object using a single HPGe detector array. Kalki er al.>>%° used this second
prototype in animal studies both to demonstrate the capability of the system
to facilitate image correlation and to test the feasibility of correcting the
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FIGURE 1. Concept drawing of transmission—emission tomography system proposed
in the Soviet Union in 1987. System includes semiconductor detector for radionuclide
imaging and strip scintillator for x-ray imaging, with electronics for combined
recording and display of x-ray and radionuclide data sets. Reprinted from ref.”*
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FIGURE 2. Schematic of data acquisition of combined emission-transmission imaging
system developed at UCSF using single high-purity germanium detector array with
fast pulse-counting electronics for simultaneous emission-transmission imaging.
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FiGure 3. Early emission-transmission CT system at UCSF had an HPGe detector
was translated across a circular arc to simulate an entire detector array and was
rotated around an isocenter for tomographic imaging. Detector was read-out using
fast pulse-counting electronics (Figure 2) using energy discrimination to separate the
simultaneously acquired x-ray and radionuclide data. Reprinted with permission
from ref.!

radionuclide data for photon attenuation using coregistered x-ray transmis-
sion data. Because the HPGe detector implemented in these first two proto-
types was expensive and impractical for clinical use, the UCSF group next
implemented a SPECT/CT scanner (Figure 4) for patient studies by sitting a
GE 9800 Quick CT scanner in tandem with a GE 400 XR/T SPECT
system.?'***? This configuration allowed the patient to remain on a com-
mon patient table for radionuclide and x-ray imaging with separate detector
technologies that already had been optimized for clinical use both in terms of
technical performance and cost-effectiveness. The investigators used this
system to demonstrate that CT data could produce a patient-specific attenu-
ation map that could be incorporated into an iterative reconstruction algo-
rithm for attenuation correction of the correlated radionuclide data. The
system was used for imaging studies with phantoms, animals, and patients
and demonstrated that the use of combined emission and transmission data
could improve both the visual quality and the quantitative accuracy of
radionuclide data in comparison to SPECT data alone.?'?*%?

The first integrated PET/CT system (Figure 5) was developed by Town-
send and co-workers at the University of Pittsburgh in 199833335 by
combining the imaging chains from a Somatom AR.SP (Siemens Medical
Systems) CT system with an ECAT ART (CTI/Siemens) PET scanner. Both
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FIGURE 4. Combined SPECT/CT system configured at UCSF from a GE 9800 CT
Quick CT scanner and a 400 XR/T SPECT system with a common patient table to
translate the patient between the reconstruction volumes of the CT and SPECT
systems. Reprinted with permission from ref.'
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FIGURE 5. Schematic of combined PET/CT scanner developed at University of
Pittsburgh by Townsend and co-workers. PET components were mounted on back
of rotating CT scanner assembly. Centers of fields-of-view between PET and CT
(vertical lines) were 60 cm apart. Combined PET/CT gantry was 110 cm deep,
170 cm high, and 168 cm wide. PET and CT data were acquired over 100 cm axial
range of patient. Reprinted with permission from ref.*
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the CT components and the PET detectors were mounted on opposite sides
of the rotating stage of the CT system, and imaged a patient with a common
patient table translated between the centers of the two tomographs which are
offset axially by 60 cm.>* The PET/CT prototype was operational at the
University of Pittsburgh from May 1998 to August 2001, during which over
300 cancer patients were scanned. The success of these initial studies
prompted significant interest from the major medical imaging equipment
manufacturers who now all have introduced commercial PET/CT scanners
for clinical use.

In 1999 and 2000, SPECT/CT and PET/CT dual-modality imaging sys-
tems were introduced by the major medical equipment manufacturers for
clinical use, with approximately 400 systems of each type sold by midyear
2004. A significant success of PET/CT has been the improved image quality
of FDG images for tumour localization.*®***!-*! The major use of SPECT/
CT has been in reducing attenuation artefacts and improving the quality of
myocardial perfusion imaging with **™Tc-sestamibi.?!->*6*%* SPECT/CT
also has demonstrated advantages for oncologic imaging with single-photon
agents.' 22240416570 Both SPECT/CT and PET/CT have demonstrated their
ability to facilitate attenuation correction using an x-ray based patient-
specific attenuation map that can be produced faster and more accurately
than attenuation maps generated with external radionuclide sources.'**
Clinical studies are underway to evaluate the applicability of x-ray based
correction of photon attenuation,”' and early results demonstrate improve-
ment in sensitivity, specificity, and predictive accuracy in comparison to
SPECT perfusion studies reconstructed without correction for photon at-
tenuation. The anatomical information from PET/CT improves the differ-
entiation of physiological (normal) uptake of FDG and other
radiopharmaceuticals from that associated with disease, and thereby can
reduce false positive errors in comparison to lesion characterization when
radionuclide imaging is used alone. By providing high-resolution anatomical
information from CT, dual-modality imaging also correlates functional and
anatomical data to improve disease localization'#¥3%41-¢1 and facilitates

treatment planning for radiation oncology'*”* or surgery.®®"374

3. Capabilities of Dual-Modality Imaging

Dual-modality techniques offer a critical advantage over separate CT and
radionuclide imaging systems in correlating functional and anatomical im-
ages without moving the patient (other than table translation). Dual-modal-
ity imaging also can account consistently for differences in reconstruction
diameter, offsets in isocenter, image reconstruction coordinates, and image
format (e.g., 512 x 512 vs. 128 x 128) between the CT and radionuclide
image geometries to perform image coregistration and image fusion. De-
pending on the design of the system, image registration software also may be
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needed to account for table sag or for misalignment when the patient moves
between the CT and radionuclide image scans. Generally, the coordinate
systems implicit in the radionuclide and CT image geometries are calibrated
with respect to each other using fiducial markers that are scanned with both
CT and radionuclide imaging. The image registration must be confirmed to
avoid misregistration errors in the dual-modality images or in the radio-
nuclide image reconstructed using CT-derived attenuation maps.

Dual-modality imaging also provides a priori patient-specific information
that is needed to correct the radionuclide data for photon attenuation and
other physical effects. Increasingly, x-ray sources are replacing external radio-
nuclide sources for acquisition of the ““transmission scan” to obtain projection
data which can be reconstructed to produce a patient-specific map of linear
attenuation coefficients so that the radionuclide (SPECT or PET) data can be
reconstructed with a correction for photon attenuation.>”>*° Because the
external radionuclide sources produce a limited fluence rate, the transmission
scans often require several minutes and produce images that are noisy and
photon-limited. Alternatively, transmission data can be acquired using an
x-ray source having a small focus, a significantly higher photon fluence rate
than a radionuclide source, and therefore produce tomographic recon-
structions with 1 mm (or better spatial resolution) with excellent noise
characteristics. The resulting CT images then can be calibrated to produce a
patient-specific map of linear attenuation coefficients calculated for the
energy of the radionuclide photons.?'"2*2%3442% Ip this way, the CT data
from a dual-modality imaging system facilitates, and in some ways simplifies,
the process of correcting the radionuclide image for photon attenuation.

Several different CT-based attenuation correction techniques have been
developed?!-232%-34424 and are reviewed in chapter 6. As an example, the
technique developed by Blankespoor er al.?**! obtains CT calibration meas-
urements from a phantom with cylindrical inserts containing water, fat-
equivalent (ethanol), and bone equivalent material (K;HPO,). CT numbers
extracted from each region are plotted against their known attenuation
coefficients at the photon energy of the radionuclide to provide a piece-
wise linear calibration curve.?***%? During the dual-modality imaging study,
both CT and radionuclide data of the patient are acquired. The calibration
curve described above is used to convert the CT image of the patient into an
object-specific attenuation map. The resulting attenuation map then can be
incorporated into the reconstruction of the radionuclide data® using ML-
EM or other iterative algorithm, to correct the radionuclide data for per-
turbations due to photon attenuation. This or a similar process can be used
to improve both the image quality and the quantitative accuracy of SPECT
or PET images (see chapter 4). Important clinical applications include
attenuation correction of myocardial perfusion images®>®> to resolve false-
positive defects caused by soft-tissue attenuation (Figure 6). In addition, the
visual quality of oncologic images can be significantly improved when the
BE.FDG data are reconstructed using attenuation correction.
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FIGURE 6. Myocardial perfusion scans acquired with GE Discovery VG using x-ray
derived attenuation map. In each pair of rows, the top and bottom rows represent
data reconstructed with and without attenuation correction respectively. In this
study, the patient presented with chest pain with borderline normal ejection fraction
of 47%. Resting **™Tc-sestamibi perfusion scan without attenuation correction
shows mild inferior wall defect. However, myocardial perfusion images appear
normal when reconstructed with x-ray based attenuation correction. Reprinted
with permission from GE Healthcare Technologies, Waukesha, WI.

In addition to the energy conversion process described above, it is import-
ant to match the geometric characteristics of the CT-derived attenuation
map and radionuclide tomograms. This typically requires the CT data to be
resampled so that it can be presented in slices that have the same pixel
format (e.g. 128 x 128, or 256 x 256) and same slice width as the radio-
nuclide image. Accurate spatial registration of the CT and radionuclide data
is important since slight differences in position of the attenuation map
relative to the corresponding data can cause ‘edge artefacts’ which produce
bright and dark ‘rims’ across edges of regions where the CT and radionuclide
data are misaligned.

The process of generating attenuation maps as described above also as-
sumes that the body is composed primarily of lean soft tissue (essentially
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water-equivalent) and bone. However, CT studies of the head and body
generally are obtained following the administration of intravenous and oral
contrast media.®® Since contrast media in the body can attenuate photons
emitted by a radiopharmaceutical during a PET or SPECT study, it obviously
is important to derive accurate attenuation maps that account for the presence
of these materials in the body regardless of whether they are administered
orally and/or intravenously.****#%#7 It has been shown that SPECT and PET
attenuation can be overestimated in the presence of positive contrast agents,
which can generate significant artefacts (Figure 7). One can account for
attenuation differences between iodine versus bone using a technique that
generates a calibration curve for contrast media, using a method similar to
that described above for soft tissue and bone alone. In this method, calibration
data are obtained experimentally using CT to image a calibration phantom
containing known concentrations of iodine contrast. The reconstructed CT
values for each calibration region in the phantom are extracted from the CT
scan, and are related to the known linear attenuation coefficients as a function

™

FIGURE 7. Contrast-enhanced related artefact in PET/CT imaging. Bolus passage of
intravenous contrast agent in left subclavian and brachiocepalic veins on CT (A,
arrows) led to areas of apparently increased glucose metabolism on CT-based at-
tenuation corrected PET (B, arrows). On fused PET/CT images, this area of appar-
ently increased glucose metabolism correlated with high-density contrast in venous
system on CT (C). Reconstructed PET images without attenuation correction dem-
onstrated homogeneous tracer distribution (D), demasking areas of apparently in-
creased glucose metabolism as artefact. Reprinted with permission from ref.®¢
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of CT number. Separate calibration curves are generated for each material
(i.e., iodine vs. bone), for different x-ray potentials used to acquire CT scans,
and for different photon energies (e.g. 140 keV, 364 keV, and 511 keV)
encountered in nuclear medicine.*>® It is important to use image processing
or other techniques to segment bony and iodine-containing regions in the
patient’s CT image so that bone and iodine can be scaled independently when
forming the attenuation map. The attenuation maps with calibrated values for
soft-tissue, fat, bone, and iodine, then are incorporated into an ML-EM or
other iterative reconstruction algorithm for attenuation compensation of the
radionuclide image. These methods have been tested in phantoms and in
animals, and demonstrated in pilot studies on humans.

The x-ray data from a dual-modality imaging system also can be used to
compensate the radionuclide data for contamination by scatter radiation
(see chapter 7). One class of scatter compensation techniques characterizes
the scatter distribution for different radionuclide and attenuation distribu-
tions with a spatially-dependent kernel, which can be used to convolve data
from the photopeak window for estimating the scatter distribution from the
acquired data. For example, the method proposed by Mukai ez al.*® assumes
that the scatter radionuclide image p can be estimated from the “true” (i.e.,
“scatter-free””) image 7, as p = Pn, where P is a matrix having elements
P(b,b') specifying the probability that a primary photon emitted from voxel
bt is scattered in voxel b with an energy suitable for detection within the
primary energy window and which can be calculated by integrating the
Klein—Nishina equation over the primary acquisition energy window taking
into account the energy resolution of the emission system. Obviously, the
“true” or “‘scatter-free” image is unknown, making it necessary to approxi-
mate this using the currently available image estimated by the tomographic
reconstruction algorithm. The matrix P can be approximated from the
coregistered CT-derived attenuation map of the object provided by the
dual-modality imaging system to obtain the total attenuation (A(b,b/))
along a line from the center of voxel b to the center of voxel br. All the
parameters needed can be determined accurately from x-ray based attenu-
ation maps, illustrating how this process is facilitated by the availability of
CT data from dual-modality imaging. Once the scatter distribution is calcu-
lated, it can be incorporated in the tomographic reconstruction algorithm to
compensate the radionuclide data for the effect of this perturbation.

The visual quality and quantitative accuracy of the radionuclide data can be
improved by using the methods described above by image fusion with CT, and
use of x-ray data to correct the radionuclide data for perturbations arising
from photon attenuation and Compton scatter. In addition, the radionuclide
image can be improved by correcting the data for the geometric response of
the radionuclide detector.®***%° Traditionally, radionuclide quantification
methods have focused on techniques that compensate the radionuclide image
reconstruction process for physical errors such as photon attenuation, scatter
radiation, and partial volume errors as discussed above. This may include the
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use of recovery coefficients,* requiring a priori information about object size
and shape, that generally are only used for simple target geometries (e.g.,
spheres). Other investigators have developed methods that incorporate phys-
ical models, not in image reconstruction, but rather into the quantification
process itself. Several methods have been described in the literature combining
SPECT and MRI°! and PET and MRI°*? for brain imaging, and SPECT and
CT for cardiac and oncologic imaging.*'>***” Several approaches were devel-
oped specifically for quantitation using planar imaging®>**°> and are de-
scribed in chapter 13 of this book. One technique called ‘“template
projection”**% can be used to quantify radioactivity in planar images. This
process begins with dual-modality (i.e., radionuclide and CT) images of a
target region surrounded by background. Regions-of-interest (ROIs) for the
target (e.g., tumour) and background regions are defined on the high-reso-
lution CT image, then are used to define “templates” which represent ideal-
ized radionuclide-containing objects (e.g., tumour vs. background) with unit
radionuclide concentration. Planar imaging of these ideal radionuclide ob-
jects is modelled by mathematically projecting the templates onto the plane of
the radionuclide detector using the known geometrical transformation be-
tween the CT coordinate system and the planar radionuclide image provided
inherently by the dual-modality imaging system. This is performed using the
projection machinery available from iterative reconstruction algorithms (e.g.,
ML-EM), including physical models of photon attenuation and non-ideal
detector response, and which potentially can incorporate perturbations
from detected scatter radiation, patient motion, and pharmaceutical kinetics.
This process generates “projected templates” that are analogous to conven-
tional ROIs, in that they delineate a target region over which events in the
radionuclide image are integrated. Like conventional ROlIs, the projected
templates specify the geometry of the tumour and background regions on
the projected planar radionuclide images; however the projected templates are
defined on the high-resolution CT images rather than on the low-resolution
radionuclide images. Furthermore, unlike traditional ROIs which are uni-
form, the projected templates are nonuniform and contain information about
physical effects (photon attenuation, detector response, scatter radiation)
included in the projector model.

Several methods using the projected templates can quantify activity in a
planar radionuclide image. If we assume that the imaging process is linear, and
consider the photons emitted from M different regions (e.g., tumours and
background) where each region has a uniform activity concentration A4,,, then
the counts p(d) measured in detector (i.e., pixel) d are estimated by p*(d) as

M
PHA) = Apd,(d) ¢y

m=1

where ¢,,(d) represents the value of the projected template at detector
location d, which is physically equivalent to the relative number of photons
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detected from radioactive region m in pixel location d. If we measure the
value p(d) from the planar emission data and given that we have calculated
¢,,(d) from the template-projection technique, we can estimate the activity
concentration A, for region m (i.e., for the target lesion) by minimizing the
weighted least squares difference

2

M
o [P~ 2 Anry(@)
2 — m= 2
=2 NTD @

where D is the number of detector elements (i.e., pixels) from which we
estimate the activity concentrations (typically an area surrounding the target
lesion). We note that a theoretical basis for this formulation has been
described elegantly by Formiconi’® and is similar to a method described by
Liu.®” An alternative formulation assuming Poisson statistics was suggested
by Carson.”® Specific details of the implementation described here can be
found elsewhere.*?

The template projection technique described above for planar imaging can
be extended to quantify target regions in tomographic images. This tech-
nique, called “template projection-reconstruction”,*” begins with the “tem-
plate projection” technique described above. This process is repeated for all
angles sampled by the tomographic acquisition of the real radionuclide data.
After the template projection data for the target and for the background
structures are modelled, they are reconstructed with the same reconstruction
algorithms (e.g., ML-EM or filtered-backprojection) that are used for recon-
structing the emission data. The reconstructed templates contain informa-
tion about physical effects (e.g., photon attenuation, scatter radiation,
geometric response) included in the modelling process and can be used to
quantify the emission tomographic data. Several methods are then available
for estimating the object activity concentration. For example, the radio-
nuclide content of the target region can be calculated using a technique
analogous to that discussed above for planar imaging by assuming that
both the imaging and reconstruction processes are linear. With this assump-
tion, the reconstructed activity concentration p(i) of each voxel of the
radionuclide image is represented as a linear combination of the M radio-
nuclide concentrations 4,, (assumed to be uniform) in the different regions,
weighted by their corresponding reconstructed template values v,,(7)

M
m=1

where v,,(i) represents the contribution of activity region m to measured
counts in reconstructed voxel 7, as estimated from the template projection-
reconstruction process. The activity concentrations of each object may be
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obtained by linear least squares fitting analogous to that given by Eq. 2.
Alternatively, the corrected mean activity concentration p, in the target
region can be calculated through voxel-by-voxel rescaling after estimating
or assuming the background activity concentration p.

p(i) — ppyp(i)
4
; ¥.(0) )

where vy,(i) and v,(i) represent the reconstructed template values for voxel
location i and contributed by the background (b) and target (z) regions,
respectively. The voxel-by-voxel correction is analogous to scaling the recon-
structed data with object size- and shape-dependent recovery factors**5>-%?
(i.e., by division by 7,(i) and corrects for “spill-in”” of background activity
into the target lesion (by subtraction of the term p,vy,(7)). The radionuclide
content of a given target region ¢, can be calculated as p, V7, where V, is the
actual target volume defined on the CT image.

At present, dual-modality imaging is most widely used to enable spatial
registration of structural and functional information from CT and radio-
nuclide imaging. Attenuation correction of radionuclide data using a CT-
derived patient-specific map of attenuation coefficients also is available with
all dual-modality imaging systems. However, very few clinical or biological
studies have been conducted that use quantification methods such as tem-
plate projection, template projection-reconstruction, or other model-based
methods that extract a priori anatomical information for analysis of func-
tional data from PET or SPECT. However, these techniques are being
developed and are slowly being incorporated into research studies. For
example, Koral et al.®® have developed a technique that uses CT-SPECT
image fusion with conjugate view imaging to quantify the uptake of single-
photon radionuclides in vivo. In this analysis, a patient-specific attenuation
map is derived from the correlated CT images to correct the radionuclide
data for photon attenuation. In addition, volumes of interest delineating the
extent of the tumour are defined anatomically on the CT scans, then are
superposed on the SPECT data for radionuclide quantification'®*!°!, Excel-
lent results have been obtained with this method to assess radiation dosim-
etry of lymphoma patients undergoing radionuclide therapy with '*'I-
tositumomab, also known as the anti-B1 monoclonal antibody.®>** An
initial study showed that the percentage of infused dose in the tumour
following therapeutic administration of the agent could be predicted within
8% by linear extrapolation of the uptake of tracer amounts infused before
therapy.” A later study demonstrated that the probability of complete
response using radionuclide therapy was correctly associated with a high
tumour dose measured in the patient using the SPECT-CT analysis.®> Fur-
thermore, for individual tumours, the combined SPECT-CT method pro-
vided a statistically significant relationship between radiation dose and
tumour volume reduction at 12 weeks whereas this relationship was not
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significant for dosimetry estimated from a conventional pre-therapy
conjugate view radionuclide imaging alone.'"*!% Koral er al. developed
the quantification method using images obtained using separate SPECT
and CT studies and that were combined using software-based image regis-
tration; however, the quantification technique certainly could be implemen-
ted using a dual-modality SPECT/CT system of the type described in this
chapter. The reader is directed to a more extensive discussion of planar
radionuclide quantification techniques in chapter 13. Radionuclide quanti-
fication also can be implementated using SPECT/CT, PET/CT, and
other dual-modality imaging approaches of the type described in this
chapter.'

4. General Design Features of Dual-Modality
Imaging Systems

Modern dual-modality imaging systems incorporate subsystems for radio-
nuclide imaging and for x-ray computed tomography that essentially use the
same components as those in dedicated nuclear medicine and CT systems. In
PET/CT, the radionuclide detector uses a scintillator (bismuth germinate,
lutetium orthosilicate, gadolinium orthosilicate) coupled to an array of
photomultiplier tubes for imaging the annihilation photons from the posi-
tron-emitting radiopharmaceuticals. Modern PET/CT scanners also include
an x-ray source and detector identical to those used in modern multislice
helical scanning CT scanners.*** Similarly, SPECT/CT systems use con-
ventional dual-headed scintillation cameras suitable for planar scintigraphy
or tomographic imaging of single-photon radionuclides, or coincidence-
imaging of PET radiopharmaceuticals. The first-generation clinical
SPECT/CT scanners used a low-resolution CT detector**!7%195 that
offered relatively modest scan times (i.e., approximately 20 seconds per
slice). However, newer SPECT/CT scanners now are becoming available
that incorporate state-of-the-art multislice helical CT scanners identical to
those used for diagnostic CT procedures.

The integration of the radionuclide and x-ray imaging chains in a dual-
modality imaging system requires special considerations beyond those
needed for scanners designed for single modality imaging alone. One chal-
lenge is offered by the presence of x-ray scatter from the patient that has the
potential to reach and possibly damage the radionuclide detectors which are
designed for the relatively low photon fluence rate encountered in radio-
nuclide imaging.***>%* To avoid this possibility, the radionuclide detector in
a dual-modality system typically is offset in the axial direction from the
plane of the x-ray source and detector. This distance can be relatively small
when a modest x-ray tube is used such as the 140 kV, 1 mA tube used in the
GE Millennium VG SPECT/CT system,®* but can be 60 cm or more when a
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diagnostic CT scanner is coupled to a modern PET scanner operated with-
out septa, 2530:31:34

As noted above, all dual-modality systems rely on separate x-ray and
radionuclide imaging chains that must be supported on a common mechan-
ical gantry to maintain consistent spatial relationship between the two data
sets, and allow the detectors to be rotated and positioned accurately for
tomographic imaging. The requirements for translational and angular posi-
tioning accuracy are, of course, different for CT, SPECT, and PET. For
example, CT requires approximately 1000 angular samples acquired with an
angular position and center of rotation maintained with submillimeter ac-
curacy. In comparison, SPECT and PET have spatial resolutions of a few
millimetres, and therefore can be performed with an accuracy of slightly less
than a millimetre for clinical imaging.

The mechanical gantry of the dual-modality imaging system obviously
must be designed to satisfy the requirements for both the radionuclide image
and for CT. This can be achieved in several ways. In first generation SPECT/
CT systems,***17%195 the SPECT detectors and CT imaging chain were
mounted on the same rotating platform and were used sequentially while
rotated around the patient. This limited the rotational speed of the x-ray and
radionuclide imaging chains to approximately 20 sec per rotation, but also
had the advantage that it could be performed using a gantry similar to that
used with a conventional scintillation camera. Second generation SPECT/
CT systems that now are available include high-performance diagnostic CT
subsystems. This requires the heavy SPECT detectors to be mounted on a
separate rotating platform from the CT imaging chain which is rotated at
speeds of 0.25 to 0.4 sec per revolution. While this design obviously increases
the performance of the CT subsystem, it also increases the cost and com-
plexity of the gantry.

In comparison to SPECT/CT in which the radionuclide detector is rotated
around the patient during data acquisition, PET typically (but not always) is
performed using a dedicated high-end stationary detector ring. A PET/CT
system therefore can be configured by designing a gantry that mounts a
stationary PET detector ring in tandem with a platform that rotates the CT
imaging chain around the patient using a mechanical configuration similar
to that used in a conventional diagnostic CT scanner. Alternatively, a partial
ring of PET detectors can be rotated to acquire the PET data using the same
rotating platform as the CT subsystem. This approach was taken by Town-
send and his colleagues in their implementation of the first PET/CT sys-
tem,”®3%3! and is an alternative for a more economical dual-modality system
in comparison to those that use a full-ring of PET detectors. All of these
mechanical designs have been used in commercial dual-modality systems
and obviously offer trade-offs in terms of their performance and cost.

The patient table is another seemingly simple, yet important element of a
dual-modality scanner.>**> Most imaging systems use cantilevered patient
tables to support the patient in the bore of the imaging system. Patient tables
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are designed to support patients weighing up to 500 pounds, but obviously
deflect to varying degrees when they are loaded and extended with normal
adult patients. However, dual-modality systems use x-ray and radionuclide
imaging chains in tandem and thereby require longer patient tables than
conventional imaging systems. Moreover, the table extension and the degree
of deflection can be different for the x-ray and radionuclide imaging chains
which can introduce a patient-dependent inaccuracy in the registration of
the x-ray and radionuclide images. This problem is overcome by several
different methods. The first uses a patient table which is supported in front
of the scanner, with a secondary support between or at the far end of the
x-ray and radionuclide imaging chains to minimize table deflection. A
second approach adopted by CTI Molecular Imaging and Siemens Medical
Systems uses a patient table that can be fixed on a base that is translated
across the floor to extend the patient into the scanner. Since the patient
platform is stationary relative to its support structure (which acts as a
fulcrum), the deflection of the patient table is identical when the patient is
positioned in the radionuclide imager or the CT scanner.

Finally, in modern dual-modality scanners, the computer systems are well
integrated in terms of system control, data acquisition, image reconstruc-
tion, image display, and data processing and analysis.**!°® The dual-modal-
ity system must calibrate the CT data so that it can be used as an attenuation
map to correct the radionuclide data for photon attenuation.?!-?%:27:2%:42:44
For physician review, the dual-modality system also typically registers the
CT and radionuclide data and presents the radionuclide image as a colour
overlay on the grey-scale CT image. Finally, software tools are provided
that, for example, allow a cursor placed on the CT image by the operator
with another cursor automatically placed in the identical position on the
radionuclide image, and vice versa. These software functions allow the
operator to utilize the dual-modality data in correcting, viewing, and inter-
preting and obviously are important design elements in modern dual-
modality imaging systems.

5. PET/CT Imaging Systems

The first combined PET/CT system was developed by Townsend and co-
workers at the University of Pittsburgh in 1998.2%2%3* The system was
configured by combining a Somatom AR.SP spiral CT scanner (Siemens
Medical Systems) in tandem with the PET detectors from an ECAT ART
PET system (CTI/Siemens). The PET subsystem consisted of two arrays of
bismuth germanate (BGO) block detectors covering 16.2 cm in the axial
direction with 24 partial detector rings operated without septa, allowing
the PET data to be acquired in a fully 3-dimensional mode. The CT scanner
was a third generation helical CT scanner that has an x-ray tube operated at
110-130 kVp with a 6.5 mm Al-equivalent filtration and having a xenon
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x-ray detector with 512 elements. Both the CT components and the PET
detectors are mounted on opposite surfaces of the rotating stage of the CT
system, and during imaging are rotated continuously at a rate of 30 rpm.
The system has a common patient table, with the patient translated between
the centers of the CT and PET imaging planes which were offset axially by
60 cm. On the prototype system, an axial extent of 100 cm in the patient
could be covered by simple table translation®-* with the PET and CT
images acquired sequentially rather than simultaneously. The PET/CT
prototype was operational at the University of Pittsburgh from May 1998
to August 2001, during which over 300 cancer patients were scanned. These
pioneering studies by Townsend and his colleagues demonstrated both the
feasibility and the clinical benefit of combined PET/CT scanning, and
prompted significant interest from the major medical imaging equipment
manufacturers who now all have introduced commercial PET/CT scanners
for clinical use.

PET/CT scanners now are available from all of the major medical imaging
equipment manufacturers (GE Medical Systems, CT1/Siemens Medical Sys-
tems, and Philips Medical Systems).*>'” Current systems have up to 16 slice
CT capability and have radionuclide detectors with either 2D or 3D PET
imaging capability. The PET scanner can have either bismuth germinate
(BGO), lutetium oxyorthosilicate (LSO), or gadolinium oxyorthosilicate
(GSO) scintillators. The CT study typically is used for both localization of
the FDG uptake®®*' ! as well as for attenuation correction of the PET
image. In addition, the use of CT in comparison to external transmission
rod sources for producing the attenuation data increases patient throughput
by approximately 30%.'” As noted above, the PET/CT system also has a
specially designed patient table that is designed to minimize deflection when
it is extended into the patient port.

Figure 8 shows the 7 steps identified by Beyer ez al.'*® that comprise a typical
PET/CT scan, demonstrating the degree of integration available in a modern
dual-modality imaging system. (1) The patient is prepared for imaging which
commonly includes administration both with contrast media®® and with the
radiopharmaceutical, typically 370 to 555 MBq (10 to 15 mCi) of "*F-fluro-
deoxyglucose (FDG) in adults. (2) The patient then is asked to remove all metal
objects that could introduce artefacts in the CT scan and then is positioned on
the patient table of the dual/modality imaging system. (3) The patient then
undergoes an “overview’’ or “‘scout’ scan during which x-ray projection data
are obtained from the patient to identify the axial extent of the CT and
radionuclide study. (4) The patient undergoes a CT acquisition. (5) The patient
then undergoes the nuclear medicine study approximately 1 hour after FDG
administration. (6) The CT and PET data then are reconstructed and regis-
tered, with the CT data used for attenuation correction of the reconstructed
radionuclide tomograms. (7) The images are reviewed by a physician who can
view the CT scan, the radionuclide images, and the fused x-ray/radionuclide
data, followed by preparation of the associated clinical report.
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FIGURE 8. Illustration of standard PET/CT scanning protocol. The patient is posi-
tioned on a common specially designed patient table in front of the combined mech-
anical gantry. First, a topogram is used to define the co-axial imaging range (orange).
The spiral CT scan (grey box) preceded the PET scan (green box). The CT data are
reconstructed on-line and used for the purpose of attenuation correction of the corre-
sponding emission data (blue box). Black and blue arrows indicate acquisition and
data processing streams, respectively. Reprinted with permission from ref.!%®

There have been multiple studies which have demonstrated the role of
PET/CT especially for oncologic applications.''® For example, in a clinical
study of PET/CT for the evaluation of cancer in 204 patients with 586
suspicious lesions, PET/CT provided additional information over separate
interpretation of PET and CT in 99 patients (49%) with 178 sites (30%).'%
Furthermore, PET/CT improved characterization of equivocal lesions as
definitely benign in 10% of sites and as definitely malignant in 5% of sites.
It precisely defined the anatomical location of malignant FDG uptake in 6%,
and led to the retrospective lesion detection on PET or CT in 8%. As a result,
PET/CT had an impact on the management of 28 patients (14%), obviated
the need for further evaluation in 5 patients, guided further diagnostic
procedures in 7 patients, and assisted in planning therapy in 16 patients.
Figure 9 shows an example of a patient study where the combined PET/CT
images provided additional information, thus impacting the characterization
of abnormal FDG uptake.

6. SPECT/CT Imaging Systems

As noted earlier, the first SPECT/CT imaging systems were developed at the
University of California, San Francisco by Hasegawa and co-workers. The
first prototype instruments (Figures 2 and 3) were configured as small-bore
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FIGURE 9. Precise characterization of increased '*F-FDG uptake and retrospective
lesion detection on CT, after PET/CT. The patient is a 35-y-old man, 22 months after
treatment of colon cancer, with negative high-resolution contrast-enhanced CT and
normal levels of serum tumour markers, referred for PET scan for assessment of
pelvic pain. The coronal PET images (left) show area of increased '*F-FDG uptake in
left pelvic region (arrow), interpreted as equivocal for malignancy, possibly related to
inflammatory changes associated with ureteral stent or to physiological bowel up-
take. Hybrid PET/CT (right) transaxial image (top) precisely localized uptake to soft-
tissue mass adjacent to left ureter, anterior to left iliac vessels. Mass (arrow) was
detected only retrospectively on both diagnostic CT and CT component of hybrid
imaging study (bottom). Patient received chemotherapy, resulting in pain relief
and decrease in size of pelvic mass on follow-up CT. Reprinted with permission
from ref.'”

SPECT/CT systems with a small segmented high-purity germanium detector
operated in pulse-counting mode for simultaneous x-ray and radionuclide
imaging.*>?%>">% A clinical prototype SPECT/CT system (Figure 4) also was
configured at UCSF by installing a GE X/RT SPECT camera and GE 9800
CT scanner in tandem with a common patient table,?"*>**% and was used
for studies on both large animals and patients.

The first dual-modality imaging system designed for routine clinical use
was the Millennium VG (Figure 10) introduced by General Electric Health-
care Technologies (Waukesha, WI) in 1999.40:41-70-105 Thijs system has both
x-ray and radionuclide imaging chains that were integrated on a common
gantry for “functional-anatomical mapping”. X-ray projection data are
acquired by rotating the x-ray detector and low-power x-ray tube 220
degrees around the patient. Since the patient is not removed from the patient
table, the x-ray and radionuclide images are acquired with a consistent
patient position in a way that facilitates accurate image registration. The
image acquisition of the CT data requires approximately five minutes, and
the radionuclide data requires a scan time of approximately 30 to 60
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FiGgure 10. GE Millennium VG SPECT system with x-ray anatomical mapping.
Reprinted with permission from General Electric Healthcare Technologies, Wauke-
sha, Wisconsin.

minutes. These SPECT/CT systems produce transmission data with signifi-
cantly higher quality and better spatial resolution than those acquired with
an external radionuclide source, and can be used for anatomical localiza-
tion'* and attenuation correction of the radionuclide data.

In June 2004, both Siemens Medical Systems and Philips Medical Systems
introduced SPECT/CT systems offering the performance available on state-
of-the-art diagnostic CT systems. For example, Siemens Medical Systems
now offer their Symbia line of SPECT/CT systems that have a single-slice,
2-slice, or 6-slice CT options with 0.6 sec rotation speed coupled to a dual-
headed variable-angle SPECT system. The 6-slice CT scanner will cover the
abdomen in less than 6 seconds and allows both x-ray based attenuation
correction and anatomical localization with the correlated diagnostic
CT images. Philips Medical Systems has announced their Precedence
SPECT/CT system which incorporates a dual-headed SPECT system with
a 16 slice diagnostic CT scanner. The advanced CT capability has several
potential benefits. First, they offer CT scan times that are compatible with
the use of contrast media for improved lesion delineation with CT. Second,
they offer improved image quality and spatial resolution typical of that
offered by state-of-the-art diagnostic CT scanners. Finally, CT scanners
offering 16 or more slices can be used for cardiac and coronary imaging.
SPECT/CT scanners with multislice capabilities therefore offer improved
performance for tumour imaging and have the potential to acquire and
overlay radionuclide myocardial perfusion scans on a CT coronary angio-
gram showing the underlying arterial and cardiac anatomy in high spatial
resolution.



2. Dual-Modality Imaging 57

7. Small-Animal Imaging Systems

The advantages of improved image quality and quantitative accuracy that
are available for clinical applications of dual-modality imaging also are
being investigated as a means of facilitating biological research, especially
those that involve small animals such as mice and rats.*”*!'! Advances in
molecular biology and genetic engineering, and the modern growth of the
pharmaceutical and biotechnology industries have increased the need for
biological studies that involve mice. Approximately 90% of all research
involving vertebrate biology now uses mice as the predominant mammalian
model.""? Approximately 25 million mice were raised in 2001 for experimen-
tal studies, and this number is expected to increase at a rate of 10% to 20%
annually over the next decade. In addition, experimental methods now allow
the genetic sequence of mice to be manipulated by knockout or transgenic
techniques in which a genetic sequence from another individual or species
can be deleted or inserted into that of an individual animal. Murine models
now are available for a wide variety of biological conditions and transgenic
animals''*""'® now account for a sizable and growing fraction of animal
models used in biological research.

Traditional techniques of biological research including histology, organ
sampling, and autoradiography, require that animals must be sacrificed for
the measurement to be obtained. This precludes investigators from obtaining
multiple measurements from an individual during the progression of disease
or while an animal is monitored following diagnostic procedures or thera-
peutic interventions. This greatly increases the number of animals that must
be used for an individual experiment, compromises statistical power, and
requires that control and experimental measurements are made in different
rather than in the same animal.

While noninvasive imaging techniques potentially could be used in these
experiments to obtain the desired measurements, clinical medical systems do
not have adequate spatial resolution and temporal resolution, and other
specific characteristics needed to image small animals. For example, for
cardiovascular studies, the left heart of a mouse in short axis view is ap-
proximately 5 mm in diameter with the left ventricular wall having a thick-
ness of approximately 1 mm. In addition, the mouse heart rate is 600 to 900
beats per minute making it difficult to acquire image data with cardiac
gating."'®!"” Similarly, small tumours can have a diameter of a few milli-
metres, within the spatial resolution limit of clinical CT and MRI systems
but outside that of conventional radionuclide imaging such as SPECT or
PET. For these reasons, investigators have developed high resolution im-
aging systems specifically designed for small animal imaging,''!:!1%118-120
These include microCT systems!'®121"123 that incorporate a low power X-ray
tube and a phosphor-coupled CCD camera or similar two-dimensional x-ray
imaging detector to achieve spatial resolutions as high as 25 microns or
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better. Similarly, high-resolution images can be obtained using microPET
scanners' """ having high-resolution detectors operated in coincidence to
obtain spatial resolutions in the range of 1 to 2 mm, whereas SPECT
imaging of mice'**'?° can be performed using pinhole collimation to obtain
spatial resolutions better than 1 millimetre. In general, these imaging systems
provide characteristics similar to those used for clinical imaging of humans.
In the specific case of radionuclide imaging, including microPET and micro-
SPECT, the accumulation of radiotracer can be used to monitor physio-
logical or biological interactions in the animal. Dual-modality imaging
offers potential advantages in biological studies, similar to those offered in
clinical protocols.'?*!3%13% First, the availability of anatomical data im-
proves localization and interpretation of studies involving radiopharmaceu-
tical uptake. In addition, the visual quality and quantitative accuracy of
small animal imaging can be improved using x-ray based techniques to
correct the radionuclide data for physical errors contributed by photon
attenuation, scatter radiation, and partial volume effects due to the limited
spatial resolution of the radionuclide imaging system.

In response to these concerns, several investigators now are developing
dual-modality imaging systems specifically designed for imaging small ani-
mals.>” Dr. Cherry and his group, now at the University of California at
Davis, have developed a microPET system for small-animal imaging. Com-
mercial versions of these microPET systems suitable for imaging mice and
rats now are available from CTI Concorde Microsystems (Knoxville, TN).
The same group also has developed a microCT/microPET dual-modality
imaging system.'*! The microPET detectors use LSO scintillator coupled
through a fiber-optic taper to a position sensitive photomultiplier tube.
These are placed on opposite sides of the animal with the annihilation
photons from the positron emission detected in coincidence. The system
also includes a microCT system having a microfocus x-ray tube and an
amorphous selenium detector coupled to a flat panel thin film resistors
readout array.'** A schematic diagram of a prototype system and an
image of a mouse obtained with the microPET/microCT system are shown
in Figure 11.

SPECT/CT systems designed specifically for small animal imaging also
are being developed by several investigators.'2%:13% 138140141 Ope of the first
small animal SPECT/CT systems was developed by a consortium that in-
cludes The Thomas Jefferson National Accelerator Facility (Jefferson
Laboratory), The University of Virginia, and researchers at the College of
William and Mary."**'* These systems use a compact scintillation camera
that operates with multiple Hamamatsu R3292 position-sensitive photo-
multiplier tubes (PSPMT’s) coupled to a pixelated array of cesium iodide
(CsI(T)) crystals using both pinhole and parallel-hole collimators. The x-ray
data are acquired using a small fluoroscopic x-ray system (Lixi, Inc., Down-
ers Grove, IL). Representative planar dual-modality images acquired on one
of the systems mentioned above obtained from a 250-g rat injected with
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FIGURE 11. Top: schematic diagram of the experimental set-up. The CT and PET
components are mounted in a coplanar geometry so that the same portion of the
mouse is imaged by both systems at once. The back PET detector is shown without
the lead shielding in place in order to show the design of the detector modules. The
lead shielding on the entrance face is 1.5 mm thick. The detectors remain stationary
while the object is rotated on the bed mounted on the rotation stage. Bottom: scan of
a mouse 3 hours after injection of 26 MBq of '8F bone seeking tracer. The images
shown are from left to right: sagittal slices through the CT image, the '*F PET image,
and the fused PET/CT image. Note the overlap of the PET uptake with the location
of the bones in the CT image. The scan was acquired using 400 views in a time of 38
min. Reprinted with permission from ref.!3!

9mTc.MDP are shown in Figure 12, demonstrating radiopharmaceutical
uptake in the bone superimposed with an anatomical x-ray image of the
rat 133142

Gamma Medica® Inc. (Northridge, CA) has developed and introduced a
small animal SPECT/CT system'*”'*® with two compact scintillation cam-
eras' 14314 and a high-resolution CT subsystem'*® for dual-modality
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FIGURE 12. Superposition of digital x-ray radiography (left) and radionuclide
9mTe.MDP bone scan (middle) resulting in a fused image of the rear portion of a
rat (right). (Courtesy of Dr Mark B. Williams, University of Virginia).

imaging of mice, rats, and other small animals (Figure 13). The scintillation
camera can be operated with pinhole collimators that provide submillimeter
spatial resolution in the reconstructed images or with parallel-hole collima-
tors when higher detection sensitivity or whole body imaging is desired. The
system includes a high-resolution microCT subsystem'*® configured with a
CMOS x-ray detector coupled to a gadolinium oxysulfide scintillator and a
low-power x-ray tube. The microCT system provides anatomical imaging
with a spatial resolution of approximately 50 microns; the resulting x-ray
data can be used both for attenuation correction and for anatomical local-
ization of the radionuclide data (Figure 14). In addition, the radionuclide
data can be acquired with ECG-gating for cardiovascular imaging applica-
tions where wall-motion abnormalities, ejection fraction calculations, or
other assessments of ventricular function are necessary.

FiGURE 13. Gamma Medica X-SPECT system has dual-headed compact SPECT
system and high-resolution microCT imaging capability. Reprinted with permission
from Gamma Medica, Incorporated, Northridge, CA.
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FIGURE 14. X-ray CT (top row), SPECT (middle row), and coregistered SPECT/CT
(bottom row) obtained with small animal dual-modality system (X-SPECT, Gamma
Medica, Northridge, CA) of colon carcinoma xenograft in right shoulder of mouse.
SPECT images recorded 23 hours after administration of '**I-labeled anti-CEA
minibody'# that localizes in colon carcinoma. Images shown in transverse (left
column), sagital (middle column), and coronal (right column) tomograms. (Images
from G Sundaresan, S Gambhir, AM Wu, with permission from AM Wu, UCLA,
Los Angeles, CA, and reprinted with permission from ref.!4¢

Finally, the Center for Gamma Ray Imaging at the University of Arizona,
under the direction of Dr Barrett, has configured a high-resolution SPECT/
CT system for small animal imaging.'*® High-resolution SPECT is per-
formed with a modular semiconductor detector that consists of a
2.5 x 2.5 x 0.2 em? slab of cadmium zinc telluride (CdZnTe) operated with
a continuous gold electrode to apply bias on one side, and a 64 x 64 array of
pixelated gold electrodes on the opposite side connected to an ASIC for
readout of the individual pixel signals. The detector has a 380um pixel pitch,
and 330um wide pixels, coupled to a 7 mm thick parallel-hole collimator for
radionuclide imaging. The x-ray and radionuclide imaging subsystems are
mounted with their image axes perpendicular to one another with the animal
rotated vertically within the common field of view. The x-ray and radionu-
clide projection data are acquired sequentially, and corrected for distortions
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and nonuniformities introduced by each of the detectors, then reconstructed
with statistical iterative algorithms (OS-EM).

8. Need for Dual-Modality Imaging

Even though both PET/CT and SPECT/CT systems have been accepted
commercially, the clinical role and need of these systems is still being
debated. PET, for example, is a diagnostic technique that offers a sensitivity
and specificity in excess of 90% for many malignant diseases, and some argue
that an incremental improvement in specificity or sensitivity beyond that
point probably cannot justify the cost of performing image fusion for all
patients on a routine basis.'"*” Furthermore, a patient receiving medical
diagnosis typically undergoes both anatomical and functional imaging
from commonly-available single-modality medical imaging systems. This
means that the anatomical images can be viewed side-by-side with the
functional images when necessary. In other cases, image registration tech-
niques'>'® can be used when a more direct fusion of anatomical and func-
tional data following their acquisition without the use of the expensive new
dual-modality imaging systems (see chapter 9).

Nonetheless, other practitioners now see important roles for dual-modal-
ity imaging in the sense that it offers important features for diagnostic
studies and patient management.>’”>'% First, the anatomical and func-
tional information from dual-modality imaging are supplementary and not
redundant. As noted ecarlier, anatomical imaging is performed with tech-
niques such as CT or MRI that have excellent spatial resolution and signal-
to-noise characteristics, but that may offer relatively low specificity for
differentiating disease from normal structures. In contrast, radionuclide
imaging generally targets a specific functional or metabolic signature in a
way that can be highly specific, but generally lacks spatial resolution and
anatomical cues which often are needed to localize or stage the disease, or
for planning therapy.*®3#!:1*8 Similarly, the availability of correlated func-
tional and anatomical images improves the detection of disease by highlight-
ing areas of increased radiopharmaceutical uptake on the anatomical CT or
MRI scan, whereas regions that look abnormal in the anatomical image can
draw attention to a potential area of disease where radiopharmaceutical
uptake may be low. The information from CT supplements that from
radionuclide imaging, and vice versa; therefore it generally is advantageous
to view the CT and radionuclide images side-by-side during the diagnostic
interpretation. In other cases, it can be valuable to view a fused dual-
modality image in which the radionuclide data are presented as a colour
overlay on the grey-scale CT image. The availability of a dual-modality
imaging system facilitates this process in acquiring the functional and ana-
tomical data with the patient in a consistent configuration and during a
single study, in a way that is faster and more cost-efficient than attempting
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to register the images by software after they are acquired on separate
imaging systems. The dual-modality image data can be used to guide radi-
ation treatment planning for example by providing anatomical and func-
tional data that are important for defining the target volume as well as
indicating normal regions that should avoid irradiation. Similar roles are
played when the dual-modality data is used to guide surgical approach,
biopsy, or other interventional procedures.”

In addition, the anatomical and functional information from a dual-
modality imaging system are complementary in that together they provide
information that cannot be easily discerned from one type of image alone.
This is best illustrated in oncologic applications where anatomical imaging
often is needed to differentiate whether the radiopharmaceutical has local-
ized in response to disease (e.g. in the primary tumour, lymphatic system, or
metastatic site)*>>**1%%:73 or as part of a benign process (e.g. in the GI tract,
urinary system, or in response to inflammation).>> Moreover, the process of
differentiating normal from abnormal uptake of "*F-FDG can be compli-
cated by the relative paucity of anatomical cues in the "SF-FDG scan,
making it necessary for the diagnostician to refer to anatomical images
obtained from CT or MRI to correlate the structural and functional infor-
mation needed to complete the analysis.

The potential advantages of dual-modality imaging are further illustrated
by a meta-study of PET-CT fusion for radiotherapy treatment planning in
non-small cell lung carcinoma (NSCLC). Paulino et al.'*® found that the use
of FDG imaging with PET/CT may alter target volumes for radiation
therapy treatment planning in 26 to 100% of patients with NSCLC com-
pared with CT-based treatment planning alone. Approximately 15 to 64%
had an increase in the planning target volume (PTV), whereas 21 to 36% had
a decrease in PTV. Similarly, in a study at Duke University,'* SPECT-CT
was useful in detecting the 48% of patients with hypoperfused regions of the
lung, and in 11% of patients this information was used to alter the radiation
therapy fields to avoid highly functional lung tissue. In addition, PET/CT
and SPECT/CT may have an important role in guiding radiation treatment
planning in cancers of the brain, head and neck, cervix, and other areas
including lymphoma and melanoma.'*® These examples are not exhaustive,
but indicate the potentially important role of dual-modality imaging in
guiding radiation treatment planning in comparison to techniques that use
anatomical imaging with CT alone.

The complementary nature of dual-modality imaging also is demonstrated
by the use of a CT-derived attenuation map and other a priori patient-
specific information from CT that can be used to improve both the visual
quality and the quantitative accuracy of the correlated radionuclide imaging.
This occurs in myocardial perfusion imaging of **™Tc-sestamibi or thallium-
201 where SPECT/CT can provide an attenuation map to compensate the
radionuclide image for soft-tissue attenuation associated with false-positive
errors. In both PET/CT and SPECT/CT, the use of CT-derived attenuation
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map is also practical and cost-efficient in that with modern CT scanners it is
generated in a few seconds, resulting in more efficient use of time than
SPECT or PET scanners that use external radionuclide sources to record
the transmission image. The resulting CT-derived attenuation map also is of
significantly higher quality, and arguably is more accurate, than those
acquired using scanning line sources available in conventional radionuclide
imaging systems. As dual-modality imaging systems become available with
faster and higher spatial-resolution CT systems, it may be possible to per-
form CT angiography of peripheral or coronary vessels that can be super-
imposed on a colour map of tissue perfusion or metabolism obtained with
SPECT or PET.

9. Challenges of Dual-Modality Imaging

There are several challenges that face the use of dual-modality imaging, and
that may represent inherent limitations in this technique. All currently-used
dual-modality imaging systems record the emission and transmission data
using separate detectors rather than a single detector. In addition, the x-ray
and radionuclide imaging chains are separated by several tens of centimetres,
to facilitate mechanical clearance and to avoid contamination of the radio-
nuclide data by scatter radiation produced by the x-ray scan. One potential
problem occurs when the patient moves either voluntarily or involuntarily
between or during the anatomical and functional image acquisitions. This
can occur, for example, when the patient adjusts his or her position while
lying on the patient bed. Patient motion also occurs due to respiration,
cardiac motion, peristalsis, and bladder filling, all of which can lead to
motion blurring or misregistration errors between the radionuclide and CT
image acquisitions."'® Traditionally, CT data were acquired following a
breath-hold, whereas PET data were acquired over several minutes with
the patient breathing quietly. However, these breathing protocols can lead
to misregistration artefacts due to anatomical displacements of the dia-
phragm and chest wall during a PET/CT or SPECT/CT scan. For example,
if the position of the diaphragm is displaced in the CT scan, which then is
used as an attenuation map for the radionuclide data, this displacement can
lead to an underestimate or overestimate of radionuclide uptake in the
reconstructed emission data.®® The discrepancy in diaphragmatic position
between PET and CT can result in the appearance of the so-called “cold”
artefact at the lung base (Figure 15). A recent study'>” noted that in 300
patients with proven liver lesions; approximately 2% appeared to have the
lesion localized in the lung due to respiratory motion. Care therefore must be
taken when interpreting results from patients with disease in periphery of the
lung where noticeable radiopharmaceutical uptake may be contributed by
respiratory-induced motion artefacts rather than disease.
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FIGURE 15. Demonstration of a cold artefact on PET images reconstructed with CT-
based attenuation correction. (A) Coronal CT, (B) "*F-FDG PET, and (C) fused, and
(D) sagittal CT, (E) PET, and (F) fused images are displayed. A region of decreased
metabolic activity is demonstrated in the diaphragmatic region (below vertical
arrows), representing a “cold artefact”. Reprinted with permission from ref.''°

Modern dual-modality scanners now use CT technology that can acquire
the anatomical data within a few seconds after the patient is positioned on
the bed. For this reason, the CT acquisition rarely is the factor that limits the
speed of the dual-modality image acquisition in comparison to SPECT or
PET that can consume several minutes to complete. If additional increases in
scan speed are needed, these must be implemented using faster radionuclide
scans using newer detector technologies, faster scintillators, increased com-
puting power, and more efficient scanner architectures or detector designs
than are currently being used. In PET, this includes the possibility of
replacing conventional PET block detectors with LSO panel detectors®>'>!
which would cover a larger axial extent of the patient with the goal of
achieving 5 min scan times and thereby would allow even faster scan times
than are achievable with current systems. Regardless, faster scan speeds both
improve patient comfort and limit the time during which patient motion can
occur during the study. In addition, faster scan speeds can promote faster
patient throughput and thereby increase system utilization and cost-effect-
iveness of the study.

Dual-modality imaging systems now commonly use the correlated CT
scan as an attenuation map for the correction of the emission data acquired
with PET or SPECT. The use of iodinated contrast media for the CT scan
also presents a potential challenge when the CT scan is used as an attenu-
ation map for correction of SPECT or CT data.®® Since the x-ray energy of
the CT data generally will be different than the photon energy of the radio-
pharmaceutical emission data, as described above, the CT data must be
transformed to units of linear attenuation coefficient at the photon energy
of the radiopharmaceutical emission data. This is performed by assuming
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that image contrast in the CT data is contributed by mixtures of air, soft
tissue, and bone. The presence of iodinated contrast complicates this process
since two regions that have the same image contrast may indeed have
different compositions, for example contributed by bone and soft tissue in
one case and iodine contrast and soft-tissue in another situation. These
artefacts are most severe in cases where the contrast media is concentrated,
for example in abdominal imaging after the patient swallows a bolus of oral
contrast. In this case, the higher densities contributed by the oral contrast
media can lead to an overestimation of PET activity.®® Some investigators
have proposed using an image segmentation post-processing technique in
which image regions corresponding to iodinated contrast are segmented
using image processing from those contributed by bone.®’ In addition,
other strategies including the acquisition of both pre-contrast and post-
contrast CT scans, can be used to minimize possible artefacts contributed
by the presence of contrast media when the CT scan is to be used as an
attenuation map for correction of the PET data.*

Use of dual-modality has demanded that technologists be cross-trained in
both modalities, and that medical specialists have expertise in interpreting
both anatomical and functional image data. Also, optimal use of SPECT/CT
and PET/CT requires a team approach involving physicians from radiology
and nuclear medicine, as well as oncology, surgery, and other clinical
disciplines.

10. Future of Dual-Modality Imaging

Over the past 10 to 15 years, dual-modality imaging has progressed steadily
from experimental studies of technical feasibility to the development of
clinical prototypes to its present role as a diagnostic tool that is experiencing
widening commercial availability and clinical utilization. Dual-modality
imaging has advanced rapidly, primarily by incorporating the latest techno-
logical advances of CT, SPECT, and PET. Currently, combined MRI/
MRSI, %133 PET/CT,**3> and SPECT/CT!?* systems are available com-
mercially and are used clinically. SPECT/CT systems now are available that
include state-of-the-art dual-headed scintillation camera and multislice hel-
ical CT scanners for rapid patient throughput. Similarly, the PET/CT scan-
ners now are widely available from all of the major equipment
manufacturers that include high-speed helical CT scanners that offer up to
16-slice capability and submillimeter spatial resolution.*** This has reduced
the time needed to acquire the transmission data from several minutes with
an external radionuclide source to a few seconds with x-ray imaging. In
addition, the current generation of PET/CT scanners now incorporates
state-of-the-art PET detector rings, some of which operate at high count
rates and can perform volumetric imaging without septa. At the time when
PET/CT was first introduced clinically in 2000, PET scan times required
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approximately 1 hour to complete whereas a complete PET/CT study now
can be completed in the range of 10 to 15 minutes. This has led to the
potential of increasing patient throughput from 3 to 4 patients a day a few
years ago to 10 to 12 patients a day with current-generation PET/CT
scanners.’! Moreover, the addition of advanced CT capability allows ana-
tomical images to be acquired after the patient is administered with contrast
media to improve lesion detection in oncologic imaging®® or to visualize the
cardiac chambers'>*'> as well as the coronary and peripheral vascula-
ture.'”®!>” With these capabilities, the next-generation PET/CT and
SPECT/CT systems could produce high-resolution structural images of the
cardiac chambers and of coronary and peripheral vasculature that can be
correlated with myocardial perfusion and other functional assessments with
radionuclide imaging. In addition, the use of contrast media could enable
advanced radionuclide quantification techniques in clinical studies such as
the template projection method discussed above.>! These capabilities would
have the potential of improving the quantitative assessment of cancer
and cardiovascular disease in comparison to studies acquired with SPECT
or CT alone.

Similarly, it is expected that the technology of small animal SPECT/CT
will continue to advance. Current small animal radionuclide SPECT systems
obtain submillimeter spatial resolution at the cost of reduced detection
efficiency. Newer multipinhole SPECT systems'** ' are under development
and offer both improved geometric efficiency and spatial resolution in
comparison to current radionuclide imaging approaches in a way that
would improve image quality and reduce scan times for dynamic or ECG-
gated cardiovascular imaging in small animals. Unfortunately, given the
current state of high-resolution x-ray detectors and microfocus x-ray
sources, microCT systems that allow cardiac gating and in vivo coronary
imaging in small animals will be difficult to develop over the next few years.
Nevertheless, these capabilities would be very useful for functional/struc-
tural imaging and quantitative radionuclide assessments of small animals,
similar to those that we expect to develop for clinical dual-modality imaging.
Finally, advances in computing power will enable the development and
implementation of new anatomically-guided statistical reconstruction algo-
rithms and data processing techniques that will offer advantages for both
clinical and small animal imaging with dual-modality imaging.

While all clinical and commercial dual-modality systems have been con-
figured in the form of PET/CT or SPECT/CT scanners, several investigators
proposed and in some cases have implemented and tested prototype dual-
modality systems that combine MRI with PET.!**1¢!15 The development
of combined PET/MRI imaging has several important motivations.'® First,
MRI produces high-resolution (1 mm or better) anatomical and structural
images that offer better soft-tissue contrast sensitivity than CT, has excellent
contrast between white and grey matter, and is capable of assessing flow,
diffusion, and cardiac motion.'¢”'7° In addition, MRI can be combined with
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magnetic resonance spectroscopy (MRS) to measure the regional biochem-
ical content and to assess metabolic status or the presence of neoplasia and
other diseases in specific tissue areas'’''”® including the prostate.'>*!"#176
Finally, MRI does not use any ionizing radiation and therefore can be used
in serial studies, for paediatric cases,!”” and in other situations where radi-
ation dose should be limited. Radionuclide imaging (specifically PET) re-
cords the regional distribution of radiolabeled tracers, but unlike MRS
cannot distinguish the specific molecular species to which the radionuclide
is attached and unlike MRI provides only little anatomical information.

There are, however, several important challenges that must be overcome
in implementing and operating a combined PET/MRI or SPECT/MRI
imaging system.*? In comparison to x-ray CT, MRI typically is more expen-
sive, involves longer scan times, and produces anatomical images from
which it is more difficult to derive attenuation maps for photon correction
of the radionuclide data.'”® Furthermore, virtually all clinical radionuclide
imaging detectors use photomultiplier tubes whose performance can be
seriously affected in the presence of magnetic fields which are significantly
smaller than those produced by modern MRI scanners. This is especially
problematic in an MRI scanner which relies on rapidly switching gradient
magnetic fields and radiofrequency (RF) signals to produce the magnetic
resonance image. The presence of the magnetic field gradients and RF
signals certainly could disrupt the performance of a photomultiplier tube
and PET detector if they were located within or adjacent to the magnet of
the MRI system. Similarly, the operation of the MRI system relies on a very
uniform and stable magnetic field to produce the MRI image. The introduc-
tion of radiation detectors, electronics, and other bulk materials can perturb
the magnetic field in a way that introduces artefacts in the MR image.

In spite of these challenges, several researchers are investigating methods
to integrate a radionuclide imaging system directly in an MRI scanner. For
example, it may be possible to design a radionuclide imaging system having
detectors made from nonmagnetic materials that can be placed within the
magnetic field of an MRI/MRS system.*> For example, Shao et al.'**'7
developed a 3.8-cm ring of small scintillator crystals that was placed in the
MR system for PET imaging. The crystals were optically coupled through 3
m long fiber optics to an external array of position-sensitive photomultiplier
tubes, and which could be read-out through external processing electronics.
By keeping the radiation-sensitive elements of the detector within the MR
system, while operating the electronics away from the magnetic field, the
combined system could perform simultaneous PET/MR imaging. Shao
et al.'®" and Slates et al.'® also performed simultaneous PET/MR imaging
with a larger (5.6 cm-diameter) detector ring using the same design
(Figure 16). Researchers at Kings College London placed the system inside
of a 9.4-T NMR spectrometer to study metabolism in an isolated, perfused
rat heart model. **P-NMR spectra were acquired simultaneously with PET
images of "*F-FDG uptake in the myocardium.'®*'®! Slates er al.'®* are
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FIGURE 16. A photograph of the prototype MR compatible PET scanner (McPET)
scanner developed by UCLA (CA) in collaboration with UMDS (London). Rep-
rinted with permission from ref.!”

PMT’s

extending this design concept to develop an MR-compatible PET scanner
with one ring of 480 LSO crystals arranged in 3 layers (160 crystals per layer)
with a diameter of 11.2 cm corresponding to a 5 cm diameter field of view,
large enough to accommodate an animal within a stereotactic frame. The
system is designed to offer adequate energy resolution and sensitivity for
simultaneous PET/MRI imaging of small animals (Figure 17).'8!-18

FIGURE 17. Small animal PET (left) and MRI (right) images obtained with MRI-
compatible small animal PET detector (figure 16). Courtesy of Dr Simon R. Cherry
(University of California, Davis) and reprinted with his permission.
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Other investigators have proposed PET/MRI systems configured with
suitable solid-state detectors that can be operated within a magnetic field
for radionuclide imaging. For example, Pichler e al.'®® have tested APD’s
within a high-field (9.7 T) NMR spectrometer and have produced radio-
nuclide data that appear to be free of distortion. However, it is still unknown
whether the introduction of the APD’s cause distortions in the magnetic field
to an extent that would cause severe artefacts in the MRI image.*

11. Concluding Remarks

Dual-modality imaging is an approach that combines imaging modalities in
a way that provides diagnostic information that is not available from a single
imaging modality alone. Currently available dual-modality imaging systems
include SPECT/CT or PET/CT, with which the radionuclide imaging tech-
nology (SPECT or PET) provides functional or metabolic information that
is complementary to anatomical information provided by CT. In addition,
the development of dual-modality systems that combine radionuclide im-
aging with magnetic resonance imaging is an area of active research. For
spatial and temporal correlation, the dual-modality data can be presented as
a fused image in which the radionuclide data are displayed in colour and are
superposed on the gray-scale CT image. The resulting correlated data im-
proves differentiation of foci of radionuclide uptake that can indicate disease
from those representing normal physiological uptake that are benign.

Dual-modality imaging has been available clinically since the year 2000,
and as such is a relatively recent development in the fields of diagnostic
radiology and nuclear medicine. However, the commercial emergence of
both PET/CT and SPECT/CT has been rapid and has benefited significantly
from recent technological advances in the conventional SPECT, PET, and
CT. The clinical growth of dual-modality imaging has been most dramatic in
the area of PET/CT which now is available from all of the major medical
imaging equipment manufacturers; some observers predict that all PET
systems will be installed as PET/CT scanners in the near future. Over the
past year, SPECT/CT has gained increased interest and has potential clinical
applications in myocardial perfusion imaging and oncologic imaging. Newer
high-resolution SPECT/CT and PET/CT systems also are becoming avail-
able for small animal imaging and are needed for molecular imaging, bio-
logical research, and pharmaceutical development in small animal models of
human biology and disease.

At present dual-modality imaging is primarily used for structural-func-
tional correlations. However, as this chapter has attempted to describe,
dual-modality imaging also has important ramifications for radionuclide
quantification, the major theme and focus of this volume. For example,
dual-modality imaging provides x-ray CT data can be normalized to obtain
a patient-specific map of attenuation coefficients that be used to compensate



2. Dual-Modality Imaging 71

the correlated radionuclide data for photon attenuation or for Compton
scatter. In addition, regions of interest defined anatomically on the CT
image can be used to quantify the correlated radionuclide data in a way
that allows more precise target and background definition, and that can use
model-based methods that correct the extracted quantitative data for par-
tial-volume effects and other perturbations. The use and understanding of
dual-modality imaging as an enabling concept for radionuclide quantifica-
tion is just starting to emerge. The importance of this development will only
be understood and manifest over the ensuing years as PET/CT, SPECT/CT,
and other forms of dual-modality imaging become available and are utilized
for clinical studies of humans as well as biological investigations involving
animal models of biology and disease.
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Analytic Image Reconstruction
Methods in Emission Computed
Tomography

B.M.W. Tsur* anp E.C. FRey*

1. Introduction

Emission computed tomography (ECT) is a medical imaging modality that
combines conventional nuclear imaging techniques with methods for image
reconstruction from projections.! Depending on the radionuclide used, ECT
can be divided into two major categories, positron emission tomography
(PET) and single- photon emission computed tomography (SPECT). In
PET, radiopharmaceuticals labeled with radionuclides that emit positrons
are used. The annihilation of a positron and an electron results in two
511 keV photons traveling in directions that are 180° apart. Coincidence
detection of the pair of 511 keV photons forms a line of response (LoR). The
multiple detectors and coincidence electronic circuitry collect LoRs in many
orientations. The collection of LoRs is then resorted and rebinned to form
the projection dataset used in image reconstruction to compute the tomo-
graphic images.>® In SPECT, radiopharmaceuticals labeled with radio-
nuclides that emit gamma-ray photons are used. They include many of the
agents that are routinely used in nuclear medicine clinics. Depending on the
design geometry, a collimator that is placed in front of a position sensitive
detector, typically a scintillation camera, accepts photons traveling in certain
directions. The most commonly used parallel-hole collimator accepts
photons incident from directions perpendicular to the detector face. By
rotating the collimator-detector around the patient, projection data from
different views are collected. The projection data from the different views are
then used in image reconstruction.*®

Emission computed tomography techniques were conceived early in the
development of nuclear medicine imaging. A notable development was the
MARK IV brain scanner by Kuhl and Edwards in the early 1960’s.” The
system consisted of four linear arrays of eight collimated detectors arranged

* Drs. B.M.W. Tsui and E.C. Frey, Division of Medical Imaging Physics, The Russell
H. Morgan Department of Radiology and Radiological Science, Johns Hopkins
University, Baltimore, Maryland 21287, USA
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in a square configuration. By rotating the arrays of detector around the
patient’s head, projection data were collected. At that time, the investigators
were unable to solve the problem of image reconstruction from projections
and the simple backprojection method was used to reconstruct the image
data. The results were unimpressive and the full development of ECT was
delayed until the development of computed tomography (CT) methods.
The advancement of ECT was boosted by the landmark development of
both x-ray CT and image reconstruction techniques resulting in the award of
the Nobel Prize in medicine in 1979.%° At the same time, continuing im-
provements in both PET and SPECT systems and data acquisition methods
were made by academic groups and commercial companies. These activities
culminated in the introduction of the first commercial SPECT system by GE
Medical Systems in 1981 and PET system designed at EG&G ORTEC in
collaboration with Phelps and Hoffman in 1978. Since gaining FDA
approval in 1999 for cancer staging and further fueled by the recent devel-
opment of PET/CT, there has been a surge in interest in the clinical appli-
cations of PET and PET/CT. Today, SPECT and SPECT/CT systems are
the major equipment in any clinical nuclear medicine clinic. The number of
installed PET and PET/CT systems continues to increase at a healthy pace.
In this chapter, we review the fundamentals of image reconstruction from
projections. Specifically, we describe the analytical image reconstruction
methods which were the impetus for the development of ECT and have
continued to play a major role in clinical ECT applications. The development
of analytical image reconstruction methods can be traced back to Bracewell’s
work in radioastronomy in the 1950s. Finally, we discuss the limitations of
analytical image reconstruction methods which have spurred the development
of a new class of statistical image reconstruction methods and compensation
techniques which are gaining much attention today (see chapter 4).

2. The Problem of Image Reconstruction in ECT

The methods of image reconstruction from projections are also called
methods of tomographic reconstruction. Tomography has a Greek origin
where fomos means slice and graphy means image or picture.

As shown in Figure 1, the object in ECT is a three-dimensional (3D)
distribution of radioactivity. External detectors are used to collect radiation
emitted from the radioactivity distribution to form projection data from
different views around the object. In PET, coincidence detection and elec-
tronic collimation are used in the projection data acquisition. In SPECT,
collimator-detectors are used to acquire the projection data. Depending on
the system geometry, projection data from the object can be acquired into
one-dimensional (1D) projection arrays, e.g., as in earlier generation of PET
and SPECT systems, or two-dimensional (2D) arrays, e.g., modern PET and
SPECT systems. In the following, we consider the 3D object as composed of
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3D Radioactivity &
distribution

2D projection

1D projection gg

FIGURE 1. In emission computed tomography (ECT), the object is a 3D distribution
of radioactivity. Projection data are obtained from different views around the object.
Depending on the system geometry, 1D or 2D projection data are acquired. The
image reconstruction problem in ECT is to seek estimate of the 3D radioactivity
distribution from the multiple projections.

FIGURE 2. Geometry for the 2D image reconstruction problem. The 1D projection at
angle 0,Py(s), is an array of integral of the object distribution f{x,y) along the
t-direction which is perpendicular to the detector face.

multiple slices of 2D distributions. The image reconstruction problem is thus
reduced to recovering a 2D object distribution from a set of one-dimensional
projections.

Figure 2 shows the geometrical configuration of the 2D image reconstruc-
tion problem. The 2D object distribution is represented by f(x,y). It is
mathematically convenient to formulate the problem in terms of the rotated
coordinate system (s,7). In this system, the origin is coincident with the origin
in the unrotated (x,y) system and the (s,f) axes are perpendicular and
parallel, respectively, to the projection array. Suppose the 1D detector
array lies along the rotated s-axis which makes an angle 6 with the fixed
x-axis. In PET, assume the detector response is perfect, i.e., the system
spatial resolution is infinitely high and there is no photon scatter. Then the
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acquired data at each point on the 1D projection array, p;,(s), is composed of
sum of counts from LoRs that are aligned with and intersect the 1D detector
array at the same point, or

Py(s) = exp {— JD(;-) M(s,z)dt} : JD(S) f(s,0)dt 1)

where f{'s,¢) is the radioactivity distribution, u(s,?) is the attenuation coeffi-
cient distribution and D(s) is the thickness of the object in the direction
parallel to the r-axis and intersect the detector array at point s. Note that in
Equation (1), the exponential term represents the attenuation factor for the
LoR and the second integral represents the sum of the radioactivity distri-
bution along the LoR. Equation (1) can be written as
/
o) =— [ s @
exp {— Joe) /u,(s,t)dt} D(s)

where the modified 1D projection data py(s) is integration of f(s,z) along the
t-axis.

In SPECT, assume a parallel-hole collimator with infinitely high spatial
resolution and no scatter photon counts, the acquired 1D projection data
array is given by

Py(s) = me(s,z) exp [— |

/.L(s,l')dt/] dt 3)
d(s)

where D(s) is the thickness of the object in the direction parallel to the #-axis
and intersect the detector array at point s, d(s) is the distance between the
point (s,¢) and the edge of f{'s,¢) along the direction parallel to the 7-axis and
towards the detector. Different from PET, the exponential term represents
the attenuation factor from the activity at position (s, 7) to the detector at the
projection position s. Equation (3) represents a major difficulty in SPECT
image reconstruction due to photon attenuation which is discussed in detail
in chapter 6. Here, we assume there is no attenuation effect, i.e., u(s,z) =0,
and Eqn. (3) reduces to

pols) = JD( S 4

where the py(s) represents integration of f(s,¢) along the t-axis.
From Figure 2, it can be seen that

s =xcosf+ ysinf

(©)

t = —xsinf + ycos6
Equations (2) and (4) which have a similar form can be rewritten using &

function as

po(s) = J f(s,t)dt = JOO JOO f(x,)8(xcos + ysinh — s)dxdy (6)

D(s) —00 J—00
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Equation (6) defines the 2D Radon transform of f{x,y). It specifies the 1D
projection of f(x,y) at the projection angle 6. The problem of image recon-
struction is to seek the solution of 2D inverse Radon transform, i.e., to find
the 2D object distribution f{x,y) given the set of 1D projection data, py(s),
obtained at different projection views, 6.

In the following section, we introduce the Fourier slice theorem which
relates the 1D projections to the object distribution. The relationship is
important in the derivation of the analytical image reconstruction methods
described in the subsequent sections.

3. The Fourier Slice Theorem

From Eqns. (2) and (4), the 1D Fourier transform (FT) of ps(s) can be
written as

o0 o0

Py(vg) = J po(s)e "5 ds = J Ho; f (s,t)dl] e s ds

—00 —00

_ J J f(x’y)efjvq(xcos 0+ysin G)dxdy

—00 J —00

Since v, = vycosf and v, = v,sin6, Eqn. (7) becomes

Po(vy) = r@ Jw Fep)e O dxdy ®)

which is the FT of f{x,y) along the s-axis. Equation (8) can also be written as
Py(vy) = F(v) = F(vgycos0,v,sin 6) 9)

where v = vy(cos 0y,0). Equation (9) is the Fourier (projection) Slice The-
orem, a major theorem in image reconstruction from projections.

The Fourier Slice theorem in Eqn. (9) states that the 1D FT of the projection
atangle 6 is equal to the cross-section of the 2D FT of the object distribution at
the same angle . If one computes the 1D FT of all the projections Py(v), the
2D FT of the object distribution F(v,,v,) along the same directions as the
projection angles will be known. This important property provides insight
into the problem of image reconstruction from projections. The collection of
ID FT of projections Py(v) form ‘spoke’ like cross-sections of F(v,,v,)
centered at (vy,v,) =(0,0). In order to perform the inverse 2D FT of
F(vy,v,) to obtain the object distribution, the ‘spoke’ like samples of the
F(v,,vy) need to be interpolated into a square matrix. Since 2D interpolation
is time-consuming, the direct image reconstruction method is not practical
and is rarely used. Alternative methods have been devised that provide a more
efficient approach to obtain the object distribution F(vy, v)).

In the following, we describe the analytical reconstruction methods that
are in common use. We start with the simple backprojection method for
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historical reasons and demonstrate that the simple backprojection image is a
blurred version of the object distribution. We then describe the filtered
backprojection and the backprojection of the filtered projections. Finally,
we will discuss equivalent image reconstruction methods that operate com-
pletely in the spatial domain.

4. Analytical Image Reconstruction Methods

4.1 Simple Backprojection Method

The simple backprojection method simply takes each of the measured pro-
jection data values and spreads it uniformly over the image pixels that lie
along the projection ray passing through the projection bin. This is the
method used by Kuhl and Edwards in reconstructing the first brain
SPECT data acquired using the MARK IV system.7 To understand why
the reconstructed images were less than desirable, we can write the simple
backprojection image in polar coordinates as

Jalrub) = Bpj{po(s)} = Jpe(r cos (¢ — 0))d0
0

J Pe(vr)ejv,tdvrde _ J Pg(v,‘)e"""(x cos f+ysin g)dVrde (10)

I
o3
o3

where Bpj is the backprojection operation and Py(v,) is the 1D FT of py(r)
and we have used the fact that = xcos + ysin 6.
Since the 2D inverse FT, FT5,}, of Py(v,) in polar coordinates is given by

pen) = | [ P o) s = T Por0) (1)
0 —o0
Equation (10) can be written as

. T Py A
fB(x,y) = J J ‘Vr‘ o(v )e/v,-(xcos(ﬂ-ysm())dvrde
0 (12)

Using the relationship v, = v,cos 0 and v, = v,sin 0 Eqn. (9), we find

it = Bpitpuo} = i P |20 ) = P [F) -y

vyl |vsl
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A
H(v)=1/Ivl

0 v
FIGURE 3. The blurring function that is applied to the object distribution in the

frequency domain to give the reconstructed image obtained using the simple back-
projection image reconstruction method.

Equation (13) shows that, the simple backprojection image, fg(x,y), is the
2D inverse FT of F(v,, v,), the FT of the object distribution, multiplied by
the function 1/|v|.

Figure 4a shows sample 2D slices through the computer generated 3D
NCAT (NURB-based CArdiac Toro) phantom simulating the 3D Tc-99m
labeled sestaMIBI distribution in a normal human. Figure 4b shows sample
2D projection data generated from the 3D radioactivity distribution from
128 equally spaced projection views over 180 degree around the phantom.
The effects of collimator-detector response, photon attenuation and scatter
were not included in the simulation.

The 2D projection images in Figure 4b can be considered as a collection of
1D projection arrays over all projection views with each corresponding to a

FIGURE 4. (a) Sample noise-free 2D slices through the 3D NCAT phantom simulating
the 3D Tc-99m labeled SestaMIBI distribution in the normal human. (b) Sample 2D
projection data simulated from the 3D radioactivity distribution shown in (a). The
effects of system response and photon attenuation and scatter were not included in
the simulation.
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FIGURE 5. Reconstructed images obtained by applying the simple backprojection
method to the 1D projection data sets shown in Figure 4b.

specific slice through the 3D phantom. In Figure 5, we show the 2D recon-
structed images corresponding to the same slices through the 3D phantom
shown in Figure 4a that are obtained by applying the simple backprojection
method to the collections of 1D projection arrays. They demonstrate the
blurring of the simple backprojection images as compared to the correspond-
ing phantom slices shown in Figure 4b.

4.2 Filter of the Backprojection (FBpj)

Equation (13) shows that to obtain the 2D object distribution, we can simply
multiply the 2D FT of fz(x,y) by a ramp function, |v|, shown in Figure 6 and
take the 2D inverse FT of the product, i.e.,

Jen(xy) = T3 (0] - FToplfy (e} = FTy; {|,,| F(VMW)]
= FT;p[F(vx,y)] 14
A
R(v)=Ivl

»
-
v

0

FIGURE 6. The ramp function that is applied to the FT of the 2D simple projection
image to obtain the filter of the backprojection or FBpj image.
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The multiplication of fB(x, y) by a ramp function in the frequency domain
is similar to applying a ‘filter’ function in a conventional image processing
operation giving rise to the naming of the image reconstruction method as
the filter of the backprojection (FBpj) method. However, it should be em-
phasized that the ramp function in Eqn. (14) is a result of the theory of image
reconstruction and is needed to remove the blurring effect resulting from
applying the simple backprojection operation. Its effect should not be
regarded as a conventional high pass or edge enhancement filter that is
applied directly to the projection data.

To demonstrate the effectiveness of the FBpj method, we use the same
projection dataset generated from the radioactivity distribution of the 3D
NCAT phantom shown in Figure 4a. Figure 7 shows the corresponding
reconstructed images when the FBpj method is applied to the projection
dataset. When compared to the phantom and the simple backprojection
images shown in Figures 4 and 5, the effectiveness of the reconstruction
method is clearly demonstrated.

The ramp function as shown in Figure 6 is unbounded, that is, its magni-
tude monotonically increases with ». In practice, the object distribution in
ECT is often assumed to be band-limited due to the band-limiting effects on
the measured projection of the collimator-detector response and projection
binning. When high frequency noise is present in the acquired projection
data, the application of the ramp function amplifies the high frequency noise
and gives rise to noisy reconstructed images. To reduce the reconstructed
image noise, a noise smoothing filter is often applied to the projection data
in addition to the ramp function as shown in Figure 8 and the ‘average’
smoothed FBpj image is given by

FhEy) = FTop[W(vy,vy) - F(vy,vy)]
= FTyp {W(vsvy) - [v] - FT5p[fs(x. )]} (15)

7 | 0D 0D 07D

FIGURE 7. Reconstructed images obtained by applying the filter of the backprojection
(FBpj) method to the 1D projection data sets shown in Figure 4b.
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FI1GURE 8. The typical filters used in ECT image reconstruction. (a) The rectangular,
Han and Butterworth filters with cut-off frequency v, at 0.5, 0.5 and 0.23, respect-
ively. The order n of the Butterworth filter is 6. (b) The products of the filters with the
ramp function.

In Table 1 and Figure 8, several smoothing filters that are commonly used
in ECT image reconstruction and their product with the ramp function are
shown. The cut-off frequency v, of all the smoothing filters determines the
amount of smoothing and loss of resolution in the reconstructed image, i.e.,
the lower the v, the more smoothing. The rectangular filter is the simplest
and is the best in preserving high frequency information. However, it amp-
lifies high frequency noise. The magnitude of the Hann filter starts to
decrease from zero frequency earlier than the other filters and gives the
most amount of smoothing and loss of resolution. The Butterworth filter
has two parameters that determine its shape and has the most flexibility in
tailoring the properties of the filter. In addition to the cut-off frequency v,,,
the order, 1, determines how fast the filter rolls down from a value of unity at
zero frequency towards zero at higher frequency. A smaller » value leads to a
slower rolling down at higher frequency. At very large n values, the filter

TaBLE 1. Commonly used smoothing filters in analytical image reconstruction
methods in ECT.

Filter Function Type

Rectangular Hann Butterworth
W) i
{ L pl=v, 0.5+ 0.5 cos <ﬂ> if [v|=v, 1
0 if [y|>wy, 'm 14 ()™
0 if |v]> v Vi

] | if |v|=vm
W) vl {o if Jo] >
0

0.5 +0.5/v| cos<ﬂ> if [v]=vp,
Vm

if |v|>wv,

vl

L+ ()
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(a) (b)

F1GURE 9. The backprojection of the filtered projections images obtained by applying
different smoothing filter functions to images reconstructed from (a) noise-free and
(b) noisy projection data. In both (a) and (b), the images in the top 4 rows were
obtained using the Butherworth filter and, from top to bottom, with orders 2, 4, 8§,
and 32, respectively. The images in the bottom row were processed with the Hann
filter. The images in the left to right column were obtained with cut-off frequencies,
v, of 0.1, 0.2, 0.3, 0.4 and 0.5 cycle/pixel, respectively.

shape has sharper corners which give rise to ringing artifacts in the recon-
structed image.

Figure 9 shows the effectiveness of the Hann and the Butterworth filters in
ECT image reconstruction as a function of the cut-off frequency and, for the
Butterworth filter, the order n. Both noise-free and noisy projection data
were used. For both smoothing filters, the reconstructed images are
smoother as the cut-off frequency v, decreases. For the same v,,, the
Hann filter gives much smoother reconstructed images than the Butterworth
filter. For the same v,,, the Butterworth filter provides more preservation of
low frequency features and high frequency noise smoothing when higher
order n was used. However, ringing artifacts at edges of image structures can
be found when the value of n was too high.

4.3 Backprojection of Filtered Projections (BpjFP)

Since the multiplication, the Fourier transform and the backprojection
operations are linear and commutative, Eqn. (12) can be manipulated to
provide an alternate means for image reconstruction. The procedure in-
cludes multiplying the FT of the 1D projections by the 1D ramp function
in the frequency domain, and taking the 1D inverse transform of the prod-
ucts before backprojecting to form the 2D reconstructed image. The back-
projection of the filtered projections (BpjFP) method can be represented by
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Fr(x.y) = Bpji{py()} = Bpi{FT '[|v,| - FT"[po(s)]}
2[ |Vs| . PO(Vs)

|vsl

]

= FT[F(vy,v))] (16)

where pj;(s) = FT![|v,| - FT'[pe(s)] are the filtered projections.

Although theoretically the BpjFP method is equivalent to the FBpj method,
it offers several advantages. First, the multiplication of the ramp function and
the FT operations are performed in 1D which is computationally more efficient
as compared to performing similar operationsin 2D. Also, since the operations
can be performed on the projection data as they are acquired, the reconstructed
image can be obtained almost as soon as the projection data are acquired. As a
result, the BpjFP is the more popular analytical image reconstruction method
and is often simply called the filtered backprojection (FBP) method.

For the BpjFB method, considerations of noise in the projection data and
the application of an additional smoothing filter are similar to the FBpj
method. Again, the difference is that the filtering operation is applied to the
1D projection data array instead of the 2D backprojection image.

= Bpji{FT '[|vy| - Po(vy)]} = FT~

4.4 Convolution Backprojection (CBpj)

In Eqn. (16), the BpjFP method involves the backprojection of the 1D
inverse FT of the product of two functions, |v,| and Py(vs). From the
convolution theorem, this is equivalent to the backprojection of the convo-
lution of two functions, the 1D inverse FT of |vs| and pe(s). Since the FT of
|vg| is —1/27%r%, the filtered projection can be given by

1 loe} /
it = g [ 2

2w ) o (s — ')

which contains a quadratic singularity. Using integration by part, Eqn. (17)
becomes

ds' (17)

1
Py(s) = 772 J

Equation (18) shows that the filtered projections can be obtained by the
convolution of the derivatives of py(s) and the function I/s. The convolution
backprojection (CBpj) method estimates the object distribution by the back-
projection of pj(s), which is represented by the convolution given by Eqn. (17)
or Eqn. (18).

The relationships between the object distribution and the projections found
in the Fourier Slice theorem and Eqn. (18) were first derived by Radonin 1917.
Equation (4) which is a transform relating the object distribution to the
projections is also called the Radon transform and the solution of the image
reconstruction problem is called the inverse Radon transform problem.

 Ope(s')/0s' s

s— s

(18)

—00
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The implementation of the CBpj method involves handling the singularity
at s = ¢ in Eqn. (17) and approximating the derivatives of py(s). The singu-
larity of Eqn. (17) is caused by the FT of the ramp function |v| which
diverges at high frequencies. To avoid the divergence, we can replace |v| by

1y, for |v|=vy,
C(”){o, for [v|=<vy, (19)

The use of C(v) is justified since in practice Py(v) is usually band-limited.
That is, Py(v) is non-zero at frequencies lower than some »,, and zero at
frequencies higher than v,,. The inverse FT of C(v) is given by

sin? (7v,,5)

O = 2 sin Qs — =3 (20)

which can be used in place of the inverse FT of |v| as the convolution kernel
in the CBpj method. Hence, the filtered projection can be written as

s . / s 2 /
piE) = J ) {um sin [27rv,(s — §)] _sin [m/m(s;z s)]} PPN

—o0 (s — ') (s — s

The first term on the right-hand side of Eqn. (21) is the convolution of py(s)

with a sinc function which has the effect of multiplying the FT of py(s) with a

rectangular function with a width v,,. Assuming Py(v) is band-limited by the

frequency v,,, ps(s) is unchanged by the convolution. As a result, Eqn. (21)
can be written as

* sin” [V(s — 5')]

i) = vapas) — [ putey LT

_ (s — §')
The digital implementation of the convolution kernel to form the filtered
projection is given in ref.'°

ds' 22)

1/4, if k=0,
ctk)y =< —1/7*k?, if k is odd, (23)
0, if k is even.

Other convolution kernels with some noise smoothing effect have also
been derived!! from the FT of the filter function W (v)- |v|, where W (v) is a
smoothing filter such as the ones listed in Table 1.

In Table 2, we listed the major steps involved in the three major image
reconstruction methods.

5. Analytical Image Reconstruction Methods
for Special System Geometries

The analytical image reconstruction methods described in the previous sec-
tions assume the projection arrays are formed by the parallel beam geometry,
i.e., the line integrals that form the projection are parallel to each other. In
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TABLE 2. A comparison of the major steps involved in three analytical image
reconstruction methods.

Analytical Image Reconstruction Methods

Filter of Backprojection = Backprojection of Filtered Convolution Backprojection

Steps (FBpj) Projections (BpjFP) (CBpj)

1 Simple backprojection ID FT of projections Convolve projections with
of projections convolution kernels

2 2D FT of backprojection  Apply 1D ramp function Simple backprojection
image and smoothing filter

3 Apply 2D ramp function Inverse 1D FT
and smoothing filter

4 Inverse 2D FT Simple backprojection

conventional single-slice CT, the x-ray source and the 1D radiation detector
form a 2D fan-beam geometry. In the recent multi-detector CT (MDCT)
systems, the x-ray source and the 2D radiation detector form a 3D cone-
beam geometry. In ECT, similar detection geometries can also be found. For
example, in PET, LoRs from one detector element to multiple detector
elements at the opposite side of the PET system form a 2D fan-beam geometry
or 3D cone-beam geometry in single-slice or multi-slice systems, respectively.
In SPECT, converging-hole collimators such as fan-beam'>!® and cone-beam
collimators'#!® accept photons that travel in directions that form 2D fan-
beam and 3D cone-beam geometries, respectively. They offer higher detection
efficiency for the same spatial resolution as compared with parallel-hole
collimator. The trade-off is reduced field-of-view for the same detector size.
Figure 10 shows the imaging configuration of x-ray CT where the focal
point of the x-ray tube occupies the focal point of a fan that is completed by

Focal point Focal point

Focal length

Curved detector Flat detector

(a) (b)

FIGURE 10. Fan-beam geometries with (a) curved detector and (b) flat detector.
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FIGURE 11. The fan-beam tomographic data acquisition geometry.

the detector array. Figure 11 shows the imaging configuration of SPECT
using a fan-beam collimator. The axes of collimator holes that lie in a
transverse plane perpendicular to the axis-of-rotation (AOR) of a fan-
beam collimator converge to a focal point. The distance between the focal
point and the detector is called the focal length of the collimator.

An equiangular fan-beam geometry with curved detector is used in con-
ventional x-ray CT. A projection sampling geometry with projection bins
having equal spatial widths and a flat detector is found in SPECT using fan-
beam collimators.

5.1 Analytic Fan-Beam Image Reconstruction Methods
5.1.1 Rebinning Method

If AB =Avy =a, ie., the projection angle increments are the same as the
sampling angle increments, then 8 = ma, vy = na where m and n are integers,
then

r ,L;m (ha) = Pm4n)a (D sin ne) (24)

where D is distance between the center-of-rotation (COR) and the focal
point, B is the projection angle of the fan, vy is the angle between the axis
of the fan and the designated projection ray, and « is the angular increment
of the projection ray of interest from the fan axis.
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The rebinning technique is straightforward and was used initially in fan-
beam tomography. However, the method is very time-consuming and results
in loss of resolution due to interpolation. For medical applications, it is
important to develop fan-beam reconstruction techniques that are more
efficient. Fan-beam filtered backprojection method was developed to allow
direct image reconstruction of the fan-beam data without the time-consum-
ing rebinning step.'”'®

5.1.2  Direct Fan-Beam Filtered Backprojection Method

As described earlier, the projection ray indicated in the Figure is equivalent
to the parallel projection ray in py(7) with ¢ = Dsiny and 6 =B+ y. To
reconstruct, we note from parallel-beam reconstruction that:

2w S
flxy) = % J J Po(s)h(rcos (60 — ¢) — s)dsdo (25)
0 -S

where S is the value of s for which py(s) = 0 for all |s| > S in all projections,
h(r) is the convolution kernel. Note that the integration over 6 is from 0 to
27 and the projection is zero outside the interval [ — S, S]. The above
equation can be rewritten in terms of vy and B:

2m—y sin”' S/D
: 1 . .
fedy = || petDsinyieos g+ y - )~ Dsiny)
—Y —sin~'S/D

(D cosy)ydvydp (26)

From Figure 12, let L be the distance from a point (x,y) to the focal point,
then

Lcosy =D +rsin(B—¢) and Lsiny = rcos(B — ¢) 27
_, Lsiny . rcos(B— o)
h I 1 = N -
where 7' = tan (Lcosy’) tan (D+rsin(ﬁ—¢)) e

Also,we find L(r,¢.8) = \/(D +rsin[B —¢))? +r2cos>(B—¢) (29
Using the above equations, Eqn. (28) can be written as
| 27 Yu
fed) =3 | | soesinty < yppeosyavas G0
0 —vum

Recognizing /('t) is the inverse FT of |v| in the frequency domain, Eqn.
(30) can be rewritten as
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YA

FIGURE 12. The parameters used in the derivation of the fan-beam image reconstruc-
tion methods.

2 Ym
S T

1o = [ 55 | 5 = Dos viyap (1)
0 —Ym

where 7y,, is the maximum of the angle y, and

c _ 1 Y 2
g0 =555 (32)

The fan-beam reconstruction algorithm for a curved detector can be
written in the form of a weighted backprojection of the weighted and filtered
projection algorithm, i.e.,

2 |
fed) = | faa00p (33)
0

where the measured fan-beam projections rg(y) are first multiplied by the
weighting function Dcos~y to obtain the weighted fan-beam projection rg,(y),
1.e.,

rg(y) =rg(y)Dcosy (34)
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and then convolved with the convolution kernel given by Eqn. (34) to give
the filtered weighted fan-beam projections gg(y), i.e.,

qp(y) = rg/(y) @ g(y) (35)

Using the similar approach, we can derive the weighted backprojection of
the weighted filtered projection algorithm for a fan-beam geometry with flat
detector as'”'8

2
1) = | 2a)dp
0

where

D +rsin(B — ¢)
D )
the weight function for the fan-beam geometry with flat detector is given by
D/+/D* 4 s% and the convolution function by g/ (s) = h(s)/s.
In summary, the weighted backprojection of the weighted filter projection
algorithm for fan-beam image reconstruction with curve and flat detectors
are given in Table 3.

U(r,g,B) = (36)

5.2 Analytic Image Reconstruction Methods in 3D PET

In PET, the removal of the septa results in coincidences between detectors on
different axial rings. The resulting LoRs make an oblique angle with the
scanner axis. Since the three-dimensional (3D) activity distribution can be
reconstructed using only the direct LoRs (i.e. those resulting from LoRs
perpendicular to the scanner axis), the oblique projections are not required
to reconstruct the activity distribution. However, using them has the poten-
tial to reduce the noise in the reconstructed image.

TABLE 3. Analytical image reconstruction methods for fan-beam geometries.

Steps Curve Detector Flat Detector
Multiply measured rg/(y) = rg(y)Dcos y ’/B I(y) = /B(y) ﬁ

projection by

weighting

function i
Filter weighted 45(y) = rg(y) ® 5 (5 ) h(y) qy(y) = rlyt(y) @12

projection with

convolution kernel o w
Perform weighted fd) = [ a5(rdB frd)= [ #qé(s’)dﬁ
backprojection 0 0

where L(r,¢,B) is given by where U(r,¢,B) is given by

VOt rsinls— o) 4 Peos (B—d)  yirgp - 2 rsin(g - g)
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If the oblique projections are not truncated, they can be reconstructed by
filtered backprojection using the Cosher filter."® This algorithm can be
implemented either as filtered backprojection or backprojection of the fil-
tered projections. In both cases, the backprojection operation is 3D. How-
ever, for real PET systems where the object imaged is longer than the axial
length, the 3D reconstruction problem is complicated by the fact that all the
oblique 2D projections are truncated, i.e. they are incompletely measured
due to the finite axial extent of the tomograph. One way to handle this is by
recognizing that the direct projections allow complete reconstruction of the
activity distribution. The activity distribution reconstructed from these dir-
ect projections can then be reprojected to obtain the missing portions of the
oblique projections. In practice, as much as 40% of the total reconstruction
time is spent in estimating, and then backprojecting the unmeasured projec-
tion data. The algorithm combining this forward projection step with the
Colsher filter is a 3D filtered backprojection algorithm referred to as
3DRP.”

An alternate exact approach to solve the problem of truncated 3D pro-
jections is the the FAst VOlume Reconstruction (FAVOR) algorithm.?!
However, FAVOR presents different noise propagation properties com-
pared to other approaches, notably those using the Colsher filter. In par-
ticular, it exhibits a low-frequency ‘hump’ characteristic which includes most
of the useful frequency range occurring in a typical image. This can be
mathematically modified to introduce a specific bias by attributing a much
greater weight to the direct projections than to the oblique ones. High-
frequency statistical noise is, however, not affected since it occurs at fre-
quencies higher than those corrected by the FAVOR filter.

While 3DRP works well and has served as a gold standard for 3D analytic
reconstruction algorithms, it requires significant computational resources.
As a result, a number of approximate methods have been proposed. Most of
the well known approaches involve rebinning the data from the oblique
sinograms into 2D data sets, thus allowing the use of 2D reconstruction
methods and resulting in a significant decrease in reconstruction time. These
algorithms rebin the 3D data into a stack of ordinary 2D direct sinograms
and the image is reconstructed in 2D slice-by-slice, for instance using the
standard 2D FBP or OSEM algorithms. The method used to rebin the data
from the oblique sinograms into the smaller 2D data sets is the crucial step in
any rebinning algorithm and has a significant influence on the resolution
and noise in the reconstructed image.

The simplest rebinning algorithm is single-slice rebinning (SSRB).* It is
based on the simple approximation that an oblique LoR can be projected to
the direct plane halfway between the two endpoints of the LoR. In particu-
lar, SSRB assigns counts from an oblique LoR (where the detectors are on
different axial detector rings) to the sinogram of the transaxial slice lying
midway, axially between the two rings. This approximation is acceptable
only near the axis of the scanner and for small apertures. For larger aper-
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tures and farther from the axis of the scanner, SSRB results in position-
dependent axial blurring.

Several alternative methods have been suggested to provide more accurate
rebinning. Lewitt et al.?®> proposed a more refined rebinning approach, the
multi-slice rebinning algorithm (MSRB), which is more accurate than SSRB,
but suffers from instabilities in the presence of noisy data. The Fourier
rebinning algorithm is a more sophisticated algorithm in which oblique
rays are binned to a transaxial slice using the frequency-distance relationship
of the data in Fourier space.24

6. Limitations of Analytical Image
Reconstruction Methods

The analytical image reconstruction methods described above assume that
no image degrading effects are present during the imaging process. That is,
the imaging system has ideal imaging characteristics with perfect uniformity
and infinitely high spatial resolution and there are no photon attenuation or
scatter effects. Also, the ECT system has perfect mechanical alignment. In
practice, however, many factors contribute to image degradation and the
reconstructed images obtained from the analytical image reconstruction
methods are less than ideal.

Thedetected counts in ECT are proportional to the number photons emitted
from the radioactivity in vivo, that have traveled through the object, interacted
with the body materials, passed through the collimator and been detected by
the radiation detector. For the energies of photons emitted from the commonly
used radionuclides in ECT, the predominate types of interactions are photo-
electric and Compton scattering. The intrinsic resolution of the detector and
the collimator used in SPECT, and the size of the detector elements, the
positron range and non-colinearity of the dual 511 keV photon emissions in
PET determine the collimator-detector response and resolution of the system.

In Eqns. (2) and (4), the projection data are written as line integral of the
object or radioactivity distribution f{'x,y ). In PET, the photon attenuation is
factored out, and we assume that there is no effect from the system response
and photon scatter in the object. In SPECT, we assume that there is no effect
from the collimator-detector response and photon attenuation and scatter in
the object.

Figure 13 shows the reconstructed images obtained by applying the ana-
lytical image reconstruction methods described above directly to SPECT
projection data that include the effects of collimator-detector response and
photon attenuation and scatter in the object. Simulated noise-free projection
data from the 3D NCAT phantom were used. When the results are com-
pared with Figures 4 and 7, they demonstrate the impact of the image
degrading effects on the reconstructed images.
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FiGure 13. (a) Sample 2D noise-free projection data simulated from the 3D NCAT
phantom with radioactivity distribution shown in Figure 4a. Here, the effects of
system response and photon attenuation and scatter are included in the Monte Carlo
simulation. (b) Sample 2D reconstructed images corresponding to the same slices
shown in Figure 4a obtained using the backprojection of the filtered projections
method. The images demonstrate the artifacts and distortions in the reconstructed
image when image degrading effects are present in the acquired data.

The solution of the reconstruction problem with the image degrading
effects including collimator-detector response and photon attenuation and
scatter is difficult. In SPECT, suppose the object consists of a distribution of
attenuation coefficient given by w(s,f) and if the effect of attenuation is
considered, instead of Eqn. (4), the projection data are given by Eqn. (3).
The image reconstruction problem is then to seek the solution f(s,7) of the
inverse attenuated Radon transform expressed by Eqn. (3).

Consider a typical collimator-detector used in SPECT. The two-
dimensional (2D) collimator-detector response function (CDRF), cdrf(5;z),
(see chapter 5 for a complete definition of the CDRF) is a function of the
distance from the collimator face z and is shift-invariant across planes that
are parallel to the face of the camera. Thus, the parameter s is the vector
from the position of the projection of the source on the projection plane and
the position of the detected photon. The projection data that include the
effects of attenuation and collimator-detector response are given by

+00 L
Po(3) = J dtjdﬁ/ X f(3',8) % cdrf (5 — 5. D+ 1) x exp | — J w@Odl | (37)
—0 la

where 5 = (s, 5,) is the intersection of the detector plane with the projection,
D is the distance between the collimator and the center of rotation and
z =D +1t, and t, is the t-coordinate of the detection plane just as for Eqn.
(3). Inversion of Eqn. (37) is further complicated by the 3D collimator-
detector response function and the 2D projection image. The image recon-
struction problem is to find a solution of f{s,z) from the projections de-
scribed by Eqn. (37).



3. Analytic Image Reconstruction Methods 103

If scatter response is taken into account, the projection data will be given
by

+oo  Ss
pe(s) = J de | ds’ x f(5',0) x srf (57 ,6;5) x cdrf (5 —§:D + 1)
e S
_—
X exp | — J W', )dr (38)
L t

where srf'(57,1;5) is the scatter response function and describes the probability
that a photon emitted at position the position described by (5”,¢) is scattered
and at position 5 on the detection plane. Equation (38) is a complex function
especially since the scatter response function depends on the object being
imaged and the source position of the emitting photon inside the body (i.e. it
is not spatially variant). Analytical solutions to this problem have not been
found yet.

Seeking accurate solutions to the image reconstruction problem in the
presence of the image degrading factors has been the topic of much research
in the past two decades. Significant progress has been made in the develop-
ment of compensation methods for these image degrading factors. Since
analytical solutions of the practical image reconstruction problem are
difficult to find, statistical image reconstruction methods that incorporation
accurate models of the noise statistics and components of the
imaging process have been developed (see chapter 4). A major disadvantage
of these iterative image reconstruction methods is the large amount of
computations compared to analytic methods. However, with the advances
in computer hardware and image reconstruction algorithms, these
image reconstruction methods are gaining acceptance in clinical practice
of ECT.

7. Summary

We have reviewed the 2D analytical image reconstruction methods used in
ECT including PET and SPECT. The goal is to seek the 2D distribution of
radioactivity in vivo from the measured 1D projection data from different
views around the object. The basic theoretical formulation is similar to that
used in single-slice x-ray CT. The projection data are 1D distribution of
photons that are emitted from the radioactivity distribution and detected by
radiation detectors. They are arranged in parallel-beam geometry. Assuming
an ideal imaging situation where the effects of statistical noise, and photon
attenuation and scatter are not present and perfect detector response, ana-
lytical image reconstruction methods provide reconstructed images that
accurately represent the 2D radioactivity distribution in vivo.
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Analytical image reconstruction methods consist of two major steps,
simple backprojection and special processing of either the 1D projection
data or the 2D backprojected images. This special processing can be equiva-
lently applied in the spatial or spatial frequency domain. In the spatial
frequency domain, the processing requires filtering with ramp function.
With the use of fast Fourier transform algorithms, analytical image recon-
struction methods that perform the filtering in the spatial frequency domain,
i.e., the filter of the backprojection (FBpj) and the backprojection of the
filtered projections (BpjFP) methods are often used. Among these two
methods, the BpjFP method is preferred due to its simpler processing of
the 1D projection data before backprojection and smaller data memory
requirement. Additional filter function can be applied in conjunction with
the ramp function to provide noise smoothing and edge enhancement to the
reconstructed images.

A commonly used data acquisition geometry is the fan beam geometry. In
a typical ring-type PET system, the LoRs from coincidence detection form
fan-beam data arrays. In SPECT, fan- beam collimators are used to restrict
the collection of photons that travel in a fan-beam geometry. The fan-beam
projection data can be rebinned into parallel-beam projections before image
reconstruction. However, the rebinning process is time-consuming and
introduces data smoothing. Fan-beam reconstruction methods that apply
directly to the fan-beam projection data are presented. They provide accur-
ate reconstruction of images from fan-beam projections.

In practice, effects including those from the instrumentation, physical
factors such as photon attenuation and scatter, statistical noise fluctuations
and patient motions severely degrade the projection data and reconstructed
image quality and quantitative accuracy in ECT. Analytical solutions of the
image reconstruction problems that include these image degrading factors
are complex and difficult. Iterative reconstruction methods that incorporate
accurate models of the imaging process have been proposed. They have been
shown to provide substantial improvement in both image quality and quan-
titative accuracy as compared with the analytical reconstruction methods.
They are active areas of research and are discussed in more detail in the
following chapters.
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Iterative Reconstruction Methods

B.F. HutTOoN%, I. NuyTs® AND H. ZAmI'

1. Introduction

The direct reconstruction in emission tomography (ET) using analytical
methods was described in chapter 3. This included filtered back projection
(FBP), until recently the most commonly used method of reconstruction in
clinical practice. Analytical reconstruction usually assumes a relatively sim-
ple model of the emission and detection processes and would become quite
complex if rigorous models were applied. FBP has further limitations due to
the presence of streak artefacts that are particularly prominent near hot
structures and the noise enhancement that is inherent in the reconstruction.
An alternative to analytical reconstruction is the use of iterative reconstruc-
tion techniques, which can more readily incorporate more complex models
of the underlying physics and also can better accommodate assumptions
regarding the statistical variability of acquired data. Unlike analytical re-
construction where FBP dominates, there are many approaches to iterative
reconstruction. Difficulties in understanding the classification of these algo-
rithms have led to considerable confusion in the choice of appropriate
algorithms, particularly in routine clinical application. This chapter is in-
tended to provide a general overview of iterative reconstruction techniques
with emphasis on practical issues that may assist readers in making an
informed choice. Iterative reconstruction can be applied equally well to
single-photon emission computed tomography (SPECT) or positron emis-
sion tomography (PET) or indeed any tomographic data. The coverage in
this chapter will be general, although some specific issues relating to either
PET or SPECT will be highlighted. Reconstruction of transmission data will
also be briefly addressed. For additional coverage readers are referred to
other recent texts that specifically address iterative reconstruction.'™
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2. What is Iterative Reconstruction?

2.1 General Iterative Techniques

Iterative techniques are common in problems that involve optimization. The
reconstruction problem can be considered a particular case where one is trying
to determine the ‘best’ estimate of the distribution of activity based on the
measured projections. An assumption underlying analytical reconstruction
techniques is that there is a unique solution. However in practice, due to
presence of noise, there are normally a number of possible solutions to the
reconstruction problem. The ‘best’ reconstruction is determined by defining
some criterion that measures goodness of fit between the reconstruction esti-
mate and measurements and by adopting an algorithm that finds the optimal
solution. Iterative techniques are well suited to solving this sort of problem.
A flow-chart that illustrates the general iterative technique used in re-
construction is presented in Figure 1. The iterative algorithm involves a
feedback process that permits sequential adjustment of the estimated recon-

activity measured »
rojections ¢
distribution i _‘_rp |
- —_— correction
- / iii) back matrix
_ ;', project
detector
ii iv) update
ii) compare I l (s orx)
iteration 1
iteration 2 .4—
iteration 3 i) forward
project
iteration 4

estimated s Q; -

projections

Y current -
Ziay i estimate /i

#,.-_

FIGURE 1. Schematic of general iterative reconstruction algorithm. Starting from a
uniform grey image, estimated projections are constructed by forward projection.
These are compared with the measured projections and a correction matrix is con-
structed by back projection. The reconstruction estimate is update either by summa-
tion or multiplication and this becomes the starting point for the next iteration.
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struction so as to improve its correspondence with the measured projections.
The iterative process begins with an initial estimate of the object count
distribution, which may either be simply a uniform arbitrary count level or
a previous reconstruction (e.g. using FBP). Provided a suitable model of the
emission and detection physics is incorporated, the projections that would
arise from this initial object can be estimated (by forward projection): this is
effectively an estimate of what the detectors would measure given the initial
object. Clearly this estimate of projections will differ from the actual meas-
ured projections, unless the initial guess happens to coincide exactly with the
actual object. The difference between estimated and measured projections
can be used to modify the original estimate of the object by use of suitable
additive or multiplicative corrections at each point (usually via back projec-
tion). The adjusted object then becomes the starting point for a second
iteration. This proceeds as the first with the forward projection so as to re-
estimate the projections that would derive from this updated object. The
process continues for multiple iterations using the continuous feedback loop
until a final solution is reached (where usually a predetermined number of
iterations have been completed, resulting in very little object change between
iterations). This iterative process is central to all iterative reconstruction
algorithms.

2.2 Attractions of Iterative Methods

Iterative reconstruction has a number of potential advantages that make it
attractive in comparison with analytical methods. Foremost is the limiting
assumption in analytical techniques that the measured data are perfectly
consistent with the source object, a requirement that is never true in practice
given the presence of noise and other physical factors (e.g. attenuation). The
lack of consistency generally results in problems with noise and possible
problems in finding a unique analytical solution. In contrast, iterative tech-
niques function with either consistent or inconsistent data and can attempt to
model noise directly, with improved noise properties in the final reconstruc-
tion. In addition iterative algorithms are well suited to handling complex
physical models of the emission and detection processes, including position
variant attenuation or distance dependent resolution. This ability to directly
model the system, including some consideration of the noise characteristics,
provides considerable flexibility in the type of data that can be reconstructed.

Iterative reconstruction methods have various additional properties that
make them attractive, although some properties (e.g. non-negativity) are
specific to the particular type of reconstruction and will be dealt with in
the appropriate section. In general though, iterative methods provide recon-
structions with improved noise characteristics. They greatly reduce the
streaking artefacts that are common in analytical reconstruction and are
better able to handle missing data (such as may occur due to truncation or
inter-detector gaps). They generally provide accurate reconstructions that
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can be used for quantification, provided some caution is exerted in choice of
reconstruction parameters.

The main limitation in using iterative algorithms is the execution speed,
which is significantly slower than FBP. However improvements in computer
speed in combination with acceleration techniques (described in section 7)
permits reconstruction in a clinically acceptable time.

2.3 Classification of Iterative Reconstruction Methods

It is convenient at the outset to introduce a general classification for the
various iterative reconstruction methods. These broadly form three logical
groups, defined mainly by the underlying assumptions regarding the nature
of the data, whether statistical or non-statistical. The earliest developments
involved no assumptions regarding the origins of noise in emission data and
led to the various classical algebraic reconstruction techniques, which are
non-statistical. These are described in section 3. The statistical techniques
can be broadly divided into two main groups, those that assume Gaussian
noise (involving least squares solutions: section 4) and those that assume
Poisson noise (involving maximum likelihood solutions: section 5). These
two fairly basic assumptions have led to two distinct classes of reconstruc-
tion that involve different algorithms and different properties. Variations on
these algorithms specifically address issues such as noise control and accel-
eration (described in sections 6 and 7 respectively).

2.4 Nomenclature for Discrete Iterative Reconstruction

It is useful to establish nomenclature with reference to the general iterative
algorithm in Figure 1. Consider the measurement of a set of projections
p(s,¢), where s represents distance along a projection and ¢ represents the
angle of acquisition, originating from a distribution of activity in the corre-
sponding single slice in an object given by f{'x,y ). It is convenient to consider
the equivalent discrete set of projection pixel values p; for counts originating
from the object voxel activity concentration f;. The process of estimating
projections from a known (or estimated) activity distribution requires a
description of the physical model that adequately describes the emission
and detection processes. This essentially defines the probability of detecting
an emitted photon, originating from location j, at any particular position, i,
on the detector, which will depend on many factors including detector
geometry, attenuation and resolution. A single matrix, a;, referred to as
the transition matrix or system matrix, can conveniently describe this rela-
tionship. The process of forward projection can then simply be expressed as

pi=Y_ ayf; (M
J

Similarly the back projection operation can be expressed as:
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3. Algebraic Reconstruction Algorithms

Algebraic reconstruction techniques are based on relaxation methods for
solving systems of linear equalities or inequalities. Recent developments
suggest that with proper tuning, the convergence of these algorithms can
be very fast. However, the quality of the reconstructions has not been
investigated thoroughly. In this section, a summary overview of algebraic
reconstruction techniques is first set out, followed by a description of the
algorithmic implementation of the classical algebraic reconstruction tech-
nique (ART) and its variants.

3.1 ART

The ART algorithm is based on the Kaczmarz method and uses a successive
over-relaxation method well-known in numerical linear algebra.* It was first
proposed as a reconstruction method in 1970 by Bender er al.’ and was
applied mainly to X-ray photography and electron microscopy. The early
developments addressed mainly reconstruction of X-ray CT data but more
recently, ART-type algorithms have been proposed specifically for PET.°
The principle of the basic ART algorithm consists of describing every
iteration point by point (row-action method), and in correcting all voxels
in the image which are found on a projection ray, so as to minimise the
difference between the values of the calculated and measured projections at
the point under consideration. The process comes to a stop when a certain
criterion becomes relatively small. For example the sum of squared differ-
ences between the calculated and measured projections can be used as such a
criterion.

In fact, ART consists of guessing at a value for all the voxels f;, and then
modifying each element along each ray by a factor which compensates for
the discrepancy between the measured and the calculated ray sum:

p Di
fnew :fold : (3)
J J Zk: ik fkald

Here /" and j}""’ refer to the current and previous estimates of the recon-
structed object respectively. If the calculated ray sum is the same as the
measured value, it implies that the guessed value is correct for a particular
projection; however, for another projection there might be a large discrep-
ancy. Thus the pixels of the last views (while lying in the ray for the new
view) will be modified according to the discrepancy between the new ray and
the measured value. Thus, each ray from each projection is examined
and values of f falling within that ray are changed iteratively for all the



112 B.F. Hutton, J. Nuyts and H. Zaidi

projections for a certain number of iterations. It is evident that the compu-
tational effort of the ART algorithm is relatively low, but data matrices can
be several hundred of Megabytes in size.

It has been shown that by careful adjustment of the relaxation parameters
and the order in which the collected data are accessed during the reconstruc-
tion procedure, ART can produce high-quality reconstructions with excel-
lent computational efficiency.* In particular, the choice of the projection
data access scheme proved to be crucial for improvement of low-contrast
object detection.” An important modification of ART consists of setting to
zero those values in the array that are clearly zero because they correspond
to a ray sum that was observed as zero. This is an important boundary
condition for any of the iterative techniques.

3.2  Other Variants

A large number of ART variants have subsequently been proposed in
literature. Eq. (3) above is called multiplicative ART (MART). Another
method of correcting the discrepancy between the measured and calculated
projections consists of adding the difference between them. This is called the
additive form of ART (AART). The diverse variants of ART correspond to
row-action techniques, as each iteration only calls for the use of one equa-
tion at a time. Other algorithms like the simultaneous iterative reconstruc-
tion technique (SIRT) consist of correcting simultaneously each voxel for all
rays passing through it. So, these corrections are incorporated by using data
from all of the projections simultaneously. The simultaneous version of
MART (SMART) is similar to the ML-EM approach (see section 5.1).
The block-iterative version of ART (BI-ART) is obtained by partitioning
the projection set and applying the ART equation to each subset (a block
represents a subset of the projection data). The correction is computed for
each block, and may be interpreted as a weighted back-projection of the
difference between the computed image projection and the acquired projec-
tion. This correction is performed only after an entire projection image is
computed. Other variants of ART include the block-iterative version of
SMART (BI-SMART) and the rescaled block-iterative SMART (RBI-
SMART).® With BI-SMART in PET, an issue is the way to define a block
to ensure the convergence of the algorithm, at least for the consistent case.

4. Statistical Algorithms-Gaussian Assumption

4.1 Least Squares Solutions

In nuclear medicine, the count rates are usually fairly low, and as a result,
the data tend to be rather noisy. As mentioned above, one cannot hope to
recover the true solution from such data, and some criterion to define the
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‘best solution’ is needed. In statistical reconstruction, the best solution is
defined as the one that is most likely, given the data. Thus, the reconstruc-
tion is obtained by finding the image f that maximises the conditional
probability prob[ f'|P], where P are the measured projections. Using
Bayes’ rule, this objective function can be rewritten in a more convenient
form:

_ prob|P|/]prob] /]

Because P is constant, maximising prob[f|P] is equivalent to maximising
prob[P| f]prob[ f]. The factor prob[P|f] is called the “likelihood” and tells
how well the data agree with the image. The factor prob[ /] is the “prior”,
and tells what is known already about the image f, prior to the measurement.
Finally, prob[f|P] is called the “posterior”, and represents what is known by
combining the a-priori knowledge with the information obtained from the
measurement. If it is assumed that nothing is known in advance, then the
prior is constant and maximum-a-posteriori (MAP) reconstruction is
equivalent to maximume-likelihood (ML) reconstruction. The discussion of
the posterior is deferred to a later section.

In emission and transmission tomography, the noise on the counts meas-
ured at two different detector locations is uncorrelated (the noise is “white”).
This allows for factorisation of the likelihood:

prob[P|f] = [ ] problpi|/] o)
Maximising a function is equivalent to maximizing its logarithm. Therefore,
the maximum-likelihood reconstruction f is obtained by maximising

log-likelihood = Z In probp;| f] (6)

Assuming that the noise can be well approximated as a Gaussian distribu-
tion with known standard deviation makes the maximum-likelihood solu-
tion identical to the least squares solution. The mean of the Gaussian
distribution for detector i is computed as the projection of the image f.
Consequently, the least squares solution is obtained by minimizing (over F):

(0~ >yaut))’
Lo(P.F) =)
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1
where P is a column matrix with elements p;, 4 is the system matrix with
elements a; and F is a column matrix with elements f;, and prime denotes
transpose. C is the covariance matrix of the data, which is assumed to be
diagonal here, with elements ¢; = 0. A straightforward solution is obtained
by setting the first derivative with respect to f; to zero for all j. This solution
is most easily written in matrix form:
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F=[4c'4a] ' ac'p ®)

The problem with this expression is the large size of the matrices. The inverse
of the so-called Fisher information matrix 4’C~'4 is required.’ It has J x J
elements, where J is the number of voxels in the image to be reconstructed.
Its matrix elements equal

Aajjdij

FIM(j.k) =) 3 ©)

i i

which is mostly non-zero: although the diagonal dominates, this matrix is
not sparse at all and direct matrix inversion is prohibitive.

As an exercise, it can be assumed (although totally unacceptable) that all
standard deviations o; are identical and equal to 1. Moreover, consider an
idealized parallel-hole projection, with perfect resolution and no attenuation
or other degrading effects. The image minimizing L then becomes

F=[44"'4P (10)

The operator A’ A computes the backprojection of the projection of a point.
In this idealized case, the operator 4’A is shift invariant, and it can be shown
that its inverse is (a digital version of ) the inverse Fourier transform of the
ramp filter. Consequently, this analysis reveals that FBP computes the
solution of the unweighted least squares problem.

In emission tomography, it is not realistic to assume that all the standard
deviations o; are identical. As a result, the Fisher information and its inverse
become more complex, position dependent operators, that cannot be imple-
mented with shift invariant filters (such as a ramp filter). Consequently, one
has to turn to numerical, iterative optimisation techniques.

Another problem is the estimation of the standard deviations o;. The
Poisson distribution is well approximated as a Gaussian with variance
equal to the mean. But the mean (noise-free) projection count is unknown.
There are two approaches to deal with this problem. The first one is to
estimate o; from the noisy counts p;,. One could simply set o; = p;*°.
However, this leads to a negative bias in the reconstruction: all counts that
happen to be smaller than the mean will be assigned a smaller standard
deviation, and hence a higher weight in the weighted least squares compu-
tations. These noisy weights may even cause streak artefacts in the recon-
struction. So the noise on the weights has to be reduced, e.g. by estimating o;
from a smoothed version of the data. The second approach is to estimate o;
from the current reconstruction, rather than from the data. This is closer to
the physical reality, because the measurement is assumed to be a noise
realization of the noise-free projection of the tracer distribution. However,
it is also more complex, because now the weights depend on the unknown
solution of the problem. Possibly because of this, the data-based estimate of
the weights has received more attention in the literature.
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4.2 Approaches to Minimization

Many optimisation algorithms can be applied to this problem (e.g. conjugate
gradient or steepest descent), but it is beyond the scope of this text to present
these in detail. One thing that most of these algorithms have in common is
that they will modify each voxel such as to decrease the value of Lg in every
iteration. To do that, the value added to voxel j must have the opposite sign
to the derivative of Ls with respect to f;. This can be written as

1 OLg
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(11)

where «; is some positive value, that may change during iteration, and that
has to be tuned in order to guarantee convergence. To show the typical form
of the optimisation algorithms, the derivatives of the two following cost
functions are computed:

(p (pi
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L 1s the cost function with pre-computed (data based) standard deviation.
L 1s the version where the variance is estimated from the current recon-
struction. The derivatives with respect to f; equal:

OLg pi—Pi  ,0Lg (pi — pi)(pi + pi)
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The difference between algorithms is mainly in how the step size «; is tuned.
Note that (weighted) least squares algorithms do not “naturally” produce
non-negative solutions. If non-negativity is desired, it must be imposed
during the iterations, which can adversely affect convergence. Sauer and
Bouman'® and Fessler'! proposed an effective method, which has been used
successfully by others.'*!? It updates the reconstruction voxels sequentially
(as in ART), sets the step size «; equal to the element F/M(j,j) of the Fisher
information matrix and produces a non-negative solution. Other solutions
have been proposed, e.g. scaled steepest descent by Kaufman'* and a pre-
conditioning algorithm by Chinn and Huang."

5. Statistical Algorithms-Poisson Assumption

5.1 Maximum Likelihood Solution: the ML-EM
Algorithm
The random nature of radioactive decay suggests that a Poisson model is

more appropriate for emission data (although this is well approximated by a
Gaussian provided measured counts are reasonably high). An appealing
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consequence of using the Poisson model is that non-negativity is assured
even at low count levels.

The basic Poisson model provides the probability of measuring a particu-
lar count, ¢, given an expected measurement, r:

—TI.C

e’r
problc|r] = I

(14)

Using this Poisson model the probability of acquiring the projection count
distribution that was measured, P, given an estimated distribution of activity
in the emission object, f, can be represented by the product of probabilities
for individual projection pixels. This conditional probability is referred to as
likelihood, L

L(P|f) = prob[P|f] = [ [ exp [— >l

Di
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As argued above (section 4.1, eq (4)-(6)), maximising (the logarithm) of
prob[P|f] is equivalent to maximising prob[f|P], provided the a priori dis-
tribution can be assumed to be constant. This provides the most likely
distribution of emissions that represents the original activity distribution,
given the measured projections.

There are various approaches to determine the maximum likelihood (ML)
solution but the most commonly used is the expectation maximization (EM)
algorithm, which unifies various previous statistical approaches.'® This in-
volves an iterative process with the attractive property that convergence is
guaranteed. ML-EM was originally applied to emission tomography in the
early eighties'”!® but continues to be widely used. Other groups also deserve
credit for much of the early application of ML-EM to emission tomography
(e.g. Miller e al.'). The EM algorithm involves two distinct steps. First the
expected projections are calculated by forward projection using the appro-
priate system / transition matrix, based on the estimate of the activity
distribution from the previous iteration (an initial guess in the case of the
first iteration). Second the current estimate is updated so as to maximise the
likelihood, achieved by multiplication of the previous estimate by the back
projection of the ratio of measured over estimated projections. The resultant
ML-EM equation is derived elsewhere, as cited above, and is given by

, fp/d pi
fnew ) aj (16)
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5.2 Properties of ML-EM Reconstruction

The EM algorithm results in an iterative process for estimation consistent
with the general iterative flow-chart given in Figure 1. In this case the update
is multiplicative, not unlike SMART, with the update simply being the ratio
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of measured over estimated projections. As the number of iterations in-
creases the likelihood increases, providing an estimate that theoretically is
more likely to be close to the true object distribution. In practice, however,
the image reaches an optimal visual quality at typically around 16 iterations
and, in the absence of any noise constraint, appears progressively more noisy
at higher number of iterations (Figure 2). The noise characteristics are
appealing, with the variance remaining proportional to number of counts
rather than being approximately position-independent as in FBP.”*** This
tends to favour lesion detection in low count areas where the signal to noise
ratio can be markedly improved. The ML solution after a large number of
iterations is not the most ‘desirable’ solution as it reflects the actual noisy
distribution of emitted counts rather than the underlying activity, whose
distribution is likely to be much less variable. In clinical practice it is
common to stop at a small number of iterations in order to limit noise.
However it should be recognised that the reconstruction does not converge
at the same rate for all points. Halting the reconstruction early runs a risk of
reducing reconstruction accuracy, which can be avoided by using a larger
number of iterations with post-reconstruction smoothing.?' Alternative ap-
proaches to controlling noise are discussed in section 6.

There are several attractive theoretical properties of ML-EM although in
practice these rarely offer real advantage due to approximations in the
system model and the relatively high level of noise in most emission tomog-
raphy studies. The use of a multiplicative update guarantees positive values
and also means that areas outside the object, where zero counts are expected,

O | O ; O

object

10 iterations 100 iterations
sinogram 4

FIGURE 2. PET simulation of circular object in a uniform background, with uniform
attenuation. ML-EM reconstructions at 10 and 100 iterations are shown, obtained
from a sinogram without noise (top) and with Poisson noise (bottom). At 10 iter-
ations, convergence is clearly incomplete. At 100 iterations, the noise level is becom-
ing unacceptable.

=
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are constrained so as to remain zero. This can result in problems near object
edges when the projection counts are low as any zero pixel on a projection
defines a projected line where counts are set to zero and remain unchanged,
even when intersected by non-zero projections. The conservation of counts
that occurs, results in the possibility of misplaced counts (usually hot spots)
near the object edge.

A definite limitation with ML-EM reconstruction is the time taken for
reconstruction. Each of the forward and back projection steps in all iter-
ations takes approximately the same time as FBP; twenty iterations ML-EM
would therefore take forty times as long as FBP. Fortunately steps can be
taken to significantly accelerate the reconstruction as outlined in section 7.

6. Approaches to Controlling Noise

As mentioned above, the ML-criterion does not prevent noise propagation,
and in many clinical cases the noise becomes unacceptably high at high
iteration numbers. Stopping iterations early is dangerous: because the con-
vergence of ML-EM depends on position and even orientation, the spatial
resolution can be very position dependent at low iteration numbers. This is
illustrated by the PET simulation in Figure 2. The true object is a circular
ring of activity, embedded in a large disc with background activity. Attenu-
ation within the disc is uniform. Because the attenuation along central
projection lines is higher, the convergence of ML-EM is slower in the centre.
At 10 iterations, the spatial resolution in the centre is clearly lower than near
the edge. At 100 iterations, the resolution has become uniform. However,
when Poisson noise is present, the noise level at 100 iterations is very high.

6.1 MAP with Gibbs Prior

As discussed above, maximising the likelihood is equivalent to maximising
the posterior, if one can assume that nothing is known about the image,
prior to the measurement. But obviously, some a-priori knowledge is avail-
able: the image should not be too noisy. Somehow, this prior knowledge
must be translated into a mathematical expression, which can be inserted in
equation (4).

A convenient way to define a prior distribution favouring smooth solu-
tions is via a Markov random field (or equivalently: a Gibbs random field).
In a Markov random field, the probability of a particular voxel depends on
the voxel values in a neighbourhood of that voxel. The dependence is defined
with a Gibbs distribution of the following form (e.g. Geman and McLure*):

prob| ;] :%e’BW) with U(f) = >V (f.fi) (17)
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where prob] f;] denotes the conditional probability for the value in voxel j
given the rest of the image, Z is a normalization constant, 8 a factor that
determines the strength of the prior (1/B is the “temperature”), and N;
contains the voxels neighbouring voxel j. U is the so-called energy function,
and higher energies are less likely. In fact, more complex forms of U are
allowed, but this one is nearly always used. To favour smooth images, noisy
ones should be penalized with a higher energy (hence the alternative name
“penalized likelihood”’). An obvious choice for V'is the “quadratic penalty”:

14 R0y 18
Q(ff’fk> - 20_2 ( )
which makes prob/f] maximum for a perfectly uniform image. A possible
disadvantage of Vo is that it heavily penalizes large differences, causing
strong smoothing over edges. To avoid that, the Huber function (e.g. Mum-
cuoglu et al*®) quadratically penalizes “small” differences, but penalizes
“large” differences only linearly:
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A function with a similar edge-preserving characteristic (but with a grad-
ual transition to the linear behaviour) is the logcosh function (see e.g. de
Pierro®*): ¥, = In(cosh ((fi — fi)/o)). Functions have been devised that
preserve edges better than Vg or V7, e.g. by applying a constant instead of
a linear penalty for large differences. However, in contrast to the functions
mentioned above, functions applying a constant penalty are not concave;
they introduce multiple local maxima, making the final MAP-reconstruction
dependent upon the initial image and the particular optimisation algorithm.
For that reason, these functions are rarely used in emission tomography.

The functions Vg, Vg and V; penalize in proportion to the (square of)
absolute differences between neighbouring voxels. But because the absolute
tracer uptake values vary with scan time, injected dose, attenuation, patient
weight and metabolism, it can be difficult to select a good value for the
parameter o. As one can see from the equations, ML-EM is insensitive to the
absolute counts in the sinogram: if the sinogram is multiplied with a factor,
the corresponding ML-EM reconstruction will simply scale with the same
factor. This is no longer true for the MAP-reconstruction based on the
quadratic or Huber prior. To avoid this problem, a concave function pen-
alizing relative differences rather than absolute ones has been proposed:*

N
Vr(fi-fi) ity A >
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Similar to the Huber prior, V'x has some edge-preserving features: the
penalty decreases slower when the relative difference |f; —fi|/(f; + /i) is
large compared to 1/y.

Having defined the prior, an algorithm is needed to maximise the poster-
ior, or equivalently, its logarithm: In prob[P|f'| 4+ In prob[f]. Direct applica-
tion of the EM strategy yields the following expression:

fold pi
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where U( f') is the energy function of the Gibbs prior. The problem is that the
derivative must be evaluated in /", which complicates the solution dramat-
ically. Green®® proposed the one step late (OSL) approach, which is to
evaluate the derivative in the available reconstruction image ];-"ld . This ap-
proach is effective if 8 is not too large, but convergence is not guaranteed, and
with large B the algorithm can actually diverge. de Pierro** found a new (non-
statistical) derivation for the classical ML-EM algorithm, which is based on
the construction of a surrogate function at each iteration. This is a function
that coincides with the likelihood function up to the first derivate and which is
easier to maximise than the likelihood. Each iteration, the surrogate is maxi-
mised, and one can show that this guarantees an increase of the likelihood.
The same approach can be applied to most Gibbs priors, and hence, to the
posterior. This has led to the development of new and more robust algorithms
for MAP-reconstruction (see Ahn and Fessler”’ and the references therein).

6.2 Post-smoothing Unconstrained M L-EM

As shown in Figure 2, possible convergence problems of ML-EM are elim-
inated by iterating sufficiently long. This leads to unacceptable noise levels,
but the noise can be reduced considerably with moderate smoothing,?"*® as
illustrated in Figure 3. Since this is high frequency noise, smoothing is even

more effective than with uncorrelated noise.>’

100 iterations 100 it. + post-smooth 10 iterations

FIGURE 3. Same PET simulation as in Figure 2, comparing post-smoothing ML-EM
after 100 iterations with the reconstruction without post-smoothing (left) and the
ML-EM reconstruction at 10 iterations.
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An advantage of post-smoothed ML-EM is its wide availability. It is
currently available on most SPECT and PET systems. As will be discussed
below, an additional advantage (for some applications) is that it can impose
nearly uniform spatial resolution. A disadvantage is that many iterations are
required to achieve this resolution uniformity.

6.3 Expectation-Maximisation-Smooth (EMS)

Some groups have investigated the application of a smoothing filter after
every ML-EM iteration, called EMS (expectation-maximisation-smooth) or
inter-iteration filtering.?®**! Although there is no proof of convergence,
this algorithm always appears to converge in practice. The image character-
istics are somewhat similar to those of penalized likelihood reconstruction.

6.4 Uniform Resolution

For some applications in emission tomography it is desirable that the spatial
resolution in the images is predictable, independent of the object and usually
also independent of position. Examples are quantitative analysis of PET
studies, where one has to assume that changes in numbers are due to changes
in metabolism, and not to changes in characteristics of the imaging system.

A problem with most MAP-algorithms (and also with EMS) is that they
tend to produce object and position dependent resolution. The likelihood
term seeks ideal resolution, while the prior (penalty) wants no resolution.
The final resolution depends on the relative strength of both terms. The
strength of the prior is usually chosen to be constant, but the strength of the
likelihood depends on the object, on the position within the object and even
on the orientation. To obtain the same balance between the two everywhere,
the strength of the prior has to follow that of the likelihood. Such algorithms
have been designed, and compared to post-smoothed ML-EM.?>3* It is
found that at matched resolution, the noise characteristics of these penal-
ized- likelihood algorithms are similar to those of post-smoothed ML-EM.
Post-smoothed ML-EM is much easier to program, and is already widely
available. However, the penalty improves the conditioning of the inverse
problem, which can be exploited to obtain faster convergence.>* So for
applications requiring uniform resolution, penalized-likelihood may still
have its role as an acceleration technique.

6.5 Anatomical Priors

Many attempts have been undertaken to exploit anatomical knowledge,
available from registered MRI or CT images, during the reconstruction of
PET or SPECT data. The aim is to avoid the resolution loss due to the
regularization, or even to recover the resolution of the emission reconstruc-
tion, by making use of the superior resolution of the anatomical images.
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These attempts are only meaningful if one can assume that there is a fair
overlap between anatomical and functional (tracer uptake) boundaries.
Fortunately, this seems to be a valid assumption in many applications.

The anatomical information has been used to tune the noise suppressing
prior in a MAP-algorithm, by limiting smoothing to within organ boundar-
ies revealed by the anatomical data.>>* In addition, the segmented MR
image can be used for attenuation and scatter correction purposes.*' If the
finite resolution of the emission tomograph is modelled, then these algo-
rithms can produce a strong resolution recovery near anatomical boundar-
ies. To further push resolution recovery, Sastry and Carson*” introduced a
tissue composition model, which considers each (coarse) PET-voxel as com-
posed of one or more tissue classes, which are obtained from a segmented
MRI image of the same patient. The PET-activity in every voxel is then a
weighted sum of tissue class activities. Figure 4 shows an example obtained
with a similar approach.

6.6 Median Root Prior

Alenius et al.*>**® have proposed a penalized-likelihood method based on a
median filter. The algorithm can be written in the following form:

e = - Zaif P old (22)

where M; is the value of voxel j, obtained by median filtering the image /.
Followmg the OSL interpretation discussed above, the difference between a
voxel and the median of its neighbourhood is used as the gradient of some
energy function. The derivation is empirical, and in fact, the corresponding
energy function does not exist. Hsiao*’ recently proposed a very similar

FiGure 4. PET image obtained with MAP-reconstruction without (left) and with
(right) the use of anatomical information from a registered MRI image (center), using
a tissue composition model.** The 3D sinogram was first rebinned with FORE,*
then the MAP-reconstructions were computed.'?
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algorithm, which does minimize a well defined objective function. Albeit
empirical, the algorithm is very effective and has some interesting features.
In contrast to most priors, it does not strive towards a completely flat image
(which is not a very realistic prior assumption). Instead, it only requires that
the image be locally monotonic. Locally monotonic images do not have
small hot spots, but they can have sharp and/or smooth edges. In addition,
similar to the relative difference prior, it penalizes relative differences, mak-
ing B a “unit-less”, easily tuned parameter. Stated intuitively, the MRP
algorithm essentially suppresses all hot or cold spots that are small com-
pared to the size of its median filter. It follows that, when applied in hot spot
detection applications (such as PET whole body imaging in oncology), the
mask should be chosen sufficiently small and 8 not too large.

Figure 5 illustrates the behaviour of ML-EM with moderate post-smooth-
ing, MRP and the relative difference prior. Large homogenous regions (such as
the liver and the mediastinum) are much better visualized in the MAP-recon-
struction images, in particular with MR P. Smaller structures, such as the blood
vessels, are somewhat attenuated by both priors. A very hot and small spot,
such as the lesion in the neck, is strongly suppressed by the MRP-penalty. It is
better preserved by the relative difference prior, because of its tolerance for
large voxel differences. But it is best recovered by the noisier ML-EM image,

MLEM MAP (MRP) MAP (rel.diff.)

& . &

FIGURE 5. Three reconstructions of the same patient’s PET scan. Left: post-smoothed
ML-EM; center: MAP with median root prior; and right: MAP with relative differ-
ence prior (Vg). The median root prior has superior noise suppression and
edge preservation for larger structures. However, hot spots that are small compared
to the median filter size are suppressed (see the lesion in the neck, indicated by
the arrow).
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because only moderate smoothing was applied. The penalties should be applied
with caution and must be optimized for each particular task.

7. Approaches to Acceleration of ML-EM
7.1 Ordered Subsets EM: OS-EM

The computation time for iterative reconstruction algorithms is typically
orders of magnitude longer than for FBP. Fortunately steps can be taken to
significantly accelerate these algorithms. The most widely used acceleration
technique, perhaps due to its simplicity, is the ordered subsets EM or OS-
EM algorithm.*® Ordered subsets or block-iterative methods have been
applied to a number of iterative algorithms with OS-EM being similar in
some respects to MART. The essential difference between OS-EM and ML-
EM is the use of only a subset of projections for updating rather than
comparison of all estimated and measured projections. For OS-EM one
iteration is normally considered the use of all data once; consequently use
of only part of the data during the update process is termed a sub-iteration.
In OS-EM the reconstruction proceeds by utilising subsets of the projec-
tions, chosen in a specific order that attempts to maximise the new informa-
tion being added in sub-iterations. Iteration proceeds by using different
projections in each subsequent subset until all projections are used. The
resulting equation is very similar to the standard ML-EM equation, the
only difference being the use of subsets, S,, where n € N, the total number
of projections divided by the number of projections per subset or subset size:
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Note that sub-iterations recycle through S, for subsequent iterations. Pro-
vided subset size is not too small and subset order is chosen carefully, the
reconstruction estimate of OS-EM at each sub-iteration is almost indistin-
guishable from the reconstruction for a corresponding number of full iter-
ations of ML-EM (Figure 3). The computation time for each sub-iteration is
roughly equal to the time for a conventional ML-EM iteration divided by N,
due to the reduced number of forward and back projection operations in the
subset. Consequently for 128 projections and subset size of 4, the acceler-
ation factor is approximately 32.

There are some theoretical concerns regarding OS-EM. For example,
there is no proof that OS-EM in its standard form converges to the same
solution as ML-EM. In fact OS-EM reaches a limit cycle, where the result
depends to a small extent on the point in the subset sequence at which
iteration is stopped. However, with the noisy data typical of clinical practice,
this has not been found to be of particular concern, since the possible
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solutions tend to be very similar, provided subset size is not too small.
Choosing subset order is important as a necessary condition is that there
be subset balance, which requires that ), ¢ a; is independent of n. In
practice the use of four well spaced projections is a reasonable compromise
between speed and reconstruction quality.*’

7.2 Variants of OS-EM

There have recently been a number of variants of OS-EM that address some
of its theoretical limitations. The rescaled block-iterative (RBI) algorithm>°
does converge to a single solution in the absence of noise, independent of
subset order. The equation for RBI is
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which can be seen to reduce to exactly OS-EM when ) ;¢ a; is constant for
all n. Alternatively the row-action maximum likelihood algorithm
(RAMLA) is designed to avoid the limit cycle by using under-relaxation
(deliberately decreasing the influence of the update as iteration advances).”!
The equation again has a very similar form:
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where A, decreases with iteration k, but remains constant throughout the
sub-iterations within each main iteration. More recent work suggests that A
could be varied with sub-iteration.’> An alternative approach to controlling
the limit cycle is to increase the subset size with iteration,*® providing results
similar to over-relaxation.>® The similarity in these algorithms leads to some
confusion in their applicability, particularly as some of the theoretical con-
cerns are of little clinical relevance e.g. with noisy data the ML solution is
undesirable. Nevertheless, as seen from the above equations, some level of
standardisation in the approaches is emerging.

7.3 Acceleration for Regularized Reconstruction
Algorithms

The same approaches to acceleration can be applied to regularised statistical
algorithms as to ML-EM since their formulations are generally similar. The
OS-GP was suggested as the regularised OS-EM equivalent for MAP-OSL
reconstruction based on the Gibbs prior.*® Similarly block-iterative
approaches have been used for the basis of developing the RBI-MAP
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algorithm>* and the block sequential regularized EM algorithm (BSREM) as
a regularized form of RAMLA.>® There is some debate regarding the choice
of regularized acceleration algorithm, with suggestion that BSREM type
algorithms have theoretical advantages.?’>> Still further work is necessary
to confirm which algorithm is optimal for clinical application.>®

8. Using ML with Non-Poisson Data

8.1 Transmission

The ML-EM algorithm described above is based on the assumption that the
data can be considered as linear combinations of the unknown tracer distri-
bution, and that they are Poisson distributed. In transmission tomography,
the counts ¢; are Poisson distributed, but they are a non-linear function of
the image p;. For that purpose, dedicated ML and MAP algorithms have
been developed for transmission tomography. The likelihood function to be
optimised is now:

Lt = Z t; In 2,‘ — i,‘, with 2,‘ = b[ eXp <— ZIU/'LJ> + i (26)
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where #; is the measured transmission count rate, b; is the blank scan, /; is the
intersection length of projection line i with the image voxel j, and s; contains
additive contributions, such as Compton scatter, random coincidences or
emission activity in post- injection transmission scanning in PET.

One can apply the expectation-maximisation (EM) strategy again.
However, in this case, it leads to a somewhat cumbersome expression. To
obtain more elegant algorithms, other optimisation methods have been used.
Mumcuoglu et al.*® proposed a conjugate gradient method. Using de Pier-
ro’s surrogate function approach, Fessler® derived a suitable class of algo-
rithms. The unconstrained and non-parallel version can be written as:
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where a;; can be chosen, as long as ;=0 and } ;> 0.

Setting ay = L™/ > lxpy" yields the convex algorithm of Lange and
Fessler,'® choosing a; = l;/ >, I produces the algorithm used in Nuyts.®!
These algorithms behave similarly to the ML-EM algorithm in emission
tomography: they have similar noise propagation; they need a comparable
amount of computation time and show similar convergence speed. They can
be accelerated with ordered subsets as well.®?

As in emission tomography, the noise can be suppressed by combining the
likelihood with a prior. However, in transmission tomography more prior
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FIGURE 6. Comparison of FBP (above) and MAP (below) reconstruction of very
short PET transmission scan.

information is available: the attenuation of tissue and bone is known. In
addition, attenuation images are much smoother than emission images. For
this reason, more aggressive priors can be applied.”®! An example is shown
in Figure 6. The effect of these strong priors can be considered as a segmen-
tation, thus producing transmission maps resembling those of the so-called
“segmented attenuation correction” algorithms.®*®® The main difference
with the MAP-approach is that the segmentation is done during, not after
the reconstruction.

8.2 Corrected Emission

To reduce processing time and data storage, it is often convenient to work
with pre-corrected data. For example, careful reconstruction on a PET
system requires separate storage of at least three sinograms: one containing
the raw, Poisson distributed data, one containing multiplicative effects
(including attenuation and detector efficiency) and another one containing
additive effects (Compton scatter and randoms). In particular in 3D PET,
this represents an impressive amount of data, requiring considerable pro-
cessing time for reconstruction. An attractive alternative is to produce a
single smaller sinogram by pre-correcting the data and applying Fourier
rebinning. But then the data are no longer Poisson distributed. It has been
shown that ML-EM yields suboptimal images from such data.'?

An obvious solution is to abandon ML-EM and use a weighted least
squares algorithm instead (e.g. Fessler''). However, because the ML-EM
algorithm is more widely available, an alternative solution has been devised.
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It is possible to manipulate the data in order to restore the Poisson distri-
bution approximately, and then undo the manipulation during ML-EM
reconstruction. Consider a random number x, and assume that estimates
for its mean and variance are available. The distribution can be shifted, such
as to make the variance equal to the mean, as required by a Poisson
distribution: mean (x +s) = (x +s). It follows that the shift amount to
s = (x) — mean(x). This approach, for example, is used to deal with randoms
correction in PET.®” Alternatively, one can scale x, such that mean(a x) =
var(a x), which yields ¢ = mean(x) / var(x). This approach can be used for
reconstruction of transmission scans, if no dedicated transmission algorithm
is available.®®

9. Application to Specific Problems
9.1 More Complex Emission Models

The attraction of iterative reconstruction is that it can be relatively easily
modified so as to be applicable to specific emission models. The limitation
tends to be that the computational speed is directly related to the complexity
of the underlying model. Not only does the computation per iteration
increase but also the number of iterations required. Fortunately the com-
bination of faster computers and effective acceleration models means that
tackling more complex problems can now be contemplated.

The incorporation of information on distance-dependent resolution in the
transition matrix®’° results in the iterative reconstruction effectively oper-
ating in 3D, allowing for the probability that photons travelling obliquely to
the detector still can be detected. Incorporation of resolution loss in the
system model in theory suggests that the final reconstruction should have
resolution recovery, although in practice this is limited by slow convergence.
This will be discussed in more detail elsewhere. The correction of scatter is a
particularly demanding problem due to the complex dependence of scatter
on the non-homogeneous attenuation in tissue and the broad 3D distribu-
tion of scatter. Modelling scatter for incorporation in the transition matrix is
difficult since it is object dependent, although appropriate models have been
developed”!"7* and efficient Monte Carlo solutions have been proposed.” It
is worthwhile noting that there are advantages to incorporating measured
scatter estimates (such as might be obtained from multiple energy windows)
directly in the projector.”* The incorporation of estimated scatter () in the
ML-EM equation is given by:
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Since the scatter estimate is simply used to provide consistency between
estimated and measured projections the resultant reconstruction is much
more resistant to noise than if the scatter was directly subtracted from the
measured projections. Indeed the direct subtraction introduces concern that
the projections are no longer Poisson distributed (as discussed further
below). A similar approach can be taken to account for measured randoms
in PET or indeed any source of measured counts that is not accounted for by
the transition matrix.

Extensions to the system modelling have been developed to accommodate
the more complex situation with either dual radionuclides” or multiple-
energy radionuclides.”® In dual radionuclide studies two distributions are
simultaneously determined allowing for cross-talk between the radionuclides
being imaged. In the case of a multiple-energy radionuclide a single estimate
can be determined taking into account the different attenuation that occurs
at different emission energies.

A further complexity to iterative reconstruction can be introduced if a
fourth dimension is included in the model to account for tracer redistribu-
tion with time or motion occurring during gated acquisition. Provided a
model of the time variation is well understood this can be incorporated in the
transition matrix so as to account for inconsistencies that may otherwise
occur between estimated and measured projections. The interested reader is
referred to relevant publications.”””®

9.2 3D Reconstruction

Some of the complexities mentioned above already suggest the need for a 3D
reconstruction (or even in some cases 4D) in order to cater for the possibility
of non-planar detection. Clearly this becomes even more evident with de-
tectors that specifically are designed to acquire data in 3D (e.g. cone-beam
SPECT, pinhole SPECT or septa-less PET). The attraction of iterative
reconstruction is that the basic algorithms do not require any specific change
except for definition of the transition matrix, unlike FBP, which usually
requires the derivation of specific non-standard filters. A specific example
where iterative reconstruction has been widely applied is in 3D PET where
usually some form of rebinning is first performed (e.g. Fourier rebinning or
FORE) in combination with iterative reconstruction.** Alternatives based
on direct 3D iterative reconstruction have also been implemented.”®-%

9.3  Motion Correction

An area where iterative reconstruction is proving particularly useful is the
correction of motion, determined either from independent measurement®! or
via estimation directly from the measured projections.®” Since patient move-
ment can be considered as equivalent to detector movement, the reconstruc-
tion necessitates the incorporation of data at specific angular positions
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relative to the reconstructed object space. Provided most projections can be
considered to correspond to a stationary patient at various locations, recon-
struction can be accomplished rather easily using iterative reconstruction
with OS-EM selecting subsets of projections so as to correspond to specific
patient/detector positions. More exact correction necessitates either multiple
short-duration acquisitions to minimise the possibility of movement in an
individual acquisition frame or use of list-mode® where each individual
event can be corrected for movement so as to locate the exact ray-path.
The EM list mode equation®*®* can be formulated to be very similar to the
conventional EM equation:
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Note, however, that the main summation is restricted to the elements in the
list-mode data rather than all projection bins; this effectively ignores zero
projection bins and consequently the numerator reduces to unity. The OS-
EM version simply divides the list-mode data into sub-lists.

10. Clinical Evaluation

Evaluation and clinical validation of image reconstruction algorithms is
inherently difficult and sometimes unconvincing. There is a clear need for
guidelines to evaluate reconstruction techniques and other image processing
issues in emission tomography. A particular concern in clinical studies is the
tendency to compare not only different algorithms but different approaches
to processing, without effort to isolate the effects due to the reconstruction
algorithm itself. Examples are the comparison of iterative algorithms includ-
ing attenuation correction with analytic approaches without attenuation
correction or the comparison of different iterative algorithms where the
fundamental implementation differs (e.g. use of “blobs”*® rather than pixels
in the projector). This simply adds to the confusion in interpreting results.
A further common problem is the comparison of clinical images where the
reconstruction algorithm results in different signal to noise properties, typ-
ically dependent on the number of iterations utilised. Evaluation for a range
of parameters tends to provide more objective results where the trade-off
in noise and signal (e.g. recovery coefficient) can be more meaningfully
compared.

Most of the algorithms developed so far have been evaluated using either
simulated or experimentally measured phantom studies, in addition to
qualitative evaluation of clinical data. This has been extended more recently
to objective assessment of image quality using Receiver Operating Charac-
teristics (ROC) analysis based on human or computer observers,®’ evalu-
ation of the influence of reconstruction techniques on tracer Kkinetic
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parameter estimation® and voxel-based analysis in functional brain imaging
using statistical parametric mapping.®*-*°

10.1 Validation Using Simulation and Phantom Studies

A simulator is an efficient tool that can be used to generate data sets in a
controllable manner in order to assess the performance of different reconstruc-
tion algorithms. Medical imaging simulation tools have been shown to be very
useful for validation and comparative evaluation of image reconstruction
techniques since it is possible to obtain a reference image to which recon-
structed images should be compared. The ability to theoretically model the
propagation of photon noise through emission tomography reconstruction
algorithmsis crucialin evaluating the reconstructed image quality asa function
of parameters of the algorithm. Two broad categories of simulation packages
have emerged: simplified analytical modelling tools and sophisticated Monte
Carlo simulations. In the first class of simulators, several simplifying approx-
imations are adopted to improve ease of use and speed of operation (e.g.
Gaussian noise distribution and scatter model based on an analytical point
spread function).”! On the other hand, the Monte Carlo method is widely used
for solving problems involving statistical processes and is very useful in medical
imaging due to the stochastic nature of radiation emission, transport and
detection processes. Many general purpose and dedicated Monte Carlo pro-
grams have been in use in the field of nuclear imaging with many of them
available in the public domain.’*?* Although variance reduction techniques
have been developed to reduce computation time, the main drawback of the
Monte Carlo method is that it is extremely time-consuming.

Software and physical phantoms used in medical imaging were historically
limited to simple point, rod, and slab shapes of sources and attenuating
media. Such simple geometries are useful in studying fundamental issues of
image reconstruction, but clinically realistic distributions cannot be evalu-
ated by such simple geometries. A precise modeling of the human body
requires appropriate information on the location, shape, density, and elem-
ental composition of the organs or tissues. Several software phantoms
modeling different parts of the human body have been developed over the
years to assess the accuracy of reconstruction procedures and are described
in detail in Chapter 11 of this book. Interested readers are also refereed to
textbooks referenced above discussing extensively issues related to Monte
Carlo modeling in nuclear medicine.

10.2  Subjective and Objective Assessment of
Image Quality
Different approaches have been suggested to judge image quality when

evaluating image reconstruction algorithms. As the ‘best’ reconstruction
algorithm can only be selected with respect to a certain task, different
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‘basic’ performance measures can be used. Basically, there is no single figure
of merit that summarises algorithm performance, since performance ultim-
ately depends on the diagnostic task being performed. Well-established
figures of merit known to have a large influence on many types of task
performance are generally used to assess image quality.”*

In a clinical environment, the evaluation is further hampered by the
multiplicity of the medical purposes for which the corrections may be
studied. In the simplest approach, trained nuclear medicine physicians
carry out observer performance studies and are asked to rank images by
their degree of quality. A common method to assess image quality with
respect to a detection task is the use of observer studies where the perform-
ance of any observer (human or computer algorithm) is characterized by
ROC analysis. In such studies, observers rate images based on their confi-
dence that a defect/lesion exists in a large set of images. Curve-fitting
methods are then used to fit the rating data to receiver operating character-
istic (ROC) curves, which plot the covariation in “true positive’” and “false
positive” conditional probabilities across changes in the decision-variable’s
criterion for a “positive”” binary decision.?”?>”® The estimated area under
the fitted ROC curve is often used as a general index of image quality or
performance accuracy for any alternative classification task. ROC and
localization ROC (LROC) techniques have been extensively used to evaluate
lesion detectability.”” For example, using simulated MCAT phantom data
and randomly located 1 cm-diameter lesions, Lartizien ef al.”® demonstrated
that the FORE4+AWOSEM (attenuation weighted OS-EM) algorithm re-
sults in the best overall detection and localization performance for 1-cm-
diameter lesions compared with the FORE4+OSEM and FORE+FBP algo-
rithms in PET imaging. The major drawback of this approach is that it is
costly and complex, since a reasonable number of experienced observers
should be used to analyse many images under carefully controlled condi-
tions. In addition, such techniques rely on experimental phantom measure-
ments or simulated data since the ground truth needs to be known.
Furthermore, for optimisation of reconstruction algorithms in which pos-
sible parameter settings suffer a combinatorial explosion, human psycho-
physical studies are simply not viable. Therefore, most qualitative
assessment studies are restricted to subjective observer rating scores by
experienced physicians. The diversity of available algorithms also makes
comparison difficult as results can be inconclusive when limited cross-com-
parison is involved.

There are an increasing number of published articles that verify the benefit
of utilising iterative algorithms in clinical situations. These verify many of
the theoretical advantages outlined in section 2.2, including ease of incorp-
orating attenuation correction,”” reduction in streak artefacts,'® tolerance
to missing data'®! and most importantly, noise reduction in low count areas
of the image. It should be noted that, since noise generated in iterative
reconstruction is signal-dependent, the signal to noise gains are restricted
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to low count areas, whereas high count areas may at best be un-
affected.'”*!% In many nuclear medicine studies there is interest in derived
parameters rather than individual images (e.g. extracted functional param-
eters or significance maps reflecting changes in activity distribution). It
therefore is of some interest to identify which reconstruction algorithms
are optimal for these applications and to verify that the reconstruction
algorithms provide quantitative results.'®*'% An interesting approach in
comparative evaluation studies for functional brain imaging is to carry out
voxel-based statistical analysis using statistical parametric mapping
(SPM).!% A recent study on the impact of model-based scatter correction
and iterative reconstruction on spatial distribution of "*F-[FDG] in recon-
structed brain PET images of healthy subjects using this kind of analysis
demonstrated that OS-EM reconstruction does not result in significant
changes when compared to FBP reconstruction procedures, while significant
differences in 'F-[FDG] distribution arise when images are reconstructed
with and without explicit scatter correction for some cerebral areas.® Other
related studies showed that iterative reconstruction has the potential to
increase the statistical power and to give the best trade-off between signal
detection and noise reduction in PET activation studies as compared with
FBP reconstruction.”®

11. Future Prospects

The progress in iterative reconstruction has been immense in the past ten years,
the main opportunities arising from the availability of both improved process-
ing speed and faster algorithms. This has permitted much more ambitious
algorithms that tackle not just conventional 2D reconstruction but a range of
applicationsin 3D (e.g. Liu et al.*°) and even 4D (including the time domain).”®
The appeal of iterative reconstruction in adapting to different acquisition
geometry or physical situation has already been well demonstrated. The prac-
ticality of performing such reconstruction is revitalising the consideration of
alternative approaches to imaging such as use of multiple pinhole collimators
or so-called “‘Compton’ imaging (e.g. Braem er al.'’’). Although currently
focussed on high resolution imaging for small animals there is potential for
future developments to address specific clinical applications.

Anticipating even greater gains in computer power, even more complex
and ambitious reconstruction becomes clinically realistic. More extensive use
of fully 3D reconstruction algorithms can be expected, with more exact
correction likely to provide optimal quality of reconstruction. The feasibility
of using Monte Carlo-based approaches has been demonstrated'® and
previous work has demonstrated that symmetries can be used to greatly
accelerate the Monte Carlo calculations.”® Whether this degree of sophisti-
cation in accurately modelling the emission and detection processes is war-
ranted in clinical practice remains to be seen.
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The demands placed on reconstruction algorithms continue to expand.
There is a strong evolution towards more complex acquisition hardware, in
particular in PET (more and smaller detector crystals, larger axial extent of
the detectors, better energy resolution allowing multi-energy acquisitions).
In some of these complex geometries, the assumptions of Fourier rebinning
are no longer valid and more accurate rebinning algorithms are needed.**
The huge size of the data sets compensates for the growing computer speed
and, since acceleration of 3D reconstruction has probably reached its limits,
the computational demand continues to push technology to its limit.

The availability of dual-modality instruments is likely to influence the
approaches to reconstruction, with algorithms that combine anatomical
information likely to increase in popularity. These approaches have previ-
ously relied on accurate registration and ready access to anatomical data.
The advent of dual modality instruments makes this much more practical.

Accompanying these developments is the increasingly difficulty task of
understanding the intricacies of the ever-increasing range of algorithms. In
the clinical environment the uncertainty in choice of algorithm has acted as a
deterrent to their use. To some extent there is ‘convergence’ in the various
algorithms and it is to be anticipated that there may be some future consen-
sus as to the best algorithm to choose for specific applications. The avail-
ability of open platforms and more widely available software, specifically
designed for clinical application, should at some stage accelerate the accept-
ance of algorithms. However, at the time of writing OS-EM remains the
most widely used iterative algorithm in clinical practice, with variants spe-
cifically tailored for use with PET or transmission reconstruction. It is clear,
however, that there is great need for development of standard approaches
for evaluation of algorithms e.g. the availability of standard validated data
for inter-lab comparison.
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Collimator-Detector Response
Compensation in SPECT

E.C. FReEY* AND B.M.W. Tsur*

1. Introduction

The collimator-detector response (CDR) of a single-photon nuclear medi-
cine imaging system refers to the image generated from a point source of
activity. The shape of the CDR is the primary factor determining the image
resolution in SPECT. As a result, a great deal of work has gone into
developing methods to compensate for the CDR. The goal of this chapter
is to first discuss the CDR, its components, and their effect on SPECT
images. Next, compensation methods, both analytical and iterative, are
discussed followed by a discussion of the efficacy of compensation methods.

2. The Collimator Detector Response

The CDR of a single-photon nuclear medicine imaging system has 4 com-
ponents: the intrinsic response, due to uncertainty in position estimation in
the detector system, and the geometric, septal penetration and septal scatter
components that depend on the collimator characteristics. Suppose that we
have a point at position ¥ and we wish to know the probability that photons
emitted at this point will be detected at some point in the detection plane, X.
This is described by the collimator-detector response function (CDRF),
d(X, 7). We can decompose the CDRF into several components:

4G ) = | [N 7+ p(F. 7+ 5. D M)
In Eq. 1, i(X, X’) is the intrinsic point-source response function of the camera
(IRF) and describes the probability that a photon incident at position X' is
detected at X,g(¥',7), p(X’, ¥), and s(¥', ¥) are the geometric (GRF), septal

*Drs. E.C. Frey and B.M.W. Tsui, Division of Medical Imaging Physics, The Russell
H. Morgan Department of Radiology and Radiological Science, Johns Hopkins
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penetration (SPRF), and septal scatter (SSRF) response functions describing
the probability that a photon emitted at 7 will pass through the collimator
holes (GRF), pass through the septa without interacting (SPRF), or scatter
in the septa (SSRF), and result in a photon incident on the detection plane at
position X'. For the purposes of this chapter, we adopt the convention
(which is not generally adopted in the literature) that the response functions
are normalized for a source with unit intensity and we can thus think of the
response functions as probability densities. In this convention the sensitivity
of the collimator-detector is included in the CDRF and, in fact, the integral
of the CDRF is related to the sensitivity by a factor that depends on the units
used for activity and time.

It is often assumed that the response functions are spatially invariant in
planes parallel to the face of the collimator and that the intrinsic response is
spatially invariant in the detection plane. In this case, we can write Eq. 1 as:

d(X;D) = i(X) ® (g(X;D) + p(X;D) + s(X;D)) )

where D is the distance from the detection plane to the plane containing the
source. In the following we discuss the individual components of the CDR
and the validity of the assumption of spatial invariance in planes parallel to
the detector.

2.1 Intrinsic Response Function

The intrinsic response function (IRF) is the response of the scintillation
camera, excluding the collimator, to a pencil beam of radiation. It is deter-
mined by two factors: the uncertainty of position estimation in the camera-
detector system and the effects of scattering in the crystal. For low energy
incident photons the scattering in the crystal is a relatively small effect.
However, at higher energies, e.g. for medium energy photons emitted from
isotopes such as In-111, scattering in the crystal becomes important. The
uncertainty of light estimation is determined by the noise in the signals from
the photomultiplier tubes (PMTs), resulting from the statistical variation in
the production and collection of scintillation photons produced in the
gamma camera, and the position estimation method used. For higher energy
photons, a significant fraction of photons undergo Compton scattering in the
crystal and the resulting spread in energy deposition also contributes to
the intrinsic resolution. The integral of the IRF represents the efficiency
of the crystal in detecting photons and is a function of the energy of the
incident photon, the energy window used, and the thickness and compos-
ition of the crystal.

Typically the full-width-at-half-maximum (FWHM) of the IRF, often
referred to as the intrinsic resolution, of modern gamma cameras is better
than 4 mm. There is typically significant spatial variation due to the varying
efficiency of light collection. For example, in acceptance testing recently
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performed on a camera delivered to our institution, the intrinsic resolution
varied from 3.1 to 4.6 mm over the face of the camera. As described below,
the IRF is much narrower than the other (distant-dependent) components of
the collimator-detector response for the distances from the collimator to the
source typical of SPECT. As a result, the assumption of spatial invariance of
the intrinsic response is often adequate.

2.2  Geometric Response Function

The geometric response function (GRF) is the portion of the total collimator
response function that represents the distribution of detected photons that
travel through the collimator holes without interacting with or passing
through the collimator septa. The integral of the geometric response func-
tion, when normalized according to the convention described above, gives
the geometric efficiency of the collimator.

Of the three components of the collimator response, the geometric re-
sponse is the easiest to treat theoretically. In general, the GRF is determined
by two factors: the GRF of a given hole and the hole pattern of the
collimator. In collimators designed for low energy photons, the septal thick-
ness is generally small compared to the intrinsic resolution and the aspect
ratio of the collimator, i.e., the ratio of hole size to hole length, is usually
large. In these cases, the average GRF, obtained by averaging the GRFs
from all possible source positions relative to the center of a collimator hole,
is often used. This averaging can be carried out during the derivation of the
GRF and is equivalent to moving the collimator during acquisition. Formu-
lations for the GRF have been derived using this moving collimator ap-
proximation for arbitrary hole shapes including parallel-', cone-, and fan-
beam collimators.>* Recently, a formulation has been developed to compute
the collimator response function without the averaging.*>

For parallel-hole collimators, the Fourier transform of the GRF resulting
from the moving collimator approximation is related to the product of the
Fouriertransform oftheaperture function which describes the collimatorholes:

D+L+B_\|
7[4 14
A(0)

A
G@D)=e (3)

where G(#;D) is the 2D Fourier Transform of the GRF for a source at
distance D from the face of the collimator, 4(¥) is the 2D Fourier Transform
of the aperture function, L is the collimator thickness, B is the distance from
the back face of the collimator to the detection plane, ¢ is the efficiency of
the collimator, and ¥ is the spatial frequency.

From Eq. 3, we see that the shape of the GRF remains essentially the same
while the size of the GRF is linearly related to the distance, D. Also, the
GRF will have the same symmetry as the aperture holes. Thus, except for
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round holes, the GRF is not radially symmetric. However, it has been shown
that the GRF for hexagonal holes can be approximated using the GRF for
round holes having the same hole area.' The use of round holes has the
advantage that the spatial version of the response function can be computed
analytically:

2

(4)

& el gl Ir.|
Dy==1{2 el 1'rl P
gnD) = | 2¢cos " S~ R 4R?

where R is the radius of the collimator hole, r is the distance in the detection
plane from the intersection of the line perpendicular to the detection plane
containing the source, and r describes the displacement of the centers of the
projected aperture functions from the front face and back face of the
collimator and is given by:

_r L
~ D+L+B

Figure 1 shows an example of GRF for a LEHR collimator with round holes
(L=4.1cm, R=0.19cm, B = 0.64cm) at a distance of D = 10 cm from the
face of the collimator and the same GRF convolved with a 4 mm FWHM
Gaussian IRF. Figure 2 shows a profile through the center of these response
functions in addition to a Gaussian fit to each. Note that the GRF alone is not
fit very well by a Gaussian but when convolved with the IRF, the combination
is reasonably Gaussian in shape. Figure 3 shows the FWHM of the GRF and
the GRF convolved with a Gaussian IRF as a function of distance. Note that
the latter function can be well fit by a function having the form:

©)

rr

FIGURE 1. Image showing the GRF (left) and the GRF convolved with the IRF
(right) for a LEHR collimator with circular holes at a distance of 10 cm from the face
of the collimator. The side length of the image is 3 cm. The FWHMs of the response
functions shown in these images are (left to right) 5.7 and 7.5 mm.
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FIGURE 2. Profiles and Gaussian fits to profiles through center of the GRF and the
GRF convolved with the IRF (GRE"IRF) shown in Fig. 1.
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FiGure 3. Plot of FWHM of GRF and GRF convolved with the IRF for the same
LEHR collimator as shown in Fig. 1.

FWHMrp-1rr(D) = \/(aD + b)* + 2 (6)

where a, b, and c¢ are fitting parameters. Note that if the GRF was modelled
by a Gaussian with a width linearly related to D, then fitting parameters a, b,
and c¢ can be interpreted as the resolution gradient, the FWHM of the GRF
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at the face of the collimator, and the FWHM of the intrinsic resolution,
respectively.

In understanding the properties of SPECT reconstructed images, it is
often useful to know the behaviour of the GRF in the frequency domain.
The geometric transfer function (GTF) is the Fourier Transform of the GRF
divided by the geometric efficiency. For a round collimator hole, from Eq. 3
we find that the GTF is given by:

2
GTF(v) = 4M, and

B %
B= 27TR(1 + (DZB)> ,

where J)(x) is the Bessel function of order 0, v is spatial frequency and the
other symbols are described above. Note that the GTF in Eq. 7 has the value
1 at v = 0. A sample profile of the GTF for round collimator holes for a
LEHR and LEGP collimator at a distance of 10 cm is shown in Figure 4.
From this, we find the frequency at which the GTF has its first zero, vo,
which is given by:

3.8312

) ®

Yo

To a good approximation, there is very little information for frequencies
above this retained in the projection of the point source at a distance D from
the face of the collimator.
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FIGURE 4. Plot of profile through the center of the GTF for LEHR and LEGP
collimators with round holes for a point source at 10 cm from the face of the
collimator.
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2.3 Septal Penetration and Septal Scatter
Response Functions

The septal penetration response function (SPRF) describes the contribution
to the total collimator-detector response by photons that penetrate through
the collimator septa. To date there has been no analytic treatment of the
septal penetration response for multi-hole collimators. However, the SPRF
can be studied using ray tracing or Monte Carlo (MC) simulation tech-
niques.®®® The septal scatter response function (SSRF) describes photons
that scatter in the collimator septa and are subsequently detected in the
energy window of interest. The SSRF is even more difficult to treat theor-
etically, but can also be analyzed using MC simulation techniques. Both of
these effects are most important for isotopes emitting medium and high
energy photons such as In-111, Ga-67, or I-131.

Figure 5 shows images representing the total and various components of
the response function for a high-energy general-purpose (HEGP) and med-
ium-energy general-purpose collimator (MEGP) for a 364 keV source at
10 cm from the face of the collimator. The collimators had hexagonal
holes. These response functions were obtained using MC simulation
methods and include the effects of scatter in the detector, but not the portion
of the IRF due to imprecision in estimating the interaction position. Also
note that these images are shown on a logarithmic grey scale in order to
emphasize the features in the tails of the response functions. Note that, for

EEe
oE

FIGURE 5. Images showing (from left to right) TRF, GRF, SPRF, SSRF in a HEGP
(top row) and MEGP (bottom row) collimator for imaging a 364 keV source at
10 cm from the collimator face. These response functions were obtained using a
moving collimator and MC simulation techniques. They do not include the effects
of the IRF, though do include scattering within the scintillation crystal and in the
area of the camera behind the crystal. The images are individually normalized and
shown on a logarithmic greyscale to emphasize the features in the tails of the response
functions. The side length of the image is 20 cm.
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FIGURE 6. Horizontal profile through the response function images of the MEGP
collimator shown in Fig. 5 plotted in linear (left) and logarithmic (right) horizontal
scales.

the HEGP collimator, the major effect of penetration and scatter is to widen
the tail of the response function: the shape of the central peak of the response
function is largely unchanged and is similar to that for the geometric
response. For the MEGP collimator, it is possible to see the SPRF and
SSRF in the total response function (TRF), but the effect is relatively minor.
For both collimators, the SPRF has similar features, though is much wider
and larger in magnitude for the MEGP than the HEGP collimator for the
same 364 keV photons.

In Figure 5, one also notes the significant effects of the hole shape and
hole lattice in the orientation of the spokes in both the SPRF and SSRF. To
illustrate these effects more quantitatively, horizontal profiles through the
SPRF image are plotted in Figure 6. Note that scatter and penetration
increase the width of the TRF compared to the GRF. While the height of
the SPRF and SSREF tails may seem small, the geometric-to-total ratios, i.e.,
the ratios of the integrals of SPRF and SSRF divided by the integral of the
GRF; at 10 mm are .695 and .446 for the HEGP and MEGP collimators,
respectively. This means that a very large fraction of the detected photons
have passed through or scattered in the collimator septa. However, the
photons that penetrate or scatter and are detected near the GRF will have
less impact on image quality than those far off in the tails.

3. Effect of Collimator-Detector Response
on SPECT Images

As demonstrated in section 2, the collimator-detector response depends on
the source-to-collimator distance. As a result, the effect on SPECT images is
relatively complex. Consider first low energy photons where the penetration
and collimator scatter components can be neglected. Figure 7 shows the
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FiGure 7. Effect of the GRF on SPECT image resolution. The image on the left is a
point-source phantom. The middle and right images were reconstructed using FBP
from projections obtained using LEGP and LEHR collimators, respectively. The
image has been truncated at the top and bottom.

effects of GRF on image resolution. Projections were simulated of a
phantom containing 6 point sources 5 cm apart using a radius-of-rotation
of 27 cm and LEHR and LEGP collimators. The images were reconstructed
using filtered backprojection (FBP) without any compensation of the
CDRF. For the purposes of this chapter, FBP implies no compensation.
Tangential and radial profiles, which, for these sources, correspond to the
vertical and horizontal directions in Figure 7, respectively, are shown in
Figure 8. The images and profiles demonstrate the spatial variance of the
reconstructed resolution. In particular, the resolutions in the tangential and
axial directions improve with distance from the center of rotation while the
resolution in the radial direction remains relatively constant.

4. Analytic Compensation Methods

Several analytic methods (i.e., those having a closed form solution and not
requiring iteration) have been proposed to compensate for the effects of the
CDRF on SPECT images. To date, all of these methods have involved
approximations about the CDRF. In general they can be divided into
methods that assume that the CDRF is spatially invariant and those that
explicitly model the distance dependence.

Methods based on the spatially invariant approximation are also known
as restoration filters. The basic idea is to write the measured image (either
projection or reconstructed image), m(X), as the convolution of the CDRF,
cdrf(X), and the image that would be obtained with a perfect collimator (i.e.,
where the CDREF is a delta function), o(X):

m(X) = cdrf(X) ® o(X) 9)

Taking the Fourier transform (FT) of Eq. 9 and dividing by the FT of the
CDRF, we obtain:

O(%) = M(¥)CDRF ! (¥) (10)

where the functions with capital letters indicate the FTs of the corresponding
functions with lower case letters. There are two problems with this formu-
lation. First, the FT of the CDRF has zeros in it. In addition, the measured
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FiGure 8. Tangential (top row), radial (middle row) and axial (bottom row) profiles
through reconstructed point sources of Fig. 5 for LEGP (left) and LEHR (right)
collimators. The distance from the center of rotation to the point, d, is indicated in
the legend. The profile for each point is normalized to unit intensity.

data are noisy and the high frequencies of the image, whether projections or
reconstructed image, will be dominated by noise. One solution to both of
these problems is to roll off the high frequencies using a low pass filter. Two
forms of low pass filters have been applied in SPECT, the Metz and Wiener
Filters. The Metz filter, Metz(¥), has the form:

Metz(7) — CDRF (%) [1 —(1- CDRF(D’)z)"} (11)

where n > 1 is the order of the filter. The term in the square brackets acts as
a low-pass filter. For n = 1, the filter becomes CDRF(#) and is often called a
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FIGURE 9. Plot of filter amplitude versus frequency for Metz filters with orders 1
(equal to the CDRF), infinity (equal to the CDRF™!), 4, 10, and 20. In all cases a
Gaussian CDRF with a FWHM of 1.5 cm was used.

matched filter; as n — oo, the Metz filter becomes the inverse filter. Thus, for
low n, the low pass term in square brackets dominates, while for higher
orders the filter behaves more like an inverse filter. This is illustrated in
Figure 9. King et al.'®!' have applied the Metz filter to nuclear medicine
images with a count-dependent, non-integral order.

An alternative filter that has been applied in the context of SPECT
imaging is the Wiener filter.'*'* The Wiener filter is the filter that minimizes
the mean squared error between the restored and true projections. It has the
form:

CDRF (%)
CDRF(¥)> + N(¥)/|0(P)|

Wiener(#) = CDRF () (12)

where N(7) is the noise power spectrum and |O(¥)| is the object power
spectrum. Again, the term in square brackets is a low pass filter, in this
case depending on both the noise power spectrum and the object power
spectrum (which, paradoxically, is what we are trying to recover). Note that
for frequencies where the noise power spectrum is much smaller than the
object power spectrum, Eq. 12 becomes the inverse filter. However, at
frequencies where the noise dominates, the Wiener filter approaches zero.
One of the difficulties with the Wiener filter is that it requires estimates of the
noise and object power spectra. One solution to this problem is to assume
that noise is stationary. In this case, the noise power spectrum for the
projections, assuming Poisson noise statistics, is flat with a value equal to
the mean number of counts. For reconstructed images, approximate expres-
sions for the noise power spectrum can be used.'*!> The object power
spectrum can be approximated in the region where the noise power is high
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by extrapolating a fit of the image power spectrum minus the approximate
noise power spectrum.'?

One important issue in applying either a Metz or Wiener filter is the
selection of the CDREF. Since the true CDREF is spatially varying, an ap-
proximation must be made. Among several approaches are using the CDRF
for a distance from the face of the collimator equal to the center of rotation
or half the distance from the center of rotation. King e al.'®!'' have fit a
parameterized CDRF to minimize the mean square error of the measured
images. Finally, the spatial variance of the CDRF can be improved by
taking the geometric mean of opposing views.

One limitation of these restoration filters is that, since they are spatially
invariant, they will tend to overcompensate in some areas and undercom-
pensate in others. Also, they do not improve the asymmetry of the recon-
structed point response (except perhaps by degrading it).

The second class of analytic methods explicitly includes the distance
dependence of the CDRF. The basic idea is to write expressions for the
projections of a function that include the CDRF and attempt to invert them,
1.e. to solve for the object in terms of the projections. Since attenuation has
an important effect on the measured projections, the attenuation distribu-
tion is assumed to be zero or uniform in the development of the expressions
for the projections; analytic CDRF compensation methods for nonuniform
attenuators have not yet been developed. To date, a closed form exact
solution has not been found. However, several approximate methods have
been derived.

An important basis for a number of these methods is the frequency-
distance relation (FDR).'® This approximation relates the position of a
point source to the FT of the sinogram of the source. Note that since the
angular coordinate in the sinogram is periodic, a Fourier series transform
can be used in this direction. The FDR predicts that the energy in this
Fourier transform will be concentrated along a line in Fourier space through
the origin and with a slope linearly related to the distance from the point
source to the center of rotation (COR). For a distributed source, this implies
that the activity from all sources at a specific distance from the COR lies
along a single line in Fourier space. For a circular orbit, the activity at a
fixed distance from the COR is also at a fixed distance from the collimator
face. Thus, one could perform inverse filtering along these lines using the
appropriate CDRF. However, it should be noted that the derivation of the
FDR requires invoking an approximation, the stationary phase approxima-
tion. Thus, methods based on the FDR will necessarily be approximate.

Lewitt et al.'”'® were the first to use the FDR to compensate for the
spatially varying CDRF. Glick er al." exploited the FDR in combination
with restoration filtering using the Wiener filter. This method has the ad-
vantage that it explicitly includes noise control. It was shown to provide
improved symmetry in the reconstructed point spread function. However,
one limitation of all these methods is that they tend to result in correlated



5. Collimator-Detector Response Compensation in SPECT 153

noise with a texture that appears to have unfavourable properties compared
to the noise correlations introduced by iterative methods.*’

A second method for deriving analytical filters is to assume a form for
both the shape and distance dependence of the CDRF that allows analytic
inversion. Appledorn®' has analytically inverted the attenuated Radon
transform equation assuming a CDRF shaped like a Cauchy function:

—1.5
Cauchy(x) — (1 + (i)z) (13)

where w is width parameter. It should be noted that the Cauchy function
having the same FWHM as a Gaussian will have longer tails and be some-
what more sharply peaked in the center of the response function. Soares
et al** have implemented this method and evaluated it with and without
combined analytic attenuation compensation. While the method did reduce
the spatial variance of the response, it seemed to do so largely by degrading
the resolution in the tangential direction.

A second class of methods approximates the CDRF as a Gaussian, not an
unreasonable approximation as demonstrated above. However, in order to
invert the equations, an approximate form for the distance dependence is
assumed. van Elmbt ez al.>> used the approximation that the square of the
width of the CDRF is proportional to the distance from the center-of-
rotation. The result is a modification of Bellini’s method®* for uniform
attenuators that includes approximate compensation for the spatially vari-
ant CDRF.

Pan ez al.* have developed a method that improves on this approxima-
tion, assuming that the change in width of the CDRF over the object was
less than the width at the center of the object. This assumption leads to an
expression for the CDRF of the form:

o*(D) = a§ + 20901(D — 1) (14)

where o is the width parameter for the Gaussian CDRF, D, is the distance to
the face of the collimator, r is the distance from the collimator face to the
center-of-rotation, o is the width of the CDRF at the center of rotation,
and o is the slope of the assumed linear relationship between D and the
width of the Gaussian CDRF. This method has been evaluated by Wang
et al.**?" 1t was found that, even for noise-free data, the assumptions about
the shape and distance-dependence of the Gaussian FWHM resulted in high-
frequency artefacts unless a low-pass filter was applied. In the presence of
noise, low pass filtering was even more essential. Pan’s method?” resulted in
the greatest improvement in resolution near the center of rotation, where the
approximation in Eq. 14 is most accurate. The radial resolution improved
but the tangential resolution degraded with distance away from the center of
rotation. These effects are likely due to the approximate nature of the model
for the detector response.
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5. Tterative Compensation Methods

Iterative reconstruction-based compensation for the CDRF is performed by
including the effects of CDRF in the model of the image formation process.
For simplicity, consider the maximum likelihood-expectation maximization
(MLEM) algorithm®® (see chapter 4):

0
(n+1) f Di
/; “Sa > o S (15)

In this expression, f; 1) is the reconstructed image in the j-th voxel after
n + 1 iterations, p; is i-th projection bin from the measured projection data,
and a;; is the probability that a photon emitted in the j-th voxel is detected in
the i-th projection bin. The key, then, to iterative-based compensation is
modelling the CDRF in the matrix 4 whose elements are a;;.

The matrix A4 is generally large and, when the CDRF is modelled, its
sparseness is greatly reduced compared to the case when no effects or
attenuation alone are modelled. Consider the reconstruction of a
128 x 128 x 128 image from 128 x 128 projections acquired at 128 views.
Assuming that the average size of the PSF is 7 x 7, the matrix A4 has
128% x 77 ~ 1.3 x 10'° elements. This matrix is currently too large to store
on current general purpose computers. As a result, implementation of
CDRF compensation has typically involved the use of projection and back-
projection operators that model the CDRF. These codes implement the
projection and backprojection operations described in Egs. 1 and 2 of
chapter 4 during each step of the iterative reconstruction process.

One of the first methods to model the distance-dependent CDRF in a
projector-backprojector pair involved the use of ray-tracing techniques.*
Projector-backprojectors based on these techniques are often referred to as
ray-driven. Multiple equiangularly spaced projection rays were propagated
from each projection bin back through the reconstruction matrix, as illus-
trated in Figure 10. The amount summed into the projection bin for each
voxel crossed is equal to the product of the value in the voxel, the line length
through the voxel, and the value of CDRF at that distance and offset from
the central ray. This method was initially implemented in a two-dimensional
geometry, assuming that objects have infinite axial extent (e.g., modelling
voxels as lines instead of points). One advantage of this ray-tracing approach
is that it is straightforward to model nonuniform attenuation. However, the
spacing of the projection rays must be such that voxels are not missed in
order to avoid artefacts in the projections. In addition, as the pixel size
decreases, and if the modelling is performed in three-dimensions, the number
of rays per bin and the time to compute the projections will become large.

An alternative to the approach of tracing rays from the projection bins
through the reconstruction volume is to trace rays from the center of each
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FiGURE 10. Ilustration of ray-driven (left) and pixel-driven (right) projector imple-
menting CDRF models.

voxel to the center of projection bins where the CDRF is non-zero.
A projector based on this method is often known as pixel- or voxel-driven.
In this case, ray tracing is used to calculate the attenuation factor for the rays
as they traverse the object and the amount summed into each projection bin
is the product of the voxel value and the CDRF appropriate for the source-
detector distance and offset from the central ray. This method avoids the
problem of missing voxels, but still is very computationally intensive. How-
ever, it can be speeded up by noticing that the attenuation factors for all the
rays from a given voxel with respect to a given projection angle will be
almost the same. Thus, the attenuation factor needs to be calculated only for
the central ray (and this value could be calculated once and stored for use in
subsequent iterations). It should be noted that this will result in some
modelling errors, especially when the CDRF is wide. Even with this change,
it still requires a great deal of time to compute the projection of the activity
distribution.

A significant reduction of the time required to model the CDRF was
realized with the development of rotation-based projector-backprojector
pairs.*>3! These algorithms exploit the fact that, for parallel-beam geom-
etries, the CDRF is spatially invariant in planes parallel to the collimator
face. By rotating the projection matrix so the sampling grid is parallel to the
detector, the distance dependence of the CDRF can be modelled by con-
volving each such plane with the appropriate CDRF. This convolution can
be done in the frequency’! or spatial®* domains. Generally, spatial domain
convolution is faster when the CDRF has a relatively limited spatial extent
in comparison to the size of the projections. The rotation-based projection
process is illustrated in Figure 11. After convolution with the CDRF, the
columns perpendicular to the detector are summed to form the projection
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FiGure 11. Illustration of rotation-based projector that models the CDRF.

image. If attenuation is to be modelled in the projector, the attenuation map
can be rotated and the sums modified to include the attenuation factors for
each voxel. Selection of the image rotation algorithm is important. Bilinear
interpolation can be used, but other interpolation methods may prove
better.>® Image rotation based on shears gives a high quality reconstructed
image with good computational efficiency.’*

While rotation-based CDRF modelling provides a major increase in
computational efficiency, further improvement can be obtained if the
CDREF is approximated as a Gaussian. In this case the convolution can be
performed by separating the convolution into two orthogonal one-dimen-
sional convolutions® or via the use of Gaussian diffusion.>*” In the incre-
mental blurring or diffusion method, the blurring of the rotated
reconstruction matrix starts in the plane farthest from the collimator,
plane N. The current estimate in this plane is treated as a 2D image and
convolved with a small kernel representing the change in the CDRF from
plane N to plane N — 1. The resulting blurred 2D image is added to the 2D
image in plane N — 1. The 2D image in plane N — 1 (which now includes the
blurred version of plane N) is convolved with another small kernel, repre-
senting the change in the CDRF from plane N — 1 to N — 2, and added to
plane N — 2. This process of convolution with a small kernel and addition to
the next closer plane is repeated until the plane closest to the collimator is
reached. This last plane is then convolved with the CDRF corresponding to
the distance from it to the collimator face. The net result is that the planes
further from the detector are blurred by many small kernels that result in
blurring equivalent to that from the appropriate CDRF; planes closer to the
detector are blurred by a smaller number of the same kernels and are thus
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blurred less, but with an amount that is equivalent to direct blurring with the
CDREF. For a CDRF with a Gaussian shape, the incremental kernels can be
calculated analytically.™

The backprojection can also be performed with a rotation-based algo-
rithm. This is accomplished by performing the steps in the reverse order as
described for the projector. First, the values in the projection bin are spread
along the corresponding columns in a rotated frame like the one on the right
in Figure 11. The pixel values are then attenuated and each plane is con-
volved with the appropriate CDRF. The resulting image is then rotated back
to the unrotated-frame (at the left in Figure 11), and summed into the
reconstructed image.

With the combination of all these acceleration methods, compensation for
GRF can be achieved on modern personal computers for a 64 x 64 x 64
reconstruction in times under 10 seconds per iteration. As a result, though
clearly requiring more computational resources than analytic methods, it-
erative reconstruction-based CDRF compensation can be performed in
times that are clinically realistic, especially when used with rapidly conver-
ging algorithms such as the ordered-subsets expectation-maximization
(OSEM) algorithm.

6. Efficacy of CDRF Compensation

There have been a number of studies evaluating the efficacy of CDRF
compensation. These include qualitative evaluations,*® evaluations in terms
of quantitative of the effect of CDRF compensation on performance in
estimation***?** and detection tasks.***¢-3

Tsui demonstrated qualitative improvements in image quality in terms of
noise and image resolution obtained using iterative 3D reconstructions with
CDRF compensation compared to 2D reconstructions with or without
compensation.®® Iterative reconstruction with CDRF compensation was
demonstrated to quantitatively improve the image resolution as measured
by the FWHM.*® The minimum FWHM achieved was limited by the colli-
mator design and pixel size, with higher resolution collimators requiring a
smaller pixel size to achieve maximal improvements in image resolution.
This work also demonstrated that, even after compensation, the recon-
structed spatial resolution varied spatially. In the context of myocardial-
perfusion imaging, a comparison of reconstructed image quality in terms of
the FWHM and standard deviation showed that iterative-based compensa-
tion provided improved resolution with less noise compared to analytic
FDR-based compensation.*®

The images shown in Figures 12 and 13 demonstrate the improved reso-
lution that can be obtained with iterative CDRF compensation as compared
to FBP. These images are reconstructions of projection data based on
the phantom shown in Figure 7 with the display zoomed to the region
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FiGUure 12. Efficacy of iterative CDRF compensation for LEHR (top row) and
LEGP (bottom row) collimators. The images shown are transaxial images from
reconstructions of projections of the phantom shown in Fig. 7. They have been
truncated to the region of the point sources. The leftmost source is located at the
center of rotation. The columns were reconstructed using (left to right) FBP and
OSEM with 64 subsets per iteration at 5, 10, 20, and 30 iterations, respectively.

FIGURE 13. Same as Fig. 12, but showing slices parallel to the axis of rotation,
demonstrating the resolution in the axial direction.

containing the point sources. Only the GRF was modelled in the projection
and reconstruction process. Note that, for the iterative reconstruction, the
point sources are placed on top of a flat background with 100 times the
amplitude, reconstructed, and then the background is subtracted. This pro-
cedure is used to avoid problems with nonlinearities in the reconstruction
giving an inaccurate representation of the true resolution characteristics.
Note that the resolution is improved. Also note that the resolution improves
with iterations. In general, more iterations are required for convergence
when CDRF compensation is performed as compared to iterative recon-
struction with no compensation.

The images in Figure 14 show reconstructions of noisy and noise-free
projections of a uniform cylinder of activity obtained with LEHR and
LEGP collimators and reconstructed using OS-EM with and without GRF
compensation. They illustrate some additional properties of iterative CDRF
compensation. The images demonstrate improved sharpness at the edge of
the disk, but also the presence of Gibbs-like ringing artefacts. The nature of
the artefacts depends on the collimator used. In the noisy images, notice the
significant difference in noise texture in the images obtained with CDRF
compensation; the noise texture is different for the two collimators. Also
note that with CDRF compensation the noise texture is spatially varying.

Since iterative reconstruction is nonlinear and spatially variant, trad-
itional measures of image quality such as the modulation transfer function
(MTF), noise power spectrum (NPS), and noise equivalent quanta (NEQ),
which is the ratio of the square of the MTF and the noise power spectrum,
do not apply. However, Wilson®® has proposed the use of local versions of
these quantities. The local MTF is computed from the local point spread
function (PSF). Since iterative reconstruction using MLEM-like algorithms
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Collimator: LEGP LEHR

Compensation: OS-N 0S-G OS-N 0S-G
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FIGURE 14. Reconstructed images from analytically-simulated projections of a cylin-
der obtained using LEGP and LEHR collimators. Only the GRF was modelled in the
projections. Images were reconstructed from projection data with and without the
addition of Poisson noise. Five iterations of OSEM were used with 64 subsets per
iteration (4 angles per subset) with no compensation (OS-N) and compensation for
the GRF (OS-G).

are nonlinear, the PSF cannot be estimated by simply reconstructing the
projections of a point source. Instead, the point source projections are
treated as a perturbation to a background image. After reconstruction of
the perturbed image, the reconstruction of the background image is sub-
tracted providing a local PSF; the magnitude of the FT of this local PSF
provides the local MTF. The local NPS is computed from the covariance
matrix for the point of interest. It was found that iterative reconstruction
with CDRF compensation produces local MTFs with improved response at
mid-frequencies. Subsequent unpublished work has demonstrated that,
with large numbers of iterations, all frequencies up to approximately the
first zero in the MTF obtained by filtered backprojection can be restored.
This is illustrated by Figures 15 and 16, which show the local MTF for a
point source reconstructed with FBP and iterative reconstruction with
CDRF compensation. Note that for the iterative method, there is some
overcompensation at mid-frequencies (MTF > 1) and that there is some
artifactual increase at frequencies above the point where the MTF for FBP
goes to zero.

The noise properties are also an important factor in evaluating CDRF
compensation. It has been found that the local NPS increases at the fre-
quencies that are restored, similar to what is found with restoration filtering.
This gives rise to the lumpy noise texture seen in the images in Figure 14.* In
fact, the boosting of the noise is such that the NEQ is not greatly improved
by CDRF compensation. In recent work using these measures, Wilson



160 E.C. Frey and BM.W. Tsui

FIGURE 15. Images of local MTF in transaxial plane for a point source located 15 cm
from the center of rotation. The projections were generated analytically and simu-
lated a LEGP collimator. The image on the left is from FBP with no low pass filter
and the one on the right is from 20 iterations of OSEM with 64 subsets per iteration
(4 angles per subset) with GRF compensation.
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FIGURE 16. Profiles through the MTF images in Fig. 15. The tangential direction is
along the vertical axis and the radial direction along the horizontal one in Fig. 15.

et al.*! have pointed out that improper modelling of the CDRF can result in

poorer MTFs and noise spectra, while the NEQ was relatively insensitive to
these modelling errors.

Several studies have demonstrated an improvement in performance on
estimation tasks with CDRF compensation. In the context of myocardial
perfusion imaging, both analytic and iterative CDRF compensation were
found to provide improved uniformity in the myocardial wall and improved
estimates of wall thickness compared to no compensation. Iterative recon-
struction-based compensation provided better results than analytic compen-
sation based on the FDR.* Pretorius et al.** evaluated iterative and analytic
FDR-based CDRF compensation in terms of recovery of the maximum and
total counts in a volume. They found that iterative methods provided better
recovery and reduced variance in estimates compared to the analytic

methods, but that recovery coefficients were more spatially variant for the
iterative methods.
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FIGURE 17. Coronal slice of SPECT image of distribution of In-111 ibritumomab
tiuxetan, a radiolabeled antibody. The images were reconstructed using OSEM with
32 subsets per iteration (4 angles per subset) with attenuation and scatter (AS) or
attenuation, geometric response and scatter (AGS) compensation. The number of
iterations and the cut-off frequency of an order 8 3-D Butterworth post-reconstruc-
tion filter are also indicated.

Figure 17 illustrates why there might be improved quantitation with
CDRF compensation. The task to be performed with this In-111 ibritumo-
mab tiuxetan image is to estimate organ uptakes for use in dosimetry
calculations. Note the difference in noise properties and the sharpness of
the image obtained with and without CDRF compensation. The images with
CDRF compensation have improved spatial resolution, even after low pass
filtering, compared to the images without. This improved resolution allows
more accurate definition of organ regions and reduced partial volume
effects.

Finally, a number of studies have evaluated the efficacy of CDRF com-
pensation in the context of defect detection tasks. Gifford et al.*’ showed
improved performance for a tumour detection and localization task ana-
lyzed using localization receiver operating characteristics (LROC) analysis.
The study used simulated Ga-67 images. It was found that iterative recon-
struction-based CDRF compensation gave improved performance com-
pared to FBP or FDR-based analytic compensation followed by iterative
reconstruction. For myocardial defect detection, it has been shown using
both simulated*®>° and clinical*’ data with mathematical and human obser-
vers that iterative reconstruction-based CDRF compensation results in im-
proved observer performance. Note that in all these studies, regularization
by a post-reconstruction filter was required for optimal performance.
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Figure 18 illustrates the difference in image quality obtained with attenu-
ation compensation alone and attenuation combined with CDRF compen-
sation. Note that the images that include CDRF compensation have better
resolution and noise properties, even after low-pass filtering. Figure 19
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FiGURE 18. Reconstructed images from a clinical Tc-99m sestamibi scan. The images
were reconstructed with OSEM using 8 subsets (4 angles per subset) with compensa-
tion for attenuation alone (OS-A) or with attenuation and geometric response (OS-
AQG). The number of iterations is indicated above. Images obtained using a 3-D
Butterworth post-reconstruction filter with order 8 and cut-off 0.24 pixel ™! are also
shown.
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FIGURE 19. ROC curve for a human observer study comparing OSEM reconstruction
with attenuation compensation (OS-A) and attenuation plus geometric response
compensation (OS-AG) in a myocardial perfusion defect detection task. This study
used simulation images and is described in ref.*®
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illustrates the effect of CDRF compensation on myocardial perfusion
detection. The areas under the ROC curve without and with CDRF com-
pensation were 0.863 and 0.882, respectively.

7. Summary

The CDRF in SPECT has several components: the geometric, septal pene-
tration, septal scatter and intrinsic response function components. Analyt-
ical formulations for the geometric component have been developed, while
Monte Carlo simulation has allowed estimation of the septal penetration
and septal scatter components. The geometric response dominates the reso-
lution characteristics for low energy photons and medium and higher energy
photons when used with well-designed collimators. The width of the geo-
metric response is proportional to source-to-collimator distance. In SPECT,
the intrinsic component plays a relatively small role compared to the geo-
metric response due to the relatively large distances to the collimator from
many of the organs of interest.

The distance-dependence of the CDRF results in a spatially varying
reconstructed resolution in SPECT. In general, the tangential and axial
resolutions improve with distance from the center of rotation while the
radial resolution is relatively constant.

Methods of compensating for the CDRF can be divided into two general
classes: analytical and iterative. Analytic methods are fast, but ones devel-
oped to date involve approximations about the shape or spatial variation of
the CDRF. Iterative methods require more computational resources but
have the potential to allow for compensation of CDRFs with arbitrary
shapes as well as image degrading phenomenon such as attenuation and
scatter.

A number of studies have been performed evaluating the various CDRF
compensation methods. Both iterative and analytical methods improve the
resolution in the resulting images, but at the cost of introducing noise
correlations. Task-based evaluations of the CDRF compensation methods
have demonstrated an improvement in performance for quantitative tasks
such as activity estimation as well as defect detection tasks. Generally these
evaluations have shown that iterative methods provide better performance
than the analytical methods.

Acknowledgements. The authors are grateful to Dr. Yong Du for his careful
proofreading of the manuscript.



164

E.C. Frey and B.M.W. Tsui

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Metz C. E., The geometric transfer function component for scintillation camera
collimators with straight parallel holes. Phys Med Biol 25: 10591059-1070 (1980).
Tsui B. M. W. and Gullberg, G. T., The geometric transfer-function for cone and
fan beam collimators. Phys Med Biol 35: 81-93 (1990).

. FreyE.C., Tsui, B. M. W.and Gullberg, G. T., Improved estimation of the detector

response function for converging beam collimators. Phys Med Biol 43: 941-950
(1998).

. Formiconi A. R., Geometrical response of multihole collimators. Phys Med Biol

43: 3359-3379 (1998).

. Formiconi A. R., Passeri, A. and Calvini, P., Theoretical determination of the

collimator geometrical transfer function for the reconstruction of SPECT data.
IEEE Trans Nucl Sci 46: 1075-1080 (1999).

. De Vries D. J., Moore, S. C., Zimmerman, R. E. ef al., Development and vali-

dation of a Monte Carlo simulation of photon transport in an Anger camera.
EEE Trans Med Imaging 9: 430-438 (1990).

. DuY, Frey, E. C., Wang, W. T. et al., Combination of MCNP and SimSET for

Monte Carlo simulation of SPECT with medium- and high-energy photons.
IEEE Trans Nucl Sci 49: 668-674 (2002).

. Wilderman S. J., Dewaraja, Y. and Koral, K. F., Accurate modeling of nuclear-

medicine collimators in Monte Carlo simulation of high-energy photons. Nuc!/
Instr Meth A 422: 745-750 (1999).

. Wang W. T., Frey, E. C., Tsui, B. M. W. et al., Parameterization of Pb X-ray

contamination in simultaneous T1-201 and Tc-99m dual-isotope imaging. IEEE
Trans Nucl Sci 49: 680-692 (2002).

King M. A., Doherty, P. W., Schwinger, R. B. et al., Fast count-dependent
digital filtering of nuclear medicine images: concise communication. J Nuc/
Med 24: 1039-1045 (1983).

King M. A., Penney, B. C. and Glick, S. J., An image-dependent Metz filter for
nuclear medicine images. J Nucl Med 29: 19801980-1989 (1988).

King M. A., Doherty, P. W., Schwinger, R. B. et al., A Wiener filter for nuclear
medicine images. Med Phys 10: 876-880 (1983).

King M. A., Schwinger, R. B., Doherty, P. W. et al., Two-dimensional filtering of
SPECT images using the Metz and Wiener filters. J Nucl Med 25: 1234-1240 (1984).
Riederer S. J., Pelc, N. J. and Chesler, D. A., Noise power spectrum in computed
x-ray tomography. Phys Med Biol 23: 446-454 (1978).

Hanson K. M. and Boyd, D. P., Characteristics of computed tomographic recon-
struction noise and their effect on detectability. IEEE Trans Nucl Sci 25: 160-163
(1978).

Edholm P. R., Lewitt, R. M. and Lindholm, B., Novel properties of the Fourier
decomposition of the sinogram. SPIE Proceedings 671: 88-18 (1986).

Xia W. S., Lewitt, R. M. and Edholm, P. R., Fourier correction for spatially var-
iant collimator blurring in SPECT. IEEE Trans Med Imaging 14: 100-115 (1995).
Lewitt R. M., Edholm, P. R. and Xia, W., Fourier method for correction of
depth dependent collimator blurring. SPIE Proceedings 1092: 232-243 (1989).
Glick S. J., Penney, B. C. and King, M. A., Non-iterative compensation for the
distance-dependent detector response and photon attenuation in SPECT im-
aging. IEEE Trans Med Imaging 13: 363-374 (1994).



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

5. Collimator-Detector Response Compensation in SPECT 165

Soares E. J., Glick, S. J. and King, M. A., Noise characterization of combined
bellini-type attenuation correction and frequency-distance principle restoration
filtering. IEEE Trans Nucl Sci 43: 3278-3290 (1996).

Appledorn C. R., “An Analytical solution to the nonstationary reconstruction
problem in single photon emission computed tomography. Prog Clin Biol Res
363: 69-79 (1991).

Soares E. J., Byrne, C. L., Glick, S. J. et al., Implementation and evaluation of
an analytical solution to the photon attenuation and nonstationary resolution
reconstruction problem in SPECT. IEEE Trans Nucl Sci 40: 1231-1237 (1993).
van Elmbt L. and Walrand, S., Simultaneous correction of attenuation and
distance-dependent resolution in SPECT - an analytical approach. Phys Med
Biol 38: 1207-1217 (1993).

Bellini S., Piacentini, M., Cafforia, C. et al., Compensation of tissue absorption
in emission tomography. IEEE Trans ASSP 27: 213-318 (1979).

Pan X. and Metz, C. E., A Class of analytical methods that compensate for
attenuation and spatially-variant resolution in 2D SPECT. IEEE Trans Nucl Sci
43: 2244-2254 (1996).

Wang W. T., Tsui, B. M. W_, Frey, E. C. et al., “Comparison of an analytical and
an iterative based collimator-detector response compensation method in
SPECT”, Conf Rec of IEEE Nuclear Science Symposium, Vol. 2; pp 1382-1386
(1998).

Wang W. T., “An Evaluation of an Analytical Collimator-Detector Response
Compensation Method in SPECT,” Masters Thesis, The University of North
Carolina, 1999.

Shepp L. A. and Vardi, Y., Maximum likelihood estimation for emission tom-
ography. IEEE Trans Med Imaging 1: 113-121 (1982).

Tsui B. M. W., Hu, H. B., Gilland, D. R. ef al., Implementation of simultaneous
attenuation and detector response correction in SPECT. IEEE Trans Nucl Sci 35:
778-783 (1988).

McCarthy A. W. and Miller, M. 1., Maximum-Likelihood SPECT in clinical
computation times using mesh-connected parallel computers. /EEE Trans Med
Imaging 10: 426-436 (1991).

Zeng G. L. and Gullberg, G. T., Frequency domain implementation of the three-
dimensional geometric point source correction in SPECT imaging. IEEE Trans
Nucl Sci 39: 1444-1453 (1992).

Frey E. C., Ju, Z.-W. and Tsui, B. M. W., A fast projector-backprojector pair
modeling the asymmetric, spatially varying scatter response function for scatter
compensation in SPECT imaging. IEEE Trans Nucl Sci 40: 1192-1197 (1993).
Wallis J. W. and Miller, T. R., An optimal rotator for iterative reconstruction.
IEEE Trans Med Imaging 16: 118-122 (1997).

DiBella E. V. R., Barclay, A. B., Eisner, R. L. et al., A comparison of rotation-
based methods for iterative reconstruction algorithms. IEEE Trans Nucl Sci 43:
3370-3376 (1996).

Beekman F. J., Eijkman, E., Viergever, M. A. et al., Object shape dependent PSF
model for SPECT imaging. IEEE Trans Nucl Sci 40: 31-39 (1993).

Kohli V., King, M. A., Glick, S. J. et al., Comparison of frequency-distance
relationship and Gaussian-diffusion-based methods of compensation for
distance-dependent spatial resolution in SPECT imaging. Phys Med Biol 43:
1025-1037 (1998).



166

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

E.C. Frey and BM.W. Tsui

King M. A., Pan, T. S. and Luo, D. S., An investigation of aliasing with
Gaussian-diffusion modeling of SPECT system spatial resolution. IEEE Trans
Nucl Sci 44: 1375-1380 (1997).

Tsui B. M. W, Frey, E. C., Zhao, X. D. et al., The importance and implemen-
tation of accurate three-dimensional compensation methods for quantitative
SPECT. Phys Med Biol 39: 509-530 (1994).

Wilson D. W., “Noise and Resolution Properties of FB and ML-EM Recon-
structed SPECT Images,” Ph.D Dissertation, University of North Carolina at
Chapel Hill, 1994.

Tsui B. M. W., Zhao, X. D., Frey, E. C. et al., “Characteristics of reconstructed
point response in three-dimensional spatially variant detector response compen-
sation in SPECT” in: Three-Dimensional Image Reconstruction in Radiology and
Nuclear Medicine, edited by P. Grangeat and J-L Amans Kluwer Academic
Publishers, (1996), pp 509-530.

Wilson D. W. and Barrett, H. H., The effects of incorrect modeling on noise and
resolution properties of ML-EM images. IEEE Trans Nucl Sci 49: 768-773
(2002).

Pretorius P. H., King, M. A., Pan, T. S. et al., Reducing the influence of the partial
volume effect on SPECT activity quantitation with 3D modelling of spatial reso-
lution in iterative reconstruction. Phys Med Biol 43: 407-420 (1998).

Kohli V., King, M. A., Pan, T.-S. et al., Compensation for distance-dependent
resolution in cardiac-perfusion SPECT: impact on uniformity of wall counts and
wall thickness. IEEE Trans Nucl Sci 45: 1104-1110 (1998).

Ljungberg M., Sjogreen, K., Liu, X. W. ef al., A 3-dimensional absorbed dose
calculation method based on quantitative SPECT for radionuclide therapy:
Evaluation for I-131 using Monte Carlo simulation. J Nucl Med 43: 1101-1109
(2002).

Ljungberg M., Frey, E., Sjogreen, K. et al., 3D absorbed dose calculations based
on SPECT: Evaluation for 111-In/90-Y therapy using Monte Carlo simulations.
Cancer Biother Radiopharm 18: 99-107 (2003).

Pretorius P. H., Gifford, H. C., Narayanan, M. V. et al., Comparison of detec-
tion accuracy of perfusion defects in SPECT for different reconstruction strat-
egies using polar-map quantitation. JEEE Trans Nucl Sci 50: 1569-1574 (2003).

Narayanan M. V., King, M. A., Pretorius, P. H. ef al., Human-observer receiver-
operating-characteristic evaluation of attenuation, scatter, and resolution com-
pensation strategies for Tc-99m myocardial perfusion imaging. J Nucl Med 44:
1725-1734 (2003).

Sankaran S., Frey, E. C., Gilland, K. L. ef al., Optimum compensation method
and filter cutoff frequency in myocardial SPECT: A human observer study.
J Nucl Med 43: 432-438 (2002).

Gifford H. C., King, M. A., Wells, R. G. et al., LROC analysis of detector-
response compensation in SPECT. IEEE Trans Med Imaging 19: 463-473 (2000).
Frey E. C., Gilland, K. L. and Tsui, B. M. W., Application of task-based mea-
sures of image quality to optimization and evaluation of three-dimensional
reconstruction-based compensation methods in myocardial perfusion SPECT.
IEEE Trans Med Imaging 21: 1040-1050 (2002).



6

Attenuation Correction Strategies
in Emission Tomography

H. ZAr* aND B.H. HASEGAWA'

1. The Problem of Photon Attenuation in
Emission Tomography

The physical basis of the attenuation phenomenon lies in the natural property
that photons emitted by the radiopharmaceutical will interact with tissue and
other materials as they pass through the body. For photon energies represen-
tative of those encountered in nuclear medicine (i.e., 68 to 80 keV for °' Tl to
511 keV for positron emitters), photons emitted by radiopharmaceuticals can
undergo photoelectric interactions where the incident photon is completely
absorbed. In other cases, the primary radionuclide photon interacts with
loosely bound electrons in the surrounding material and are scattered. The
trajectory of the scattered photon generally carries it in a different direction
than that of the primary photon. However, the energy of the scattered photon
can be lower than (in the case of incoherent scattering) or be the same as (in the
case of coherent scattering) that of the incident photon. It is worth emphasiz-
ing that for soft tissue (the most important constituent of the body), a
moderately low-Z material, we note two distinct regions of single interaction
dominance: photoelectric below and incoherent above 20 keV. Moreover, the
percentage of scattered events which undergo Compton interactions in the
object is more than 99.7% at 511 keV for water, in which the number of
interactions by photoelectric absorption or coherent scattering is negligible.

Mathematically, the magnitude of photon transmission through an at-
tenuating object can be expressed by the exponential equation:

® = B, exp | — Ju(x,y) dr (1)

A
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where @, and @ are the incident and transmitted photon fluences (in units of
photons per unit area) and dr is a differential of the thickness of tissue encoun-
tered as the beam of photons passes through the body along path S. The
parameter u is the linear attenuation coefficient, which represents the prob-
ability that the photon will undergo an interaction while passing through a unit
thickness of tissue. Therefore, the linear attenuation coefficient is a measure of
the fraction of primary photons which interact while traversing an absorber
and is expressed in units of inverse centimetres (cm ™).

Linear attenuation coefficients often are referred to as narrow-beam
(collimated) or broad-beam (uncollimated) depending on whether or not
the transmitted photon fluence includes scattered photons that escape and
are transmitted through the object. The “build-up factor” caused by the
broad-beam conditions of nuclear medicine imaging is defined as the ratio of
the transmitted photons divided by the value predicted from the ideal
narrow-beam measurement in which scatter is excluded from the transmitted
beam. Therefore, the build-up factor is equal to 1 for narrow-beam geometry
but it will increase with depth for broad beam geometries until a plateau is
reached. Narrow-beam transmission measurements are ideally required for
accurate attenuation correction in emission tomography. This is of course,
determined by the geometry of the transmission data acquisition system.

Furthermore, the situation for photon attenuation is different for PET than
in SPECT. When a radionuclide distribution is measured in planar scintig-
raphy or in SPECT, the amount of attenuation depends on the tissue path-
length and the type of tissue (e.g., soft tissue, bone, vs. lung) that the photon
encounters as it travels between the point of emission and the point of detec-
tion. When positron-emitting radiopharmaceuticals are used for the imaging
study, the imaging system records two antiparallel 511 keV photons that are
emitted after electron-positron annihilation. In this case, the annihilation
photons traverse a total tissue thickness that is equal to the body thickness
intersected by the line between the two detectors, also called the line of
response.

Figure 1 shows the narrow-beam attenuation as a function of the source
depth in water for representative photon energies for radionuclides encoun-
tered in nuclear medicine and for different attenuating media calculated using
data from the XCOM photon cross section library' and ICRU Report 44.2
The data in Figure 1 show that attenuation of emission photons is severe for
both gamma-emitting and positron-emitting radionuclides (singles detec-
tion). These values also emphasize that photon attenuation is an unavoidable
process, which can affect the quality of the diagnostic information that we
gather from radionuclide imaging in a direct and profound way. In a clinical
setting, since the thickness of tissue varies for different regions of the patient’s
anatomy, the magnitude of the error introduced by photon attenuation can
also vary regionally in the radionuclide image. Therefore, a lesion located
deep within the body will produce a signal that is attenuated to a greater
degree than that for a superficial lesion. Similarly, a tissue region with uniform
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FIGURE 1. (a) The narrow-beam attenuation as a function of the source depth in a
cylindrical water phantom for photons of different energies of interest in nuclear
medicine imaging. (b) Same as above for 140 keV and different attenuating media.

radionuclide content that lies below tissue having a variable thickness will
generate an image with variable count density. This can occur in myocardial
perfusion imaging when soft-tissue attenuation due to the diaphragm or
breast tissue can cause false-positive defects. Reconstruction of tomographic
images without attenuation correction can cause erroneously high-count
densities and reduced image contrast in low-attenuation regions such as the
lung. All of these effects can introduce artefacts into radionuclide images that
can complicate visual interpretation and can cause profound accuracy errors
when radionuclide images are evaluated quantitatively. For this reason, it is
important to understand both the physical processes that underlie photon
attenuation and the methods that can be used to correct radionuclide images
for these physical factors. Attenuation correction in emission tomography is
now widely accepted by the nuclear medicine community as vital for achieving
the goal of producing artefact-free, quantitatively accurate data. While, this is
no longer the subject of debate in cardiac SPECT,>” there are still some
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controversies regarding its usefulness in routine clinical PET oncology
studies.®®

2. Determination of the Attenuation Map in
Emission Tomography

Reliable attenuation correction methods for emission tomography require
determination of an “attenuation map”, which represents the spatial distri-
bution of linear attenuation coefficients and accurately delineates the con-
tours of structures in the body for the region of the patient’s anatomy that is
included in the radionuclide imaging study. After the attenuation map is
generated, it can then be incorporated into the radionuclide reconstruction
algorithm to correct the emission data for errors contributed by photon
attenuation, scatter radiation, or other physical perturbations.

The methods for generating the attenuation map generally can be de-
scribed as falling within two main classes. The first class includes ““transmis-
sionless” correction methods based on assumed distribution and boundary
of attenuation coefficients (calculated methods), statistical modelling for
simultaneous estimation of attenuation and emission distributions or con-
sistency conditions criteria. The second class include correction methods
based on transmission scanning including an external radionuclide source,
X-ray CT, or segmented magnetic resonance images (MRI). These methods
vary in complexity, accuracy, and computation time required. To date, the
most accurate attenuation correction techniques are based on measured
transmission data acquired before (pre-injection), during (simultaneous),
or after (post-injection) the emission scan.

2.1 Transmissionless Approaches

In some cases, attenuation maps can be generated without adding a separate
transmission scan to the emission acquisition. Algorithms in this class of
methods either assume a known body contour in which a (uniform) distri-
bution of attenuation coefficients is assigned or try to derive the attenuation
map directly from the measured emission data. Only methods widely used in
clinical routine and implemented on commercial systems will be described in
this section. Other sophisticated and computer intensive approaches exist for
generating an attenuation map without a separate transmission measure-
ment. These include methods that apply consistency conditions and statis-
tical modelling for simultaneous estimation of emission and transmission
distributions that will be addressed in section 6 on future developments.

2.1.1 Calculated Methods

The assumption of uniform attenuation is straightforward in imaging the
brain and abdominal areas where soft-tissues are the dominant constituent,
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as opposed to regions like the thorax which is more heterogeneous. In these
regions, if the body contour can be determined from the emission data, then
the region within the contour can be assigned a uniform linear attenuation
coefficient value corresponding to that of water or soft tissue to generate the
corresponding attenuation map. The body contour can be determined either
manually or with automatic edge detection methods.

2.1.1.a Manual contour delineation

The simplest manual method consists of approximating the object outline by
an ellipse drawn around the edges of the object. Uniform attenuation is then
assigned within the contour to generate the attenuation map. An irregular
contour can also be drawn manually by an experienced technologist. The
method is generally only appropriate for brain studies and is implemented
on approximately all commercial SPECT and PET systems.’ Although
empirical, the method has some attractive properties: it is relatively quick,
easy to use, and increases patient throughput, which is a relevant issue
in a busy clinical department. However, the manually-defined contour
generally will not fit the actual patient anatomy exactly and does not
account for variations in the distribution of the attenuation coefficient
within the patient.

2.1.1.b  Automatic edge detection methods

A variation of the calculated attenuation correction is an automated tech-
nique that traces the edge of the object in projection space using an appro-
priate edge-detection algorithm. This allows the attenuation map to form
any convex shape with the advantage that automated edge detection reduces
the burden on the operator. In addition, lung regions can sometimes be
delineated from the emission data in which case a more accurate attenuation
map can be defined. Algorithms proposed for estimating the patient contour
include those that define the contour: (i) based on the acquisition of add-
itional data in the Compton scatter window,'%'?; (i) directly from the
photopeak data only,'*'® or (iii) by segmentation of the body and lung
regions either by an external wrap soaked in **™Tc,'” or using both scatter
and photopeak window emission images.'® Other methods use a set of
standard outline images'® to define the shape of the attenuation map.
Assigning known attenuation coefficients to the soft tissue and lung regions
then forms the attenuation map. Because it is generally difficult to define the
patient contour from emission data alone without the use of transmission
data, transmissionless techniques have had limited clinical application using
these methods.

In the case of brain imaging, automated methods also allow for a certain
thickness of higher attenuation material to be added to the calculation to
account for the skull.'> More recently, an automated method was proposed
to compute a 3-component attenuation map for brain PET imaging.”® The
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technique generates an estimated skull image by filtered backprojection of
the reciprocal of an emission sinogram. The thickness and radius of the skull
is then estimated from profiles extracted from the image. The resulting
thickness and radius values are then used to generate a model of the brain,
skull, and scalp. Appropriate linear attenuation coefficients are then
assigned to estimate the attenuation map for the head. More refined
methods make use of an optical tracking system to derive 3D patient-specific
head contour.?’ A previously acquired reference attenuation map is then
transformed to match the contour of the reference head with the target head
using the thin plate spline technique. A practical advantage of the optical
tracking system is that it can also be utilized for motion correction.

It is generally well accepted that transmission-based nonuniform attenu-
ation correction can supply more accurate attenuation maps than transmis-
sionless techniques. However, it is not entirely clear whether nonuniform
attenuation maps provide specific benefits in the routine clinical practice of
tomographic brain imaging. Comparisons made by independent observers
have shown no significant differences in subjective quality assessment be-
tween images reconstructed with uniform and non-uniform attenuation
maps.?? Hooper et al.*® have shown using clinical PET data that calculated
attenuation correction'? gave rise to appreciable bias in structures near thick
bone or sinuses when compared to the clinical ‘gold standard’ (transmission-
based attenuation correction). Some authors reported that uniform attenu-
ation-corrected studies provided unreliable regional estimates of tracer ac-
tivity.>* The same study concluded that estimation of the attenuation map
from a segmented reconstruction of a lower-energy Compton scatter win-
dow image was reported as the next most accurate clinical method and can
be reliably used when transmission scanning cannot be used.?* In contrast,
semi- quantitative analysis of images reconstructed using transmissionless
attenuation maps produces results that are very similar in **™Tc-ECD
uptake values for healthy volunteers in comparison to those obtained with
a transmission-based method.>> However, special attention should be paid
to the choice of the optimal effective broad-beam attenuation coefficient
(o) to use when combining attenuation and scatter corrections®® for
reconstruction of emission data that may have been perturbed by scatter
and attenuation in the human skull. The attenuation of the skull has been
evaluated by many investigators,”>>"?® all suggesting the use of a lower
value of w,, than for a uniform soft tissue medium. The choice of the
‘optimal value’ of the linear attenuation coefficient was studied in an elegant
paper by Kemp et al.?’ where the use of an effective bone and tissue
attenuation coefficients to compensate *’™Tc-HMPAO brain SPECT
resulted in images of improved uniformity and increased count density. In
another study using an anthropomorphic phantom, the ‘best’ choice of the
effective linear attenuation coefficient was found to be slice-dependent and
reliant on the skull thickness and the methods used for attenuation and
scatter corrections.”” Van Laere er al.*® used an attenuation coefficient of
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0.105 cm~! determined from experimental studies using the 3D Hoffman
brain phantom and 0.09 cm~! for clinical studies® indicating that results
obtained on phantom studies cannot be extrapolated directly for application
on human data. Similarly, using the same experimental set-up, Montandon
et al’' determined that the optimal effective u value in 3D PET brain
imaging is much lower compared to the theoretical value for scatter cor-
rected data (u = 0.096cm~!) and was found to be equal to 0.06 cm~!. The
deviation from the theoretical value may, in all cases, be explained by non-
optimal scatter corrections.

2.1.2 Other Methods

Another approach, which is receiving considerable attention, is to compute
the attenuation map directly from the emission data, eliminating the trans-
mission scan from the acquisition protocol. The problem of ‘“‘transmission-
less” image reconstruction in ECT has a long history, starting from a
pioneering work by Censor et al*’>, where alternating iterations of the
reconstruction algorithm were used to reconstruct emission tomograms
and attenuation maps from a set of emission projections alone. Many
researchers, who applied various optimization techniques, also have used
similar philosophies in generating emission tomograms and attenuation
maps. For instance, Nuyts et al.>* formulated the problem as an optimiza-
tion task where the objective function is a combination of the likelihood and
an a priori probability. The latter uses a Gibbs prior distribution to encour-
age local smoothness and a multimodal distribution for the attenuation
coefficients. Other methods included the use of the EM algorithm, as was
done in ref.*, or penalty functions.>>*® The techniques have had limited
success, but often produce artefacts in the form of cross-talk between the
emission image and the attenuation map.

Other transmissionless reconstruction methods attempt to avoid cross-
talk between the emission image and attenuation map by reconstructing
the emission image and the attenuation map independently. A more
general technique applies the consistency conditions for the range of the
attenuated Radon transform to obtain the attenuation map from SPECT
data. Implementations based on previously used continuous conditions
have shown that reconstructions did not converge to an acceptable solu-
tion.>” Bronnikov>® recently suggested an original approach that strengthens
the paradigm of the consistency conditions by setting them in the framework
of a discrete representation of the problem. It should be pointed out
that even if much worthwhile research has been performed in this area,
there is no clear evidence from the published literature regarding the applic-
ability of these techniques in a clinical environment. Further research is
clearly needed to convince the nuclear medicine community and gain confi-
dence in this approach. Potential future developments are addressed in
section 6 below.
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2.2 Transmission-based Approaches

In clinical and research applications, where the attenuation coefficient
distribution is not known a priori, and for areas of inhomogeneous attenu-
ation such as the chest, more direct methods must be used to generate the
attenuation map. This includes transmission scanning,®® segmented MRI
data*®*! or appropriately scaled X-ray CT scans acquired either independ-
ently on separate*”™* or simultaneously on multimodality imaging systems™*®"
4 These methods are described in more detail in the following sections.

2.2.1 Radionuclide Transmission Scanning

As reported by Bailey,* the use of transmission scanning using an external
radionuclide source dates back to the pioneering work of Mayneord in the
1950s.°> A more refined approach for acquiring transmission data for use in
conjunction with conventional emission scanning was implemented by Kuhl
in 1966.°' Transmission scanning now is commonly available on commercial
SPECT and PET systems, allowing it to be performed in clinical departments
on a routine basis, especially when it is combined with simultaneous emission
scanning. In a clinical environment, the most widely used attenuation correc-
tion techniques use transmission data acquired either before (pre-injec-
tion),”>> during (simultaneous),”*> or after (post-injection)*>>® the
emission scan. Interleaving emission and transmission scanning has proved
to be very practical in oncology studies where multiple bed positions are
needed. Sequential emission-transmission scanning is technically easier to
perform than simultaneous scanning, but it increases the imaging time and
suffers from image registration problems caused by patient misalignment or
motion. Simultaneous acquisition requires no additional time for the emission
and transmission measurements, which is important for routine clinical stud-
ies. However, errors may be introduced by cross-talk between the transmis-
sion and emission data. It has been shown that the attenuation coefficients
and activity concentrations are not significantly different when estimated with
sequential and simultaneous emission transmission imaging.”* Since the
reconstructed attenuation coefficients are energy-dependent, the recon-
structed attenuation coefficients are transformed to the coefficients of the
appropriate isotope energy using suitable techniques. The accuracy of the
transmission and emission maps produced using different transmission-emis-
sion source combinations has been the subject of a long debate.>*>’ In add-
ition, various approaches have been proposed to eliminate contamination of
emission data by transmission photons and to reduce spillover of emission
data into the transmission energy window.>’"> Several transmission scanning
geometries have emerged for clinical implementation for SPECT,***° hybrid
SPECT/PET®' and dedicated PET,**®* as illustrated in Figures 2-4.°® The
following sections describe the different transmission sources and data acqui-
sition geometries that have been proposed so far.
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FIGURE 2. Different configurations of Htransmission scanning geometries for SPECT
are shown in this diagram. A. Sheet source; B. scanning line source; C. fixed line
source and converging collimation; D. point or line source and asymmetric fan-beam
collimation; E. multiple line sources where the source size is proportional to the
relative activity of the source, and finally F. point source and septal penetration of
parallel collimation.

2.2.1.a SPECT

Radionuclide transmission-based methods in SPECT include both sequen-
tial and simultaneous scanning using external °’Co, 9mTe, 133Ba, 139Ce,
153Gd, °'T1, or **'Am sources. Early designs of transmission systems for
research with SPECT cameras used uncollimated flood or sheet sources. The
main advantage of this configuration is that the source fully irradiates the
opposite head, and therefore requires no motion of the source other than
that provided by the rotation of the camera gantry. These geometries also
have drawbacks associated with the high proportion of scattered photons in
the transmission data due to the broad-beam imaging conditions. As a
result, the attenuation map estimates an “‘effective” linear attenuation coef-
ficient rather than the value that would be calculated from narrow-beam
geometry. This difficulty can be overcome in part by collimating the trans-
mission source® to produce a geometry that more accurately represents a
narrow beam transmission geometry.
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FIGURE 3. Different configurations of transmission scanning geometries for hybrid
SPECT/PET cameras are shown. A. Symmetric point source and fan beam geometry
which truncates the imaged object; B. Offset point source covering the entire field-of-
view where the flux of radiation includes the center of rotation for sampling to be
complete; C. 2 scanning point sources translating axially and located far enough to
the side so that the flux of radiation does not include the center of rotation.
Truncation is avoided by lateral movement of the bed and 360° rotation; D. Multiple
point sources inserted between existing septa and placed along a line parallel to the
axis of rotation near the edge of one camera. The septa provide axial collimation for
the sources so that the transmission system operates in a two-dimensional offset fan-
beam geometry.
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FIGURE 4. Different configurations of transmission scanning geometries for PET are
shown in the diagram. A. Ring sources of a positron-emitting radionuclide measuring
transmission in coincidence mode, B. rotating positron-emitting rods measuring
transmission in coincidence mode, C. single-photon source producing coincidence
events between the known source position and photons detected on the opposing side
of the detector ring, and finally D. fixed positron-emitting rod (left) or single-photon
(right) sources on a rotating, partial-ring scanner.

Traditionally, SPECT systems used either *™Tc or 2°'TI transmission
sources that produce accurate attenuation maps for these respective emission
radionuclides.*>®> More recently, transmission data acquired with '>*Gd or
133Ba external sources or with a rotating X-ray tube have been used to
compute the attenuation map. The main radionuclide-based configurations
include: (i) stationary line source fixed at the collimator’s focus with con-
vergent collimation on a triple-detector system,>* (ii) scanning line sources
with parallel-hole collimation,®® (iii) a multiple line source array with paral-
lel-hole collimation,®’ (iv) scanning point sources using either fan-beam and
offset fan-beam geometry®® or (v) asymmetric fan-beam geometry acquired
by using a high-energy source that emits transmission photons capable of
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penetrating the septa of a parallel-hole collimator.®” Previously published
reviews can be consulted for a more detailed survey of these geom-
etries.”>%%%% The most widely implemented configuration for commercial
transmission acquisition is the scanning line source geometry. However,
each configuration has its unique advantages and drawbacks and camera
manufacturers are still optimizing the apparatus used to acquire the trans-
mission data.

2.2.1.b Hybrid SPECT/PET

Several schemes have been proposed to perform transmission scanning on
coincidence gamma camera systems.®' Laymon et al.”® developed a '*’Cs-
based transmission system for a dual-headed coincidence camera that can be
used for post-injection transmission scanning. Commercial SPECT/PET
systems use single-photon emitting '**Ba (T ;2 =10.5 yrs, E, = 356 keV)
point sources®® or '>*Gd (Ty /2 = 240 days, E, = 97-101 keV) line sources.®’
As noted above, '*Gd is commonly used as a transmission source for
SPECT. In addition, transmission data obtained using '*Gd can be scaled
to provide an attenuation map for coincidence imaging of positron emitters.
In comparison, '**Ba has a long half-life and does not have to be replaced as
do shorter-lived radionuclide transmission sources such as '>>Gd and *’Co,
9mTe, or 2°!'TI. Furthermore, '**Ba has the potential advantage that it is a
radionuclide source with a photon energy (356 keV) that is between those
encountered for emission imaging in PET (511 keV) and in SPECT (e.g.,
200y 99mTe, Hlpp, 1231, 131), Therefore, it may be more suitable for obtain-
ing transmission data for SPECT imaging than annihilation photons from a
positron source used with PET, but may be more difficult to shield than
other single-photon transmission sources commonly used with SPECT. It is
important to note that any potential advantages or disadvantages of '**Ba as
a transmission source for hybrid SPECT/PET cameras have not been dem-
onstrated. Finally, it also is possible to use an X-ray tube as a transmission
source in hybrid SPECT/PET systems, such as that implemented with the
General Electric Discovery VH dual-headed camera. The use of an X-ray
tube offers the advantages of higher photon fluence rates and faster trans-
mission scans, with anatomical imaging and localization capability that
cannot be obtained using radionuclide transmission sources. However, the
use of the X-ray tube also requires a separate X-ray detector since its photon
fluence rate far exceeds the count rate capabilities of current scintillation
camera technology, and as a point source its use is not compatible with
parallel-hole collimators required for SPECT imaging.

2.2.1.c PET

The early PET scanners used transmission ring sources of the positron-
emitting radionuclides **Ga/*®*Ge (T, »2» = 68 min and 270.8 days, respect-
ively), which co-exist in secular equilibrium. In this case, annihilation
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photons are acquired in coincidence between the detector adjacent to the
annihilation event and the detector in the opposing fan which records the
second annihilation photon after it has passed through the patient. This
design was modified later by replacing the ring sources radially by continu-
ously rotating “rod” sources. Obviously, the detector block close to the rod
source receives a high photon flux rate, causing detector dead time to be a
major limitation in this approach.® This problem can be relieved by win-
dowing the transmission data so that only events collinear with the known
location of the rod are accepted. Scanner manufacturers have adopted this
as a standard approach for several years. More recently, some manufactur-
ers have implemented transmission scanning using single-photon sources
such as '¥7Cs (T, 2 =30.2 yrs, E, = 662 keV). Transmission data recorded
with an external single-photon source can be recorded at higher count rates
resulting from the decreased detector dead time. In addition, a '*’Cs trans-
mission source produces a higher energy photon and therefore improves
object penetration®® in comparison to a positron-emitting transmission
source. The 662 keV photons from '*’Cs are less attenuated than the
annihilation photons from the PET emission source. The attenuation map
generated from transmission data acquired with a '*’Cs transmission source
must be corrected to account for differences in photon attenuation between
the emission and transmission data.

In recent volumetric PET systems like the ECAT ART that operate
exclusively in 3D mode, attenuation correction factors are measured with
two single-photon collimated point sources of '*’Cs capable of producing
high-quality scatter-free data with this continuously-rotating partial-ring
PET tomograph.”' This allows transmission data to be acquired with im-
proved counting statistics while drastically diminishing the acquisition time.
This scanner is designed around single-photon transmission sources having
two sets of 12 slits with an aperture ratio of 15:1 and an axial pitch equal to
twice the pitch of the axial crystal ring.”?> A simple mechanism has been
devised to produce a “‘coincidence” event between the detector, which
records the transmitted single-photon, and the detector in the opposing fan
near the current location of the single-photon source. More recently, a
simultaneous emission-transmission scanning system has been developed
that reduces contamination of the emission data by the emitted transmission
photons using a fast, dedicated, lutetium oxyorthosilicate (LSO)-based
reference detector placed close to the collimated coincidence point source
used to produce the transmission data.>

2.2.1.d Segmentation of transmission data

When radionuclide sources are used to acquire the transmission data, pho-
ton statistical noise from the transmission scan can propagate through the
reconstruction process, affecting the quality of the reconstructed images. To
minimize this effect, long transmission scans are normally acquired to ensure
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good statistics at the expense of patient throughput especially in the case of
whole-body scanning with low-sensitivity tomographic systems. Alterna-
tively, image segmentation can be applied to delineate different anatomical
regions (e.g., lung vs. soft tissue) in the attenuation map. The known
attenuation coefficients of these tissues then can be applied to the segmented
regions to minimize noise in the resulting attenuation map, with the goal of
reducing noise in the associated attenuation-corrected emission tomogram.
During the last decade, techniques using transmission image segmentation
and tissue classification have been proposed to minimize the acquisition time
(less than 3 min) and increase the accuracy of the attenuation correction
process, while preserving or even reducing the noise level. The reconstructed
transmission image pixels are segmented into populations of uniform at-
tenuation. The classified transmission images are then forward projected to
generate new transmission sinograms to be used for attenuation correction
of the corresponding emission data. This reduces the noise on the correction
maps while still correcting for specific areas of differing attenuation such as
the lungs, soft tissue and bone.

The whole process is illustrated in Figure 5. Once the transmission image
is segmented, the tissue type corresponding to each label is identified (e.g.
lungs, soft tissue, air...etc.). The attenuation map is then calculated by
weighted averaging combining the segmented and original images.

In a clinical setting, segmentation algorithms must be designed to balance
image quality and computational time. The majority of segmentation
methods used for attenuation correction fall into one of the following two
classes (see chapter 10): histogram-based thresholding techniques’>”® and
fuzzy-clustering based segmentation techniques.’*’> Threshold approaches
use the grey-level histogram counts to distinguish between regions. However,
if the geometry of the attenuation map is based solely on the characteristics
of the histogram, the technique is most likely to fail in regions where the
total number of counts is small (e.g. the skull). Therefore, the performance
of these techniques strongly depends on the choice of the thresholds. In

® ® W

FIGURE 5. Illustration of the segmentation process of a heart/chest phantom trans-
mission images showing from left to right: the original transmission image, FCM
segmented image using 5 clusters, merging process to a three- clustered image (the
bed is removed here), and the final attenuation map after applying a Gaussian filter
and weighted averaging (the low-noise image of the bed acquired and processed off-
line is added here).
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comparison, fuzzy-clustering based segmentation techniques have demon-
strated excellent performance and produced good results as an automated,
unsupervised tool for segmenting noisy images in a robust manner. They are
iterative procedures that minimize an objective function. As an output, a
membership degree is assigned to every voxel with respect to a cluster centre.
The number of clusters is generally passed as an input parameter. To
automate the process, a cluster validity index can be used to select the
optimal number of clusters.”®

Other interesting approaches to segment noisy transmission data include
the use of active contour models,”” neural networks,”® morphological seg-
mentation,” and hidden Markov modelling.*® An alternative to segmenta-
tion of transmission images with the goal of reducing noise in PET
transmission measurements includes Bayesian image reconstruction®' ™
and non-linear filtering.3*%

2.2.2 X-ray Transmission Scanning

It is well known that x-ray computed tomography (CT) can provide a
patient-specific map of attenuation coefficients that can be used to compen-
sate radionuclide data from PET or SPECT for the effects of photon
attenuation.®®#” This is a natural observation since the CT image inherently
represents the three-dimensional spatial distribution of attenuation coeffi-
cients of the patient. In addition, CT scanners are widely available and can
produce cross-sectional images quickly with low noise and excellent spatial
resolution in comparison to transmission images produced with external
radionuclide sources. Overall, x-ray transmission techniques offer practical
advantages for producing attenuation coefficient maps in terms of high
photon output and short procedure times, excellent decay, lack of physical
decay with a source that can be turned off between scans and that can be
discarded easily at the end of its useful operating life.

Several researchers have investigated the use of x-ray CT to provide a
patient-specific map of attenuation coefficients. The first studies of this type
were performed by investigators who scanned the patient in separate clinical
procedures to acquire the CT and radionuclide data, then relied on image
fusion techniques to register the data before the attenuation compensation
technique was performed.**3%% These techniques can be applied to imaging
studies of the head where the rigidity provided by the skull facilities off-line
registration of the x-ray and radionuclide data. However, other regions of
the body can bend and flex, thereby complicating image registration. In
addition, the heterogeneity of the body, especially in the thorax, accentuates
the need for accurate registration when x-ray measurements are used to
produce an attenuation map for reconstruction of the radionuclide tomo-
grams. However, the advent of dual-modality imaging systems (see chapter
2) provides a means of acquiring CT and radionuclide data so that they are
inherently coregistered. This allows obtaining a patient-specific map of
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attenuation coefficients that can be used to compensate the radionuclide
data for photon attenuation in all regions of the body. Some early PET/CT
systems allowed the operator to obtain transmission data with an external
radionuclide source,* similar to the technique used with conventional CT
where the x-ray subsystem was not available. However, increasingly, dual-
modality imaging systems rely exclusively on correlated CT to obtain the
attenuation map for reconstruction of the radionuclide tomogram.

While the image data from a CT scanner inherently represents the spatial
distribution of linear attenuation coefficients in the patient,”® the CT data
from a specific clinical study cannot be used as an attenuation map for
compensation of radionuclide data without accounting for the specific char-
acteristics of CT imaging study. First, the CT projection data are obtained
using a polyenergetic x-ray source and are recorded with an array of current-
integrating x-ray detectors. Furthermore, as the x-ray beam passes through
the patient, the low energy photons are preferentially absorbed in the patient
so that the x-ray spectrum transmitted through a thick body part has a
higher mean area than that transmitted through thinner regions of the
body. This produces the well-known ‘‘beam-hardening” artefact in which
the raw values of the CT image are lower in the middle of an object than at
the periphery, representing the higher mean energy and correspondingly
lower attenuation coefficients obtained in thick body parts than those pro-
duced for thin regions of the body. All clinical CT scanners incorporate
calibrations to correct for spectral changes due to object thickness. Never-
theless, these considerations underscore the need to present the CT image
data in a way that is relatively immune to changes in the x-ray energy
spectral content. For clinical applications of CT, in order to present the
CT image in a way that represents tissue type rather than the measured
linear attenuation coefficient, the raw CT data are normalized by calculating
each pixel value in terms of “Hounsfield Units” (HU) where

HU(x,y) = Per@) = e 000 )
w

where HU(x,y) is the value of the CT scan expressed in Hounsfield units at
point (x,y), wer (x,p) is the linear attenuation coefficient obtained from the
raw CT scan at the location (x,y), and u,, is the corresponding value of the
linear attenuation coefficient of water. When the CT data are rescaled in
terms of Hounsfield units, air corresponds to -1000 HU, water corresponds
to 0 HU, bone is represented by values of 1000 to 2000 HU, and fat has a
value of approximately -100 HU where the relationship between tissue type
and approximate value in Hounsfield units is relatively independent of the x-
ray spectrum or other parameters used to generate the CT image. The use of
Hounsfield units to present the CT image thereby provides some consistency
that facilitates their visual interpretation. However, when CT data from a
clinical scanner is used to obtain a patient-specific map of attenuation
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coefficients, it therefore is necessary to transform the CT image data so that
it is expressed in terms of the linear attenuation coefficient of the corre-
sponding material. Furthermore, this must be done for the energy of the
radionuclide photon so that the attenuation data can be used to correct the
emission data for photon attenuation.

The first method of calculating an attenuation map from CT requires that
the CT image is segmented in a way that parallels the segmentation of
transmission data discussed in Section 2.2.1.4. Segmentation is a method
in which image processing techniques are used to identify regions of the CT
image that represent different material types (e.g., soft-tissue, bone, and
lung).®” After each of these tissue regions is identified, the CT image values
for each tissue type are then replaced by the linear attenuation coefficients
for the corresponding material at the energy of the radionuclide photon.
This method has the advantage that the attenuation map is “noiseless” such
that each region of a single material is assigned a single linear attenuation
coefficient value. However, the assigned value may be inaccurate, especially
in pulmonary regions where the density of the lung is known to vary by as
much as 30%.°!

A second method of transforming the CT data to a map of attenuation
coefficients directly transforms the CT image to a map of attenuation coeffi-
cients at the energy of the radionuclide photon. This transformation can be
performed by acquiring x-ray CT calibration measurements of a calibration
phantom containing materials of known composition (and thus of known
linear attenuation coefficient at a given photon energy) and from which the
CT number (in HU) can be measured directly from the CT scan of the
phantom. Some of the earliest work in this area was performed in conjunc-
tion with the development of a SPECT/CT system by Blankespoor et al.*¢ in
which transmission data were obtained then reconstructed using x-ray CT,
then calibrated using measurements from a phantom with cylindrical inserts
containing water, fat-equivalent (ethanol) and bone-equivalent (K;HPO,)
materials, and iodinated contrast agents. In order to convert the CT num-
bers in the calibration phantom to units of attenuation coefficient at the
photon energy of the radionuclide, the CT numbers extracted from each
region were plotted against their known attenuation coefficients at the
photon energy of the radionuclide to provide a piece-wise linear calibration
curve®®?? which was stored as a look-up table in the computer used to
reconstruct the radionuclide tomograms. During a clinical study, both CT
and SPECT data were obtained from the patient and reconstructed using the
commercial filtered backprojection software provided by the manufacturer
to provide preliminary tomographic data that could be registered spatially.
The CT image then is reformatted so that it had the same matrix format,
same slice width, and same slice positions as the SPECT data, then was
transformed using the calibration look-up table to produce an attenuation
map expressed in units of linear attenuation coefficient for the photon
energy of the radionuclide image. The resulting attenuation map then was
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incorporated with the original radionuclide projection data into an iterative
maximume-likelihood expectation-maximization (ML-EM) algorithm to re-
construct the radionuclide data. These techniques have been tested exten-
sively in SPECT/CT studies on phantoms,” animals,’” and patients.”>**

A third technique for transforming the CT image to an attenuation map is
the hybrid method that combines segmentation and scaling.***” This method
uses segmentation to separate regions of the image that represent bone, from
those areas which represent other tissue types. Different scale factors then are
used to transform the CT values to linear attenuation coefficients in these two
regions. The hybrid technique has been applied primarily to PET images, and
both bilinear scaling and the hybrid technique have demonstrated that they
provide accurate reconstructions when compared to attenuation maps gener-
ated with 511 keV positron emitting rod sources.

A SPECT/CT or PET/CT scanner can provide a virtually noiseless map of
attenuation coefficients that can be used to correct the radionuclide image
for photon attenuation errors. In addition, the transmission data can be
acquired more quickly and with significantly better spatial resolution with
an x-ray source than with a radionuclide source. While these features are
advantageous in clinical studies, several investigators have identified some
pitfalls associated with attenuation maps generated with x-ray transmission
scanning. One area of concern arises because the x- ray scan is obtained with
a polyenergetic bremsstrahlung spectrum with a mean photon energy that
generally is different than that of the radionuclide used for the emission scan.
The x-ray data therefore must be transformed using one of the techniques
described above to obtain an attenuation map that can be used to correct the
emission data for photon attenuation. In measurements from a commercial
PET/CT scanner, Burger et al.”® found a slight (approximately 3%) but
measurable difference in the attenuation map values generated from x-ray
transmission data and from ®®Ga positron-emitting transmission source
(i.e., germanium-68). More noticeable artefacts are associated with respira-
tory-induced misregistration’®®” of the emission and transmission data
which can lead to a decrease in reconstructed activity at the margins of the
lungs and diaphragm, and are seen with attenuation maps generated using
both radionuclide and x-ray transmission sources. These arise because the
emission scan is acquired over multiple respiratory cycles under shallow-
breathing conditions, whereas the CT scan is obtained quickly over just a
short interval within one respiratory cycle. Furthermore, the misregistration
errors are maximized when the transmission data are acquired with the
patient at end-inspiration or with shallow tidal respiration, but are minim-
ized when the transmission data are acquired with the patient at end-expir-
ation®® A third source of error arises when the patient contains materials
that have physical densities and linear attenuation coefficients outside of
normal physiological ranges. For example, high-density oral contrast®® or
metal implants in teeth® or hip prosthetic devices'® as well as other high
density structures and implants within the body can cause streaks and
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“beam-hardening” artefacts in the CT scan or conventional transmission
image. In turn, these can lead to artefacts in the PET or SPECT image that
mimic areas of increase radionuclide uptake. Fortunately, both intravenous
iodinated contrast media'®' and low-density barium contrast agents,”® typ-
ically administered in clinical CT studies, appear to cause only minor arte-
facts in the transmission and emission data, and appear to be suitable for
clinical imaging with PET/CT.

2.2.3 Segmented Magnetic Resonance Imaging

In addition to methods that use radionuclide or x-ray sources to produce
attenuation maps for reconstruction of SPECT or PET data, a few studies
have addressed the issue of using segmented MR data to construct an attenu-
ation map for attenuation correction purposes in emission tomography*’ and
that represent an outgrowth of the many PET/MR image coregistration and
fusion algorithms that have been described in the literature.'> For imaging
the brain, the simplest method segments the MRI image by thresholding to
create a mask, which delineates the skull and all other tissues but excludes the
hollow space of sinus, etc. Every voxel in the mask is then assigned the
attenuation coefficient of water (0.096cm~!). A more robust approach
based on registered 3D MRI T1 images has been proposed recently.*! These
images were realigned to preliminary reconstructions of PET data and then
segmented using a fuzzy clustering technique by identifying tissues of signifi-
cantly different density and composition. The voxels belonging to different
regions can be classified into bone, brain tissue and sinus cavities. These voxels
were then assigned theoretical tissue-dependent attenuation coefficients as
reported in the ICRU 44 report.> An equivalent method substituting the
patient-specific MR images with a coregistered digitized head atlas derived
from high-resolution MRI-based voxel head model'*? called inferring-attenu-
ation distributions (IAD) has been proposed by Stodilka e al.'® for brain
SPECT and extended later for brain PET imaging. The feasibility of Atlas or
template-guided attenuation correction in cerebral 3D PET imaging, where
the patient-specific attenuation map is derived by non-linear warping of a
transmission template constructed by scanning a representative population of
healthy subjects has been recently proposed and is being validated in a clinical
environment.'% Its accuracy depends strongly on the performance of the
coregisteration and anatomic standardization techniques applied to the
tracer-specific emission template to match the patient data.

The availability of public domain image registration and segmentation
software dedicated for brain (e.g. Statistical Parametric Mapping package)
facilitates clinical implementation of MR-based attenuation corrections. The
recent interest in simultaneous multimodality PET/MRI may motivate future
applications of this method to other organs where accurate registration is more
difficult to achieve. For example, a prototype small animal PET scanner has
been designed with lutetium oxyorthosilicate (LSO) detector blocks of 3.8 cm
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ring diameter coupled to three multi-channel PMT’s via optical fibres'°® so that
the PET detector can be operated within a conventional MRI system. The
authors reported no appreciable artefacts caused by the scintillators in the MR
images. A second larger (11.2 cm) prototype is being developed for simultan-
eous PET/MR imaging of mice and rats at different magnetic field strengths. "’
Although the challenges and costs for these devices are substantial, the future
potential of multimodality imaging appears to be bright.

A recent study?* compared the impact of the attenuation map using clinical
brain scans corrected for attenuation using both uniform attenuation maps
based on manual and automatic contours described in Section 3.1 and non-
uniform attenuation maps described in Section 4 including transmission scan-
ning,>® segmented transmission,”® coregistered segmented MRI,*' and the
IAD method.'* This later method was implemented as described by Stodilka
et al.'™* without any modifications (e.g. adding the bed to the final images).
From a purely qualitative analysis, the merits of the more exact methods based
on realistic nonuniform attenuation maps are obvious.?”> They produce less
visible artefacts, while the approximate methods tend to produce an artefact in
which there is a high level of activity along the edge of the image due to
overestimation of the head contour on the external slices when using the
automatic edge detection method. On the other hand, the quantitative VOI-
based analysis of ten patient data sets revealed different performance and
statistically significant differences between the different attenuation correction
techniques when compared to the gold standard (transmission scanning).

Typical patient brain attenuation maps and corresponding PET images
acquired with the ECAT ART camera and reconstructed with measured
transmission as well as MRI-guided attenuation and scatter corrections are
shown in Figure 6. Both correction methods improve the quality of the
images and allow a better definition of brain structures and better overall
contrast between gray and white matter compared to the case where no
correction is applied; however, the images appear noisier when using trans-
mission-guided attenuation correction. It should be noted that the long
acquisition time during transmission scanning significantly improved the
signal-to-noise ratio by reducing noise propagation from transmission to
emission scanning. In addition, the quantitative analysis showed good agree-
ment between measured transmission-guided and segmented MRI-guided
reconstructions with only small differences between the two distributions.

3. Attenuation Correction Techniques in
SPECT and PET

In the two-dimensional case, the fundamental relation that links the imaged
object f{x,y) and corresponding attenuation map u(x,y) to its 1D projection
data p(s,¢) is called the 2D central slice theorem (see chapter 3). The general
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FIGURE 6. Comparison of attenuation maps and PET image slices of a patient study
reconstructed using the two different processing protocols. A. PET image recon-
structed using transmission-guided attenuation and scatter corrections. B. PET image
reconstructed using segmented MRI-guided attenuation and scatter corrections.
C. Measured transmission-based attenuation map. D. MRI-guided attenuation
map (Reprinted with permission from ref.*!).

equation describing measured projections in term of the radionuclide source
distribution inside an attenuating medium is called the attenuated Radon
transform and is given in the case of SPECT by:

I(x,y)
podr= | Sepexn|~ [ | 3)
Ls,) 0
where /(x,y) is the distance from the emission point (x,y) in the object to the
detector along the line L(s, ¢), ¢ is the angle between the rotating detector
plane and the stationary reconstruction plane and w(x’,)’) the attenuation

coefficient at position (x',)’). Whereas, in the case of PET, the attenuated
Radon transform is given by:

pis,@) = J S(x.p)dr x exp | — [ w(x,y)dl | dr 4)
L(s,) L(s,$)

Ideally, one would like to solve the Radon transform exactly to determine
or “reconstruct” the radionuclide distribution f(x,y). However, because of
the complexity of the equation, no exact analytical reconstruction method
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exists to invert the attenuated Radon transform. This is especially true in
clinical imaging where the attenuation coefficient distribution is nonuniform.

Transmission-based attenuation correction has been traditionally per-
formed in the case of PET, which started mainly as a research tool
where there was greater emphasis on accurate quantitative measurements,
and more recently has been applied for SPECT. There are two simple
reasons for that: (i) attenuation correction in PET is easy since it requires
a simple pre- multiplication of the measured emission data by the corre-
sponding attenuation correction factors, and (ii) the attenuation correction
factors are large and quantitation is impossible without attenuation
compensation. Interestingly, the magnitude of the correction factors re-
quired in PET is far greater than in SPECT. For a given projection,
the SPECT attenuation correction factors rarely exceed 10 in virtually all
clinical imaging, whereas for PET, they often exceed 100 for some lines of
response through the body. Typically, the magnitude of the correction
factors ranges from approximately 20 in PET and decreases in SPECT
down to 9-10 for 2°'T1 (69-80 keV), 6-7 for **™Tc (140 keV) to nearly 3
for 'F (511 keV).*

The attenuation factor for a given line of response in PET depends on the
total distance travelled by both annihilation photons (a + b in Figure 7) and
is independent of the emission point along this line of response. In compari-
son, SPECT models attenuation processes in which the emitted photon
traverses only part of the patient’s anatomy before reaching the detector.
Figure 7 shows a transmission image along with the attenuation paths for
both single-photon and coincidence detection modes. Therefore, correction
for attenuation can be performed only for uniform attenuation maps using
analytic reconstruction but otherwise requires iterative reconstruction tech-
niques for SPECT, but it is more straightforward and its accuracy limited
only by the statistics of the acquired transmission data for PET.

Because attenuation correction in PET is relatively straightforward, only
two techniques have emerged. In the first approach, attenuation correction is
performed in projection (sinogram) space by multiplying attenuation cor-
rection factors (4 CFs) by emission data. Attenuation correction factors are
generated by forward projecting at appropriate angles the attenuation map
obtained using one of the methods described in the previous sections.
Alternatively, when emission data are reconstructed using an iterative algo-
rithm (see chapter 4), the attenuation correction factors can be used to
provide proper statistical weighting to the data as is done in attenuation-
weighted OSEM (AWOSEM).'*® It is worth emphasizing that this method
attracted the interest of many scanner manufacturers who implemented it in
software they supply to end-users.

The problem of photon attenuation in SPECT has proven to be more
difficult to solve than for PET, and several types of correction methods have
been suggested.'®!'” Nevertheless, recent iterative algorithms converge to a
very accurate solution even in SPECT.
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Fi1GuUrE 7. Illustration of the main differences between attenuation correction schemes
for SPECT and PET on a transmission image of a patient in the thorax region. A. In
SPECT, the most widely used algorithm on commercial systems calculates the
attenuation factor (exp( — pa) for uniform attenuating media) for all projection
angles and assigns an average attenuation factor to each point within the object
along all rays. The procedure can be repeated iteratively and adapted to non-uniform
attenuating media. B. In PET, the attenuation correction factors are independent of
the location of the emission point on the LOR and are therefore given directly by the
factor (exp{ — w(a + b)} for uniform attenuating media) for each projection.

3.1. Correction Methods Based on Uniformly
Attenuating Medium

Some of the first attenuation correction techniques used clinically in nuclear
medicine, especially for SPECT, were designed to correct radionuclide im-
ages reconstructed using analytic techniques such as filtered backprojection.
However, as noted above, it is difficult, if not impossible, to compensate the
SPECT image for nonuniform attenuation using analytic reconstruction
techniques. It is possible, however, to correct the radionuclide data assuming
that the attenuation is uniform, for example in the head or pelvis (if the bony
structure and other nonuniformities are assumed to be negligible). However,
the assumption of a uniformly attenuating medium is not suitable for
reconstructing emission data from the thorax due to the presence of the
lungs. Attenuation correction of radionuclide data using a uniform attenu-
ation map therefore is not appropriate for myocardial perfusion imaging
where photon attenuation is considered to be a major source of false positive
errors.
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In cases where the linear attenuation coefficient is uniform throughout the
reconstruction volume, it is possible to reconstruct the radionuclide image
with a uniform attenuation map using an analytic reconstruction technique.
This can be accomplished using a method developed by Chang,''' now
referred to as the “multiplicative Chang technique”. Specifically, if the object
has a constant linear attenuation coefficient w within its borders, then the

radionuclide image f4¢(x,y) corrected for photon attenuation is given by

Fictuy) = —L D) 5)

1
= D exp(—ul)
M2

where the radionuclide image f{(x,y) is first reconstructed without attenuation
correction. The denominator represents the multiplicative correction term
for photon attenuation in which M is the total number of projections used to
acquire the radionuclide data and /; is the distance from the point (x,)) to the
border of the object in the i” radionuclide projection. When the object being
imaged has an extended geometry, the correction term expressed in Eq. 5
overcompensates the image for photon attenuation which results in over-
correction in some parts of the image and undercorrection in other parts. In
these cases, the accuracy of the photon attenuation correction can be im-
proved using an iterative technique (referred to as the “‘iterative Chang
technique™) in which the initially corrected image f4c(x,y) is reprojected
mathematically to form a set of projection data that simulate the radio-
nuclide imaging process in a way that includes a priori information about the
physical extent and linear attenuation coefficient distribution of the object.
The new estimated projections then can be subtracted from the original
measured projection data to calculate an error term that can be backpro-
jected using filtered backprojection reconstruction or other reconstruction
techniques, which then can be used to correct the radionuclide tomograms
initially obtained from filtered backprojection. In spite of its theoretical
shortcomings, Chang’s method has been used widely in multiple clinical
applications and research studies. Other less popular approaches have been
described elsewhere''® and will not be repeated here.

3.2.  Correction Methods Based on Non-Uniformly
Attenuating Medium

Radionuclide images reconstructed using analytic methods such as filtered
backprojection generally are reconstructed without attenuation correction,
but can incorporate a uniform attenuation map using the techniques de-
scribed above. However, since most anatomical regions are heterogeneous in
their anatomical structure and tissue composition, the radionuclide data
inherently contain errors contributed by photon attenuation. In addition,
significant errors in the radionuclide image can be contributed by other
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physical effects such as scattered radiation and the finite spatial resolution of
the imaging system (including the geometrical response of the collimator in
the case of SPECT) that are not accounted for in these reconstruction
techniques.''>"11® As discussed in the introduction to section 3, PET images
can be reconstructed using either analytic or iterative techniques, whereas
nonuniform attenuation correction for SPECT generally requires iterative
reconstruction.

Several different iterative reconstruction methods have been developed
and evaluated for radionuclide imaging. Early techniques used additive
correction terms in each iterative step to improve computational speed and
included the conjugate gradient weighted least squares (CG-WLS) tech-
nique.''” However, most current reconstruction methods are based on the
well-known maximum likelihood expectation-maximization (ML-EM)
method.""™® " This is an iterative reconstruction technique that accounts
for the Poisson statistical nature of the radionuclide data, and that can
incorporate other physical effects including a projector model that accounts
for the geometric response of the collimator. In addition, the ML-EM
algorithm has a positivity constraint (i.e., all reconstructed pixel values are
non-negative), preserves the integral number of counts in each iterative step,
and converges monotonically to a maximum likelihood solution. The math-
ematical form of the maximum-likelihood expectation-maximization (ML-
EM) algorithm generally is expressed as (see chapter 4):

new fj'.”ld Di
5= S a; Z ajj ‘Z @ (©)
! k

where p; are projection pixel values for counts originating from the object
voxel activity concentration f;, a; is the transition or system matrix, which
represents the likelihood that a photon emitted from object voxel j is
detected at detector pixel i, and thereby contains information about the
geometry of the imaging system including the collimator design, the charac-
teristics of the detector used to acquire the radionuclide data from the object,
and the physical characteristics of the object including photon attenuation
and scatter that affect the acquisition process. /7" and f refer to the
current and previous estimates of the reconstructed object, respectively.
The image reconstruction begins with an estimate of the patient radio-
nuclide distribution ];0 generally assumed to be uniform within the recon-
struction circle of the imaging system for all values of j. Eq. 6 then
mathematically projects the radionuclide distribution onto the detector
using the properties of the transition matrix and compares the results with
the experimentally measured projection data p,. The algorithm then calcu-
lates a correction term that is used to update the estimated image data so
that a new iterative estimate can be calculated. The EM algorithm described
in Eq. 6 can be accelerated significantly by grouping the projection data into
“ordered subsets” the collection of which encompass all of the projection
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data measured during the imaging process. In the standard ML-EM algo-
rithm, the EM algorithm is applied to the entire set of projection data. In
comparison, in the “ordered-subsets expectation maximization” (OS-EM)
algorithm, the EM algorithm then is applied to each of these subsets in turn
with the image estimate f; obtained from processing one subset forming the
estimate used as the starting point in Eq. 6 to process the next subset. The
iterative OS-EM algorithm can include photon attenuation and other phys-
ical effects through their expression in the detection probability matrix a;,
thereby allowing correction of the radionuclide image for the effects of
nonuniform photon attenuation.

The direct application of the attenuation correction process can be per-
formed in several ways. In the case of PET, the attenuated Radon transform
can be expressed as noted in Eq. 3. Therefore, projection data can be
corrected for photon attenuation by using the following expression:

pac(si) = ACF x pls.p) = j Fey)dr ™
L(s,¢)
where
ACF = exp J m(x,y)dr (8)
L(s,p)

is the ““attenuation correction factor” for the line of response defined by the
coincident annihilation photons acquired during the PET imaging process.
Since the ACF in PET is defined for lines of response that traverse the entire
width of the patient, its value can be determined experimentally using
transmission measurements obtained through the patient using an external
radionuclide or x-ray source. It therefore is possible to apply Eq. 7 to correct
the projection measurements obtained during the PET imaging process, then
reconstruct the resulting attenuation-corrected projection data p,c(s,¢)
using either analytic or iterative reconstruction techniques.

For SPECT or PET, the actual process of including nonuniform attenu-
ation in the iterative reconstruction algorithm also can be performed using an
attenuated projector-backprojector pair such as the one described by Gull-
berg et al.'*® Referring to Figure 8, Gullberg et al., showed that if Jjand u; are
the radionuclide concentration and the linear attenuation coefficient respect-
ively at voxel j along a ray at angle ¢ described in the projector model of the
radionuclide imaging process, and if r; and r;1 are the positions of the leading
and trailing edge of voxel j through which the ray passes enroute to the
detector, then the projected value recorded by the detector is given by

+00

pls.b) = J F(exp | - J w()dr' | dr ©)
L(s,d) r
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Eq. 9 also can be expressed as:'*°
+00 riti
pod) =S frexp |~ | uerar| [ expl-p —nlar a0
J
Tj+1 Ty

where the first exponential term represents the attenuation of photons as
they emerge from the right side of the pixel toward the detector, and the
second exponential term represents the effects of attenuation across the
pixel. Finally, Gullberg, et al.'* have shown that the attenuated projection
values p(s,¢) can be expressed as

pls.d) = fiFi(s.$) (11)
J
where

+0o +00
1{exp l— | u(r)dr| —exp l— | w(rydr

M
Tj+1 Tj

} ¥ >0
Fi(s.) = N
Lj{exp l— | w(rydr

Tjt1

} ifw, =0 (12)

and where L; = rjy1 — r;j is the ray length through pixel j having radionuclide
concentration f; and linear attenuation coefficient w; (see Figure 8).

N

y
Detector

FiGURE 8. Geometry of attenuated projector-backprojector defined for k' ray pass-
ing through an object in which the j” voxel has radionuclide concentration f; and
linear attenuation coefficient u;.
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The astute reader will notice that the expression for Fj(s,¢) allows the user
to program a “bootstrap” operation in which the exponential terms in the
expression for Fj(s,¢) can be used to calculate the subsequent term Fj(s,¢)
as the ray is indexed through the object to calculate the projection data in a
way that facilitates the overall computational process.

4. Dosimetric, Logistic and Computing Considerations

There have been few dose estimates reported in the literature on transmission
scanning in emission tomography. Unfortunately, many studies were very
superficial and reported very approximate estimates of the maximum
absorbed dose at the skin surface using survey meters rather than effective
dose equivalent (EDE) values (a quantity, which is suitable for comparing
risks of different procedures in nuclear medicine, radiology, and other appli-
cations involving ionizing radiation) using anthropomorphic phantoms and
suitable dosimeters.>*!?":122 It is worth noting the discrepancy between results
reported in the literature even when using the same experimental set-up,
scanning source geometries, and dosimeters. The discrepancies may be
explained by differences in thermoluminescent dosimeters (TLDs) positioning
and other uncontrolled factors. In SPECT, the use of sliding collimated line
sources and parallel collimation allows a significant dose reduction when
compared with the use of a static collimated line source and fan-beam colli-
mation.'”! Van Laere et al.*® reported an EDE rate of 32 uSv/GBq.h, while
only 0.52 ©Sv/GBq.h has been reported by Almeida er al.'?' when using
uncollimated and collimated '3*Gd transmission line sources, respectively,
for typical brain scanning. A scanner manufacturer used low-dose X-ray
device that adds a dose that is four-fold lower than that of a state of the art
CT. The patient dose for a typical scan ranges from 1.3 mGy at the centre of
the CT dose index phantom (32 cm diameter plastic cylinder) to 5 mGy at the
surface (skin dose).*® The radiation dose for another system was 3.4 mGy per
slice at the center and 4.3 mGy per slice at the surface of a 16 cm diameter
tissue-equivalent phantom.*’” A more recent study compared the difference
between ®Ga- and CT-based transmission scanning using a combined PET/
CT device in terms of radiation burden to the patients during brain, cardiac
and whole-body scans by using a Rando Alderson phantom with TLDs.'*
The authors reported negligible EDEs (<0.26 mSv) when using % Ga/®Ge
rod sources, while EDEs of 8.81 mSv in the high-speed mode and 18.97 mSv in
the high-quality mode were measured for whole-body CT-based transmission
scans on the Discovery LS system (GE Medical Systems, Milwaukee, WI,
USA). It should be pointed out that these results serve only as guides since in
most practical situations transmission scanning source geometries have not
been characterized for each examination and specific camera using extensive
Monte Carlo simulations or experimental measurements with anthropo-
morphic phantoms. To the best of our knowledge, these estimated numbers
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are the only values that are available to end-users. Further efforts need to be
devoted to fully characterize transmission scanning in emission tomography.

It is likely that if attenuation correction could be obtained rapidly and
accurately, the benefits it adds to whole-body emission tomography would be
considered sufficient to offset the increased acquisition time. Fortunately,
several methods are under development or already have been implemented to
perform attenuation correction more rapidly, more accurately, and with less
noise than conventional techniques. Although the earliest emission tomo-
graphic studies had transmission images performed before radiotracer admin-
istration and emission imaging, such protocols are considerably
time-consuming since the transmission and emission imaging sessions are
completely separated. Methods that acquire transmission data after tracer
injection now are performed more commonly.'** Such methods save time but
may have disadvantages, with potential artefactsif tracer activity is changing in
location or intensity during data acquisition. However, a promising approach
is the use of segmentation algorithms both to reduce the noise from the
attenuation images and to reduce the time of acquisition by computer-aided
classification of tissue density into a few discrete categories based on the
transmission scan and prior knowledge of expected tissue attenuation coeffi-
cients. Indeed, algorithms with only a few minutes of acquisition per level have
been developed using Ga and '*7Cs sources.”” More rapid data collection
using either higher photon flux single-photon or X-ray sources is also promis-
ing. Combined SPECT/CT or PET/CT devices acquire transmission data
rapidly and simplify the process of registering the emission data to the CT-
derived anatomical images.*®*”*>%¢ The cost of combined ECT/CT systems
may be prohibitive for small nuclear medicine departments and correlation of
data acquired from different scanners suffer from the usual problems of work-
ing with multi-modality images, namely, the difficulty of accurate coregistra-
tion from the different modalities. Nevertheless, dual-modality imaging is
gaining in popularity and in acceptance for a number of important clinical
applications.

Another aspect that deserves special attention, but which is not discussed in
this chapter, is the need for efficient and accurate quality control and quality
assurance procedures. Quality control procedures for transmission-emission
tomographic systems are needed for insuring a good quality attenuation map
and accurate attenuation correction. Currently, quality control for emission-
transmission imaging is still undergoing development where only a handful of
guidelines have been proposed for routine implementation.

5. Concluding Remarks and Future Prospects

Remarkable achievements and continuing efforts to enhance the perform-
ance of radionuclide imaging systems have improved both the visual quality
and quantitative accuracy of emission tomography. However, physical
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effects such as photon attenuation, scatter, spatial resolution characteristics,
and statistical noise still limit the performance of emission tomography. The
accuracy and clinical relevance of attenuation correction in emission tom-
ography has been validated using either analytical'*® or Monte Carlo simu-
lations,?® experimental phantom studies,”” animal studies,'*® biopsy samples
taken after imaging was performed,'?’ or more recently using Statistical
Parametric Mapping (SPM)-based analyses of functional brain images'*®
and receiver operating characteristic (ROC)-based analysis of clinical
data.'® It should be pointed out that the majority of attenuation correction
methods described in the literature have been applied primarily to computer-
simulated images and simplified experimental arrangements. Some solutions
to the problem of attenuation correction are less suitable for routine appli-
cations in patients than they are in phantom simulations. The results
reported in the literature concerning the quantitative accuracy of emission
tomography very much depend on multiple factors including the phantom
geometry, source size and distribution, noise characteristics, and the type of
scanner. Quantitative data can be achieved within 10% when simulating
clinically realistic activity distributions in anthropomorphic phantoms,
which would be adequate for the majority of clinical applications. However,
the accuracy obtained in phantom studies is unlikely to be reached in clinical
investigations and the true clinical feasibility of these methods has yet to be
fully investigated.

Considering the difficulties associated with transmission-based attenu-
ation correction and the limitations of current calculated attenuation cor-
rection, if they were readily available, “transmissionless” attenuation
correction might be the method of choice for the foreseeable future as a
second best approach in a busy clinical department and remains a focus of
many research groups. However, most manufacturers of nuclear medicine
instrumentation still rely on transmission-based attenuation correction
methods and have not show an interest in sophisticated transmissionless
methods for clinical use. Attractive methods using transmissionless tech-
niques to compensate for photon attenuation use either continuous'**'??
or discrete*®!?* consistency conditions. More importantly, the discrete con-
sistency conditions have proved to be useful for estimating the thresholds for
segmentation of the transmission image'** and regularization parameters for
attenuation map reconstruction.'*>

Some of these methods are considerably more computationally intensive
than conventional techniques®® and at present, the computational time
achieved with common computing facilities available in nuclear medicine
departments remains prohibitive, especially for large aperture cameras with
fine sampling. However, with the development of more powerful multiple-
processor parallel architectures and the potential for using these in
conjunction with intelligent algorithms, the challenges of implementing
transmissionless attenuation correction techniques may become more tract-
able. The clinical applicability of this approach remains to be demonstrated.
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Scatter Correction Strategies in
Emission Tomography

H. Zamr* anp K.F. KoraL'

1. The Problem of Scatter Detection
in Nuclear Imaging

Scatter in nuclear medicine imaging usual refers to Compton scattering in
which a gamma ray undergoes an interaction with matter (e.g. patient)
whereby it changes direction and looses energy. As the change in direction
approaches zero, the energy loss also approaches zero. Coherent scattering is
often neglected because of its small contribution to the total cross section for
the energy range of interest in nuclear medicine but is included in some
simulation studies.'? The scatter counts for which one wishes compensation
are those that fall within the photopeak window. In PET or in SPECT, if
there is only one emission, they are the ones that don’t loose so much energy
as to fall below the lower-energy cut-off of the window. In SPECT, if there
are multiple gamma-ray emission energies, a higher energy emission can
loose the amount of energy necessary to fall within the photopeak window
of a lower-energy emission and be an unwanted scatter event.

One must state, and keep in mind, where the scatter occurs when talking
about scatter correction. In general, the gamma ray can scatter in the
patient, in material outside the patient such as the table or the collimator,
in the detector material, or in the material behind the detector. Complicating
matters, one may have multiple scatters possibly in the same object, but
potentially in two or more places. In considering a scatter-compensation
method, one should be aware of which type(s) of scatter is (are) being
corrected.

The purpose of scatter correction is usually either improved accuracy of
activity quantification, contrast enhancement of the image, or both. The
purpose may affect the choice of technique. While it is well accepted by the

*PD Dr H. Zaidi, Geneva University Hospital, Division of Nuclear Medicine, CH-
1211 Geneva, Switzerland
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nuclear medicine community that the detection of Compton-scattered events
degrades image quality, a common question asked by most nuclear medicine
physicians is to what extent does scatter affect image interpretation and
clinical decision making? Does it reduce diagnostic accuracy? What is the
real added value of scatter correction in clinical nuclear imaging? While not
being able to answer the questions in detail, most imaging scientists seem to
be convinced that scatter correction is a vital component in producing high-
resolution, artefact-free, quantitative images.* In addition, some recent stud-
ies have quantified the effects of a particular scatter correction in a given
clinical situation. As an example, Kim e7 a/.* have shown that the transmis-
sion-dependent convolution subtraction scatter correction technique com-
bined with Ordered-Subsets Expectation-Maximization (ML-EM) SPECT
reconstruction results in ... significant changes in Kinetic parameters...”
and thus a 30%-35% increase in the quantitative estimate of the binding
potential for a dopamine D2 receptor ligand.

2. Modelling the Scatter Component

In Compton scattering, the photon interacts with an atomic electron and is
scattered through an angle 6 relative to its incoming direction. Only a fraction
of the initial photon energy is transferred to the electron. After Compton (or
incoherent) scattering, the scattered photon energy E; is given by:

E

m,c

(1 —cosB) (1)

where E is the energy of the incident photon, m is the rest mass energy of the
electron and c is the speed of light. Eq. (1) is derived on the assumption that
an elastic collision occurs between the photon and the electron, and that the
electron is initially free and at rest. It is evident from Eq. (1) that the
maximum energy transfer takes place when the photon is back-scattered
180° relative to its incoming direction and that the relative energy transfer
from the photon to the electron increases for increasing photon energies. The
expression (1) is plotted in Figure 1a for 511 keV photons and illustrate that
rather large angular deviations occur for a relatively small energy loss.

The transport of annihilation photons is described by the integro-
differential Boltzmann equation, which is the governing equation for a
given monoenergetic, isotropic source of photons and a scattering medium.
The differential part describes the generation, propagation and attenuation
of photons. The integral part describes the scattering of photons as an
integral over direction and energy. The Boltzmann equation describes the
evolution of the spatial and angular distribution of photons with respect to
time resulting from the generation, propagation, attenuation and scattering
of photons within the medium. This equation is difficult to solve because of
the scatter integral and the size of the problem when discretised. Many
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FIGURE 1. (a) The residual energy of a 511 keV photon after Compton scattering
through a given angle. The theoretical angular (b) and energy (c) distributions of
Compton single-scattered photons having an initial energy of 511 keV according to
the Klein-Nishina expression are also shown.

techniques deal with the scatter integral by discretely considering successive
orders of scattering.

The probability of Compton scattering is given by the Klein-Nishina
equation, which gives the differential scattering cross section do/d() as a
function of scattering angle 6:°

1 ]2[ a*(1 — cos6)>

do rg 14
[1+a(l —cos0)](1+cos?0)

—(1+c0s20)[

= _ 2
aQ 2 I+ a(l —cos6) )
where a = E/m,c? and r, the classical radius of the electron. This equation
was extensively used to build appropriate scatter models to correct for this
effect in nuclear imaging. Since all unscattered events in PET have 511 keV
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before scattering, « = 1 for the first scatter. Therefore, the differential
Compton scattering cross section relative to that for unscattered annihila-
tion photons is:

(1 —cos (71)2

1 20
+ cos” 6 + 2 — cos0)

(©)

do_rﬁ[ ! ]
dQ 2 (2 —cosh)’

The expression (3) gives the differential scattering probability. The integral
of this from 0° to any angle gives the integral cross section. The integral gives
information about what fraction of scattered photons will be scattered into a
cone with a given half-angle. The theoretical angular and energy distribu-
tions of Compton-scattered photons are plotted as a function of the scatter-
ing angle and energy in Figure 1b and Figure lc, respectively, for an initial
energy of 511 keV. It illustrates relatively that small angle scattering is more
likely than large angle scattering and that the most probable scattering angle
is located around 35°.

Scattered photons arise from the whole attenuating medium, including the
imaging table and the different gamma camera or PET tomograph compon-
ents. Several studies have reported that the scatter fraction—defined as the
ratio between the number of scattered photons and the total number of
photons (scattered and unscattered) detected—in PET represents from 35%
(brain scanning) to more than 50% (whole-body scanning) of the data
acquired in 3D mode, depending on the scanner geometry, the energy
window setting, the region to be explored and patient size. In addition to a
decrease in the image contrast, events may also appear in regions of the
image where there is no activity (e.g. outside the patient). The issue of scatter
detection, modelling and correction in emission tomography is addressed in
many publications.®'® The ideal research tool (gold standard) for scatter
modelling and evaluation of scatter correction techniques is the Monte Carlo
method.? Nevertheless, the complexity and computing requirements of
Monte Carlo simulation led to the development of analytic simulation
tools based on simplifying approximations to improve speed of operation.
For instance, Beekman'' developed a fast analytic simulator of tomographic
projection data taking into account attenuation, distance-dependent de-
tector response, and scatter based on an analytical point spread function
(PSF) model. It is well accepted that with current computer hardware
(unless parallel platforms are used), on-line Monte Carlo calculation is not
a viable solution in a clinical environment. However, it is an essential and
useful tool for studying the scatter component and developing appropriate
scatter models.

The current practice of developing theoretical scatter models involves four
different stages: characterisation, development, validation and evaluation.'?

(1) Characterisation. The scatter response function (srf) is first studied using
a variety of phantom geometries, source locations, scattering media
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shape, size and composition as well as imaging system-related param-
eters (e.g. detector energy resolution) to fully understand and character-
ize the parameters influencing its behaviour.

(11) Development. From knowledge and insight gained during the character-
ization step, an appropriate scatter model can be developed. This can be
a simple model limited to homogeneous attenuating media or an elab-
orated one taking into account more complex inhomogeneous media.

(ii1) Validation. The validation step is the crucial part and involves compar-
isons between either experimental measurements or Monte Carlo simu-
lation studies and predictions of the developed theoretical model. The
second approach is generally given preference for practical reasons
owing to ease of modelling and capability of simulations to analyse
separately scattered and unscattered components. Again this could be
performed using simple phantom geometries (point and line sources in a
uniform cylinder) or more complicated anthropomorphic phantoms to
mimic clinical situations.

(iv) Evaluation. Obviously, evaluation of the theoretical scatter model with
respect to the intended use, i.e. scatter correction, constitutes the last
step of the whole process. The intrinsic performance of the scatter
compensation algorithm based on the developed model as well as its
effectiveness in comparison to existing methods is generally recom-
mended.

Accurate simulation of scatter in SPECT/PET projection data is computa-
tionally extremely demanding for activity distributions in non-uniform dense
media. These methods require information about the attenuation map of the
patient. A complicating factor is that the scatter response is different for every
point in the object to be imaged. Many investigators used Monte Carlo
techniques to study the scatter component or srf.'>'® However, even with
the use of variance reduction techniques, these simulations require large
amounts of computer time, and the simulation of the srf for each patient is
impractical. Various methods for tackling this problem have been proposed.

One class of methods uses Monte Carlo simulations'*?° to compute the
transition matrix, which represents the mapping from the activity distribution
onto the projections. Monte Carlo simulation can readily handle complex
activity distributions and non-uniform media. Unfortunately, hundreds of
Gbytes up to several Tbytes of memory are required to store the complete non-
sparse transition matrix when the fully 3D Monte Carlo matrix approach is
used, and without approximations it can take several weeks to generate the
full matrix on a state-of-the-art workstation. In addition, the procedure has to
be repeated for each patient. Analytical scatter models, based on integration
of the Klein—Nishina (K-N) equation,>'">* have practical disadvantages,
which are similar to those of Monte Carlo-based methods.*2°

Another class of methods, which includes anatomy-dependent scatter in
the reconstruction, first calculates and stores in tables the scatter responses
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of point sources behind slabs for a range of thicknesses, and then tunes these
responses to various object shapes with uniform density.?” This method is
referred to as slab-derived scatter estimation (SDSE). A table occupying
only a few Mbytes of memory is sufficient to represent this scatter model for
fully 3D SPECT reconstruction.”® A fully 3D reconstruction of a *™Tc
cardiac study based on SDSE can be performed in only a few minutes on a
state-of-the-art single processor workstation. A disadvantage of SDSE com-
pared with matrices generated by Monte Carlo simulation or Klein—Nishina
integration is that it cannot accurately include the effects of the non-uniform
attenuation map of the emitting object. So far, only a few rough adaptations
have been proposed to improve the accuracy of this method®**® or other
similar approaches®' in non-uniform objects. More recently, Beekman er al.*>
reported an accurate method for transforming the response of a distribution
in a uniform object into the response of the same distribution in a non-
uniform object. However, the time needed to calculate correction maps for
transforming a response from uniform to non-uniform objects may be too
long for routine clinical implementation in iterative reconstruction-based
scatter correction, especially when the correction maps are calculated for
all projection angles and each iteration anew. The use of only one order of
scatter was sufficient for an accurate calculation of the correction factors
needed to transform the scatter response. Since the computation time typic-
ally increases linearly with the number of scatter orders, it still remains much
shorter than with straightforward Monte Carlo simulation.

Figure 2 shows Monte Carlo simulated scatter distribution functions for
a line source located at the centre of the FOV and displaced 5 cm radially
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FIGURE 2. Illustration of the scatter response functions simulated using Monte Carlo
calculations when the line source is located at the centre of the FOV (left) and
displaced 5 cm radially (right). The projections for the line source at the centre are
symmetrical and were summed over all projection angles.
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off-centre for the ECAT 953B multi-ring PET scanner (CTI PET systems,
Knoxville, TN, USA) using the Eidolon simulation package.*®> The projec-
tions for the line source at the centre are symmetrical and were summed over
all projection angles. This is not the case when the source is moved off-
centre. For this reason, a profile of a single angular view was used. It can be
seen that the projections of a line source placed in a uniform water-filled
cylinder are dominated in the wings by the object scatter and in the peak by
the unscattered photons. This discussion remains valid when the line source
is shifted out of the symmetry centre. The amplitude of the short side of the
projection compared to that of the symmetrical case is increased, since the
path length of the photons through the phantom becomes shorter, whereas
the amplitude of the long side is decreased, due to a longer pathway through
the attenuating medium.

3. Scatter Correction Techniques in Planar Imaging

Scatter correction procedures used in planar imaging will be covered within
that chapter. However, any scatter correction employed for SPECT that
corrects each projection image separately employs a method that can be used
in planar imaging, and vice versa. This will generally not be pointed out
further in this book. As an example, in 1982 for planar imaging with '''In,
Van Reenen et al.** discussed the idea of employing two energy windows—
photopeak and scatter—and a constant, k, to relate the scatter-count com-
ponent of the total count in the photopeak window to the total count in the
scatter window. In 1984, Jaszczak et al.>® popularized this same dual-energy-
window approach for SPECT imaging with *™Tc.

4. Scatter Correction Techniques in SPECT

Koral reviewed SPECT scatter correction methods that employed Monte-
Carlo simulation, or used it to carry out testing of the correction method, as of
1998.° Some older correction techniques are covered in that review which
won’t be covered at all here, or will be covered in less detail than there. Scatter
correction methods were divided into two broad categories: those without
explicit subtraction, and those employing subtraction. That division will not
be followed here, but methods will instead be divided into those that employ
implicit correction and those that use explicit correction. Implicit correction
procedures are those which require nothing beyond satisfying some criterion.
Explicit correction methods employ a procedure designed to compensate for
scattering. The compensation can be by putting the scatter counts back into
the voxel from which the gamma originated, by subtracting the scatter counts
and then reconstructing, or by reconstructing unscattered counts in such a
way that the existence of scatter counts is accounted for.>
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4.1 Implicit Correction Methods

One implicit scatter correction involved narrowing the photopeak energy
window by moving the lower-energy cut-off energy up so it became less and
less likely that scattered gamma rays were accepted. For *™Tc, this method
worked better and better as the window was narrowed, but the number of
unscattered counts being accepted was also being reduced.*® So this ap-
proach is usually not employed because one hardly ever is willing to sacrifice
the “good” counts. Another implicit method simply required system activity
calibration to be based on an object with scattering properties that were
identical to, or similar to, the case of interest. An example was quantifying
the activity of a tumour using a phantom-based camera-collimator calibra-
tion that consisted of a known-activity sphere of about the tumour’s size
placed within a surround that mimicked the patient.>” The potential advan-
tage was that there wasn’t an increase in the noise of the estimate, as there is
with explicit scatter correction. The obvious drawback was that it was
impractical to simulate each patient exactly. Nevertheless, such an implicit
correction based on imaging a known-activity sphere situated within a
cylindrical phantom was employed for evaluation of tumour activity in a
subset of previously-untreated patients undergoing tositumomab (formerly
anti-B1, and also known as Bexxar®) therapy.*®*° A third implicit correc-
tion method involved using lower values for the narrow-beam attenuation
coefficient in attenuation correction.*® This ad hoc method was practical,
but seems obviously to have little chance of producing results without bias in
particular cases.

4.2 Explicit Correction Methods

Buvat er al.® published a thorough review of explicit scatter correction
methods as of 1994. Narita et al.*' provided a good, brief evaluation of
possible methods as of 1996 in their introduction to a paper comparing two
methods of SPECT scatter correction. They wrote:

“The most commonly employed scatter correction techniques, due to their ease of
implementation, are the convolution subtraction techniques* and dual- or triple-
energy window (TEW) techniques.>>*** These techniques have recently been evalu-
ated and compared using Monte Carlo simulations. Of the techniques investigated,
the TEW technique (with some modification) achieved reasonable quantitative ac-
curacy, does not require careful object and instrument-dependent calibration and
does not assume a fixed scatter fraction (k).45’46 However, due to the small windows
used in this technique, noise can be substantially increased in the scatter corrected
data. Improvements in accuracy can be achieved by regional spectral analysis,*® but
at the expense of substantially increased complexity. Also there may be difficulty in
collecting pixel by pixel spectra on existing gamma cameras.”

The last-mentioned difficulty with multi-window (spectral-analytic)
methods restricts some of these methods to certain cameras, or cameras
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with experimental acquisition software, or to list-mode acquisition. Below,
we comment on all SPECT methods by type, but spend more time on newer
techniques.

4.2.1 Approaches based on Convolution or Deconvolution

The convolution or deconvolution approaches used in SPECT are older,
and, especially in their simplest forms, have fallen into disfavour compared
to other methods, and so a minimum amount of time will be spent discussing
them here. They were first introduced in 1984, but in a one-dimensional form
that required that the object did not vary in the axial direction.** Later, two-
dimensional convolution methods took several forms but all used a convo-
lution and subtraction.'**”*® They often suffered from the fact that the
distribution of all counts was used to approximate the distribution of
unscattered counts, although, as described under PET techniques, an itera-
tive approach might help. To correct for the deficiency without using iter-
ation, Floyd et al.*’ presented an approach based on true deconvolution in
frequency space. In their formalism, the scatter was estimated by a convo-
lution of the non-scatter projection with an exponential scatter function.
Solution required inverse Fourier Transformation. This method assumed
that the scatter distribution was independent of source location, which is not
the case as the source nears the edge of the object, as has been shown in
Figure 2. The entire category of scatter correction by convolution or decon-
volution will be covered again for PET (see section 5.2).

4.2.2 Dual-Energy-Window (DEW) Approach

One of the early SPECT scatter subtraction techniques, the dual-energy-
window approach, assumed that a window immediately below the photo-
peak window could monitor the number of scatter counts corrupting the
total count within the photopeak window.* In this study, the k value
obtained for ®™Tc from experimental measurement was 0.5 and from simu-
lation 0.57. The lower-window count could either be multiplied by k& and
then subtracted from that within the photopeak window, pixel by pixel, or
the lower-window counts projections could be reconstructed into a scatter
image, which would be multiplied by k£ and then subtracted from the images
reconstructed from the total count in the photopeak window. Unfortunately
for the method, it was shown by Monte Carlo simulation that the monitor-
ing is deficient in at least some cases.**>* As an example of the deficiency in a
projection image, if one looks at ™ Tc counts within a circular region of
interest corresponding to an on-axis sphere located within a circular cylin-
der, the number in the lower-energy window when the cylindrical back-
ground activity is zero and the sphere activity non-zero is only about 2/3
the number when the cylindrical background activity is non-zero and the
sphere activity zero. This is the case when the scatter count total within
the 20% photopeak window is the same.’® One possible solution to the
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deficiency of the method involved allowing the scatter multiplier (alias the
“k’ factor) to vary with the assessed non-target background. This was
successful for ™ Tc and '**I when the iterative method was employed for
the restricted goal of quantification of focal activity rather than the activity
distribution throughout the image.>!

The method, basically as originally introduced, was later applied to
SPECT by other groups. Green e al.”® increased the size of the scatter-
monitoring window to + 18% and then used a k value of 0.54. Using the
resultant scatter correction, they obtained good lesion-activity estimates in a
phantom over a range of background activities. They then compared scatter-
corrected SPECT estimated activities for the liver and spleen of twelve
patients receiving 2.78 GBq (75 mCi) of an antibody to CEA to those
from planar imaging without scatter correction. Koral et al. determined
that under otherwise identical conditions, the k value decreased with
gamma energy. They proceeded to apply the k value for '*'I in their quan-
tification technique (0.75) to accomplish scatter correction for tumour ac-
tivity quantification for three relapsed lymphoma patients undergoing
31T labelled MBI monoclonal antibody therapy and three similar patients
undergoing tositumomab therapy.>?

A variation on the dual-energy-window method was a method called the
dual-photopeak-window method in which the normal photopeak window
was split into two halves.** The similarity to the first method lay in trying to
estimate scatter counts from looking at only two count values (in the new
method, one for each half of the window). The fall of this method in its most
basic form was its need for the location of the photopeak window to be
invariant with respect to spatial location in the projection image, and with
respect to tomographic angle. This was demonstrated to not be the case for
at least some cameras.>*>°

13lI

4.2.3 Multiple-Energy-Window (Spectral-Analytic) Approaches

The idea of using multiple energy windows was introduced in 1988.°° The
multiple-energy-window methods assume that given enough windows above
and below the photopeak window, one can estimate either the complete
energy spectrum of the scattered counts, or at least the integral of that
spectrum from the lower-energy cut-off of the photopeak window to the
upper-energy cut-off of that window. These methods input more informa-
tion to potentially get more accurate answers. Subtraction of the scattered
counts, pixel by pixel, is still the goal.

The triple-energy-window method is the simplest approach.*® It uses a
window immediately above the photopeak and one immediately below the
photopeak. It further assumes that the total scatter counts is accurately
approximated when a straight line is used for the shape of the scatter
spectrum (Note that the true shape may be different without loss of accuracy
as long as the integral from lower-energy cut-off to upper-energy cut-off is
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the same for both functions.) This method has the advantage of simplicity. It
can suffer from excessive noise if the two monitoring windows are too
narrow. In the case of *™Tc, the method degenerates into a version of the
dual energy window approach, because the upper monitor window is usually
assumed to have zero counts.*

In most of the other multiple-energy-window approaches, a given range of
the energy spectrum for the detected gamma rays is divided into equal width
sub-windows. In one of these methods, a scatter-free spectrum is assumed to
be known from measurements. In this method, the spectrum of all counts
obtained for a given pixel is assumed to be comprised of a sum of two terms.
The first term is the scatter-free spectrum times a constant. The second term
is a scatter spectrum which is assumed to have a particular functional form,
with parameters to be determined. The scatter estimation problem then
becomes fitting the measured data with the two component spectrum.”®>’
As with the dual-photopeak-window method, it would be handy in this
method for the scatter-free spectrum to be invariant with respect to spatial
location in the projection image and with respect to tomographic angle.
However, with this method it is obvious that, in principle, the scatter-free
spectrum can equally well be measured as a function of those parameters.

In the later, more-refined version of the spectral-fitting method,>” a spatial
regularization allows for each pixel in a projection image to have its scatter
component estimated while taking into account the estimate for adjacent
pixels. A characteristic of the method is that, due to the need for low-noise
spectra, pixels may need to be grouped before analysis.

In another one of the multiple-window methods, weights for each energy
window are determined from an optimisation procedure based on a specific
task.’®> In the case of brain imaging with *™Tc, the task may be both
accurate lesion and non-lesion activity concentration. The weights, which
have positive and negative values and which tend to vary pseudo-sinusoidaly
over the energy range, are then combined with the measured spectrum to
produce the estimate of primary-count total.”® It seems clear that the main
assumption here is that the same set of weights are optimum, or near
optimum, for the case of interest as they were for the “training’ cases.

Another multi-window approach that uses training in an even more
definitive way is scatter estimation using artificial neural networks. These
were introduced for nuclear medicine scatter correction by means of a
Monte Carlo simulation study in 1993.°° Quantification accuracy for
PmTc activity of 5% was achieved. Later, the neural networks were
employed for scatter correction or for scatter and attenuation correction.®!
The radionuclide was again **™Tc but both Monte Carlo simulation and
experimental data were employed. Recently, a neural network approach was
employed to estimate the photopeak count total for each of the three major
emissions of *’Ga, using Monte-Carlo simulation.®? In this study, the net-
work was composed of a 37-channel input layer, an 18-node hidden layer,
and a three-channel output layer. Each node was connected to every node of
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the succeeding layer. The effect of each input was regulated through a
specific weight. The values for the weights were established during a ““learn-
ing” phase. The 37 input channels accepted count totals from sub-windows
of the energy spectrum that were of unequal width and covered the energy
range from 60 to 370 keV. The output channels yielded the ratio of primary
to total counts for each of the three major emissions of ®’Ga. The analysis
was carried out for a given pixel in a projection independently from the
result for other pixels.

The entire learning set was divided into two components. One component
was used to set the weights through an error-back-projection algorithm. The
other component was used ““... for testing global convergence.” The exact
meaning of global convergence and the way that testing was done are
unclear. The method yielded a bias for all structures that was much im-
proved compared to that with standard windows (19% compared to 85%).
The question remaining is again how well a network trained with a given set
of spectra can handle spectra from a wide variety of cases. A recent study has
compared the neural network method, using separate networks for each of
the three gamma emissions of ®’Ga, to the window optimisation method for
the task of tumour detection and activity estimation.”” A very brief summary
is that they both performed well.

4.2.4 Method Requiring a Transmission Measurement

Recently, a method using a transmission measurement to provide additional,
hopefully-pertinent information about the scatter in a particular imaging
situation was proposed. It was introduced by Meikle er al.* in 1994 and is
called the transmission-dependent convolution subtraction (TDCS) method.
It uses a bigger scatter correction in regions of the projection image where
the transmission through the patient is small. It was developed for **™Tc and
20171 and tested for heart imaging.**** It draws upon earlier approaches, and
is basically an iterative approach although sometimes only one iteration is
used. It also takes the geometric mean of conjugate views, relies on a
convolution, uses a ratio of scattered events divided by total events, kg7,
and employs a depth-dependent build-up factor, B(d). The ksr and the B(d)
are both variable across the two-dimensional projection image. In a version
that employs more than one iteration, kg7 seems to be used in place of the
ratio of scatter to primary events, kgp. The transmission is defined for a
narrow-beam attenuation coefficient, although its broad-beam experimental
measurement may only approximate this condition. The iteration is designed
to correct for the fact that the observed projection image is used to approxi-
mate the true scatter-free image. (It is the scatter-free image that is wanted to
carry out the scatter estimation, but it is initially not available).

Narita er al.*' made several small changes to the original method. First of
all, they did use 10 iterations whereas only 1 was originally employed.
Secondly, they used a scatter function that was the sum of an exponential
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plus a Gaussian, whereas only an exponential was originally employed.
Lastly, they averaged the dependence of kg7 on transmission factor from
two quite different activity distributions, one of which is similar to the single
dependence originally employed. They compared results from their version
of TDCS to the results from TEW scatter correction and concluded that
their method produced a much smoother scatter estimate, and that the
resulting signal-to-noise was better than with TEW correction.*! The
smoothness of the estimate is shown in Figure 3.

The original method was also recently applied to '*’I brain imaging for a
phantom and for six patients.® In the research, the original equation for kg7
as a function of transmission was modified to include a constant additive
term to account for septal penetration due to gamma rays with energies
greater than 500 keV. The authors found that TDCS provided “... an
acceptable accuracy...” in the estimation of the activity of the striatum
and of the occipital-lobe background. Moreover, parameter values averaged
over six collimators from three different SPECT cameras yielded ...
minimal differences...” among the collimators so new users might not
have to calibrate their collimator-camera system. Simple Gaussian model-
ling of the probability of photon scattering through a given angle incorpor-
ated within the framework of a 2D projector/backprojector pair of a
ML-EM reconstruction algorithm® was also reported.

No Scatter
correction
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Scatter

TEW TDCSmono  TDCSgayss

FIGURE 3. Images reconstructed under various conditions for a slice through a chest
phantom. The top row shows reconstructions without scatter correction, but with
attenuation correction. The left image of the pair used narrow beam u values and the
right image broad-beam w values. The middle row compares reconstructions of the
primary counts at the left with reconstructions of the complete projections employing
one of three scatter-compensation methods. Either the triple-energy window method
(TEW) or the transmission-dependent convolution subtraction method (TDCS) is
employed. Subscript “mono” refers to the use of a mono-exponential in the model
and ‘“‘gauss” to a Gaussian function. In the third row, reconstruction of only scatter
counts is shown at the left, while the last three images shows the estimated scatter
image from the three methods. Most striking is the smoothness of the scatter estimate
with TDCS. (Reprinted from ref.*' with permission).
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4.2.5 Approaches based on Iterative Reconstruction

The original iterative method for SPECT scatter correction was called inverse
Monte Carlo when first introduced in 1986.'° As indicated in the comments in
section 1, this method requires large computer storage capacity. So much so,
that when the first testing of it was carried out with Maximum-Likelihod
Expectation-Maximization (ML-EM) reconstruction in 1991,%” the authors
employed phantoms in which the activity did not vary with distance along the
axis of rotation.®® Improvements in computer speed and recent advances to
accelerate reconstruction® have led to renewed interest in algorithms which
incorporate scatter as part of the emission model.?° Iterative reconstruction-
based scatter compensation has received considerable attention during the
last decade. Some of these studies?***7? indicate that when scatter is modelled
in iterative reconstruction, higher contrast and lower noise can be obtained
than when scatter subtraction is used.

As discussed in chapter 4 of this book, the normal approach for implemen-
tation of a scatter model is to incorporate the scatter estimation directly in the
transition matrix (a;) of the maximum-likelihood expectation-maximization
(ML-EM) or its accelerated version, the ordered-subsets expectation-
maximization (OS-EM) equation, in which case it becomes considerably
larger than for the case where only attenuation and geometric factors are
included. Because of the larger transition matrix, computation is slow (scatter
is essentially recalculated for each iteration). Efficiency has been improved by
utilising a dual matrix approach’’ in which scatter is incorporated in the
forward projection step only. In this case, the projector includes attenuation,
detector blurring and scatter, while the backprojector only includes attenu-
ation and detector blurring. One of the requirements of this method is com-
puting the scatter response function at each point in the attenuator for all
projection views and each iteration anew. To avoid slow computation, the
correction factors could be calculated only once or alternatively a few times
only, given that the calculated scatter component does not change much after
having carried out the first few iterations of accelerated statistical reconstruc-
tion.*? Thus, the scatter estimate can be kept either as a constant term in all or
only in later iterations instead of modifying the scatter estimate in each
iteration.”*”* In this way, a constant pre-calculated (using one of the methods
described above) scatter component can be introduced in the denominator,
i.e. the forward projection step of the ML-EM equation (see Chapter 4).
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where () is the scatter estimated on all projections.

An efficient algorithm for scatter estimation was recently described in
which the spatial scatter distribution is implemented as a spatially invariant
convolution for points of constant depth in tissue.”? The scatter estimate is
weighted by a space-dependent build-up factor based on the measured
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attenuation in the body. Consequently, (5) can be estimated once, based on
an estimate of the activity distribution obtained from the conventional ML-
EM equation with the final scatter-corrected result obtained by proceeding
with Eq. (4). This approach was validated by Monte Carlo simulation
studies of a realistic thorax phantom. This approach has been recently
extended by Beekman er al.?® by implementing a computationally efficient
approach to preserve the main advantages of statistical reconstruction while
achieving a high accuracy through modelling the scatter component in the
projector using Monte Carlo-based calculation of low-noise scatter projec-
tions of extended distributions, thus, completely avoiding the need for
massive transition matrix storage. Figure 4 illustrates the advantages of

FIGURE 4. From top to bottom: representative slice of cylindrical phantom used in
simulation studies showing activity distribution with six small lesions (left), and
nonuniform attenuation distribution (right). The lesions provide the opportunity to
assess contrast with different approaches. Reconstructed images and horizontal
profiles using ten iterations of dual matrix ordered subset without scatter correction
(left), and with scatter correction integrated in the projector using an approximate
scatter PSF model (centre), and using Monte Carlo simulation combined with
convolution-based forced detection (MCS-CFD) as a reprojector. The scatter-
induced artefacts in and around the high-density cylinder are removed with the latter.
(Reprinted from ref.>® © 2002 IEEE, with permission).
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this approach compared to simple PSF-based scatter modelling in the pro-
jector. Whether the accuracy of modelling achieved in simulated phantoms
could be attained in clinical studies still needs to be shown to guarantee
applicability of the approach in a clinical setting.

5. Scatter Correction Techniques in PET

Over the last two decades, many methods have been developed for the
purpose of reducing the resultant degradation of image contrast and loss
of quantitative accuracy in PET due to contribution from scattered events.
The main difference among the correction methods is the way in which the
scatter component in the selected energy window is estimated. The most
reliable method to determine the actual amount of scatter in the image is
physical modelling of the scatter process to resolve the observed energy
spectrum into its unscattered and scattered components. By observing how
accurately a scatter correction algorithm estimates the amount and distribu-
tion of scatter under conditions where it can be accurately measured or
otherwise independently determined, it is possible to optimise scatter cor-
rection techniques. A number of scatter correction algorithms for PET have
been proposed in the literature. They fall into four broad categories™'%"*:

e Energy window-based approaches,

e Convolution/deconvolution-based approaches,

e Approaches based on direct estimation of scatter distribution.

e Statistical reconstruction-based scatter compensation approaches.

Different versions of the above methods have been successfully implemen-
ted for 3D PET and are briefly discussed below.

5.1 Energy Window-based Approaches

A DEW method was originally developed for SPECT?’ as mentioned above.
The developments of 3D acquisition mode and improvements in the detector
energy resolution in PET have allowed the implementation of scatter cor-
rection based on the analysis of energy spectra. Several groups investigated
the potential of acquiring data in two,”>’® three’’ and multiple’® energy
windows to develop corrections for scattering in 3D PET.

Two variants of dual-energy window techniques have been proposed:
methods estimating the scatter component in the photopeak window from
the events recorded in a lower energy window placed just below the photo-
peak and methods estimating the unscattered component in the photopeak
window from the unscattered counts recorded in a high energy window in
the upper portion of the photopeak. The dual energy window (DEW)
technique’ belongs to the former while the estimation of trues method
(ETM)’® belongs to the latter.
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In the practical implementation of the DEW method on the ECAT 953B
scanner, detected coincidence events are assigned to the upper energy win-
dow when both photons deposit energy between 380 keV and 850 keV, or to
the lower energy window when one or both photons deposit within 200 keV
and 380 keV.”® Both energy windows are assumed to contain object scat-
tered and unscattered events. Based on data collected in the two energy
windows and scaling parameters derived from measurements of the ratios
of counts from line sources due to unscattered (measurements in air) and
scattered events (measurements in a head-sized phantom), two equations
containing four unknown parameters are solved to estimate the unscattered
component in the acquisition energy window.

The estimation of trues method’® consists in acquiring data simultan-
eously in two energy windows: a high window with a lower energy threshold
higher than 511 keV and a regular acquisition window including the higher
window. Therefore, both windows have the same upper energy threshold
(UET) value. The hypothesis of this method is that the number of unscat-
tered coincidences recorded in a given energy range depends on the energy
settings of the window and the angle of incidence of the annihilation photons
on the detector face. Hence, the unscattered component in the high-energy
window can be related to the unscattered coincidences in the standard wider
window through a function of the energy settings, the radial position in the
sinogram for a given line of response (LOR) and the axial opening for a
given radial position. This calibrating function is in principle independent of
the source distribution. The unscattered component in the wide energy
window can thus be calculated and subsequently subtracted from the data
recorded in the regular window to produce a scattered sinogram. The
unscattered component in the regular window is then obtained by smoothing
that sinogram and subtracting it from the data recorded in the standard
window.

The triple energy window method”” was suggested as an extension of the
DEW technique. Coincidence events are recorded in three windows: two
overlapping windows having the same UET settings (450 keV) located below
the photopeak window and a regular window centred on the photopeak and
adjacent to the low windows. A calibrating function that accounts for the
distribution of scattered coincidences at low energies is obtained by calcu-
lating the ratio of the coincidence events recorded in both low energy
windows for the scanned object and for a homogeneous uniform cylinder.
The scatter component in the standard acquisition window is then estimated
from the calibrating function and the narrower low energy window.

The multispectral method is based on the acquisition of data in a very
large number (typically 256) of windows of the same energy width (16x16
energy values for the two coincident photons). The spatial distribution of
scattered and unscattered components in each window can be adjusted using
simple mono-exponential functions.”® The method presents the advantage of
increased sensitivity due to smaller rejection of detected coincidence events
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(~10%) since the position of the scattered photons in the detectors can be
restored. The statistical noise in each window and the necessity to accom-
modate the acquisition hardware with the required electronic boards to
allow acquisition in multiple windows remain the major obstacles for imple-
mentation of the method on commercial PET scanners.

5.2 Convolution-Deconvolution based Approaches

Techniques based on convolution or deconvolution estimate the distribution
of scatter from the standard photopeak data. The scatter fraction (SF) which
gives an indication about the expected amount of scatter and the scatter
response function (srf) which defines the spatial distribution of scatter in
the photopeak data are usually the two parameters required for
estimation of scatter component and need to be determined a priori. A pure
additive model of the imaging system is generally assumed where the
recorded data are composed of an unscattered and a scattered component
plus a noise term due to statistical fluctuations, and can be written in the
following form:

Po=DPutDPs+M 5

where p, are the observed data, p, and p; are the unscattered and scattered
components respectively, and 7 is the noise term. The problem to be ad-
dressed consists in estimating the unscattered distribution (p,) from the
measured data (p,) contaminated by scatter, or alternatively estimate the
scattered component (py) and then derive p,. The proposed methods differ in
the way the scatter function is defined.

The convolution-subtraction (CVS) technique developed for 3D PET”
operates directly on projection data (pre-reconstruction correction) and is
based on the assumption that the convolution of the source distribution with
the srf gives an estimate of the scatter component. Two assumptions have
been made: the stationary and nonstationary assumptions. In the stationary
assumption, the scatter is assumed to be analytically defined and not depen-
dent on the object, activity distribution, etc. The nonstationary assumption
overcomes this problem by taking into consideration the dependence of
scatter upon source locations, object size, detector angle, etc. Using the
stationary assumption, the scatter component can be related to the unscat-
tered component by the convolution relation:

Ds = Pu @ sif (6)

where ® denotes the convolution operator. The scatter estimate (py) is then
subtracted from the measured data (p,) after scaling by a appropriate scatter
fraction (SF). The process can be repeated iteratively with each step using
the previous estimate of the scatter-free distribution as input to the scatter
estimation.”” The observed data are used as a first approximation to the
unscattered distribution (p,) and the process is repeated iteratively with each
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step using the previous estimate of the scatter-free distribution as input to
the scatter estimation:

P =p, — SF(pI V@ srf) (7

where the “’ indicates that the parameter is a rough estimate of the scatter
and n is the iteration number. The rationale is that with each iteration, the
input to the scatter estimation step more closely approximates p,. It was also
suggested to use a damping factor to prevent oscillation in the result.

The convolution-subtraction approach can also be applied to recon-
structed images (post-reconstruction). In this case, the scatter estimates are
reconstructed and then subtracted from the non-corrected reconstructed
images of the acquired data.®

There is a continuing interest in developing non-stationary convolution-
subtraction scatter correction techniques, which overcome the inherent limi-
tations of the stationary approach by taking into consideration the depend-
ence of scatter upon source locations, object size, detector angle, etc.
Different methods of non-stationary deconvolution have been proposed in
the literature for SPECT'* and 2D PET imaging;®' the extension of such
models for 3D PET should in principle be straightforward.

Scattered photons degrade the point-spread function (PSF) of the PET
camera; the long tails of the PSF are mainly due to scatter. Thus, deconvo-
lution methods, which correct the images for the PSF will also, implicitly
correct for scatter. In general, the PSF will act as a low-pass filter. Decon-
volution will restore the high-frequency contents of the signal emitted by the
object, at least as long as they have not yet been completely removed by PSF.
Not only the high frequencies in the signal are restored, but also the high-
frequency noise is amplified, which in turn can degrade the image again.
Therefore, the restoration filter is often combined with a low-pass filter that
balances that image improvement by deconvolution and its degradation due
to amplification of noise. Well-known examples of these filters are the
Wiener and Metz filters. Links e al.%* studied the use of two-dimensional
Fourier filtering to simultaneously increase quantitative recovery and reduce
noise. The filter is based on the inversion of the scanner’s measured transfer
function, coupled with high-frequency roll-off. In phantom studies, they
found improvements in both “hot” and “cold” sphere quantification. Four-
ier-based image restoration filtering is thus capable of improving both
accuracy and precision in PET.

The curve fitting approach is based on the hypothesis that detected events
assigned to LORs outside of the source object must have scattered and that
the scatter distribution corresponds to a low-frequency component that is
relatively insensitive to the source distribution. Estimation of the unscattered
component can thus be performed in three successive steps: (i) fitting the
activity outside the source object with an analytical function (e.g. Gaussian),
(i1) interpolating the fit inside the object, and (iii) subtracting the scatter
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component from the observed data.®® The accuracy of this class of scatter
correction methods depends on how accurately the scatter component can be
estimated. The appropriate choice of a set of fitting parameters, which
should be optimised for each PET scanner and for different radioactivity
and attenuation coefficients distributions, is the dominant factor.

5.3  Approaches based on Direct Calculation
of Scatter Distribution

This class of methods assume that the distribution of scattered events can be
estimated accurately from the information contained in the emission and
transmission data. For the majority of detected scattered events, only one of
the two annihilation photons undergoes a single Compton interaction. The
rationale of most of these methods is that the overall scatter distribution can
be computed from the single scatter distribution (~75% of detected scattered
events) and that this latter can be scaled to model the distribution of
multiple-scattered events.®* The multiple scatter distribution is generally
modelled as an integral transformation of the single scatter distribution.
The same approach can also be applied to scatter estimation in transmission
imaging.®>* Monte Carlo simulation studies of various phantom geometries
demonstrated the accuracy of this method for fully 3D PET imaging by
direct comparison of analytic calculations with Monte Carlo estimates.'”
The model-based scatter correction method developed by Ollinger®* uses
a transmission scan, an emission scan, the physics of Compton scatter, and a
mathematical model of the scanner in a forward calculation of the number of
events for which one photon has undergone a single Compton interaction.
Parameterization of a fast implementation of this algorithm has been re-
cently reported.?” A single-scatter simulation technique for scatter correc-
tion where the mean scatter contribution to the net true coincidence data is
estimated by simulating radiation transport through the object was also
suggested and validated using human and chest phantom studies.”® Wat-
son®® reported on a new numerical implementation of the single-scatter
simulation algorithm, which is faster than the previous implementation,
currently requiring less than 30 sec execution time per bed position for an
adult thorax. The normalization problem was solved and multiple scatter
partially taken into account. However, the above methods do not correct for
scatter from outside the field-of-view. This effect can be directly taken into
account by acquiring short, auxiliary scans adjacent to the axial volume
being investigated. This implicitly assumes that the distribution of scatter
from outside the FOV has the same shape as that of scatter from inside the
FOV. These extra data are naturally available in whole-body imaging.
However, this method is impractical for isotopes with a short half-life
or rapid uptake relative to the scanning interval. It has also been shown
that the attenuation map to be used as input for estimation of the scatter
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distributions can be derived from magnetic resonance images for brain PET
scanning.® Contribution of scatter from outside the FOV remains a chal-
lenging issue that needs to be addressed carefully in whole-body imaging
especially with large axial FOV 3D PET scanners.

The true scatter component (being an experimentally impossible measure-
ment) can be accurately estimated using rigorous Monte Carlo simulations.
Given a known radioactive source distribution and density of the object,
Monte Carlo techniques allow detected events to be classified into unscat-
tered and scattered events and the scatter component to be determined in an
independent way. However, the source and scattering geometry is generally
not known in clinical studies. In their Monte Carlo-based scatter correction
(MCBSC) method, Levin er al.** used filtered-backprojection reconstruc-
tions to estimate the true source distribution. This input image is then
treated as a 3D source intensity distribution for a photon-tracking simula-
tion. The number of counts in each pixel of the image is assumed to represent
the isotope concentration at that location. The image volume planes are then
stacked and placed at the desired position in the simulated scanner geometry
assuming a common axis. The program then follows the history of each
photon and its interactions in the scattering medium and traces escaping
photons in the block detectors in a simulated 3D PET acquisition. The
distributions of scattered and total events are calculated and sorted into
their respective sinograms. The scatter component is equal to the difference
between measured data and the scaled and smoothed scatter component. To
reduce the calculation time, coarser sampling of the image volume over
regions equivalent to 4x4 pixels was adopted assuming that the Compton
scatter distribution varies slowly over the object. For obvious reasons, the
implemented method does not correct for scatter from outside the field-of-
view and further refinements of the technique were required to take this
effect into account. A modified version of this approach was therefore
suggested.”® The data sets were pre-corrected for scatter and the recon-
structed images are then used as input to the Monte Carlo simulator.*
This approach seems reasonable for a more accurate estimation of the true
source distribution. Faster implementations of similar approaches have also
been described elsewhere.?

5.4 [Iterative Reconstruction-based Scatter
Correction Approaches

Some scatter compensation methods incorporate scatter in the transition
matrix or point-spread function during iterative reconstruction. It has been
shown that this can lead to high quantitative accuracy'®?’ and improved
signal-to-noise ratio in the reconstructed images.”®*® Development of scatter
models that can be incorporated in statistical reconstruction such as OSEM
for PET continues to be appealing; however, implementation must be
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efficient to be clinically applicable. It is worthwhile to point out that, with
one exception’’ most of the research performed in this field is related to
SPECT imaging as described in section 4.2.5. The preliminary results
obtained using a fast implementation of the single-scatter simulation algo-
rithm® were not satisfactory spurring further research to incorporate a more
accurate model taking into account multiple scatter to yield significant
improvements compared to conventional subtraction-based approaches.
Further development and validation of this class of algorithms in whole-
body 3D PET are still required.

More recently, a new technique for scatter correction in 3D PET called
statistical reconstruction-based scatter correction was proposed.'® The
method is based on two hypotheses: (i) the scatter distribution consists
mainly of a low-frequency component in the image, (ii) the low-frequency
components will converge faster than the high-frequency ones in successive
iterations of statistical reconstruction methods. This non-uniform conver-
gence property is further emphasized and demonstrated by Fourier analysis
of the ML-EM algorithm®' and successive iterations of inverse Monte Carlo-
based reconstructions.'® The low-frequency image is estimated using one
iteration of the OSEM algorithm. A single iteration of this algorithm
resulted in similar or better performance results as compared to 4 iterations
of the CVS method.”

6. Strategies for Evaluation of Scatter Correction

Similar to what has been said in Chapter 4 about validation of image
reconstruction procedures, evaluation of scatter correction algorithms is
inherently difficult and sometimes unconvincing. There is a clear need for
guidelines to evaluate correction techniques and other image processing
issues in PET. Most of the algorithms developed so far have been evaluated
using either simulated or experimentally measured phantom studies, in
addition to qualitative evaluation of clinical data.”® Modelling and simula-
tion of nuclear imaging is best done with phantom models that match the
gross parameters of an individual patient. Recent three- and four-dimen-
sional computer phantoms seek a compromise between ease of use, flexibil-
ity and accurate modelling of populations of patient anatomies, and
attenuation and scatter properties and biodistributions of radiopharmaceu-
ticals in the patients. Modelling of the imaging process has been improved by
more accurate simulation of the physics and instrumentation involved in the
process. Monte Carlo software packages, especially those developed specif-
ically for nuclear medicine and with different performance characteristics,
have been found useful in the modelling work. The combination of realistic
computer phantoms and accurate models of the imaging process allows
simulation of nuclear imaging data that are ever closer to actual patient
data. Simulation techniques will find an increasingly important role in
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the future of nuclear medicine research, especially scatter modelling
and correction, in light of further development of realistic computer
phantoms, accurate modelling of projection data and computer hardware.
However, cautions must be taken to avoid errors in the simulation process
and verification via comparison with experimental and patient data is
crucial.?

Evaluation of scatter correction has been extended more recently to
objective assessment of image quality using Receiver Operating Character-
istics (ROC) analysis based on human or computer observers.”® An interest-
ing approach in comparative evaluation studies for functional brain imaging
would be to carry out voxel-based statistical analysis using Statistical Para-
metric Mapping (SPM).”*> A recent investigation of the impact of model-
based scatter correction on spatial distribution of 'F-[FDG] in recon-
structed brain PET images of healthy subjects using this kind of analysis
demonstrated that significant differences in '*F-[FDG] distribution arise
when images are reconstructed with and without explicit scatter correction
for some cerebral areas.”® Figure 5 illustrates the areas with significant
changes in brain metabolism obtained by comparing distributions with
and without explicit scatter correction normalised using the same '*F-
[FDG] template. The results obtained when comparing scatter corrected to
not scatter corrected images suggest that 'SF-[FDG] distribution decreases
significantly in the frontal gyri, in addition to the middle temporal and
postcentral gyri. On the other hand, the distribution increases in the cere-
bellum, thalamus, insula, the brainstem, temporal lobe and the frontal
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FIGURE 5. Statistical parametric maps resulting from the comparison of images
reconstructed using model-based scatter correction and those corrected for attenu-
ation using an effective linear attenuation coefficient without explicit scatter correc-
tion normalised using the same '®F-[FDG] template showing areas of significant
regional decreases (A) and increases (B) in brain metabolism. (Reprinted from
ref.** with permission).
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cortex. This needs to be considered for adequate interpretation of '*F-[FDG]
3D brain PET images after applying scatter correction associated with
software upgrades or modifications of processing protocols.

In a clinical environment, evaluation of scatter correction is further ham-
pered by the multiplicity of the medical purposes for which the corrections
may be studied. For any specific medical task, the evaluation should ideally
be based on the performance of human observers. However, this is costly
and complex, since a reasonable number of experienced observers should be
used to analyse many images under carefully controlled conditions, etc. One
severe limitation of performing psychophysical experiments for evaluation
of image correction techniques is that it is time consuming and costly.
Furthermore, for optimisation of reconstruction algorithms in which pos-
sible parameter settings suffer a combinatorial explosion, human psycho-
physical studies are simply not viable.

Another method to assess the effect of scatter is to investigate the errors in
tracer kinetic parameters estimation after scatter compensation. Very few
papers addressed this issue during the last decade using SPECT* and 3D
brain PET data.®> It has been shown that errors of between 10 and 30%
can typically result if 3D PET studies are not corrected for scatter.®® Further
investigation using different tracers and different applications using both
SPECT and PET data are necessary to fully characterise the effect of scatter
correction on tracer kinetic parameters estimation.

There is no single figure of merit that summarises algorithm perform-
ance, since performance ultimately depends on the diagnostic task being
performed. Well-established figures of merit known to have a large
influence on many types of task performance are generally used to
assess image quality.’® With a few exceptions, most papers dealing
with the evaluation of scatter correction techniques compare relative
concentrations within different compartments of a given phantom with
the background compartment serving as a reference. This approach
possibly obscures what is actually going on, does not necessarily reflect
the accuracy of the correction procedure and might bias the evaluation
procedure. Therefore attempts should be made to put such results into
absolute terms.

As an example of a comparative study, reconstructions of Monte
Carlo simulated 3D digital Hoffman brain phantom without corrections,
after applying attenuation correction alone and when using different
scatter correction algorithms described above are shown in Figure 6.°° All
the methods improve the contrast compared to the case where no correction
is applied. In particular, the low count regions and structures are better
recovered after scatter compensation. The CVS and MCBSC techniques
tend to overcorrect while SRBSC undercorrects for scatter in most regions
of this phantom.
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FIGURE 6. Reconstructed images of Monte Carlo simulated Hoffman 3D brain
phantom. From top left, clockwise: the reference image used as input to the Monte
Carlo simulations, reconstructed image of unscattered events only, attenuation cor-
rection only (AC), convolution-subtraction (CVS), statistical reconstruction-based
scatter correction (SRBSC), and finally Monte Carlo-based scatter correction
(MCBSC). (Reprinted from ref.”® With permission).

7. Concluding Remarks and Future Prospects

Much research and development has been concentrated on the scatter com-
pensation required for quantitative emission tomography. Increasingly
sophisticated scatter correction procedures are under investigation, particu-
larly those based on accurate scatter models, and iterative-based scatter
compensation approaches.> Monte Carlo methods give further insight and
might in themselves offer a possible correction procedure.

The major manufacturers of dedicated SPECT cameras and PET tomo-
graphs supply scatter correction software to end-users, whereas the gamma
camera-based PET market is still suffering in this respect. As the future of
this technology does not seem to be bright, very few efforts have been spent
in this area. However, it is expected that commercial software for accurate
SPECT/PET quantitation using computationally efficient algorithms will be
available in the near future. The scatter correction issue in 3D SPECT/PET
is an area of considerable research interest and many research groups are
very active in this field, leading the nuclear medicine community to forecast
a promising progress during the next few years.
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Correction for Partial Volume Effects
in Emission Tomography

0O.G. ROUSSET* AND H. Zami1'

1. Introduction

Despite 25 years of continual improvement of the physical characteristics of
positron emission tomography (PET) and single-photon emission computed
tomography (SPECT) instruments, including crystal technology, improved
electronics, and faster computers, PET and SPECT are still plagued with
relatively low spatial resolution compared to anatomy-oriented imaging
devices such as magnetic resonance (MR) imaging or x-ray computed tom-
ography (CT). Further, in order to accurately explore cell metabolism,
reproducibility and sensitivity of the data analysis procedures must at least
match the subtle changes occurring in metabolism that one tries to investi-
gate. While it is of primary importance to compensate for physical effects
such as interaction of photons with matter resulting in their attenuation (see
Chapter 6) and scattering (see Chapter 7), geometry-dependent interactions
between the imaging system and the distribution of radioactivity in the field-
of-view must also be accounted for. This includes correction methods used
to account for collimator response in SPECT (see Chapter 5). Despite all the
efforts aimed at improving the quality and meaningfulness of emission
tomography (ET), there remains the need to correct for limited resolution
(or partial volume) effects if one wants to obtain absolute image
quantification.'-

Partial volume effects (PVE’s) have been shown to result in large bias in
the estimate of regional radioactivity concentration, both in experimental
phantom and simulation studies. Partial volume is usually addressed in the
context of “small” regions, i.e., with dimensions smaller than around 2-4
times the full-width at half-maximum (FWHM) of the scanner’s point-
spread function (PSF). It is rather hard indeed to find for example a single

*Dr O.G. Rousset, Department of Radiology, Johns Hopkins Medical Institutions,
Baltimore, MD 21287 USA

"PD Dr H. Zaidi, Division of Nuclear Medicine, Geneva University Hospital, CH-
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brain structure that can elude partial volume given the spatial resolution of
current emission tomography systems.’

In the presence of tissue atrophy, such as in the case of Dementia of
Alzheimer Type (DAT), the signal is diluted even further since the scanner’s
resolution cell contains even less cortical grey matter. What is important to
the clinician and research investigator is the ability to distinguish the loss of
radioactivity due to increase in partial volume effects from the true loss
of tissue function. In the case of dynamic studies of the heart and brain,
time-varying contrasts between the target region and its surrounding lead to
distortion of true tissue time-activity curves and subsequent underestimation
of physiological parameters.

The purpose of this chapter is to introduce basic notions and describe
correction methods for partial volume effects in emission tomography as
well as their evaluation strategies.

2. The Problem of Partial Volume Effect

The general problem of partial volume effect was first introduced in the
context of the early generation of X-ray CT and PET scanners.* With crystal
size soaring at over 2 cm thick, substantial part of the anatomical region
under study would only partially occupy the imaging volume resolution cell.
In emission tomography, this phenomenon of partial volume came to include
both the loss of detection sensitivity in the axial direction (slice thickness), as
well as in-plane resolution effect resulting from in-plane detector response
and filtering of the projection prior to backprojection.

The limited spatial resolution of emission tomography depends on a
number of factors from various sources: 1) physical, such as positron range
and non-colinearity of emitted annihilation photons (in PET), scattered
radiation (in SPECT and PET), ii) instrumental, such as scintillation crystal
size, their detection efficiency and geometrical arrangement, or collimator
geometry (in SPECT) and iii) methodological, such as the choice of param-
eters for image acquisition and reconstruction processes. Finally, even if this
will not influence the resolution of the system per se, the choice of the
regions-of-interest (Rol) for extracting regional activity concentrations will
further modulate the degree of recovery of actual tracer distribution.

Due to the imperfections of the imaging system, the response of the
scanner to a point source of activity, or point-spread function (PSF) , will
show a bell shape. The full width of the PSF taken at half the maximum of
the profile (or full-width at half-maximum—FWHM) is generally taken as
the measure of spatial resolution (Figure 1).

If we consider the simple one-dimensional case where an object possesses one
of its dimensions smaller that 2-3 times the spatial resolution along that
particular direction, a profile through the produced image will show an under-
estimation of true tracer concentration (Figure 2). The signal profile of this
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FIGURE 1. Mono-dimensional Gaussian function representing typical spatial response
function, or point-spread function (PSF), of modern emission tomographs. Spatial
resolution is usually given in terms of full-width-at-half-maximum (FWHM) of the
PSF, which has been chosen equal to 6 mm in this illustration.
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FIGURE 2. Schematic illustration of the partial volume effect. The observed signal
(dashed line) is underestimated compared to true profiles (solid lines) depending on
object size D with respect to the scanner’s spatial resolution (chosen as equal to 6 mm
(FWHM)in thisexample). We see clearly that in order for the object D to exhibit 100% of
true original activity, its dimension needs to be greater than 2x FWHM (D > 12 mm).
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FIGURE 3. More general definition of partial volume effect(s). When a small object of
width D (D=6 mm in this illustration) is surrounded by background activity, the
observed signal will result from the addition of the target object signal (dashed line)
plus a contamination component referred to as “spill-over’” or “spill-in”’. When the
activity in the target object is smaller than in the surrounding, we observe an over-
estimation of its activity (A). In the absence of image contrast, i.e., if the target activity is
the same as in the surrounding (B), the observed signal will be equal to the true signal as
activity spilled-out is exactly compensated by activity spill-in. When the activity in the
target object is above that of the background, the observed signal is underestimated
(Cand D).

isolated object is further distorted by the presence of neighbouring activity
(Figure 3). The goal of partial volume correction (PVC) is to be able to account
for both the loss of signal due to the limited size of the object with respect to
resolution, and the signal contamination coming from the rest of the image.

3. Theoretical Considerations: Object-Image Relationship

For a non-linear system, with a spatially variant point-spread function /(r),
the resulting image g(r) of a distribution of activity f(r) can be written as:

o) = jh(r, o F() dY (1)

R
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where r and #’ are the vectors in image and object space respectively. For a
linear system we have:

o) = jh(r, ) S @

R

where A(r, 1) represents the system’s PSF. Those two last equations repre-
sent the most general description of the image formation process, where the
PSF is a function of the spatial coordinates in both spaces (object and
image), and is referred to as spatially variant. In the case where the response
to a point source of activity is the same for all the points in the object space,
the PSF is said to be spatially invariant. In this case, 4 only depends on the
difference in coordinates r-r’ since the response to a point source depends
only on the relative distance between these 2 points in the image plane. For
a spatially invariant, non-linear system, Eq. (2) becomes:

o) = jh(r S 3)

R

Whereas for a spatially invariant, linear system:

g = [r = )10 )
R

We recognize here the convolution integral: the image is equal to the
convolution of the object distribution with the PSF of the imaging system.
The PSF transfers the information from the object space to the image space
and incorporate all the geometrical infidelities of the imaging system. It is
therefore not surprising that the attempt to compensate for those degrad-
ations be referred to as a “deconvolution” process. It is worth emphasizing
here that this term should in theory only be applicable in situation where the

PSF is a spatially-invariant function.

4. The General Problem of Image Restoration

If we concentrate on the case where the imaging system is linear and spatially
invariant, we have seen (Eq. 4) that the object f(r) and the image g(r) are
linked by the convolution integral that can be simply written as:

g(r) = h(r) @ f(r) )
where ® represents the convolution operator. In Fourier space, the convo-
lution becomes a simple multiplication of the Fourier transforms H(u) and
F(u) of the functions /(r) and f(r), respectively, (convolution theorem).We
can then write:

G(u) = H(u) x F(u) (6)
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where u represents the spatial frequency corresponding to the spatial coord-
inate r. The relationship between a function and its Fourier transform being
given by:

F(u) = J f(r) x e~ 2™ gy (7)
R
and
f(r) = JF(u) X ¥ ly ®)
R

Equation (8) indicates that the object f can be separated into its spatial
frequency components # and how these elements can be recombined to
recover the original object f. This representation in Fourier space contains
the same information than in real space, only in a different form. It is then
clear that the Fourier transform H of the PSF h corresponds to the fraction
of the object distribution component of spatial frequency u that is trans-
ferred to the image distribution at the same spatial frequency. H regulates
the transfer of information for each spatial frequency, and is often termed
the modulation transfer function (MTF) . If the imaging system was perfect
(i.e., H = 1), the image would be a perfect representation of the object, and
h would be a Dirac function (PSF infinitely narrow). Unfortunately, for
every imaging system, and in particular for PET and SPECT, we observe a
dispersion of the system PSF which corresponds to a decrease of the MTF
magnitude with increasing spatial frequency. It is therefore clear that there is
a loss of spatial information for the high spatial frequencies. If one thinks of
recovering this information by performing a direct deconvolution, it be-
comes clear that we need to invert Eq. (6):

F(u) = G(u)/ H(u) )
thus
f(r) = J g((‘;)) 2™ gy (10)
R

The practical use of this simple procedure is not very reasonable if we
consider that H decreases in magnitude with increasing spatial frequency. It
is at those high frequencies that the image becomes dominated by noise, that
the deconvolution suggested in Eq. (10) would amplify to unacceptable
levels.

In fact, the image formation process given in Eq. (2) could present the
false impression that object and image spaces are only connected by geo-
metrical transformations. In practice, the images are contaminated by a
whole variety of noise of various origins. A more accurate description of
the image formation process is hence the following for a linear system:
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o) = Jh(r, ¥ £+ () (11)

R

where ) represents the noise distribution in the image (assumed to be additive
here). Thereis no unique solution to this equation, and the problem is said to be
“ill-posed”’, meaning that a small perturbation in the image can lead to large
errors in the solution. Image restoration consists in finding the best solution
to Eq. (11) while limiting noise amplification resulting from the correction
process. If we consider that the image can be written as the effect of an operator
on the object, plus a noise component, we can then write Eq. (11) in the form:

g=Hf +n (12)
If we apply the inverse operator, we obtain:
H'¢e=H'Hf + H'n (13)

If we define a measurement of the object as being the inverse of H applied
to g, then:

f=f+H" (14)

This equation indicates that the “processed” image f is equal to the real
object plus a term representing the noise amplification. If the operator H is
singular, this image can not even be obtained, and even if H is only slightly

ill-conditioned, the second term of Eq. (14) becomes predominant and will
invalidate the correction method.

5. Theoretical Activity Recovery of Known Size Objects

Typical PSF of emission tomography systems can be approximated by a
Gaussian function of a few millimetres FWHM. The partial volume effect
on spherical objects of inner radii varying from 4 to 15.5 mm, for emission
tomography systems with spatial resolution varying between 2 and 10 mm
FWHM, are illustrated in Figure 4. It is worth noticing that the smallest
sphere (4 mm) is hardly visible when using a system with similar spatial
resolution and not detectable at all for systems with lower spatial resolution
(>4 mm).
By definition, a normalized Gaussian aperture function of the spatial
function r(x,y,z) can be expressed as:
) (15)

(2'17)_3/ 2 1|3 »? 72
h(r)=—"—"—xexp| —= | 5+ +—
*) 05,05,05. P 2 |oZ 2 2
where oy, 05, and og. represent the standard deviation in the x, y, and z
directions. This symmetric function has a maximum value of 1/,/2mo, in

s, O9s, Os:
1-D, 1//27os 05, in 2-D, and 1/,/2mwo s 05,05 in 3-D.




8. Correction for Partial Volume Effects in Emission Tomography 243

Ideal FWHM=2mm FWHM=4mm

FWHM=6mm FWHM=8mm FWHM=10mm

FIGURE 4. Illustration of the partial volume effect using simulated spheres of 4.0, 7.5,
8.5, 11.0, 13.0, and 15.5 mm inner radii for imaging systems with spatial resolution
FWHM varying between 2 and 10 mm.

If we consider the Gaussian function definition given in Eq. (15) and the
definition of the spatial resolution in terms of the FWHM of the scanner’s
PSF, we can relate the FWHM to the standard deviation o as follows:

2
exp( - L (EWHMANN _ypp QEWHM s~ 118 (16)
2 20 20

If the Gaussian aperture function presented in Eq. (15) is convolved with a
Gaussian object of standard deviations ooy, 00,, and oo. along x, y, and z,
the result can be directly assessed after Fourier transform and multiplication
in the frequency domain, and can be expressed as:

()'0\,0'0)0'0__

\/(020\_ + (réx) (020}, + (r?gy) (020: + 0'%_,)

X exp(é > (17)

The results for 1-D and 2-D objects can be readily derived from the
previous equation by dropping the z and y variables respectively. For

g(r) =

x2 y2 ZZ

Jr
2 2 T2 o2 T2 192
0o, T 05 0o, 05, 00, + 0%
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instance, the maximum recovery coefficient (RC) for a 2-D Gaussian object
of identical standard deviation along x and y (i.e., oo = 00, = 00),
becomes:

_ (00/05s)
1+ (00/0s)

We can predict analytically the maximum RC values in the case of objects
of simple geometrical shape. In the case of a bar of width D that is the only
dimension to suffer from partial volume effects, the recovery coefficient can
be expressed by the convolution integral:

(18)

D/2 | 2
X
RC(x/o) = J mgexp<—202>dx
-D)2 (19)

where

erf(fff) I\/‘Gexp< wz)dw 20

and represents the error function.” The calculation is also possible in 2-D
in the case of a cylinder of elliptical section whose length is large with
respect to the resolution along the z dimension.® For an elliptical section
given by:

X /p*+y* /P =R (21
then
RC(R/o) =1 —exp(— R*/20?)

22
RC(D/FWHM) =1—exp(—1In2x D*/FWHM?) "’ D=2R (22)

In the case where a sphere of radius R is centred on an isotropic Gaussian
function of standard deviation o, the maximum value for the 3-D recovery
coefficient that one can obtain in the image is given by:

R

R R
1 X2+ + 22
R R R

The result of this integral is proposed in the work published by Kessler
et al” and is illustrated in figure 5 along with the results obtained in 1-D and
2-D. This calculation was expended to the more general case where the
sphere’s centre is shifted by an amount Z, with respect to the centre of the
Gaussian aperture function:
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FIGURE 5. Maximum theoretical recovery coefficients (RC) resulting from the com-
putation of the convolution integrals for various geometries: bar (1-D), cylinder
(2-D), and sphere (3-D), plotted as a function of their spatial characteristic D
normalized to the image resolution in terms of its FWHM.

RC(R/o, Zp/c):erf<R\/_§Zp> —erf<_l\g/g Z,,) - \/lj Zi
o o wZp

R*+7; RxZ, RxZ,
eXp | — T X |[eXp 0_2 —eXp| — 0_2
24)

For every combination of object and impulse function (PSF) , a whole
range of RC values are possible, with RC reaching a maximum when the
object and the PSF have maximum overlap.®

It should be noted here that the RC defined by Hoffman ez al.® charac-
terizes only one of the two aspects of the partial volume effect. It represents
in fact the fraction of TRUE activity contained in the measurement in
the absence of activity other than that present in the object (“‘cold” back-
ground). This concept does not take into account the presence of a
“warm” surrounding medium that contaminates the measurements of
the “hot” spots. We can nevertheless mention the introduction of the
concept of contrast recovery coefficient (CRC)” that reflects the rate of
recovery that lies above the surrounding medium (BKG), i.e., CRC=(0bs-
BKG)/(TRUE-BKG). This parameter is only justified in the case where the
BKG is not itself subject to PVE’s, and is of known and uniform activity
concentration.
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6. Partial Volume Correction Strategies

Attempts to compensate for partial volume effects date back to the time
where they were first pointed out as a serious limitation in quantitative
analysis. The reference paper is probably that of Hoffman er al.’ where he
proposed the computation of recovery coefficients from the known geom-
etry of the objects being imaged and their position relative to the centre of a
given PET slice. From the same group, Mazziotta then predicted the recov-
ery coefficients for numerous brain structures based on their approximation
by a series of non-overlapping spheres.'® Although the partial volume phe-
nomenon was first addressed in the context of “hot” objects in a “cold”
background, emphasizing on the apparent loss of radioactivity due to the
small object size with respect to the spatial resolution of the system,’
it became obvious that it was necessary not only to account for activity
“spilling-out” of the “hot” region, but that “spill-in”” from the surrounding
usually “warm” area should also be accounted for in the regional measure-
ments.’ Several authors attempted some sort of partial volume correction by
applying the recovery coefficients described by Hoffman as well as those
derived from Kessler’s formulation.'"!?

Some correction methods require only the original emission data.
These include methods making all the necessary corrections for physical
effects at the projection level, such as in the method proposed originally
by Huesman er al.'?® for scatter correction. Iterative reconstruction tech-
niques that incorporate a blurring model in their iterative scheme have
been proposed to compensate for the inherent blurring of SPECT.'*!”
This aspect is covered in detail in Chapter 5. There has also been a
great deal of search for image processing tools that would restore, or
at least visually enhance, the noisy images obtained in emission tomo-
graphy. Those can be regrouped into the general class of filters used during
image reconstruction (low-pass filtering), and those used post-reconstruction
for the purpose of restoration filtering. The latter include methods such as
Wiener’s filtering widely used in evoked potential, and investigated as a way
of suppressing noise while maintaining the signal content of time-activity
curves.'®!7 In SPECT, depth-dependent blurring can be corrected by first
back-projecting each projection and then applying a depth-dependent Wie-
ner filter row by row.'® Finally, another approach that does not require
additional data is based on the computation of correction factors during
mathematical modelling of kinetic data, such as regional cerebral blood flow
(CBF) measurement with PET, both in the heart'? and brain.*®

A distinct class of correction methods require the definition of the various
objects being imaged in addition to the characterization of the scanner’s
PSF. These include anatomy-based post-reconstruction correction methods
that make use of concomitant high-resolution structural information from
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MR imaging or CT.?'*” Being the most popular methods, those will be
described in details later in this section.

Finally, empirical methods based on the derivation of correction factors
from experiments with physical test objects remain an active way of charac-
terizing partial volume effects.?>’

6.1 Correction Methods based on Physical
Phantom Experiments

Such empirical methods mimic the object (radioactivity distribution) by a
series of simple geometrical shapes (cylinders, spheres) to derive correction
factors for actual anatomical structure that can be approximated by a simple
shape or a linear combination of simple geometrical shapes. Some re-
searchers have proposed to describe the effect of scatter counts and partial
volume on the PSF by a series of functions with parameters derived from
physical phantoms experiments.”® This method requires the availability of a
realistic physical phantom of the organ or tissue of interest, although em-
pirical rules allow to deriving the PSF of an arbitrary object from the PSF of
a known object.

Also, the estimation of the arterial input function required for the absolute
quantification of fast dynamic studies of tracer pharmacokinetics, has been
proposed based on its estimation from a large artery after correction for
PVE’s. Such correction factors can be derived from imaging cylindrical
distribution of activity of various diameters and for various levels of back-
ground activity.?® This method is based on Kessler’s formulation of the hot
spot recovery coefficient (HSRC) or ratio of image activity concentration to
the true activity concentration in a “hot” isolated region, and cold spot
recovery coefficient (CSRC) or ratio of image activity in “cold” spot to true
background concentration.”® In this case, in the presence of the 2-
component system (target+background), according to the formulation of
Kessler, the observed estimate of activity within the target region (e.g.,
arterial vessel) can be expressed as:

[target = HSRC x Trarget + CSRC x Tbackgraund (25)

with Tpyckerouna Tepresenting the true radioactivity concentration of the back-
ground region, and f,,¢. is the target radioactivity concentration observed
with the imaging system. Under the condition that the target region is totally
surrounded by the background region, we have the relationship:

HSRC + CSRC = 1 (26)

By substituting CSRC from Eq. 26 in Eq. 25, we can estimate the corrected
activity within the target region:
|

Tt arget — m(tt arget — Tbackground) + Tbackground (27)
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We can note that the HSRC is generally simply referred to as the recovery
coefficient. In the present case, the application of this approach assumes that
the background activity can be accurately assessed directly from the emis-
sion image. In other words, the background is assumed not to be affected by
partial volume. This method also assumes that the size of e.g., the vessel, can
be accurately estimated. This is a crude approach in its assumption on large
surrounding homogeneous background, but has the advantage of only
requiring the estimation of the RC of the target region. Similarly, recovery
coefficients derived from phantom studies have been proposed to correct for
partial volume effects in SPECT myocardial perfusion studies.>' A similar
approach was adopted to demonstrate the feasibility of such correction in a
clinical setting where the anatomical structures can be approximated by
simple geometrical objects.’® The study concluded that a recovery correction
is feasible only for PET data down to lesions of size ~1.5 x FWHM.

However, this kind of approach represents a real technical challenge for
more complex organs where anatomical variability or the presence of ana-
tomical abnormalities cannot be addressed by a single physical model. While
physical models of the heart in various sizes are available (Data Spectrum,
Hillsborough, NC), there is no existing brain phantom that can reproduce
the brain circumvolutions or structures smaller than about 10 ml in volume.
However, even in the absence of gross abnormalities such as tissue atrophy,
normal anatomical variability especially that found in the human brain
would not favour the use of a single physical model for correction purposes.
However, some authors have for instance proposed a method to overcome
the problem of axial under-sampling of emission tomographs based on
phantom experiments.*> Their method make use of a human basal ganglia
phantom to validate their assumption according to which the intensity
profile in the axial direction can be accurately assessed by Gaussian fitting
in order to derive correction factors that compensate for the non-uniform
axial response function of the scanner, making the signal independent from
axial positioning of the head.

6.2 Reconstruction-based Correction Methods

Such methods may or may not require the availability of supplementary
structural information from e.g., MR imaging. Because of the inherent
degradation of spatial resolution during filtered backprojection, there is a
great deal of research for statistical reconstruction approaches that would
overcome this problem of resolution loss while dealing with the intrinsic
Poissonian nature of the noise. For example, iterative reconstruction
methods such as those derived from the Maximum-Likelihood Expect-
ation-Maximization scheme®® can incorporate all kind of information such
as scatter or spatial variation of the system’s PSF to compensate for non-
stationary resolution (see Chapter 4). Those methods have been explored
both in SPECT'**** and PET."’
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Some other iterative reconstruction methods not only incorporate some
model of the scanner’s PSF, but can also incorporate a priori anatomical
information from e.g., MRI, in an attempt to compensate for partial volume
effect, both in SPECT?® and PET.**** However those methods still fail to
account for resolution effects in the axial direction, which remains the
predominant source of partial volume effects.

Another class of correction schemes, based on quantification directly in
projection space, is derived from the early work of Huesman ef al.'* and was
extended to include not only scatter but also spatial resolution effects, both
in the heart*! and tumour imaging.** The major advantage of this approach
is its ability to derive accurate figure of regional variance. However this kind
of methods cannot account for partial volume effects of objects with cross-
section about the size of the intrinsic resolution of the scanner, and has yet to
be extended in 3-D.

6.3 Post-reconstruction Correction Methods

It becomes increasingly common, if not systematic, to have access to both
the functional information from emission tomography, together with its
underlying anatomy defined from high-resolution, structure-oriented, scan-
ning devices such as MR or CT. The combined use of anatomical and
functional data allows for a more accurate identification and definition of
regions used for the assessment of regional tracer concentration. This trend
is also reflected in the development of PET/CT and PET/MRI devices that
allow access to both types of information simultaneously, thus avoiding the
problem of inter-modality spatial realignment errors (see Chapter 9).

Such correction method consists in solving the imaging equation (Eq. 2).
Due to the stochastic and Poissonian form of the signal, it is not possible to
simply deconvolve the image with the inverse of the PSF without unbearable
noise magnification (see Chapter 4).

In order to reduce the number of unknowns in the imaging equation, i.e.,
minimizing the noise propagation issue, it is necessary to perform a data
reduction, i.e., a segmentation of the anatomical information provided by
CT or MR imaging. It is therefore assumed that each ‘“‘segment™ of the
“activity distribution model” represents a distinct and homogeneous activity
distribution. If we consider that the activity distribution f{r) consists of N
tissue components of true activity 7}, the resulting image g(r) for a linear
system (spatially invariant or not) can be written as the imaging equation:

N

¢ = > | o ) foydr 0
i=1 D; (28)

N
with U fi(r) = £(r)

i=1
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There is no assumption here on the noise characteristics of the image.
Although Poissonian in essence, the final noise n(r) in the image includes
also components from attenuation, scatter, or other type of corrections
during data acquisition and reconstruction. Since the partial volume solu-
tions proposed here do not call for the explicit characterization of a noise
model, we will omit the noise component in the subsequent equations.

6.3.1 Pixel-guided Approach

If one seeks to recover the entire true activity distribution f;(r) within tissue
component D;, there are N unknowns, the true image distribution of activity
of each tissue component of the tracer distribution model, but only one
equation, the emission image g(r). Several authors proposed to solve this
equation, first with N=1 to compensate for signal dilution in spaces void of
activity.*> Compensating for dilution of radioactivity in non-active tissues
such as cerebro-spinal fluid is more important in the case of tissue atrophy, as
the decrease of metabolism seen with increased tissue atrophy might be con-
founded by the loss of signal consequent to increased partial volume effect.
For example, the decline in blood flow observed with PET has been shown not
to decline with age after correcting for tissue atrophy using this method.**
These techniques make use of an anatomical mask defined from MRI or CT,
and by assigning pixels corresponding to the cerebral tissue (i.e., grey and
white matter) a value of 1, and the space occupied by non-cerebral tissue being
kept at 0. This is equivalent to defining an anatomical mask £ (r) as follows:
i) = { (1) r i cerebral tissue (29)
r = non — cerebral
Asdiscussed earlier (Eq. 5), if we consider the point-spread function /4 of the
imaging system as being a spatially invariant function, the equation becomes a
simple convolution. The next step of this correction method hence consists in
convolving the binarized volume f)(r) at the scanner’s resolution. The PET
image in divided by this “low resolution” mask in order to obtain images
corrected for dilution of radioactivity in non-active spaces. Hence, the very
approximate of the true activity distribution is given by:

_ Silg()

Sr) = m (30)
This equation being derived from the approximation:
[0 A an
Sy @h(r)  f1(r) @ h(r)

It can be seen that the approximation proposed in Eq. (31) is only justified
when f(r) possesses the same spatial characteristics as those defined by the
anatomical mask f;(r). This approach ignores the difference in tracer uptake
between grey and white matter.
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An extension to a more heterogeneous distribution of the tracer was later
proposed, this time with a more realistic mask that makes the distinction
between grey and white matter to account for white matter activity contri-
bution to measurements of grey matter activity concentration.”> We have
this time the problem that the number of unknowns is now equal to N = 2,
while the number of equations has not changed (only one). The way these
authors overcame this problem is by transforming one of the unknowns into
a known variable. They assume that the true white matter activity can be
accurately measured from a large remote white matter area in the emission
image (Figure 6). This new mask can be defined as follows:

fi(r)  r = Grey matter
f(r)= < fa(r) r = White matter (32)
f3(r) r=background & CSF

Where e.g., fi(r) =1 for pixels identified as Grey matter, and fi(r) =0
elsewhere. The tissue components Grey, White, and BKG + CSF are
obtained by segmentation of the MR images realigned with the PET image
volume. Figure 6 illustrates the general principle of MR-guided PVC in
functional brain imaging.

By considering that the radioactivity concentrations in white matter and
CSF spaces are constant, and that those components do not suffer them-
selves from partial volume thanks to their important dimensions with respect
to the imaging system resolution, the PET image can be written as:

g(r) = f(r) @ h(r)
= [T1fi(r) + T2 f2(r) + T3 f3(r)] @ h(r) (33)
= T1/1(r) @ h(r) + [T2 f2(r) + T3 f3(r)] @ h(r)

where T, and T3 are known constants representing the true activity of the
white matter and background plus CSF, respectively. After rearranging the
previous equation, one can write:

g(r) — Tof5(r) @ h(r) — T3 /3 @ h(r)
J1(r) @ h(r)

White matter activity 75 is considered as being uniform throughout the
brain whose activity concentration is considered as being accurately esti-
mated from a measurement in the pons, assumed to elude partial volume due
to its large cross-sectional size. This value is assigned to the low-resolution
white matter image f>(r) ® h(r), and then subtracted from the PET image
g(r). These authors proposed to do the same with background + CSF
compartment, although one might wonder whether the measured value for
that compartment is not the result of spillover from adjacent tissue plus
noise. However, for increased realism, and to make a distinction in grey
matter tracer uptake, these authors extended this elimination-substitution

Ti(r) =

(34)
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FIGURE 6. Schematic representation of the different steps required for MRI-guided
correction for partial volume effect illustrating the original MR (A) and SPECT
(B) images, binary mask for whole brain (C); MRI after scalp editing (D); original
SPECT image coregistered to MRI (E); MR image segmented into white matter (F)
and grey matter (G); White matter SPECT image (H) simulated from convolved
white matter MR image; convolved grey matter MR image (I); white matter MR
images (J); grey matter SPECT images (K) obtained by subtraction of simulated
white matter SPECT image from original SPECT image coregistered to MRI; binary
mask for grey matter (L) applied to finally obtain grey matter SPECT image cor-
rected for partial volume effect (M). (Reprinted from ref.*> with permission).

scheme one step further by incorporating a distinct volume-of-interest (Vol)
such as the amygdale.*® Their method consists first in solving the problem of
white matter contribution by using Eq. (33). Subsequently, true cortical
activity concentration is measured from the corrected image given in
Eq. (34). The corrected image for the amygdala is then given by:

g(r) — T1 f1(r) @ h(r) — T2 f2(r) @ h(r) — T3 f3 @ h(r)
Svor(r) ® h(r)

The “true” cortical value T derived from the “white matter and CSF-
corrected image” given in Eq. (34), must satisfy the following criteria:

(35)

Tyor(r) =

(1) it must be representative of the true cortical grey activity that actually
contaminates the Vol;

(i1) it must be sufficiently far from the Vol to avoid integrating some of its
signal.
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We can see that those two criteria might rapidly introduce some conflict
with increasing tracer heterogeneity, and would be for example violated if
one seeks to account for cross-contamination between e.g., the caudate
nucleus and the Putamen since they are lying so close to each other.

6.3.2 Model-based Approach

Another type of post-reconstruction correction methods is the model-based
optimization method developed by Chen et al.** to simultaneously recover
the size and the activity concentration of small spheroids thus improving
estimates of lesion activity in clinical oncology when object size is unknown
(Figure 7). The algorithm is based on a 3D spatially varying object size- and
contrast-dependent Gaussian model of the system PSF. A match index is
then used to estimate the best model parameters. The authors report a
reduction in the activity error by 11%-63% compared to the error obtained
without correction. Moreover, the accuracy of the simple RC method is
dependent on object-to-background ratio (OBR) and the data used for
estimating fitting parameters. Large errors were reported for small spher-
oids, which are obviously very sensitive to OBR variation and noise.
A modified version of the algorithm described above combined with an
extension to non-spherical objects was recently proposed.*” The method is
being improved currently allowing the quantification of lung tumours with
smallest radii with improved convergence properties towards the true model.
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FIGURE 7. Description of the model-based method for partial volume correction in
clinical oncology.*?
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6.3.3 Geometric Transfer Matrix (GTM) Approach

If we directly compute the effect of signal degradation due to limited spatial
resolution on the mean regional concentration within a limited region of
space, or region-of-interest (RolI'), we can obtain as many equations as there
are unknowns. This is the basis for the method proposed by Rousset
et al **** which allows for the calculation of corrected estimates without
a priori knowledge on any activity level. For instance, the observed activity ¢
within tissue component D; from a given Rol; is given by:

N
=T, (36)
i=1

where T; represents the true tracer concentration within tissue component i.
The weighting factors w;; represent the fraction of true activity 7; from tissue
i that is integrated in the measurement #; from Rol; of volume v;. They can be
expressed as:

i
ROJ,

where RSF;(r) represents the regional spread function of tissue i and
corresponds to the response of the scanner to the distribution of
activity D;:

RSF; = J h(r, v')dr' (38)
D,

The weighting factors w;; constitute the geometric transfer matrix (GTM)
and express the distortions introduced by the limited intrinsic spatial reso-
lution of the scanner, as well as smoothing introduced during image back-
projection, and further modulation during extraction of regional tracer
concentration (Rol analysis). Both the effect of type and size of filter used
during FBP* as well as definition of RoI’>>! have been shown to introduce
bias in parameter estimates.

In practice, these partial volume factors are computed from simulation of
the noise-free RSF images and sampling with a user-defined set of Rols. The
number of Rols must be equal to the number of tissue components identified
in the tracer model in order to provide a full-rank GTM. In that case, the
diagonal terms of the GTM represent the tissue self-recovery RC (or “spill-
out”) while off-diagonal terms (w;, j+ i) represent the spill-over, or
“spill-in”’, factors. If the number of Rols is greater than N, the problem is
over-constrained and can be solved by ordinary linear least square regres-
sion. The same set of Rols must be used to extract observed values from the

'sample of image pixels for average radioactivity concentration computation
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actual PET images in order to obtain the vectors f; (tissue time-activity
curves). The set of linear equations can then be solved for the true tracer
concentration in each region by inverting the GTM matrices and multiplying
by the observed regional values.>*?*43

This method was initially developed based on the simulation of sinogram
data, in order to reproduce very accurately the effect of finite sampling and
backprojection. This further allows for the incorporation of Poisson noise at
the detector level for more realistic computer simulations of radioligand
uptake for validation purposes.’>** It has since been shown that instead of
simulating the RSF images from sinogram data, one can achieve similar
levels of accuracy by creating the RSF images by direct convolution of the
individual D; maps with a kernel representative of the spatial resolution of
the PET image.’ This method can be seen as the image-based variant of the
GTM method, and is much faster to implement without apparent sacrifice in
data accuracy. Nonetheless, the sinogram approach has the advantage of
being independent of the filter used during image reconstruction since it uses
the same filter and FBP algorithm as the original PET data.

7. Performance Evaluation of Partial Volume Correction

Like any other correction algorithm, PVC methods must be validated and
their limit tested before being applied to clinical or research data. This
includes the assessment of the accuracy of the algorithm and its sensitivity
towards methodological considerations such as simulation of the system’s
PSF, MR-ET image registration and MR image segmentation.

Absolute measurement of accuracy is only attainable in phantom and simu-
lation studies. Accuracy is usually given as a percentage of the true activity, or
can be expressed by the apparent recovery coefficient (4 RC), which represents
the apparent (observed or partial volume corrected) regional radioactivity
concentration to true activity ratio.>***>? Precision, or data reproducibility,
is a more subjective measure of performance and will depend to a great extent
onthelevel of automation of data analysis and correction. Methods that do not
require human intervention may have a great level of reproducibility, but
particular attention needs to be paid to accuracy of unsupervised methods.

7.1 Registration and Segmentation Errors

Post-reconstruction partial volume correction methods requiring additional
anatomical information from e.g., MR imaging, such as the pixel-based
approach or the GTM approach, rely on the spatial realignment of func-
tional and anatomical images. Usually, a rigid-body transformation is used,
with spatial transformation parameters being derived from the minimization
of the distance between homologous points found in both modalities, or
increasingly based on some similarity criterion between the two images.
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These include methods such as Woods’ popular minimization of the variance
of ratio between the 2 images to be registered.’® Other similarity criteria,
such as the maximum cross-correlation54 or mutual information,” are also
popular methods for image realignment.’® The final image resolution, sig-
nal-to-noise ratio, and contrast in the image, all condition the success of the
registration (see chapter 9).

The accuracy of the partial volume correction method will depend in part
on the degree of accuracy in the realignment of the anatomical images with
the emission image of tracer distribution. This has been investigated for both
the pixel-based method?>**57°% as well as for the GTM approach.?*3%-%
For the GTM approach, it is interesting to note that errors introduced
during mis-registration only affect the observed estimates, and does not
modify the coefficients of the GTM matrix. As a consequence, the registra-
tion error effect on the corrected estimates is of the same magnitude as the
effect of mis-registration on the observed estimates due to poor Rol place-
ment.”® Those errors have been found to have relatively little impact (<2%
of true value for typical 1-2 mm mis-registration error) on the final accuracy
of the corrected estimates.”> As for errors in segmentation of the tissue
components of the system, they have been found to be of greater significance
with for example a 5% decrease in Caudate Nucleus ARC if a 25% error in
total volume is made.>> However, it has been shown that the effect of the
segmentation error was limited to the mis-segmented region.’> Overall,
it appears that the success of the segmentation of the structural information
provided by e.g., MR images, has a higher impact on the accuracy of
the corrected estimates,’® compared to the influence of image co-
registration, although some authors recently suggested that mis-registration
errors have the strongest impact on data accuracy and precision.’® This
recent finding is also in contradiction with the conclusion achieved in the
case of the performance evaluation of the method proposed by Miiller-
Girtner.”>*” The accuracy of this latter method further depends upon the
accuracy in measurement of background (i.e., white matter) activity concen-
tration. This error has been evaluated as being in the order of 5% error in
grey matter (GM) PET estimate for a 20% error in white matter tracer
concentration.?

As for the overall performance, i.e., in the absence of major sources of
registration or segmentation errors, partial volume corrected estimates have
been found to be typically within 5-10% of true tracer concentration with

a standard deviation of a few percent in both phantom and simulation
studies,24:48:52.58.59.61

7.1.1 Tissue Homogeneity

Segmentation errors can be thought as a more general problem of tissue
heterogeneity. Indeed, the major limiting factor of those methods is primar-
ily the assumption made about the homogeneity of tracer distribution in
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each identified, or segmented, tissue components. Aston and colleagues have
proposed a test of inhomogeneity based on Krylov subspace iteration that
can test for hypothesis on homogeneous tracer distribution.®' This would
however only be effective in the case where the specified noise model is
sufficiently accurate, which still remains a difficult endeavour.

However, if known, the tissue mixture of each identified component can
be used to compute the various regional spread functions (Eq. 35). This is
achieved by the use of statistical probabilistic anatomical maps (SPAM’s)®?
that represent the probability of each tissue class (e.g., GM, WM, CSF) to be
present in a given location of a standardized, or stereotaxic space.

7.1.2 Data Precision

Even if the registration, segmentation, or other homogeneity errors
were inexistent, like any type of “deconvolution” procedure, compensating
for partial volume effects will result in some degradation of the precision
of the processed data. The variance associated with the corrected estimates
can be estimated by explicit study of the covariance nature of the correction
method. The degradation of the coefficient of variation (std/mean)
after/before PVC can be seen as the noise magnification factor (NMF)
resulting from the correction.”® Maximum theoretical values of the
NMF can be easily predicted for the GTM method and have shown to
be in good agreement with experimental values derived from a brain
phantom experiment.”* Variance associated with the correction has
been shown to only slightly increase after partial volume correction®*>*4%:3
suggesting the applicability of GTM-PVC to dynamic emission
studies.®%4

7.2 Simulation Studies

Computer simulations are a powerful way to explore the limits of correction
algorithms since they give a complete control to the operator. By reprodu-
cing realistic noise characteristics associated with emission tomography, one
can demonstrate the usefulness of PVC algorithms and their applicability for
a wide range of realistic situations. Another powerful application of com-
puter simulation is the replication of methodological flaws and their conse-
quence on image quantitation. These include simulation of erroneous
definition of the scanner’s PSF, registration errors between MR/CT and
PET/SPECT, segmentation errors, and assumptions made about homogen-
eity of tracer distribution.

Computer simulation of emission tomography images would usually con-
sist in reproducing the 4-D spatial distribution of the tracer in a digitized
model of the organ of interest, and mimicking the geometry and other
physical effects specific to the scanner.
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7.2.1 Simulation of Objects

Simulation can consist in using mathematical models of simple shaped
objects such as spheres or ellipses. For example, Mullani®® designed a special
phantom to measure the quantitative recovery of myocardial emission tom-
ography images as a function of the size of the object and the angulation of a
I-cm-thick simulated myocardium inclined with respect to the image plane.
Muzic et al.*' used a set of 5 different elliptical models as part of their
validation for the proposed PVC method applied to myocardial PET. This
mathematical model represented the porcine torso including the lungs, myo-
cardium, ventricular cavity, and soft tissue background.

Early digital phantoms were derived from post-mortem brain slices and
used to evaluate the signal-to-noise performance with decreasing detecting
crystal size.®“®® A digitized version of the Data Spectrum sphere phantom
was used for the evaluation of the Miiller-Gértner method.”’

More recently, the development of classification and segmentation tech-
niques applied to MR or CT images have allowed for the creation of
numerical anatomical models of the spatial distribution of the parameter
of interest. Digitized models can be a carefully segmented single individual
MR volume® or models derived from the average of repeated high-
resolution images of the same subject.”” Atlases derived from tissue
probability maps have become a popular way for automatic image segmen-
tation,”' and can be applied to individual data sets to create customized
numerical phantoms. Simulated MR images can also be used to investigate
the impact of MR image quality on segmentation accuracy®”’? and could be
used to study its subsequent effect on the accuracy of partial volume cor-
rected estimates.

Those objects can be subject to local or global deformations to simulate a
variety of situations. For example, the effect of tissue atrophy can be
simulated to estimate the effect of a reduced brain structure volume on
expected observed estimates.”> Segmentation error can be simulated by
erosion or dilation of the structure of interest and assess the resulting effect
on the corrected estimates.’>>®

7.2.2  Simulation of Image Formation Process

The effect of finite spatial resolution is usually reproduced either at the
projection level, or directly in image space. The latter allows for a much
faster implementation but does not offer the possibility of adding appropri-
ate noise characteristics that are hard to define in image space. Adding
appropriate noise to the image data is necessary for assessing the accuracy
and precision of the correction technique in the presence of noise conditions
comparable to that encountered in clinical practice. On the other hand,
simulation of sinogram data allows for incorporation of the scatter com-
ponent and the effect of attenuation at the detector level. This provides an
opportunity to reproduce the propagation of Poisson noise encountered in a
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more realistic way. Further, filtered backprojection type of image recon-
struction is still widely used despite the forthcoming of reliable iterative
reconstruction schemes for emission tomography (see Chapter 4). Smooth-
ing the projection before projecting them back onto the image grid will get
rid of a lot of the high-frequency noise, and will modulate both the magni-
tude of the signal—further degrading spatial resolution—and the character-
istics of the noise.

Monte Carlo simulations represent a powerful way to reproduce the
physics occurring in emission tomography (see Chapter 11). Similar to
popular analytical simulators, simulated PET or SPECT images derived
from Monte Carlo simulations can be used for validation of partial volume
correction methods. In particular, Monte Carlo-based generation of projec-
tion data typical of ['®F]-dopa and ['!C]-raclopride uptake have been simu-
lated using a digitized brain phantom® to assess the recovery capability of
the GTM algorithm.>>

7.2.3 Simulation of Tracer Kinetics

Simulation of the dynamic uptake of PET tracers such as neuroreceptor
ligands, allows for testing the PVC capability to recover known distributions,
both in terms of raw activity concentrations, and in terms of physiological
parameters extracted from the kinetic modelling process. Tissue time-
activity curves (TAC’s) can be derived from individual emission data, cor-
rected for partial volume effects using the GTM approach, and then fitted
with a mathematical model normally used for extracting meaningful physio-
logical parameters. The fitting curves can then be taken as true TAC input,
assigned to the various tissue components identified from anatomical source,
and processed through the simulator. This provides a convenient way for
studying for example the effect of cortical grey matter heterogeneity on sub-
cortical PVC estimates for various levels of heterogeneity and for varying
contrast conditions.”* More generally, this allows testing the performance of
the PVC algorithms in noisy conditions similar to those expected or seen in
clinical and research setting.

7.3 Experimental Phantom Studies

As discussed at the beginning of the previous section, physical phantoms can
be used to directly derive correction factors. Those phantoms are limited in
terms of their applicability due to the limitation in complexity one can
achieve in reproducing the organ under study. However, physical phantom
experiments are mostly used for validation purposes and represent the sine
qua non step for proper acceptance of the technique. Physical phantoms of
various degree of complexity can be used to demonstrate that the PVC
algorithm works well for known distributions of radioactivity. They include
simple geometrical objects with one, two, or all three dimensions suffering
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from PVE for which the analytical expressions of quantitative recovery are
available (cf. Egs. 19-24). Validation is usually sought out by first making
sure the partial volume correction method works for simple geometrical
shapes such as cylinders or spheres. For example, a set of 5 spheres of
various sizes was used for the validation of the simulated PSF used in the
GTM-PVC algorithm.** Validation is further carried out with phantoms of
increased complexity, with possible multiple isotope experiments for simu-
lating time-varying contrast.’> Realistic phantoms containing several inde-
pendent compartments surrounded by a realistic medium, such as the brain
phantom used to validate the GTM approach®**® represents more realistic
imaging conditions. Those models are suitable for neuroreceptor studies
where the tracer accumulates specifically in the striatum. For tracers diffus-
ing more homogeneously throughout the cortex, an anthropomorphic
phantom (STEPBRAIN) separating the cortex from white matter has been
proposed.”

7.4  Clinical and Research Studies
7.4.1 Brain Imaging

Because of limitations of spatial resolution, quantitative PET measurements
of cerebral blood flow, glucose metabolism and neuroreceptor binding, are
influenced by partial-volume averaging among neighbouring tissues with
differing tracer concentrations.! Partial volume effects are important for
describing the true functional contribution of nuclear medicine images.’®
Decomposition of these images into a functional and structural component
is necessary for studies of healthy ageing and pathophysiology, as well as for
assessing clinical patients.*

Several algorithms have been proposed to improve positron emission
tomography quantification by combining anatomical and functional infor-
mation. The anatomical information could also be used to build an attenu-
ation map for attenuation and scatter correction purposes.’’ The precision
of these methods when applied to real data depends on the precision of the
manifold correction steps, such as PSF modelling, magnetic resonance im-
aging-positron emission tomography registration, tissue segmentation, or
background activity estimation. A good understanding of the influence of
these parameters thus is critical to the effective use of the algorithms.?%>*78
It has been shown that a two-compartment approach is better suited for
comparative PET/SPECT studies, whereas the three-compartment algo-
rithm is capable of greater accuracy for absolute quantitative measures.>’

Several neuroimaging studies have attempted to verify the neurophysio-
logic correlates of age-related changes in the brain. In the early 1980s, using
the '33Xe inhalation method, researchers investigated cerebral blood flow
and reported significant reductions with age. Since these pioneering studies,
which suffered from poor spatial resolution and other limitations, the advent
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of PET has provided neuroscientists with more sophisticated tools for the
quantitative measurements of brain physiology.>> Cerebral volume loss
resulting from healthy aging processes can cause underestimation of PET
physiologic measurements, despite great improvement in scanner reso-
lution.” Thus, the failure to account for the effect of partial-volume aver-
aging of brains with expanded sulci has contributed to the confounding
results in functional imaging studies of aging. After partial volume correc-
tion, no CBF decline with age in healthy individuals is described.***

It is therefore expected that an important contribution to PET and
SPECT imaging of the brain will be obtained by enhanced reconstruction
algorithms incorporating resolution recovery techniques. An example of
such method applicable to clinical data is a data-driven automated decon-
volution approach.®' Promising results to achieve such goal have been
obtained by several authors e.g. using probabilistic MRI segmentation,
subsequent binarization and convolution to obtain dispersion coefficients.>>

Although different statistical mapping methods may yield grossly similar
patterns of hypometabolism or hypoperfusion, the extent, severity, and peak
location of metabolic changes can be inconsistent. Deformation accuracy
appears to be more prone to atrophy.® Accurate estimates of striatal uptake
and BP in %1 brain SPECT are feasible with PVC, even with small errors in
registering SPECT with anatomic data or in segmenting the striata.** In
various pathological conditions, PVC can assess the functional contribution
to pathology. Reduced glucose metabolism measured by PET in DAT is not
simply an artefact due to an increase in CSF space induced by atrophy, but
reflects a true metabolic reduction per gram of tissue.®* Also in epileptic foci,
hypometabolism is larger than a mere atrophy effect.®

It has been demonstrated that cerebral atrophy could not solely account
for the loss of tissue function seen in DAT.® Conversely, when the same
type of dilution correction is applied in the case of the study of normal aging,
partial volume correction annihilates the significant decrease in cerebral
blood flow in normal aging commonly reported before atrophy correction.**
This is in disagreement with several earlier reports of decreased metabolism
with normal aging.¢-%’

Brain perfusion studies performed in patients with probable DAT showed
that rCBF was decreased in the parahippocampal gyrus but not in the
hippocampus after pixel-based partial volume correction.®® It was also
demonstrated that the apparent decrease in uptake of a muscarinic choliner-
gic antagonist seen in temporal lobe epilepsy was due to a decrease in
hippocampal volume rather than a decrease in receptor concentration.®
This correction was based on global scaling by total measured volume of
hippocampus from MRI.

Dopamine transporters have been shown to be markedly reduced in Lesh-
Nyhan disease, partial volume correction only accentuating this finding.”?
Dopa-decarboxylaze activity has been shown to be greatly reduced in pa-
tients with Parkinson disease compared to normal controls.®®
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Studies of the dopaminergic system with SPECT have been shown to
greatly benefit from partial volume correction using a striatal phantom
modelling the basal ganglia’ and a numerical model of the RSD brain
phantom.®* The latter study has shown that the bias in binding potential
can be reduced from 50% to about 10%.

7.4.2 Myocardial Imaging

Several investigators have proposed to compute recovery coefficients and
spillover factors from geometric measurement directly from the image®' or
derived from phantom studies.”” In both cases, count recovery and spillover
factors are derived by convolving the PSF in one dimension with an analyt-
ical model of the heart, comprised of a centre circle (blood pool or radius R)
surrounded by an annulus (myocardium or thickness ), both of uniform
activity. In this case, the PSF being considered as spatially invariant, the
recovery coefficient for the blood pool corresponds to that of a 2-D cylin-
drical object or diameter 2R, and can be expressed as (see Eq. 22):

Fpp=1— ¢ R/ (39)

Similarly, the contribution of the blood pool to the myocardium Fp),, the
self recovery of muscle tissue Fj;y,, and the contribution of the myocardial
tissue to the blood compartment Fj;p can be computed using the convolu-
tion integrals over the myocardium/ventricle model. They can be derived
using formulas recalled in section 5. The original work of Henze and col-
leagues®' proposed to extract the myocardium thickness and left ventricle
diameter directly from PET using specific markers of the 2 regions. Herrero
et al., derived computed recovery and spillover factors using the same
analytical procedure, but computed the dimensions of the left ventricle and
myocardium wall from the dimensions of a standard heart phantom®? (Data
Spectrum, Hillsborough, NC).

Based on the assumption that partial volume errors are the same for
transmission and emission images, it was demonstrated that the activity
per gram of extravascular tissue can be estimated by dividing the perfusion
regional data by extravascular density for the same region.’® It is worth
emphasizing that no convincing evidence was found of thickness above the
partial volume limit in a large sample of 75 normotensive and 25 hyperten-
sive patients.”® Therefore it is likely that relations between myocardial count
increases and wall thickening are similar throughout the cardiac cycle,
even in patients with left ventricular hypertrophy. Using PET and '*NHj3-
ammonia for the quantification of myocardial blood flow, Nuyts er al.**
have obtained recovery coefficients of 59% for the myocardial wall and 86%
for the blood pool in animal experiments. In addition, spillover from the
blood pool into the myocardial was ~14%.

More recently, some authors have proposed to use correlated anatomical
images to derive correction maps for partial volume in myocardial perfusion
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studies. For instance, the group from UCSF has used CT images to define
regional myocardial attenuation and count recovery maps of the porcine
heart.?” This method is similar to the pixel-by-pixel approach used for simple
atrophy correction in brain PET,**** although it does not provide corrected
maps of the myocardium perfusion, but rather an average regional value.

7.4.3 Oncology Imaging

Despite the widespread applications of nuclear imaging (especially PET) in
oncology, only a limited number of studies investigated the PVE problem
in tumour imaging. The effects of object shape, size and background on
SPECT 131 activity quantification without detector response compensation
has been reported in a detailed Monte Carlo study.”® The activity quantifi-
cation was carried out using a constant calibration factor and no PVC. It has
been shown that the bias increases significantly with decreasing lesion size as
a result of the increased spill-out of counts. More importantly, the bias for
cylindrical lesions is consistently higher than for spherical lesions because
spill-out is more significant for non-spherical objects. The bias also depends
significantly on tumour-to-background ratio (TBR) because of the spill-in
effect.

The simplest approach relies on the use of pre-calculated recovery coeffi-
cients for more reliable estimate of the standardized uptake value in pul-
monary lesions.”””® The bias affecting TBR estimates owing to PVE is lesion
size dependent. The generally accepted criterion is that PVC is required if
the lesion size is less than 2-3 times the spatial resolution (FWHM) of the
imaging system when the parameter of interest is the maximum voxel value
within a particular Vol. In fact, Soret e al.”® have demonstrated that when
the parameter of interest is the average count density, the bias introduced by
the PVE could exceed 10% even for lesions ~6 times the FWHM depending
on the true TBR.

Notwithstanding the known limitations, small animal imaging with a
clinical dual-modality PET/CT scanner has been shown to be feasible for
oncological imaging where the high resolution CT could be used for more
precise localization of PET findings in addition to PVC through size-
dependent recovery coefficient correction.'” An aspect which deserves fur-
ther attention is that robust models have also been developed to correction
for partial volume effect in helical CT.'"!

8. Summary

Partial volume correction of emission tomography data remains a priority
for accurate image quantitation. The ability to compensate for partial vol-
ume effects usually requires to: (1) characterize the point-spread function of
the imaging system, (2) characterize the tissue components that participate in
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the uptake and metabolism of the tracer, and (3) characterize the resolution
effects in terms of correction factors or maps.

The imaging system PSF can be accurately measured by phantom experi-
ments and is easily modelled by simple mathematical functions such as
Gaussian or a series of Gaussian functions depending on whether the scatter
component is included at that level or not. With the growing availability of
multimodality integration and processing software, additional anatomical
information provided by MR or CT imaging can be used to segment the
distribution of the tracer into functionally meaningful regions. By studying
the interaction of the system’s PSF with a model of the tracer distribution,
the contribution of each distinct region to the emission image can be com-
puted. These interactions can be modelled using sophisticated Monte Carlo
simulation, analytical projectors, or a simple convolution with a defined
resolution kernel in image space.'*?

In practice self-recovery (RC) and spillover (or “spill-in”’) factors can be
easily extracted and processed through any given set of user-defined a priori
or a posteriori Rols,>*** or RC maps and spill-in contributions can be
derived to create images of the corrected radioactivity distribution in
cortical grey matter.”**> With increased image resolution, the limit in size
of regions that PVC can be applied to will constantly be pushed further, and
it will become increasingly important to be able to account for cross-
contamination of activity between small adjacent regions for which the
assumptions made during the application of the pixel-based method®* will
be largely violated. The GTM approach®* possesses the formidable advan-
tage of not requiring any assumption of any tracer level at any time. The
extraction of the GTM matrix is a one-time process, and does not require
any additional computation for dynamic data, i.e., the same inverse of the
GTM matrix is applied to all the data points since it expresses geometric
interaction between the imaging system and the tissue component, independ-
ent of the contrast present in the image. Comparative assessment of PVC
strategies is an important part of the validation step. %103

Those methods proved to be sufficiently accurate to be applied in a
growing number of research studies, if one considers that the number of
publications related to the effect of the application of PVC algorithms to
research data has grown significantly in the past few years. PVC is now a
powerful and reliable tool that should become systematically used in re-
search or clinical studies involving the use of emission tomography. It is
expected that improvement in all aspects of the prerequisite for accurate
partial volume correction are still required, especially for what concerns the
quality of anatomo-functional mapping needed for accurate quantitation of
cell-specific function and metabolism.
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Image Registration Techniques
in Nuclear Medicine Imaging

B.F. HurTton*, M. BRAUN® AND P. SLOMKA'

1. Introduction

Nuclear medicine has a long tradition of incorporating quantitative analysis
in its diagnostic procedures. Until recently, the analysis was based on
radionuclide images as the sole input although the importance of the com-
plementary information available from other modalities or from earlier
scans has long been recognized. Indeed, qualitative correlation between
images, based on anatomical expertise, has always been part of the repertoire
of the nuclear medicine clinician. However, spatial distortion between im-
ages, caused largely by differences in posture and acquisition technique,
prevented the extension of these techniques to quantitative analysis. Recent
advances in image registration software and hardware have made it increas-
ingly possible to utilize that complementary image information in a clinical
setting. Reporting stations now often provide access to data from multiple
modalities and permit various forms of fused display for viewing spatially
registered images. Recently introduced dual-modality systems (described in
Chapter 2 of this volume) provide a hardware approach to spatial registra-
tion that is of particular value in those cases where numerical algorithms fail.
However, software approaches remain essential to the solution of many
registration problems in clinical practice. In this chapter, we define the
registration problem, introduce various algorithmic approaches to register-
ing images, and discuss issues of clinical application with emphasis
on nuclear medicine. A more extensive coverage of image registration is
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provided by Hajnal er al.' There are also useful reviews covering various
aspects of medical image registration.” '

2. Registration Problem

The precise form of the registration problem depends on the application.
Figure 1 attempts to define the registration problem in a general form that
takes account of various applications. The starting point is an underlying
baseline anatomy, containing all anatomical structures that can be imaged.
The baseline anatomy is exemplified by an atlas representation. The end-
point is a pair of images. The process that links the starting point to each of
the final images is complex. A number of the stages of this process introduce
spatial distortions. Other stages have a corrupting influence on the image
data. The registration problem can be posed as the search for a relative
deformation between image domains given the two images.

Baseline
anatomy
0,° 0,°
Subject 1 Subject 2
| Relative delay t | o'
Imaging system 1 Imaging system 2
| Pose & grid distortion | 6,° | Pose & grid distortionl 6,"
| |
| Contrast generation | | Contrast generation |
| |
| Spatial blur | | Spatial blur |
| |
| Temporal blur | | Temporal blur |
| |
| Noise | | Noise |
g1 (X!y!z) Qz(Xr)’,Z)

FIGURE 1. A generic representation of the registration problem.
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2.1 Contributions to Deformation

The anatomy of each individual subject is treated as an instantiation of the
baseline anatomy. Individual variation in size, shape and position of ana-
tomical structures from the baseline is captured by deformation #°. In order
to preserve the generality of the description, the deformation will be repre-
sented by a displacement field, in which a displacement vector is associated
with every point in the spatial domain. In inter-subject registration, the aim
is to capture deformation 6° = 65 — #]. The implicit assumption that the
entire anatomical structure of one subject can be obtained by a spatial
mapping from another subject is not always valid. For example, the presence
of gender-specific organs will clearly violate the assumption. Other normal
anatomical variations (e.g. the variable number of brain sulci) may also
present difficulties.

If 6} = 6], the registration becomes an intra-subject problem, and a sig-
nificant source of anatomical deformation is the relative delay ¢ between the
times the two images were acquired. Depending on the time scale of the
delay, different morphometric changes may be evident. For example, on a
relatively short time scale, bladder filling will affect not merely the size,
shape and position of the bladder but also of nearby organs. On a longer
scale, normal developmental changes in children, ageing processes, and
changes associated with reproductive cycle, may contribute to the deform-
ation #'. In a clinical setting, principal sources of deformation are the
pathological process (e.g. tumours, oedema) and treatment (e.g. surgical
excision).

In both inter- and intra-subject applications, registration aims to bridge
the morphometric differences so that images can be compared on a common
spatial grid. However, where the primary focus is on elucidating rather than
bypassing the morphometric differences, the deformation map found by the
registration process can provide the basis for quantifying these differences.

As the anatomical information is transformed into an image, a further
deformation 6” takes place. There are two principal contributions to the
deformation that occur in the imaging process. The subject’s pose (e.g.
prone/supine, arms up/down, breath hold) will depend on the imaging
modality and the type of examination. Each variation can give rise to
significant and complex deformations. In addition, even where the same
type of pose is assumed, replication of the pose in fine detail cannot be
assumed (except where extrinsic locating devices are used, such as a stereo-
tactic frame in the imaging of the brain.!”'® The other contribution comes
from the distortion of the spatial grid intrinsic to the imaging system.
For example, in magnetic resonance imaging (MRI), the spatial grid is
distorted by the non-uniformity of the steady magnetic field and gradient
nonlinearity.'”

The registration problem therefore amounts to finding the deformation
A = AG* + AG' + AP”. In inter-subject studies, the effect of a delay between
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image acquisitions can be built into the inter-subject deformation, and we
are left with A9 = A6° + A¢”. In intra-subject studies, the deformation be-
comes Af = A9’ + A@”. In studies on the same subject carried out in rela-
tively quick succession (e.g. in dual systems described in Chapter 2 of this
volume) or where no significant deformations occur between image acquisi-
tions, the deformation becomes A9 = A#”. In dual-modality systems (A6 is
usually assumed to be zero.

2.2 Corrupting Influences

Because the registration algorithm acts on final images, it is subject to the
corrupting influences of the imaging system. Figure 1 depicts the effect of an
imaging system in a simplified form. The heart of the imaging process is the
mapping of tissue-specific properties to regions of the image space (referred
to as contrast generation in Figure 1). In x-ray computed tomography (CT),
the property mapped is related to x-ray attenuation. In MRI, it is usually
free proton density modulated by spin-lattice and spin-spin relaxation, and
in nuclear medicine, it is the uptake of the radiopharmaceutical. Contrast is
generated where the property values are significantly different. Because of
this fundamental difference between image modalities, image intensity in one
modality is not necessarily equal to that in another modality and we cannot
achieve registration by simply matching intensity values.

Consider a multi-modality registration of single photon emission com-
puted tomography (SPECT) and CT of the brain. With the appropriate
choice of a radiopharmaceutical (e.g. *™Tc labelled HMPAO) the SPECT
image will show a strong contrast between grey matter and white matter.
However, x-ray attenuation of the two tissues is so similar that there is no
appreciable contrast between them in the CT image. Thus registration of
grey matter in SPECT with grey matter in CT will not be possible, although
registration of the two brain images may still succeed by relying on the
registration of other contrasting tissues. On the other hand, radionuclide
images generally manifest poor anatomical contrast, with few landmarks
available for registration purposes.

The finite resolution of each imaging system imposes a spatial blur on
image data. This can have a significant effect on the displacement field, as
illustrated in Figure 2. In (a), the fine-scale displacement field is uniform
(characteristic of rigid-body translation). It is likely that, following blurring
in which the 2 x 2 image block is replaced by one pixel, the displacement will
remain largely unchanged. On the other hand, a displacement field charac-
terized by rapid change, such as the radial expansion in Figure 2(b), is likely
to be severely affected by spatial blurring. Indeed, since the resulting pixel
can only have a single displacement vector, that vector cannot capture
accurately deformations other than uniform translation. The direction and
magnitude of the vector will be determined by the details of the image and
the registration algorithm. Figure 2(c) illustrates this point further. In order
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7|/ N/ ~ |\
7|/ v |\ x| A

(a) (b) (c)

FiGure 2. Examples of fine scale displacement fields used in considering the effect of
spatial blur: (a) uniform translation, (b) radial expansion, and (c) counter-clockwise
rotation.

to represent a uniform rotation exactly, the displacement field would ideally
be defined with infinitesimally small pixels. The poorer the resolution, the
coarser is the approximation to uniform rotation.

In inter-modality and intra-modality applications, where images are ac-
quired with different resolution, the undesirable effects on the displacement
field may be reduced by blurring the higher resolution image to match the
resolution of the other image although noise reduction is also an important
consideration.?® In practice, a number of registration algorithms adopt a
multi-scale approach, which allows for controlled blurring of both images.
Note, however, that multi-scale properties of the displacement field are less
well understood than those of the image itself. Resolution effects are further
complicated by the fact that imaging systems are, at best, only approxi-
mately shift invariant and the resolution varies from one part of the imaged
volume to another. An example where the approximation breaks down is the
position-dependent resolution in SPECT. Where possible, such effects
should be corrected prior to the application of the registration algorithm.

Temporal blur occurs where the duration of image acquisition is of the
order of, or longer than, the time constant of any movement of tissues. In
modalities such as CT and fast MRI, acquisition can be completed with
breath hold, so that only cardiac motion contributes significantly to data
blurring (non-blur artefacts may also occur). In slower acquisition modal-
ities (e.g. SPECT), respiratory motion, peristaltic intestinal motion, and
involuntary patient’s motion, in addition to cardiac motion, can all contrib-
ute to temporal blur. The effect on the registration process depends on the
application. In intra-modality problems, where the temporal effects in both
images are similar, the principal consequence is that the desired deformation
is defined with greater uncertainty, leading to a possible diminution of
registration accuracy. In inter-modality applications, the temporal blurring
may be very different in the two images, impeding the registration process.
Unlike the case of spatial blur, we cannot bring the two images to a common
temporal scale with a uniform spatial blur.

Noise can have a significant effect in that the random fluctuation of inten-
sity values may confuse the registration algorithm. Nuclear medicine images
are generally noisier than those obtained with other modalities and this can be
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a significant factor in registration problems. An additional complication is
that the noise level in those images depends on local mean intensity.

Thus the aim of the registration algorithm is to determine the relative
deformation between image domains given images gi(x,y,z) and g>(x,y,z2),
each subject to the corrupting influences of contrast generation, spatial and
temporal blur, as well as noise.

3. Generic Registration Algorithm

Almost all registration algorithms follow the iterative scheme shown in
Figure 3. One can distinguish between the deformable floating image and
the fixed reference image. The floating image is first deformed using some
initial values of the deformation parameters. The core of the algorithm is the
evaluation of the similarity between the deformed floating image and the
reference image. An iterative optimization algorithm is employed to find the
deformation that maximizes similarity. The output is the optimum deform-
ation defined by a set of parameters. The similarity measure may be evalu-
ated for a part of the image at a time, instead of the entire image.

4. Types of Deformation

So far, the deformation 6 was represented by a displacement vector
field, where deformation at each point r in the image is given by Ar =
(Ax, Ay, Az)". There are two major issues arising from this representation:

Reference Floating
image image
Initialize
deformation
Deform |<------- '
volume |™
Evaluate
similarity measure
mIIS " Update
Si _Ialy? deformation
maximum parameters

Optimum deformation parameters

FIGURE 3. A flowchart for image registration.
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computational cost and lack of local coherence in the vector field. For an
image of size N?, finding the deformation requires solving N independent
local registration problems, each yielding 3 parameters. This is computa-
tionally expensive. Moreover, it is reasonable to expect that a deformation of
tissue at one point affects deformation at adjacent points. Several models
have been proposed to express this correlation, including thin plate spline,
elastic body spline*® and viscous flow.?*** Smoothing with, for example, a
median filter,” also serves to constrain the displacement field based on
adjacent values.

An extreme case of inter-voxel correlation is expressed by the affine
transformation model,?® which permits only global translations, rotations,
scaling along each axis and shearing deformations. In this case, only one
registration problem needs to be solved, yielding 12 parameters embedded in
a transformation matrix. For each location (x, y, z), the transformed coord-
inates are given by

ayy dip a3 Ax X

= (D

x/

4 ay an axp Ay| |y
z a3y dszp  dizjz Az z
1

0 0 O 1 1

where the translation vector is given by [Ax,Ay,Az]”, and the affine trans-
formation is given by the 9 coefficients a;;. The displacement vector for point
(x,y,z)is (¥ —x,y —y, 2 —2).

The rigid-body model represents a somewhat more severe case of inter-
voxel correlation. It is a special case of the affine model, with shearing
transformations removed and scaling independently pre-determined. The
registration algorithm needs to determine only 6 parameters (3 orthogonal
rotations and 3 translations). Much of the early registration work was
confined to intra-subject brain applications, where the confinement of
densely packed tissues to the interior of the skull makes a rigid-body
model usually an adequate approximation. The scaling coefficients would
be obtained separately from the knowledge of acquisition parameters.

Apart from exploiting inter-voxel dependence, we can reduce the compu-
tational cost by solving for Ar at a subset of locations obtained by subsam-
pling the image space. The registration algorithm will then need to be
invoked (N/p)® times, where p is the subsampling factor in each dimension.
The displacement at remaining locations can be obtained by interpolation.
The interpolating function should be consistent with the adopted physical
model.

In a computationally attractive coarse-to-fine approac the displace-
ment field is estimated on a sparse grid first, then on progressively finer grids
(Figure 4). This approach is also expected to make the registration algorithm
more robust.

h,27_29



9. Image Registration Techniques in Nuclear Medicine Imaging 279

FIGURE 4. Three steps of a coarse-to-fine scheme. First (left), the coarsely sampled
displacement field is estimated using a large image block. Then the displacement field
is refined using successively smaller image blocks and finer sampling.

5. Similarity Measures

The criterion that drives the registration algorithm is known as the similarity
measure (alternative formulations refer to the cost function or the objective
function). The maximum of the similarity measure should correspond to the
closest alignment between the two images being registered. Let 4(r) and B(r)
be two such images defined over respective image domains (2, and (23,
respectively. The registration process can be expressed as the search for the
deformation 6 that maximizes the similarity measure S between the reference
image A and the deformed floating image B,

Omax = arg max S(A(r), B(6,)) 2)

where 6, constructs the deformed image domain. The similarity measure may
be evaluated over subsets of image domains rather than the entire domains.

Many similarity measures have been proposed. Broadly, these can be
categorized as intensity-based and feature-based measures. The feature-
based measures are not applied to the original images. Instead, the images
are segmented in some way so that certain spatial features can be extracted.
These features may be points, lines, or surfaces. Their spatial characteristics,
such as the position of a landmark point or the shape of a surface, are then
compared in the similarity measure.

In the simplest case, an intensity-based measure makes a direct pixel-by-
pixel comparison of intensity values. More commonly, some characteristics
derived from the intensity data are compared. In some instances, the inten-
sity characteristics are derived from spatially constrained regions. Such cases
straddle the border between measures based on spatial features and those
based on intensity but will be classified as intensity-based measures.

For a particular application, the choice of the similarity measure will be
guided by the characteristics of the image modalities and the nature of
the expected deformation.
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5.1 Measures based on Spatial Features

One can categorize similarity measures according to the type of feature used
to construct the measures, as follows.

5.1.1 Landmark Measures

In this type of registration, the similarity measure acts on a set of points
extracted from each image. Each point gives the location of a landmark, a
small feature (artificial or natural) that is clearly present in both images. The
similarity measure would typically relate to the average distance between
the corresponding landmarks in the two images. For example, the similarity
measure can be defined as the (negative of the) average distance between
corresponding landmarks,

| L
S(A(r),B(6,)) = _ZZ rq; — 0rp, (3)

=1
where j indexes pairs of corresponding landmarks and ||.|| denotes the

(usually Euclidean) norm. Alternatively, the similarity measure is given in
a least squares form:

“4)

rAj—GrB,

S(A(r)7B(6r)) - - Z
=

If 6 is a rigid body transformation, this is the so-called Procrustes metric,
which is well suited to this subset of registration problems.*

One of the challenges of these algorithms is to establish the correct pairing
of landmarks in the two images. Aside from manual identification, a com-
mon automatic approach is to find, for each landmark in one image, the
closest landmark in the other image. Such approaches usually require that
the misalignment be small. A version of this, with iterative reassignment of
closest pairs, forms a part of the popular iterative closest point (ICP)
algorithm®' used in surface matching. Another factor influencing the success
of landmark-based registration is the density of landmarks. Both the total
number and the disposition of landmarks must be adequate to model accur-
ately the deformation of the image domain. In practice, the number of
landmarks is much smaller than the number of voxels, leading to a fast
algorithm, which is an important advantage of landmark-based methods.

In accordance with their origin, landmarks can be classified as extrinsic,
anatomical, or geometrical.

5.1.2 Extrinsic Markers

Fiducial markers, visible in the two images to be registered, are attached to the
body. This is more difficult to accomplish where different modalities are
involved but dual-purpose external markers that are visible in MRI or CT on
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the one hand, and in positron emission tomography (PET) or SPECT on the
other, have been widely used. Another requirement is that the markers be
rigidly attached to the body. This may be difficult to accomplish depending on
what is meant by the “body”. If the markers are attached to the skin but the
organs of interest are in the body interior, the markers may not manifest the
deformation being sought. For example, because the skin can move relative to
the skull, skin markers may not be adequate for detection of intracranial
misalignment. In patients about to undergo neurosurgery, a rigid stereotactic
frame is sometimes attached directly to the skull and offers a set of landmarks
that accurately captures skull misalignments.'”'® However, such an invasive
procedure cannot be justified by the requirements of image registration alone.

Extrinsic markers play an important role in assessing the accuracy of
registration methods.*>* Since such assessments depend on accurate local-
ization of the markers, the design of the markers and the localization
technique must minimize errors and those errors need to be quanti-
fied.>**3* The principal disadvantage of extrinsic markers is that they
cannot be used in retrospective studies. A potentially important limitation
of extrinsic markers is that, being exterior to the body, they may not
accurately capture deformations of the body interior. Additionally, the
sparseness of the markers limits the registration to global rigid-body or
affine transformations.

5.1.3 Anatomical Landmarks

Markers based on distinctive anatomical features avoid the retrospectivity
and invasiveness of the extrinsic markers (e.g. Evans er al.*®). However,
identification of anatomical landmarks requires considerable operator inter-
action. Small sets of anatomical landmarks have been used to constrain an
unrelated registration algorithm.?> The lack of anatomical definition and
low resolution of nuclear medicine images makes the use of anatomical
landmarks problematic.

5.1.4 Geometrical Landmarks

Corners, local curvature extrema and other geometric features are intrinsic
landmarks that can be identified automatically.>® They appear to be par-
ticularly useful in serial studies of high resolution modalities. However, in
nuclear medicine images, the low signal-to-noise ratio and the relatively poor
resolution impedes the use of geometrical landmarks.

5.2  Boundary Measures

In manual registration, the user usually attempts to align corresponding
boundary elements (surfaces or edges). The process includes identification
of the boundary elements and establishing anatomical correspondence be-
tween corresponding elements in the two images, and finally the alignment.
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Algorithms based on boundary measures emulate this process but with a
high degree of automation. A principal challenge in boundary-based algo-
rithms is the requirement to extract the appropriate surfaces or edges. The
similarity measure quantifies an average “distance’ between the correspond-
ing surfaces. If surface extraction is carried out in just one of the images, the
average distance is computed between the surface detected in one image and
a set of points in the other image. If both surfaces are represented by sets of
points, the iterative closest point (ICP) method provides a popular optimiza-
tion algorithm for image registration.’' The algorithm seeks a least squares
minimum distance between data sets but allows the correspondence between
points to be reassigned at each iteration based on the current closest point.

As was the case with landmark measures, the process of segmenting
spatial features removes the dependence on voxel values, making these
measures well suited to inter-modality registration.

There is a wide range of techniques for matching based on surface infor-
mation, utilizing either characteristics of the surface or edge. These may be
extensions of the geometrical landmarks referred to earlier, such as the crest
lines,*”*® surface points® or more general models (e.g. Gee er al.*’). Until
recently, one of the most popular algorithms for intra-subject registration of
functional and anatomical images was that of Pelizzari and co-workers.* A
small number of points was defined on the brain surface imaged with the
lower resolution modality, treating this as a ‘hat’ to be fitted to the ‘head’, a
set of contours defined by the higher resolution modality. Problems can
occur in automating the segmentation step that defines the brain outline as
opposed to the skull or scalp and in finding a unique fit, independent of head
shape. Although designed specifically for neurological applications, similar
approaches have been developed for matching surfaces of internal
organs.*'*? The segmentation step needs to be designed with the particular
part of the anatomy in mind. Other algorithms rely indirectly on edge
information (e.g. maximisation of zero-crossings in difference images*).
However, most of these techniques rely on the images having high resolution
so that edges are well defined. A detailed review of surface registration
techniques can be found in ref.'?

Since organ boundary descriptors define the shape of the organ, boundary
measures can be considered as shape measures. More specific shape meas-
ures can be extracted from segmented regions. One example is the principal
axes method.***> The method requires a computation of moments up to
order two in the two images to be registered. In the simplest (rigid-body)
case, the centres of mass (counts) are determined and the images are trans-
lated so that the centres of mass coincide. The rotation is then determined
from the orientation of the principal axes. The method can be extended
easily to incorporate affine transformations. The algorithm needs to visit a
large number of voxels but it is usually not iterative, so the method is
reasonably fast. A drawback is that the principal axes measures are sensitive
to differences in the field of view in the two images.
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5.3 Intensity Measures

These measures make explicit use of the intensity values or the statistical
parameters of their histogram. Removing the explicit dependence on the
spatial features and the use of all voxels frees the intensity measures from
restrictions on the allowable transformations. In principle, transformations
with a large number of degrees of freedom could be sought. However,
restrictions re-appear where the algorithm acts on a small subset of the
image. The simplest similarity measures are those that directly compare
intensity values between the two images, voxel by voxel. Such measures
will only be suitable for intra-modality registration. When images arise
from different modalities, with unrelated contrast mechanisms, such simple
measures are clearly inadequate. We distinguish the following types of
similarity measure.

5.3.1 Minimum Intensity Difference

The simplest of these voxel-by-voxel measures is the (negative of) the
absolute or squared intensity differences.” The sum of squared differences,

S(A(r),B Z lr; — B(6r,) ||’ )

can be shown to be optimal if images differ only due to Gaussian noise.*®
However, it is sensitive to bias when some voxel pairs manifest large inten-
sity differences. It is assumed that voxel values in registered images are
similar, an assumption that is only true for similar studies in the same
modality (e.g. paired studies in the same individual using the same radio-
nuclide) (Figure 5). Nevertheless the sum of absolute differences has been
demonstrated to be widely applicable, even when there are quite large
differences between studies.’

5.3.2 Cross Correlation

Another common similarity measure is the cross-correlation. In this case, it
is possible to relax the condition of the similarity of values so as to apply the
technique for both intra- and inter-modality registration problems.*”*°

5.3.3 Minimum Variance

The underlying assumption for minimum variance measures is that an image
consists of largely homogenous (small variance) regions that differ substan-
tially (large variance) from one another. If the two images are correctly
registered, a homogeneous region in one image will correspond to a homo-
geneous region in the other image, even though the mean intensity values
will be, in general, unrelated. This is the basis for some popular
inter-modality implementations. Woods er al.>® performed a simple
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misaligned original registered

difference difference

FIGURE 5. The absolute difference image is substantial when the alignment is poor
(left) but is reduced as the alignment improves (right). The sum of the difference
image can be used to guide the registration process.

intensity-based segmentation that did not account for any correlation
among neighbouring voxels. Ardekani e al.>' performed segmentation of a
MRI or CT image using K-means clustering, followed by connected com-
ponent analysis, to define a large set of “homogencous” regions. This
segmentation was then imposed (induced) on the second lower resolution
image (SPECT or PET image). Both these approaches are well suited for
registration of SPECT/ PET data with other modalities since segmentation
need only be applied to the higher resolution anatomical image. Note that
although the measure is extracted from intensity values, those values come
from pre-segmented regions and, in this sense, straddle the boundary be-
tween intensity-based measures and those based on spatial features.

5.3.4 Mutual Information

Similarity measures arising from information theoretic approaches have
recently become popular. These include minimization of histogram disper-
sion,>? maximization of mutual information®® or maximization of the
correlation ratio.”>” These approaches are attractive as they are generally
applicable to both intra- and inter-modality registration classes, with the
underlying assumption being that there is a correlation between groups of
voxels that have similar values. Although the techniques would appear to be
less constrained than approaches where some spatial relationship between
like-voxels is implied, they have been demonstrated to be widely applicable
for matching both similar and dissimilar images. The basis for histogram
based approaches is summarised in Figure 6. See also the useful discussion in
the review by Hill er al.'*
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a=A(x)

Voxel at xin A" with intensity a

b=B(x)

Voxel at x in B with intensity b

Image B

FIGURE 6. A joint intensity histogram is formed from the intensities in two images. If
a voxel at x has intensity « in transformed image A’, and b in image B, this pair of
voxels will contribute one count to the joint histogram at (a, »). The final value of the
histogram at (a,b) will be the count of all locations x where a = A’(x) and b = B(x).

In a recent assessment of voxel similarity measures, Holden et al.>® have
demonstrated clear preference for those based on entropy measures includ-
ing mutual information. To reduce problems that occur when the two images
to be registered do not represent the same volume of the body, mutual
information can be normalized.’** Lau et al.*> have demonstrated an
advantage of a symmetric version of the correlation ratio compared to
normalised mutual information when severe sub-sampling is used to im-
prove speed. Recently, a number of groups have suggested further spatial
constraints to assist registration such as edge information,®® regional label-
ling,®! or identification of parts of the image volume corresponding to bone
where rigid-body transformation applies.®> Entropy measures, and particu-
larly mutual information, have found widespread use in nuclear medicine
applications.

6. Display of Registered Data

Fused images need to be displayed in an integrated fashion, which allows
simultaneous evaluation of multiple modalities or multiple image-sets both
in 2D and in 3D. There are several imaging techniques, which can assist the
user in viewing such combined images.
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6.1 Synchronized Cursor

The simplest but very effective technique of imaging is the use of a synchronized
dual cursor, which can be seen on multiple images at the same time. Although
the images are not displayed in an integrated fashion with this technique, the
cursors allow identification of corresponding features. The main advantage of
using the synchronized cursors and linked side-by-side displays is that no
information is lost during the display and features present at the same location
in the two images will not obscure, and interfere with each other.

6.2 Fused Display

Medical images (CT, MRI, PET, SPECT) are typically monochrome with
pseudo-colour lookup tables. Most often, anatomical images such as CT or
MRI are displayed using the greyscale only. On the other hand, functional
information derived from PET and SPECT can be effectively depicted using
colour lookup tables. To combine the colour functional images with the
greyscale anatomical images, various display techniques can be applied.
When using older type 8-bit displays, it is not possible to mix or combine
colours at a pixel level; however, it is possible to interleave the colour and
greyscale pixel in grid-like fashion. When screen pixels are small, such
interleaved pixels appear as a superimposition of colour with greyscale
with the degree of transparency proportional to the interleave step. The
disadvantage of such techniques is that the display effects depend on the
screen resolution and various aliasing artefacts often occur when changing
the effective image resolution, for example, when images are zoomed. In
addition, image information may be lost if images need to be sub-sampled
for the display purposes. When using 24-bit display, which is currently
standard on most workstations, it is possible to perform colour blending
with the degree of apparent transparency. Instead of interleaving the pixels,
the intensities are combined and a new colour value is computed for each
pixel, which includes the contribution from both images. Such fused images
have higher quality. However, it is possible that bright structures on CT or
MRI images can artificially increase the perceived intensity of the functional
image. Therefore, fused images, although impressive, need to be viewed with
caution and the review of original un-fused images is always recommended.

Other techniques include an interactive navigation of a roving window on
the anatomical images, which reveals a sub-image containing the functional
information. In a checkerboard display, small sub-images containing data
from different modalities are interleaved. If serial images of the same mo-
dality are to be compared, for example stress/rest images of the heart or ictal
and inter-ictal brain images, subtracted display can also be utilized to
visualize changes.*®* Fused display cannot be used with serial images of
the same modality since such images can be meaningfully compared only
when the same colour lookup table is applied to both sets.
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6.3 3D visualization

Fused data can also be visualized in 3D using a combination of all the above
techniques. 3D volume rendered images can be created for anatomical
images and 2D orthogonal or oblique cut-planes can be used to reveal the
corresponding functional information. Combination of various techniques
can be very effective. For example, oncological PET images are best dis-
played using the 3D Maximum Intensity Projection (MIP) technique
whereas MRI is probably best displayed using a volume rendering technique
or texture mapped 2D slices. 3D displays can also include surface-based
displays shown at a certain threshold sometimes with colour-coded func-
tional information. These techniques have been proven to be very useful in
multimodal cardiac,* or brain visualization®® (Figure 7). The multi-modal-
ity displays and even image registration can be implemented utilizing the
latest computer graphics hardware innovations, such as hardware-based 3D
or 2D texture mapping, which can accelerate 3D navigation, image blending
and image registration.®®%” The hardware-based graphics display is typically
accelerated by the order of magnitude in comparison to the software-based
rendering. Often 3D and 2D images are linked together with the help of
synchronized cursors to create comprehensive display pages.

7. Approaches to Validation

Validating registration is not a trivial task, particularly in the case of non-
rigid algorithms. Performance of algorithms can be task-dependent and, to
some extent, system-dependent. Rigorous testing therefore ideally requires
proof of performance in a range of situations. Although validation in

FIGURE 7. An example of a cardiac fusion display combining the iso-surface derived
from one modality ("8 F-FDG PET scan demonstrating infarction), with co-registered
slice images from another modality (Electron Beam Computed Tomography).
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realistic clinical data is desirable, it is rarely feasible, since ‘ground truth’
is usually unknown; but alternatives based on simulation never quite repro-
duce the clinical situation. Interpretation of parameters used to assess
registration can be misleading, e.g. errors in transformation parameters
can conceal the true clinical impact of misregistration. Only a limited
number of studies adopt rigorous validation methods that demonstrate not
only accuracy and precision, but also robustness (usability with different
degrees of mis-registration) and flexibility (applicability to a range of
situations).

7.1 Rigid-body Registration

Possibly the most rigorous studies have involved the use of external fiducial
markers, visible using multiple modalities.*>** In these studies, the fiducials
can be used to provide high quality registration and can be digitally removed
so that alternative approaches can be independently tested in comparison
with the known transformation. Acquiring these studies is non-trivial and,
unfortunately, rarely involves all the modalities of potential interest. Never-
theless, these studies have been used to demonstrate accuracy of approxi-
mately half a voxel. A limitation of these studies is that the measured errors
are fiducial registration errors (FRE), although the average registration
error for the area of interest, normally referred to as the target registration
error (TRE) can be derived.?*®

An alternative is to use multiple registrations to demonstrate consistency
in the registration result;®’ e.g. for three image sets A, B, and C, the direct
transformation to register A to C can be compared with the combined
transformation in registering A to B and subsequently B to C. A basic
assumption in this approach is that the errors in registration can be equally
attributed to each of the transformations, an assumption that may not hold
in general.

7.2 Non-rigid Registration

Validation of non-rigid registration is particularly problematic. Although
visual assessment of clinical data can provide a qualitative evaluation (e.g.
Meyer et al.’®), it is difficult to guarantee that correct registration has been
achieved. Simulation can be used (e.g. Pluim e al.”'; Lau et al.”?), provided
the applied distortion is independent of the registration method and pro-
vided the range of applied distortions is similar to that encountered in
clinical practice. Validation normally involves comparison of the displace-
ment vector field that results from the registration with the known displace-
ment vector field that was applied in the simulation. Finding an adequate
description of the range of displacement errors continues to be a topic of
research interest.
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8. Clinical Applications of Image Registration

8.1 Neurology

Multi-modality image registration involving PET or SPECT has been util-
ized in several neurological applications. One particularly useful clinical
example of multi-modality imaging is the combination of MRI and
SPECT in imaging of epilepsy. SPECT radiotracer injection can be rapidly
performed during the onset of seizures, enabling ictal imaging, which can
localize the seizure foci. Such ictal images can be co-registered with MRI to
perform image-guided resection of these regions.®>’* Although SPECT dis-
cerns seizure foci, MRI information is needed for the navigation and ana-
tomical correlation during the surgical procedure. In addition, ictal images
acquired during seizures can be co-registered and subtracted from baseline
(inter-ictal) images creating difference images which greatly enhance the
visualization of foci.®*’*”> Another useful application of SPECT and MRI
image fusion is the guidance of SPECT region definition as required for
image quantification. In one study, analysis of SPECT scans of Alzheimer’s
patients was assisted by the delineation of anatomical regions of interest
derived from co-registered MRI,”® MRI was used in a similar fashion in a
neuro-receptor study to define true anatomical borders of basal-ganglia.”’
Figure 8 illustrates fusion of MRI with '**I-IBZM SPECT. MRI was also
helpful in localizing functional activation detected with SPECT.”® Although
functional MRI (fMRI) techniques can be used to localize functional

FIGURE 8. Image fusion of MRI with '**I-IBZM SPECT neuro-receptor images of the
basal ganglia. High resolution MRI may allow the identification of the anatomic
boundaries of the basal ganglia. MRI could be used in such cases to define precisely
the regions of interest for the purposes of SPECT quantification or for partial volume
correction.
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activation areas, they are susceptible to motion artefacts. In addition, acti-
vation tasks must be performed inside the scanner, which is not required in
SPECT imaging. Co-registration of functional MRI with PET activation
studies could be performed to maximize the information in pre-surgical
planning.” PET activation images were especially helpful in the presence
of fMRI artefacts. In a more basic research studies, it has been shown that
the co-registration of brain PET with MRI could be used for partial volume
correction of PET data enhancing the quantitative accuracy for measure-
ments of cerebral blood flow, glucose metabolism and neuro-receptor
binding.%*#!

Brain SPECT and PET images of several patients can also be co-registered
to common spatial coordinates and/or image templates with linear and non-
linear techniques to create intra-modality, inter-patient reference databases
for either group,®* or individual comparisons.®*> This approach allows for
automatic assessment of significance of local perfusion in comparison to the
normal population. These registration-based brain PET and SPECT quan-
tification techniques have been applied to a wide variety of clinical problems
including Alzheimer’s disease,*®° analysis or neuro-activation of PET®*!
and SPECT studies,”** head injuries,”* and depression.”>*® Similar data-
base techniques have been also applied to the analysis of functional neuro-
receptor SPECT studies,”>*”° which is more challenging since the tracer is
accumulated solely in the basal ganglia. Image registration-based quantifi-
cation techniques do not require definition of anatomical regions for indi-
vidual patients, are observer-independent and have the potential to reliably
detect subtle changes. Although such methods are fully automated, their
performance depends on the quality of population- and equipment-specific
databases; research is being conducted to evaluate the suitability and inter-
changeability of such normal databases.'%*!"!

In addition to multi-modality registration and inter-patient registration of
PET and SPECT brain neuro-images, some investigators have applied
intra-modality serial registration techniques to assess serial changes in
neuro-activation'®? in stroke imaging'® and in a unique study of twin data
comparison to examine chronic fatigue syndrome.'® Serial registration
techniques may be more sensitive than techniques that rely on the registra-
tion to the normal databases since serial images are obtained from the same
patient and are highly similar in the absence of physiological change.

8.2 Cardiology

Algorithms for image registration have been applied to cardiac nuclear
medicine images primarily to perform automated image reorientation and
image quantification of cardiac images by registration and comparison to
normal templates.*>'°>'% Some of the template-based systems utilizing
image registration have been successfully validated in larger groups of
patients with high success rate.'®”'%’ Image registration algorithms have
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also been applied for intra-modality serial or sequential studies such as stress
and rest SPECT and cardiac PET images.”"!'"*!!"! Transmission scans have
been utilized for serial PET registration.''? Image registration was also
applied to improve the quality of cardiac images by ‘“‘motion-tracking”
and registration of ECG gated cardiac PET images to obtain de-blurred
static image of myocardial perfusion.''® In a preliminary study, similar
techniques were applied to obtain “motion frozen” perfusion images from
gated SPECT.'"'* Although shown to be very effective in estimation of
changes, serial/sequential cardiac registration techniques are currently not
typically used in commercial quantification packages.

The registration of four-dimensional ECG-gated multi-modality images
of the heart has not been widely investigated. Cardiac registration via
thoracic data has been proposed for PET/SPECT registration,''> and for
SPECT/CT registration,"'®!"” and in a clinical application for the registra-
tion of '®F-FDG PET data with electron beam CT.!'® Automated registra-
tion based on a combination of left ventricular segmentation with the “head
and hat” algorithm™® was developed.*' Manual fusion has been proposed for
electron beam CT and N-13 PET.!'"” for MRI and PET,!?° and for CT and
In-111 SPECT thrombus imaging.'*! In an effort to combine the vascular
tree obtained from X-ray angiography with SPECT perfusion, knowledge-
based vascular tree models and left ventricular segmentation were applied.®*
In related work, a prototype system was developed for combined X-ray
angiography with PET/SPECT.'? A technique for using transmission
scans for PET and MRI alignment has been presented.'** In a preliminary
study, an automated 4D registration of cardiac MRI with myocardial per-
fusion SPECT images was presented, based on the extension of mutual
information and motion-based segmentation of cardiac MRI.'** In that
study, the correlating motion of the heart was used as additional informa-
tion utilized by the image registration algorithm. Most of the published
studies in multi-modality cardiac registration describe initial preliminary
experiences with various methodologies without extensive validation.

Although currently multi-modality fusion techniques are not applied in
clinical application of cardiac imaging, there are several potential applica-
tions, which could prove to be clinically practical and useful. Future nuclear
cardiology applications may include matching of perfusion defects defined
by SPECT and PET imaging with the location of stenosis obtained with
emerging coronary CT angiography techniques. Since both the perfusion
defects and stenotic lesions are often depicted with poor quality, spatial
correlation of these findings could potentially improve synergistically sensi-
tivity and specificity of these techniques. Another potential application in
nuclear cardiology is the quantification of mismatch from PET-SPECT
multi-modality studies where '*F-FDG viability PET findings need to be
directly compared with perfusion SPECT scans.'?® Such techniques are
proposed for the fusion of 2D X-ray angiography with SPECT,** but are
not yet clinically utilized due to difficulties with aligning the 2D X-ray
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projection data with 3D SPECT. The availability of fully tomographic 3D
CT angiography techniques may allow for practical implementations. An-
other potential application is the use of standalone CT or MRI data for
cardiac SPECT'?° or brain PET'?’ attenuation correction, respectively, since
SPECT and PET transmission imaging methods add cost and complexity to
the imaging procedures and have relatively poor quality. There are also
preliminary studies which explore the possibility of depicting vulnerable
plaque in the coronary arteries, aorta and carotids with '*F-FDG and
correlating it with vessel anatomy obtained by CT.'?® Although these results
have been demonstrated with the use of the hybrid PET/CT scanner, similar
studies could be performed using software image registration and fusion.

8.3 Oncology

The applications of image fusion in oncology have been rapidly expanding
with the introduction of dedicated hybrid SPECT/CT'*:'** and PET/CT
scanners.'?! Recent reviews summarize comprehensively these applications
for PET/CT'* and SPECT/CT scanners.'*? Although most of the current
clinical applications are reported with the use of hybrid devices, without
using software image registration, most of these applications could be per-
formed with software fusion. For brain images, the image registration can be
also performed with an aid of stereo-tactic frames or external fiducial
markers,'* described in section 5.3. However, in thoracic or abdominal
images common in oncological imaging, changes in the external body
shape may not correspond to the shifts of internal organs; therefore, these
external reference systems are not practical. Furthermore, the necessary set-
up of the external reference systems during both imaging sessions can add to
the complexity and time of the imaging procedures.

Although software fusion has been initially developed for the brain im-
aging and original software fusion applications were reported in the brain
oncology area,>® software-based registration of other organs for oncological
imaging has been pursued with good results. The multi-modality registration
of CT and PET, or SPECT of the thorax has been approached as a rigid-
body problem wusing surface-based techniques based on chamfer
matching,”?* lung segmentation,'*>'3® interactively-defined homologous
markers,'”” and mutual information maximization.'*® Automated soft-
ware-based SPECT/CT fusion has been proposed for Prostascint® pelvis
images using vascular tree information visualized on both scans.'*” Linear
registration techniques can be suitable for whole-body imaging if patient
body configuration and breathing conditions are similar between the separ-
ate scans (Figure 9). If PET images are acquired with a different breathing
pattern and with different body configuration than CT, or MRI, then rigid-
body image registration is typically not sufficient.

To correlate images of the thorax and abdomen, non-rigid approaches
may be required in combination with linear registration to correct for
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FIGURE 9. An example of linear image registration applied to the fusion of thoracic
CT with whole-body '*F-FDG PET. Both scans were acquired with similar breathing
patterns.

changes in body configuration, breathing differences, or internal organ
displacements. Non-linear approaches based on thin-plate spline (TPS) in-
terpolation’® or piecewise linear approaches'**!4’ have been proposed to
compensate for soft tissue deformations. Image warping is typically accom-
plished by energy minimizing interpolation such as thin-plate-splines,' or
B-splines.'*! Such non-linear correction may be very difficult to determine
from functional PET images alone (section 7.2). Therefore one possibility is
to use auxiliary transmission images, which are almost always acquired
during PET imaging session to enable attenuation correction and absolute
quantification of PET radiopharmaceutical uptake.!'®!**!*? These trans-
mission images are not affected by the potential mismatch between func-
tional and anatomical information, therefore they can provide a robust
estimate of the nonlinear image transformation. Recently, a practical, fully
automated algorithm for non-linear 3D image registration of whole-body
PET and CT images, which compensates for the non-linear deformation due
to the breath-hold imaging technique and variable body configuration, has
been proposed.'® In general, the nonlinear surface-based registration tech-
niques remain sensitive to initial errors in the image segmentation phase,
while the computational cost of volume-based iterative approach can be
prohibitive. The principal remaining difficulties are the selection of suitable
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deformation models, the validation of the non-linear registration algorithms,
and the computational cost. The full automation of the non-linear registra-
tion techniques is of great importance, since the number of adjustable image
parameters can be large.

8.3.1 Radiotherapy Applications

Image registration and fusion enables the use of sensitive functional modal-
ities such as PET as a guide for radiation therapy planning. Software image
fusion has been applied with success to augment radiation treatment plan-
ning systems with PET or SPECT information. PET- or SPECT-guided
treatment plans have been reported for brain lesions,'** lung cancer,’*!4>-14%
head and neck cancers,'* and abdominal cancer."”® SPECT ™Tc MAA
lung perfusion images have also been incorporated in the treatment plans to
allow avoidance of highly functioning lung tissue.'>! Although software
fusion performs very well in brain imaging, PET or SPECT may not offer
significant ““added-value” for this application and most often MRI/CT brain
fusion is utilized. The most significant changes in the definitions of the gross
tumour volumes when adding PET registered data have been reported for
the lung cancer radiotherapy planning. PET, in many cases, can identify
additional lesions or allow dose escalation by identifying necrotic portions of
tumours, which do not need to be irradiated. PET has much higher sensi-
tivity and specificity in lung cancer imaging, but cannot be used alone for
planning of the radiation therapy, which is based on simulation CT. Com-
bined PET/CT images allow interactive definition of gross tumour volumes
(GTV) using synchronized multi-modality displays. The thoracic PET/CT
software fusion for radiotherapy planning seems to be a practical applica-
tion since the impact of using fused images is high and despite non-linear
deformations, sufficient image detail is present on both CT and PET images
to allow accurate image registration. More precise functionally-based
treatment planning techniques will increase in importance with concurrent
advances in the radiation delivery methods such as intensity-modulated
radiotherapy (IMRT) and image guided brachytherapy.'>?

9. Future Directions

9.1 Hardware vs. Software Image Fusion

Software image fusion can be challenging to perform on a routine clinical
basis since it requires excellent DICOM connectivity, compatibility of im-
aging protocols and cooperation between various imaging departments.
These difficulties may be bypassed with the use of hybrid PET/CT scan-
ners.'?! Software fusion, however, may offer greater flexibility. For example,
it is possible to perform PET-MRI image fusion with registration soft-
ware;>>1%* MRI is superior to CT for oncological brain imaging and recent
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FIGURE 10. Image fusion of MRI and '"*F-FDG PET in a patient with malignant
pheochromocytoma and abdominal metastases. In the transverse slices (left), initial
infiltration of the vertebra can be detected. The coronal slices show inter-aorto-caval
metastases. This example demonstrates that soft tissue contrast/outline of vascular
structures by MRI may be needed to accurately localize lesions in the abdomen.
(Data courtesy of R.P. Baum, Zentralklinik, Bad Berka).

advances in MRI have allowed fast thoracic and abdominal imaging with
excellent contrast.">* An example of PET-MRI fusion is shown in Figure 10.
There are efforts underway to use MRI as the primary modality for radio-
therapy planning. Furthermore, without the availability of dedicated PET/
CT scanner in the radiotherapy department, it may be more feasible to
match retrospectively standalone PET scans to the simulation CT scans
performed in the course of the radiation therapy in the radiation oncology
department. The accuracy of image registration obtained on hybrid PET/CT
may be higher since images are acquired close in time, without changing
patient position; However, software fusion may be sufficient for the radi-
ation therapy planning since tumour volume definitions are derived inter-
actively with large error margins especially in lung cancer patients.'*®
Software registration techniques can be applied for the follow-up assess-
ment and comparison of serial scans during the course of therapy and
presumably for correction of the motion and mismatch of data acquired
on the PET/CT machine. Perhaps one of the most difficult applications for
software image fusion is multi-modality imaging of the head and neck where
significant non-linear mismatches can occur due to different position of arms
and/or head. Abdominal and thoracic areas are also often deformed but
many significant landmarks are present which can aid non-linear software
algorithms to achieve accurate superimposition. In the abdominal and pelvic
region, the required accuracy of fusion may be very high due to possible
false-positive uptake in the bowels and urinary tract adjacent to the
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possible sites of malignant lesions such as ovaries. In these cases, hardware-
based PET/CT image fusion may perform better than software-based tech-
niques. If MRI was also indicated for better tissue contrast, software regis-
tration of MRI with PET/CT images could be performed. Sometimes, it may
be necessary to acquire images in different body configurations for specific
purposes, even if images were acquired on a hybrid PET/CT system. For
example, CT imaging may need to be performed in deep inspiration due to
superior image quality and some benefits in radiation treatment plan-
ning.'>>!5% Such imaging techniques would require non-linear software
registration even if images were obtained on the same scanner. Most likely,
a combination of software and hardware-based techniques will be used in a
clinical practice with software techniques prominent in brain, and thoracic
imaging and in image-guided radiotherapy areas as well as for modality
combinations other than PET/CT. The biggest challenge for the prolifer-
ation of software fusion into the clinical environment is true compatibility
and connectivity between various diagnostic and therapeutic imaging sys-
tems. The reasons for selecting hardware or software-based approaches may
be more logistical and economical than based on the capabilities of each
technology. Despite rapid proliferation of hybrid PET/CT systems, there will
be a large installed base of standalone PET scanners, for which software
fusion will be required; already in some departments software fusion is used
routinely, especially in conjunction with PET scans.'®’

9.2 Potential Applications for Registration

The full potential of registered medical images has yet to be realised. To a
large extent, the utility of complementary information has not been
exploited. For various reasons, the acceptance of image registration has
been relatively slow. Problems in achieving efficient data transfer, choice
of software algorithm and lack of sufficiently well documented validation
have all contributed to this. However, the introduction of dual-modality
imaging has very quickly changed this situation and also is likely to impact
on the demand for software registration solutions. There are a number of
potential applications of registered data beyond simple visualisation of fused
images; these include the incorporation of anatomical information in recon-
struction or quantification and motion correction. The wider availability of
accurately registered images is likely to increase the popularity of these
techniques.

9.2.1 Incorporation of Anatomical Information

The most obvious use of anatomical data is in attenuation correction,
particularly for use in the thorax where there is non-homogeneous attenu-
ation. However, knowledge of the anatomy can be utilised for other pur-
poses. For example, if the activity distribution can be assumed to be uniform
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within anatomically distinct regions, determined by segmentation of MRI or
CT, an estimate of partial volume loss can be derived by smoothing the
segmented study to the same resolution as PET or SPECT and measuring
the resultant signal dilution. Care needs to be taken to account for the
spillover from tissues adjacent to the region of interest, especially if the
surrounding activity is uncertain. This form of correction can be applied
on a region or voxel basis (e.g.*%!>%1%%).

A technique that has shown promise, but failed to attract widespread use,
involves the direct incorporation of anatomical information in reconstruc-
tion of emission data. The well defined anatomical edges can be used to
constrain the reconstruction, discouraging smooth boundaries.'**'®> More
recent refinements'®® are discussed further in Chapter 4. In addition, the use
of direct Monte Carlo simulation was recently demonstrated, based on
measured attenuation coefficients, to directly estimate scatter in emission
reconstruction. Novel approaches to improving the speed of Monte Carlo
estimation make such an approach feasible.'®*

9.2.2 Motion Correction

As resolution and the degree of quantitative correction improves in SPECT
and PET, the importance of motion correction increases. Motion of either
the subject or some internal structure can be regarded as a specific intra-
modality registration problem (motion tracking is effectively a form of
constrained registration). Depending on the type of motion, correction of
multiple acquired images can be achieved by either rigid-body or non-rigid
registration to one reference image (usually taken from the sequence). These
techniques have been applied to rapid dynamic sequences'®® and gated
studies.'’® Correction of motion during the frequently lengthy, emission
tomography acquisition is more complex, although fully automated correc-
tion based on 3D registration has been demonstrated'®®!'®” as discussed
further in chapter 4.

9.2.3 Atlas-based and Inter-subject Analysis

Registering individual studies to a standard atlas or reference study is not
trivial, especially for areas other than brain. However, availability of a
standard atlas permits inter-subject comparison based on pre-defined re-
gions and offers potential for automatically defining tissue signatures that
can be used to classify subjects (e.g. based on shape, texture or size). The
wider availability of registered data should encourage more widespread use
of complementary information, which should aid probabilistic approaches
to tissue characterisation.
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Image Segmentation Techniques
in Nuclear Medicine Imaging

A.O. BounraA* AND H. Zam1!

1. Introduction

Recent advances in nuclear medicine imaging systems design has resulted in
significant improvements in the areas of anatomical, functional, and dy-
namic imaging procedures. With these developments, computer-aided diag-
nosis is becoming a reality. These computer-based tools allow physicians to
understand and diagnose human disease through virtual interaction. The
role of medical imaging is not limited to visualization and inspection of
anatomic structures, but goes beyond that to patient diagnosis, advanced
surgical planning, simulation, and radiotherapy planning. In order to iden-
tify and quantify the information gathered from the images, regions (also
called regions of interest — Rols) must be precisely delineated and separated
out for processing. This process, called image segmentation, is the most
critical step for automated analysis in medical imaging.'

Segmentation s the first essential and important step of low level vision. This
process partitions the image I into non-intersecting subregions, R, R, ..., R¢
such that each region is homogeneous and the union of two non-adjacent
regions is homogeneous. A point X in a region R; is connected to x; if there is
asequence {X, ..., X} such thatx; and x;; | are connected and all the points are
inR;. R;isaconnected region if the set of pointsin R; has the property thatevery
pair of points is connected. Formally segmentation can be defined as follows:

c
(@) URi =L
i=1

(b) R; is a connected region, 1=1,2,...,C;
(©) RiNRj = O Vi j.i #J:

(d) P(R;) =TRUE fori=1,2,...,C;

(e) P(Ri uRj) = FALSE fori#]j.

*Dr A.O. Boudaa, Ecole Navale, Département Signal, Lanvéoc Poulmic BP600, F
29240 Brest, France
fPD Dr H. Zaidi, Geneva University Hospital, Division of Nuclear Medicine, 1211
Geneva, Switzerland
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where P () is a uniformity (homogeneity) predicate and C is the number of
regions. A set of regions satisfying conditions (a) through (e) is known as a
partition. Condition (a) indicates that the segmentation must be complete;
1.e. every pixel must be in a region. Condition (b) requires that points in a
region must be connected. Condition (c) indicates that the regions must be
disjoint. Condition (d) deals with the properties that must be satisfied by the
pixels in a segmented region; for example P(R;) = TRUE if all pixels in R;
have the same grey level. Finally, condition (e) indicates that regions R; and
R; are different in the sense of predicate P ( ). In the standard approach,
most segmentation algorithms assume that a given pixel or voxel belongs to
a single cluster or tissue type (condition (c)). However, the complexity of
tissue boundaries causes many pixels to contain a mixture of surrounding
tissues (partial volume effect). Thus, image ambiguity within pixels is due to
the possible multi-valued levels of brightness in the image. This indetermin-
acy i1s due to inherent vagueness rather than randomness. Since image
regions (particularly nuclear medicine images) are not always crisply de-
fined, it becomes more convenient and appropriate to view them as fuzzy
subsets of the image.*” Thus, the condition (c) is in general not verified:

()[R # 0 M

The fuzzy subsets are characterized by the fuzzy membership degree associ-
ated to each pixel to belong to one of them. One popular method for
assigning multi-subset membership value to pixels, for segmentation or
other image processing tasks is the Fuzzy C-Means (FCM).®

2. Image Segmentation in Medical Imaging

Medical image segmentation is becoming an increasingly important image
processing step for a number of clinical applications including: (a) identifi-
cation of Rols such as lesions to measure their volume and thus assess
response to therapy;’ (b) detection of the left ventricle (LV) cavity to
determine the ejection fraction;*® (c) volume visualization and quantifica-
tion of organ uptake”'® or uptake defect of the tracer in the myocardium;’
(d) study of motion or conduction abnormalities of the heart;'' and
(e) attenuation correction in emission tomographic imaging.'*'* All subse-
quent interpretation tasks like feature extraction, object recognition, and
classification depend largely on the quality of the segmentation output. The
level to which the segmentation is carried depends on the problem being
solved. That is, segmentation should stop when the regions of interest for a
specific application have been isolated. For example, in automated detection
of brain lesions using PET images,’ interest lies in accurate delineation of the
lesions with the objective of assessing the true size and the tracer uptake of
these lesions. In this case, brain structures such as grey matter and white
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matter are oversegmented and thus not well delineated. Segmentation in
medical imaging is generally considered as a very difficult problem. This
difficulty mainly arises due to the sheer size of the data sets coupled with the
complexity and variability of the anatomic organs. The situation is worsened
by the shortcomings of these imaging modalities, such as sampling artefacts,
noise, and low contrast which may cause the boundaries of anatomical
structures to be indistinct and disconnected. Thus, the main challenge of
the segmentation process is to accurately extract the contours of the organ or
Rol and separate it out from the rest of the data sets.

3. Segmentation Techniques in Nuclear
Medicine Imaging

PET and SPECT images give information about the volume distribution of
biologically significant radiotracers. The interest lies in the diagnosis of
abnormalities in the biochemical process of interest, e.g. metabolic activity.
Unfortunately, these images are inherently noisy and provide less quantita-
tive information about the qualitative features discerned by experienced
observers. In order to identify and quantify nuclear medicine image infor-
mation, image regions must be delineated.'* Compared to MR images,
where brain structures such as CSF or grey matter can relatively be easily
identified,"® segmentation of nuclear medicine images is more difficult.
Indeed, in addition to the inherently poor spatial resolution and SNR,
there is additional bias introduced by physical degrading effects such as
scatter, attenuation, partial volume effect, and patient motion during scan-
ning. Several approaches have been proposed for image segmentation,'®!’
but only a few of them can satisfactorily be applied to nuclear medicine
images. Image segmentation algorithms generally are based on one of two
basic properties of intensity values: discontinuity and similarity.'” In the first
category, the basic approach is to partition an image based on abrupt
changes in intensity, e.g. edges.'® The main approaches in the second cat-
egory are based on partitioning an image into regions that are similar
according to a set of predefined criteria.!” Thresholding, clustering, region
growing are examples of methods belonging to this category. Segmentation
is based on sets of feature that can be extracted from the images such as pixel
intensities, which in turn can be used to calculate other features such as
edges, and texture. Many segmentation approaches of nuclear images use
the grey scale values of the pixels. In this case, pixel intensity input come
from a single image. Single image segmentation methods are described in the
following sections.
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3.1 Thresholding Approaches

Thresholding is one of the simplest and most popular techniques for image
segmentation. It can be performed based on global information (e.g. grey level
histogram of the entire image) or using local information (e.g. co-occurrence
matrix) of the image.'® Automatic thresholding is important in applications
where the speed or the physical conditions prevent interactive human selection
of thresholds.'” If only one threshold is used for the entire image, the process is
called global thresholding. On the other hand, when the image is partitioned
into several subregions and a threshold determined for each of the subregions,
it is referred to as local thresholding. Techniques of thresholding can also be
classified as bilevel thresholding and multithresholding. In bilevel thresholding,
the histogram of the image is usually assumed to have one valley between two
peaks, respectively. There are various solutions to the problem of locating the
intensity threshold that ideally represents the bottom of this sometimes elusive
histogram valley. The following strategy is an example of a thresholding
method to obtain automatically the optimum threshold value:

1. Select an initial estimate for threshold T;

2. Segment the image using T. This will provide two regions of pixels: R
consisting of all pixels with grey level values >T and R consisting of
pixels with values <T;

3. Compute the average grey level values p; and ., for the pixels regions R;
and Ry;

4. Compute a new threshold value;

T=(p +m)/2 @

5. Repeat Step 2 through 4 until the mean values p; and p, in successive
iterations do not change.

Note that the threshold T can be specified using a heuristic technique based
on visual inspection of the histogram but this approach is operator-depen-
dent. If the image is noisy, the selection of the threshold is not trivial. Thus,
more sophisticated methods have been proposed. Let p(t) = n,/N; be the
normalized histogram — brightness probability density function (pdf). N is
the number of pixels in the observed image, I, and ny(t) is the number of
pixels of I having grey level value t. We assume that the distribution of grey
values in each region of I follows a Gaussian distribution. The observed
histogram is a mixture of grey values of pixels of the object(s) and pixels of
the background. The histogram may be considered as an estimate of the
brightness pdf, say, p(t). Then p (t) is a mixture pdf given by
p(t) = Py x pi(t) + Py x pa(t) where pi(t) = i p(i) and pa(t) = 1 — pi(1)
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are the pdfs of the object and the background, respectively, and P, and P are
their a priori probabilities such that P; + P, = 1. For a Gaussian case, p (t) is
written as follows:

RS R (T
M—;mﬂw[M (3)

where w; and o; are the a priori mean values and standard deviations of the
two distribution probabilities (; < p,). Thus, the mixture has five unknown
parameters. If all the parameters are known, the optimal threshold is easily
determined. A threshold, T, may be defined so that all pixels with grey values
below T are considered object and those above T are considered background
pixels. The probability of erroneously classifying a background point as an
object point is Er|(T) = LTOC p2(z)dz. Similarly, the probability of classifying
an object point as background point is Ery(T) = jTJr *pi(z)dz. The overall
probability of erroneously classifying a pixel from one of the two distributions
as a pixel from the other distribution, is simply: Er(T) = Py x Erj(T)+
P, x Ery(T). The threshold for which Er(T) is minimum is given by:

dEr(T)/dT =0=P; x p/(T) =P2 x p2(T) = aT> + BT +vy=0

=07 =03 =203~ ooy =otu3 o3t 2ofdion( L)
The determination of parameters is not a simple matter and often requires
numerical solution of a number of simultaneous non-linear equations.
If the wvariances are assumed to be equal, T is given by:
T=(n +1)/2+ 02/(r; — pp) log (P2/Py). If Py = P,, the optimal thresh-
old is simply the average of the means: T = (u; + p,)/2. In this case, the
above proposed strategy is found. A well known method for global thresh-
olding using the histogram is Otsu’s method.?® This method chooses the
optimal threshold by maximizing the a posterior betweezn-class variance:
o3 (®) = prO1 () — ol + Pa(Opa(t) — po)* = BeBW=EL " The  optimal
threshold T is found by a sequential search for the maximum of o3(t) for
values of t where 0 < p;(t) < 1. Otsu’s method gives satisfactory results
when the number of pixels in classes are similar. Reddi et al.*' proposed a
method based on the same assumption by selecting a threshold T so that the
a posterior between-class variance of object and background regions is
maximized. They have shown that the between-class variance oj(t) has
a unique maximum and established the condition for this maximum.?!
Thus, o}(t) can be written as follows:

) 2 N-1 2
oy = (Z Zp(Z)> X(pl(t))‘1+<z Zp(2)> x(p2(0) ' —pg (5
z=0 z=t+1

Setting Joj(t)/9t = 0, the following relation is found: w (T) + p,(T) =T,
where w(T) and p,(T) are the mean values below and above the threshold
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T. g is the average brightness. Finding the value of T that satisfies the above
relation can be accomplished by an exhaustive sequential search, giving the
same result as Otsu’s method. Starting with threshold T =, fast conver-
gence is obtained. Kittler and Illingworth®* proposed a method that minim-
izes the Kullback-Leibler (KL) distance which measures the discrepancy D
between the probability distribution of the histogram and its approximation:

2
D = (1 +log2m)/2— > pi(t)logpi(t) + (pi(t) log o7 + pa(t)loga3) /2 (6)
i=1
pi(T) is the estimated probability that pixel value falls in the i'" region. The
threshold T should be chosen to minimize the information measure H. The
method of Pun®*** is based on the max1mum entropy criterion and has been
examined in detail by Kapur er al.?® It relies on the assumption that the
threshold T corresponds to the maximum value of the sum of the two within-
region entropies: T = argmax [H,(t) + H,(t)] where Hj(t) is the Shannon
entropy of the i region. The Hj(t) are given by:

p(g) p(g) p(g) p(g)
= Zplm g M RO = g;l n® Epn 7

Thresholding is the most common approach used in segmenting SPECT
images.”***! Figure 1(a) shows a transverse PET cardiac slice through the
LV of a resting patient. The thresholding result using the method proposed
by Reddi er al.*' (T = 104) is shown in Fig. 1(b).

When the image is composed of several regions (clusters) one needs
several thresholds for segmentation. Let the image be described by a

(@) (b)

FIGURE 1. Tllustration of Reddi et al.”!

(b) Thresholded image.

thresholding method. (a) PET cardiac image.
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two-dimensional function I (x,y), where (x,y) denotes the spatial coordin-
ates and I (x,y) the feature value of pixel at location (x,y). In multithres-
holding one tries to get a set of thresholds {ti,t;,...,tx} such that all
pixels with I(x,y) € [ti, tis1],i=0,1,...,K constitute the i™ region type
to =0, tx;1 =G —1. G is the number of grey levels. There are various
methods for multithresholding. The method of Reddi er al.*' is fast and
stands for a version extended to multithresholding of Otsu’s method.”
Wang and Haralick®? presented a recursive technique for automatic multiple
threshold selection. The local properties of the image (edges) are used to find
the thresholds. The method of Carlotto™ determines thresholds by handling
the information derived from the changes of zero-crossing in the second
derivatives. The method of Papamarkos and Gatos®* is based on a combin-
ation of hill-clustering algorithm and an appropriate linear programming
approximate technique. Recently, Fleming and Alaamer®' have proposed
case-specific volume-of-interest segmentation rules. The iterative algorithm
calculates local context sensitive thresholds along radial profiles from the
centre of gravity of the object.

Figure 2 shows an illustration of the multithresholding method of Reddi
et al*' Figure 2(a) is obtained with two thresholds. Note that the image is
not well segmented because the pattern of tracer uptake is not discriminated.
Figure 2(b) shows the segmentation result of five thresholds where the
pattern of tracer uptake is detected. Figure 2(c) shows the result of eight
threshold values corresponding to an over-segmentation of the image.

3.2  Region Growing Approaches

The main drawback of histogram-based region segmentation is that the
histogram provides no spatial information. Region growing approaches
exploit the important fact that pixels which are close to each other have

(@) () ()

FIGURE 2. Illustration of the Reddi e /' multithresholding method. Segmentation
of the PET cardiac image shown in Fig. 1(a) with (a) two, (b) five and (c) eight
thresholds, respectively.



10. Image Segmentation Techniques in Nuclear Medicine Imaging 315

similar grey values. Region growing is a bottom-up procedure which starts
with a set of seed pixels. The aim is to grow a uniform, connected region
from each seed. The user selects a pixel or a set of pixels and a region grows
out from that (these) seed(s) until some criteria for stopping growth are met.
A pixel is added to a region if and only if:

- it has not been assigned to another region;
- it is a neighbour of that region;
- the new region created by addition of the new pixel is still uniform.

The algorithm can be summarised by the following pseudo-code:
Let I be an image, and R, Ry, ..., R¢ a set of regions each consisting of a
single seed pixel

Repeat
Forl=1,...C
For each pixel k at the border R
For all neighbours of pixel k
Let x,y be the neighbour’s coordinates
Let p, be the mean grey level of pixels in R
If neighbour unassigned and |I(x,y) — n|=¢
Add neighbour to R
Update
Until no more pixels are being assigned to regions.

The main assumption of the region growing approach is that regions are
nearly constant in image intensity. Region growing has been used by Van
Laere ef al.® in the anatomic standardization and comparison technique
with normal templates of brain SPECT studies. An automated interpret-
ation of myocardial perfusion SPECT using region growing has been
reported by Slomka er al*® The study results show that template-based
region growing is a robust technique for volumetric quantification and
localization of abnormal regions.

3.3 Classifiers

During the segmentation process, labels are affected to regions. Classifica-
tion is a pattern recognition technique that deals with association of classes
with tissue types, e.g. white matter, grey matter, CSF, ... etc. This step is also
called labelling. Labels association can be performed by an operator or by an
interpreting physician. Thus, pre-segmented images called training data are
required. Classification seeks to partition feature space derived from the
image using known labels. The feature space is the range of p-dimensional
feature vectors formed at each pixel. The features could include pixel inten-
sity, the gradient at a given pixel and so on. The simplest form of classifiers is
the Nearest-Neighbour Classifier (NNC) where each pixel is classified in the
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same class as the training datum with closest intensity. Examples of classi-
fiers are the k-Nearest Neighbour (k-NN), the Nearest Mean Classifier
(NMC),” Fisher Linear Discriminant (FLD),*® Parzen classifier’® and Sup-
port Vector Machine (SVM).*° The k-NN classifier is the generalization of
the NNC, where the pixel is classified according to the majority of the k
closest training data. In Parzen window, classification is made according to
the majority vote within a predefined window of the feature space centred at
the unlabeled pixel (mapped to feature space). SVM is a supervised learning
method which is suitable for high dimensional data.** Given training ex-
amples labelled either “yes” or “no”’, a maximum margin hyperplane splits
the “yes” and “no” training examples such that the distance from the closest
examples (the margin) to the hyperplane is maximized. The use of the
maximum margin hyperplane is motivated by statistical learning theory,
which provides a probabilistic test error bound that is minimized when the
margin is maximized. If there exists no hyperplane that can split the “yes”
and “no” examples, an SVM will choose a hyperplane that splits the ex-
amples as cleanly as possible, while still maximizing the distance to the
nearest cleanly split examples. NMC calculates the mean of the training
vectors for each class while searching and classification are done only against
the mean vector for each class. FLD classifier projects high-dimensional
data onto a line and performs classification in this one-dimensional space.
The projection maximizes the distance between the means of the two classes
while minimizing the variance within each class. FLD and NMC separate
the object (image) with one hyperplane in feature space into two classes. The
discriminant function of NMC is defined as follows:

fame(x) = (x — Mz)t(x — M) —(x— Ml)t(x - ) ®)

where x is the object to be classified and w; and p, are the means of the
feature vectors in the training set for the classes “1°” and “2”°, respectively. It
spans up an equidistant hyperplane between both class means. Contrarily to
NMC, the FLD classifier takes both class means and covariance, A, into
account (assumed to be common to both classes):

frLp(X) = [x — (g + o) /2]'A (1 — py) ©)

When A is the identity matrix, NMC and FLD are equivalent. If the number
of training samples is smaller than p, A is singular and pseudo FLD (PFLD)
is formed by replacing A by its pseudo inverse, (A'A)'At. Stoeckel er al.*!
proposed a method for classifying a single SPECT HMPAO image as being
an image of a normal subject or a probable Alzheimer patient. The aim is to
provide a tool to assist the interpretation of SPECT images for the diagnosis
of dementia of Alzheimer type (DAT). PFLD and NMC are used to assign
one of the possible class labels (DAT or normal) to a SPECT image given as
an input.*' The success rates of classification is estimated using a classifica-
tion error, leave one out.*> As reported by the authors, PFLD outperforms
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NMC, which can be explained by the fact that PFLD takes the covariance
into account, and thus the shape of the classes in feature space.*' The
differences in success rates between normal and DAT images might be
explained by the presence of nearly two times more normal than DAT
images.

3.4 Clustering-based Approaches

The limitation of thresholding techniques is that they only apply to a single-
band image, such as greyscale image or a single band of a multi-band image.
Data clustering is another effective technique for image segmentation. The
advantage of clustering is that it can be applied to a multi-band image
such as a colour image or image composed of multiple feature layers.
The main disadvantage of clustering techniques is that the appropriate
number of clusters should be determined beforehand.**** Clustering algo-
rithms essentially perform the same function as classifiers without the use
of training data. Thus, they are called wunsupervised methods. In order
to compensate for the lack of training data, clustering methods iterate
between segmenting the image and characterizing the properties of each
class. In a sense, clustering methods train themselves using the available
data. Unsupervised methods include the C-means,*® the FCM algorithm,®
and the expectation-maximization (EM) algorithm.*” Unsupervised cluster-
ing has shown promise for tumour detection in PET imaging, but algorithm
initialization is an important step for reliable clustering results and
for reduction of computation time.” FCM and C-means are the most com-
monly used algorithms for nuclear medicine*®*® and transmission'* image
segmentation.

Let X = {x1,X2,...,X,} be a finite data set and C = 2 an integer; n is the
number of data points; xi is a p-dimensional feature vector. R®" denote the
set of all real C x n matrices. A fuzzy C-partition of X is represented by a
matrix U = [w; ] € R, the entries of which satisfy

Ry €[0,111=i=C; 1=k=n

C
pix=11=k=n
; ik (10)

n
O<Zuik<n; I1=i=C
k=1

U can be used to describe the cluster structure of X by interpreting
i as the degree of membership of xx to cluster i. Good partitions
U of X may be defined by the minimization of the FCM objective functional:®

n C
Tn(UVX) =D ) ()™ [ —villa (11)
k=1 i=1
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where m €[l,+00) is a weighting exponent called the fuzzifier,
V = (v1,V2,...Vc) 1s the vector of the cluster centres. || x|4= VxT Ax is
any inner product norm where A is any positive definite matrix. Approxi-
mate optimization of J,, by the FCM algorithm is based on iteration through
the following necessary conditions for its local extrema.

FCM theorem.® Assume m=1 and

I xk — vi ||i> 0; 1=i=C; 1=k=n, (U, V) may minimize J, only if:

C —1
1% —v1||A>~n " \
[Z (e ~lla ] 12

=1

En: (P“ik)mxk
V=t (13)
> ()™
k=1

The FCM algorithm consists of iterations alternating between Egs. (12)
and (13). This algorithm converges to either a local minimum or a saddle
point of J,,.* Boudraa er al.* have segmented nuclear cardiac images with
FCM using as features the spatial information (x, y) and grey level value I
(x,y) (in this case p = 3). Recently, a fast version of the FCM was pro-
posed.*’ This version is based on one dimensional attribute such as the grey-
level. Let Hg be the histogram of I with G-levels. Each pixel has a feature
that lies in the discrete set X. In the new formulation, FCM minimizes the
following functional, which is very similar to that of Bezdek:®

In(U,VsX) = Zz(u.g) Hs(@). g~ vild (14)

g=0 i=

The FCM only operates on the histogram and hence is faster than the
conventional version which processes the whole data set. Thus, the compu-
tation of the membership degrees of Hg(g) pixels is reduced to that of only
one pixel with g as grey level value. The algorithm is outlined in the
following steps:

(FCMO0) Find the maximum and the minimum values of Hs: G, and
Gmax

(FCMT1) Fix the number of clusters C,2 =< C =< Gyax, and the threshold «;

(FCM2) Find the number of occurrences, Hg(g), of the Ilevel g;
g= Gmin; e Gmax

(FCM3) Initialize the membership degrees p; using the (Gpax — Gmin + 1)
grey levels such that: Y7 | Mg =1, 8= Guins ---»> Gmax

(FCM4) Compute the centroid v; as follows:
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Gmax m
EG: (wg) Hs(g)-g
y; = o i=1,2,...,C (15)

max

m
Z (p‘ig) HS(g)
2=Gmin
(FCM5) Update the membership degrees

2 71
- - ||g—Vi||A><‘“”
e — |3 (Le=vila (16
¢ [Z (|g—Vj [

j=1

g

(FCM®6) Compute the defect measure

C Gmax
E=)" g — Mg (17)
i=1 g=Gmin
If (E > ¢)
{ ~
IJ“ig — p’ig
goto <FCM4>
}

(FCMT) Defuzzification process.

Figure 3 illustrates an automated outlining of the LV contour in gated
radionuclide ventriculography. The FCM is run at the left anterior oblique
(LAO) projection providing the best separation of the left and right (RV)
ventricles. The number of clusters is estimated during the clustering process
using a cluster validity index.®'" The clustering is performed with € set to
1073 (Fig. 3b). The cluster formed by the LV and the RT (RT = RV + Atria)
is separated from the background (Fig. 3c) followed by a labelling analysis
of the connected components LV and RT. Figure 3d) shows that the LV is
well separated. Since the LV cluster has the greatest area of the cardiac

(@) (b) (c) (d)

FIGURE 3. LV edge detection by FCM in LAO projection. (a) ED frame. (b) Fuzzy
clustering result of the ED frame. (c) Separation of the LV and RT clusters from the
background. (d) Labelling of the connected components LV and RT. (Reprinted with
permission from ref.).
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FIGURE 4. Segmentation of FDG-PET images of a patient obtained two weeks after
surgery. (a)—(c) are the three slices where the tumour is evidenced by the CT. (d)—(f)
are the corresponding segmented images. (Reprinted with permission from ref.’).

images sequence in End-diastolic (ED) phase, a framing operation is per-
formed to obtain automatically, a “box’’ enclosing the LV cluster. Thus, the
fuzzy clustering of the remaining images of the cardiac cycle is narrowed to
this “box” with C set to 2 (LV and background).®

Figure 4 shows an application of the FCM to localization and quantita-
tion of brain lesions using PET imaging.’ The CT scans have shown that the
brain tumour is only evidenced in three slices (Figs. 4a—). The FCM is
started with an overspecified number of clusters (C = 20), believed by the
experts to make up the image being segmented. This value leads to an over-
segmentation of soft tissues but reduces the chance that the lesion(s) is(are)
clustered into classes that contain soft tissues. The fuzzy clustering is fol-
lowed by a merging process.’ The brain tumour is hypermetabolic. A careful
examination of PET images (Figs. 4a—) and the corresponding segmented
images (Figs. 4d—f) shows that there is a good agreement between the two
sets of images and that the tumour is correctly delineated. By comparing the
segmented image and the original one, one may easily compute the area (in
pixels) of the selected Rol and its total count using the corresponding label
affected by the FCM. It has been noticed that the larger is the abnormality,
the easier is its detection, even in slices of poor contrast. Nevertheless, a
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small tumour which is not readily discerned from its surrounding region
(because it has almost the same glucose metabolism) necessitates for its
detection, a clustering with high precision.

It should be mentioned that FCM is sensitive to noise and outliers. To
handle the problem of noise, the Possibilistic C-Means (PCM)*° or Max-
imum Entropy Principle-based Fuzzy Clustering (MEPFC)>! algorithms can
be used. PCM assumes that the membership function of a point in a fuzzy set
(or cluster) is absolute, i.e. it is an evaluation of a degree of typicality not
depending on the membership values of the same point in other clusters. By
contrast, clustering approaches including FCM and MEPFC impose a prob-
abilistic constraint, according to which the sum of the membership values of
a point in all the clusters must be equal to one. The PCM algorithm treats
each cluster independently of the rest and thus can provide several identical
prototypes while completely failing to detect some of other clusters. Fur-
thermore PCM is heavily dependent on initialisation and its ““bandwidth
parameter”, m, is difficult to estimate. It was also reported that this algo-
rithm has the undesirable tendency to produce coincidental clusters.’* Also,
MEPFC depends heavily on initialisation and often generates coincidental
clusters since the objective function of this algorithm is separable. In add-
ition the “‘scale parameter”, 8, depends on the data set and usually has to be
determined experimentally.'? Even if FCM is more sensitive to noise than
PCM and MEPFC, it does not require parameters such as m and 3 to run.
Furthermore, FCM 1is less sensitive to initialisation than both PCM and
MEPFC. For slightly noisy data, the performance of FCM is not disturbed.
However, for high noisy data the performance of FCM is affected.

3.5 Edge Detection

Segmentation can be performed through edge detection of various image
regions. Edges are formed at intersection of two regions where there are
abrupt changes in grey level intensity values. Edge detection works well on
images with good contrast between regions. However, the detection is lim-
ited in regions with low contrast. Furthermore, it is difficult to find correl-
ation between the detected edges of the Rols. Since edges are local features,
they are determined based on local information. There are different types of
differential operators such as Roberts gradient, Sobel gradient, Prewitt
gradient and the Laplacian operator.'” While the first operators are called
first difference operator, Laplacian is a second difference operator. An edge
is marked if a significant spatial change occurs in the second derivative. The
Laplacian of a 2-D function I(x,y) is defined by G,(x, y) = —V*{I(x,y)}
where the Laplacian operator is defined as V? = 9?/0x* + 0% /0y>.G.(x, y)
exhibits a sign change at the point of inflection of I(x,y). The zero crossing of
G.(x, y) indicates the presence of an edge. The digital second derivative form
encountered most frequently in practice is given by:
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O(x, y)/0x> =1(x+ 1, y) + I(x — 1, y) — 2I(x, y)
I, y)/0y* =1(x, y+ D +I(x, y — 1) — 2I(x, y)

The digital implementation of the 2-D Laplacian is obtained by summing the
two components:

V2I(x, y)=Ix+1,y)+Ix—-1Ly)+Ixy+D)+Ix,y—1)—4l(x,y) (19)

The Laplacian generally is not used in its original form for edge detection
for several reasons:'’ it is not orientation invariant, and typically is un-
acceptably sensitive to noise owing to the small size of its template. The
magnitude of the Laplacian produces doubles, an undesirable effect because
it complicates segmentation. A good edge detector should be a filter with the
following two features. First, it should be a differential operator, taking
either a first or second partial derivative of the image. Second, it should be
capable of being tuned to act at any desired scale, so that large filters can be
used to detect blurry shadow edges, and small ones to detect sharply focused
details.'® An operator that satisfies the above conditions is the Laplacian of
Gaussian (LoG) in which Gaussian-shaped smoothing is performed prior to
application of the Laplacian.’® Its formulation can be expressed in the
continuous domain as follows:

Gi(x, y) = =V (I(x, y) @ Ho(x, y) = I(x, y) @ (-V*(Ho(x, y)))  (20)
where H(x, y) = =V2(Hq(x, ¥)) = - {1 - X;Zﬂ exp{x;;yz} is the impulse
function of the operator. The position of the edges is present at zero-crossing
in G;(x, y). Hy(X, y) is a Gaussian smoothing filter where o is the spread of
the Gaussian and controls the degree of smoothing. A discrete domain
version of the LoG operator can be obtained by sampling the continuous
domain of the impulse function H(x, y) over the Wg x Wg window. In order
to avoid deleterious truncation effects, the size of the array should be set
such that Wg = 3b or greater, where b = 220 is the width of the central
excitatory region of the LoG operator. In practice, G;(x, y) is calculated by
multiplying the original image by a template generated by sampling the
impulse function H(x, y). For the computation of G,(x, y), many researchers
proposed approximation schemes to speed up the procedure.”>* As a result
of various sources of error, it has been shown that zero crossing do not
always lie at pixel sample points. Sub-pixel accuracy of LoG detector was
discussed in ref.’* To make LoG edge detection robust, zero-crossing can be
combined with other measures to judge whether an edge exist or not.

Another popular algorithm is the Canny edge detector.'® This operator
was designed to be an optimal edge detector. Canny’s approach is based on
optimizing the trade-off between two performance criteria:

(18)

- good edge detection: the probabilities of failing to mark real edge points
and marking false edge points should be low;
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- good edge localization: the positions of edge points marked by the edge
detector should be as close as possible to the real edge.

The optimization can be formulated by maximizing a function that is
expressed in terms of:

- the signal-to-noise ratio of the image;

- the localization of the edges;

- a probability that the edge detector only produces a single response to each
actual edge in an image.

The Canny edge detection algorithm is based on the following steps:

1) smooth the image with a Gaussian filter;

2) compute the gradient magnitude and orientation using finite-difference
approximations for the partial derivatives;

3) apply nonmaxima suppression to the gradient magnitude;

4) perform hysteresis thresholding algorithm to detect and link edges.

The Canny edge detector approximates the operator that optimizes the
product of signal-to-noise ratio and localization.
3.5.1 Smoothing
Let I(x, y) denote the image. Convolution of I(x,y) with Hs(x, y) gives an
array of smoothed data: S(x, y) = Hy(x, y)I(x, y).
3.5.2 Gradient Calculation

Firstly, the gradient of the smoothed array S(x, y) is used to produce the x

and y partial derivatives P(x, y) and Q(X, y), respectively:

P(x, y) =[S(x, y+ 1) =Sx, y) +Sx+1,y+1) = Sx+ 1, y)]/2

Qx, y) =[S(x, y) = [S(x,y) =S(x + 1, y) +S(x, y + 1) = S(x + 1, y + D]/2
(21

The partial derivatives are computed by averaging the finite differences over
the 2 x 2 square. From the standard formulas for rectangular-to-polar con-
version, the magnitude and orientation of the gradient can be computed as:

M(x, y) = VPA(x, y) + QA(x, y), O(x, y) = tan' (Q(x, y), P(x, y))  (22)

3.5.3 Nonmaxima Suppression (edge thinning)

Once the rate of intensity change at each point in the image is found, edges
must be placed at the points of maxima; or rather non-maxima must be
suppressed. A local maximum occurs at a peak in the gradient function
M(x, y), or alternatively where the derivative of the gradient function is set to
zero. However, in this case we wish to suppress non-maxima perpendicular
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to the edge direction, rather than parallel to (along) the edge direction,
since we expect continuity of edge strength along an extended contour.
This assumption creates a problem at corners. Instead of performing
an explicit differentiation perpendicular to each edge, another approxima-
tion is often used. Each pixel in turn forms the centre of a nine pixel
neighbourhood. By interpolation of the surrounding discrete grid values,
the gradient magnitudes are calculated at the neighbourhood boundary
in both directions perpendicular to the centre pixel. If the pixel under
consideration is not greater than these two values (i.e. non-maximum), it is
suppressed.

3.5.4 Edge Thresholding

The Canny operator works in a multi-stage process. First of all the image is
smoothed by Gaussian convolution Then a simple 2-D first derivative
operator (somewhat like the Roberts Cross) is applied to the smoothed
image to highlight regions of the image with high first spatial derivatives.
Edges give rise to ridges in the gradient magnitude image. The algorithm
then tracks along the top of these ridges and sets to zero all pixels that are
not actually on the ridge top so as to give a thin line in the output, a process
known as non-maximal suppression. The tracking process exhibits hysteresis
controlled by two thresholds: Ty and T,, with T{ > T,. These two thresholds
can be calculated based on noise estimates in the image, but they often are
set by hand. Tracking can only begin at a point on a ridge higher than T;.
Tracking then continues in both directions out from that point until the
height of the ridge falls below T,. This hysteresis helps to ensure that noisy
edges are not broken up into multiple edge fragments. The effect of the
Canny operator is determined by three parameters: o, T1, and T,. Increasing
o reduces the detector’s sensitivity to noise at the expense of losing some of
the finer details in the image. The error localization in the detected edges also
increases slightly as o is increased.

Figure 5 shows an example of Canny detector applied to blood pool
cardiac image. Note that the LV edges are well delineated (Fig. 5f). Edge
detection methods have been proposed to extract the edges of the LV in
gated cardiac nuclear medicine images,”>® and for volume quantitation in
SPECT.?®*">% Edge detection of gated SPECT images has been performed
to estimate LV volume and left myocardial volume in hypertrophic cardio-
myopathy patients.”® Canny detector is used to segment SPECT images in
order to analyze abnormal functional asymmetry of the prefrontal boys with
attention deficit hyperactivity disorder.®® Since nuclear medicine images are
inherently noisy, the performance of edge detection algorithms is affected. In
most cases, these algorithms are not used on their own for segmentation, but
coupled with other segmentation algorithms to solve a particular segmenta-
tion problem. For example, Dai er al.>® combined the Laplacian operator
with mean field annealing method to delineate the LV edges.
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) ' (e)

FIGURE 5. Canny edge detector applied to blood pool cardiac image. (a) Initial image.
(b) Edge detection along X-axis direction. (¢) Edge detection along Y-axis. (d) Norm
of the gradient. (e) The norm of the gradient after thresholding. (f) Thinning.

3.6 Markov Random Field Models

Thresholding methods or clustering techniques such as FCM and C-means
work well on noise-free images, with slow spatial variation in intensity, and
non textured images. These methods typically do not take into account the
spatial characteristics of the image, which render them sensitive to noise and
thus particularly less reliable. Furthermore, spatial feature is an important
piece of information for segmentation. It is advantageous to statistically
model the noise and any texture which is random by nature. One may also
take advantage of two-dimensional spatial ergodicity to average the effects
of noise.®! If a region is spatially ergodic then a pixel and its neighbours will
have similar statistical properties. A natural way to incorporate spatial
correlation into a segmentation process is to use Markov random fields
(MRFs). MRFs are a class of statistical models that describe contextual
constraints. They can be interpreted as a generalization of Markov chain
models, which describe (unidirectional) temporal constraints. Assume that
an image is defined on M x N lattice ) indexed by (i,j) so that
Q={@G,]j); 1=i=M, 1 =j=N}. Each element of Q is called site. The
sites in () are related one to another via a neighbourhood system, which is
defined as Ny = {Nj;, (i, j) € Q}, where Nj; C Q is the set of neighbouring
sites (1, J), (1,j) € Njand (i,j) € Nyy < (i',j') € Nj;. The sites together with N
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form an undirected graph, which is used to define the contextual constraints
between site labellings. A site often represents a point or a region in the
Euclidean space such as an image pixel or an image feature such as a corner
point or a line segment. Let Y = {Y; = y;; (1,]) € {1} be the observed grey
level image where pixels take values from the set A = {1,2,---,L — 1}. The
observation image itself can be denoted by y. The image segmentation
problem involves assigning to each pixel a class label taking a value from
the set B={1,2,---,C} where C is the number of classes. Let
X = {Xij; 1, € Q} be a family of random variables defined on the set (2,
in which each random variable Xj;, associated to the site (i, j) € (2, takes a
label value x;; in B. Thus a label is an event that may happen to a site. The
family X is called random field (or labels field). The notation Xj = x;
denotes that the event takes the wvalue x; and the notation
(X11 = x11, - -, XmMN = xmN) denotes the joint event and is also a labelling
of the sites in () in terms of the labels in B. A configuration of X, correspond-
ing to a realization of the field, is noted by x = {Xi;, X2, -, Xmn}. The
probability that a random variable Xj; takes the value x; is denoted
P(Xj = x;j). A random field X is said to be a MRF on Q with respect to
Nj if

P(Xij) >0V (1,_]) € Q) and P(Xij|XQ,{(i, j)}) = P(xij|XNU,) (23)

WhCI‘CXQ,{(i,J‘)} = {Xkl;k: 1,2,~~~,i— 1,i+1,"~,M;1: 1,2,~~~,j— 1,j+1,~~',N}.
Q —{(i,))} denotes the set of all sites excluding (i,)). Xq-;,j; and Xy;
denote the random variables associated with the sites () — {(i,j)} and Nj,
respectively. A first order neighbourhood consists of the four nearest pixel
sites; a second order neighbourhood consists of the eight nearest pixel sites,
and so on. A clique is a set of one or more sites such that each site in the
clique is a neighbourhood of all other sites in the clique. The segmentation
problem can now be simply as follows. Given the corrupted data y, find an
estimate X of the true labelling configuration x* (observed under ideal
conditions). This inverse problem is ill-posed. Prior information is often
very useful in formulating a regularized process so that optimal results can
be obtained by solving the regularized problem.®*> A well known approach to
this problem is the Bayesian estimation that incorporates prior information
through an a priori distribution of the random field X, P (X). The Bayesian
estimation can be formulated as a maximum «a posteriori (MAP) estimation
that maximizes the posterior probability or likelihood of X given y. In
particular if P () is an appropriate probability measure, then one would
like to find the estimate X which maximizes P(X = X|Y =y). The Bayes
theorem is given by the following relation: P(X=%|Y =y)=
PY =y X=%).PX=%)/P(Y =y) where P(Y =y|X=X) is the condi-
tional probability of Y given the field X. Since P(Y = y) is independent of
X, we can maximize the relation P(X = X|Y = y)  P(Y = y|X =X). P(X =X)
or log[(X = X|Y = y)] x log[(Y = y|X =X)] + log[(X = X)]+ log[(X = X)]. It
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should be pointed out that the difficulty in maximizing this equation lies in
the fact that it is a joint log-likelihood for all the image data. It does not
simply describe the likelihood of a single pixel. In particular, the maximizing
% is one of CM*N possibilities. The solution is given by

X = arg max {log P[(y[x)] + log[P(X)]} (24)

The first term of Eq. 24 is the likelihood, telling how the data are obtained
from the labels while the second is the prior probability of a given labelling.
In practice, the first term forces fidelity to the data while the second penal-
izes unlikely trough labelling. Note that, without the priori distribution P(x),
the estimation scheme becomes a maximum likelihood estimation (MLE).
MLE is often used as the initial estimate in the iterative MAP estimation.
For practical use, a means to specify the conditional probabilities is re-
quired. From the above equation, computation of the prior probability of
the class and the likelihood probability of the observation is needed. Since X
is assumed as a realization of a MRF, according to the Hammerseley-
Clifford theorem,®® the probability density of X is given by a Gibbs distri-

bution having the form:%*%*

P(X) = Z 'exp(—U(X)/T) = Z ' exp (- > VeX) /T) (25)

ceCL

where Z is a normalizing constant, called the partition coefficient. T stands
for “temperature” and controls the degree of peaking in the probability
density, i.e. the larger the value, the larger is the peaking. U ( ) in Eq. 25
is an energy function, composed of potentials of the cliques V.( ), which
specifies the degree of penalty imposed on the neighbours. A clique potential
specifies the admissibility of a specific labelling of the nodes of a clique. The
value of V¢( ) depends on the local configuration of clique c. The set of
cliques Cp comprises the completely connected subgraphs of the MRF
graph. An example of potential functions is given by:

Ve(X) = B if xj = xyy (1,]), (',]) € CL (26)
¢ 0  otherwise

Assuming that the noise in the image, is additive, Gaussian, independent,
and with zero mean and variance o,y; = X; +m, the conditional density
probability of (y; — x;) is simply the probability of the noise

P(yj|xij) = (l/o\/ﬂ) exp(—(yij - xij)z/(rz) (27)

Assuming the noise is independent, we find for the entire image
P(y|x) = I, jeaP (yij|x;) . Thus,

POI) = (Tl jeao /2w exp(— Utyl) (28)
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where U(y[x) = 2 j)calyi — Xi) /(20?) is the likelihood energy. It is easy to
show that log[P(x]y)] o« —U(x|y) where U(x|y) = U(y|x) + U(x) + Const
(where Const is a constant) is the posterior energy. Finally, the MAP
estimation is equivalent to minimizing the posterior energy function:

% = argmin {U(y[x) + U} (29)

Although mathematically simple, finding a global minimum for MAP
estimation, given all the configurations x is a difficult task. Therefore,
optimal solutions are usually computed using iterative optimization
methods. A well known method is the iterated conditional modes (ICM)
algorithm of Besag,®® which uses the “greedy” strategy in the iterative local
minimization and convergence is guaranteed after only a few iterations.
Given the image y and labels x¥, (@) ICM sequentially updates each Xg-k)
into xfjl(“) by minimizing U (x; |y, Xo—i, ;). the conditional posterior prof])-
ability with respect to x;; (k is the iteration number).

The MRF model has been applied to segmentation of both PET and
SPECT images as a pre-process for classification and restoration.®>*° For
example, MRF model was used to segment brain tissues, such as striatum,
GM and WM, in dynamic FDOPA-PET studies. The goal is to classify the
tissues according to their physiological functions.®” Markovian segmenta-
tion of 3D brain SPECT images was also performed to find the support of
the objects to be restored using a 3D blind deconvolution technique.®’ The
aim of this restoration is to improve the spatial and inter-slice of SPECT
volumes for easy clinical interpretation. In another study, 3D SPECT brain
images were segmented into three classes (CSF, WM, GM) using 3D
MRF.%® Feature vectors are extracted from the segmented SPECT volumes
to classify brains into two classes, namely “healthy brains” and ‘““diseased
brains” (i.e., brains with possible cerebrovascular disease).

3.7 Artificial Neural Networks

Classical segmentation methods such as edge detection or deformable
models discussed in section 3.8 often require considerable user expertise.
For any artificial vision application, one desires to achieve robustness of the
system with respect to random noise and failure of process. Moreover, a
system can probably be made artificially intelligent if it is able to emulate
some aspects of the human information processing.'® Another important
requirement is to have the output in real time. Artificial Neural Networks
(ANNSs) are attempts to achieve these goals.

ANNSs are massively connected and parallel networks of elementary pro-
cessors.’”#! Each processor simulating biological learning is capable of
performing elementary computation. Learning is achieved through the
adaptation of weights (synaptic coefficients) assigned to the connections
between processors. The massive connectionist architecture usually makes
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the system robust while the parallel processing enables the system to produce
output in real time.'® ANNs are widely used in segmentation as a classifier.
The weights are determined using training data, and the ANN is then used to
segment new data. ANNSs can also be used in an unsupervised way as a
clustering method. Different neural models have been developed for image
segmentation, particularly Hopfield, Kohonen, radial basis functions and
Pulse-Coupled Neural Networks (PCNNs), and MultiLayer Perceptrons
(MLPs).”>7778! These methods work well in a noisy environment and
consequently are interesting for processing nuclear medicine images, which
are inherently noisy. For example, Keller and Mckinnon’® used PCNNs for
segmentation of nuclear ventilation/perfusion images of the lungs. A PCNN
is physiologically motivated information processing model based on the
mammalian visual cortex.”” In this model, each neuron in the processing
layer is directly tied to an image pixel or set of neighbouring input image
pixels. Each neuron iteratively processes signals feeding from these nearby
image pixels (i.e., feeding inputs) and linking from nearby neurons
(i.e. linking inputs) to produce a pulse train.”’ There is no training involved
for the standard PCNN. Ghosh e al.”’ presented an original neuro-fuzzy
approach to extract objects from noisy images. This method takes into
account the neighbourhood of the pixels and ensures the compactness of
the extracted objects by extracting spatially compact regions through the
process of self-organization using only one noise corrupted image. A MLP-
type of neural network is used and trained using the well-known back-
propagation (BP) algorithm. The advantage of this approach is that there
is no supervised learning. The error of the proposed system is computed
using concepts of fuzzy sets. Based on this approach, Behloul et al.” pro-
posed a neural system to myocardium extraction in PET images. The noisy
background of these images makes myocardium extraction and tracer up-
take quantification a very difficult task.

Myocardium extraction is required for a good visualization and interpret-
ation. Indeed, analysis of "*F-FDG PET heart images performed by simple
visual evaluation slice by slice is tedious and suffers from observer bias. As
an alternative to this visual evaluation, information can be represented using
a polar-map technique. This polar map can be thought of as the image that
would be obtained if one looks at the LV as a 3D cone shaped object and
projected onto a single plane. This form of display has the advantage that all
areas of myocardium are represented in a single image, but it is less easy to
assess the relationship between the defected region and coronary arterial
territories.*® Both slice by slice visualization and polar map do not allow an
easy assessment of the extent of tracer uptake defect on the LV.” Thus, a 3D
visualization method presenting accurate localization and extent of the
disease is desirable.

Cardiac "8 F-FDG PET images are generally involved in viable myocar-
dium assessment studies. The quantification of the viable tissue for a patient
presenting a CAD can help to decide whether or not the patient will benefit
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from a revascularisation procedure. In general, 3 levels of SF-FDG
uptake are distinguished by the clinicians: low, intermediate and high.
Normal or remote myocardium is expected to have a high uptake rate that
is more than 70% of the maximal value in the image (assuming that the
maximum value corresponds to a normal tissue). Seriously damaged or
infracted tissues have a low uptake rate (less than 50%).5° However, it is
very difficult to diagnose ischemic processes involved in the studied dysfunc-
tional myocardium based only on "*F-FDG PET images and especially when
BF.-FDG uptake is intermediate (50 to 70 %). A medium (intermediate)
uptake region may correspond to a partially infracted tissue (heterogeneous)
or a homogeneous reduced metabolism function. Because of the doubt, some
clinicians have rather classified these regions into the viable category.
Ideally, a threshold value equal to 50% (or in the range of 50 to 60%) of
the max value should allow the visualization of viable myocardium.*® How-
ever, due to the noisy nature of PET images, simple thresholding techniques,
generally provided in commercial software supplied to end-users, does not
seem to be suitable for a 3D extraction and visualization of the viable
myocardium.

Indeed, in some images, some pathological regions were not visible and
thus a higher threshold value was needed. However, an increased threshold
value tends to overestimate the extent of already detected defects and thins
down the myocardium. There is obviously a need for more sophisticated
methods to extract accurately viable myocardium from the background. To
this end, Behloul et al.” proposed a Radial Basis Function Network (RBFN)
to extract myocardium through a self-organization process using only one
PET image. The error of the RBFN architecture is computed using the
concept of fuzzy sets and fuzziness measures. RBFNs are mainly much easier
to train than MLP since they establish the Radial Basis Function (RBF)
parameters directly from the data, and training is primarily on the output
layer.®® The RBFN is a feed forward neural network which accomplishes an
input-output non-linear mapping by linear combination of nonlinearly
transformed inputs according to:

Mg
0j = Y Wii(x) (30)
i1

where x is the input vector, o; the output of the j™ output node and w;; are
the output linear combining weights. The ¢;(x) are RBFs and My is the
number of RBFs. Each component of the input vector x feeds forward to My
RBF node whose output are linearly combined with weights into the net-
work output node. An output of the network is a simple linear combination
of the hidden neuron outputs. The most important feature of RBFs is that
they are local i.e. they give a significant response only in a neighbourhood
near a central point. Their response decreases monotonically with distance
from a central point. RBF parameters are its center, shape, and width.
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A typical local RBF is a Gaussian function centred at ¢y and of width (or
radius) r, having the form:

2
G(x, ¢y, I) = exp (”erzx”R> (31)

where R is a positive definite matrix. RBFNs have traditionally been
associated with radial function networks in a single hidden layer. The
hidden and output layers are generally trained sequentially: the RBF param-
eters are first fixed and the optimal linear combining weights are then
computed.®”** Once the number and parameters of the RBFs defined, the
hidden layer performs a fixed nonlinear transformation; it maps the
input space into a new space. The output layer then implements a linear
combiner on this new space. The only output layer parameters to adjust are
the weights of this linear combiner. In general, the output weights of a
RBFN can be determined by a pseudo-inverse matrix. When applied
to supervised learning with linear models, the Least Square (LS) principle
leads to a particularly easy optimization problem. However, this approach
can be computationally demanding when the training set is large. In
this case, delta-rule type of BP is preferred since it is a less demanding
technique. Behloul et al.” used the BP algorithm to train the output layer.
The procedure for learning the correct set of weights consists in varying
the weights so that the error (E) is reduced. In supervised training, a
set of input-output couples is supplied. The error of the network is
generally computed by:

N
E=05x%) (o)’ (32)
=1

where o; is the spontaneous output of node j and t; is the expected output of
node j, N is the total number of output units. The network is supposed to
extract the heart from the noisy image based only on the contrast between
myocardium and background. As human eyes would do, the network will
have to focus on the object in the noisy image until it becomes ““clear’’. Thus,
a measure of fuzziness of the image can be considered as the error of the
network, to be reduced.®!

A fuzzy set F is characterized by a membership function wp(x) that
associates to each point x in a space of points X a real number in the interval
[0,1]. The value wp(x) represents the grade of membership of x in F.
pp(x) = 1 indicates a strict containment of x in F and pg(x) = 0 means
that x does not belong to F. Any intermediate value would indicate the
degree to which x is an element of F. Formally, a fuzzy set F that has a finite
number of elements x;, Xy, - - -, X, i1s defined as a collection of pairs

F = {(pp(xp), xi),1=1,2,---,n} (33)
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A measure of fuzziness estimates the average ambiguity in a fuzzy set.
Intuitively, the fuzziness of a crisp set using any measure should be zero
(or minimum), as there is no ambiguity about whether an element belongs to
the set or not. If the set is maximally ambiguous, then the fuzziness measure
should be maximum. When the membership value approaches either 0 or 1,
the ambiguity of the set decreases. Thus, a fuzzy set is most ambiguous when
pp(x) = 0.5Vx. The degree of fuzziness, I(F), of a fuzzy set F represents the
amount of ambiguity in making the decision whether a point belongs to F or
not. Such measures have been proposed by several authors.***® Two math-
ematical models of fuzziness measures are used: the index of fuzziness and
the fuzzy entropy.”’ Both measures presented below lie in the interval [0, 1].
The index of fuzziness of F is defined by v(F) = ﬁd(F, F), where F is the
nearest ordinary set to F given by

(0 pp()=0.5
Me(x) = { I if pp(0) > 0.5

d(F, F) is the distance between the two sets F and F. The value of k depends
on the type of the distance used. k =1 corresponds to the generalized
hamming distance and k = 0.5 to the Euclidean distance. The corresponding

index of fuzziness is called the quadratic index of fuzziness Vé(F).

2 & 2
vq(F) = /n 12:1: \/(MF(Xi) - Mg(xi)) (35)

The index of fuzziness reflects the ambiguity of an image by measuring the
distance between its fuzzy property plane and the nearest ordinary plane. Pal
and Pal®*® proposed an exponential entropy given by

l n

H.(F) = /e 1) ; (Sa(pp(xi) — 1)

(34)

36
with (36)

Sn(p(xi) = pp(x;)e! PP (1 — pp(xp) g (x;) e ™)

H,(F) gives a measure of the average amount of difficulty in taking a
decision on any pixel. Both terms (index and entropy) give an idea of
“indefiniteness” of an image. They may be considered as measures of
average intrinsic information that is received when one has to make a
decision in order to classify the pixels described by a fuzzy set. Thus, these
measures of fuzziness are used to compute the error of the SRBFN.

The architecture of SRBFN, derived form the approach of Ghosh et al.”’,
presents three layers: the input layer, one hidden (RBF) layer and the
output layer (Fig. 6). In every layer, there are Ly x Ly neurons (for an
L, x Ly image) each neuron corresponds to a single pixel. Neurons in the
same layer are not connected to each other (Fig. 6b). Each neuron is con-
nected to the corresponding neuron and its neighbours of the next layer. The
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FIGURE 6. Illustration of the architecture of self organized RBFN. (a) Neighbour-
hood system. (b) RBFN topology. (Reprinted with permission from ref.”).

neighbourhood considered here corresponds to the 8(3 x 3 — 1) nearest
neighbours (N) or the 24(5 x 5 — 1) nearest neighbours (N?) and so on
(Fig. 6a).

In the SRBFN, the layers are partially connected and the neurons have
spatial positions corresponding to the pixels in the image. The feedback
connections from the output layer to the inputs make the network recurrent.
The output is considered as input for the next iteration. Behloul®® proposed
a sigmoid function f for the activation of the output nodes o; = f (Ij) where

I; = M) wijgi(x) and
fx)=1/(1+e ™) (37)

where 0 is a bias value. The output of each neuron of the hidden and output
layers lies in [0, 1]. It represents the degree of brightness of the corresponding
pixel in the image. The measure of fuzziness of the fuzzy set bright is viewed
as the error of the network. Once the weights have been adjusted according
to the error measure, the neurons in the output layer are feed back to the
corresponding neurons in the input layer. The output values of the output
nodes which lie in [0, 1] are considered to be the brightness degrees of the
corresponding pixels (0 for black, 1 for white, and any intermediate value is a
grey level). The grey levels corresponding to the output values are considered
as the input of the next iteration. The BP algorithm is used to train the
output layer. The change in weights, such that the error E is reduced, is given



334 A.O. Boudraa and H. Zaidi

by Aw;; = n(—aE/(“)oj)f’(Ij)oi where m is a learning rate. The sigmoid func-
tion is used because of its simple derivative function: f’(I;) = do;/dl; =
0;(1 — 0;). The mathematical derivations of the BP for quadratic index of

fuzziness V?l and fuzzy entropy H, are defined as follows:

- Quadratic index of fuzziness
The error is defined by E = V(2] where

Vé = (4/n) [Z {min(oj, (1- Oj)) }2
j

and n is the number of output units. Thus,

~_ f —8oj/n if 0 =<0j =0.5
—OE/doj = {8(1 “op/n if 0.5 < of =1

(=o' () o if 0 =0j =0.5
Aw = {mgl —0j)f'(I})o; if 0.5 < oj =1

where n = m; x (4/n) x 2

- Fuzzy entropy
The error is defined by E = H, where

1 - —0j 0j
H, = ey oo (0 + (1 - o)

i=1

OH, 1

Fo, v

1 —oj)e' ™ — 0je%)

(33)

(39)

(40)

(41)

(42)

To make weight correction value minimum when the membership
values of the elements are 0 or 1 and maximum when they are all 0.5,

we take

1
Awjj =m, IE f'(1;) oi
doj

1
(1 —0j)e! = — oje

AWij = - f/ (Ij)Oi

where m =7, x n(y/e — 1)
7nmfl(lj)oi if 0 Soj =0.5

AWij = 4 . .
T]Wfl(lj)oi if 0.5 =0j =1

(43)

(44)

(45)

At the first iteration, the input nodes receive the grey levels of the corre-
sponding pixel. For the hidden layer, each RBF centre is localized at the



10. Image Segmentation Techniques in Nuclear Medicine Imaging 335

value of the corresponding pixel in the image. The total input to any node of
the output layer lies in [0, N;] where N is the number of links that a neuron
has. The parameter 6 of the sigmoids in the output nodes is set to N /2, since
this value corresponds to the middle of the total input range.” All initial
weights (between the hidden and output layers) are set to 1. The SRBFN
presented by Behloul® aimed to extract a compact object from one noisy 2D
image. It is easy to extend the architecture to process 3D images; however
the computation complexity grows dramatically. It turned out that the result
obtained when considering the 3D image as a set of 2D slices and applying
the SRBFN to each slice was comparable (in terms of size and shape of the
extracted object) to that when considering the total 3D image. The 2D
images are processed independently in a sequential manner. Behloul consid-
ered the 3D PET volume as a set of 2D-images where two orthogonal views
are presented: 63 (128x128)-slices and 128 (63x128)-slices; the intersection
of the two independently extracted objects constitutes the final result of the
myocardium extraction process.

Different sizes of neighbourhood have been tested and N? turned out to be
the best compromise between processing time and accuracy of shape and
width of the extracted myocardium. As pointed out by Ghosh e al.”” and
Behloul ez al.’, the index of fuzziness is better than the entropy measure for
maintaining the compactness of the extracted objects. However, the shapes
of objects are better preserved by the entropy measure. For the index of
fuzziness, the learning rate is lower than that of the entropy measure. Low
learning rate smoothes out noise and creates compact regions, while entropy
measure enables the network to preserve object boundaries as learning rate is
very high around the most ambiguous region (o; &~ 0.5).”” Figure 7 shows the
results obtained using the index of fuzziness versus those obtained using the
entropy measure. The diseased area appears as a hole in the myocardium
(Fig. 8).

FIGURE 7. Object extraction results. (a) Index of fuzziness. (b) Fuzzy entropy.
(Reprinted with permission from ref.”).
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FIGURE 8. Volume rendered visualization of the entropy extracted myocardium: the
diseased region appears as a hole in the myocardium. (a) Orthogonal view of the
heart showing a defect in almost all the posterior wall of the LV. (b) 90° y-axis
rotation of (a) showing the extent of the disease in the apical anterior wall of the LV.
(c) 45° x-axis rotation of (a) showing both defects (posterior and apical anterior) and
the RV. (Reprinted with permission from ref.”).

For the index of fuzziness (Fig. 7a), the diseased region and the myocar-
dium width are overestimated (over-smoothed), while for entropy (Fig. 7b),
the results are very much closer to manually delineated regions. Moreover,
using the index of fuzziness, the network requires more time to stabilize. To
take advantage of the main positive features of both measures in the same
time: “‘smoothing and compactness” for index of fuzziness, and “good shape
estimation” for the fuzzy entropy, both measures were combined. For the
first iterations of the self-organizing process (2 to 3 iterations), index of
fuzziness is used. Because of its low learning rate, this measure produces a
contrast enhancement on the original images (Fig. 9a). The entropy measure
is then used; it ensures a good shape extraction (Fig. 9b).

The sequential application of the two fuzziness measures presented the
best results. Indeed, when using separately the fuzziness measures, the
network was not able to detect some regions of the myocardium where
there is a low "8 F-FDG uptake (the human eye was still able to allow
delineation of such regions). Only the combination of both measures made
the network successful in retaining these regions in the extracted myocar-
dium (see arrows in Fig. 9b). Thus, it seems that the two error models
complement each other perfectly for an accurate delineation of the myocar-
dium in PET images.

3.8 Deformable Models

Deformable models are curves, surfaces or solids defined with an image or
volume domain. These models deform under the influence of external and
internal forces. The original deformable model, called snake model, was
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FIGURE 9. Combination of both fuzzy measures. (a) Images obtained after 2 iterations
using only the index of fuzziness measure. (b) Final result using the entropy measure
on the images shown in (a). (Reprinted with permission from ref.”).

introduced by Kass er al.* as an active spline reacting with image features.
Basically, the snake model is an energy-minimizing spline controlled by
external image forces such as lines and edges, and internal spline forces
which impose a piecewise smoothness constraint. In practice, the user ini-
tializes the deformable model near the Rol and allows it to deform into
place. User could manually fine-tune the filling by using interactive capabil-
ities of the model. The snake deforms itself into conformity with the nearest
salient contour by minimizing the snake energy, which pushes the snake
toward salient image features and internal forces, which are responsible for
smoothness of the curve. As the algorithm advances, the terms of snake
functional energy can be adjusted to obtain a local minimum. The main
advantages of deformable models are their ability to directly generate close
parametric curves or surfaces from the image and their incorporation of a
smoothness constraint that provides robustness to noise and spurious edges.
A disadvantage is that they require manual interaction to place an initial
model and choose appropriate parameters.>

The original formulation of the snake is for a continuous spline and
image. The snake geometry is represented by a curve V (s, t) with parameters
s (spatial index) and t (time index) defined on given open intervals Q and T,
respectively. By permitting the snake to have two deformational degrees of
freedom in the plane, that is, the x and y coordinates, the active model,
embedded in the plane image (x, y) € R2, is represented as a time varying

parametric contour by
V(s, t) = (x(s, 1), y(s, 1)):s € Q, t €T,
(s, 1) = (x(s, 1), ¥(s, 1)) : 46)
V:Q=10,1 -

Thus, at time t = ty the snake or the closed contour C is represented by
its pair of coordinate functions {x(s, to), ¥(s, to)}, where s € [0, 1] is the
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normalized arc length along C. Let A4 be a space of admissible deform-
ations. The shape of the contour subject to an image I(x, y) can be dictated
by its energy function Eg,. as follows

Esnake : Ag — R

Esnake = JQ [Eint(V(sa t)) + Eimage(V(sat)) + Econ (V(Sa t))]ds (47)
where Ein, Eimage. and Econ refer to the internal, image and external con-
straint forces, respectively. The energy terms are defined cleverly in a way
such that the final position of the contour will have a minimum energy
(Emin)-Eint represents the internal energy term of the snake which imposes
the regularity on the curve by bending and stretching, and is given by

wwymoH (48)

%(ww“w

E;
E; and E, represent the continuity and smoothness (curvature) terms, re-
spectively. The contour is treated as an elastic rubber band possessing elastic
energy. It discourages stretching by introducing a tension:

IV(s, t)]
Js

2
ds (49)

1
Eelastic = 5 Ja(s)
Q

Eenastic has larger values where there is a gap in the curve. The weight a(s)
allows to control elastic energy along different parts of the contour. The a(s)
value determine the extent to witch the contour is allowed to stretch. If
a(s) = 0, a discontinuity can occur. For most applications, a(s) is assumed
to be constant throughout the curve. In addition to being considered as an
elastic band, the snake is also considered to behave like a thin metal strip
giving rise to bending energy. This second term discourages bending. This
energy is defined as sum of squared curvature of the contour:

82

Ebending B( )‘ (50)

Sharp corners or points of high curvature are characterized as high
frequencies and bending energy is more sensitive for contours having such
corners because the second derivative will be very high for such contours.
Ecpstic has larger values when the curve is bending rapidly. The bending
energy is minimum for a circle. The weight B(s) value determine the extent to
which the contour is allowed to bend at point s. Setting B(s) = 0 at point s
means that we are relaxing our condition and allowing that s develops a
corner. The total internal energy of the snake is the sum of elastic and
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bending energies. Adjusting the weights a(s) and B(s) controls the relative
importance of the elastic and bending terms and therefore the internal
energy of the contours.

Eimage 1s derived from the image data over which the snake lies (object of
interest). The three important features the snake can be attracted to are line,
edge and termination functions. The total image energy can be expressed as
a weighted combination of the three:

Eimage = WlineEline + WedgeEedge + WtermEterm (51)

The simplest useful image functional is the image intensity Ej,. = I(x, y).
Depending on wy;,. the snake is attracted to dark or light lines. The edge-
based functional, Ecqec, attracts the snake to contours with image gradients,
that is, to locations of string edges. A way to define Ecgqe is as follows:

Eedge(V(5)) = —Y($)E3(V(s))
E3(V(s)) = [ VI(V(s)|® (52)
E3(V(s)) = [|[V(Go(V(s)) @ I(V(s)))|>

v(s) is a parameter that controls the weight of image attraction. VI(V(s))
denotes the gradient of the image I and G4(V(s)) is a 2D Gaussian function
with standard derivation o (the image is pre-processed with a low pass filter).
It can be seen that larger o will increase the blurring of the edges thereby
increasing the capture range of the active contour. The termination func-
tional, Epy, can be obtained by a function checking the curvature of level
lines in a slightly smoothed image. Let C(x, y) = Gq(x, y)'I(X, y) be the

smoothed version of I(x,y) and § = tan~! (%) the gradient angle. Curvature
of contour in C(x, y) can be written as:

a9

Eterm:ﬁ

E _0*C/oR%

term — OC/OR

B | Gy C2=2Cy CyCy+ Ci C

erm — 3/2

(a+q)

.  (PC/0y?)(0C/9x)*~2(092 C/0xDy) (0C/0x)(DC /DY) +(9° C/0x2) (OC/Dy)’

term — 3/2
((OC/oxy+0C/ay))”

(53)

where R = (cos 8, sin#) is a unit vector in direction of the gradient and
R, = (—sin#, cosH) is a vector perpendicular to gradient direction.

E.on represents the external constraint energy term that is responsible for
guiding the snake towards the desired local minimum. It can be defined by
the user, constructed from physical phenomena,”® or derived form high-level
interpretation.®” For example, the user connects a spring between any point
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p1 in the spatial domain and a point p, on the snake. A snake trying to
reduce its constraint energy is pulled towards the point p; defined by the
user. Constraint energy can also be interpreted as a kind of prior for the
system.

A contour is defined to lie in the position in which the snake reaches a
local energy minimum. Before the minimization process, the snake formu-
lation is discretized both in time and space domains. The spatial discretiza-
tion is done by sampling the active contour V into N points
V(vi,1=1, 2,...,N). For an initial contour (i.e., at t = 0), the N points
are chosen to be evenly spaced on the contour. The time discretization is
defined to start at time t = 0 with a constant time step At. The discretization
of Eiy is done by approximating the first and second derivatives by finite
differences as follows:

Ei(i) = |lvi —vii | = (xi = %)+ (vi — yi1)®
Ex(i) = |[Vii1 — 2vi — Vi P = (Xio1 — 2% — X1 +(yio1 — 2yi — yin1)
(54)

where x; and y; are the x and y coordinates of the V}h contour-point,
respectively. Equation 54 is formulated to minimize the distance between
neighbouring.91 For simplicity we suppose that wWjj,e = Wierm = 0. Thus, the
boundary is detected by iteratively deforming an initial approximation of the
boundary by minimizing the reduced snake energy function:

N
Eaake = _ {a(E1() + BOE2(0) + v()Es(0)} (55)

i=1

Emin == min{Esnake} (56)

Equation 56 was originally solved by using techniques of variational
calculus and applying a finite difference method.® It was improved later
on by Cohen and Cohen’” using a finite element method. Another solution
was suggested by Amini et al.® using dynamic programming that promotes
stability of snake and hard constraints to be enclosed at cost of expensive
computation. Williams and Shah”! proposed another approach based on the
Greedy algorithm, which is faster than the method of Amini et al.”* Suppose
that the contour has N points (Fig. 10), which are allowed to move to any
point in a neighbourhood of size M at each iteration. The Greedy algorithm
is described as follows:

Initialize o;, B;, and vy, to 1 for all i
Do
/" Loop to move points to new locations’/
For i =1 to N /"N: number of points in contour’/
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FIGURE 10. Curve representation with a set of N points (vi(x;,y;), i=1,---, N).

Emin < 00
Forj=1toN

E(j) — a()Ei(j) + B)E2(j) + v()Es(j)
If Ej < Emin
Enmin < E(j)

jmin — ]
Move point v; to location ju;,

If jmin 1s not current location, ptsmoved ++
Until ptsmoved < Th_Mov

where ptsmoved is the number of points which have been moved to the new
locations. Th_Mov is a threshold to decide whether we have converged
according to the number of points that moved in each iteration. Figure 11
shows the result of the snake applied to a gated blood pool image. Fig. 11(a)
shows a cardiac image acquired in the LAO projection providing the septal
separation of the two ventricles. The aim is to delineate correctly the LV
contour in order to estimate the EF. The initial contour drawn by the user is

(a) (b) (c)

FIGUrRe 11. Snake applied to blood pool cardiac image. (a) Initial contour.
(b) Contour obtained after 20 iterations. (c) The LV enclosed by the snake.
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shown in Fig. 11(a). Contour obtained after 20 iterations with Th_Mov set
to 6 is represented in Fig. 11(b). As shown in Fig. 11(c), the LV is well
delimited. Results of delineation of the cortical structure from PET brain
images are reported in ref.”* These results show the interest to use deform-
able models for repeatable brain regional extraction applicable for regional
quantification of tracer uptake.

3.9 Atlas-guided Approaches

Atlas-guided medical image segmentation could be a robust and efficient
approach when a standard atlas or “template” for the particular organ and
imaging modality being investigated is available. The atlas is produced by
gathering detailed information on the anatomy of the structure to be seg-
mented for a particular patient population. The template is then used as a
reference frame for segmenting other images.® It is worth emphasizing that
atlas-guided approaches are conceptually similar to classifiers described in
section 3.3 keeping in mind that they are implemented in the spatial domain
rather than in a feature space.

The standard atlas-guided approach considers segmentation as a registra-
tion problem (see chapter 9 for a detailed survey of registration techniques).
The algorithm starts with a process called atlas warping, that is an estimate is
made of the transformation matrix that matches a pre-segmented atlas
image to the target image to be segmented. This transformation can be
linear,”” non-linear’®®” or a combination of both®® to handle efficiently
anatomical variability. It is worth emphasizing that this issue is rather
difficult to solve and might result in inaccurate segmentation of most dis-
similar complexly-shaped structures exhibiting large variability in size and
shape among subjects. Another important conceptual limitation for this
technique, namely the existence of patient-specific anomalies that are obvi-
ously not modelled in an atlas obtained from a single or even an average
representation of the population. It is therefore well accepted that atlas-
guided approaches are more appropriate for segmentation of structures that
do not vary significantly among subjects. The use of probabilistic atlases has
proven to be useful in modelling anatomical variability at the expense of
additional complexity and increase in computation time.” Atlas-guided
approaches have been developed and applied mainly in MR brain imaging.
Some of them are, however, suitable for an extension towards segmentation
of nuclear medical images.

3.10 Analysis of Time Activity Curves

Gated blood pool scintigraphy (SPECT and PET) can measure the func-
tional changes in tissues.!"!% Theses modalities generate images demon-
strating temporal changes in radioactive tracer distribution. For example,
gated blood pool scintigraphy is a reliable non-invasive method for detecting
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abnormalities of contraction and conduction of the heart. Dynamic imaging
provides a time sequence of images taken throughout the whole cardiac
cycle. The quantitative information contained in the images describes the
physiological behaviour of the imaged structures such as the LV and RV.

In routine dynamic studies, Rol delineation is required for quantitative
analysis. A common approach is to identify the anatomic structures by
placing Rols directly on the images, and the underlying tissue time-activity
curves (TACs) are then extracted for subsequent analysis. This Rol analysis
approach, although widely used in clinical and research settings, is operator-
dependent and prone to reproducibility errors. A semi-or fully-automated
Rol delineation (or segmentation) method offers advantages by reducing
operator error/subjectivity, thereby improving reproducibility.'® Automatic
segmentation may be an alternative to manual Rol delineation. Cluster
analysis has been investigated to partition sets of tissue TACs into a set of
homogeneous TACs (clusters). It was found that a linear combination of
those homogeneous TACs using a mixture model can accurately represent
the original data while providing quantitative parametric images.'*!"'%?
Wong et al.'® used a non parametric C-means clustering technique to
segment dynamic PET data into C characteristic curves automatically.
However, large-scale and multi-centric studies for different applications
are necessary to demonstrate the potential of automatic segmentation for
replacing manual Rol delineation.

Conventional analysis of image sequences is usually performed by visual
evaluation of differences from image to image in order to obtain qualitative
information for example about the cardiac contraction kinetics or tissue
perfusion. This is not the optimal way to interpret the changes appearing
in the images along the series. This operation is tedious and suffers from
observer bias. Furthermore, a sequence of images contains also spatially
differentiated quantitative information describing the behaviour of the im-
aged structure, which is difficult to extract by visual evaluation. As an
alternative to visual evaluation, the required information can be obtained
from an image sequence using parametric analysis methods. Based on the
first harmonic fit to the pixel time activity curve, Fourier analysis'%* has also
been used to detect and describe wall motion abnormalities in gated blood
pool scintigraphy.'**!% The primary assumption of Fourier analysis is that
the data are periodic and the second is that the transition between the first
and the last frame of the study must be smooth. This analysis generates two
parametric images, the amplitude image corresponding to the maximal
change in counts within the image series regardless of the time these changes
occur and the phase image corresponding to the time of maximal contraction
(ED). In a first approximation, the amplitude image is proportional to the
stroke volume. The phase image allows good separation of the ventricular
regions (left or right) from the atria and this processing is useful to delineate
automatically the LV contours in order to estimate the EF value from
ventricular regions of interest.*
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Let Vol(i,j, k) be the value of the pixel (i,j) of the k™ cardiac image.
Two images, respectively, I.,s and I, are calculated using the following
equations:

Tc

Leos(i,j) = ) cos {(k— 1)} x Vol(i, j, k)
k=1
Tc

2m ..
Lin (i, ) Z sin {Tc(k — 1)} x Vol(i, j, k)

k=1

(57)

where T¢ is the number of images in the series corresponding to the cardiac
cycle duration. The phase image is given by

L Isin(ia J))
Tohase(1,j) = arctan P >
phdse( -]) (Icos(la.]) ( )

and the amplitude by:

Lamp (1) = 1/ (leos () +(Lan 0. 1))? (59)

For cardiac studies, the amplitude image is a picture of pixel-by-pixel
stroke volume. The rationale for using the phase image rests on the obser-
vation that ischemia reduces the velocity of myocardial contraction and thus
local abnormalities of wall motion are frequently associated with changes in
the time of wall movement.

In spite of the apparent mathematical difficulties, Factor Analysis of
Dynamic Structures (FADS) has gained clinical acceptance for cardiac
studies at equilibrium with abnormalities of both contraction and conduc-
tion.!%*"1% This analysis assumes that any time activity curve is a weighted
sum of a limited number, q, of pure time activity evolutions, called physio-
logical components.'®” These components correspond to regions of similar
temporal behaviour.

Assuming that image sequence has m frames each containing n pixels, this
can be expressed as a ¢ -factor problem:'®

X =X+E; X=FA (60)

where X, X, E, Fand A arem x n,m x n, m x n, m x g and q x n matrices,
respectively. X is the data matrix (noise corrupted observation) whose
columns contain TACs of each pixel; X is the relevant part of the observa-
tion; E is an error matrix; F contains the q temporal factors in its columns
and A contains the q factor images in its rows. The FADS solution involves
choosing the number of factors q, minimizing the size of E in a suitable sense
and determining the composition of X into FA by appropriate con-
straints.'® For dynamic studies in nuclear medicine a Principal Component
Analysis (PCA) may be performed on the population of pixels (TAC for
each pixel) in the image to extract the first p components. A Singular Value
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Decomposition (SVD) of the row space of X(m < n) gives X = PL%3QT. P
and Q are m x m and n x m column orthogonal matrices and L is the m x m
diagonal matrix with non-negative eigenvalues in decreasing order. Let P,
and Q, represent the first p columns of P and Q; Lp the upper p x p
submatrix of L; and D, =P,L)°Q} the mxn matrix. Then
X =X, + &, = CeWe + €, where Ce = Py; W = Lg'SQIT). C.isanm x p mat-
rix containing the orthogonal components in its columns; W, is a p X n
matrix containing the pixel coefficients for each component in its corre-
sponding rows; and ¢, is the residual error matrix. It is now assumed that
p = q. Since PCA minimizes residual variance for a given number of com-
ponents, it is natural to estimate E by g, and thus estimate X =C,W,.
Transforming a PC solution to p-factor solution involves finding a non-
singular p x p transformation matrix V such that F = C.V; A = V-!W,.
The columns of W (one per pixel) will plot as points g-dimensional feature
space, as will the columns of V (one per structure). The problem reduces to
locating the points in feature space corresponding to the columns of V. Since
nuclear medicine data are in principle non-negative, the elements of F and A
should be non-negative.'®®

The estimated physiological components given by FASD are used to
reconstruct functional images (factor images). This method has an obvious
similarity with Fourier analysis: while Fourier analysis is based on sine and
cosine functions, no such restriction is placed on the shape of the PCs.
Although factor analysis provides a valid representation of wall motion
and conduction abnormalities, some limitations must be considered. The
quality of the results and the number of significant factors depend on the
signal to noise ratio of the dynamic series.'"’

Recently, a new technique designed to analyze nuclear cardiac image
series was proposed.'! Compared to Fourier analysis, this method does not
assume that the data are periodic and no restriction is placed on the shape of
the pixel TAC. This method segments the time series of the cardiac images in
regions of similar temporal behaviour (components) but, contrary to PCA,
knowledge of their number is not needed to run the algorithm."" The aim of
this technique is to capture the essential of the sequence while reducing the
amount of image data presented to the clinician for diagnostic interpret-
ation. This method is based on the measure of similarity between the
temporal response of pixels in a reference Rol and the temporal response
of the other pixels in the image series. The calculated similarity provides
quantitative information about the degree of local similarity in comparison
with the Rol taken as a reference. Template matching is perhaps the most
straightforward way of locating the presence of an object of interest within
an image field. The template is a duplicate of the sought object. If the
template matches an unknown object and if it is sufficiently close, the
unknown object is labelled as the template object. In nuclear cardiac studies,
the template is a fixed reference TAC describing the temporal evolution of a
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cardiac Rol during the cardiac cycle. The image field to be searched is the
time series of cardiac images. For dynamic analysis, template matching may
be viewed as a temporal one. For example, the template may therefore be a
TAC of a subregion of the LV or the whole ventricle. Similarity measures
provide quantitative means of determining the degree of temporal match
between the time sequence of images and the template. The similarity used is
the covariance function. The covariance value of the (i, j) pixel is given by:

Tc

.. 1 .. ..
Covi. ) = - > (Vol(i, j, ) = pac(, D) (R = pg) (61)

t=1

where

R(t):i > Vol(i.j, 1)

C . *
(i, j)eRol
o @
MR = Te R() pac (i) Z Vol(i,j, t)
t=

R(t) is the reference series, gy the mean value of the reference series and
wac(i,j) the mean value of the time activity curve of the (i,j)™ pixel. Mc is
the total number of pixels in the Rol.

There is no major problem of spatial registration for this kind of images
because the images of the series correspond to the same morphologic pro-
jection even if its shape changes with time. The method is based on the
computation, pixel by pixel, of the covariance (Eq. 61) between two time
series representing the TAC of any pixel and a reference time series. The
generated similarity map is an image where the value of each pixel represents
the degree of temporal similarity to the reference. This similarity measure is
less than the absolute value of oacor, Where oac and ogr are the standard
deviations of the TAC and the reference, respectively. A positive value of the
covariance indicates that the TAC and the reference variables vary in the
same sense. While, a negative value indicates that these two variables vary in
opposite sense. It is important to keep in mind that all the pixels that match
or mismatch the reference are equally important to describe or to interpret
the information contained in the image series.

Gated cardiac blood pool images are analyzed by the covariance tech-
nique. The imaging is performed in LAO projection. Figure 12 shows the
placement of four Rol references. For covariance analysis, only one refer-
ence is used. Each reference time series is calculated in, for example, a 5 x 5
pixels window size of the corresponding Rol. Once a covariance map is
calculated for all pixels, with respect to the chosen reference Rol, its values
are mapped into 0 through 255. The map is displayed with 256 colours look-
up table and a colour coded image represents the distribution of the tem-
poral degree of similarity to be assessed. The red colour corresponds to a
maximum covariance value while the blue colour corresponds to minimum
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FIGURE 12. End-diastolic image with the reference Rols of the background (top left),
the liver (bottom left), the LV (middle right) and the atria (middle left). (Reprinted
with permission from ref.'!).

covariance value. Like in the phase analysis, the strength of the covariance
image (similarity map) lies in its relative and not in its absolute values. For a
ventricular reference, the similarity maps of the ventricles are displayed in
red and the atria in blue. This is expected since the atrial pixels are out of
phase with the ventricular ones. Figure 13 shows the results obtained in four
pathological patients (from top to bottom: patients 1-4) with Rol reference
placed in the LV region. The left and the middle columns of figure 13
represent the end diastolic and systolic images of the four patients, respect-
ively. The corresponding similarity maps are shown in the right column. In
patient 1, the similarity map shows the septal portion of the LV with a
delayed temporal response compared to the remaining segments of the
ventricle. Although the LV has a normal morphology, it presents an ante-
roseptal and hypokinesia. Patient 2 has a largely dilated LV. Note the
opposition of temporal responses of the ventricular and the atria are well
demonstrated. As the LV, the RV is dilated but its anterobasal portion is
hypokinetic. Patient 3 also has a dilated LV. The covariance map reveals, in
the LV, an akinesis of the inferoapical segment and dyskinesis of the distal
septum. In patient 4, the map shows that there is an akinesis of the inferior
part of the RV with a limited dyskinetic region. One may also note a
hypokinesis of the septal segment of the LV.

4. Clinical and Research Applications of
Image Segmentation

Image segmentation has found numerous clinical and research applications
both in diagnostic and therapeutic nuclear medicine. This includes estima-
tion of organ (e.g. liver, spleen, heart, thyroid. . .) or tumour volumes as well
as target treatment volumes definition in radiation therapy, extraction of
parameters of clinical relevance such as left ventricular region in nuclear
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FiGure 13. Study of four patients showing end-diastolic images (left column), end-
systolic images (middle column) and the covariance map of the LV Rol reference
(right column). (Reprinted with permission from ref.'!).
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cardiology, automated Rol delineation for structures of interest in dynamic
functional imaging, determination of the attenuation map in emission tom-
ography and construction of voxel-based anthropomorphic phantoms based
on high resolution anatomical images. For the latter, the interested reader is
refereed to a recent book describing the development of such computational
models in connection with Monte Carlo modelling tools in nuclear imaging. '’

In diagnostic and oncological nuclear medicine imaging, if the intention is
to measure the volume and uptake in a specific organ or lesion, it may be
convenient to make preliminary phantom studies on an object of similar
shape and size with the assumption that the size, shape, location, and density
of the simulated object and surrounding tissues are comparable to that of the
patient to be measured. Absolute quantitation by SPECT and PET is
feasible now and has been shown to be a clinically reliable and useful
technique. For example, the accurate determination of thyroid volume
may be an important factor in the calculation of the most appropriate
dose of therapeutic radioiodine.”!'” The volume measurement of different
organs and lesions using SPECT and PET has been widely applied in the
clinical field.'%?*!""'"113 The major problems encountered in functional vol-
ume quantitation are image segmentation and imperfect system transfer
function. The difficulty in image segmentation is compounded by the low
spatial resolution and high noise characteristics of nuclear images.''* Long
et al.®® have evaluated the relative performance of a number of image
segmentation methods for volume quantitation on simulated SPECT im-
ages. This included: (i) manual methods in which the operator defines the
surface boundary of an image structure by delineating its cross-sectional
edges in the contiguous slices incorporating it, (ii) algorithms based on
simple thresholding techniques to define the edge of the organ where voxels
are flagged as part of the volume of interest if they contain counts greater
than some pre-defined threshold value, (iii) the adaptive thresholding
method which uses a nonparametric procedure of automatic threshold se-
lection formulated by Otsu,”® and (iv) two-dimensional (2-D) and three-
dimensional (3-D) implementations of a multifeature determination of
edge location based on calculation of the gradient (magnitude and direction
of the greatest rate of change in counts). They conclude that the 3-D
gradient-based method of image segmentation is the one requiring minimal
operator intervention while providing the most accurate and consistent
estimates of object volume across changes in object size and contrast.
A survey of different methods proposed for evaluation of image segmenta-
tion algorithms including the criteria for choosing figures of merit is given
elsewhere.'!

Segmentation of radionuclide attenuation images for the purpose of re-
ducing noise propagation in short transmission scanning or X-ray CT and
MRI for identifying tissues with different attenuation properties is also an
appealing research area.''® In particular, Pan e al.''” reported on an accur-
ate segmentation method to determine the attenuation map from Compton



350 A.O. Boudraa and H. Zaidi

scatter and photopeak window SPECT projection data. During the last
decade, techniques using transmission image segmentation and tissue classi-
fication have been proposed to minimize the acquisition time and increase
the accuracy of the attenuation correction process, while preserving or even
reducing the noise level. The reconstructed transmission image pixels are
segmented into populations of uniform attenuation. In a clinical setting,
segmentation algorithms must be designed to balance image quality and
computational time of the emission tomograms. The majority of segmenta-
tion methods used for attenuation correction fall into one of the following
two classes (see chapter 6): histogram-based thresholding techniques''®!?°
and fuzzy-clustering based segmentation techniques.'>'® Other interesting
approaches to segment noisy transmission data include the use of active
contour models,'?! neural networks'?> morphological segmentation'** and
hidden Markov modelling.'** An alternative to segmentation of transmis-
sion images with the goal of reducing noise in PET transmission measure-
ments is the use of coregistered segmented MRI data in functional brain
imaging.'*> The T-weighted brain MR images were segmented by means of
a fuzzy clustering technique which identifies tissues of significantly different
density and composition. A promising technique for segmentation of skull in
human T;-weighted MR images, which could be useful for more robust
implementation of the method mentioned above, consists in performing
skull segmentation using a sequence of mathematical morphological
operations.'*

5. Summary

It is gratifying to see in overview the progress that image segmentation has
made in the last ten years, from operator-dependent manual delineation of
structures, through simple thresholding, the use of classifiers and fuzzy
clustering, and more recently atlas-guided approaches incorporating prior
information. Recent developments have been enormous particularly in the
last ten years, the main opportunities striving towards improving the accur-
acy, precision, and computational speed through efficient implementation in
conjunction with decreasing the amount of operator interaction. The appli-
cation of medical image segmentation is well established in research envir-
onments and is still limited in clinical settings to institutions with advanced
physics and extensive computing support. As the above mentioned chal-
lenges are met, and experience is gained, implementation of validated tech-
niques in commercial software packages will be useful to attract the interest
of the clinical community and increase the popularity of these tools. It is
expected that with the availability of computing power in the near future,
more complex and ambitious computer intensive segmentation algorithms
will become clinically feasible.
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Monte Carlo Modeling in Nuclear
Medicine Imaging

H. ZaD1r*

1. Conceptual Role of Monte Carlo Simulations

The Monte Carlo method describes a very broad area of science, in which
many processes, physical systems and phenomena are simulated by statis-
tical methods employing random numbers. The general idea of Monte Carlo
analysis is to create a model, which is as similar as possible to the real
physical system of interest, and to create interactions within that system
based on known probabilities of occurrence, with random sampling of the
probability density functions (PDFs). As the number of individual events
(called histories) is increased, the quality of the reported average behaviour
of the system improves, meaning that the statistical uncertainty decreases.
Virtually, any complex system can in principle be modelled; perhaps there is
a desire to model the number of cars passing a particular intersection during
certain times of the day, to optimize traffic management, or to model the
number of people that will make transactions in a bank, to evaluate the
advantages of different queuing systems. If the distribution of events that
occur in a system is know from experience, a PDF can be generated and
sampled randomly to simulate the real system. A detailed description of the
general principles of the Monte Carlo method is given elsewhere.'™

In the specific application of interest in this volume (simulation of imaging
systems), radiation transport is simulated by the creation of charged particles
or photons from a defined source region, generally with a random initial
orientation in space, with tracking of the particles as they travel through the
system, sampling the probability PDFs for their interactions to evaluate their
trajectories and energy deposition at different points in the system. The
interactions determine the penetration and motion of particles, but, more
importantly, the energy deposited during each interaction gives the radiation
absorbed dose, when divided by the appropriate values of mass. With suffi-
cient numbers of interactions, the mean absorbed dose at points of interest will

*PD Dr H. Zaidi, Geneva University Hospital, Division of Nuclear Medicine, CH-
1211 Geneva, Switzerland
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be given with acceptable uncertainties. The central issues include how well the
real system of interest can be simulated by a geometrical model, how many
histories (i.e. how much computer time) are needed to obtain acceptable
uncertainties (usually around 5%, no more than 10%) and how can measured
data be used to validate the theoretical calculations.

Monte Carlo techniques have become one of the most popular tools in
different areas of medical physics in general and medical imaging in particu-
lar following the development and subsequent implementation of powerful
computing systems for clinical use.! In particular, they have been extensively
applied to simulate processes involving random behaviour and to quantify
physical parameters that are difficult or even impossible to calculate analyt-
ically or to determine by experimental measurements. The applications of
the Monte Carlo method in medical physics cover almost all topics, includ-
ing radiation protection, diagnostic radiology, radiotherapy and nuclear
medicine, with an increasing interest in exotic and new applications, such
as intravascular radiation therapy, boron neutron capture therapy and
synovectomy. With the rapid development of computer technology, Monte
Carlo-based reconstruction in emission tomography and treatment planning
for radiation therapy is becoming practicable.

This chapter briefly reviews Monte Carlo simulation packages used
worldwide and summarizes their application in diagnostic and therapeutic
nuclear medicine. Emphasis is given to applications involving accurate
modelling of radiation transport in matter. Object modelling through math-
ematical and voxel-based phantoms is also summarised highlighting poten-
tial advantages and drawbacks of each approach in modelling simulated
objects. The historical developments and computational aspects of the
Monte Carlo method mainly related to random number generation, radi-
ation transport, sampling and variance reduction fall outside the scope of
this chapter and are discussed in the above mentioned reviews and books. It
should be emphasized that due to limited space, the references contained
herein are for illustrative purposes and are not inclusive; no implication that
those chosen are better than others not mentioned is intended.’

2. Monte Carlo Software Packages

Image modelling was employed in the 1970s by Schulz® who devised a com-
puter program simulating a rectilinear scanner to study the influence of
different imaging protocols on the detectability of lesions. Simulation of
gamma camera imaging to assess qualitatively and quantitatively the image
formation process and interpretation’ and to assist development of collima-
tors® using deterministic methods and simplifying approximations have been
developed mainly to improve speed of operation. For example, Beekman’
developed a fast analytic simulator of tomographic projection data taking
into account attenuation, distance dependent detector response, and scatter



360 H. Zaidi

based on an analytical point spread function (PSF) model. Several simplifying
approximations were also adopted to improve speed of operation: restriction
of the extent of the primary and scatter PSFs, coarse sampling of the PSFs in
the direction perpendicular to the camera face and use of a circularly sym-
metric scatter function.'”

Many Monte Carlo programs have been in use in the field of nuclear
imaging and internal dosimetry with many of them available as open source
codes in the public domain. Basically there are two categories of software
packages: general purposes Monte Carlo codes developed for high-energy or
general medical physics applications and dedicated software packages devel-
oped mainly and optimized for nuclear medicine imaging applications.
These are highly sophisticated tools requiring advanced computer skills
and familiarity with radiation transport theory. Each category has its own
advantages and drawbacks; the motivations for the choice of a particular
code being mainly dictated by availability of code and documentation, the
user’s needs, experience and computer skills.

2.1 General-purpose Monte Carlo Programs

Table 1 lists widely used public domain Monte Carlo codes together with a
short description of their key features. Most of the packages mentioned below
run virtually on different platforms and operating systems and are available
either directly from the developers or through the official channels (RSIC or
NEA). One of the most popular computer codes developed specifically for
medical physics applications is the electron gamma shower (EGS) system,
which is a general-purpose package for Monte Carlo simulation of the
coupled transport of electrons and photons in an arbitrary geometry for
particles with energies from a few keV up to several TeV.!' The code repre-
sents the state-of-the-art of radiation transport simulation because it is very
flexible, well documented and extensively tested. Some have referred to the
EGS code as the de facto gold standard for clinical radiation dosimetry. EGS
is written in MORTRAN, a FORTRAN pre-processor with powerful macro
capabilities. EGS is a ‘class I’ code that treats knock-on electrons and
bremsstrahlung photons individually. Such events require predefined energy
thresholds and pre-calculated data for each threshold, determined with the
cross-section generator PEGS. A new version called EGSnrc reflecting sub-
stantial changes and improvements made to the original EGS4 code has been
recently reported.'> Many other ambitious fully integrated all-particle radi-
ation transport codes are now available for users (table 1).

Some research groups devised their own Monte Carlo computer codes built
on top of one of the general-purpose codes mentioned above, which serves as
core layer giving the opportunity to the developer to construct application-
specific modules in a hierarchical layer architecture. This includes the Sim-
SPECT code based on MCNP,?%?” PET-EGS based on EGS4,"> and more
recently GATE based on GEANT4 code developed at CERN.* It should be
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TaBLE 1. Key features of general-purpose public domain Monte Carlo codes used
in modelling nuclear medicine imaging systems.

Example
MC code General description references
EGS4''/EGSnrc'>  Coupled photons/electrons transport in any material 13-22
through user specified geometries. Simulation of
nuclear imaging systems not specifically included and
requires an extensive amount of user programming in Mortran.
ITS including Coupled photons/electrons transport in any material through slabs,
TIGER cylinders or combinatorial. Simulation of nuclear imaging systems
CYLTRAN not specifically included and requires an extensive amount of user
and ACCEPT? programming in Fortran.
MCNP?/ Coupled neutrons/photons/electrons transport in any material through 2629
MCNPX? user-generalised geometry. Simulation of nuclear imaging systems
not specifically included and requires an extensive amount of user
manipulation of input date files to model complex geometries.
GEANT?3! Coupled photons/electrons transport in any material through com- 3234
binatorial geometry. Simulation of nuclear imaging systems not
specifically included and requires an extensive amount of user pro-
gramming in C/C++.
37-39

PENELOPE?*%¢ Coupled photons/electrons transport in any material through com-
binatorial geometry. Simulation of nuclear imaging systems not
specifically included and requires an extensive amount of user pro-
gramming in C/C++.

FLUKA® Coupled photons/electrons transport in any material through com- 4

binatorial geometry. Simulation of nuclear imaging systems not
specifically included and requires an extensive amount of user pro-
gramming in C/C++.

emphasized that as opposed to radiation dosimetry where many studies
investigated potential differences between the results obtained using different
computational Monte Carlo codes,*” very few studies addressed this issue in
simulation of nuclear medicine imaging. In particular, the various Monte
Carlo codes developed to simulate nuclear medicine imaging systems use
different photon cross section libraries, which might impact the outcome of
the generated data sets. It has been shown that the effect of using different
photon cross-section libraries is noticeable on both generated PET projection
data and reconstructed images.** Standardization of interaction libraries and
other common computational models will help to eliminate potential differ-
ences between the results obtained with different codes.

2.2 Dedicated Monte Carlo Simulation Packages

Table 2 lists popular and widely used dedicated Monte Carlo codes together
with a short description of their key features. The computer codes developed
by Dresser** and Beck,*> are among the oldest Monte Carlo programs
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TaBLE 2. Key features of dedicated Monte Carlo codes used to simulate nuclear
medical imaging systems.

MC code General description

SIMSET?!*? Photons transport in any material through voxel-based phantoms. Simulation of
SPECT and PET imaging systems included. User modules written in C could be
linked.

SIMIND* Photons transport in any material through shape- or voxel-based phantoms.

Simulation of SPECT imaging systems included. User modules written in
Fortran could be linked.

Unnamed>>*° Photons transport in any material through shape-based phantoms. Simulation of
SPECT imaging systems included. User modules written in Fortran/C could be
linked.

MCMATV-8 Photons transport in any material through voxel-based phantoms. Simulation of
SPECT imaging systems included. User modules written in Fortran could be
linked.

PETSIM>*-®° Photons transport in any material through shape-based phantoms. Simulation of
PET imaging systems included. User modules written in Fortran could be
linked.

EIDOLON#-3 Photons transport in any material through shape-or voxel-based phantoms.
Simulation of 3D PET imaging systems included. User modules written in C/
Objective-C could be linked.

PET-SORTEOQO®! Photons transport in any material through shape-or voxel-based phantoms.
Simulation of 3D PET and transmission imaging systems included.

developed specifically for modelling scintillation cameras. The Ilatter
was extensively used by the group of Duke University for scatter
modelling, correction and image reconstruction through inverse Monte
Carlo in SPECT.*® Likewise, Keller and Lupton pioneered the modelling of
cylindrical and multi-ring PET systems using the Monte Carlo method.*”*®
An example of dedicated codes is the Eidolon Monte Carlo simulator,
which was developed using modern software engineering techniques mainly
for fully 3D multi-ring PET imaging.*’ The code was written in Objective-C,
an object-oriented programming language based on ANSI C. The first
version of the program was developed using the NextStep development
environment. A modular design featuring dynamically loadable program
elements or bundles was adopted for software design. The basic building
block is a model element object class which allows elements to be browsed,
inspected, adjusted, created and destroyed through a graphical inspector.
The graphical interface allows the user to select scanner parameters such as
the number of detector rings, detector material and sizes, energy discrimin-
ation thresholds and detector energy resolution. It also allows to choose
either a complex anthropomorphic phantom or a set of simple 3D shapes,
such as parallelepiped, ellipsoid or cylindroid for both the annihilation
sources and the scattering media, as well as their respective activity concen-
trations and chemical compositions. The user has the possibility to view the
reference source image and sinogram data sets as they are generated and are
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periodically updated. An implementation of the software on a high-
performance parallel platform was also reported.”® The current version
runs on most of the current platforms and operating systems supporting
the GNU C compiler, which should allow subdividing time-consuming
simulations on geographically distributed platforms taking advantage of
the latest developments in Grid technology.

3. Application of Monte Carlo Techniques in
Nuclear Medicine Imaging

There has been an enormous increase and interest in the use of Monte Carlo
techniques in all aspects of nuclear imaging instrumentation design and
quantification, including planar imaging, SPECT, PET and multimodality
imaging devices.>*%? However, due to computer limitations, the method has
not yet fully lived up to its potential. With the advent of high speed super-
computers, the field has received increased attention, particularly with par-
allel algorithms, which have much higher execution rates. Figure 1 illustrates
the principles and main components of Monte Carlo or statistical simulation
as applied to a cylindrical multi-ring PET imaging system.*’ Assuming that
the behaviour of the imaging system can be described by PDFs, then the
Monte Carlo simulation can proceed by sampling from these PDFs, which
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FIGURE 1. Principles and main components of a Monte Carlo program dedicated for
simulation of cylindrical multi-ring PET imaging systems.
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necessitates a fast and effective way to generate uniformly distributed ran-
dom numbers. Photon emissions are generated within the phantom and are
transported by sampling from PDFs through the scattering medium (trans-
mission image) and detection system until they are absorbed or escape the
volume of interest without hitting the crystal matrices or with insufficient
energy deposit. The outcomes of these random samplings, or trials, must be
accumulated or tallied in an appropriate manner to produce the desired
result, but the essential characteristic of the Monte Carlo method is the use
of random sampling techniques to arrive at a solution of the physical
problem.

Following the review by Zaidi,”> the applications of the Monte Carlo
method in nuclear medical imaging cover almost all topics including detector
modelling and systems design, image correction and reconstruction tech-
niques, internal dosimetry and pharmacokinetic modelling, with an increas-
ing enthusiastic interest in exotic and exciting new applications such as on-
line PET monitoring of radiation therapy beams.®® The use of Monte Carlo
techniques in the last two areas falls outside the scope of this survey whereas
applications in other fields are only briefly summarized in the following
sections given the huge amount of literature available today. With the
rapid development of computer technology, Monte Carlo-based modelling
in a clinical setting is becoming practical.

3.1 Detector Modelling

Since many important questions can be addressed through detailed Monte
Carlo analysis, simulation of detector responses and efficiencies is one of the
areas which has received considerable attention during the last 4 decades
with an early contribution to the field due to Zerby.®* The hypothesis is that
the performance of a single detector element must be extrapolated using
Monte Carlo simulations to predict the performance of a multi-element
module or a complete camera system.

Many detector modelling applications were developed in the PET field
including the pioneering work of Derenzo® who simulated arrays of detect-
ors of different materials and sizes to study the effect of the inter-crytal septa
and later on to optimize the optical coupling between BGO crystals and
PMTs® by taking into account the reflection and scattering along the
detection system. The search for an appropriate detector for this imaging
modality was conducted in a comparative study of several crystals including
BGO, CsF and NaI(Tl),67 BaF,%® used in time-of-flight PET, and liquid
Xenon.®” Binkley”® modelled the impulse response of a PMT, front-end
amplifier, and constant fraction discriminator to evaluate the effects of
front-end bandwidth and constant fraction delay and fraction for timing-
system optimizations of BGO scintillation detectors.

The position-dependent light distribution has been used to measure the
511 keV photon interaction position in the crystal on an event-by-event
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basis to reduce radial elongation.”! Comanor’* investigated algorithms to

identify and correct for detector Compton scatter in hypothetical PET
modules with 3 x 3 x 30 mm BGO crystals coupled to individual photosen-
sors. The true crystal of first interaction was determined by the simulation
for eventual comparison with the crystal identified by a given algorithm.
They reported a misidentification fraction of 12% if the detector has good
energy and position resolution when using the position of interaction to
identify forward scatter. A simulation tool modelling position encoding
multicrystal detectors for PET that treats the interactions of annihilation
photons in a scintillator, the geometry of the multicrystal array, as well as
the propagation and detection of individual scintillation photons has been
designed”” to assist design studies of a whole-body PET tomograph with the
capacity to correct for the parallax error induced by the DOI of annihilation
photons.”® The experimental energy, depth, and transverse position resolu-
tions of BGO block detectors were used as main inputs to the simulations to
avoid extensive light transport in position encoding blocks, which can other-
wise be accomplished very efficiently using DETECT2000 Monte Carlo
simulation of the light transport in scintillation crystals.”

The quest for the ideal scintillation crystal to optimize design features of
future fully 3D, large axial field-of-view fifth generation PET scanners
technology led to comparative assessment studies evaluating the relative
performance of different scintillators currently in use or under development
for PET applications for the same geometric design (see their physical
characteristics in chapter 1). Among the many figures of merit that can be
assessed, Figure 2 shows the Noise Equivalent Count Rate (NECR) metric

250000

(0]

£ 200000 e i

[e]

O 150000 Ao

© / /

2 100000 -

2 2ol

P H\A\Aﬁ

2 50000 4

b
O T T T T 1
0.00 0.20 0.40 0.60 0.80 1.00

act in 70 cm NEMA pantom in uCi/ml

—— LSO —+—GSO —A— BGO —8— Nal(T1) —&— LuYAP
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of count rate performance measured using the standard NEMA NU-2
cylindrical phantom, clearly demonstrating the advantage of LSO as the
detector material for PET.”®

3.2 Imaging Systems and Collimators Design

Monte Carlo techniques were extensively used to analyze the performance of
new collimators design for planar scintillation cameras,®’”’® SPECT”® and
PET imaging.®%? Practical guidance could be offered for understanding
trade-offs that must be considered for clinical imaging. Selective compar-
isons among different collimators could also be presented for illustrative
and teaching purposes. Approaches to the collimator optimization problem,
as well as more sophisticated ‘task-dependent’ treatments and important
considerations for collimators design have been performed.®* The well-
known imaging performance parameters of parallel-hole collimators
could be compared with those of fan- and cone-beam collimators which
have enjoyed considerable success in recent years, particularly for
brain SPECT. Monte Carlo calculations were also used to aid in the devel-
opment of a method for imaging administered therapeutic doses of *'I by
using thick lead sheets to the front face of a high-energy parallel-hole
collimator.®*

There has been renewed interest in pinhole collimation for high resolution
imaging of small organs and small animals owing to its improved spatial
resolution and increase in sensitivity as the distance between the source and
the pinhole aperture decreases. The effect of pinhole aperture design param-
eters on spatial resolution, angle-dependent sensitivity, edge penetration,
and scatter fraction for high resolution pinhole imaging was also investi-
gated using Monte Carlo modelling.?*%-%¢ Acceleration of simulation time
and improvement of simulation efficiency were also considered through the
use of forced detection®” and kernel-based forced detection.™®

Likewise, Monte Carlo simulations were used in PET to determine the
effects of crystals with straight and pointed tips and septa on spatial reso-
lution and efficiency,® to compare the singles to true coincident events
ratios in well collimated single-slice, multi-slice and open geometry 3D
configurations,®® to evaluate tungsten inter-plane septa of different thick-
nesses and geometries®! and to assess the effect of collimation on the scatter
fraction.”

The Monte Carlo method has also been widely used to optimize the design
of SPECT cameras’"*? and PET tomographs operating in 2D*"**-%% and
fully 3D'***%* acquisition modes. In addition, several researchers used
Monte Carlo simulations to study design aspects of dedicated units for
brain imaging,”?® positron emission mammography®' and to investigate
potential novel design geometries of dedicated small animal imaging systems
for both SPECT’”*® and PET.”'?
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3.3 Development and Evaluation of Image Correction
and Reconstruction Techniques

Monte Carlo simulations have been shown to be very useful for the devel-
opment, validation and comparative evaluation of image correction and
reconstruction techniques since it is possible to obtain a reference image to
which corrected/reconstructed images should be compared. The develop-
ment of the inverse Monte Carlo reconstruction technique was a logical
consequence of the search for a unified reconstruction algorithm.'®® This
method converts the inverse problem into a system of algebraic equations
that can be solved by standard analytical or numerical techniques. The
principal merits of the method are that, like direct Monte Carlo, it can be
applied to complex and multivariable problems, and variance reduction
procedures can be applied. The same group used inverse Monte Carlo to
perform tomographic reconstruction for SPECT with simultaneous com-
pensation for attenuation, scatter, and distance-dependent collimator reso-
lution.*® A detection probability matrix is formed by Monte Carlo solution
to the photon transport equation for SPECT acquisition from a unit source
activity in each reconstruction source voxel. The off-line computation of the
system probability matrix by means of Monte Carlo simulations combined
with iterative reconstruction proved to be adequate for improvement of
image quality and spatial resolution recovery.'”” Given the sparsity and
size of the system matrix, some solutions were proposed to tackle this
problem through exploitation of symmetries and use of database manage-
ment system.'”® The interest in fully 3D Monte Carlo-based statistical
reconstruction approaches spurred the development of computationally
efficient algorithms capable of obtaining highly accurate quantitative data
in clinically acceptable computation times.'®

On the other hand, the capability to theoretically model the propagation
of photon noise through emission computed tomography reconstruction
algorithms is fundamental in evaluating both the quality and quantitative
accuracy of reconstructed images as a function of parameters of the algo-
rithm. Monte Carlo methods can be used to check the validity of the
predictions of the theoretical formulations through computation of
the sample statistical properties of algorithms under evaluation.''!12

Monte Carlo calculations have also been found to be powerful tools to
quantify and correct for partial volume effect, photon attenuation and
scattering in nuclear medicine imaging since the user has the ability to
separate the detected photons into their components: primary events, scatter
events, contribution of down-scatter events, etc. Monte Carlo modelling
thus allows a detailed investigation of the spatial and energy distribution
of Compton scatter which would be difficult to perform using present
experimental techniques, even with very good energy resolution semicon-
ductor detectors. Figure 3 shows the energy pulse-height distribution
obtained by simulation of a gamma emitting **™Tc line source in the centre
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FIGURE 3. A. An energy spectra for a gamma emitting *™Tc line source on the axis of
a water-filled cylinder simulated using the Monte Carlo method. The spectra due to
primary and scattered photons (solid line) is separated into different contributions
(total scattering or different orders of photon scattering). The distributions of the
various orders of scattered and unscattered photons are shown by broken lines. The
experimentally measured spectrum is also shown (dots). B. Illustration of the energy
distribution due to unscattered and scattered photons resulting from the simulation
of a 20 cm diameter cylinder filled with a uniform positron-emitting '®F source
separated into different contributions (total scattering or different orders of photon
scattering). Typical energy acquisition windows for both cases are also shown.
(Adapted from refs.'?*!? and reprinted with permission from ref.'?®).
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of a water-filled cylindrical phantom and a positron-emitting '*F uniform
cylindrical source. The scattered events in the energy pulse-height distribu-
tion have been separated according to the order of scattering. It is clear from
viewing Figure 3 that events from some scattered photons will not be
rejected by the usual [126-154 keV] and [350-650 keV] energy discrimination
windows used in SPECT and PET, respectively, due to the limited energy
resolution of the detectors. Scattered photons which fall within the photo-
peak window consist mainly of photons which have only scattered once
(1** order). The lower level threshold can thus be easily changed and its
effect on the scatter component studied in an effective way.'!*114

Modelling the scatter response function and development and assessment of
scatter correction methods in both SPECT and PET using Monte Carlo
simulations is described extensively in chapter 7 of this volume and will not
be repeated here. Monte Carlo simulation of the spatial characteristics of
scatter originating from activity outside the field-of-view or scatter from matter
outside the FOV in 3D PET proved that the spatial distribution of multiple
scatter is quite different from the single scatter component which might pre-
clude the rescaling of the latter to take into account the effect of the former for
scatter correction purposes.'’ In addition, the spatial distributions of scatter
from external matter and external activity were found to be different.!'!?

Several studies addressed the issue of the impact of scatter in radionuclide
transmission®*''® and x-ray CT scanning''”''® as well as the influence of
down-scatter from emission (e.g ™ Tc to transmission (e.g. '*3Gd) data on
the accuracy of the derived attenuation map in emission tomography.''?'%!
The comparative assessment of different attenuation correction strategies in
lung '*? and brain'*?® SPECT were also conducted using Monte Carlo
simulations of a digital thorax and brain phantom, respectively.

Monte Carlo simulations are also powerful tools to investigate the limits of
algorithms developed for correction of partial volume effect by allowing to
replicate realistic conditions in emission tomography for a wide range of
practical situations and to study the effect of object shape and size on recovery
performance.'?’ In addition, the assessment of the impact of inherent assump-
tions such as accurate characterisation of system response function, perfect
registration between MRI/CT and PET/SPECT and anatomical image
segmentation as well as other hypotheses regarding tracer distribution on
quantification bias is more straightforward compared to experimental
approaches.'?%1%°

3.4 Dosimetry and Treatment Planning
3.4.1 Calculation of Absorbed Fractions

There is broad consensus in accepting that the earliest Monte Carlo calcu-
lations in medical physics were made in the area of nuclear medicine, where
the technique was used for internal dosimetry modelling and computations.
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Formalism and data based on Monte Carlo calculations, developed by the
Medical Internal Radiation Dose (MIRD) Committee of the Society of
Nuclear Medicine, have been published as pamphlets in a series of supple-
ments to the Journal of Nuclear Medicine, the first one being published in
1968.13° Some of these pamphlets made extensive use of Monte Carlo
calculations to derive specific absorbed fractions (AFs) for photon sources
uniformly distributed in organs of mathematical phantoms. This was
extended later to electrons,'! beta particles and positron emitters.'
Monte Carlo calculations for photons were performed using a computer
code called ALGAM, which created photons at random positions within any
source region (organ or tissue), gave these photons a random orientation in
411 space and then followed them through various Compton and photoelec-
tric interactions (coherent scattering was neglected because of its low con-
tribution to the total cross-section and pair productions events were quite
rare, as starting energies did not exceed 4 MeV) until the photon reached a
certain critical low cut-off energy and was assumed to be locally absorbed, or
until it escaped the surface of the body (at which point the probability of
scatter from an air molecule and redirection towards the body was assumed
to be negligibly low). With repeated sampling of the source, which at this
time generally involved only tens of thousands of trials (histories), a statis-
tical average behaviour of particles originating in this source could be
obtained for other regions of the body of interest to radiation dose assess-
ment (target regions). This behaviour was reported as the fraction of energy
emitted in the source that was absorbed in a target (AF), with an associated
uncertainty (reported as the coefficient of variation). These AFs were thus a
considerable improvement over the values given in ICRP Publication 2, as
the organ geometries were more realistic, and more importantly, the organs
could irradiate each other, whereas in the ICRP 2 model an organ could
irradiate only itself. These AFs were used later by the ICRP in updated
assessments for workers. Of more interest for this volume is that they found
a more immediate application in dose assessments for nuclear medicine
patients, owing to the monumental efforts of the newly formed MIRD
Committee. In a flurry of publications in its early years, this committee
published decay data, methods for kinetic analyses, the AFs from the
ALGAM code calculations, dose conversion factors for over 100 nuclides
of interest to nuclear medicine, dose calculations for various radiopharma-
ceuticals, methods for small scale dose calculations with electrons, and other
interesting practical scientific documents. AFs for these phantoms were
developed using the ALGAMP code (the P signifying a parameterized
version of the code, allowing the substitution of parameters giving the
radii and positions of the various organs at different ages). These values
were published in an ORNL document,'** but never officially adopted in the
MIRD or other peer reviewed literature. Nonetheless, they were widely
accepted and used for dose calculations for individuals of different ages.
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The application of the Monte Carlo method to internal radiation dosim-
etry is further emphasized in two recent MIRD pamphlets. In MIRD
Pamphlet No. 15,'** the EGS4 Monte Carlo radiation transport code was
used to revise substantially the dosimetric model of the adult head and brain
originally published in MIRD Pamphlet No. 5.*> Pamphlet No. 17'¢
demonstrates the utility of the MIRD formalism for the calculation of the
non-uniform distribution of radiation absorbed dose in different organs
through the use of radionuclide specific S-values defined at the voxel level.
Previously calculated AFs for unit density spheres in an infinite unit density
medium for photon and electron emitters have been recently re-evaluated
using both the EGS4 and MCNP-4B Monte Carlo codes. Moreover, Stabin
and Yoriyaz'*” used the MCNP-4B code to calculate AFs for photons in the
VoxelMan phantom of Zubal et al.,"*® and the results were compared with
reference values from traditional MIRD and ORNL phantoms, whereas
Chao and Xu used the EGS4 code to estimate specific AFs from internal
electron emitters for the VIP-Man model with energies from 100 keV to
4 MeV."* More recently, they used the same code and a voxel-based head/
brain model developed from the Visible Human images to calculate S-values
for typical nuclear brain imaging procedures'*® and compared the results
with those calculated from the revised MIRD stylized head/brain model.'**

3.4.2 Derivation of Dose Point Kernels

In most cases Monte Carlo calculations are used to simulate the random
distribution of sources or targets, whereas the actual dosimetric calculation
is performed using so called dose point kernels. Such kernels, usually spherical
and calculated for monoenergetic sources, describe the pattern of energy
deposited at various radial distances from photon and electron or beta point
sources. Dose point kernels can be calculated using analytical or Monte Carlo
methods. Hybrid approaches (analytical calculations using Monte Carlo data)
have also been considered to decrease the computation time.'*' Three Monte
Carlo codes have mainly been used for this purpose, namely ETRAN, the
ACCEPT code of the ITS system and EGS4. Limitations and constraints of
some of these codes have been reported in the literature, the impact of which
on the calculated kernels is difficult to evaluate. ETRAN, for instance, had an
incorrect sampling of the electron energy loss straggling, which has been
corrected for in the ITS3 system (based on ETRAN). EGS4 did not include
the accurate electron physics and transport algorithms, which have been
incorporated in the recent EGSnrc system. Furhang'®* generated photon
point dose kernels and absorbed fractions in water for the full photon emis-
sion spectrum of the radionuclides of interest in nuclear medicine by simulat-
ing the transport of particles using Monte Carlo techniques. The kernels were
then fitted to a mathematical expression.

A unified approach for photon and beta particle dosimetry has been
proposed by Leichner'*® by fitting Berger’s tables for photons and electrons
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to generate an empirical function that is valid for both photons and beta
particles. Both point kernel and Monte Carlo techniques can therefore be
effectively employed to calculate absorbed dose to tissue from radionuclides
that emit photons or electrons. The latter are computationally much more
intensive; however, point kernel methods are restricted to homogeneous
tissue regions that can be mathematically described by analytical geometries,
whereas Monte Carlo methods have the advantage of being able to accom-
modate heterogeneous tissue regions with complex geometric shapes.

3.4.3 Patient-specific Dosimetry and Treatment Planning

To perform real patient-specific dose calculations, a patient-specific physical
model to be used with patient-specific biokinetic data is required. Individual
patients not only have significantly different uptake and retention half-lives
of activity of the radioactive agent, but also have significantly different
physical characteristics and radiosensitivities. If our goal is to optimize
patient therapies, their individual parameters should be accounted for as
much as possible during treatment planning. Currently, the preferred strat-
egy with radiolabelled antibodies is to use personalized patient dosimetry,
and this approach may become routinely employed clinically. The dose
distribution pattern is often calculated by generalizing a point source
dose distribution,'** but direct calculation by Monte Carlo techniques is
also frequently reported, since it allows media of inhomogeneous density to
be considered.'*>-'4¢

The development of a nuclear imaging-based 3-D treatment planner is an
area of considerable research interest and several dose calculation algo-
rithms have been developed.* The essential steps required in developing a
3-D treatment planning program for radioimmunotherapy are discussed in
chapter 17 of this volume. Basically, projection data acquired from an
emission tomographic imaging system are processed to reconstruct trans-
verse section images, which yield a count density map of source regions in
the body. This count density is converted to an activity map using the
sensitivity derived from a calibration phantom. In the final step this activity
distribution is converted to a dose rate or dose map, either by convolving the
activity distribution with dose point kernels or by direct Monte Carlo
calculations. To elaborate a treatment plan for an individual patient, pro-