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To my daughter Natalija



Preface

This Problem Book is based on the exercises and lectures which I have given
to undergraduate and graduate students of the Faculty of Physics, University
of Belgrade over many years. Nowadays, there are a lot of excellent Quantum
Field Theory textbooks. Unfortunately, there is a shortage of Problem Books
in this field, one of the exceptions being the Problem Book of Cheng and Li [7].
The overlap between this Problem Book and [7] is very small, since the latter
mostly deals with gauge field theory and particle physics. Textbooks usually
contain problems without solutions. As in other areas of physics doing more
problems in full details improves both understanding and efficiency. So, I feel
that the absence of such a book in Quantum Field Theory is a gap in the
literature. This was my main motivation for writing this Problem Book.

To students: You cannot start to do problems without previous study-
ing your lecture notes and textbooks. Try to solve problems without using
solutions; they should help you to check your results. The level of this Prob-
lem Book corresponds to the textbooks of Mandl and Show [15]; Greiner and
Reinhardt [11] and Peskin and Schroeder [16]. Each Chapter begins with a
short introduction aimed to define notation. The first Chapter is devoted to
the Lorentz and Poincaré symmetries. Chapters 2, 3 and 4 deal with the rela-
tivistic quantum mechanics with a special emphasis on the Dirac equation. In
Chapter 5 we present problems related to the Euler-Lagrange equations and
the Noether theorem. The following Chapters concern the canonical quanti-
zation of scalar, Dirac and electromagnetic fields. In Chapter 10 we consider
tree level processes, while the last Chapter deals with renormalization and
regularization.

There are many colleagues whom I would like to thank for their support
and help. Professors Milutin Blagojević and Maja Burić gave many useful
ideas concerning problems and solutions. I am grateful to the Assistants at the
Faculty of Physics, University of Belgrade: Marija Dimitrijević, Duško Latas
and Antun Balaž who checked many of the solutions. Duško Latas also drew
all the figures in the Problem Book. I would like to mention the contribution
of the students: Branislav Cvetković, Bojan Nikolić, Mihailo Vanević, Marko
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Vojinović, Aleksandra Stojaković, Boris Grbić, Igor Salom, Irena Knežević,
Zoran Ristivojević and Vladimir Juričić. Branislav Cvetković, Maja Burić,
Milutin Blagojević and Dejan Stojković have corrected my English translation
of the Problem Book. I thank them all, but it goes without saying that all
the errors that have crept in are my own. I would be grateful for any readers’
comments.

Belgrade, August 2005 Voja Radovanović



Contents

Part I Problems

1 Lorentz and Poincaré symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Klein–Gordon equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 The γ–matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 The Dirac equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Classical field theory and symmetries . . . . . . . . . . . . . . . . . . . . . 25

6 Green functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Canonical quantization of the scalar field . . . . . . . . . . . . . . . . . . 35

8 Canonical quantization of the Dirac field . . . . . . . . . . . . . . . . . . 43

9 Canonical quantization of the electromagnetic field . . . . . . . . 49

10 Processes in the lowest order of perturbation theory . . . . . . . 55

11 Renormalization and regularization . . . . . . . . . . . . . . . . . . . . . . . . 61

Part II Solutions
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Part I

Problems



1

Lorentz and Poincaré symmetries

• Minkowski space, M4 is a real 4-dimensional vector space with metric tensor
defined by

gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (1.A)

Vectors can be written in the form x = xµeµ, where xµ are the contravariant
components of the vector x in the basis

e0 =




1
0
0
0


 , e1 =




0
1
0
0


 , e2 =




0
0
1
0


 , e3 =




0
0
0
1


 .

The square of the length of a vector in M4 is x2 = gµνxµxν . The square of
the line element between two neighboring points xµ and xµ + dxµ takes the
form

ds2 = gµνdxµdxν = c2dt2 − dx2. (1.B)

The space M4 is also a manifold; xµ are global (inertial) coordinates. The
covariant components of a vector are defined by xµ = gµνxν .

• Lorentz transformations,
x′µ = Λµ

νxν , (1.C)

leave the square of the length of a vector invariant, i.e. x′2 = x2. The matrix Λ
is a constant matrix1; xµ and x′µ are the coordinates of the same event in two
different inertial frames. In Problem 1.1 we shall show that from the previous
definition it follows that the matrix Λ must satisfy the condition ΛT gΛ = g.
The transformation law of the covariant components is given by

x′
µ = (Λ−1)ν

µxν = Λ ν
µ xν . (1.D)

1 The first index in Λµ
ν is the row index, the second index the column index.
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• Let u = uµeµ be an arbitrary vector in tangent space2, where uµ are its
contravariant components. A dual space can be associated to the vector space
in the following way. The dual basis, θµ is determined by θµ(eν) = δµ

ν . The
vectors in the dual space, ω = ωµθµ are called dual vectors or one–forms.
The components of the dual vector transform like (1.D). The scalar (inner)
product of vectors u and v is given by

u · v = gµνuµvν = uµvµ .

A tensor of rank (m,n) in Minkowski spacetime is

T = Tµ1...µm
ν1...νn

(x)eµ1 ⊗ . . . ⊗ eµm
⊗ θν1 ⊗ . . . ⊗ θνn .

The components of this tensor transform in the following way

T ′µ1...µm
n1...νn

(x′) = Λµ1
ρ1 . . . Λµm

ρm
(Λ−1)σ1

ν1
. . . (Λ−1)

σn

νn
T ρ1...ρm

σ1...σn
(x) ,

under Lorentz transformations. A contravariant vector is tensor of rank (1, 0),
while the rank of a covariant vector (one-form) is (0, 1). The metric tensor is
a symmetric tensor of rank (0, 2).

• Poincaré transformations,3 (Λ, a) consist of Lorentz transformations and
translations, i.e.

(Λ, a)x = Λx + a . (1.E)

These are the most general transformations of Minkowski space which do not
change the interval between any two vectors, i.e.

(y′ − x′)2 = (y − x)2 .

• In a certain representation the elements of the Poincaré group near the identity
are

U(ω, ε) = e−
i
2 Mµνωµν+iPµεµ

, (1.F)

where ωµν and Mµν are parameters and generators of the Lorentz subgroup
respectively, while εµ and Pµ are the parameters and generators of the trans-
lation subgroup. The Poincaré algebra is given in Problem 1.11.

• The Levi-Civita tensor, εµνρσ is a totaly antisymmetric tensor. We will use
the convention that ε0123 = +1.

2 The tangent space is a vector space of tangent vectors associated to each point
of spacetime.

3 Poincaré transformations are very often called inhomogeneous Lorentz transfor-
mations.
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1.1. Show that Lorentz transformations satisfy the condition ΛT gΛ = g. Also,
prove that they form a group.

1.2. Given an infinitesimal Lorentz transformation

Λµ
ν = δµ

ν + ωµ
ν ,

show that the infinitesimal parameters ωµν are antisymmetric.

1.3. Prove the following relation

εαβγδA
α

µAβ
νAγ

λAδ
σ = εµνλσdetA ,

where Aα
µ are matrix elements of the matrix A.

1.4. Show that the Kronecker δ symbol and Levi-Civita ε symbol are form
invariant under Lorentz transformations.

1.5. Prove that

εµνρσεαβγδ = −

∣∣∣∣∣∣∣

δµ
α δµ

β δµ
γ δµ

δ

δν
α δν

β δν
γ δν

δ

δρ
α δρ

β δρ
γ δρ

δ

δσ
α δσ

β δσ
γ δσ

δ

∣∣∣∣∣∣∣
,

and calculate the following contractions εµνρσεµβγδ, εµνρσεµνγδ, εµνρσεµνρδ,
εµνρσεµνρσ.

1.6. Let us introduce the notations σµ = (I,σ); σ̄µ = (I,−σ), where I is a
unit matrix, while σ are Pauli matrices4 and define the matrix X = xµσµ.

(a) Show that the transformation

X → X ′ = SXS†,

where S ∈ SL(2,C)5, describes the Lorentz transformation xµ → Λµ
νxν .

This is a homomorphism between proper orthochronous Lorentz transfor-
mations6 and the SL(2,C) group.

(b) Show that xµ = 1
2 tr(σ̄µX).

1.7. Prove that Λµ
ν = 1

2 tr(σ̄µSσνS†), and Λ(S) = Λ(−S). The last relation
shows that the map is not unique.
4 The Pauli matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
.

5 SL(2, C) matrices are 2 × 2 complex matrices of unit determinant.
6 The proper orthochronous Lorentz transformations satisfy the conditions: Λ0

0 ≥
1, detΛ = 1.
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1.8. Find the matrix elements of generators of the Lorentz group Mµν in its
natural (defining) representation (1.C).

1.9. Prove that the commutation relations of the Lorentz algebra

[Mµν ,Mρσ] = i(gµσMνρ + gνρMµσ − gµρMνσ − gνσMµρ)

lead to

[Mi,Mj ] = iεijlMl, [Ni, Nj ] = −iεijlNl, [Mi, Nj ] = iεijlNl ,

where Mi = 1
2εijkMjk and Nk = Mk0. Further, one can introduce the following

linear combinations Ai = 1
2 (Mi + iNi) and Bi = 1

2 (Mi − iNi). Prove that

[Ai, Aj ] = iεijlAl, [Bi, Bj ] = iεijlBl, [Ai, Bj ] = 0 .

This is a well known result which gives a connection between the Lorentz
algebra and ”two” SU(2) algebras. Irreducible representations of the Lorentz
group are classified by two quantum numbers (j1, j2) which come from above
two SU(2) groups.

1.10. The Poincaré transformation (Λ, a) is defined by:

x′µ = Λµ
νxν + aµ .

Determine the multiplication rule i.e. the product (Λ1, a1)(Λ2, a2), as well as
the unit and inverse element in the group.

1.11. (a) Verify the multiplication rule

U−1(Λ, 0)U(1, ε)U(Λ, 0) = U(1, Λ−1ε) ,

in the Poincaré group. In addition, show that from the previous relation
follows:

U−1(Λ, 0)PµU(Λ, 0) = (Λ−1)ν
µPν .

Calculate the commutator [Mµν , Pρ].
(b) Show that

U−1(Λ, 0)U(Λ′, 0)U(Λ, 0) = U(Λ−1Λ′Λ, 0) ,

and find the commutator [Mµν ,Mρσ].
(c) Finally show that the generators of translations commute between them-

selves, i.e. [Pµ, Pν ] = 0.

1.12. Consider the representation in which the vectors x of Minkowski space
are (x, 1)T , while the element of the Poincaré group, (Λ, a) are 5× 5 matrices
given by (

Λ a
0 1

)
.

Check that the generators in this representation satisfy the commutation re-
lations from the previous problem.
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1.13. Find the generators of the Poincaré group in the representation of a clas-
sical scalar field7. Prove that they satisfy the commutation relations obtained
in Problem 1.11.

1.14. The Pauli–Lubanski vector is defined by Wµ = 1
2εµνλσMνλP σ.

(a) Show that WµPµ = 0 and [Wµ, Pν ] = 0.
(b) Show that W 2 = − 1

2MµνMµνP 2 + MµσMνσPµPν .
(c) Prove that the operators W 2 and P 2 commute with the generators of the

Poincaré group. These operators are Casimir operators. They are used to
classify the irreducible representations of the Poincaré group.

1.15. Show that

W 2|p = 0,m, s, σ〉 = −m2s(s + 1)|p = 0,m, s, σ〉 ,

where |p = 0,m, s, σ〉 is a state vector for a particle of mass m, momentum
p, spin s while σ is the z–component of the spin. The mass and spin classify
the irreducible representations of the Poincaré group.

1.16. Verify the following relations

(a) [Mµν ,Wσ] = i(gνσWµ − gµσWν) ,
(b) [Wµ,Wν ] = −iεµνσρW

σP ρ .

1.17. Calculate the commutators

(a) [Wµ,M2] ,
(b) [Mµν ,WµW ν ] ,
(c) [M2, Pµ] ,
(d) [εµνρσMµνMρσ,Mαβ ] .

1.18. The standard momentum for a massive particle is (m, 0, 0, 0), while for
a massless particle it is (k, 0, 0, k). Show that the little group in the first case
is SU(2), while in the second case it is E(2) group8.

1.19. Show that conformal transformations consisting of dilations:

xµ → x′µ = e−ρxµ ,

special conformal transformations (SCT):

xµ → x′µ =
xµ + cµx2

1 + 2c · x + c2x2
,

and usual Poincaré transformations form a group. Find the commutation re-
lations in this group.

7 Scalar field transforms as φ′(Λx + a) = φ(x)
8 E(2) is the group of rotations and translations in a plane.
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The Klein–Gordon equation

• The Klein–Gordon equation,

(�� + m2)φ(x) = 0, (2.A)

is an equation for a free relativistic particle with zero spin. The transformation
law of a scalar field φ(x) under Lorentz transformations is given by φ′(Λx) =
φ(x).

• The equation for the spinless particle in an electromagnetic field, Aµ is ob-
tained by changing ∂µ → ∂µ + iqAµ in equation (2.A), where q is the charge
of the particle.

2.1. Solve the Klein–Gordon equation.

2.2. If φ is a solution of the Klein–Gordon equation calculate the quantity

Q = iq
∫

d3x
(

φ∗ ∂φ

∂t
− φ

∂φ∗

∂t

)
.

2.3. The Hamiltonian for a free real scalar field is

H =
1
2

∫
d3x[(∂0φ)2 + (∇φ)2 + m2φ2] .

Calculate the Hamiltonian H for a general solution of the Klein–Gordon equa-
tion.

2.4. The momentum for a real scalar field is given by

P = −
∫

d3x∂0φ∇φ .

Calculate the momentum P for a general solution of the Klein–Gordon equa-
tion.
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2.5. Show that the current1

jµ = − i
2
(φ∂µφ∗ − φ∗∂µφ)

satisfies the continuity equation, ∂µjµ = 0.

2.6. Show that the continuity equation ∂µjµ = 0 is satisfied for the current

jµ = − i
2
(φ∂µφ∗ − φ∗∂µφ) − qAµφ∗φ ,

where φ is a solution of Klein–Gordon equation in external electromagnetic
potential Aµ.

2.7. A scalar particle in the s–state is moving in the potential

qA0 =
{
−V, r < a
0, r > a

,

where V is a positive constant. Find the dispersion relation, i.e. the relation
between energy and momentum, for discrete particle states. Which condition
has to be satisfied so that there is only one bound state in the case V < 2m?

2.8. Find the energy spectrum and the eigenfunctions for a scalar particle in
a constant magnetic field, B = Bez.

2.9. Calculate the reflection and the transmission coefficients of a Klein–
Gordon particle with energy E, at the potential

A0 =
{

0, z < 0
U0, z > 0 ,

where U0 is a positive constant.

2.10. A particle of charge q and mass m is incident on a potential barrier

A0 =
{

0, z < 0, z > a
U0, 0 < z < a

,

where U0 is a positive constant. Find the transmission coefficient.

2.11. A scalar particle of mass m and charge −e moves in the Coulomb field
of a nucleus. Find the energy spectrum of the bounded states for this system
if the charge of the nucleus is Ze.

2.12. Using the two-component wave function
(

θ
χ

)
, where θ = 1

2 (φ + i
m

∂φ
∂t )

and χ = 1
2 (φ − i

m
∂φ
∂t ), instead of φ rewrite the Klein–Gordon equation in the

Schrödinger form.
1 Actually this is current density.
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2.13. Find the eigenvalues of the Hamiltonian from the previous problem.
Find the nonrelativistic limit of this Hamiltonian.

2.14. Determine the velocity operator v = i[H,x], where H is the Hamiltonian
obtained in Problem 2.12. Solve the eigenvalue problem for v.

2.15. In the space of two–component wave functions the scalar product is
defined by

〈ψ1|ψ2〉 =
1
2

∫
d3xψ†

1σ3ψ2 .

(a) Show that the Hamiltonian H obtained in Problem 2.12 is Hermitian.
(b) Find expectation values of the Hamiltonian 〈H〉, and the velocity 〈v〉 in

the state
(

1
0

)
e−ip·x.
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The γ–matrices

• In Minkowski space M4, the γ–matrices satisfy the anticommutation relations1

{γµ, γν} = 2gµν . (3.A)

• In the Dirac representation γ–matrices take the form

γ0 =
(

I 0
0 −I

)
, γ =

(
0 σ

−σ 0

)
. (3.B)

Other representations of the γ–matrices can be obtained by similarity trans-
formation γ′

µ = SγµS−1. The transformation matrix S need to be uni-
tary if the transformed matrices are to satisfy the Hermicity condition:
(γ′µ)† = γ′0γ′µγ′0. The Weyl representation of the γ–matrices is given by

γ0 =
(

0 I
I 0

)
, γ =

(
0 σ

−σ 0

)
, (3.C)

while in the Majorana representation we have

γ0 =
(

0 σ2

σ2 0

)
, γ1 =

(
iσ3 0
0 iσ3

)
,

γ2 =
(

0 −σ2

σ2 0

)
, γ3 =

(
−iσ1 0

0 −iσ1

)
.

(3.D)

• The matrix γ5 is defined by γ5 = iγ0γ1γ2γ3, while γ5 = −iγ0γ1γ2γ3. In the
Dirac representation, γ5 has the form

γ5 =
(

0 I
I 0

)
.

1 The same type of relations hold in Md, where d is the dimension of spacetime.
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• σµν matrices are defined by

σµν =
i
2
[γµ, γν ] . (3.E)

• Slash is defined as
/a = aµγµ . (3.F)

• Sometimes we use the notation: β = γ0, α = γ0γ. The anticommutation
relations (3.A) become

{αi, αj} = 2δij , {αi, β} = 0 .

3.1. Prove:

(a) γ†
µ = γ0γµγ0 ,

(b)σ†
µν = γ0σµνγ0 .

3.2. Show that:

(a) γ†
5 = γ5 = γ5 = γ−1

5 ,
(b) γ5 = − i

4!εµνρσγµγνγργσ ,
(c) (γ5)2 = 1 ,
(d) (γ5γµ)† = γ0γ5γµγ0 .

3.3. Show that:

(a) {γ5, γ
µ} = 0 ,

(b) [γ5, σ
µν ] = 0 .

3.4. Prove /a2 = a2.

3.5. Derive the following identities with contractions of the γ–matrices:

(a) γµγµ = 4 ,
(b) γµγνγµ = −2γν ,
(c) γµγαγβγµ = 4gαβ ,
(d) γµγαγβγγγµ = −2γγγβγα ,
(e) σµνσµν = 12 ,
(f) γµγ5γ

µγ5 = −4 ,
(g) σαβγµσαβ = 0 ,
(h)σαβσµνσαβ = −4σµν ,
(i) σαβγ5γµσαβ = 0 ,
(j) σαβγ5σαβ = 12γ5 .
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3.6. Prove the following identities with traces of γ–matrices:

(a) trγµ = 0 ,
(b) tr(γµγν) = 4gµν ,
(c) tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) ,
(d) trγ5 = 0 ,
(e) tr(γ5γµγν) = 0 ,
(f) tr(γ5γµγνγργσ) = −4iεµνρσ ,
(g) tr(/a1 · · · /a2n+1) = 0 ,
(h) tr(/a1 · · · /a2n) = tr(/a2n · · · /a1) ,
(i) tr(γ5γµ) = 0 ,

3.7. Calculate tr(/a1/a2 · · · /a6).

3.8. Calculate tr[(/p − m)γµ(1 − γ5)(/q + m)γν ].

3.9. Calculate γµ(1 − γ5)(/p − m)γµ.

3.10. Verify the identity

exp(γ5/a) = cos
√

aµaµ +
1√

aµaµ
γ5/a sin

√
aµaµ ,

where a2 > 0 .

3.11. Show that the set

Γ a = {I, γµ, γ5, γµγ5, σµν} ,

is made of linearly independent 4 × 4 matrices. Also, show that the product
of any two of them is again one of the matrices Γ a, up to ±1, ±i.

3.12. Show that any matrix A ∈ C44 can be written in terms of Γ a =
{I, γµ, γ5, γµγ5, σµν}, i.e. A =

∑
a caΓ a where ca = 1

4 tr(AΓa).

3.13. Expand the following products of γ–matrices in terms of Γ a:

(a) γµγνγρ ,
(b) γ5γµγν ,
(c) σµνγργ5 .

3.14. Expand the anticommutator {γµ, σνρ} in terms of Γ–matrices.

3.15. Calculate tr(γµγνγργσγaγβγ5).

3.16. Verify the relation γ5σ
µν = i

2εµνρσσρσ.

3.17. Show that the commutator [σµν , σρσ] can be rewritten in terms of σµν .
Find the coefficients in this expansion.
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3.18. Show that if a matrix commutes with all gamma matrices γµ, then it is
proportional to the unit matrix.

3.19. Let U = exp(βα · n), where β and α are Dirac matrices; n is a unit
vector. Verify the following relation:

α′ ≡ UαU† = α − (I − U2)(α · n)n .

3.20. Show that the set of matrices (3.C) is a representation of γ–matrices.
Find the unitary matrix which transforms this representation into the Dirac
one. Calculate σµν , and γ5 in this representation.

3.21. Find Dirac matrices in two dimensional spacetime. Define γ5 and cal-
culate

tr(γ5γµγν) .

Simplify the product γ5γµ.
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The Dirac equation

• The Dirac equation,
(iγµ∂µ − m)ψ(x) = 0 , (4.A)

is an equation of the free relativistic particle with spin 1/2. The general solu-
tion of this equation is given by

ψ(x) =
1

(2π)
3
2

2∑
r=1

∫
d3p
√

m

Ep

(
ur(p)cr(p)e−ip·x + vr(p)d†r(p)eip·x) , (4.B)

where ur(p) and vr(p) are the basic bispinors which satisfy equations

(/p − m)ur(p) = 0 ,

(/p + m)vr(p) = 0 .
(4.C)

We use the normalization

ūr(p)us(p) = −v̄r(p)vs(p) = δrs ,

ūr(p)vs(p) = v̄r(p)us(p) = 0.
(4.D)

The coefficients cr(p) and dr(p) in (4.B) being given determined by boundary
conditions. Equation (4.A) can be rewritten in the form

i
∂ψ

∂t
= HDψ ,

where HD = α · p + βm is the so-called Dirac Hamiltonian.
• Under the Lorentz transformation, x′µ = Λµ

νxν , Dirac spinor, ψ(x) trans-
forms as

ψ′(x′) = S(Λ)ψ(x) = e−
i
4 σµνωµν ψ(x) . (4.E)

S(Λ) is the Lorentz transformation matrix in spinor representation, and it
satisfies the equations:

S−1(Λ) = γ0S
†(Λ)γ0 ,
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S−1(Λ)γµS(Λ) = Λµ
νγν .

• The equation for an electron with charge −e in an electromagnetic field Aµ is
given by

[iγµ(∂µ − ieAµ) − m] ψ(x) = 0 . (4.F)

• Under parity, Dirac spinors transform as

ψ(t,x) → ψ′(t,−x) = γ0ψ(t,x) . (4.G)

• Time reversal is an antiunitary operation:

ψ(t,x) → ψ′(−t,x) = Tψ∗(t,x) . (4.H)

The matrix T , satisfies
TγµT−1 = γµ∗ = γT

µ . (4.I)

The solution of the above condition is T = iγ1γ3, in the Dirac representation
of γ–matrices. It is easy to see that T † = T−1 = T = −T ∗.

• Under charge conjugation, spinors ψ(x) transform as follows

ψ(x) → ψc(x) = Cψ̄T . (4.J)

The matrix C satisfies the relations:

CγµC−1 = −γT
µ , C−1 = CT = C† = −C . (4.K)

In the Dirac representation, the matrix C is given by C = iγ2γ0.

4.1. Find which of the operators given below commute with the Dirac Hamil-
tonian:

(a) p = −i∇ ,
(b)L = r × p ,
(c) L2 ,
(d)S = 1

2Σ , where Σ = i
2γ × γ ,

(e) J = L + S ,
(f) J2 ,
(g) Σ · p

|p| ,

(h)Σ · n, where n is a unit vector.

4.2. Solve the Dirac equation for a free particle, i.e. derived (4.B).

4.3. Find the energy of the states us(p)e−ip·x and vs(p)eip·x for the Dirac
particle.
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4.4. Using the solution of Problem 4.2 show that

2∑
r=1

ur(p)ūr(p) =
/p + m

2m
≡ Λ+(p) ,

−
2∑

r=1

vr(p)v̄r(p) = −/p − m

2m
≡ Λ−(p) .

The quantities Λ+(p) and Λ−(p) are energy projection operators.

4.5. Show that Λ2
± = Λ±, and Λ+Λ− = 0. How do these projectors act on the

basic spinors ur(p) and vr(p)? Derive these results with and without using
explicit expressions for spinors.

4.6. The spin operator in the rest frame for a Dirac particle is defined by
S = 1

2Σ. Prove that:

(a) Σ = γ5γ0γ ,
(b) [Si, Sj ] = iεijkSk ,
(c) S2 = − 3

4 .

4.7. Prove that:
Σ · p
|p| ur(p) = (−1)r+1ur(p) ,

Σ · p
|p| vr(p) = (−1)rvr(p) .

Are spinors ur(p) and vr(p) eigenstates of the operator Σ · n, where n is a
unit vector? Check the same property for the spinors in the rest frame.

4.8. Find the boost operator for the transition from the rest frame to the
frame moving with velocity v along the z–axis, in the spinor representation.
Is this operator unitary?

4.9. Solve the previous problem upon transformation to the system rotated
around the z–axis for an angle θ. Is this operator a unitary one?

4.10. The Pauli–Lubanski vector is defined by Wµ = 1
2εµνρσMνρP σ, where

Mνρ = 1
2σνρ + i(xν∂ρ − xρ∂ν) is angular momentum, while Pµ is linear mo-

mentum. Show that

W 2ψ(x) = −1
2
(1 +

1
2
)m2ψ(x) ,

where ψ(x) is a solution of the Dirac equation.
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4.11. The covariant operator which projects the spin operator onto an arbi-
trary normalized four-vector sµ (s2 = −1) is given by Wµsµ, where s · p = 0,
i.e. the vector polarization sµ is orthogonal to the momentum vector. Show
that

Wµsµ

m
=

1
2m

γ5/s/p .

Find this operator in the rest frame.

4.12. In addition to the spinor basis, one often uses the helicity basis. The
helicity basis is obtained by taking n = p/|p| in the rest frame. Find the
equations for the spin in this case.

4.13. Find the form of the equations for the spin, defined in Problem 4.12 in
the ultrarelativistic limit.

4.14. Show that the operator γ5/s commutes with the operator /p, and that the
eigenvalues of this operator are ±1. Find the eigen-projectors of the operator
γ5/s. Prove that these projectors commute with projectors onto positive and
negative energy states, Λ±(p).

4.15. Consider a Dirac’s particle moving along the z–axis with momentum p.
The nonrelativistic spin wave function is given by

ϕ =
1√

|a|2 + |b|2

(
a
b

)
.

Calculate the expectation value of the spin projection onto a unit vector n,
i.e. 〈Σ · n〉. Find the nonrelativistic limit.

4.16. Find the Dirac spinor for an electron moving along the z−axis with
momentum p. The electron is polarized along the direction n = (θ, φ = π

2 ).
Calculate the expectation value of the projection spin on the polarization
vector in that state.

4.17. Is the operator γ5 a constant of motion for the free Dirac particle? Find
the eigenvalues and projectors for this operator.

4.18. Let us introduce
ψL =

1
2
(1 − γ5)ψ ,

ψR =
1
2
(1 + γ5)ψ ,

where ψ is a Dirac spinor. Derive the equations of motion for these fields.
Show that they are decoupled in the case of a massless spinor. The fields ψL

ψR are known as Weyl fields.
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4.19. Let us consider the system of the following two–component equations:

iσµ ∂ψR(x)
∂xµ

= mψL(x) ,

iσ̄µ ∂ψL(x)
∂xµ

= mψR(x) ,

where σµ = (I,σ); σ̄µ = (I, −σ).

(a) Is it possible to rewrite this system of equations as a Dirac equation? If this
is possible, find a unitary matrix which relates the new set of γ–matrices
with the Dirac ones.

(b) Prove that the system of equations given above is relativistically covariant.
Find 2 × 2 matrices SR and SL, which satisfy ψ′

R,L(x′) = SR,LψR,L(x),
where ψ′

R,L is a wave function obtained from ψR,L(x) by a boost along the
x–axis.

4.20. Prove that the operator K = β(Σ·L+1), where Σ = − i
2α×α is the spin

operator and L is orbital momentum, commutes with the Dirac Hamiltonian.

4.21. Prove the Gordon identities:

2mū(p1)γµu(p2) = ū(p1)[(p1 + p2)µ + iσµν(p1 − p2)ν ]u(p2) ,

2mv̄(p1)γµv(p2) = −v̄(p1)[(p1 + p2)µ + iσµν(p1 − p2)ν ]v(p2) .

Do not use any particular representation of Dirac spinors.

4.22. Prove the following identity:

ū(p′)σµν(p + p′)νu(p) = iū(p′)(p′ − p)µu(p) .

4.23. The current Jµ is given by Jµ = ū(p2)/p1γµ/p2u(p1), where u(p) and
ū(p) are Dirac spinors. Show that Jµ can be written in the following form:

Jµ = ū(p2)[F1(m, q2)γµ + F2(m, q2)σµνqν ]u(p1) ,

where q = p2 − p1. Determine the functions F1 and F2.

4.24. Rewrite the expression

ū(p)
1
2
(1 − γ5)u(p)

as a function of the normalization factor N = u†(p)u(p).

4.25. Consider the current

Jµ = ū(p2)pρqλσµργλu(p1) ,

where u(p1) and u(p2) are Dirac spinors; p = p1 + p2 and q = p2 − p1. Show
that Jµ has the following form:

Jµ = ū(p2)(F1γµ + F2qµ + F3σµρq
ρ)u(p1) ,

and determine the functions Fi = Fi(q2,m), (i = 1, 2, 3).
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4.26. Prove that if ψ(x) is a solution of the Dirac equation, that it is also a
solution of the Klein-Gordon equation.

4.27. Determine the probability density ρ = ψ̄γ0ψ and the current density
j = ψ̄γψ, for an electron with momentum p and in an arbitrary spin state.

4.28. Find the time dependence of the position operator rH(t) = eiHtre−iHt

for a free Dirac particle.

4.29. The state of the free electron at time t = 0 is given by

ψ(t = 0,x) = δ(3)(x)




1
0
0
0


 .

Find ψ(t > 0,x).

4.30. Determine the time evolution of the wave packet

ψ(t = 0, x) =
1

(πd2)
3
4
exp
(
− x2

2d2

)
1
0
0
0


 ,

for the Dirac equation.

4.31. An electron with momentum p = pez and positive helicity meets a
potential barrier

−eA0 =
{

0, z < 0
V, z > 0 .

Calculate the coefficients of reflection and transmission.

4.32. Find the coefficients of reflection and transmission for an electron mov-
ing in a potential barrier:

−eA0 =
{

0, z < 0, z > a
V, 0 < z < a

.

The energy of the electron is E, while its helicity is 1/2. Also, find the energy
of particle for which the transmission coefficient is equal to one.

4.33. Let an electron move in a potential hole 2a wide and V deep. Consider
only bound states of the electron.

(a) Find the dispersion relations.
(b) Determine the relation between V and a if there are N bound states. Take

V < 2m. If there is only one bound state present in the spectrum, is it
odd or even?
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(c) Give a rough description of the dispersion relations for V > 2m.

4.34. Determine the energy spectrum of an electron in a constant magnetic
field B = Bez.

4.35. Show that if ψ(x) is a solution of the Dirac equation in an electromag-
netic field, then it satisfies the ”generalize” Klein-Gordon equation:

[(∂µ − ieAµ)(∂µ − ieAµ) − e

2
σµνFµν + m2]ψ(x) = 0 ,

where Fµν = ∂µAν − ∂νAµ is the field strength tensor.

4.36. Find the nonrelativistic approximation of the Dirac Hamiltonian H =
α · (p + eA) − eA0 + mβ, including terms of order v2

c2 .

4.37. If Vµ(x) = ψ̄(x)γµψ(x) is a vector field, show that Vµ is a real quantity.
Find the transformation properties of this quantity under proper orthochro-
nous Lorentz transformations, charge conjugation C, parity P and time re-
versal T .

4.38. Investigate the transformation properties of the quantity Aµ(x) =
ψ̄(x)γµγ5ψ(x), under proper orthochronous Lorentz transformations and the
discrete transformations C, P and T .

4.39. Prove that the quantity ψ̄(x)γµ∂µψ(x) is a Lorentz scalar. Find its
transformation rules under the discrete transformations.

4.40. Using the Dirac equation, show that CūT (p, s) = v(p, s), where C is
charge conjugation. Also, prove the above relation in a concrete representa-
tion.

4.41. The matrix C is defined by

CγµC−1 = −γT
µ .

Prove that if matrices C ′ and C ′′ satisfy the above relation, then C ′ = kC ′′,
where k is a constant.

4.42. If

ψ(x) = Np




(
1
0

)

σ3p
Ep+m

(
1
0

)


 e−iEt+ipz ,

is the wave function in frame S of the relativistic particle whose spin is 1/2,
find:

(a) the wave function ψc(x) = Cψ̄T (x) of the antiparticle,
(b) the wave function of this particle for an observer moving with momentum

p = pez,
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(c) the wave functions which are obtained after space and time inversion,
(d) the wave function in a frame which is obtained from S by a rotation about

the x–axis through θ.

4.43. Find the matrices C and P in the Weyl representation of the γ–matrices.

4.44. Prove that the helicity of the Dirac particle changes sign under space
inversion, but not under time reversal.

4.45. The Dirac Hamiltonian is H = α · p + βm. Determine the parameter
θ from the condition that the new Hamiltonian H ′ = UHU†, where U =
eβα·pθ(p) has even form, i.e. H ′ ∼ β. (Foldy–Wouthuysen transformation).

4.46. Show that the spin operator Σ = i
2γ × γ and the angular momentum

L = r × p, in Foldy-Wouthuysen representation, have the following form:

ΣFW =
m

Ep
Σ +

p(p · Σ)
2Ep(m + Ep)

+
iβ(α × p)

2Ep
,

LFW = L − p(p · Σ)
2Ep(m + Ep)

+
p2Σ

2Ep(m + Ep)
− iβ(α × p)

2Ep
.

4.47. Find the Foldy-Wouthuysen transform of the position operator x and
the momentum operator p. Calculate the commutator [xFW,pFW].
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Classical field theory and symmetries

• If f(x) is a function and F [f(x)] a functional, the functional derivative, δF [f(x)]
δf(y)

is defined by the relation

δF =
∫

dy
δF [f(x)]

δf(y)
δf(y) , (5.A)

where δF is a variation of the functional.
• The action is given by

S =
∫

d4xL(φr, ∂µφr), (5.B)

where L is the Lagrangian density, which is a function of the fields φr(x), r =
1, . . . , n and their first derivatives. The Euler–Lagrange equations of motion
are

∂µ

(
∂L

∂(∂µφr)

)
− ∂L

∂φr
= 0 . (5.C)

• The canonical momentum conjugate to the field variable φr is

πr(x) =
∂L
∂φ̇r

. (5.D)

The canonical Hamiltonian is

H =
∫

d3xH =
∫

d3x(φ̇rπr − L) . (5.E)

• Noether theorem: If the action is invariant with respect to the continous in-
finitesimal transformations:

xµ → x′
µ = xµ + δxµ ,

φr(x) → φ′
r(x

′) = φr(x) + δφr(x) ,
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then the divergence of the current

jµ =
∂L

∂(∂µφr)
δφr(x) − Tµνδxν , (5.F)

is equal to zero, i.e. ∂µjµ = 0. The quantity

Tµν =
∂L

∂(∂µφr)
∂νφr − Lgµν , (5.G)

is the energy–momentum tensor . The Noether charges Qa =
∫

d3xja
0 (x) are

constants of motion under suitable asymptotic conditions. The index a is
related to a symmetry group.

5.1. Let

(a) Fµ = ∂µφ ,
(b)S =

∫
d4x
[
1
2 (∂µφ)2 − V (φ)

]
,

be functionals. Calculate the functional derivatives δFµ

δφ in the first case, and
δ2S

δφ(x)δφ(y) in the second case.

5.2. Find the Euler–Lagrange equations for the following Lagrangian densi-
ties:

(a) L = −(∂µAν)(∂νAµ) + 1
2m2AµAµ + λ

2 (∂µAµ)2 ,
(b)L = − 1

4FµνFµν + 1
2m2AµAµ , where Fµν = ∂µAν − ∂νAµ ,

(c) L = 1
2 (∂µφ)(∂µφ) − 1

2m2φ2 − 1
4λφ4 ,

(d)L = (∂µφ − ieAµφ)(∂µφ∗ + ieAµφ∗) − m2φ∗φ − 1
4FµνFµν ,

(e) L = ψ̄(iγµ∂µ − m)ψ + 1
2 (∂µφ)2 − 1

2m2φ2 + 1
4λφ4 − igψ̄γ5ψφ .

5.3. The action of a free scalar field in two dimensional spacetime is

S =
∫ ∞

−∞
dt

∫ L

0

dx

(
1
2
∂µφ∂µφ − m2

2
φ2

)
.

The spatial coordinate x varies in the region 0 < x < L. Find the equation of
motion and discuss the importance of the boundary term.

5.4. Prove that the equations of motion remain unchanged if the divergence
of an arbitrary field function is added to the Lagrangian density.

5.5. Show that the Lagrangian density of a real scalar field can be taken as
L = − 1

2φ(�� + m2)φ.
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5.6. Show that the Lagrangian density of a free spinor field can be taken in
the form L = i

2 (ψ̄/∂ψ − (∂µψ̄)γµψ) − mψ̄ψ.

5.7. The Lagrangian density for a massive vector field Aµ is given by

L = −1
4
FµνFµν +

1
2
m2AµAµ .

Prove that the equation ∂µAµ = 0 is a consequence of the equations of motion.

5.8. Prove that the Lagrangian density of a massless vector field is invariant
under the gauge transformation: Aµ → Aµ + ∂µΛ(x), where Λ = Λ(x) is an
arbitrary function. Is the relation ∂µAµ = 0 a consequence of the equations
of motion?

5.9. The Einstein–Hilbert gravitation action is

S = κ

∫
d4x

√
−gR ,

where gµν is the metric of four-dimensional curved spacetime; R is scalar
curvature and κ is a constant. In the weak-field approximation the metric is
small perturbation around the flat metric g

(0)
µν , i.e.

gµν(x) = g(0)
µν + hµν(x) .

The perturbation hµν(x) is a symmetric second rank tensor field. The Einstein–
Hilbert action in this approximation becomes an action in flat spacetime (any-
one familiar with general relativity can easily prove this):

S =
∫

d4x

(
1
2
∂σhµν∂σhµν − ∂σhµν∂νhµσ + ∂σhµσ∂µh − 1

2
∂µh∂µh

)
,

where h = hµ
µ. Derive the equations of motion for hµν . These are the linearized

Einstein equations. Show that the linearized theory is invariant under the
gauge symmetry:

hµν → hµν + ∂µΛν + ∂νΛµ ,

where Λµ(x) is any four-vector field.

5.10. Find the canonical Hamiltonian for free scalar and spinor fields.

5.11. Show that the Lagrangian density

L =
1
2
[(∂φ1)2 + (∂φ2)2] −

m2

2
(φ2

1 + φ2
2) −

λ

4
(φ2

1 + φ2
2)

2 ,

is invariant under the transformation

φ1 → φ′
1 = φ1 cos θ − φ2 sin θ ,

φ2 → φ′
2 = φ1 sin θ + φ2 cos θ .

Find the corresponding Noether current and charge.
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5.12. Consider the Lagrangian density

L = (∂µφ†)(∂µφ) − m2φ†φ ,

where
(

φ1

φ2

)
is an SU(2) doublet. Show that the Lagrangian density has

SU(2) symmetry. Find the related Noether currents and charges.

5.13. The Lagrangian density is given by

L = ψ̄(iγµ∂µ − m)ψ ,

where ψ =
(

ψ1

ψ2

)
is a doublet of SU(2) group. Show that L has SU(2) sym-

metry. Find Noether currents and charges. Derive the equations of motion for
spinor fields ψi, where i = 1, 2.

5.14. Prove that the following Lagrangian densities are invariant under phase
transformations

(a) L = ψ̄(iγµ∂µ − m)ψ ,
(b)L = (∂µφ†)(∂µφ) − m2φ†φ .

Find the Noether currents.

5.15. The Lagrangian density of a real three-component scalar field is given
by

L =
1
2
∂µφT ∂µφ − m2

2
φT φ ,

where φ =




φ1

φ2

φ3


. Find the equations of motions for the scalar fields φi.

Prove that the Lagrangian density is SO(3) invariant and find the Noether
currents.

5.16. Investigate the invariance property of the Dirac Lagrangian density un-
der chiral transformations

ψ(x) → ψ′(x) = eiαγ5ψ(x) ,

where α is a constant. Find the Noether current and its four-divergence.

5.17. The Lagrangian density of a σ-model is given by

L =
1
2
[(∂µσ)(∂µσ) + (∂µπ) · (∂µπ)] + iΨ̄/∂Ψ

+ gΨ̄(σ + iτ · πγ5)Ψ − m2

2
(σ2 + π2) +

λ

4
(σ2 + π2)2 ,
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where σ is a scalar field, π is a tree-component scalar field, Ψ a doublet of
spinor fields, while τ are Pauli matrices. Prove that the Lagrangian density
L has the symmetry:

σ(x) → σ(x),
π(x) → π(x) − α × π(x),

Ψ(x) → Ψ(x) + i
α · τ

2
Ψ(x) ,

where α is an infinitesimal constant vector. Find the corresponding conserved
current.

5.18. In general, the canonical energy–momentum tensor is not symmetric
under the permutation of indices. The energy–momentum tensor is not unique:
a new equivalent energy–momentum tensor can be defined by adding a four-
divergence

T̃µν = Tµν + ∂ρχρµν ,

where χρµν = −χµρν . The two energy–momentum tensors are equivalent since
they lead to the same conserved charges, i.e. both satisfy the continuity equa-
tion. If we take that the tensor χµνρ is given by1

χµνρ =
1
2

(
− ∂L

∂(∂µφr)
(Iρν)rs +

∂L
∂(∂ρφr)

(Iµν)rs +
∂L

∂(∂νφr)
(Iµρ)rs

)

then T̃µν is symmetric2. The quantities (Iρν)rs in the previous formula are
defined by the transformation law of fields under Lorentz transformations:

δφr ≡ φ′
r(x

′) − φr(x) =
1
2
ωµν(Iµν)rsφs(x) .

(a) Find the energy–momentum and angular momentum tensors for scalar,
Dirac and electromagnetic fields employing the Noether theorem.

(b) Applying the previously described procedure, find the symmetrized (or Be-
linfante) energy–momentum tensors for the Dirac and the electromagnetic
field.

5.19. Under dilatation the coordinates are transformed as

x → x′ = e−ρx .

The corresponding transformation rule for a scalar field is given by

φ(x) → φ′(x′) = eρφ(x) ,

1 Belinfante, Physica 6, 887 (1939)
2 Symmetric energy–momentum tensors are not only simpler to work with but give

the correct coupling to gravity.
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where ρ is a constant parameter. Determine the infinitesimal form variation3

of the scalar field φ. Does the action for the scalar field possess dilatation
invariance? Find the Noether current.

5.20. Prove that the action for the massless Dirac field is invariant under the
dilatations:

x → x′ = e−ρx, ψ(x) → ψ′(x′) = e3ρ/2ψ(x) .

Calculate the Noether current and charge.

3 A form variation is defined by δ0φr(x) = φ′
r(x)−φr(x); total variation is δφr(x) =

φ′
r(x

′) − φr(x).
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Green functions

• The Green function (or propagator) of the Klein-Gordon equation, ∆(x − y)
satisfies the equation

(��x + m2)∆(x − y) = −δ(4)(x − y) . (6.A)

To define the Green function entirely, one also needs to fix the boundary
condition.

• The Green function (or propagator) S(x− y) of the Dirac equation is defined
by

(iγµ∂x
µ − m)S(x − y) = δ(4)(x − y) , (6.B)

naturally, again with the appropriate boundary conditions fixed.
• The retarded (advanced) Green function is defined to be nonvanishing for

positive (negative) values of time x0 − y0. The boundary conditions for the
Feynman propagator are causal, i.e. positive (negative) energy solutions prop-
agate forward (backward) in time. The Dyson propagator is anticausal.

6.1. Using Fourier transform determine the Green functions for the Klein–
Gordon equation. Discus how one goes around singularities.

6.2. If ∆F is the Feynman propagator, and ∆R is the retarded propagator of
the Klein–Gordon equation, prove that the difference between them, ∆F −∆R

is a solution of the homogeneous Klein–Gordon equation.

6.3. Show that
∫

d4kδ(k2 − m2)θ(k0)f(k) =
∫

d3k

2ωk
f(k) ,

where ωk =
√

k2 + m2.
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6.4. Prove the following properties:

∆R(−x) = ∆A(x) ,

∆F(−x) = ∆F(x) .

∆A and ∆R are the advanced and retarded Green functions; ∆F is the Feyn-
man propagator.

6.5. If the Green function ∆̄(x) of the Klein–Gordon equation is defined as1

∆̄(x) = P
∫

d4k

(2π)4
e−ik·x

k2 − m2
,

prove the relations:

∆̄(x) =
1
2
(∆R(x) + ∆A(x)) ,

∆̄(−x) = ∆̄(x) .

P denotes the principal value.

6.6. Write

∆(x) = − 1
(2π)4

∮

C

d4k
e−ik·x

k2 − m2
,

and

∆±(x) = − 1
(2π)4

∮

C±

d4k
e−ik·x

k2 − m2

in terms of integrals over three momentum, k. The integration contours are
given in Fig. 6.1.

Fig. 6.1. The integration contours C and C±.

In addition, prove that ∆(x) = ∆+(x) + ∆−(x).

1 ∆̄(x) is also called the principal-part propagator.
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6.7. Show that
∂∆(x)
∂xi

∣∣∣∣
x0=0

= 0 ,

∂∆(x)
∂x0

∣∣∣∣
x0=0

= −δ(3)(x) .

6.8. Prove that ∆(x) is a solution of the homogeneous Klein–Gordon equation.

6.9. Prove the following relation:

∆F(x)|m=0 = − 1
4π

δ(x2) +
i

4π2
P

1
x2

,

where ∆F is the Feynman propagator of the Klein–Gordon equation.

6.10. Prove that
∆R,A|m2=0 = − 1

2π
θ(±t)δ(x2) .

6.11. If the source ρ is given by ρ(y) = gδ(3)(y), show that

φR =
g

4π

exp(−m|x|)
|x| ,

where φR(x) = −
∫

d4y∆R(x − y)ρ(y).

6.12. Show that the Green function of the Dirac equation, S(x) has the fol-
lowing form

S(x) = (i/∂ + m)∆(x) ,

where ∆(x) is the Green function of the Klein–Gordon equation with corre-
sponding boundary conditions.

6.13. Starting from definition (6.B), determine the retarded, advanced, Feyn-
man and Dyson propagators of the Dirac equation. Also, prove that the differ-
ence between any two of them is a solution of the homogenous Dirac equation.

6.14. If the source is given by j(y) = gδ(y0)eiq·y(1, 0, 0, 0)T, where g is a
constant while q is a constant vector, calculate

ψ(x) =
∫

d4ySF(x − y)j(y) .

SF is the Feynman propagator of the Dirac field.

6.15. Calculate the Green function in momentum space for a massive vector
field, described by the Lagrangian density

L = −1
4
FµνFµν +

1
2
m2AµAµ .

Fµν = ∂µAν − ∂νAµ is the field strength.
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6.16. Calculate the Green function of a massless vector field for which the
Lagrangian density is given by

L = −1
4
FµνFµν +

1
2
λ(∂A)2 .

The second term is known as the gauge fixing term; λ is a constant.
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Canonical quantization of the scalar field

• The operators of a complex free scalar field are given by

φ(x) =
1

(2π)
3
2

∫
d3k√
2ωk

(a(k)e−ik·x + b†(k)eik·x) , (7.A)

φ†(x) =
1

(2π)
3
2

∫
d3k√
2ωk

(b(k)e−ik·x + a†(k)eik·x) , (7.B)

where a(k) and b(k) are annihilation operators; a†(k) and b†(k) creation op-
erators and a(k) = b(k) is valid for a real scalar field. Real scalar fields are
associated to neutral particles, while complex fields describe charged particles.

• The fields canonically conjugate to φ and φ† are

π =
∂L
∂φ̇

= φ̇†, π† =
∂L
∂φ̇†

= φ̇ .

Equal–time commutation relations take the following form:

[φ(x, t), π(y, t)] = [φ†(x, t), π†(y, t)] = iδ(3)(x − y) ,

[φ(x, t), φ(y, t)] = [φ(x, t), φ†(y, t)] = [π(x, t), π(y, t)] = 0 , (7.C)

[π(x, t), π†(y, t)] = [φ(x, t), π†(y, t)] = 0 .

From (7.C) we obtain:

[a(k), a†(q)] = [b(k), b†(q)] = δ(3)(k − q) ,

[a(k), a(q)] = [a†(k), a†(q)] = [a(k), b†(q)] = [a†(k), b†(q)] = 0 , (7.D)

[b(k), b(q)] = [b†(k), b†(q)] = [a(k), b(q)] = [a†(k), b(q)] = 0 .

• The vacuum |0〉 is defined by a(k) |0〉 = 0, b(k) |0〉 = 0, for all k. A state
a†(k) |0〉 describes scalar particle with momentum k, b†(k) |0〉 an antiparticle
with momentum k. Many–particle states are obtained by acting repeatedly
with creation operators on the vacuum state.
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• In normal ordering, denoted by : :, the creation operators stand to the left of
all the annihilation operators. For example:

: a1a2a
†
3a4a

†
5 := a†

3a
†
5a1a2a4 .

• The Hamiltonian, linear momentum and angular momentum of a scalar field
are

H =
1
2

∫
d3x[(∂0φ)2 + (∇φ)2 + m2φ2] ,

P = −
∫

d3x∂0φ∇φ ,

Mµν =
∫

d3x(xµT 0ν − xνT 0µ) .

• The Feynman propagator of a complex field is defined by

i∆F(x − y) = 〈0|T (φ(x)φ†(y)) |0〉 . (7.E)

Time ordering is defined by

T
(
φ(x)φ†(y)

)
= θ(x0 − y0)φ(x)φ†(y) + θ(y0 − x0)φ†(y)φ(x) .

• The transformation rules for a scalar field under Poincaré transformations are
given in Problem 7.20. Problems 7.21, 7.22 and 7.23 present the transforma-
tions of a scalar field under discrete transformations.

7.1. Starting from the canonical commutators

[φ(x, t), φ̇(y, t)] = iδ(3)(x − y) ,

[φ(x, t), φ(y, t)] = [φ̇(x, t), φ̇(y, t)] = 0 ,

derive the following commutation relations for creation and annihilation op-
erators:

[a(k), a†(q)] = δ(3)(k − q) ,

[a(k), a(q)] = [a†(k), a†(q)] = 0 .

7.2. At t = 0, a real scalar field and its time derivative are given by

φ(t = 0,x) = 0, φ̇(t = 0,x) = c ,

where c is a constant. Find the scalar field φ(t,x) at an arbitrary moment
t > 0.



Chapter 7. Canonical quantization of the scalar field 37

7.3. Calculate the energy : H :, momentum : P : and charge : Q : of a complex
scalar field. Compare these results to the results obtained in Problems 2.2, 2.3
and 2.4.

7.4. Prove that the modes

uk =
1√

2(2π)3ωk

e−iωkt+ik·x ,

are orthonormal with respect to the scalar product

〈f |g〉 = −i
∫

d3x[f(x)∂0g
∗(x) − g∗(x)∂0f(x)] .

7.5. Show that the vacuum expectation value of the scalar field Hamiltonian
is given by

〈0|H |0〉 = −1
4
πm4δ(3)(0)Γ (−2) .

As one can see, this expression is the product of two divergent terms. Note
that normal ordering gets rid of this c–number divergent term.

7.6. Calculate the following commutators: (Assume that the scalar field is a
real one except for case (d))

(a) [Pµ, φ(x)] ,
(b) [Pµ, F (φ(x), π(x))], where F is an arbitrary polynomial function of fields

and momenta,
(c) [H, a†(k)a(q)] ,
(d) [Q,Pµ] ,
(e) [N,H], where N =

∫
d3ka†(k)a(k) is the particle number operator,

(f)
∫

d3x[H,φ(x)]e−ip·x .

7.7. Prove that eiQφ(x)e−iQ = e−iqφ(x).

7.8. The angular momentum of a scalar field Mµν , is obtained in Problem
5.18. Instead of the classical field, use the corresponding operator. Prove the
following relations:

(a) [Mµν , φ(x)] = −i(xµ∂ν − xν∂µ)φ(x) ,
(b) [Mµν , Pλ] = i(gλνPµ − gλµPν) ,
(c) [Mµν ,Mρσ] = i(gµσMνρ + gνρMµσ − gµρMνσ − gνσMµρ) .

7.9. Prove that φk(x) = 〈k|φ(x)|0〉 satisfies the Klein–Gordon equation.

7.10. Calculate the charges Qa =
∫

d3xja
0 (x), where ja

0 are zero components
of the Noether currents for the symmetries defined in Problems 5.12 and 5.15.

(a) Prove that in both cases the charges satisfy the commutation relations of
the SU(2) algebra.
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(b) Calculate
[Qa, φi], [Qa, φ†

i ], (i = 1, 2) ,

for the symmetry defined in Problem 5.12 and

[Qk, φi], (i = 1, 2, 3) ,

for the symmetry defined in 5.15.

7.11. In Problem 5.19, it is shown that the action of a free massless scalar
field is invariant under dilatations.

(a) Calculate the conserved charge D =
∫

d3xj0 .
(b) Prove that relations ρ[D,φ(x)] = iδ0φ(x) and ρ[D,π(x)] = iδ0π(x) hold.
(c) Calculate the commutator [D,F (φ, π)], where F is an arbitrary analytic

function.
(d) Prove that [D,Pµ] = iPµ .

7.12. If, instead of the field φ(x), we define the smeared field

φf (x, t) =
∫

d3yφ(t,y)f(x − y) ,

where f is given by

f(x) =
1

(a2π)3/2
e−x2/a2

,

calculate the vacuum expectation value 〈0|φf (t,x)φf (t,x) |0〉 . Find the result
in the limit of vanishing mass.

7.13. The creation and annihilation operators of the free bosonic string αµ
m

(0 < m ∈ Z), and αµ
m (0 > m ∈ Z), satisfy the commutation relations

[αµ
m, αν

n] = −mδm+n,0g
µν .

Show that the operators Lm = − 1
2

∑
αµ

m−nαnµ satisfy

[Lm, Ln] = (m − n)Lm+n .

The operators Lm form the classical Virasora algebra. Upon normal ordering
of the L ′

ms one can obtain the full algebra (with central charge):

[Lm, Ln] = (m − n)Lm+n +
D − 2

12
(m3 − m)δm+n,0 .

D is number of scalar fields.

7.14. Calculate the vacuum expectation value

〈0| {φ(x), φ(y)} |0〉 ,

where { , } is the anticommutator. Assume that the scalar field is massless.
Prove that the obtained expression satisfies the Klein–Gordon equation.
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7.15. Calculate
〈0|φ(x1)φ(x2)φ(x3)φ(x4) |0〉

for a free scalar field.

7.16. Find
〈0|φ(x)φ(y) |0〉

in two dimensions, for a massless scalar field.

7.17. Prove the relation

(��x + m2) 〈0|T (φ(x)φ(y)) |0〉 = −iδ(4)(x − y) .

7.18. The Lagrangian density of a spinless Schrödinger field ψ, is given by

L = iψ† ∂ψ

∂t
− 1

2m
∇ψ† · ∇ψ − V (r)ψ†ψ .

(a) Find the equations of motion.
(b) Express the free fields ψ and ψ† in terms of creation and annihilation

operators and find commutation relations between them.
(c) Calculate the Green function

G(x0,x, y0,y) = −i 〈0|ψ(x0,x)ψ†(y0,y) |0〉 θ(x0 − y0)

and prove that it satisfies the equation
(

i
∂

∂t
+

1
2m

�
)

G(t,x, 0, 0) = δ(t)δ(3)(x) .

(d) Calculate the Green function for one-dimensional particle in the potential

V =
{

0, x > 0
∞, x < 0 .

(e) Show that the free Schrödinger equation is invariant under Galilean trans-
formations, which contain:
- spatial translations ψ′(t, r + ε) = ψ(t, r) ,
- time translations ψ′(t + δ, r) = ψ(t, r) ,
- spatial rotations ψ′(t, r + θ × r) = ψ(t, r) ,

- ”boost” ψ′(t, r − vt) = e−imv·r+imv2t/2ψ(t, r) .
Without the phase factor in the last transformation rule the Schrödinger
equation will not be invariant, unless m = 0. Consequently this represen-
tation of the Galilean group is projective.

(f) Find the conserved quantities associated with these transformations and
commutations relations between them, i.e. the Galilean algebra.
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7.19. Let

f(x) =
∫

d3p

2ωp
f̃(p)e−ip·x,

be a classical function which satisfies the Klein–Gordon equation. Introduce
the operators

a = C

∫
d3p√
2ωp

f̃∗(p)a(p) ,

a† = C

∫
d3p√
2ωp

f̃(p)a†(p) ,

where a(p) and a†(p) are annihilation and creation operators for scalar field,
and C is a constant given by

C =
1√∫

d3p
2ωp

|f̃(p)|2
.

A coherent state is defined by

|z〉 = e−|z|2/2eza† |0〉 ,

where z is a complex number.

(a) Calculate the following commutators:

[a(p), a†], [a(p), a] .

(b) Prove the relation

[a(p), (a†)n] = C
nf̃(p)√

2ωp

(a†)n−1 .

(c) Show that the coherent state is an eigenstate of the operator a(p) .
(d) Calculate the standard deviation of a scalar field in the coherent state

√
〈z| : φ2(x) : |z〉 − (〈z|φ(x) |z〉)2 .

(e) Find the expectation value of the Hamiltonian in the coherent state,
〈z|H |z〉 .

7.20. Under the Poincaré transformation, x → x′ = Λx + a, the real scalar
field transforms as follows:

U(Λ, a)φ(x)U−1(Λ, a) = φ(Λx + a) ,

where U(Λ, a) is a representation of the Poincaré group in space of the fields.
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(a) Prove the following transformation rules for creation and annihilation op-
erators:

U(Λ, a)a(k)U−1(Λ, a) =
√

ωk′

ωk
exp(−iΛµ

νkνaµ)a(Λk) ,

U(Λ, a)a†(k)U−1(Λ, a) =
√

ωk′

ωk
exp(iΛµ

νkνaµ)a†(Λk) .

(b) Prove that the transformation rule of the n–particle state |k1, . . . , kn〉 is
given by

U(Λ, a) |k1, k2, . . . , kn〉 =
√

ωk′
1
· · ·ωk′

n

ωk1 · · ·ωkn

eiaµΛµ
ν(kν

1+...+kν
n) |Λk1, . . . , Λkn〉 .

(c) Prove that the momentum operator, Pµ of a scalar field is a vector under
Lorentz transformations:

U(Λ, 0)PµU−1(Λ, 0) = Λν
µP ν .

(d) Prove that the commutator [φ(x), φ(y)] is invariant with respect to Lorentz
transformations.

7.21. The parity operator of a scalar field is given by

P = exp
[
−i

π

2

∫
d3k
(
a†(k)a(k) − ηpa

†(k)a(−k)
)]

,

where ηp = ±1 is the intrinsic parity of the field.

(a) Prove that P commutes with the Hamiltonian.
(b) Prove the relation PMijP

−1 = Mij , where Mij is the angular momentum
for scalar field.

7.22. Under time reversal, the scalar field is transformed according to

τφ(x)τ−1 = ηφ(−t, x) ,

where τ is an antiunitary operator, while η is a phase.

(a) Prove the relations:
τa(k)τ−1 = ηa(−k) ,

τa†(k)τ−1 = η∗a†(−k) .

(b) Derive the transformation rules for the Hamiltonian and momentum under
the time reversal.

7.23. Charge conjugation for the charged scalar field is defined by

Cφ(x)C−1 = ηcφ
†(x) ,

where ηc is a phase factor. Prove that

CQC−1 = −Q ,

where Q is the charge operator.
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Canonical quantization of the Dirac field

• The operators of a Dirac field are:

ψ(x) =
1

(2π)
3
2

2∑
r=1

∫
d3p
√

m

Ep

(
ur(p)cr(p)e−ip·x + vr(p)d†r(p)eip·x) , (8.A)

ψ̄(x) =
1

(2π)
3
2

2∑
r=1

∫
d3p
√

m

Ep

(
ūr(p)c†r(p)eip·x + v̄r(p)dr(p)e−ip·x) . (8.B)

The operators c†r(p) and d†r(p) are creation operators, while cr(p), dr(p) are
annihilation operators.

• From the Dirac Lagrangian density,

L = ψ̄(iγµ∂µ − m)ψ ,

one obtains the expressions for the conjugate momenta:

πψ =
∂L
∂ψ̇

= iψ†, πψ̄ =
∂L
∂ ˙̄ψ

= 0 .

Particles of spin 1/2 obey Fermi-Dirac statistics. We impose the canonical
equal-time anticommutation relations:

{ψa(t,x), ψ†
b(t,y)} = δabδ

(3)(x − y) , (8.C)

{ψa(t,x), ψb(t,y)} = {ψ†
a(t,x), ψ†

b(t,y)} = 0 . (8.D)

From this we obtain the corresponding anticommutation relations between
creation and annihilation operators:

{cr(p), c†s(q)} = {dr(p), d†s(q)} = δrsδ
(3)(p − q) . (8.E)

All other anticommutators are zero.
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• The Fock space of states is obtained as usual, by acting with creation operators
on the vacuum |0〉 . The states c†(p, r) |0〉 , and d†(p, r) |0〉 are the electron
and positron one–particle states, respectively with defined momentum and
polarization.

• Normal ordering is defined as in the case scalar field but now the anticommu-
tation relations (8.E) have to be taken into account, e.g.

: c(q)c†(p) := −c†(p)c(q) ,

: c(q)c(k)c†(p) := c†(p)c(q)c(k) .

• The Hamiltonian, momentum and angular moment of the Dirac field are:

H =
∫

d3xψ̄[−iγ∇ + m]ψ ,

P = − i
∫

d3xψ†∇ψ ,

Mµν =
∫

d3xψ†(i(xµ∂ν − xν∂µ) +
1
2
σµν)ψ .

• The Feynman propagator is given by

iSF (x − y) = 〈0|T
(
ψ(x)ψ̄(y)

)
|0〉 . (8.F)

Time ordering is defined by

T
(
ψ(x)ψ̄(y)

)
= θ(x0 − y0)ψ(x)ψ̄(y) − θ(y0 − x0)ψ̄(y)ψ(x) .

• Under the Lorentz transformation, x′ = Λx the operator ψ(x) transforms
according to:

U(Λ)ψ(x)U−1(Λ) = S−1(Λ)ψ(Λx) . (8.G)

Here U(Λ) is a unitary operator in spinor representation which generates the
Lorentz transformation.

• Parity, t′ = t, x′ = −x changes the Dirac field as follows

Pψ(t,x)P−1 = γ0ψ(t,−x) , (8.H)

where P is the appropriate unitary operator.
• Time reversal, t′ = −t, x′ = x is represented by an antiunitary operator. The

transformation law is given by

τψ(t,x)τ−1 = Tψ(−t,x) . (8.I)

Properties of the matrix T , are given in Chapter 4. One should not forget that
time reversal includes complex conjugation:

τ(c . . .)τ−1 = c∗τ . . . τ−1 .
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• The operator C generates charge conjugation in the space of spinors:

Cψa(x)C−1 = (CγT
0 )abψ

†
b(x) . (8.J)

Properties of the matrix C are given in Chapter 4. The charge conjugation
transforms a particle into an antiparticle and vice–versa.

• In this chapter we will very often use the identities:

[AB,C] = A[B,C] + [A,C]B ,

[AB,C] = A{B,C} − {A,C}B . (8.K)

8.1. Starting from the anticommutation relations (8.E) show that:

iS(x − y) = {ψ(x), ψ̄(y)} = i(iγµ∂µ + m)∆(x − y)

{ψ(x), ψ(y)} = 0 ,

where the function ∆(x − y) is to be determined. Prove that for x0 = y0 the
function iS(x−y) becomes γ0δ

(3)(x−y), i.e. the equal-time anticommutation
relations for the Dirac field is obtained.

8.2. Express the following quantities in terms of creation and annihilation
operators:

(a) charge Q = −e
∫

d3x : ψ+ψ : ,
(b) energy H =

∫
d3x[: ψ̄(−iγi∂i + m)ψ :] ,

(c) momentum P = −i
∫

d3x : ψ†∇ψ : .

8.3. (a) Show that i[H, ψ(x)] = ∂
∂tψ(x). Comment on this result.

(b) If the Dirac field is quantized according to the Bose-Einstein rather than
Fermi-Dirac statistics, what would be the energy of the field?

8.4. Calculate [H, c†r(p)cr(p)].

8.5. Starting from the transformation law for the classical Dirac field under
Lorentz transformations show that the generators of these transformations
are given by

Mµν = i(xµ∂ν − xν∂µ) +
1
2
σµν .

8.6. The angular momentum of the Dirac field is

Mµν =
∫

d3xψ†(x)
[
i(xµ∂ν − xν∂µ) +

1
2
σµν

]
ψ(x) .
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(a) Prove that

[Mµν , ψ(x)] = −i(xµ∂ν − xν∂µ)ψ(x) − 1
2
σµνψ(x) ,

and comment on this result.
(b) Also, prove

[Mµν , Pρ] = i(gνρPµ − gµρPν) ,

where Pµ is the four-vector of momentum.

8.7. Show that the helicity of the Dirac field is given by

Sp =
1
2

∑
r

∫
d3p(−1)r+1[c†r(p)cr(p) + d†r(p)dr(p)] .

8.8. Let |p1, r1;p2, r2〉 = c†r1
(p1)c†r2

(p2) |0〉 be a two-particle state. Find the
energy, charge and helicity of this state. Here r1,2 are helicities of one-particle
states.

8.9. Prove that the charges found in Problem 5.13 satisfy the commutation
relation:

[Qa, Qb] = iεabcQc .

8.10. Find conserved charges for the symmetry in Problem 5.17 and calculate
the commutators:

(a) [Qa, Qb] ,
(b) [Qb, πa(x)], [Qb, ψi(x)], [Qb, ψ̄i(x)] .

8.11. In Problem 5.20 we showed that the action for a massless Dirac field is
invariant under dilatations. Find the conserved charge D =

∫
d3xj0 for this

symmetry and show that the relation

[D,Pµ] = iPµ ,

is satisfied.

8.12. Let the Lagrangian density be given by

L = iψ̄γµ∂µψ − gx2ψ̄ψ ,

where g is a constant.

(a) Derive the expression for the energy–momentum tensor Tµν . Find its di-
vergence, ∂µTµν . Comment on this result.

(b) Calculate the commutator [P 0(t), P i(t)].
(c) Find the four divergence of the angular momentum operator Mµαβ .

8.13. Consider the current commutator [Jµ(x), Jν(y)] where Jµ = ψ̄γµψ.
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(a) Prove that the commutator given above is Lorentz covariant.
(b) Show that the commutator is equal to zero for space–like interval, i.e. for

(x − y)2 < 0.

8.14. Calculate 〈0| ψ̄(x1)ψ(x2)ψ(x3)ψ̄(x4) |0〉 . The result should be expressed
in terms of vacuum expectation value of two fields.

8.15. Prove that : ψ̄γµψ := 1
2 [ψ̄, γµψ].

8.16. Prove that 〈0|T (ψ̄(x)Γψ(y)) |0〉 is equal to zero for Γ = {γ5, γ5γµ},
while for Γ = γµγν one gets the result −4imgµν∆F (y − x).

8.17. The Dirac spinor in terms of two Weyl spinors ϕ and χ is of the form

ψ =
(

ϕ
−iσ2χ

∗

)
.

(a) Show that the Majorana spinor equals

ψM =
(

χ
−iσ2χ

∗

)
.

(b) Prove the identities:
ψ̄MφM = φ̄MψM ,

ψ̄MγµφM = −φ̄MγµψM ,

ψ̄Mγ5φM = φ̄Mγ5ψM ,

ψ̄Mγµγ5φM = φ̄Mγµγ5ψM ,

ψ̄MσµνφM = −φ̄MσµνψM .

(c) Express the Majorana field operator, ψM = 1√
2
(ψ+ψc) using creation and

annihilation operators of a Dirac field. Introduce creation and annihilation
operators for Majorana spinors and find corresponding anticomutation re-
lations.

(d) Rewrite the QED Lagrangian density using Majorana spinors.

8.18. Find the transformation laws of the quantities Vµ(x) = ψ̄(x)γµψ(x) and
Aµ(x) = ψ̄(x)γ5∂µψ(x) under Lorentz and discrete transformations.

8.19. Show that the Lagrangian density

L = iψ̄(x)γµ∂µψ(x) + mψ̄(x)ψ(x) ,

is invariant under the Lorentz and discrete transformations.

8.20. Show that the quantity Tµν(x) = ψ̄(x)σµνψ(x) transforms as a tensor
under Lorentz transformations. Find its transformation rules under discrete
symmetries.
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Canonical quantization of the electromagnetic
field

• The Lagrangian density of the electromagnetic field in the presence of an
exterior current jµ is

L = −1
4
FµνFµν − jµAµ .

From this expression we derive the equations of motion to be:

∂µFµν = jν ⇒ (δν
µ�� − ∂µ∂ν)Aµ = jν . (9.A)

It is easy to see that the field strength Fµν satisfies the identity:

∂µFνρ + ∂νFρµ + ∂ρFµν = 0 . (9.B)

Equations (9.A-B) are the Maxwell equations; (9.B) is the so–called, Bianchi
identity and is a kinematical condition.

• Electrodynamics is invariant under the gauge transformation

Aµ → Aµ + ∂µΛ(x) ,

where Λ(x) is an arbitrary function. The gauge symmetry can be fixed by
imposing a ”gauge condition”. The following choices are often convenient:

Lorentz gauge ∂µAµ = 0 ,
Coulomb gauge ∇ · A = 0 ,

Time gauge A0 = 0 ,
Axial gauge A3 = 0 .

• The general solution of the vacuum Maxwell equations (jµ = 0) takes the
form:

Aµ(x) =
3∑

λ=0

1
(2π)

3
2

∫
d3k√
2ωk

(
aλ(k)εµ

λ(k)e−ik·x + a†
λ(k)εµ

λ(k)eik·x
)

, (9.C)

where ωk = |k|,εµ
λ(k) are polarization vectors. The transverse polarization

vectors which satisfy ε(k) · k = 0 we denote by εµ
1 (k) and εµ

2 (k). The scalar
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polarization vector is εµ
0 = nµ, where nµ is a unit time–like vector. We can

choose nµ = (1, 0, 0, 0). The longitudinal polarization vector, εµ
3 (k) is given

by

εµ
3 (k) =

kµ − (n · k)nµ

(n · k)
.

Due to gauge symmetry only two polarizations are independent. The polar-
ization vectors satisfy the orthonormality relations:

gµνεµ
λ(k)εν

λ′(k) = −δλλ′ .

In (9.C) we assumed the polarization vectors to be real valued.
• The polarization vectors satisfy the following completeness relations:

3∑
λ=0

gλλεµ
λ(k)εν

λ(k) = gµν . (9.D)

From (9.D) follows that the sum over transverse photons is

2∑
λ=1

εi
λ(k)εj

λ(k) = −gij − kikj

(k · n)2
+

kinj + kjni

k · n . (9.E)

• In the Lorentz gauge the equal-time commutation relations are:

[Aµ(t,x), πν(t,y)] = igµνδ(3)(x − y) ,

[Aµ(t,x), Aν(t,y)] = 0 , (9.F)

[πµ(t,x), πν(t,y)] = 0 .

where πν = −Ȧν . Creation and annihilation operators of the photon field
satisfy the following commutation relations:

[aλ(k), a†
λ′(q)] = −gλλ′δ(3)(k − q) ,

[aλ(k), aλ′(q)] = 0 , (9.G)

[a†
λ(k), a†

λ′(q)] = 0 .

The physical states, |Φ〉 satisfy the operator condition

∂µA(+)
µ |Φ〉 = 0.

This is the Gupta–Bleuler method of quantization.
• In the Coulomb gauge we have

A(x) =
2∑

λ=1

1
(2π)

3
2

∫
d3k√
2ωk

(
aλ(k)ελ(k)e−ik·x + a†

λ(k)ελ(k)eik·x
)

, (9.H)
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while A0 = 0. The equal-time commutation relations are:

[Ai(t,x), πj(t,y)] = −iδ(3)
⊥ij(x − y) ,

[Ai(t,x), Aj(t,y)] = 0 , (9.I)

[πi(t,x), πj(t,y)] = 0 ,

where π = E and δ
(3)
⊥ij(x − y) is the transversal delta function given by

δ
(3)
⊥ij(x − y) =

1
(2π)3

∫
d3keik·(x−y)

(
δij −

kikj

k2

)
.

Creation and annihilation operators obey

[aλ(k), a†
λ′(q)] = δλλ′δ(3)(k − q) ,

[aλ(k), aλ′(q)] = 0 , (9.J)

[a†
λ(k), a†

λ′(q)] = 0 .

• The Feynman propagator for the electromagnetic field is given by

iDµν
F (x − y) = 〈0|T (Aµ(x)Aν(y)) |0〉 . (9.K)

9.1. Starting from the commutation relations (9.G) prove that

[Aµ(t,x), Ȧν(t,y)] = −igµνδ(3)(x − y) .

9.2. Find the commutator

iDµν(x − y) = [Aµ(x), Aν(y)] ,

in the Lorentz gauge.

9.3. Calculate the commutators between components of the electric and the
magnetic fields:

[Ei(x), Ej(y)] ,

[Bi(x), Bj(y)] ,

[Ei(x), Bj(y)] .

Also calculate the previous commutators for equal times, x0 = y0.

9.4. Prove that [Pµ, Aν ] = −i∂µAν .
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9.5. Determine the helicity of photons described by polarization vectors
εµ
+(kez) = 2−1/2(0, 1, i, 0)T and εµ

−(kez) = 2−1/2(0, 1,−i, 0)T.

9.6. A photon linearly polarized along the x–axis is moving along the z–
direction with momentum k. Determine the polarization of the photon for
observer S′ moving in the x–direction with velocity v.

9.7. The arbitrary state not containing transversal photons has the form

|Φ〉 =
∑

n

Cn |Φn〉 ,

where Cn are constants and

|Φn〉 =
∫

d3k1 . . . d3knf(k1, . . . ,kn)
n∏

i=1

(a†
0(ki) − a†

3(ki)) |0〉 ,

where f(k1, . . . ,kn) are arbitrary functions. The state |Φ0〉 is a vacuum.

(a) Prove that 〈Φn|Φn〉 = δn,0 .
(b) Show that 〈Φ|Aµ(x) |Φ〉 is a pure gauge.

9.8. Let

Pµν = gµν − kµk̄ν + kν k̄µ

k · k̄ ,

and

Pµν
⊥ =

kµk̄ν + kν k̄µ

k · k̄ ,

where k̄µ = (k0,−k).
Calculate: PµνPνσ, Pµν

⊥ P⊥
νσ, Pµν + Pµν

⊥ , gµνPµν , gµνP⊥
µν , Pµ

νP νσ
⊥ , if k2 = 0.

9.9. The angular momentum of the photon field is defined by J l = 1
2εlijM ij ,

where M ij was found in Problem 5.18.

(a) Express J in terms of the potentials in the Coulomb gauge.
(b) Express the spin part of the angular momentum in terms of aλ(k), a†

λ(k)
and diagonalize it.

(c) Show that the states

a†
±(q) |0〉 =

1√
2
(a†

1(q) ± ia†
2(q)) |0〉 ,

are the eigenstates of the helicity operator with the eigenvalues ±1.
(d) Calculate the commutator [J l, Am(y, t)].

9.10. Calculate:

(a) 〈0| {Ei(x), Bj(y)} |0〉 ,
(b) 〈0| {Bi(x), Bj(y)} |0〉 ,
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(c) 〈0| {Ei(x), Ej(y)} |0〉 .

9.11. Consider the quantization of the electromagnetic field in space between
two parallel square plates located at z = 0 and z = a. The plates are squares
with size of length L. They are perfect conductors.

(a) Find the general solution for the electromagnetic potential inside this ca-
pacitor.

(b) Quantize the electromagnetic field using canonical quantization.
(c) Find the Hamiltonian H and show that the vacuum energy is

E =
1
2
L2

∫
d2k

(2π)2

[
2

∞∑
n=1

√
k2
1 + k2

2 +
(nπ

a

)2

+
√

k2
1 + k2

2

]
. (9.1)

(d) Define the quantity

ε =
E − E0

L2
,

which is the difference between the vacuum energies per unit area in the
presence and in the absent of plates. This quantity is divergent and can
be regularized introducing the function

f(k) =
{

1, k < Λ
0, k > Λ

,

into the integral; Λ is a cutoff parameter. Calculate ε and show that there
is an attractive force between the plates. This is the Casimir effect.

(e) The energy per unit area, E/L2 can be regularized in a different way.
Calculate integral

I =
∫

d2k
1

(k2 + m2)α
,

for Re α > 0, and then analitically continue this integral to Reα ≤ 0. Show
that

E/L2 = − π2

6a3

∞∑
n=1

n3 .

Regularize the sum in the previous expression using the Rieman ζ–function

ζ(s) =
∞∑

n=1

n−s .

Calculate the energy and the force per unit area.
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Processes in the lowest order
of perturbation theory

• The Wick’s theorem states

T (ABC . . . Y Z) =: {ABC . . . Y Z + ”all contractions”} : . (10.A)

In the case of fermions we have to take care about anticommutation relations,
i.e. every time when we interchange neighboring fermionic operators a minus
sign appears.

• The S–matrix is given by

S =
∞∑

n=0

(−i)n

n!

∫
. . .

∫
d4x1 . . . d4xn T (HI(x1) · · ·HI(xn)) , (10.B)

where HI is the Hamiltonian density of interaction in the interaction pictures.
• S–matrix elements have the general form

Sfi = (2π)4δ(4)(pf − pi)iM
∏
b

1√
2V E

∏
f

√
m

V E
, (10.C)

where pi and pf are the initial and the final momenta, respectively; iM is the
Feynman amplitude for the process, which will be determined using Feynman
diagrams. The delta function in (10.C) is a consequence of the conservation of
energy and momentum in the process. Normalization factors also appear in the
expression (10.C) and they are different for bosonic and fermionic particles.
In this Chapter we will use so–called box normalization.

• The differential cross section for the scattering of two particles into N final
particles is

dσ =
|Sfi|2

T

1
|Jin|

N∏
i=1

V d3pi

(2π)3
, (10.D)

where Jin is the flux of initial particles:

|Jin| =
vrel

V
.
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The relative velocity vrel is given by

vrel =
|p1|
E1

,

in the laboratory frame of reference (particle 2 is at rest), while in the center–
of–mass frame we have

vrel = |p1|
E1 + E2

E1E2
,

p1 is the momentum of particle 1, and E1,2 are energies of particles. In ex-
pression (10.D), V d3p/(2π)3 is the volume element of phase space.

• Feynman rules for QED :
◦ Vertex:

= ieγµ

◦ Photon and lepton propagators:

iDFµν = = − igµν

k2 + iε
,

iSF (p) = =
i

/p − m + iε
.

◦ External lines:
= u(p, s) initial

a) leptons (i.e. electron):
= ū(p, s) final

= v(p, s) initial
b) antileptons (i.e. positron):

= v̄(p, s) final

= εµ(k, λ) initial

c) photons:
= ε∗µ(k, λ) final

◦ Spinor factor are written from the left to the right along each of the
fermionic lines. The order of writing is important, because it is a ques-
tion of matrix multiplication of the corresponding factors.

◦ For all loops with momentum k, we must integrate over the momentum:∫
d4k/(2π)4. This corresponds to the addition of quantum mechanical

amplitudes.
◦ For fermion loops we have to take the trace and multiply it by the

factor −1.
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◦ If two diagrams differ for an odd number of fermionic interchanges,
then they must differ by a relative minus sign.

10.1. For the process

A(E1,p1) + B(E2,p2) → C(E′
1,p

′
1) + D(E′

2,p
′
2)

prove that the differential cross section in the center of mass frame is given
by (

dσ

dΩ

)

cm

=
1

4π2(E1 + E2)2
|p′

1|
|p1|

mAmBmCmD|M|2 ,

where iM is the Feynman amplitude. Assume that all particles in the process
are fermions.

10.2. Consider the following integral:

I =
∫

d3p
2Ep

d3q
2Eq

δ(3)(p + q − P)δ(Ep + Eq − P 0) ,

where E2
p = p2 + m2 and E2

q = q2 + m′2. Show that the integral I is Lorentz
invariant. Calculate it in the frame where P = 0.

10.3. If
iM = ū(p, r)γµ(1 − γ5)u(q, s)εµ(k, λ) ,

calculate the sum
2∑

λ=1

2∑
r,s=1

|M|2 .

10.4. Using the Wick theorem evaluate:

(a) 〈0|T (φ4(x)φ4(y)) |0〉 ,
(b)T (: φ4(x) : : φ4(y) :) ,
(c) 〈0|T (ψ̄(x)ψ(x)ψ̄(y)ψ(y)) |0〉 .

10.5. In φ4 theory the interaction Lagrangian density is Lint = − λ
4!φ

4. Us-
ing the Wick theorem determine the symmetry factor S, for the following
diagrams:

(a) x
2

x
1
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(b)
x

2
x

1

(c)
x

2
x

1

Also, check the results using the formula [6]:

S = g
∏

n=2,3,..

2β(n!)αn ,

where g is the number of possible permutations of vertices which leave un-
changed the diagram with fixed external lines, αn is the number of vertex
pairs connected by n identical lines, and β is the number of lines connecting
a vertex with itself.

10.6. In φ3 theory calculate

1
2

(
−iλ
3!

)2 ∫
d4y1d4y2 〈0|T (φ(x1)φ(x2)φ3(y1)φ3(y2)) |0〉 .

10.7. For the QED processes :

(a) µ−µ+ → e−e+ ,
(b) e−µ+ → e−µ+ ,

write the expressions for amplitudes using Feynman rules. Calculate
〈
|M|2

〉
averaging over all initial polarization states and summing over the final polar-
ization states of particles. Calculate the differential cross sections in center–
of–mass system in an ultrarelativistic limit.

10.8. Show that the Feynman amplitude for the Compton scattering is a
gauge invariant quantity.

10.9. Find the differential cross section for the scattering of an electron in the
external electromagnetic field (a, g, k are constants)

(a) Aµ(x) = (ae−k2x2
, 0, 0, 0) ,

(b)Aµ(x) = (0, 0, 0, g
r e−r/a) .

10.10. Calculate the cross section per unit volume for the creation of electron–
positron pairs by the electromagnetic potential

Aµ = (0, 0, ae−iωt, 0) ,

where ω and a are constants.
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10.11. Find the differential cross section for the scattering of an electron in
the external potential

Aµ = (0, 0, 0, ae−k2x2
) ,

for a theory which is the same as QED except the fact that the vertex ieγµ is
replaced by ieγµ(1 − γ5).

10.12. Find the differential cross section for the scattering of a positron in
the external potential

Aµ = (
g

r
, 0, 0, 0) ,

where g is a constant. The S–matrix element is given by

Sfi = ie
∫

d4xψ̄f(x)∂µψi(x)Aµ(x) .

10.13. Calculate the cross section for the scattering of an electron with posi-
tive helicity in the electromagnetic potential

Aµ = (aδ(3)(x), 0, 0, 0) ,

where a is a constant.

10.14. Calculate the differential cross section for scattering of e− and a muon
µ+

e−µ+ → e−µ+ ,

in the center–of–mass system. Assume that initial particles have negative he-
licity, while the spin states of final particles are arbitrary.

10.15. Consider the theory of interaction of a spinor and scalar field:

L =
1
2
(∂φ)2 − M2

2
φ2 + ψ̄(iγµ∂µ − m)ψ − gψ̄γ5ψφ .

Calculate the cross section for the scattering of two fermions in the lowest
order.

10.16. Write the expressions for the Feynman amplitudes for diagrams given
in the figure.

(a) (b)

(c) (d) (e)
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(f) (g)

(h) (i)
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Renormalization and regularization

• Table of D-dimensional integrals in Minkowski spacetime:
∫

dDk
1

(k2 + 2p · k − m2 + iε)n
=

i(−1)nπ
D
2

Γ (n)(m2 + p2)n−D
2

Γ (n − D

2
), (11.A)

∫
dDk

kµ

(k2 + 2p · k − m2 + iε)n
=

−i(−1)nπ
D
2

Γ (n)(m2 + p2)n−D
2

pµΓ (n − D

2
) , (11.B)

∫
dDk

kµkν

(k2 + 2p · k − m2 + iε)n
=

i(−1)nπ
D
2

Γ (n)(m2 + p2)n−D
2

[
pµpνΓ (n − D

2
)

− 1
2
gµν(p2 + m2)Γ (n − D

2
− 1)
]

, (11.C)

∫
dDk

kµkνkρ

(k2 + 2p · k − m2 + iε)n
=

−i(−1)nπ
D
2

Γ (n)(m2 + p2)n−D
2

[
pµpνpρΓ (n − D

2
)

−1
2
(gµνpρ + gµρpν + gνρpµ)(p2 + m2)Γ (n − D

2
− 1)
]

, (11.D)

∫
dDk

kµkνkρkσ

(k2 + 2p · k − m2 + iε)n
=

i(−1)nπD/2

Γ (n)(m2 + p2)n−D
2

[
pµpνpρpσΓ (n − D

2
)

− 1
2
(gµνpρpσ + gµρpνpσ + gµσpνpρ + gνρpµpσ + gνσpρpµ + gρσpµpν)

× (p2 + m2)Γ (n − D

2
− 1)

+
1
4
(gµνgρσ + gµρgνσ + gµσgρν)(p2 + m2)2Γ (n − D

2
− 2)
]

. (11.E)
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• The gamma–function obeys

Γ (−n + ε) =
(−1)n

n!

(
1
ε

+ ψ(n + 1) + o(ε)
)

, (11.F)

where n ∈ N and
ψ(n + 1) = 1 +

1
2

+ . . . +
1
n
− γ .

The γ = 0, 5772 is the Euler–Mascheroni constant.
• The general expression for Feynman parametrization is given in Problem 11.1.

The most frequently used parameterizations are:

1
AB

=
∫ 1

0

dx
1

[xA + (1 − x)B]2
, (11.G)

1
ABC

= 2
∫ 1

0

dx

∫ 1−x

0

dz
1

[A + (B − A)x + (C − A)z]3
. (11.H)

• Cutkosky rule for computing discontinuity of any Feynman diagram contains
the following steps:
1. Cut through the diagram in all possible ways such that the cut propagators

can be put on–shell.
2. For each cut, make the replacement

1
p2 − m2

→ (−2iπ)δ(4)(p2 − m2)θ(p0) .

3. Sum the contributions of all possible cuts.

11.1. Prove the following formula (the Feynman parametrization)

1
A1 . . . An

= (n − 1)!
∫ 1

0

. . .

∫ 1

0

dx1 . . . dxn
δ(x1 + . . . + xn − 1)

(x1A1 + . . . + xnAn)n
.

11.2. Show that expression (11.A) holds.

11.3. Prove the formula (11.F).

11.4. Regularize the integral

I =
∫

d4k
1
k2

1
(k + p)2 − m2

,

using Pauli–Villars regularization.
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11.5. Compute

Iαβµνρσ =
∫

dDk
kαkβkµkνkρkσ

(k2)n
.

Also, find the divergent part of the previous integral for n = 5. Apply the
dimensional regularization.

11.6. Consider the interacting theory of two scalar fields φ and χ:

L =
1
2
(∂φ)2 − 1

2
m2φ2 +

1
2
(∂χ)2 − 1

2
M2χ2 − gφ2χ .

(a) Find the self–energy of the χ particle, −iΠ(p2).
(b) Calculate the decay rate of the χ particle into two φ particles.
(c) Prove that

Im Π(M2) = −MΓ.

11.7. Consider the theory

L =
1
2
(∂µφ)2 − m2

2
φ2 − g

3!
φ3 − λ

4!
φ4 .

Find the expression for the self–energy and the mass shift δm.

11.8. The Lagrangian density is given by

L =
1
2
(∂µσ)2 +

1
2
(∂µπ)2 − m2

2
σ2 − λvσ3 − λvσπ2 − λ

4
(σ2 + π2)2 ,

where σ and π are scalar fields, and v2 = m2

2λ is constant. Classically, π field
is massless. Show that it also remains massless when the one–loop corrections
are included.

11.9. Find the divergent part of the diagram

Prove that this diagram cancels with the diagram of the reverse orientation
inside the fermion loop.

11.10. The polarization of vacuum in QED has form

−iΠµν(q) = −i(qµqν − q2gµν)Π(q2) .

Prove the following expression:

Im Π(q2) = − e2

12π

(
1 +

2m2

q2

)√
1 − 4m2

q2
θ

(
1 − 4m2

q2

)
.
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11.11. In scalar electrodynamics two diagrams give contribution to the po-
larization of vacuum. Using dimensional regularization derive the following
expression for the divergent part of the vacuum polarization:

ie2

24π2

1
ε
(pµpν − p2gµν) .

11.12. The Lagrangian density for the pseudoscalar Yukawa theory is given
by

L =
1
2
(∂φ)2 − m2

2
φ2 + ψ̄(iγµ∂µ − M)ψ − igψ̄γ5ψφ − λ

4!
φ4 .

(a) Find the superficial degree of divergence for this theory and the corre-
sponding divergent amplitudes. Write the bare Lagrangian density as a
sum of the initial Lagrangian density and counterterms. Write out the
Feynman rules in the renormalized theory.

(b) Find the self–energy of the spinor field at one–loop and determine the
corresponding counterterms.

(c) Find the self–energy of the scalar field at one–loop and determine the
corresponding counterterms.

(d) Calculate the one–loop vertex correction φψ̄ψ and δg.
(e) Calculate the one–loop vertex correction φ4 and δλ.

11.13. Consider massless two-dimensional QED, the so–called Schwinger mo-
del.

(a) Calculate the vacuum polarization at one–loop.
(b) Find the full photon propagator and read off the mass of the photon.

11.14. Consider φ3 theory in six–dimensional spacetime, with the Lagrangian
density given by

L =
1
2
(∂φ)2 − m2

2
φ2 − g

3!
φ3 − hφ .

(a) Determine the superficial divergent amplitudes. Write the renormalized
Lagrangian density and derive the Feynman rules.

(b) Calculate the tadpole one–loop diagram and explain why the contribution
of the tadpole diagrams can be ignored.

(c) Calculate the propagator correction at one–loop order and determine δZ
and δm. Use the minimal subtraction (MS) scheme.

(d) Calculate the vertex correction and find δg.
(e) Derive the relations m0 = m0(m, g, ε) and g0 = g0(m, g, ε).



Part II

Solutions



1

Lorentz and Poincaré symmetries

1.1 The square of the length of a four-vector, x is x2 = gµνxµxν . By substi-
tuting x′µ = Λµ

ρx
ρ into the condition x′2 = x2 one obtains:

gµνΛµ
ρΛ

ν
σxρxσ = gρσxρxσ . (1.1)

Since (1.1) is valid for any vector x ∈ M4, we get Λµ
ρgµνΛν

σ = gρσ. The
previous condition can be rewritten in the following form

(ΛT )ρ
µ
gµνΛν

σ = gρσ ⇒ ΛT gΛ = g , (1.2)

and we have obtained the requested expression.
Now, we shall show that the Lorentz transformations form a group. If

Λ1 and Λ2 are Lorentz transformations then their product, Λ1Λ2 is Lorentz
transformation because it satisfies the condition (1.2):

(Λ1Λ2)T g(Λ1Λ2) = ΛT
2 (ΛT

1 gΛ1)Λ2 = ΛT
2 gΛ2 = g .

Thus, we have shown the closure axiom. Multiplication of matrices is generally
an associative operation, so this property is valid for Lorentz matrices Λ.
Identity matrix I satisfies the condition (1.2) and it is the unit element of the
group. Taking determinant of the expression (1.2) we obtain detΛ = ±1. Since
detΛ �= 0 the inverse element Λ−1 exists for every Lorentz matrix. From (1.2)
we see that the inverse element is given by Λ−1 = g−1ΛT g. In the component
notation the previous relation takes the following form:

(Λ−1)µ
ν = gµρΛσ

ρgσν = Λν
µ .

1.2 By substituting infinitesimal form of the Lorentz transformation into the
formula (1.2), one gets:

(δµ
ρ + ωµ

ρ)gµν(δν
σ + ων

σ) + o(ω2) = gρσ ,
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gρσ + ωµ
ρgµνδν

σ + ων
σgµνδµ

ρ + o(ω2) = gρσ .

from which follows that

ωρσ + ωσρ = 0 ⇒ ωρσ = −ωσρ .

Since the parameters of the Lorentz group ωµν are antisymmetric only six of
them are independent, so the Lorentz group is six–parameters group. Moreover
the Lorentz group is a Lie group.

1.3 Given relation is in agreement with definitions of the ε symbol and
determinant.

1.4 From (1.2) follows that δσ
ρ = δν

µΛµ
ρΛν

σ, so we conclude that δ′σρ = δσ
ρ .

In the same way we have

ε′µνρσ = Λµ
αΛν

βΛρ
γΛσ

δεαβγδ = det(Λ−1)εµνρσ = εµνρσ ,

since detΛ−1 = 1 for the proper orthochronous Lorentz transformations. Thus,
Levi-Civita symbol is defined independently of the inertial frame. Note that
the components εµνρσ are obtained by applying the antisymmetric tensor ε on
basis vectors e0, . . . , e3:

ε(eµ, eν , eρ, eσ) = εµνρσ .

The ε tensor can be written in the form

ε = θ0 ∧ θ1 ∧ θ2 ∧ θ3 ,

where θµ are basic one-forms.

1.5 The results are given below

εµνρσεµβγδ = −δν
βδρ

γδσ
δ + δν

γδρ
βδσ

δ + δν
βδρ

δ δσ
γ − δν

γδρ
δ δσ

β − δν
δ δρ

βδσ
γ + δν

δ δρ
γδσ

β ,

εµνρσεµνγδ = −2(δρ
γδσ

δ − δρ
δ δσ

γ ) ,

εµνρσεµνρδ = −6δσ
δ ,

εµνρσεµνρσ = −24 .

1.6

(a) The matrix X is

X =
(

x0 − x3 −x1 + ix2

−x1 − ix2 x0 + x3

)
,

so detX = (x0)2 − (x)2 = x2. It is not difficult to see that from the
transformation law, X ′ = SXS

†
, follows that

detX ′ = detSdetXdetS
†

= detX ,

which means that x′2 = x2.
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(b) Multiplying the expression X = xµσµ by σ̄ν and taking trace we obtain
the requested relation. The matrices σµ satisfy the following orthogonality
relation tr[σ̄µσν ] = 2gµν .

1.7 The result follows from

x′µ =
1
2
tr(σ̄µX ′) =

1
2
xνtr(σ̄µSσνS

†
) = Λµ

νxν .

1.8 An arbitrary Lorentz transformation, which is connected with the unit
element, can be written in the form U(ω) = exp

(
− i

2Mµνωµν
)
, where Mµν

are generators. There are three (independent) rotations and three (also in-
dependent) boosts. Rotation around z−axis for angle θ3 is represented by
matrix

Λ(θ3) =




1 0 0 0
0 cos θ3 sin θ3 0
0 − sin θ3 cos θ3 0
0 0 0 1


 ≈ I +




0 0 0 0
0 0 θ3 0
0 −θ3 0 0
0 0 0 1


 .

From the previous expression we conclude that ω1
2 = −ω12 = θ3. The gener-

ator of this transformation is

M12 = i
dΛ(θ3)
dω12

∣∣∣∣
ω12=0

= − i
dΛ(θ3)

dθ3

∣∣∣∣
θ3=0

= i




0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


 . (1.3)

In the same way we obtain the other two generators:

M13 = i




0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0


 , M23 = i




0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0


 . (1.4)

In this case the relation between the parameters ωij and the angles of rotations
θi around xi−axis is θi = − 1

2εijkωjk.
The matrix of the boost along x−axis is

Λ(ϕ1) =




chϕ1 −shϕ1 0 0
−shϕ1 shϕ1 0 0

0 0 1 0
0 0 0 1


 ≈ I +




0 −ϕ1 0 0
−ϕ1 0 0 0

0 0 0 0
0 0 0 0


 ,

where ω0
1 = −ϕ1 = −arc th v1. The corresponding generator is

M01 = i
dΛ(ϕ1)
dω01

∣∣∣∣
ϕ1=0

= i
dΛ(ϕ1)

dϕ1

∣∣∣∣
ϕ1=0

= −i




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 . (1.5)



70 Solutions

The other two generators are

M03 = −i




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


 , M02 = −i




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


 . (1.6)

The boost parameters (rapidity) are ωoi = −ϕi = −arc th(vi), where vi is the
velocity of the inertial frame moving along the xi−axis.

1.10 The multiplication rule is

(Λ1, a1)(Λ2, a2) = (Λ1Λ2, Λ1a2 + a1) .

Unit element is (I, 0), while the inverse is (Λ, a)−1 = (Λ−1,−Λ−1a) .

1.11

(a) Since this relation is valid in the defining representation then it is also
valid in any arbitrary representation. By using this relation one gets:

U−1(Λ, 0)(1 + iεµPµ)U(Λ, 0) = 1 + i(Λ−1)µ
νενPµ . (1.7)

From the expression (1.7) we obtain

U−1(Λ, 0)PµU(Λ, 0) = (Λ−1)ν
µPν . (1.8)

The formula (1.8) is transformation law of the momentum Pµ under
Lorentz transformations; the momentum is a four-vector. By substitut-
ing

U(ω, 0) = exp
(
− i

2
Mµνωµν

)
= 1 − i

2
Mµνωµν + o(ω2)

into (1.8) we get

(1 +
i
2
Mρσωρσ)Pµ(1 − i

2
Mρσωρσ) = (δα

µ − ωα
µ)Pα , (1.9)

and then

iωρσ(MρσPµ − PµMρσ) = −ωρσ(gµσPρ − gµρPσ) . (1.10)

We had to antisymmetrize the right hand side of Equation (1.10) in order
to eliminate antisymmetric parameters ωρσ. Finally, we obtain

[Mρσ, Pµ] = i(gµσPρ − gµρPσ) . (1.11)

(b) If we take an infinitesimal transformation Λ′ = I + ω′ then

(Λ−1Λ′Λ)µ
ν = δµ

ν + (Λ−1)µ
ρΛ

σ
νω′ρ

σ , (1.12)
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so that

U−1(Λ, 0)(1 − i
2
ω′ρσMρσ)U(Λ, 0) = 1 − i

2
Mµν(Λ−1)µρΛσνω′

ρσ . (1.13)

From the last expression follows

U−1(Λ, 0)MρσU(Λ, 0) = (Λ−1)µ
ρ(Λ

−1)ν
σMµν . (1.14)

The last equation is the transformation law of the second rank tensor.
For an infinitesimal Lorentz transformation Λµ

ν = δµ
ν +ωµ

ν from Equation
(1.14) follows

i
2
ωµν [Mµν ,Mρσ] =

1
2
ωµν(gσµMρν − gρνMµσ − gσνMρµ + gρµMνσ) ,

or

[Mµν ,Mρσ] = i(gσµMνρ + gρνMµσ − gρµMνσ − gσνMµρ) . (1.15)

(c) It is easy to prove that
[Pµ, Pν ] = 0 . (1.16)

The relations (1.11), (1.15) and (1.16) are the commutation relations of
the Poincaré algebra.

1.12 In the given representation the generator of the rotation around z–axis
is

M12 = i




0 0 0 0 0
0 0 −1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0


 .

The time translation generator has the form

T0 = −i




0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


 .

The other generators have similar structure and they can be computed easily.
The relations (1.11), (1.15) and (1.16) are fulfilled.

1.13 Under the Poincaré transformation

x′ = Λx + a ≈ x + δx ,

a classical scalar field transforms as follows

φ′(x + δx) = φ(x) .
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From the last relation we have

φ′(x) = φ(x − δx) = φ(x) − δxµ∂µφ . (1.17)

Form variation of a scalar field is given by

δ0φ = φ′(x) − φ(x) = −δxµ∂µφ . (1.18)

For the Lorentz transformation δxµ = ωµ
νxν , and therefore

δ0φ = −ωµνxν∂µφ = −1
2
ωµν(xν∂µ − xµ∂ν)φ . (1.19)

On the other hand
δ0φ = − i

2
ωµνMµνφ . (1.20)

By comparing two previous results we get that Lorentz’s generators are

Mµν = i(xµ∂ν − xν∂µ) . (1.21)

For translations δxµ = εµ and

δ0φ = −εµ∂µφ = iεµPµφ . (1.22)

Hence
Pµ = i∂µ . (1.23)

Since
[xµ∂ν , xρ∂σ] = gνρxµ∂σ − gσµxρ∂ν , (1.24)

and
[xµ∂ν , ∂ρ] = −gρµ∂ν (1.25)

we get the commutation relations of the Poincaré algebra:

[Pµ, Pν ] = 0
[Mρσ, Pµ] = i(gµσPρ − gµρPσ)

[Mµν ,Mρσ] = i(gσµMνρ + gρνMµσ − gρµMνσ − gσνMµρ) .

1.14

(a) WµPµ = 1
2εµνρσMνρP σPµ = 0, since product of an antisymmetric with

a symmetric tensor equals zero. Using the same argument, we obtain
[Wµ, Pν ] = 0.

(b) Using the result of Problem 1.11 we obtain

W 2 =
1
4
εµνρσεµαβγMνρP σMαβPγ

=
1
4
εµνρσεµαβγMνρ

(
MαβP σ − iδσ

βPα + iδσ
αPβ

)
Pγ

=
1
4
εµνρσεµαβγMνρMαβP σPγ . (1.26)
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The contraction of two ε symbols in the last line of (1.26) has been calcu-
lated in 1.5 so that:

W 2 = −1
4
(δα

ν δβ
ρ δγ

σ + δβ
ν δγ

ρ δα
σ + δγ

ν δα
ρ δβ

σ − δβ
ν δα

ρ δγ
σ − δα

ν δγ
ρ δβ

σ − δγ
ν δβ

ρ δα
σ )

× MνρMαβP σPγ

= −1
4
(
2MνρMνρP

2 − MνρMνσP σPρ + MνρMσνP σPρ+

+ MνρMρσP σPν − MνρMσρP
σPν)

= −1
2
MνρMνρP

2 + MνρMνσP σPρ . (1.27)

(c) Using the previous result we have

[W 2,Mρσ] = −1
2
[MµνMµνP 2,Mρσ] + [MµαMναPµPν ,Mρσ] . (1.28)

The first commutator in (1.28) we denote by A, while the second one by
B. Using (1.15) we obtain that A = 0; this result is obvious since the P 2

and MµνMµν are Lorentz scalars. The commutator B is

B = MµαMνα (Pµ[Pν ,Mρσ] + [Pµ,Mρσ]Pν) +
+Mµα[Mνα,Mρσ]PµPν + [Mµα,Mρσ]MναPµPν . (1.29)

Using the commutation relations (1.11) and (1.15) we get B = 0. There-
fore, we have

[W 2,Mρσ] = 0 .

1.15 By using the result of Problem 1.14 (b) and Pµ |pµ, s, σ〉 = pµ |pµ, s, σ〉
we get

W 2 |p = 0,m, s, σ〉 = −m2

(
1
2
MµνMµν − M0iM

0i

)
|p = 0,m, s, σ〉

= −1
2
MijM

ijm2 |p = 0,m, s, σ〉

= −m2
(
(M12)2 + (M13)2 + (M23)2

)
|p = 0,m, s, σ〉

= −m2J2 |p = 0,m, s, σ〉
= −m2s(s + 1) |p = 0,m, s, σ〉 ,

because Ji = 1
2εijkMjk are the components of the angular momentum tensor.

1.16

(a) Under Lorentz transformations Wµ transforms according to:

U−1(Λ)WσU(Λ) = Λσ
αWα . (1.30)

From Equation (1.30) we have
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i
2
[Mµν ,Wσ]ωµν = ωµνgσµWν =

1
2
(gσµWν − gσνWµ)ωµν .

From the previous expression we easily obtain the requested result.
(b) Using the result of the previous part we have

[Wµ,Wν ] =
1
2
εµαβγ [MαβP γ ,Wν ]

=
1
2
εµαβγ

(
Mαβ [P γ ,Wν ] + [Mαβ ,Wν ]P γ

)

= iεµανγWαP γ .

1.17

(a) Applying the result of Problem 1.16 (a) we get

[Wµ, M2] = −2i(WαMαµ + MαµWα) .

(b) [Mµν ,WµW ν ] = 0. Take care that δµ
µ = 4.

(c) Using the formula (1.11) we obtain [M2, Pµ] = 2i(PαMαµ + MαµPα) .
This result and the result in the first part of this Problem are similar,
since Wµ and Pµ are both four-vectors.

(d) [εµνρσMµνMρσ,Mαβ ] = 0.

1.18 In the case of massive particles, m2 > 0 since the Lorentz transfor-
mations, Λµ

ν = δµ
ν + ωµ

ν leave pµ invariant (i.e. Λµ
νpν = pµ) the following

relation is satisfied:



0 ω01 ω02 ω03

ω01 0 −ω12 −ω13

ω02 ω12 0 −ω23

ω03 ω13 ω23 0







m
0
0
0


 =




0
0
0
0


 .

From here follows
ω01 = ω02 = ω03 = 0, ωij �= 0 .

The corresponding generators are M12, M13 and M23 and they are gener-
ators of the spatial rotations. Therefore, for massive particles little group
is SO(3). The little group for the quantum mechanical Lorentz group, i.e.
SL(2,C) group, is SO(3) = SU(2).
For massless particles we have




0 ω01 ω02 ω03

ω01 0 −ω12 −ω13

ω02 ω12 0 −ω23

ω03 ω13 ω23 0







k
0
0
k


 =




0
0
0
0


 ,

which gives ω03 = 0, ω01 = ω13, ω02 = ω23 while the parameter ω12 is
arbitrary. It corresponds to the rotation around z–axis. The generator of this
transformation is M12. From the conditions derived above follows that there
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are two independent generators M01 + M13 and −(M02 + M23). Note that
W1 = (M02 + M23)k , W2 = −(M01 + M13)k as well as W0 = −M12k. Then,
using Problem 1.16 (b) we obtain

[W1,W2] = 0, [W0/k,W1] = −iW2, [W0/k,W2] = iW1 .

These commutation relations define E(2) algebra. Thus, for massless particles
little group is euclidian group E(2) in two dimensions.

1.19 It is easy to prove that Lorentz transformations, dilatations and SCT
form a group. It is the conformal group, C(1, 3). An arbitrary element of this
group is

U(ω, ε, ρ, c) = ei(Pµεµ− 1
2 Mµνωµν+ρD+cµKµ) ,

where D is generator of dilatation, and Kµ are four generators for SCT .
Conformal group has 15 parameters. The commutation relations of the algebra
can be evaluated from multiplication rules of the group. Let (Λ, a, ρ, c) denote
group element. If we start from

(Λ−1, 0, 0, 0)(I, 0, 0, c)(Λ, 0, 0, 0) = (I, 0, 0, Λ−1c)

for infinitesimal SCT we obtain

U−1(Λ)KρU(Λ) = (Λ−1)µ
ρKµ .

For infinitesimal Lorentz transformations we get:

[Mµν ,Kρ] = i(gνρKµ − gµρKν). (1.31)

From U−1(Λ, 0, 0, 0)U(I, 0, ρ, 0)U(Λ, 0, 0, 0) = U(I, 0, ρ, 0) , follows

[Mµν ,D] = 0 . (1.32)

Starting from

(I, 0, ρ, 0)−1(I, 0, 0, c)(I, 0, ρ, 0)xµ = (I, 0, ρ, 0)−1(I, 0, 0, c)e−ρxµ

= (I, 0, ρ, 0)−1 e−ρxµ + cµe−2ρx2

1 + 2(c · x)e−ρ + c2e−2ρx2

=
xµ + cµe−ρx2

1 + 2(c · x)e−ρ + c2e−2ρx2

= (I, 0, 0, e−ρc)xµ ,

we obtain
e−iρD(1 + iKµcµ)eiρD = 1 + iKµe−ρcµ ,

for infinitesimal SCT. From the last expression follows

e−iρDKµeiρD = e−ρKµ .
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This is the transformation law of SCT generators under dilatation. For infin-
itesimal dilatations we get:

[D,Kµ] = −iKµ . (1.33)

Similar procedure gives us the following commutators:

[Pµ,D] = −iPµ , (1.34)

[D,D] = 0, (1.35)

[Kµ,Kν ] = 0, (1.36)

[Pµ,Kν ] = 2i(gµνD + Mµν). (1.37)

Equations (1.31)–(1.37) together with (1.11), (1.15) and (1.16) are commuta-
tion relations of the conformal algebra.
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The Klein–Gordon equation

2.1 A particular solution of the Klein–Gordon equation

(�� + m2)φ(x) = 0 , (2.1)

is plane wave,
e−ik·x = e−iEt+ik·x , (2.2)

where E and k are energy and momentum respectively. We see that from

i
∂

∂t
e−ik·x = Ee−ik·x ,

and
−i∇e−ik·x = ke−ik·x .

By inserting the solution (2.2) into (2.1) we obtain k2 = m2 i.e. E =
±
√

k2 + m2 = ±ωk. Therefore, the plane wave (2.2) is a solution of the Klein–
Gordon equation if the previous relation is satisfied.

For momentum k there are two independent solutions e−iωkt+ik·x and
e+iωkt+ik·x. The general solution of (2.1) is

φ(x) =
1

(2π)3/2

∫
d3k√
2ωk

(
a(k)e−i(ωkt−k·x) + b†(−k)ei(ωkt+k·x)

)
, (2.3)

where a(k) and b†(k) are complex coefficients. In the second term in (2.3) we
make the following change k → −k. After that the formula (2.3) becomes

φ(x) =
1

(2π)3/2

∫
d3k√
2ωk

(
a(k)e−ik·x + b†(k)eik·x) , (2.4)

where kµ = (ωk,k). If φ(x) is a real field then a(k) = b(k).

2.2 Using (2.4) we get
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Q = iq
∫

d3x

(
φ∗ ∂φ

∂t
− φ

∂φ∗

∂t

)

= i
q

2(2π)3

∫
d3xd3kd3k′
√

ωkωk′

[(
a†(k)eik·x + b(k)e−ik·x)

×
(
−iωk′a(k′)e−ik′·x + iωk′b†(k′)eik′·x

)
−
(
a(k)e−ik·x + b†(k)eik·x)

×
(
iωk′a†(k′)eik′·x − iωk′b(k′)e−ik′·x

)]
. (2.5)

By integrating over x in (2.5), we obtain

Q = −q

2

∫
d3kd3k′

√
ωk′

ωk

(
−a†(k)a(k′)ei(ωk−ωk′ )tδ(3)(k − k′)

+ a†(k)b†(k′)ei(ωk+ωk′ )tδ(3)(k + k′) − b(k)a(k′)e−i(ωk+ωk′ )tδ(3)(k + k′)

+ b†(k)b(k′)e−i(ωk−ωk′ )tδ(3)(k − k′) + c.c.
)

. (2.6)

where c.c. denotes complex conjugation. If in expression (2.6) we integrate
over the momentum k′ we obtain

Q =
q

2

∫
d3k
[
a†(k)a(k) + a(k)a†(k) − b†(k)b(k) − b(k)b†(k)

]
. (2.7)

In the result (2.7) we do not take care about ordering of a(k), a†(k) and
b(k), b†(k) since they are complex numbers. This will be different in the Chap-
ter 7 where a(k) and b†(k) are going to be operators.

2.3 If we first integrate over x we get

H = −1
4

∫
d3kd3k′
√

ωkωk′

(
a(k)a(k′)(ωkωk′ + k · k′ − m2)e−i(ωk+ωk′ )tδ(3)(k + k′)

+ a†(k)a†(k′)(ωkωk′ + k · k′ − m2)ei(ωk+ωk′ )tδ(3)(k + k′)
− a(k)a†(k′)(ωkωk′ + k · k′ + m2)e−i(ωk−ωk′ )tδ(3)(k − k′)

− a†(k)a(k′)(ωkωk′ + k · k′ + m2)ei(ωk−ωk′ )tδ(3)(k − k′)
)

. (2.8)

Performing integration over momentum k′, and using the relation k2 + m2 =
ω2

k, we obtain

H =
1
2

∫
d3kωk

(
a†(k)a(k) + a(k)a†(k)

)
. (2.9)

2.4 Solution of this problem is very similar to the solutions of the previous
two. The result is

P =
∫

d3kka†(k)a(k) .

2.5 The four-divergence of the current jµ is
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∂µjµ = − i
2
(∂µφ∂µφ∗ + φ��φ∗ − ∂µφ∂µφ∗ − φ∗��φ) .

Using the equations of motion we obtain the requested result ∂µjµ = 0.

2.6 It is easy to see that

∂µjµ = − i
2

(∂µφ∂µφ∗ + φ��φ∗ − ∂µφ∂µφ∗ − φ∗��φ) −

− q(φAµ∂µφ∗ + φφ∗∂µAµ + φ∗Aµ∂µφ) . (2.10)

The equations of motion are
[
�� − iq(∂µAµ + 2Aµ∂µ − iqAµAµ) + m2

]
φ∗(x) = 0 , (2.11)

[
�� + iq(∂µAµ + 2Aµ∂µ + iqAµAµ) + m2

]
φ(x) = 0 . (2.12)

If we multiply Equation (2.11) by φ and Equation (2.12) by φ∗ and then
subtract obtained equations we get

φ��φ∗ − φ∗��φ − 2iq(φφ∗∂µAµ + Aµφ∗∂µφ + Aµφ∂µφ∗) = 0 .

Combining the previous expression and (2.10), one easily obtains

∂µjµ = 0 .

2.7 The equation of motion for a scalar particle in a electromagnetic field is
[
(∂µ + iqAµ)(∂µ + iqAµ) + m2

]
φ(x) = 0 . (2.13)

In the region r < a Equation (2.13) becomes
[(

∂

∂t
− iV

)(
∂

∂t
− iV

)
− ∆ + m2

]
φ(x) = 0 . (2.14)

For stationary states φ(x) = e−iEtF (r) one gets
[
−(E + V )2 − ∆ + m2

]
F (r) = 0 . (2.15)

If we assume that a solution of the previous equation is given by

F =
f(r)

r
Q(θ, ϕ) ,

then from (2.15) we get the following two equations:

d2f

dr2
+
[
(E + V )2 − m2

]
f =

l(l + 1)
r2

f , (2.16)

1
sin θ

∂

∂θ

(
sin θ

∂Q

∂θ

)
+

1
sin2 θ

∂2Q

∂ϕ2
= −l(l + 1)Q . (2.17)
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The particular solutions of (2.17) are spherical harmonics, Ylm. In the case
l = 0, the corresponding spherical harmonic Y00 is a constant. The solution
of (2.16) is

f = A sin(qr) + B cos(qr) , (2.18)

where
q2 = [(E + V )2 − m2] > 0 . (2.19)

Constant B has to be zero since function f(r)/r should not be singular in the
r → 0 limit. In the region r > a (A0 = 0) the solution is given by

f = Ce−kr + Dekr , (2.20)

where k2 = m2 − E2. But, the constant D has to be zero since the wave
function has to be finite in the large r limit. Therefore, the wave function is

φ< = A
sin qr

r
, r < a (2.21)

φ> = C
e−kr

r
, r > a . (2.22)

At r = a we should apply the continuity conditions: φ<(a) = φ>(a) and
φ′

<(a) = φ′
>(a) for the wave function and its first derivative. These boundary

conditions give:
A sin(qa) − Ce−ka = 0 , (2.23)

Aq cos(qa) + Cke−ka = 0 . (2.24)

The homogenous system (2.23–2.24) has non-trivial solutions if and only if its
determinant is equal to zero. Finally, we obtain the condition

tan(qa)
q

= −1
k

. (2.25)

The dispersion relation (2.25) will be analyzed graphically in the case V < 2m.
Solid line in Fig. 2.1 is function tan(qa)/q while dashed line is

f(q) = −1
k

= − 1√
2V
√

q2 + m2 − V 2 − q2

.

There is only one bound state (in case V < 2m) if the condition

π

2a
<
√

V (V + 2m) ≤ 3π

2a
.

is satisfied.

2.8 The wave equation is
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Fig. 2.1. Graphical solution of the dispersion relation (2.25) for V < 2m

[
∂2

∂t2
−
(

∂

∂x
+ iqBy

)2

− ∂2

∂y2
− ∂2

∂z2
+ m2

]
φ(x) = 0 . (2.26)

It is easy to see that the operators p̂x = −i ∂
∂x and p̂z = −i ∂

∂z commute with
the Hamiltonian, so we can assume that the solution of (2.26) has the following
form

φ = e−i(Et−kxx−kzz)ϕ(y) . (2.27)

From (2.26) and (2.27) we get
(

d2

dy2
− (kx + qBy)2 + E2 − k2

z − m2

)
ϕ(y) = 0 . (2.28)

Introducing the new variable ξ = kx + qBy, Equation (2.28) takes the same
form as the Schrödinger equation for the oscillator

(
d2

dξ2
− 1

(qB)2
ξ2 +

E2 − k2
z − m2

(qB)2

)
ϕ̃(ξ) = 0 .

Then the energy levels are

En =
√

m2 + k2
z + (2n + 1)qB , n = 0, 1, 2, . . . .

Eigenfunctions are

φn(x) = (qπB)−1/4 1√
2nn!

e−iEnt+ikxx+ikzze−(kx+qBy)2/2qBHn(
kx + qBy√

qB
) ,

(2.29)
where Hn are the Hermite polynomials.

2.9 In the region z > 0 the equation of motion is
[
�� − q2U2

0 + 2iqU0
∂

∂t
+ m2

]
φII(x) = 0 . (2.30)
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Substituting φII = Ce−iEt+ikz in (2.30), we get

k = ±K = ±
√

(E − qU0)2 − m2 , (2.31)

or
E = ±

√
k2 + m2 + qU0 . (2.32)

For z < 0 the particle is free and the solution is

φI = Ae−iEt+ipz + Be−iEt−ipz , (2.33)

where p =
√

E2 − m2 . The first term in (2.33) is the incident wave, the second
one is the reflected wave. At z = 0 we have to apply the continuity conditions:

φI(0) = φII(0), φ′
I(0) = φ′

II(0) .

They give

A =
1
2

(
1 +

k

p

)
C, B =

1
2

(
1 − k

p

)
C . (2.34)

We will separately discuss three different possibilities:
Case 1: E > m + qU0.
For this value of energy the sign in the expressions (2.31) and (2.32) is plus.
The formula for the current has been given in Problem 2.5. The reflection
coefficient is

R =
−(jr)z

(jin)z
=

|B|2
|A|2 =

∣∣∣∣
p − K

p + K

∣∣∣∣
2

,

while the transmission coefficient is T = 1 − R.
Case 2: E < −m + qU0.
In this case the momentum is negative, k = −K. The reflection coefficient is
different comparing to the previous case:

R =
∣∣∣∣
p + K

p − K

∣∣∣∣
2

, T = 1 − R .

As we immediately see the reflection coefficient is larger than 1: the potential
is strong enough to create particle–antiparticle pairs. The antiparticles are
moving to the right producing a negative charge current and therefore we
obtain negative transmission coefficient. This is Klein paradox
Case 3: |E − qU0| < m.
We leave to the reader to show that in this case R = 1, T = 0 .

2.10 For z < 0 and z > 0 a wave function satisfies the free Klein–Gordon
equation, while in the region 0 < z < a the equation is

[
�� − q2U2

0 + 2iqU0
∂

∂t
+ m2

]
φII(x) = 0 .

The solution is given by:
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φI = Ae−iEt+ipz + Be−iEt−ipz ,

φII = Ce−iEt+ikz + De−iEt−ikz

φIII = F e−iEt+ipz , (2.35)

where k =
√

(E − qU0)2 − m2 and p =
√

E2 − m2. From the continuity con-
ditions follows:

A + B = C + D ,

A − B =
k

p
(C − D) ,

Ceika + De−ika = F eipa ,

Ceika − De−ika =
p

k
F eipa . (2.36)

Thus, one gets:

T =
∣∣∣F
A

∣∣∣
2

=
16

|2 + p
k + k

p + (2 − p
k − k

p )e2ika|2
.

If (E − qU0)2 − m2 < 0 the momentum k becomes imaginary, i.e.

k = iκ = i
√

m2 − (E − qU0)2 .

2.11 The Klein–Gordon equation for a particle in the Coulomb potential is
[(

∂

∂t
− ie

Ze

r

)2

− ∆ + m2

]
φ(x) = 0 . (2.37)

By substituting φ = e−iEtR(r)Y (θ, ϕ) in (2.37) and using (2.17) we obtain:

− 1
2m

1
r

d2

dr2
(rR) +

l(l + 1) − Z2e4

2mr2
R − Ze2E

mr
R =

E2 − m2

2m
R .

This equation has the same form as the Schrödinger equation for hydrogen
atom. By comparing these equations we get

En,l = m
1√

1 + Z2e4(n − l − 1
2 ) +

√
(l + 1

2 )2 − Z2e4

.

In the nonrelativistic limit the result is

En − m = −mZ2e4

2n2
− Z3e6 m

n3

(
1

2l + 1
− 3

8n

)
.

2.12 The Klein–Gordon equation in the Schrödinger form is

i
∂

∂t

(
θ
χ

)
= H

(
θ
χ

)
, (2.38)
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where the Hamiltonian is given by

H =
[
− ∆

2m

(
1 1
−1 −1

)
+ m

(
1 0
0 −1

)]
.

2.13 The eigenequation, Hφ = Eφ in the momentum representation takes
the following form

(
p2

2m + m p2

2m

− p2

2m − p2

2m − m

)(
θ0

χ0

)
= E

(
θ0

χ0

)
. (2.39)

The eigenvalues of the Hamiltonian are evaluated easily and they are E =
±ωp = ±

√
p2 + m2.

In order to find nonrelativistic limit we suppose that the solution has the
following form (

θ
χ

)
=
(

θ0

χ0

)
e−i(m+T )t , (2.40)

where T is the kinetic energy of the particle. From (2.38) we get
(− �

2m + m − �
2m

�
2m

�
2m − m

)(
θ0

χ0

)
= (m + T )

(
θ0

χ0

)
, (2.41)

i.e. (
− �

2m
+ m

)
θ0 −

�
2m

χ0 = (m + T )θ0 ,

�
2m

θ0 +
(

�
2m

− m

)
χ0 = (T + m)χ0 . (2.42)

From the second equation in (2.42) we obtain

χ0 ≈ �
4m2

θ0 , (2.43)

in nonrelativistic limit. Using this the first equation in (2.42) becomes

Tθ0 =
(
− �

2m
− �2

8m3

)
θ0 . (2.44)

Also, from (2.43) we see that χ0 � θ0 and χ is so called small component.
From the expression (2.44) follows that first relativistic correction of nonrel-
ativistic Hamiltonian is −∇4/8m3.

2.14 Velocity operator is

v =
∂H

∂p
=

p
m

(
1 1
−1 −1

)
.

The eigenvalue of the velocity operator is zero.

2.15 Show that
〈
ψ†|Hψ

〉
=
〈
Hψ†|ψ

〉
. The average value is 〈v〉 = p

m .



3

The γ–matrices

3.1

(a) In the Dirac representation of γ–matrices we have

(γ0)† =
(

I 0
0 −I

)†
=
(

I 0
0 −I

)
= γ0γ0γ0 = γ0 ,

(γi)† =
(

0 σi

−σi 0

)†
= −
(

0 σi

−σi 0

)
= −γ0γ0γi = γ0γiγ0 ,

where we used the facts that (γ0)2 = 1, γ0 and γi anticommute, and the
Pauli matrices are hermitian. This relation is true in any representation of
γ–matrices which is obtained by a unitary transformation from the Dirac
representation.

(b) Using the previous result we find

σ†
µν = − i

2
(γµγν − γνγµ)†

= − i
2
(γ†

νγ†
µ − γ†

µγ†
ν)

= − i
2
γ0(γνγµ − γµγν)γ0

= γ0σµνγ0 .

3.2

(a) Taking the adjoint of γ5 we obtain

γ†
5 = iγ†

3γ
†
2γ

†
1γ

†
0

= iγ0γ3γ0γ0γ2γ0γ0γ1γ0γ0γ0γ0

= iγ0γ3γ2γ1

= −iγ0γ1γ2γ3 = γ5 .
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The property γ−1
5 = γ5 can be proved by using γ−1

0 = γ0 and γ−1
i =

−γi = γi. Both of these relations follow from anticommutation relations
{γµ, γν} = 2δν

µ.
(b) Using the definition of the ε symbol we find

− i
4!

εµνρσγµγνγργσ =
i
4!

(γ0γ1γ2γ3 − γ0γ1γ3γ2 + . . . + γ3γ2γ1γ0)

= iγ0γ1γ2γ3 = γ5.

(c) This is a consequence of (a) result.
(d) In a similar manner, we have:

(γ5γµ)† = γ†
µγ†

5 = γ0γµγ0γ5 = γ0γ5γµγ0 .

3.3

(a) For µ = 0 we have

{γ5, γ
0} = γ5γ

0 + γ0γ5

= −iγ0γ1γ2γ3γ0 − iγ0γ0γ1γ2γ3

= iγ1γ2γ3 − iγ1γ2γ3 = 0 , (3.1)

and similarly for other three cases.
(b) By a straightforward calculation one gets:

[σµν , γ5] =
i
2
[γµγν − γνγµ, γ5]

=
i
2

(γµ{γν , γ5} − {γµ, γ5}γν − γν{γµ, γ5} + {γµ, γ5}γν)

= 0

since {γµ, γ5} = 0.

3.4 /a/a = aµaνγµγν = 1
2aµaν(γµγν + γνγµ) = gµνaµaν = a2

3.5

(a) From the relation {γµ, γµ} = 2γµγµ = 2δµ
µ = 8 it follows that γµγµ = 4.

(b) γµγνγµ = (2gµν − γνγµ)γµ = 2γν − 4γν = −2γν .
(c) γµγαγβγµ = (2gµα − γαγµ)γβγµ = 2γβγα + 2γαγβ = 4δβ

α, where we used
the second part of this problem and (3.A).

(d) By commuting γµ and γα and making use of the previous result, one gets:

γµγαγβγγγµ = (2δα
µ − γαγµ)γβγγγµ

= 2γβγγγα − 4γαgβγ

= −2(2gβγ − γβγγ)γα

= −2γγγβγα .
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(e) By using the definition σµν–matrices, one obtains:

σµνσµν = −1
4
(γµγνγµγν − γµγνγνγµ − γνγµγµγν + γνγµγνγµ) .

By using parts (a) and (b) of this problem, one gets σµνσµν = 12.
(f) Use Problem 3.3 and parts (a) and (b) of this problem.
(g) By direct calculation, one finds

σαβγµσαβ = −1
4
(γαγβγµγαγβ − γαγβγµγβγα

−γβγαγµγαγβ + γβγαγµγβγα)

= −1
4
(4δβ

µγβ − 4γµ − 4γµ + 4gµβγβ) = 0 .

(h)

σαβσµνσαβ = − i
8
(γαγβγµγνγαγβ − γαγβγµγνγβγα

−γαγβγνγµγαγβ + γαγβγνγµγβγα − γβγαγµγνγαγβ

+γβγαγµγνγβγα + γβγαγνγµγαγβ − γβγαγνγµγβγα)

= − i
8
(−8γνγµ − 16gµν + 8γµγν

+16gµν − 16gµν − 8γνγµ + 16gµν + 8γµγν)
= −2i(γµγν − γνγµ) = −4σµν .

(i) Use part (g) of this problem.
(j) σµνγ5σ

µν = i
2 (γµγν − γνγµ)γ5σ

µν = γ5σµνσµν = 12γ5.

3.6

(a) By using the trace property tr(A1A2 . . . An) = tr(A2A3 . . . AnA1), Prob-
lem 3.3(a), and (γ5)2 = 1, it follows that

tr(γµ) = tr(γµγ5γ5)
= −tr(γ5γµγ5)
= −tr((γ5)2γµ)
= −tr(γµ) .

From the previous expression we get tr(γµ) = 0.
(b) Taking trace of the relation {γµ, γν} = 2gµν , we easy obtain the requested

result.
(c) By applying the basic anticommutation relation (3.A), one gets:

tr(γµγνγργσ) = tr [(2gµν − γνγµ)γργσ]
= 2gµνtr(γργσ) − tr[γν(2gµρ − γργµ)γσ]
= 2gµνtr(γργσ) − 2gµρtr(γνγσ) + 2gµσtr(γνγρ)
− tr(γνγργσγµ) .
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From the previous part of this problem and relation tr(γµγνγργσ) =
tr(γνγργσγµ), one easily obtains the requested result.

(d) trγ5 = tr(γ5γ0γ0) = −tr(γ0γ5γ0), where we used Problem 3.3 (a). Further,
from the trace property and (γ0)2 = 1 it follows that:

trγ5 = −tr(γ0γ0γ5) = −trγ5 ,

which implies trγ5 = 0.
(e) Since γαγα = 4, we have

tr(γ5γµγν) =
1
4
tr(γ5γ

αγαγµγν)

=
1
4
tr(γαγµγνγ5γ

α)

= −1
4
tr(γ5γαγµγνγα)

= −gµνtr(γ5) = 0 .

In the previous calculation we used the trace property and Problem 3.5
(c).

(f) The quantity tr(γ5γµγνγργσ) is an antisymmetric tensor with respect to
the indexes (µ, ν, ρ, σ). Thus, it must be proportional to the Levi-Civita
tensor. The constant of proportionality can be determined by substituting
µ = 0, ν = 1, ρ = 2 and σ = 3.

(g) From (γ5)2 = 1, {γ5, γµ} = 0 and the trace property follows:

tr(/a1 . . . /a2n+1) = tr(γ5γ5/a1 · · · /a2n+1)
= (−1)2n+1tr(γ5/a1 · · · /a2n+1γ5)
= −tr(γ5γ5/a1 · · · /a2n+1)
= −tr(/a1.../a2n+1) .

Hence, tr(/a1 . . . /a2n+1) = 0 .
(h) tr(/a1 · · · /a2n) = tr(C/a1C

−1C · · ·C−1C/a2nC−1) , where the matrix C sat-
isfies the relation CγµC−1 = −γT

µ . Thus,

tr(/a1 · · · /a2n) = (−1)2ntr(/aT
1 · · · /aT

2n) = tr(/a2n · · · /a1) .

(i) tr(γ5γµ) = −itr(γ0γ1γ2γ3γµ) = 0, since it is the trace of odd number of
γ–matrices.

3.7

tr(/a1/a2 · · · /a6) =
4 {(a1 · a2) [(a3 · a4)(a5 · a6) − (a3 · a5)(a4 · a6) + (a3 · a6)(a4 · a5)]
−(a1 · a3) [(a2 · a4)(a5 · a6) − (a2 · a5)(a4 · a6) + (a2 · a6)(a4 · a5)]
+(a1 · a4) [(a2 · a3)(a5 · a6) − (a2 · a5)(a3 · a6) + (a2 · a6)(a3 · a5)]
−(a1 · a5) [(a2 · a3)(a4 · a6) − (a2 · a4)(a3 · a6) + (a2 · a6)(a3 · a4)]
+(a1 · a6) [(a2 · a3)(a4 · a5) − (a2 · a4)(a3 · a5) + (a2 · a5)(a3 · a4)]} .
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3.8 4
[
pµqν − (p · q)gµν + pνqµ + iεαµβνpαqβ − m2gµν

]
.

3.9 −2/p − 2γ5/p − 4m − 4mγ5 .

3.10 Expanding the exponential function in series, we find

eγ5/a = 1 + (γ5/a) +
1
2
(γ5/a)2 +

1
3!

(γ5/a)3 + · · · . (3.2)

By substituting (γ5/a)2 = −a2, (γ5/a)3 = −a2(γ5/a), . . . into expression (3.2),
we get

eγ5/a = (1 − a2

2!
+

a4

4!
+ · · ·) + (γ5/a)(1 − a2

3!
+

a4

5!
− · · ·)

= cos(
√

a2) +
1√
a2

sin(
√

a2)γ5/a ,

where a2 = aµaµ.

3.11 The fact that the product of any two Γ–matrices is again a Γ matrix
(modulo ±1,±i) can be proved directly. For example, γ5σ01 = −iσ23.
Now, we shall prove that Γ–matrices are linearly independent. Multiplying
the relation

∑
a caΓ a = 0 by Γb = (Γ b)−1, we obtain

cbΓ
bΓb +

∑
a�=b

caΓ aΓb = 0 ,

where the b–term is separated. Using the ordering lemma, the last expression
becomes

cbI +
∑

d,Γ d �=I

cdηΓ d = 0 , (3.3)

where η ∈ {±1,±i}. After taking trace of (3.3) and using the fact that

tr(Γ a) =
{

0, Γ a �= I
4, Γ a = I

,

one obtains cb = 0 (∀b). This means that Γ–matrices are linearly independent
one.

3.12 Multiplying the equation A =
∑

a caΓ a by Γb from the right and sepa-
rating the b–term in the sum, we have

AΓb = cbΓ
bΓb +

∑
a�=b

caΓ aΓb = cbI +
∑

d,Γ d �=I

cdηΓ d.

Taking the trace of previous relation we obtain the requesting relation.

3.13 The coefficients can be calculated by using the formula obtained in the
previous problem.
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(a) From the traces (which were actually calculated in Problem 3.6):

tr(γµγνγρ) = 0 ,

tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) ,

tr(γµγνγργσγ5) = −4iεµνρσ ,

tr(γµγνγργ5) = tr(γµγνγρσαβ) = 0 ,

follows γµγνγρ = (gµνgρσ − gµρgσν + gµσgρν)γσ + iεσµνργ5γ
σ .

(b) γ5γµγν = gµνγ5 + 1
2εαβ

µνσαβ ,
(c) σµνγργ5 = εαµνργ

α − igνργ5γµ + igµργ5γν .

3.14 From Problem 3.13 (a), it follows that {γµ, σνρ} = −2εαµνργ
5γα .

3.15 By applying the result of Problem 3.13 (a) the trace can be transformed
as follows

tr(γµγνγργσγαγβγ5) = (gµνgρδ − gµρgνδ + gµδgρν)tr(γδγσγαγβγ5)
+ iεδµνρtr(γδγσγαγβ) .

Using 3.6 (c), (f), we get

tr(γµγνγργσγαγβγ5) = 4i(−gµνερσαβ + gµρενσαβ

− gρνεµσαβ + gαβεσµνρ − gσβεαµνρ + gσαεβµνρ) .

3.16 Use the solution of Problem 3.13 (b).

3.17 Applying the formulae

[A,BC] = [A,B]C + B[A,C] ,

and
[AB,C] = A{B,C} − {A,C}B ,

as well as the anticommutation relations (3.A), we obtain

[γµγν , γργσ] = γµ{γν , γρ}γσ − {γµ, γρ}γνγσ

+ γργµ{γν , γσ} − γρ{γµ, γσ}γν

= 2gνργµγσ + 2gνσγργµ − 2gµσγργν − 2gµργνγσ .

From the above result we obtain:

[σµν , σρσ] = 2i(gνρσµσ + gµσσνρ − gµρσνσ − gνσσµρ) .

The matrices 1
2σµν are generators of the Lorentz group in the spinor repre-

sentation.

3.18 Let M be a matrix which commutes with all γ–matrices. Using the
Problem 3.11, we can write (Γ b �= I)
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M = cbΓ
b +
∑
a�=b

caΓ a . (3.4)

On the other hand, we know that there is always a matrix Γ d which anticom-
mute with Γ b �= I. Multiplying the expression (3.4) by matrix Γd from the
left, and by Γ d from the right, we get:

ΓdMΓ d = −cbΓ
b +
∑
a�=b

ηcaΓ a . (3.5)

The matrix M commutes with γµ, and therefore with Γ d, so we get

M = −cbΓ
b +
∑
a�=b

ηcaΓ a . (3.6)

If we now multiply equations (3.4) and (3.6) by Γb and take trace of the re-
sulting expressions, we get cb = 0. So, each of the coefficients in the expansion
(3.4) is equal to zero except the unit matrix coefficient.

3.19 By applying the Baker–Hausdorff formula

eBAe−B = A + [B,A] +
1
2!

[B, [B,A]] + · · ·

we get

UαU† = α + 2βn − 2(n · α)n − 8
3!

βn +
16
4!

(α · n)n + · · ·

= α +
∞∑

k=1

(−1)k22k

(2k)!
(α · n)n +

∞∑
k=0

(−1)k22k+1

(2k + 1)!
βn , (3.7)

since
[βα · n, αi] = nj(β{αj , αi} − {β, αi}αj) = 2βni ,

[βα · n, [βα · n, αi]] = −4(α · n)ni ,

[βα · n, [βα · n, [βα · n, αi]]] = −8βni ,

[βα · n, [βα · n, [βα · n, [βα · n, αi]]]] = 16(α · n)ni , etc.

On the other hand, we have the following identities (βα·n)2 = −1, (βα·n)3 =
−(βαn), (βα · n)4 = 1, . . . so that

α + (U2 − I)(α · n)n = α + 2βn − 2(α · n)n − 8
3!

βn + · · ·

= α +
∞∑

k=1

(−1)k22k

(2k)!
(α · n)n +

∞∑
k=0

(−1)k22k+1

(2k + 1)!
βn . (3.8)

It is clear that the results (3.7) and (3.8) are equal.
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3.20 It is straightforward to show that the γ–matrices satisfy the relation
{γµ, γν} = 2gµν . The connection with Dirac representation γDirac

µ is given by

γµS = SγDirac
µ . (3.9)

This statement is known as the fundamental (Pauli) theorem. If we substitute

S =
(

a b
c d

)
, where a, b, c, d are 2 × 2 matrices, into (3.9) we find

(
c d
a b

)
=
(

a −b
c −d

)
,

(
−σic −σid
σia σib

)
=
(

bσi −aσi

dσi −cσi

)
. (3.10)

The solution of (3.10) is a = −b = c = d = I. A particular solution for S is
given by

S =
1√
2

(
I −I
I I

)
.

The matrices σµν are

σoi = −i
(
−σi 0
0 σi

)
, σij = εijk

(
σk 0
0 σk

)
, (3.11)

while

γ5 = iγ0γ1γ2γ3 =
(
−I 0
0 I

)
. (3.12)

3.21 Matrices

γ0 = σ1 =
(

0 1
1 0

)

and

γ1 = −iσ2 =
(

0 −1
1 0

)

have the following properties:

(γ0)2 = 1, (γ1)2 = −1, γ0γ1 = −γ1γ0 ,

hence, they satisfy the Clifford algebra (3.A). The matrix γ5 is defined by

γ5 = γ0γ1 =
(

1 0
0 −1

)
.

tr(γ5γµγν) is an antisymmetric tensor and it should be proportional to εµν :

tr(γ5γµγν) = Cεµν .

By fixing µ = 0, ν = 1 we obtain1 C = 2. One can easily show that

γ5γµ = εµνγν .

1 Our sign convention is ε01 = +1 .



4

The Dirac equation

4.1 In terms of α and β matrices, the Dirac Hamiltonian has the form
HD = α · p + βm, so that:

(a) [HD,p ] = 0,
(b) [HD, Li] = εijk[α · p + βm, xjpk] = εijkαl[pl, xj ]pk = −iεijkαjpk = i(p ×

α)i,
(c) [HD,L2] = −iεijkαj(Lipk + pkLi) �= 0,
(d) [HD, Si] = − i

4 [HD, εijkαjαk] = iεijkpkαj = −i(p × α)i,
(e) By applying (b) and (d) we get that this commutator vanishes.
(f) [HD,J2] = 0,
(g) From (d) we have [HD,Σ · p̂] = − i

2|p|ε
ijkpjαkpi = 0,

(h) If vectors n and p are collinear, then the commutator vanishes. In the
opposite case it is not zero.

4.2 The plane wave

ψ =
(

ϕ
χ

)
e−ip·x , (4.1)

is a particular solution of the Dirac equation,

(iγµ∂µ − m)ψ(x) = 0 . (4.2)

By substituting (4.1) in (4.2) (in the Dirac representation of γ–matrices) we
obtain (

E − m −σ · p
σ · p −E − m

)(
ϕ
χ

)
= 0 , (4.3)

where E and p are the energy and momentum of the particle, respectively.
Nontrivial solutions of the homogeneous system (4.3) exist if and only if its
determinant vanishes. This gives the following relation between energy and
momentum: E = ±

√
p2 + m2 = ±Ep, which tells us that there are solutions

of positive and negative energy as we expected.
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For the positive energy solution, E = Ep, the system (4.3) has the following
form:

(Ep − m)ϕ − (σ · p)χ = 0 ,

(σ · p)ϕ − (Ep + m)χ = 0 . (4.4)

These relations imply:
χ =

σ · p
Ep + m

ϕ , (4.5)

or

u(Ep,p) =
(

ϕ
χ

)
=
(

ϕ
σ·p

Ep+mϕ

)
, (4.6)

where ϕ is arbitrary. For the negative energy solution, E = −Ep, the system
(4.3) is solved by

u(−Ep,p) =
(

ϕ
χ

)
=
(
− σ·p

Ep+mχ
χ

)
. (4.7)

If we introduce the notation v(p) = u(−Ep,−p) and u(p) = u(Ep,p), linearly
independent solutions of Equation (4.2), for fixed p, are given as

u(p)e−ip·x, v(p)eip·x,

where pµ = (Ep,p). Note the change of sign in the negative energy solu-
tion. The energy and momentum of the solution u(p)e−ip·x are Ep and p,
respectively, while for v(p)eip·x, they are −Ep and −p. In order to find the
additional degrees of freedom, let us recall that the helicity operator 1

2Σ · p̂,
where p̂ = p/|p|, commutes with the Dirac Hamiltonian [see Problem 4.1 (g)].
From the eigenequation

σ · p̂ϕ = ±ϕ ,

(and a similar equation for χ) we obtain

ϕ1 =
1√

2(1 + p̂3)

(
p̂3 + 1

p̂1 + ip̂2

)
, ϕ2 =

1√
2(1 + p̂3)

(
−p̂1 + ip̂2

p̂3 + 1

)
, (4.8)

(and similarly for χr, r = 1, 2). If we take p = pez, the basis vectors become
(

1
0

)
,

(
0
1

)
. (4.9)

Then, the basis bispinors are
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u1(p) = Np




(
1
0

)

σ·p
Ep+m

(
1
0

)


 , u2(p) = Np




(
0
1

)

σ·p
Ep+m

(
0
1

)


 ,

v1(p) = Np




σ·p
Ep+m

(
0
1

)

(
0
1

)


 , v2(p) = Np




σ·p
Ep+m

(
1
0

)

(
1
0

)


 ,

(4.10)

where Np =
√

Ep+m
2m is the normalization factor. Do not forget that p = pez

i.e. p · σ = pσ3. In this case, the bispinors (4.10) form the helicity basis. For
arbitrary momentum p we have to use (4.8) instead of (4.9), if we want to
construct the helicity basis. Although, in that case vectors in (4.10) are also
a base, but not the helicity one. Spinors u and v are normalized according to
(4.D).

General solution of (4.2) is given by

ψ =
1

(2π)3/2

2∑
r=1

∫
d3p

√
m

Ep

(
ur(p)cr(p)e−ip·x + vr(p)d

†

r(p)eip·x
)

. (4.11)

The Dirac spinor (bispinor) ψ contains two SL(2,C) spinors, as is easily seen in
the chiral (Weyl) representation. The Dirac spinor is transformed according
to the (1/2, 0) ⊕ (0, 1/2) reducible representation of the quantum Lorentz
group (i.e. SL(2,C) group, which is universally covering group for the Lorentz
group).

4.3 The states us(p), vs(p) are eigenstates of the energy operator, i ∂
∂t with

eigenvalues Ep and −Ep, respectively.

4.4 By using the expressions for the Dirac spinors found in Problem 4.2, we
obtain

∑
r ur(p)ūr(p) =

Ep+m
2m

(
ϕ1ϕ

†
1 + ϕ2ϕ

†
2 −(ϕ1ϕ

†
1 + ϕ2ϕ

†
2)

σ·p
Ep+m

σ·p
Ep+m (ϕ1ϕ

†
1 + ϕ2ϕ

†
2) − σ·p

Ep+m (ϕ1ϕ
†
1 + ϕ2ϕ

†
2)

σ·p
Ep+m

)
,

where ϕr (r = {1, 2}) are given by (4.8). They satisfy the completeness relation
ϕ1ϕ

†
1 + ϕ2ϕ

†
2 = I. Using also (p · σ)2 = p2 = E2

p − m2, we get

2∑
r=1

ur(p)ūr(p) =
1

2m

(
Ep + m −σ · p
σ · p −Ep + m

)
=

/p + m

2m
.

The second identity can be shown in a similar manner.

4.5 Using the expressions for the projectors given in Problem 4.4, we see that
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Λ2
+ =

1
4m2

(/p2 + 2m/p + m2) = Λ+ ,

where we have used /p2 = p2 = m2. Similarly, we obtain Λ2
− = Λ−. Orthogo-

nality of the projectors follows from the identity

(/p + m)(/p − m) = p2 − m2 = 0 .

At this stage we apply the Dirac equation in momentum space (4.C). Namely,

Λ+ur(p) =
1

2m
(/p + m)ur(p) =

1
2m

(m + m)ur(p) = ur(p) ,

Λ−ur(p) =
1

2m
(/p − m)ur(p) =

1
2m

(m − m)ur(p) = 0 .

Similarly, one can prove the identities Λ−vr(p) = 0, Λ+vr(p) = vr(p).

4.6

(a) We can directly prove this property. For example, the x–component of the
vector Σ is

Σ1 =
i
2
(γ2γ3 − γ3γ2) = iγ2γ3 .

On the other hand, γ5γ0γ
1 = iγ1γ2γ3γ

1 = iγ2γ3. The corresponding iden-
tities for the y and z–components can be proven in a similar way.

(b) By applying the definition of Σ, we have

[Σi, Σj ] = −1
4
εilmεjpq[γlγm, γpγq]

= −1
4
εilmεjpq

(
[γlγm, γp]γq + γp[γlγm, γq]

)
. (4.12)

Next step is to expand the commutators in terms of the anticommutators:

[Σi, Σj ] = −1
4
εilmεjpq

(
γl{γm, γp}γq − {γl, γp}γmγq

+γpγl{γm, γq} − γp{γl, γq}γm
)

. (4.13)

Then, using anticommutation relations (3.A) we get

[Σi, Σj ] = −1
2
εilmεjpq

(
gmpγlγq − glpγmγq + gmqγpγl − glqγpγm

)
.

(4.14)
The first term in (4.14) has the form

εilmεjpqgmpγlγq = (δijδlq − δiqδlj)γlγq = −3δij − γjγi .

Others terms in (4.14) can be transformed in the same way. Finally,

[Σi, Σj ] = γjγi − γiγj .
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On the other hand,

2iεijkΣk = −εijkεklmγlγm = γjγi − γiγj ,

so that
[Σi, Σj ] = 2iεijkΣk .

We conclude that operators 1
2Σ are the generators of SU(2) subgroup of

the Lorentz group1

(c) S2 = − 1
4Σ

2 = − 1
4 (γ5γ0γ)2 = 1

4γ · γ = − 3
4 .

4.7 Use the expressions σ · p̂ϕr = (−1)r+1ϕr and σ · p̂χr = (−1)rχr from
Problem 4.2. For example:

Σ · p
|p| ur(p) =

Σ · p
|p| N

(
ϕr

σ·p
Ep+mϕr

)

= N
(

σ · p̂ 0
0 σ · p̂

)(
ϕr

σ·p
Ep+mϕr

)

= N
(

σ · p̂ϕr
(σ·p)(σ·p̂)

Ep+m ϕr

)

= (−1)r+1N
(

ϕr
σ·p

Ep+mϕr

)

= (−1)r+1ur(p) ,

where N is the normalization factor. It is easy to see that the spinors ur(p)
and vr(p) are not eigenspinors of the operator Σ · n, unless vectors n and p
are parallel.

4.8 The transformation operator from the rest frame to the frame moving
along the z–axis with velocity v, is S(Λ(vez)) = e−

i
2 ω03σ03

. By using the
relation ω03 = −ϕ = − arctan(v), we obtain

S(Λ) = cosh
(ϕ

2

)
I − sinh

(ϕ

2

)( 0 σ3

σ3 o

)

=

√
Ep + m

2m

(
I − pσ3

Ep+m

− pσ3
Ep+m I

)
.

For arbitrary boost, σ3p should be replaced by σ ·p. The operator S(Λ) is not
unitary one. Since the Lorentz group is noncompact, it does not have finite
dimensional irreducible unitary representations.

4.9 In this case we have

S =
(

cos
(

θ
2

)
+ i sin

(
θ
2

)
σ3 0

0 cos
(

θ
2

)
+ i sin

(
θ
2

)
σ3

)
.

1 Recall that Σk = 1
2
εkijσij .
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This operator is unitary because SO(3) is a compact subgroup of the Lorentz
group.

4.10 The Pauli–Lubanski vector is

Wµ =
1
2
εµνρσ(ixν∂ρ − ixρ∂ν +

1
2
σνρ)i∂σ =

i
4
εµνρσσνρ∂σ , (4.15)

since the product of a symmetric and an antisymmetric tensors vanishes. Then

W 2ψ(x) = − 1
16

εµνρσεµαβγσνρσ
αβ∂σ∂γψ(x)

=
1
16

(
δν
αδρ

βδσ
γ − δν

αδσ
βδρ

γ + δρ
αδσ

βδν
γ−

− δρ
αδν

βδσ
γ + δσ

αδν
βδρ

γ − δσ
αδρ

βδν
γ

)
σνρσ

αβ∂σ∂γψ(x)

=
1
16
(
2σαβσαβ�� − 4σαγσαρ∂

ρ∂γ

)
ψ

=
3
4
��ψ

= −3
4
m2ψ ,

where we used identity
σµσσµν = 2γσγν + δν

σ

and the results of Problems 1.5 and 3.5.

4.11 It is easy to see (Problem 3.16 and the condition s · p = 0) that

Wµsµ

m
=

1
4m

εµνρσσνρP σsµ =
1

2m
γ5σµσsµ∂σ

=
i

2m
γ5(γµγσ − gµσ)(∓ipσ)sµ = ± 1

2m
γ5/s/p =

1
2
γ5/s .

The previous equation holds on space of plane wave solutions; upper (lower)
sing is related to positive (negative) energy solutions. In the rest frame, the

vector sµ becomes (0,n), so /s = −n · γ, and we can use /p
m = p0γ0

m = γ0, so
that

W · s
m

= ±1
2
γ5γ0n · γ = ±1

2
Σ · n .

where Problem 4.6 has been used.

4.12 Positive energy solutions satisfy

γ5/su(p,±s) = ±u(p,±s) . (4.16)

If we choose that polarization vector sµ in the rest frame equals (0,n = p
|p| ),

according to the formulation of this problem, then in the frame in which
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electron has momentum p, the polarization vector is obtained by applying a
Lorentz boost:

sµ =

(
Ep

m
pj

m
pi

m δij + pipj

m(Ep+m)

)(
0
nj

)

=
( p·n

m

n + (n·p)p
m(Ep+m)

)
.

For n = p/|p| we get sµ = ( |p|m ,
Ep

m n). Using that, we find

γ5/su(p,±s) =
1
m

γ5/s/pu(p,±s)

=
1
m

γ5

(
|p|
m

γ0 −
Ep

m
γ · n

)
(Epγ0 − p · γ)u(p,±s) .

If we insert (p · γ)2 = −p2 in the previous formula we obtain:

γ5/su(p,±s) = γ5γ0γ · p
|p|u(p,±s) =

Σ · p
|p| u(p,±s) . (4.17)

From the expressions (4.16) and (4.17) we get

Σ · p
|p| u(p,±s) = ±u(p,±s) .

The similar procedure can be done for negative energy solutions. Starting
from

γ5/sv(p,±s) = ±v(p,±s) ,

one gets
Σ · p
|p| v(p,±s) = ∓v(p,±s) .

4.13 In the ultrarelativistic limit, m � Ep, the vector sµ is given by

sµ ≈
(

Ep

m
,
p
m

)
≈ pµ

m
.

Then we have

γ5/su(p,±s) ≈ γ5
/p
m

u(p,±s) = γ5u(p,±s) , (4.18)

where we used the Dirac equation /pu(p,±s) = mu(p,±s). From (4.18) we
conclude that the helicity operator Σ ·p/|p| is equal to the chirality operator
γ5. The eigenequation becomes

γ5u(p,±s) = ±u(p,±s) .
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For v spinors the situation is similar. So, for the particles of high energy (i.e.
neglected mass) helicity and chirality are approximatively equal, while for
massless particles these two quantities exactly are equal.

4.14 The commutator between γ5/s and /p is

[γ5/s, /p] = γ5/s/p − /pγ5/s
= γ5(/s/p + /p/s)
= γ5s

µpν{γµ, γν}
= 2s · pγ5 = 0 .

From (γ5/s)2 = −s2 = 1 it follows that eigenvalues of the operator γ5/s are ±1.
Then the eigen projectors are

Σ(±s) =
1 ± γ5/s

2
.

4.15 The average value of Σ · n in state

ψ(x) =

√
Ep + m

2m

(
ϕ

σ·p
Ep+mϕ

)
e−ip·x , (4.19)

is

〈Σ · n〉 =
∫

d3xψ†(x)Σ · nψ(x)∫
d3xψ†(x)ψ(x)

=
Ep + m

2Ep

(
ϕ†σ · nϕ +

ϕ†(σ · p)(σ · n)(σ · p)ϕ
(Ep + m)2

)
. (4.20)

Since
(σ · A)(σ · B) = A · B + i(A × B) · σ (4.21)

it follows that

(σ · p)(σ · n)(σ · p) = |p|2(n3σ3 − n2σ2 − n1σ1) . (4.22)

By substituting (4.22) into (4.20) we get:

〈Σ · n〉 =
1

|a|2 + |b|2

×
[
Ep + m

2Ep

(
n3|a|2 + (n1 + in2)b∗a + (n1 − in2)a∗b − n3|b|2

)

+
Ep − m

2Ep

(
n3|a|2 + (−n1 + in2)a∗b − (n1 + in2)b∗a − n3|b|2

)]
.

In the nonrelativistic limit we obtain

〈Σ · n〉 = ϕ†σ · nϕ =
n3|a|2 + (n1 + in2)b∗a + (n1 − in2)a∗b − n3|b|2

|a|2 + |b|2 .
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4.16 In the rest frame a spinor takes the following form
(

ϕ
0

)
e−imt, where

ϕ satisfies
1
2
Σ · n

(
ϕ
0

)
=

1
2

(
ϕ
0

)
.

The last condition becomes
(

cos θ −i sin θ
i sin θ − cos θ

)(
a
b

)
=
(

a
b

)
, (4.23)

where we put ϕ =
(

a
b

)
. From the last expression we obtain

ϕ =
(

cos θ
2

i sin θ
2

)
. (4.24)

In the rest frame the Dirac spinor takes the form

ψ0 =




cos θ
2

i sin θ
2

0
0


 e−imt . (4.25)

Applying the boost along z−axis, we obtain

ψ(x) = S(−pez)ψ0 , (4.26)

where S is given in Problem 4.8. Note a minus sign appearing in S(−pez)!
After a simple calculation, we obtain

ψ(x) =

√
Ep + m

2m




cos θ
2

i sin θ
2

p·σ
Ep+m

(
cos θ

2

i sin θ
2

)


 e−ip·x . (4.27)

The mean value of the operator 1
2γ5/s is

〈
1
2
γ5/s
〉

=
1
2

∫
d3xψ†γ5/sψ∫

d3xψ†ψ
, (4.28)

where the vector sµ is obtained from (0,n) by the Lorentz boost along the
z–axis. The components of vector sµ are (see Problem 4.12)

s0 =
n · p
m

, s = n +
(n · p)p

m(Ep + m)
.

In our case we have
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sµ =
(

p

m
cos θ, 0, sin θ,

Ep

m
cos θ

)
.

Thus, in the Dirac representation of γ–matrices, γ5/s is given by

γ5/s =
(

s · σ −s0I
s0I −s · σ

)
, (4.29)

and finally

γ5/s =




Ep

m cos θ −i sin θ − p
m cos θ 0

i sin θ −Ep

m cos θ 0 − p
m cos θ

p
m cos θ 0 −Ep

m cos θ i sin θ

0 p
m cos θ −i sin θ

Ep

m cos θ


 . (4.30)

By substituting (4.30) and (4.27) in the formula (4.28), we obtain:
〈

1
2
γ5/s
〉

=
1
2

,

as we expected, because ψ(x) is the eigenstate of the operator 1
2γ5/s, with

eigenvalue 1
2 .

4.17 The Dirac Hamiltonian can be rewritten in terms of γ–matrices so that

[HD, γ5] = [γ0γ · p + γ0m, γ5] = 2mγ0γ5 .

Thus, the operator γ5 is a constant of motion in the case of massless Dirac
particle. Its eigenvalues and eigen projectors are ±1, Σ± = 1

2 (1± γ5), respec-
tively. The operator γ5 is known as the chirality operator.

4.18 By multiplying the Dirac equation from the left by γ5, we obtain (i/∂ +
m)γ5ψ = 0. By adding and subtracting the previous equations and the Dirac
equation, we get

i/∂ψL − mψR = 0,

i/∂ψR − mψL = 0 .

4.19

(a) The system of equations can be rewritten as the Dirac equation. The Dirac
spinor takes form

ψ =
(

ψL

ψR

)
,

while

γµ =
(

0 σµ

σ̄µ 0

)
,

are γ–matrices (see Problem 3.20).
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(b) In order to be covariant, these equations have to have the following form

iσµ∂′
µψ′

R(x′) = mψ′
L(x′) , (4.31)

iσ̄µ∂′
µψ′

L(x′) = mψ′
R(x′) , (4.32)

in the primed frame (x′ = Λx). If we assume that the new spinors take
the form ψ′

L(x′) = SLψL(x) and ψ′
R(x′) = SRψR(x), where SL and SR are

nonsingular 2 × 2 matrices, Equations (4.31) and (4.32) become

iσµSRΛµ
ν∂νψR(x) = mSLψL(x) , (4.33)

iσ̄µSLΛµ
ν∂νψL(x) = mSRψR(x) . (4.34)

By multiplying Equation (4.33) by S−1
L from left, and (4.34) by S−1

R also
from left we obtain

iS−1
L σµSRΛµ

ν∂νψR(x) = mψL(x) , (4.35)

iS−1
R σ̄µSLΛµ

ν∂νψL(x) = mψR(x) . (4.36)

The system of equations is covariant if the conditions

S−1
R σ̄µSL = Λµ

ν σ̄ν ,

S−1
L σµSR = Λµ

νσν

hold. The solution for matrices SL and SR is given as

SL = exp
(

1
2
ϕiσ

i +
i
2
θkσk

)
≈ 1 +

1
2
ϕiσ

i +
i
2
θkσk , (4.37)

SR = exp
(
−1

2
ϕiσ

i +
i
2
θkσk

)
≈ 1 − 1

2
ϕiσ

i +
i
2
θkσk . (4.38)

The parameters θi and ϕi were defined in Problem 1.8. Boost along the
x–axis is defined by :

SL = cosh
(ϕ1

2

)
+ σ1 sinh

(ϕ1

2

)
(4.39)

SR = cosh
(ϕ1

2

)
− σ1 sinh

(ϕ1

2

)
. (4.40)

Note that ψL and ψR transform in the same way under rotations, but dif-
ferently under boosts. The left ψL, and right ψR spinors transform under
( 1
2 , 0) and (0, 1

2 ) irreducible representation of the Lorentz group respec-
tively.
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4.20 First note that

[HD,K] = [α · p, β(Σ · L)] + [α · p, β] + m[β, β(Σ · L)] . (4.41)

The first term in the expression (4.41) is

[α · p, β(Σ · L)] = β[α · p,Σ · L] + [α · p, β]Σ · L

= − i
2
εmnpεmjlβ

(
pi{αi, αn}αpxjpl − piαn{αi, αp}xjpl+

+ αnαpαi[pi, xj ]pl − 2αiαnαppixjpl
)

.

Using the relations {αi, αj} = 2δij and [xi, pj ] = iδij , we obtain

[α · p, β(Σ · L)] = − i
2
β
(
4αlpnxnpl − 4αjplxjpl−

− iαjαlαjpl + 3iαipi − 2αiαjαlpixjpl + 2αiαlαjpixjpl
)

= iβ
(
2αiplxipl − 2iα · p − αjαiαlpixjpl − αiαlαjpixjpl

)
,

where we used αiαjαi = −αj . By substituting pixj = xjpi − iδij into the last
line of previous formula, we have

[α · p, β(Σ · L)] = 2β(α · p) . (4.42)

The second term in (4.41) is −2β(α ·p), while the third term vanishes. Thus,

[HD,K] = 0 .

4.21 From (3.E) we have

iū(p1)σµν(p1 − p2)νu(p2) =
1
2
ū(p1)(γνγµ − γµγν)(p1 − p2)νu(p2)

=
1
2
ū(p1)[−γµ(/p1 − /p2) + (/p1 − /p2)γµ]u(p2)

=
1
2
ū(p1)[−γµ(/p1 − m) + (m − /p2)γµ]u(p2) .

By using γµ/p1 = 2pµ
1 − /p1γ

µ and /p2γ
µ = 2pµ

2 − γµ/p2 we obtain

iū(p1)σµν(p1 − p2)νu(p2) = 2mū(p1)γµu(p2) − (p1 + p2)µū(p1)u(p2) ,

where we used that u(p) and ū(p) satisfy the Dirac equation. The last expres-
sion is the requested identity. The second identity can be proven similarly.

4.23 It is easy to see that

γαγµγβ = 2gαµγβ − 2gαβγµ + 2gµβγα − γβγµγα . (4.43)

From (4.43) we have
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ū(p2)/p1γµ/p2u(p1) = ū(p2)[2m(p1 + p2)µ − (2p1 · p2 + m2)γµ]u(p1) , (4.44)

where we used the Dirac equation (4.C). The first term in (4.44) can be
transformed by using the Gordon identity (Problem 4.21)

ū(p2)/p1γµ/p2u(p1) = ū(p2)[−2p1 · p2 + 3m2]γµu(p1) − 2miū(p2)σµνqνu(p1)
= ū(p2)

{
(q2 + m2)γµ − 2imσµνqν

}
u(p1). (4.45)

From the last expression we can make the following identifications: F1 =
q2 + m2 and F2 = −2im.

4.24 By using u(p) = /pu(p)/m and

{γµ, γ5} = 0 ,

we have
ū(p)γ5u(p) =

1
m

ū(p)γ5/pu(p) = − 1
m

ū(p)/pγ5u(p) .

By applying the Dirac equation (3.C) we obtain

ū(p)γ5u(p) = −ū(p)γ5u(p) .

Thus ū(p)γ5u(p) = 0. By using the Gordon identity (for µ = 0) it finally
follows that

1
2
ū(p)(1 − γ5)u(p) =

m

2Ep
N .

4.25 F1 = −iq2, F2 = −2im, F3 = −2m.

4.26 By applying the operator (i/∂ + m) to the Dirac equation we obtain

(i/∂ + m)(i/∂ − m)ψ = −(�� + m2)ψ = 0 .

4.27 The probability density is ρ(x) = ψ†(x)ψ(x). By using the expression
for the wave function from Problem 4.2, we easily get ρ = Ep

m . The current
density is j = ψ̄γψ = p

m ψ̄ψ, where the Gordon identity (for µ = i) has been
applied. Finally j = p

m .

4.28 The position operator in the Heisenberg picture satisfies the following
equation

drH

dt
= −i[rH,H] = αH.

In order to integrate the last equation we have to find the Dirac matrices in
the Heisenberg picture

αH = eiHtαe−iHt =
∞∑

n=0

(it)n

n!
[H, [H, . . . [H,α] . . .]] .

Since
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[H,α] = 2(p − αH) , (4.46)

[H, [H,α]] = −22(p − αH)H , (4.47)

[H, [H, [H,α]]] = 23(p − αH)H2 , etc. (4.48)

we get

αH = α + (αH − p)
(
−2it +

(2it)2

2!
H − (2it)3

3!
H2 + . . .

)

=
p
H

+
(
α − p

H

)
e−2itH . (4.49)

Then, equation
drH

dt
=

p
H

+
(
α − p

H

)
e−2itH (4.50)

implies

rH = r +
p
H

t − i
(
α − p

H

) 1
2H

+ i
(
α − p

H

) 1
2H

e−2iHt.

The integration constant is determined using the condition rH(t = 0) = r.
As we see ”the motion of particle” is a superposition of classical uniform and
rapid oscillatory motions.

4.29 We should calculate the coefficients cr(p) and d∗r(p) in the expansion

ψ(0,x) =
1

(2π)3/2

∑
r

∫
d3p
√

m

Ep
(cr(p)ur(p)eip·x + d∗r(p)vr(p)e−ip·x) .

(4.51)
If we multiply this expression by u†

s(q)e−iq·x from left and integrate over x,
we get

cs(q) =
1

(2π)3/2

√
m

Eq

∫
d3xu†

s(q)ψ(0,x)e−iq·x ,

where we applied the relations

u†
r(p)us(p) = v†

r(p)vs(p) =
Ep

m
δrs, v†

r(−p)us(p) = u†
r(−p)vs(p) = 0 .

(4.52)
These relations can be obtained from (4.D) by using the Gordon identity.
Similarly for d coefficients we get

d∗s(q) =
1

(2π)3/2

√
m

Eq

∫
d3xv†

s(q)ψ(0,x)eiq·x .

Carrying out the integrations, we find
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c1(p) =
1

(2π)3/2

√
Ep + m

2Ep
,

c2(p) = 0,

d∗1(p) =
1

(2π)3/2

1√
2Ep(Ep + m)

(px + ipy) ,

d∗2(p) =
1

(2π)3/2

1√
2Ep(Ep + m)

pz . (4.53)

The wave function at time t > 0 is

ψ(x) =
1

(2π)3/2

∑
r

∫
d3p

√
m

Ep
(cr(p)ur(p)re−ip·x+d∗r(p)vr(p)eip·x) , (4.54)

where the coefficients cr(p) and d∗r(p) are given in (4.53).

4.30 In this case the coefficients cr(p) and d∗r(p) in expansion (4.51) are:

c1(p) =
(

d2

π

)3/4
√

Ep + m

2Ep
e−d2p2/2 ,

c2(p) = 0 ,

d∗1(p) =
(

d2

π

)3/4 1√
2Ep(Ep + m)

e−d2p2/2(px + ipy) ,

d∗2(p) =
(

d2

π

)3/4 1√
2Ep(Ep + m)

pze−d2p2/2 .

4.31 The equation for spin 1/2 particle in the electromagnetic field has the
following form

[iγµ(∂µ − ieAµ) − m]ψ = 0 . (4.55)

If we assume that a wave function for z > 0 has the form

ψ =
(

ϕ
χ

)
e−iEt+iqz , (4.56)

then (4.55) becomes
(

E − m − V −σ3q
σ3q −E − m + V

)(
ϕ
χ

)
= 0 . (4.57)

The system of equations (4.57) has a nontrivial solution if and only if

E = V ±
√

q2 + m2 . (4.58)

The wave function2 is
2 From the boundary conditions it follows that there is no spin flip.
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ψI = a




1
0

pσ3
(E+m)

(
1
0

)

 e−iEt+ipz

+ b




1
0

−pσ3
(E+m)

(
1
0

)

 e−iEt−ipz , z < 0 , (4.59)

ψII = d




1
0

qσ3
(E+m−V )

(
1
0

)

 e−iEt+iqz, z > 0 ,

where p =
√

E2 − m2. The terms proportional to the coefficient a, b and d
in (4.59) are the initial ψin, reflected ψr and transmitted wave ψt. Since the
Dirac equation is the first order equation, the continuity condition is satisfied
for the wave function only. The condition ψI(0) = ψII(0) gives

a + b = d , (4.60)
a − b = rd , (4.61)

where r = E+m
E+m−V

q
p . Now, we will consider three cases:

1. If |E − V | ≤ m, the momentum q is imaginary, q = iκ so that the wave
function exponentially decreases in the region z > 0, as is the case in nonrela-
tivistic quantum mechanics. The transmitted, reflected and incident currents
are:

jr = ψ̄trγ
3ψtrez = 0 , (4.62)

jr = ψ̄rγ
3ψrez = − 2p

E + m
|b|2ez , (4.63)

jin = ψ̄inγ3ψinez =
2p

E + m
|a|2ez . (4.64)

Since jtr = 0 the transmission coefficient is zero. The reflection coefficient is

R =
−jr

jin
=
∣∣∣∣
p(E + m − V ) − iκ(E + m)
p(E + m − V ) + iκ(E + m)

∣∣∣∣
2

= 1 . (4.65)

2. If V < E − m, the momentum q is real. The currents are:

jtr =
2q

E + m − V
|d|2ez , (4.66)

jr = − 2p

E + m
|b|2ez , (4.67)

jin =
2p

E + m
|a|2ez . (4.68)
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The transmission coefficient is

T =
jtr
jin

= r

∣∣∣∣
d

a

∣∣∣∣
2

=
4r

(1 + r)2
, (4.69)

while the reflection coefficient is

R =
−jr
jin

=
(

1 − r

1 + r

)2

. (4.70)

3. If E+m < V , the momentum q is real, which implies that the wave function
in region z > 0 becomes oscillating. This is caused by the fact that there are
two parts of electron spectrum separated by a gap, whose width is equal to 2m.
The expressions for the coefficients of reflection and transmission are the same
as in the second case. But in this case, the coefficient of reflection is greater
then 1, while T < 0. The described effect is known as the Klein paradox. The
explanation of this paradox is given in Problem 2.9.

4.32 The solution of the Dirac equation is

ψI =




1
0

pσ3
(E+m)

(
1
0

)

 eipz

+ B




1
0

−pσ3
(E+m)

(
1
0

)

 e−ipz , z < 0 ,

ψII = C




1
0

qσ3
(E+m−V )

(
1
0

)

 eiqz

+ D




1
0

−qσ3
(E+m−V )

(
1
0

)

 e−iqz , 0 < z < a ,

ψIII = F




1
0

pσ3
(E+m)

(
1
0

)

 eipz , z > a ,

where p =
√

E2 − m2 and q =
√

(E − V )2 − m2. From the boundary con-
ditions ψI(0) = ψII(0) and ψII(a) = ψIII(a), we obtain the transmission
coefficient

T = |F |2 = 16
|r|2

|(1 + r)2e−iqa − (1 − r)2eiqa|2 ,

where r = q
p

E+m
E+m−V . It is easy to show that the transmission coefficient is

equal to one if E = V
2 .
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4.33

(a) The wave function is

ψI =




B
B′

−iκσ3
(E+m)

(
B
B′

)

 eκz, z < −a,

ψII =




C
C ′

qσ3
(E+m+V )

(
C
C ′

)

 eiqz (4.71)

+




D
D′

−qσ3
(E+m+V )

(
D
D′

)

 e−iqz, −a < z < a,

ψIII =




F
F ′

iκσ3
(E+m)

(
F
F ′

)

 e−κz, z > a,

where κ =
√

m2 − E2 and q =
√

(E + V )2 − m2. Since there is no spin
flip, we can take B′ = C ′ = D′ = F ′ = 0. From the boundary conditions
ψI(−a) = ψII(−a) and ψII(a) = ψIII(a), it follows that

e−κaB = e−iqaC + eiqaD

e−κaF = eiqaC + e−iqaD

−ire−κaB = e−iqaC − eiqaD

ire−κaF = eiqaC − e−iqaD ,

where r = κ
q

E+m+V
E+m . By combining previous equations we obtain

e−κa(B − F ) = 2i sin(qa)(D − C)
ire−κa(B − F ) = 2 cos(qa)(D − C)

e−κa(B + F ) = 2 cos(qa)(D + C)
re−κa(B + F ) = 2 sin(qa)(D + C) .

Further, we will distinguish two classes of solutions: odd and even. If B = F
and C = D, the third and the fourth equations give the following dispersion
relation:

tan(qa) =
κ

q

E + m + V

E + m
.

These solutions satisfy the following property: ψ′(z) = γ0ψ(−z) = ψ(z);
thus they are even. On the other hand, if B = −F and C = −D, the
dispersion relation is
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cot(qa) = −κ

q

E + m + V

E + m
.

This class of solutions satisfy ψ′(z) = γ0ψ(−z) = −ψ(z), and therefore
they are odd.

(b) The dispersion relations are transcendental equations and they cannot be
solved analytically. We can analyze them graphically.
For even solutions, the dispersion relation has the form

q tan(qa) = f(q) , (4.72)

where

f(q) =
√

2V
√

q2 + m2 − q2 − V 2
m +

√
q2 + m2

m +
√

q2 + m2 − V
,

and its graphical solution is given in Fig. 4.1.

Fig. 4.1. Graphical solution of Equation (4.72) for even states (V < 2m)

In the case of odd solutions, the dispersion relation

q cot(qa) = −f(q) (4.73)

is shown in Fig. 4.2. From these figures we see that the spectrum of electron
bound states will contain N states if the condition

(N − 1)π
2a

≤
√

V (V + 2m) <
Nπ

2a

is satisfied. It is easy to see that if N = 1 then this solution is even.
(c) Graphical solutions for odd and even part of spectrum are given in Fig.

4.3 and Fig. 4.4.
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Fig. 4.2. Graphical solution of Equation (4.73) for odd states (V < 2m)

Fig. 4.3. Graphical solution for odd states (V > 2m)

Fig. 4.4. Graphical solution for even states (V > 2m)
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4.34 The Dirac equation in this case has following form
[
iγ0 ∂

∂t
+ iγ1

(
∂

∂x
− ieBy

)
+ iγ2 ∂

∂y
+ iγ3 ∂

∂z
− m

]
ψ = 0 . (4.74)

A particular solution of (4.74) is

ψ = e−iEt+ipxx+ipzz

(
ϕ(y)
χ(y)

)
. (4.75)

By substituting (4.75) in (4.74) we obtain
(

E − m (eBy − px)σ1 − pzσ3 + iσ2
d
dy

(px − eBy)σ1 + pzσ3 − iσ2
d
dy −E − m

)(
ϕ
χ

)
= 0 .

(4.76)
From the second equation in (4.76), follows

χ(y) =
1

E + m

(
pxσ1 + pzσ3 − eByσ1 − iσ2

d
dy

)
ϕ(y) , (4.77)

and plugging it into the first equation of (4.76), we get
(

d2

dy2
− (px − eBy)2 + E2 − m2 − p2

z − eBσ3

)
ϕ = 0 , (4.78)

where we used the following identity

σiσj = δij + iεijkσk .

By introducing new variable ξ = px − eBy, Equation (4.78) becomes the
Schrödinger equation for a linear oscillator (parameters M, ω and ε ), where

M2ω2 =
1

(eB)2
, 2Mε =

E2 − m2 − p2
z ∓ eB

(eB)2
.

We assumed that the spinor ϕ is an eigenstate of σ3/2, i.e.

1
2
σ3ϕ = ±1

2
ϕ .

The energy eigenvalues are

En,pz
=
√

m2 + p2
z ± eB + (2n + 1)eB , (4.79)

where n = 0, 1, 2, . . .

4.35 Acting by (i/∂ + e/A + m) on (i/∂ + e/A − m)ψ(x) = 0, we get

[�� − ieγµγν∂µAν − 2ieAµ∂µ − e2A2 + m2]ψ = 0 .
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On the other hand, one can show that

−e

2
σµνFµν = ie(∂µAµ − γµγν∂µAν) .

The requested result can be obtained by combining these expressions.

4.36 By substituting

ψ =
(

ϕ
χ

)
e−imt

in the Dirac equation
(i/∂ + e/A − m)ψ(x) = 0,

we obtain the following equations:
(

i
∂

∂t
+ eA0

)
ϕ = cσ · (p + eA)χ ,

(
i
∂

∂t
+ 2mc2 + eA0

)
χ = cσ · (p + eA)ϕ .

In the case A = 0, the second equation yields:

χ =
1

2mc

(
σ · pϕ − i

2mc2
σ · p∂ϕ

∂t
− eA0

2mc2
σ · pϕ

)
.

Combining this relation with the first equation, we obtain

i
∂ϕ

∂t
= H ′ϕ ,

where

H ′ =
[

p2

2m
− eA0 −

p4

8m3c2
+

e

4m2c2
(2iE · p − ∆A0)

− e

4m2c2
(iE · p + σ · (E × p))

]
.

The operator H ′ is not the Hamiltonian, since it is not hermitian. This is
related to the fact that ϕ†ϕ is not the probability density. Actually, the prob-
ability density should be taken in the following form:

ρ = ψ̄ψ = ϕ†ϕ − χ†χ

= ϕ†(1 +
p2

4m2c2
)ϕ + o

(
v2

c2

)
.

We introduce the new wave function

ϕs =
(

1 +
p2

8m2c2

)
ϕ .
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Then, the new Hamiltonian is given by

H =
(

1 +
p2

8m2c2

)
H ′
(

1 − p2

8m2c2

)
.

After that, we obtain

H =
p2

2m
− eA0 −

p4

8m3c2
− e

8m2c2
∆A0 +

e

4m2c2
σ · (E × p) .

In the case A �= 0, the Hamiltonian is

H =
(p + eA)2

2m
− eA0 +

e

2mc
σ · B − p4

8m3c2

− e

8m2c2
∆A0 +

e

4m2c2
σ · (E × (p + eA)) .

4.37 First, we are going to show that Vµ(x) is a real quantity:

V ∗
µ = V †

µ = (ψ̄γµψ)†

= ψ†γ†
µ(ψ†γ0)†

= ψ†γ0γµγ0γ0ψ

= ψ̄γµψ

= Vµ . (4.80)

Under proper orthochronous Lorentz transformations, Vµ is transformed in
the following way:

V ′
µ(x′) = ψ̄′(x′)γµψ′(x′) = ψ†(x)γ0S

−1γµSψ(x) ,

where we used the fact that γ0S
−1 = S†γ0. Using S−1γµS = Λ ν

µ γν , we obtain
V ′

µ(x′) = Λ ν
µ Vν(x). So, the quantity Vµ is a Lorentz four-vector.

Under parity we have

Vµ(t,x) → V ′
µ(t,−x) = ψ̄(t,x)γ0γµγ0ψ(t,x) .

This implies

V ′
0(t,x) = V0(t,−x), V ′

i (t,x) = −Vi(t,−x) .

As we know, under charge conjugation the spinors transform according to:

ψ(x) → ψc(x) = Cψ̄T ,

ψ̄ = ψ†γ0 → (Cψ̄T )†γ0

= (C(γ0)T ψ∗)†γ0

= ψT ((γ0)T C(γ0)†)T

= −ψT (Cγ0γ0)T

= ψT C . (4.81)
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Then, we can find the transformation law for Vµ:

Vµ → −ψT CγµC−1ψ̄T = (ψ̄γµψ)T = Vµ .

The following formulae CγµC−1 = −γT
µ , C = −C−1 have been used (Prove

the last one).
For time reversal we have ψ(x) → ψ′(−t,x) = Tψ∗(t,x), where matrix T
satisfies TγµT−1 = γµ∗ = γT

µ and T † = T−1 = T = −T ∗. It is easy to see
that

ψ̄(x) → ψ̄′(−t,x) = ψT (t,x)Tγ0 .

Then

V µ(t,x) → ψT Tγ0γµTψ∗

= ψT Tγ0T−1TγµT−1ψ∗

= ψT (γ0)T (γµ)T ψ∗

= (ψ†γµγ0ψ)T

= ψ†γµγ0ψ . (4.82)

Therefore,
V ′

0(−t,x) = V0(t,x), V ′
i (−t,x) = −Vi(t,x) .

4.38 The quantity Aµ transforms under Lorentz transformations in the fol-
lowing way:

A′µ(x′) = Λµ
νψ̄(x)γνS−1γ5Sψ(x)

= detΛ Λµ
νψ̄(x)γνγ5ψ(x) = detΛ Λµ

νAν(x) ,

where we used

S−1γ5S = − i
4!

εµνρσS−1γµSS−1γνSS−1γρSS−1γσS

= − i
4!

εµνρσΛµ
αΛν

βΛσ
γΛρ

δγ
αγβγγγδ

= − i
4!

εαβγδdetΛ γαγβγγγδ

= detΛ γ5 .

The charge conjugation changes the sign of Aµ. The parity changes the sign
of the time component, but does not change the sign of spatial components.
The effect of time reversal is exactly opposite.

4.39 The quantity ψ̄γµ∂µψ transforms as a scalar under Lorentz transfor-
mations. The parity does not change it. The action of the charge conjugation
yields (∂µψ̄)γµψ, while the time reversal produces −(∂µψ̄)γµψ.

4.40 By transposing the Dirac equation,
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ū(p, s)(/p − m) = 0 ,

and using C−1γµC = −(γµ)T , one gets the requested result.

4.41 Let us assume that there are two different matrices C ′ and C ′′,
which both satisfy the relation CγµC−1 = −(γµ)T . Then from C ′′γµC ′′−1 =
C ′γµC ′−1 follows that [C ′−1C ′′, γµ] = 0, whereupon (see Problem 3.18) the
requested relation follows.

4.42 We directly obtain:

(a)

ψc(x) = Np




− p
E+m

(
0
1

)

(
0
1

)


e−iEt−ipz .

(b)

ψ′(x′) =




1
0
0
0


 e−imt′ .

(c)

ψp(t,x) = Np




(
1
0

)

− p
Ep+m

(
1
0

)


 e−i(Et+pz) .

Momentum is inverted under parity. Time reversal transforms the wave
function into

ψt(t,x) = −iNp




(
0
1

)

p
Ep+m

(
0
1

)


 ei(−Et−pz) ,

and we see that spin and the direction of the momentum are inverted.
(d) The wave function for S′ observer is

ψ′(x′) = Np

(
ϕ
p

Ep+mϕ

)
ei(Et−p′z′)

where

ϕ =
(

cos
(

θ
2

)
i sin
(

θ
2

)
)

.

4.43 P = γ0 =
(

0 I
I 0

)
, C = iγ2γ0 = i

(
σ2 0
0 −σ2

)
.

4.44 Multiplying the equation
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Σ · p
|p| ur(p) = (−1)r+1ur(p) , (4.83)

by γ0 from left, we obtain

Σ · (−p)
|p| ur(−p) = (−1)rur(−p) , (4.84)

since γ0ur(p) = ur(−p). From (4.84) we see that the helicity is inverted.
Under the time reversal, the wave function of the Dirac particle (4.6) becomes

ψt(t,x) = iγ1γ3ψ∗
r (−t,x)

= −N
(

σ2ϕ∗
r

σ2(σ∗·p)
Ep+m ϕ∗

r

)
ei(−Ept−p·x)

= −N
(

σ2ϕ∗
r

− (σ·p)σ2

Ep+m ϕ∗
r

)
ei(−Ept−p·x) , (4.85)

where we used σ2σ∗ = −σσ2 in the second step. From the last expression, we
conclude that the momentum changes its direction, i.e. p → −p. Prove that
σ2ϕ∗

1 = iϕ2 and σ2ϕ∗
2 = −iϕ1. Now, we consider the case r = 1 (the other

case r = 2 is similar). From (4.85) it follows that

ψt(t,x) = −iN
(

ϕ2

− p·σ
Ep+mϕ2

)
ei(−Ept−p·x) . (4.86)

By applying Σ·(−p)
|p| on (4.86), we see that the helicity is unchanged. The same

result can be obtained by complex conjugation and multiplication of Equation
(4.83) from left by iγ1γ3. You can prove the same for v spinors.

4.45 The transformed Hamiltonian is

H ′ = α · p
(

cos(2pθ) − m

p
sin(2pθ)

)
+ mβ

(
cos(2pθ) +

p

m
sin(2pθ)

)
,

where p = |p|. In order to have even form of the Hamiltonian, the coefficient
multiplying α · p has to be zero. This is satisfied if tan(2pθ) = p/m .

4.47 First prove that:

U = cos(pθ) +
βα · p

p
sin(pθ) =

√
Ep + m

2Ep
+

βα · p√
2Ep(Ep + m)

,

hence

xFW =

(√
Ep + m

2Ep
+

βα · p√
2Ep(Ep + m)

)
x

(√
Ep + m

2Ep
− βα · p√

2Ep(Ep + m)

)
.

From the well known identity [x, f(p)] = i∇f(p) we get two auxiliary results:
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x

√
Ep + m

2Ep
= − i

2

√
Ep

2(Ep + m)
m

E3
p

p +

√
Ep + m

2Ep
x,

x
βα · p√

2Ep(Ep + m)
=

iβα√
2Ep(Ep + m)

− iβ(α · p)(2Ep + m)
2
√

2(Ep(Ep + m))3/2

p
Ep

+
βα · p√

2Ep(Ep + m)
x .

Using these formulae we get

xFW = x − i
p

2Ep(Ep + m)
+ i

p(βα · p)
2E2

p(Ep + m)
− i

βα

2Ep
+ i

α(α · p)
2Ep(Ep + m)

.

The last expression can be rewritten in the form

xFW = x + i
p(βα · p)

2E2
p(Ep + m)

− i
βα

2Ep
− Σ × p

2Ep(Ep + m)
.

The Foldy–Wouthuysen transformation does not change the momentum, so
that

[xk
FW, pl

FW] = iδkl .
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Classical fields and symmetries

5.1 We apply the definition of functional derivative (5.A).

(a) From

δFµ = ∂µδφ =
∫

d4y(∂µδφ)yδ(4)(y − x) = −
∫

d4y∂y
µδ(4)(y − x)δφ(y) ,

we have
δFµ[φ(x)]

δφ(y)
= −∂y

µδ(4)(y − x) ,

(b) The first functional derivative of the action with respect to φ is

δS

δφ(x)
= −��φ − ∂V

∂φ
.

Then

δ

(
δS

δφ(x)

)
= −��δφ(x) − ∂2V

∂φ2(x)
δφ(x)

=
∫

d4y
[
−��yδ(4)(x − y)−

− ∂2V

∂φ(x)∂φ(y)
δ(4)(x − y)

]
δφ(y) .

Hence,

δ2S

δφ(x)δφ(y)
= −��yδ(4)(y − x) − ∂2V

∂φ(x)∂φ(y)
δ(4)(x − y) .

5.2 In this problem we use the Euler–Lagrange equations of motion (5.B).

(a) First note that ∂L
∂Aρ

= m2Aρ and ∂L
∂(∂σAρ) = −2∂ρAσ +λgρσ(∂µAµ) so that

the equations of motion are given by

(λ − 2)∂σ∂ρAσ − m2Aρ = 0 .
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(b) The derivative of the Lagrangian density with respect to ∂σAρ is

∂L
∂(∂σAρ)

= −1
2
Fµν ∂Fµν

∂(∂σAρ)
= −1

2
Fµν(δσ

µδρ
ν − δσ

ν δρ
µ) = −F σρ .

In the last step we used the fact that Fρσ is an antisymmetric tensor, i.e.
Fρσ = −Fσρ. The Euler-Lagrange equations of motion are

∂σF σρ + m2Aρ = 0 .

By using the definition of field strength F ρσ, the Euler-Lagrange equations
become (

δρ
σ�� − ∂σ∂ρ + m2δρ

σ

)
Aσ = 0 .

(c) (�� + m2)φ = −λφ3.
(d) The equations of motion are:

−��Aρ + ∂σ∂ρAσ = −ie[φ(∂ρφ∗ + ieAρφ∗) − φ∗(∂ρφ − ieAρφ)] ,

��φ∗ + 2ieAρ∂ρφ
∗ + ieφ∗∂ρA

ρ − e2A2φ∗ + m2φ∗ = 0 ,

��φ − 2ieAρ∂ρφ − ieφ∂ρA
ρ − e2A2φ + m2φ = 0 .

(e) The equations are:

(iγµ∂µ − m)ψ = igγ5ψφ , ψ̄(iγµ←−∂µ + m) = −igψ̄γ5φ ,

��φ + m2φ = λφ3 − igψ̄γ5ψ .

5.3 The variation of the action is

δS =
∫ ∞

−∞
dt

∫ L

0

dx
(
∂µφ∂µ(δφ) − m2φδφ

)

=
∫ ∞

−∞
dt

∫ L

0

dx[∂µ(∂µφδφ) − (�� + m2)φδφ]

=
∫ L

0

dx∂0φδφ
∣∣∣
t=∞

t=−∞
−
∫ ∞

−∞
dt

∂φ

∂x
δφ
∣∣∣
x=L

x=0

−
∫ ∞

−∞
dt

∫ L

0

dx(��φ + m2φ)δφ ,

where we integrated by parts. As the first term vanishes, from Hamiltonian
principe one obtains the equation of motion

(�� + m2)φ = 0 ,

and the boundary conditions:

δφ(t, x = 0) = δφ(t, x = L) = 0 , (Dirichlet boundary conditions)
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or

φ′(t, x = 0) = φ′(t, x = L) = 0 , (Neumann boundary conditions),

where prime denote the partial derivative with respect to x. Here, we see that
beside the equation of motion we get the boundary conditions in order to elim-
inate the surface term. Let us mention that the mixed boundary conditions
can be imposed.

5.4 In order to show that the change L → L+∂µFµ(φr) does not change the
equations of motion, we have to prove that

δ

∫

Ω

d4x∂µFµ(φr) = 0 .

Applying the Gauss theorem we get

δ

∫

Ω

d4x∂µFµ(φr) =
∮

∂Ω

dΣµδFµ =
∮

∂Ω

dΣµ ∂Fµ

∂φr
δφr = 0 ,

since the variation of fields on the boundary is equal to zero.

5.5 Add to the Lagrangian density the term − 1
2∂µ(φ∂µφ). Note that it does

not have the form as in Problem 5.4, because here the function Fµ depends
on the field derivatives. However,

δ

∫

Ω

d4x∂µ(φ∂µφ) =
∮

∂Ω

dΣµδ(φ∂µφ) =
∮

∂Ω

dΣµ(δφ∂µφ + φδ∂µφ) .

The first term is zero since δφ|∂Ω = 0 . If we take that the boundary is at
infinity ( r → ∞), the second term is also zero because the fields tend to zero
at infinity.

5.6 Use the similar reasoning as in the previous problem.

5.7 The equation of motion for the vector field was derived in Problem 5.2
(b). Acting by ∂ρ on this equation we obtain m2∂ρA

ρ = 0 . Since m �= 0, we
conclude that ∂ρA

ρ = 0 .

5.8 The field strength tensor, Fµν is invariant under the gauge transforma-
tions. From this, it follows that the Lagrangian is also invariant. The condition
∂µAµ = 0 does not follow from the equations of motion, but by using gauge
symmetry we can transform the potential so that it satisfies this condition.
This condition is called the Lorentz gauge.

5.9 Firstly, show that

∂L
∂(∂αhρσ)

= ∂αhρσ − ∂σhρα − ∂ρhσα +
1
2
gρα∂σh

+
1
2
gσα∂ρh + gρσ∂µhµα − gρσ∂αh .
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The equations of motion are

��hρσ − ∂α∂σhρα − ∂α∂ρhσα + ∂ρ∂σh

+ gρσ∂µ∂νhµν − gρσ��h = 0.

In order to prove gauge invariance of the action show that the Lagrangian
density is changed up to four-divergence term.

5.11 This transformation is an internal one, so it is enough to prove the
invariance of the Lagrangian density. The transformation law for the kinetic
term is

1
2
[(∂φ1)2 + (∂φ2)2] →

1
2
[(∂φ′

1)
2 + (∂φ′

2)
2]

=
1
2
[(∂φ1 cos θ − ∂φ2 sin θ)2 + (∂φ1 sin θ + ∂φ2 cos θ)2]

=
1
2
[(∂φ1)2 + (∂φ2)2] .

Similarly, we can prove that the other two terms are invariant. The infinites-
imal variations of the fields φi are δφ1 = −θφ2 and δφ2 = θφ1, so that

jµ =
∂L

∂(∂µφi)
δφi = θ(φ1∂µφ2 − φ2∂µφ1) .

The parameter θ can be dropped out since it is a constant. The charge corre-
sponding to the SO(2) symmetry is Q =

∫
d3x(φ1φ̇2 − φ2φ̇1) .

5.12 Under the SU(2) transformations, the fields are transformed accord-
ing to φ′ = e

i
2 τaθa

φ , where τa (a = 1, 2, 3) are the Pauli matrices. For an
infinitesimal transformation we obtain

δφi =
i
2
τa
ijθ

aφj , δφ∗
i = − i

2
φ∗

jτ
a
jiθ

a .

The Noether current is determined by

jµ =
∂L

∂(∂µφi)
δφi + δφ∗

i

∂L
∂(∂µφ∗

i )

=
i
2
θa
(
∂µφ∗

i τ
a
ijφj − φ∗

i τ
a
ij∂µφj

)
.

From the previous relation (θa are constant independent parameters) it follows
that the conserved currents are:

ja
µ = − i

2
(
∂µφ∗

i τ
a
ijφj − φ∗

i τ
a
ij∂µφj

)
.

The charges are

Qa = − i
2

∫
d3x(∂0φ

∗
i τ

a
ijφj − φ∗

i τ
a
ij∂0φj) .
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5.13 The currents and charges are

ja
µ =

1
2
ψ̄iγµτa

ijψj , Qa =
1
2

∫
d3xψ†

i τ
a
ijψj .

The equations of motion are (iγµ∂µ − m)ψi = 0 and ψ̄i(iγµ←−∂µ + m) = 0. The
current conversation law, ∂µjµa = 0 can be proved easily:

2∂µjµa = (∂µψ̄i)γµτa
ijψj + ψ̄iγ

µτa
ij∂µψj = imψ̄iτ

a
ijψj + ψ̄iτ

a
ij(−imψj) = 0 ,

where we used the equations of motion. The Noether theorem is valid on–shell.

5.14

(a) The phase invariance is the U(1) symmetry, where ψ → ψ′ = eiθψ and
ψ̄ → ψ̄′ = e−iθψ̄ . The Noether current is jµ = ψ̄γµψ, while the charge is
given by Q = −e

∫
d3xψ†ψ. Note that the current does not have additional

indices since U(1) is a one–parameter group.
(b) jµ = i(φ∗∂µφ − φ∂µφ∗) , Q = iq

∫
d3x(φ∗∂0φ − φ∂0φ

∗) .

5.15 The equations of motion are (�� + m2)φi = 0. The expression φT φ is
invariant under SO(3) transformations, hence the Lagrangian density has the
same symmetry. The generators of SO(3) group are

J1 =




0 0 0
0 0 −i
0 i 0


 , J2 =




0 0 i
0 0 0
−i 0 0


 , J3 =




0 −i 0
i 0 0
0 0 0


 . (5.1)

Note that we can write
(Jk)ij = −iεkij .

Under SO(3) transformations, the infinitesimal variations of the fields are
δφi = i(Jk)ijθ

kφj = εkijθkφj and the Noether current is

jµ =
∂L

∂(∂µφi)
δφi

= εkijφj∂µφiθk

= −θ · (φ × ∂µφ) .

The parameters of rotations θk, are arbitrary and therefore the currents

jµ
k = −εkijφj∂

µφi

are also conserved.

5.16 First, derive the following formula eiαγ5 = cos α+iγ5 sin α. The transfor-
mation law for the Dirac Lagrangian density under the chiral transformation
is given by
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L → ψ†e−iαγ5γ0(iγµ∂µ − m)eiαγ5ψ

= (cos2 α + sin2 α)ψ̄iγµ∂µψ − mψ̄(cos α + iγ5 sinα)2ψ
= ψ̄iγµ∂µψ − mψ̄(cos 2α + iγ5 sin 2α)ψ .

From the previous expression we can conclude that the Lagrangian density
is invariant only for massless fermions. The Noether current is jµ = ψ̄γµγ5ψ.
Prove that ∂µjµ is proportional to the mass m of the field.

5.17 The current is given by

jµ =
∂L

∂(∂µσ)
δσ +

∂L
∂(∂µπa)

δπa +
∂L

∂(∂µΨi)
δΨi + δΨ̄i

∂L
∂(∂µΨ̄i)

= −εabcαb∂µπaπc − 1
2
Ψ̄iγµαaτa

ijΨj .

The final result has the form

jµ = π × ∂µπ +
1
2
Ψ̄γµτΨ .

5.18

(a) For translations, we have δxµ = εµ, while the total variations of the fields
equal zero. The Noether current is

Tµν =
∂L

∂(∂µφr)
∂φr

∂xν
− Lgµν . (5.2)

The index ν in (5.2) comes from the group of translations. For a real scalar
field, from (5.2) we obtain

Tµν = ∂µφ∂νφ − 1
2
[
(∂φ)2 − m2φ2

]
gµν . (5.3)

The conserved charges are the Hamiltonian (for ν = 0),

H =
∫

d3xT 00 =
1
2

∫
d3x
[
(∂0φ)2 + (∇φ)2 + m2φ2

]
, (5.4)

and the momentum (for ν = i)

P i =
∫

d3xT 0i =
∫

d3x∂0φ∂iφ . (5.5)

For the Dirac field the energy–momentum tensor is given by

Tµν = iψ̄γµ∂νψ − Lgµν .

The Hamiltonian and momentum are given by
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H =
∫

d3xψ̄[−iγ∇ + m]ψ , (5.6)

P = −i
∫

d3xψ†∇ψ . (5.7)

For electromagnetic field the energy–momentum tensor is

Tµν =
∂L

∂(∂µAρ)
∂Aρ

∂xν
− Lgµν

from which we obtain

Tµν = −Fµρ∂νAρ +
1
4
F 2gµν . (5.8)

For the Lorentz transformations δxν = ωνρxρ and

δφ = 0 , δψ = − i
4
σνρω

νρψ, δAµ = ω ν
µ Aν ,

The Noether currents for scalar, spinor and electromagnetic field are

jµ = [xνTµρ − xρTµν ]ωνρ ,

jµ = [
1
2
ψ̄γµσνρψ + xνTµρ − xρTµν ]ωνρ , (5.9)

jµ = [FµρAν − FµνAρ + (xνTµρ − xρTµν)]ωνρ .

Dropping the parameters of the Lorentz transformations ωνρ, the con-
served currents have the form Mµνρ, and they are given by the expression
in square brackets in (5.9). The angular-momentum is Mνρ =

∫
d3xM0νρ.

(b) As we see, the energy–momentum tensors for Dirac and electromagnetic
fields are not symmetric. To find the symmetrized energy–momentum ten-
sors we employ the procedure given in the problem. For the Dirac field we
have

χρµν =
1
4
(−ψ̄γµσρνψ + ψ̄γρσµνψ + ψ̄γνσµρψ)

=
i
8
ψ̄(4gµνγρ − 4gρνγµ + γµγνγρ − γργνγµ)ψ .

Using (4.43) we find

∂ρχρµν = − i
4
∂νψ̄γµψ − i

4
∂µψ̄γνψ − 3i

4
ψ̄γµ∂νψ

+
i
4
ψ̄γν∂µψ + gµν

i
2
(∂νψ̄γνψ + ψ̄/∂ψ) .

The symmetrized energy–momentum tensor for Dirac field is
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T̃µν =
i
4
(ψ̄γν∂µψ + ψ̄γµ∂νψ − ∂µψ̄γνψ − ∂νψ̄γµψ) −

− gµν(
i
2
∂νψ̄γνψ − i

2
ψ̄/∂ψ − mψ̄ψ) .

Similarly we determine the symmetrized energy–momentum tensor for the
electromagnetic field. From transformation rule of the electromagnetic po-
tential with respect to Lorentz transformations

δAα = ωαβAβ ≡ 1
2
ωµν(Iµν)αβAβ ,

follows that
(Iµν)αβ = gµαgνβ − gµβgνα .

Then χρµν = FµρAν and the new energy–momentum tensor is

T̃µν = −FµρF ν
ρ +

1
4
F 2gµν . (5.10)

If we introduce the electric and magnetic fields: F 0i = −Ei, Fij =
−εijkBk, then the components of energy–momentum tensor are:

T̃ 00 = −F 0iF 0
i +

1
4
(2F0iF

0i + FijF
ij)

= E2 +
1
4
(−2E2 + 2B2)

=
1
2
(E2 + B2) ,

T̃ 0i = −F 0jF i
j

= εijkEjBk

= (E × B)i , (5.11)

T̃ ij = −EiEj + εiklεjknBlBn +
1
2
(E2 − B2)δij

= −
(
EiEj + BiBj − δijT00

)
.

From the expression (5.11) we conclude that T̃00 T̃ 0i, −T̃ij are the energy
density of electromagnetic field, the Poynting vector, and the components
of the Maxwell stress tensor.

5.19 The variation of form is defined by δ0φ(x) = φ′(x) − φ(x). From

δ0φ = δφ − ∂µφδxµ,

where δφ = φ′(x′) − φ(x) is the total variation of a field, it follows that the
infinitesimal form variation of φ is

δ0φ = ρ(φ(x) + xµ∂µφ) . (5.12)
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The induced change of the action is

S′ − S =
1
2

∫
d4x′ [(∂′φ′)2 − m2φ′2(x′)

]
− 1

2

∫
d4x
[
(∂φ)2 − m2φ2(x)

]
.

(5.13)
The transformed volume of integration is given by

d4x′ = |J |d4x = det(e−ρI)d4x = e−4ρd4x . (5.14)

The field derivative is changed according to the following rule:

∂µφ(x) → ∂φ′

∂x′µ =
∂xν

∂x′µ
∂

∂xν
(eρφ) = e2ρ∂µφ . (5.15)

Thus, the change of the action is

S′ − S =
1
2

∫
d4xe−4ρ

[
e4ρ(∂φ)2 − m2e2ρφ2(x)

]

− 1
2

∫
d4x
[
(∂φ)2 − m2φ2(x)

]

=
1
2
m2(1 − e−2ρ)

∫
d4xφ2(x) .

For an infinitesimal dilatation (ρ � 1), the variation of the action is

δS = m2ρ

∫
d4xφ2(x) . (5.16)

From (5.16) it is clear that the theory of massless scalar field is invariant under
dilatations.
The conserved current is

jµ = −φ∂µφ − xν∂µφ∂νφ + Lxµ . (5.17)

By calculating ∂µjµ one obtains that ∂µjµ is proportional to the mass m.

5.20 From
d4x′ = e−4ρd4x ≈ (1 − 4ρ)d4x , (5.18)

and
ψ̄′(x′)γµ∂′

µψ′(x′) = e4ρψ̄γµ∂µψ ≈ (1 + 4ρ)ψ̄γµ∂µψ , (5.19)

it follows that this transformation leaves the action unchanged. The Noether
current is jµ = − 3

2 iψ̄γµψ − ixνψ̄γµ∂νψ + xµL.
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Green functions

6.1 The Green function of the Klein-Gordon equation satisfies the equation

(��x + m2)∆(x − y) = −δ(4)(x − y) . (6.1)

Fourier transformations of the Green function and the δ-function in (6.1) gives

(��x + m2)
1

(2π)4

∫
d4k∆̃(k)e−ik·(x−y) = − 1

(2π)4

∫
d4ke−ik·(x−y) . (6.2)

From (6.2) follows

∆̃(k) =
1

k2 − m2
=

1
k2
0 − k2 − m2

.

Then, the Green function is defined by

∆(x − y) =
∫

d4k

(2π)4
1

k2
0 − k2 − m2

e−ik·(x−y) . (6.3)

The integral (6.3) is divergent, since the integrand has the poles in k0 = ±ωk.
We shall modify the contour of integration to make the integral (6.3) conver-
gent. It is clear that we have to give the physical reasons for this modification
of integral. The poles can be evaded in four different ways. The first one is
from the upper side (Fig. 6.1). The exponential term in (6.3) for large energy
k0 behaves as e(x0−y0)Imk0 , therefore the contour for x0 > y0 has to be closed
from the lower side (Imk0 < 0), while in the case x0 < y0 we will close the
integration contour on the upper side. By applying the Cauchy theorem we
get

∆(x − y) = − 1
(2π)4

∫
d3keik·(x−y)2πi(Resωk

+ Res−ωk
)θ(x0 − y0) . (6.4)

From (6.4) follows
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∆R = − i
(2π)3

∫
d3k
2ωk

eik·(x−y)(e−iωk(x0−y0) − eiωk(x0−y0))θ(x0 − y0) . (6.5)

∆R(x− y) is the retarded Green function. The solution of the inhomogeneous
equation (�� + m2)φ = J is

φ(x) = −
∫

d4y∆(x − y)J(y) + φ0 , (6.6)

where φ0 is a solution of homogeneous equation. From the expressions (6.5)
and (6.6) (because of θ−function), we conclude that we integrate over y0 from
−∞ to x0. The value of the field φ at time x0 is determined by the source
J at earlier times. For this reason this function is called the retarded Green
function.

Fig. 6.1. The integration contour for the retarded boundary conditions

Fig. 6.2. The integration contour for the advanced boundary conditions

By evading poles as in Fig. 6.2 we get the so-called advanced Green function

∆A =
i

(2π)3

∫
d3k
2ωk

eik·(x−y)(e−iωk(x0−y0) − eiωk(x0−y0))θ(y0 − x0) . (6.7)

The advanced Green function contributes nontrivially to the field φ(x) for
y0 > x0. If we evade poles as in Fig. 6.3, we get the Feynman propagator :
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Fig. 6.3. The integration contour which defined the Feynman propagator

Fig. 6.4. The integration contour for the Dyson Green function

∆F =
i

(2π)3

∫
d3keik·(x−y)

[
Res−ωk

θ(y0 − x0) − Resωk
θ(x0 − y0)

]

= − i
(2π)3

∫
d3k
2ωk

eik·(x−y)
[
e−iωk(x0−y0)θ(x0 − y0) (6.8)

+eiωk(x0−y0)θ(y0 − x0)
]

.

We can conclude that positive (negative) energy solutions propagate forward
(backward) in spacetime. This is what we need in the relativistic quantum
physics in contrast to the classical theory (for example in classical electrody-
namics), where all physically relevant information is contained in the retarded
Green function. Dyson Green function is obtained by evading poles as in Fig.
6.4. This Green function can be evaluated in a way similar to the previous
three cases. It is recommended to do this calculation as an exercise.

6.2 From (6.5) and (6.8) it follows that (we take y = 0)

∆F(x) − ∆R(x) = − i
(2π)3

∫
d3k
2ωk

ei(ωkt+k·x) , (6.9)

since θ(t) + θ(−t) = 1. By applying (�� + m2) on (6.9) we get

(�� + m2)[∆F(x) − ∆R(x)] = 0.

6.3

I =
∫

d4kδ(k2 − m2)θ(k0)f(k)
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=
∫

d4kδ(k2
0 − ω2

k)θ(k0)f(k)

=
∫

d3kdk0
1

2ωk
[δ(k0 − ωk) + δ(k0 + ωk)] θ(k0)f(k)

=
∫

d3k
2ωk

f(k)
∣∣∣∣
k0=ωk

.

From this calculation it is clear that the expression d3k/(2ωk) is a Lorentz
invariant measure.

6.5 Let us take x0 < 0. The integral over the contour in Fig. 6.5 vanishes
since there are no poles within the contour of integration. So, we get

∫ −ωk−ρ

−R

+
∫

C−
ρ

+
∫ ωk−ρ

−ωk+ρ

+
∫

C+
ρ

+
∫ R

ωk+ρ

+
∫

CR

= 0 . (6.10)

Fig. 6.5. The integration contour that defined the principal-part propagator

The integral along the half–circle, CR tends to zero for large R, which can
be seen if we take that limit in the integrand. If in the integral

∫
C+

ρ
we take

k0 = ωk + ρeiϕ, it becomes
∫

C+
ρ

=
∫ 0

π

ie−ix0(ωk+ρeiϕ) 1
ρeiϕ + 2ωk

dϕ . (6.11)

By taking ρ → 0 in (6.11) we get
∫

C+
ρ

= − iπ
2ωk

e−iωkx0 . (6.12)

In the same way we can show that
∫

C−
ρ

=
iπ

2ωk
eiωkx0 . (6.13)

From (6.10), (6.12) and (6.13) we get (for x0 < 0)
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∆̄(x) =
iπ

(2π)4

∫
d3k
2ωk

eik·x [e−iωkx0 − eiωkx0
]
θ(−x0). (6.14)

The case x0 > 0 is analogous to the previous one. The result is

∆̄(x) = − iπ
(2π)4

∫
d3k
2ωk

eik·x [e−iωkx0 − eiωkx0
]
θ(x0) . (6.15)

By comparing equations (6.14) and (6.15) with the expressions for ∆R and
∆A we obtain

∆̄(x) =
1
2
(∆R(x) + ∆A(x)) .

6.6

∆(x) = − i
(2π)3

∫
d3k
2ωk

eik·x(e−iωkt − eiωkt) , (6.16)

∆±(x) = ∓ i
(2π)3

∫
d3k
2ωk

ei(k·x∓ωkt) . (6.17)

6.7 By using the expression for ∆ obtained in Problem 6.6 we get

∂i∆(x) = − i
(2π)3

∫
d3k
2ωk

ikieik·x(e−iωkt − eiωkt) = 0 , (6.18)

since the integrand is an odd function of k. The second identity can be proven
easily.

6.8 By applying the operator (�� + m2) to the expression (6.16) we get

(��+m2)∆(x) = − i
(2π)3

∫
d3k
2ωk

(−ω2
k +k2 +m2)

[
ei(−ωkt+k·x) − ei(ωkt+k·x)

]
,

from which follows that (�� + m2)∆(x) = 0, as k2 = m2.

6.9 For m = 0 from (6.8) it follows that

∆F|m=0 = − i
(2π)3

∫
d3k
2k

eik·x
[
e−ikx0

θ(x0) + eikx0θ(−x0)
]

= − i
2(2π)2

∫ ∞

0

∫ π

0

k sin θdkdθ

×
[
eik(−t+r cos θ)θ(t) + eik(t+r cos θ)θ(−t)

]
, (6.19)

where in the second line we integrated over the polar angle ϕ. Integration over
θ gives

∆F(x)|m=0 = − 1
2(2π)2r

∫ ∞

0

dk
[
(e−ik(t−r) − e−ik(t+r))θ(t)

+(eik(t+r) − eik(t−r))θ(−t)
]

. (6.20)
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Now, we shall consider separately two cases: t > 0 and t < 0. In the first
one, t > 0 the second term in the integrand of (6.20) is zero. The first part
of the integrand has bad behavior for large k. We regularize it by making
substitution t → t − iε, where ε → 0+ . In this way we ensure convergence of
this integral. Then from (6.20) it follows that

∆F|m=0 =
i

2(2π)2r

(
1

t − r − iε
− 1

t + r − iε

)
(6.21)

=
i

(2π)2
1

t2 − r2 − iε
=

i
(2π)2

1
x2 − iε

. (6.22)

By applying the formula

1
z ± iε

= P
1
z
∓ iπδ(z) , (6.23)

in expression (6.22) we get

∆F(x) |m=0= − 1
4π

δ(x2) +
i

4π2
P

1
x2

. (6.24)

For the case t < 0 one also obtains the expression (6.24); this is left as an
exercise.

6.10 We shall start from (6.5) and use spherical coordinates. Integration over
angles θ and ϕ leads to

∆R(x) = − 1
2(2π)2r

∫ ∞

0

dk
[
e−ik(t−r) − eik(t+r) − e−ik(t+r) + eik(t−r)

]
θ(t) .

(6.25)
The change of variable k′ = −k in the third and the fourth integral in expres-
sion (6.25) gives

∆R(x) = − 1
2(2π)2r

∫ ∞

−∞
dk(e−ik(t−r) − eik(t+r))θ(t) . (6.26)

Note the change of the lower integration limit in the expression (6.26). From
(6.26) follows

∆R|m=0 (x) = − 1
4πr

[δ(t − r) − δ(t + r)] θ(t) . (6.27)

The second term in (6.27) has a ”wrong” sign but it is irrelevant as this term
vanishes (t > 0 and r > 0). By changing this minus into a plus in (6.27) we
finally obtain:

∆R|m=0 (x) = − 1
2π

δ(t2 − r2)θ(t) = − 1
2π

δ(x2)θ(t) . (6.28)

The case of advanced Green function is left for an exercise.
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6.11 In the Problem 6.1, we modified the the contour of integration according
to the boundary conditions, while the poles were not moved. Sometimes it is
useful to do the opposite, i.e. to move the poles and to integrate over the real
k0–axis. For the retarded Green function this can be done by changing

k2 − m2 → k2 − m2 + iηk0

in the propagator denominator, where η is a small positive number. Therefore,

∆R(x − y) =
∫

d4k

(2π)4
e−ik·(x−y)

k2 − m2 + iηk0
. (6.29)

Now the poles of the integrand in (6.29) are k0 = ±ωk − iη/2. From (6.6) and
(6.29) we have

φR(x) = − g

(2π)4

∫
d4k

e−ik·x

k2 − m2 + iηk0

∫
dy0eik0y0

∫
d3yδ(3)(y)e−ik·y .

(6.30)
First in (6.30) we shall integrate over y0, then over y and finally over k0; this
gives

φR(x) =
g

(2π)3

∫
d3k

eik·x

k2 + m2
. (6.31)

In order to compute this three-dimensional momentum integral we introduce
spherical coordinates; also we take x = rez. The angular integrations give (in
one integral use the change k′ = −k )

φR(x) = − g

(2π)2ir

∫ ∞

−∞

kdk

k2 + m2
e−ikr . (6.32)

Fig. 6.6.

The integral in (6.32) has the poles at k0 = ±im. The integration contour is
given in Fig. 6.6. By applying the Cauchy theorem in (6.32) we obtain:

φR(x) =
g

4πr
e−mr , (6.33)

which is the requested result.
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6.12 Apply i/∂ − m on S(x).

6.13 The Fourier transformation of the equation (i/∂−m)S(x−y) = δ(4)(x−y)
leads to

(i/∂ − m)
1

(2π)4

∫
d4pS̃(p)e−ip·(x−y) =

1
(2π)4

∫
d4pe−ip·(x−y) . (6.34)

From (6.34) follows

S̃(p) =
/p + m

p2 − m2
.

Therefore, the Green function is given by

S(x − y) =
∫

d4p

(2π)4
/p + m

p2
0 − p2 − m2

e−ip·(x−y) . (6.35)

The poles of the integrand in (6.35) are p0 = ±Ep = ±
√

p2 + m2. The
propagator is

SF(x − y) =
1

(2π)4

∫
d3peip·(x−y)

∫

CF

dp0
p0γ

0 + piγi + m

p2
0 − E2

p

e−ip0(x0−y0) ,

(6.36)
where the integration contour CF is defined in Problem 6.1. Applying the
Cauchy theorem we get

SF(x − y) = − i
(2π)3

∫
d3p
2Ep

eip·(x−y)

[
(Epγ

0 + piγ
i + m)e−iEp(x0−y0)θ(x0 − y0)+

+(−Epγ
0 + piγ

i + m)eiEp(x0−y0)θ(y0 − x0)
]

= − i
(2π)3

∫
d3p
2Ep

[
(/p + m)e−ip·(x−y)θ(x0 − y0)−

−(/p − m)eip·(x−y)θ(y0 − x0)
]

. (6.37)

The advanced Green function can be found in the same way. The result is

SA(x − y) =
i

(2π)3

∫
d3p
2Ep

eip·(x−y)
[
(Epγ

0 + piγ
i + m)e−iEp(x0−y0)−

−(−Epγ
0 + piγ

i + m)eiEp(x0−y0)
]
θ(y0 − x0) . (6.38)

For simplicity we take y = 0 in (6.37) and (6.38). We have

SF − SA = − i
(2π)3

∫
d3p
2Ep

ei(p·x−Epx0)(Epγ
0 + piγ

i + m)(θ(x0) + θ(−x0))

= − i
(2π)3

∫
d3p
2Ep

ei(p·x−Epx0)(Epγ
0 + piγ

i + m) . (6.39)
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Thus,

SF − SA = − i
(2π)3

∫
d3p
2Ep

(Epγ
0 + piγi + m)e−ip·x . (6.40)

By applying i/∂ − m on (6.40) we get (i/∂ − m)(SF − SA) = 0, since

(/p + m)(/p − m) = p2 − m2 = 0.

6.14 The integration along the curve CF is equivalent to the integration along
the real p0–axis if we make the replacement p2 −m2 → p2 −m2 + iε, where ε
is a small positive number in the propagator denominator. The simple poles
are p0 = ±Ep ∓ iε. So we get

ψ(x) =
g

(2π)4

∫
d4y

∫
dp0

∫
d3p

/p + m

p2 − m2 + iε
e−ip·(x−y)δ(y0)eiq·y




1
0
0
0


 .

After the integration over the variables y0 and y we get

ψ(x) =
g

2π

∫
dp0d3p

/p + m

p2 − m2 + iε
e−i(p0x0−p·x)δ(3)(p − q)




1
0
0
0


 . (6.41)

Integration over the momentum p is simple and it gives

ψ(x) =
g

2π
eiq·x

∫ ∞

−∞
dp0

p0γ0 − q · γ + m

p2
0 − q2 − m2 + iε

e−ip0x0




1
0
0
0


 . (6.42)

Employing the Cauchy theorem we find that

ψ(x) = − ig
2Eq

eiq·x [(−Eqγ0 − q · γ + m)eiEqx0θ(−x0)

+(Eqγ0 − q · γ + m)e−iEqx0θ(x0)
]



1
0
0
0


 , (6.43)

which finally gives:

ψ(x) = − ig
2Eq

eiq·x

×


eiEqx0




−Eq + m
0
q3

q1 + iq2


 θ(−x0) + e−iEqx0




Eq + m
0
q3

q1 + iq2


 θ(x0)


 . (6.44)
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6.15 The equation for the free massive vector field Aµ is given by

(gρσ�� − ∂ρ∂σ + m2gρσ)Aσ = 0 . (6.45)

The Green function (it is in fact the inverse kinetic operator) is defined by

(gρσ�� − ∂ρ∂σ + m2gρσ)xGσν(x − y) = δ(4)(x − y)δρ
ν . (6.46)

If we introduce

Gσν =
1

(2π)4

∫
d4ke−ik·(x−y)G̃σν(k) ,

in (6.46), we get

(−k2gρσ + kρkσ + m2gρσ)G̃σν = δρ
ν . (6.47)

We shall assume that the solution of (6.47) has the form G̃ρσ = Ak2gρσ +
Bkρkσ, where A and B are scalars, i.e. they depend on k2 and m2. Inserting
the solution into (6.47), after comparing of the appropriate coefficients, we
get

A =
1

−k4 + k2m2
, B = − 1

m2(m2 − k2)
.

The final result takes the following form

G̃µν =
1

k2 − m2

(
−gµν +

kµkν

m2

)
. (6.48)

6.16 Use the same procedure as in the previous problem. The result is

G̃µν = −gµν

k2
+

1 + λ

λk4
kµkν .
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Canonical quantization of the scalar field

7.1 Starting from the expressions for scalar field φ and its canonical momen-
tum π = φ̇,

φ =
∫

d3k√
2(2π)3ωk

[
a(k)e−ik·x + a†(k)eik·x] ,

φ̇ = i
∫

d3k√
(2π)32ωk

ωk

[
−a(k)e−ik·x + a†(k)eik·x] ,

we have
∫

d3xφ(x)e−ik′·x =
(2π)3/2

√
2ωk′

[
a(k′)e−iωk′ t + a†(−k′)eiωk′ t

]
, (7.1)

∫
d3xφ̇(x)e−ik′·x = i(2π)3/2

√
ωk′

2
[
a†(−k′)eiωk′ t − a(k′)e−iωk′ t

]
. (7.2)

From (7.1) and (7.2) it follows that

a(k) =
1

(2π)3/2

1√
2ωk

∫
d3xeik·x

[
ωkφ(x) + iφ̇(x)

]
, (7.3)

a†(k) =
1

(2π)3/2

1√
2ωk

∫
d3xe−ik·x

[
ωkφ(x) − iφ̇(x)

]
. (7.4)

By using the expressions (7.3) and (7.4), we find:

[a(k), a†(k′)] =
i

2(2π)3
1√

ωkωk′

∫
d3xd3yei(k·x−k′·y)

(
−ωk[φ(x), φ̇(y)]+

+ωk′ [φ̇(x), φ(y)]
)

=
1

2(2π)3
1√

ωkωk′

∫
d3xei(ωk−ωk′ )t+i(k′−k)·x(ωk + ωk′)

= δ(3)(k − k′) . (7.5)
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In the previous formula, we used the equal–time commutation relations for
real scalar field (7.C) i.e. we took1 x0 = y0. We can do this because the
creation and annihilation operators are time independent. This can be proved
directly:

da(k)
dt

=
1

(2π)3/2

1√
2ωk

∫
d3xeik·x [iω2

kφ + i∇2φ − im2φ
]

.

After two partial integrations in the second term we get

da(k)
dt

=
i

(2π)3/2

1√
2ωk

∫
d3xeik·x [ω2

k − k2 − m2
]
φ .

The dispersion relation, ω2
k = m2 + k2 gives da(k)/dt = 0. It is clear that

a†(k) is also time independent.
Similarly, we can prove that:

[a(k), a(k′)] = [a†(k), a†(k′)] = 0 .

7.2 In this problem, φ(x) is a classical field, so that a(k) and a†(k) are the
coefficients rather then operators. We can calculate them from the expressions
(7.3) and (7.4) inserting φ(t = 0,x) = 0 and φ̇(t = 0,x) = c:

a(k) =
1

(2π)3/2

1√
2ωk

∫
d3xe−ik·xic

=
ic√
2m

(2π)3/2δ(3)(k) .

Then, the scalar field is

φ(t,x) =
c

m
sin(mt) .

Generally, if we know a field and its normal derivative on some space–like
surface σ, then the field at an arbitrary point is given by

φ(y) =
∫

σ

[φ(x)∂x
µ∆(x − y) − ∆(y − x)∂µφ(x)]dΣµ .

Solve this problem using the previous theorem.

7.3 The results are:

: H : =
∫

d3kωk

[
a†(k)a(k) + b†(k)b(k)

]
, (7.6)

: Q : = q

∫
d3k
[
a†(k)a(k) − b†(k)b(k)

]
, (7.7)

: P : =
∫

d3kk
[
a†(k)a(k) + b†(k)b(k)

]
. (7.8)

1 This will be done in the forthcoming problems, too.



Chapter 7. Canonical quantization of the scalar field 143

7.4 (up, uk) = δ(3)(k − p), (up, u
∗
k) = 0.

7.5 From (2.9), we have

〈0|H |0〉 =
1
2

∫
d3kωk 〈0| (a†(k)a(k) + a(k)a†(k)) |0〉

=
1
2

∫
d3kωk 〈0| a(k)a†(k) |0〉

=
1
2

∫
d3kωk(δ(3)(0) − 〈0| a†(k)a(k) |0〉)

=
1
2
δ(3)(0)

∫
d3k
√

k2 + m2

= 2πδ(3)(0)
∫ ∞

0

dkk2
√

k2 + m2 .

By change of variable k = m
√

t, the last integral becomes Euler’s beta function

〈0|H |0〉 = πm4δ(3)(0)B(
3
2
,−2) = −πm4

4
δ(3)(0)Γ (−2) .

7.6 Use the formulae from Problem 7.3 and the commutation relations (7.D).

(a) Direct calculation yields

[Pµ, φ] =
1

(2π)3/2

∫
d3kd3k′
√

2ωk′
kµ
[
a†(k)a(k), a(k′)e−ik′·x + a†(k′)eik′·x

]

=
1

(2π)3/2

∫
d3k√
2ωk

kµ
(
−a(k)e−ik·x + a†(k)eik·x)

= −i∂µφ . (7.9)

The same result can be obtained if we start from the transformation law
of the field φ under translations (see Problem 7.20):

φ(x + ε) = eiε·P φ(x)e−iε·P = φ(x) + iεµ[Pµ, φ(x)] + o(ε2) . (7.10)

On the other hand, we have

φ(x + ε) = φ(x) + εµ∂µφ + o(ε2) . (7.11)

From (7.11) and (7.10) the result (7.9) comes.
(b) First, we calculate the commutator [Pµ, φn(x)]:

[Pµ, φn(x)] =
n∑

k=1

φk−1[Pµ, φ]φn−k

=
n∑

k=1

φk−1(−i∂µφ)φn−k

= −i∂µφn .
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In the same way one can prove that

[Pµ, πn(x)] = −i∂µπn .

As a consequence,

[Pµ, φn(x)πm(x)] = −i∂µ(φn(x)πm(x)) .

An arbitrary analytical function F (φ, π) can be expanded in series as

F (φ, π) =
∑
nm

Cnmφnπm .

Then
[Pµ, F (φ, π)] = −i∂µF .

(c) [H, a†(k)a(q)] = (ωk − ωq)a†(k)a(q).
(d) [Q,Pµ] = 0.
(e) [H,N ] = 0.

(f)
∫

d3x[H,φ(x)]e−ip·x = (2π)3/2
√

ωp

2

(
−a(p)e−iωpt + a†(−p)eiωpt

)

7.7 From the Baker–Hausdorff relation follows

eiQφe−iQ = φ + i[Q,φ] +
i2

2!
[Q, [Q,φ]] + . . . . (7.12)

The first commutator in the previous expansion is given by

[Q,φ] = iq
∫

d3y[φ†(y)π†(y) − φ(y)π(y), φ(x)]

= −q

∫
d3yδ(3)(x − y)φ(y) = −qφ(x) .

Then
[Q, [Q,φ]] = (−q)2φ , [Q, [Q, [Q,φ]]] = (−q)3φ , . . . (7.13)

Finally,

eiQφe−iQ =
(

1 − iq +
(−iq)2

2
+ . . .

)
φ = e−iqφ . (7.14)

7.8 The angular momentum of a scalar field has the form

Mµν =
∫

d3x(xµT 0ν − xνT 0µ) .

(a) By inserting the previous formula in the commutator, we have

[Mµν , φ(x)] =
∫

d3y[yµ(φ̇∂νφ − g0νL) − yν(φ̇∂µφ − g0µL), φ(x)] . (7.15)

The following equal–time commutators can be easily evaluated:
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[L(y), φ(x)] = −iδ(3)(x − y)π(y) ,

[π(y)∂µφ(y), φ(x)] = −i∂µφδ(3)(x − y) − iδµ0π(y)δ(3)(x − y) .

By substituting these expressions in (7.15) and performing integration, we
get

[Mµν , φ(x)] = i(xν∂µ − xµ∂ν)φ(x) . (7.16)

The same result can be obtained if we start from the transformation law
for the field φ(x) under Lorentz transformations,

e
i
2 ωµνMµν

φ(x)e−
i
2 ωµνMµν

= φ(Λ−1(ω)x) .

(b) We first calculate the commutator [Mµν , P0]:

[Mµν , P0] =
∫

d3x[xµT0ν − xνT0µ, P0]

=
∫

d3x (xµ[T0ν , P0] − xν [T0µ, P0])

= i
∫

d3x (xµ∂0T0ν − xν∂0T0µ)

= i
∫

d3x
(
−xµ∂iT

i
ν + xν∂iT

i
µ

)

= i
∫

d3x
(
gµiT

i
ν − giνT i

µ

)

= i
∫

d3x
(
Tµν − gµ0T

0
ν − Tνµ + g0νT 0

µ

)

= −i(gµ0Pν − gν0Pµ) . (7.17)

In (7.17), we used the results of Problem 7.6 (b), the continuity equation
∂µTµν = 0 and integrated by parts. In the case λ = i we can use of a
partial integration. The result is [Mµν , Pi] = −i(giµPν − giνPµ). Thus,

[Mµν , Pλ] = i(gλνPµ − gλµPν) . (7.18)

(c) Let us calculate firstly the commutator [Mij ,Mkl].
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[Mij ,Mkl] =
∫

d3xd3y
[
xiφ̇(x)∂jφ(x) − xj φ̇(x)∂iφ(x),

ykφ̇(y)∂lφ(y) − ylφ̇(y)∂kφ(y)
]

=
∫

d3xd3y
(
xiyk[φ̇(x)∂jφ(x), φ̇(y)∂lφ(y)]−

−xiyl[φ̇(x)∂jφ(x), φ̇(y)∂kφ(y)]

−xjyk[φ̇(x)∂iφ(x), φ̇(y)∂lφ(y)]

+xjyl[φ̇(x)∂iφ(x), φ̇(y)∂kφ(y)]
)

. (7.19)

Applying the equal–time commutation relations, we obtain2

[Mij ,Mkl] = i
∫

d3xd3y
[
xiyk

(
φ̇(x)∂lφ(y)∂x

j

− φ̇(y)∂jφ(x)∂y
l

)
δ(3)(x − y)

− xiyl

(
φ̇(x)∂kφ(y)∂x

j − φ̇(y)∂jφ(x)∂y
k

)
δ(3)(x − y)

− xjyk

(
φ̇(x)∂lφ(y)∂x

i − φ̇(y)∂iφ(x)∂y
l

)
δ(3)(x − y)

+ xjyl

(
φ̇(x)∂kφ(y)∂x

i − φ̇(y)∂iφ(x)∂y
k

)
δ(3)(x − y)

]
.

If we use the relation

∂x
mδ(3)(x − y) = −∂y

mδ(3)(x − y)

we obtain

[Mij ,Mkl] = −i
∫

d3xd3y
[
xiyk

(
φ̇(x)∂lφ(y)∂y

j δ(3)(x − y) − φ̇(y)∂jφ(x)∂x
l δ(3)(x − y)

)

−xiyl

(
φ̇(x)∂kφ(y)∂y

j δ(3)(x − y) − φ̇(y)∂jφ(x)∂x
k δ(3)(x − y)

)

−xjyk

(
φ̇(x)∂lφ(y)∂y

i δ(3)(x − y) − φ̇(y)∂iφ(x)∂x
l δ(3)(x − y)

)

+xjyl

(
φ̇(x)∂kφ(y)∂y

i δ(3)(x − y) − φ̇(y)∂iφ(x)∂x
k δ(3)(x − y)

)]
.

By performing partial integrations in the last expression, we obtain
2 We have used the following notation:

∂x
m =

∂

∂xm
; ∂m

x =
∂

∂xm
.
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[Mij ,Mkl] = −i
∫

d3x
[
gjk(xlφ̇(x)∂iφ(x) − xiφ̇(x)∂lφ(x))

+gil(xkφ̇(x)∂jφ(x) − xj φ̇(x)∂kφ(x))

+gik(xj φ̇(x)∂lφ(x) − xlφ̇(x)∂jφ(x))

+gjl(xiφ̇(x)∂kφ(x) − xkφ̇(x)∂iφ(x))
]

= i(gjkMil + gliMjk − gikMjl − gjlMik) . (7.20)

The next two commutators [Mij ,M0k], [M0j ,M0k] can be evaluated in the
same way. Do this explicitly, please.

7.10

(a) The commutator is given by

[Qa, Qb] = −1
4

∫
d3xd3yτa

ijτ
b
mn

×
[
φ̇†

i (x)φj(x) − φ†
i (x)φ̇j(x), φ̇†

m(y)φn(y) − φ†
m(y)φ̇n(y)

]
.

Recall that as the charges are time-independent we can work with the
equal–time commutators and we have

[Qa, Qb] = − i
4

∫
d3x
(
φ̇†[τa, τ b]φ − φ†[τa, τ b]φ̇

)
.

By using [τa, τ b] = 2iεabcτ c, we get

[Qa, Qb] = iεabcQc .

The second case is similar to the previous one:

[Qi, Qj ] = εimnεjpq

∫
d3x
∫

d3y[φm(x)φ̇n(x), φp(y)φ̇q(y)]

= i
∫

d3x(−εimnεjnqφmφ̇q + εimnεjpmφpφ̇n)

= i
∫

d3x(δijφmφ̇m − φj φ̇i − δijφmφ̇m + φiφ̇j)

= i
∫

d3x(φiφ̇j − φj φ̇i)

= iεijkεkmn

∫
d3xφmφ̇n

= iεijkQk .

As in the first part of this problem, we used the equal–time commutation
relations and the formula for appropriate product of two three–dimensional
ε symbols.
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(b) The commutator between the charges Qa and the field φm can be found
similarly:

[Qa, φm(x)] = − i
2

∫
d3yτa

ij [φ̇
†
i (y)φj(y) − φ†

i (y)φ̇j(y), φm(x)]

= − i
2
τa
ij

∫
d3y[φ̇†

i (y), φm(x)]φj(y)

= −1
2
τa
ij

∫
d3yδ(3)(x − y)δimφj(y)

= −1
2
τa
mjφj(x) .

In the same way, we find:

[Qa, φ†
m(x)] =

1
2
τa
imφ†

i .

The previous two results can be rewritten in the form

[θaQa, φm(x)] = iδ0φm(x) ,

[θaQa, φ
†

m(x)] = iδ0φ
†

m(x) .

In the case of SO(3) symmetry, the calculation is the same as above. The
result is

[Qk, φm(x)] = iεkmjφj(x) .

7.11 The dilatation current is

jµ = −φ∂µφ − xν∂µφ∂νφ + Lxµ .

(a) The dilatation generator is

D = −
∫

d3x
(

φφ̇ + xiφ̇∂iφ +
1
2
x0(φ̇2 − ∂iφ∂iφ)

)
.

(b) The commutator between the generator D and the field φ(x) is given by

[D,φ(y)] = −
∫

d3x[φ(x)π(x) + xiπ(x)∂iφ(x)

+
1
2
x0π2(x) − 1

2
x0∂iφ(x)∂iφ(x), φ(y)]

= −
∫

d3x
(
φ(x)[π(x), φ(y)] + x0π(x)[π(x), φ(y)]

+ xi[π(x), φ(y)]∂iφ(x)
)

.

By using the commutation relations (7.C), we have
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ρ[D,φ(y)] = iρ(φ(y) + y0π(y) + yi∂iφ)
= iρ(φ(y) + yµ∂µφ(y)) = iδ0φ .

In the same way, we obtain:

ρ[D,π(x)] = iρ(2π + xµ∂µπ) = iδ0π .

(c) By applying the previous result, we easily get

ρ[D,φ2] = ρ([D,φ]φ + φ[D,φ])
= i((δ0φ)φ + φδ0φ) = iδ0(φ2) ,

and generally
ρ[D,φa] = iδ0(φa) .

Similarly, one can show that

ρ[D,πa] = iδ0(πa) .

An arbitrary analytic function can be expanded in the following form

F (φ, π) =
∑
ab

cabφ
aπb ,

so that

ρ[D,F ] = ρ
∑
a,b

cab[D,φaπb]

= ρ
∑
a,b

cab

(
[D,φa]πb + φb[D,πb]

)

= i
∑
a,b

cab

(
δ0(φa)πb + φaδ0(πb)

)

= iδ0


∑

a,b

cabφ
aπb




= iδ0F .

(d) We first consider the case µ = i:

[D,P i] =
∫

d3x[D,π∂iφ]

=
∫

d3x
(
π[D, ∂iφ] + [D,π]∂iφ

)
.

By using part (b) of this problem, we obtain
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[D,P i] = i
∫

d3x
[
(2π + x0∂0π + xj∂jπ)∂iφ

+ π(2∂iφ + x0∂iπ + xj∂i∂jφ)
]

. (7.21)

The second term in this expression is transformed in the following way
∫

d3xx0∂k∂kφ∂iφ = −
∫

d3xx0∂kφ∂k∂iφ = −1
2

∫
d3x∂i(x0∂kφ∂kφ) ,

where we used the Klein-Gordon equation, ∂0π = −∂i∂iφ and then per-
formed a partial integration. Thus, we conclude that the second term can
be dropped as a surface term. The expression

∫
d3xπx0∂iπ is also a surface

term. Similarly, one can show that
∫

d3xxj∂jπ∂iφ = −3
∫

d3xπ∂iφ −
∫

d3xxjπ∂j∂
iφ .

Inserting these results in the formula (7.21) we obtain

[D,P i] = iP i .

The commutator [D,P 0] = iP 0 can be calculated in the same way.

7.12 In the expression for the vacuum expectation value, express the fields
φf in terms of the creation and annihilations operators. From four terms,
only one, which is proportional to 〈0| a(k)a†(k′) |0〉 = δ(3)(k−k′), is nonzero.
Then, we have

〈0|φf (t,x)φf (t,x) |0〉 =
1

(a2π)3
1

(2π)3

∫
d3k
2ωk

(∫
d3ye−(x−y)2/a2+ik·(x−y)

)2

.

Calculating the Poisson integral in this formula, we obtain

〈0|φf (t)φf (t) |0〉 =
1

2(2π)3

∫
d3k
ωk

e−k2a2/2

=
1

(2π)2

∫ ∞

0

k2dk√
k2 + m2

e−k2a2/2 .

By the change of variable k2 = t, the last integral becomes

〈0|φf (t)φf (t) |0〉 =
1

8π2

∫ ∞

0

√
tdt√

t + m2
e−ta2/2

=
m2

16π2
em2a2/4

[
K1(

m2a2

4
) − K0(

m2a2

4
)
]

, (7.22)

where Kν(x) are modified Bessel functions of the third kind (MacDonald
functions). Using the asymptotic expansions:
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K1(x) =
1
x

,

K0(x) = −(log(x/2) + 0, 5772)

for x � 1, we obtain in the limit m → 0

〈0|φf (t)φf (t) |0〉 =
1

4π2a2
.

7.13 Express the operators Lm and Ln in terms of αµ
m and use the commu-

tation relations.

7.14 After a very simple calculation, we find that

〈0| {φ(x), φ(y)} |0〉 =
i

2(2π)2
1

|x − y| limε→0

∫ ∞

0

dke−εk
(
eik(y0−x0−|x−y|)

− eik(y0−x0+|x−y|) + eik(x0−y0−|x−y|)

− eik(x0−y0+|x−y|)
)

. (7.23)

The integrals in the previous expression are regularized by introducing ε as
a regularization parameter. At the end we have to take the limit ε → 0. The
result is

〈0| {φ(x), φ(y)} |0〉 = − 1
2π2

1
(x − y)2

.

7.15 The vacuum expectation value 〈φ(x)φ(y)〉 is given by

〈φ(x)φ(y)〉 =
〈
φ+(x)φ−(y)

〉

=
∫

d3k
(2π)3/2

√
2ωk

d3q
(2π)3/2

√
2ωq

ei(q·y−k·x)δ(3)(k − q)

=
1

(2π)3

∫
d3k
2ωk

e−ik·(x−y) ,

where we split the field φ into positive and negative energy parts, φ = φ++φ−.
If we do the same in the vacuum expectation value of four scalar fields, we
see that only two terms remain:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
〈
φ+(x1)φ+(x2)φ−(x3)φ−(x4)

〉

+
〈
φ+(x1)φ−(x2)φ+(x3)φ−(x4)

〉
. (7.24)

The first term in the last expression is

〈
φ+(x1)φ+(x2)φ−(x3)φ−(x4)

〉
=

4∏
i=1

∫
d3qi

(2π)3/2
√

2ωi

〈
a1a2a

†
3a

†
4

〉

× ei(−q1·x1−q2·x2+q3·x3+q4·x4) ,
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where ai = a(qi). Using the relation
〈
a1a2a

†
3a

†
4

〉
=
〈
a1(δ(3)(q2 − q3) + a†

3a2)a
†
4

〉

= δ(3)(q2 − q3)δ(3)(q1 − q4) +
〈
a1a

†
3(δ

(3)(q2 − q4) − a†
4a2)
〉

= δ(3)(q2 − q3)δ(3)(q1 − q4) + δ(3)(q1 − q3)δ(3)(q2 − q4) ,

we obtain

〈
φ+(x1)φ+(x2)φ−(x3)φ−(x4)

〉
=

1
(2π)6

∫
d3q1

2ω1

d3q2

2ω2
e−iq2·(x2−x3)−iq1·(x1−x4)

+
1

(2π)6

∫
d3q1

2ω1

d3q2

2ω2
e−iq2·(x2−x4)−iq1·(x1−x3)

= 〈φ(x2)φ(x3)〉 〈φ(x1)φ(x4)〉
+ 〈φ(x1)φ(x3)〉 〈φ(x2)φ(x4)〉 .

The following result can be derived in the same way:
〈
φ+(x1)φ−(x2)φ+(x3)φ−(x4)

〉
= 〈φ(x1)φ(x2)〉 〈φ(x3)φ(x4)〉 .

By adding two last expressions, we get

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = 〈φ(x1)φ(x3)〉 〈φ(x2)φ(x4)〉
+ 〈φ(x1)φ(x4)〉 〈φ(x2)φ(x3)〉 +
+ 〈φ(x1)φ(x2)〉 〈φ(x3)φ(x4)〉 .

This result is a special case of Wick’ s theorem.

7.16 Scalar field in two dimensional spacetime can be represented as

φ(x) =
∫ ∞

−∞

dk√
(2π)2ωk

[
a(k)e−ikµxµ

+ a†(k)eikµxµ
]

,

so that
〈φ(x)φ(y)〉 =

1
4π

∫ ∞

−∞

dk

|k|e
i|k|(y0−x0)−ik(y−x) . (7.25)

If we introduce the notation y0 − x0 = τ , y − x = r, the previous integral
becomes

〈φ(x)φ(y)〉 =
1
4π

∫ ∞

0

dk

k

(
eik(τ−r) + eik(τ+r)

)
. (7.26)

Denoting the integral in (7.26) by I and introducing the regularization para-
meter ε, we get:

∂I

∂τ
=

i
4π

limε→0

∫ ∞

0

dke−εk
(
eik(τ−r) + eik(τ+r)

)

= − 1
2π

τ

τ2 − r2
. (7.27)
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From (7.27), it follows that

〈φ(x)φ(y)〉 = − 1
4π

log
τ2 − r2

µ2
= − 1

4π
log

(x − y)2

µ2
,

where µ is an integration constant which has the dimension of length.

7.17 By taking partial derivative of the expression 〈0|T (φ(x)φ(y)) |0〉 with
respect to x0, we get:

∂x0 〈0|T (φ(x)φ(y)) |0〉 = δ(x0 − y0) 〈0| [φ(x), φ(y)] |0〉 +
+ θ(x0 − y0) 〈0| ∂x0φ(x)φ(y) |0〉 + θ(y0 − x0) 〈0|φ(y)∂x0φ(x) |0〉 .

The first term is equal to zero as a consequence of the equal–time commutation
relation. By taking second order partial derivative with respect to x0, we get:

∂2
x0 〈0|T (φ(x)φ(y)) |0〉 = δ(x0 − y0)[π(x), φ(y)]

+ θ(x0 − y0) 〈0| ∂2
x0φ(x)φ(y) |0〉 +

+ θ(y0 − x0) 〈0|φ(y)∂2
x0φ(x) |0〉 .

In the first term, we use the equal–time commutation relation, and finally get
the result

∂2
x0 〈0|T (φ(x)φ(y)) |0〉 = −iδ(4)(x − y) +

+ θ(x0 − y0) 〈0| ∂2
x0φ(x)φ(y) |0〉 +

+ θ(y0 − x0) 〈0|φ(y)∂2
x0φ(x) |0〉 ,

which implies

(��x + m2) 〈0|T (φ(x)φ(y)) |0〉 = −iδ(4)(x − y) +
+ θ(x0 − y0) 〈0| (��x + m2)φ(x)φ(y) |0〉 +
+ θ(y0 − x0) 〈0|φ(y)(��x + m2)φ(x) |0〉 .

The last two terms vanish since the field φ satisfies the Klein–Gordon equation.
Therefore,

(��x + m2) 〈0|T (φ(x)φ(y)) |0〉 = −iδ(4)(x − y) . (7.28)

7.18

(a) Applying the variational principle to the given action leads to the equa-
tions:

i
∂ψ

∂t
=
(
− 1

2m
∆ + V (r)

)
ψ

−i
∂ψ

†

∂t
=
(
− 1

2m
∆ + V (r)

)
ψ

†
.

The first of these equations is the Schrödinger equation, the second one is
its conjugation equation.
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(b) A particular solution of the free Schrödinger equation is a plane wave
e−iEkt+ik·r, where Ek = k2/2m so that the general solution is

ψ(t, r) =
∫

d3k
(2π)3/2

a(k)e−iEkt+ik·r . (7.29)

The negative energy solutions are not present in previous expression since
Ek > 0 in nonrelativistic quantum mechanics. The field ψ† is

ψ†(t, r) =
∫

d3k
(2π)3/2

a†(k)eiEkt−ik·r . (7.30)

In the quantum theory these classical fields are replaced by operators in
the Hilbert space. The field conjugate to ψ is

π =
∂L
∂ψ̇

= iψ† .

The equal–time commutation relations are

[ψ(t,x), ψ†(t,y)] = δ(3)(x − y) ,

[ψ(t,x), ψ(t,y)] = [ψ
†
(t,x), ψ†(t,y)] = 0 . (7.31)

From the relations (7.29) and (7.30) follows

a(k) =
1

(2π)3/2
eiEkt

∫
d3xψ(t,x)e−ik·x

a†(k) =
1

(2π)3/2
e−iEkt

∫
d3xψ†(t,x)eik·x .

From (7.31) and previous relations one easily gets the commutation rela-
tions:

[a(k), a†(p)] = δ(3)(p − k) , (7.32)

[a(k), a(p)] = [a†(k), a†(p)] = 0 . (7.33)

(c) Substituting (7.29) and (7.30) into the expression for the Green function
one obtains

G(x0,x, y0,y) = −i 〈0|ψ(x0,x)ψ
†
(y0,y) |0〉 θ(x0 − y0)

= − i
(2π)3

∫
d3kd3pe−i(Ekx0−k·x−Epy0+p·y)

× 〈0| a(k)a†(p) |0〉 θ(x0 − y0)

= − i
(2π)3

∫
d3kd3pe−i(Ekx0−k·x−Epy0+p·y)

× δ(3)(p − k)θ(x0 − y0)

= − i
(2π)3

∫
d3ke−i k2

2m (x0−y0)+ik·(x−y)θ(x0 − y0)

= −i
(

m

2πi(x0 − y0)

)3/2

e
im(x−y)2

2(x0−y0) θ(x0 − y0) .



Chapter 7. Canonical quantization of the scalar field 155

(d) The eigenfunctions are

uk =

√
2
π

sin(kx) ,

hence the (nonrelativistic) field operators are

ψ =

√
2
π

∫ ∞

0

dka(k)e−i k2
2m t sin(kx) , (7.34)

ψ† =

√
2
π

∫ ∞

0

dka†(k)ei k2
2m t sin(kx) . (7.35)

We shall leave to the reader to prove that

G(x0, x, y0, y) = −i
(

m

2πi(x0 − y0)

)1/2 [
e

im(x−y)2

2(x0−y0) − e
im(x+y)2

2(x0−y0)

]
θ(x0 − y0) .

(7.36)
Generally, if the eigenfunctions of the Hamiltonian are un(x) the Green
function is

G(x0,x, y0,y) = −i
∑

n

e−iEn(x0−y0)un(x)u∗
n(y)θ(x0 − y0) . (7.37)

(e) The invariance of the Schrödinger equation can be proven directly. We
leave that to reader.

(f) In order to find the conserved charges we should calculate only time com-
ponents of the conserved currents. For the spatial translations the time
component of the current is

j0 = − ∂L
∂(∂0ψ)

∂iψεi

= −iψ†∂iψεi = −iψ
†∇ψ · ε . (7.38)

The conserved charge is the linear momentum

P = −
∫

d3xψ†(i∇)ψ . (7.39)

The Hamiltonian
H =

∫
d3xψ†(− 1

2m
)∆ψ (7.40)

is generator of time translations. The angular momentum

J = −i
∫

d3xψ†(x ×∇)ψ (7.41)

is generator of rotations. Under Galilean boosts we have δxi = −vit, δψ =
−imv · xψ so that
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j0 = v · j0 = mv · xψ†ψ + ivtψ†∇ψ. (7.42)

Consequently, the boost generator is

G =
∫

d3xψ†(mx + it∇)ψ . (7.43)

The commutation relations can be found using the commutation relations
(7.31). Let us start with [Pi, Gj ]:

[Pi, Gj ] = i
∫

d3xd3y[−ψ†(y)∂y
i ψ(y), ψ†(x)(mxj + it∂j)ψ(x)]

= −im
∫

d3xd3y
(
ψ†(y)[∂iψ(y), ψ†(x)xjψ(x)]

+ [ψ†(y), ψ†(x)xjψ(x)]∂iψ(y)
)

= −im
∫

d3x(−∂iψ
†xjψ(x) − xjψ

†∂iψ)

= −iMδij , (7.44)

where M = m
∫

d3xψ†ψ is the mass operator. It appears since the rep-
resentation is projective. We have two possibilities either to enlarge the
Galilean algebra with this operator or to add a superselection rule which
forbids superposition of particles of different masses.
In the similar manner the other commutation relations can be obtained:

[Gi, Gj ] = [H,P] = [H,J] = 0

[Ji, Jj ] = iεijkJk

[Ji, Gj ] = iεijkGk

[Ji, Pj ] = iεijkPk

[H,Gi] = −iPi .

The Galilean algebra can also be derived from the Poincaré algebra [23].

7.19

(a) By using the first commutation relation in (7.D), we get

[a(p), a†] = C

∫
d3q√
2ωq

[a(p), a†(q)]f̃(q)

= C

∫
d3q√
2ωq

f̃(q)δ(3)(p − q)

= C
1√
2ωp

f̃(p) . (7.45)

The second commutator can be evaluated in the same way. The result is

[a†(p), a] = −C
1√
2ωp

f̃∗(p) . (7.46)



Chapter 7. Canonical quantization of the scalar field 157

(b) Using (7.45), we have

a(p)(a†)n = C
1√
2ωp

f̃(p)(a†)n−1 + a†a(p)(a†)n−1 . (7.47)

By repeating this procedure n times, we get

a(p)(a†)n = C
1√
2ωp

nf̃(p)(a†)n−1 + (a†)na(p) . (7.48)

Hence,

[a(p), (a†)n] = C
nf̃(p)√

2ωp

(a†)n−1 . (7.49)

(c) This calculation is straightforward:

a(p) |z〉 = e−|z|2/2a(p)
∞∑

n=0

zn(a†)n

n!
|0〉

= e−|z|2/2
∞∑

n=1

C√
2ωp

znf̃(p)
(n − 1)!

(a†)n−1 |0〉

=
C√
2ωp

f̃(p)z |z〉 . (7.50)

(d) By using the previous relation and the property 〈z|z〉 = 1, we have

〈z|φ |z〉 =
∫

d3p
(2π)3/2

√
2ωp

(
〈z| a(p) |z〉 e−ip·x + 〈z| a†(p) |z〉 eip·x)

= C

∫
d3p

(2π)3/22ωp

(
zf̃(p)e−ip·x + z∗f̃∗(p)eip·x

)

=
C

(2π)3/2
(zf(x) + z∗f∗(x)) . (7.51)

In the same manner we have

〈z| : φ2 : |z〉 =
∫

d3p
(2π)3/2

√
2ωp

d3q
(2π)3/2

√
2ωq

(
〈z| a(p)a(q) |z〉 e−i(p+q)·x

+ 〈z| a†(q)a(p) |z〉 ei(q−p)·x

+ 〈z| a†(p)a(q) |z〉 ei(p−q)·x + 〈z| a†(p)a†(q) |z〉 ei(q+p)·x
)

= C2

∫
d3p

(2π)3/22ωp

d3q
(2π)3/22ωq

(
f̃(p)f̃(q)z2e−i(p+q)·x

+ f̃(p)f̃∗(q)|z|2e−i(p−q)·x

+ f̃∗(p)f̃(q)|z|2ei(p−q)·x + f̃∗(p)f̃∗(q)(z∗)2ei(p+q)·x
)

=
C2

(2π)3
(zf(x) + z∗f∗(x))2 . (7.52)
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Hence,
(∆φ)2 = 0 . (7.53)

(e) It is easy to see that

〈z|H |z〉 = C2|z|2
∫

d3p|f̃(p)|2 . (7.54)

7.20

(a) By substituting the expression for φ in the relation

U(Λ, a)φ(x)U−1(Λ, a) = φ(Λx + a)

we obtain
∫

d3k
(2π)3/2

√
2ωk

U(Λ, a)
(
a(k)e−ik·x + a†(k)eik·x)U−1(Λ, a)

=
∫

d3k′

(2π)3/2
√

2ωk′

(
a(k′)e−ik′·(Λx+a) + a†(k′)eik′·(Λx+a)

)
. (7.55)

In the integral on the right hand side we make the changing of variables
k′µΛ ν

µ = kν . In Problem 6.3, we proved that d3k/(2ωk) is a Lorentz
invariant measure, so that

d3k′
√

2ωk′
=
√

ωk′

2
d3k
ωk

.

By performing the inverse Fourier transformation, we obtain the requested
result.

(b) It is easy to see that

U(Λ, a) |k1, . . . , kn〉 = U(Λ, a)a
†
(k1)U−1(Λ, a)U(Λ, a) · · ·

· · ·U(Λ, a)a
†
(kn)U−1(Λ, a) |0〉

=
√

ωk′
1
· · ·ωk′

n

ωk1 · · ·ωkn

eiaµΛµ
ν(kν

1+...+kν
n) |Λk1, . . . , Λkn〉 .

(c) From the expressions (7.6) and (7.8) and the first part of this problem, we
have

U(Λ)PµU−1(Λ) =
∫

d3kkµU(Λ)a†(k)a(k)U−1(Λ)

=
∫

d3kkµ ωk′

ωk
a

†
(Λk)a(Λk)

= Λ µ
ν

∫
d3k′k′νa†(k′)a(k′)

= Λ µ
ν P ν ,

where we made the change of variables kµ = Λ µ
ν k′ν in the integral.
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(d) First, you should prove the following formulae:

U(Λ)[φ(x), φ(y)]U−1(Λ) = [φ(Λx), φ(Λx)] ,

[φ(x), φ(y)] = i∆(x − y) .

From the integral expression for the function ∆(x − y) (Problem 6.6),
it follows that ∆(Λx − Λy) = ∆(x − y), i.e. it is a relativistic covariant
quantity.

7.21

(a) In Problem 7.3, we obtained the Hamiltonian

H =
∫

d3kωka†(k)a(k) .

The Backer–Hausdorff relation reads

PHP−1 = eAHe−A = H + [A,H] +
1
2
[A, [A,H]] + . . . (7.56)

where A = − iπ
2

∫
d3q
(
a†(q)a(q) − ηpa

†(q)a(−q)
)
. The first commutator

in this expression is

[A,H] = − iπ
2

ηp

∫
d3kωk

(
a†(k)a(−k) − a†(−k)a(k)

)
.

By changing k → −k in the second term, we get [A,H] = 0. It is clear
that the other commutators in (7.56) also vanish, hence

[P,H] = 0 .

(b) Starting from Problem 7.8, we obtain the requested result.

7.22 τPτ−1 = −P, τHτ−1 = H

7.23 The first step is to show that Cφ
†
C−1 = η∗

cφ, CπC−1 = ηcπ
†

and
Cπ

†
C−1 = ηcπ.
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Canonical quantization of the Dirac field

8.1 If we use the anticommutation relation (8.E) the anticommutator iSab(x−
y) = {ψa(x), ψ̄b(y)}, where a, b = 1, . . . , 4 are Dirac indices, becomes

{ψa(x), ψ̄b(y)} =
∑
r,s

1
(2π)3

∫
d3pd3q

m√
EpEq

δrsδ
(3)(p − q)

×
(
ua(p, r)ūb(q, s)ei(q·y−p·x)

+ va(p, r)v̄b(q, s)e−i(q·y−p·x)
)

.

Applying the solution of Problem 4.4 we have

iSab =
1

(2π)3

∫
d3p
2Ep

[
(/p + m)abe−ip·(x−y) + (/p − m)abeip·(x−y)

]
. (8.1)

The last expression can be easily transformed into the following form

{ψa(x), ψ̄b(y)} = (iγµ∂x
µ + m)ab

1
(2π)3

∫
d3p
2Ep

[
e−ip·(x−y) − eip·(x−y)

]
. (8.2)

From (8.2) we see that ∆(x − y) is given by

∆(x − y) = − i
(2π)3

∫
d3p
2Ep

[
e−ip·(x−y) − eip·(x−y)

]
.

The function ∆(x−y) was defined in Problem 6.6. In the special case x0 = y0

we shall make change p → −p in the second term of expression (8.1) and
obtain

{ψa(x), ψ̄b(y)}|x0=y0 = (γ0)ab

∫
d3p

(2π)3
eip·(x−y) = (γ0)abδ

(3)(x − y) . (8.3)
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8.2

(a) Substituting (8.A,B) in the expression for charge Q we obtain

Q = −e

∫
d3x : ψ†ψ :

= −e
∑
r,s

∫
d3p

m

Ep

[
c†r(p)cs(p)u†

r(p)us(p)

+ : dr(p)d†s(p) : v†
r(p)vs(p) + c†r(p)d†s(−p)u†

r(p)vs(−p)e2iEpt

+dr(p)cs(−p)v†
r(p)us(−p)e−2iEpt

]
. (8.4)

From (4.52) and (8.4) we get

Q = −e
∑

r

∫
d3p
(
c†r(p)cr(p) − d†r(p)dr(p)

)
. (8.5)

(b) As ψ satisfy the Dirac equation, (−iγi∂i +m)ψ = iγ0∂0ψ the Hamiltonian
is

H = i
∫

d3x : ψ†∂0ψ :

=
∑
r,s

1
(2π)3

∫
d3xd3pd3q

√
m

Ep

√
m

Eq
:
(
u†

r(p)c†r(p)eip·x

+v†
r(p)dr(p)e−ip·x)Eq

(
us(q)cs(q)e−iq·x − vs(q)d†s(q)eiq·x) :

=
∑

r

∫
d3pEp

(
c†r(p)cr(p) + d†r(p)dr(p)

)
. (8.6)

(c)

P =
∑

r

∫
d3pp

(
c†r(p)cr(p) + d†r(p)dr(p)

)
. (8.7)

8.3

(a) It is easy to see that

[H,ψ] =
∑
r,s

1
(2π)3/2

∫
d3pd3qEp

√
m

Eq

×
[
c†r(p)cr(p) + d†r(p)dr(p), cs(q)us(q)e−iq·x + d†s(q)vs(q)eiq·x]

=
∑
r,s

1
(2π)3/2

∫
d3pd3qEp

√
m

Eq
δrsδ

(3)(p − q)

×
(
−cr(p)us(q)e−iq·x + d†r(p)vs(q)eiq·x)

=
∑

r

∫
d3p

(2π)3/2

√
mEp

(
−cr(p)ur(p)e−ip·x + d†r(p)vr(p)eip·x)

= −i
∂ψ

∂t
,
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where we have used:

[c†r(p)cr(p), cs(q)] = −{c†r(p), cs(q)}cr(p)
= −δrsδ

(3)(p − q)cr(p) ,

and the similar expression for d−operators.
(b) If we had used commutation relations instead of anticommutation rela-

tions in the quantization process we would have obtained:

H =
∑

r

∫
d3pEp

(
c†r(p)cr(p) − d

†

r(p)dr(p)
)

.

From here we conclude that the energy spectrum would have been un-
bounded from below, which is physically unacceptable.

8.4

[H, c†r(p)cr(p)] =
∑

s

∫
d3qEq[c†s(q)cs(q) + d†s(q)ds(q), c†r(p)cr(p)]

=
∑

s

∫
d3qEq

(
[c†s(q)cs(q), c†r(p)]cr(p)

+ c†r(p)[c†s(q)cs(q), cr(p)]

=
∑

s

∫
d3qEq

(
c†s(q){cs(q), c†r(p)}cr(p)

− {c†s(q), c†r(p)}cs(q)cr(p)
+ c†r(p)(c†s(q){cs(q), cr(p)} − {c†s(q), cr(p)}cs(q))

)

= Ep

(
c†r(p)cr(p) − c†r(p)cr(p)

)
= 0

8.5 The form variation of a spinor field is

δ0ψ = δψ − δxµ∂µψ =

= − i
4
ωµνσµνψ − ωµνxν∂µψ

=
1
2
ωµν

(
xµ∂ν − xν∂µ − i

2
σµν

)
ψ .

On the other hand we have δ0ψ = − i
2ωµνMµνψ . Comparing these results we

conclude that the generators are given by

Mµν = i(xµ∂ν − xν∂µ) +
1
2
σµν .

8.6

(a) Applying the formula [AB,C] = A{B,C} − {A,C}B we obtain
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[Mµν , ψa(x)] =
∫

d3y
[
ψ†

b(y)
(

i(yµ∂ν − yν∂µ) +
1
2
σµν

)

bc

ψc(y), ψa(x)
]

= −
∫

d3y{ψ†
b(y), ψa(x)}

(
i(yµ∂ν − yν∂µ) +

1
2
σµν

)

bc

ψc(y)

= −[i(xµ∂ν − xν∂µ) +
1
2
σµν ]acψc(x) ,

where we have used anticommutation relations (8.C,D). This result is a
consequence of Lorentz symmetry.

(b) Substituting the expressions for angular momentum and momentum of the
Dirac field we get

[Mµν , Pρ] = i
∫

d3xd3y

×
[
ψ†

a(x)
(

i(xµ∂ν − xν∂µ) +
1
2
σµν

)

ab

ψb(x), ψ†
c(y)∂ρψc(y)

]
.

First we suppose that all indices are the spatial: µ = i, ν = j, ρ = k. Then,

[Mij , Pk] = i
∫

d3xd3y

×
(

ψ†
a(x)
{(

i(xi∂j − xj∂i) +
1
2
σij

)

ab

ψb(x), ψ†
c(y)
}

∂kψc(y)

− ψ†
c(y){ψ†

a(x), ∂kψc(y)}
(

i(xi∂j − xj∂i) +
1
2
σij

)

ab

ψb(x)
)

= i
∫

d3xd3y

×
(

ψ†
a(x)
(

i(xi∂j − xj∂i) +
1
2
σij

)

ab

δ(3)(x − y)∂kψb(y)

− ψ†
c(y)∂y

kδ(3)(x − y)δac

(
i(xi∂j − xj∂i) +

1
2
σij

)

ab

ψb(x)
)

,

where we used the equal-time anticommutation relations (8.C,D). The
integration over y leads to

[Mij , Pk] = i
∫

d3x
(
igjkψ

†
∂iψ − igikψ

†
∂jψ
)

,

or
[Mij , Pk] = i(gjkPi − gikPj).

Now we take µ = 0, ν = i, and ρ = k, i.e. we calculate the commutator
[M0i, Pk]. In order to do it first we are going to compute anticommutator

{∂x0ψ(x), ψ̄(y)}|x0=y0 .
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Taking partial derivative of (8.1) with respect to x0 and substituting x0 =
y0 we get

{∂x0ψa(x), ψ̄b(y)}|x0=y0 =
i

2(2π)3

∫
d3p
[
(−Epγ

0 + p · γ − m)abeip·(x−y)

+ (Epγ
0 − p · γ − m)abe−ip·(x−y)

]

=
i

(2π)3

∫
d3p(p · γ − m)abeip·(x−y)

= γab∇xδ(3)(x − y) − imδabδ
(3)(x − y) .

Then

[M0i, Pk] = i
∫

d3xd3y

×
(

ψ†
a(x)
{(

i(x0∂i − xi∂0) +
1
2
σ0i

)

ab

ψb(x), ψ†
c(y)
}

∂kψc(y)

− ψ†
c(y){ψ†

a(x), ∂kψc(y)}
(

i(x0∂i − xi∂0) +
1
2
σ0i

)

ab

ψb(x)
)

= i
∫

d3xd3y
(
ix0ψ

†(x)∂x
i δ(3)(x − y)∂kψ(y)

− ixiψ
†
a(x)(γγ0∇x − imγ0)acδ

(3)(x − y)∂kψc(y)

+ ψ†
a(x)

1
2
(σ0i)abδ

(3)(x − y)∂kψb(y)

− ix0ψ
†(y)∂y

kδ(3)(x − y)∂iψ(x)

+ ixiψ
†(y)∂y

kδ(3)(x − y)∂0ψ(x)

− ψ†
a(y)

1
2
(σ0i)ab∂

y
kδ(3)(x − y)ψb(x)

)

= i
∫

d3x
(
−ixiψ

†γγ0∂k∇ψ − mxiψ
†γ0∂kψ − ixi∂kψ†∂0ψ

)

= i
∫

d3x
(
igikψ†∂0ψ + xiψ̄(iγ0∂0 + iγ∇− m)∂kψ

)
.

The second term in the last line vanishes since ψ satisfies the Dirac equa-
tion. Then we get

[M0i, Pk] = igikP0 .

The remaining commutators [M0i, P0] and [Mij , P0] can be computed in
the same way.

8.7 The helicity operator is

Sp =
1
2

∫
d3x : ψ†Σ · p

|p| ψ : . (8.8)
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Inserting expressions for fields ψ and ψ
†

in the previous formula and using
the fact that ur(p) and vr(p) are eigenspinors of Σ · p/|p| with eigenvalues
(−1)r+1 and (−1)r , respectively (see Problem 4.7) we get

Sp =
1

2(2π)3

∫
d3x

2∑
r,s=1

∫
d3pd3q

m√
EpEq

×
[
c†r(q)cs(p)(−1)s+1u†

r(q)us(p)ei(q−p)·x

+ c†r(q)d†s(p)(−1)su†
r(q)vs(p)ei(q+p)·x

+ dr(q)cs(p)(−1)s+1v†
r(q)us(p)e−i(q+p)·x

− d†s(p)dr(q)(−1)sv†
r(q)vs(p)ei(p−q)·x

]
. (8.9)

Performing the x integration and applying orthogonality relations (4.52) one
gets that the second and the third term in the expression (8.9) vanish. Finally,
integration over the momentum q gives

Sp =
1
2

2∑
r=1

∫
d3p(−1)r+1

(
c†r(p)cr(p) + d†r(p)dr(p)

)
. (8.10)

Let us emphasize that we have used the expansion of the fields with respect
to helicity basis.

8.8 The two-particle state given in the problem is eigenstate of the operators
H, Q, and Sp. Using the explicit form of the Hamiltonian from Problem 8.2
we have

Hc†r1
(p1)c†r2

(p2) |0〉 =
∑

r

∫
d3pEp

(
c†r(p)cr(p)

+ d†r(p)dr(p)
)
c†r1

(p1)c†r2
(p2) |0〉 . (8.11)

Let us calculate the first term in the previous expression. Commuting cr(p)
to the right we get

c†r(p)cr(p)c†r1
(p1)c†r2

(p2) |0〉 = δr1rδ
(3)(p − p1)c

†

r(p)c†r2
(p2) |0〉

− c†r(p)c†r1
(p1)cr(p)c†r2

(p2) |0〉 . (8.12)

Repeating once more we get

c†r(p)cr(p)c†r1
(p1)c†r2

(p2) |0〉 = δr1rδ
(3)(p − p1)c

†

r(p)c†r2
(p2) |0〉

− c†r(p)c†r1
(p1)δrr2δ

(3)(p − p2) |0〉 . (8.13)

It is easy to see that

d†r(p)dr(p)c†r1
(p1)c†r2

(p2) |0〉 = 0 . (8.14)
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Inserting (8.13) and (8.14) in (8.11) and integrating over momentum p we
obtain

Hc†r1
(p1)c†r2

(p2) |0〉 = (Ep1 + Ep2)c
†
r1

(p1)c†r2
(p2) |0〉 . (8.15)

Similar as before we have:

Qc†r1
(p1)c†r2

(p2) |0〉 = −2ec†r1
(p1)c†r2

(p2) |0〉 , (8.16)

for charge and

Sp c†r1
(p1)c†r2

(p2) |0〉

=
1
2
(
(−1)r1+1 + (−1)r2+1

)
c†r1

(p1)c†r2
(p2) |0〉 (8.17)

for helicity. To summarize: energy, charge and helicity of the two–particle state
|p1, r1;p2, r2〉 are

Ep1 + Ep2 , −2e,
1
2
(
(−1)r1+1 + (−1)r2+1

)
, (8.18)

respectively.

8.9 The commutator is

[Qa, Qb] =
1
4

∫
d3xd3yτa

ijτ
b
kl[ψ

†
i (x)ψj(x), ψ†

k(y)ψl(y)]

=
1
4

∫
d3xd3yτa

ijτ
b
kl(ψ

†
i (x)ψl(y)δjk − ψ†

k(y)ψj(x)δil)δ(3)(x − y)

=
1
4

∫
d3x(ψ†

i τ
a
ijτ

b
jlψl − ψ†

kτ b
klτ

a
ljψj)

=
1
4

∫
d3xψ†[τa, τ b]ψ

=
i
2
εabc

∫
d3xψ†τ cψ = iεabcQc .

The generators Qa satisfy the commutation relations of SU(2) algebra as we
expected.

8.10 The charges are

Qb =
∫

d3xjb
0 =
∫

d3x(εabcπ̇aπc +
1
2
Ψ †

i τ b
ijΨj) . (8.19)

(a) The commutator is

[Qb, Qe] =
∫

d3xd3y
(
εabcεdef [π̇a(x)πc(x), π̇d(y)πf (y)]

+
τ b
ij

2
τe
mn

2
[Ψ †

i (x)Ψj(x), Ψ †
m(y)Ψn(y)]

)
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=
∫

d3xd3y
(
εabcεdef (iδ(3)(x − y)δcdπ̇a(x)πf (y)

− iδ(3)(x − y)δaf π̇d(y)πc(x))

+
τ b
ij

2
τe
mn

2
δ(3) (x − y)(δjmΨ †

i (x)Ψn(y) − δinΨ †
m(y)Ψj(x))

)

=
∫

d3x
(

i(π̇eπb − π̇bπe) +
i
2
εbedΨ †τdΨ

)

= iεbed

∫
d3x
(

εadcπ̇aπc +
1
2
Ψ †τdΨ

)

= iεbedQd .

(b) The results are
[Qb, πa(x)] = −iεabcπc(x) ,

[Qb, ψi(x)] = −τ b
in

2
ψn(x) ,

[Qb, ψ̄i(x)] = −ψ̄n(x)
τ b
ni

2
.

8.11 The conserved charge for dilatation is

D =
∫

d3xj0 = −i
∫

d3x
(

3
2
ψ†ψ + xjψ†∂jψ − x0ψ̄γj∂jψ

)
. (8.20)

Let us find the commutator between the operator D and momentum P i

[D,P i] =
∫

d3xd3y
(

[
3
2
ψ†(x)ψ(x) + xjψ†(x)∂jψ(x), ψ†(y)∂iψ(y)]

− [x0ψ̄(x)γj∂jψ(x), ψ†(y)∂iψ(y)]
)

.

We decompose the previous expression on three commutators. The first one
is

[ψ†(x)ψ(x), ψ†(y)∂iψ(y)] = [ψ†
a(x)ψa(x), ψ†

b(y)]∂iψb(y)

+ ψ†
b(y)[ψ†

a(x)ψa(x), ∂iψb(y)]

= ψ†
a(x){ψa(x), ψ†

b(y)}∂iψb(y)

− ψ†
b(y){ψ†

a(x), ∂iψb(y)}ψa(x) ,

where we have dropped the vanishing terms. The anticommutation relations
(8.C–D) give the following result

[ψ†(x)ψ(x), ψ†(y)∂iψ(y)] = ψ†(x)∂iψ(y)δ(3)(x − y)
− ψ†(y)ψ(x)∂i

yδ(3)(x − y) . (8.21)

The remaining commutators can be calculated in the same way. The result is:
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[ψ†(x)∂jψ(x), ψ†(y)∂iψ(y)] = ψ†(x)∂iψ(y)∂x
j δ(3)(x − y)

− ψ†(y)∂jψ(x)∂i
yδ(3)(x − y) , (8.22)

[ψ̄(x)γj∂jψ(x), ψ†(y)∂iψ(y)] = ψ̄(x)γj∂iψ(y)∂x
j δ(3)(x − y)

− ψ̄(y)γj∂jψ(x)∂i
yδ(3)(x − y) . (8.23)

Inserting (8.21), (8.22) and (8.23) in (8.21) and applying

∂k
xδ(3)(x − y) = −∂k

y δ(3)(x − y) , (8.24)

we get

[D,P i] = −
∫

d3xψ†∂iψ = iP i . (8.25)

Similarly one can show that

[D,P 0] = iP 0 . (8.26)

8.12

(a) Using the expression (5.G) the energy–momentum tensor is

Tαβ = iψ̄γα∂βψ − gαβ(iψ̄/∂ψ − gx2ψ̄ψ) .

Taking derivative of the previous expression we get

∂αTαβ = 2gxβψ̄ψ ,

where we have used the equations of motion:

i/∂ψ − gx2ψ = 0 ,

i∂µψ̄γµ + gx2ψ̄ = 0 .

The result ∂αTαβ �= 0 shows that there is no translation symmetry in the
theory. As a consequence, the energy and momentum are not conserved in
this theory.

(b) From the expression for the four-momentum (5.6) we have

P 0(t) =
∫

d3x(−iψ̄γj∂jψ + gx2ψ̄ψ) ,

P i(t) = i
∫

d3xψ
†
∂iψ ,

so
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[P 0(t), P i(t)] =
∫ ∫

d3xd3y

×
(
[ψ̄(t,x)γj∂jψ(t,x), ψ

†
(t,y)∂iψ(t,y)]

+ igx2[ψ̄(t,x)ψ(t,x), ψ
†
(t,y)∂iψ(t,y)]

)

=
∫ ∫

d3xd3y

×
(
(γ0γj)ab[ψ

†

a(t,x)∂jψb(t,x), ψ
†

c(t,y)∂iψc(t,y)]

+ igx2γ0
ab[ψ

†

a(t,x)ψb(t,x), ψ
†

c(t,y)∂iψc(t,y)]
)

.

The commutators in the previous expression can be found in the same way
as in the previous problem

[P 0(t), P i(t)] =
∫

d3x
(
−∂jψ̄γj∂iψ − ψ̄γj∂j∂iψ

+ igx2(ψ̄∂iψ + (∂iψ̄)ψ)
)

=
∫

d3x
(
−∂j(ψ̄γj∂iψ) + igx2∂i(ψ̄ψ)

)

= −2ig
∫

d3xxiψ̄ψ ,

where we dropped the surface terms.
(c) It is easy to show that ∂µMµνρ = 0, which is a consequence of the Lorentz

symmetry of the Lagrangian density.

8.13

(a) Under the Lorentz transformation the commutator [Jµ(x), Jν(y)] trans-
forms in the following way

U(Λ)[Jµ(x), Jν(y)]U−1(Λ)
= U(Λ)[ψ̄a(x)γµ

abψb(x), ψ̄c(y)γν
cdψd(y)]U−1(Λ) (8.27)

= [Uψ̄a(x)U−1γµ
abUψb(x)U−1, Uψ̄c(y)U−1γν

cdUψd(y)U−1] .

Taking the adjoint of (8.G) and multiplying by γ0 we obtain

U(Λ)ψ̄(x)U−1(Λ) = ψ̄(Λx)S(Λ) . (8.28)

By using (8.G), last expression and S−1γµS = Λµ
νγν in (8.27) we get

U(Λ)[Jµ(x), Jν(y)]U−1(Λ) = Λ µ
ρ Λ ν

σ [Jρ(Λx), Jσ(Λy)] . (8.29)

From the last result we see that the commutator [Jµ(x), Jν(y)] is a covari-
ant quantity.
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(b) Using the fact that the commutator is a Lorentz tensor we calculate it in
the frame where x0 = y0 = t, x �= y. We get

[Jµ(t,x), Jν(t,y)]
= (γ0γµ)ab(γ0γν)cd[ψ†

a(t,x)ψb(t,x), ψ†
c(t,y)ψd(t,y)]

= (γ0γµ)ab(γ0γν)cd

(
ψ†

a(t,x){ψb(t,x), ψ†
c(t,y)}ψd(t,y)

− ψ†
c(t,y){ψ†

a(t,x), ψd(t,y)}ψb(t,x)
)

. (8.30)

Using the anticommutation relation (8.D) in (8.30) gives

[Jµ(t,x), Jν(t,y)]

=
(
ψ̄(t,x)γµγ0γνψ(t,y) − ψ̄(t,y)γνγ0γµψ(t,x)

)
δ(3)(x − y) .

Since x �= y then δ(3)(x − y) = 0 and the commutator is equal to zero in
the special frame we have chosen. Because of the covariance it follows that
it is equal to zero for (x − y)2 < 0. Therefore, microcausality principle is
valid.

8.14 First show that

〈
ψa(x)ψ̄b(y)

〉
=

1
(2π)3

∫
d3p
2Ep

(/p + m)abe−ip·(x−y) , (8.31)

〈
ψ̄a(x)ψb(y)

〉
=

1
(2π)3

∫
d3p
2Ep

(/p − m)bae−ip·(x−y) . (8.32)

If in the expression
〈
ψ̄a(x1)ψb(x2)ψc(x3)ψ̄d(x4)

〉
, we substitute the expan-

sions (8.A–B), we obtain
〈
ψ̄a(x1)ψb(x2)ψc(x3)ψ̄d(x4)

〉

=
∑

r1,...,r4

m2

(2π)6

(
4∏

i=1

∫
d3pi√

Epi

)

×
(〈

d1c2d
†
3c

†
4

〉
v̄1au2bv3cū4dei(−p1·x1−p2·x2+p3·x3+p4·x4)

+
〈
d1d

†
2c3c

†
4

〉
v̄1av2bu3cū4dei(−p1·x1+p2·x2−p3·x3+p4·x4)

)
,

where the vanishing terms are discarded. Also, we use the abbreviations:

d1 = dr1(p1), u1 = ur1(p1), etc.

Applying the expressions for projectors to positive and negative energy solu-
tions from Problem 4.4 and using

〈
d1c2d

†
3c

†
4

〉
= −δr1r3δr2r4δ

(3)(p1 − p3)δ(3)(p2 − p4) ,
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〈
d1d

†
2c3c

†
4

〉
= δr1r2δr3r4δ

(3)(p1 − p2)δ(3)(p3 − p4)

we have
〈
ψ̄a(x1)ψb(x2)ψc(x3)ψ̄d(x4)

〉

= − 1
(2π)6

∫
d3p1d3p2

4Ep1Ep2

(/p1 − m)ca(/p2 + m)bde−ip1·(x1−x3)−ip2·(x2−x4)

+
1

(2π)6

∫
d3p1d3p3

4Ep1Ep3

(/p1 − m)ba(/p3 + m)cde−ip1·(x1−x2)−ip3·(x3−x4) .

By using (8.31) and (8.32) the last expression takes the form
〈
ψ̄a(x1)ψb(x2)ψc(x3)ψ̄d(x4)

〉
= −

〈
ψ̄a(x1)ψc(x3)

〉 〈
ψb(x2)ψ̄d(x4)

〉

+
〈
ψ̄a(x1)ψb(x2)

〉 〈
ψc(x3)ψ̄d(x4)

〉
.

The previous formula is special case of the Wick theorem.

8.15 Substituting (8.A-B) in the commutator we obtain

1
2
[ψ̄, γµψ] =

1
2(2π)3

∑
r,s

∫
d3pd3q

m√
EpEq

[ūr(p)γµus(q)

× (c
†

r(p)cs(q) − cs(q)c
†

r(p))ei(p−q)·x

+ ūr(p)γµvs(q)(c
†

r(p)d
†

s(q) − d
†

s(q)c
†

r(p))ei(p+q)·x

+ v̄r(p)γµus(q)(dr(p)cs(q) − cs(q)dr(p))e−i(p+q)·x

+ v̄r(p)γµvs(q)(dr(p)d
†

s(q) − d
†

s(q)dr(p))ei(q−p)·x
]

.

(8.33)

Using the anticommutation relations (8.E) we obtain

1
2
[ψ̄, γµψ] = : ψ̄γµψ : −

− 1
2(2π)3

∫
d3p

pµ

Ep

∑
r

(ūr(p)ur(p) + v̄r(p)vr(p)) ,

where we have used the Gordon identities (Problem 4.21) in addition. The
requested result follows after applying the orthogonality relations (4.D).

8.16 Let us first prove that

〈0|T (ψ̄a(x)ψb(y)) |0〉 = −iSFba(y − x) .

Using the definition of time ordering and the expressions (8.31) and (8.32) we
obtain
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〈0|T (ψ̄a(x)ψb(y)) |0〉 =
1

(2π)3

∫
d3p
2Ep

[
(/p − m)baeip·(y−x)θ(x0 − y0)

− (/p + m)baeip·(x−y)θ(y0 − x0)
]

. (8.34)

With a help of Problem 6.13 we see that right hand side of the expression
(8.34) is −iSFba(y − x) and we have

〈0|T (ψ̄(x)Γψ(y)) |0〉 = Γab 〈0|T (ψ̄a(x)ψb(y)) |0〉
= −iΓabSFba(y − x)
= −i tr [ΓSF (y − x)]

= −i
∫

d4p

(2π)4
e−ip·(y−x)

p2 − m2 + iε
tr [(/p + m)Γ ] .

Using the identities from the Problems 3.6(b),(d),(e) and (i) we obtain

tr [(/p + m)γ5] = tr [(/p + m)γ5γµ] = 0, tr [(/p + m)γµγν ] = 4mgµν .

From here the requested result follows.

8.17

(a) In the Weyl representation for γ–matrices the charge conjugate spinor is

ψc = Cψ̄T

= i
(

σ2 0
0 −σ2

)(
0 1
1 0

)(
ϕ∗

−iσ2χ

)

=
(

χ
−iσ2ϕ

∗

)
.

The condition ψM = ψc
M gives ϕ = χ.

(b) If

ψM =
(

χ
−iσ2χ

∗

)
and φM =

(
ϕ

−iσ2ϕ
∗

)
,

then

ψ̄MφM = −iχ
†
σ2ϕ

∗ + iχT σ2ϕ

= −iσ2abχ
∗
aϕ∗

b + iσ2abχaϕb

= −iσ2baϕ∗
bχ

∗
a + iσ2baϕbχa

= −iϕ
†
σ2χ

∗ + iϕT σ2χ = φ̄MψM .

In the last expression we used that ϕ and χ are Grassmann variables. The
other identities can be proved in the same way. For the second one the
following identity is useful: σ2σ

µσ2 = σ̄µT .
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(c) The Majorana field operator is

ψM =
1√
2
(ψ + ψc)

=
∫

d3p
(2π)3

√
m

Ep

∑
r

(
cr(p) + dr(p)√

2
ur(p)e−ip·x

+
c†r(p) + d†r(p)√

2
vr(p)eip·x

)
.

The annihilation and creation operators can easily be read off:

bM (p, r) =
cr(p) + dr(p)√

2
, b

†

M (p, r) =
c
†

r(p) + d
†

r(p)√
2

.

The anticommutation relations are derived from (8.E):

{bM (p, r), b†M (q, s)} = δrsδ
(3)(p − q) ,

{bM (p, r), bM (q, s)} = {b†

M (p, r), b†M (q, s)} = 0 .

(d) The Dirac spinor is ψD = ψ1 + iψ2 where ψ1,2 are Majorana spinors. The
Lagrangian density is

L = iψ̄1/∂ψ1 + iψ̄2/∂ψ2 − m(ψ̄1ψ1 + ψ̄2ψ2) + ie(ψ̄1/Aψ2 − ψ̄2/Aψ1) .

8.18 Under Lorentz transformations the operator Vµ(x) = ψ̄(x)γµψ(x) trans-
forms in the following way:

U(Λ)Vµ(x)U−1(Λ) = U(Λ)ψ̄(x)U−1(Λ)γµU(Λ)ψ(x)U−1(Λ)
= ψ̄(Λx)S(Λ)γµS−1(Λ)ψ(Λx) = Λν

µVν(Λx) ,

(8.35)

since SγµS−1 = Λν
µγν . The other operator Aµ(x) = ψ̄(x)γ5∂µψ(x) trans-

forms as

U(Λ)Aµ(x)U−1(Λ) = U(Λ)ψ̄(x)U−1(Λ)γ5∂µU(Λ)ψ(x)U−1(Λ)
= ψ̄(Λx)γ5∂µψ(Λx) ,

where we used well known relation Sγ5S
−1 = γ5 (see Problem 4.38). Since

∂µ = Λρ
µ∂′

ρ we have

U(Λ)Aµ(x)U−1(Λ) = Λρ
µAρ(Λx) . (8.36)

Under parity vector Vµ transforms as follows:

Vµ(x) → PVµ(x)P−1 = ψ†(t,−x)γµγ0ψ(t,−x)

=
{

V0(t,−x), for µ = 0
−Vi(t,−x), for µ = i

= V µ(t,−x) ,
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since

Pψ̄(x)P−1 = (Pψ(x)P−1)†γ0 = (γ0ψ(t,−x))†γ0 = ψ†(t,−x) .

In the similar way we get

PAµ(x)P−1 = −ψ̄(t,−x)γ5∂µψ(t,−x)

=
{
−ψ̄(t,−x)γ5∂

′
0ψ(t,−x), for µ = 0

ψ̄(t,−x)γ5∂
′
iψ(t,−x), for µ = i

= −Aµ(t,−x) .

From τψ(t,x)τ−1 = Tψ(−t,x), where τ is an antiunitary operator of time
reversal follows

τψ̄(t,x)τ−1 = τψ†(t,x)τ−1γ∗
0 = ψ†(−t,x)T †γ∗

0 .

From the previous expressions we get

τVµ(t,x)τ−1 = ψ†(−t,x)T †(γ0γµ)∗Tψ(−t,x) . (8.37)

With a help of TγµT−1 = γµ∗ we get

τVµ(x)τ−1 = ψ̄(−t,x)γµψ(−t,x) = V µ(−t,x) . (8.38)

We would suggest to reader to prove the previous result by taking T = iγ1γ3.
The identity

(iγ1γ3)†γ∗
0γ∗

µiγ1γ3 = γ0γµ , (8.39)

has to be shown. Under time reversal the operator Aµ(x) transforms as

τAµ(x)τ−1 = −ψ̄(−t,x)γ5∂
′µψ(−t,x) = −Aµ(−t,x) . (8.40)

From Cψa(x)C−1 = (CγT
0 )abψ

†
b(x) follows Cψ̄aC−1 = −ψbC

−1
ba , where C is

a unitary charge conjugation operator while C is a matrix. It is easy to see

CV µC−1 = −ψcC
−1
ca γµ

abCbdψ̄d

= ψc(γµ)T
cdψ̄d

= ψc(γµ)dcψ̄d

= −ψ̄dγ
µ
dcψc

= −V µ .

The minus sign in the forth line of the previous calculation appears since
the fields ψ and ψ̄ anticommute. An infinity constant is ignored. Compare
this result with result of Problem 4.37. In the similar way result CAµC−1 =
∂µψ̄γ5ψ is derived.

8.19 The Dirac Lagrangian density transforms as
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U(Λ) . . . U−1(Λ) ,

with respect to Lorentz transformations. Therefore, we have:

U(Λ)L(x)U−1(Λ)
= iU(Λ)ψ̄(x)U−1(Λ)γµ∂µU(Λ)ψ(x)U−1(Λ) − mU(Λ)ψ̄(x)ψ(x)U−1(Λ)
= iψ̄(Λx)Sγµ∂µS−1ψ(Λx) − mψ̄(Λx)SS−1ψ(Λx)
= i(Λ−1)µ

νψ̄(Λx)γνΛρ
µ∂′

ρψ(Λx) − ψ̄(Λx)ψ(Λx)

= iψ̄(Λx)γµ∂′
µψ(Λx) − mψ̄(Λx)ψ(Λx)

= L(Λx) .

Under the parity L transforms as follows

PLP−1 = iψ†(t,−x)γµ∂µγ0ψ(t,−x) −
− mψ̄(t,−x)ψ(t,−x) .

From
γµγ0∂µ = γ0γ0∂′

0 + γ0γi∂′
i = γ0γµ∂′

µ ,

we get
PL(t,x)P−1 = L(t,−x) .

The transformation rules under time reversal and charge conjugation in the
previous problem were found using the general properties of matrices T and
C. Here, we use explicit expressions for them. Starting from

τψ(t,x)τ−1 = iγ1γ3ψ(−t,x) , (8.41)

we obtain

τψ̄(t,x)τ−1 = τψ†(t,x)τ−1γ∗
0

= −iψ†(−t,x)(γ3)†(γ1)†(γ0)∗

= −iψ̄(−t,x)γ3γ1 .

Further,

τLτ−1 = −iψ̄(−t,x)γ3γ1(γµ)∗γ1γ3∂µψ(−t,x)
− mψ̄(−t,x)γ3γ1γ1γ3ψ(−t,x) .

Applying

(γ0)∗ = γ0, (γ1)∗ = γ1, (γ2)∗ = −γ2, (γ3)∗ = γ3 ,

the anticommutation relation among γ–matrices and introducing derivatives
with respect to new coordinates t′ = −t, x′ = x instead of the old ones gives
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τLτ−1 = iψ̄(−t,x)γµ∂′
µψ(−t,x) − mψ̄(−t,x)ψ(−t,x)

= L(−t,x) .

The transformation law for field ψ under charge conjugation

CψaC−1 = i(γ2)abψ
†
b

induces
Cψ̄aC−1 = iψb(γ2γ0)ba .

Then Lagrangian density transforms as

CLC−1 = −iψc(γ2γ0γµγ2)ca∂µψ†
a + mψb(γ2γ0γ2)baψ†

a .

Since
γ2γ0γµγ2∂µ = (−γ0∂0 + γ1∂1 − γ2∂2 + γ3∂3)γ0 ,

then the kinetic term becomes

−iψc

[
−γ0∂0 + γ1∂1 − γ2∂2 + γ3∂3)

]
cd

ψ̄d .

In the Dirac representation of γ–matrices the following relations are satisfied:

(γ0)T = γ0 , (γ1)T = −γ1 , (γ2)T = γ2 , (γ3)T = −γ3 ,

and the kinetic term is

iψc(γµT )cd∂µψ̄d = −i∂µψ̄dγ
µ
dcψc .

As in the previous problem we anticommute the fields ψ̄ and ψ, and ignore
the infinity constant δ(3)(0). At the end we obtain

CLC−1 = −i∂µψ̄γµψ − mψ̄ψ ,

which is the starting Lagrangian density up to four divergence.

8.20 From
S(Λ)σµνS−1(Λ) = Λρ

µΛσ
νσρσ , (8.42)

follows
U(Λ)TµνU−1(Λ) = Λρ

µΛσ
νTρσ(Λx) , (8.43)

and therefore Tµν is a second rank tensor. Under parity the transformation
rule is:

PT0i(t,x)P−1 = −T0i(t,−x) ,

PTij(t,x)P−1 = Tij(t,−x) .

Charge conjugation act on a Tµν tensor according to

CTµν(x)C−1 = −Tµν(x) . (8.44)
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In order to confirm the previous result you should to prove that

C−1σµνC = −(σµν)T . (8.45)

The identity
TσµνT−1 = −(σµν)∗ , (8.46)

can be derived easily. Consequently,

τT0i(t,x)τ−1 = T0i(−t,x) ,

τTij(t,x)τ−1 = −Tij(−t,x) .
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Canonical quantization of the electromagnetic
field

9.1 The commutator is

[Aµ(t,x), Ȧν(t,y)] =
∑
λ,λ′

i
(2π)3

∫
d3kd3q
2√ωkωq

ωqε
µ
λ(k)εν

λ′(q)

×
(
[aλ(k), a

†

λ′(q)]ei(k·x−q·y)

− [a
†

λ(k), aλ′(q)]e−i(k·x−q·y)
)

.

Using the commutation relations (9.G) as well as orthogonality relations (9.D)
we obtain

[Aµ(t,x), Ȧν(t,y)] = − i
2(2π)3

gµν

∫
d3k
(
eik·(x−y) + eik·(y−x)

)

= −igµνδ(3)(x − y) .

9.2 Using the commutation relations (9.G) and the completeness relation
(9.D) we get

iDµν = [Aµ(x), Aν(y)] = −gµν 1
(2π)3

∫
d3k
2|k|
(
e−ik·(x−y) − eik·(x−y)

)
. (9.1)

In order to calculate the integral (9.1) we shall use spherical coordinates (using
notation x0 − y0 = t, |x − y| = r)

iDµν(x − y) = −gµν 1
2(2π)2

∫ ∞

0

kdk

∫ π

0

dθ sin θ

×
(
e−i(kt−kr cos θ) − ei(kt−kr cos θ)

)

= −gµν 1
2(2π)2

1
ir

∫ ∞

0

dk
(
e−ikt(eikr − e−ikr) + eikt(e−ikr − eikr)

)
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= −gµν 1
2(2π)2

1
ir

∫ ∞

−∞
dk
(
e−ikt+ikr − e−ikt−ikr

)

= −gµν 1
4πir

(δ(t − r) − δ(t + r))

= igµν 1
2π

ε(t)δ(t2 − r2) , (9.2)

where

ε(t) =

{ 1, t > 0
−1, t < 0
0, t = 0

.

The previous result in terms of x and y coordinates has the form

iDµν(x − y) = −igµνD(x − y)

= gµν i
4π|x − y| (δ(x0 − y0 − |x − y|) − δ(x0 − y0 + |x − y|))

=
i

2π
gµνε(x0 − y0)δ(4)((x − y)2) .

9.3 Both the electric and magnetic fields are gauge invariants. The simplest
way to calculate the commutators is in the Lorentz gauge. The first commu-
tator is

[Ei(x), Ej(y)] = ∂i
x∂j

y[A0(x), A0(y)] + ∂0
x∂0

y [Ai(x), Aj(y)] , (9.3)

where we used relation between the electric field and the electromagnetic
potential:

E = −∇A0 − ∂A
∂t

.

Using Problem 9.2 we get

[Ei(x), Ej(y)] = i(∂i
x∂j

x − δij∂
0
x∂0

x)D(x − y) .

The commutator between the components of the magnetic field is:

[Bi(x), Bj(y)] = εiklεjmn∂x
k∂y

m[Al(x), An(y)]
= iεiklεjml∂x

k∂y
mD(x − y)

= i(δijδkm − δimδkj)∂x
k∂y

mD(x − y)
= i(−δij∆ + ∂x

i ∂x
j )D(x − y) .

In the similar way one can get

[Ei(x), Bj(y)] = iεjki∂x
0 ∂x

kD(x − y) .

Now, consider the equal–time commutators i.e. take that x0 = y0. First show
that

∂x0D(x − y)|x0=y0 = −δ(3)(x − y) ,
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∂2
x0D(x − y)|x0=y0 = 0 ,

∂i
xD(x − y)|x0=y0 = 0 ,

∂i
x∂j

xD(x − y)|x0=y0 = 0 ,

∂x
i ∂x

0 D(x − y)|x0=y0 = −∂x
i δ(3)(x − y) .

The easiest way to prove the previous formulae is to start with the integral
expression for D–function:

D(x) = − i
(2π)3

∫
d3k
2|k|
(
e−ik·(x−y) − eik·(x−y)

)
.

The results for the equal–time commutators are:

[Ei(x), Ej(y)]|x0=y0 = 0 ,

[Bi(x), Bj(y)]|x0=y0 = 0 ,

[Ei(x), Bj(y)]|x0=y0 = −iεijk∂x
k δ(3)(x − y) .

9.4 We shall first calculate the commutator between the Hamiltonian and
the electromagnetic potential Aν(x):

[H,Aν(x)] = −1
2

∫
d3y[πµπµ + ∇Aµ∇Aµ, Aν(x)]

= −1
2

∫
d3y (πµ(y)[πµ(y), Aν(x)] + [πµ(y), Aν(x)]πµ(y))

= −1
2

∫
d3yδ(3)(x − y)

(
πµ(y)(−i)gν

µ − igµνπµ(y)
)

= iπν(x)
= −i∂0Aν .

The commutator between three–momentum of electromagnetic field and elec-
tromagnetic potential can be calculated in the similar manner

[P i, Aν(x)] = −
∫

d3y[Ȧρ(y)∂iAρ(y), Aν(x)]

= −igρν

∫
d3yδ(3)(x − y)∂iAρ(y)

= −i∂iAν(x) .

9.5 The helicity of the state εµ
(±)(k) is determined under the rotation for

angle θ about k/|k| = ez–axis. Namely,
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ε′± = Λ(θ)ε±

=




1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1







0
1/
√

2
±i/

√
2

0




= e±iθ




0
1/
√

2
±i/

√
2

0




= e±iθε± .

From the last line we can read off that helicity is λ = ±1. Polarization of these
photons is circular.

9.6 The four–momentum of the photon for observer S′ is

k′µ = Λµ
νkν =




γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1







k
0
0
k


 =




kγ
−kβγ

0
k


 .

Under the Lorentz transformation the polarization vector εµ(k) transforms as

ε′µ(k′) = Λµ
νεν(k) − iα(k′)k′µ .

The second term comes from the gauge transformation of the electromagnetic
potential; α(κ′) is an arbitrary function of the momentum. This term can be
easily obtained by substituting

A′µ = ε′µ(k′)e−ik′·x′
,

and
Λ(x′) = αe−ik′·x′

in the gauge transformation rule

Ãµ = A′µ + ∂′µΛ(x′) .

If we choose the function α = iβ/k we get

ε′µ(k′) =




0
γ−1

0
β


 .

Note that the vector ε′ is orthogonal to the photon direction of motion k′/k′.
This was a condition to determine the function α(k′). Thus, the polarization
of photon is transversal for both observers.
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9.7

(a) In the first step use the commutation relations (9.G) to derive the expres-
sion:

[a3(k) − a0(k), a
†

3(q) − a
†

0(q)] = 0 .

From the previous result it is not hard to show that 〈Φn|Φn〉 = δn0.
(b) There are only two terms in the expression 〈Φ|Aµ |Φ〉 which are not equal

to zero:

〈Φ|Aµ |Φ〉 = C∗
0C1 〈Φ0|Aµ |Φ1〉 + C0C

∗
1 〈Φ1|Aµ |Φ0〉 .

It is easy to see that

〈Φ0|Aµ |Φ1〉 = − 1
(2π)3/2

∫
d3k√
2|k|

f(k)e−ik·x
(
εµ
(0)(k) + εµ

(3)(k)
)

.

By applying the relation

εµ
(0)(k) + εµ

(3)(k) =
kµ

|k| ,

we get
〈Φ|Aµ |Φ〉 = ∂µΛ ,

where Λ is given by

Λ = − i
(2π)3/2

∫
d3k√
2|k||k|

(
C∗

0C1f(k)e−ik·x − C0C
∗
1f∗(k)eik·x) .

9.8 The quantities defined in this problem are projectors on massless states
with the helicities ±1 and 0. Let us first calculate Pµν

⊥ Pνσ⊥:

Pµν
⊥ Pνσ⊥ =

kµk̄ν + kν k̄µ

k · k̄
kν k̄σ + kσk̄ν

k · k̄

=
kµk̄σ + kσk̄µ

k · k̄
= Pµ

σ⊥ ,

since k̄ · k̄ = 0. The other expressions can be evaluated in the same way. The
results are:

PµνPνσ = Pµ
σ , Pµν + Pµν

⊥ = gµν ,

gµνPµν = 2 , gµνP⊥
µν = 2 , PµνP νσ

⊥ = 0 .

9.9

(a) The components of the angular momentum M ij were calculated in Prob-
lem 5.18 using the Nether technique. It follows that (in the Coulomb gauge)

J l = εlij

∫
d3x
(
ȦjAi + xiȦk∂jAk

)
.
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(b) The spin part of the angular momentum is

Sl = εlij

∫
d3xȦjAi .

By substituting the explicit expression for the electromagnetic potential
we get

Sl =
i
2
εlij
∑
λ,λ′

∫
d3k
(
−εj

λ(k)εi
λ′(−k)aλ(k)aλ′(−k)e−2iωkt−

− εj
λ(k)εi

λ′(k) : aλ(k)a
†

λ′(k) : +εj
λ(k)εi

λ′(k)a
†

λ(k)aλ′(k) +

+ εj
λ(k)εi

λ′(−k)a
†

λ(k)a
†

λ′(−k)e2iωkt
)

.

The first and the last term are symmetric under the change of indices i and
j, so that the multiplication by the antisymmetric ε symbol give vanishing
contribution. Then:

S =
i
2

∑
λ,λ′

∫
d3k (ελ′(k) × ελ(k))

(
a

†

λ(k)aλ′(k) − a
†

λ′(k)aλ(k)
)

.

By using ε1(k) × ε2(k) = k/|k| we get

S = i
∫

d3k
k
|k|
(
a

†

2(k)a1(k) − a
†

1(k)a2(k)
)

.

By using the operators a±(k) which were defined in the problem, the spin
S becomes diagonal

S =
∫

d3k
k
|k|
(
a

†

+(k)a+(k) − a
†

−(k)a−(k)
)

.

From the previous result we conclude that the operator

Λ =
∫

d3k
(
a

†

+(k)a+(k) − a
†

−(k)a−(k)
)

,

is the helicity.
(c) By applying the commutation relations (9.J) we get

[a
†

±(k), a±(q)] = −δ(3)(k − q) ,

from which we have

Λa
†

±(q) |0〉 = [Λ, a
†

±(q)] |0〉

= ±
∫

d3kδ(3)(k − q)a
†

±(k) |0〉

= ±a
†

±(q) |0〉 .
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(d) The commutator between the angular momentum and the electromagnetic
potential is:

[J l, Am(t,x)] = εlij

∫
d3y
[
Ȧj(t,y), Am(t,x)

]
Ai(t,y) +

+ yi[Ȧn(t,y), Am(t,x)]∂jAn(t,y)

= −iεlij

∫
d3yδ

(3)
⊥nm(x − y)

(
δnjA

i(t,y) + yi∂jAn(t,y)
)

= −iεlij 1
(2π)3

∫
d3y
∫

d3keik·(x−y)

(
δnm − knkm

k2

)

×
(
δjnAi(t,y) + yi∂jAn(t,y)

)
. (9.4)

The term which contains knkm/k2 is equal to zero:
∫

d3y
∫

d3k
knkm

k2
eik·(x−y)

(
Aiδnj + yi∂jAn

)

=
∫

d3y
∫

d3k
(
Aiδnj + yi∂jAn

) km

k2
(i

∂

∂yn
eik·(x−y)) . (9.5)

Integrating by parts in (9.5) we get that it vanishes. Then from (9.4)
follows

[J l, Am(t,x)] = iεlmiAi + i(r ×∇)lAm .

9.10 The electric field is

E =
∫

d3k√
2(2π)3ωk

2∑
λ=1

iωkελ(k)
(
aλ(k)e−ik·x − a

†

λ(k)eik·x
)

,

while the magnetic field is given by

B =
∫

d3k√
2(2π)3ωk

2∑
λ=1

i(k × ελ(k))
(
aλ(k)e−ik·x − a

†

λ(k)eik·x
)

.

(a) The vacuum expectation value of the anticommutator between the electric
and the magnetic field is

〈0| {Em(x), Bn(y)} |0〉 = 〈0|Em(x)Bn(y) |0〉 + 〈0|Bn(y)Em(x) |0〉

=
∫

d3kd3q
2(2π)3√ωkωq

2∑
λ=1

2∑
λ′=1

ωkεm
λ (k)(q × ελ′(q))n

×
(
〈0| aλ(k)a†

λ′(q) |0〉 e−ik·x+iq·y + 〈0| aλ′(q)a†
λ(k) |0〉 eik·x−iq·y

)

=
∫

d3k
2(2π)3

2∑
λ=1

εm
λ (k)(k × ελ(k))n

(
e−ik·(x−y) + eik·(x−y)

)
. (9.6)

By using
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2∑
λ=1

εnijkiεj
λ(k)εm

λ (k) = εnimki ,

the formula (9.6) becomes

〈0| {Em(x), Bn(y)} |0〉 =
∫

d3k
2(2π)3

εnjmkj
(
e−ik·(x−y) + eik·(x−y)

)
.

The result can be rewritten in the following form:

〈0| {Em(x), Bn(y)} |0〉 = εnjm ∂2

∂x0∂xj

∫
d3k

2(2π)3ωk

×
(
e−ik·(x−y) + eik·(x−y)

)

= − 1
2π2

εnjm ∂2

∂xo∂xj

1
(x − y)2

. (9.7)

The integral in the first line was calculated in Problem 7.14.
(b) As before,

〈0| {Bi(x), Bj(y)} |0〉 =
∫

d3k
2(2π)3ωk

2∑
λ=1

(k × ελ(k))i(k × ελ(k))j

×
(
e−ik·(x−y) + eik·(x−y)

)
.

Since

(k × ελ(k))i(k × ελ(k))j =
2∑

λ=1

εimnεjpqkmkpεn
λ(k)εq

λ(k)

= εimnεjpnkmkp

= (k2δij − kikj) .

we have

〈0| {Bi(x), Bj(y)} |0〉 =
∫

d3k
2(2π)3ωk

(k2δij − kikj)

×
(
e−ik·(x−y) + eik·(x−y)

)

= − 1
2π2

(
∂2

∂xi∂xj
−�δij

)
1

(x − y)2
.

(c) This expectation value can be obtained in the same way as the previous
ones. The result is

〈0| {Ei(x), Ej(y)} |0〉 = − 1
2π2

(
− ∂2

∂(x0)2
δij +

∂2

∂xi∂xj

)
1

(x − y)2
. (9.8)
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9.11

(a) The vector potential A can be decomposed into parallel and normal com-
ponents:

A = A⊥ + A‖.

The normal component of the vector potential is along the z−axis, while
A‖ is parallel to the plates. In the Coulomb gauge (A0 = 0, divA = 0)
the electric field is

E = −∂A
∂t

.

Since the plates are ideal conductors, the parallel component of the electric
field and the normal component of magnetic field vanish on the plates, i.e.

∂A‖
∂t

∣∣∣∣
z=0

=
∂A‖
∂t

∣∣∣∣
z=a

= 0 , (9.9)

Bz|z=0 = Bz|z=a = 0 . (9.10)

The vector potential A satisfies the equation
(

∂2

∂t2
− ∆

)
A = 0 .

If we assume that a particular solution of this equation has the following
form

A = F (t, x, y)(Z1(z)e1 + Z2(z)e2 + Z3(z)e3) , (9.11)

then we get:
d2Zi

dz2
+ k2

3Zi = 0 (9.12)

and (
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
+ k2

3

)
F = 0 . (9.13)

The solution of the first equation is

Zi = ai sin(k3z) + bi cos(k3z) .

The boundary conditions (9.9–9.10) give b1 = b2 = 0 and k3 = nπ/a (n =
0, 1, 2, . . .). A particular solution for the function F is F = e−iωt+ik1x+ik2y .
Inserting it into (9.13) we obtain

ω = ±ωk,n = ±
√

k2
1 + k2

2 +
(nπ

a

)2

.

From the Coulomb gauge condition follows that a3 = 0 and

ia1k1 + ia2k2 −
nπ

a
b3 = 0
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for (n �= 0); obviously there are two independent states of polarization,
unless n = 0. For n = 0 polarization vector is e3, and there is only one
mode. Thus, a particular solution is

A = F
(
ε‖ sin(nπz/a) + b3 cos(nπz/a)

)
,

where ε‖ belongs to the xy–plane. Then, the general solution reads:

A =
∞∑

n=1

∫
d2k

2π

1√
2ωk,n

2∑
λ=1

[aλ(k1, k2, n)e−iωk,nt+ik1x+ik2y

× (sin(nπz/a)ε‖(k, n, λ) + cos(nπz/a)e3) +

+ a†
λ(k1, k2, n)eiωk,nt−ik1x−ik2y

× (sin(nπz/a)ε∗‖(k, n, λ) + cos(nπz/a)ez)] +

+
∫

d2k

2π

1√
2ωk

[a(k1, k2)e−iωkt+ik1x+ik2y +

+ a
†
(k1, k2)eiωkt−ik1x−ik2y]e3 , (9.14)

where ωk =
√

k2
1 + k2

2.
(b) The canonical commutation relations have the following form

[aλ(k1, k2, n), a†
λ′(k′

1, k
′
2,m)] = δnmδλλ′δ(k1 − k′

1)δ(k2 − k′
2) ,

[a(k1, k2), a†(k′
1, k

′
2)] = δ(k1 − k′

1)δ(k2 − k′
2) ,

while the other commutators vanish. The Hamiltonian is given by

H =
∫

d2k
∞∑

n=1

1
2
ωk,n

2∑
λ=1

[a†
λ(k1, k2, n)aλ(k1, k2, n)

+ aλ(k1, k2, n)a†
λ(k1, k2, n)]

+
1
2

∫
d2kωk[a†(k1, k2)a(k1, k2) + a(k1, k2)a†(k1, k2)] . (9.15)

(c) The energy of the ground state |0〉 is

〈0|H |0〉 =
∞∑

n=1

2∑
λ=1

∫
d2k

1
2
ωk,n 〈0| aλ(k1, k2, n)a†

λ(k1, k2, n) |0〉

+
∫

d2k
1
2
ωk 〈0| a(k1, k2)a†(k1, k2) |0〉

=
∞∑

n=1

1
2

∫
d2kωk,n2δ(2)(0) +

1
2

∫
d2kωkδ(2)(0) .

Since
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δ(2)(0) =
∫

dxdy

(2π)2
eik1x+ik2y

∣∣∣
k‖=0

=
L2

(2π)2

we have

E =
L2

2(2π)2

∫
d2k

(
2

∞∑
n=1

√
k2
1 + k2

2 +
(nπ

a

)2

+
√

k2
1 + k2

2

)
. (9.16)

(d) The vacuum energy of the same part of space in the absence of the plates
is given by

E0 =
1
2

∫
L2d2k

(2π)2

∫
adk3

2π
2
√

k2
1 + k2

2 + k2
3

=
∫

L2d2k

(2π)2

∫ ∞

0

dn

√
k2
1 + k2

2 +
(nπ

a

)2

.

Then ε is

ε =
1
2

∫ ∞

0

kdk

2π

[
k + 2

∞∑
n=1

√
k2 +

(nπ

a

)2

− 2
∫ ∞

0

dn

√
k2 +

(nπ

a

)2
]

.

(9.17)
The last integral can be rewritten as follows

ε =
π2

8a3

∫ ∞

0

du

(
√

u + 2
∞∑

n=1

√
u + n2 − 2

∫ ∞

0

dn
√

u + n2

)
, (9.18)

where a new variable u = a2k2/π2 was introduced. After the regularization
ε takes the form

ε =
π2

8a3

∫ ∞

0

du

(
√

uf(
π
√

u

a
) + 2

∞∑
n=1

√
u + n2f(

π
√

u + n2

a
)−

− 2
∫ ∞

0

dn
√

u + n2f(
π
√

u + n2

a
)

)
, (9.19)

and becomes finite. If we define a new function

F (n) =
∫ ∞

0

du
√

u + n2f(
π
√

u + n2

a
) ,

ε becomes

ε =
π2

8a3

(
F (0) + 2

∞∑
n=1

F (n) − 2
∫ ∞

0

dnF (n)

)
. (9.20)

To calculate the previous expression we will use the Euler-Maclaurin for-
mula:
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∞∑
n=1

F (n) −
∫ ∞

0

dnF (n) +
1
2
F (0) = − 1

2!
B2F

′(0) − 1
4!

B4F
′′′(0) + . . . .

B2, B4, . . . are Bernouli numbers and they are defined by

y

ey − 1
=

∞∑
ν=0

Bν
yν

ν!
.

Consequently,

ε =
π2

4a3

(
− 1

2!
B2F

′(0) − 1
4!

B4F
′′′(0) + . . .

)
. (9.21)

It is easy to get F ′(0) = 0, F ′′′(0) = −4. Then the vacuum energy per unit
surface is

ε = − π2

720a3
.

From the expression for the energy we can derive the force:

f = − ∂ε

∂a
= − π2

240a4
.

If a = 1µm and L = 1cm the force is 10−8N . The vacuum energy of the
electromagnetic field between the two conducting plates produces a weak
attractive force between them. This effect was measured in 1958.

(e) The integral I can be found in [9]:

I = 2π

∫ ∞

0

kdk

(k2 + m2)α

= π
Γ (α − 1)

Γ (α)
1

(m2)α−1
. (9.22)

Then

E

L2
=

1
2

∫
d2k

(2π)2


 lim

µ→0

1
(k2 + µ2)−1/2

+ 2
∞∑

n=1

1√
k2 +

(
nπ
a

)2




= − 1
12π

(
lim
µ→0

(µ2)3/2 + 2
π3

a3

∞∑
n=1

n3

)

= − π2

6a3

∞∑
n=1

n3 . (9.23)

From

ζ(1 − n) =
(−1)1+nBn

n
,

follows that ζ(−3) = 1/120 since B4 = −1/30. Finally, we get the same
result as before

E

L2
= − π2

720a3
.
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Processes in the lowest order of the
perturbation theory

10.1 The transition probability is

|Sfi|2 = (2π)8[δ(4)(p′1 + p′2 − p1 − p2)]2
mAmBmCmD

V 4E1E2E′
1E

′
2

|M|2 . (10.1)

The square of the four-dimensional delta function is

[δ(4)(pf − pi)]2 = δ(4)(pf − pi)δ(4)(0)

=
1

(2π)4
δ(4)(pf − pi)

∫

V

d3x
∫ T

2

−T
2

dt

=
TV

(2π)4
δ(4)(pf − pi) , (10.2)

where: pi = p1 + p2 and pf = p′1 + p′2 are initial and final four-momentum
respectively. The differential cross section (10.D) is

dσ =
|Sfi|2

T

1
|Jin|

V 2d3p′
1d3p′

2

(2π)6
. (10.3)

The current density flux, in the center–of–mass frame is

|Jin| = |ψ̄γψ| =
|p1|(E1 + E2)

V E1E2
. (10.4)

By substituting (10.1), (10.2 ) and (10.4) into (10.3) the following formula is
obtained

dσ =
1

(2π)2
δ(E′

1 + E′
2 − E1 − E2)δ(3)(p′

1 + p′
2 − p1 − p2)|M|2

× mAmBmCmD

(E1 + E2)E′
1E

′
2|p1|

d3p′
1d3p′

2 . (10.5)

By integrating over p′
2 we get



192 Solutions

dσ

dΩ
=

1
(2π)2

∫
δ(
√

p′21 + m2
C +
√

p′21 + m2
D − E1 − E2)|M|2

× mAmBmCmD

(E1 + E2)E′
1E

′
2

p′21 dp′1
p1

,

where the fact that we are doing calculations in the center–of–mass frame
have been used. By applying formula

∫
dxg(x)δ(f(x)) =

g(x)
|f ′(x)|

∣∣∣∣
f(x)=0

(10.6)

the requested result is obtained.

10.2 Four–dimensional delta function and integration measure are Lorentz
invariant quantities (Problem 6.3) so is the given integral. In the inertial frame
in which P = 0 the integral becomes

I =
1
4

∫
d3p√

p2 + m2

d3q√
q2 + m′2

δ(3)(p + q)δ(Ep + Eq − P 0) . (10.7)

By integrating over q in (10.7) and introducing spherical coordinates we obtain

I = π

∫ ∞

0

p2dp
1√

p2 + m2
√

p2 + m′2
δ(
√

p2 + m2 +
√

p2 + m′2 − P 0) .

By applying the formula (10.6) one gets

I =
π

P0

√
(m2 − m′2 − P 2

0 )2

4P 2
0

− m′2 .

10.3 The Feynman amplitude, iM is a complex number so that

(iM)∗ = (iM)
†

= (ū(p, r)γµ(1 − γ5)u(q, s))
†
εµ∗(k, λ)

= u
†
(q, s)(1 − γ5)γ0γµγ0γ0u

†
(p, r)εµ∗(k, λ)

= ū(q, s)(1 + γ5)γµu(p, r)εµ∗(k, λ) ,

where identities from Problems 3.1 and 3.3 are used. The average value of the
squared amplitude is (a, b, . . . are Dirac’s indices)

2∑
λ=1

2∑
r,s=1

|M|2 =
2∑

λ=1

2∑
r,s=1

ūa(p, r)[γµ(1 − γ5)]abub(q, s)

× ūc(q, s)[(1 + γ5)γν ]cdud(p, r)εµ(k, λ)εν∗(k, λ)

=

(
2∑

r=1

ud(p, r)ūa(p, r)

)
[γµ(1 − γ5)]ab

×
(

2∑
s=1

ub(q, s)ūc(q, s)

)
[(1 + γ5)γν ]cd

2∑
λ=1

εµ∗(k, λ)εν(k, λ) .
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By applying expression for the projection operator into positive-energy solu-
tions (Problem 4.4) we have

2∑
λ=1

2∑
r,s=1

|M|2 =
(

/p + m

2m

)

da

[γµ(1 − γ5)]ab

×
(

/q + m

2m

)

bc

[(1 + γ5)γν ]cd

2∑
λ=1

εµ(k, λ)εν∗(k, λ)

=
1

4m2

2∑
λ=1

εµ(k, λ)εν∗(k, λ)

× tr [(/p + m)γµ(1 − γ5)(/q + m)(1 + γ5)γν ] .

Using the facts that γ5 anticommutes with γµ matrices and that (γ5)2 = 1,
the last expression becomes

2∑
λ=1

2∑
r,s=1

|M|2 =
1

2m2
tr [(/p + m)γµ(1 − γ5)/qγν ]

2∑
λ=1

εµ(k, λ)εν∗(k, λ) .

By applying the corresponding traces form Problem 3.6 one obtains

2∑
λ=1

2∑
r,s=1

|M|2 =
2

m2

[
pµqν + pνqµ − (p · q)gµν + iεανβµqαpβ

]

×
2∑

λ=1

εµ(k, λ)εν∗(k, λ) . (10.8)

To sum over the photon polarizations is reduced to replacement

2∑
λ=1

εµ(k, λ)εν∗(k, λ) → −gµν (10.9)

in the expression (10.8) because the other two terms in (9.E) do not give any
contribution. The result is 4p · q/m2.

10.4 In the first part of the Problem we shall apply Wick’s theorem for bosons
and in the second part we shall make use of the Wick’s theorem for fermions.

(a) It is clear that all normal-ordered terms fall off, because their vacuum
expectation value is equal to zero. Thus the only remaining terms are
those with four contractions. If we contract one φ(x) with one φ(y) four
times we shall get (〈0|T (φ(x)φ(y)) |0〉)4. This can be done in 4! = 24 ways.
The next possibility is to make two contractions between fields φ(x) and
φ(y). One field φ(x) can be contracted in 4 ways with one of the φ(y)′s.
The next φ(x) can be contracted in three ways with one of the remaining
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φ(y)′s . The obtained result has to be multiplied by 6, because this is
the number of ways in which two fields φ(x) can be chosen from the four
possible. Thus, there are 4 · 3 · 6 = 72 possible contractions of this type.
There are three mutual contractions between two fields φ(x), the similar
is obtained for fields φ(y), so the corresponding coefficient is 9. Thus,

〈0|T (φ4(x)φ4(y)) |0〉) = 24(〈0|T (φ(x)φ(y)) |0〉)4

+ 72 〈0|T (φ(x)φ(x)) |0〉 〈0|T (φ(y)φ(y)) |0〉 (〈0|T (φ(x)φ(y)) |0〉)2

+ 9(〈0|T (φ(x)φ(x)) |0〉)2(〈0|T (φ(y)φ(y)) |0〉)2

= 24(i∆F(x − y))4 + 72(i∆F(x − x))i∆F(y − y)(i∆F(x − y))2

+ 9(i∆F(x − x))2(i∆F(y − y))2 .

The last expression can be represented by the following diagram:

24· yx +72·
x y

+9· x y

(b) Here, the equal-time contractions are forbidden. The result is

T (: φ4(x) :: φ4(y) :) = 16 : φ3(x)φ3(y) : i∆F(x − y)
+ 72 : φ2(x)φ2(y) : (i∆F(x − y))2

+ 96 : φ(x)φ(y) : (i∆F(x − y))3

+ 24(i∆F(x − y))4 . (10.10)

(c) By applying Wick’s theorem for fermions one obtains

〈0|T (ψ̄(x)ψ(x)ψ̄(y)ψ(y)) |0〉
= iSF(x − x)iSF(y − y) − iSF(x − y)iSF(y − x) .

10.5

(a) The given diagram is obtained from the expression

− iλ
4!

∫
d4y 〈0|T (φ(x1)φ(x2)φ4(y)) |0〉 ,

where φ(x1) is to be contracted with one φ(y) (there are four ways to do
this) and φ(x2) with one of the remaining three φ(y)′s. The symmetry
factor is 1

4!4 ·3 = 1
2 . This result can be easily checked by using the formula

given in the problem, where g = 1, α = 0 i β = 1.
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(b) This diagram is one of the terms in the

1
2!

(
− iλ

4!

)2 ∫
d4y1d4y2 〈0|T (φ(x1)φ(x2)φ4(y1)φ4(y2)) |0〉 ,

where φ(x1) is contracted with one of the four φ(y1)′s (there are four ways
to do this); φ(x2) with one of the remaining φ(y1) fields (there are three
ways to do this). It is necessary to make two more contractions between
φ(y1) and φ(y2) which can be done in 4 · 3 = 12 ways. Thus we have:

S−1 = 2!
1
2!

(
1
4!

)2

4 · 3 · 4 · 3 =
1
4

,

so the symmetry factor is S = 4. The same result is obtained by plugging
g = 1, α2 = 1 i β = 1 into the formula given in the problem.

(c) In order to get this diagram it is necessary to make the following contrac-
tions in this third-order expression:

1
3!

(
− iλ

4!

)3 ∫
d4y1d4y2d4y3 〈0|T (φ(x1)φ(x2)φ4(y1)φ4(y2)φ4(y3)) |0〉 ,

(10.11)
φ(x1) with one of the four φ(y1)′s (four ways); φ(x2) with one of the
remaining φ(y1) fields (three ways); two φ(y1) fields with four φ(y2) fields
(4 · 2 = 8 ways); the remaining φ(y1) field with φ(y3) fields (4 ways); three
contractions between three φ(y2)′s and three φ(y3) fields (3 · 2 = 6 ways).
Finally, one has to divide the obtained expression by two, because of the
symmetry y2 ↔ y3. By combining all the factors we have:

S−1 = 3!
1
3!

(
1
4!

)3

4 · 3 · 4 · 2 · 4 · 3 · 2 · 1
2

=
1
12

, (10.12)

so S = 12. This result can be checked by applying the formula given in
the problem: g = 2, n = 3, α3 = 1, β = 0.

10.6 The result is

1
2

(
−iλ
3!

)2 ∫
d4y1d4y2 〈0|T (φ(x1)φ(x2)φ3(y1)φ3(y2)) |0〉 =

=
∫

d4y1d4y2(−iλ)2
[
1
2
i∆F(x1 − y1)i∆F(x2 − y2)(i∆F(y1 − y2))2

+
1
12

i∆F(x1 − x2)(i∆F(y1 − y2))3

+
1
8
i∆F(x1 − x2)i∆F(y1 − y1)i∆F(y2 − y2)i∆F(y1 − y2)

+
1
2
i∆F(x1 − y1)i∆F(x2 − y1)i∆F(y1 − y2)i∆F(y2 − y2)

+
1
4
i∆F(x1 − y1)i∆F(x2 − y2)i∆F(y1 − y1)i∆F(y2 − y2)

]
(10.13)
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which can be represented by the following diagram:

1
2
· x

2
x

1 1
y

2
y +

1
12

·
x

2
x

1

1
y

2
y

+
1
8
·

x
2

x
1

1
y

2
y

+
1
2
·

x
2

x
1

1
y

2
y +

1
4
· x

2x
1

1
y

2
y

The coefficient 1
2 in the first term (10.13) can be obtained in the following

way: contraction φ(x1) with φ(y1) can be done in three ways, as well as the
contraction φ(x2) with φ(y2). Two contractions φ(y1) with φ(y2) can be done
in two ways. The obtained result has to be multiplied by 2! which comes from
the interchange y1-vertices with y2-vertices, because, for instance, we could
contract φ(x1) with φ(y2) instead of φ(y1). Thus, the overall coefficient is

1
2

3 · 3 · 2
3! · 3!

· 2 =
1
2

. (10.14)

In the second and third term there is no additional multiplying by 2 which
comes from the y1 ↔ y2 interchange!

10.7

(a) Diagram for this process is represented in Fig. 10.1.

Fig. 10.1. The three-level Feynman diagram for the scattering µ−(p1) + µ+(p2) →
e−(q1) + e+(q2)

The Feynman amplitude is given by the following expression

iM =
ie2

(p1 + p2)2 + iε
v̄(p2, s)γµu(p1, r)ū(q1, r

′)γµv(q2, s
′) ,

hence
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〈
|M|2

〉
=

e4

4
1

(p1 + p2)4

2∑
r,s=1

2∑
r′,s′=1

v̄a(p2, s)γ
µ
abub(p1, r)

× ūc(q1, r
′)(γµ)cdvd(q2, s

′)ūe(p1, r)γν
efvf (p2, s)

× v̄g(q2, s
′)(γν)ghuh(q1, r

′)

=
e4

4(p1 + p2)4
∑

s

(vf (p2, s)v̄a(p2, s)) γµ
ab

×
∑

r

(ub(p1, r)ūe(p1, r)) (γν)ef

×
∑
r′

(uh(q1, r
′)ūc(q1, r

′)) (γµ)cd

×
∑
s′

(vd(q2, s
′)v̄g(q2, s

′)) (γν)gh .

By performing matrix multiplying in the preceding expression we obtain
two traces (Problem 4.4)

〈
|M|2

〉
=

e4

4(p1 + p2)4
1

16m2
em

2
µ

tr[(/q1 + me)γµ(/q2 − me)γν ]

× tr[(/p2 − mµ)γµ(/p1 + mµ)γν ] .

By applying corresponding identities from Problem 3.6 we get

〈
|M|2

〉
=

e4

4(p1 + p2)4
1

m2
em

2
µ

[
q1µq2ν + q2µq1ν − (q1 · q2)gµν − m2

egµν

]

×
[
pµ
1pν

2 + pµ
2pν

1 − (p1 · p2)gµν − m2
µgµν

]
.

After multiplying and reducing the preceding expression one obtains

〈
|M|2

〉
=

e4

4(p1 + p2)4m2
em

2
µ

[2(p2 · q1)(p1 · q2) + 2(p2 · q2)(p1 · q1)

+ 2m2
e(p1 · p2) + 2m2

µ(q1 · q2) + 4m2
em

2
µ

]
. (10.15)

In the center–of–mass frame the four-momenta are

p1 = (E, 0, 0, p) ,

p2 = (E, 0, 0,−p) ,

q1 = (E′, q sin θ, 0, q cos θ) ,

q2 = (E′,−q sin θ, 0,−q cos θ) ,

where p and q are intensities of the corresponding three–momenta vectors.
After simple scalar product computations in (10.15) one gets:

〈
|M|2

〉
=

e4

32E4m2
em

2
µ

[
2((EE′)2 + m2

em
2
µ)(1 + cos2 θ)

+ 2(E2m2
e + E′2m2

µ)(1 − cos2 θ) − m4
e − m4

µ

]
. (10.16)
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In the high energy limit (p ≈ E) expression (10.16) becomes

〈
|M|2

〉
=

e4

16m2
em

2
µ

(1 + cos2 θ) . (10.17)

Using the previous expression and Problem 10.1 the differential cross sec-
tion is

dσ

dΩ
=

e4

256π2E2
(1 + cos2 θ) .

(b) We shall discuss just the main results. From the diagram

Fig. 10.2. The Feynman diagram for the scattering e−(p1) + µ+(q1) → e−(p2) +
µ+(q2) in the lowest order

the amplitude is

iM = ū(p2, r2)(ieγµ)u(p1, r1)
−igµν

(p1 − p2)2 + iε
v̄(q1, s1)(ieγν)v(q2, s2) .

The squared Feynman amplitude module (averaged over spin states of the
initial particles and summed over spin states of the final particles) is:

〈
|M|2

〉
=

e4

4(p1 − p2)4
1

16m2
em

2
µ

tr [(/p2 + me)γµ(/p1 + me)γν ]

× tr [(/q1 − mµ)γµ(/q2 − mµ)γν ]

=
e4

2(p1 − p2)4m2
em

2
µ

[(p2 · q1)(p1 · q2) + (p1 · q1)(p2 · q2)

− m2
µ(p1 · p2) − m2

e(q1 · q2) + 2m2
em

2
µ

]
.

Finally in the center–of–mass frame (in the high energy limit) we have:

〈
|M|2

〉
=

e4

8m2
em

2
µ

4 + (1 + cos θ)2

(1 − cos θ)2
. (10.18)

The differential cross section in the center–of–mass frame is:

dσ

dΩ
=

e4

128π2E2

4 + (1 + cos θ)2

(1 − cos θ)2
. (10.19)

Note that for θ ≈ 0 differential cross section diverges. This is a consequence
of the fact that for these angles the prevailing contribution in the expres-
sion for iM comes from the virtual photon (this contribution is actually
divergent because k2 = (p1 − p2)2 ≈ 0).
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10.8 The Compton scattering is the process e−γ → e−γ. In the lowest order
contribution to this scattering is given by the following two diagrams:

so that the Feynman amplitude is

iM = ū(p′, s′)(ieγµ)ε∗µ(k′, λ′)
i(p/ + k/ + m)

(p + k)2 − m2
(ieγν)εν(k, λ)u(p, s) +

+ ū(p′, s′)(ieγν)εν(k, λ)
i(p/ − k/′ + m)

(p − k′)2 − m2
(ieγµ)ε∗µ(k′, λ′)u(p, s)

= −ie2ε∗µ(k′, λ′)εν(k, λ)ū(p′, s′)
[
γµ(p/ + k/ + m)γν

(p + k)2 − m2
+

+
γν(p/ − k/′ + m)γµ

(p − k′)2 − m2

]
u(p, s) . (10.20)

As we see the Feynman amplitude has the following form

iM = iMµνε∗µ(k′, λ′)εν(k, λ) .

In order to prove the gauge invariance of M it is enough to show that

iMµνkν = iMµνk′
µ = 0 . (10.21)

First we prove that iMµνkν = 0. In the second term in (10.20) we will use
p − k′ = p′ − k. Hence

iMµν = −ie2ū(p′, s′)
[
γµ(p/ + k/ + m)γν

(p + k)2 − m2
+

γν(/p′ − k/ + m)γµ

(p′ − k)2 − m2

]
u(p, s) .

(10.22)
The numerators can be also simplified using:

(p/ + m)γνu(p) = (γµpµ + m)γνu(p) = (2gµν − γνγµ)pµu(p) + mγνu(p)
= 2pνu(p) − γν(p/ − m)u(p) = 2pνu(p),

and similarly
ū(p′)γν(/p′ + m) = 2p′ν ū(p′) . (10.23)

After performing these two simplifications iMµνkν becomes
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iMµνkν = −ie2kν ū(p′, s′)
[
γµ/kγν + 2γµpν

2p · k +
−γν/kγµ + 2γµp′ν

−2p · k′

]
u(p, s)

= −ie2ū

[
γµk2 + 2γµp · k

2p · k +
−k2γµ + 2γµp′ · k

−2p · k′

]
u(p, s) = 0 ,

where we used p2 = m2 and k2 = 0. The second condition iMµνk′
µ = 0 can

be proved in the same way.

10.9 The initial state, |i〉 = c
†
(pi, r) |0〉 is the electron with momentum pi and

polarization r, while the final state in the process is the electron with momen-
tum pf and polarization s, i. e. |f〉 = c

†
(pf , s) |0〉. The transition amplitude

matrix element is:

Sfi = ie
∫

d4x 〈f| ψ̄(x)γµψ(x) |i〉Aµ(x) , (10.24)

where ψ and ψ̄ are field operators and Aµ is a classical electromagnetic field.

(a) From (10.24) one obtains

Sfi = iea
√

m

EiV

√
m

EfV

∫
d4xū(pf , s)γ0u(pi, r)e−ipi·x+ipf ·xe−k2x2

.

(10.25)
Because of

∫
d3xe−k2x2+i(pi−pf)·x =

( π

k2

)3/2

e−(pi−pf)
2/4k2

,

we have

Sfi = iea
√

m

EiV

√
m

EfV

( π

k2

)3/2

2πδ(Ei − Ef)

× e−
(pi−pf )

2

4k2 ū(pf , s)γ0u(pi, r) . (10.26)

Delta function which appears in the transition amplitude (10.26) indicates
on the energy conservation law, which is satisfied because potential Aµ

does not depend on time. As three–space is inhomogeneous (the potential
depends on x), the three-momentum is not conserved. The average value
of the squared transition amplitude is obtained from (10.26)

〈
|Sfi|2

〉
=

1
2

e2m2a2

V 2EiEf
2πTδ(Ei − Ef)

( π

k2

)3

× e−
(pi−pf )

2

2k2

2∑
r,s=1

|u(pf , s)γ0u(pi, r)|2 . (10.27)

Because of
(ū(pf , s)γ0u(pi, r))

∗ = ū(pi, r)γ0u(pf , s) ,
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we have:
2∑

r,s=1

|ū(pf , s)γ0u(pi, r)|2 =
2∑

r=1

(ua(pf , s)ūb(pf , s)) γ0
bc

×
2∑

r=1

(uc(pi, r)ūd(pi, r)) γ0
da

=
1

4m2
tr[(/pf + m)γ0(/pi + m)γ0]

=
1

m2
(EiEf + pi · pf + m2) . (10.28)

By plugging (10.28) into (10.27) one obtains

〈
|Sfi|2

〉
=

e2a2π

V 2EiEf

( π

k2

)3

Tδ(Ei − Ef)

× e−
(pi−pf )

2

2k2 (EiEf + |pi||pf | cos θ + m2) . (10.29)

By substituting (10.29) into the expression for the differential cross section,

dσ =
|Sfi|2

T

V Ei

|pi|
V d3pf

(2π)3
,

one gets

dσ =
e2a2π

8k6

(
EiEf + |pi||pf | cos θ + m2

)

× exp
(
−|pi|2

1 − cos θ

k2

)
δ(Ef − Ei)

|pf |
|pi|

dEfdΩ .

The Ef–integration gives

dσ

dΩ
=

e2a2π

8k6

(
E2

i + |p|2 cos θ + m2
)
e−|p|2 1−cos θ

k2 .

(b) This problem is analogous to the previous one, so we shall discuss only the
main steps. The transition amplitude is:

Sfi = − 2iegm

V
√

EiEf

(2π)δ(Ef − Ei)
2π

q2 + 1
a2

ū(pf , s)γ3u(pi, r) ,

where q = pf − pi. The next step is to calculate the squared amplitude:

2∑
r,s=1

|ū(pf , s)γ3u(pi, r)|2 =
1

4m2
tr[(/pf + m)γ3(/pi + m)γ3]

=
1

m2
(2p3

i p
3
f + pi · pf − m2)

=
1

m2
(EiEf + |pi||pf | cos θ − m2) .
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The average value of the squared transition amplitude is:

〈
|Sfi|2

〉
=

16π3e2g2T

V 2EiEf

1(
q2 + 1

a2

)2 δ(Ef − Ei)(EiEf + |pi||pf | cos θ − m2) .

The differential cross section is:

dσ

dΩ
= 2e2g2 (E2 − m2)(1 + cos θ)(

1
a2 + 2(E2 − m2)(1 − cos θ)

)2 .

10.10 The initial state is vacuum |0〉, while the final state is

|f〉 = c
†
(p1, r)d

†
(p2, s) |0〉 .

The transition amplitude is

Sfi =
ie
V

∫
d4x
∑
r′s′

∫
d3q1d3q2

√
m

Eq1

√
m

Eq2

〈0| d(p2, s)c(p1, r)

× (c
†
(q1, r

′)d
†
(q2, s

′)ū(q1, r
′)γµAµ(x)v(q2, s

′)eiq1·x+iq2·x + . . .) |0〉 ,

where we have dropped the vanishing terms. After reducing the last expression
one obtains

Sfi = ie
ma

V
√

E1E2

∫
d4x ū(p1, r)γ2v(p2, s)ei(p2+p1)·xe−iωt

= ie(2π)4
ma

V
√

E1E2

× ū(p1, r)γ2v(p2, s)δ(3)(p1 + p2)δ(E1 + E2 − ω) .

The average value of the squared transition amplitude is
〈
|Sfi|2

〉
= (2π)4TV δ(3)(p1 + p2)δ(E1 + E2 − ω)

× e2a2

4V 2E1E2
tr[(/p1 + m)γ2(/p2 − m)γ2]

= (2π)4Tδ(3)(p1 + p2)δ(E1 + E2 − ω)
e2a2

V E1E2

× (E1E2 + |p1||p2| − 2|p1||p2| sin2 θ cos2 φ + m2) ,

since the four-momenta are:

pµ
1 = (E1, p1 sin θ cos φ, p1 sin θ sin φ, p1 cos θ) ,

pµ
2 = (E2,−p2 sin θ cos φ,−p2 sin θ sinφ,−p2 cos θ) .

The differential cross section is:

dσ =

〈
|Sfi|2

〉
T

V d3p1

(2π)3
V d3p2

(2π)3
.
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By integrating over p2 and p1 one obtains the scattering cross section (per
unit volume)

σ =
e2a2

3πω
(ω2 + 2m2)

√
ω2

4
− m2 .

10.11 The transition amplitude is

Sfi =
ieam

V

1√
EiEf

ū(pf , s)γ3(1 − γ5)u(pi, r)
∫

d4xe−ipi·x+ipf ·xe−k2x2
.

By integrating over t and x we get

Sfi = iea
√

m

EiV

√
m

EfV

( π

k2

)3/2

e−
(pi−pf )

2

4k2

× 2πδ(Ei − Ef)ū(pf , s)γ3(1 − γ5)u(pi, r) .

The average value of the squared transition amplitude is:

〈
|Sfi|2

〉
=

e2a2m2

V 2EiEf
2πTδ(Ei − Ef)

( π

k2

)3

e−
(pi−pf )

2

2k2
〈
|M|2

〉
,

where

〈
|M|2

〉
=

1
2

2∑
r,s=1

|ū(pf , s)γ3(1 − γ5)u(pi, r)|2

=
1
2

1
4m2

tr [(/pf + m)γ3(1 − γ5)(/pi + m)(1 + γ5)γ3]

=
1

m2
(2p3

f p
3
i + pi · pf) .

The differential cross section is:

dσ

dΩ
=

e2a2π

4k6

(
E2

i + |pi|2 cos θ
)
e−

1
k2 |pi|2(1−cos θ) .

10.12 We shall present the expression for the transition amplitude and final
result for the differential cross section only:

Sfi = ie
m

V
√

EiEf

v̄(pi, s)v(pf , r)
∫

d4x(iEf)
g

|x|e
−i(pi−pf )·x ,

dσ

dΩ
=

e2g2E2(E2 + m2 − p2 cos θ)
2|p|4(1 − cos θ)2

.

10.13 The transition amplitude Sfi is

Sfi = iea
√

m

V Ei

√
m

V Ef
ū(pf , sf)γ0u(pi, si)

∫
d4xδ(3)(x)e−i(pi−pf )·x

= iea
m

V
√

EiEf

(2π)δ(Ei − Ef)ū(pf , sf)γ0u(pi, si) ,
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where si i sf are initial and final electron polarizations. In order to calculate
|Sfi|2 it is necessary to compute squared spin-part of the amplitude. Since

u(p, s)ū(p, s) =
1 + γ5/s

2
/p + m

2m
,

we have

|ū(pf , sf)γ0u(pi, si)|2 =
1

16m2
tr [(1 + γ5/sf)(/pf + m)γ0(1 + γ5/si)(/pi + m)γ0]

=
1

16m2

(
tr[/pfγ0/piγ0] + m2tr[1]

− tr[/sf/pfγ0/si/piγ0] + m2tr[/sfγ0/siγ0]
)

, (10.30)

where we have kept only the nonvanishing traces. The components of momenta
and polarization vectors are:

pµ
i = (Ei, 0, 0, |pi|) ,

pµ
f = (Ef , |pf | sin θ cos φ, |pf | sin θ sinφ, |pf | cos θ) ,

sµ
i = (|pi|/m, 0, 0, Ei/m),

sµ
f = (|pf |/m, (Ef/m) sin θ cos φ, (Ef/m) sin θ sinφ, (Ef/m) cos θ) .

The traces in the sum (10.30) are:

tr[/sf/pfγ0/si/piγ0] = −4m2 cos θ ,

trI = 4 ,

tr[/sfγ0/siγ0] = 4
(

k2

m2
+

E2

m2
cos θ

)
,

tr[/pfγ0/piγ0] = 4(E2 + k2 cos θ) ,

where Ei = Ef = E while k = |pi| = |pf |. By summing all the terms we get

|ū(pf , sf)γ0u(pi, si)|2 =
E2

m2
cos2
(

θ

2

)
. (10.31)

The differential cross section for the scattering is computed in the usual way.
The result is:

dσ

dΩ
=

e2a2

4π2
E2 cos2(θ/2) .

10.14 The amplitude for this process is (see Fig. 10.2)

iM =
ie2

k2
ū(p2, r)γµu2(p1)v̄2(q1)γµv(q2, s) ,

where subscript 2 in u and v spinors indicates that these are negative helicity
particles. The squared Feynman amplitude module is
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〈
|M|2

〉
=

e4

64m2
em

2
µk4

tr[(/p2 + me)γµ(/p1 + me)(1 − γ5/s1)γν ]

× tr[(/q1 − mµ)(1 − γ5/s2)γµ(/q2 − mµ)γν ] ,

where we have summed over polarization states of the final particles in the
process. Here s1 and s2 are polarization vectors of the initial electron and
muon which are going to be evaluated later. By applying corresponding iden-
tities from Problem 3.6 and corresponding expression for contractions of two
ε symbols from Problem 1.5 we get

〈
|M|2

〉
=

e4

2m2
em

2
µk4

[(p2 · q1)(p1 · q2) + (p2 · q2)(p1 · q1)−

− m2
µ(p2 · p1) − m2

e(q1 · q2) + 2m2
em

2
µ +

+ memµ ((s1 · s2)(p2 · q2) − (s1 · s2)(p2 · q1)−
− (s1 · s2)(p1 · q2) + (s1 · s2)(p1 · q1) −
− (s1 · q2)(s2 · p2) + (s1 · q1)(s2 · p2) +
+ (s1 · q2)(s2 · p1) − (s1 · q1)(s2 · p1))] . (10.32)

Since mµ ≈ 200me we will neglect the electron mass. In the center–of–mass
frame four momenta are

pµ
1 = (E, 0, 0, p) ,

qµ
1 = (E′, 0, 0,−p) ,

pµ
2 = (E, p sin θ cos φ, p sin θ sin φ, p cos θ) ,

qµ
2 = (E′,−p sin θ cos φ,−p sin θ sinφ,−p cos θ) .

Polarization vectors s1 and s2 are

sµ
1 = (

p

me
, 0, 0,

E

me
) ,

sµ
2 = (

p

mµ
, 0, 0,− E′

mµ
) .

After finding scalar products between four-vectors in (10.32) and reducing the
obtained expression one gets

〈
|M|2

〉
=

e4

32m2
em

2
µp4 sin4( θ

2 )

[
(EE′ + p2)2 − 2p2(m2

e + m2
µ) sin2

(
θ

2

)

+ (EE′ + p2 cos θ)2 + p2

(
4p2 sin2

(
θ

2

)
+ EE′ sin2 θ

)]
, (10.33)

hence the differential cross section is

dσ

dΩ
=

e4

128π2(E + E′)2p4 sin4(θ/2)

[
(EE′ + p2)2 − 2p2(m2

e + m2
µ) sin2

(
θ

2

)

+ (EE′ + p2 cos θ)2 + p2

(
4p2 sin2

(
θ

2

)
+ EE′ sin2 θ

)]
. (10.34)
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10.15 The interaction Hamiltonian is

Hint = g

∫
d3xψ̄γ5ψφ ,

where the field operators are written in the interaction picture. In the lowest
(”tree-level”) order of the perturbation theory the transition amplitude is:

Sfi =
1
2
(−ig)2 〈p′k′|

∫
d4xd4yT{: (ψ̄γ5ψφ)x :: (ψ̄γ5ψφ)y :} |pk〉 . (10.35)

Because of
ψ(x) |p, r〉 =

√
m

V Ep
u(p, r)e−ip·x ,

〈p, r| ψ̄(x) =
√

m

V Ep
ū(p, r)eip·x ,

from the expression (10.35) we conclude that there are four ways to make
contractions which correspond to the given process. In that way we obtain
(note that there are two couples containing two identical terms)

Sfi = −g2 m2

V 2
√

E1E2E′
1E

′
2

∫
d4xd4yi∆F(x − y)

×
[
−ū(k′, s′)γ5u(k, s)ū(p′, r′)γ5u(p, r)ei(p′−p)·y+i(k′−k)·x

+ ū(p′, r′)γ5u(k, s)ū(k′, s′)γ5u(p, r)ei(k′−p)·y+i(p′−k)·x
]

. (10.36)

The minus sign in the first term is a consequence of the Wick theorem for
fermions. After integrating the last expression and having in mind that

i∆F(x − y) =
i

(2π)4

∫
d4q

e−iq·(x−y)

q2 − M2 + iε
,

one obtains

Sfi = i
(2π)4g2m2

V 2
√

E1E2E′
1E

′
2

δ(4)(p′ + k′ − p − k)

×
[

1
(p′ − p)2 − M2 + iε

ū(k′, s′)γ5u(k, s)ū(p′, r′)γ5u(p, r)−

− 1
(p′ − k)2 − M2 + iε

ū(p′, r′)γ5u(k, s)ū(k′, s′)γ5u(p, r)
]

.

Feynman diagrams for the scattering are represented in the figure.
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The squared amplitude is

〈
|Sfi|2

〉
=

g4(2π)4Tδ(4)(p′ + k′ − p − k)
4V 3E1E2E′

1E
′
2

×
[
(k · k′)(p · p′) − (k · k′)m2 − (p · p′)m2 + m4

((p′ − p)2 − M2)2
+

+
(p · k′)(k · p′) − (p · k′)m2 − (k · p′)m2 + m4

((p′ − k)2 − M2)2

− 1
2

1
(p′ − p)2 − M2

1
(p′ − k)2 − M2

Re [(k · k′)(p · p′)

−(p′ · k′)(k · p) + (p · k′)(k · p′)
− (k · k′)m2 − (p · p′)m2 − (k · p′)m2

− (p · k′)m2 + (k · p)m2 + (k′ · p′)m2 + m4
]]

.

The squared amplitude per unit time as viewed from the center–of–mass frame
is:

〈
|Sfi|2

〉
T

=
g4(2π)4δ(4)(p′ + k′ − p − k)

4V 3E2
|p|4

×
[

(1 − cos θ)2

(2|p|2(cos θ − 1) − M2)2
+

(1 + cos θ)2

(2|p|2(cos θ + 1) + M2)2

− sin2 θ

(2|p|2(cos θ − 1) − M2)(2|p|2(cos θ + 1) + M2)

]
, (10.37)

where E1 = E2 = E′
1 = E′

2 = E are the energies of the initial and final
particles. All four fermions carry the momenta of the identical intensity |p|.
In the high energy limit from (10.37) one obtains

〈
|Sfi|2

〉
T

=
3g4(2π)4δ(4)(p′ + k′ − p − k)

16V 3E2
. (10.38)

The total cross section for the scattering is

σ =
∫ ∫ 〈|Sfi|2

〉
T

V E

2|p1|
V d3p′

1

(2π)3
V d3p′

2

(2π)3

=
3g4

4π2

δ(2E − 2E′)
16E

dE′
1dΩ′

1

2E1

=
3g4

64πE2
.

10.16 By direct application of the Feynman rules we obtain the expression for
the corresponding amplitudes. In the following expressions we drop external
lines.
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(a)

iM =

= (ie)2
∫

d4k

(2π)4

(
γν

1
/p − /k − m + iε

γµ
gµν

k2 + iε

)

(b)

iM =

= i(ie)4
∫ ∫

d4k

(2π)4
d4q

(2π)4

(
γµ 1

/p − /k − m + iε
γσ

× 1
/p − /k − /q − m + iε

γσ
1

/p − /k − m + iε

× γµ
1

k2 + iε
1

q2 + iε

)

(c)

iM =

= −(ie)3i3
∫

d4p

(2π)4
tr
[
γν 1

/p − /q − m + iε
γρ

× 1
/p + /k − m + iε

γµ 1
/p − m + iε

]

(d)

iM =

= i(ie)3
∫

d4p

(2π)4

(
γν 1

/p + /k − /q − m + iε
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× γρ 1
/p − /q − m + iε

γν
1

q2 + iε

)

(e)

iM =

= (ie)7i6(−i)3
∫ ∫ ∫

d4k1

(2π)4
d4q

(2π)4
d4k

(2π)4

×
[
γν 1

/p1 + /q − m + iε
γα 1

/q − m + iε
γµ

× gµρ

(p − q)2 + iε
gσν

(p − q)2 + iε

× tr
(

1
/k − m + iε

γσ 1
/p − /q + /k − m + iε

γρ

)

× gαβ

p2
1 + iε

tr
(

1
/p1 + /k1 − m + iε

γδ 1
/k1 − m + iε

γβ

)]

(f)

−iΠµν(k) =

= (ie)2
∫

d4p

(2π)4
tr
[

1
/p − /k − m + iε

γν 1
/p − m + iε

γµ

]

(g)

−iM = = (−i)Πµν(k)
−igνρ

k2 + iε
(−i)Πρσ(k)

(h)

−iM =

= −i4(−i)(ie)4
∫

d4p

(2π)4
d4q

(2π)4
tr
[

1
/p − /k − m + iε

γσ

× 1
/p + /q − /k − m + iε

γν 1
/p + /q − m + iε

γρ

× 1
/p − m + iε

γµ

]
gρσ

q2 + iε
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(i)

iM =

= −(ie)4
∫

d4p

(2π)4
tr
[

1
/p − /k1 − m + iε

γµ 1
/p − /k1 − /k2 − m + iε

× γσ 1
/p − /q1 − m + iε

γρ 1
/p − m + iε

γν

]



11

Renormalization and regularization

11.1 In order to prove the Feynman formula we shall use mathematical
induction. For n = 2 we have

I2 =
∫ 1

0

dx1

∫ 1

0

dx2δ(x1 + x2 − 1)
1

[x1A1 + x2A2]2

=
∫ 1

0

dx1
1

[x1A1 + (1 − x1)A2]2

=
1

A1A2
. (11.1)

By taking n-th derivative of (11.1) we get the useful identity

1
ABn

=
∫ 1

0

dx

∫ 1

0

dyδ(x + y − 1)
nyn−1

[xA + yB]n+1
. (11.2)

Now we shall assume that the Feynman formula is valid for n = k and show
that it holds for n = k + 1

1
A1...AkAk+1

=
∫ 1

0

dz1...dzkδ(z1 + ... + zk − 1)
(k − 1)!

[z1A1 + ... + zkAk]kAk+1

=
∫ 1

0

dz1...dzkdy k! δ(z1 + ... + zk − 1)

× yk−1

[yz1A1 + ... + yzkAk + (1 − y)Ak+1]k+1
. (11.3)

By using substitution x1 = yz1, ..., xk = yzk, xk+1 = 1 − y and a well known
property of the δ–function

δ(ax) =
1
|a|δ(x) ,

we obtain
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1
A1...AkAk+1

=
∫

dx1...dxkdxk+1 δ(x1 + ... + xk + xk+1 − 1)

× k!
[x1A1 + ... + xk+1Ak+1]k+1

, (11.4)

which concludes the proof.

11.2 By introducing a new variable q = k + p, the integral I becomes

I =
∫

dDq
1

(q2 − m2 − p2 + iε)n
. (11.5)

If we do a Wick rotation to the Euclidian space, q0 = iq0
E, q = qE, the integral

I becomes
I = i

∫
dDqE

1
(−q2

E − m2 − p2 + iε)n
. (11.6)

The contour of the integration along the real axis can be rotated to the imagi-
nary axis without passing through the poles. Transition from Minkowski space
to Euclidian space is so-called Wick rotation.

The relation between the Cartesian and the spherical coordinates in the
D dimensional space is

x1 = r sin θD−2 sin θD−3 . . . sin θ1 sinφ ,

x2 = r sin θD−2 sin θD−3 . . . sin θ1 cos φ ,

x3 = r sin θD−2 sin θD−3... sin θ2 cos θ1 ,

...

xD = r cos θD−2 ,

where 0 < φ < 2π, 0 < θ1, . . . , θD−2 < π. The volume element, dVD is

dVD = rD−1dr dφ

D−2∏
1

(sin θm)mdθm .

Therefore

I =
i

(−1)n
2π

D−2∏
m=1

∫ π

0

dθm (sin θm)m

∫ ∞

0

dr
rD−1

(r2 + m2 + p2)n
. (11.7)

If we use [9] ∫ π

0

dθ (sin θ)m =
√

π
Γ
(

m+1
2

)

Γ
(

m+2
2

) ,

and ∫ ∞

0

dx
xb

(x2 + M)a
=

Γ
(

1+b
2

)
Γ
(
a − 1+b

2

)

2Ma− 1+b
2 Γ (a)

,
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we obtain

I = i(−1)nπ
D
2

Γ
(
n − D

2

)
Γ (n)

1

(m2 + p2)n−D
2

.

11.3 As we know, the Gamma–function is defined by

Γ (z) =
∫ ∞

0

dte−ttz−1 . (11.8)

¿From the property Γ (z) = Γ (z + 1)/z follows that

Γ (z) = Γ (z + n + 1)
n∏

k=0

1
z + k

. (11.9)

By using the definition of number e, the integral (11.8) becomes

Γ (z) = lim
n→∞

∫ n

0

dt tz−1(1 − t/n)n .

By introducing a new variable, t/n = x the last integral is

Γ (z) = lim
n→∞

nz

∫ 1

0

dx xz−1(1 − x)n

= lim
n→∞

nzB(n + 1, z)

= lim
n→∞

nz Γ (n + 1)Γ (z)
Γ (n + z + 1)

= lim
n→∞

nz Γ (n + 1)
z(z + 1) . . . (z + n)

=
1
z

lim
n→∞

nz 1
(1 + z)(1 + z

2 ) . . . (1 + z
n )

, (11.10)

where we used (11.9).
Euler-Mascheroni constant, γ is defined by

γ = lim
n→∞

(
1 +

1
2

+
1
3

+ . . . +
1
n
− ln n

)
.

Then
e−γz = lim

n→∞
nze−z(1+ 1

2+...+ 1
n ) . (11.11)

From (11.10) and (11.11) follows

Γ (z) = e−zγ 1
z

∞∏
n=1

ez/n

1 + z
n

.

By taking the logarithm of the previous formula we get
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ln Γ (z) = −γz − ln z +
∞∑

n=1

( z

n
− ln(1 +

z

n
)
)

.

Hence

ψ(z) =
d ln Γ (z)

dz
=

Γ ′(z)
Γ (z)

= −γ − 1
z

+
∞∑

k=1

(
1
k
− 1

k + z

)
. (11.12)

For z = n from the previous expression we get

ψ(n) = −γ + 1 +
1
2

+
1
3

+ . . . +
1

n − 1
. (11.13)

Expanding Γ (1 + ε) according the Taylor formula we obtain

Γ (1 + ε) = Γ (1) + εΓ ′(1) + . . .

= 1 − γε + o(ε) . (11.14)

By using (11.9) and the previous expression we have

Γ (−n + ε) =
Γ (1 + ε)

ε(ε − 1) . . . (ε − n)

=
(−1)n(1 − εγ + o(ε))

n!ε(1 − ε)(1 − ε/2) . . . (1 − ε/n)

=
(−1)n

n!

(
1
ε
− γ

)(
1 + ε

(
1 +

1
2

+ . . . +
1
n

))
+ o(ε)

=
(−1)n

n!

(
1
ε
− γ + 1 +

1
2

+ . . . +
1
n

+ o(ε)
)

=
(−1)n

n!

(
1
ε

+ ψ(n + 1) + o(ε)
)

. (11.15)

11.4 By applying the Feynman parametrization (11.G), the integral becomes

I =
∫ 1

0

dx

∫
d4k

1
[(k + px)2 − ∆]2

,

where ∆ = p2(x2 − x) + m2x . By making change of variable l = k + px and
going to Euclidian space (l0 = il0E, l = lE) we get

I = i
∫ 1

0

dx

∫
d4lE

1
[l2E + ∆]2

.

In order to compute the integral we introduce spherical coordinates. The an-
gular integration can be done immediately
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I = i
∫ 1

0

dx

∫ 2π

0

dφ

∫ π

0

dθ1 sin θ1

∫ π

0

dθ2 sin2 θ2

∫ ∞

0

dlE
l3E

(l2E + ∆)2

= iπ2

∫ 1

0

dx

∫ ∞

0

dl2El2E
1

(l2E + ∆)2
= iπ2

∫ 1

0

dx
[
ln(l2E + ∆)|∞0 − 1

]
.

The previous integral diverges logarithmically. Performing the Pauli–Villars
regularization the propagator 1/k2 in the integral I becomes

1
k2

→ 1
k2

− 1
k2 − Λ2

,

where Λ is a large parameter. A contribution of the second term in the previous
expression to the integral is

IΛ = iπ2

∫ 1

0

dx
[
ln(l2E + ∆Λ)|∞0 − 1

]
,

where we introduced

∆Λ = Λ2 + p2(x2 − x) + x(m2 − Λ2).

By subtracting these two results we get

I − IΛ = iπ2

∫ 1

0

dx ln
(

Λ2 + p2(x2 − x) + x(m2 − Λ2)
p2(x2 − x) + m2x

)

= iπ2

∫ 1

0

dx ln
(

Λ2(1 − x)
p2(x2 − x) + m2x

)
.

11.5 The integrand is symmetric with respect to any two indices and therefore
Iαβµνρσ is of the form

Iαβµνρσ = C [gαβ(gµνgρσ + gµρgνσ + gµσgνρ)
+ gαµ(gβνgρσ + gβρgνσ + gβσgνρ)
+ gαν(gβµgρσ + gβρgµσ + gβσgµρ)
+ gαρ(gβµgνσ + gβνgµσ + gβσgνµ)
+ gασ(gβµgνρ + gβνgµρ + gβρgµν)] ,

where C is a constant. In order to determine C we will compute the contraction
gαβgµνgρσIαβµνρσ . It is easy to get

gαβgµνgρσIαβµνρσ = C(D3 + 6D2 + 8D) .

On the other hand

gαβgµνgρσIαβµνρσ =
∫

dDk

(k2)n−3
= lim

µ→0

∫
dDk

(k2 − µ2)n−3

= lim
µ→0

i(−1)n−3π2 Γ (n − 3 − D
2 )

Γ (n − 3)
(µ2)3−n+ D

2 ,
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where µ is a infrared parameter. Comparing these results we get

C =
1

D3 + 6D2 + 8D
lim
µ→0

i(−1)n−3π2 Γ (n − 3 − D
2 )

Γ (n − 3)
(µ2)3−n+ D

2 .

Specially, for n = 5 the divergent part of the integral Iαβµνρσ is

Iαβµνρσ|div =
iπ2

96ε
[gαβ(gµνgρσ + gµρgνσ + gµσgνρ)

+ gαµ(gβνgρσ + gβρgνσ + gβσgνρ)
+ gαν(gβµgρσ + gβρgµσ + gβσgµρ)
+ gαρ(gβµgνσ + gβνgµσ + gβσgνµ)
+ gασ(gβµgνρ + gβνgµρ + gβρgµν) .

11.6 In D–dimensional space the interaction term takes the form −gµε/2χφ2.

(a) The self–energy of the χ particle is determined by the diagram

p
k

k

p

p+

from which we read

−iΠ(p2) = 2g2µε

∫
dDk

(2π)D

1
k2 − m2 + i0

1
(k + p)2 − m2 + i0

. (11.16)

By introducing the Feynman parametrization (11.G) and integrating over
the momentum k we get:

−iΠ(p2) =
ig2

8π2

(
2
ε
− γ −

∫ 1

0

dx ln
m2 + p2x(x − 1) − i0

4πµ2

)

=
ig2

8π2

[
2
ε
− γ − ln

m2

4πµ2

−
∫ 1

0

dx ln
(

1 +
p2

m2
x(x − 1) − i0

)]
. (11.17)

As we know from the complex analysis the logarithm function, w = ln z
has a branch cut along the positive x–axis which starts at the branch point
z = 0. This branch cut is necessary if we want that branches of logarithm
function to be single valued and holomorphic functions. Let us find the
branch point for function

ln[1 +
p2

m2
x(x − 1)] .

It is the smallest value of p2 for which the argument of logarithm function
vanishes:
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1 +
p2

m2
(x2 − x) = 0 ,

i.e.
∂p2

∂x
= m2 2x − 1

(x2 − x)2
= 0 ,

from which we get x = 1
2 . The point p2 = 4m2, which is step energy for the

decay χ → 2φ, is the branch point. A branch cut starts at this point and
goes along x–axis in the positive direction to the infinity. Let us introduce
the following notation

I =
g2

8π2

∫ 1

0

dx ln
(

1 +
p2

m2
x(x − 1) − iδ

)
.

We shall calculate first this integral in the case p2 > 4m2. For X > 0 we
have

log[−X − i0] = log |X| − iπ .

The zeroes of 1 + p2

m2 x(x − 1) are

x1,2 =
1 ±
√

1 − 4m2

p2

2
.

For x1 < x < x2 the expression X is negative, otherwise it is positive.
Then

I =
g2

8π2

[∫ x1

0

dx ln
(

1 +
p2

m2
x(x − 1)

)

+
∫ 1

x2

dx ln
(

1 +
p2

m2
x(x − 1)

)

+
∫ x2

x1

dx ln
(
−1 − p2

m2
x(x − 1)

)
− iπ(x2 − x1)

]
. (11.18)

By doing partial integration we have

I =
g2

8π2

[
x ln
(

1 +
p2

m2
x(x − 1)

) ∣∣∣
x1

0
− p2

m2

∫ x1

0

dx
x(2x − 1)

1 + p2(x2 − x)/m2

+ x ln
(

1 +
p2

m2
x(x − 1)

) ∣∣∣
1

x2

− p2

m2

∫ 1

x2

dx
x(2x − 1)

1 + p2(x2 − x)/m2

+ x ln
(
−1 − p2

m2
x(x − 1)

) ∣∣∣
x2

x1

− p2

m2

∫ x2

x1

dx
x(2x − 1)

1 + p2(x2 − x)/m2

− iπ(x2 − x1)] . (11.19)

Combining the terms in the previous formula we get
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I =
g2

8π2

[
−iπ(x2 − x1) −

p2

m2

∫ 1

0

dx
x(2x − 1)

1 + p2(x2 − x)/m2

]
. (11.20)

The integral in the previous formula can be simplified by introducing the
new variable t = 2x − 1. The result is (see [9])

I = −i
g2

8π

√
1 − 4m2

p2
− g2

4π2


1 +

1
2

√
1 − 4m2

p2
ln

1 −
√

1 − 4m2

p2

1 +
√

1 − 4m2

p2


 .

For 0 < p2 < 4m2 we get [9]

I =
g2

4π2

[
−1 +

√
4m2

p2
− 1 arcsin

√
p2

4m2

]
.

The final result for the vacuum polarization, −iΠ(p2) is

−iΠ(p2) =
ig2

8π2

(
2
ε
− γ − ln

m2

4πµ2
+ 2
)

+ π(p2) , (11.21)

where

π(p2) = − ig2

4π2

√
4m2

p2
− 1 arcsin

√
p2

4m2

for 0 < p2 < 4m2 and

π(p2) =
ig2

8π2


i

√
1 − 4m2

p2
+

√
1 − 4m2

p2
ln

1 −
√

1 − 4m2

p2

1 +
√

1 − 4m2

p2




for p2 > 4m2.
(b) In the lowest order of the perturbation theory the transition amplitude is

given by

Sfi = −ig
∫

d4x 〈p1,p2|χ(x)φ(x)φ(x) |M,p = 0〉

= (2π)4δ(4)(p − p1 − p2)

√
1

2V M

√
1

2V E1

√
1

2V E2
(−2ig) ,

where p1,2 are the momenta of the decay products. Also we take that χ
particle is in the rest. The decay rate is

dΓ =
|Sfi|2

T

V 2d3p1d3p2

(2π)6
.

By integrating over the momentum p2 we get:
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Γ =
4g2

(2π)2

∫
dEpE

1
8ME2

δ(M − 2E)
∫ π

0

dθ

∫ π

0

dφ ,

and the space angle integration gives 2π (not 4π, because the final particles
are identical). The final result is given by:

Γ =
g2

4πM2

√
M2

4
− m2 .

(c) The imaginary part of Π(p2) can be read off the part (a):

ImΠ(p2) = − g2

8π

√
1 − 4m2

p2
θ(p2 − 4m2) . (11.22)

This result also can be obtain using Cutkosky rule. The expression (11.16)
can be rewritten in the following form

−iΠ(p2) = 2g2

∫
d4k

(2π)4
1

(−k)2 − m2 + i0
1

(k + p)2 − m2 + i0
. (11.23)

The discontinuity of the amplitude

Disc Π(p2) = Π(p2 + iε) − Π(p2 − iε) ,

is obtained by making the substitution

1
p2 − m2

→ (−2iπ)δ(4)(p2 − m2)θ(p0) ,

in the expression (11.23). Since Π(p2) is a Lorentz scalar we shall take
that pµ = (p0,p = 0) i.e. we shall calculate it in the rest frame of the
particle χ. In this way we obtain

DiscΠ(p2) = 2ig2(−2iπ)2
∫

d4k

(2π)4
δ(4)(k2 − m2)

× δ(4)((k + p)2 − m2)θ(−k0)θ(k0 + p0)

= − g2i
8π2

∫
d4k

1
ω2

k

δ(k0 + ωk)δ(k0 + p0 − ωk)

= − ig2

8π2

∫
d3k

δ(p0 − 2ωk)
ω2

k

. (11.24)

By performing the integration over the momentum k we get

Disc Π(p2) = − ig2

4π

√
1 − 4m2

p2
.

Since
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Im Π(p2) =
1
2i

DiscΠ(p2) ,

we again obtain the result (11.22). From the expressions for Γ and Π(M2)
we immediately see that the relation which was given in problem is valid.
This relation is a consequence of the optic theorem.

11.7 In D = 4 − ε dimensional spacetime the dimension of a scalar field is
D/2 − 1, while the dimensions of the coupling constants are the same as in
four dimensions: [λ] = 0, [g] = 1. The dimension of the Lagrangian density
must be [L] = D, so it is given by

L =
1
2
(∂µφ)2 − m2

2
φ2 − gµε/2

3!
φ3 − λµε

4!
φ4 ,

where we introduced the parameter µ which has the dimension of mass. The
self–energy is determined by diagrams shown in Fig. 11.1.

Fig. 11.1. The one-loop contribution to the self–energy of φ field

The contribution of the first one is

−iΣ1 = − iλ
2

µε

∫
dDk

(2π)D

i
k2 − m2

.

By applying the formula (11.A) we get

−iΣ1 = − iλm2

32π2

(
4πµ2

m2

)ε/2

Γ
(
−1 +

ε

2

)
,

which, using (11.F), gives

−iΣ1 =
iλm2

32π2

(
1 +

ε

2
ln
(

4πµ2

m2

)
+ o(ε)

)(
2
ε

+ 1 − γ + o(ε)
)

=
iλm2

32π2

(
2
ε

+ 1 − γ + ln
(

4πµ2

m2

)
+ o(ε)

)
.

The second integral is

−iΣ2(p) =
(−ig)2

2
µε

∫
dDk

(2π)D

i
k2 − m2

i
(k − p)2 − m2

.

By using the Feynman parametrization formula (11.G) the last expression
becomes
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−iΣ2(p) = − (−ig)2

2
µε

∫ 1

0

dx

∫
dDk

(2π)D

1
[k2 − 2k · px + p2x − m2]2

.

The integration over the momentum k gives

−iΣ2(p) =
i
2
µεg2 1

(4π)2−ε/2
Γ
( ε

2

)∫ 1

0

dx (m2 − p2x + p2x2)−ε/2

=
ig2(4πµ2)ε/2

2(4π)2

(
2
ε
− γ + o(ε)

)

×
[
1 − ε

2

∫ 1

0

dx

(
ln m2 + ln(1 +

p2

m2
x(x − 1))

)]
.

Finally, the integration over the Feynman parameter x gives (for p2 < 4m2)

−iΣ2(p) =
ig2

32π2

[
2
ε
− γ + 2 + ln

4πµ2

m2
− 2

√
4m2

p2
− 1 arcsin

√
p2

4m2

]
.

The self–energy of the particle is

−iΣ(p) = −iΣ1(p) − iΣ2(p) .

The mass shift is δm2 = Σ(m2) = Σ1(m2) + Σ2(m2) .

11.8 The vertices in this theory are shown in Fig. 11.2.

Fig. 11.2. Vertices in σ–model

The self–energy of the π particle is determined by the diagrams given in
Fig. 11.3. The full line depict the π field, while the dashed line depict σ.

The first diagram is one of the terms in the second order of the perturbation
theory

1
2
(−iλv)22

∫
dx1dx2 〈0|T (π(y1)π(y2)σ3(x1)σ(x2)π2(x2)) |0〉 , (11.25)



222 Solutions

Fig. 11.3. The one-loop correction to the π propagator

so that

−iΣ1(p2) = 6(−ivλ)2
i

−m2

∫
dDk

(2π)D

i
k2 − m2

.

The symmetry factor of this diagram is 6, since one π field can be contracted
to π field from ππσ-vertex in two ways, while σσ contraction in the vertex
σσσ can be done in 3 ways. Other diagrams are:

−iΣ2(p2) = λ

∫
dDk

(2π)D

1
k2 − m2

,

−iΣ3(p2) = −2v2λ2

m2

∫
dDk

(2π)D

1
k2

,

−iΣ4(p2) = 3λ
∫

dDk

(2π)D

1
k2

,

−iΣ5(p2) = 4λ2v2

∫
dDk

(2π)D

1
k2 − m2

1
(k + p)2

.

Note that only the last diagram depends on the momentum p. The renormal-
ized mass is determined by m2

R = Σ(0) . It is easy to see that

−iΣ5(0) = 4λ2v2

∫
dDk

(2π)D

1
k2 − m2

1
k2

=
4λ2v2

m2

∫
dDk

(2π)D

(
1

k2 − m2
− 1

k2

)
.

By summing all diagrams we obtain

Σ(0) = Σ1(0) + Σ2(0) + Σ3(0) + Σ4(0) + Σ5(0) = 0 ,

so mR = 0.

11.9 The amplitude for the diagram
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is

iM = e3

∫
dDk

(2π)D

tr[γµ(/k − /p1 + m)γν(/k + /p2 + m)γρ(/k + m)]
((k − p1)2 − m2)((k + p2)2 − m2)(k2 − m2)

. (11.26)

By applying the Feynman parametrization (11.H) we get

1
((k − p1)2 − m2)((k + p2)2 − m2)(k2 − m2)

= 2
∫ 1

0

dx

∫ 1−x

0

dz
1

[k2 − m2 + (p2
2 + 2k · p2)x + (p2

1 − 2k · p1)z]3

= 2
∫ 1

0

dx

∫ 1−x

0

dz
1

[(k + p2x − p1z)2 − ∆]3
,

where we introduce the notation

∆ = (p2x − p1z)2 − p2
2x − p2

1z + m2 .

The numerator of the integrand in (11.26) is

tr[γµ(/k − /p1 + m)γν(/k + /p2 + m)γρ(/k + m)]
= tr[γµ(/l + A/ + m)γν(/l + B/ + m)γρ(/l + C/ + m)] , (11.27)

where
l = k + p2x − p1z ,

A = p1z − p2x − p1 ,

B = p1z − p2x + p2 ,

C = p1z − p2x .

Since the trace of the odd number of γ–matrices is zero, (11.27) becomes

tr[γµ(/l + A/ + m)γν(/l + B/ + m)γρ(/l + C/ + m)]
= tr[γµ/lγν/lγρ/l] + tr[γµ/lγν/lγρC/] + tr[γµ/lγνB/γρ/l] +
+ tr[γµ/lγνB/γρC/] + tr[γµA/γν/lγρ/l] + tr[γµA/γν/lγρC/] +
+ tr[γµA/γνB/γρ/l] + tr[γµA/γνB/γρC/] + m2tr[γµ/lγνγρ] +
+ m2tr[γµA/γνγρ] + m2tr[γµγν/lγρ] +
+ m2tr[γµγνB/γρ] + m2tr[γµγνγρ/l] + m2tr[C/γµγνγρ] . (11.28)
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To calculate the integral (11.26) we make substitution of variable k → l. Terms
in (11.28) which contain odd number of momenta l after integration vanish.
The terms which are proportional to m2 as well as the term proportional to
tr[γµA/γνB/γρC/] are finite, and therefore we consider only the remaining terms.
The first of the divergent integrals is

iM1 = 8e3

∫ 1

0

dx

∫ 1−x

0

dz

∫
dDl

(2π)D

[
2lν(lµCρ − gµρC · l + lρCµ)

(l2 − ∆)3
−

− l2(gµνCρ − gµρCν + gνρCµ)
(l2 − ∆)3

]
,

since
tr[γµ/lγν/lγρ/C] = 2lνtr[γµ/lγρ/C] − l2tr[γµγνγρ/C] .

By integrating over l (using (11.C)) we get

iM1 =
4ie3

(4π)D/2
Γ
( ε

2

)∫ 1

0

dx

∫ 1−x

0

dz
[
1 − ε

2
ln ∆ + o(ε2)

]

× (1 − D

2
)(gµνCρ − gµρCν + gνρCµ) .

The divergent part of this integral is

iM1|div = − ie3

2π2ε

∫ 1

0

dx

∫ 1−x

0

dz(gµνCρ − gµρCν + gνρCµ) .

The other two integrals can be evaluated in the same way. The final result is

iM|div = − ie3

2π2ε

[
1
6

(gµν(p1 − p2)ρ + gµρ(p1 − p2)ν + gρν(p1 − p2)µ) +

+
1
2

(gµν(p1 + p2)ρ + gµρ(p2 − p1)ν − gρν(p1 + p2)µ)] .

The diagram where the orientation in the loop is opposite is shown in the
following figure.

The amplitude is the same as in (11.26) except that the trace in (11.26) should
be replaced by

tr[γρ(−/k − /p2 + m)γν(/p1 − /k + m)γµ(−/k + m)] .
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By putting C−1C in the previous expression, where matrix C is the charge
conjugation matrix (4.K), we get

tr[CγρC−1C(−/k − /p2 + m)C−1CγνC−1C

× (/p1 − /k + m)C−1CγµC−1C(−/k + m)C−1].

By using (4.K) we have

tr[γρ(−/k − /p2 + m)γν(/p1 − /k + m)γµ(−/k + m)]
= (−)3tr[γρ(/k + m)γµ(/k − /p1 + m)γν(/k + /p2 + m)] ,

from which the we get the requested result. The statement is valid for all
diagrams of this type with the odd number of vertices and this is called the
Furry theorem.

11.10 The vacuum polarization in QED is

−iΠµν(q) = −e2

∫
d4k

(2π)4
tr[(/k + m)γµ(/k + /q + m)γν ]
(k2 − m2)((k + q)2 − m2)

. (11.29)

From the Ward identity we know that this expression has the following form

−iΠµν(q) = −(qµqν − q2gµν)iΠ(q2) .

By multiplying the previous expression by gµν and using (11.29) we get

iΠ(q2) = − 1
3q2

igµνΠµν

= −4e2

3q2

∫
d4k

(2π)4
−2k · (k + q) + 4m2

(k2 − m2)((k + q)2 − m2)
. (11.30)

Discontinuity in the expression Π(q2) can be calculated by applying the
Cutkosky rule. Then

Disc Π(q2) =
4ie2

3q2

1
(2π)4

(−2πi)2
∫

d4k(4m2 − 2k · (k + q))δ(4)(k2 − m2)

× δ(4)((k + q)2 − m2)θ(−k0)θ(k0 + q0). (11.31)

By using

δ(x2 − a2) =
1

2|a| (δ(x − a) + δ(x + a))

and taking qµ = (q0,0) we get

Disc Π(q2) = −16iπ2e2

3q2

1
(2π)4

∫
d4k(4m2 − 2k · (k + q))

× 1
4ω2

k

δ(k0 + ωk)δ(k0 + q0 − ωk) . (11.32)



226 Solutions

Integration over k0 gives

Disc Π(q2) = −4iπ2e2

3q2

1
(2π)4

∫
d3k(2m2 + 2q0ωk)

1
ω2

k

δ(q0 − 2ωk) . (11.33)

Since d3k = |k|ωkdωk sin θdφdθ we have

Disc Π(q2) = − ie2

3πq2

∫ ∞

m

dωk
2m2 + 2q0ωk

ωk

√
ω2

k − m2δ(q0 − 2ωk) . (11.34)

Integration over ωk gives

Disc Π(q2) =
e2

6πi

(
1 +

2m2

q2

)√
1 − 4m2

q2
θ(q2 − 4m2) . (11.35)

Finally

ImΠ(q2 + iε) =
1
2i

Disc Π(p2)

= − e2

12π

(
1 +

2m2

q2

)√
1 − 4m2

q2
θ(q2 − 4m2) . (11.36)

11.11 Scalar electrodynamics has two vertices:

= −ie(p + p′)µ = 2ie2gµν

The Feynman rules are standard except that for every closed photon loop
we have an extra factor 1/2. The photon self–energy is determined by the
diagrams:

The first one is

−iΠ(1)
µν = 2ie2gµν

∫
dDk

(2π)D

i
k2 − m2

.

By applying (11.A) and (11.F) we obtain:

−iΠ(1)
µν = − ie2

4π2ε
m2gµν + fin. part . (11.37)

The second diagram is
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−iΠ(2)
µν = e2

∫
dDk

(2π)D

(2k + p)µ(2k + p)ν

(k2 − m2)((k + p)2 − m2)
.

By using the Feynman parametrization in the previous integral we get

−iΠ(2)
µν = e2

∫ 1

0

dx

∫
dDk

(2π)D

4kµkν + 2kµpν + 2kνpµ + pµpν

[k2 + 2xk · p + p2x − m2]2
.

Applying the formulae (11.A–C) it follows that :

−iΠ(2)
µν =

ie2πD/2

(2π)D

∫ 1

0

dx

[
Γ
( ε

2

) 1
(m2 + p2x2 − p2x)ε/2

(4x2 − 4x + 1)pµpν

− 2gµν

Γ
(

ε
2 − 1

)
(m2 + p2x2 − p2x)ε/2−1

]
,

which is equal to

−iΠ(2)
µν =

ie2

16π2

(
2
3ε

(pµpν − p2gµν) +
4m2

ε
gµν

)
+ fin. part . (11.38)

Adding the divergent parts of the expressions (11.37) and (11.38) we get the
requested result. Note that the terms proportional to m2 cancel. So, the final
result is gauge invariant, as expected.

11.12

(a) Let us introduce the following notation:
Nf− the number of external fermionic lines
Ns− the number of external scalar lines
Pf− the number of internal fermionic lines
Ps− the number of internal scalar lines
V3− the number of ψ̄γ5ψφ vertices
V4− the number of φ4 vertices
L− the number of loops.
Then the superficial degree of divergence for a diagram is

D = 4L − 2Ps − Pf .

On the other hand, L can be expressed as

L = Ps + Pf − (V − 1) ,

since it is a number of independent internal momenta. By combining the
previous formulae with

2V3 = Nf + 2Pf ,

V3 + 4V4 = Ns + 2Ps ,

we get
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Fig. 11.4. Superficially divergent diagrams in the Yukawa theory

D = 4 − Ns −
3
2
Nf .

Superficially divergent amplitudes are shown in Fig. 11.4.
The first diagram is the vacuum one and it can be ignored; the second and
fifth are equal to zero. The bare Lagrangian density is

L0 =
1
2
(∂φ0)2−

m2
0

2
φ2

0+ψ̄0(iγµ∂µ−M0)ψ0−ig0ψ̄0γ5ψ0φ0−
λ0

4!
φ4

0 . (11.39)

If we rescale the fields as

φ0 =
√

Zφφ =
√

1 + δZφφ ,

ψ0 =
√

Zψψ =
√

1 + δZψψ ,

and introduce a new set of variables:

Zφm2
0 = m2 + δm2

ZψM0 = M + δM

Zψ

√
Zφg0 = µε/2(g + δg)
Z2

φλ0 = µε(λ + δλ) ,

the bare Lagrangian density becomes

L0 =
1
2
(1 + δZφ)(∂φ)2 − m2 + δm2

2
φ2 + i(1 + δZψ)ψ̄/∂ψ

− (M + δM)ψ̄ψ − i(g + δg)µε/2ψ̄γ5ψφ − (λ + δλ)µε

4!
φ4 .

The Feynman rules are given in the Fig. 11.5
(b) The one–loop fermionic propagator correction is represented in Fig. 11.6.

The first diagram is

−iΣ2(p) = −g2µε

∫
dDk

(2π)D

1
k2 − m2 + i0

γ5
/p − /k + M

(p − k)2 − M2 + i0
γ5 .
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Fig. 11.5. Feynman rules in renormalized Yukawa theory

Fig. 11.6. The one–loop correction to fermionic propagator

Since γ5/aγ5 = −/a and (γ5)2 = 1 we have

−iΣ2(p) = − g2µε

(2π)D

∫
dDk

−/p + /k + M

(k2 − m2 + i0)((p − k)2 − M2 + i0)

= − g2µε

(2π)D

∫
dDk

∫ 1

0

dx
−/p + /k + M

(k − px)2 − ∆ + i0)2

= − g2µε

(2π)D
iπD/2Γ

( ε

2

)∫ 1

0

dx
/p(x − 1) + M

∆ε/2
, (11.40)

where ∆ = M2x + m2(1 − x) − p2x + p2x2. Since

µε

2DπD/2
=

1
16π2

(4πµ2)ε/2 =
1

16π2

(
1 +

ε

2
ln(4πµ2) + . . .

)
,

we have

−iΣ2(p) = − ig2

16π2

[
2
ε
− γ + o(ε)

] ∫ 1

0

dx [M + (x − 1)/p]
[
1 − ε

2
ln

∆

4πµ2

]

= − ig2

8π2ε
(M − 1

2
/p) + fin. part . (11.41)

The full one–loop correction to the fermionic propagator is

−iΣ(p) = − ig2

8π2ε
(M − 1

2
/p) − iδM + iδZψ/p + fin. part .

From the renormalization conditions:

Σ(/p = M) = 0 ,

dΣ

d/p

∣∣∣
/p=M

= 0 , (11.42)
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follows that

δZψ = − g2

16π2ε
+ fin. part ,

δM = −g2M

8π2ε
+ fin. part . (11.43)

(c) The one–loop correction to the scalar propagator is represented in Fig.
11.7.

Fig. 11.7. The one-loop correction to the scalar propagator

The first diagram is

−iΠ1(p2) = − i2g2µε

(2π)D

∫
dDk

tr[γ5(/k + M)γ5(/p + /k + M)]
(k2 − M2 + i0)((p + k)2 − M2 + i0)

=
g2µε

(2π)D

∫
dDk

∫ 1

0

dx
tr[(−/k + M)(/p + /k + M)]

(k2 + 2k · px − M2 + p2x)2

=
g2µε

(2π)D

∫ 1

0

dx

∫
dDk

4(−k · p − k2 + M2)
(k2 + 2k · px − M2 + p2x)2

,

where we use the Feynman parametrization formula (11.G). Introducing a
new variable l = k + px we further have

−iΠ1(p2) = 4g2µε

∫ 1

0

dx

∫
dDl

(2π)D

2M2 − ∆ − l2

(l2 − ∆ + i0)2

=
ig2

4π2

∫ 1

0

dx

(
1 − ε

2
ln

∆

4πµ2

)

×
(

(M2 − p2(x2 − x))(
2
ε
− γ + o(ε))+

+
D

2
(−2

ε
− 1 + γ + o(ε))(M2 + p2(x2 − x))

)

=
ig2

2π2ε

(
p2

2
− M2

)
+ fin. part ,

where ∆ = M2 + p2(x2 − x). The second diagram is

−iΠ2 =
iλm2

16π2ε
+ fin. part . (11.44)

Summing, we obtain
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−iΠ(p2) =
ig2

2π2ε

(
p2

2
− M2

)
+

iλm2

16π2ε
+iδZφp2−iδm2+fin.part . (11.45)

Using the renormalization conditions:

Π(p2 = m2) = 0
dΠ

dp2

∣∣∣
p2=m2

= 0 , (11.46)

we get

δZφ = − g2

4π2ε
+ fin. part

δm2 =
λm2

16π2ε
− g2M2

2π2ε
+ fin. part . (11.47)

(d) The amplitude of the diagram

is

iM3 = (ig)3µ3ε/2

∫
dDk

(2π)D

γ5(/k + /q + M)γ5(/k + M)γ5

((k + q)2 − M2)(k2 − M2)((k − p)2 − m2)

= −2ig3µ3ε/2

(2π)D
γ5

∫ 1

0

dx

∫ 1−x

0

dz

∫
dDk

M2 − /q/k + M/q − k2

((k + qx − pz)2 − ∆)3

= −2ig3µ3ε/2

(2π)D
γ5

∫ 1

0

dx

∫ 1−x

0

dz

∫
dDl

N

(l2 − ∆)3
,

where

∆ = x2q2 + z2p2 + (1 − z)M2 − xq2 + zm2 − p2z − 2xzq · p

and
N = M2 − (l − xq + zp)2 + M/q − /q(/l − x/q + z/p) .

In the previous formulae we introduced a variable l = k + xq − zp. As we
are interested to find only the divergent part of iM3, it is useful to note
that only l2–term in the numerator of the integrand is divergent. So, by
using (11.C) we get:
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iM3 = 2ig3µ3ε/2γ5

∫
dDl

(2π)D

∫ 1

0

dx

∫ 1−x

0

dz
l2

(l2 − ∆)3
+ . . .

= −g3µε/2(4 − ε)
32π2

γ5

(
2
ε
− γ + . . .

)∫ 1

0

dx

×
∫ 1−x

0

dz

(
1 − ε

2
ln

∆

4πµ2

)
.

Finally

iM3 = −g3µε/2

8π2ε
γ5 + fin. part . (11.48)

The vertex correction is

so, from

iV3 =
(

gγ5µ
ε/2 + δgγ5µ

ε/2 − g3µε/2

8π2ε
+ fin.part

) ∣∣∣
q2=0

= gγ5

follows

δg =
g3

8π2ε
+ fin. part .

(e) Let us first calculate the following diagram

Since we have to find the divergent part of this diagram we can put that
the external momenta are equal to zero. Then,

iM4(k1 = k2 = k3 = k4 = 0) = −g4µ2ε

∫
dDp

(2π)D

tr[γ5(/p + M)]4

(p2 − M2)4
.

(11.49)
Since

γ5(/p + M)γ5(/p + M) = (−/p + M)(/p + M) = M2 − p2

we have
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iM4(k1 = k2 = k3 = k4 = 0) = −4g4µ2ε

∫
dDp

(2π)D

1
(p2 − M2)2

= − ig4µε

4π2

(
2
ε
− γ

)(
1 − ε

2
ln

M2

4πµ2

)

= − ig4µε

2π2ε
+ fin. part . (11.50)

The previous result should be multiplied by a factor 6 as there are six
diagrams of this type.
The complete four vertex is

iV4 =
(
−iλµε − iδλµε − 6ig4µε

2π2ε
+

3iλ2µε

16π2ε
+ fin. part

) ∣∣∣
s=4m2,t=u=0

= −iλ , (11.51)

and finally

δλ = −3g4

π2ε
+

3λ2

16π2ε
+ fin. part . (11.52)

11.13 In this problem dimension of spacetime is D = 2 − ε.

(a) The polarization of vacuum is given by:

−iΠµν(p) = (ie)2(−i2)
∫

dDq

(2π)D

tr[(/q − /p)γν/qγµ]
q2(q − p)2

. (11.53)

In D-dimensional space trace identities necessary to calculate the previous
expression read:

tr(γµγν) = f(D)gµν ,

tr(γµγνγργσ) = f(D)(gµνgρσ − gµρgνσ + gµσgρν) ,

where f(D) is any analytical function which satisfies the condition f(2) =
2. Instead of f(D) we will write 2 as we did in the previous problems (of
course, there f(D) = 4). The Feynman parametrization gives

−iΠµν(p) =
2e2

(2π)D

∫ 1

0

dx

∫
dDq

× 2qµqν − q2gµν − pµqν − pνqµ + (p · q)gµν

(q2 − 2p · qx + p2x)2
. (11.54)

By using (11.A–C) in (11.54) we obtain

−iΠµν = −2ie2πD/2

(2π)D

∫ 1

0

dx

[
2
(

x2pµpν

(−p2x + p2x2)1+ε/2
Γ (1 +

ε

2
)

− 1
2

gµν

(−p2x + p2x2)ε/2
Γ (

ε

2
)
)



234 Solutions

− gµν

(
x2p2

(−p2x + p2x2)1+ε/2
Γ (1 +

ε

2
)

− 2 − ε

2
1

(−p2x + p2x2)ε/2
Γ (

ε

2
)
)

− 2
xpµpν

(−p2x + p2x2)1+ε/2
Γ (1 +

ε

2
)

+ gµν
p2x

(−p2x + p2x2)1+ε/2
Γ (1 +

ε

2
)
]

.

From the previous expression (for D → 2 i.e. ε → 0) we obtain

−iΠµν(p) = −i(pµpν − p2gµν)Π(p2)

= − ie2

πp2
(pµpν − p2gµν) , (11.55)

from which we see that the polarization of vacuum is a finite quantity.
(b) The full photon propagator is obtained by summing the diagrams in the

Figure

iDµν(p) =
−igµν

p2 + i0
+

−igµρ

p2 + i0
[p2gρσ − pρpσ]iΠ(p2)

−igσν

p2 + i0
+ . . .

= − i
p2 + i0

(gµν − pµpν

p2
)(1 + Π(p2) + Π2(p2) + . . .) − ipµpν

p4

= −
i(gµν − pµpν

p2 )

p2(1 − Π(p2) + i0)
, (11.56)

were we discarded the ipµpν/p4-term in the last line since the propagator
is coupled to a conserved current. Then the photon propagator is

iDµν(p) = −
i(gµν − pµpν

p2 )

p2 − e2

π

. (11.57)

Photon mass is e/
√

π.

11.14 The dimension of spacetime is D = 6 − ε.

(a) The renormalized Lagrangian density is

Lren = L + Lct , (11.58)

where

L =
1
2
(∂φ)2 − m2

2
φ2 − gµε/2

3!
φ3 − hµ−ε/2φ , (11.59)
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Lct =
1
2
δZ(∂φ)2 − δm2

2
φ2 − µε/2δg

3!
φ3 − µ−ε/2δhφ . (11.60)

By introducing new quantities

Z = 1 + δZ , (11.61)
m2

0Z = m2 + δm2 , (11.62)
g0Z

3/2 = (g + δg)µε/2 , (11.63)
h0Z

1/2 = (h + δh)µ−ε/2 , (11.64)

and rescaling the field, φ0 =
√

Zφ, the renormalized Lagrangian density
becomes

Lren =
1
2
(∂φ0)2 −

m2
0

2
φ2

0 −
g0

3!
φ3

0 − h0φ0 .

The quantities with index 0 are called bare. The Feynman rules are given
in Figure 11.8.

Fig. 11.8. Feynman rules in φ3 theory

Superficially divergent amplitudes are:

Fig. 11.9. Divergent amplitudes in φ3 theory

(b) The tadpole diagram in one–loop order is shown in the following fihure .
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The second term is

− igµε/2

∫
dDk

(2π)D

i
k2 − m2 + i0

= −i
gµε/2

(2π)D

πD/2

(m2)−2+ε/2
Γ
(
−2 +

ε

2

)

= − igm4µ−ε/2

128π3

(
2
ε

+ ln
(

4πµ2

m2

)
+

3
2
− γ

)

= − igm4µ−ε/2

64π3ε
+ fin. part ,

and it does not depend on momentum. Summing all diagrams we get

iH = −ihµ−ε/2 − igm4µ−ε/2

64π3ε
− iδhµ−ε/2 + fin. part . (11.65)

Hence,

δh = − gm4

64π3ε
+ fin. part . (11.66)

Finite part in the previous expression can be chosen so that H = 0 and
we can ignore all diagrams which contain tadpoles.

(c) The full one–loop propagator is shown in Fig. 11.10.

Fig. 11.10. The one–loop propagator in φ3 theory

The second diagram is

−iΠ2 =
(ig)2µε

2

∫
dDk

(2π)D

i2

(k2 − m2 + i0)((k − p)2 − m2 + i0)

=
g2µε

2

∫ 1

0

dx

∫
dDk

(2π)D

1
(k2 − 2k · px + p2x − m2 + i0)2

= − ig2

128π3

(
2
ε

+ 1 − γ + o(ε)
)

×
∫ 1

0

dx(m2 + p2x(x − 1))
(

1 − ε

2
ln

m2 + p2x(x − 1)
4πµ2

)

= − ig2

64π3ε

(
m2 − p2

6

)
+ fin. part . (11.67)
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Propagator correction is

−iΠ(p2) = − ig2

64π3ε

(
m2 − p2

6

)
+ ip2δZ − iδm2 + fin. part . (11.68)

From the condition −iΠ(p2) = finite we get

δZ = − g2

384π3ε
+ fin. part , (11.69)

δm2 = −m2g2

64π3ε
+ fin. part . (11.70)

In MS scheme the finite parts in (11.69) and (11.70) are zero.
(d) The vertex correction is given in the Fig 11.11.

Fig. 11.11. Vertex correction in φ3 theory

The second diagram is

iΓ = (−ig)3µ3ε/2

∫
dDk

(2π)D

i3

(k2 − m2)((k + p2)2 − m2)((k − p1)2 − m2)
.

(11.71)
By applying (11.H) and integrating over the momentum k we get

iΓ = − (−ig)3µ3ε/2 πD/2

(2π)D
Γ
( ε

2

)∫ 1

0

dx

∫ 1−x

0

dz

× 1
(m2 − p2

2x − p2
1z + p2

2x
2 + p2

1z
2)ε/2

= − ig3µε/2

26−επ3−ε/2

(
2
ε

+ . . .

)∫ 1

0

dx

∫ 1−x

0

dz

×
(

1 − ε

2
ln

m2 − p2
2x − p2

1z + p2
2x

2 + p2
1z

2

µ2

)
. (11.72)

From the last formula we find that the divergent part of iΓ is given by

− ig3µε/2

64π3ε
. (11.73)

The full one–loop vertex in the renormalized theory is
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iV3 = −igµε/2 − iδgµε/2 + iΓ .

In minimal subtraction scheme δg is

δg = − g3

64π3ε
. (11.74)

(e) From (11.61), (11.69) and (11.70) follows

Z = 1 − g2

384π3ε
, (11.75)

m2 = m2
0

(
1 − g2

384π3ε

)
+

m2g2

64π3ε

= m2
0 +

5m2
0g

2

384π3ε
, (11.76)

in the one–loop order. Similarly, from (11.69) and (11.74) we have

g0 =
(g + δg)µε/2

Z3/2
(11.77)

= gµε/2

(
1 − g2

64π3ε
+

g2

256π3ε

)
(11.78)

= gµε/2

(
1 − 3g2

256π3ε

)
. (11.79)

The last expression is important for calculation of the β function.
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