


The Testing Network



Pierre Henry

The Testing Network

An Integral Approach to Test Activities
in Large Software Projects

123



Pierre Henry
pierre.henry@gmx.net

ISBN 978-3-540-78503-3 e-ISBN 978-3-540-78504-0

DOI 10.1007/978-3-540-78504-0

Library of Congress Control Number: 2008932179

c© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Coverdesign: KünkelLopka, Heidelberg

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



 

Content 

 
1 The Project .............................................................................................. 1 

1.1 Purpose and Contents of This Book .............................................. 2 
1.1.1 The Signs ......................................................................... 2 
1.1.2 Testing Revisited ............................................................. 3 

2 Introduction to Testing........................................................................... 7 
2.1 Testing Challenges ........................................................................ 7 

2.1.1 Business and IT................................................................ 8 
2.1.2 The Human Factor ........................................................... 8 
2.1.3 Old and New Worlds........................................................ 9 
2.1.4 Banking Platform Renewal .............................................. 11 
2.1.5 Complex Testing.............................................................. 12 
2.1.6 Global Testing.................................................................. 13 
2.1.7 The Value of Testing........................................................ 14 

2.2 The Significance of Requirements................................................. 15 
2.2.1 What is a Requirement? ................................................... 16 
2.2.2 Meeting the Unknown...................................................... 16 
2.2.3 Characteristics of Requirements ...................................... 17 
2.2.4 Requirements Elicitation.................................................. 18 
2.2.5 Main Problems with Requirements .................................. 19 
2.2.6 Risks Associated with Requirements ............................... 21 
2.2.7 Recommendations............................................................ 22 

2.3 The Nonconformity Problem......................................................... 23 
2.3.1 How Defects are Born...................................................... 23 
2.3.2 Nonconformity to Standards and Rules ........................... 25 
2.3.3 Aging of Product Components......................................... 26 
2.3.4 Environmental Changes ................................................... 27 
2.3.5 Outdated Tests ................................................................. 27 
2.3.6 Conformity Assessment ................................................... 27 
2.3.7 The Costs of the Nonconformity...................................... 28 



vi  Content 

2.3.8 Mission Impossible? ........................................................ 28 
2.3.9 Complexity....................................................................... 29 

2.4 Test Artifacts ................................................................................. 29 
2.4.1 Classification of Test Artifacts......................................... 29 
2.4.2 Information Life Cycle..................................................... 30 
2.4.3 Data Life Cycle ................................................................ 31 

2.5 Testing Predictability..................................................................... 31 
2.5.1 Business Rules ................................................................. 33 
2.5.2 Business Rules Management (BRM) ............................... 35 
2.5.3 Software Reliability ......................................................... 38 
2.5.4 Software Quality Criteria [ISO 9126] .............................. 39 

2.6 Software Development Methods ................................................... 40 
2.6.1 V-Model........................................................................... 41 
2.6.2 Agile Software Development........................................... 43 
2.6.3 What is Agility? ............................................................... 44 
2.6.4 Iterative Development...................................................... 46 
2.6.5 Waterfall and Agile Methods Compared ......................... 46 
2.6.6 Staged Delivery Method .................................................. 47 
2.6.7 Selection of the Right Development Method................... 47 

2.7 The Testing Value Chain (TVC) ................................................... 50 
2.7.1 The SO Organization ....................................................... 51 
2.7.2 Quality Gates ................................................................... 52 

3 Test Methods and Technology ............................................................... 55 
3.1 Different Views of Testing ............................................................ 55 

3.1.1 Test Methods – Overview ................................................ 57 
3.2 Dynamic Test Methods.................................................................. 59 

3.2.1 Structural Testing (White Box)........................................ 59 
3.2.2 Functional Testing (Black Box) ....................................... 60 
3.2.3 Para-Functional Testing ................................................... 62 

3.3 Static Test Methods ....................................................................... 64 
3.3.1 Inspections ....................................................................... 65 
3.3.2 Reviews............................................................................ 65 
3.3.3 Static Analysis (SA)......................................................... 68 
3.3.4 Design Verification (DV)................................................. 69 

3.4 Ways to Test .................................................................................. 70 
3.4.1 Planned Testing (PT) ....................................................... 71 
3.4.2 Exploratory Testing (ET) ................................................. 71 
3.4.3 Performance Testing (PT) ................................................ 72 
3.4.4 Rapid Testing ................................................................... 72 
3.4.5 Regression Testing (RT) .................................................. 73 
3.4.6 Extended Random Regression Testing (ERRT)............... 76 
3.4.7 Scenario Testing............................................................... 76 
3.4.8 SOA Testing..................................................................... 77 
3.4.9 Recommendations............................................................ 81 



Content  vii 

3.5 Test Technology ............................................................................ 82 
3.5.1 Model-Based Testing (MBT)........................................... 83 
3.5.2 Model-Based Integration and Testing (MBI&T) ............. 93 
3.5.3 Model Checking............................................................... 93 
3.5.4 Test Automation............................................................... 95 

4 The Test Domain ..................................................................................... 109 
4.1 Topology of the Test Domain........................................................ 109 

4.1.1 Environmental Factors ..................................................... 110 
4.1.2 Business Pressure on IT ................................................... 110 
4.1.3 IT Technology.................................................................. 111 
4.1.4 Mainframe as the Foundation 

of the IT Infrastructure..................................................... 112 
4.1.5 A Complex Network ........................................................ 114 
4.1.6 Multi-Tier Architecture.................................................... 116 
4.1.7 Backward and Lateral Compatibility ............................... 117 
4.1.8 Multi-Layered Test Domain............................................. 117 
4.1.9 SOA ................................................................................. 118 

4.2 Data and Time Aspects.................................................................. 121 
4.2.1 Master Data Management (MDM)................................... 121 
4.2.2 Business Data Categorization .......................................... 123 
4.2.3 Business Data Growth...................................................... 126 
4.2.4 Test Data Management (TDM)........................................ 126 
4.2.5 Business Rules Management (BRM) ............................... 133 
4.2.6 Business Data Lifecycle................................................... 133 
4.2.7 Bi-Temporality................................................................. 134 
4.2.8 Causality Violation .......................................................... 138 
4.2.9 Other Time Aspects ......................................................... 139 

4.3 Table-Driven Systems (TDS) ........................................................ 143 
4.3.1 Tabular Representation of Data ....................................... 143 
4.3.2 Characteristics of Tables .................................................. 146 
4.3.3 Usage of Tables................................................................ 146 
4.3.4 Specification Tables......................................................... 148 
4.3.5 Transient Tables and Data................................................ 148 
4.3.6 Relational Databases ........................................................ 148 
4.3.7 TDS Testing ..................................................................... 150 

4.4 Critical Technical Parameters........................................................ 152 
4.4.1 Definition ......................................................................... 152 
4.4.2 Examples of CTPs............................................................ 153 

5 Test Processes.......................................................................................... 155 
5.1 The Testing Network – Process Technology................................. 155 

5.1.1 What is a Process? ........................................................... 155 
5.1.2 Process Networks............................................................. 157 
5.1.3 Test Process Landscape ................................................... 159 



viii  Content 

5.2 Core Testing Processes.................................................................. 159 
5.2.1 Overview.......................................................................... 159 
5.2.2 Test Strategy Elaboration................................................. 160 
5.2.3 Test Planning ................................................................... 161 
5.2.4 Test Objectives Definition ............................................... 162 
5.2.5 Test Design Techniques ................................................... 162 
5.2.6 Test Artifacts Management .............................................. 163 
5.2.7 TC Design ........................................................................ 164 
5.2.8 TC Review ....................................................................... 173 
5.2.9 TC Implementation .......................................................... 176 
5.2.10 TC Archiving ................................................................... 178 
5.2.11 Test Set Build................................................................... 178 
5.2.12 Test Runs ......................................................................... 180 
5.2.13 Test Results Analysis ....................................................... 181 
5.2.14 Incident and Problem Management (IPM)....................... 183 
5.2.15 Incident Tracking and Channeling (ITC) ......................... 185 
5.2.16 Compliance Testing Process (CTP) ................................. 190 
5.2.17 Distributed Testing........................................................... 192 

5.3 Test Support Processes .................................................................. 196 
5.3.1 Document Management ................................................... 196 
5.3.2 Information Channeling ................................................... 198 
5.3.3 Training/Skills Improvement ........................................... 202 
5.3.4 Software Testing Certification ......................................... 204 

5.4 Test Neighbor Processes................................................................ 205 
5.4.1 Specifications Review...................................................... 205 
5.4.2 Software Package Build ................................................... 205 
5.4.3 Software Build Manager Role.......................................... 206 
5.4.4 Software Package Installation .......................................... 209 
5.4.5 Release Management ....................................................... 209 
5.4.6 Test Data Management .................................................... 209 
5.4.7 Risk Management ............................................................ 210 

6 Test Platforms and Tools ....................................................................... 211 
6.1 The Integrated Test Platform......................................................... 211 

6.1.1 Benefits of an ITP ............................................................ 212 
6.1.2 Test Platform Management .............................................. 214 

6.2 TD for QC ..................................................................................... 217 
6.2.1 TD Staffing ...................................................................... 219 
6.2.2 TD Administration ........................................................... 219 
6.2.3 TD Modules ..................................................................... 222 
6.2.4 Requirements Module ...................................................... 222 
6.2.5 TestPlan Module .............................................................. 224 
6.2.6 TestLab Module ............................................................... 225 
6.2.7 Defect Module ................................................................. 225 
6.2.8 Analysis Function ............................................................ 226 



Content  ix 

6.2.9 Export Function ............................................................... 226 
6.2.10 Traceability Function ....................................................... 226 
6.2.11 Email and Workflow........................................................ 227 
6.2.12 Document Generator ........................................................ 228 
6.2.13 Other Functions................................................................ 229 
6.2.14 Dashboard ........................................................................ 229 

6.3 The Leading Commercial SA Tools .............................................. 230 
6.4 The Leading Commercial Testing Tools ....................................... 232 

7 The Analysis of Defect Root Causes ...................................................... 235 
7.1 The Methodological Approach...................................................... 236 

7.1.1 Defect Classification Schemes......................................... 236 
7.1.2 Orthogonal Default Classification (ODC)........................ 238 
7.1.3 Situational Analysis ......................................................... 242 
7.1.4 Ishikawa Diagram ............................................................ 242 
7.1.5 Limitations of Cause and Effect Models.......................... 243 

7.2 Causal Chains Explained ............................................................... 244 
7.2.1 Identifying Problem Sources............................................ 244 
7.2.2 Test Perimeter .................................................................. 246 
7.2.3 Causal Chain Examples ................................................... 248 

7.3 Data-Dependent Testing ................................................................ 262 
7.3.1 Database Testing.............................................................. 262 
7.3.2 SQL Tuning Sets (STSs).................................................. 266 
7.3.3 Bi-temporality Issues ....................................................... 271 
7.3.4 Business Rules Management (BRM) ............................... 271 
7.3.5 Data State ......................................................................... 271 
7.3.6 Data Life Cycle ................................................................ 273 
7.3.7 Causality Violation .......................................................... 273 

7.4 Frequent Causes of Problems ........................................................ 274 
7.4.1 Deadlock .......................................................................... 274 
7.4.2 Fixes................................................................................. 275 
7.4.3 Interfaces.......................................................................... 276 
7.4.4 Memory Leaks ................................................................. 276 
7.4.5 Metadata........................................................................... 277 
7.4.6 Network-Centric Applications ......................................... 277 
7.4.7 Network problems............................................................ 278 
7.4.8 SW Package Build ........................................................... 283 
7.4.9 Wrong Parameters............................................................ 284 

7.5 Software Aging.............................................................................. 287 
7.5.1 Causes of Software Decay ............................................... 288 
7.5.2 Symptoms of Code Decay................................................ 288 
7.5.3 Risk factors Related to Software Aging........................... 289 
7.5.4 The Cost of Software Aging ............................................ 289 
7.5.5 An Analysis Tool for Aging Software ............................. 290 



x  Content 

7.6 The Investigation of a Technical Problem..................................... 293 
7.6.1 Technical Processes (TPs) ............................................... 294 

8 Measuring Test Efforts........................................................................... 297 
8.1 Overall Project Progress Measurement.......................................... 297 

8.1.1 EVA’s Power ................................................................... 297 
8.1.2 EVA’s Benefits ................................................................ 297 

8.2 Test Progress Reporting (TPR)...................................................... 299 
8.2.1 Technical Measurement ................................................... 300 
8.2.2 Test Monitoring ............................................................... 303 
8.2.3 Implementing TPR........................................................... 304 
8.2.4 Test Quality Measurement ............................................... 305 
8.2.5 Test Progress Measurement ............................................. 305 
8.2.6 Test Progress Horizon...................................................... 306 
8.2.7 Test Progress Prediction................................................... 306 
8.2.8 Test Progress Reporting with TD/QC .............................. 308 
8.2.9 Central Reporting with TD/QC........................................ 311 

9 Test Issues................................................................................................ 323 
9.1 Risk Management.......................................................................... 323 

9.1.1 Risk Management in the Enterprise IT Project ................ 323 
9.1.2 The Scope of IT Risk Management ................................. 324 
9.1.3 Risk-Based Testing .......................................................... 325 
9.1.4 Limitations on Risk Management .................................... 327 
9.1.5 Risks Related to Compliance ........................................... 328 
9.1.6 Implementing Sarbanes-Oxley in TestDirector................ 333 
9.1.7 The Impact of International Regulations on IT ................ 335 
9.1.8 Recommended Lectures................................................... 338 

9.2 IPC Management ........................................................................... 339 
9.2.1 Detecting Danger Areas in the Project............................. 339 
9.2.2 IPC Management ............................................................. 341 
9.2.3 Crisis Management .......................................................... 341 

Conclusion ........................................................................................................ 343 

Appendices   

A Useful Aids............................................................................................... 347 
A.1 Templates ...................................................................................... 347 

A.1.1 Data Profile ...................................................................... 347 
A.1.2 Project Status ................................................................... 348 
A.1.3 Release Flash ................................................................... 350 
A.1.4 Top-Down Process Modelling ......................................... 351 
A.1.5 Software Test Documentation (IEEE Standard) .............. 351 



Content  xi 

A.2 Checklists ...................................................................................... 353 
A.2.1 Cause-Effect Checklist..................................................... 353 
A.2.2 Code Review Checklist .................................................... 353 
A.2.3 Functionality Checklist .................................................... 354 
A.2.4 How to Create Component Test Cases............................. 355 
A.2.5 Investigation of a Technical Problem............................... 355 
A.2.6 ODC Triggers Usage........................................................ 356 
A.2.7 Process Design Parameters .............................................. 356 
A.2.8 Requirements Definition .................................................. 358 
A.2.9 Test Case Conformity Checklist ...................................... 359 
A.2.10 Test Case Review Checklist............................................. 360 
A.2.11 Test Findings.................................................................... 361 

B Sarbanes-Oxley Compliance .................................................................. 363 

C Test Platforms and Tool Providers........................................................ 367 

D Acronyms................................................................................................. 373 

Glossary ............................................................................................................ 381 

Bibliography ..................................................................................................... 417 

Links ................................................................................................................. 421 

Index ................................................................................................................. 427 

Acknowledgements .......................................................................................... 435 

Copyrights and Trademarks........................................................................... 437 
 



 

1 P. Henry, The Testing Network, 
© Springer 2008 

Chapter 1  
The Project 

Dear reader, 
At the end of the 1990s, many IT professionals began to remember experiences 
gained a long time ago and to rediscover methods rooted in the 1970s and 1980s. 
Are we doing the right things the right way? How do we face the challenges of 
testing complex network-centric information systems and service-oriented busi-
ness applications? 

At the beginning of 2006, in “Aviation Week & Space Technology,” William 
B. Scott wrote an article entitled: “Back to Basics – Space Systems Cost Overruns 
and Schedule Slips Prompt a Look to the Past.” He said: 

“The US Air Force is returning to proven program management techniques to 
fix a litany of next-generation space system cost and schedule problems. Leaders 
now admit that the Air Force […] lost its way during the 1990s. We had some 
pretty lofty aspirations back in the mid-1990s. As a result, we didn’t quite under-
stand what we were committing to […] and costs tended to grow. Many of today’s 
operational systems are a product of the 1970s and 1980s. 

We need to go back to basics – what I call ‘acquisition fundamentals.’ Proven 
tenets of successful program management must be reinstituted. Focus on processes 
that ensure quality from “inception of the system all the way to delivery. 
Strengthen system engineering practices and re-implement the application of 
specifications and standards. Ensure requirements stability. Pay more attention to 
people issues. Establish a risk management framework. In essence the Air Force is 
refining existing processes rather than inventing new ones.” 

In the present days, IT is driven by business constraints characterized by short-
living solutions, tight budgets and demanding customers, which require a sound 
approach to problem-solving to prevent costly failures. Establishing efficient and 
adaptable test processes, using advanced test methods, identifying the root causes 
of problems and finding innovative answers to them is not an easy task. Working 
with a multinational company starting a worldwide IT legacy renewal initiative in 
recent years, I was involved in countless IT and business reviews at the forefront 
of the IT technology frontier. I wrote manuals and designed training sessions to 



2 1 The Project 

teach testing processes and advanced testing topics to hundred of IT and business 
colleagues, using TestDirector for Quality Center. 

I decided to write this book to illustrate and explain to a larger audience the 
state-of-the-art software testing based on networked processes and integrated 
tools. 

I gained this proficiency in large-scale IT projects in global IT projects in a 
multi-cultural context. I have also worked as a senior consultant in government 
agencies in the EMEA region, and as a Certified Test Manager ISTQ/B in Fortune 
100 companies. 
I hope you will find “The Testing Network” useful in your daily practice. 
 
Sincerely yours, 
Pierre Henry 

1.1 Purpose and Contents of This Book 

In 2007, computer-based business solutions reached a tremendous level of interac-
tivity and interconnectivity to support cellular phones, personal computers, laptops 
and company servers communicating via wireless or cable networks. The informa-
tion highways are the Intranet and the Internet. 

In some industries such as automotive, aerospace and energy production, the 
highest reliability, flexibility, and safety requires systems which are of tremendous 
complexity and are long-living. The challenging task for IT developers and soft-
ware producers, in general, is to achieve optimal test efficiency along the whole 
life cycle of their products, which can be very long for mission-critical systems. 
The NASA Space Shuttle is an excellent example of one of those systems which 
face the serious aging problems of all components. 

Large information systems today reflect the increasingly high complexity of 
ever-changing requirements. At the beginning of the twenty-first century, one 
question emerges about software engineering: are software development methods 
trending backwards, and is that a good thing? Glenn Vanderburg wrote, in 2006, 
an interesting article presented by TechRepublic [Van06]. He asks: is our field 
going backward? 

1.1.1 The Signs 

The signs that we’re returning to older stomping grounds are everywhere. Those 
of us programmers who know the history of our field spotted them early (although 
I certainly wasn’t the first). Now they’re so prominent, and growing so quickly, 
that many people have spotted the trend. The signs I’ve noticed tend to fall into a 
few distinct areas: the way we go about designing and building systems, the kinds 



1.1 Purpose and Contents of This Book 3 

of programming languages and techniques we employ, and the way languages and 
platforms are implemented. 

After decades of increasing investment in tools and disciplines to support an 
analytical approach to software design, our field is running headlong towards a 
more empirical approach based on iteration, trial and error, and rapid feedback. 
There is widespread acknowledgment that the task of software design is simply 
too complex to tackle with a purely analytical approach. 

The modern approaches to design aren’t precisely the same as the older ap-
proaches from the 1960s and 1970s, but they share many of the same characteris-
tics. A prime example is the emphasis on iterative development. Long before it 
became fashionable to try to design a program completely before beginning pro-
gramming, the common practice was to build a simple, working system and 
gradually enhance it. 

Another sign: today we are beginning once again to emphasize code over pic-
tures in the design process. After having tried for years to improve software design 
by focusing on graphical models before we start writing code, programmers have 
learned something crucial. Code – good clean code, at least – is a more expressive 
notation for the details of software than boxes and lines. The kinds of design tech-
niques and processes that are returning to prominence were originally used by 
individuals and very small teams and began to show real weaknesses on more 
ambitious projects with larger teams. It was perfectly natural to try to inject more 
“discipline” into things with the use of phases, careful analysis and planning, in-
spections, and so on. 

We’re not going back to what we tried once; we’re going back to what others 
had success with. The industry at large tried to go a different way, and at long last 
we’ve begun to realize that no matter how many new tools we throw at our prob-
lems, software development still isn’t getting any easier. Maybe it’s time to re-
think the whole way we’ve been going. I agree to this, but many other factors 
should be discussed to understand today’s software production and maintenance 
challenges. 

1.1.2 Testing Revisited 

Originally my intention was to write a book focused on the limited aspects of 
testing in large software projects. Along the way, however, I experienced the value 
and the benefits generated by good interconnected test processes coupled with 
adequate methodology and testing tools. So, I decided to extend the discussion to a 
more homogeneous and larger domain showing the interaction of people, proc-
esses, and technology in detail. “The Testing Network” examines all central as-
pects of testing from the point of view of the actors involved by focussing on net-
worked processes in the IT and business domains. 

This book is not an academic essay, but rather the result of years of experience 
gained in the field. It is intended as a guideline for software practitioners: analysts, 



4 1 The Project 

developers, testers and managers. Based on factual material and knowledge re-
flecting the complex requirements in large software projects, the book addresses 
the multiple facets of modern testing. Cutting-edge solutions of top-ranking com-
panies were developed using a balanced mix of techniques, methods, tools and 
processes, which are explained in detail. Most aspects of testing are well-known 
from professionals but some are often neglected or hidden, some are not part of 
the project culture, and others are deliberately ignored from management. Disci-
pline and method in the software production are often sacrificed to budget/cost/-
schedule considerations and so-called quick wins. 

One key factor to successful testing is to develop a good understanding of the 
business domain and the customer’s needs. Analysts and testers should develop 
a good relationship with their customers and sponsors, paving the way to sound 
requirements and realistic IT specifications. Exploring carefully the test universe 
helps to know hardware limitations and software constraints in the test area, 
potential pitfalls, hidden restrictions, and interdependencies of all kinds. This 
mind set is vital to master the intricate complexity of our modern IT world. 

Testing activities are carried out in a network of processes embedded in spe-
cific technical, multicultural, and global enterprise contexts which are analyzed 
thoroughly. Risk management and compliance issues (SOX-404, Basel II) are 
important subjects addressed in the last chapters. 

Among other topics discussed in “The Testing Network” are: 

• The significance of requirements 
• The non-conformity problem 
• Test artifacts management 
• Software development methods 
• Choosing a test methodology 
• Ways to test 
• The testing value chain 
• The process-network approach for testing 
• Causal chains 
• The analysis of frequent causes of defects 
• Measuring test efforts and test progress 
• An overview about test platforms and tools 
• Efficient project control with the earned value-added method 
• Benefits of an integrated test platform 
• Using TestDirector for a quality center 
• Test progress reporting 
• Skills improvement and education for test professionals 
• Risk management and IT compliance issues 
• Mitigating and measuring operational risks 
• Mastering difficult project situations 
• Helping yourself with useful aids and templates 
• Using dedicated checklists and appropriate worksheets for testing 



1.1 Purpose and Contents of This Book 5 

“The Testing Network’s” themes are interrelated, and many topics require a 
graphical representation for a better understanding. For this reason, I created more 
than ninety per cent of the illustrations from scratch. I found it also useful to give a 
precise description of terms and abbreviations concerning the software production 
and testing activities. It resulted in a extensive glossary of terms which can be 
used as a reference in many situations. 

Numerous templates and checklists will further help the reader to better organ-
ize and manage his test activities. 

 



7 P. Henry, The Testing Network, 
© Springer 2008 

Chapter 2  
Introduction to Testing 

“There are two kinds of failures: those who thought and never did, 
and those who did and neverthought” 

Laurence J. Peter 

2.1 Testing Challenges 

C. Kaner [Ka04] wrote: “The quality of a great product lies in the hands of the 
individuals designing, programming, testing, and documenting it, each of whom 
counts. Standards, specifications, committees, and change controls will not assure 
quality, nor do software houses rely on them to play that role. It is the commitment 
of the individuals to excellence, their mastery of the tools of their crafts, and their 
ability to work together that makes the product, not the rules. […] Much of the 
polishing may be at your suggestion, as the tester.” 

I agree fully with his opinion because I experienced very often that an 
individual’s initiative and engagement overcame a team’s inertia and made things 
move. 

The powerful combination of the right methods and test tools is only effective 
if individuals are willing to learn processes and support to use them in their daily 
testing job. Processes are the basement of interaction and communication between 
teams to efficiently produce and exchange deliverables. Ensuring that a software 
application can scale and perform to meet service-level agreements (SLAs) and 
user expectations is one of the most difficult yet critical tasks in the testing 
process. A software application that meets all its functional requirements but not 
the end user's responsiveness expectations will ultimately be a failed software 
development project. 

The National Insitute of Standards and Technology (NIST) in the US stated that 
80 percent of the software development costs of a typical project are spent on 
finding and correcting defects. The Gartner Group came to the conclusion that 
50 percent of deployed applications are rolled back. 



8 2 Introduction to Testing 

2.1.1 Business and IT 

The role of IT and the contribution it brings to business effectiveness remains 
largely misunderstood. In my career as an IT professional, I experienced quite 
frequently the underlying management’s belief that IT projects consistently under 
deliver. However, most of the current research in this area points at endemic 
business failure being the real challenge: unrealistic goals, poor business cases, 
and a lack of vision. The IT organization is therefore under very high pressure to 
deliver new applications, to provide support to a rapidly increasing number of 
systems, and to do both efficently with stagnant staff levels and overall declining 
IT budgets. To deliver innovative solutions, CIOs turn to collaborative software 
tools and a multi-channel, services-oriented architecture (SOA). This will enable 
large companies to manage costs more efficently and to reduce time-to-market. 
Project scopes have increased dramatically and the ever growing complexity of the 
IT systems will reach new highs. In this context, IT teams are expected to manage 
an increasingly complex world of systems and applications. 

2.1.2 The Human Factor 

The most critical success factor in all projects is undoubtedly human behavior. 
Old habits are hard to break, and the tendency to reach completeness of a 

software component or application within a closed unit persists in large projects. It 
leads, in many cases, to software delivery units working in a rather isolated way 
with a tendency towards “silo-thinking.” The hierarchical structure in many 
organizations reinforces the barriers across which project artifacts must be 
delivered at the different stages of development and testing. As a matter of fact, 
business analysts and domain experts often work in isolation, rather than 
collaborating with IT leaders at the very beginning of the project. An explanation 
of this attitude could be that some mistrust exists, which can be rooted in bad 
experiences in collaborative work made in the past. 

Finally, restructuring the organization is a permanent factor of unsteadiness 
which generates know-how transfer problems, handling errors, and the 
demotivation of individuals with a negative impact of project results. 

My personal experience is that a skilled and motivated (testing) team represents 
the most valuable asset in many situations because it can: 

• Compensate missing analytic skills or management deficiencies 
• Support junior programmers (training on the job) 
• Provide training and advice to business analysts (help design test cases/show 

how to use efficiently the test platform) 
• Establish a disciplined and methodical approach to problem solving to the 

many people involved in the project 
• Promote and support the test process network philosophy. 



2.1 Testing Challenges 9 

As applications grow larger and are deployed internationally, they require 
involving larger, more diverse, and geographically dispersed teams. This new 
dimension makes teamwork an important factor in the production and testing of 
reliable and user-friendly software products. A team forces members to focus on 
the big picture, enabling a better understanding of the interrelationship between 
components, and therefore on the success of the entire product. A key point is also 
to involve team members in the decision process as frequently as is possible, 
creating trust and reinforcing the overall motivation of the team. 

2.1.3 Old and New Worlds 

Legacy Applications 

A legacy application may be defined as any application based on older technolo-
gies and hardware, such as mainframes, that continues to provide core services to 
an organization. Legacy applications are frequently large, monolithic and difficult 
to modify. Migrating or replacing a legacy application to a new platform often 
means reengineering the vast majority of business processes as well. It is generally 
an extremely cost-intensive and risky endeavor. 

According to a strategic paper published by Ovum in 2006 [GBMG06]: “Leg-
acy is the problem child of IT, hampering growth, agility and innovation; the peo-
ple with the in-depth application skills and knowledge required to keep it going 
are nearing retirement; it soaks up the IT budget. At the same time, legacy is the 
life-blood of public and private sector businesses around the world; we cannot do 
without it. 

No one plans for legacy, it just happens and, left alone, the problems get worse. 
Legacy renewal is a journey that must be driven by business leaders, navigated by 
IT leaders and fuelled by vendors; anything less will fail. In this report, we explain 
why. We provide a summary view of current tools used to address the problem 
and why these alone are inadequate. There are important lessons for business lead-
ers, IT leaders and vendors.” 

While IT organizations struggle to integrate new technologies into their portfo-
lios, the amount of legacy technology still in production continues to rise. 

Ovum estimates that the worldwide investment in legacy technology amounts 
to $ 3 trillion. This includes investment in hardware platforms, software licenses, 
application development (and maintenance) costs, and third party services. This 
does not include operational costs, or the costs associated with people and proc-
esses using those systems. 

Ovum also estimates that the current inventory of production Cobol running on 
proprietary mainframes is 150–200 billion lines of code. While staggering, this 
figure does not do justice to the breadth of platform subsystems, programming 
languages (2Gl, 3GL, and 4GL) flat files, databases, TP monitors, and screen 
formats that lock these applications into a technology time capsule. 



10 2 Introduction to Testing 

Most companies in the banking sector claim to be running (and maintaining) 
80–100 millions lines of legacy code. 

Forrester Research, in September 2006, came to similar conclusions: “Legacy 
technology continues to run core business solutions for medium, large, and 2000 
global companies. […] The custom-built legacy applications running on main-
frames are still the best transaction-processing platforms available.” 

Graham Booch, Chief Scientist at IBM, estimates the volume of legacy code 
worldwide in production at a staggering 800 billions lines of code, the vast 
majority of it written in COBOL. The maintenance of the legacy code today ex-
ceeds 80% of the total development costs for software. 

ERP products such as systems applications and products (SAP) are mono-
lothic, mainframe-based solutions first released early in the 1970s, and in 1979, 
for SAP R/2. 

The SAP’s client/server version (R/3) was released in 1992. The Butler Group 
Review concluded in its SOA strategy report in September, 2006: 

“One of the challenges of complex, packaged applications such as ERP is that it 
can be difficult to map to what an organization actually needs, and often 
customization is required. In a typical ERP installation, less than 25% of the 
standard ERP code, and less than 25% of customized code, was actually used.” 

This causes big problems for the testing community. 
In the 1990s, the deregulation of financial services generated a flood of mergers 

and acquisitions leading to new business scenarios. To address ever-growing 
consumer needs and increased global competition, banks have introduced new 
technology in the front applications cooperating with existing legacy systems. 
Legacy systems, also named “heritage systems,” are applications that have been 
inherited from an earlier era of information technology. They don’t necessarily 
refer exclusively to older systems, but could be new systems which have been 
designed under the same design paradigms. Re-engineering archaic applications is 
not an easy task and requires using contemporary design paradigms, relational 
databases, and object orientation. These systems are not responsive to change, 
whether they are wrapped in a new service layer or encapsuled. Their maintenance 
is a financial burden. 

On the other side, the market pressure forces large companies to provide new 
business services based on a service-oriented architecture (SOA) to create flexible 
and highly adaptative event-driven applications. The strategy adopted to renew the 
IT platforms consists in putting service-oriented wrappers around the old systems 
(legacy) and integrating them at the mid-tier through SOAs. This has resulted in 
massively complex IT architectures, multi-year migration initiatives, and soaring 
costs. The overall compatibility of peripheral applications (front-end) and core 
business systems has to be tested adequately inside and outside both IT worlds. 
Figure 2.1 shows that backward and lateral compatibility are main issues in the 
highly heterogeneous IT architecture found in the vast majority of large companies 
and organizations throughout the world. 

IT faces the Gordian knot of ever-increasing business and legal requirements 
with constantly reduced budgets and exploding maintenance costs. 



2.1 Testing Challenges 11 

Legacy

Envt.

New

Envt.

Core Applications
Backward
Compatibility 
Region

Lateral
Compatibility 
Region

Front & Factory
Systems

 

Fig. 2.1 Backward and lateral compatibility impacts legacy and new applications 

2.1.4 Banking Platform Renewal 

In financial services, 96% of European banks have either started to renew their 
overall application landscape or have concrete plans to do so. According to “IT 
View and Business Trends” by Jost Hoppermann, the necessary project budgets 
for software and service are huge: up to €250 million in extreme cases. Software 
and services costs for European bank’s renewal initiatives, spread across at least 
10 years, will be in the €100 billion range. 

Undertaking the Redesign 

An article entitled “Better Operating Models for Financial Institutions,” published 
in November 6, 2005, in “McKinsey on IT” magazine, reveals the multiple chal-
lenges the finance industry is facing presently: 

“In applying the five elements of an operating model to end-to-end processes, 
banks must be careful to balance some ongoing fundamental operating require-
ments against the need to create capacity for new growth. Thus, they must con-
tinue to deliver a broad portfolio of products and services across a wide-ranging 
client base while managing the associated risks. Complicating the challenge are 
shortcomings common to many financial institutions’ operations and IT organiza-
tions, including highly fragmented operations and technology platforms (some-
times the result of inadequate post-merger integration); inconsistent alignment 
around which capabilities are best shared and which should remain specific to a 
particular line of business; and a lack of firm-wide standards in, for example, data, 
interfaces and functional performance. […] Complicating matters are increasingly 
stringent regulatory regimes, which may be standardizing across international 
boundaries but appear unlikely to loosen anytime soon.” 



12 2 Introduction to Testing 

Fortunately, if some external trends are making life more difficult, others favor 
the changes these companies need to meet: 
1. Global sourcing: Foremost among these trends is the rising quality and acces-

sibility of resources in low-cost locations, combined with inexpensive telecom 
bandwidth for managing operations remotely. Financial industries have led 
the way in tapping global labor markets to run their back-office operations, 
and now they can exploit their experience of coordinating these activities 
across remote locations to offshore even more advanced operations. 

2.  Technology: The financial sector is also ahead of others in adopting IT sys-
tems for the rapid and accurate capture of data, inexpensive information stor-
age, and high processing capacity and performance, as well as the ability to 
share and process data across multiple locations. 

3.  Process improvement: A third enabling factor is the financial sector’s adop-
tion of process improvement methodologies, including lean techniques and 
Six Sigma, that got their start in industrial settings but are now increasingly 
applied to service organizations. A core principle of these techniques is to 
change mindsets by teaching employees how to improve a process constantly. 
Once trained, these employees can become effective internal change agents, 
spurring transformation across the organization. 

IT platforms renewal (hardware, processes, software, training) is a long-term 
endeavor. Therefore, it is essential to implement adequate (e. g., SOX-compliant) 
management and IT processes, and to use extensively integrated test platforms and 
tools to success on these multi-year migration projects. This book reflects 
experiences gained in such a challenging and tantalizing context. 

2.1.5 Complex Testing 

Testing large systems today is a daunting task because development, test, and 
production environments consist of multiple client/server machines, mainframes, 
personal computers, portable devices, various operating systems, a multitude of 
applications written in different programming languages, proprietary database 
systems, a complex network, and stringent security rules for accessing data and 
applications. The degree of complexity will reach a higher level with the intro-
duction of composite service-oriented (SOA) applications, as depicted in Fig. 2.2 
at the end of this section. 

Thus, effective testing requires setting up and reusing multiple environments at 
will, whether for intial testing, regression testing, acceptance, or system tests. The 
test data pool must also be set up or restored in the same flexible way. Large 
companies use dedicated platforms for each test environment: CT/CIT, IIT, AIT, 
MIT, STE, UAT, including staffing and infrastructure either on mainframe or 
preferably on high-end UNIX systems. The system test configurations for AIT and 
STE testing are very close to those used in the productive environment. Therefore, 
the data processed reaches from 20% (AIT) to 100% (STE) of the production 
volume, which is pretty cost-intensive. 



2.1 Testing Challenges 13 

Fig. 2.2 SOA composite 
applications 

Methods

       Subroutines

Components

Services

Events

Scope

Granularity

Affinity
with
Business
Modeling

Technical 
components

Business
components

Source: Gartner, Inc.  “SOA: Composite Applications, Web Services
and Multichannel Applications” by Yefim Natis, 2006

The resources needed to test applications and systems aim to achieve precise 
goals, vital for company operations and customer satisfaction: 

• to assess conformance to specification 
• to assess quality 
• to block premature product releases 
• to conform to regulations 
• to find defects 
• to find safe scenarios for use of the product 
• to help managers make signoff decisions 
• to maximize defects discovery 
• to minimize safety-related lawsuit risks 
• to minimize technical support costs 
• to verify the correctness of the product 

2.1.6 Global Testing 

Software development projects in large organizations are often geographically 
distributed and multinational in nature, introducing new layers of organizational 
and technical complexity. Different versions of software have to be maintained in 
parallel for one or more core systems, along with different mid-tier services. To 
deal with global testing, the best approach is to establish a centralized testing with 
a main location responsible for the core product and other locations giving 
feedback about the rollouted versions: those being tested locally This solution 
requires a networked incident tracking and channeling process (ITC) supported by 



14 2 Introduction to Testing 

a central test tool or test repository. These topics will be discussed later in detail in 
Sect. 5.2, “Core Testing Processes” and Sect. 8.2, “Test Progress Reporting.” 

2.1.7 The Value of Testing  

The real purpose of testing is a permanent question. Every time a tester discovers a 
defect that is repaired before software is shipped to the customer, he saves money 
because the nonconformity is reduced and additional testing effort decreases. One 
can argue that the added value is increased. Others mean that saving money this 
way is creating value for the organization. Testing's main purpose is to verify the 
good functioning of the software developed. This is the most critical and valued 
information for the customer: the product works as designed with the required 
quality. For the company or organization delivering the product, it reduces or 
minimizes a reputation for financial losses that could rise because of the quality 
aspects of the software. Testing must provide actual, correct, timely, exact, 
verifiable, and complete information to the decision makers. This information – 
which can be quantified with test metrics – is the real added value of testing. 

In 2006, Mercury (Nasdaq: MERC) and the Economist Intelligence Unit 
conducted a worldwide survey in 21 countries, asking 758 IT managers and CIOs 
about: “Driving Business Value from IT – Top Challenges and Drivers for 2005”. 

The results showed that in recent years, the gap between business requirements 
for an IT organization and IT’s delivery capability grew dramatically. Three main 
topics drive the IT market today:  

1. Strategic outsourcing 
2. Regulatory requirements: IAS, Sarbanes-Oxley, LSF and anti-money launder-

ing (AML) 
3. The complexity of the IT applications 

In this context, development, integration and maintenance of the software 
requires a high level of knowhow and experience from the IT professionals. 
Sixty percent of all IT managers in this study stated that the testing of applications 
is the driving force generating added value. 

The Cost of Testing 

Economic costs of faulty software in the U.S. have been estimated to be 0.6% of 
the nation’s gross economic product (GDP). Annual costs of inadequate infrastruc-
ture for software testing is estimated to range from 22.2 to 59.5 billion US dollars 
by the American National Institute of Standards and Technology (NIST). 

The European testing market alone is estimated to reach a volume of 65 billion 
Euros in 2008 with sustained growth. 



2.2 The Significance of Requirements 15 

The volume of required tests can grow exponentially, considering the number 
of specific parameters, environmental factors, and other variables existing in the 
project context. Depending of the project size and number of software components 
to test, testing activities can generate costs from 25% to more than 100% of the 
total development costs. Therefore, the test strategy needs to be adapted to the 
project size, integrating the right risk profile (cutting-edge technology/strategic 
initiative) and taking into account the business priorities. Test volume and test 
intensity should be in correlation with the potential risks of failures leading to 
financial losses and/or reputation damages for the company. 

Realistic planning will help modulate the test efforts as difficulties arise. The 
prioritization of quality goals is necessary to focus testing activities on the main 
aspects most important to stake holders. Quality models such as ISO 9126 allows 
setting consistent quality goals and should be implemented in your project. 

2.2 The Significance of Requirements 

Since decades, requirements analysis is the most error-prone process on the way to 
a well-functioning software product. This situation can barely be improved be-
cause the causes of nonconformity are largely human-based errors: the misunder-
standing of a customer’s needs, insufficient knowledge in the field of expertise, 
poor communication, non-documented facts, and so on. 

Not only individuals but also teams can produce requirements which need a lot 
of rework. Incomplete or imprecise requirements include errors generating a cas-
cade of subsequent faults in the design and implementation phases of the software 
which cause failure at run time [IEEE90], [Ch96]. Figure 2.3 shows the causal 
chain issued by requirements. 

This explains why defects generated by requirements errors can’t be detected 
early enough and are costly to remove in terms of time and resources. As stated in 
numerous surveys [LV01], [BP84], [Wa06] these fundamental errors account for 
50% of all defects found in the software. 

  Human factor
. wrong assumptions
. insufficient knowldege
. missunderstanding of problem
. underestimation of complexity
. narrow focus

Main
errors

Design
faults

Implem.
faults

Wrong
SW
Behaviorgenerate generate generate

Defects
produces

generate

Requirements Analysis Specifications ImplementationPreliminary Design Production
 

Fig. 2.3 The impact of requirements in the software production chain 



16 2 Introduction to Testing 

2.2.1 What is a Requirement? 

A requirement is: 

1. A condition or capacity needed by a user to solve a problem or achieve an 
objective. 

2. A capability that must be met or possessed by a system or software compo-
nent to satisfy a contract, standard, specification, or other formally imposed 
documents. Requirements may be functional or non-functional. 

3. A documented representation of a condition or capability as described in 1 or 2. 

2.2.2 Meeting the Unknown 

Each adventure begins with a large amount of fear and uncertainty. At a project 
start the situation is very similar: 

• Uncertainty about the technology selected to solve the problem 
• How it will work 
• Uncertainty about the design proposed 
• Uncertainty about the code implemented 
• Uncertainty about the runtime behavior of the application 
• Uncertainty about the production and maintenance costs 
• Uncertainty about the customer’s acceptance 
• Uncertainty about the delivery schedule 

The end product is – in most of the cases – very different from what the project 
team thought it would deliver when it started. The main reason is that incremental 
requirements emerge as soon as users see the preliminary software at work. These 
“additional” customer needs are, in fact, part of the original solution but were not 
properly identified in the early stages of the requirements analysis. To reduce 
inherent uncertainty, the project team has to address three aspects: 

• Defining what the product will do 
• Accurately designing and developing the product 
• Knowing exactly what will be developed 

Most companies using the waterfall (V-model) method try to eliminate all un-
certainty before beginning development (upfront thinking) but experienced teams 
know pretty well the limits of this method. In many cases, project leaders tend to 
add some prototyping to know more about the customer’s needs. But this is clearly 
not a substitute to compensate for a lack of business expertise, the analysis of 
existing solutions and insufficient knowledge of the operational systems in use. 
Prototyping can be best considered as a fallback position, not the answer in and of 
itself. Requirements engineering is the metaprocess which addresses the problem, 



2.2 The Significance of Requirements 17 

but that topic is not part of this book. We can briefly mention that the require-
ments engineering (RE) process includes four sub-processes: 

• Gathering 
• Elicitation 
• Specification 
• Validation 

Locopoulos defined the framework for RE processes, as illustrated in Fig. 2.4. 

2.2.3 Characteristics of Requirements 

Business requirements have to be complete and need to reflect a high level of 
overall consistency. This can be achieve by addressing the following aspects: 

1. Completeness 

− Functional completeness: Is the functions domain clearly delimited? 
− Content completeness: Are all significant values properly described? 
− Internal completeness: Are all cross-references available? 
− External completeness: Are all mandatory documents available? 
− Omissions: Is something important missing? 

2. Consistency 

− Terminological consistency: Are all terms and abbreviations unique and 
correctly explained? 

− Internal consistency: Are all requirements free of contradictions or in-
compatibilities? 

− External consistency: Are all external objects compatible with the re-
quirements? 

− Circular consistency: Do cyclic references exist? 

Fig. 2.4 RE process diagram
USER

Elicitation Specification Validation

Problem
Domain

User 
requirements

Expertise

Requirements
specifications

Requirements
models

Models
    to be validated
         by user

Validation
results

Knowledge
request

Domain
knowledge

Domain
knowledge

User feedback

Source: Locopoulos



18 2 Introduction to Testing 

3. Other Properties 

− Requirements must also be: detailed, comprehensive, attainable, testable, 
revisable and realistic. 

Table 2.1 summarizes the different types of requirements. 

Table 2.1 Requirement types 

Category Description 

Functional requirements Requirements that define those features of the system that  
will specifically satisfy a consumer need, or with which  
the consumer will directly interact 

Interface requirements Requirements that define those functions that are used in  
common by a number of projects in different business domains 

Operational requirements Requirements that define those “behind the scenes” functions 
that are needed to keep the system operational over time 

Technical requirements Requirements that identify the technical constraints or define 
conditions under which the system must perform 

Transitional requirements Requirements that define those aspects of the system that must 
be addressed in order for the system to be successfully  
implemented in the production environment, and to relegate 
support responsibilities to the performing organization 

Typical requirements A listing and description of requirements that a typical  
enterprise/business domain might possess in the problem area  

Note: Adapted from NYS 

2.2.4 Requirements Elicitation 

To gather requirements dealing with large and complex systems, a global ap-
proach is needed that takes into account all relevant (scientific/strategic) objec-
tives, mission, advanced concepts, cross requirements, technology roadmaps, and 
long term visions. This is the “will be” requirements summary. A proof of concept 
in the early stages of elicitation can be necessary to investigate operational con-
straints, available technologies and the overall behavior of the target solution. For 
this purpose, simulation and system modelling are used. The results of these inves-
tigations deliver valuable information about potential deficiencies and strengths of 
the system to be developed. 

The next step is the refinement of the system’s features and characteristics fol-
lowed by financial and commercial studies. Once finalized, the requirement 
documents are ready for review and approval, as shown in Fig. 2.5. 



2.2 The Significance of Requirements 19 

2.2.5 Main Problems with Requirements 

The most frequent causes of defects will be analyzed in Sects. 7.2 and 7.3. In fact, 
defects are mainly produced because basic errors are produced at the very begin-
ning of the software production chain in the form of defective requirements. Fig-
ure 2.6 depicts the testing perimeter with sources of defects coming from new 
business requirements. Fuzzy requirements are mainly generated in areas concern-
ing business processes, business logic, and business rules, leading to defective 
coding and wrong software implementation. 

An important aspect in managing requirements is to maintain a bidirectional 
traceability between core requirements (the business view) and the product-related 
requirements (the technical view). The maintenance burden of any large-scale 
software applications along the software development life cycle (SDLC) will be 
highly impacted by overlapping requirements, due to a defective solution man-
agement process. Adding to that, compliance issues increase the pressure on IT to 
deliver better software. 

In an article entitled “Traceability: Still a Fact of Life in 2008,” Edward J. Cor-
reia wrote: “While calls continue to repeal Sarbanes-Oxley compliance and ac-
countability laws, for now they’re still a reality for any public company. So SDLC 
traceability remains critical for compliance with regulations that, by some esti-
mates, shave about 4 percent off the bottom line. ‘Traceability is a fundamental 

Nation´s Vision

NSPD

  Science Objectives &
Concepts of Operations

  Tasks & Technology
           Roadmaps

   Available 
Technologies

  Operational
Environments

Deficiencies

Required Features
             &
  Characteristics

Trade Studies

    System
Requirement
 Documents

PROGRAM

MISSION

ENGINEEERING
PROGRAM

MISSION

OPERATIONS

Investment Plan

Modeling/Simulation

   Affordable
System Design
& Development

Modeling/Simulation

Source: National Aeronautics and Space Administration (NASA)NSPD: National Security Presidential Directive  
Fig. 2.5 Requirement elaboration in a US government agency (NASA) (Source: NASA) 



20 2 Introduction to Testing 

part of any software development process, and in most cases is critical for satisfy-
ing any compliance or regulatory constraint,’ says John Carrillo, senior director of 
strategic solutions at Telelogic. ‘Most often, traceability is accomplished through a 
top-down approach – using best practices and solutions that link features and re-
quirements down to the changed source code.’ 

The ability to track requirements has become central to innovation in a wide 
range of products and services, he says, including many in which software tradi-
tionally didn’t play a major role, such as the automobile. Today, software in the 
average car includes more than 35 million lines of code, and automakers spend 
between two and three billion dollars a year fixing software problems.’ In such 
scenarios, requirements are ‘the thread that ties all phases of the product life cycle 
together.’ So Carrillo calls the alignment between the organization’s developers 
and application requirements ‘the quality cornerstone of nearly every successful 
large software development strategy.’” 

Traceability links define relationships between requirements and design 
artifacts; they help to support a number of essential activities related to require-
ments validation, impact analysis, and regression testing. In practice, these tech-
niques have focused upon the functional requirements of the system or solution. 
Therefore, the nonfunctional requirements (stability, reliability, performance, 
scalability, security, safety) are not considered. After closer analysis, these non-
functional requirements tend to decompose into lower level requirements that are 

DD

PM

NEW  BUSINESS REQUIREMENTS  (ALL ASPECTS)
TE

CH
N

IC
AL

 R
EQ

U
IR

EM
EN

TS
 

O
VE

RA
LL

 R
EQ

U
IR

EM
EN

TS

BP LM

CD

TR TP

DQ

KH

HD

DO

DA

LG

DV

TO

PI

PB

DP

BR

BR

LEGACY WORLD'S EXISTING REQUIREMENTS  (DATA, PROCESSES, TOOLS)

KH

IF

no results

ST

NM

UNATTENDED PROCESSKNOWN REQT. UNKNOWN REQT. UNEXPECTED SIDE-EFFECT/ANOMALY EXPECTED CAUSE-EFFECT PATH

DS

BP

NSP

TM

wrong logic

missing data cubeserroneous code

fuzzy requirements

anomaly

 
Fig. 2.6 Diagram showing unclear requirements as the defect source 



2.2 The Significance of Requirements 21 

true functional requirements in nature. As a result, these functional changes may 
introduce unexpected side-effect and cause a long-term degradation of the system 
quality. 

The best way to address this major challenge is to establish a verification and 
validation procedure assigned permanently to a joint team composed of business 
domain experts and IT specialists which qualifies the requirements coordination 
and supervises the elaboration of final change orders. This is the traditional ap-
proach in large projects to manage requirements. However, due the high volume 
and networked nature of requirements, the work of the experts group is error-
prone, relatively slow and expensive. To achieve better results, up-to-date model-
ing technology and the appropriate tools can accelerate this process, produce much 
better results and offer full traceability. In recent years model-based testing (see 
Sect. 3.5.1) has proven to be very valuable in many branches, producing software 
of the highest quality. 

Using model-based testing (MBT), errors and/or omissions, built in require-
ments can be detected automatically, early, and systematically. This is due to the 
fact that model-based testing provides a unique bidirectional traceability to re-
quirements: 
• It provides a direct requirement-test traceability 
• It provides a requirement model in conjunction with model-test traceability. 

See Fig. 3.9 in Sect. 3.5.1 for more details. 

2.2.6 Risks Associated with Requirements 

The most important risks which can occur in this area are the following: 
• The number of requirements can become unmanageable if they are not under 

control. 
• Requirements are related to one another and also to other deliverables in the 

solution delivery process. 
• Requirements need to be managed by multiple cross-functional entities. 
• The requirements modification process is not implemented or insufficiently 

implemented. 
• Requirements are not reviewed at all or inadequately reviewed. 
• Requirements describe only the design specification. 
• There is an over-improvement of the requirements. 
• Functional requirements are only considered. 
• The user or customer is not enough involved. 
• Critical requirements are overlooked. 
• The business case is incomplete. 

To reduce risks in large software projects, managers should bear in mind that 
people view the project from their own perspective with different expectations. 
When the initial objectives, assumptions, and requirements are not clearly and 



22 2 Introduction to Testing 

precisely defined in writing, there is no (good) common starting point. An inhe-
rent expectation gap exists which can be a major cause of trouble at the end of  
the project. 

2.2.7 Recommendations 

To reduce significantly the volume and impact of changing requirements during 
the critical phases of a project (e. g., development and testing), it is strongly rec-
ommended to apply these simple rules: 

• Understand perfectly the customer’s business case. 
• Integrate all customer needs included in the business case, but avoid an over-

specification of the requirements. 
• Requirements must be reviewed and the modifications agreed upon by all 

parties. 
• Focus on what is really needed and must be delivered. 
• Don’t mix what is to be developed with how it will be developed. 
• Work closely with the project’s stakeholders to be able to understand, in an 

early stage of the project, how changes can be incorporated in alternate plans 
and strategies. 

• Customers and management must clearly understand the impact on software 
delivery schedule, the inherent risks, the costs and the quality issues related to 
modified requirements. 

• Maintain a constant dialogue with the customer to detect potential acceptance 
problems or other mishaps regarding the target solution. 

• Documentation is of prime importance to precisely describe what the end user 
wants for the solution and to guide the development work later on. 

• Interview notices are helpful and can be attached to formal requirements. 
• Most organizations have a defined process for maintaining requirements 

documentation, but the process is quite frequently not enforced. 
• Control over changes is essential to ensure that the design, development and 

test activities are only performed on approved requirements. At the reverse, 
the released product is guaranteed to have defects (more than expected!). 

• It is a good practice to assign versions and approve each requirements change. 
• Use change-case modeling to anticipate changes of your product or solution. 
• Utilize domain experts to perform requirements engineering tasks. 
• Collect requirements from multiple viewpoints and use formal methods where 

applicable. 
• To be consistently successful, the project team must assume ownership of the 

requirements process. Take responsibility for the quality of the requirements. 
• Know that an organization reaching CMM level 5, considers a request to 

change requirements as a non-conformance: an opportunity to analyze the 
process, to improve it, and reduce changes in the future. 



2.3 The Nonconformity Problem 23 

• Remember that people write about problems and failures as much as suc-
cesses. Take the chance to profit from their experiences. 

• Requirements tracking with the user’s involvement should cover the whole 
cycle: analysis, validation and verification, architecture design, and architec-
ture design verification. This will be shown later in Fig. 2.21. 

2.3 The Nonconformity Problem 

ISO 9000:2000 defines conformity as a non-fulfillment of a specified requirement, 
or more specifically: “A departure of a quality characteristic from its intended 
level or state that occurs with severity sufficient to cause an associated product or 
service not to meet a specification requirement.” 

Software quality assessment is a difficult task because quality is multi-
dimensional in essence. It depends largely on the nature of the product and this 
needs a clear definition of the most important criteria defining the end product 
considered. 

Testing helps quality assessment by gathering the facts about failures but it 
can’t verify the correctness of the product. This is impossible to do by testing 
alone. 

It can be demonstrated that the software or solution is not correct, or it can be 
attested that a minimum of faults was found in a given period of time using a 
predefined testing strategy. Positive tests help to check that the code does what it 
is intended to do; this viewpoint is largely used in the testing community but it is 
not sufficient to make good testing. Sound rules, good processes, and best prac-
tices are important ingredients for good testing but they can’t automatically guar-
antee good results. Those are produced by motivated individuals producing qual-
ity craftsmanship, working in homogeneous teams which often must compensate 
the weaknesses of the project organization, scarce resources, and management 
deficiencies. 

2.3.1 How Defects are Born 

The basic mechanism of default production by [Ch96] is illustrated in Fig. 7.2. 
I adapted the diagram to point out the following facts: 

1. Inherent problems are located mainly outside the testing world 
2. These problems are the source of basic errors 
3. These errors generate faults as soon as some triggers activate them. 



24 2 Introduction to Testing 

Faults discovery pattern

60

21
17

4
0

10
20
30
40
50
60
70

Req. + Design Coding + Dev.
Testing 

Acceptance Testing  Production

Faults found (%)

Source: NIST 2002 RTI proj.nr. 70007-011

Origin of errors

10

0

20

70

0

10

20

30

40

50

60

70

80

Req. + Design Coding + Dev.
Testing 

AcceptanceTesting  Production

Errors introduced (%)

Source: NIST 2002 RTI proj.nr. 70007-011

 

Fig. 2.7 Errors distribution pattern 

We will examine, in Sect. 7.2, “causal chains explained” how apparent causes 
of defects and related symptoms are linked together. In a survey published in 
2006, Mercury Interactive reveals the primary factors causing IT initiatives to fail 
to produce the expected benefits for the business. The four most important of them 
are: project management, requirements definition, software rollout and poor soft-
ware quality. 



2.3 The Nonconformity Problem 25 

Risk primary factors

Poor quality software/technology

Business environment change

Quality assurance (functional, integration, and system testing) 

Development issues (design/architecture/code/testing, etc.)

Requirements governance (i.e., scope creep)

Change management

Project management (including resource and budget management)

Business requirements definition

Deployment or rollout issues

When IT initiatives have failed to produce the expected business outcomes in your company,
what have been the primary factors?

Outsourcing/Offshoring failure

Production application/Service management 

Security

Performance assurance (Load/perf. testing - Appl./System tuning)

28%

24%

19%

17%

12%

12%

12%

11%

11%

10%

10%

9%

7%

Source: Burton Group  

Fig. 2.8 Classification of risk factors in large IT projects 

2.3.2 Nonconformity to Standards and Rules 

The spectacular failure of the launching of the Ariane V is a good example of the 
disrespecting of basic engineering rules. 

On 4 June 1996, the maiden flight of the Ariane 5 launcher ended in a failure. 
Only about 40 seconds after initiation of the flight sequence, at an altitude of about 
3700 m, the launcher veered off its flight path, broke up and exploded. 

The failure of the Ariane 501 was caused by the complete loss of guidance and 
attitude information 37 seconds after the start of the main engine ignition sequence 
(30 seconds after lift-off). This loss of information was due to specification and 
design errors in the software of the inertial reference system. 

The internal SRI software exception was caused during the execution of a data 
conversion from a 64-bit floating point to a 16-bit signed integer value. The float-
ing point number which was converted had a value greater than what could be 
represented by a 16-bit signed integer. 

The second example is the Patriot missile failure. On February 25, 1991, during 
the Gulf War, an American patriot missile battery in Dharan, Saudi Arabia, failed 
to track and intercept an incoming Iraqi Scud missile. The Scud struck an Ameri-
can Army barracks, killing 28 soldiers and injuring around 100 other people. 



26 2 Introduction to Testing 

A report of the General Accounting Office, GAO/IMTEC-92-26, entitled “Patriot 
Missile Defense: Software Problem Led to System Failure at Dhahran, Saudi Ara-
bia” reported on the cause of the failure. It turned out that the cause was an inaccu-
rate calculation of the time since booting due to computer arithmetic errors. Spe-
cifically, the time in tenths of a second as measured by the system's internal clock 
was multiplied by 1/10 to produce the time in seconds. This calculation was per-
formed using a 24 bit fixed point register. In particular, the value 1/10, which has 
a non-terminating binary expansion, was chopped at 24 bits after the radix point. 
The small chopping error, when multiplied by the large number, giving the time in 
tenths of a second, led to a significant error. Indeed, the Patriot battery had been 
up around 100 hours, and an easy calculation shows that the resulting time error 
due to the magnified chopping error was about 0.34 seconds. (The number 1/10 
equals 1/24 + 1/25 + 1/28 + 1/29 + 1/212 + 1/213 + … In other words, the binary 
expansion of 1/10 is 0.0001100110011001100110011001100… The 24 bit register 
in the Patriot stored, instead, 0.00011001100110011001100 introducing an error 
of 0.0000000000000000000000011001100… binary, or about 0.000000095 of a 
decimal. Multiplying by the number of tenths of a second in 100 hours gives 
0.000000095×100×60×60×10 = 0.34.) A Scud travels at about 1,676 meters per 
second, and so it travels more than half a kilometer in this time. This was far 
enough away that the incoming Scud was outside the “range gate” that the Patriot 
tracked. Ironically, the fact that the bad time calculation had been improved in 
some parts of the code, but not all, contributed to the problem, since it meant that 
the inaccuracies did not cancel. 

2.3.3 Aging of Product Components 

In highly complex technical systems like NASA’s space shuttle – the first ever 
certified as CMMI level 5 – aging hardware components can become erratic and 
influence directly or indirectly other components and the flight control system 
itself in unpredictable way. It is ostensibly a similar problem in a fuel sensor that 
ruined the shuttle's long-awaited return to flight. NASA did enlist a cross-country 
team of hundreds of engineers to figure out what went wrong. The agency has 
indefinitely delayed the launch. 

In his Congressional testimony, the former ASAP chairman Blomberg, said that 
the safety group believes that the postponements of shuttle safety upgrades, and 
the delay in fixing aging infrastructure, was troubling. Also, the failure to look far 
enough ahead to anticipate and correct shortfalls in critical skills and logistics 
availability, he said, “will inevitably increase the risk of operating the space shut-
tle … The problem is that the boundary between safe and unsafe operations can 
seldom be quantitatively defined or accurately predicted,” Blomberg advised. 
“Even the most well meaning managers may not know when they cross it. This is 
particularly true for an aging system.” 



2.3 The Nonconformity Problem 27 

2.3.4 Environmental Changes 

As we discussed in the previous chapter, software decay is unavoidable. It is quite 
remarkable that applications and systems developed decades ago can still function 
in our present time. These survivors from the technological Jurassic Park face the 
challenge to remain stable in a Web-oriented and Java-programmed environment. 
To test these systems requires a careful approach because the side-effects of soft-
ware changes can become unpredictable and/or erratic. The positive aspects re-
garding these applications is that they are reasonably well-documented, making 
maintenance easier, as is much of modern software. 

2.3.5 Outdated Tests 

The aging of test artifacts is a major concern in large-scale projects, because many 
releases must be developed and maintained in parallel, necessitating the setting-up 
and running of a number of different test environments over long periods of time. 

For each new release, all artifacts for regression tests must be checked on actu-
ality, completeness, and suitability. In particular, scripts and test data should be 
verified carefully to avoid erroneous results and/or wrong system outcomes. Busi-
ness and technical rules, in particular, need to be verified to avoid side-effect de-
fects, including connectivity problems. 

In this category fail defective or outdated firewall rules which are a frequent 
cause of defects impacting Web-based applications. User interfaces evolve rapidly 
as well, making scripts for automated tests obsolete. 

Therefore, to achieve test readiness using older tests requires setting up a dedi-
cated organization managing the test assets for each test environment with precise 
rules. 

2.3.6 Conformity Assessment 

Conformity assessment means checking that products, materials, services, sys-
tems, and people measure up to the specification of a relevant standard. Today, 
many products require testing for conformance with specifications, safety, secur-
ity, and other regulations. ISO has developed many of the standards against which 
software products and applications are assessed for conformity, including stand-
ardized test methods. ISO has collaborated with IEC (the International Electro-
technical Commission) to develop and publish guide and standards in this matter. 
See also: http://www.esi.es/, http://www.iso.org/iso/en/ISOOnline.frontpage, and 
http://www.wssn.net/WSSN/. 



28 2 Introduction to Testing 

2.3.7 The Costs of the Nonconformity 

The ROI generated by software quality enhancement processes in large projects 
was analyzed in depth by the Air Force Research Laboratory Information Direc-
torate (AFRL/IF). The study, entitled “A Business Case for Software Process 
Improvement” was prepared by Thomas McGibbon from the Data Analysis Center 
for Software (DACS) under contract number SP0700-98-4000. The publication 
date was 30 september 1999. The paper can be ordered at: http://www.dacs.dtic. 
mil/techs/roispi2/. It was recently enhanced by a tool named the ROI dashboard. 

The ROI Dashboard 

In response to increasing interest and attention from the software engineering and 
software acquisition community for benefits data from software technical and 
management improvements, the DACS presented the ROI Dashboard. The ROI 
Dashboard augments and updates the DACS report with the latest published data 
on benefits. The ROI Dashboard also graphically displays open and publicly 
available data and provides standard statistical analysis of the data. 

2.3.8 Mission Impossible? 

Working out realistic requirements seems to be one of the most challenging task 
on the way to good software solutions being delivered on time and with the re-
quired quality. In TechWatch, edited by the Butler Group – dated May, 2005 – 
Martin Butler and Tim Jennings analyzed the situation regarding ROI calculations 
of IT projects in large companies. They stated in this report: “The history of IT 
over-promising and under-delivering is a long one, and so it is hardly surprising 
that senior management had become skeptical where the delivery of IT systems is 
concerned. If you ask IT management why they over-promise, the answer is quite 
unanimous – we have to do this to compete with the other alternatives manage-
ment have. What generally happens is that everyone bidding for work over-
promises – driven by the silly demands of managers that are looking for the 
cheapest solution in the shortest amount of time. Generally speaking, the managers 
have no idea whether what is being promised is feasible or not – it’s often just a 
mindless macho exercise to try and screw the suppliers down as tight as possible. 
In response, the suppliers have become cunning and creative when constructing 
their proposals.” Looking back at more than thirty years in IT development, man-
agement, and consulting, I do agree with this crude analysis. In my opinion, things 
began to get really worse in the 1990s, because the business started to drastically 
reduce IT costs by setting unrealistic goals and schedules for IT projects year after 
year. The IT culture in large organizations today is massively cost-driven, and 



2.4 Test Artifacts 29 

even the most important asset – people – is managed as a “resource,” interchange-
able at will. This could have serious consequences in the future on the stability and 
security of large and complex business systems, because some knowhow gets loss 
each time an IT professional leaves a project or the company. The more experi-
enced he or she was, the bigger is the loss. 

2.3.9 Complexity 

The IT world’s most pre-eminent characteristic today is complexity. The Tech 
Watch report concludes: “Poor quality thinking always results in complexity – and 
IT is full of poor quality thinking.” As a result, we attempt hugely complex tasks 
with even more complex technologies, and wonder why the whole thing goes pear 
shaped. 

A renaissance is overdue: a simplicity renaissance. Application development 
resembles the contorted models of the universe that existed before we realised that 
the universe does not revolve around the Earth. If we see information technology 
becoming simpler to use and understand, then we will be making real progress. 
Until then, expect to see even the world's brightest organizations and people 
struggle with escalating complexity and the resulting problems it creates. The 
multiple facets of software complexity will be explained later in Chap. 7. 

2.4 Test Artifacts 

A test artifact is an abstract object in the digital world to be tested by a soft- 
ware component or a solution to verify the correct response/result of the code 
developed. 

2.4.1 Classification of Test Artifacts 

A release flash is commonly used to communicate to developers and testers the 
content of a new software release. The document describes the kind of test arti-
facts implemented in the current software version and in which context they must 
be tested. Test artifacts are as follows: 

1. Software modifications: minor or major changes made to the current software 
2. Change requests: actual requests to modify the current software 
3. Last-minute fixes: hot fixes made in the productive environment and to be 

validated in the test world 
4. Current defects: test incidents in the actual software release to be validated 

from a technical and/or business point of view 



30 2 Introduction to Testing 

5. New functionality: functions developed in the actual release 
6. Performance optimization: technical improvements to the current application 

and/or to standard software components 
7. Software patches: service packs to be implemented in the actual software 

release 

Test data, scripts and documentation in relation to the test artifacts are test as-
sets managed in the central test repository. A release flash template can be found 
in Chap. 10. 

2.4.2 Information Life Cycle 

Data in the business world reflects basically relationships between partners, con-
tracts, and products. All events, statuses, and requests must be collected, managed, 
processed, and communicated to the customer in a timely and coordinated manner. 
To achieve this goal, four main functions cover the information cycle: 

• Information management 
• Collection and processing 
• Archiving and dissemination 
• Exploitation and production 

The resulting data flows are shown in Fig. 2.9. 

Collection & Processing
Archive 

E x p lo i t a t io n
       &
P r o d u c t io n

Customer 

M an a ge m e n t

E x t e r n a l  n e e d s C o l le c t o r s

     I n s t ru c t io n s
    S t a t u s

    T a s k in g  &  S t a t u s

 I n fo  r e q u e s t s
 &  S t a t u s

D a t a  &
P r o d u c t s     T a s k in g  &  S t a t u s

P r o c e s s e d  D a t a

P r o d u c t s
&  C o o r d in a t io n

Q u e r ie s  &  R e s p o n s e s
D a t a  &  P r o d u c t s

  & 
Dissemination

Source: USIGS  

Fig. 2.9 Information cycle 



2.5 Testing Predictability 31 

2.4.3 Data Life Cycle 

As illustrated in Fig. 2.10, data has a very long life cycle. Business data can be 
alive for decades and thus require long-term archiving. Test data also has to be 
archived up to seven years to be SOX-compliant. Inside this main cycle, test data 
is used during a life period of one to three years, depending on the release under 
test. Other test artifacts have a much shorter LC, generally a couple of months. 

Test data life cycle

Long-term archiving

Test data availability  
f
r
e
e
z
e

Short-term
archiving 

Testing cycles

SW release life cycle

7 years

> 25 years

1–3 years

Compliance  period 

Business data life cycle

 

Fig. 2.10 Test data life cycle 

2.5 Testing Predictability 

Performing design for testability has many advantages, including more improved 
test coverage, simpler test design, and easier fault finding, offering more options 
for test automation. This will be discussed later in Sect. 3.5.4, “Test automation.” 

By creating infrastructure support within the application – and specifically, to 
the interfaces of the software under test (SUT) – three notions can be supported 
efficiently [BlBuNa04]: 

1. The predictability of the tests, which supports a means for conclusively as-
sessing whether the SUT performed correctly or not. 

2. The controllability of the tests, which permits the test mechanism to provide 
inputs to the system and drive the execution through various scenarios and 
states to foster the need for systematic coverage of the SUT functionality. 

3. Observability of the system outputs that can lead to a decision as to whether 
the outputs are desirable (correct) or faulty. 



32 2 Introduction to Testing 

Conceptual components of system

Coupled interfaces
complicate access to component 
and limit controllability that requires
test inputs to be provided upstream 

Well-defined interfaces
support direct controllability 
and observability for component

B.2B.1

Source: SW Productivity Consortium  

Fig. 2.11 Coupled interfaces 

It is important for the design engineers to expose some of the internals of the 
software under test – like component interfaces – to provide more controllability 
and observability of internal information that passes into and out of the system 
through program-based interfaces. 

The design for testability should occur at many or all of the layers of the soft-
ware system architecture, because it results in less coupling of the system compo-
nents. If the component interfaces are coupled to other components, the compo-
nents are typically not completely controllable through separate interfaces. This 
can complicate the modeling and testing process, and blur testing predictability. 
Figure 2.11 shows a conceptual view of system components with well-defined and 
coupled interfaces. 

Modern software components may be customizable through table-driven con-
figurations enabling a single application version to address a broad range of cus-
tomer needs. Table driven systems (TDSs) use a vast variety of business rules 
which pose a challenge for testing because the predictability of the results depend 
in many cases on the relationships between rules. The “Rule-to-rule associations” 
problem addresses a visibility issue because [GI03, S. 7]: 

• A rule can be an exception to another rule 
• A rule enables another rule 
• A rule subsumes another rule 
• A rule is semantically equivalent to another rule 
• A rule is similar to another rule 
• A rule is in conflict with another rule 
• A rule supports another rule 

The rules used in business information systems are of the form: event-
condition-action (ECA). The large number of rules implemented in a productive 
environment makes difficult the analysis of interactions, since the execution of a 
rule may cause an event triggering another rule or a set of rules. These rules may 
in turn trigger further rules with the potential for an infinite cascade of rule firings 
to occur. 



2.5 Testing Predictability 33 

In relational databases (see Sect. 4.3.6), procedures can be attached that can be 
activated (or “triggered”) whenever a row is manipulated or changed in a table. 
The appropriate routine covering each condition of a rule is in relation to the cor-
responding table business rules. 

2.5.1 Business Rules 

The Business Rules Group (http://www.businessrulesgroup.org) gives two defini-
tions of a business rule reflecting the dual views of business and technology in this 
matter. 

From the information system perspective: 
“A business rule is a statement that defines or constrains some aspect of the 

business. It is intended to assert business structure or control or influence the be-
haviour of the business.” 

From the business perspective: 
“A business rule is a directive, which is intended to influence or guide business 

behavior, in support of business policy that is formulated in response to an oppor-
tunity or threat.” 

The aim of a business rule is to separate the business logic from data feeds, 
presentation layers and system interfaces of all kinds. Basically, a business rule is 
independent of the modeling paradigm or technical platform and is defined and 
owned by business entities. 

The term “business rules”, however, has different meanings for business and 
IT, depending on whether the perspective is data-oriented, object-oriented, sys-
tem-oriented, or expertise-oriented. 

Teradata takes a holistic approach to enterprise data management by organizing 
the universe of data services into three main categories: 

1. Data modelling and business views including: 

− Metadata management 
− Master data management 
− Data quality 
− Data integration 
− Data security and privacy 

2. Data governance: Data governance includes the processes, policies, standards, 
organization, and technologies required to manage the availability, accessibil-
ity, quality, consistency, auditibility, and security of the data in a enterprise. 

3. Data stewardship: Data stewardship defines the continual, day-to-day activi-
ties of creating, using, and retiring data. Data stewards are responsible for 
formal accountability and the management of all enterprise data. 

In Sect. 4.2, master data management will be presented which covers metadata, 
business rules, and reference data aspects. 



34 2 Introduction to Testing 

Rule Traceability 

The ability to manage experience and expertise gained in the business domains – 
and not documented for sure – is a major driver for rule management. The follow-
ing questions should be addressed [GI03, S. 6]: 

• When was the rule created? 
• Where can more information about the role be found? 
• Where is the rule implemented? 
• What new design deliverables need to address the rule? 
• Who can answer particular questions about the rule? 
• To what areas of the business does the rule apply? 
• What work tasks does the rule guide? 
• In what jurisdictions is the rule enforced? 
• Over what period of time is the rule enforced? 

It is important to establish a good process of uncovering and extracting the ex-
isting rules (implicit or explicit) that govern the operation of the business to under-
stand where business rules fit best with business strategies. This shall insure the 
continuing business alignment of the project. 

A new aspect adds to the urgency to (re-)discover the business rules or better 
manage them is regulatory compliance. The need to establish or verify business 
controls is the objective of the Sarbanes-Oxley Act of 2002 – best known as SOX 
404. These controls are essential rules that apply to internal operations and proce-
dures to be formally defined and captured in a central repository. The GUIDE 
business rules project has defined four categories of business rules: 

1. Definitions of business terms, 
2. Facts that relate these terms to each other, 
3. Constraints on actions that should or not should take place in a particular 

scenario, and 
4. Derivations of one type of information can be transformed into or derived 

from another. 

The main question to answer is if all rules relevant to a business have been 
found. From a pragmatic point of view, it is suggested to take a formal testing or 
simulation approach, either manually driven with data walkthroughs, or using the 
simulation applications that form part of most of the BPM solutions available on 
the market. To improve business and systems acceptance business rules should be 
used as a basis for test plans. 

From a technical point of view, business rules can be implemented with rela-
tional tables or/and using UML Object Constraint Language (OCL). OCL is a 
declarative language designed for object-oriented software. It can be used to con-
strain class diagrams, to specify pre- and post-conditions of methods, and to spec-
ify the guards of transition within an UML state machine, to name a few. 



2.5 Testing Predictability 35 

2.5.2 Business Rules Management (BRM) 

Business rules constitute the part of an application most prone to change over 
time. New or altered regulations must be adhered to, new business methods get 
implemented, competitive pressures force changes in policy, new products and 
services are introduced, and so on. All of these require changes to the decisions 
that control behaviors and actions in business applications. The people best able to 
gauge the need for new operational behaviors, to envision the new decision criteria 
and responses, and to authorize implementation of new business policies are sel-
dom technically trained in programming techniques. Policymakers want business 
applications designed to let them accomplish business tasks such as introducing 
new promotions, changing discount levels, altering rating criteria, or incorporating 
new regulations. But creating such modification and management applications is a 
task often comparable to building the underlying business systems themselves! 
Traditional organizational behavior is, for business policymakers, to gather a set of 
business changes that should be made, submit them as a formal request to a pro-
gramming department, sign off the programming interpretation of the changes, 
and wait for a scheduling opportunity to have the changes implemented in a new 
software release. The delays in this type of cycle are apparent, but there is no al-
ternative in traditionally implemented software systems. Because business rules 
are separated from and independent of the underlying system code that keeps a 
business application operating, they should be changed without impacting the 
application logic. 

Auditability 

An aspect of business rules management that should not be overlooked is the im-
portance of keeping track of tasks carried out and decisions made. Since business 
rules control key decision processes, it is crucial to have clear access to what rules 
were in play when decisions were made, who made changes to rules, and why 
changes were made. Part of this process is dependent on a commitment to good 
change management procedures within the organization. But, the software being 
used to manage the rules should also provide the functionality to support enter-
prise control and auditing. For example, to record the state of an entire rule service 
at any point in time, a “snapshot” may be taken of the files containing the rules. 
This can be recovered, reused, or examined later for auditing and results test-
ing/comparison against later versions. Rules management and maintenance appli-
cations should also add documentary information to rule creation, and changes 
showing the author, the time, and the date of the change. [GI03, S. 14] 

Implementing BRM 

For all the reasons mentioned before, BRM should be part of the company’s 
knowledge infrastructure. For testing activities, BRM plays a central role by driv-



36 2 Introduction to Testing 

ing the extraction process for test data generation, as described later in Sect. 4.2. 
The rules discovery process is an integral part of BRM and is usually owned by an 
expert committee with representatives of the business and technical domains. 
Defining, modifying, and enhancing rules address primary business aspects im-
pacting IT operations as well. For this reason, a permanent BRM team involving 
domain experts, business managers, analysts, process designers and IT experts has 
to be established to steer the BRM process successfully. 

From the technological perspective, a dedicated BRM framework is also re-
quired to cover the manual and automated elements of the process and sub-
processes. Some tools are available which can extract rules from the business logic 
that is either defined within programs or hard-wired in legacy systems. Figure 2.12 

SelectSelect

BU experts IT experts

Business Domain

Rules discovery Rules mining

       Rules
standardization

    Rules 
assessment

    Rules
deployment

Scenario Testing

Technology Domain

explore exploit

Rules validation

    Rules
maintenance

Expert
Committee's
Tasks

 

Fig. 2.12 Business rules management 



2.5 Testing Predictability 37 

shows the layout of a BRM framework with business and IT actors working to-
gether on specific tasks. 

A rule engine will provide the necessary functionality to manage the rules and 
their associations, and to support the different tasks inside the BRM framework as 
depicted in the diagram. 

The Rule Engine – Specific Requirements 

The Rule engine component requires a number of capabilities for the rules man-
agement system to function properly. There are at least six major ones in a com-
plete system, including: 

• Support refining existing object/data models 
• Support interoperation with other data sources 
• Manage simultaneous requests for decisions from different applications 
• Perform condition-based selection of the right rules to fire, in the right order 
• Integrate with auditing software to record what rules were used in the course 

of making a decision 
• Offer support for complex decision chains without needing explicit control 

from the calling application 

The Rules Management GUI – Specific Requirements 

The Rules Management GUI requires a number of capabilities for the Rules Man-
agement System to function properly. There are at least three major ones in a 
complete system, including: 

• Supporting the management of the rule set and service partitioning (role-
based access), service assembly, and deployment 

• Supporting the execution path testing 
• Supporting generation rule maintenance applications that completely hide the 

structured rule language – the applications that allow rules to be safely con-
structed and modified by the right people with the right data entry controls 

Rules Management Integration Specifications 

For effective use of a rules management system, business logic should be inde-
pendent from the mechanisms used to manipulate data or implement decisions. 
Rules should be implemented independent of any external system that may use it. 
For example, in a process that requires a mechanical task, e. g., lighting a bulb, the 
rules management system should not include facilities to physically control input 
and output. Instead, it should contain clearly defined integration points for systems 
that are built to accomplish these mechanical tasks. [GI03, S. 27] 



38 2 Introduction to Testing 

2.5.3 Software Reliability 

The NASA Software Assurance Standard, NASA-STD-8739.8, defines software 
reliability as a discipline of software assurance that: 
• Defines the requirements for software controlled system fault or failure detec-

tion, isolation, and recovery 
• Reviews the software development processes and products for software error 

prevention and/or reduced functionality states 
• Defines the process for measuring and analyzing defects, and derives the 

reliability and maintainability factors. 
The level of quality of the software which results in a controlled and predict-

able behavior is the result of reliability techniques developed in the past twenty 
years. Reliability techniques are divided in two categories: 
• Trending reliability: This tracks the failure data produced by the software to 

determine the reliability operational profile of the application or system over a 
specified period of time. 

• Predictive reliability: This assigns probabilities to the operational profile of a 
software solution expressed in a percentage of failure over a number of hours 
or days. 

 
Fig 2.13 IEEE software reliability diagram (Source: IEEE Std.982.2-1988) 



2.5 Testing Predictability 39 

Software reliability is a quality characteristic which quantifies the operational 
profile of a system and tells the testers how much additional testing is needed. In 
general, software reliability failures are caused by incorrect logic, incorrect state-
ments, or incorrect input data. Predictability in testing can be mastered reasonably 
well if the following conditions are fulfilled: 

• A good knowledge of the use cases 
• A good knowledge of the business rules to be applied 
• A good understanding of the test data required 
• The availability of a test library for automated testing 

But, first of all, testing must be deterministic: that means, that to design a test 
case you must know the state of the data before starting the test suite and to be 
able to predict anything at the end. Don’t forget to check the initial state of the test 
system and the database; reinstate them if needed and document the procedure 
before starting further test activities. 

The IEEE diagram presented in Fig. 2.13 shows the components contributing to 
overall software reliability. 

2.5.4 Software Quality Criteria [ISO 9126] 

The software under test has to work as contractually specified with the customer 
or stake holder, providing key characteristics as defined by ISO 9126. These are as 
follows: 

1. Efficiency: A set of attributes that bear on the relationship between the level 
of performance of the software and the amount of resources used, under the 
following stated conditions: 

− Throughput 
− Time behavior 
− Optimized resources consumption 

2. Functionality: A set of attributes that bear on the existence of a set of func-
tions and their specified properties. The functions are those that satisfy stated 
or implied needs, including: 

− Accuracy 
− Compliance 
− Correctness of the results 
− Predictable behavior 
− Good interoperability 
− Good scalability 
− Good security 
− Interoperability 



40 2 Introduction to Testing 

3. Maintainability: A set of attributes that bear on the effort needed to make 
specified modifications, including: 

− Analyzability 
− Changeability 
− Modifiability 
− Stability 
− Testability 
− Understandability 
− Verifiability 

4. Portability: A set of attributes that bear on the ability of software to be trans-
ferred from one environment to another, including the following: 

− Adaptability 
− Conformity 
− Installability 
− Replaceability 
− Serviceability 

5. Reliability: A set of attributes that bear on the capability of software to main-
tain its level of performance under stated conditions for a stated period of 
time, including the following: 

− Fault tolerance 
− Maturity 
− Recoverability 

6. Usability: A set of attributes that bear on the effort needed for use, and on the 
individual assessment of such use, by a stated or implied set of users, includ-
ing the following: 

− Learnability 
− Understandability 
− Operability 

Very often, the full range of criteria can't be fully and timely satisfied, because 
some software components have different development schedules or tight integra-
tion windows. The test intensity needs to be modulated accordingly to take into 
account such contingencies. 

2.6 Software Development Methods 

In this chapter we examine the pros and cons of the most popular software devel-
opment methods, focusing on their usability in large-scale projects. We assumed 
that most readers know the basics of phase-oriented software development. 



2.6 Software Development Methods 41 

2.6.1 V-Model 

The V-model is used in the vast majority of large projects as the methodology of 
choice to develop and test complex systems and software solutions. The V-model 
is organized in three main blocks including development, solution build and inte-
gration. The development cycle is the main engineering process which covers: 

• The system design review 
• The product design review 
• The critical design review 

A continuous requirements tracking process should be implemented to ver- 
ify and validate the correctness of design compared to original customer’s re-
quirements. The next cycle is the solution build which is characterized by three 
processes: 

• The pilot design 
• The pilot implementation 
• The pilot verification 

The final cycle is the integration process including the following: 

• The unit test (UT) 
• The component test (CT) 
• The integration test (IT) 

The integration test must guarantee that the functionality of the new software 
work correctly end-to-end, without any problems. Figure 2.14 gives a top view of 
the V-model. 

We will see later in this chapter that the V-model used in the real-world in-
cludes refinement loops providing flexibility and continuous improvement of the 
work in progress. 

Customer Needs IT Engineering

Requirements Management

SDR

PDR

CDR
UT

MIT

UAT
 Validation

Coding

Development Integration

CDR  Critical Design Review            PDR  Product Design Review       UAT  User Acceptance Test
CT    Component Test                    MIT  Module Integration Test      UT    Unit Test 
CIT   Component Integration Test   SDR  System Design Review

Solution Build

CIT

 

Fig. 2.14 V-Model  



42 2 Introduction to Testing 

The V-model is a requirements-oriented approach which requires discipline, 
a high degree of coordination, and strong communication skills from all teams 
involved. Since documents define the content of the project and its final product, it 
is important for all parties involved to work with accurate document artifacts. The 
documentation process is therefore of great importance to support the team-work 
of analysts, developers, testers, and project supervisors. 

Activities Carried Out in the V-model Framework 

Along the waterfall life cycle, the development team does the following: 

1. Starts by researching and writing the product’s requirements 
2. Writes the high-level design documents 
3. Writes low-level design documents 
4. Writes code. 

The test team does the following: 

1. Writes its acceptance tests as soon as the requirements are reviewed 
2. Writes its system tests in response to the high-level design 
3. Writes integration tests in response to detailed design 
4. Writes unit tests in response to the coding 
5. Runs the system tests. 

The benefits of this planned method are reasonably well-defined requirements, 
well-thought-out test cases and test sets based on scenarios for all test environ-
ments. 

This methodological approach works exceptionally well in situations where the 
goal of the testing is to determine service-level agreement (SLA) compliance, or 
when independent validation and verification (IV&V) is required. It is also easier 
to implement GUI-level automated tests because, in theory, the user interface is 
locked down relatively early. The waterfall cycle includes little incremental, itera-
tive, or parallel development. 

A drawback of this model is that the project team has to look very closely at de-
tail level before costs, complexity, dependencies between software components, 
and implementation difficulty of those details are known. The project manager has 
to deliver a software solution that works reasonably well, on time, and within 
budget. Under the waterfall, the features are designed up front, funding and time 
are spent on designing and developing all of the features, until finally, the code 
comes into system testing. If the code is late, or the product has a lot of bugs, the 
typical trade-off between reliability and time to market has to be solved pragmati-
cally. The testers need more time to test the product and get it fixed, while stake-
holders want to deliver the product before it runs too far behind schedule. 



2.6 Software Development Methods 43 

2.6.2 Agile Software Development 

“Faced with the conflicting pressures of accelerated product development and 
users who demand that increasingly vital systems be made ever more dependable, 
software development has been thrown into turmoil. Traditionalists advocate using 
extensive planning, codified processes, and rigorous reuse to make development 
an efficient and predictable activity that gradually matures toward perfection. 
Meanwhile, a new generation of developers cites the crushing weight of corporate 
bureaucracy, the rapid pace of information technology change, and the dehuman-
izing effects of detailed plan-driven development as cause for revolution.” [Barry 
Boehm, USC]. 

New initiatives to improve productivity and reduce the latent time between idea 
and software delivery are emerging periodically. They tend to avoid formalism 
and reduce drastically planning tasks to enable: 
• A shorter development time (feature-driven) 
• Astrong interaction with the customer 
• Maximum iterative cycles. 

Adopting agile development could add potential risks in a project because im-
portant aspects of the software production are not properly addressed with this 
method: 
• Minimal software documentation 
• The poor auditability of testing activities in this context 
• Integration problems with CMM-developed components 
• A difficult synchronization of the development process. 

This approach works best for small projects (up to 10 people) but don’t really 
accelerate the software production in large-scale projects which are risk-managed 
and plan-driven. The following diagram illustrates the positioning of the agile 
approach compared to well-established CMM-development methods: 

SW development methods compared

Waterfall Model
V-Model

Incremental
Development

Evolutionary
Development

Agile Development (XP, ...)

S
ou

rc
e:

 C
hr

. E
be

rt,
 d

ep
un

kt
.v

er
la

g

Large projects
Many releases
Long-term development
High maintenance costs

Small projects
Short development time

Stable requirements
Weak customer influence
Well-defined requirements

Changing requirements
Strong customer influence
Unknown requirements  

Fig. 2.15 Software development methods compared 



44 2 Introduction to Testing 

2.6.3 What is Agility? 

Agility means being able to adapt to environmental shifts quickly by changing 
products, services, prices, and business processes. From an IT viewpoint, it means 
being able to reconfigure and extend application systems quickly, without rewrit-
ing much code or changing the databases. It also means implementing multi-
channel, or “channel neutral” applications that support desktop, mobile, and back-
office work simultaneously. 

The agility of company information systems cannot be achieved by merely ac-
celerating systems built on traditional architectural principles. Agility must be 
built into the core of business processes and their information systems. (Source: 
Gartner Group) 

The agile or “extreme programming” method (XP) features a modular, people-
centric approach – as opposed to process-centric – software development and 
testing approach. With agile programming, feedback was the primary control 
mechanism, meaning that a fledging design progressed through the steps of devel-
opment only after tests and modifications were performed at each possible junc-
ture. Proponents of agile programming argued that software development existed 
entirely in the design/development stage, and that the manufacture step was noth-
ing more than insignificant compiling of code, an afterthought. (Source: Wipro 
Technologies) 

Software development and testing activities must be harmonized at the meth-
odological level to best address the main business requirements: faster product 
delivery at reduced (production) costs. Large organizations and many of those that 
are undertaking massive reengineering projects, facing high quality and safety 
requirements use traditional methods (e. g., CMM). This is particularly the case in 
the finance industry. 

Based on my experience in large software projects, I can attest that agile meth-
ods are used in a V-model driven context, for clearly identified software compo-
nents. The contribution of agile development and testing was a valuable one for 
components like business monitoring tools, DWH queries, and web services proto-
types. The ability to be agile involves optimized use of established technologies, 
but more important, working with established processes and procedures which can 
be enriched with the positive feedback of refinement loops. 

The important point to remember with agile methods is to reduce the uncer-
tainty level of software maturity as quick as possible. 

The frequency of iterations in agile mode is dependent on the kind or problems 
encountered in the development phase, such as: 

• An inadequate design 
• Incomplete/unclear requirements 
• Technical gaps 
• Emerging user’s requirements (on-the-fly) 
• Lateral or backward compatibility problems 
• Other causes not precisely identified 



2.6 Software Development Methods 45 

high risk area

expected
sw maturity

stability
plateau

Time

PSO threshold 
critical bugs

Iterations in the development phase

 

Fig. 2.16 Uncertainty reduction in agile development 

Figure 2.16 shows the relation between development risk and uncertainty level. 
The iterative approach contributes to reduce significantly the failure rate in the 

software production and deployment processes, improving agility. Figure 2.17 
shows that up-front agile development integrates existing/modified requirements 
and new features continuously via iterations up to software delivery. The at-end 
agile development provides production documentation, re-factoring, and training 
during the last iteration. Extended requirements – like SOX-404 and other legal 
requirements – are fulfilled after the last iteration, before PSO. 

Iteration 1 Iteration n

Software Release

Backlog + new features to be implemented

Project approval

Last Iteration 

. Product documentation

. Refactoring

. Reviews

. Training

Up-Front Agile Development

adapted from M. Sliger 2006

Iteration 1

At-End Agile Development

. Independent Validation
  & Verification (IV&V)
. SOX-404 compliance
. Legal Requirements
. Others

Extended reqts

PSO

Software
Delivery

PSO

to
customer

Software Release

to another
entity

 

Fig. 2.17 Agile front-end 



46 2 Introduction to Testing 

2.6.4 Iterative Development 

In an evolutionary model like XP, programming follows an evolutionary model: 
each feature is tested as soon as it is added to the product, bringing it up to an 
acceptable quality before adding the next feature. In the evolutionary case, the 
tradeoff lies between features and time to market, rather than between reliability 
and time to market. Testers play a much less central role in the late-project contro-
versies because the issue is not whether the product works (it does) but instead, 
whether there's enough product. The iterative approaches (spiral, RUP, XP, evolu-
tionary development, etc.) are reactions to the risks associated with premature 
misspecification. 

2.6.5 Waterfall and Agile Methods Compared 

The most preeminent differences of the two methods are reflected in Fig. 2.18. 
The teams working cooperatively in an agile mode need to synchronize their ac-
tivities and compare the development progress periodically with the core team 
using the waterfall method. 

Agile teams rely on four levels of testing while developing software: 

1. Developer testing 
2. Story testing 
3. Exploratory testing 
4. User acceptance testing 

These layers include some redundancy but each tends to reach a higher quality 
from a different perspective. In story testing for example, small slices of user-
visible functionality can be analyzed, designed, coded and testing in very short 
time intervals (days), which are then used as the vehicle of planning, communica-
tion and code refinement. 

Iteration 1 Iteration 2 Iteration n

ANALYZE           DESIGN          CODE              TEST

Synchronization
Points

Synchronization
Points

Software Release

CT    CIT    IIT     AIT

UAT

Software
Delivery

Agile
Team

Waterfall
Team

PSOMilestones

adapted from M. Sliger 2006  

Fig. 2.18 Waterfall-agile comparison 



2.6 Software Development Methods 47 

2.6.6 Staged Delivery Method 

In a staged delivery model, features are added incrementally, but the product is 
delivered to the customer after each “stage”. Requirements and architectural de-
sign are typically done up front and planned releases are made as each set of fea-
tures is finished. This is an incremental method which can be used in large 
V-model projects, but more as a back-fall procedure. The solution manager can 
justify a staged delivery of the product to the stakeholders to overcome temporary 
resources shortage or to better control the rollout of releases in multiple geo-
graphical locations. In this case we speak about “wave rollout”. The staged deliv-
ery method is shown in Fig. 2.19. 

Software Concept

Requirements Development

Detail DesignStaged Delivery

Architectural Design

Construction
   QA
     Release

QA or value increases,
   next stage begins

Software in Use

 

Fig. 2.19 Staged delivery method 

2.6.7 Selection of the Right Development Method 

Developing and testing software in a complex IT environment requires many in-
gredients, including well-documented artifacts and a comprehensive methodologi-
cal framework. The waterfall model is ideally suited to fulfill tight requirements to 
produce high-quality results. 

The waterfall model is most suitable to your needs if: 

• The requirements are known in advance 
• The requirements have no high-risk implications 
• The requirements have no uncertainty or hidden risks 
• The requirements satisfy stakeholders' expectations 
• The requirements will be stable during the development phase 
• The design architecture is viable and approved 
• The sequential approach fits into the project’s time frame. 



48 2 Introduction to Testing 

Waterfall

Agile/Xp
Skunk Works

. Small projects

. Short development time

. Changing requirements

. Strong customer influence

. Black projects

. Experimental technologies

. Unknown requirements

. Large projects

. Long development time

. Well-defined requirements

. Strong customer influence

. Many releases

. High maintenance costs

. Mission-critical applications
 

Fig. 2.20 Software development methodologies compared  

The evolutionary approach is best for your project if: 
• The initial release is good enough to keep stakeholders involved 
• The architecture is scalable to accommodate future system growth 
• The operational user organization can adapt to the pace of evolution 
• The evolution dimensions are compatible with legacy system replacement. 

(Source: ESEG, UMD) 

The diagram shown in Fig. 2.20 reflects the positioning of the three software 
development approaches discussed here. 

Large-scale projects can adopt agile development for some parts of the soft-
ware to be manufactured, but some factors (e. g., the size of the development 
teams, the cultural environment, and communication and coordination issues) can 
be considered as insurmontable obstacles. 

However, examining the V-model as used in a real-world context gives inter-
esting clues about agility aspects in this rigid methodological framework. Refine-
ment loops is the distinctive characteristic of an agile V-model. 

The first loop is the continuous requirements tracking which covers four dis-
tinct areas: 
• Analysis 
• Validation and verification 
• Architecture design 
• Architecture verification 

Agility begins with the analysis of requirements and continuous feedback to 
originators insuring more accurate deliverables produced in development and 
testing: 
• Scenarios must be created, enhanced and validated 
• Functions and limitations are worked out 
• Operating and maintenance instructions must be adapted and documented 

In the architectural design phase, additional functions and limitations can be 
added with corresponding documentation. 

This second loop addresses even more the flexibility issue through prototyping: 
• Pilot design 
• Pilot implementation 
• Pilot verification 



2.6 Software Development Methods 49 

Analysis

Archit. Design
   Verification

Archit. Design

V & V

Maintenance

Validation

Documentation

Integration
  Testing

Pilot Design Pilot Verification

Pilot Implementation

Use and misuse scenarios, Validation tests

Functions and limitations
Operating and Maintenance Instr.

Additional Functions and limitations

Positive & Negative Tests
Failure Scenarios

Evolution over multiple
Prototypes / Pilots

User

User

       Requirements &
      Defect Tracking

Configuration
Management

Requirements
Tracking

User

User

    Test
Specification

Adapted from: TÜV SÜD Rail GmbH, Almuth-Ines Spiess, Sept. 2007, derived from IEC 61508:2002  

Fig. 2.21 V-model in practice 

In large-scale projects, prototyping is chosen to produce a number of prototypes 
either for critical software components with new functionality and new design, or 
for end-user tools and Web interfaces. 

The test specification in this phase needs to be adapted permanently to reflect 
the evolution of the product under development. During the architectural design 
verification phase, positive and negative tests and failure scenarios are elaborated 
for use later in the integration phase. 

Scaling Agile Methods 

The question if eXtreme programming works for large projects has been answered 
positively so far. Sanjay Murthi, President of SMGlobal Inc., reported about his 
experience in a project involving two development centers: “I had the opportunity 
to use eXtreme programming (XP) on a large software product release. The team 
consisted of more than fifty people located in two different development centers. 
At first, I was skeptical that XP could work for us. I knew that, historically, XP 
has been most successful with small and very committed teams. By placing impor-
tance on regular builds and working systems, we frequently caught problems 
early. By maintaining good version control, we also had confidence that we could 
easily roll back to a previous build if things went bad. Unit tests helped ensure that 
new functionality didn’t break the old. Overall, integration became easier and less 
worrisome. Working with requirements that weren’t yet fully defined made it 
possible to start work faster, fleshing out the requirements as we moved along. 
Regular demonstrations of the system as it was being built helped satisfy stake-
holders that their needs were being met. 



50 2 Introduction to Testing 

However, managers still have to weigh several factors before deciding whether 
to use agile methods. Their success depends on three major factors: the skills and 
enthusiasm of the people involved, the processes used and level of adherence to 
them; and lastly, the management and reporting systems in place. 

Inadequate communication can disrupt any project and cause any methodology 
to fail. If teams don't communicate well with each other and with other teams, 
their skills and level of enthusiasm don’t matter. They will end up creating poorly 
designed or just plain bad solutions. 

When should managers consider agile methods, and how should they start us-
ing them? Traditional development methodologies can help deliver projects on 
time and budget, and give management a good handle on project status through-
out. However, if you’re moving to a new technology platform or your project calls 
for fluid requirements, these older methods aren't suitable.” 

Traditional methods assume fairly static requirements and impose high cost 
burdens because of the high volume of processes and people needed to complete a 
task. They focus on intermediate deliverables, which can become wasted work 
should project goals and requirements change. You can define projects by four 
factors: scope, time, resources, and risks. Traditional methodologies work well 
when all of these factors are quantified and understood. 

Getting all of your teams to use similar techniques is important, particularly 
when it comes to time and cost estimation. Bad estimation can lead to poor distri-
bution of work. (Source: Dr. Dobbs, 2002) 

2.7 The Testing Value Chain (TVC) 

The testing value chain is one of the most important instruments to plan and moni-
tor all test activities in order to achieve production sign-off (PSO) in the terms 
agreed by all parties. The TVC begins with the base-lining and ends with the roll-
out of the product. 

Each test phase in the value chain is validated by an SO process which is bind-
ing for all contractual parties involved in the project. There are four distinct SOs, 
as listed in Fig. 2.22. 

Initialization phase  Business case sign-off (BSO) 
Concept phase   Requirements sign-off (RSO) 
Development phase   Specification sign-off  (SSO) 
Rollout phase    Production sign-off     (PSO)  

Fig. 2.22 An SO agreement is required for each testphase completed 



2.7 The Testing Value Chain (TVC) 51 

2.7.1 The SO Organization 

A sign-off office coordinates all activities related to the SO process, and it is re-
sponsible to collect and valid all deliverables in a timely fashion. The office tracks 
the progress of work and organizes reporting meetings in accordance to the overall 
project plan. Participants to the SO process are: solution managers, project leader 
and team representatives of IT security, Software Development, Application Ar-
chitecture, Data Standards, SW Integration, IT, and Operations and Testing. Fig-
ure 2.23 shows the software development sequences and the SOgates. 

Each phase in the TVC must starts with a situation clearly documented and 
properly communicated to all project members. The term baseline applies to each 
set of commitments, which signifies to the parties involved in the project the pro-
gress of work through the passage of time. Each baseline includes deliverables – 
like documentation and software artifacts – being reviewed and delivered at de-
fined points in time (milestones). For example, before starting CT or UT work, the 
logical and physical models must be available. Along the TVC chain, the integra-
tion and test phases are validated using entry and exit criteria, assessing the quality 
of the work produced (the deliverables). 

In the real-world environmental factors (e. g., business pressure) are the main 
causes of lowering the barriers to satisfy the TVC’s criteria at a low price, gener-
ating inevitably quality problems in all subsequent phases. Figure 2.24 shows  
the testing value chain with test phases in relation to the software development 
process. 

Before starting the test activities in a given test environment, the following 
items must be identified, provided and agreed upon: 

• An approved release baseline 
• Test objectives 
• The required test data 
• The Responsibilities of all roles involved in the project. 

Rollout

Business case
ROI Analysis

Initialization Concept Development
Requirements
Elicitation

Preliminary
Design

Detail
Design

Coding

Tests

Integration Tests Pilot Production

BSO RSO SSO PSO

Testing Value Chain (TVC)  

Fig. 2.23 Testing value chain gates 



52 2 Introduction to Testing 

UT

CIT

CT MIT AIT UAT

GAT DeliverySTE

Production
Sign off

System tests
w. live data (100% production)

 entry
criteria

 exit
criteria

 entry
criteria

 exit
criteria

 entry
criteria

 exit
criteria

Testing Value Chain

 entry
criteria

 exit
criteria

Rollout

Business case
ROI Analysis

Initialization Concept Development
Requirements
Elicitation

Preliminary
Design

Detail
Design

Coding

Tests

Integration Tests Pilot Production

BSO RSO SSO PSO

 

Fig. 2.24 Testing value chain phases 

2.7.2 Quality Gates 

Along the TVC, mandatory check points should be defined to assure adherence to 
processes and quality standards. These are called quality gates or Q-gates. 

Q-gates apply these simple rules: 

• Minimum criteria definition for entering the next phase 
• Q-gates do not replace any QA activities in the project 
• Q-gates shall be verified by a project-independent function 
• Results should be monitored by line management 

Introducing the concept of Q-gates will give a burst of improvement to the or-
ganization in charge of the software production, provided that following recom-
mendations are followed: 

1. Establish management commitment on standardized QA criteria for entering 
test phases (Q-gates) controlled by a project-independent QA responsible 

2. Establish Q-gates 

− Define quality criteria and expected output artifacts for each project phase 
as criteria for entering the next phase 

− Provide documentation of processes with roles and responsibilities, ex-
pected output documents and quality criteria 

− Provide adequate training after the process rollout 
− Establish q-gate reviews for important project releases by an independent 

QA function reporting to management. 



2.7 The Testing Value Chain (TVC) 53 

Q-Gates Identification 

Q-gates are named according to the phases described previously: 

• QG1: Business Case Signoff 
• QG2: Software Architecture Signoff 
• QG3: Software Requirements Signoff 
• QG4: Software Design Signoff 
• QG5: Handover to Test 
• QG6: Handover to Acceptance 
• QG7: Acceptance 
• QG8: Production Signoff 

Benefits of Q-Gates 

If applied correctly, Q-gates offer many advantages: 

• Less rework in late project phases 
• Objective criteria on project status 
• Problems are solved in the phase where they were produced 
• Less consulting effort on process rollouts 
• QA remains in the project’s responsibility 
• Adherence to QA standards is checked with reasonable effort. 

Source: SQS 
 



55 P. Henry, The Testing Network, 
© Springer 2008 

Chapter 3  
Test Methods and Technology 

3.1 Different Views of Testing 

Testing can be approached from four distinct angles: analytic, quality-driven, 
routine, and context-driven. The different testing approaches have a common goal: 
to try to make right things the right way. High quality software should be the visi-
ble result of sound specifications, good processes, discipline, skills, teamwork and 
commitment to the project. The comparison below shows the difference between 
the four testing methods: 

1. Analytic testing 

− Primarily used in academia and industry 
− Requires precise and detailed specifications 
− Testers verify the software’s conformity compared to specifications 

2. Quality testing 

− Primarily used in Fortune 500 companies and large organizations 
− Requires discipline 
− Testers validate the development processes 
− Testers rule the software development 
− Good testing processes are required 

3. Routine testing 

− Primarily used in IT and government agencies 
− The waterfall model is the method of choice (V-Model) 
− Assembly line working 
− Standards are mandatory (best practices/verification) 
− Clear boundaries between testing and other processes 
− Testing is managed and cost effective 
− Testing measures the progress and validates the product 



56 3 Test Methods and Technology 

4. Context-driven testing 

− Primarily used in commercial and market-driven software 
− People set the context 
− Testing provides on-line feedback to stakeholders and management 
− Requires skilled testers 
− Testing is an interdisciplinary task 

In practice, a fifth approach to testing is used complementary to the other 
methods: exploratory testing. It can help to discover unusual behaviors, functional 
limitations or unattended bugs in central software components (e. g., central busi-
ness logic, or CBL). 

5. Exploratory testing 

− Effectiveness of test strategies is determined by field experiences 
− Test planning changes with the test results 
− Release planning can be directly impacted by the test results 
− Focus on skill over practice 

Table 3.1 summarizes the different views of testing. 
Testing techniques are classified into two categories: constructive methods and 

analytic methods. Constructive methods aim at detecting errors by running the 
software; analytic methods aim at detecting flaws by constructing programs. Con-
sequently, the constructive methods are referred to as dynamic and the analytic 
methods are referred to as static. 

Table 3.1 Four different views of testing 

ANALYTIC QA ROUTINE CONTEXT-
DRIVEN 

where used 
Academic/Industry Fortune 500/Large 

Organizations 
IT Government Commercial  

Market-driven SW 
characteristics 

• Precise + detailed 
specifications 

• Testers verify  
conformity  
SW ↔ specs 

• Discipline 
• Testers validate 

development  
processes 

• Testers rule  
development 

• Good process  
required 

• V-Model (waterfall) 
• Assembly line 
• Standards: 
 – Best practices 
 – Certification 
• Clear boundaries between 

testing and other processes 
• Testing is managed: 
 – predictable 
 – repeatable 
 – planned 
• Testing is cost-effective 
• Testing validates product 
• Testing measures progress 

• People set the 
context 

• Testing provides 
“on-line”  
feedback to: 

 – Stakeholders 
 – Management 
• Testing-skilled 

activity 
• Interdisciplinary 

testing 



3.1 Different Views of Testing 57 

Dynamic test methods include: 

• A structure test, or white box 

− Statement testing 
− Branch/decision testing 
− Data flow testing 
− Branch condition testing 
− Branch condition combination testing 
− Modified condition decision testing 
− LCSAJ testing 

• A functional test, or black box 

− Equivalence partitioning 
− Boundary value analysis 
− State transition testing 
− Cause-effect graphing 
− Decision table testing 

Static test methods include: 

• Inspections 
• Reviews 
• Static analysis 
• Walkthroughs 

Dynamic and static methods are also known as systematic methods. 

3.1.1 Test Methods – Overview 

Test methods have a defined scope depending on the following criteria: 

• Phases (Development – test – delivery) 
• Usage (In-house development or standard SW component) 
• Test environment (CT/UT/IIT/MIT/AIT/STE/UAT/pilot) 
• Domain (business Testing (BUT) or IT testing (ITT)) 

This is illustrated in Table 3.2. 
The characterization of a preferred test method can be best achieved by posi-

tioning the test targets along two axis: accessibility and aspects, as shown in 
Fig. 3.1. 



58 3 Test Methods and Technology 

Table 3.2 Different test methods for different purposes 

Computer-based testing White box 
testing 

Black box testing Coverage 
Ph

as
es

 

Te
st

 T
yp

e 

us
ed

 fo
r 

C
om

m
an

ds
 

R
ul

es
 

B
ou

nd
ar

y 
va

l-
ue

s A
na

ly
si

s 

Eq
ui

va
le

nc
e 

C
la

ss
es

 
C

au
se

-e
ff

ec
t 

gr
ap

hs
 

Er
ro

r-
gu

es
si

ng
 

C
on

tin
gu

en
cy

 
D

at
a 

C
om

pl
et

en
es

s 

UT  
Unit Test 

IHD 
SSC

Dev 
Dev 

Dev 
Dev 

      

CT  IHD Dev Dev 
Develop-
ment 

Component 
Test 

SSC    Dev/ITT 
      

MIT  
Module  
Integration 
Test 

IHD 
SSC   

ITT 
ITT 

ITT 
ITT 

ITT 
ITT 

ITT 
ITT 

ITT 
ITT 

ITT  
ITT 

AIT  
Application 
Integration 
Test 

IHD
SSC   

BUT
BUT 

BUT
BUT

BUT
BUT

BUT
BUT

BUT
BUT

BUT 
BUT Test 

PTE  
Performance 
Test 

IHD
SSC   

ITT 
ITT 

ITT
ITT 

ITT
ITT 

ITT
ITT 

ITT
ITT 

ITT 
ITT 

Pilot SSC        DQ Delivery 
Production n/a         

 

Fig. 3.1 Types of testing 

black-box

grey-box

white-box

glass-box

Accessibility

Aspects

functionality

load
performance

robustness

...



3.2 Dynamic Test Methods 59 

3.2 Dynamic Test Methods 

Three categories of dynamic test methods are used to test large information  
systems: 

1. Structural testing (white box-test, class box-test) 
2.  Functional testing (black box-test) 
3.  The divergence test 

3.2.1 Structural Testing (White Box) 

Synonyms for stuctural testing include: clear box testing, or glass box testing. 
White box is the method used in development testing to verify the program’s 
structure and features. It uses an internal perspective of the system to design test 
cases (TCs) based on the internal logic of the program, based on technical design. 
It requires programming skills to identify all paths through the software. The tester 
chooses TC inputs to exercise paths through the code and determines the appropri-
ate outputs. 

Structural testing is typically applied to the unit or component within a unit or 
component (CT); it can also test paths between units (CIT), during integration 
(IIT), and between subsystems during a system level test (STE). Though this 
method of test design can uncover an overwhelming number of TCs, it might not 
detect unimplemented parts of the specification or missing requirements, but one 
can be sure that all paths through the test object are executed. 

Typical white box test design techniques are divided into three main classes: 

• Statement testing and coverage 
• Decision testing and coverage 
• Other structure-based techniques 

The International Software Testing Qualifications Board (ISTQB®) published 
in 2007 the FL syllabus which describes these techniques as follows: 
1. Statement testing and coverage: In component testing, statement coverage is 

the assessment of the percentage of executable statements that have been ex-
ercised by a TC suite. Statement testing derives TCs to execute specific 
statements, normally to increase statement coverage. 

2. Decision testing and coverage: Decision coverage, related to branch testing, 
is the assessment of the percentage of decision outcomes (e. g., the True and 
False options of an IF statement) that have been exercised by a TC suite. De-
cision testing derives TCs to execute specific decision outcomes, normally to 
increase decision coverage. Decision testing is a form of control flow testing 
as it generates a specific flow of control through the decision points. Decision 
coverage is stronger than statement coverage: 100% decision coverage guar-
antees 100% statement coverage, but not vice versa. 



60 3 Test Methods and Technology 

3. Other structure-based techniques: There are stronger levels of structural cov-
erage beyond decision coverage, for example, condition coverage and multi-
ple condition coverage.The concept of coverage can also be applied at other 
test levels (e. g., at the integration level) where the percentage of modules, 
components, or classes that have been exercised by a TC suite could be ex-
pressed as module, component or class coverage. Tool support is useful for 
the structural testing of code. [ISTQB07] 

3.2.2 Functional Testing (Black Box) 

Functional testing focuses on the capability of the product or solution to meet the 
expectation of endusers by providing the functionality, and performance ease of 
use with a good cost/benefits ratio. It requires from testers a deep understanding of 
the business context and of the solution domain to develop good TCs. 

Specification-based or black-box techniques are divided into five main classes: 
• Equivalence partitioning 
• Boundary value analysis 
• Decision table testing 
• State transition testing 
• Use case testing 

The International Software Testing Qualifications Board (ISTQB®) published 
in 2007 the FL syllabus which describes precisely these techniques, discussed in 
the following sections. 

Equivalence Partitioning 

In equivalence partitioning, inputs to the software or system are divided into 
groups that are expected to exhibit similar behaviors, so they are likely to be proc-
essed in the same way. Equivalence partitions (or classes) can be found for both 
valid data and invalid data, i. e., values that should be rejected. Partitions can also 
be identified for outputs, internal values, time-related values (e. g., before or after 
an event) and for interface parameters (e. g., during integration testing). Tests can 
be designed to cover partitions. Equivalence partitioning is applicable at all levels 
of testing. 

Equivalence partitioning as a technique can be used to achieve input and output 
coverage. It can be applied to human input, input via interfaces to a system, or 
interface parameters in integration testing. 

Boundary Value Analysis 

In boundary value analysis, the behavior at the edge of each equivalence partition 
is more likely to be incorrect, so boundaries are an area where testing is likely to 



3.2 Dynamic Test Methods 61 

yield defects. The maximum and minimum values of a partition are its boundary 
values. A boundary value for a valid partition is a valid boundary value; the 
boundary of an invalid partition is an invalid boundary value. Tests can be de-
signed to cover both valid and invalid boundary values. When designing TCs, a 
test for each boundary value is chosen. 

Boundary value analysis can be applied at all test levels. It is relatively easy to 
apply and its defect-finding capability is high; detailed specifications are helpful. 

This technique is often considered as an extension of equivalence partitioning. 
It can be used on equivalence classes for user input on screen as well as, for ex-
ample, on time ranges (e. g., time out, transactional speed requirements) or table 
ranges (e. g., the table size is 256*256). Boundary values may also be used for test 
data selection. 

Decision Table Testing 

Decision tables are a good way to capture system requirements that contain logical 
conditions, and to document internal system design. They may be used to record 
complex business rules that a system is to implement. The specification is ana-
lyzed, and conditions and actions of the system are identified. The input condi-
tions and actions are most often stated in such a way that they can either be true or 
false (Boolean). The decision table contains the triggering conditions, often com-
binations of true and false for all input conditions, and the resulting actions for 
each combination of conditions. Each column of the table corresponds to a busi-
ness rule that defines a unique combination of conditions, which result in the exe-
cution of the actions associated with that rule. The coverage standard commonly 
used with decision table testing is to have at least one test per column, which typi-
cally involves covering all combinations of triggering conditions. The strength of 
decision table testing is that it creates combinations of conditions that might not 
otherwise have been exercised during testing. It may be applied to all situations 
when the action of the software depends on several logical decisions. 

State Transition Testing 

A system may exhibit a different response depending on current conditions or 
previous history (its state). In this case, that aspect of the system can be shown as 
a state transition diagram. It allows the tester to view the software in terms of its 
states, transitions between states, the inputs or events that trigger state changes 
(transitions), and the actions which may result from those transitions. The states of 
the system or object under test are separate, identifiable, and finite in number. A 
state table shows the relationship between the states and inputs, and can highlight 
possible transitions that are invalid. Tests can be designed to cover a typical se-
quence of states, to cover every state, to exercise every transition, to exercise spe-
cific sequences of transitions, or to test invalid transitions. State transition testing 
is much used within the embedded software industry and technical automation in 



62 3 Test Methods and Technology 

general. However, the technique is also suitable for modeling a business object 
having specific states or testing screen-dialogue flows (e.g., for Internet applica-
tions or business scenarios). 

Use Case Testing 

Tests can be specified from use cases or business scenarios. A use case describes 
interactions between actors, including users and the system, which produce a re-
sult of value to a system user. Each use case has preconditions, which need to be 
met for a use case to work successfully. Each use case terminates with post-
conditions, which are the observable results and final state of the system after the 
use case has been completed. A use case usually has a mainstream (i. e., the most 
likely) scenario, and sometimes alternative branches. Use cases describe the 
“process flows” through a system based on its actual likely use, so the TCs derived 
from use cases are most useful in uncovering defects in the process flows during 
real-world use of the system. Use cases, often referred to as scenarios, are very 
useful for designing acceptance tests with customer/user participation. They also 
help uncover integration defects caused by the interaction and interference of 
different components, which individual component testing would not reveal. 
[ISTQB07] 

3.2.3 Para-Functional Testing 

Definition 

“Para-functional testing is testing of those requirements that do not relate to func-
tionality.” [BS 7925-1] 

Para-functional testing, also called “non-functional testing,” is an another test 
approach which focuses on the particular aspects of the software that are not 
bound to specific functions. This means that users and customers will not be able 
to qualify precisely those aspects as it is the case in functional testing. Effective 
testing of the para-functional attributes requires the collaboration from testers with 
technical experts and developers. Non-functional testing covers aspects of a prod-
uct or solution that deal with: accessibility, local customizing, interoperability, 
scalability, security, performance, and the recovery capability. 

Performance Testing 

Performance testing is done to evaluate the compliance of a system or component 
with specified performance requirements. Before starting performance testing, it is 
assumed that the application is functioning as specified, stable, and robust. All the 
functional tests must have been successful before performance testing can start. 



3.2 Dynamic Test Methods 63 

The exact system configuration, test data, and calculated results must be recorded 
for each test run. 

It is mandatory, that during each test pass, the same performance test is used. 
Performance testing occurs mainly in the STE environment. 

Reliability Testing 

Testing for reliability aims to exercise the full functionality of an application so 
that defects are discovered and removed before the solution is deployed. Scenario 
tests will be run to validate the application results under normal conditions. 

Scalability Testing 

Scalability testing is an extension of performance testing and serves to identify 
major workload problems and eliminate potential bottlenecks in the application. In 
large business systems, it is difficult to predict the behavior of all components. To 
reach scalability goals, it is often necessary to optimize the program code (paral-
lelism), tune the operating system, and upgrade the hardware (multiprocessor 
machines, disks). 

Security Testing 

Security testing determines whether the system or component meets its specified 
security requirements. 

Stress Testing 

Stress testing is done to evaluate a system or component at or beyond the limits of 
its specified requirements. It is a specialized form of performance testing which 
the goal to crash the application. By increasing the processing load, performance 
degradation occurs in such a way that the application begins to fail due to a satura-
tion of resources or a freezing of the whole system. Stress testing helps to reveal 
rare bugs in extreme situations, defects which are the result of design flaws. 

Testing for Globalization and Localization 

Ensuring the worldwide implementation of an application is a three phase testing 
process: 

1. Globalization testing describes how globalization testing ensures the applica-
tion or solution can function in any culture/locale. The goal of globalization 
testing is to detect potential problems in application design that could inhibit 
globalization. It makes sure that the code can handle all international support 



64 3 Test Methods and Technology 

without breaking functionality that would cause either data loss or display 
problems. Globalization testing checks proper functionality of the product 
with any of the culture/locale settings using every type of international input 
possible. Proper functionality of the product assumes both a stable component 
that works according to design specification, regardless of international envi-
ronment settings or cultures/locales, and the correct representation of data. 

2. Localizability testing describes how localizability testing verifies that you can 
easily translate the user interface of the program to any target language with-
out reengineering or modifying code. Localizability testing catches bugs nor-
mally found during product localization, so localization is required to com-
plete the test. Localizability testing is essentially a hybrid of globalization 
testing and localization testing. 

3. Localization testing describes how localization testing checks the quality of 
a product’s localization for a particular target culture/locale. [Microsoft®] 

Usability Testing 

“Usability is the extent to which a product can be used by specified users to 
achieve specified goals with effectiveness, efficiency and satisfaction in a speci-
fied context of use.” [ISO 9241-11 (1998)] 

Usability testing evaluates how easy a system is to learn and to use by a end-
user population. A usable system helps the users to work efficiently and interac-
tively to complete predefined tasks with accuracy and completeness. Another 
criterion to evaluate the usability of a given software is efficiency which relates to 
the resources expended to achieve predefined goals. Finally, comfort is the subjec-
tive positive or discomfort – the negative attitude – that users express towards the 
use of the product. Usability testing can be carried out with or without the in-
volvement of users. 

3.3 Static Test Methods 

The multiple causes of flaws in software artefacts will be discussed later in detail 
in Chap. 7, but we can state at this point that a major factor leading to poor code 
quality is the lack of defect removal controls and insufficient root causes analysis. 
Defects are inherent to any software product because the vast majority of require-
ments have main errors at the very beginning of the software’s life cycle, which 
inject and propagate new defects along the software production chain. The basic 
error propagation chain is illustrated in Fig. 2.3. To reduce significantly the costs 
of the non-quality and improve the ROI, two methods should help to achieve these 
goals: 
1.  Inspections: to find potential defects earlier 
2.  Reviews: to reduce the number of defects injected. 

Reviews and inspections are static and manual test methods. 



3.3 Static Test Methods 65 

3.3.1 Inspections 

The process of inspection checks the required new functionality in conformance to 
the existing legacy environment (backward compatibility) and in agreement to the 
new software platform (lateral compatibility). Main aspects to be examined by the 
inspection process are: 

• Backward compatibility 
• Design conformance 
• Documentation 
• Lateral compatibility 
• Logic flow 
• Rare situations 
• Side-effects 

At an optimal inspection rate, the review team finds about 50% of the errors in 
a document. According to Tom and Kai Gilb, an inspection operates in the area of 
about 3% to about 88% (optimal checking). 

Is a Unit Test Better than Inspection? 

One can argue that a unit test is more efficient than inspection, but it has not been 
demonstrated until now. The combination of both will lead to better results. If 
inspections find too many defects, this is a clear signal that something is basically 
wrong with the management of the software production process in general, with 
the coding discipline or missing standards in particular. 

For more details about inspections, see [FAG76], [RUS91], and [RAD02]. Ron 
Radice was the team lead with Michael Fagan as the manager back in the 1970s 
when software inspections were first studied and published. He is also a senior 
lead assessor for the SEI for CMMI level 5 assessments in Bangalore, India. He 
has collected the best practices for the last 30 years and has presented them in a 
very clear, concise discourse. 

3.3.2 Reviews 

Most of the injected defects are removed in testing activities after code is com-
pleted, but the removal of defects is only partial and unpredictable side-effects are 
also injected which can generate even more defects as expected. Reviews are a 
way to remove the cause of major defects, but they do not prevent them from 
occurring. The review process is costly in terms of time spent and resources 
bound, and it is a slow process. A person can read a maximum of 50 pages per 
hour but a reviewer can only analyze thoroughly 1 page per hour! 



66 3 Test Methods and Technology 

The review process is an assessment about the predicted value of the product 
under construction. Expected results from the review are: 

• Qualified and quantified factual data about the product status 
• Recommendations from the review team about corrective measures 

Solutions to be worked out to correct the situation and improve the product are 
not part of the deliverables of the review. Some basic conditions must be fulfilled 
to make a successful review: 

• All parties involved are informed and invited to the review 
• Resources for the review are planned and available 
• The parties know the goals of the review 
• Rules for the review are accepted from all participants 
• Results and outcomes of the review will be documented 
• Solutions proposed to correct the problems will be tracked 
• The implementation of the corrective actions will also be checked and re-

corded. 

Figure 3.2 shows the different steps of a review with planned actions and ex-
pected results. 

As a quick help, we mention here the important points to remember about re-
view stages, roles involved, success factors, and benefits to expect from a review. 
A. Review stages 
1. Planning 

− Define review goals 
− Select test samples 
− Select participants 

2. Kick-off meeting 
3. Meeting preparation 
4. Review meeting 

− Findings 
− Corrective actions 

5.  Rework 
6.  Test specimen approved 
7.  Final document 

Planning Preparation Review meeting Rework

. Introduction

. Documents distribution

. Aspects allocation

. Artifacts to be reviewed

. Discussion

. Experts analyze
  all aspects of the artefacts
  to be reviewed
. Experts document
  critical points found

. Artifacts are reviewed

. Opinions are discussed

. Decisions are made

. Findings are documented

. Artifacts are released

. Rework if required

. Findings are
  revised
. Enhancements
  are made
. New documentation
  is released

 
Fig. 3.2 Steps of a software review 



3.3 Static Test Methods 67 

B. Roles involved 
• Author 
• Minute taker 
• Moderator 
• Reviewers 
• Analysts 
• Customers 
• Developers 
• Technical experts 
C. Success factors for a review 
• Invite the right participants 
• Plan enough time for the review 
• Avoid any criticism of the author 
• Give positive inputs and suggestions to the author 
• Gain management support for the review 
D. Benefits of a review 
• Early error detection 
• Cost-saving error detection and error correction 
• Clear description of facts and features 
• Dissemination of company’s know-how: 

− Rules 
− Methods 
− Standards 

• Help to build an efficient development team 
• Achieves good project results 
• Train and expand reviewers’ skills 

Types of Reviews 

Table 3.3 summarizes the different types of reviews. 

Table 3.3 Review types 

Formal reviews [IEEE 1028] Informal review 

Inspection Technical review Walkthrough 

Find errors and 
omissions 

Find errors and 
omissions 

Find errors and 
omissions 

Find errors 

Assess ability of 
the test artifact to 
fulfill specified 
requirements 

Know-How 
transfer Objectives 

 

Improve process 

Assess quality of 
the test artifact 

 

     



68 3 Test Methods and Technology 

Table 3.3 Continued 

Formal reviews [IEEE 1028] Informal review 

Inspection Technical review Walkthrough 

Explains test 
artifacts features Author’s  

role 
Initiator of the 
meeting 

Answers questions 
during the meeting 

Answers questions 
during the meeting Answers ques-

tions during the 
meeting 

Minimal work load Minimal work load High work load Low work load 

Test criteria not 
mandatory 

Assessors review 
test artifact accord-
ing to the review 
checklist 

Assessors review 
test artifact accord-
ing to the review 
checklist 

Test criteria not 
mandatory 

 Only use approved 
and released refer-
ence documents 
for the review 

Only use approved 
and released refer-
ence documents 
for the review 

 

 Findings are  
documented in 
written form 

Findings are  
documented in 
written form 

 

Preparation 

 Formal test criteria 
used for the review 

Presentation  

Review  
meeting Not mandatory 

Discuss findings  
to achieve mutual 
agreement 

Formal meeting in 
3 stages: presenta-
tion – discussion  
– decision 

Properties of the 
test artifact are 
presented in a 
sequential form 

3.3.3 Static Analysis (SA) 

SA is performed by special programs – static analyzers – that probe the structure 
and syntactical characteristics of (untested) software. SA tools are language de-
pendent. The input data to the static analyzers is the source code of the program(s) 
to be analyzed. SA is an activity taking place before running actual tests. Its pur-
pose is to expose structural and semantic defects of a software. An additional 
benefit of SA is detecting failure-prone constructs which are potential candidates 
to generate faults later on. Suspicious findings may be of help in locating faults 
responsible for failures found in load and stress tests. 

The payoff of SA is in the exposure of clear-cut defects which can reduce sig-
nificantly the time it takes to track down the cause of test failures. Moreover, some 
defects will be detected that will slip execution tests because they attack latent 
faults from a different angle. SA gives valuable information about hidden struc-
tures of a program. 

Other defects that compilers, link editors, global X-reference mappers and the 
like may ignore get caught by a static analyzer. Among them are: 



3.3 Static Test Methods 69 

• Unused variables 
• Modules interfaces mismatched in terms of the number and type of arguments 
• Inconsistent use of global data 
• Variables not initialized 
• Infinite loops 
• Code that cannot be executed 
• Mismatched parameter lists 
• Improperly nested loops 

Beyond wrong practices and defect detection, SA can provide valuable infor-
mation about: 

• Use, by count of specific types of source statements and number of variables 
• X-reference of operands and module entry points 
• Tabulated output of how data appear to be used 
• Graphic depiction of loop structures 

Defects found by SA are general in nature and can be removed faster than those 
found by actual tests. The basic reason for this is that testing activities reveal fail-
ures, not faults. Faults probed by SA have the potential for creating failures. 
Eliminating many of a program’s bugs can greatly reduce the time and resources 
consumed during the test phase on fault diagnosis. SA can be applied at both the 
module level and the program configuration item level. Don’t forget that a com-
piler is a good SA! It gives useful information about errors and generates, by de-
fault, a pre-processed source text, an object module, and a object listing with 
cross-references. Among many useful options, a compiler can deliver useful statis-
tical information about execution time and table sizing. In Sect. 6.3, a list of the 
leading commercial SA tools is provided. 

3.3.4 Design Verification (DV) 

By following a structured design verification procedure, you are able to: 

• Identify rarely exposed risks 
• Recognize possible future exposures 
• See overlooked conditions 

A structured and methodical approach in the design phase of a software product 
is essential because: 

• many trivial design defects are caused by overlooked conditions 
• unlikely situations or rare conditions become reality in highly interconnected 

computing solutions 

Conditions that where not possible with some initial software version may be 
induced by later modifications or enhancements of the software. 



70 3 Test Methods and Technology 

Design verification methods should be used during design, design reviews and 
design inspection. 

3.4 Ways to Test 

“A method is not wrong or false, but more or less useful.” 
Martin Fowlers (Analysis Patterns, 1997) 

A smart test strategy is not a stale document or plan, but rather a set of deci-
sions about what matters and how we can achieve the best results with the re-
sources allocated for our project. The test plan then actuates that strategy. 

Hand-crafted tests are outpaced by modern software increasing in size, com-
plexity number of distributed components, event-driven design and hardware 
capabilities. Powerful hardware, on the other hand, gives the capability to do more 
complete testing. The number of different execution states, multiple paths, concur-
rency problems, and good coverage of testing are main issues which can be rea-
sonably well addressed with modern methods and appropriate tools. The following 
table gives an overview of the methods available to test software. 

We examine in this chapter the characteristics of some of these, with emphasis 
on regression and SOA testing. 

Automated 
Black box 
Domain 
Exploratory 
Extended random regression 
Extended Regression 
Functional 
Load 
Model-based 
Performance 
Rapid 
Regression 
Risk-based 
Scenario 
Specification-based  
State-model based 
Stress 
User 
White box 

Testing 



3.4 Ways to Test 71 

3.4.1 Planned Testing (PT) 

PT is the method of choice for most software projects, in particular for the large 
ones requiring different testing environments to test different releases in different 
locations. The sequence of tasks is straightforward: 

1. Validate requirements 
2. Plan testing for all releases in each environment 
3. Design tests 
4. Build test suites 
5. Run tests 
6. Report incidents (ITC process) 
7. Analyze results 
8. Measure test progress 

3.4.2 Exploratory Testing (ET) 

ET is the opposite of planned testing because a software’s properties discovery is 
the primary goal. Situational analysis influences and drives the test activities di-
rectly. The sequence of tasks in ET can be summarized as: 

1. Investigate an area 
2. Develop tests on the fly 
3. Report incidents 
4. Determine where to test more later 
5. Adapt test planning if necessary 

ET requires from testers that they retest with the originally designed steps, but 
then vary the steps for each TC, looking for side-effects in the test results or an 
undocumented behavior of the object under test. A series of tests can show some-
thing unexpected that might be interesting to investigate in depth. Changing sce-
nario is also a good method to vary the TC’s context and thus discover significant 
defects. 

The ET and Unit Test for Java 

Time-to-market and agility are buzzwords in today’s business environment. How-
ever, similarities with the old IT world surface again: the increasing drag from 
existing Java code that is hard to maintain slows the completion of new functional-
ity. Worse, many Java systems – old or new – are too fragile and inflexible to 
enhance with confidence. Unit testing is a simple but effective idea that improves 
time-to-market, quality, and agility. Developers test their code as they write it, 
creating tests for each code unit (methods and classes, for Java). 



72 3 Test Methods and Technology 

A process called “software shaking” is the method used by new testing tools on 
the market to exercise Java code; each class is analyzed and tests are automatically 
generated to cover the behavior of the code. A high level of coverage is also 
achieved by automatically generating corresponding test data to the tests. 

By analyzing the behavior of the code at run time, useful observations can be 
made to correct and enhance the code accordingly. Using this technology, JUnit 
tests can be generated to verify the behavior of existing Java source code before 
any modifications occur; after-tests generated with the tool will act as markers to 
provide good traceability. 

Another advantage of this approach is to provide a more thorough set of regres-
sion tests than those created manually. 

Continuous integrated testing will then become a reality in your project, accel-
erating defect arrivals and enabling developers to react more quickly and effi-
ciently. Interactive exploratory testing on your Java code will thus enhance the 
confidence in the final product. 

3.4.3 Performance Testing (PT) 

PT is of critical importance to test the behavior of large and complex business 
applications. It will be done in the system test environment (STE) with the full 
volume of productive data. It validates the customer’s performance expectations 
and the correctness of the application’s architectural design and assumptions. 

PT requires a similar hardware and software configuration as used in the pro-
duction. Clear test objectives must be set to achieve one or more of the following 
goals: 

• Verify the scalability of the system 
• Verify the current system capacity 
• Identify system bottlenecks 
• Determine optimal system configuration 
• Verify a major system upgrade (e. g., DB software release) 

PT results should be carefully analyzed by specialists to avoid incorrect con-
clusions. 

3.4.4 Rapid Testing 

Minimal essential test strategy (METS) is a QA methodology using time manage-
ment skills in the quality assurance process for software testing, Web testing and 
other QA testing. It is greatly influenced by limited time in between the test cycle 
and the test releases. [Greg Paskal] 



3.4 Ways to Test 73 

This test method is focused on testing Web applications in a high-velocity envi-
ronment, focussing on the following aspects: 

1. Functional test metrics 

− Test 
− Category 
− Importance 
− Time required 
− Potential severity 
− Direct testing 
− Related testing 
− Regression testing 
− Classification 

2. Functional test grid 

− Category 
− Classification 

3. Physical test metrics 

− Test 
− Category 
− Importance 
− Time required 
− Potential severity 

4. Physical test grid 

− Category 
− Classification 

The METS Web site provides presentation material, and hands on worksheets 
covering functional and physical test metrics to be found in the Links section at 
the end of the book. 

3.4.5 Regression Testing (RT) 

RT is an expensive testing process used to revalidate software as it evolves during 
its life cycle. Any time an implementation is modified within a program, RT is 
needed. It can be achieved by rerunning existing tests against the modified code to 
determine whether the changes break anything that worked perfectly prior to 
change. Existing tests must also be amended or new one created. 

Various methodologies for improving RT processes have been explored, but 
the cost-effectiveness of these methodologies has been shown to vary with the 
characteristics of regression test suites. One such characteristic involves the way 
in which test inputs are integrated into TCs within a test set. 



74 3 Test Methods and Technology 

Fig. 3.3 RT diagram Regression Testing

Test cases
Test sets
Test scripts
Test results

 Testers

Test tools      Test
Repository

request
answer

results

artifacts management

Test Database

Updated application

Two factors regarding the test set composition influence the cost and benefits 
of this approach: test set granularity and test input grouping. Several studies show 
that test suite granularity significantly affects cost-benefit factors for the method-
ologies considered, while test input grouping has limited effects. Furthermore, the 
results expose essential tradeoffs affecting the relationship between test set design 
and RT cost-effectiveness, with several implications for practice. 

Depending on business and technical requirements, RT can be done on all func-
tions (retest-all RT), on selected functions or processes (selective RT) or based on 
priority (priority RT). 

The latter method will be used mainly to validate critical new software amend-
ments in the current release. In theory, a test run is successfully completed if all its 
requests produce the correct answers and the state of the database (outcome) is 
correct after the execution of the test run. However, checking the database state 
after each run can be very expensive and time consuming. In the banking industry, 
this requirement is a regulatory issue which has to be fulfilled in any case; there-
fore, modern TDS offer a special functionality to automatically track the RDB’s 
state after each test run and report anomalies accordingly. 

The Types of RT 

The types of RT are as follows: 
• Local: changes introduce new bugs. 
• Unmasked: changes unmask previously existing bugs. 
• Remote: Changing one part breaks another part of the program. For example, 

Module A writes to a database. Module B reads from the database. If changes 
to what Module A writes to the database breaks Module B, it is remote regres-
sion. 



3.4 Ways to Test 75 

Aspects of RT 

To test efficiently in regression mode, a test suite management (TSM) process has 
to be established and an integrated test platform (ITP) including test automation 
tools must also be available. These topics will be explained in Sects. 5.2 and 6.1, 
respectively. 

RT can be a challenge because: 
1. The test s TCs are difficult to reuse 
2. The test environment is not available 
3. The test data are difficult to build or to reuse 

RT Data Management 

A full-fledged test data management supported by a dedicated test data platform is 
required to identify, collect and build test data pools on demand. This will be dis-
cussed in Sect. 4.2.2. 

RT Artifacts Management 

A library of standard TCs and test scripts must be available for RT purposes. The 
maintenance and derivation of test runs and test databases can be expensive and 
time-consuming, if multiple instances of the test databases are used by different 
customers. Additionally, the test artifacts can be tested by different roles for the 
same application and on different hardware platforms. All of the RT’s artifacts 
must be archived (for auditability). 

RT Results 

Finally, the RT’s progress and results (test coverage rate/test success) shall be 
measured in a coherent way and documented accordingly to fulfil the regulatory 
requirements (Audit, SOX-404). Software producing financial results has to be RT 
capable, in any case. 

RT Benefits 

Automated RT facilitates performance benchmarking across operating systems 
and across different development versions of the same program. 



76 3 Test Methods and Technology 

3.4.6 Extended Random Regression Testing (ERRT) 

ERRT is a variation of a regression test, which consists of running standard tests 
from the test library in random order until the software under test fails. An impor-
tant point to remember: the software under test has already passed successfully 
those tests in this build! That means that those tests add no more coverage as stan-
dard regression tests. ERRT is useful for system-level tests or some very specific 
unit tests. Typical defects found with this method include: timing problems, mem-
ory corruption, stack corruption, and memory leaks. 

ERRT exposes problems that can’t be found with conventional test techniques. 
Troubleshooting such defects can be extremely difficult and very expensive; see 
also Sect. 7.3. 

3.4.7 Scenario Testing 

Scenario testing, like other testing methods, has limitations. Cem Kaner, Professor 
of Computer Sciences at Florida Tech., made a study about software testing sup-
ported by the National Science Foundation grant EIA-0113539 and by Rational 
Software. His opinion about scenario testing is expressed in the following terms: 

“I’ve seen three serious problems with scenario tests. One, other approaches are 
better for testing early, unstable code. The scenario test is complex, involving 
many features. If the first feature is broken, the rest of the test can’t be run. Once 
that feature is fixed, the next broken feature blocks the test. In some companies, 
complex tests tail and tail all through the project, exploring one or two new bugs 
at a time. The discovery of some bugs has been delayed a long time until scenario-
blocking bugs were cleared out of the way. To efficiently expose problems as soon 
as they appear, test each feature in isolation before testing scenarios. 

Two, scenario tests are not designed for coverage of the entire program. It takes 
exceptional care to cover all the features or requirements in a set of scenario tests. 
Covering all the program’s statements simply isn’t achieved this was. 

Finally, scenario tests are often heavily documented and used time and again. 
This seems efficient, given all the work it can take to create a good scenario. But 
scenario tests often expose design errors rather than coding errors. The second or 
third time around, you’ve learned what this test will teach you about the design. 

Scenarios are interesting for coding errors because they combine so many fea-
tures and so much data. However, there are so many interesting combinations to 
test that I think reusing makes more sense to try different variations of the scenario 
instead of the same old test. You’re less likely to find new bugs with combinations 
the program has already shown it can handle. 

Do RT with single-feature tests or unit tests, not scenarios. Scenario testing is 
not the only type of testing and should not be used exclusively. It works best for 
complex transactions or events, for studying end-to-end delivery of the benefits of 



3.4 Ways to Test 77 

the program, for exploring how the program will work in the hands of an experi-
enced user, and for developing more persuasive variations of bugs found using 
other approaches.” (Source: STQE magazine, September/October 2003) 

3.4.8 SOA Testing 

What is SOA? 

SOA is a new approach to build flexible applications with reusable components 
based on services. Services are relatively large, intrinsically unassociated units of 
functionality, which have no calls to each other embedded in them. Organizations 
are beginning to introduce SOA applications, typically as pilot projects. This book 
focuses on technology and methods used in large software projects which can be 
used, in fact, for smaller projects as well. We explain here the SOA basics. 

Relative to earlier attempts to promote software reuse via modularity of func-
tions, or by use of predefined groups of functions known as classes, SOA’s atomic 
level objects are 100 to 1,000 times larger, and are associated by an application 
designer or engineer using orchestration. In the process of orchestration, relatively 
large chunks of software functionality (services) are associated in a non-hierar-
chical arrangement (in contrast to a class’s hierarchies) by a software engineer, or 
process engineer, using a special software tool which contains an exhaustive list of 
all of the services, their characteristics, and a means to record the designer’s 
choices which the designer can manage and the software system can consume and 
use at runtime. 

Underlying and enabling all of this is metadata, which is sufficient to describe 
not only the characteristics of these services, but also the data that drives them. 
XML has been used extensively in SOA to create data which is wrapped in a 
nearly exhaustive description container. [Wikipedia] 

SOA is a collection of declared services that are independent and loosely cou-
pled, but controlled through policies. The services are self-describing, and they are 
assembled ad hoc to orchestrate business processes. SOA is an implementation 
process of having services that are shared among applications. The services used 
in SOA are not limited to Web services, but can include other technologies such as 
the distributed component object model (DCOM), and XML over remote method 
invocation (RMI). [HP] 

SOA allows enterprises to share common application services as well as infor-
mation. 

Positioning SOA 

Tightly-coupled systems define governance and control in the context of the appli-
cation. SOA is different, in the sense that the application context is varied and 



78 3 Test Methods and Technology 

ever-changing. This means that governance must be managed at a different level 
of abstraction – on the services themselves. 

Consequently, policies need to be taken out of the code and externalized as 
metadata associated with the services. Complicating matters is the fact that, in a 
loosely-coupled world, change is a constant. Loosely-coupled architectures poten-
tially involve hundreds of services, which evolve and change based on their own 
unique lifecycles. With all of this change happening at once, how can an IT or-
ganization identify and manage the potential impact and interdependencies of 
change? This is a key domain of SOA governance. (Source: Systinet) 

Considering SOA Properties 

Testing SOA applications in today’s IT landscape of large organizations is a 
daunting task because it addresses a distributed computing problem. SOA-based 
middleware applications are designed with inflexible man-machine interfaces 
which deliver messages designed primarily to conform to enterprise data architec-
ture, not to end-user needs. 

Developers and testers must be aware of the fact that Web services represent a 
shift away from traditional applications because those are loosely-coupled in na-
ture and possess specialized interfaces. Web services are working largely at the 
XML layer and are stateless, requiring interception of data on the fly. 

Testing and debugging distributed systems is far more complex compared to 
monolithic ERP or legacy solutions, and this is for many reasons: 
• A Web service does not have the context of who is logged in. 
• Web services are designed to contain all the fields that are needed to process 

business functions, without any dependence of predefined states. 
• These attributes are packed in the requesting message, creating a much larger 

set of permutations as those found in typical business applications designed 
with a conventional graphic user interface. To deal with this problem, a judi-
cious choice of the most important test scenarios must be made. 

• Before a message is passed to the business-logic processing part of a Web 
service, it must be checked for adherence to a complicated set of set rules. 
Finding the cause of contextual defects necessitates to know very well the 
rules applying. 

• Web services are low-level interfaces (APIs) into the business functions of the 
enterprise which must satisfy the requirements in terms of rigidity and pre-
dictability needed by other applications to interact with each other correctly. 

• Systems in large organizations interact with each other in a request-response 
mode, or synchronously, or in batch-mode; thus, middleware applications of-
fer asynchronous queuing-based interfaces to work with. These interfaces dif-
fer from universal standards offered by SOA-based Web services. 



3.4 Ways to Test 79 

How to Test SOA Applications 

If we refer to Fig. 4.6, we can identify the different technological layers interfac-
ing with each other in the network centric application architecture: 
1. The low-level hardware layer 
2. The operating system layer with backup and monitoring services 
3. The database layer with APIs 
4. The Web layer providing Web services (IBM’s WebSphere, in our example) 
5. The PC client with user interfaces 
6. The application layer with job control system and application interfaces 

In the SOA context, it is then necessary to learn how to isolate, check, and inte-
grate persistence and process layers, assuring that the functionality works at the 
service level. 

Application services can be shared in two ways: 
• by hosting them on a central server (middle tier) 
• by accessing them inter-application (Web services) 

To meet a rapidly changing business’ s requirements, the SOA paradigm should 
provide the ability to add application services by binding a common interface to as 
many as application services as required. A second aspect of SOA is to implement 
full flexibility to alter processes as the daily business requires or to have the ability 
to mix and match services to form a new solution very quickly. The SOA abstrac-
tion layer should be tested as a self-entity, regardless of changing application life-
cycles. This way, it can be verified that it continues to deliver expected functional-
ity and required performance over time to all enterprise solutions with high 
reliability. It is important to consider the vulnerabilities of shared services because 
these are developed and maintained by different service providers, which makes 
testing more difficult to coordinate. Therefore, IT needs to implement (or enhance) 
a centralized QA process defining precisely the quality objectives (with metrics) 
and the distributed tasks to manage and synchronized throughout the enterprise. 

Testing aspects in SOA deal with agility coupled with the guarantee that under-
lying data and services remain stable and valid at any time, as services evolve 
during their lifecycles. Services must be compliant to established standards so they 
can be tested by QA teams to validate their conformance to these. 

Compared to “standard” testing, new aspects must be taken into account with 
SOA as follows: 

1. Services profiling 

− Separate the services into single services and services clusters. Find 
common behavior patterns among the services, as well as services that 
are collaborating together. 

− Be aware that most services work in autonomy and clusters of services 
form the target solution to be tested. 



80 3 Test Methods and Technology 

2. Service integration testing (SIT) 

− This is a specialized integration testing on all service clusters. SIT is 
comparable to the conventional IIT but focuses on interfaces testing, test 
for aggregation, and end-to-end testing for all services. 

− Use cases should reflect the corresponding SOA test requirements. 
− Web services should be tested separately to check that there are no calls 

to native interfaces of platforms. A SOA service should be completely 
platform-independent. 

3. Testing for abstraction 

− Using abstraction is required to hide underlying technologies like proto-
cols, data access layers and other mechanisms. A dummy layer should be 
used to emulate a single level of abstraction. 

4. Testing asynchronously 

− SOA services are often not synchronized and testers must be able to test 
business processes out of sequence – when necessary – by using asyn-
chronous communication mechanisms. 

5. Performance and load testing 

− This is much like the traditional testing approach, with the only differ-
ence that an increasing load will be applied to each individual service, 
service clusters, network, and processing. 

− A test automation tool – like QTP from HP/Mercury – is the best choice 
to do the right job. 

6. SOA governance 

− Testing governance is a very important in SOA, as discussed previously. 
The runtime behavior of the SOA layer must be tested, to make sure that 
the dedicated SOA governance software is able to provide directory ser-
vices for SOA and enforce policies. 

− This testing campaign guarantees that the services are allocated to the 
right consumers and that no misuse of the services occurs. SOA relies on 
security software and procedures dealing with identity management. 

Finally, any individual services must be checked for autonomy, to determine if 
each service performs correctly on its own. The tests should be carried on includ-
ing any dependencies that might be present. HP introduced the concept of business 
process testing (BTO) based on reusable components for test design, which should 
drastically reduce test maintenance and improve test creation efficiency. Every 
business process is built from multiple services, and each of these services is a 
component within HP’s BTO framework. (Source: HP) 



3.4 Ways to Test 81 

SOA Governance 

The promise of SOA is powerful. But, what is apparent as organizations peel back 
the layers, is that SOA radically changes traditional IT architectures. While SOA 
promises untold opportunities, it also introduces new issues around IT governance. 
The reality is, without a governance strategy, SOA can lead to chaos. 

SOA introduces many independent and self-contained moving parts – com-
ponents which are reused widely across the enterprise and are a vital part of mis-
sion-critical business processes. What happens when a service is changed? How 
can you be sure the service you are consuming is of high quality? What happens if 
a subcomponent of a composite service is retired? How can you be sure a new 
service is compliant with IT, business, and regulatory policies? How can you en-
sure a predictable uptime of a service? These questions illustrate the need for SOA 
governance. SOA governance is about managing the quality, consistency, predict-
ability, change, and interdependencies of services. It’s about blending the flexibil-
ity of service orientation with the control of traditional IT architectures. (Source: 
Systinet) 

3.4.9 Recommendations 

RT in large projects deals with extensive test suites which must be developed, 
used, and maintained during long periods of time. A clear and realistic planning of 
RT activities must be integrated into the regular release planning. 

Test automation is a mandatory prerequisite to efficiently do RT; remember, 
however, that test automation is software development in essence and that it re-
quires skilled technical people, technical resources, and money. 

From the viewpoint of the automated test application, every aspect of the un-
derlying application is data. Therefore, test data management (see Sect. 4.2) is the 
central piece of the RT puzzle. 

Testers must be qualified professionals understanding the requirements, adopt 
and live with standards at the project and team levels. That means: standard nam-
ing conventions, common documentation rules, the same approach to error han-
dling, and precise reporting of defects in the central repository. 

Take care of your test environment (hardware and software) to ensure that it is 
in good shape and that test runs are repeatable and test results are credible. Last 
but not least: a disciplined approach to software development and testing always 
makes the difference. 



82 3 Test Methods and Technology 

3.5 Test Technology 

To test software efficiently and thoroughly, three subjects must be addressed and 
constantly put into balance: methods, processes and tools. A software solution is 
generally described, designed, and implemented using different models which 
have interdependencies with one another. Different model types are used during 
the project phases and for distinct purposes: 

• Completeness checking: required behavior vs. component representation 
• Consistency checking: meta-model vs. component representation 
• Validation: required behavior vs. observed behavior 
• Responsibility-based testing: observed behavior vs. component representation 
• Implementation-based testing: observed behaviour vs. component implemen-

tation 

All models belong to the solution life cycle (SLC) of a system or software 
component. The solution life cycle framework for software encompasses the fol-
lowing models: 

• The solution model 
• The requirement model 
• The component model 
• The data and service model 
• The deployment model 
• The source model 
• The test model 

These interconnected models form the SLC framework, as shown in Fig. 3.4. 

Requirement 
     Model

Solution
 Model

Component 
    Model

Models  Landscape

Data & Service
       Model

Deployment 
    Model

Source
 Model

     Test 
    Model

 

Fig. 3.4 Models in relation to testing 



3.5 Test Technology 83 

It is remarkable to see than no less than five models have relationships to the 
test model, a fact which underlines the central significance of testing. Therefore, it 
is not surprising that considerable efforts have been made in this field in recent 
years, resulting in innovative test methods and tools. For this reason, we examine 
in this chapter a powerful approach enabling to test objectively and to create 
automatically TCs with a good coverage. This method is named model-based 
testing (MBT). 

3.5.1 Model-Based Testing (MBT) 

What’s wrong with traditional software testing? Harry Robinson, from the Seman-
tic Platforms Test Group/Microsoft Corporation, writes: 

“Traditional software testing consists of the tester studying the software system 
and then writing and executing individual test scenarios that exercise the system. 
These scenarios are individually crafted and then can be executed either manually 
or by some form of capture/playback test tool. This method of creating and run-
ning tests faces at least two large challenges: 

First, these traditional tests will suffer badly from the “pesticide paradox” 
(Beizer, 1990) in which tests become less and less useful at catching bugs, because 
the bugs they were intended to catch have been caught and fixed. Second, hand-
crafted test scenarios are static and difficult to change, but the software under test 
is dynamically evolving as functions are added and changed. When new features 
change the appearance and behavior of the existing software, the tests must be 
modified to fit. If it is difficult to update the tests, it will be hard to justify the test 
maintenance costs. 

Model-based testing alleviates these challenges by generating tests from ex-
plicit descriptions of the application. It is easier, therefore, to generate and main-
tain useful, flexible tests.” 

A number of challenges make testing large (business and technical) information 
systems a difficult and risky endeavor which necessitates the following: 
• to keep the number of test combinations under control (combinatory explo-

sion) 
• to efficiently manage the functional changes over releases 
• to optimize the functional coverage 
• to create the most significant tests 
• to limit the tester’s subjectivity 
• to detect rare conditions. 

MBT is complementary to Model-Based Development (MBD). The term MBT 
is used for those software testing techniques in which test scenarios are derived 
from an executable, behavioral model of the software. According to [CDSS06], 
model-based tests consequently take up an intermediate position between functional 
tests on the one hand, in which the test scenarios are derived from the functional 
specification (only the interfaces of the object to be tested are to be considered 



84 3 Test Methods and Technology 

here), and the structural tests on the other hand, in which the structure of the object 
to be tested is considered. A model-based development process enables a tight inte-
gration of development and testing activities. A lot of the information contained in 
the behavioral model can be utilized for the automation of this testing process. Fur-
thermore, the early accessibility of an executable behavioral model enables most 
testing activities to be based on it and, therefore, to be started at early development 
stages. This method is a specific instance of black-box partition testing, partly using 
and improving ideas from the category partition method. [CDSS06] 

In MBD, the function model specifies not only the required functions, but the 
design and implementation aspects of these functions as well. The code can then 
be directly generated with a MBD tool available on the market. Many aspects of 
the MB technology can contribute to boost test efficiency, reduce development 
efforts, and enhance the software quality because: 
• The model is the test object 
• The model is the test basis 
• The model is the test oracle 
• The model is basis of test metrics 
• Simulation can be run based on the model 
• In-depth test coverage helps detect rare defects 
• MB software development is not bound to a specific model type 
• A model’s test scenarios can be reused for later development cycles 
• Back-to-back tests can be made on different variations of the test object 

Compared to traditional software development, MBD allows software creation 
to become an evolutionary model-driven process integrating specification, design 
and implementation. One major MBD’s benefit is to enable testing activities to 
start very early – as soon as the model stays – and during a much longer period of 
time as the sequential development method can permit. In fact, the model itself is 
a test artifact being continuously refined as tests progress. Figure 3.5 gives a com-
parison of model-based vs. traditional software development. 

Requirements Specification ImplementationDesign

Test

Requirements Modeling

Test

Traditional software development

Model-based software development

source:  TAE/Daimler Chrysler AG – Mirko Conrad/Ines Fey  

Fig. 3.5 Conventional and MBD compared 



3.5 Test Technology 85 

The MBT Technique 

As the main effort of today’s system development is shifting from the design and 
implementation phases to the system integration and testing phases, model-based 
techniques are best suited to reduce the workload in a significant way. Moreover, 
the test coverage can be greatly improved and optimized. 

MBT is a black box technique that offers many advantages over traditional 
testing: 

• Constructing the behavioral models can begin early in the development cycle. 
• Modelling exposes ambiguities in the specification and design of the software. 
• The model embodies behavioral information that can be re-used in future 

testing, even when the specifications change. 
• The model is easier to update than a suite of individual tests. 

The first step in MBT consists of building a model (e. g., a UML model) from 
the requirements and analysis artifacts. 

This UML model should include: 
• Class and object diagrams to define the initial state of the model. 
• State machines with OCL expressions, to express the intended behavior of the 

tested functions. 
• Business rules captured as OCL statements. 
• Data is represented as instantiated classes on an object diagram. 

The second step is the automatic generation of TCs from the test-oriented UML 
model using a MBT test generator available on the market (e. g., LTD from 
Leirios). 

The third step consists to translate the generated TCs into executable test scripts 
using some test framework (e. g., JUnit). 

The fourth step consists to run the JUnit generated test scripts. 
Finally, analyze the results and measure the coverage of the application code. 

MBT gives a systematic coverage for: 
• State machine transitions 
• Transition pairs 
• Partitions of variable domains 

TC Generation 

A TC is a sequence of invocations on the system under test (SUT). It is divided 
into four distinct parts: 
• A pre-amble: a sequence of operations to reach the state to test 
• A body: the invocation of the tested effect 
• The identification: invocation of read-only operation to improve the expected 

results, 
• Post-amble: return path to the initial state. 



86 3 Test Methods and Technology 

TCs are generated on the basis of cause-effect and boundary-test strategies. The 
test engineer controls the TC generation using model coverage criteria. Symbolic 
animation using constraint propagation helps to master scalability. 

Controlling the test generation process requires to take in account and to 
harmonize different aspects: modelling depth, representation technique, and test 
coverage. 

Modelling 

The model describes the functional behaviour of the SUT, Its abstraction level and 
scope depends of the test objectives. Complexity should be kept as low as possible 
and the level of detail of the diagrams should allow a good readability. UML  
models in industrial practice are often too abstract to derive test cases. Some 
widely used diagrams are class diagrams, sequence diagrams, state diagrams and 
object constraint language (OCL) annotations to provide useful information for 
TC generation. 

Technique 

Evaluation of the formal model is based on symbolic techniques (constraint logic 
programming). At each step of the symbolic animation, the constraint store repre-
sents a set of concrete states. 

Test coverage 

Model coverage criteria drives the test generation strategies which can be applied 
to multiple criteria as follows: 

1. Multiple conditions 

− All the decisions 
− All the decisions/conditions 
− All the modified decisions/conditions 
− All multiple conditions 

2. Data domain 

− Boundary values 
− Linked values 
− All values 

3. Transition 

− All transitions 
− All transition pairs 



3.5 Test Technology 87 

Test Generation Algorithm 

Five steps are necessary to generate a TC using the MBT methodology: 

• Step 1 – model partitioning: effect predicates 
• Step 2 – boundary computation: boundary goals 
• Step 3 – preamble computation; symbolic animation + best-first search 
• Step 4 – compute body and then identification: invoke tested effect predicates 

or pair of tested operations 
• Step 5 – postamble computation. 

Graph Transformations for MBT 

The classification tree method has been used successfully in various fields of ap-
plication at DaimlerChrysler. Commercial tool support is available with the classi-
fication tree editor (CTE). The classification tree method is an instance of partition 
testing where the input domain of the test object is split up under different aspects, 
usually corresponding to different input data sources. The different partitions, 
called classifications, are subdivided into (input data) equivalence classes. Finally, 
different combinations of input data classes are selected and arranged into test 
sequences. [CDSS06] 

Test Data Generation 

Test data specification is an essential part of the TCs and plays a central role in 
order to explore all aspects of the software under development. Paradoxically,  
no methodology is available today to generate test data automatically for large 
commercial systems. ETSI’s Technical Committee MTS (methods for testing and 
specification) has produced TTCN-3 (Testing and Test Control Notation Ver-
sion 3) which is a programming language specifically designed for testing and 
certification. 

TTCN-3 is a technology that applies to a variety of application domains and 
types of testing. This product will be enhanced in the future by using the classifi-
cation tree method, which allows the automatic data generation by categorizing 
test data in equivalence classes. The TT-Medal partner FOKUS has developed an 
Eclipse plug-in which enables the integration between TTCN-3 and the classifica-
tion tree editor (CTE). The idea of the CTE integration with TTCN-3 is to specify 
TTCN-3 test data as data partitions and visualizing these in a classification tree. 
Having the classification tree, the user let the CTE generate the test data automati-
cally. (Source: TT-Medal Consortium, http://www.tt-medal.org/) 



88 3 Test Methods and Technology 

Executable Test Script Computation 

The practical method to generate executable test scripts consists of: 

• Use a test script pattern and a relation mapping to relate the formal (abstract) 
model names and the implementation names 

• Use an observation table to link observation procedures with state variables 
• Automate the verdict assignment – test passed or failed 

(Source: Leirios.com http://www.leirios.com/) 

The MBT Process 

MBT as a macro process includes two sub-processes: the development process and 
the validation process, as shown in Fig. 3.6. 

Very good results can be achieved by combining both functional and structural 
test approaches on the model level. Figure 3.7 shows the MBT test strategy in use 
in the automotive industry (DaimlerChrysler AG). 

Implementation layerTest Model

Executable Scripts

implement use

Validation

adapted from Leirios 2006

MBT Tool

Test Cases
Generation

Use Case Model Analysis Model  Design Model  Implementation  Model

realize refine implement

refine use

Development  Process

Validation Process

 

Fig. 3.6 Model-Based Testing Process 



3.5 Test Technology 89 

Test basis Test design
technique

Test scenarios Test stimuli Test object System reactions

requirements

model

functional
test design

structural
test design

back-to-back

device

C-code

test model
test results

adapted from TAE/DaimlerChrysler AG – Mirko Conrad/Ines Fey 
Fig. 3.7 MBT test strategy 

Choosing the Best MBT Approach 

To understand the advantages of the various model-based testing approaches, 
these have been classified into a taxonomy by [UPL06], as shown in Fig. 3.8. 

According to [MUBL07], the MBT taxonomy includes seven dimensions clus-
tered into three groups, depending whether they affect the model, the test genera-
tion process, or the execution of the generated tests. 

MODEL

    Test
Generation

    Test
Execution

Online/Offline

Independence

Subject

Online/Offline

Technology

Manual
Random generation
Graph search algorithms
Model-checking
Symbolic execution
Theorem proving

Test selection
Cirteria

Structural model coverage
Data coverage
Requirements coverage
Test case specifications
Random and stochastic
Fault-based

Paradigm

Pre/Post
Transition-based
History-based
Functional
Operational
Stochastic
Data-flow

Characteristics
Deterministic/Nondeterministic
Timed/Untimed
Discrete/Hybrid/Continuous

Shared test and development model

Separate test model

Environment

Software under test (SUT)

Source: Mark Utting & Bruno Legeard/Practical Model-Based Testing, 2006 
Fig. 3.8 MBT taxonomy 



90 3 Test Methods and Technology 

The subject of the model is the SUT, its environment, or a combination of the 
two. In large systems it is often useful to use an environment model as well to 
direct the exploration fo the SUT model. 

The independence dimension reflects the source of the test model. If it is de-
signed directly from the informal requirements specifically for testing purposes, 
by a team that is independent of the SUT developers, then there will be a high 
degree of independence between the test model and the SUT implementation. This 
way, testing is more likely to discover significant errors. The characteristics of the 
model are related to the SUT to be tested. It is important to address the following 
aspects of this third dimension: 

• Is the SUT behavior deterministic or non-deterministic? 
• Does the SUT have real-time constraints to be tested? 
• Will the data in the TCs be discrete or continuous, or a mixture of both? 

The answers to these questions will determine the features of your test model, 
which in turn will influence the choice of a MBT tool. 

The model paradigm is the style of the model and the notation used to write it. 
Two of the most common paradigms for SUT models are transition-based and 
pre/post models. The transition-based notations are best for control-oriented appli-
cations, and the pre/post notations are best for data-intensive applications. 

The six test selection criteria found in the taxonomy chart should help selecting 
the MBT tool offering the maximum of features to generate the tests. The test 
generation technology is also something to consider, depending on your specific 
needs. Fourth MBT generators offer state-of-the art technology. Finally, the last 
dimension address the question of online or offline testing. Online testing is suit-
able for testing non-deterministic SUTs and for long-running test sessions. Offline 
testing can perform a deeper analysis of the model to generate a small but power-
ful test suite. It is best suited for regression tests. 

The Requirements Evolution 

In using manual testing or manual test design, the requirements of the system 
change over time and releases. A large amount of effort is often required to update 
or create new test sets to reflect the new requirements. 

With model-based testing, it suffices to update the model and then regenerate 
the tests. Since the model is usually much smaller than the test suite, it usually 
takes less time to update the model than it would to update all the tests. This re-
sults in a much faster response to changing requirements. 

Incremental Traceability 

Incremental requirements-tests traceability means that the model-based design tool 
can analyze the differences between the original requirements and the new (modi-
fied) requirements. 



3.5 Test Technology 91 

Model

T1: Init ; Op1:Op2 (xx,yy)

T2: Init ; Op3:Op1 (A) 

T3: Init ; Op1:Op2 (B,C)
Tn: ...................................

Tests

Requirements
REQS-MODEL TRACEABILITY

REQS-TESTS TRACEABILITY

MODEL-TESTS TRACEABILITY

Adapted from: Leirios – B. Legeard, 2007  

Fig. 3.9 MBT traceability 

Moreover, it can report: 

• which tests generated from the original requirements are no longer relevant 
• which tests are unaffected by the requirements changes 
• which tests relate to the newly added requirements. 

That is, after a change to the model, it can generate the new test set and parti-
tion all the tests into four groups: 

• deleted 
• unchanged 
• changed 
• added. 

If execution time is limited, it can be useful to rerun just the latter two groups 
of tests. [MUBL07] 

The Values of MBT 

Model-based testing implemented with state-of-the art tools can be considered a 
fourth generation test automation. Model checking can ensure properties, like 
consistency, are not violated. 

Starting from specifications, involve testers early in the development process 
and team testers with developers. This forces testability into product design and 
increase quality. Using MBT allows you to identify errors in requirements, such as 
inconsistencies, omissions, and contradictions. 

Major errors at the requirement stage are thus detected and costly software bugs 
are eliminated very early in the software life cycle. 

A major benefit of MBT is that the model is the test plan and it can be easily 
maintained and TCs generated only in incremental steps, which contributes to cost 



92 3 Test Methods and Technology 

savings. Using iterative requirements modeling with automated analysis produces 
a set of precise, consistent, and testable requirements. 

The high test coverage reached with the MBT technology increases testing 
thoroughness and zero test suite maintenance costs. Automated test suite execution 
reveals code and interface bugs early in the development cycle. 

Based on the experience obtained in test automation projects, it seems that 
merging computer-generated tests with manually written code is the most fruitful 
way to benefit from test generation. 

Summary 

Model-based development and testing also affects the organization. Development 
teams have reported significant cost and effort savings using this approach. Teams 
have found that requirement modeling takes no longer than traditional test plan-
ning, while reducing redundancy and building a reusable model library capturing 
the organization’s key intellectual assets. Organizations can see the benefits of 
using interface driven MBT that includes a design for testability to help stabilize 
the interfaces of the system early, while identifying component interfaces that 
support automated test driver generation that can be constructed once and reused 
across related tests [BlBuNa04]. 

In a large-scale testing with multiple locations, benefits can be significant be-
cause MBT technology offers the following advantages: 

• High test coverage 
• High flexibility 
• High leverage 
• Common test culture and habits 
• Integrated processes and tools 

Figure 3.10 shows the different levels of test automation with their expected 
advantages. 

Fig. 3.10 TA pyramid 

MBT

         Basic 
Test Automation

Manual Testing

High test coverage
High flexibility
High leverage

Medium test coverage
Medium flexibility
Low leverage

Low test coverage
No flexibility
No leverage

Methodology & Tool
       combined

Stand alone Tool

No TA Tool



3.5 Test Technology 93 

3.5.2 Model-Based Integration and Testing (MBI&T) 

To reduce the integration and test effort for high-tech multi-disciplinary systems, a 
new method called MBI&T has been developed by N.C.W.M. Braspenning. 

This method allows the integration of models of not yet realized components 
(e. g., mechanics, electronics, software) with available realizations of other com-
ponents. The combination of models and realizations is then used for early system 
analysis by means of validation, verification, and testing. The analysis enables the 
early detection and prevention of problems that would otherwise occur during real 
integration, resulting in a significant reduction of effort invested in the real inte-
gration and testing phases. [Br03] 

MBI&T Features and Benefits 

In this method, executable models of system components that are not yet physi-
cally realized or implemented in software, are integrated with available realiza-
tions and implementations of other components, establishing a model-based inte-
grated system. Such integration is used for early model-based systems analysis 
and integration testing, which has three main advantages: 

Firstly, the fact that it takes place earlier means that the integration and test ef-
fort is distributed over a wider time frame, which in turn reduces the effort to be 
invested during the real integration and testing phases. Secondly, it allows earlier 
(and thus cheaper) detection and prevention of problems that would otherwise 
occur during real integration, which also increases system quality at an earlier 
stage. Finally, the use of (formal) models enables the application of powerful 
(formal) model-based analysis techniques, like the simulation for performance 
analysis and verification for proving the correctness of a system model. [Br06] 

3.5.3 Model Checking 

In their paper entitled “A Holistic Approach to Test-Driven Model-checking,” 
Fevzi Belli and Baris Güldali have proposed an extension to the combination of 
formal and test methods. We take a look at their interesting proposal to better 
understand the model checking paradigm, an extract from the original publication 
[BeGü06]: 

“After the TC generation, a model checking step supports the manual test proc-
ess. Testing is the traditional and still most common validation method in the 
software industry. It entails the execution of the software system in the real envi-
ronment under operational conditions; thus, testing is directly applied to software 
under operational conditions. Testing is directly applied to software. 



94 3 Test Methods and Technology 

Therefore, it is user-centric because the user can observe the system in opera-
tion and justify to what extent the requirements have been met […] testing is not 
comprehensive in terms of the validated properties of the system under test, as it is 
mainly based on the intuition and experience of the TC’s designer. Testing will be 
carried out by TCs, i. e., ordered pairs of test inputs and test outputs. A test then 
represents the execution of the software under test (SUT) using the previously 
constructed TCs. If the outcome of the execution complies with the expected out-
put, the SUT succeeds the test, otherwise it fails. There is no justification, how-
ever, for any assessment on the correctness of the SUT based on the success (or 
failure) of a single test, because there can potentially be an infinite number of TCs, 
even for very simple programs. The holistic approach proposes to generate TCs to 
entirely cover the specification model and its complement. This helps also to 
clearly differentiate the correct system output from the faulty ones, as the TCs 
based on the specification are to succeed the test, and the ones based on the com-
plement of the specification are to fail. Thus, the approach elegantly handles a 
thought problem of testing (an Oracle problem) in an effective manner.” 

Two Faces of Modeling 

A model is always helpful when the complexity of the system under consideration 
exceeds a certain level. Therefore, it is necessary to focus on the relevant features 
of the system, i. e., to abstract it from unnecessary detail. During software devel-
opment, a model prescribes the desirable behavior as it should be, i. e., the func-
tionality of the system in compliance with the user requirements (specification 
model). For validation purposes, another model is needed that describes the ob-
served behaviour of the system (system model). 

Figure 3.11 depicts the different aspects and components of modeling. We as-
sume that the specification is correct and has been correctly transferred to the 
specification model MSpec. This will be symbolized by means of the symbol “ ”. 
The implemented system. however, might not be in compliance with the MSpec. 
Therefore, we put a question mark symbol “?” into the box that stands for the 
system; this means that the validity of the system must be checked. 

 
Fig. 3.11 Two faces of modeling 



3.5 Test Technology 95 

The present approach suggests arranging testing, based on MSpec as a method 
for the system validation. Furthermore, based on the system behavior observed by 
the user, a second model, MSyst, is constructed. As no proof of the correctness of 
the system has been yet performed, the correctness of the MSyst, is, as a result, 
also questionable. Therefore, MSpec is model checked, which is controlled by the 
generated TCs. MSpec can be represented by a finite state machine {SSpec, 
RSpec, sSpec0}, where: 
• SSpec is a finite state of states, 
• RSpec is a transition relation, 
• sSpec0 is an initial state. 

The testing approach in [Be01] proposes an additional, complementary view of 
the model MSpec which is used for generating additional TCs that are not based 
on the original specification. These new TCs represent the test inputs leading to 
situations that are undesirable, i. e., they transfer the system into a faulty state. 
This fact must also be taken into account by model checking. 

The conceptual simplicity of this very briefly sketched test process is appar-
ently the reason for its popularity. Model checking belongs to the most promising 
candidates for this marriage, because it exhaustively verifies the conformance of a 
specified system property (or a set of those properties) to the behavior of the SUT 
[BeGü06]. 

3.5.4 Test Automation 

Manual testing is labor-intensive, but in large and complex projects – where expert 
know-how is necessary to design, execute and analyze test results – this is often 
the best compromise. Hand-crafted testing is, therefore, expensive and subjective 
in nature because developers tend to test for expected behavior. Manually created 
test code is also static and needs to be updated every time the code or the test con-
stellation changes. Even when the test code does not change, classes used with the 
test artifact under test are evolving; this can become outdated over time. It kills the 
test. An other aspect of manual testing is that individual testing does not leverage 
the test of other testers involved in the project. 

Manual RT is also a challenge for many reasons: 
• Resource capacity in testing is limited, 
• Test execution is subject to quality variations from release to release, 
• Multiple iterations are necessary for major releases, 
• Business requires to run tests faster and more frequently, 
• Quality of RT is often inconsistent, 
• High costs 

RT efforts in international projects would not be able to keep up with the pace 
of development in large projects. Test automation (TA) is, therefore, an alternative 
to consider particularly if TDS have to be tested on a large scale. 



96 3 Test Methods and Technology 

Test Scripting 

Automating test execution requires a form of test scripts that can run without hu-
man intervention. These are programs developed in standard programming lan-
guages such as Visual Basic, C, C++, Java, Perl, or with specialized languages 
such as Tcl, Python, REstructured eXtended eXecutor (Rexx) or Ruleg. 

Modern test scripting tools provide libraries to support APIs to an ITP and 
hooks to a component or protocol interface (e. g., HTTP). 

The sequence of operations to run an automated test includes. 

1. Software initialization (target) 
2. Loop through a set of TCs 
3. For each TC: 

− initialize the target 
− initialize the output to a predefined value 
− set the input data 
− execute the code 
− capture and store the results 

Basic TA using scripting is the capture/playback (CP) technique, which is used 
to extensively test GUI applications. This technique still relies on people to design 
and write the TCs. In comparison to MBT (see the next chapter) CP has a limited 
scope and some shortcomings [BlBuNa04]: 

• When the system functionality changes, the CP session will need to be com-
pletely re-run to capture the new sequence of user interactions. The re-
capturing process is still manual and typically takes as long to perform each 
additional time as it did the first time. 

• CP tools are supposed to recognize GUI objects, even if the GUI layout has 
changed. However, this is not always the case, because the effective use of 
capture/playback tools often depends on the visibility of the GUI object, and 
naming conventions, and this requires support during the GUI design and im-
plementation phases 

• The appropriate selection of the object-recording mode versus the analog re-
cording mode, and the synchronization of the replay is vital to playback for RT. 

• Web sites are increasingly complex, and manually recording a sample set of 
testing scenarios with a CP tool can be very time-consuming. Due to the lim-
ited schedules, it is nearly impossible to record more than a few possible 
paths, and Web-site test coverage using capture/playback tools ends up being 
typically limited to a small portion of the Web site functionality. 

• More advanced CP tools often provide some level of abstraction when re-
cording user actions and increased portability of test scenarios (for instance, by 
recording general browser actions instead of mouse actions on specific screen 
coordinates), but changes in the structure of a Web site may prevent previously 
recorded test scenarios from being replayed, and hence may require re-
generating and re-recording a new set of test scenarios from scratch [BFG02]. 



3.5 Test Technology 97 

• Many of the capture/playback tools provide a scripting language, and it is 
possible for engineers to edit and maintain such scripts, but this does require 
the test engineer to have programming skills. 

Test Abstraction 

Testing can be automated using other approaches extending CP’s range: data-
driven, action-based, keyword-based (also named business testing), object-based, 
class-based, and model-based. All these approaches use an abstraction mechanism 
defined by the test designer higher than the underlying test scripts [BlBuNa04], as 
categorized in Table 3.4. 

Table 3.4 Abstraction mechanisms for test automation 

Category Abstraction mechanism Test development 

Word-based Actions mapped to scripts Application experts combine actions  
for testing often with data sets 

Window-based Display pages/windows 
mapped to input set and 
output 

Test scenarios combine windows  
and data sets 

Object-based Script functions mapped  
to application objects 

Test sequences on objects are developed 
by combining script functions 

Class-based Scripts mapped to actions 
performed against a class  
of objects 

Test sequences on objects are developed 
by combining script functions 

Model-based Generated TCs are translated 
in executable test scripts 

Tests are automatically generated from  
a UML model including class and object 
diagrams, state machines, and instantiated 
classes 

TA Requirements 

Very often, test automation is a jumpstart project, beginning with the introduction 
of a capture and playback tool which runs hundreds of scripts. During the mainte-
nance phase of the application, problems arise because changes in the functional-
ity and redesign of software components force you to adapt most of the existing 
scripts. The problem of resources bound to do the job and versioning of all test 
artifacts increases exponentially if the software has to be adapted and tested 
worldwide. TA in this case could be difficult to manage or become a nightmare. It 
is, therefore, absolutely mandatory to focus on areas of testing suitable for TA, 
because TA is basically software development. The same basic fundamental engi-
neering rules and best practices apply just as well to TA. It requires good plan-
ning, standardization, configuration management, documentation management, 
training, and the allocation of technical resources. TA is in essence software de-
velopment (for testing) which requires a dedicated framework. For all these rea-
sons, it represents a long-term investment. 



98 3 Test Methods and Technology 

TA Focus 

Automating testing is a challenge if the manual testing effort is inconsistent or 
unpredictable. The maturity of the test processes will matter when considering test 
automation. 

TA can start first with peripheral functions of a central application – GUIs or 
business monitoring tools – using standard TA tools or add-ons (e. g., WinRunner 
or QTP from Mercury). Central software components of a mission-critical solution 
will require a significant development effort to be TA-capable. In large commer-
cial systems, the central business logic and their components are the best candidate 
to test with TA. To achieve the most significant results in terms of quality and 
accuracy, my advice is to combine TA with one of the most powerful test meth-
odoogies available today, which is MBT. Coupling the right tools with the right 
test method will generate the best return on your investment in the long run. 

Test Qualification 

When should be a test automated? This is a difficult question if we consider the 
different elements which characterize a test artifact. The code under test (SUT) has 
always a bipolar structure: a feature code and a support code. In the literature, it is 
assumed that tests are written to exercise the feature code. Changes applied to the 
feature code can cause its behavior to react in an unexpected way, and this will be 
reported as a bug (not working as designed). The support code however, remains 
invisible to the person testing the product. It can be a user interface, memory man-
agement code, graphics node, network code, or a database link. As the SUT reacts 
with the test environment and with other software components, the behavior of the 
support code will become apparent: unexpected defects occur which are neither 
part of the TC nor expected in the actual test scenario in the given test environ-
ment. TA should help detect the changes made to the support code. In this case, 
we speak about task-driven testing or high-value tests. A good practice is to create 
a series of such tests to exercise the entire system from end-to-end and to make it 
part of the build process. Finally, to decide if a test should be automated, it is nec-
essary to analyze thoroughly the structure of the code under test. 

Candidates for Automation 

Tests suitable for TA include: 
• Tests that will run with each version of an application 
• Test that use multiple data values for the same application 
• Stress tests 
• Load tests 

Tests not suitable for TA include: 
• Tests that run only once 
• Tests to be run immediately 



3.5 Test Technology 99 

• Tests to run unplanned 
• Tests based on expert know-how 
• Tests with unpredictable results 

TA Benefits 

Large organizations report positive results after having introduced test automation: 
1. Delivery confidence 

− Higher software quality 
− Enhanced test coverage 
− Less support (first and second level) 
− Increased customer satisfaction 

2. Ease of use 
− Effective regression test management 
− Integration with TestDirector/Quality Center 

3. Enhanced process efficiency 
− Reduced execution time 
− Innovations 

4. Increased costs savings 
− Drastic reduction of regression test costs 
− High reuse of scripts without any changes 
− Minimized business interruption costs 

5. Scalability of the automation framework 
− Important point for global testing 

6. Technology 
− Improved productivity due to additional test cycles 
− Up-to-date know-how 
− SOX-compliant testing 

(Source: InfoSys) 

TA Costs 

One-time costs to establish test automation include: 

• Costs for additional hardware 
• Costs for startup licences (development and execution) 
• Costs of training staff on TA tools and processes 
• Consultancy costs 
• Staffing costs by initializing new processes 



100 3 Test Methods and Technology 

Recurrent costs include: 

• Licenses for TA tools 
• Maintenance costs for scripts and test artefacts 
• Maintenance costs for hardware and TA software 

The TA Framework 

The TA framework should provide good support to test engineers with minimal 
tool skill. An integrated test platform (e. g., TestDirector/Quality Center) is ideally 
suited to do the job, because tools and processes are fully supported in a common 
repository on the same technical platform. 

Moreover, all test artifacts and test results are fully documented and SOX-
compliant for all releases of a product. TA tools like WinRunner, Quick Tool 
Professional (QTP), and add-ons for MBT provide a powerful framework to 
automate functional testing. The application under test is driven by the TA tool 
which references GUI maps to recognize artifacts to be controlled. Keyword inter-
preter libraries can be used for greater productivity. To manage heterogeneous TA 
assets in integrated fashion, large organizations tend to set up an information bro-
ker infrastructure. Figure 3.12 shows the architecture of a TA framework. 

Integrated Test 
       Platform

Automation Engine

 Product
under test

Navigation Validation

Functions
  Library

    TA Library

Test Reporting

Simulation

System Library

    TCs
Database

 

Fig. 3.12 Test automation framework 

TA Tools 

Automating test software falls into one of several classes: 

• Model-based test tools 
• GUI and event-driven tools 
• Development test tools 
• Load testing tools. 



3.5 Test Technology 101 

Bug-detection software identifies defects that slip past compilers and debug-
gers. GUI testing tools exercise all objects and elements of screen-based applica-
tions and services. 

This kind of tools simulates hours of user activity by executing scripts written 
manually or automatically generated. The scripts must be stored in a standard TA 
library and must be versioned to satisfy audit requirements or to allow back-
tracking of past test campaigns in rare situations. GUI testing is very demanding 
because it happens in a client/server and distributed environment which is subject 
to permanent technical enhancements. 

A Web server stress tool can simulate thousands of users accessing a Web site 
via HTTP/HTTPS and independently click their way through a set of URLs re-
questing images, files, animations, etc. Each user is simulated by a separate thread 
with its own session information (i. e., cookies). 

Load testing tools permit network-centric and Web-based applications to be run 
under simulated conditions addressing stability, performance, and scalability is-
sues. Stress tests cover the network, client/server and the database software to 
evaluate response time and to find bottlenecks. In this context, all the software 
tested is as a unit (front-to-end). See Sect. 6.4 for a complete list of TA software 
available on the marketplace. 

Script Languages 

To create, maintain and run TA artifacts, a scripting language is needed. It should 
be, preferably, a market’s standard to ensure compatibility on many test platforms 
and to provide good support and appropriate training from the supplier. A script-
ing language has many advantages and some limitations. Table 3.5 gives a short 
overview about the benefits and disadvantages of a scripting language. 

Table 3.5 Benefits and disadvantages of a scripting language 

Benefits Disadvantages 

Is pre-installed Requires experienced programmers 
Has a simple structure Context shift for developers  
Is easy to learn Additional training costs 
Satisfies special requirements that are difficult  
or not possible to implement with standard tools 

Scripting is code development and requires 
permanently dedicated resources 

Is cheap Recurrent maintenance costs 
Is fast Script versioning is a problem 
Is very flexible Is not a panacea 

TA Platform 

Combining and harmonizing tools, processes, and methodology is the key for 
powerful and accurate testing. As we discussed earlier in Sect. 3.5, MBT is the 
method of choice to achieve a very good coverage of test requirements. MBT tools 



102 3 Test Methods and Technology 

(e. g., LTD from Leirios) can automatically generate tests with an unprecedented 
depth and accuracy. Working with TA tools combined with the ITP’s functionality 
– which we will examine later in Sect. 6.1 – can provide the best results in a recur-
rent manner. The world-leading ITP today is TestDirector™ for Quality Center 
from Mercury/HP, providing all we need to automate testing. Figure 3.13 shows 
the platform architecture for test automation. 

Regression Testing (RT) 

RT must ensure that faults have not been introduced or uncovered as a result of the 
changes made that a previously tested program version. For legacy applications 
and NSP solutions, there is simply no substitute for comprehensive regression 
tests to discover unintended impact. 

The most effective approach which I experienced in testing large systems, is to 
build a library of test assets made up of standard tests defined by business and 
technical experts. These standard TCs can be run every time a new version of a 
software component is built. 

Tests involving boundary conditions and timing belongs in the RT library as 
well. Tests that use multiple data values for the same operation (e. g., data-driven 
tests) are ideal candidates for RT. 

RT includes sanity tests which check basic functionality across an entire appli-
cation and should be run for major and minor releases, excluding hot fixes. The 
content of the RT library has to be reviewed periodically to eliminate redundant or 
out-dated TCs. The test engineers are also responsible for adapting the scripts to 
the test requirements of the current test campaign. 

To run regression tests in large information systems, a test automation frame-
work delivers the necessary testing power, allowing you to compare automatically 
standard results to those produced by the software under test. Diverging results 
will then be analyzed by technical experts and business specialists. 

RT Strategy 

Large business information systems include mostly new service-oriented solutions 
based on a Unix-J2EE-WebSphere architecture loosely-coupled with a kernel of 

Fig. 3.13 Test automation platform   TestDirector
          for
Quality Center  

MBT Tools

WinRunner      Quick Test
   Professional



3.5 Test Technology 103 

legacy and mission-critical components running on mainframes. Technical func-
tions (E2E) are tested first in the IIT environment. 

Business functions are then tested in the AIT and STE environments with stan-
dard TCs. RT testing in STE is a necessity if important new business functions – 

Evaluation of business functions in RT 

0%

20%

40%

60%

80%

100%

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

Business functions to be tested

B
u

si
n

es
s 

si
gn

if
ic

an
ce

 f
ac

to
r

very important 

important

 critical

Regression tests

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30 35

BF significance

B
us

in
es

s 
Fu

nc
tio

ns
 a

na
ly

ze
d 

 criticalimportantnormal very important 

 
Fig. 3.14 Strategy for evaluating business functions necessitating RT 



104 3 Test Methods and Technology 

with high risks – have been developed in a major release. This benchmarking 
approach qualify the results produced in STE with live operational data. Fig-
ure 3.14 shows a real-world example of a number of business functions with high 
significance. 

The next-generation approach to test automation is business process testing 
(BPT) which improves on technology known as “table-driven” or “keyword-
driven” testing. Keyword-driven testing allows plain English representation of TCs. 

Mercury Interactive introduced the concept of role-based testing allowing non-
technical subject matter experts (e. g., business roles in the competence centers) to 
define TCs without the need for scripting or programming. Subject matter experts 
define flows through a Web-based interface by declaring what steps to take and 
what test data to use. The software also automates the process of generating com-
pliance documents based on the tests performed, an important point for SOX-404 
reports. 

By deploying a test-framework approach to TA, QA engineers are focused on 
enabling automated testing assets. This system allows us to begin quality assur-
ance efforts earlier in the life cycle of the software product development. (Source: 
Mercury Interactive/HP) 

The TA Strategy 

The sequence of events conducting to a successful automation of some test activi-
ties can be described as a step-by-step approach: 

1. Define what you are going to automate, and analyze what the roles and re-
sponsibilities would be once you have applied automated processes. 

2. Focus your automation efforts first on critical business processes, complex 
applications, and the use cases that comprise them. 

3. Analyze the existing mix of Web-based and non-Web-based applications, and 
select the tools best capable of automating one type of application or the 
other. 

4. Considering what to automate and in what priority, you can see how that will 
impact current roles and responsibilities. 

5. Document how the work in your organization is currently divided up: 

− By function 
− By application 
− By business process 
− By strategic IT initiatives 
− By vendor and solution provider 

6. Compare your current organization with the workloads you’ll have with test 
automation. 

7. Identify how individual roles and responsibilities will change. 
8. Automating test activities requires new skills to be developed by the actors 

involved. The training needed for all roles should be worked out in close col-



3.5 Test Technology 105 

laboration with the vendor. It is recommended that he supervises and opti-
mizes the learning sessions as well. 

9. Manage the planned transition so smoothly as possible. One of the most im-
portant critical success factors the organization will face is to create a culture 
promoting problem-sharing and collaboration between individuals and teams. 
Emphasize the opportunities the change creates as opposed to the problems it 
solves – both for the business and for the IT organization. 

10. After training completion, implement the new automated processes inside the 
target applications. 

11. The new test requirements are then documented and the existing test plan for 
the selected software components can be adapted accordingly. An important 
document to mention is the release flash, which reflects all problems solved, 
changes implemented, and new functions included in the software package of 
the target release. A release flash should be published on a regular basis for 
each SWC to be tested. 

12. Regression tests can be run. 

Practical Advice 

TA can be a real challenge to promote, to implement, and to run. An effective TA 
initiative requires: 

• A full understanding and appreciation of the SW development process, which 
necessitates many iterations and permanent feedback between the three phases 
(specification – development – testing). 

• An understanding of testing as a strategic effort that generate added-value, 
costs reduction and valuable feedback to business about the product quality. 

• An understanding of the importance of a structured approach to TA based on 
a state-of-the-art methodology (e. g., MBT). 

• A powerful method for identifying your goals and forces opposing them  
inside the organization, which is called force field analysis (FFA). FFA is an 
assessment about test automation introduction (from a business and technical 
point of view) in a given organization, which should include the following  
aspects: 

− A. Forces supporting TA <arguments list> 
− A1. Strategy for amplifying support <arguments list> 
− B. Forces opposing TA <arguments list> 
− B1. Strategy for overcoming resistance <arguments list> 

It is therefore important to communicate clearly to stakeholders, that: 

• TA has a steep learning curve, 
• TA is a development effort, and 
• TA generates recurrent costs. 



106 3 Test Methods and Technology 

On the other side, TA can generate substantial added-value in the testing value 
chain by increasing or providing: 

• Efficiency (doing the same things better and faster) 

− Reducing costs 

• Effectiveness (doing better things) 

− Improving business results 
• Transformation (doing new things) 

− Creating value 
• Innovation 

How to Promote TA 

Be realistic and try to develop your discourse around two central themes: 

• Return on expectation (ROE)  
What people involved will earn from their efforts (increased motivation, new 
skills, better testing, …) 

• Return on investment (ROI)  
Hard facts and figures about increased efficiency in testing (time gains, risks 
under control, fewer defects, better test coverage, higher quality) 

A solely hard-ROI approach could lead stakeholders to consider trimming and 
compressing the test team. Generally speaking, assess the climate for the test 
automation initiative by sorting out the core motivations to form a set of conver-
gent aspects focused at those specific project’s challenges. 

Often, teams lack development background to start a test automation effort and 
training courses alone won’t be enough to build the required skills quickly. In this 
case, it is recommended to hire an external consultant to coach the team in its 
initial starting phase. 

Finally, explain that coupling advanced test methodologies and tools (e. g., 
MBT) allows you to address the whole life cycle of testing starting from the initial 
specifications and ending up with RT during the maintenance phase. This contrib-
utes to increase the process maturity of the whole organization, to gain a greater 
user’s satisfaction with better software and to reach a higher level of motivation 
for people collaborating in software projects. 



3.5 Test Technology 107 

Offshoring TA 

By outsourcing software development and testing to India or China, many compa-
nies today expect substantial cost and time savings. Bringing software to customer 
faster at reduced costs is an important business-driver; but if testing is outsourced 
the wrong way, it could be a risky endeavor paved with pitfalls and failed expecta-
tions. The Following factors can contribute to a successful off-shoring of test 
automation activities: 

• Work with a local provider if possible. 
• Make precise contracts specifying clearly deliverables, time frame, costs, 

level of expertise, duties, and other aspects. 
• Use common processes and tools. An ITP will offer the full functionality 

required for networked testing. 
• Establish clear communications protocols by determining meeting frequency. 

Set a standard agenda. 
• Establish a central test progress reporting. Agree on types, content and fre-

quency of reports. 
• Measure progress and performance using pre-defined indictors. Good indica-

tors will focus on output and timing. 
• Establish roles and responsibilities according to your company’s standards. 
• Establish a clear escalation process. 
• For training, use a “train the trainers” model if your product or project is com-

plex. This can speed up the overall training process and can also overcome 
cultural issues. 

 



109 P. Henry, The Testing Network, 
© Springer 2008 

Chapter 4  
The Test Domain 

4.1 Topology of the Test Domain 

The main objectives of IT today consist of improving the software quality by us-
ing component architecture and advanced testing methodologies and providing 
highly proactive, supported, monitored, and stable development and integration 
environments. The software factory model seems to be the most adequate strategy 
to achieve these goals. Implementing a lean, accelerated, highly integrated, guided 
and cost efficient solution life cycle process which targets a very high degree of 
automation will provide the flexibility to fulfill changing business needs more 
efficiently. It remains a vision compared to the daily reality. 

In large companies and organizations, many core business solutions are a com-
bination of new hardware and software platforms (new strategic platforms, or 
NSPs), legacy applications, integrated standard solutions (e. g., ERP, SAP) and 
commercial off-the-shelf software (COTS). Environmental factors, business pres-
sure and IT technology build the multi-layered test domain which we will examine 
closer in this chapter. 

The implications of a layered architecture: Business logic executes in an appli-
cation server that hides the underlying operating system and permits the applica-
tion itself to be distributed for fault tolerance and scalability. Now we are splitting 
the business logic into small-grained components, and separating out the sequenc-
ing of these components and the variable business rules into further discrete types 
of executable components. The reasons for doing this are sound: it is much sim-
pler to apply a change (or to replace) a small, autonomous component than it is to 
alter a huge monolithic expression of an organization’s requirements, and small 
components can be reused in many different circumstances, whereas a monolithic 
program can serve one purpose only. 

So, service-oriented architecture (SOA) is likely to become a long-lived 
movement in IT, and become the foundation for still further innovations. How-
ever, all of the earlier advances came with costs and catches, so we should expect 
the same of SOA. (Source: Butler Group Review, April 2007) 



110 4 The Test Domain 

4.1.1 Environmental Factors 

The number of factors influencing the testing world is quite high. The most sig-
nificant of them, in my opinion, are: business pressure, organizational influences, 
and technology. The problem for many organizations is that valued applications 
are written in legacy fourth generation languages. Skill shortages, increasing sup-
port costs, and inadequate platforms and incompatibilities with system-level up-
grades are exposing large companies to higher operational risks. Considering the 
cost of ownership of legacy software, re-engineering existing solutions can be 
very expensive, risky and time consuming. It is not the case to translate the “old” 
logic using conversion tools or compilers, because one major problem resides in 
the new IT environment, which integrates totally different architectures in com-
pletely new structures. Lack of interoperability between disparate systems, custom 
interfaces and a large dose of middleware creates a Web of intricate information 
pathways. 

The second major problem is to understand the business logic of the legacy soft-
ware. In the vast majority of organizations, legacy systems represent a significant 
element of the applications portfolio, running core business solutions where busi-
ness rules are concentrated. In the finance industry, sophisticated business proc-
esses underpin old applications which are mixed with modern business systems. 

4.1.2 Business Pressure on IT 

In 2006, the Gartner Group stated that IT organizations faces the challenge to 
deliver high added-value solutions to sustain existing business and enable en-
hanced business growth: 

“Until now, the IT organization has primarily proven its value by driving down 
costs via automation. However, most tasks that should be automated, already are. 
Soon, the returns available from projects will start to diminish. This and several  

Table 4.1 Business pressure on IT 

Business needs and priorities concerning IT – 2008 Rank 

Delivering solutions that enable business growth 01 
Improving the quality of IT service delivery 02 
Strengthen security of IT systems and applications 03 
Optimizing compliance processes (SOX – Basel II and others) 04 
Linking Business + IT strategies and plans 05 
Applying metrics to IT organizations and services 06 
Offshoring software development 07 
Improving business continuity readiness 08 
Outsourcing IT operations 09 
Demonstrating the business value of IT 10 



4.1 Topology of the Test Domain 111 

other key shape the world of work, and the missions of IT organizations change in 
response. Delivering projects that tops the priority list for ClOs in 2005, according 
to Gartner’s ranked 18th in 2004, and didn’t even make the list in 2003. Compa-
nies can only go so far in cutting costs. Driving new business and creating new 
competitive advantages remain the only enduring ways for enterprises to succeed.” 

The impact of the growing pressure on IT in the development and testing ac-
tivities is depicted in Table 4.1. 

4.1.3 IT Technology 

Complex distributed systems are particularly challenging to test because they are 
increasingly embedded in the business processes with highly interconnected com-
ponents and services interacting in unanticipated ways. The SOA paradigm is the 
response to deliver solutions faster and to keep IT costs down by reusing business  

PC client layer

OS

Hardware

FTS UISArchiving

Backup Monitoring FS Layout

DB/DB-APIs WebSphere Suite

Business solution

USIJCSTools
Application
modules

N
et

w
or

k 
co

m
po

ne
nt

s

 

Fig. 4.1 Network-centric application architecture (NCAA) 

Fig. 4.2 New transactional applications 2009
Concurrent Users

10         100      1,000      10,000

Closed-Source
       J2EE

     Other
(e.g., CICS)

     Other
(e.g., PL/SQL)

Open
    Source
          J2EE

Microsoft
Application
Platform

100%

 80%

 60%

 40%

 20%

Source: Gartner, Inc. “Java and .NET” by Mark Driver, 2007



112 4 The Test Domain 

components. The so-called “Complex network-centric systems” require a maxi-
mum availability of the network infrastructure and IT resources 24 hours a day 
and 365 days a year. High security and highest reliability of all components are a 
must. 

Transactional applications for very large systems (thousands of concurrent  
users) remain the exclusive domain of IBM’s CICS and J2EE technologies, as 
Fig. 4.2 shows. 

4.1.4 Mainframe as the Foundation of the IT Infrastructure 

Today’s mainframe operating systems support extensive multitasking and multi-
threading for high task parallelism with very low latency and fast task switching. 
They can handle huge files and address spaces and advanced server partitioning. 
Self-management, self-diagnosing, self-healing and self-optimizing are integral 
parts of mainframe computing. Automated management features include: 

• The allocation of resources, applications subsystems and partitions, 
• The tracking and handling of system alerts, 
• The hot allocation/deallocation of failed resources, 
• The usage, workload, performance and serviceability measurement, 
• Monitoring and capacity planning. 

With support for major open standards, languages and object programming 
models, mainframe operating systems can work with new applications, including 
Internet and Java-enabled applications. Interoperability technologies not only 
allow these applications to work with and exchange data with mainframe transac-
tional applications, but also let them run on the mainframe itself. With full support 
for SOA, Web services, J2EE, Linux, Unix, and open standards, IBM mainframe 
system platforms can be used to deploy and integrate a new generation of applica-
tions with existing applications and data. WebSphere Application Server for z/OS, 
WebSphere Portal and WebSphere MQ support Web services and J2EE 1.4 com-
patible technologies, as a SOA platform. CICS Transaction Server v.3.1 and CICS 
Transaction Gateway v.6.0 deliver application integration capabilities and per-
formance for users seeking to build flexible SOA while reusing core assets. IBM’s 
SOAP for CICS provides XML-based connectivity that lets CICS applications 
provide or request services independently of platform, environment, application 
language or programming model. (Source: Gartner Group) 

The software developed for large-scale business systems is generally deployed 
in a multitude of locations nation- or worldwide. I gained valuable experience in 
the deployment of those solutions running on mainframes and high-end Unix-
based SMP clusters using intercontinental network services. First of all, the IT 
architecture in large organizations is characterized by three distinct classes of 
operating systems, running on powerful hardware platforms. The diagram in 
Fig. 4.3 shows this hierarchy. 



4.1 Topology of the Test Domain 113 

Fig. 4.3 Hardware and OS  
infrastructure in large  
organizations 

The lower level of the IT architecture includes clusters of PC clients and mo-
bile computers running on Windows 2000/XP connected to peripheral devices for 
user groups (e. g., printers, scanners). The intermediate level is the UNIX platform 
and derivate OS, piloting intermediate servers for data, Web applications, messag-
ing and print. This is the critical link for day-to-day operations in all company’s 
branches. The highest level in the hierarchy is the mainframe platform based on 
z/OS (or equivalent OS), for mission-critical applications running on a 24x365 
basis with maximum availability (better than 99.9%). 



114 4 The Test Domain 

4.1.5 A Complex Network 

To connect all organizational entities inside and outside a company, a complex 
network must be maintained and permanently enhanced. To face countless secu-
rity threats in this network (e. g., Web attacks) specialized hardware (e. g., security 
routers) and software of all kinds have to be constantly adapted and tested. The 
following illustration shows a typical multi-tier branch network configuration: 

 

Fig. 4.4 Network architecture in large organizations 

Interaction of Components in the Network Infrastructure 

Internal networks in large companies offer a wide range of connections to internal 
IT resources for mobile users using devices like PDAs, cell phones and laptops 
featuring several interfaces (such as W-LAN, GSM/GPRS, UMTS, and Blue-
tooth). W-LAN is the most commonly network infrastructure deployed today. 

There are two types of W-LANs: 

• Infrastructure W-LANs where the wireless network is linked to a wired 
network 

• Independent W-LANs where the wireless network is connected to a wired 
network such as Ethernet, via access points, which possesses both Ethernet 
links and antennas to send signals. 



4.1 Topology of the Test Domain 115 

A device user agent (DUA) is located on each user device handling dynamic 
service access and managing end users’ preferences, device properties and specific 
application requirements. 

“Roaming services” for such devices require ubiquitous, context-aware, intelli-
gent, and interactive access to a diverse array of communication services. The 
interaction of components is implemented with various communication protocols 
part of a service broker architecture (SBA). 

Characteristics of Roaming 

Defining or characterizing the behavior of roaming stations involves two forms: 
• Seamless roaming 
• Nomadic roaming 

Seamless roaming is best analogized to a cellular phone call. This type of roam-
ing is deemed seamless, because the network application requires constant net-
work connectivity during the roaming process. 

Nomadic roaming is different from seamless roaming. Nomadic roaming is best 
described as the use of an 802.11-enabled laptop in an office environment. This 
type of roaming is deemed nomadic because the user is not using network services 
when he roams, but only when he reaches his destination. (Source: Cisco Systems 
Inc.) 

In the SBA framework, external and internal service brokers are synchronized 
by multi-threaded coordinator agents. 

W2K client
XP client

Windows Mobile cell phone

PDA

Registration server

Apache server
W2K/W2003 server

SECURE ZONE

Database Link
W2K/W2003 server

SQL server

SQL server
Electronic Mail platform
PIM server

EMail + PIM
connections

Messaging platform
W2K/W2003 server

    SMTP 
connections

End User

Gate Keeper

so
ur

ce
s:

 M
ic

ro
so

ft
 C

or
p.

, O
S 

Fo
un

da
tio

n

nomadic
devices

 

Fig. 4.5 Internal network architecture 



116 4 The Test Domain 

In a secure zone, a “gate keeper” server registers all service requests from users 
which are validated through authorization and security rules. Configuration serv-
ers accept a machine independent, abstract configuration request and interact with 
the network equipment through a secure channel. Network connectivity at any 
place and any time with adaptive and dynamic access to a variety of communica-
tion services, is support-intensive and requires rock-solid configuration and 
change management processes. From the user’s point of view, the accessibility to 
roaming services is invaluable to support all testing activities: managing, tracking 
and reporting any time, anywhere. Figure 4.5 is an example of internal network 
architecture. For more on network topology at Cisco Systems Inc., go to http:// 
www.cisco.com/. 

4.1.6 Multi-Tier Architecture 

The enterprise’s IT architecture is based on the client-server or n-tier model in 
which an application is executed by more than one distinct software agent. The 
multi-tier architecture is organized in 5 layers: 

• The Client tier 
• The Application tier 
• The Middle tier 
• The Enterprise tier 
• The Backend tier 

Embedded security and authentication software components manage access 
control with the highest granularity (up to elementary data element) in the differ-
ent layers. In major industries the access to IT systems and applications is only 
possible (physically and logically) via a smart card reader connected to the PC or 
to the laptop. The diagram in Fig. 4.6 illustrates the n-tier concept with strong 
user’s identification. 

On the software and data side, these high-demanding business solutions are 
characterized by: 

• Table-driven operations 
• Centralized business logic (CBL) 
• Very high data volumes: 

− millions of customers and contracts 
− many thousands of products 
− thousands of business rules 
− terabytes of live data 

• Huge relational databases on mainframes (DB2/ORACLE) 



4.1 Topology of the Test Domain 117 

   XP
Client 

     login
authorization

  Browser

front/end
      GUI

UNIX server

Presentation Component

Web server

Authentication

Mainframe

Front/End
Business
Components

Event Log

Meta
Data
Access

Target
Data
Access

Security
Connect

Security services

UNIX server

Client Tier Application Tier Enterprise Tier Backend Tier

Application services

Event recorder
       service

Security services

UNIX server

Middle Tier

UNIX server

Target  SWC1

Target  SWC2

Target  SWC3

Target  SWCn

Meta DBEvent DB

 

Fig. 4.6 Multi-tier software architecture 

4.1.7 Backward and Lateral Compatibility 

The coexistence of the legacy applications – embedded in totality or partially in 
the new architectures or still running in the original environment – poses a formi-
dable challenge to test these hybrid systems. For example, business systems from 
the new generation must both integrate the old logic encapsulated in the new func-
tions and also satisfy the requirements of the old data feeds in place. This aspect is 
called “backward compatibility.” Backward compatibility applies also to any piece 
of software which must be compatible to previous versions of itself. Lateral com-
patibility is the term used to describe the mutual compatibility of new business 
solutions implemented and running on new IT platforms exclusively. In the exam-
ples shown in Chap. 7, we refer to NSP (new strategic platform) as a generic term 
for the new IT platforms replacing legacy systems and applications. The diagram 
in Fig. 2.1 illustrates the compatibility challenge. 

4.1.8 Multi-Layered Test Domain 

These hybrid systems are composed of a multitude of heterogeneous hardware and 
software components, third party software mixed with in-house developed solu-



118 4 The Test Domain 

tions. The test domain can be seen as a cube composed of multiple technological 
levels on which business software components are built and integrated in a full 
interconnected network of dependencies and constraints. Incidents occur at the 
surface of the testing cube. Figure 4.7 illustrates this concept. 

The increasing complexity of today’s test scenarios for large IT systems re-
quires an open, flexible, and networked approach to the test processes. Traditional 
testing strategies are still largely based on complete and precise formal specifica-
tion which provide high quality, but lead to subjective hand-crafted test suites with 
limited test coverage. 

In this context, more advanced test concepts and methods – like MBT – can 
contribute to real advances in terms of test efficiency, test flexibility, better test 
coverage and enhanced product quality. 

4.1.9 SOA 

Oracle Corp. published a paper [Pur07] in May 2007, which reflects the SOA 
challenges: “Service-oriented architecture (SOA) provides a means of integrating 
disparate applications within an enterprise, improving reuse of application logic 
while eliminating duplication of production environments within an enterprise. An 
SOA avoids silos of environments, disconnected information within the enterprise 
that make it difficult to service customers, meet production demands, and manage 
large volumes of information.” 

Developing an SOA that guarantees service performance, scalable throughput, 
high availability, and reliability is both a critical imperative and a huge challenge 
for today’s large enterprises. The increasing rate of change in the modern business 
environment demands greater agility in an organization’s technology infrastruc-
ture, which has a direct impact on data management. SOA offers the promise of 

Technological level

Layers

Environmental factors

Test perimeter

Dependencies/Const ra in ts

Legacy/N ew  Stra teg ic  P la t form

Softw are under test
Software level

Organizational level

network

network

 
Fig. 4.7 Multilayered test domain 



4.1 Topology of the Test Domain 119 

less interdependence between projects and, thus, greater responsiveness to busi-
ness challenges. The SOA concept is promising but raises many questions: 

• How will data access services be affected by the increasing number of ser-
vices and applications that depend on them? 

• How can I ensure that my services don’t fail when underlying services fail? 
• What happens when the database server reaches full capacity? And how can I 

ensure the availability of reliable services even when the database becomes 
unavailable? 

It requires advanced capabilities to provide solutions offering high data avail-
ability and consistency, performance, reliability and scalability. They must also 
avoid “weak link” vulnerabilities that can sabotage SOA strategies. A data grid 
infrastructure, built with clustered caching, addresses these concerns. 

Structure of an SOA Environment 

In an SOA environment, there are several types of components to consider. In 
order of increasing consolidation, these can be grouped into data services, business 
services, and business processes. Data services provide consolidated access to 
data. Business services contain business logic for specific, well-defined tasks and 
perform business transactions via data services. Business processes coordinate 
multiple business services within the context of a workflow. 

Data within an SOA generally falls into one of two categories: 

• The conversational state – The conversational state is managed by business 
services and processes and corresponds to currently executing operations, 
processes, sessions, and workflows. 

• Persistent data – Persistent data is managed by data services and is usually 
stored in databases. 

Problems with the Consolidation of Data Services 

The value of data services lies in the consolidation that they offer, allowing cen-
tralized control of data without the proliferation of data silos throughout the enter-
prise. Unfortunately, this centralization also brings significant scalability and per-
formance challenges. Scalability issues arise when many business services depend 
on a single data service, overwhelming back-end data sources. Performance issues 
result directly from scalability limitations, because poorly scaling data services 
will become bottlenecks and requests to those services will queue. Performance is 
also influenced significantly by the granularity of an SOA data service, which 
often provides either too little or too much data. Data services built around a spe-
cific use case will provide too much data for simpler use cases, and more complex 
use cases will need more data, resulting in more service invocations. In either 



120 4 The Test Domain 

case, performance will be affected, and with application service level agreement 
(SLA) requirements moving toward response times measured in milliseconds, 
every data service request can represent a significant portion of the application 
response time. 

Reliability and availability in the SOA environment can be also compromised 
by complex workflows: as business services are integrated into increasingly com-
plex workflows, the added dependencies decrease availability. If a business proc-
ess depends on several services, the availability of the process is actually the 
product of the weaknesses of all the composed services. For example, if a business 
process depends on six services, each of which achieves 99 percent uptime, the 
business process itself will have a maximum of 94 percent uptime, meaning more 
than 500 hours of unplanned downtime each year. 

Using database servers is the traditional solution for scalable data services, but 
they cannot cost-effectively meet the throughput and latency requirements of 
modern large-scale SOA environments. Most in-memory solutions depend on 
compromises such as queued (asynchronous) updates, master/slave high-
availability (HA) solutions, and static partitioning to hide scalability issues, all at 
the cost of substantially reduced reliability and stability. 

Eliminating Single Points of Failure 

SOA introduces a set of new challenges to the continuous availability of complex 
systems, but the solutions for both service and system availability are well under-
stood and proven. Service availability requires the elimination of all single points 
of failure (SPOFs) within a given service and the insulation – to the maximum 
extent possible – against failures in the service’s natural dependencies. System 
availability requires similar insulation from the failure of services on which the 
system depends. Clustering is accepted as the standard approach to increasing 
availability, but in a traditional clustered architecture, adding servers to a cluster 
will decrease its reliability even as it increases its availability. Oracle offers a 
trusted in-memory data management technology called “Coherence” for ensuring 
reliability and high availability for Java-based service hosts, such as Java Plat-
form, Enterprise Edition (Java EE) application servers. It makes sharing and man-
aging data in a cluster as simple as on a single server. It accomplishes this by co-
ordinating updates to the data by using cluster-wide concurrency control, 
replicating and distributing data modifications across the cluster by using the 
highest-performing clustered protocol available, and delivering notifications of 
data modifications to any servers that request them. 

Oracle Coherence, which provides replicated and distributed (partitioned) data 
management and caching services on top of a reliable, highly scalable peer-to-peer 
clustering protocol, has no SPOFs. It automatically and transparently fails over 
and redistributes its clustered data management services when a server becomes 
inoperative or is disconnected from the network. When a new server is added or 
when a failed server is restarted, it automatically joins the cluster and Oracle Co-



4.2 Data and Time Aspects 121 

herence fails services back to it, transparently redistributing the cluster load. This 
technology includes network-level fault-tolerance features and transparent soft-
restart capabilities to enable servers to self-heal. 

A well-designed service can survive a machine failure without any impact on 
any of the service clients, because Oracle Coherence provides continuous service 
availability, even when servers die. Even a stateful service will survive server 
failure without any impact on the availability of the service, without any loss of 
data, and without missing any transactions. It provides a fully reliable in-memory 
data store for the service, transparently managing server faults, and making it 
unnecessary for the service logic to deal with complicated leasing and retry algo-
rithms. 

Conclusion 

SOA is now becoming the mainstream for enterprise applications. Support for the 
key standards JAX-WS, BPEL, WS-ReliableMessaging, WS-Addressing, SOAP 
with Attachments, MTOM, WS-Policy, UDDI, WS-Security, and SCA as essential 
building blocks is a necessary foundation for the next generation of successful 
applications. In fact, without a robust, standards based platform that is directly 
focused on interoperability, it is impossible to build new composite applications 
using services. 

4.2 Data and Time Aspects 

4.2.1 Master Data Management (MDM) 

Definition 

MDM is the consistent and uniform set of identifiers and extended attributes that 
describe the core entities of the enterprise and are used across multiple business 
processes. 

MDM is a workflow-driven process in which business units and IT departments 
collaborate, cleanse, publish, and protect common information assets that must be 
shared across the enterprise or the organization. MDM ensures the consistency, 
stewardship and accountability for the core information of the enterprise. (Source: 
Gartner Group, 2006) 

MDM is a very old problem in the IT world, but it has a new emphasis in a 
global and complex environment: high-quality data must be complete, timely, 
accurate consistent, relevant and reliable. 

It becomes a real big challenge for a large company to maintain consistency 
when shipping a software product to multiple business units operating throughout 



122 4 The Test Domain 

the world. Based on SOA technological capabilities, active business applications 
can have the data at the right time to support the interorganizational collaboration. 

SOA can address the where of information because it can get it to where you 
need it, and active data warehousing can address why the information is important 
and when it is needed. 

But Master Data Management (MDM) addresses both how and for whom, 
which are the two critical enablers for the alignment. MDM feeds the SOA the 
right information with the right semantics that come out of the active business 
applications. In this context MDM can make sure the data has semantic relevance 
to the parties, thus creating added values. 

Hard facts and figures are essential to making decisions in a high-performance 
business. Data is quickly becoming the lifeblood of an organization and a valuable 
enterprise asset. Ongoing research shows that in many companies, reliable infor-
mation still is not available when needed, especially at the point of customer inter-
action. Despite years of investment in IT, data is sometimes inaccessible, inaccu-
rate, incomplete, and insecure. (Source: Teradata Magazine, September 2007) 

To eliminate or reduce operational deficiencies, improved MDM is essential. 
Looking at the big picture, in Fig. 4.8, we can identify the key components form-
ing an enterprise-wide data management. Reaching the goal of high quality data 
“on demand” provides a competitive advantage, as a differentiator with customers 
and as an enabler of process change. High-quality data is the foundation of any 
warehouse and data-driven decision because it is complete, timely, accurate, con-
sistent, relevant, reliable, and secure. 

   Data  
Security

   Metadata
Management

 Master data
Management

  Data 
Quality

     Data  
integration

   Data  
Privacy

Data Governance

Data Stewardship

Data Modeling

Business Views

Source: Teradata Corp. 

Fig. 4.8 Data services 



4.2 Data and Time Aspects 123 

The main objective of the MDM process is to define, create, modify, integrate, 
and derive the most important enterprise data in a trusted way. These digital arti-
facts are called master data (MD) and represent the most valuable assets of a com-
pany or organisation. This core data uniquely describe parties (customers, vendors, 
suppliers, partners, employees), places (locations, geographies), and objects (prod-
ucts, services, contracts, accounts). 

Groupings of MD include organizational hierarchies, sales territories, product 
roll-ups, pricing lists, customer segmentations, and preferred suppliers. 

MD has basically a very long life cycle. It is captured, maintained and used 
across disparate systems and business processes on both sides of an organizational 
firewall (Forrester, 2006). 

MD alone provides little value. The added value is generated by anticipating 
how MD will be enriched, merged and consumed by applications or systems 
within the context of a business process. 

Typically, MDM systems are used as a feed into data warehousing systems to 
provide them with the correct data and logically correct dimensions for business 
intelligence needs. Nearly eighty percent of organizations have two or more data 
repositories. [IBM Corp.] 

4.2.2 Business Data Categorization 

Data stored and used in large business systems is divided in two main categories: 
basic data and business events. 

Basic data includes: 
• Metadata 

− Administrative metadata 
− Descriptive metadata 
− Preservation metadata 
− Use metadata 

• Static data 
− Tables of any kind 
− Commonly shared data 

• Business rules 
• Reference data 

− Customer data 
− Employee data 
− Partner data 
− Product data 
− Contract data 
− Regulatory data 
− Others 



124 4 The Test Domain 

Metadata 

Metadata is “data about data,” which consists of complex constructs that can be 
expensive to create and maintain. It can come from a variety of sources and con-
tinue to accrue during the life of an information object or system. It can be sup-
plied by a human person, created automatically by a computer, or inferred 
through a relationship to another resource such as a hyperlink. Metadata can be 
classified in three main groups: 

• Business information 
• Technical information 
• Governance information 

Administrative metadata is used in managing and administering information 
resources: 

• Acquisition information 
• Rights and reproduction tracking 
• Documentation of legal requirements 
• Location information 
• Selection criteria for processing 
• Version control and differentiation of information objects 
• Audit trails created by recordkeeping systems 

Descriptive metadata is used to describe or identify information resources: 

• Cataloguing records 
• Specialized indexes 
• Hyperlink relationships 
• Metadata for recordkeeping systems 

Preservation metadata are those related to the preservation management of in-
formation resources: 

• Documentation of physical condition of resources 
• Documentation of actions taken to preserve physical and digital versions of 

resources (e. g., data refreshing and migration) 
• Digitization of information 
• Tracking of system response times 
• Authentication and security data 

Use metadata is related to the level and type of use of information resources: 

• Exhibit records 
• Use and user tracking 
• Content re-use and multi-versioning information 

Metadata is important because it plays a critical role in documenting and main-
taining complex relationships to information objects in networked information 
systems, across multiple work spaces in distant geographical locations, or organi-



4.2 Data and Time Aspects 125 

zations. They also can document changing uses of systems and content, and that 
information can in turn feed back into systems development decisions. Metadata 
can manipulate information artifacts without compromising the integrity of those 
information objects. (Source: Burton Group, 2006) 

Reference Data 

Reference data is related to key entities that represent objects in data models. A 
reference data entity is referred to by other data entities that depend on the refer-
ence data for their definition. 

Business events are generated by operational applications, front & factory 
(F & F) systems in the finance industry (cash automates, teller machines) and core 
business solutions. 

Business events include: 

• Transactional data 
• Inventory data 

Transactional data is a data that records the state of a transaction or business ac-
tivity; it is generated as the beginning of a business flow and is deactivated and 
archived at the end of the business flow. Transactional data artifacts are always 
dependent on one or more reference data entities for their definitions. Inventory 
data describes an enterprise’s assets. 

Business data categories are depicted in Fig. 4.9. 
As we will discussed in the next chapter, test data must be extracted from op-

erational databases, (re)designed for new tests and stored in a test data pool for 
(re)use. Some tests require full synthetic data to be created from scratch. Test data 
management is a demanding task which require business expertise, technical 
knowhow, and experience. 

 

Fig. 4.9 Business data categories 



126 4 The Test Domain 

4.2.3 Business Data Growth 

The explosive growth of business data in recent years is driven by five factors, as 
reported by Bryan Huddleston [Hud05] from Quest Software, in a white paper 
published in 2005: 

• Improved instrumentation 
• Automated enterprise business processes 
• Individual productivity software 
• Analytics 
• Price/capacity of storage 

Due to business needs, improved instrumentation that captures digital, rather 
than analog data, has driven the growth of scientific, engineering, and production 
data. 

Automated enterprise business processes such as enterprise resource planning 
and customer relationship management have implemented systems to capture 
employee, customer, and financial data. More recently, regulatory mandates like 
Sarbanes-Oxley and HIPAA have moved into this space. In the future, it is quite 
possible that tracking/change management data could be greater than the actual 
data itself. 

Individual productivity software such as email and word processing are creat-
ing as much data as some ERP applications. Analytics are used to improve a com-
pany’s business process and outcomes. 

The price/capacity of storage has been and will continue to be the driver for this 
trend. The META Group indicates that like-for-like price/capacity storage will 
improve 35 percent per year. 

These are the business reasons for the growth of data. In a management capac-
ity, tying this information back to the business allows for companies to not use but 
rather advantageously exploit IT. In these cases, data and the ability to manipulate 
it is not only powerful, but also a competitive advantage in regulatory compliance, 
improved productivity and profit. As a conclusion: data growth is and will con-
tinue to be one of the continual challenges IT organizations face. (Source: Quest 
Software, February, 2005) 

4.2.4 Test Data Management (TDM) 

The Information Cycle 

All test data participates in its integrity to the enterprise’s information cycle. It 
means that this data must be aligned with the business reality in terms of accuracy 
(objectivity), timeliness, consistency, completeness, and precision of the informa-
tion. The information quality in IT systems is a function of the usability and trust-



4.2 Data and Time Aspects 127 

worthness of the data and metadata in use: the validity of the rules, the given val-
ues, and so on. The test data pools must also fulfil the regulatory requirements 
(SOX 404) including archiving periods. As depicted in Fig. 4.9, data used in large 
information systems covers a broad range of needs from routine record mainten-
ance up to building multidimensional data cubes for analytical processing. Files 
and databases are spread over the whole range of technical platforms covering: 

• Local database extracts on client PCs (W2K/XP) 
• Tactical data warehouses and data marts on UNIX servers 
• Strategic data warehouses and live operational data centers 
• z/OS mainframes 

A TDM process is therefore required to clearly identify, collect, extract, organ-
ize, and build accurate and actual test data pools early enough in the development 
cycle. Much of this data will be reused during the execution of automated and 
regression tests. A large volume of it, however, needs to be extracted periodically 
from the production data centers to feed the test database. 

The most challenging aspect of the TDM is to generate synthetic data, mainly 
for end-to-end integrations tests (IIT). This task requires experienced analysts with 
good knowledge of the business domains and appropriate modeling skills. 

In my opinion, TDM is an important topic, largely ignored in most of the books 
related to software testing issues. In the last decade, I was involved in cutting-edge 
IT renewal projects in large organizations. I experienced time and time again the 
difficulty that test managers had to collect and provide valuable test data “on 
schedule” for the different test environments: CT, CIT, IIT, MIT, UAT, and STE. 

z/OS

  XP
W2K

UNIX

Megabytes

Gigabytes

Terabytes

Database extracts
Local data marts
No archiving

Tactical DWHs
Group data marts
High availabilty
Backups/archiving

Strategic DWHs
Operational data
Highest availability 
Long-time archiving
Disaster/Recovery

T
E
S
T

D
A
T
A

Platforms            Requirements                   Data volumes

 
Fig. 4.10 Typical data requirements 



128 4 The Test Domain 

To achieve this objective, the best way is to build a small team of business ex-
perts and IT specialists which will work out a proposal to setup a dedicated test 
data platform (TDP). The team will have to analyze the requirements related to the 
following aspects: 

a. The test data needed for each test phase (synthetic and live data) 
b. The data volume needed for each test phase 
c. The specification of the TDP hardware architecture 
d. The specification of the TDP software architecture 
e. The data extraction process 
f. The code generation for the data extraction 
g. The definition of the conversion rules 
h. The data standardization and anonymization process 
i. The files delivery process 
j. Staging procedures 
k. The storage of the test data 
l. The archiving concept 

Test Data Requirements (TDRs) 

Test data requirements come from three distinct sources: 

• Operational test planning requirements 
• Business analysis requirements 
• IT analysis requirements 

Operational test planning includes the delivery plan which identifies the data 
feeds providing the operational (business) data, the test scenarios, the closing day 
information, and various calendar settings driving the central business logic. Busi-
ness transactions over multiple time zones is an important aspect discussed in 
Sect. 4.2.9. 

Test data requirements are specific to the test scenarios and for each test phase: 
development (CT/UT), integration (CIT/IIT), acceptance (AIT/UAT), and system 
tests (STE). 

Test Data Generation (TDG) 

From the requirements formulated in the TD requirements phase, the SQL code is 
written and the database query executed; the resulting database extracts must be 
converted adequately by a converter program applying predefined conversion 
rules stored in a table. The test data pool finally delivers all test data files required. 
The diagram in Fig. 4.11 depicts TDM including TDR and TDG. 



4.2 Data and Time Aspects 129 

 Test data requirements 

Closing day(s)
information

Calendar setting
  (time zones)

Test data requirements 

Delivery planTest scenario(s)

IT analysis
requirements

Use test data

DB query

    DB  extracts

Converter

   Test data files

Conversion rules
          table

SQL code 

BU analysis
requirements

Operational test planning

TD generation

Test data
     pool

Test data
     pool

 

Fig. 4.11 TDR and TDG 

Initial Load 

The initial process which provides the data for any test activities is called initial 
load. It should ensure repeatability, dependability, and time efficiency. 

The initial load includes six steps: 

• Extracting and unloading the data from the source system(s) 
• Converting data from existing format to a generic test format 
• Mapping the data fields as required 
• Importing the data into the target test environment 
• Performing data synchronization 
• Distributing the test data 



130 4 The Test Domain 

Data Reusability 

Accurate and up-to-date test data is of crucial importance to achieve coherent and 
representative results reflecting the actual quality of the software produced. To 
achieve this goal, the following aspects have to be considered: 

• Build data sets reflecting accurately the actual business data 
• Keep the data relevant and faithful to the operational data 
• Provide a refresh capability of the test data 
• Offer test data services to affordable costs 

An extract of the live data may suffice in some situations, but for large systems 
sheer size may make this approach prohibitive in terms of the hardware required 
(number of CPUs – memory size – disk storage), the length of test runs, and the 
difficulty of verification. In addition, the data must be replicated and adapted to 
create different test scenarios. After an accurate data representation has been cre-
ated, the first run in a given test environment could easily update or corrupt the 
data so that a data restore would be required before the next test could be started. 
An effective testing strategy will offer a means of automatically create a referen-
tially linked subset of the original test database that can be refreshed and amended 
with the minimum of effort. The baseline data in use must be in any case protected 
in a way that ensures it is not actually corrupted, no matter what happens to it 
during a test. This allows data simply to be reset after a test run, to a known and 
established status: the starting point will always be the same. 

Test Data Platform (TDP) 

The TDP is powered by a SQL server which provides – on demand – the test data 
required for all test environments to all people involved in analysis, development, 
and test activities. The TDP architecture shown in Fig. 4.12 gives maximum flexi-
bility, ease of use, and security. 

The software powering the TDP interfaces to popular test development soft-
ware via APIs. An open architecture provides native .NET, ActiveX, and COM 
programming interfaces. 

The data can be captured and organized from test systems around the world us-
ing secure protocols and appropriated IT technologies. Real-time Web access to 
test data cubes allows in-depth analysis (drill-down) of the test results and pro-
vides extended reporting capabilities. 



4.2 Data and Time Aspects 131 

ORACLE DB

     IT 
 analysts 

       IT
developers 

 Business
 analysts 

Archiving

Restore

Archive

Create synthetic data

Modify data

     IT
testers

Use test data

Extract business data

Build data cubes

Produce reports
analyze results

Apply data to test cases

Internet/Intranet

Store

Retrieve

SQL server

Apply data to test cases

IBM mainframe

Data center

Request 
host data

Receive
anonymized data

Test data
     pool

Secure  data
     storage

 

Fig. 4.12 Test data platform 

TDM and Data Framework 

TDM is a subset of the global business data management activities in an organiza-
tion or at company level. It interacts directly with the MDM process described in 
the previous chapter. Both processes – MDM and TDM – are embedded in the 
data framework context. 



132 4 The Test Domain 

   DATA

. created

. enriched

. consumed

Inbounds Outbounds        Master
Data Management 

   DATA

. appended

. consumed

. archived

         Test
Data Management 

import download

files delivery

cleansing/verification 

       integration

     transformation

     anonymization 
store

Staging Area

Test data 
    pools

 

Fig. 4.13 Data framework 

Recommendations 

One of the main objectives of TDM is to assure the reproducibility of the tests. 
This should be achieved in the following way: 

• Creating test data 
• Capturing live data with post-processing 
• Creating synthetic data selected through border value analysis 
• Creating synthetic data through application functions 
• Capturing or creating inventory data 
• Using a standardized set of inventory data aligned along business domains 
• Attaching a unique identifier to each set of test data 
• Putting test data under configuration control 
• Applying change control and base-lining procedures to test data 
• Linking test data with TCs and software versions 
• All test artifacts belonging to a given test environement should be identified 

with the ID and the version 

(Source: SQS) 



4.2 Data and Time Aspects 133 

4.2.5 Business Rules Management (BRM) 

Rules Creation 

Business entities define the rules to be applied by using an analytical process 
(rules discovery) and IT extracts rules from operational systems (rules mining) to 
understand pieces of logic to be retrofitted, enhanced, or removed. Once they have 
identified the rules, a standardization process takes place. A permanent expert 
committee composed of representatives of the business and technology domains is 
in charge of validating, maintaining and assessing the rules along their life cycle. 

Rules Deployment 

After being agreed upon, the rules can be deployed for production or test purposes. 
The close partnership of BU and IT to steer the business rules management proc-
ess was shown in Fig. 2.12. 

4.2.6 Business Data Lifecycle 

Data integrity and data quality are the fundamental requirements to be fulfilled by 
data along their lifecycle. Data quality concerns the accuracy, currency, and preci-
sion of specific data. 

Data integrity is related to how data maintains its conformity to rules and con-
straints over time. The management and control of data quality and integrity issues 
belongs to testing activities, too. The process in charge of this task is the TDM. As 
we discuss later in this chapter, side-effects caused by inaccurate or incomplete 
data can impact test results heavily. Bi-temporal problems can result in wrong or 
incomplete results and can be the cause of a symptom known as a time lag. Busi-
ness is the provider of live test data for the AIT and UAT test phases. IT is in 
charge of providing synthetic data required in the development, integration and 
technical phases: CT, CIT, IIT, and STE. 

The data supplied by operational systems or created for test purposes only must 
also conform to existing regulatory requirements and to new compliance stan-
dards. In the finance industry institutions, the Sarbanes-Oxley act (SOX), Basel II, 
and IFRS/IAS are the dominant themes. These initiatives require data to be col-
lected, analyzed, and collected in different formats and under different timescales. 
Much of the data needed for one regulatory regime may also be required for the 
other regimes. SOX places particular and specific needs for archiving: it means 
that test data and test results have to be archived and made accessible during many 
years. Therefore, business data has interrelated lifecycles which can be best illus-
trated in the following diagram: 



134 4 The Test Domain 

Test data life cycle

Business data life cycle

Long-term archiving

Full availability of test data + test artifacts   

SW releases
f
r
e
e
z
e

Product life cycle

7 years

> 10 years

1 year

Compliance  period 

Short-term
archiving 

 

Fig. 4.14 Business data life cycle 

A business data lifecycle include many time periods; each time period includes 
multiple test data generations covering multiple software releases and a defined 
archiving period. Compliance and regulatory issues demand that businesses im-
prove process transparency, and ensure that information published is entirely accu-
rate with a clear, demonstrable audit trail relating to the source of data and calcula-
tions performed on it. The test repository – like TestDirector from Mercury – is 
the place of choice to document the history of the test artifacts, including test data 
and test results. An archiving concept must address those requirements. 

4.2.7 Bi-Temporality 

Information systems are fed with information directly related to existing facts in 
the real world, but also about objects or references to new artifacts not existing at 
the present time. This is “referential” information about future states of the stored 
artifacts to be activated in the future, according to predefined rules or new one to 
be created. Basically, the system has the “awareness” of existing and virtual arti-
facts, but also takes into account environmental factors and rules influencing them 
yet and in the future. 

Bi-temporal data in a business context reflect the life cycle of customers, prod-
ucts, contracts, relationships between contractual partners, policies, and many 
more items. Here are some examples: 

• New financial products coming on the market in a predefined period of time. 
• New contracts for selected individuals. 



4.2 Data and Time Aspects 135 

• New organizational structures going live at <date> X, <country> Y, in dedi-
cated <locations> only. 

• New policies to be applied for all full-time employees, at <date> X in a given 
geographical <region>. 

• New <products> offering starting beginning of next quarter <date> and valid 
for some period of time <duration in weeks>. 

• Existing contract <terms and conditions> changing depending on customer’s 
<age>. 

• New contract <type> for some customer <category> available shortly at a 
given <date>. 

The bi-temporal approach enables information system users to: 

• Produce reports in a previous version of the system’s state. 
• Produce reports with content valid some time ago, as the system knew it and 

as the system knows it today, which may be different due to error corrections 
or data amendments. 

• Perform data aggregations to prepare reports according to hierarchical struc-
tures being valid today, in the future or in the past using different knowledge 
horizons. 

Bi-temporality is a very powerful feature to build data cubes in a multi-
dimensional data space allowing very precise analytic reporting (e. g., product and 
customer profitability, or P&L). 

What Characterizes Bi-Temporality? 

Time is naturally continuous, isomorphic to the real numbers. In a temporal data-
base, however, time is usually used as a discrete value. An instant is a time point 
on an underlying time axis. A time interval is the time between two instants. A bi-
temporal element is a finite union of two-dimensional time intervals. 

A bi-temporal database can be defined as a “continuum”: a designed, complete, 
and managed data space to store digital artifacts. Bi-temporal database design is a 
method of storing time-dependent data records to represent both the complete 
history of the facts and the sequence of changes in that history. 

This data space is delimited by two temporal axes: 

A. The system date 
B. The transaction date 

Commonly used terms for time information in IT systems are the “system date” 
and the “transaction date.” In fact, this definition is not accurate, because the 
transaction date is generated with the system time information of the computer’s 
clock as the write operation is performed. The “transaction date” is in fact a 
date + time stamp. This timing information is provided with the highest granularity 
(millisec.) to give a unique identification of any business transaction created. Time 
stamps are explained later in Sect. 4.2.6. 



136 4 The Test Domain 

Fig. 4.15 Bitemporal data space 

System date

Tr
an

sa
ct

io
n 

da
te

  C   O   N   T   I   N   U   U   M

complete
             designed
                          managed       

Temporality Aspects 

In a bi-temporal data space it is possible to derive facts using different rules at any 
given point in time producing constantly the same results. 

However, every derivation is calculated using business rules that refer to a spe-
cific static of transactional data in the time frame of interest. To generate reliable 
results over and over, the derivation process must refer to the same state of knowl-
edge in the bi-temporal database. A set of derived facts in a given time period can 
be considered as an event-bound object. 

This feature can be used to generate different versions of the same set of facts 
along the system’s time axis, e. g., for analytic purposes. To address the problem 
of the correct versioning of artifacts, every change made to an object in the rela-
tional database must be marked with a timestamp providing the necessary granu-
larity; see Sect. 4.2.9 for more details. Thus, to ensure overall data consistency in a 
bi-temporal system, it is mandatory to implement this concept consequently in all 
applications and software components. 

Bi-Temporal Data Domain 

The bi-temporal axis delimiting the bi-temporal domain mentioned before are also 
known as: 

A. The knowledge axis (from the system point of view) <known since> 
B. The validity axis (from a transaction point of view) <valid from>;<valid to> 

Fig. 4.16 Bi temporal data access Knowledge axis

Va
lid

ity
 a

xi
s  data artifact



4.2 Data and Time Aspects 137 

Fig. 4.17 Bitemporal data feeds 

Knowledge axis

Va
lid

ity
 a

xi
s

temporal feeds

atemporal feeds

knowledge datesknowledge dates

valid from dates
valid until dates

+

validity periods
(life cycle)

A bi-temporal data combines both the time period during which a fact is true 
with respect to the real world, and the time period during which a fact is stored in 
the database. The two time periods do not have to be identical for a single fact. 

Accessing and using data in the bi-temporal space requires the use of two data 
elements: validity and knowledge as seen before in the diagram. This enables you 
to build queries which refer to: 

• a reference point of the validity time axis where the fact(s) to be selected were 
valid, i. e., existed in reality 

• a reference point of the natural time axis, i. e., the system time axis, from 
where the storing system was aware of the fact(s). 

A bi-temporal relation contains both valid and transaction time, providing this 
way both temporal rollback and historical information. Temporal rollback is pro-
vided by the transaction time. Historical information can be derived from the valid 
time. 

Rules 

In a business domain using bi-temporal databases, users have to create and main-
tain appropriate rules which influence the life cycle of the data artifacts (calendar 
information) and the business logic to process these data. Rules are commonly 
stored in tables. Some of them are: 

• Calendars 
• Basic rules 
• Mapping rules 
• Error handling rules 
• Exception handling rules 

To achieve overall data consistency in the databases it is essential to implement 
a rules management process, as explained earlier in Sect. 2.5. 



138 4 The Test Domain 

4.2.8 Causality Violation 

Digital artifacts in a bi-temporal universe have to be stored with two elements: 

• The validity time period 
• The system’s awareness time. 

The right positioning of any item on the time axis in the digital world is manda-
tory to gather correctly the requested facts reflecting a given situation in the real 
world at a specific point in time. The simple example below shows geographical 
and time dependencies of a customer’s address in a bi-temporal data space. 

Therefore, any operation in the IT system modifying this particular content – 
only partially or in the wrong sequence – will cause inevitably a violation of the 
causality rule. Some situations may lead to causality violation because the system 
already knows about future states or interrelationships or dependencies between 
artifacts and reacts automatically to the new situation. In this case, to avoid wrong 
results, missing or corrupted data, the business logic applies default rules to erro-
neous transactions which are to be investigated by the business’s data owners for 
correction and further processing. 

Calendar information is stored outside the business logic and can be defined in 
various ways in the business applications of the solution domain. It is of critical 
importance to manage these tables in a controlled and well-documented manner 
using versioning. 

In large information systems, some business applications don’t require neces-
sarily real-time data updating. Transaction data are first collected and then proc-
essed later in batch at predefined intervals. In this case, a “time lag” – a bias error 
on the knowledge axis – can happen, causing causality problems (logical inconsis-
tencies) in the bi-temporal database. 

This problem arises most of the time in financial and accounting systems. 

System date_time

Va
lid

ity
  d

at
e_

tim
e

system knows at this time 

country A

country B

country C

“NULL”
address

old
address

actual
address

future address

attribute “address”

 
Fig. 4.18 Bitemporal data space example 



4.2 Data and Time Aspects 139 

A good practice is to create and maintain an error database tracking the ano-
malous records permanently. After verification by the business experts, an adjust-
ment function can be activated to reestablish the correct causality situation for all 
artifacts. 

Synchronization of technical processes is also a major source or problems in 
this context. Any update operation acting on stored artifacts in the system can 
generate erroneous validity information or state anomalies which must be cor-
rected as soon as detected. It is important to remember that automatic workflow 
processes might have modified the data based on invalid or inconsistent bi-
temporal dates. In this case,the wrong temporal information has to be set correctly 
and the faulty process chain(s) restarted to correct the situation. Modern applica-
tions should provide automatic mechanisms to check permanently the integrity of 
the bi-temporal database – before and after modification – of the content. 

4.2.9 Other Time Aspects 

The Calendar Function  

According to Oracle Corp., “one of the challenges organizations face today is 
trying to integrate communication and collaboration information across mission-
critical applications such as CRM, ERP, and other business systems. Increasingly, 
businesses are looking to Web services and a Services Oriented Architecture as a 
way to extend and customize applications, link heterogeneous environments, and 
offer services both within and outside their corporate firewall.” 

Most businesses in large companies today are global in nature and time man-
agement is the central piece of the IT puzzle. The calendar functionality provides 
time and location-based information to business solutions and processes for all 
enterprise applications via technical components. 

To properly manage data in a bi-temporal data space, the business calendar has 
to be synchronized with system calendars logically and technically. 

The software calendar function is composed of the following objects: 
• RDBM tables and synonyms 
• RDBM functions and procedures 
• Job control components 

At the application level the calendar does the following: 

1. Maintain processing date values: 

− Per period (period start date value, period end date value) 
− Per business function (Current, next, previous processing date value, cur-

rent business and technical closing date values) –  daily cycle (Next and 
previous business and technical closing date values) – monthly cycle 

− Per business function and period (closure dates for all data feeder sys-
tems) 



140 4 The Test Domain 

2. Maintain data integrity and knowledge reference date time values 
3. Maintain meta, static and reference data 
4. Record period statuses 

Null Future
 Entry

Open
  Permanently

  Closed Purged

Create
Period

Open
Period

Close
Period

Permanently
Close Period

Purge
Period

Re_Open
Period  

Fig. 4.19 Period status life cycle 

CDD Pool

CSD PoolMaintain CSD CSD PoolMaintain CMD

SelectUpdate
SelectUpdate

CSD Pool CMD Pool

CSD PoolCalculate CDD

SelectUpdate

CSD PoolMaintain CDD
Select

Update

Select

CSD PoolQuery CDD

 to business applications

SelectSelect

CDD: Calendar Dynamic Data

CSD: Calendar Static Data CMD: Calendar Meta Data

Select

 

Fig. 4.20 Calendar data management 



4.2 Data and Time Aspects 141 

Period Statuses 

The period status life cycle, as illustrated in Fig. 4.19, covers both actual periods 
in use and future periods defined in the calendar but not activated yet. The corre-
sponding status is: “Future_Entry.” 

Types of Calendar Data 

The calendar’s functionality manages, retrieves and stores: 

• CDD – Calendar Dynamic Data 
• CSD – Calendar Static Data 
• CMD – Calendar Meta Data 
• QCD – Query Calendar Data 

Figure 4.20 shows the data management architecture of the calendar function 
with the different data pools and their interrelationship. 

Time Zones 

The Calendar is a mission-critical software component enabling to process busi-
ness transactions across multiple time zones and distinct geographic areas. For 
each time zone, calendar tables are maintained separately and used by the central 
business logic. If required, a consolidation process can be initialized by the central 
business logic in accordance with the master calendar’s rules and data. An over-
view diagram is given in Fig. 4.21. 

C S D  P o o lCentral Business 
         Logic  

Software
Business
Components

 Master
Calendar

consoli-
dation

using

TIME ZONE 1
     tables

TIME ZONE 2
     tables

TIME ZONE 3
     tables

 

Fig. 4.21 Time zones 



142 4 The Test Domain 

Multi-Zone Data Transfer 

Synchronizing different time zones (TZs) to run a global application is of critical 
importance as well. In the following example, three TZs are defined, each of 8 
hours duration (a working day), corresponding to a distinct geographical area. We 
assume that our application runs in an international company that operates in 
Europe, the Middle East, and Africa (EMEA region). Therefore, it uses CET (Cen-
tral European Time) also called UTC + 1 time zone, 1 hour ahead of Coordinated 
Universal Time (CUT). From EMEA (Time Zone A) 3 closing day procedures can 
be defined, which activate automatically the data transfer to other regions or start 
specific transactions. These time-dependent procedures work sequentially: 

 A  B, B  C, C A as illustrated in Fig. 4.22. 

   Time
 Zone  A

   Time
 Zone  B

   Time
 Zone  C

16:00 CET

12
:0

0 
CET

8:00 CET20:00 CET

Data transfer
C -> A

Data transfer
B -> C

Da
ta

 tr
an

sfe
r

A 
->

 B

Multi-Zone Time-dependent Data Transfer

 

Fig. 4.22 Time zones and data 

Time Stamps 

For date time without local information a TIMESTAMP data type is used. 
TIMESTAMP WITH TIME ZONE is the data type needed for an application 

used across time zones. This is typically the case for a banking company with 
offices around the world. The time zone is stored as an offset from UTC or as a 
time zone region name.The data is available for display or calculations without 
additional processing. TIMESTAMP WITH LOCAL TIME ZONE stores the time 



4.3 Table-Driven Systems (TDS) 143 

stamp without time zone information. It normalizes the data to the database time 
zone every time the data is sent to and from a client. TIMESTAMP WITH 
LOCAL TIME ZONE data type is appropriate when the original time is of no 
interest, but the relative times of events are important. (Source: Oracle Corp.) 

4.3 Table-Driven Systems (TDS) 

Today’s network-centric solutions must be designed to face rapid changes of busi-
ness processes and rules, to allow maximum flexibility, and to reduce maintenance 
costs. 

These goals can be reached by separating program control variables and pa-
rameters (rules) from the program code and placing them in external tables. In the 
finance industry, the architecture of new strategic platforms – replacing the heri-
tage systems – is based on loosely coupled and TDS-driven applications connected 
to a Central Business Logic (CBL). The CBL handles huge amount of tables 
(thousands) of different kinds. 

“Tables and operations over tables are at the center of the relational model and 
have been at the core of the Structured Query Language (SQL) since its develop-
ment in the 1970s.” [IBM Corp.] 

4.3.1 Tabular Representation of Data 

The most natural way to represent data to a user is with a two-dimensional table. 
Any data representation can be reduced to a two-dimensional tabular form with 
some redundancy. 

Definitions 

Tables are concise, graphical representations of relationships which transform 
information of one kind into information of another kind. In information systems, 
the term “table” is a data structure consisting of a series of rows and columns. The 
number of columns in a given table is usually fixed, while the number of rows is 
variable. 

Most computable systems can readily be described by tables, and can be im-
plemented through the use of tables. [Data Kinetics] 

A table is a layout of data in columns. [Oracle® Corp.] 

Table Structure 

A table is referred to as a relation including attributes, keys, tuples, and domains. 
Figure 4.23 illustrates the table concept. 



144 4 The Test Domain 

11123   zzz z1 a99 b973 c445 88400

77553   zwz e1 a222 b3 pe5 null

2334   yz02 z43 a77 b7 c11 500000

176575   zzz z111 a109 b423 c385 45000

4435   wsz1 afgf3 a21      b321 c532  23000

A               B        C        D       E        F        G

attributes

relationprimary keys

tuple

domain

atomic value

unknown value 

 
Fig. 4.23 Table structure 

The tables must be set up in such a way that no information about the relation 
between data elements is lost. The tables have the following properties: 
1. Each entry in a table represents one data item; there are no repeating groups. 
2. Tables are column-homogeneous; that is, in any column, all items are of the 

same kind. 
3. Each column is assigned a distinct name. 
4. All rows are distinct; duplicate rows are not allowed. 
5. Both the rows and the columns can be viewed in any sequence at any time 

without affecting either the information content or the semantics of any func-
tion using the table. [James Martin, 1976] 

Replacing relationships between data with relationships in two-dimensional 
tabular form is a processed called normalization. 

Normalization 

Normalization can be achieved through decomposition or through synthesis. Sev-
eral problems can arise when normalizing a relation scheme by decomposition: 
• There can be an exponential number of keys for a relation scheme in terms of 

the size of the relation scheme and the governing set of FDs. 
• More relation schemes can be produced than really needed for 3NF. 
• Partial dependencies can be introduced into a relation scheme by decom-

postion. 
• A database scheme may be created on which the set of FDs involved is not 

enforceable. [Mai83] 

Keys 

A key of a relation r on relation scheme R is a subset K = {B1, B2, … Bm} of R 
with the following property: for any two distinct tuples t1 and t2 in r, there is a 



4.3 Table-Driven Systems (TDS) 145 

B ∈ K such that t1(B) ≠ t2(B). That is, no two tuples have the same value on all 
attributes in K. [Mai83] 

Tuples 

Each tuple must have a key with which it can be identified. The tuple may be 
identifiable by means of one attribute – in our example, attribute A. The key must 
have two properties: 

1. Unique identification in each tuple of a relation; the value of the key must 
uniquely identify that tuple. 

2. Non-redundancy. No attribute in the key can be discarded without destroying 
the property of unique identification. 

If more than one set of attributes in each tuple have these two properties, they 
are referred to as candidate keys. One of them must be the primary key which will 
in fact be used to identify the record. 

Functional dependency (FD) occurs when the values of a tuple on one set of at-
tributes uniquely determine the values on another set of attributes. 

Considering TDS from a technical point of view, program control data is de-
coupled from application logic and increased flexibility is gained by postponing 

Process
Control System

Process
Control Module

technical 
components

business
components

Application X
stream status
       tables

process status
       tablescommit table

exception table log table

application tables

return parameters return parameters

return 
parameters

application 
         calls

xCS

 
Fig. 4.24 Business and IT components interaction 



146 4 The Test Domain 

the time when control values and rules are bound to the technical processes they 
direct. Figure 4.24 shows the interaction of business and technical components of 
an application X in the TDS environment. 

xCS is a generic control system piloting the processing flow between business 
and technical components and the local application; at a higher level, application 
X is connected to a central business logic. 

4.3.2 Characteristics of Tables 

Tables located in a TDS contain all sets of attributes related to objects in the busi-
ness world (customers, contracts, products, prices, rules, calendars, …) and those 
used for technical purposes. Therefore data elements stored in tables are of two 
distinct types: 

1. Process-related data: This is information which pilots the process in specific 
circumstances, to set values for parameters which modify the behavior of a 
generic algorithm. These decision data are inherently a part of the technical 
process itself and impact directly the data to be processed. 

2. Data to be processed: This may be updated daily and require high volumes of 
retrievals between update cycles. This data is: business transaction data, cus-
tomer reference data, datamarts for analytic reporting, historical data, and 
other types of data. TDS table types include: 

− application tables 
− calendar tables 
− code translation tables 
− commit tables 
− decision tables 
− exception tables 
− log tables 
− process status tables 
− reference tables 
− specification tables 
− stream status tables 
− others 

4.3.3 Usage of Tables 

In the case of a reference table, one generic (parameterized) piece of logic in the 
program is tailored by values in a specific row of the table. In decision tables any 
collection of conditions may be transformed in a series of actions. Functional logic 



4.3 Table-Driven Systems (TDS) 147 

may be coded and linked together with selection logic in one module or, alterna-
tively, functional routines may be dynamically loaded at run time. 

The job control system monitors all the technical processes by examining pre-
defined values and event indicators to determine the state of each process at any 
given moment. Based on this state, one or more actions will be then performed. A 
table of predefined states – a control table – drives each individual process to its 
successful completion. 

At the program level, reference tables pilot the program logic in the same way. 
Performance and maintenance concerns should determine the manner in which 

particular classes of tables are implemented. As we will see in Sect. 7.5, software 
loses its original structure over time, and table driven design is intended to reduce 
the impact of change and to minimize costs along the product’s life cycle. 

Fig. 4.25 Control table in 
job processing 

     Access
control table

Control table

 xCS processing

 

Fig. 4.26 Reference table in job control

       Access
reference  table

Reference
    Table

set variable
     values

Technical
 Process  



148 4 The Test Domain 

4.3.4 Specification Tables 

Analysts produce frequently part of the specifications in form of tables which are 
the basis for the software development process. In other terms, if the programs are 
actually driven by physical equivalents of the specification tables, then subsequent 
modifications to the specifications should require updates to the physical tables 
and minimal enhancement to the programs. 

Specifications are also frequently formulated in the form of natural language 
pseudo code, but graphical representations have inherently better characteristics 
over corresponding pseudo code for this purpose. Searching through a normalized 
set of specifications to locate a particular rule is simpler and quicker: consistency 
and completeness of the rule base may be determined and completed easily. These 
characteristics have profound implications for the maintenance and the evolution 
of table-driven applications, because change requests can be distributed and ap-
plied independently, in parallel, across multiple tables. 

4.3.5 Transient Tables and Data 

Tables may be implemented as data structures resident in main memory, or they 
may be loaded at execution time, from external storage devices. In this case, the 
changes to table data are independent of changes to the program code. Other tables 
are often built during one processing sequence, then used in a subsequent pass to 
build intermediate results or to drive a process chain aiming at building data ag-
gregations. Once the process is completed, the transient data generated this way is 
not retained. 

Transient tables are also called “dynamic tables” because their entities exist 
only at query-execution time. A transition table contains the set of rows that were 
affected by the triggering statement, i. e., those rows that are being inserted, up-
dated, or deleted. The scope of a transition table is the whole trigger body, where 
it can be used as if it were a base or derived table. The challenges that these dy-
namic tables pose to existing relational engines lie in the linkage between the 
creation of the derived table and its references. Database processing is I/O inten-
sive, so that long instruction paths and wait times are required for accesses to 
indexes, data records, and log records. 

4.3.6 Relational Databases 

A database constructed using relations is named a Relational Data Base (RDB). 
The set of values of one data item is referred to as a domain. A relation consisting 
of 2 domains, i. e., 2 data item types, is referred to as a relation of degree 2 (or 
binary relation). If there are N domains, it is of degree N (also called N-ary). 



4.3 Table-Driven Systems (TDS) 149 

Different users of the same relational database will perceive different sets of 
data items and different relationships between them. Database operations on this 
data enables you to extract subset of the table columns for a given user population, 
creating tables of smaller degree, and to join tables together for other users. 
[Mai83] 

Relations 

One of the major advantages of the relational model is its uniformity. All data is 
viewed as being stored in tables, with each row in the table having the same 
format. 

Each row in the table summarizes some object or relationship in the real world. 
[Mai83] 

The Formalization of Relations 

Relations are supposed to abstract some portion of the real world, which implies 
that the digital artifacts in the database may change with time. We consider that 
relations are time-varying, so that tuples may be added, deleted, or changed. When 
dealing with a relation, we shall think of it as a sequence of relations in the sense 
already defined, or, in some cases, as potential sequences that the relation might 
follow, that is, possible states the relation may occupy. If restrictions exist on the 
state a relation may assume, they will depend on the current state of the relation. 
The restrictions are memory-less in essence. If we consider a bi-temporal data-
base, the current state of the artifacts depends on the actual date-time information 
which influences accordingly the artifact’s life cycle and the activation of rules for 
data processing. 

Dependencies in RDBs 

Testing relational database applications is not easy because in the data domain, 
two kinds of main dependencies can interfere together: FDs und MVDs. That 
means that, a set of functional dependencies (FDs) can imply multi-valued de-
pendencies (MVDs). 

Let r be a relation on scheme R and let W, X, Y, Z be subsets or R. The theory 
of relational databases describes the inference axioms for MVDs is as follows: 

 M1. Reflexivity 
 Relation r satisfies X →→ X. 
 
 M2. Augmentation 
 If r satisfies X →→ Y, then r satisfies X Z →→ Y. 



150 4 The Test Domain 

 M3. Additivity 
 If r satisfies X →→ Y and X →→ Z, then r satisfies X →→ Y Z. 
 
 M4. Projectivity 
 If r satisfies X →→ Y and X →→ Z, then r satisfies X →→ Y ∩ Z and   

X →→ Y ⎯ Z. 
 
 M5. Transitivity 
 If r satisfies X →→ Y and Y →→ Z, then r satisfies Y →→ Z ⎯ Y. 
 
 M6. Pseudotransitivity 
 If r satisfies X →→ Y and Y W →→ Z, then r satisfies X W →→ Z ⎯ (Y W). 
 
 M7. Complementation 
 If r satisfies X →→ Y and Z = R ⎯ (X Y), then r satisfies X →→ Z. 

Other implications arise when FDs and MVDs meet together. Let r be a relation 
on scheme R and let W, X, Y, Z be subsets or R. In this case there are only two 
valid axioms: 

 N1. Replication 
 If r satisfies X → Y, then r satisfies X →→ Y. 
 
 N2. Coalescence 
 If r satisfies X →→ Y and Z → W, where W ⊆ Y and Y ∩ Z = ∅,   

then r satisfies X → W. 

For more details about RDBs’ characteristics, see early works on this topic: 
[Maier79/80/81/83]. 

4.3.7 TDS Testing 

In-house expertise and control over table structures and processes is mandatory to 
efficiently manage the testing of table-driven systems in multiple environments. 
All table data should be validated for syntax errors and inconsistency at data entry 
time. Bi-temporal date constellations (known since, valid until) must be carefully 
checked to avoid noise in the test results or unnecessary “time lag” defects. 

A logic problem in TDS is often the result of an incorrect decision specification 
in a table. In this case, debugging the program will not help to find the cause of the 
defect. 

Table driven applications should include a trace capability for all test environ-
ments, providing log information about each table access. Table manipulations 
should be tightly controlled and assigned to a restricted number of individuals 
exercising a given role with the corresponding profile. To complement application 
specific trace function, standard table management tools may be used to provide 
more advanced capabilities. 



4.3 Table-Driven Systems (TDS) 151 

Removing control flow specifics from generalized logic in TDS allows you to 
create a good structured documentation a precondition for pin-point testing of high 
level control flows, independent of detail logic. At the detail level, individual 
paths can be selectively tested, through rule-specific logic. This may be accom-
plished by including or excluding, the rules which trigger those pathways. 

Tight control procedures must be established for testing updates to tables in all 
test environments, and the roles applying the changes must equally be distributed 
between business domain experts and IT testers. Synchronization of tasks shall 
also be monitored. Keeping bi-temporal databases accurate and up-to-date necessi-
tates good data maintenance procedures. 

Tablespaces 

In today’s business systems tables are implemented in relational database struc-
tures and managed by a Relational Database Management System (RDBMS): 
IBM’s DB2, Oracle, Teradata. Database tables are typically very large data objects 
with relatively low volume access patterns and they generally have very long 
retention periods. Special database structures and features – like tablespaces – 
allow you to manage efficiently high volume of data collections between different 
platforms and various environments. 

Oracle stores data logically in tablespaces and physically in datafiles associated 
with the corresponding tablespace. Figure 4.27 illustrates this relationship. 

Databases, tablespaces, and datafiles are closely related, but they have impor-
tant differences exposed in “Oracle9 i Database Concepts Rel. 2 (9.2)”: 

• An Oracle database consists of one or more logical storage units called ta-
blespaces, which collectively store all of the database’ data. 

• Each tablespace in an Oracle database consists of one or more files called 
datafiles, which are physical structures that conform to the operating system 
in which Oracle is running. 

Fig. 4.27 Tablespaces  
(one or more datafiles) 

Table

Index

Index

IndexIndex

Index

Table

Index

Index

Index

Table

Index

Index

Datafiles
(physical structures associated
with only one tablespace)

Objects
(stored in tablespaces –
may span several datafiles)

Tablespace (one or more datafiles)

So
ur

ce
: O

ra
cle

9i 
/ P

ar
t N

um
be

r A
96

52
4-

01



152 4 The Test Domain 

• A database’s data is collectively stored in the datafiles that constitute each 
tablespace of the database. For example, the simplest Oracle database would 
have one tablespace and one datafile. Another database can have three ta-
blespaces, each consisting of two datafiles (for a total of six datafiles). 

Transport of Tablespaces between Databases 

A transportable tablespace (TTS) lets you move a subset of an Oracle database 
from one Oracle database to another, even across different platforms. You can 
clone a tablespace and plug it into another database, copying the tablespace be-
tween databases, or you can unplug a tablespace from one Oracle database and 
plug it into another Oracle database, moving the tablespace between databases on 
the same platform. 

Moving data by transporting tablespaces can be orders of magnitude faster than 
either export/import or unload/load of the same data, because transporting a ta-
blespace involves only copying datafiles and integrating the tablespace metadata. 
When you transport tablespaces you can also move index data, so you do not have 
to rebuild the indexes after importing or loading the table data. 

You can transport tablespaces across platforms. This can be used for the fol-
lowing: 

• Provide an easier and more efficient means for content providers to publish 
structured data and distribute it to customers running Oracle on a different 
platform. 

• Simplify the distribution of data from a data warehouse environment to data-
marts which are often running on smaller platforms. 

• Enable the sharing of read-only tablespaces across a heterogeneous cluster. 
• Allow a database to be migrated from one platform to another. 

(Source: Oracle Corp./DBA’s Guide) 
TTS is a powerful feature extensively used in Oracle-based applications which 

need to be tested mostly in IIT, AIT, and STE environments. 

4.4 Critical Technical Parameters 

4.4.1 Definition 

A parameter is a variable that can be assigned a value from outside the test in 
which it is defined. Parameters provide flexibility by allowing each calling test to 
dynamically change their values. 

Critical technical parameters (CTPs) are technical capabilities or characteristics 
that outline minimum baseline telecommunications, hardware, and software re-
quirements. CTPs are broad, generic statements derived from a review of a refer-



4.4 Critical Technical Parameters 153 

ence system documentation; they do not replace lower level technical require-
ments defined in other system segment specification requirements documentation. 
Failure to achieve CTPs would render the system unresponsive to a user’s needs. 
Additional CTPs may then be added depending on program scope. 

The procedure to define a set of core (non-system specific) CTPs includes five 
steps: 

1. List in a matrix format, the CTPs of the system (including software maturity 
and performance measures) that have been evaluated or will be evaluated dur-
ing the remaining phases of developmental testing. CTPs are derived from a 
reference document named the operational requirements document (ORD). 

2. Next to each technical parameter, list the accompanying objectives and 
thresholds. 

3. Highlight CTPs that must be demonstrated before entering the next integra-
tion or operational test phase. Ensure that the actual values that have been 
demonstrated to date are included. 

4. Compatibility, interoperability, and integration issues critical to the opera-
tional effectiveness of suitability of the system must be addressed and verified 
with end users. This will ensure that measures of effectiveness (MOEs) and 
measures of performance (MOPs) will be adequately stated and calibrated 
correctly. 

5. Evaluation criteria and data requirements for each interoperability-related 
MOE/MOP must be clearly defined. 

4.4.2 Examples of CTPs 

• CTP1: The system must facilitate the preparation of financial statements and 
other financial reports in accordance with federal accounting and reporting 
standards and applicable statutory and regulatory requirements. 

• CTP2: The system must provide and/or collect accurate, complete, reliable, 
and consistent information. 

• CTP3: The system must provide for a specified number of concurrent users. 
• CTP4: The system must provide adequate response times for data transac-

tions. 
• CTP5: The system must provide for adequate agency management reporting. 
• CTP6: The system must provide a complete audit trail to facilitate audits and 

oversight. 
• CTP7: The system must provide interfaces to transmit and receive data from 

external data systems. 
• CTP8: The system must survive identified security risks. 
• CTP9: The system must provide SOX-compliant archiving. 
• CTP10: The system must be designed to a high degree of reliability, availabil-

ity, and maintainability. 



154 4 The Test Domain 

A typical CTP matrix is provided in the table below. It lists the CTPs that will 
be tested, the KPP significance, the objective and threshold values, and the pro-
gress status of each CTP. 

Table 4.2 CTP Matrix 

Critical technical 
parameter (CTP) 

KPP Threshold value Objective value Milestones  

Data Currency X 99% high 99.8% low 100% FOC MS IIIA 
MS IIIB 

Data Accuracy X 99% high 99.8% low 100% FOC MS IIIA 
MS IIIE 

Interoperability X JITC 
Certified 
99% MSIIIA 

JITC 
Certified 
100% FOC 

 
MS IIIA 

Adapted from: DoD 

 
 



 

155 P. Henry, The Testing Network, 
© Springer 2008 

Chapter 5  
Test Processes 

5.1 The Testing Network – Process Technology 

Worldwide surveys confirm that organizations using process technology generate 
substantial business benefits: 

• 60% gained increased efficiency by streamlining business processes 
• 57% experienced increased levels of customer service 
• 46% were better placed to adapt to changes required by regulation and/or 

legislation 
• 33% reported an overall increase in staff productivity 
• 30% experienced reductions in cost 

Harmonizing business and technological processes is a key success factor in all 
industries. What represents a difficult endeavor for nationwide projects becomes a 
challenge difficult to manage for global projects. However, major companies to-
day are introducing process networking in business and IT with significant results. 

5.1.1 What is a Process? 

Definition 

A process is a sequence of changes of properties/attributes of a system/object. 
More precisely, and from the most general systemic perspective, every process is a 
particular trajectory (or part thereof) in a system’s phase space. [Wikipedia] A 
process is also a set of logically related tasks performed to achieve a defined 
(business or technical) outcome. [JJSC] 



156 5 Test Processes 

In the business world, a process can be articulated in more trivial terms: 

1. A customer has a need 
2. The need is formulated in a requirement 
3. The requirement is the input to the production process 
4. A service or product is created then tested until it meets the requirement 
5. The product or service is delivered to the customer. 

A process includes tasks, operations and steps produced by different resources 
interacting with each other but also with another processes. Processes themselves 
are influenced or impacted by environmental factors which can be classified as 
predictable events or unattended circumstances causing anomalies. In a controlled 
process, the process’s owner measures the deliverables and initiates corrective 
actions iteratively until he obtains the expected results. This supposes, however, 
that he receives all necessary information on due time to make the right decisions. 
At the end of the manufacturing cycle, the finished product or service is ready to 
be delivered to the customer or to the stakeholder. In any case, a process has to 
generate quantified added value in measurable quality. Figure 5.1 shows the proc-
ess concept. 

Operations/Tasks/Resources

Requirement

Process steering

product
delivery

Events 

measurement

corrective
actions

input

Process Domain  

Fig. 5.1 Process configuration 

The Benefits of Processes and QA 

Processes have many benefits: they are teachable, repeatable, and improvable, and 
they add consistency, control, and repeatability to the work to be done. Processes 
facilitates collaborative work between IT and business entities. 

Over time, however, people tend to bypass steps in the process because some 
processes are complicated to follow, and these shortcuts leave something undocu-
mented, undone, or added to the product under development, which will adversely 
effect the overall quality of the project. 



5.1 The Testing Network – Process Technology 157 

 

Fig. 5.2 Processes link IT to business 

This is the true value of QA: to avoid such situations by assuring good compli-
ance to processes and by monitoring them. The approach to process-oriented han-
dling and working the right way requires three measures: 

• Establishing a QA function to assure compliance to processes 
• Emphasizing the importance of process thinking to management and staff 
• Getting management to promote the message of the importance of process-

oriented working 

5.1.2 Process Networks 

Process networks are still in their early stages, and they are largely dependent on 
transformative technologies, such as Web services and SOA. These technologies 
will help enable process networks to develop, test, implement, and maintain 
worldwide distributed applications in large organizations. Emerging technologies 
and business models rely on similar architectural principles, and process networks 
rely on loose coupling, which necessitates a close collaboration between expert 
domains and IT. This means that all parties involved in the processes should have a 
shared meaning (common policies and standards), and a shared work philosophy, 
and they should trust each other. Process networks are similar to supply chains, but 
they are more dynamic, and they mobilize highly specialized units across many 
levels of an extended business process. (Source: Burton Group, 2006). 

Considering process networks applied to the software production, the two par-
ties involved – business and IT – are the process orchestrators. To develop a prod-
uct or a service, they deploy activities in synchronicity and parallelism: 

Process orchestrator BU Process orchestrator IT 

Initiate Review 
Specify Design 
Validate Develop 
Use Test 
Decommission Deliver 



158 5 Test Processes 

Process orchestrator
        Business

Process orchestrator
            IT

Initiate Specify Validate RemoveUse

Review Design Develop DeliverTest

Process interfaces

 

Fig. 5.3 Partnership business – IT 

Owning different roles and managing different processes in parallel, business 
and IT work on a common process chain. This is the common layer of communi-
cation, information exchange, collaboration, and synchronization to insure a good 
partnership. Figure 5.3 illustrates this idea. 

The test processes are complex macro-processes inside this collaborative 
framework. 

The Test Process Network (TPN) 

All processes related to testing activities build which I name the “Test Process 
Network” or TPN are shown in Fig. 5.4 below. 

 

Fig. 5.4 Test Process Network 



5.2 Core Testing Processes 159 

5.1.3 Test Process Landscape 

In practice, we identify three main classes of interconnected processes in the test-
ing domain: 

• Core testing processes 
• Support testing processes 
• Test neighbor processes 

All these processes form the test process landscape, a specialized network illus-
trated in Fig. 5.5. 

IT specs
Reviews

Core Testing Processes

Support Processes

   Artifacts
Management

  Test Cases
Management

   Test Sets
Management

   Incidents
Management

Test Planning Results Analysis

Documentation Information Channeling

Test Suite Management

SW Package
Build

SW Package
Installation

Releases
Management

   Software
Development

  Test Data
Management

BU & IT
Analysis

      Risk
Management

Training

Neighbor Processes  

Fig. 5.5 Test process landscape – networked processes 

More processes – some based on regulatory requirements – impact directly or 
indirectly the testing processes and related activities: 

• The setup of the technical infrastructure for testing 
• The archiving of test artifacts and test results 
• Others 

5.2 Core Testing Processes 

5.2.1 Overview 

We introduced in the previous chapter the notion of process networks, driven and 
synchronized by two partners and orchestrators: business and IT. The test process 
network, or TPN, includes core processes and support processes in relation to 
peripheral or neighbor processes described in the next two chapters. Test proc-
esses have a far-reaching influence domain as generally admitted. 



160 5 Test Processes 

According to ISO 15504/5 and ISO 12207/AMD 1, test processes are part of 
the Primary Life Cycle Processes (LCPs) of the engineering group. They also are 
related to organizational LCPs of the management group (e. g., quality and risk 
management) and are also impacted by processes belonging to the process im-
provement group. We will now examine the basic processes in testing. 

5.2.2 Test Strategy Elaboration 

Before developing test cases (TCs) and test procedures, we should define an over-
all test and evaluation strategy to do the following: 

• Confirm the direction to go 
• Identify the types of tests to be conducted in all environments 
• Manage business’s expectations 
• Obtain consensus of goals and objectives from stakeholders 

The test strategy should be formally approved, because it is the most effective 
way to get a clear commitment from management on the volume and intensity of 
testing to reach the required product quality. 

The Content of a Test Strategy 

A test strategy provides an overall perspective of the testing activities and refer-
ences or identifies the following items: 

• Project plans 
• Project risks 
• Project guidelines 
• Requirements 
• Regulations, policies and directives 
• Review methods 
• Test deliverables 
• Test documentation 
• Test resources 
• Test levels and test phases 
• Completion criteria for each test phase 
• Stakeholders and sponsors of the project 

A test strategy should address all issues in a coherent way and then propose al-
ternatives in case of difficulties. 



5.2 Core Testing Processes 161 

5.2.3 Test Planning 

Test planning in a large project is a multifaceted task requiring that all participants 
agree about the volume and content of the work packages to be delivered and veri-
fied in a predefined time frame. The sequence of events for testing a single release 
is largely dependent on many factors: the software development capacity, the num-
ber of locations involved, the key competencies available, and the required IT in-
frastructure (machines, networks). The last aspect is often determined to reach the 
test readiness because many test environments must be set up and synchronized. 

Before establishing the test planning, roles and responsibilities in the testing 
circle must be clearly defined and communicated to business and IT people. The 
scope of the engagements and duties for each role must be stated accordingly. The 
members of the ITC board (those in charge of the permanent evaluation of the 
overall defect situation) must also be nominated in due time. 

The activities in relation to test planning should cover: 

• Allocation plans for the test resources 
• The organization of a quick-off session to present the new release 
• The definition of the release content, or baselining 
• The definition of scope and objectives 
• The definition of the milestones for the release 
• The definition of the milestones for each test phase 
• The definition of the test scenarios for each test phase 
• The definition of the test infrastructure for each test environment 
• The definition of the test data approach 
• The identification of the test data sources 
• The estimation of the test data volumes for each test environment 
• The installation of the test data platform 
• The definition of the test campaigns in each test environment 
• The definition of the escalation procedure in case of problems 

Entry and exit criteria must be defined precisely for each test phase (UT/CT, 
CIT, IIT, AIT/UAT, STE) in order to be conformed to the test value chain, as 
discussed in Sect. 2.7. 

In case of AIT and UAT, the profile of show-stoppers (high-impact defects) 
must be defined according to the business significance of critical functions of the 
software release to be tested. 

In special circumstances, a benchmarking test can be planned on request from 
business to validate the product-conformance for mission-critical releases. A 
benchmark will be generally performed in the STE test environment with a full 
data load and the results will be then compared to live results. 



162 5 Test Processes 

5.2.4 Test Objectives Definition 

At the beginning of each test campaign, goals have to be set for testing in relation 
with each test environment: 

1. UT/CT/CIT: Unit test, abstract test of processes, derivations and a test of 
internal workflow for each software component and unit under test. 

2. IIT/MIT: Test component of interfaces to reach end-to-end processing without 
problems. Use of synthetic data. 

3. AIT: Overall test of the business functionality with production-like data sam-
ples. Analysis of results by the business experts. 

4. UAT: Acceptance tests by endusers with production-like data samples. Func-
tional performance tests and usability. 

5. STE: System performance tests with full production data volumes. 

For each test battery to be carried out in a new test campaign, it is necessary to 
specify: 

• What will be tested (functions) 
• The risk index from a technical perspective (low/medium/high) 
• The business attention level of the test (low/medium/high) 
• The test scenario characteristics: 

− expected impact on the overall workflow chain 
− expected impact on local interfaces 
− degree of dependencies with other tests 
− scenario days required 
− Data constellation required 
− Special settings (e. g., calendars/time zone information) 

• The test environment(s) required to run the tests 
• Authorization(s) required to run the tests (e. g., DB grants) 

5.2.5 Test Design Techniques 

To develop useful tests, it is necessary to think about the cause-effect relationships 
which will be explained later in Chap. 7. Using the right methodology to classify 
defects (e. g., ODC) helps to precisely localize the real sources of errors and to 
understand how the SUT reacts to them (predictability). 

Design techniques: 

1. Action-driven tests: To discover missing actions 
2. Data-driven tests: To discover wrong behaviour or incorrect processing re-

lated to data 
3. Logic-driven tests: To discover logic flaws 



5.2 Core Testing Processes 163 

4. Event-driven tests: To discover time-related problems 
5. State-driven tests: To discover context-related anomalies 
6. Code-coverage measurement: To compare SUT’s behavior against a require-

ments specification (functional testing). 

Figure 5.6 gives an overview of the different test techniques. 

Defect groups
Test design
techniques

Missing
actions 

Wrong actions/incorrect processing related to:

Data Logic ContextTime

Extra
actions

Action-driven

Data-driven

Logic-driven

Event-driven

State-driven

Code coverage measurement
 

Fig. 5.6 Test design techniques 

5.2.6 Test Artifacts Management 

Many roles contribute to the creation, usage and maintenance of test artifacts dur-
ing the solution life cycle (SLC) of a product: 

• Solution owner (business) 
• Project leaders (business and IT) 
• Solution managers 
• Technical and business experts 
• Test engineers 
• Endusers 

Test artifacts include basically software and documentation: QA/release flashes, 
specific testing requests, reference documents, functional changes, defects raised 
during testing, and problems found in the production environment. These artifacts 
are captured, used, and managed in the integrated test platform (ITP). Test automa-
tion tools (e. g., QTP and MBT generators) are integrated to the ITP via APis. They 
can produce automatically TCs (test scripts) and calculate the percentage of test 
coverage reached according to many criterias. Figure 5.7 shows the integrated test 
framework. 



164 5 Test Processes 

Test Sets

Solution
Owner

Testing
requests

Release
flashes

Functional
changes

Defects

Production
requests

QA flashes

Test Director

Quality
Center

Solution
Managers

Test
Managers

SWC
Managers

Users

Testers

Originators Test ArtifactsTools

Test Cases

Test Scripts

Test Data

MBT
Generator

Artifacts

Test Artifacts
Management

 

Fig. 5.7 Test artifacts management – overview 

5.2.7 TC Design 

TC design is the most labor-intensive, and time-consuming, testing activity, con-
tributing to 60% of all test effort. The core of the testing art is to define sound TCs 
with a sufficient coverage of the specified requirements, good enough for your 
purposes. TCs help discover valuable information about the state of a software 
product along its life cycle. In large projects, the majority of the TCs should be 
designed with reusability in mind. A TC is faceted like a diamond: many aspects 
and characteristics must be taken in consideration to design it. We will take a 
closer look at all these elements. 

What is a TC? 

IEEE defines a TC as: 

1. A set of inputs, execution preconditions and expected outcomes developed for 
a particular objective, such as to exercise a particular program path, or to ver-
ify compliance with a specific requirement. [IEEE, Standard 610] 

2. Documentation specifying inputs, predicted results, and a set of execution 
conditions for a test item. [IEEE, Standard 829-1983] 

Personally, I prefer this formulation: 
“A TC is a set of documentation artifacts (electronic or paper) which describes 

input events, actions, conditions, and the expected results or responses to verify if 
one function or application works (correctly) as specified.” 



5.2 Core Testing Processes 165 

TC Aspects 

A number of aspects should be considered in designing a TC: 

• Benchmarks against existing systems 
• Business correctness against requirements 
• Check of module interfaces 
• Compatibility of all modules/interfaces among each other 
• Compatibility of modules with one another 
• Compliance to operation standards 
• Comprehensibility of terms 
• Correctness (overall) 
• Correctness of elementary functionality 
• Coverage of requirements 
• Data acceptance 
• Data security (degradation, back-up, restore) 
• Formal correctness 
• Installation 
• IT security (degradation, backup, restore) 
• Net load profile 
• No data loss 
• Possibility to execute (stability) 
• Performance, response times 
• Practical sequence of input 
• Processing logic 
• Readability of reports 
• Readability of scope presentation 
• Sequence of events 
• Sequence of state 
• Testability 

TC Characteristics 

A TC should possess the following characteristics: 

• It should describe what is to be done in a test, from the business and/or tech-
nical perspective 

• It should describe in which test environment(s) the tests will occur, 
• It should be tailored for every application and, if necessary, its release and 

component or function 
• It should describe the preparation of the test 
• It should describe the test conditions 
• It should describe the required authorizations 
• It should describe when the tests will be done (scenario-based testing). 



166 5 Test Processes 

TC Components 

A TC is generally divided in 7 main parts: 

1. General description 

− Name of the test 
− Purpose of the test 
− Test environment 
− Scenario(s) to be tested 
− Dependencies (with other TCs) 
− Particularities or special conditions to consider 

2. Test steps. A TC includes at least one, but generally a number of test steps. It 
describes how a particular test shall be prepared (step-wise), executed and 
evaluated. It defines under which conditions defined actions are exercised on 
software objects to test their behaviors and to get results. 

3. Test data. A TC requires – in general – test data to run a test. These data are 
of many types: 

− Descriptive data: Often known as reference data. Much of this data comes 
from the entreprise’s operational systems or from external providers. 

− Behavorial data: Often known as activity or transaction data. It includes 
details on the transactions and interactions that constitute the relationship 
between the vendor or supplier of the product or service and the customer 
(the contractual legal entity). 

− Contextual data: This type of information is both diverse and unstruc-
tured. 

− Rules: Rules are essential to table-driven systems/applications; they are 
both business and technical in nature. 

− Synthetic data: Data artificially produced to make technical tests in the 
development and integration phases (UT, CT, CIT, IIT). 

− Live data 
− Row anonymized data out of the production (as it), or 
− Enriched anonymized data out of the production. 

 The availability of test data must be checked early enough in the TC design 
process, in order to achieve test readiness in a timely manner. In TestDirector, 
a user-field named “test data” can be created for this purpose. See the exam-
ple in Fig. 5.8. 

4. Expected results. A TC produces results which should confirm that the func-
tionality required works as designed. They describe what happens at the sys-
tem-level (behavior) and the outputs: a clear definition on what shall be the 
outcome of a test to enable the evaluation of each TC in terms of the output 
state, conditions or data value(s). The test results have to be validated by the 
testers and/or business analysts according to acceptance criteria for each TC. 



5.2 Core Testing Processes 167 

 

Fig. 5.8 TC data 

5. Assumptions/prerequisites. Notes about specialized platforms requirements, 
key functionality, steps, or environmental conditions (e. g., database grants, 
authorizations) needed to set up the TC. 

6. Acceptance criteria. This encompasses the definition of the range for test 
results, enabling the tests to be considered as “passed” and ready for signoff, 
or failed. Acceptance criteria is mandatory information for each TC designed. 

7. Outcome. The state of the system after completion of the TC should be also 
described. 

TC Types 

TCs can be created to test four aspects of the software under test: functionality, 
boundary values, positive validation and negative validation. The following table 
describes each aspect. 

TC type Focuses on: 

Functionality Testing what the software is supposed to do 
Boundary Testing the defined values and defaults 
Positive/valid Proving that the software does what it should do 
Negative/invalid Proving that the software doesn’t do what it should do 

TC Creation 

Nine activities are required to create a TC: 
1. Identify what has to be tested as described in the use cases catalog. Analyze 

the final specifications by using the functional decomposition (FD) method to 
produce a list of functions and sub-functions; detect potential functional de-
pendencies. 



168 5 Test Processes 

2. Identify the test conditions for each function in the list and define the test 
environment(s) to run the test. 

3. Allocate priority to test conditions: know what to test first and verify the cor-
rect sequence. 

4. Design and build logical test steps to exercise the test conditions, starting with 
those which have the highest priority. Calculate and document the expected 
results in the test suite. Don’t forget to consider negative use cases to be 
tested! 

5. Identify the test data required to run the TC in all test scenarios in each test 
environment. 

6. Implement the test data files in the test suite. 
7. Add physical elements of the TC. 
8. Create/generate/adapt test scripts as required. 
9. Incorporate TC in test sets by linking them accordingly. The test sets should 

reflect real-world scenarios in the correct chronology. 

Reference Documents 

Creating TCs is a process which should be based on an actual, accurate, complete, 
and reviewed documentation set. It should include a number of key documents 
about the future product or part of it: 

• Business specifications 
• IT specifications 
• The test data profile (test data required for all scenarios and each test envi-

ronment) 
• A functions list 
• A conditions list 
• A steps list (A logical and chronological ordered TC steps) 

Test Design Approach 

Large information systems are for a large part data- and table-driven with core 
applications having a central business logic to process complex use cases. Web-
based and services-oriented solutions are mainly event- and state-driven. For all 
these components the best-suited technique must be chosen and applied to the TC 
design. The basic considerations to a sound test design approach are related to the 
following: 

• Time: In which temporal context the TCs be positioned? 
• Functionality: In which functional context the TCs must be implemented? 
• Usage: In which business context the text cases must be run? 
• Coverage: Which use cases must be covered to test the business processes? 



5.2 Core Testing Processes 169 

• Scenarios: Which functional and business scenarios are relevant for the TCs? 
• Reuse: Which TCs can be reused with or without adaptations for the test 

suites in the present context? 
• Coherence and completeness: Check if the TCs are coherent and complete. 

Figure 5.9 gives an overview of the top-down test design approach. 

Chronology

Use cases catalog

  Scenario definition

Test Set(s) build

Functional
scenarios

Prioritization

Link all TCs to TSs
according to chronology

Standard TCs

Verify correct linkage:
TCs -> TSs -> REQs

Risk weighting

Test Case
 Identification

Business
scenarios

Test Case design

Test Case verification

Test Case identification

Functional decomposition

reuse

Verify Requirements
Coverage  

Fig. 5.9 Test case design approach 

TC Coverage 

A TC has to cover the requirements defined for the portion of the software under 
test in a sufficient depth and extent, so that the TC is said to be credible. In cover-
age-based test techniques, the adequacy of testing is expressed in a percentage of 



170 5 Test Processes 

the statements executed or in a percentage of functional requirements tested. Ide-
ally, the tests traverse all possible paths = equivalent to exhaustively testing the 
program. All-nodes coverage – even 100% covered – is not an error-prone tech-
nique because errors remain. All edges (branches) coverage is stronger but does 
not guaranty error-free code, either. Other techniques include multiple condition 
(extended branch) coverage and data flow coverage. The later is used in relation 
with functional requirements and scenario-based testing. 

In business systems, a set of business events determine the business transac-
tions (BTRs) to be generated or extracted from production for test purposes. Let’s 
examine what happens with a business transaction. A business event of some type 
is raised externally by a customer or by internal agents and will be acknowledged 
or rejected by a generic event driver. It means that the operation is validated or 
rejected for further processing and if the result is true, the central business logic 
(CBL) will generate one or more transactions, which will be processed according 
to rules and predefined processing schemes. At the end of the processing flow 
results should be available in expected value ranges. Figure 5.10 illustrates this 
schema. 

In real situations the number of combinations to be tested: {BU events/use ca-
ses/partner types/BU transactions} is so large that only a sample of the vast num-
ber of possibilities can be validated. To test large information systems, a scenario-
based approach is the strategy of choice, because it is easy to judge whether each 
scenario describes the behavior we want. 

The ideal scenario test should be designed with five key characteristics in mind: 

1.  It is a story, 
2.  that is motivating, 
3.  credible, 
4.  complex, 
5.  and easy to evaluate. 

Consult the www.testingeducation.org site to discover more interesting aspects 
concerning this topic. 

In practice, a standard selection of reference use cases (those with a high busi-
ness significance) will be built for each business function to be tested. Then, the 
corresponding test coverage will be derivated for the core functions and enhanced 
with the tests needed for the new functionality. Figure 5.11 illustrates such a test 
coverage implemented in TestDirector for Quality Center. 

Business event
type

generic event drivers

specific event drivers

instructions

BTR processing scheme

BTR processing scheme

expected results

tests are designed to cover a representative
set of the many combinations of each category
of business transactions and business types

 
Fig. 5.10 Business test case coverage 



5.2 Core Testing Processes 171 

Fig. 5.11 Test coverage  
in TestDirector 

Advantages of the Method 

It provides a systematic way to ensure that every possibility has been tested, ac-
cording to the detailed specifications. 

• The TCs are described in a form that anyone can understand. 
• It produces precise results of the desired behavior. 

Limits of the Method 

It requires a large amount of detailed, comprehensive specifications. 

• The method is not suited for describing behavior dominated by algorithms. 
• It is not broadly applicable. 
• Scalability is limited. 

In practice, only a limited set of instructions will be used to test the central bu-
siness logic, as shown schematically in Fig. 5.12. 

To achieve a good test coverage, it is preferably more judicious to use the fi-
nite-state machine model approach. However, some uncertainty can remain about 

Test case scope

business event
type

generic event drivers

specific event drivers

instructions

BTR processing scheme

BTR processing scheme

expected results

only a representative selection
of dedicated instructions can
be applied for testing  
Fig. 5.12 Event type and event drivers in TCs 



172 5 Test Processes 

the simulated behavior, which depends on the modelling granularity. In Sect. 3.5, 
we see that it is possible to cover a quite large test domain by generating TCs with 
appropriate MBT tools. 

To conclude, scenario-based testing combines all the advantages of use cases, 
which are easy to understand, and show the end-to-end behavior of the whole 
system or application at once. 

Using 4th generation test technology (e. g., MBT) enables formal and complete 
testing of the system behavior, which is a very powerful feature for regression 
tests. 

TC Adaptation 

It is important to design TCs in accordance to the project guidelines in use in your 
organization by keeping in mind the compliance requirements to satisfy as well. 
See also Sect. 3.4 which explains the different testing styles [Ka04], [Be90], 
[Bo76]. 

The necessity to adapt TCs should be verified in any case for those which are 
reused for a given release of the software. The regression capability of a product 
or solution depends on the actuality of the standard TCs. A new design paradigm, 
like SOA, could boost the adaptation effort of TCs because it injects a new testing 
difficulty: many attributes packaged in messages (from the Web services) create a 
much larger set of permutations than with traditional business transactions. 

TC Classes 

TCs can be grouped by classes: dynamic, static, and mixed mode. Static TCs refer 
to “standard” TCs used by business and IT to verify the regression capability of 
separate subcomponents over a number of releases. Dynamic TCs are those testing 
interrelationships between SWCs. Mixed-mode TCs are test artifacts including 
constraints and restrictions to test separately. 

In large organizations, TCs designed by an organizational unit can also be sha-
red by a number of projects in other solution domains. These TCs should be easily 
identifiable because they belong to a special class of requirements: interface re-
quirements (IRs). That means that IRs are the highest class of requirements span-
ning multiple solution domains. 

TC Quality 

Three major factors influence notably the quality of the test artifacts: 

• Information objectives 
• Testing paradigms 
• Test attributes 



5.2 Core Testing Processes 173 

Fig. 5.13 Factors influencing 
the TC quality 

Test Cases

Information
 Objectives

   Test
Attributes

      Testing
Styles/Paradigms

TCs are designed to expose defects; good TCs might have characteristics mak-
ing testing more efficient and expressive. For example, we can have tests present-
ing the following characteristics: 

• More powerful 
• More likely to yield significant results 
• More credible 
• Helping to find showstoppers (major bugs) 
• Helping managers make the ship/no-ship decision 
• Minimizing technical support costs 
• Assessing conformance to regulations 
• Minimizing safety-related lawsuit risks 
• Assessing quality [KBP02] 

An interesting article, which describes several test techniques and their 
strengths, entitled “What is a good test case?” can be found at: 
http://www.testingeducation.org/articles. 

5.2.8 TC Review 

TCs should be designed early enough in the software development cycle to start 
testing activities in synchronicity with the project planning. In practice, it is very 
unlikely that TCs are ready on time and schedule, because business and IT specifi-
cations come too late. To overcome this difficulty, it is recommended to establish 
first and foremost a review process for the software specifications. Members of the 
review board are business and IT analysts (authors of the software specifications), 
technical experts, and the test engineers. In practice this micro-process has proven 
to be invaluable for all parties involved in large projects. 

The IT specification document should be enhanced with a chapter purely dedi-
cated to testing aspects of the target software. In this testing chapter, every TC 
should be described precisely in order to insure the test readiness. For this pur-
pose, a standard TC review template is used by the analysts to document the indi-



174 5 Test Processes 

vidual characteristics of each TC. This paragraph has the following structure and 
content: 

Details of the TC review template 

• Solution domain 
• System/application 

− Software component under test 
− Requirement identification 

¬  Release-nr. 
¬  TC identification 
¬  TC name 
¬  Testing environments for the tests {CT/CIT/IIT/MIT/UAT/AIT/STE} 

− Test scenarios to be tested {A/B/C/D/E/F/G} 
− Required test data {all files to be provided for the tests} 
− Test status{design/in review/ready for test} 
− Business significance {low/medium/high} 
− Test type{manual/automatic} 
− Remarks {TCs will be provided later, special cases, …} 

To help the test engineer in his job, a checklist is provided in Appendix A. 
This information provides many advantages and the main benefits are: 

1. To ensure the test readiness “on time.” 
2.  To have a precise idea of the critical tests to be done and in which test envi-

ronments. The business significance is an indication for the management to 
mitigate the risks in a release. 

3.  To organize the test data for all test environments on schedule. 
4.  To derive the test sets for all test environments easily. 
5.  To document thoroughly the TCs (SOX compliance/auditability) 
6.  To enhance greatly the quality and visibility. 
7.  To link this information to the data stored in the test repository. 

The latter point is important because the test manager must validate the quality 
and the completeness of the test artifacts before use. In practice, the test manager 
controls if the TCs mentioned in the software specification are already available in 
TD/QC. He then checks the content of all fields in comparison with the review 
template attributes and values. If the check is positive (the information provided is 
complete and the test data are already available) the status of the TC is set to “rea-
dy for test.” 

At the reverse, if the test manager points out missing, wrong, or incomplete test 
information, the TC status remains “in review” until the rework is one. Figure 5.15 
shows the drop list used to change the TC status in TD/QC. 

In this way, the review process is the collaborative link between analysis, de-
velopment, and test organizations. 



5.2 Core Testing Processes 175 

TC-Id. TC-Name

Required test data

Test Environ.

SWC

Solution Domain

System/Application Release-Nr.

CT    CIT    IIT  MIT  GAT   AIT   STE

Test Scenarios
 A      B      C      D      E      F      G

RQ-Id.

Test case status
design    in review    ready f. test  

BU significance
low         medium          high

Remarks

Test type
manual    automatic

 

Fig. 5.14 Test case review template 

 

Fig. 5.15 TC status 

I had a very positive experience by introducing and managing this process in 
large projects. Team members see the benefits of this approach and are motivated 
to put their TCs directly in the central repository in order to receive in return quick 
feedback, allowing a better planning of rework, if necessary. This responsiveness 
enforces considerably the quality of the mutual collaboration and spares time for 
all parties involved. More importantly, in large projects, it reduces also the costs 
of reusing TCs in multiple environments and for a number of releases: validate 
once and use many times. Finally, it simplifies the communication in international 
projects between teams geographically dispersed. This point is important to re-
member by outsourcing testing projects. 



176 5 Test Processes 

5.2.9 TC Implementation 

A TC can be hand-crafted designed according to the guide line presented in 
Sect. 5.2.8, and captured manually in the test repository. Or, the TC can be gener-
ated automatically from requirements, by converting a requirement to a test. This 
function is available in TestDirector 7.6 and above. In TestDirector for Quality 
Center (TD 8.2 and higher), an API linking to a third-party requirements manage-
ment system (RMS) enables the import of requirements into the project. Further-
more, the import function triggers the automatic generation of the TC coverage for 
these requirements. The generated TCs can be implemented at the solution domain 
or at the project level. 

By downloading requirements from a RMS, a generic tree structure can be also 
automatically created in TD/QC; existing TCs in the test planning folder (Test-
Plan) and test sets in TestLab will not be synchronized automatically. Therefore, 
additional tasks must be carried out manually to keep TD/QC’s structure and con-
tent coherent and up-to-date: 

• Adapt the tree structure in TestPlan and TestLab 
• Link attachments to the TCs if needed 
• Make a final verification of the TCs 

An ITP should incorporate a workflow-driven RMS functionality. At the time 
of writing this book TestDirector for Quality Center from HP/Mercury does not 
offer this capability. 

Updating TCs 

After the completion of the review process, the TC status should be modified in 
TD/QC accordingly to reflect the current state of the test artifacts. 

Test Data 

The availability of test data is the most important prerequisite to achieve test 
readiness on schedule. With TD/QC this follow-up is easy to implement, as 
Fig. 5.8 shows. 

Test Coverage 

In the Requirements module, the test coverage is made by linking TCs to target 
requirements. 



5.2 Core Testing Processes 177 

 

Fig. 5.16 Requirement details in TestDirector 

Details 

In the TestPlan module, all TCs should be stored in a tree structure to reflect the 
logical organization of the software to be tested. A TC includes one or more test 
steps with corresponding prerequisites, test scripts, attachments, and expected 
results. 

 

Fig. 5.17 TC details 



178 5 Test Processes 

5.2.10 TC Archiving 

All test artifacts (TCs, referenced documents, test results, and test data) have to be 
make available to satisfy compliance and regulatory requirements. A software 
product has generally a life cycle of one year and longer. In a single year, a num-
ber of major and minor releases are produced, each requiring a full set of test arti-
facts for each test environment. If we consider SOX’s requirements, I experienced 
that in the finance industry, a report has to be produced twice a year. For this pur-
pose, all test objects and test results stored in the TestDirector project were ar-
chived on a short-term basis (1 year) on dedicated UNIX servers and then moved 
to the enterprise’s long-term archive platform on mainframe. The duration of the 
compliance archiving is about seven years, but this can vary slighty, depending on 
the industry considered and national regulation rules. 

Figure 5.18 shows the concept of availability of the test artifacts along the 
product’s life cycle. 

Test artifacts life cycle

Business data life cycle

Long-term archiving

Full availability of test data + test artifacts   

SW releases
f
r
e
e
z
e

Product life cycle

7 years

> 10 years

1 year

Compliance  period 

short-term
archiving 

 

Fig. 5.18 Archiving of test artifacts 

5.2.11 Test Set Build 

A test set is a collection of the individual TCs needed for a particular test cycle. 
Different testset types address various testing goals throughout the stages of as-
sessing the software quality of a given application. Testsets can include both man-
ual and automated tests, or a mix of both. The same test can be used in different 
testsets for different scenarios in different test environments. 



5.2 Core Testing Processes 179 

Depending on the type of release, it is not always necessary to execute all tests. 
For a minor release, only lower priority tests may be selected. In this case, testsets 
with a cross-section of tests from all standard testsets may be sufficient. 

Deciding which test sets to create depends on the testing goals defined at the 
planning stage of the testing process: e. g., verifying the current state of the appli-
cation after addition of new features and/or technical system upgrades. Some ex-
amples of categories of test sets are listed below: 

• Basic Set: Checks the entire application at a basic level – focusing on 
breadth, rather than depth – in order to verify that it is functional and stable. 
This set includes fundamental tests that contain positive checks, validating 
that the application is functioning properly. Test phases: CT, UT. 

• Normal set: Tests the system in a more in-depth manner than the basic set. 
This set can include both positive and negative checks. Negative tests attempt 
to crash an application in order to demonstrate that the application is not func-
tioning properly. Test phases: CIT, IIT/MIT. 

• Advanced set: Tests the entire application (end-to-end) in-depth including 
advanced options. Requires a number of scenarios to be tested. Test phases: 
AIT, UAT, IIT/MIT. 

• Function set: Tests the subsystem’s functions of an application. This could 
be a single feature or a group of features. Test phases: CT, UT, CIT. 

• Regression set: Verifies that a change to one part of the application did not pre-
vent the rest of the application from functioning. A regression set includes basic 
tests for testing the entire application as released in the previous version, and in-
depth tests for the specific area that was modified. Test phases: AIT, UAT. 

• Special set: Tests thoroughly an application’s subsystem to verify its behav-
ior (performance, stability) after a standard software upgrade (e. g., database 
or network software). Test phase: STE. 

Predefined rules should be applied when adding TCs to a testset. These TCs 
must also contain core information for reporting: 
• Release identification 
• Go/no go criteria 
• A weighting factor (based on the release flash) 
• A class category 

In TestDirector, such attributes can be defined as user fields. These values form 
the basis of the test report, used by the project management. 

Naming Convention 

Testsets for a given release should be named according to some formula like: 
 <Version>_<Platform>_<Test_phase>_<SWC>_<Function>_<location>_…. 

A consistent approach to testset naming is important in large-scale projects 
running tests in various environments in parallel, for many software releases and 



180 5 Test Processes 

in multiple geographical locations. This makes easier to filter testsets for handling, 
duplication, versioning and reporting purposes. 

Standard core testsets should be created and maintained following these rules. 
They can then be replicated for each new release to come, and allocated with a 
unique test name. 

5.2.12 Test Runs 

After building testsets, the next step is to run the tests either manually or automati-
cally using a TA tool (e. g., QTP) or a MBT tool (e. g., LDG). 

Execution and Scheduling of Testsets 

In TestDirector/TestLab, dependencies of execution and scheduling can be defined 
in the Execution Flow tab. This helps to visualize the execution flow and can also 
be utilized to control the timing of automated TCs. 

The test execution delivers results which are either: 
• wrong   update TC and run again, or 
• unexpected   create new TC and run again, or 
• incomplete   raise defects, create new test case and run again. 

Test results information about the SUT can be published in the following 
forms: 
• Incident tracking and channeling reports 
• Standard or customized reports in TD 
• Standard or customized graphs in TD 

See Sect. 8.2 for more details. Depending of the outcome of the test campaign, 
new requirements may be necessary. Figure 5.19 illustrates the test run cycle. 

 

Fig. 5.19 Run artifacts 



5.2 Core Testing Processes 181 

Risk category Change profiles Expected risk 

1 Changes requiring a full check with production 
results for validation 

very high 

2 Changes requiring a high volume of events  
to simulate operational conditions 

very high 

3 Changes requiring a functional E2E verification high 
4 Changes requiring Inbounds and Outbounds  

verifications 
medium 

5 Changes requiring a partial check with production 
results (benchmark) for validation 

medium 

6 Changes requiring no special conditions to be tested low 

A software under test is a mix of software components which are bound to-
gether and have dependencies of any kind. Any individual SWC’s profile may 
change frequently at the beginning of the software life cycle, because new func-
tionality and amendments are injected permanently. Test runs in a new release 
have therefore changing risk characteristics. 

5.2.13 Test Results Analysis 

Maturity 

The quality of a software under test (SUT) is commonly measured by the number 
of defects found, the severity of those bugs and their impact on other parts of the 
system or solution to be released. In Chap. 8 we explain in detail a powerful 

UT

CIT

CT MIT AIT UAT

GAT DeliverySTE

Production
Sign off

System tests
w. live data (100% production)

 entry
criteria

 exit
criteria

 entry
criteria

 exit
criteria

 entry
criteria

 exit
criteria

Testing Value Chain

 entry
criteria

 exit
criteria

Rollout

Business case
ROI Analysis

Initialization Concept Development
Requirements
Elicitation

Preliminary
Design

Detail
Design

Coding

Tests

Integration Tests Pilot Production

BSO RSO SSO PSO

 
Fig. 5.20 Testing value chain phases 



182 5 Test Processes 

method to evaluate the status of the deliverables of the project and the metrics 
commonly used to quantify the test progress. 

The SUT has to satisfy entry criteria for a given testing phase and fulfill exit 
criteria to enter for the next one. This is called the testing value chain (TVC). At 
the end of the software production and testing processes, the SUT reaches the 
production signoff (PSO) and can be delivered to the customer. Figure 5.20 shows 
the TVC. 

When is a Software Package Ready to be Released? 

Release criteria can be defined as “a precise and clear set of requirements-driven 
goals that need to be achieved prior to the software provider releasing a product.” 

They are typically defined early in the project during requirements definition. 
The core set of targets for a release are agreed with the business stakeholders, 
project leaders and IT managers. 

Criteria Dimensions 

Taking into account the specific project’s constraints, criteria can be aligned along 
multiple dimensions: Quality, time, costs, scope, resources, and deliverables. In 
Sect. 8.1, we will learn how the EVA method give us full visibility about the real 
project situation and the product to be released. 

Large software applications today are so complex, fully interconnected, and run 
in such an interdependent and multilayered environment that the full testing of all 
required functionalities can never be fully achieved. It is nearly impossible to 
adequately specify useful criteria without a significant amount of assumptions, 
opportunism, and subjectivity. The decision to end testing can often be made for 
political reasons, or for marketing considerations, or is the result of high business 
pressure (the time-to-market). 

The main factors influencing the decision to stop testing activities can be sum-
marized as follows: 

• Deadlines to meet (release, testing, production signoff, etc.) 
• The coverage of requirements/functionality/code reaches a specified level 
• The defects rate falls below a predefined threshold for each test environment 
• No showstopper (high impact defect) exists 
• A percentage of TCs/test sets is successfully completed 
• Test planning defines when the testing period is closed 
• The test budget is consumed 
• User acceptance is reached 

Even if the test sets selected by business and IT have been adequately ad-
dressed, the software cannot be fully tested, and thus inherently includes (busi-
ness) risks. In large organizations, like in the finance industry, risk management is 
a top priority and the tests validate the most significant business cases in term of 



5.2 Core Testing Processes 183 

value. A point to consider is that testing has a limited scope and cannot alone 
solve the problem of competing factors like quality, costs, and time influencing 
the decision process. The major difficulty in this matter is to understand the spec-
trum of considerations enabling the actors to determine whether the software qual-
ity is sufficient for shipping. 

Rollout criteria can include a variety of factors like: sales goals, enduser expec-
tations, legal requirements, compliance aspects, technical constraints, impacts on 
other organization projects, and so on. Even in large organizations, the apprecia-
tion of quality is at most subjective, or not well-defined, or may vary from project 
to project, or from business division to business division. 

In larger organizations, deciding to release a software product is in the compe-
tency of a committee composed of business representatives and IT solution man-
agers knowing the quality profile of the software considered, which integrates all 
considerations previously discussed. For small organizations and projects, a single 
person can fulfill this role: a product or project manager. The diagram below illus-
trates three different products with various quality profiles. 

If the SUT is very close or below the PSO’s threshold value, this could indicate 
that the product has the required quality to be delivered to endusers and customers. 

5.2.14 Incident and Problem Management (IPM) 

Organizations that have adopted management by projects, implement systems and 
processes for planning, accounting, defect tracking, problem solving, and measur-

Defects volume

Product evolution
D

ef
ec

ts
 s

ev
er

ity

Product B

Product A
Start 
testing

better

slow
progress

Product C

works
as expected

major design
or integration
problems

HIGH

LOW

 
Fig. 5.21 Software maturity 



184 5 Test Processes 

ing the testing progress. In most cases, incident and problem management is ap-
plied to a number of sub-projects simultaneously, spanning two or more business 
domains. Non-project-based organizations will have departments or units that 
operate as project-based organizations. All have the same goal: to solve the testing 
challenges efficiently with limited resources and tight schedules. 

From the network to Web servers, application servers, and mainframes, there 
are many places where incidents and problems occur. It is important to identify the 
difference between incidents occurring during testing and problems found in the 
production environment. The latter require a very quick response time, and for this 
reason it is usually necessary to implement work around solutions (e. g., software 
patches, data fixes) before the problem has been definitively solved. 

The management of problem solving in software development is a complex 
macro-process which is divided in seven distinct parts: 

1. Identify the problem 
2. Qualify the problem 
2.1 Analyze the problem 
2.2 Classify the problem 
2.3 Prioritize the problem 
2.4 Quantify the problem 
3. Resolve the incident 

− fix a defect raised in testing 
4. Solve the problem 

− fix a problem found in the production 
5. Track and monitor the work in progress 

2

6

3 54

8

9

107

F. Tracking and Monitoring

G. Process Improvement 

6

5

1 2 3 4

1 2

3

4

5

6

E. Solution verification 

1

2

3

2 3 4

7 6

1
s

A. Identify problem  

B. Analyse, qualify, prioritize

C. Solve incident  

D. Solve problem  

5

2

6

3 54

8

9

107

2

6

3 54

8

9

107

F. Tracking and Monitoring

G. Process Improvement 

6

5

1 2 3 4

G. Process Improvement 

6

5

1 2 3 4

1 2

3

4

5

6

E. Solution verification 

1 2

3

4

5

6

E. Solution verification 

1

2

3

2 3 4

7 6

1
s

A. Identify problem  

B. Analyse, qualify, prioritize

C. Solve incident  

D. Solve problem  

5

1

2

3

2 3 4

7 6

1
s

1

A. Identify problem  

B. Analyze, qualify, prioritize

C. Solve incident  

D. Solve problem  

5

 

Fig. 5.22 IPC macro process 



5.2 Core Testing Processes 185 

6. Verify the resolution of the bug 
7. Improve the IPC process 

− find a better or shorter way to the solution 
− document process enhancement 
− publish process enhancement. 

Figure 5.22 illustrates this workflow. 

Error Detection 

The detection of defects or errors depends on the accuracy of the incident report-
ing mechanisms in place in the testing project. The following technical informa-
tion has to be tracked and documented precisely to allow a good diagnostic: 
• Error status variables 
• Exception codes 
• Signals 
• Other condition status 
• Environment variables 
• The system outcome 

5.2.15 Incident Tracking and Channeling (ITC) 

To manage efficiently incidents happening in testing large applications, a micro 
process named incidents tracking and channeling (ITC) is used. This process is not 
only an important communication link to other projects in the solution domain, but 
also important for geographically distributed testing groups. This aspect will be 
discussed later in multi-location testing. 

The ITC process – as a subset of the IPC process – includes two sub-processes: 
incident solving and defect tracking and channeling. Let us take a closer look at 
the chronology of the activities and roles involved in the ITC workflow: 
1. The end-user (tester) raises a defect in the test repository or reopens a similar 

defect if appropriate. 
2. The analyst (business or IT) qualifies the defect, making sure that it concerns 

exclusively a software bug (no handling error or test infrastructure anomaly, 
for example). He evaluates also the impact of the dysfunction and the severity 
grade of the defect, which is an important indication to detect a potential 
showstopper concerning the release. If the analyst concludes that the incident 
is not a software problem, the defect is rejected and a comment is made in the 
test repository to ensure traceability. In TD/QC, all defect changes are auto-
matically historicized. Thereafter, the qualified defect is classified according 
to problem categories defined in the project (see Sect. 7.2). The effort to cor-
rect the software bug is quantified (in hours or days), and finally the planned 
fix date is recorded in the ITP. 



186 5 Test Processes 

3. The developer then makes the code enhancement. 
4. The tester validates the corrected software in different test environments. 
5. The enduser verifies the good functioning of the software, documents the test 

results in the test repository, and closes the defect. 

The ITC process is shown in Fig. 5.23. 
The real challenge of testing is not only determining when an incident occurs, 

but also which underlying systems, resources, or software components are respon-
sible for the failure or poor performance. Moreover, the context information is 
also very important to investigate a technical problem and to manage efficiently 
error handling, as discussed later in Sect. 7.6. 

Domain or application expertise bound around data collection and analysis is 
the right approach to unequivocally diagnose dysfunctions in complex applica-
tions. 

We will discuss in detail in Sects. 7.2–7.4 the methodology to find defect root 
causes and the mechanisms of causal chains in complex environments. 

The ITC Board 

In large projects, multiple software components can be impacted by an error and 
multiple teams can be involved in the diagnostic. To facilitate interdisciplinary 
teamwork, a permanent committee is in charge in the project of the prioritization 
of defects: the ITC board. It is composed of analysts, domain experts, and senior 
developers which meet together on a daily basis to examine the defects situation 
and to initialize adequate actions. The ITC board has a determinant influence on 
software improvement speed and coherence, and this is a critical success factor in 
a complex project. 

ITC Board Organization  

The ITC board is composed of representatives of each software component or sub-
project, including: 

• A chief developer 
• One member of the developer team 

Rollout

Analyst Developer

Reopen
Defect

Raise
Defect

Analyze
Qualify
Classify
Quantify
Set priority

Solve incident 

Reject defect

Verify solution
Close incident

TesterEnd-User End-User

 
Fig. 5.23 Incident tracking and channelling microprocess 



5.2 Core Testing Processes 187 

• One member of the analysis team 
• One or more business domain experts 
• One or more technical experts (if required) 

Each role has a defined responsibility area that we describe briefly here. 

1. Chief developer 

− Evaluates the overall defect situation before production signoff 
− Decides to transform old defects in new requirements 
− Qualifies the severity of defects 

2. QA 

− Is responsible for the overall control of all ITC activities 
− Is responsible for the enhancement of the ITC process 
− Is responsible for the auditability of the ITC process 

3. Solution manager (SOM) 

− Is the first escalation level in case of problems or conflicts 
− Is responsible for the product rollout in due time and quality 
− Supervises the tracking of showstoppers in the current release 
− Writes the final release report 

4. Test manager 

− Is in charge of the testing coordination and overall communication be-
tween all teams involved in testing and development 

− Checks if all test artifacts are timely available in the test repository 
− Is responsible for the test data delivery on due time (test readiness) 
− Supports the ITC’s activities 
− Communicates the test situation on a daily or bi-weekly basis 
− Proposes and manages corrective actions 

ITC Board Duties 

The ITC board has a broad range of tasks and responsibilities: 

• The risk analysis of new defects 
• The high level analysis of new defects 
• The strategy finding to solve new defects 
• The cost evaluation to fix the defects 
• Setting the priority and severity of the defects 
• Making the decision to generate new TCs 
• The coordination of progress meetings on a daily or weekly basis 
• The actualization of the documentation in the central test repository 
• The proposition to postpone a software release 

High-impact issues will be escalated to the solution manager directly. 



188 5 Test Processes 

Information Collection for Defect Tracking 

All roles participate actively in the ITC’s activities and to the problem solving in a 
coordinated and streamlined manner. The quality of information concerning the 
defect itself, the context in which it appeared, and the events and anomalies de-
tected should be precisely recorded in the test repository. It is highly recom-
mended to store, as an attachment to the defect, screen shots of results and anoma-
lies showing the incident occurrence. 

In Sect. 7.2.1 we will explain how to localize the potential or real causes of er-
rors causing software dysfunctionalities. 

Defect Attributes 

The information concerning a defect is managed using a role-driven scheme as 
implemented in TD/QC: 

Roles 
Defect raiser Chief developer 
 Test manager 

Attributes 
defect description assigned to 
detected by estimated fix time 
detected in release fix version 
detected in version installed in version 
detection date planned fix date 
impacted SWCs planned release 
priority 
problem originator 
severity 
status 
test phase 

The Defect Status 

Anomalies in testing are first raised, qualified, analyzed, and corrected, and the 
solution implemented in a new software package of the faulty SWC. 

Opening and solving a defect requires a multitude of roles involved – both in 
the business and IT organizations – which carry actions under precise conditions. 
Figure 5.24 illustrates the defect status life cycle. 



5.2 Core Testing Processes 189 

document
defect

raise defect  qualify
defect

set defect
. priority

 . severity

analyze
problem

implement
solution

acceptance
test

release
software

reopen
defect

test in req.
environment

defect
rejectednot a software defect

Close defect

Incident
detection

failed

 

Fig. 5.24 Defect life cycle 

A defect report should be produced on a daily or bi-weekly basis to track all ac-
tual defects with the focus on new and high-impact defects. The latter are critical 
bugs called “showstoppers” which could endanger the production signoff of the 
release under test or delay software shipping to the customer. The following fig-
ures show typical defect reports produced by TD/QC and the relevant attributes 
for defect tracking. 

 

Fig. 5.25 Tabular defects status report in TestDirector 



190 5 Test Processes 

 

Fig. 5.26 Defect details in TestDirector 

5.2.16 Compliance Testing Process (CTP) 

The sensitivity of IT applications to Sarbanes-Oxley and other regulations is of 
crucial importance for IT today; this will be discussed later in Sect. 9.1.3. The core 
IT processes must therefore be enhanced accordingly to determine how well they 
are performing; this is particularly the case for testing. It is recommended to use 
the COBIT framework of IT General Controls to achieve this objective. 

In creating a compliance testing process, you should follow six discrete steps: 

Step 1: Define the control environment 
 In this step, you define the IT Global Control (ITGC) activities as required by 

your company’s business operations. Each ITGC activity is given a set of at-
tributes, such as control frequency (weekly, monthly, or yearly), whether the 
control test is executed manually or automated, and the number of items to 
test. 

Step 2: Define the testing plan 
 During test planning, you determine the test objective. You also set the allow-

able deviation rate of the test, used during the results evaluation to determine 
whether or not the objective being tested has, in fact, been met. You translate 
ITGC activities into specific test steps and document the expected results. 



5.2 Core Testing Processes 191 

Step 3: Define the test execution 
 After you have planned the tests, you must lay out the specifics of their execu-

tion. In this step, you determine the period under test (e. g., Q3 of this year), 
and the number of test runs required to achieve the minimum sample size. Fi-
nally, you lay out the details of the actual execution, such as the execution 
time, the tester’s name, and so on. 

Step 4: Execute the testing 
 Next, you execute the tests. You select samples from the predefined popula-

tion, based upon the period being tested, and then observe and record the re-
sults of the tests. 

Step 5: Evaluate the results and develop a remediation plan 
 Following the test execution, you evaluate the results. Figure 5.27, a part of 

COBIT, helps you determine whether or not the test objective was met. Look-
ing at factors such as the deviation rate and existence of exceptions, you de-
termine whether or not a control deficiency exists. If so, you create a remedia-
tion plan. This plan covers items such as new policies and procedures, or the 
additional education and training of relevant individuals. 

Step 6: Perform a final evaluation 
 Finally, you retest and re-evaluate those items covered by remediation (as in 

Step 5). For items that are still deficient, you evaluate the severity of the defi-
ciency, as shown in Figs. 5.27 and 5.28. 

Examine and understand causes and results
of exceptions. Was the objective met (e.g., was
the actual deviation rate less than or equal to
the planned deviation rate)?

Considering the results of management's and the
auditor's testing and the information obtained in
Box 1, could additional testing support a conclusion
that the deviation rate or observed exception is
not representative of the total population?

Extend testing  and re-evaluate. 
Was the objective met?

Control deficiency

Individual boxes should be read in conjunction 
with the corresponding guiding principles

Evaluating Exceptions Found in the Testing of Operating Effectiveness
                                          Version 3,  December 20 , 2004

Source: HP/Mercury  

Box 1

Box 2

Box 3

Yes

No

Yes

No

Negligible exception.
Not a control deficiency.
No further consideration needed

 

Fig. 5.27 Evaluating exceptions 



192 5 Test Processes 

Are the complementary or redundant ITGCs that 
were tested and evaluated that achieve the same 
control objective?

Are the control deficiencies at the application level 
evaluated in Chart 2 that are related to or caused
by the ITGC deficiency?

No

Are the control deficiencies at the application level 
related to or caused by the ITGC deficiency 
classified as only a deficiency?

No

No

Are the control deficiencies at the application level 
related to or caused by the ITGC deficiency 
classified as a significant deficiency?

No

Material weakness

Yes

Yes

Does additional evaluation
result in a judgement that
the ITGC deficiency is a
significant deficiency?

               OR

Would a prudent official
conclude that the ITGC
deficiency is a
significant deficiency?

No

Yes

Yes

significant deficiency

No deficiency

Individual boxes should be read in conjunction 
with the corresponding guiding principles

Framework for Evaluating Control Exceptions and Deficiencies
                                          Version 3,  December 20, 2004

So
ur

ce
: H

P
/M

er
cu

ry

Box 1

Box 2

Box 3

Box 4

Box 5

 

Fig. 5.28 CED evaluation 

This decision tree is to be used for evaluating the classification of information 
technology general control (ITGC) deficiencies from the following sources: 

• ITGC design effectiveness evaluation 
• ITGC operating effectiveness testing (from Fig. 5.27) 
• ITGC design or operating deficiencies identified as the result of application 

control testing (from Fig. 5.28). 

(Source: HP/Mercury) 

5.2.17 Distributed Testing 

Definition 

Distributed testing is the process of executing test projects by utilizing two or 
more teams in separate locations. 

The goal of distributed testing is to detect potential problems in application de-
sign that could inhibit the deployment of a solution nationwide or globally. It 



5.2 Core Testing Processes 193 

makes sure that the code can handle all international support without breaking 
functionality that would cause either data inaccuracies or wrong results and user 
problems. Distributed testing checks proper end-to-end functionality of the prod-
uct with any of the culture/locale settings. It puts the focus on potential problems 
that could arise from local data mapping issues, run-time environment and time-
zone issues (e. g., calendar table management). 

Proper functionality of the product or solution assumes both a stable compo-
nent that works according to design specification, regardless of international envi-
ronment settings or cultures/locales, and the correct representation of data. Most 
globalization problems found by testing occur when East Asian languages support 
is active or when the OEM code page differs from the ANSI code page for a given 
culture/locale. 

To test an international solution, multiple language groups must be installed  
on the client PCs and a distributed network with a mixed environment is properly 
set up. Put greater importance on TCs that deal with the input/output of strings, 
directly or indirectly. Test data must contain mixed characters from East Asian 
and European languages, including complex script characters if needed. (Source: 
Microsoft) 

A distributed TC consists of two or more parts interacting with each other but 
processed on different systems geographically apart. In simultaneous testing, dif-
ferent TCs components are being carried out on different system environments, 
but all TCs contribute to a single, common result. The interaction between TC 
components makes distributed testing so much different and challenging. The test 
results must also be validated and consolidated in a coherent way for reporting. 

Defect tracking managed by distributed test teams necessitates a standardized 
setting – common attributes and lists – to run the multi-location ITC process suc-
cessfully and to be able to consolidate and aggregate the test results without omis-
sions or errors. See Sect. 6.2, for more details about project setting. 

The TPM Network 

An integrated test platform is of central importance to allow remote test groups 
and project teams to work together efficiently and to exchange test artifacts and 
test results independently of geographical constraints. 

I had positive experiences working with TestDirector from Mercury in a large 
international project, involving hundreds of users working with multiple project 
instances in Europe and in the USA. In this case we are speaking about networked 
Test Platform Management (TPM or nTPM). 

The TPM network is an implementation scheme of multi-location testing based 
on: 

• 1 Meta project (Product/solution governance) 
• 1 Master project (Testing governance) 
• n Associate projects (Remote testing) 



194 5 Test Processes 

Meta Project

Master Project

TPM 2

TestDirector  

Product/Solution
    Governance

   Product/Solution
Delivery & Maintenance

TPM 5
TestDirector  

Associate Projects

TPM 3
TestDirector  

TPM 4
TestDirector  

TPM 6
TestDirector  

Multi-location 
     Incident Tracking 
         and Channeling
                (ITC)

Distributed Testing Domain

TPM 1

TestDirector  

Cross-Reporting 

 

Fig. 5.29 TPM network 

All associate projects report the test results via central reporting (cross reports) 
to the meta project. They also report incidents and raise defects to the master pro-
ject in charge of the product quality. The master project solves the problem(s) and 
communicates to the associate projects the bug fixing and delivers the adequate 
software patches to be retested for final acceptance locally. The associate projects 
are distinct and autonomous TestDirector instances installed abroad but with a 
common setting regarding main attributes and the lists used in the TPM network. 
Figure 5.29 illustrates this testing network configuration. 

As organizations become more networked, lateral and cross-over communica-
tion increase. Distributed testing can be organized with a centralized coordination 
or globally integrated. This is the more challenging aspect of distributed testing: 
collaborating across borders and time zones, by harmonizing people’s work, proc-
esses, methods, and tools. 

Hence, methodologies, processes, and rules must be standardized and docu-
mented to be repeatedly implemented in test organizations abroad, enabling a 
common understanding of the testing approach, coupled with interactive commu-
nication over the testing network. 

It is strongly recommended to formalize test infrastructure and support services 
availability via a service level agreement (SLA) accepted by all test projects. Con-
tinuous process improvement and CMM compliance should be promoted as best 
practices in an international project context. 

Benefits of Distributed Testing 

Distributed testing leverages the reduction in development costs (the offshoring of 
test centers) and shortens the time to market. It is a mainstream process and a 



5.2 Core Testing Processes 195 

vehicle for a global collaboration. It is also a scalable process which allows a 
closer contact to customer with a global presence. 

IT Offshoring and Outsourcing 

Offshoring and outsourcing information systems operations, software develop-
ment, and testing is a market with an annual growth of almost fifteen per cent 
measured over the last ten years. In Europe alone, this market has a volume of €60 
billion annually and is increasingly steadily. 

Companies expect the following benefits from this approach: 

• Reduced costs (43%) 
• Concentrating on core competencies (35%) 
• Increasing profits (33%) 
• Using expertise not available in-house (32%) 
• Improving operational efficiency (27%) 
• Gain access to core technologies (25%) 
• Eliminating internal problems with the IT function (24%) 

Bringing software to the customer faster at reduced costs is an important busi-
ness driver, but if testing is outsourced the wrong way, it could be a risky en-
deavor paved with pitfalls, misunderstandings, and failed expectations. Factors 
contributing to successful offshoring of test operations include: 

• Having experienced project management and testers 
• Establishing a trusty cooperation 
• Defining clear roles and responsibilities 
• Using the latest TA technology and methodology 
• Implementing networked test processes 
• Using appropriate tools enabling cooperative work 

Some of these factors are determinant to generate a positive return on invest-
ment: 

• Project management: Earned added value (EVA) and Test progress report-
ing (TPR) are state-of-the-art management methods to evaluate objectively 
and accurately the progress of work and the quality of deliverables in speci-
fied time lines. 

• Technology: Advanced TA methodology is a critical success factor for sub-
contracting testing work abroad. In my opinion, model-based testing (MBT) is 
the most promising approach to subcontract test execution but to keep full 
control by the leading team, where the expert know-how resides. 

• Test processes: Common core and support processes must be fully imple-
mented by all projects to enable efficient communication, collaborative work, 
and unified test progress reporting. The ITC process is the link which should 
federate all test teams inside the project by providing a networked communi-



196 5 Test Processes 

cation focused on a problem-solving approach, responsiveness, and transpar-
ency. The process maturity level of the entities involved in outsourcing pro-
jects plays in important role to succeed. If a CMMI level 5 company in India 
works with a CMMI level 2 company, problems are pre-programmed. In this 
case, an interface process should be worked out to overcome communication 
and procedural problems. 

• Tools: An integrated test platform (ITP) is absolutely required to support all 
test processes, manage test artifacts, produce aggregated reports, document 
the test results, and to provide a permanent communication link to all test 
teams involved in the project(s). In Chap. 6, we explain in detail the powerful 
features provided by TestDirector for Quality Center, the leading ITP on the 
market. 

Last but not least: the human factor and the project culture will influence con-
siderably the project outcome. If you train the people on the new test technologies, 
processes and tools properly, you will have motivated team members generating a 
positive return on investment. Minimizing cultural differences by developing 
mutual understanding and trust will lead to good results and satisfaction for all 
parties involved. 

5.3 Test Support Processes 

5.3.1 Document Management 

A common business function links all organizations and projects: document man-
agement. Reference papers, software specifications, training and user manuals, 
software artifacts, and deliverables in a project must be created, adapted, stored, 
and archived along their life cycle. Organizations and software delivery units 
which cannot manage formatted contents efficiently and effectively risk a great 
deal more than poor business performance. 

A loss of reputation can happen if incorrect archiving or the destroying of valu-
able documents is made public. Today, document management is an important 
process, because reports and test artifacts have to be complete and up-to-date to 
satisfy regulatory requirements (e. g., SOX compliance, Basel II). 

Testing documentation links people, activities, processes, methodologies and 
tools. This is the vehicle of information and collaboration per excellence. 

The facts are as follows: 

• Today, information workers spend up to 30% of their working day just look-
ing for data they need to complete a task. 

• They also spend 15–25% of their time on non-productive, information-related 
activities. 



5.3 Test Support Processes 197 

• Compliance increasingly dictates that every aspect of the life cycle of a docu-
ment is fully audited. 

• In regulated environments (e. g., financial services), the documentation of 
testing artifacts and test results is part of the control processes.  
(Source; Butler Group, 2007) 

In the IT world, documentation management is a complex matter because the 
documentation artifacts are organized along three dimensions: the HW platforms, 
the product life phases, and the artifact categories: 

• Platforms 
• Mainframes, midrange systems, and desktop computers 
• Product phases 
• Requirements – specifications – design – development – test – production 
• Categories 
• Standards – processes – services – tools 

Figure 5.30 illustrates this three-dimensional space. 

Creating Documentation 

Documentation artifacts should be clearly written, understandable, relevant, and 
communicated to the right audience. Policies, procedures, standards, and support-
ing controls must be relevant to the organization and its compliance/governance 
requirements. Policies, procedures, norms, and standards must be timely and avail-
able in the most actual version to those having to comply with them. 

A technical documentation project is organized in following phases: 

1. Project definition: The terminology in use, target audience, purpose and style 
of the documentation to be created, scope of the project are defined. 

2. Launch phase: Information about the product to be described is gathered from 
different sources. Using the product is the best way to know more about it. A 
preliminary draft is proposed at the end of this period. 

Fig. 5.30 Documentation artifacts 

Solution requirements

Specifications

Design documentation

Development documentation

Test documentation

Operating documentation

S
ta

n
d

ar
d

s
P

ro
ce

ss
es

S
er

vi
ce

s
T

oo
ls

Platforms

IT
 P

h
as

es



198 5 Test Processes 

. Terminology

. Audience

. Purpose

. Style

Outline
submitted

1st draft
submitted

2nd draft
submitted

Final Draft
published

Final draft
approved

Project Definition Launch Phase Review Phase QA Phase Completion Phase

. Feedback

. Corrections

. Review structure

. Learn product

. Draw graphics

. Gather Information

. Feedback

. Proof reading

. QA Check

. Indexing

. Pagination

. PDF generation

. HTML

. Web Help

100%

C
om

pl
et

io
n 

gr
ad

e

50%

75%

25%

On-line
Help

Technical documentation project

 

Fig. 5.31 Phases of a documentation project 

3. Review phase: Feedback from future users and from the technical committee 
is analyzed and corrections to the draft are made. 

4. QA phase: Proof reading and a QA check give additional inputs to enhance 
the documentation. 

5. Completion phase: The indexing, bibliography, pagination, final formatting 
are completed and a PDF document is generated. Additionally, an online help 
for Web publishing is also produced. At the end of this phase, the final docu-
ment is released. 

Figure 5.31 shows the project documentation flow. 

5.3.2 Information Channeling 

A documentation management process should ensure that the review, the mainte-
nance and the updating of policies, procedures, and standards take place on a regu-
lar basis to ensure that they are relevant to corporate governance, operational con-
trol, compliance, and technological norms. Outdated documents can generate 
additional costs to the organization. 

The Document Life Cycle 

From its creation to the end of its life, a technical document will be revised many 
times to reflect the software changes, enhancements, and adaptations which are 
driven by the technological evolution and influenced by business needs. Most 
reference documents have to be archived. All documents must be precisely identi-
fied. Figure 5.32 shows the document life cycle. 



5.3 Test Support Processes 199 

Draft

Rework

Approved
by

Publisher

Revision

Final draft Final
Approval

Proposal
rejected

Proposed

Archived

Published

 

Fig. 5.32 Document life cycle 

Information Channeling 

Research shows that globally at least 31 billion emails are sent each day, and  
that a typical 3,000-user email system handles more than 1 TB of message traffic 
annually. 

It is becoming increasingly difficult to locate information when it is needed and 
the increased use of email also generates a significant administration overhead for 
server administrators. Users don’t want to discard messages, and there is a con-
stant struggle to provide adequate storage space without compromising system 
reliability. In the testing area, the ability to comply with regulatory and legal re-
quirements increase the pressure to channel and store information about test assets 
correctly and in a timely manner. 

In a large IT project information about test activities and test objects is gener-
ated and transmitted through multiple channels: 

• Email address book 
• Project Web site 
• Cellular phones (conversation + SMS messages) 
• HR directory (who’s who) 
• Portable devices 
• Corporate voice directory 
• Mobile device directory 
• Shared boxes on servers 
• Team workspaces 
• Word documents 
• Excel sheets 
• PDF documents 
• Others 

Figure 5.33 shows the diversity of the digital artifacts exchanged, stored, and 
manipulated by the intervening team members and other actors in testing. 



200 5 Test Processes 

Information & test artifacts managed in the test platform

Hot fixes

Artifacts versioning

Release flashes

Business

  TestDirector
          for
Quality Center

    Regular 
fixes

TCs
Scripts

   SW 
  package
flashes

     Change
Management

      SW
Integration

    installation
notes

    Solution
Management

SWC  metadata

Test cases

 Analysis

       Build
Management

        SW
Development

       SW
package
 delivery

  Testing   TSM
      Test
Monitoring

Incidents
Defects

     release
  structure
& contents

 

Fig. 5.33 Information channeling 

In Sects. 6.1 and 6.2, we discuss the many advantages offered by the ITP tech-
nology. The email function in TD/QC is available in all modules and can be cus-
tomized in two different ways: role- and rule-based. 

• Role-based communication: In role-based communication, a group of users 
with a given profile will be the recipient of the messages. Standard users in 
TD are: test managers, test engineers, QA testers, build managers, and devel-
opers. Roles and user groups are defined using the TD’s administration func-
tion for users. 

• Rule-based communication: Transition rules activate the sending of email to 
the roles in the TD project. A transition rule is applied to test artifacts in order 
to trigger some action and an email will be sent to the different recipients. In 
defect tracking, for example, if the defect status changes, the defect raiser will 
be automatically informed and other people involved in the defect solving 
process as well. 

The attributes which need to be activated individually are: 

• “assigned to” (the solver of the defect) and 
• “detected by” (the raiser of the defect). 



5.3 Test Support Processes 201 

transition rules in project
setting enable role-based
       communication

Business
 Experts

Configuration
    Manager

       SW
Integration

Manager

   Solution
  Managers

 Analysts

       Build
    Manager

Developers

    Test
Engineers

    Test
Managers

        SWC
    Managers

  TestDirector
          for
Quality Center

 

Fig. 5.34 Information channeling – role-based communication 

But, we can also define rules to other attributes like “defect priority,” “defect 
severity” (important to track showstoppers), and the like. The ITP`s in-built func-
tionality enables you to manage all test assets, information, and data very effi-
ciently; this helps all the roles working and interacting in the test domain to better 
focus on their day-to-day duties. The number of roles required in a large software 
project is impressive, as you can see in Fig. 5.34. 

TD/QC provides also an integrated workflow function, which can be custom-
ized like the email function. Combining all these features is the key to addressing 
complex cross-communication issues in multi-location testing, involving distrib-
uted testing teams in multiple geographic areas. 

The dominancy of digital information channels should not obliterate the impor-
tance of document-based communication to ensure an audit trail over all project 
activities. All the test-related documentation and information is critical to meeting 
auditing requirements, and any ad-hoc risk management reviews which may take 
place. 

Release and software package flashes are important communication vehicles as 
well and they should be promoted and communicated to the roles having to know 
about it. A release flash template can be found in Appendix A.1.3. Business 
should provide a release flash at the start of a new software release to document 
the requirements which are important and risky. This information will be then 
stored in the test artifacts for better control and efficient risk management. 



202 5 Test Processes 

5.3.3 Training/Skills Improvement 

For many years, I wrote in-house manuals and taught software testing and IT 
processes to a wide range of professionals: engineers, managers, auditors, and 
business experts. From my experience, I can give you some recommendations to 
gain more expertise in this field and to create real value. 

Firstly, you should know the basics of software testing; a certification as a test 
engineer is the first step in the right direction (for more information, see the end of 
this chapter). 

Secondly, you should understand the interaction of the different tools in the test 
framework – from requirements management to test automation. Thirdly, try to 
acquire an in-depth knowledge about the nature of the test artifacts in your project, 
the test processes supported by the integrated test platform, and the role-based 
transition rules used to manage the test artifacts in your project. Fourthly, don’t 
hesitate to ask the most basic questions because you risk only one thing: to know 
more! 

Integrated Test Platform Training 

Testing platforms are sophisticated tools integrating many functions. It is strongly 
recommended to learn the basics first and to take an advanced training after some 
practice time. 

TestDirector courses are the most popular in large organizations and institu-
tions. I designed and teached basic and advanced courses following this schema: 
TestDirector for Quality Center – Basics 

1. Requirements 

− Creating and defining requirements 
− Building a requirements tree 
− Monitoring the status of requirements 

2. Test Planning 

− Building a test plan tree 
− Creating tests 
− Designing test steps 
− Building test sets 
− Linking tests and requirements 
− Monitoring the status of test plans 

3. Test Execution 

− Building a test sets tree 
− Creating test sets 
− Organizing tests in a test set 
− Defining and scheduling test execution flows 



5.3 Test Support Processes 203 

− Configure automated test rerun and cleanup rules 
− Executing manual and automated tests 
− Recording and reviewing test execution results 
− Monitoring the status of test sets 

4. Defect Tracking 

− Opening defects 
− Searching and reviewing defects 
− Associating defects to other entities 
− Updating a defect 
− Tracking the status of defects 

5. Test Reporting and Analysis 

− Designing reports and graphs 
− Generating reports and graphs 
− Publication of test results 

Advanced courses must be customized to each project environment to address 
specific topics. Here is a real-life example of training provided to ITP’s users in an 
international project: 

TestDirector for Quality Center – Advanced 

1. TD functionality 

− The Requirements module 
− The TestLab module 
− The TestPlan module 
− The Defect module 
− Reports and graphs 
− Favorites 
− Mail function 
− Alerts 

2. TD project setup 

− System attributes 
− User attributes 
− Project attributes 
− Project entities 
− Project lists 

3. Test automation 

− Script management 
− Tool integration 

4. Implementing test processes 

− Incident tracking and channeling 
− Information channeling 



204 5 Test Processes 

− Multi-location ITC 
− Requirements management 
− Risk management 
− Test artifacts management 
− Test set management 
− Test runs 
− Test progress reporting 
− Results analysis 

5. Project status publication on the Web 
6. SOX compliance in TestDirector 

More training courses dedicated to test automation can be developed. 

5.3.4 Software Testing Certification 

Getting the ISTQB certification as a test engineer or test manager is a valuable 
investment for your professional career, because the ISTQB® certification is rec-
ognized worldwide. It is organized in modules as follows: 

ISTQB® Certification – Foundation Level (CTFL) 

The exam for the Test Engineer Foundation Level has a more theoretical nature 
and requests for knowledge about the software development area – especially in 
the field of testing. 

Premises: the Foundation Level exam has no premises. 

ISTQB® Certification – Advanced Level 

The different Test Manager Advanced Level exams are more practical and they 
deepen the gained knowledge in special areas. Test Management deals with the 
planning and control of the test process. Functional Tester is concerned, among 
other things, with reviews and black box testing methods. Technical Tester looks 
into the subject component tests (also called unit tests), where they use white box 
testing methods and nonfunctional testing methods, and also includes test tools. 

Premises: to take the Advanced Level exam, candidates need to pass the Foun-
dation Level exam first and must prove having at least 60 months of professional 
experience (in USA). In India, it is 24 months and in Germany, it is 18 months. 
[Wikipedia] 



5.4 Test Neighbor Processes 205 

ISTQB® Certifications 

• Foundation Level (CTFL) 
• Advanced Level – Test Manager (AL) 
• Advanced Level – Functional Tester (FT) 
• Advanced Level – Technical Tester (TT) 
• Advanced Level (CTAL) – Full Advanced Level (after passing the above 

Advanced Level exams) 
• Expert Level (in preparation) 

5.4 Test Neighbor Processes 

The peripheral processes influencing test readiness, test evolution, and test results 
are linked or partially embedded in the core processes. For this reason, we exam-
ine briefly here the aspects of these peripheral activities impacting testing and the 
ITP management processes. 

5.4.1 Specifications Review 

We examined this important micro-process in Sect. 5.2.8. This is, quite frequently, 
the missing link between BU and IT analysis and SW development in most pro-
jects, which causes costly errors, resulting in faulty code and insufficient software 
quality. 

5.4.2 Software Package Build 

A software build is the process of constructing usable software components from 
original source files (e. g., code). This the is achieved by combining two parts: the 
source files and the tools to which they are input. 

Typically, the build process includes the following activities: 

1. Identifying the items that needs to be built 
2.  Executing the build commands 
3. Sending the build output to a log file 
4. Reviewing the build results 
5. Addressing any build issues 
6. If no error is detected, label the version of the code used for the successful 

build. 



206 5 Test Processes 

Repeatability of the results produced is mandatory in this process. That means 
that, given the same source files and build tools, the resulting product must always 
be the same. To ensure repeatability, the setup procedures should be automated in 
scripts. Build objects should not be mixed with source code files, but stored into a 
directory tree of their own, easily identifiable with a unique naming. 

It is recommended to produce frequently end-to-end builds to use with regres-
sion tests because this habit produces two major benefits: 

• It provides early detection of integration problems introduced by check-ins 
• It produces built objects that can be used “off the shelf” by the development 

team. 

Documentation should guarantee the traceability of the software builds of a 
given product over time. Deliverables should include a package software flash 
published in synchronization with the test planning, describing manual setup steps, 
prerequisites, tool specifications (including OS type), and compilers, including 
files, SQL procedures and scripts, link libraries, make programs, environment 
variables and execution paths. 

A frequent cause of problems with package builds are missing or incomplete 
build instructions, overlooked or outdated build artifacts (e. g., makefiles, setup 
scripts, build scripts) and tool specifications. Other points to check are the avail-
ability of up-to-date database grants and security authorizations to access the re-
quired IT resources at the time of the build. In large software projects, software 
components are handed off from one SWC group to the other, and the receiving 
SWC group needs to know exactly the history of previous build logs in order to 
diagnose integration problems. Communication and an up-to-date documentation 
are the right answer to avoid a typical real-life problem with software package 
build defects, which is discussed further in this section. 

The packages delivered to testing must be registered in the central test reposi-
tory to allow defect tracking and to verify the right implementation of the software 
components under test. For this purpose, a customized project list containing soft-
ware package identifiers must be created and maintained in TD/QC by the site 
administrator. The information concerning new packages is communicated to the 
test managers and to the TD/QC’s site administrator by the role “Software Build 
Manager”. 

5.4.3 Software Build Manager Role 

This role is responsible for the following technical aspects of the configuration 
management: 

• Assembling software fragments for a J2EE application 
• Delivering test subjects 



5.4 Test Neighbor Processes 207 

• Ensuring regular SW administration (versioning, check in/out) 
• Executing a second package freeze 
• Executing automated entry tests 
• Giving installation orders for systems integration 
• Initiating software re-delivery 
• Package definition and production 
• Packaging audit and freeze 
• Producing installation jobs 
• Publishing guidelines for software distribution 
• Publishing services 

Problems with the package build arise frequently because the build process is 
largely depending on the delivery capability of different units, which can be af-
fected negatively for different reasons. Good communication principles and clear 
procedures should help eliminate basic incidents. 

Using the Ishikawa diagram to analyze package build incidents helps to analyze 
process failures and identify their causes. The Ishikawa diagram in Fig. 5.35 
shows cascading causes of a defect in the software package build process occur-
ring at various stages: 

• Procedure A – package preparation 

 1.  database grants were not updated  
2.  recompilation was done incompletely 

• Procedure B – Package build 

 3.  database grants generate failures  
4.  software components are in the wrong sequence 

• Information 

 5.  Team 1 did not informed Team 2 about the issues. 

As a result the package build goes in error. 
We learn from this example that: 

• Procedures must be up-to-date and applied consequently 
• Each step completion requires a quality control 
• Adequate information and communication help to avoid unnecessary prob-

lems. 



208 5 Test Processes 

 S
W

 P
ac

ka
ge

s
Pr

ob
le

m
s

S
et

 d
at

ab
as

e 
gr

an
ts

D
B

 g
ra

nt
s 

fa
ilu

re

 S
W

 c
om

po
ne

nt
s 

ar
e 

in
w

ro
ng

 s
eq

ue
nc

e

P
ac

ka
ge

 b
ui

ld
 s

ta
rt

Pa
ck

ag
e 

bu
ildPR

O
C

ED
U

R
E

 B

P
ac

ka
ge

 b
ui

ld
co

m
pl

et
ed

pa
ck

ag
e 

bu
ild

 fa
ilu

re
 re

m
ai

ns
un

de
te

ct
ed

ef
fe

ct

ca
us

e

Te
am

 2
is

 re
sp

on
si

bl
e 

fo
r

qu
al

ity
 c

on
tro

l i
n

pr
oc

ed
ur

e 
B

Te
am

 1
is

 re
sp

on
si

bl
e 

fo
r

qu
al

ity
 c

on
tro

l i
n

pr
oc

ed
ur

e 
A

PE
O

PL
E

In
fo

rm
at

io
n

 T
ea

m
 1

sh
ou

ld
 c

om
m

un
ic

at
e

re
su

lts
 o

f p
ro

ce
du

re
 A

to
 T

ea
m

 2

C
oo

pe
ra

tio
n

Te
am

 2
is

 n
ot

 fu
lly

 in
fo

rm
ed

ab
ou

t t
he

 re
al

 s
ta

tu
s

Ex
ce

pt
io

n 
ru

le
 h

an
dl

in
g

R
ec

om
pi

la
tio

n 
of

 a
ll

S
W

 p
ac

ka
ge

s 
is

m
an

da
to

ry
In

ac
tiv

at
e 

so
m

e
da

ta
ba

se
 c

om
po

ne
nt

s
be

fo
re

pa
ck

ag
e 

bu
ild

C
O

N
ST

R
AI

N
TS

in
fo

rm
at

io
n 

de
ss

im
in

at
io

n 
no

t f
oc

us
ed

S
et

 d
at

ab
as

e 
gr

an
ts

D
B

 g
ra

nt
s 

su
cc

es
sf

ul
ly

se
t

V
er

ify
 if

 S
W

 c
ha

ng
es

ar
e 

O
K

V
er

ifi
ca

tio
n 

is
su

cc
es

sf
ul

re
co

m
pi

le
 a

ll
co

m
po

ne
nt

s

Pa
ck

ag
e 

pr
ep

ar
at

io
n

D
B

 g
ra

nt
s 

no
t r

em
ov

ed

PR
O

C
ED

U
R

E
A

re
co

m
pi

la
tio

n
do

ne
 b

ut
 in

co
m

pl
et

e

D
B

 g
ra

nt
s 

is
 th

e 
ca

us
e 

of
 fa

ilu
re

 in
pr

oc
ed

ur
e 

B

Fi
g.

 5
.3

5 
Is

hi
ka

w
a 

– 
m

ul
tip

le
 p

ro
bl

em
s w

ith
 fa

ul
ty

 p
ro

ce
du

re
s 

 



5.4 Test Neighbor Processes 209 

5.4.4 Software Package Installation 

To reach the test readiness “on time and schedule” in each test environment – 
according to the test scenarios defined in the test planning – software delivery 
must be documented and communicated properly. This is the task of the SWC 
manager, who publishes a SW package flash on a regular basis, emailed to a re-
stricted audience (e. g., test team leaders, test managers, and TD/QC administra-
tors). Periodically, the project office should produce a release flash, including the 
latest information about all software packages installed and running in all test 
environments to date. See Appendix A.1.3, which shows the table of contents of 
such a document. 

5.4.5 Release Management 

Release management is not a turnkey process; it relies upon and feeds other proc-
esses. Precise goals must be set to bundle a software release such as: 

1. A high quality release 
2. A repeatable process for deploying releases 
3. Quick and accurate release builds 
4. Cost-effective releases 

Most of the time business sponsors will put top priority on cost aspects. 
Wikipedia explains the RM challenge in these terms: “Embarking on a Release 

Management project is not for the faint of heart. Failing to find a dependable pro-
ject sponsor will be your ticket to defeat. If you find that you do not have any 
subject matter experts (SMEs) in the field of RM this is not the time to go it alone. 
Anyone with an ITIL background helping with release issues should also be able 
to demonstrate previous experience with the software development life cycle, QA 
disciplines, or software configuration”. 

5.4.6 Test Data Management 

For the vast majority of requirements, test data is required to run tests for multiple 
test scenarios in all test phases; see Sect. 4.2.4 for more details. During the re-
views of the software specifications, the data profiles for each TC should be 
documented and the availability of data for each environment should be checked. 



210 5 Test Processes 

5.4.7 Risk Management 

Testing large and complex information systems necessitates a strong risk man-
agement framework to mitigate and to prevent that potential risks materialize. In 
Sect. 9.1 we investigate in full length the most important aspects impacting testing 
directly: 

• The scope of IT risk management 
• Risk-based testing 
• Risks related to compliance 
• Limitations of risk management 
• Impact of international regulations on IT 
• Implementing Sarbanes-Oxley in TestDirector for Quality Center 

The latter point is of special interest for companies developing software in the 
finance industry. 

 



 

211 P. Henry, The Testing Network, 
© Springer 2008 

Chapter 6  
Test Platforms and Tools 

6.1 The Integrated Test Platform 

To test today’s large-scale information systems, a wide range of testing artifacts 
must be created, adapted, and reused in various test scenarios, in multiple test 
environments. These items are identified as: 

• test requirements 
• test plans 
• test data 
• test cases with attachments 
• test sets 
• test scripts 
• test results and referenced documentation. 

These test assets must be maintained and archived for long periods of time and 
for all product releases of a given software solution and its components. 

A centralized repository is therefore necessary to enable all testing teams in a 
single project, in multiple projects, or in a testing network to communicate effi-
ciently and to collaborate successfully over time and geographical barriers. 

Users outside the project (e. g., stakeholders, external, and internal audit) must 
be able to view, to use, and to enrich the collective testing knowledge with mini-
mal redundancies. Test Director for Quality Center (TD/QC) from HP/Mercury is 
the leading integrated test platform (ITP) on the market, used by more than 75% of 
Fortune 500 companies. I had positive experiences managing and using exten-
sively TD/QC in both national and international contexts. In a global project, I 
managed over six hundred users working in multiple locations worldwide, across 
three time zones. TD/QC’s Web-based architecture enables the interconnection of 
distinct project instances working as an ITP network. 

The functional architecture of Test Director 7.6 is shown in the following  
diagram. 



212 6 Test Platforms and Tools 

  TA 
Tools

  MBT
 Tools

Test Results

Test Data

Capture/Import/Validation

Documentation/Publication

M
ai

n
te

n
an

ce
/U

sa
g

e Exp
ort/Exch

an
ge

Test Artifacts

Collaboration (workflow function)

Communication (Email function)

Main functionality

 

Fig. 6.1 Integrated test platform 

6.1.1 Benefits of an ITP 

An integrated test platform offers a wealth of features and functionality: 

1. Auditability: All test artifacts, test results, and documentation about test acti-
vities are permanently and seamless documented for audit and SOX reporting. 

2. Compliance: Test artifacts and test results can be archived according to SOX 
rules. 

3. Traceability of defects: A history option can be activated for many database 
attributes, giving traces of changes over time. 

4. Integrated artifacts management: A wide range of testing artifacts can be 
reused for all test scenarios: test data, test cases, test sets, test scripts, test re-
sults, and test documentation. Test objects can be exported to other projects or 
made available to other testing sites (distributed testing). 

5. Global collaboration: A centralized test repository enables all project mem-
bers to create, use, enrich, and share the collective testing knowledge effi-
ciently and in a timely manner. Global testing teams can access easily com-
mon test assets (over time zones) around the clock. The functionality that an 
ITP offers makes distributed testing on a large scale realizable. 

6. Documentation: An ITP supports efficiently the documentation process of all 
test assets stored centrally but available for distributed testing teams as well. 

7. Publication of test status: Test status and test results can be viewed on-line, 
and test reports can be produced on demand or directly published on the Web 
in tabular form or graphically. 



6.1 The Integrated Test Platform 213 

8. Information channelling: Email functions can support efficiently the ITC 
process (defect tracking) and other test activities with ITP attributes triggering 
the automatic sending of messages reflecting the actual test status. 

9. Test artifacts linkage: In the ITP database all test objects are linked together: 
test requirements – test cases – test sets – test runs – test results. 

10. Wider testing: Ultimately, faster and better means of creating and maintain-
ing data, and wider sharing and use of testing resources in a centrally held re-
pository can only amount to one thing – a better overall use of your testing 
and development resources. Faster, more efficient testing means that you have 
the opportunity to widen the scope of your testing. If you build a test case 
stored set of predefined test cases and test data to run with them, you know 
that a particular test process will test everything it has been set up to test, 
every time. And when the scope of the test process needs to be expanded, to 
accommodate new features and functions in an application, for example, you 
can add to and build on your existing knowledge base. In this way, your test-
ing can grow and develop along with your applications. And the more that 
you fine tune the testing, the better the quality and coverage will be. As you 
build and develop the testing during multiple test runs, coverage and effi-
ciency increase continuously. 

Test Process Support 

TD/QC supports all test processes seamlessly, as shown in Fig. 6.2. 

TD Project

TCMRQM

Test reporting Web Publication

Documentation Information channelling

ITCTRM

Artifacts management

Structure management

Standard reports
Customized reports

Standard graphs 
Customized graphs

Realtime test situation 
 

Fig. 6.2 Test process integration in TestDirector 



214 6 Test Platforms and Tools 

6.1.2 Test Platform Management 

The many roles in the test project and their extensive communication needs was 
covered in the discussion held about information channelling (see. Figs. 5.33 and 
5.34). But this is only the tip of the iceberg, because many more functions have to 
be run to support the full range of the test processes. The power of an ITP is 
needed to address all of these requirements. Let us take a look at the test platform 
management as a whole: functions, tasks, interfaces and more. 

TP Functions  

A test platform (TP) integrates the extended functionality required to efficiently 
manage all test activities and to run the test processes (e. g., RQM, TCM, TRM, 
ITC): 

• Administrate project users 
• Assign and maintain roles 
• Customize attributes in the different modules 
• Define and maintain project entities 
• Import requirements 
• Create and maintain the TP structure 
• Create, control, maintain, validate, and use data 
• Create, control, maintain, validate, and use test artifacts 
• Run the test processes 
• Analyze test results 
• Measure test progress 
• Publish test results 
• Track defects 
• Exchange information and test artifacts 
• Interface to other tools (e. g., RQM and MBT tools) 

Figure 6.3 gives an overview of the TP main functionality. 
In a global test project, interface requirements are generated by a number of so-

lution domains and standard applications (e. g., SAP), impacting or/and interacting 
with the solution to be tested. 

The TP manager should be aware of the fact that managing cross-requirements 
is a complex micro-process which necessitates a close collaboration with the solu-
tion managers and software component managers working in different business 
domains. In practice, requirement management tools (RMTs) generate and admin-
istrate requirements outside the test project itself. As a consequence, your ITP 
must be capable of interfacing with these tools to download interface requirements 
correctly and timely. Such downloads are automatic and directly impact the local 
TP (structure synchronization). 



6.1 The Integrated Test Platform 215 

A tight control is therefore needed from both a technical point of view (the im-
porting of the requirements + adapting the local TP structure) and also from an 
organizational perspective (coordination with other test projects). Figure 6.4 
shows the influence of interface requirements in a TP network. 

TestDirector 
Information

TestDirector 
      Data

Control/Use

Validation

M
ai

n
ta

n
an

ce C
reation

TestDirector 
   Structure

Publication of test results

Requirements import 

Inform
ation

C
ol

la
bo

ra
ti

on

Test Platform Functions

 

Fig. 6.3 Functional architecture of a TP 

Meta Project 1

Master Project

TPM 2

TestDirector  

Solution Domain
            A
    

   Product/Solution
Delivery & Maintenance

Interface Requirements Import

TPM 1

TestDirector  

TPM n
TestDirector  

Meta Project 2

Solution Domain
             B

SD Requirements L
oad

 

Fig. 6.4 TPM interface requirements 



216 6 Test Platforms and Tools 

TP Management 

In practice, few team members in the project assume the role of TP managers with 
appropriate administrator rights. It is necessary to have a tight control over the 
structure and contents of the integrated test platform to ensure the auditability of 
the test artifacts and test results. More information about a TP’s administration can 
be found in Sect. 6.2. 

The TP manager is in charge of administrative tasks to set up and run the tool 
but he assumes also a central support function to assist users of the test platform in 
their daily work. As an experimenting testing professional, he will be often asked 
to design courses and give training sessions to the TP users. This transfer of know-
how is a key element for efficient testing. 

It is strongly recommended to establish a TP user group which can give feed-
back about a user’s needs and improvements of the test processes. Users can also 
suggest or require technical enhancements regarding the test platform functional-
ity. The different tasks carried out by the TP user group and the TP manager are 
shown in Fig. 6.5. 

More entities and partners play a role in managing and using the test platform, 
as illustrated in Fig. 6.6. 

 Tasks

Know-How Building

User Support

TP Content 

TP Structure 

publish

User Group

TP Manager
manage

control

plan

Training

Testing Basics TA Basics
TA Advanced

MBT

Rules & Standards

Documentation

TP Manuals

control

Problem Solving

Roles

 

Fig. 6.5 TPM tasks 



6.2 TD for QC 217 

TPM

TestDirector  

Requirements
Management

   
Ch

an
ge

Ma
na

ge
m

en
t

Central
Support

Central
Training

    Release 

Managem
ent

Us
er

 G
ro

up
s

End  Users

    Tools providers

Entities and partners working in the TPM context  

 

Fig. 6.6 TPM interfaces 

6.2 TD for QC 

In the previous chapters, we discovered the many features and advantages offered 
by an ITP enhanced with the appropriate test automation tools. We now look at 
TestDirector for Quality Center (TD/QC) from HP/Mercury, whose functionality 
and organization are typical of an ITP. TD supports the core testing processes 
through a single Web-based application, as shown in Fig. 6.8. 

TD allows distributed teams to access testing assets anytime, anywhere via a 
browser interface and to manage manual and automated tests in a testing network. 

Each group can run tests locally or remotely, on any available machine on the 
network. Through the Host Manager, they can define which machines will be 
available for running tests and group them by task (functional or load testing), 
operating systems (Windows or UNIX), browser type, and version (Netscape or 
Internet Explorer), or by any other specification or configuration. With TD, testers 
can schedule their automated tests to run unattended, either overnight or when the 
test lab machines are in least demand for other tasks. (Source: Mercury/HP) 

TD enables project leaders and team members to analyze test progress and re-
port test results at any point in time, in a multi-location environment, as we will 
discuss later in Sect. 8.2. 



218 6 Test Platforms and Tools 

 
Fig. 6.7 TD logo 

 
Fig. 6.8 TD open test architecture 



6.2 TD for QC 219 

6.2.1 TD Staffing 

To run and maintain TD (or any ITP), a minimum staffing is required to cover all 
operational aspects of the testing framework. 

Table 6.1 illustrates the required skills for team members managing TD/QC, 
their responsibilities and ownership of key components. (Source: HP/Mercury) 

Table 6.1 Roles and responsibilities in TD 

Team member Requisite skills/Responsibilities/Ownership of key components 

Center manager Skills: Software Quality Assurance (SQA) experience and understand-
ing of HP Quality Center capabilities, implementation and operation  
processes, and in-depth knowledge of the graphs and reports module  
of HP Quality Center. 
Responsibilities: Lead HP Quality Center implementation assessment; 
promote HP Quality Center within the organization; confirm resource 
allocation. On the operations side, define test strategy and analyze HP 
Quality Center data for test process management and release decisions. 
Ownership: HP QC process ownership; coordination with business, 
test, and development organizations. 

HP Quality Center  
administrator 

Skills: Expertise in HP Quality Center administration. 
Responsibilities: Create and modify new projects, project groups, users 
and user privileges. Work with other teams and vendors on HP Quality 
Center integrations with other products. 
Ownership: Manage HP Quality Center projects initiation and archiv-
ing, customizations, and users. 

Test automation  
engineer 

Skills: Expertise in functional test automation. 
Responsibilities: Assist in conversion of manual test plan to automated. 
Design automated test infrastructure and test suite architecture.  
Develop, validate and execute automated tests. Analyze results  
if required. 
Ownership: Development of automated testing environment, auto-
mated test suite design and knowledge transfer to internal customers. 

Project manager Skills: Experience in project management and SQA. 
Responsibilities: Plan and manage projects delivered by the HP Quality 
Center team according to the requirements of the internal customers. 
Ownership: Test project planning and management, SLA reporting, 
and communication with internal customers 

6.2.2 TD Administration 

TD offers central functions to set up a test project, define project members with 
associated roles, implement transition rules, generate lists, configure the email 
function for alerts and defect tracking, and customize the workflow. 



220 6 Test Platforms and Tools 

 

Fig. 6.9 Administration functions in TD 

The standard roles defined as defaults in TestDirector include: 
• Viewer (read-only access to the project) 
• TD/QC Administrator 
• Test Manager 
• Chief Developer 
• Chief Builder 
• Chief Tester 
• QA Tester 
• Tester 

The roles can be assigned to user groups inside the project structure with cus-
tomized rights. In a large-scale project in the finance industry, I managed a TD/ 
QC test platform of 600+ registered users working in multiple geographical loca-
tions in an international context. Figure 6.10 shows a typical users’ community in 
a large-scale project. 

As you can see in this picture, external persons to the project – auditors and 
stake holders – can view and evaluate the project status fully unattended. For this 
reason, it is important to set high quality standards for test asset management to be 



6.2 TD for QC 221 

followed by all project’s participants. It is a matter of credibility and of respect for 
the compliance rules. 

For registered users, the login procedure requires a unique identifier (e. g., a 
personal ID) and a password assigned by the TD’s administrator. In TD 7.6, the 
TD administrator possesses all rights to modify the test project setup, TD’s struc-
ture, and contents. 

In multinational corporations, the standardization of roles and attributes can 
contribute to substantial cost savings, and support the setting of common test 
processes and the implementation of a global test reporting. Starting with Quality 
Center (TD 8.0 and higher), the test manager role owns extended rights to manage 
the test platform. It is recommended to have one team members have the two roles 
of site and QC administrator, to be the “gate keeper” and to insure the overall 
coherency of structure and contents in TD/QC. 

To satisfy compliance requirements (e. g., SOX), the delete function in all 
TD/QC modules can be deactivated. This feature helps to enforce the auditability 
and provides an audit trail of the modifications made to test artefacts. Module 
access and workflow functions can be adapted as needed, but the default setting 
should be right for most projects. 

User-defined attributes (non-standard) are only required to satisfy a very spe-
cific project’s needs (e. g., internationalization); project lists must also be cre-
ated/adapted accordingly. In a TD projects network, it is mandatory to define a 
standard project setup with common attributes, similar roles, identical rules, and 
unified test processes. This allows a high degree of collaboration, good communi-
cation, and synchronization. In doing so, the aggregation of test results and the 
exchange of test artifacts can be greatly simplified. 

Fig. 6.10 A large user 
community managed  
using TD 

QUALITY CENTER
Project

REPOSITORY

Solution Manager
Project Manager
Build manager

Internal Audit
External Audit

Project 
Office

Business & IT
Analysts

Test
Engineers

IT 
Developers

SWC 
Managers

Test 
Managers

Chief Tester
Chief 

Developer

ROLES WORKING WITH QC IN A LARGE SOFTWARE 
TESTING PROJECT



222 6 Test Platforms and Tools 

6.2.3 TD Modules 

TD offers five fully integrated modules: Requirements, TestPlan, TestLab, Defect 
tracking, and Dashboard (from Release 8.2+), which offer a seamless management 
of all test artifacts, documentation, and data. 

Each module provides export functions to Word and Excel, email messaging 
triggered by transition rules, and extended report capabilities of test results (re-
ports and graphs). Figure 6.11 shows the interconnection of all TD modules. 

Fig. 6.11 TD modules 

Reqs

Test Plan

Test Lab

Defects

Requirements

Test Cases

  Test Sets
Test Scripts

   Tracking
Information

Dashboard
Reports
     &
Graphs

fu
lly

 in
te

rc
on

ne
ct

ed
 d

at
a 

&
 in

fo
rm

at
io

n

6.2.4 Requirements Module 

The requirements module is used to: 

• Outline the product requirements to be tested in the actual software release or 
in coming releases. The requirements should be preferably grouped by soft-
ware component in each project instance. 

• Document pertinent details about the application being tested, such as the 
testing assumptions and limitations, the system architecture, and all specifica-
tion documents. 

Three options are available to create requirements in TD: 

• to download requirements directly from an RMS connected to a TD 
• to import Word or Excel files, or 
• to capture requirements manually in TD. 



6.2 TD for QC 223 

Creating Tests from Requirements 

After creating the folder structure for a release in the requirements module, tests 
can be created automatically from requirements and stored in the TestPlan module 
directly. Three options exist to do that: 

1. Convert requirements to tests. A parent requirement has usually child re-
quirements. The lowest child requirements can be converted to tests or to de-
sign steps which is the highest test granularity. 

2. Convert requirements to subjects. All requirements can be also converted to 
subjects in the test plan tree of the release. This method uses the Convert to 
Tests wizard. 

3. Generate a test from requirements. Convert requirements to a test in a speci-
fied subject in the TestPlan tree and a specified test set in the TestLab module. 
This method – using the Generate Test dialog box – enables the test engineer 
to run a test when analyzing the requirements. 

Three display options enable full monitoring of the requirements in TD: 

• Document view (TD 7.6) 
• Tests coverage view (TD 7.6) 
• Coverage analysis view (TD 8.0 and higher). 

The last option allows you to make a drill down after the selection of a specific 
requirement. 

Requirements in TD are linked to test cases in a bidirectional way, as shown in 
Fig. 6.13. 

 

Fig. 6.12 Three different views of a requirement in TD  



224 6 Test Platforms and Tools 

 

Fig. 6.13 Requirements linked to a test case in TD 

The tree for requirements should reflect the product structure with a clear hier-
archy of the software components under test. Creating and maintaining a coherent 
and up-to-date folder structure over time is a demanding task which requires dis-
cipline and a lot of hard work. 

By downloading requirements directly from a RMS tool, dummy structures are 
implemented in TD which are often incompatible with the release and product 
structure. As a result, the folder structure must be adapted manually and the re-
quirements moved to the right place. Synchronization of requirements downloaded 
via RSMs is time-consuming and can prove to be difficult. To avoid an accidental 
lost of information, the TD administrator should be the only project member man-
aging the folder structures in all modules. 

Requirements can be sent either as a text file or as a report. It is also possible to 
associate defects to requirements. 

6.2.5 TestPlan Module 

The test plan module is used to: 

• Define the test strategy 
• Define test subjects 
• Define manual and automated tests 
• Create test cases with test steps 
• Manage the test artifacts 
• Create requirements coverage 
• Automate tests 
• Analyze test plans. 

The link between requirements and the test plan is created when requirements 
are converted to tests. The test plan becomes the working place for the change 
management of test cases, test data, test scripts, and attachments. 



6.2 TD for QC 225 

6.2.6 TestLab Module 

The TestLab module is used for: 

• Creating test sets 
• Test execution (manually or automatically) 
• Scheduling test runs 
• Analyzing test results 
• Raising defects during a test run. 

In TD (up to release 7.6) the TestLab had a flat structure, but in QC (TD 8.2 and 
higher) all test artifacts for a software release can be organized as tree structure. 
This feature is convenient because in large projects, a product is generally com-
posed of many software components and sub-components requiring a deep tree 
structure to map them. It greatly facilitates the process of building new test sets 
belonging to different test environments of product releases running in parallel. 

After creating the TestLab structure, the tests are referenced from the TestPlan 
module and put together according to precise criteria (e. g., scenarios and SWC 
dependencies) to build the required test sets for a given release. It is a good prac-
tice to organize test sets in a logical and hierarchical order: release, test environ-
ment, SWC, Sub-SWC, etc. 

6.2.7 Defect Module 

The defect module is a complete system for logging, tracking, managing, sharing, 
and analyzing application defects. As in other TD modules, all attributes can be 
customized to fulfill the needs of the different roles involved in the project or in 
individual user groups. Fields can be defined as mandatory and values checked 
accordingly on input. To provide an audit trail, the history option can be activated 
for attributes of interest. Testers can define precisely how the defect should pro-
gress through its lifecycle. Using the many customization options, projects can set 
up the workflow rules that are most appropriate to their needs. The ITC process – 
as described in Sect. 5.2.15 – can be easily implemented because TD supports 
role-based defect resolution, and status tracking. This capability is of prime impor-
tance for distributed testing. By testing a solution or software product composed of 
multiple software components with mutual dependencies, defects can have a very 
long life cycle spanning a number of releases. Often, bugs already solved have to 
be reworked; that means that defects must be reopened. A good setup of attributes 
is therefore required in this module to fulfill compliance requirements (traceabil-
ity). For this purpose, a field “history” can be activated for those attributes in TD. 
Figure 6.14 shows an example of a defect status diagram. 



226 6 Test Platforms and Tools 

Defect status diagram

new

fixed

fix
 for retest

retested
OK

rejected

open closed

code/data fix

fix later
replanning later release

D

F

G

J

C EBA

H

I

not qualified as defect

reopen retest
failed  

Fig. 6.14 Status in the life cycle of a defect 

6.2.8 Analysis Function 

To control the ongoing test activities and to analyze the test progress, each module 
in TD has a report function which can be adapted to any project requirements. 
Reports can be generated directly in HTML or exported to a Word or Excel file. 

Graphs can be also exported as a bitmap file or in tabular form in Excel. Exam-
ples of reports and graphs will be presented in Sect. 8.2. 

6.2.9 Export Function 

Each TD module provides a function to export test artifacts and reports of any 
kind as Word or Excel files. 

6.2.10 Traceability Function 

When a requirement, test, or defect changes, QC can notify those responsible for 
any associated test entities. The traceability rules in QC are based on associations 
which can be created by team members: 

• Associate a test in the test plan tree with a requirement 
• Associate a test instance with a defect. 

After having established associations between test artifacts in the project, 
changes can be easily traced using these relationships. When an entity in the pro-



6.2 TD for QC 227 

ject changes, QC notifies the users of any associated entities that may be impacted 
by the change. 

The notification is made via flags and via an email sent to the user responsible 
for the entity. 

6.2.11 Email and Workflow 

Test artifacts and information about test results can be sent to individual project 
members or groups via an email function available in each TD module. Fig-
ure 6.15 shows an email screen shot. 

 
Fig. 6.15 Email function in TD 



228 6 Test Platforms and Tools 

An alert function allows you to generate automatically emails based on changes 
made to selected attributes of artifacts, to inform the owners of requirements, test 
cases and defects about progress or difficulties in the testing work. This is particu-
larly the case for defects which can be flagged for better followup. Figure 6.16 
shows an example of automatic alert generated by TD/QC. 

The workflow will be then adapted accordingly by modifying the transition 
rules and by activating the corresponding attributes. 

 

Fig. 6.16 Defect followup in TD 

6.2.12 Document Generator 

TD has a convenient functionality to produce customized reports in Word with full 
indexation, a table of contents, tables and graphics. Topics which can be selected 
include: defects, requirements, test lists, a subject tree, and execution reports. 
Defects are documented with full details (including attachments) completed  
by history information and graphs. The selection of reports can be stored as 
private or public favorites; these are predefined selections stored with each TD’s 
user profile. 

Figure 6.17 shows features of the document generator in TD/QC. 



6.2 TD for QC 229 

 

Fig. 6.17 The Document Generator in TD 

6.2.13 Other Functions 

TD offers a thesaurus and a spelling function. 

6.2.14 Dashboard 

TD/QC’s dashboard allows you to automate the process of continually gathering 
the data behind key performance indicators (KPIs) and normalizing data to enable 
cross-project analysis and cross-reporting. Customization of the KPIs might be 
based on the role someone plays in the organization or on the project(s) someone 
manages. 



230 6 Test Platforms and Tools 

The dashboard comes with a set or 20 predefined KPIs for quality, perform-
ance, and processes. 

Customization includes: 

• Specifying what data to use for a KPI 
• Processing source data into KPIs 
• Displaying KPI data, either in a chart or as a traffic light 

The dashboard provides a multi-level drill-down, from the project indicators 
and individual KPIs down to the KPI graphs; this makes it easy to analyze trends, 
as well as to compare metrics and results on projects across the organization. 
(Source: HP/Mercury) 

6.3 The Leading Commercial SA Tools 

Table 6.2 The leading commercial SA tools 

The leading commercial SA tools (http://spinroot.com/static/) 

Astree  
(CNRS, France)  

Astree is a static program analyzer for structured C programs, but without 
support for dynamic memory allocation and recursion (as used, for  
instance for embedded systems and in safety critical systems). The tool 
name is an acronym for Analyseur statique de logiciels temps-reel  
embarques (static analyzer for real-time embedded software). Among 
those working on this tool are Patrick and Radhia Cousot. 

CGS  
(C Global  
Surveyor, NASA 
ARC)  

A tool in development at NASA Ames Research Center by Guillaume Brat 
and Arnaud Venet, based on abstract interpretation techniques, inspired  
by Patrick Cousot. The tool is designed to be a specialized tool for flight 
software applications. 

CheckMate    
C-Kit  
(Bell Labs) 

A research toolkit developed at Bell Labs, with algorithms for pointer alias 
analysis, program slicing, etc. for ANSI C. Written in SML. Can produce 
parsetree and symbol table information, but, as yet, cannot call flow graphs 
or function call graphs. 

CodeSonar 
(Grammatech)  

A new member of the CodeSurfer family. Not evaluated yet. 

CodeSurfer    
Coverity  Leading edge tool based on Dawson Engler's methodology for source code 

analysis of large code bases. An extended version of the tool supports 
user-defined properties in the Metal language. Fast, thorough, few false 
positives, but can be very expensive. 

ESC  
(Compaq/ HP)  

Extended static checker for Java and for Modula3. Developed by Greg 
Nelson and colleagues, which is based on a mix of theorem proving and 
static analysis. Thorough and effective, but also slow, and needs consider-
able knowledge to run. This tool does not target C, and therefore does not 
properly belong in this listing, but we include it as one of the landmark 
research tools in this domain. 



6.3 The Leading Commercial SA Tools 231 

Table 6.2 Continued 

The leading commercial SA tools (http://spinroot.com/static/) 

KlocWork  Support for static error detection, with added project management and 
project visualization capabilities. Fast, almost as thorough as Coverity,  
and less expensive. A capability for user-defined checks is pending. 

LC-Lint  The descendent of the early research Unix version of lint, which was 
written by Steve Johnson in 1979. This tool needs lots of annotations to 
work well, and often produces overwhelming amounts of output.  

Orion  
(Bell Labs)  

Work in progress on an extension of Uno for C++, based on gcc. 

Parasoft 
CodeWizard  

  

Plum Hall SQS    

PolySpace  Marketed by a French company cofounded by students of Patrick Cousot 
(a pioneer in the area of abstract interpretation). Polyspace claims it can 
intercept 100% of the runtime errors in C programs. (See cverifier.htm.) 
Customers are in the airline industry and the European space program. Can 
be thorough, but also very slow, and does not scale beyond a few thousand 
lines of code. Does not support full ANSI-C language (e. g., it places  
restrictions on the use of gotos). 

PREfix and  
PREfast  
(Microsoft)  

Effective, but Microsoft proprietary, tools. PREfix was developed by  
Jon Pincus; MicroSoft acquired the tool when it bought Pincus’ company. 
PREfast is a lighter weight tool, developed within Microsoft as a faster 
alternative to PREfix (though it is not based on PREfix itself). Both these 
tools are reported to be very effective in intercepting defects early, and 
come with filtering methods for the output to reduce the false positive 
ratio. PREfast allows for new defect patterns to be defined via plugins. 
Less than 10% of the code of PREfix is said to concern with analysis per 
se, most applies to the filtering and presentation of output, to reduce the 
number of false positives. 

Purify  
(Rational 

This tool is focused primarily on the detection of memory leaks, and not in 
general source code analysis. It is used fairly broadly. The Lint family, 
e. g., PC-Lint/FlexeLint (Gimpel), Lint Plus (Cleanscape). Generic source 
code analysis, value tracking, some types of array indexing errors. Suffers 
from high, sometimes very high, false positive rates, but the output can be 
customized with flags and code annotations.  

QA C    

Safer C  
(Oakwood 
Computing)  

Based on L. Halton's 1995 book on Safer C, now out of print, covering 
code analysis and enforcement of coding guidelines. 

Uno  
(Bell Labs)  

Lightweight tool for static analysis. The tool is targeted at a small set  
of common programming defects (Uninitialized data, Nil-pointer  
dereferencing, and Out-of-bound array indexing, with the three initial 
letters giving the tool its name). It also handles a range of simple,  
user-defined properties. 

Vault  
(MicroSoft)  

An experimental system, in development at MicroSoft by Rob DeLine and 
Manuel Fahndrich. It is based on formal annotations placed in the code.  



232 6 Test Platforms and Tools 

6.4 The Leading Commercial Testing Tools 

In 2007, the STP magazine editors published their yearly survey concerning the 
most popular testing tools available on the market. Once again, Hewlett-Packard’s 
TD for QC and LoadRunner topped the list. The results by category: 

Data test/performance 

• HP’s LoadRunner took the most votes in this category. At the core of Load-
Runner’s power is the Virtual User Generator (VUGen), which creates test 
scripts for playback and test cases simulation. Script parameters can be modi-
fied as needed to adapt to different cases, data parameters such as for key-
word-driven testing, correlation, and error handling. 

• Compuware’s File-AID is an enterprise data management tool that permits 
testers to quickly build test data environments across a multitude of systems 
including mainframe, MVS, DB2, and distributed systems (as the finalist CS 
edition). 

• Intel’s Vtune Performance Analyzer should be a standard part of your test-
ing toolbox. The compiler- and language-independent tool presents a graphic-
al interface for visualizing and identifying bottlenecks. 

Functional test 

• HP’s QuickTest Professional occupies the top spot for functional testers. 
The Windows-only product includes a scripting language built atop VBScript 
that permits procedures to be specified and program objects and controls to be 
manipulated. The tool’s team collaboration capabilities were enhanced with a 
new object repository manager and the ability to share function libraries 
across tester workgroups. It also added keyword management and drag-and-
drop test-step construction. 

• Parasoft’s SOAtest a regression tester for Web and SOA services, integrates 
WCM and other protocols, allowing testers of.NET-based applications to ex-
ercise messaging in a multitude of open and proprietary protocols. It also 
automates the creation of intelligent stubs. 

Defect/issue management 

• HP’s TestDirector for QC is top of the list in this category. 
• Seapine’s TestTrack Pro: Among its greatest attributes is its ease-of-use, 

thanks to its intuitive and customizable GUI. 

Commercial test/performance 

• TechExcel’s DevTest is a Windows and Web-accessible tool that addresses 
most aspects of the testing life cycle. 

• Pragmatic’s Software Planner is a hierarchical project planner that through 
task linking, can prevent one task from beginning before another is complete. 



6.4 The Leading Commercial Testing Tools 233 

• Mindreef’s SOAPscope was awarded the best solution from a new company 
in 2006. SOAPscope is a groundbreaking tool that strips away the complexi-
ties of SOAP messages to help developers and testers quickly identify the root 
cause of Web services problems. There is also a team’s edition. 

Static/dynamic code analysis 

• IBM Rational’s PurifyPlus was handed the top honors in this category. The 
automated runtime analysis tool for Linux, Unix, and Windows spots memory 
leaks, profiles application performance, and analyzes code coverage. Sup-
ported languages include C/C++, Java, Visual C++, Visual Basic, and the .NET 
languages. 

• Compuware’s DevPartner includes a memory checking tool (Bounds 
Checker) and an application error simulator (FaultSimulator) to help testers 
root out bugs and other application shortcomings, and test and tune perform-
ance. 

Embedded/mobile test/performance 

• IBM Rational’s Test RealTime automates the creation and deployment of 
host- and target-based test harnesses, test stubs, and drivers, enabling Ada, 
C/C++, and Java applications to be tested directly on the target, the best place 
for accurate results. 

• Wind River Systems’s Workbench is an open framework for embedded sys-
tems, that stands alone or works as a plug-in to Eclipse. 

Security test 

• SPI Dynamics’s WebInspect took the top price as a security scanning and 
assessment tool for Web applications. Now part of Hewlett-Packard, SPI in 
August released WebInspect 7.5, sporting a new profiler that scans Web ap-
plications and suggests configuration settings for the most effective testing. 

Test/QA management 

• HP’s TestDirector for QC was voted by testers their favorite for test and QA 
management. TD’s functions and features are explained in this book in 
Sect. 6.2. 

• Borland’s SilkCentral Test Manager was acquired by Borland along with 
Segue Software in February 2006, and is a browser-based environment for 
remote, simultaneous test execution, and management of JUnit/Nunit and 
other third-party testing frameworks. 

Test automation 

• HP’s QuickTest Professional (QTP): For test automation, QTP again comes 
to the fore, taking its second top award this year. The UI testing automation 
framework for Windows and Web-based applications works by identifying 
objects in the UI layer and applying mouse clicks, keyboard inputs, and other 
test activities on them. Actions are recorded and captured as COM objects and 
stored as VBScript commands, which can be edited. 



234 6 Test Platforms and Tools 

.NET test/performance 

• HP’s LoadRunner: For testing performance of .NET applications, testers 
again chose LoadRunner. 

SOA/Web services test 

• HP’s LoadRunner: Here’s another category in which LoadRunner excels. 
• Empirix’s e-TEST Suite. The Empirix suite consists of browser-based tools 

for helping to determine the quality scalability and availability of Web ser-
vices and Web-based applications: e-Load, e-Tester and e-Manager Enterprise 
modules. 

• IBM Rational’s Performance Tester Extension for SOA Quality. The add-
on to the company’s Performance Tester tool extends performance and scal-
ability testing to SOA applications. 

Integrated test/performance suite 

• HP’s Performance Center. Testers chose Performance Center as their favor-
ite integrated test/performance suite. The tool combines all the capabilities of 
LoadRunner with test-asset and human-resource management features, cou-
pled with reporting in a centralized repository accessible through a Web 
browser with role-based security. 

(Source: Software Test & Performance, December 2007) 
 



 

P. Henry, The Testing Network, 
© Springer 2008 

235 

Chapter 7  
The Analysis of Defect Root Causes 

Complexity is one of the main characteristics of large network-centric systems and 
applications. The description of a system’s behavior is complex, even if we have 
complete information about its components, its dependencies, and its environment. 
The interactions described in requirements and models depend not only on the 
number of software components and elements in the system, but also on the num-
ber of links, interfaces, and other dependencies to other systems and their envi-
ronment. Figure 7.1 gives a rough idea of the exponential-growing complexity 
coupled with the project size. 

Adding to the factors previously mentioned, the number of teams working in a 
large project may cause coordination and communication difficulties, having a 

# requirements
# interfaces
# features
# SWCs

Global projectErrors
Complexity
Costs in MM

Large project

Medium-size  project

error frequency is proportional 
to the number of requirements

error frequency is disproportionate
to the number of requirements

quadratic increase of 
number

interfaces  

 
Fig. 7.1 Complexity in software projects 



236 7 The Analysis of Defect Root Causes 

significant impact on the analysis of defects. In multi-location testing (see 
Sect. 5.2.17), the ITC process is essential to provide continuous defect tracking, 
bi-directional communication and feedback to the customers and experts for prob-
lem solving. We will now examine techniques which help better detect and master 
the causes of software incidents. 

7.1 The Methodological Approach 

“There are many aspects of a defect that might be relevant for analysis. 
Defects are inserted due to a particular reason into a particular piece of soft-

ware at a particular point in time. The defects are detected at a specific time and 
occasion by noting some sort of symptom and they are corrected in specific way. 
Each of these aspects (and more) might be relevant to a specific measurement and 
analysis purpose”. [Fraunhofer IESE – Report No. 072.01/E, Version 1.0] 

7.1.1 Defect Classification Schemes 

The following attributes are necessary to circumscribe test incidents and to iden-
tify their characteristics in any test environment or in production: 

• Location: The location of a defect describes where in the documentation the 
defect was detected. 

• Timing: The timing of a defect refers to phases when the defect was created, 
detected, and corrected. 

• Symptom: The symptom captures what was observed when the defect sur-
faced or the activity revealing the defect. 

• The end result: The end result describes the failure cause by the fault. 
• Mechanism: The mechanism describes how the defect was created and cor-

rected. 

− Creation captures the activity that inserted the defect into the system. 
− Activity captures the action that was performed as the defect was raised. 
− Type is explicitly defined in terms of activities performed when correct-

ing defects. 

• Cause: Cause describes the error leading to a fault. 
• Severity: Severity describes the severity of a resulting or potential failure. 

[Fraunhofer IESE – Report No. 072.01/E, Version 1.0] 
This approach gives useful feedback to different processes in the software de-

velopment cycle, as illustrated in Table 7.1. 
IEEE proposes a classification scheme for software anomalies, based on recog-

nition, investigation, action, impact identification, and disposition processes, as 
illustrated in Table 7.2. 



7.1 The Methodological Approach 237 

Table 7.1 ODC attributes classification scheme 

ODC attributes classification scheme Process feedbacks 

Activity When was the defect detected? Feedback to product 
Age What is the history of the target? Feedback to V & V process 
Impact What would have the user noticed from the defect? Feedback to product 
Qualifier What best describes the defect? Feedback to product 
Source Who developed the target? Feedback to V & V process 
Target What high level entity was fixed? Feedback to V & V process 
Trigger How was the defect detected? Feedback to product 
Type What has to be fixed? Feedback to product 

Table 7.2 IEEE defect classification 

Defect  
process 

Attribute name Attribute meaning Mandatory  
Optional 

Project activity What were you doing when the defect  
occurred? 

Mandatory 

Project phase In which life-cycle phase is the product? Mandatory 
Suspected cause What do you think might be the cause? Optional 
Repeatability Could you make the defect appear  

more than once? 
Optional 

Symptom How did the defect manifest itself? Mandatory 

Recognition 

Product status What is the usability of the product  
with no changes? 

Optional 

Actual cause What caused the anomaly to occur? Mandatory 
Source Where (part of the system and its  

documentation) was the origin of the defect? 
Mandatory 

Investigation 
Type What type of defect/enhancement  

at the code level? 
Mandatory 

Resolution What to do to prevent the defect  
from happening again? 

Mandatory 
Action 

Corrective action What action to take to resolve the defect? Mandatory 
Severity How bad was the defect in more objective 

engineering terms? 
Mandatory 

Priority Rank the importance of resolving the defect 
(taking subjectively into account all other 
impact attributes)? 

Optional 

Customer value How important is a fix to the customer? Optional 
Mission safety How bad was the defect wrt. project objectives 

or human well-being? 
Optional 

Project schedule Relative effect on the project schedule to fix? Mandatory 
Project cost Relative effect on the project budget to fix? Mandatory 
Project risk Risk associated with implementing a fix? Optional 
Project quality/ 
reliability 

Impact to the project quality or reliability  
to make a fix? 

Optional 

Impact  
identification 

Societal Impact of society of implementing the fix? Optional 
Disposition Disposition What actually happened to close the anomaly? Mandatory 



238 7 The Analysis of Defect Root Causes 

A good measurement system which allows learning from experience and pro-
vides a means of communicating experiences between projects has at least three 
requirements: 

1.  Orthogonality 
2.  Consistency across phases 
3.  Uniformity across products 

Classifying defects is a human process, and thus subject to error, confusion, 
and misinterpretation of data. For this reason, I recommend using the classification 
I developed concerning the potential sources of defects and anomalies (see Ta-
ble 7.3). This makes the classification process simple and less error-prone because 
the number of classes is small and their content is well-defined. The user can accu-
rately resolve them. 

7.1.2 Orthogonal Default Classification (ODC) 

The ODC technology was invented by Ram Chillarege, (circa 1990 – seminal 
publications in the IEEE Conference of Software Engineering and the IEEE 
Transactions of Software Engineering). At IBM Research, he founded the Center 
of Software Engineering, and created an organization that implemented ODC 
across the company. 

The ODC method creates a powerful software engineering measurement in al-
most any software development process. It works by leveraging information con-
tained in software bugs according to a few attributes. This technique bridges the 
gap between statistical defect models and causal analysis. It brings a scientific 
approach to measurements in a difficult area that otherwise can easily become ad 
hoc. It also provides a firm footing from which classes of models and analytical 
techniques can be systematically derived. The goal is to provide an in-process 
measurement paradigm to extract key information from defects and to enable the 
metering of cause-effect relationships. The choice of a set of orthogonal classes, 
mapped over the space of development or verification, can help developers by 
providing feedback on the progress of their software development efforts. 

This data and its properties provide a framework for analysis methods that ex-
ploit traditional engineering methods of process control and feedback. 

Orthogonal Defect Classification essentially means that we categorize a defect 
into classes that collectively point to the part of the process which needs attention, 
much like characterizing a point in a Cartesian system of orthogonal axes by its 
(x,y,z) coordinates. In the software development process, although activities are 
broadly divided into design, code, and test, each organization can have its varia-
tions. It is also the case that the process stages in several instances may overlap 
while different releases may be developed in parallel. This situation is quite com-
mon in large-scale projects involving different locations, where process stages can 
be carried out by different teams in different organizations. [Ch92] 



7.1 The Methodological Approach 239 

Peripheral environment

Fault originator Defect(s)

Symptoms

Basic errors

Testing perimeter TRIGGER

{Action/Event/Condition}

Adapted from: Chillarege, 1999

Inherent problem(s)

Dormant Reaction

Fault activation

 

Fig. 7.2 ODC fault schema 

ODC solves the difficult problem posed by the appreciation of software quality 
in creating usable measurements that provide insight into a development process 
and product history. Evaluating a process, diagnosing a problem, benchmarking, 
accessing the effectiveness of a sub-process, or the effectiveness of testing are 
transformed into tasks that can be executed with precision. [Ch99] 

The fundamental mechanisms of defect arrival as described by Chillarege, are 
shown in Fig. 7.2 with an adaptation taking into account peripheral sources of 
errors playing also a role in this schema. 

How ODC Works 

A necessary condition for orthogonality is that a semantic classification of defects, 
from a product, exits such that the defect classes can be related to the process, 
which can explain the progress of the product through the process. [Ch92] 

The activities required for using the ODC technique are straightforward: 
1. Capture semantics of a defect by classifying it according to a few attributes 

(see below). 
2. Analyze the actual distribution of attributes for a larger amount of defects.  
3. Interpret deviations from expected distributions in each test environment. 
4. Devise corrective actions to reduce the sources of errors. 
5. Identify process improvement. 

ODC Analysis 

The ODC analysis should be carried out in eight steps: 
1.  Select a sample of defects 
2.  Classify defects (by types) 
3.  Find causes of defects 



240 7 The Analysis of Defect Root Causes 

4.  Qualify the causes of defects 
5.  Analyze interdependencies 
6.  Determine root causes 
7.  Develop actions proposal 
8.  Document results. 

Sufficient Conditions 

The set of values of defect attributes must form a spanning set over the process 
sub-space. [Ch92] 

The sufficient conditions are based on the set of elements that make up an at-
tribute, such as defect type. Based on the necessary conditions, the elements need 
to be orthogonal and associated to the process on which measurements are in-
ferred. The sufficient conditions ensure that the number of classes are adequate to 
make the necessary inference. 

Using the defect type attribute in ODC allows you to make the distinction be-
tween something missing or something incorrect. Here are some examples: 

• A function error is one that affects significant capability, end user interfaces, 
product interfaces, interface with hardware architecture, or global data struc-
ture(s), and should require a formal design change. 

• An assignment error indicates a few lines of code, such as the initialization of 
control blocks or data structure. 

• Interface errors correspond to errors in interacting with other components, 
modules or device drivers via macros, call statements, control blocks, or pa-
rameters lists. 

• Checking addresses program logic which has failed to properly validate data 
and values before they are used. 

• Timing errors are those which are corrected by improved management of 
shared and real-time resources and/or better use of system/application tables 
and calendar functions. 

• Build/package describe errors that occur due to mistakes in library systems, 
management of changes, or version control. 

• Documentation errors can affect publications, reference documents (e. g., 
software specifications), user manuals, maintenance notes and operational 
guides. 

• Algorithm errors include efficiency or correctness problems that affect the 
task and can be fixed by (re)implementing an algorithm or local data structure 
without the need for requesting a design change. (Adapted from [Ch92]) 

Analyzing defects in a large project with many software components in a net-
work-centric environment is quite challenging. The most common pitfalls arising 
in steps 3 and 6 of the analysis are: 

• Confusing cause with effect (symptom level) 
• Multiple causes produce the defect arrivals 



7.1 The Methodological Approach 241 

• Independent events not related to a cause-effect chain 
• The test incident is not correlated to a causal chain in the software 
• Multiple effects causing “noise” in causal chain(s) 
• The cause is not related to the detected defect (mixed causal chains) 

ODC analysis results should be documented with good accuracy to avoid the 
pitfalls described previously and to prevent the same defects popping up again in 
future development and testing work. The ODC documentation should be avail-
able electronically, preferably as knowledge database indexed by multiple the-
matic keywords. Publication of this documentation on the company’ s intranet is a 
plus. Example of defect triggers in ODC are shown in the following table. 

Backward compatibility (to legacy applications) 
Concurrency (use of resources) 
Design conformance 
Design understanding 
Documentation 
Lateral compatibility (to new services) 
Logic flow 
Rare situation(s) 
Side-effects 

Lessons Learned with ODC 

The general goal is to enable software product teams to improve engineering prac-
tices by discovering, investigating, explaining, and correcting unusual patterns of 
defects. 

A variety of activities detect defects at different times in the product lifecycle. 
Procedures used for code inspection and unit test might have been narrowly fo-
cused on the existing code, and did not compare the code with the requirements 
and design documents. 

Classification changes the way people think. That means: 

• More power to generalize and find simple solutions 
• More power to distinguish cases that require different treatments. 

Trying to explain real numbers forces a fresh look: 

• Preconceptions are often insufficient to explain simple facts 
• This draws out stories that would rarely be mentioned otherwise, and new 

ideas about what’s happening. 

(Source: Bell Communications Research, Inc.) 



242 7 The Analysis of Defect Root Causes 

7.1.3 Situational Analysis 

The Kepner-Tregoe (KT) method [KeTR81] is a well-established method for de-
fining and prioritizing problems and making adequate decisions. 

The main steps include: 

1. Define the problem(s): finding out where the problem came from 
2. Generate solution(s): exploring the domain 
3. Decide a course of action 

− Present state  desired state 
− Duncker diagram 

4. Implement it 

− Statement 
− Restatement 

5. Evaluate the results: KT analysis 

To be successful in problem solving, people should be patient and obstinate to 
read the problem several times, reformulate the problem, view the problem from 
different angles, and visualize and make drawing of the situation creating the 
problem. 

The accuracy of the analysis is crucial: check and recheck hypothesis and as-
sumptions. Finally, apply the solution procedure in this manner: 

• Start from a place that is known 
• Break the problem in sub-problems that are easily understood 
• Identify key concepts in the problem domain 
• Avoid mistaken assumption(s) 
• Use quantitative description 
• Track your progress (make notices) 

See Sect. 7.6 to learn more about problem-solving techniques. 

7.1.4 Ishikawa Diagram 

The Ishikawa diagram (also known as the fishbone diagram or the cause and effect 
diagram) is the brainchild of Kaoru Ishikawa, who pioneered quality management 
processes in the Kawasaki shipyards. The process became one of the founding 
fathers of modern management. It is simply a diagram that shows the causes of a 
certain event. It was first used in the 1960s, and is considered one of the seven 
basic tools of quality management, along with the histogram, Pareto chart, check 
sheet, control chart, flowchart, and scatter diagram. [Wikipedia] For more infor-
mation, see http://en.wikipedia.org/wiki/Ishikawa_diagram. 



7.1 The Methodological Approach 243 

Fig. 7.3 Ishikawa example – 
procedures A and B cause  
problems 

Set database grants

DB grants successfully
set

Verify if SW changes
are OK

Verification is
successful

Recompile all
components

Package preparation

DB grants not removed

PROCEDURE
A

Recompilation
done but

 incomplete

Set database grants

DB grants failure

 SW components are in
wrong sequence

Package build start

Package build

PROCEDURE
 B

Package build
completed

Package build failure remains
undetected

effect

cause

Two real-life examples of fishbone diagrams are illustrated in Fig. 7.3. 

7.1.5 Limitations of Cause and Effect Models 

Cause and effect models (CEs) are built on several key assumptions which are: 

• The linkage between steps in a cause and effect chain is fixed and static. 
• There is a clear start and end point in the cause and effect chain. 
• Reductionism will provide a more accurate measure for determining the over-

all likelihood of an event occurring. 

These assumptions will generally hold true for most engineered systems, but 
they do not hold true for the complex interactions that take place in the man-
machine context. Within such a system, there are no definitive start and end 
points. By nature, they can cascade and loop in complex ways. [Methatheme Pty, 
2005]. 

Software defects must therefore be qualified properly to eliminate human-made 
faults, environmental factors, or organizational problems which could lead to 
misinterpretations about the real cause(s) of test incidents. 



244 7 The Analysis of Defect Root Causes 

CE Model Pros 

CE model pros are as follows: 

• It helps improve both quality and productivity of the software delivery unit. 
• It provides feedback at any stage of the development process. 
• It shows developers the value of process conformance. 

CE Model Cons 

CE model cons are are follows: 

• It requires significant resources per defect (ca. 1.5% of the project budget). 
• It focuses on individual defects may lead to less attention to finding solutions 

addressing a larger scope of problem. 

7.2 Causal Chains Explained 

In the previous chapter, we presented the ODC method, explaining how to identify 
a problem source using the Ishikawa diagram. In practice each software project is 
a new endeavor, because the technological and organizational environments have 
– generally – unique characteristics. Hence, the number of problem originators can 
be large. 

If you remember the discussion in Sect. 4.1, we also know that our test domain 
is multi-layered. The upper level in this domain is the visible surface where de-
fects emerge as symptoms (through testing activities) as localizable and potential 
problem sources. 

7.2.1 Identifying Problem Sources 

Over the years, I have studied tons of defects emerging in large-scale information 
systems, in mixed environments, and network-centric architectures. At the begin-
ning of my investigations I made systematically notices, classified events and 
symptoms identifying the most common sources of incidents. Year after year,  
a schema emerged out of the chaos, and I populated the test perimeter (the grid) 
with known problem sources in place, as illustrated in Fig. 7.4. 

This empiric approach has proved to be valuable in many situations, and I have 
used it routinely. In the following table, you can read the description of the poten-
tial problem sources in the test perimeter and their abbreviation, used in the cause-
effect diagrams later in this chapter. 



7.2 Causal Chains Explained 245 

Fig. 7.4 Diagram  
showing defect sources  
in the test perimeter LM

CD TR TP

DQ

HD DO

DA

PM

LG

RL

DV

TO

PI

PBDP

BR KH

IF

DD

ST

NM

DS

BP

NSP

TM

Main problem sources in the testing domain  

The next stage was to identify the causal chains and finally to build an oriented 
graph of the relationships connecting them. The causal chain network (CCN) was 
born; see Fig. 7.5 below. 

NEW  BUSINESS REQUIREMENTS (ALL ASPECTS)

TE
CH

N
IC

AL
 R

EQ
U

IR
EM

EN
TS

 

BP LM

CD

TR TP

DQ

HD

DO

DA

PM
LG

TO

PI

PB

DP

BR

BR

LEGACY WORLD'S EXISTING REQUIREMENTS  (DATA, PROCESSES, TOOLS)

KH

IF
DDST

NM

DS

BP

NSP

TM

O
VE

RA
LL

 R
EQ

U
IR

EM
EN

TS

RL

DV

KH

UNATTENDED PROCESSKNOWN REQT. UNKNOWN REQT. UNEXPECTED SIDE-EFFECT/ANOMALY EXPECTED CAUSE-EFFECT PATH  

Fig. 7.5 Network of problem sources in the test perimeter 



246 7 The Analysis of Defect Root Causes 

Table 7.3 Description of problem originators 

Abbr. Description of problem originators 

BP Business processes  
(All business processes inside the test domain – including ad hoc processes) 

BR Business requirements  
(All business requirements based on formal specifications or/and ad hoc needs) 

CD Code (design, build, implementation, …) 
DA Data availability (files, tables, parameters, data cubes, …) 
DD Data delivery (file transfers, tables creation, parameters delivery, data cubes building) 
DO Documentation (all support material describing: how to specify, develop, implement, 

install, run, use products/processes) 
DP Data processing (all aspects) 
DQ Data quality (actuality, accuracy, completeness, …) 
DS Data structure (design conformity, completeness) 
DV Data values (default values, initial values, valid values, lookup values, …) 
HD Handling (manual operations needed to start, stop and monitor processes/procedures) 
IF Infrastructure (all aspects  authorizations to use tools/packages/DBs, availability of 

tools, readiness of machines, network components, services, data volumes, data space) 
KH Know-how (required understanding of processes, procedures and tools to run  

operations and put tasks to successfull completion–without handling errors) 
LG Logic (assumptions, …) 
LM Logical data model (design accuracy, correctness, completeness, …) 
LR Legacy world’s requirements 

(requirements of “heritage systems” based on existing data, processes, tools) 
PB Package build (completeness, correctness, …) 
PI Package installation (all aspects) 
PM Physical data model (implementation accuracy, correctness, completeness, …) 
RL Rules (derivation rules, mapping rules, validation rules, others, …) 
NSP All applications running on the new strategic platform 
ST 
NM 

Standards, norms and rules compliance to internal and external regulations:  
security, good practices, international standards, industry norms, … 

TM Time management (all time-related aspects: waiting time, transfer time,  
loading time, time lag, processing time, process synchronization issues,  
calendars, bi-temporality, …) 

TO Tools (all aspects  functionality, ease of use, availability, performance, …) 
TP Technical processes (job control system tasks, workflows, setups, housekeeping data 

gathering, compilation of code, execution of scripts/procedures, …) 
TR Technical resources (data volumes, table spaces, processing capacity, networks. …) 

7.2.2 Test Perimeter 

To better locate individual causal chains, I defined a testing perimeter delimited by 
technical requirements (ST, NM), new business requirements, general require-
ments (including NSP, TM) and the legacy world’s requirements. The latter con-



7.2 Causal Chains Explained 247 

cerns mission-critical applications and solutions, data processes, and tools gener-
ally running on mainframe computers to provide maximum availability. NSP 
stands for new strategic platform(s) which is a generic term to designate renewal 
initiatives to decommission the old IT world and to replace legacy applications 
with state-of-the-art solutions on a modern hardware infrastructure. The mecha-
nisms of the symptoms emerging at an apparent problem source are related to the 
following construct: 

• Basic errors are made at the very beginning of the software production chain 
(e. g., requirements). See Sect. 2.2. 

• Errors are dormant but connected to some problem source(s). 
• A trigger (action/event/condition) fires a fault activation to the problem 

source. 
• This causes the software under test to react to this fault by sending an incor-

rect response (unattended result). 
• At the tester level symptoms emerge which are described as defects. 

Figure 7.6 gives a schematic illustration of the defect creation. 
The basic process of testing is to enable defects to surface. After the detection 

phase follows the analysis phase, which should identify and qualify the cause of 
an incident (or cascading incidents), and prevent a similar event to pop up in fu-
ture releases. This sounds very simplistic, but in the modern IT world, testing is 
never a trivial task because the cause(s) of a software defect lies generally some-
where in the n-dimensional testing space. Beside geographic localization of a 
defect cause, the timing aspect is very important and more tricky because causal 
chains can be linked together in a asynchronous way (not visible at first sight). We 
examine now some chains of events causing defects in the entire test perimeter. 

Anomalie(s)

TRIGGER

Defect(s)Problem Source
(PS)

{Action/Event/Condition}

reaction(s)dormant

Basic error(s)

          dorm
ant Symptoms

Test environment

Peripheral system(s)

Adapted from:  Chillarege, 1999

fault
activation

 

Fig. 7.6 Defect creation mechanism 



248 7 The Analysis of Defect Root Causes 

7.2.3 Causal Chain Examples 

The most pre-eminent cause of errors is the business pressure on IT which is the 
source of cascading effects not only on the software engineering activities, but 
also practically on all processes around testing, resources, quality and – last but 
not least – customer satisfaction. I developed a schematic view on this causal 
network, as illustrated in Fig. 7.7. 

Business pressure can be seen as a positive enabler to achieve better results, but 
generally the management of expectations in a software project is poor, resulting 
in over-commitment from the IT organization. You can see in this diagram how 
many negative spirals of events can be produced in relation to few causes but 
having tremendous leverage effects. 

The second challenging issue is the technical diagnostic of anomalies covering 
a large spectrum of causes. In this chapter I give you some examples of cause and 
effect relationships testing large-scale information systems in a heterogeneous 
environment. 

-
+

decrease

increase

System
operability

Development
 time

Quality of
specifications

“On the fly”
requirements

Unrealistic
planning

Exceptions

 Hot fixes

Bugs

Incidents

-

+

-

+
Defects

Operating
support

+

Testing
 activities

+

-

+

Discipline
-

+

+
Business
pressure

Testing
time

-

++

+

Software
quality

-
Handling
problems

SW
availability

Documentation
quality & availability

Knowledge
“how to”

SW package
problems

-

- +

-

+

-
SW

stability

+ Operational
risks

-
Training

 time

+Costs

SW delivery
schedule

-

New change requirements

Customer
satisfaction

-

 

Fig. 7.7 Side-effects of business pressure on IT 



7.2 Causal Chains Explained 249 

Conflicting Requirements 

NEW  BUSINESS REQUIREMENTS  (ALL ASPECTS)

T
E
C
H

N
IC

A
L 

R
EQ

U
IR

EM
E
N

T
S
 

O
V
E
R

A
LL

 R
E
Q

U
IR

E
M

E
N

T
S

CD

TP

DQ

KH

HD

DO

DA

PM
LG

RL

DV

TO

PI

PB

DP

BR

BR

LEGACY WORLD'S EXISTING REQUIREMENTS  (DATA, PROCESSES, TOOLS)

BP LM
KH

IF

Results

DDST

NM

DS

BP

NSP

TM

TP

Zones of conflicting requirements
related to:
. business processes
. business rules
. solution logic (local)
. physical implementation
. data structures (local + global)
 

UNATTENDED PROCESSKNOWN REQT. UNKNOWN REQT. UNEXPECTED SIDE-EFFECT/ANOMALY EXPECTED CAUSE-EFFECT PATH  

 Triggers/Sequence of events/Impacts 
BP Business requirements are incomplete, wrong or misleading.  

Effects are: 
LG  Erroneous logic 
RL  Incomplete/wrong rules 
LM  Flaws in the logical model 
DS  Errors in the data structure definition 
PM  Wrong physical model implementation 
CD  Erroneous code 

Fig. 7.8 Zones of conflicting requirements in causal chains 



250 7 The Analysis of Defect Root Causes 

Documentation 

NEW  BUSINESS REQUIREMENTS  (ALL ASPECTS)

T
E
C
H

N
IC

A
L 

R
EQ

U
IR

EM
E
N

T
S
 

BP LM

CD

TR TP

DQ

KH

HD

DO

DA

PM
LG

RL

DV

TO

PI

PB

DP

BR

LEGACY WORLD'S EXISTING REQUIREMENTS  (DATA, PROCESSES, TOOLS)

KH

IF

Results

DDST

NM

DS

BP

SU
PP

O
R
T
 P

R
O

C
E
S
S

D
O

C
U

M
E
N

T
A
T
IO

N
  

 M
A
N

A
G

EM
EN

T

UNATTENDED PROCESSKNOWN REQT. UNKNOWN REQT. UNEXPECTED SIDE-EFFECT/ANOMALY EXPECTED CAUSE-EFFECT PATH  

 Triggers/Sequence of events/Impacts 
DO Document management – as a support process – impacts testing heavily.  

Areas of concern are: 
BP  Business processes 
BR  Business requirements 
PB  Software package build 
PI  Software package installation 
KH  Know-how 
HD  Handling 
TP  Technical processes 

Fig. 7.9 Impact of documentation process on testing 



7.2 Causal Chains Explained 251 

Standards 

PM

NEW BUSINESS REQUIREMENTS  (ALL ASPECTS)

T
E
C
H

N
IC

A
L 

R
EQ

U
IR

EM
E
N

T
S
 

O
V
E
R

A
LL

 R
E
Q

U
IR

E
M

E
N

T
S

BP LM

TR

DQ

HD

DO

DV

TO

PI

PB

DP

BR

BR

LEGACY WORLD'S EXISTING REQUIREMENTS  (DATA, PROCESSES, TOOLS)

KH

IF

no results

DDST

NM

DS

BP

SSP

TM
no data available

records load failed

standard software not compatible
with the Central Business Logic

CD DA

LG
TP

standard software
update

UNATTENDED PROCESSKNOWN REQT. UNKNOWN REQT. UNEXPECTED SIDE-EFFECT/ANOMALY EXPECTED CAUSE-EFFECT PATH  

 Triggers/Sequence of events/Impacts 
 This is an example of a backward compatibility problem. 
ST Standard software is loaded in the existing application landscape 
LG New standard software is incompatible with the central business logic 
CD New code does not match well with in-house application(s) 
TP Technical processes fail to load records 
DD Data delivery goes in error 
DA No data is available 
DP Processing fails 

Fig. 7.10 Diagram showing a backward compatibility problem 



252 7 The Analysis of Defect Root Causes 

Data Value 

processing
in error

IF

 NEW BUSINESS REQUIREMENTS  (ALL ASPECTS)

T
E
C
H

N
IC

A
L 

R
EQ

U
IR

EM
E
N

T
S
  

O
V
E
R

A
LL

 R
E
Q

U
IR

E
M

E
N

T
S

DQ

KH

HD

DO

LG

RL

DV

TO

PI

PB

BR

BR

LEGACY WORLD'S EXISTING REQUIREMENTS  (DATA, PROCESSES, TOOLS)

KH

DDST

NM

BP

NSP

TM

no results

TR

O
V
E
R

A
LL

  
R

EQ
U

IR
EM

E
N

T
S
 

BP LM DS

PM

tables creation
process
initialized

CD

table creation
process failed

no data available

DP

DA

TP

some basic
data values
missing

no table delivered

UNATTENDED PROCESSKNOWN REQT. UNKNOWN REQT. UNEXPECTED SIDE-EFFECT/ANOMALY EXPECTED CAUSE-EFFECT PATH  

 Triggers/Sequence of events/Impacts 
DV Data values maintained by business entities are not correctly defined or are incomplete 
CD Code activates the table creation process 
TP Table creation process fails 
DD Data delivery fails 
DA Data are not available as expected 
DP Processing gets an error 

Fig. 7.11 Diagram showing the impact of wrong data values 



7.2 Causal Chains Explained 253 

Multiple Causes 

NEW  BUSINESS REQUIREMENTS  (ALL ASPECTS)

T
E
C
H

N
IC

A
L 

R
EQ

U
IR

E
M

E
N

T
S 

 

O
V
E
R
A
LL

 R
EQ

U
IR

E
M

E
N

T
S

DQ

KH

HD

DO

LG

DV

TO

PI

PB

BR

BR

LEGACY WORLD'S EXISTING REQUIREMENTS  (DATA, PROCESSES, TOOLS)

KH

IF
DDST

NM

BP

NSP

TM

DA

DP

results as  expected

TR

O
V
E
R
A
LL

  
R
E
Q

U
IR

EM
EN

T
S
 

BP LM DS

TPPM

rules in tables are
wrongly formatted

data files generated
with line separators

file transfer  OK

RL

CD data files correctly
posted

1st causal chain
. failure propagation
. no defect generated

UNATTENDED PROCESSKNOWN REQT. UNKNOWN REQT. UNEXPECTED SIDE-EFFECT/ANOMALY EXPECTED CAUSE-EFFECT PATH  

 Triggers/Sequence of events/Impacts 
 1st causal chain → failure remains undetected 
KH Data files are created with line separators; the tester ignored the right file format 
RL Rules in tables are wrongly formatted 
CD Code is executed 
TP File transfer process is activated 
DD Data file transfer is successful  
DA Data files are correctly posted 

Fig. 7.12 Diagram showing a defect in a 1st causal chain 



254 7 The Analysis of Defect Root Causes 

NEW  BUSINESS REQUIREMENTS  (ALL ASPECTS)
T
E
C
H

N
IC

A
L 

R
EQ

U
IR

EM
EN

T
S 

 

O
V
E
R

A
LL

 R
E
Q

U
IR

E
M

E
N

T
S

DQ

KH

HD

DO

LG

RL

DV

TO

PI

PB

BR

BR

LEGACY WORLD'S EXISTING REQUIREMENTS  (DATA, PROCESSES, TOOLS)

KH

IF
DDST

NM

BP

NSP

TM

O
V
E
R

A
LL

  
R

EQ
U

IR
EM

E
N

T
S
 

BP LM

TPPM

file transfer process
successfully started

file transfer 
records count OK

data in error

processing
aborted

2nd  causal chain
. wrong data structure
  generates defect

DA

DP

no results

TR

line separators embedded
in data records

CD

DS

code executed correctly 
data delivery completed 

UNATTENDED PROCESSKNOWN REQT. UNKNOWN REQT. UNEXPECTED SIDE-EFFECT/ANOMALY EXPECTED CAUSE-EFFECT PATH  

 Triggers/Sequence of events/Impacts 
 2nd causal chain → defect is raised 
DS Flaw in data structure: line separators are embedded in the record structure 
CD Code is executed correctly 
TP File transfer process is activated 
DD Data file delivery is successful 
DA Data are not available as expected 
DP Processing aborts 

Fig. 7.13 Diagram showing a defect in the 2nd causal chain 



7.2 Causal Chains Explained 255 

NEW  BUSINESS REQUIREMENTS  (ALL ASPECTS)
T
E
C
H

N
IC

A
L 

R
EQ

U
IR

EM
E
N

T
S
  

O
V
E
R

A
LL

 R
E
Q

U
IR

E
M

E
N

T
S

CD

DQ

KH

HD

DO

DV

TO

PI

PB

BR

BR

LEGACY WORLD'S EXISTING REQUIREMENTS  (DATA, PROCESSES, TOOLS)

KH

IFST

NM

BP

NSP

TM

DA

DP

no results

TR

O
V
E
R

A
LL

  
R

EQ
U

IR
EM

E
N

T
S
 

BP LM DS

PM

RL

LG
TP

wrong
data values 

denormalization process

missing join
condition
on dates

duplicate values

fuzzy rules

processing
in error

incomplete
data rules

erroneous
logic definition

UNATTENDED PROCESSKNOWN REQT. UNKNOWN REQT. UNEXPECTED SIDE-EFFECT/ANOMALY EXPECTED CAUSE-EFFECT PATH  

 Triggers/Sequence of events/Impacts 
 This example illustrates a data value problem resulting from lateral and backward com-

patibility issues  
BP 
LM 

New business processes and new requirements introduce errors in the logical model  

KH 
LG 

Insufficient user’s know-how and wrong logic generate fuzzy rules 

RL Fuzzy rules influence negatively both data values and the code’s behavior. 
DV In this case data values must fulfil existing requirements (from legacy applications) and 

new ones. Incomplete, wrong or missing data values will impact the code’s behavior as 
well 

CD The code generates duplicate values 
DP Processing goes in error 

Fig. 7.14 Diagram showing compatibility issues 



256 7 The Analysis of Defect Root Causes 

Time Management 

Timing problems in a software under test can take the following forms: 

• Bottleneck 
• Congestion 
• Contention 
• Dead-time 
• Hot spot 
• Slow down 
• Slow spot 
• Time lag 
• Time out 

Even on high-end computers, the allocation of resources and processing time 
can become a real issue by running hundred of technical processes in parallel, 
generating thousands of event-driven chains and tasks. Applications running on 
large relational databases and coded in a fourthth generation language necessitate 
often a massive parallelization of processes. 

Oracle databases on separate platforms can be combined to act as a single 
logical distributed database, which can negatively impact performance and stabil-
ity if database design and parametrization are inadequate. Parallel query features 
became a standard part of Enterprise Edition beginning with Oracle 7.3. Parallel 
query became supported in virtual private databases (VPD) with Oracle Database 
10g. Examples of query features implemented in parallel include: 

Table scans Index scans 
Nested loops Hash joins 
Sort merge joins ORDER BY and aggregation 
GROUP Bys Bitmap star joins 
NOT IN subqueries (anti-joins) Partition-wise joins 
Select distinct UNION and UNION ALL Stored procedures (PL/SQL, Java, external routines) 
User-defined functions  

(Source: Oracle Database 10g) 



7.2 Causal Chains Explained 257 

TP

Chains  

Jobs

  steps    

TP

Chains  

Jobs

  steps    

TP

Chains  

Jobs

  steps    

TP

Chains  

Jobs

  steps    

TP

Chains  

Jobs

  steps    

TP

Chains  

Jobs

  steps    

Sequential 
processing

Parallel processing

technical processes

 

Fig. 7.15 N-dimensional job processing in large systems 

Fine-tuning the software is therefore imperative, and this will be made running 
tests in the STE environment, by using appropriate tools and procedures. Fig-
ure 7.15 shows roughly the intricacy of processes running both sequentially and in 
parallel. 



258 7 The Analysis of Defect Root Causes 

The impact for each category of technical dysfunctions is listed in Fig. 7.16. 

NEW BUSINESS REQUIREMENTS  (ALL ASPECTS)

T
E
C
H

N
IC

A
L 

R
EQ

U
IR

EM
E
N

T
S
 

O
V
E
R

A
LL

 R
E
Q

U
IR

E
M

E
N

T
S

TR TP

DA

DP

BR

BR

LEGACY WORLD'S EXISTING REQUIREMENTS  (DATA, PROCESSES, TOOLS)

DDST

NM

NSP

O
V
E
R

A
LL

 R
E
Q

U
IR

E
M

E
N

T
S

TM

UNATTENDED PROCESSKNOWN REQT. UNKNOWN REQT. UNEXPECTED SIDE-EFFECT/ANOMALY EXPECTED CAUSE-EFFECT PATH  

 Triggers/Sequence of events/Impacts 
TM Time-related problems can impact directly or indirectly: 

• Technical processes  
• Transactions  
• Data delivery  
• Data availability  
• Data processing 

Fig. 7.16 Diagram showing the impact of timing anomalies 



7.2 Causal Chains Explained 259 

Here is an example of timing problem in a bi-temporal context: 

data delivery failed

NEW  BUSINESS REQUIREMENTS  (ALL ASPECTS)

T
E
C
H

N
IC

A
L 

R
EQ

U
IR

EM
E
N

T
S
 

O
V
E
R

A
LL

 R
E
Q

U
IR

E
M

E
N

T
S

CD

TR

DQ

KH

HD

DO

DA

PM
LG

RL

DV

TO

PI

PB

DP

BR

BR

LEGACY WORLD'S EXISTING REQUIREMENTS  (DATA, PROCESSES, TOOLS)

KH

IF

no results

DD

NM

BP

NSP

TM

TP

Parent TP updates
time validation 
information (dates)

no data available

Child TP activates
time validation 
for processing

time frame for data
delivery is too short

O
V
E
R

A
LL

L 
 R

E
Q

U
IR

E
M

E
N

T
S

UNATTENDED PROCESSKNOWN REQT. UNKNOWN REQT. UNEXPECTED SIDE-EFFECT/ANOMALY EXPECTED CAUSE-EFFECT PATH  

 Triggers/Sequence of events/Impacts 
TP1 Parent process updates date information in the bi-temporal data space 
TP2 Child process activates time validation for processing 
TM Time frame for data delivery is too short 
DD Data delivery fails 
DA Data is not available as expected 
DP Processing delivers no result 

Fig. 7.17 Diagram showing timing problem(s) in a technical process 



260 7 The Analysis of Defect Root Causes 

Inadequate Constraints 

NEW  BUSINESS REQUIREMENTS  (ALL ASPECTS)

T
E
C
H

N
IC

A
L 

R
EQ

U
IR

E
M

EN
T
S
 

O
V
E
R

A
LL

 R
E
Q

U
IR

E
M

E
N

T
S

BP LM

TR

DQ

KH

HD

DO

LG

RL

DV

TO

PI

PB

DP

BR

BR

LEGACY WORLD'S EXISTING REQUIREMENTS  (DATA, PROCESSES, TOOLS)

KH

IF

some results

DD

NM

DS

BP

NSP

TM

unadequate constraints

info loss

Code OK
tables partitioning
partially wrong

PM TP

CD DA

gather process
works as specified

UNATTENDED PROCESSKNOWN REQT. UNKNOWN REQT. UNEXPECTED SIDE-EFFECT/ANOMALY EXPECTED CAUSE-EFFECT PATH  

 Triggers/Sequence of events/Impacts 
PM Physical model contains inadequate constraints 
CD Code seems to be error-prone 
TP The technical processes designed to gather data from various data feeds work as designed 
DD Tables partitioning is not successfully completed 
DA Data are not available as expected 
DP Results are incomplete 

Fig. 7.18 Inadequate constraints as sources of defects 



7.2 Causal Chains Explained 261 

Findings 

I encourage you to try my “test perimeter” approach and to use the task list shown 
in Table 7.4 to better identify and correct defects. 

Figure 7.19 illustrates typical defect causes in the IIT phase. 

Table 7.4 How to deal with test findings 

Test findings 
Do What? 
Categorize causes of suspected problems 
Confirm suspects (reproduce it/reproduce symptoms/validate accuracy of scripts used) 
Document all the findings – store them in a knowledge database 
Exploit results generated by testing test cases 
Identify suspects (via graphs/charts/user’s observation) 
Publish lessons learned 

visually → make sure the pictures tells the story well 
verbaly → discuss the symptoms with people involved 

Report 

via demonstration → “seeing is believing” is the best method to convince  
your users and managers. Show the symptoms found and securely identified 
(no room for speculations) 

Resolve problems discovered 
Sort events observed 
Test TCs → adapt them → create new one 
Verify effect-cause relationship 

19%

15%

12%

12%

9%

9%

9%

9%

3% 3%

specifications

job control

workflow

timing

data sourcing

database

rules

control tables

package installation

performance

A
B
C
D
E
F
G
H
I
J

A

B

C
D

E

F

G

H
I J

 

Fig. 7.19 Main causes of defects in IIT 



262 7 The Analysis of Defect Root Causes 

7.3 Data-Dependent Testing 

7.3.1 Database Testing 

According to Veritas (http://www.symantec.com/enterprise), “the performance of 
an application depends on three factors: the operating system, database instance, 
and the use of SQL statements. Tuning the operating system and database instance 
at the initial stage of implementation usually leads to a performance improvement 
of 1% to 10%. Application SQL tuning can lead to a dramatic improvement of 
100% to 1000% or more.” We will examine in this chapter today’s database tech-
nology offering, what is required for test databases, PL/SQL migration, SQL op-
timization challenges, and potential pitfalls to avoid with Oracle10g. 

Database Technology 

Three main players offer powerful database management software on mainframe: 
IBM, Oracle Corp. and Teradata. IBM’s DB2 UDB is rated a “technology leader” 
based on the strength of its query technology and the degree to which its Enter-
prise and Extended Enterprise editions can scale on symmetric multiprocessing 
machines (SMPs) and distributed memory parallel processor architectures. IBM 
also has strengths in its support of large data marts and data warehouses (DWHs). 

Oracle’s greatest strength is its portability on a wide range of Unix and Linux 
hardware platforms. High-end data volume (terabytes of data) and data model 

Concurrent
Query Mgt. (5)

     Query
Performance (7)

Data
Mgt. (7)

Data
Admin. (8)

Proven
DW Track
Record (6)

Platform
Suitability &
Scalability (9)

Oracle 10g  (HP Integrity)

Concurrent
Query Mgt. (7)

     Query
Performance (8)

Data
Mgt. (8)

Data
Admin. (7)

Proven
DW Track
Record (7)

Platform
Suitability &
Scalability (9)

DB2 UDB 8.2 (IBM pSeries)

Concurrent
Query Mgt. 
(10)

     Query
Performance (10)

Data
Mgt. (10)

Data
Admin. (9)

Proven
DW Track
Record (10)

Platform
Suitability &
Scalability (10)

Teradata

DB Software used 
on high-end computers

Sources: Wikipedia & Teradata, 2008  
Fig. 7.20 Performance spectrum of high-end database software 



7.3 Data-Dependent Testing 263 

complexity (query optimization) are still challenging for Oracle to manage. I 
worked on a testing project for a cutting-edge application in the finance industry 
running a huge (>20TB) ORACLE 10g production database. In this demanding 
environment, performance tuning and stability issues necessitated to run system 
tests (STE) for each minor and major release. For very large databases however, 
NCR’s TERADATA offers the best overall performance, as shown in the com-
parative as diagram in Fig. 7.20 illustrates. 

Test Databases 

In large applications, test sets are rarely self-sufficient in regard of test data nee-
ded to test them. If we consider that a single business transaction normally spans 
many business domains, this implies dozens of data feeds delivering files which 
must be first registered, then checked for structural integrity. As a matter of fact, it 
is quite common that new applications (= new feeds) generate defective files: 
incomplete headers, wrong record structures, missing trailers, and the like. Addi-
tional checks are needed to verify the completeness of the files and the correctness 
of the data delivered (plausibility). 

The staging area dedicated to testing is a system collecting data from new busi-
ness solutions (e. g., NSPs) and from existing legacy systems. The staging area is 
the place where extract, transform, and load of the test database(s) takes place. 
Some of the functions of the data staging area include: 
• Extracting data from multiple systems 
• Cleansing the data, usually with a specialized tool 
• Integrating data from multiple systems into a single data pool 
• Transforming system keys into data pool keys, usually surrogate keys 
• Transforming disparate codes into the data pool standard 
• Transforming the heterogeneous data structures to the data pool structures 
• Loading the various tables via automated jobs in a particular sequence 

through dedicated scripts. 
Due to regulations concerning privacy issues, and to prevent the possible mis-

use of confidential information, all files extracted from operative databases have 
to be anonymized. All these tasks should be covered by the TDM process, as de-
scribed in Sect. 4.2.4. 

Test Data Volumes 

We discussed in Sect. 4.2 the life cycle of business data and data artifacts used for 
tests. Testing very large databases requires an optimized resources management 
schema to allocate the physical storage space needed for each server in the various 
test environments. Typical data volume requirements are: 
• CIT    1–5% of operational data volume 
• IIT/MIT   8–10% of operational data volume 



264 7 The Analysis of Defect Root Causes 

• AIT/UAT   20% of operational data volume 
• STE    100% of operational data volume 

As new regulations take place (e. g., SOX, Basel II), larger data storage capa-
cities must also be planned for the long-term archiving of test artifacts and test 
results. 

Aspects of RDBS 

Some aspects of relational database systems are important to know to develop and 
implement good testing practice: the representation of missing information in 
RDBS, PL/SQL migration to Java, SQL optimization, SQL/DBMS implementa-
tions, and potential problems with Oracle 10g. 

Missing Information 

In Sect. 4.3.1, we explained that values in tables can be represented with “null.” In 
relational database systems, missing data values are represented by this special 
marker. 

A Null Value 

A “null” is a meta-value; it is not like a normal data value. It does not mean “emp-
ty string” either. Because of this, nulls have the same meaning regardless of the 
data type or domain of the field. The null value for a field indicates that the asso-
ciated data value is missing. 

Fig. 7.21 Bitemporal  
data volume 

archived
DB

operational 

DB

data volume

valid until 
date

replaced on 
date

sys
tem

 da
te o

n

know
led

ge a
xis

Data volume growth
in a bitemporal
database



7.3 Data-Dependent Testing 265 

Valued Logic (3VL) 

Database operations often involve conditional expressions that are questions about 
data values in the database. These questions normally produce yes or no re-
sponses, or true or false results. When fields referenced in the questions are null, 
the result is unknown rather than true or false. Unknown indicates that data values 
are missing, so the truth or falsity of the answer to the question is not known. It is 
unknown. Logic utilizing 3 types of responses – true, false or unknown, is called 3 
valued logic or 3VL. Relational databases implement a form of 3 Valued Logic 
that provides the power to deal with missing information. [OUG] 

PL/SQL Migration to JAVA 

Java is a system language for network programming introduced in May, 1995 by 
Sun Microsystems and has a widespread used in the modern IT world. Java has 
many advantages: 

• It is object-oriented, robust, and simple 
• It supports multi-threading 
• It offers good security features 
• It is platform-independent. 

PL/SQL is a RDB programming language proprietary to Oracle, which does not 
offer such flexibility. In particular, its procedures are not portable across data-
bases. With most database vendors, including Oracle, supporting Java-based pro-
cedures to be run inside the database, it is worthwhile to move to a completely 
Java-based environment. 

For all these reasons, large companies using Oracle database software migrate 
existing PL/SQL procedures to Java. The move offers many advantages to the 
developers like easier code maintainability, and portability and flexibility of de-
ployment. The migration to JAVA helps also maintaining enterprise applications 
at reasonable costs. 

Oracle to Java migration tools take PL/SQL packages, procedures, functions, 
and triggers as input and convert them into standard JDBC based Java code. 
PL2JSQL implements most PL/SQL functions as Java APIs. The converted Java 
code can be run standalone or in Java 2 Standard Edition (J2EE) container with 
Enterprise Java Bean (EJB) wrappers for the converted CBL’s code. 

SQL Optimization Challenges 

Optimizing SQL is a challenging task for two main reasons: it is a complex skill to 
master and it is a time consuming work. A third reason is that almost every 
PL/SQL program reads and transforms one or more database table. Every access 
to the table can generate a “side-effect,” a dependency or some impact that is not 



266 7 The Analysis of Defect Root Causes 

identified in the parameter list. When those side-effects impact tables, however, 
testing can be very difficult. Testing the contents of these tables is also challeng-
ing and the data changed by a program can be hard to analyze. To increase the 
difficulty, pre-packaged applications add complexity to the tuning process because 
not all of the source code is visible to the tuner. These applications also tend to 
generate complex SQL statements that are only generically tuned by the vendor. 
The input data is an another cause of concern because it consists of the SQL 
statement itself, objects referenced by the SQL and their object statistics, and 
some of the database parameters. This imposes significant constraints on the opti-
mization process. Finally, the optimization algorithm may get lost in complex 
multi-table joins, and as a result it can decide to use a full table scan to access data 
instead of using an index range scan. Manual application SQL tuning is needed to 
identify and to resolve these issues [Veritas]. 

Therefore, the specialists optimizing SQL must: 

• Know the database structure 
• Know the data constellation in the database 
• Try different ways to write a SQL statement 
• Understand how the database processes SQL statements 

If one asks when to start optimization, the response is easy: early in the soft-
ware development process. In practice, however, this task is recurrent and optimi-
zation occurs by unit test, during the integration phase and after “going live” in 
production. Most large organizations have implemented a code review process for 
optimizing SQL development and testing. This process is owned by a QA entity 
and supported by a review team which is assisted by SQL experts in charge of the 
code’s optimization job. The inputs of Oracle optimization are highly dynamic: 
data volume and data distribution change over time which requires frequent 
changes in the execution plan with corresponding impact on the SQL’s tuning 
activities. 

The tuning steps are as follows: 

1.  Examine the consumption or resources 
2.  Identify the problematic SQL statements 
3.  Analyze the SQL statements 
4.  Make changes to database objects and/or SQL statements 
5.  Perform an impact analysis 

7.3.2 SQL Tuning Sets (STSs) 

An STS is a database object that includes one or more SQL statements along with 
their execution statistics and execution context, and could include a user priority 
ranking. STSs capture the workload of an Oracle instance. Starting in Oracle 10g 
Release 2, these tuning sets can be transported from one instance to another to 



7.3 Data-Dependent Testing 267 

facilitate testing. A tuning set is used as input to the SQL Tuning Advisor, which 
examines the statements and makes recommendations for improving them. 

By using a staging table and the procedures in the package DBMS_SQL 
TUNE, you can export STSs from the instance in which they were created and 
import them into a test instance for analysis. 

The SQL statements can be loaded into an STS from different SQL sources, 
such as the Automatic Workload Repository, the cursor cache, or custom SQL 
provided by the user. An STS includes: 

• A set of SQL statements 
• Associated execution context, such as user schema, application module name 

and action, list of bind values, and the cursor compilation environment 
• Associated basic execution statistics, such as elapsed time, CPU time, buffer 

gets, disk reads, rows processed, cursor fetches, the number of executions, the 
number of complete executions, optimizer cost, and the command type 

• Associated execution plans and row source statistics for each SQL statement 
(optional) 

SQL statements can be filtered using the application module name and action, 
or any of the execution statistics. In addition, the SQL statements can be ranked 
based on any combination of execution statistics. 

An STS can be used as input to the SQL Tuning Advisor, which performs 
automatic tuning of the SQL statements based on other input parameters specified 
by the user. STSs are transportable across databases and can be exported from one 
system to another, allowing for the transfer of SQL workloads between databases 
for remote performance diagnostics and tuning. When poorly performing SQL 
statements are encountered on a production system, it may not be desirable for 
developers to perform their investigation and tuning activities on the production 
system directly. This feature allows the DBA to transport the offending SQL 
statements to a test system where the developers can safely analyze and tune them. 
To transport STSs, use the DBMS_SQL TUNE package procedures. (Source: 
Oracle Database Performance Tuning Guide 2007) 

Automatic SQL Tuning 

The procedure to tune SQL code consists of the following steps: 

1.  Create one or more SQL Tuning Sets. STSs can be created in Oracle Enter-
prise Manager from existing AWR snapshots, preserved snapshot sets, or a 
defined period of historical SQL. They can also be created manually using 
procedures in DBMS_SQLTUNE. 

2.  Use the CREATE_STGTAB_SQLSET procedure in DBMS_SQLTUNE to 
create a staging table to hold the STS that will be transported. 

3.  Use the PACK_STGTAB_SQLSET procedure to load the staging table with 
existing tuning sets. 



268 7 The Analysis of Defect Root Causes 

4.  Move the staging table the same as you would any other table, such as via the 
data pump (see Oracle 10g below) export and import. 

5.  On the destination system, use the UNPACK_STGTAB_SQLSET procedure 
to import the tuning sets into the system. They can then be analyzed using 
DBMS_SQLTUNE or Enterprise Manager. 

(Source: TechRepublic, 2007) 

Tool for Optimization 

Quest Software’s de facto standard development tool, Toad for Oracle, has SQL 
optimization technology in the “Xpert” edition. 

SQL and DBMS implementations: To know more about SQL and the DBMS 
products based on it, I recommend Pascal Fabian’s book: “Practical Issues in 
Database Management: A Reference for the Thinking Practitioner.” ISBN: 
0201485559/9780201485554. The author takes real-world examples to provide an 
assessment of current technology and, whenever possible, offers concrete recom-
mendations and workarounds. 

Oracle 10g 

Some problems or limitations can occur by using Oracle 10g: 

Memory Consumption for CHAR Columns Defined as OUT or IN/OUT 
Variables. In PL/SQL, when a CHAR or a VARCHAR column is defined as a 
OUT or IN/OUT variable, the driver allocates a CHAR array of 32512 chars. This 
can cause a memory consumption problem. Note that VARCHAR2 columns do 
not exhibit this behavior. We encourage you always to call registerOutParam-
eter(int paramIndex, int sqlType, int scale, int maxLength) on each CHAR Or 
VARCHAR column. This method is defined in oracle.jdbc.driver.  
OracleCallableStatement. Use the fourth argument, maxLength, to limit the mem-
ory consumption. maxLength tells the driver how many characters are necessary 
to store this column. The column will be truncated if the character array cannot 
hold the column data. The third argument, scale, is ignored by the driver. 

Memory Leaks – Running Out of Cursors. If you receive messages that you are 
running out of cursors or that you are running out of memory, make sure that all 
your Statement and ResultSet objects are explicitly closed. The Oracle JDBC 
drivers do not have finalizer methods. They perform cleanup routines by using the 
close() method of the ResultSet and Statement classes. If you do not explicitly 
close your result set and statement objects, significant memory leaks can occur. 
You could also run out of cursors in the database. Closing a result set or statement 
releases the corresponding cursor in the database. Similarly, you must explicitly 
close Connection objects to avoid leaking and running out of cursors on the server 



7.3 Data-Dependent Testing 269 

side. When you close the connection, the JDBC driver closes any open statement 
objects associated with it, thus releasing the cursor objects on the server side. 

JDBC and Multithreading. The Oracle JDBC drivers provide full support for 
programs that use Java multithreading. If you choose to share the connection, then 
the same JDBC connection object will be used by all threads (each thread will 
have its own statement object, however). Because all Oracle JDBC API methods 
are synchronized, if two threads try to use the connection object simultaneously, 
then one will be forced to wait until the other one finishes its use. 

Character Integrity Issues in a Multibyte Database Environment. Oracle 
JDBC drivers perform character set conversions as appropriate when character 
data is inserted into or retrieved from the database. The drivers convert Unicode 
characters used by Java clients to Oracle database character set characters, and 
vice versa. Character data that makes a round trip from the Java Unicode character 
set to the database character set and back to Java can suffer some loss of informa-
tion. This happens when multiple Unicode characters are mapped to a single char-
acter in the Oracle’s database character set. (Source: Oracle 10g JDBC Devel-
oper’s Guide and Reference) 

Oracle Objects. Oracle object types are user-defined types that make it possible 
to model real-world entities as objects in the database. Oracle object technology is 
a layer of abstraction built on Oracle relational technology. New object types can 
be created from any built-in database types and any previously created object 
types, object references, and collection types. Metadata for user-defined types is 
stored in a schema that is available to SQL, PL/SQL, Java, and other published 
interfaces. 

Object types and related object-oriented features such as variable-length arrays 
and nested tables provide higher-level ways to organize and access data in the 
database. Underneath the object layer, data is still stored in columns and tables. 

Like classes, objects make it easier to model complex, real-world business enti-
ties and logic, ant the reusability of objects makes it possible to develop database 
applications faster and more efficiently. With this technology, it is possible to 
access directly the data structures used by the new applications. No mapping layer 
is required between client-side objects and the relational database columns and 
tables that contain the data. Object abstraction and the encapsulation of object 
behaviours also make applications easier to understand and maintain. 

Data Pump. Oracle data pump technology enables very high-speed movement of 
data and metadata from one database to another. Data pump export and import 
results in greatly enhanced data transfer performance over the original export and 
import utilities. Data pump export and import use parallel execution rather than a 
single stream of execution, what leads to improved performance. Data pump ex-
port and import are self-tuning utilities. (Source: Oracle Database Application 
Developer’s Guide – OR features) 



270 7 The Analysis of Defect Root Causes 

Key Indicators in Database Testing 

DB testing can be more effective if the following key indicators are used: 

• System performance 

− Change in load distribution between the DB server and the application 
server 

− CPU load variations in the DB server while application server CPU load 
increases 

− Monitor network traffic to identify bottlenecks at the application server 

• Application performance 

− Login/logout operations with fetch of objects viewable in the application 
DB 

− Case creation with search for duplicate cases in several large record 

• Search operations 

− Simple search with individual record lookup involving multiple table 
joins 

− Heavy search of multiple instances with multi-table joins of large record 
tables 

− Heavy search with multiple criteria on multiple objects resulting in outer 
joins 

We discussed data and time aspects in Sect. 4.2 and the characteristics of table-
driven systems in Sect. 4.3. TDS are highly flexible but very sensitive to inconsis-
tencies or leaks in the data rules; for these reasons they require tight management 
and a waterproof versioning concept. 

After many test iterations, you will notice inconsistent results: sometimes the 
tests succeed, sometimes they fail. The cause of inconsistencies is not necessarily 
the result of algorithm design issues but data problems: truncation rules, precision 
errors, currency conversions, calendar dates and the like. Software components 
can be often in an uncertain system state because the test data is the main source 
of troubles: it are missing, incomplete, inconsistent, not timely available or out-
dated. Incomplete setting of the test environment(s) and incorrect test conditions 
in the data space (e. g., calendar settings, delivery plan, test parameters) lead to 
inconsistent, unsteady or wrong results also. 

Adding to that many technical processes fail to run correctly and accurately be-
cause of wrong timing: waiting on events, poor synchronization and the like. Im-
plementing data-centric testing faces two challenges: time and state management. 



7.3 Data-Dependent Testing 271 

7.3.3 Bi-temporality Issues 

Data is actual as long as their life cycle allows to use it meaningfully. In business 
systems, two types of problems appear quite frequently in the context of bi-
temporal databases 

The Wrong Calendar Setting 

In many business applications the calendar functionality can be implemented in 
one or more SWCs causing conflicts not only at SWC level but also at the system 
level. 

The Wrong Business Rules 

Users are responsible for the creation, maintenance and deactivation of dedicated 
rules in the business domain. These data are located in tables. If some rules are 
missing, incomplete or outdated, time lags, wrong processing and missing results 
(data cubes building e. g.) occur inevitably. 

Attributes 

Missing or incomplete data related to knowledge dates (known since/known until) 
is often the source of problems in a bi-temporal data space. 

7.3.4 Business Rules Management (BRM) 

BRM is a core process in the business and IT domains which requires a close 
teamwork of all parties involved to enable the timely delivery, check and proc-
essing of actual data. 

We discussed this topic in detail in Sect. 2.5. Refer to Fig. 2.12 to see how 
business and IT experts explore, exploit and maintain rules being used not only for 
the production but also for scenario testing. 

7.3.5 Data State 

Managing the state of the data introduces its own set of problems mainly related to 
database size, the synchronicity of the test pools in all environments and bi-
temporality aspects. 

Before starting a range of tests the database must be in a known state. One way 
to do this is to have a separate unit test database which is under the control of the 



272 7 The Analysis of Defect Root Causes 

test cases: the test cases clean out the database before starting any tests. Following 
this approach requires you to set up and maintain a dedicated test database for 
each test environment. With multiple test databases you have to make sure you 
keep the structure of the databases in synchronicity; the change management proc-
ess should keep track of all the software modifications made in the CIT, IIT, MIT 
and AIT test environments. As we will see in this section, very large amounts of 
data can be required to run business tests in the AIT and STE environments, which 
represents a significant investment in the test infrastructure. 

Before each test run, the calendar settings and other time-related parameters 
have to be in a logical and physical correct state to avoid bi-temporal problems 
(e. g., time lags) or causality violations. To achieve test readiness, it must be veri-
fied that the system is in the correct state for that particular test. After test comple-
tion, the system’s outcome must be carefully tracked and the system reinstated if 
necessary for the next test cycle. 

To overcome this difficulty, shared setup classes or a batch-input process can 
be used. If the application persists its state to some type of storage, other problems 
can occur (e. g., storage capacity shortage or/and tablespace failures). Adding data 
to the storage system could be complicated, and frequent insertions and deletions 
could slow test execution. To make test data ready before use, a verification proc-
ess can be implemented as shown in Fig. 7.22. 

DATA STAGING

REGISTRATION

formal CHECKS

RECEPTION

DATA PROCESSING

RESULTS DELIVERY

Analysis of results

DATA DELIVERY

Check post-conditions

Verify pre-conditions

Data Verification
Chain

NORMALIZATION

PREREQUISITES

Check post-conditions

CLEANSING

LOAD

 
Fig. 7.22 Data verification chain explained 



7.3 Data-Dependent Testing 273 

7.3.6 Data Life Cycle 

Business and test data have their own life cycle which exhibit distinct patterns. 
Business data (e. g., reference data) has the longest life cycle and represent the 
company’s most valuable asset. Due to new regulations (e. g., SOX-404) test data 
have to be kept alive a much longer period of time as in the past decades. There-
fore, a SOX-compliant archiving concept for these data pools shall be imple-
mented accordingly. Refer to Fig. 2.10 to recall the various data life cycles of live 
data and those used for testing purposes only. 

7.3.7 Causality Violation 

Digital artefacts in a bi-temporal universe have to be stored with 2 elements: 

• The validity time period and, 
• The system’s awareness time. 

The right positioning of any item on the time axis in the digital world is manda-
tory to gather correctly the requested facts reflecting a given situation in the real 
world at a specific point in time. The simple example below shows geographical 
and time dependencies of a customer’s address in a bi-temporal data space. At the 
point in time where the address is still unknown, the attribute is filled with the 
default value “Null,” as we discussed earlier in database testing. 

Therefore, any operation in the IT system modifying this particular content – 
only partially or in the wrong sequence – will cause inevitably a violation of the 
causality rule. Some situations may lead to a causality violation because the sys-
tem already knows about future states or interrelationships or dependencies be-
tween artifacts and reacts automatically to the new situation. In this case, to avoid 
wrong results, missing or corrupted data, the business logic applies default rules to 
erroneous transactions which are to be investigated by the business’s data owners 
for correction and further processing. 

Calendar information is stored outside the business logic and can be defined in 
various ways in the business applications of the solution domain. It is of critical 
importance to manage these tables in a controlled and well-documented manner 
using versioning. 

Most of the business systems are not real-time in nature: data are collected and 
processed in batch at predefined intervals in time: end-of-day, end-of-period, and 
so on. This is the cause of so-called “time lag,” a bias error on the knowledge axis. 

Time lag is often the cause of causality problems in a bi-temporal database. 
A good practice is to create and maintain an error database tracking the faulty 
records on a daily basis. After verification by the business experts, an adjustment 
function should be activated to re-establish the right causality relationship. 

The synchronization of technical processes is also a major source of problems 
in this context. Any update operation acting on stored artifacts in the system can 



274 7 The Analysis of Defect Root Causes 

generate erroneous validity information or state anomalies which must be cor-
rected as soon as detected. It is important to remember that automatic workflow 
processes might have modified the data based on non-valid or inconsistent bi-
temporal dates. In this case the wrong temporal information has to be set correctly 
and the faulty process chain(s) restarted to correct the situation. Modern applica-
tions should provide automatic mechanisms to check permanently the integrity of 
the bi-temporal database – before and after modification – of the content. 

7.4 Frequent Causes of Problems 

Most of the failures detected in testing a software are caused by basic errors due to 
insufficient, wrongly formulated, or missing requirements as stated in earlier chap-
ters. cf. Sects. 2.2 and 7.2. The source of major defects can be related to misused 
(or misunderstood) rules and procedures leading to severe malfunctions, too. In 
this chapter, we examine the sources of anomalies which can endanger mission- or 
business-critical operations: deadlocks, code and data fixes, memory leaks, meta-
data management, network-centric applications, network problems, software pa-
ckage builds, and wrong parameters. 

7.4.1 Deadlock 

Definition  

A deadlock in a set P of processes occurs if each process p in P waits for some 
event that can only be initiated by some other process from P. In a deadlock at 
least two threads are blocked. Each thread locks an object and acquires the lock 
for the object already locked by the other thread. This situation cannot be 
resolved by the threads involved. In Java deadlocks can occur when synchroniza-
tion is used. 

Necessary and Sufficient Conditions for Deadlocks 

• Exclusive usage: Each resource is either currently assigned to a process or it 
is available. 

• Hold and wait: Processes currently holding resources granted earlier can 
request new resources. 

• No pre-emption: Resources previously granted cannot be forcibly taken 
away from a process. 

• Circular wait condition: There must be a circular chain of two or more pro-
cesses, each of which is waiting for a resource held by the next member in the 
chain. 



7.4 Frequent Causes of Problems 275 

• Bitmap indexes and deadlocks: Bitmap indexes are not appropriate for ta-
bles that have lots of single row DML operations (inserts) and especially con-
current single row DML operations. Deadlock situations are the result of con-
current inserts. 

• Job Scheduling Rules: An important aspect of managing concurrently run-
ning jobs is providing a means to ensure that multiple threads can safely ac-
cess shared resources. This is typically done by providing a means for a job to 
acquire a lock on a particular resource while it is accessing it. Locking gives 
rise to the possibility of deadlock, which is a situation where multiple threads 
are contending for multiple resources in such a way that none of the threads 
can complete their work because of locks held by other threads. 

7.4.2 Fixes 

Code and data fixes are required if software problems arise in the production envi-
ronment. These fixes are workarounds for incidents caused by insufficient re-
quirements. Corresponding requirement changes must be formulated and submit-
ted to the expert committee which decides to implement a better code to make the 
software reliable and working as expected. In practice, however, fixes have a 
much longer life cycle than they should have. The “quick and dirty” or so-called 
“pragmatic” approach contributes to enlarge the problem domain and to create 
more instability in the application. In the software business, “quick wins” are 
generally the most expensive solution to problems. Figure 7.23 illustrates this 
statement. 

Fix*Incident

Issue
raised

Change Request
submitted

A

B

New potential
defects injected

     Issue rejected

R
eq

ue
st

  i
m

pl
em

en
te

d

Expected
new defects

          

CR rejected

 Problem
domain
growths

Defects pool
is increasing

Problem sources
remain

activated

     Issue
accepted

  Fix*= data o/a code fixe(s)  
Fig. 7.23 Diagram showing the growth of potential defects  



276 7 The Analysis of Defect Root Causes 

7.4.3 Interfaces 

Many problems are related to interfaces which can be caused by the following: 

• Abnormal data flow 
• Conflicting data format 
• Erroneous number of parameters 
• Indirect transfers 
• Parameters in the wrong sequence 
• Pointers 
• Resources still in use after processing (improper cleanup) 
• Synchronization problems 
• The wrong usage of standard values 
• The wrong usage of boundary values 

7.4.4 Memory Leaks 

Memory leaks cause performance problems. They decrease the CPU time avail-
able for running applications, slowing down its ability to respond in the specified 
time frame. Database and Java programs are often the cause of memory allocation 
and de-allocation problems. 

If a database connection is opened for reading but the connection is not prop-
erly closed when the read is completed, a gradual increase of the memory foot 
print of the application occurs over time. Closing connections to the database the 
right way prevents memory leaks, and improves the overall performance and reli-
ability of the application. 

Java programs use the new operator to allocate objects on a heap – an area of 
memory reserved for data that is created at runtime – that is, when the program 
actually executes. The Java Virtual Machine (JVM) manages the heap at runtime, 
and objects are never explicitly removed or de-allocated from the heap. When a 
program no longer references an object in this memory area, the JVM removes it 
with a special process called “garbage collection.” A severe performance problem 
can occur as the heap becomes full, because more CPU time is used by this proc-
ess, reducing the time spent to run the application. Moreover, managing too many 
objects at one time can fill up the heap very quickly. Subsequent attempts by the 
program to allocate objects will result in error called OutOfMemoryError, pro-
duced by the JVM. In most of the cases the application will stop responding to 
requests. 

The main cause of the problem is a code that allocates objects, and uses them, 
but still holds references to part of them; in this situation the garbage collection 
process cannot remove the unused objects. A memory leak occurs for each wrong 
referenced object. Another source of memory leaks are object references from 
static variables. If the objects are quite large, a Out of-MemoryError then occurs. 



7.4 Frequent Causes of Problems 277 

To analyze memory leaks, monitor the heap via JConsole and use JVM’s utilities 
to inspect its content. If you have large Java applications, or if not enough infor-
mation can be collected, the only solution is the instrumentation approach. It will 
allow you to track large numbers of class instances, and for each class, a number 
of measurements, including the generation count. The latter gives a good de-
scription of the application behavior. 

7.4.5 Metadata 

Metadata enables users and developers to manipulate/enrich information and to 
populate tables in TDS with unique terms and values. In business information 
systems, metadata has a wide range of usage for roles, action items, geographic 
locations, organization units, assignments, beginning/end dates of artifacts, com-
pletion dates, status, and for other purposes. The management of metadata is, 
therefore, a mission-critical and enterprise-wide function. If poorly managed, it 
can lead to user and developer confusion because conflicts could arise through 
different products, different meanings, customization inconsistencies, or the wrong 
population of data tables. Poorly managed metadata is the source of inconsisten-
cies and can generate business losses. 

Metadata Mapping and Synchronization 

Value lists, attributes, and property data on one side and policies, definitions, and 
schemas on the other side, are digital artifacts which need to be mapped and syn-
chronized in metadata. This is the permanent task owned by business and IT ex-
perts to ensure that actual, complete, and accurate tables are used in a timely fash-
ion in all testing environments. Metadata has three characteristics: they are either 
static, dynamic, or long-living. Short-term metadata is mainly transactional in 
nature. For more information, see Sects. 4.2 and 7.3. 

7.4.6 Network-Centric Applications 

Network-centric applications have particular characteristics which are difficult  
to test in different test environments for large-scale information systems. Com-
plex, distributed systems have many software components, which could interact in 
unanticipated ways. These highly interconnected systems may exhibit intermittent 
or transient errors after prolonged execution that are challenging to diagnose and 
to fix. 



278 7 The Analysis of Defect Root Causes 

Complex System Failures 

Asynchronous communication can lead to an almost unlimited number of execu-
tion patterns with race conditions and other coordination problems. In addition, 
prolonged execution can lead to resource allocation problems such as memory 
leakage (see below), counter overruns, or the consumption of any finite resources. 
State-based components can also beome inaccurate or simply overflow. 

Most of these failures will only occur after a distributed system executes for  
an extended period of time. It is the ongoing interaction between all the compo-
nents for prolonged execution intervals, without resets or reboots, that reveals the 
problems. 

Long Sequence Testing 

Repeating test cases and critical operations over and over again during long se-
quence testing is one way to uncover those intermittent failures. Typically, auto-
matically generated test cases are randomly selected from the test repository data-
bank and executed over a very long time. 

To test network-centric applications, high-volume long sequence testing (LST) 
is an efficient technique. McGee and Kaner explored it using what they call ex-
tended random regression (ERR) testing. A more promising method to test com-
plex network-centric systems is using genetic algorithms coupled with high vol-
ume testing. 

Genetic algorithms, in particular, provide a powerful search technique that is 
effective in very large search spaces, as represented by system environment attrib-
utes and input parameters in the testing arena. (Adapted from [BeWa05]) 

7.4.7 Network problems 

Web-oriented applications (e. g., E-banking, E-Commerce, E-Government) and 
network-centric solutions in large organizations run on highly complex infrastruc-
tures of cabled and wireless networks. Many causes contribute to network conges-
tion and slowdowns. Troubleshooting network errors is no trivial task, and there 
are some misconceptions as to what causes failures and how to correct them. In 
this section we will look at some of the most common errors and their potential 
causes. 

Alignment errors 

Alignment errors are caused when a file has an uneven number of bytes not divisi-
ble by 8 and a FCS error. Cabling issues or MAC layer packet formation issues 



7.4 Frequent Causes of Problems 279 

(possibly hardware related) cause such errors. A faulty LAN driver can also cause 
such dysfunctions. These errors can also be seen in correlation with RUNT pack-
ets or packets that are too short. Noise, however, is the most common cause and 
can generally be corrected by addressing the cabling channel. 

Bad NICs 

Intermittent network errors, particularly those isolated to a specific workstation or 
server, can often be traced to a failing network interface card. It is also possible 
that the cable plugged into the NIC is connected to a non-functioning wall jack or 
faulty network port. 

Collisions and Late Collisions 

Collisions and late collisions are two separate anomalies with similar solutions. 
Collisions occur when more than one device tries to use the network at the same 
time. This does not happen in a full duplex network. Collisions will occur in half 
duplex networks, which are shared networks (such as those connected through 
hubs). The best remedy for collisions is to upgrade to a full duplex switched envi-
ronment. 

CRC Errors 

CRC errors are a combination of both alignment and checksum errors. Analyzing 
other conditions that exist will help determine the cause of these errors. A CRC 
error is caused when the cyclical redundancy check fails. It can be caused by a 
faulty NIC. In general, if the machine is failing to maintain a connection and the 
errors are consistent and often attributable to a single PC, the NIC should be 
checked or replaced. If the errors are intermittent and the PC drops only occasion-
ally, the errors are caused by something other than a NIC. CRC errors in excess of 
1% of the network utilization are worthy of a fix. 

Daisy Chaining 

If switches are added to a network, data packets must navigate additional hops to 
reach their final destination. Each hop complicates network routing and depending 
upon the amount of traffic a network, can easily stress the systems and cause 
slowdowns. Daisy chain multiple network switches and routers should be avoided. 



280 7 The Analysis of Defect Root Causes 

Discards 

Discards are also common and are a functionality of network devices. Discards 
can be caused by a buffer being too full, which prevents the network from getting 
the packet from the device (transmit discards). Another cause of discards is that 
the packet may not be able to be delivered to an upper layer protocol due to con-
gestion or other error (receive discards). In the case of frequent retransmissions, 
discards can increase due to the additional traffic loads. 

DNS Errors 

DNS configuration errors can lead to numerous network failures and generalized 
slow performance. When no DNS server is available on a local LAN, local sys-
tems may have trouble finding one another or accessing local resources, because 
they’ll have trouble finding service locator records that assist Windows systems in 
communicating with Active Directory. 

Systems with no local DNS server or those workstations having DNS servers 
several hops away may experience delays or flat outages in accessing Web sites 
and extranets. Check to ensure systems are configured to use the proper DNS 
servers. Be sure workstations and other routing equipment actually receive the last 
software updates. 

File Check Sequence Errors (FCSEs) 

FCSEs are one of the more common errors found in a network. When packets are 
transmitted and received, each contains a file check sequence that allows the re-
ceiving device to determine if the packet is complete without having to examine 
each bit. This is a type of CRC, or cyclical redundancy check. Barring a station 
powering up or down during a transmission, the most common cause of these 
errors is noise. Network noise can be caused by cabling being located too close to 
noise sources such as lights, heavy machinery, etc. If a cabling installation is par-
ticularly faulty – such as pairs being untwisted, improper terminations, field ter-
minated patch cables, etc. – these errors will occur on your network. Poorly manu-
factured components or minimally compliant components that are improperly 
installed can compound this issue. Cabling segments that are too long can also 
cause these errors. 

IP Conflicts 

Windows typically prevents two devices with the same IP address from logging on 
to the same network (when using DHCP). But occasionally, two systems with the 



7.4 Frequent Causes of Problems 281 

same address wind up on the same network. When such conflicts occur, network 
slowdowns result and the systems sharing the same address frequently experience 
outages. 

Troubleshoot IP address conflicts by ensuring you don’t have a rogue DHCP 
server on the network. Confirm, too, that configured DHCP scopes don’t contain 
overlapping or duplicate entries and that any systems (such as servers and routers) 
that have been assigned static IP addresses have been excluded from the DHCP 
pools. 

NetBIOS conflicts 

NetBIOS, in use on many Windows NT 4.0 networks; contains many built-in 
processes to catch and manage conflicts. Occasionally, however, those processes 
don’t handle conflicts properly. The result can be inaccessible file shares, in-
creased network congestion, and even outages. Another cause of trouble arises 
when two systems are given the same computer name; or when two systems both 
believe they serve the master browser role. Disabling WINS/NetBT name resolu-
tion will solve the problem. To prevent NetBIOS conflicts, all Windows systems 
must be upgraded to the most recent service packs. 

Network bandwidth 

A network needs to be configured to absorb peak traffic, and therefore, must have 
the throughput it requires. If problems occur, it may be necessary to subnet net-
works to localize particularly intense traffic to specific network segments. By 
upgrading NICs, cabling, and devices to 10/100/1000 Mbps equipment – and re-
placing any remaining hubs with switches – can generate significant capacity 
gains. At the software level, network-centric applications should be designed to 
use the network bandwith economically. 

Network-Centric Applications 

Web-based and network-centric applications can generate overrun situations in 
daily operations. To avoid network overruns, implement policies and install hard-
ware-based Web filtering tools to prevent applications from overwhelming avail-
able network bandwidth. When working with VoIP, be sure adequate data pipes 
are in place to manage both voice and data traffic. 



282 7 The Analysis of Defect Root Causes 

Routers/Switches 

Symptoms of failing switches and routers are as follows: 

• Regular Web traffic may work properly, but e-mail may stop functioning. 
• Regular Web traffic may not work properly, but attempts to connect to any 

secure (HTTPS) sites may fail. 
• In other cases, Internet access simply ceases to work. 

If network outages and/or slowdowns occur, the best methods are to reboot or 
power cycle the network’s routers/switches. If local network connectivity exists 
but users are not receiving email from external users or cannot access the Internet, 
rebooting or power cycling the WAN modem can often return the network to 
proper operation. Power fluctuations often results in malfunction of switches and 
routers. 

Spyware 

Anti-spyware tools, combined with effective enduser policies, can reduce signifi-
cantly the impact of spyware in many organizations. The latest Windows OS, 
Vista, includes Defender, a powerful anti-spyware application powered by the 
Giant engine. Strong user policies, gateway-based protection and sandbox soft-
ware are counter-measures to prevent spyware to congestion the network. Upgrade 
anti-spyware software on a regular basis. 

Unknown Protocols 

Unknown protocols are generally a result of the network not recognizing the IP 
protocol port. The reason for this is usually some anomaly, such as the port ex-
ceeding 1024. These errors can be corrected in a variety of ways, and you will 
generally rely on the switch manufacturer or router manufacturer for a solution. It 
can also be that a card or port is dynamically assigning an IP port that is not rec-
ognized, but the solution is the same. Barring a corrupted packet, which can be 
identified by packets that exhibit other errors, this problem generally resides in the 
active components. It is a good idea to rule out other errors before moving to any 
change in your active equipment. 

Viruses 

Viruses can have devastating effects on business environments, IT operations, 
users, and customers. Despite strong administration – including firewall deploy-
ment, consistent Windows patching and the use of regularly updated antivirus 
programs – viruses are a permanent risk for business and IT organizations. Prop-
erly configured firewalls and routers (the password being frequently changed, and 



7.4 Frequent Causes of Problems 283 

encryption), frequent Windows updates, and antivirus programs are the best rem-
edy. (Sources: Microsoft/Wikipedia/Carrie Higbie (The Siemon Company)) 

7.4.8 SW Package Build 

A package is a developer-defined collection of modeling elements, organized 
hierarchically. A software package has a profile that specifies how and where it 
can be installed. It also includes important information about prerequisites and 
about relationships between packages. 

The careful management of a software package is essential to achieve testing 
readiness. Naming conventions, and package hierarchies inside a software compo-
nent and at the release level have to be clearly defined, implemented and con-
trolled. A project package must reflect the content of deliverables according to the 
agreed requirements for a given release. In practice, SW packaging information 
should include the following: 

• The project package 
• The business domain 
• The test phase 
• Data types 
• The use case model 
• The use case package 
• The business type model 
• The actual context model 
• The solution domain model 
• The target context model 
• The SWC specification 
• The context diagram 

What Can Go Wrong? 

Here is an example of communication problem between project members resulting 
in a wrong package build: 



284 7 The Analysis of Defect Root Causes 

Team 2
is responsible for
quality control in
procedure B

Team 1
is responsible for
quality control in

procedure A

PEOPLE

Coordination

 Team 1
should communicate

results of procedure A
to Team 2

Cooperation

Team 2
is not fully informed
about the real status

Set database grants

DB grants successfully
set

Verify if SW changes
are OK

Verification is
successful

Recompile all
components

Package preparation

DB grants not removed

PROCEDURE
A

Recompilation
done but

 incomplete

Exception rule
 handling

Recompilation of all
SW packages is
mandatoryInactivate some

database components
before

package build

CONSTRAINTS

Set database grants

DB grants failure

 SW components are in
wrong sequence

Package build start

Package build

PROCEDURE
 B

Package build
completed

Package build failure remains
undetected

effect

cause

 

Fig. 7.24 Software package build– buggy procedures 

7.4.9 Wrong Parameters 

In this section we give an example of the wide-reaching consequences of wrong 
parameters in a technical system and the lessons learned from NASA. This story 
gives an in-depth view of the problem-solving approach applicable in large infor-
mation systems as well. 

The MER Spirit Flash Memory Anomaly (2004) 

Shortly after the commencement of science activities on Mars, an MER rover lost 
the ability to execute any task that requested memory from the flight computer. 
The cause was incorrect configuration parameters in two operating system soft-
ware modules that control the storage of files in system memory and flash mem-
ory. Seven recommendations in this section cover enforcing design guidelines for 
COTS software, verifying assumptions about software behavior, maintaining a list 



7.4 Frequent Causes of Problems 285 

of lower priority action items, testing flight software internal functions, creating  
a comprehensive suite of tests and automated analysis tools, providing down-
linked data on system resources, and avoiding the problematic file system and 
complex directory structure. 

The Description of the Driving Event 

Shortly after the commencement of science activities on Mars, the “Spirit” rover 
lost the ability to execute any task that requested memory from the flight com-
puter. The rover operated in a degraded mode until 15 days later, when normal 
operations were restored and science activities resumed. 

The root cause of the failure was traced to incorrect configuration parameters in 
two operating system software modules that control the storage of files in system 
memory (heap) and flash memory. A parameter in the dosFsLib module permitted 
the unlimited consumption of system memory as the flash memory space was 
exhausted. A parameter in the memPartLib module was incorrectly set to suspend 
the execution of any task employing memory when no additional memory was 
available. Task suspension forces a reset of the flight computer, and it is never 
supposed to occur. 

The initial reset event was triggered by the creation of a large number of files 
associated with MER instrument calibration that overburdened flash memory, and 
then system memory. The reset did not clear flash memory because flash memory 
is non-volatile by design. Although the reset did delete the files in system mem-
ory, the total size of the file system structure is determined not by the number of 
current files but rather by the maximum number of files that has ever existed. 
Since neither memory was cleared by the initial reset, a cycle of repetitive com-
puter resets and flight software re-initializations ensued. The effects of overbur-
dened flash and system memory were neither recognized nor tested during system 
level ground testing. 

Mission Operations recovered the mission by manually reallocating system 
memory, deleting unnecessary directories and files, and commanding the rover to 
create a new file system. Because revision of flight software was considered too 
risky, operational changes were implemented for both MER vehicles to improve 
the overview of rover file management. 

Lessons Learned 

A severely compressed flight software development schedule may prevent the 
achievement of a full understanding of software functions. During the MER soft-
ware development process, there was a continuous reprioritization of activities and 
focus. One impact of this dynamic process was that only the highest priority flight 
software issues and problems could be addressed, and memory management prob-
lems were viewed as a low risk. 



286 7 The Analysis of Defect Root Causes 

Recommendations 

• Enforce the project-specific design guidelines for COTS software, as well as 
for NASA-developed software. 

• Assure that the flight software development team reviews the basic logic and 
functions of commercial off-the-shelf (COTS) software, with briefings and 
participation by the vendor. 

• Verify assumptions regarding the expected behavior of software modules. Do 
not use a module without a detailed peer review, and assure that all design and 
test issues are addressed. 

• Where the software development schedule forestalls the completion of lower 
priority action items, maintain a list of incomplete items that require resolu-
tion before final configuration of the flight software. 

• Place a high priority on completing tests to verify the execution of flight soft-
ware internal functions. 

• Early in the software development process, create a comprehensive suite of 
tests and automated analysis tools. Ensure that reporting flight computer re-
lated resource usage is included. 

• Ensure that the flight software downlinks data on system resources (such as 
the free system memory) so that the actual and expected behavior of the sys-
tem can be compared. 

• For future missions, implement a more robust version of the dosFsLib mod-
ule, and/or use a different type of file system and a less complex directory 
structure. 

Documents Related to the Lesson and References 

• JPL Incident Surprise Anomaly Report (ISA) No. Z83174, January 29, 2004. 
Glenn Reeves, Tracy Neilson and Todd Litwin, “Mars Exploration Rover 
Spirit Vehicle Anomaly Report,” Jet Propulsion Laboratory Document No. D-
22919, May 12, 2004. 

• Mars Exploration Rover Project Library, Collections 13788 and 13664. 
• “Mars Exploration Rovers and the Spirit SOL-18 Anomaly: NASA IV&V 

Involvement,” Ken Costello, NASA Independent Verification and Validation 
(IV&V) Facility, 2004 MAPLD International Conference, September 8–10, 
2004, Washington, D.C. 



7.5 Software Aging 287 

7.5 Software Aging 

Software, like all man-made artifacts, has a life cycle – from the conception, crea-
tion, modification, redesign until decommissioning – influenced by numerous 
factors: 

• Environmental conditions 
• Organizational changes 
• Hardware upgrades 
• Operating software improvements 
• Database software updates 
• Data migrations 
• Data conversions 

Programs and applications have to be adapted to meet increasing requirements 
in terms of features and performance. 

Investigations in the 1970s and 1980s concerning aging in large software sys-
tems ([BL71/76], [BL85], and [BP84]) conclude to the near-impossibility of add-
ing new code to an aged system without introducing faults. Original design as-
sumptions are lost, and the boundaries between various parts of the system begins 
to blur with the result that solutions that started out as modular become mono-
lithic. As development teams change over time, know-how shrinks continuously 
and to fix problems take longer because defects solved in one area create new one 
in other areas. 

IEEE members [Ie01] stated that “A central feature of the evolution of large 
software systems is that change – which is necessary to add new functionality, 
accommodate new software and repair faults – becomes increasingly difficult over 
time.” They demonstrated decay in three areas: 

• Adaptive changes to add new functionality 
• Corrective changes to fix faults in the software 
• Perfective changes to maintain the software without altering or fixing faults. 

Code decay can be characterized by the increased difficulty to change that is 
observed by measuring the following: 

• The costs of the change 
• The interval to complete the change 
• The quality of the changed software (stability/robustness/performance) 
• The conformity to scheduled delivery 

In the former study mentioned [Ie01], it is obvious that causes of decay reflect 
the nature of the software itself, as well as the organisational milieu within which 
it is embedded. This is particularly true for legacy applications developed in the 
1970s and 1980s and still in use in most of the large companies around the world. 
80% of these applications are coded in Cobol, Fortran, or PL/I and designed to run 
exclusively in a host-centric environment. 



288 7 The Analysis of Defect Root Causes 

7.5.1 Causes of Software Decay 

The main causes of software quality degradation over time are rooted in the  
following: 

• Inappropriate architecture 
• Violation of the original design principles 
• Know-how dissipating 
• New technology breaking system assumptions 
• Imprecise requirements leading to inaccurate/inefficient code 
• Time pressure 
• Business pressure 
• Inadequate programming tools 
• Inadequate design methods 
• Organizational problems 

− excessive personal turnover 
− bad communication 

• Poor programmer skills 

− original assumptions are ignored 
− complex code not well understood 

• Documentation is missing, incomplete or outdated 
• Inadequate change processes 
• Bad project management 

7.5.2 Symptoms of Code Decay 

The visible indices of software aging have been identified, qualified, and meas-
ured by [Ie01] and others. The main symptoms leading to the conclusion of code 
decay are: 

1.  Excessively complex (bloated) code 

− Code is more complicated than it needs to be to accomplish the task 

2.  A history of frequent changes (code churn) 
3.  A history of faults 

− Code been changed in many versions of software packets 

4.  Widely dispersed changes 

− Changes to well-engineered, modularized code are local in nature 



7.5 Software Aging 289 

5.  Kludge in code 

− Non-efficient code 

6.  Numerous interfaces 

− Multiple entry-points 

7.5.3 Risk factors Related to Software Aging 

Change and test managers face the challenge to adapt and run tests for software 
designed decades ago and which must coexist with demanding new applications 
embedded in a network-centric hardware architecture providing Web services. To 
identify the risks related to code decay it is necessary to consider: 

• The size of the software modules 
• The variability of age within a code unit 
• The inherent complexity 
• The organizational churn 
• Ported code 
• Requirements load 
• Multiple requirements are hard to understand 
• Associated functionality is hard to implement 
• Requirements dependencies are difficult to identify 
• Inexperienced software developers 
• The documentation available 

The important conclusion to this section is that software modularity – a key 
principle of modern programming practice – is breaking down over time! 

7.5.4 The Cost of Software Aging 

An organization has more difficulty to keep up with new requirements: 

• The software grows bigger and the implementation of new code is difficult 
and costly 

• Making charges gets harder and harder 
• Customers switch to newer systems including similar features. 

Performance is reduced: 

• Bigger programs are slower 
• More computer resources are required 
• Modifying legacy systems the wrong way can degrade performance 
• Data volumes can’t be processed efficiently. 



290 7 The Analysis of Defect Root Causes 

Reliability is decreasing: program maintenance introduces new errors. If we 
consider that software maintenance absorbs – on average – more than 70% of an 
IT budget, it is very important to track program deficiencies due to aging in an 
early stage. For this purpose, specialized software like SeeSoft analyzes the char-
acteristics of the aging code with great accuracy. 

7.5.5 An Analysis Tool for Aging Software 

A fundamental problem in software engineering for large systems is changing the 
code to add new functionality, accommodate new hardware, support new operat-
ing environments, and to fulfill increased user expectations. In an ideal world, 
software architecture would anticipate and facilitate future changes. In reality, the 
architecture is imperfect, and incorporates compromises forced by time and cost 
constraints. As a consequence, an immense burden falls on the change process, 
which becomes complex, costly, hard to manage, and difficult even to understand. 
Data on software changes is widely available from version management databases. 
A compelling opportunity, then, is to use these data to enable understanding and 
management of the change process. 

However, in many settings, the scale and complexity are daunting. Even han-
dling the data is an issue: custom scripts and tools must be created to extract and 
manipulate the data to put them in the proper form for analysis (Mockus, et al., 
1999). Visualization is a natural, effective (and perhaps essential) way to deal with 
scale and complexity. [NISS113] 

SeeSoft, and its related system SeeSys, visualizes various textual aspects of 
evolving large and complex software systems. Such aspects involve software 
complexity metrics, the number and scope of modifications, the number and types 
of bugs and dynamic program slices. Managers of such system development pro-
jects need to be able to gain overview information of the system development 
activity. Analysts need to know how to restructure the code during the next devel-
opment cycle. Testers need to know what has changed in order to test the new 
features and bug fixes. 

Implementation 

SeeSoft is implemented using the information from version control systems. These 
systems keep track of every single line of code, including the dates of changes and 
reasons for changes and the developer who changed the code. The motivation 
behind SeeSoft is to display as much information as possible by using pixels to 
represent information, and to use as many pixels on a screen as possible. 



7.5 Software Aging 291 

The Views and Line Representation 

The traditional view of SeeSoft represents each line of source code as a single 
colored line on the screen. Lines are grouped in rectangles to represent each file. 
Thus, longer rectangles represent larger files. Line length can show the length of 
the line and indentation in the source code, thus enabling the rough control struc-
tures to be viewed on the screen. Line color can be used to represent a variety of 
aspects, including the date of origination, date of change, the ID of the person who 
changed the line, which lines are bug fixes, nesting complexity, and the number of 
times the line was executed during testing. 

Pixel Representation 

One or several pixels can also be used to represent each line of source code in the 
system, thus taking up less room on the screen. The pixels can be colored as the 
lines are colored. 

File Summary Representation 

Files can be summarized in a small area by representing each file as a colored 
rectangle with a plot inside. For example, the plot could represent the sizes of four 
quartiles of the file. The color can represent various metrics, such as amount of 
code for new functionality or bug fixes. 

The Hierarchical Representation 

SeeSys represents each subsystem of a system as a block, with directories as rec-
tangles inside that block. The representation is similar to a treemap. The sizes of 
the blocks and rectangles correspond to their code sizes. Directories can further be 
sub-divided into file rectangles. The color and fill of each rectangle can represent 
a variety of metrics, such as the amount of new code, the amount of bug fixes, and 
the size of the directory over different versions. For each of these views, the user 
is provided with controls to change colors and change or narrow what the colors 
represent. This allows a user to quickly focus on the detail they want in the man-
ner that they want. 

File Summary Representation (a) 

This is a view of fifty-two files comprising 15, 255 lines of code. Both the pixel 
and line representation are being used for the files. In the inner browser window, 
the pixel representation is used to access a more detailed line representation, 
which then can access a particular line of the code. The color in this view repre-
sents the age of the code, with newer lines shown in red and older lines in blue. 



292 7 The Analysis of Defect Root Causes 

Fig. 7.25 SeeSoft file summary

File Summary Representation (b) 

Each file is represented as a rectangle, with the rectangle size corresponding 
rougly to the file size. Inside, each color bar represents the code in the file, with 
the color of the bar representing the age of the code (blue represents old code and 
red the new). This view would give a quick summary of which files have older, 
more stable code and which files are full of new development. 

Fig. 7.26 SeeSoft file 
summary 



7.6 The Investigation of a Technical Problem 293 

The Hierarchical Representation of Subsystems 

Each subsystem is drawn as a rectangle with a label. The size of the rectangle 
corresponds to the number of lines of code in the subsystem at the subsystem’s 
largest. The color corresponds to the current size of the subsystem. 

(Source: SeeSof) 

 

Fig. 7.27 SeeSoft subsystems representation 

7.6 The Investigation of a Technical Problem 

In previous chapters we explained the mechanism of causal chains in software 
testing, describing problems related to data-dependent testing and analyzing the 
most frequent causes of defects. In this section we present a generic problem solv-
ing approach from the developer’s perspective. 

Every technical problem or engineering position can be addressed following a 
straightforward approach consisting of eight steps: 

1. The statement of the problem: A brief, concise problem statement, describing 
the key issue for which the technical position provides recommended solu-
tion(s). 

2. Typical requirements: A description of requirements already available in 
other projects or companies in a similar problem area. 

3. Alternatives: Technologies, products, features or workarounds available today 
or in the near term that might be considered to address the statement of the 
problem. 

4. Evaluation criteria: Factors that managers should consider in choosing be-
tween alternatives. 



294 7 The Analysis of Defect Root Causes 

5. Future developments: Such alternatives could impact future solution(s) and 
should be monitored accordingly. 

6. The statement and the basis for the position: This is perhaps the most impor-
tant part of the technical position: what management should do and why. 

7. The relationship to other components: A brief description of other technical 
positions in the global or partial solution that are affected or influenced by the 
choice of alternatives made in this technical position. 

8. The revision history: A chronological list of updates to the technical position. 

Applying this engineering method to investigate software failures systemati-
cally, should help all roles involved in testing to develop a more rigorous problem-
solving attitude. In real-life situations, defects raised by test engineers and users 
are not stated correctly and poorly documented. 

7.6.1 Technical Processes (TPs) 

TPs are organized in chains, composed of tasks, subdivided in jobs and processing 
steps. For better understanding, we will speak about layers of technical processes 
which can be differentiated in this way: 

• The upper stage is the processing layer with steps to be executed. The steps 
make influence logic artifacts in the underlying layer. 

• The second layer contains the relational logic referred by the execution steps. 
• The third layer is the data accessed by relations inside the logic layer. 

Logic land data layers form the information context which is one of the most 
important area to examine by investigating software defects. Figure 7.28 illustrates 
this concept. 

A paper published by TechRepublic (http://www.techrepublic.com.com/) enti-
tled “Dealing with the Inevitable – Error Conditions in Code” [Good06] can give 
you more useful hints. Here is an extract from this document: 

“The best you can do is clean up and exit sharply, before anything else goes 
wrong. To make this kind of decision, you must be informed. You need to know a 
few key pieces of information about the error: 

Where it came from. 
This is quite distinct from where it’s going to be handled. Is the source a core 

system component or a peripheral module? This information may be encoded in 
the error report; if not, you can figure it out manually. 

What you were trying to do. 
What provoked the error? This may give a clue toward any remedial action. Er-

ror reporting seldom contains this kind of information, but you can figure out 
which function was called from the context. 

Why it went wrong. 



7.6 The Investigation of a Technical Problem 295 

What is the nature of the problem? You need to know exactly what happened, 
not just a general class of error. How much of the erroneous operation completed? 
All or none are nice answers, but generally, the program will be in some indeter-
minate state between the two. 

When it happened. 
This is the locality of the error in time. Has the system only just failed, or is a 

problem two hours old finally being felt? 
The severity of the error. 
Some problems are moe serious than others, but when detected, one error is 

equivalent to another – you can’t continue without understanding and managing 
the problem. Error severity is usually determined by the caller, based on how easy 
it will be to recover or work around the error. 

How to fix it. 
This may be obvious (e. g., insert a floppy disk and retry) or not (e. g., you need 

to modify the function parameters so they are consistent). More often than not, 
you have to infer this knowledge from the other information you have. Given this 
depth of information, you can formulate a strategy to handle each error. Forgetting 
to insert a handler for any potential error will lead to a bug, and it might turn out to 
be a bug that is hard to exercise and hard to track down – so think about every 
error condition carefully.” 

 

Fig. 7.28 Layers in technical processes 



296 7 The Analysis of Defect Root Causes 

When to Deal with Errors 

When should you handle each error? This can be separate from when it’s detected. 
There are two schools of thought: 

1. As soon as possible.   
Handle each error as you detect it. Since the error is handled near to its cause, 
you retain important contextual information, making the error-handling code 
clearer. This is a well-known self-documenting code technique. Managing 
each error near its source means that control passes through less code in an 
invalid state. 

2. As late as possible.   
Alternatively, you could defer error handling for as long as possible. This rec-
ognizes that code detecting an error rarely knows what to do about it. It often 
depends on the context in which it is used: A missing file error may be re-
ported to the user when loading a document but silently swallowed when 
hunting for a preferences file. 

Exceptions are ideal for this; you can pass an exception through each level until 
you know how to deal with the error. This separation of detection and handling 
may he clearer, but it can make code more complex. It’s not obvious that you are 
deliberately deferring error handling, and it’s not clear where an error came from 
when you do finally handle it. In theory, it’s nice to separate “business logic” from 
error handling. But often you can’t, as cleanup is necessarily entwined with that 
business logic, and it can be more tortuous to write the two separately. However, 
centralized error-handling code has advantages: You know where to look for it, 
and you can put the abort/continue policy in one place rather than scatter it 
through many functions. Choose a compromise that’s close enough to prevent 
obscure and out-of-context error handling, while being far enough away to not 
cloud normal code with roundabout paths and error handling dead ends. 

The key concept is to handle each error in the most appropriate context, as soon 
as you know enough about it to deal with it correctly. As you can see, determining 
the real context of an error is the key to successful handling of errors and defects. 
Sometimes you will wonder yourself how easy is it to solve difficult problems in 
tough situations. 

 



 

297 P. Henry, The Testing Network, 
© Springer 2008 

Chapter 8  
Measuring Test Efforts 

8.1 Overall Project Progress Measurement 

8.1.1 EVA’s Power 

A study of best practices in EVA reveals that the metric can help reduce capi-
tal/costs and improve gross revenues. Some analysts have called economic value 
added (EVA) the key to creating corporate wealth. The metric, which measures a 
company’s net operating profit after taxes, focuses organizations on earning a 
target rate of return over and above the cost of capital. This target, or “bogie” as 
it’s frequently called, is what the business considers the minimum amount of re-
turn necessary to generate positive value from a capital investment. For the fol-
lowing best-practices companies, EVA is more than just another performance 
metric. These organizations have made EVA the benchmark for virtually every-
thing they do, and they have reaped the rewards of that strategy. (Source: Business 
Finance, July 2000) In large organizations, IT projects require a considerable 
amount of invested capital which, in turn, must generate a tangible return on in-
vestment (ROI). This necessitates an appropriate cost control and the measurement 
of earned value during the project. 

8.1.2 EVA’s Benefits 

Measuring the overall project progress and deliverables according to schedule and 
financial investment are of critical importance for a good project governance. 
EVA is one of the best instruments to achieve this goal with maximum efficiency. 
It is the method of choice to steer large software projects and for reporting to stake 
holders. EVA enables project leaders to measure delivered products according to 
cost and time planning with the necessary granularity. Moreover, this method 



298 8 Measuring Test Efforts 

delivers a reliable trend analysis about future costs and delivery capability in a 
predefined time frame. EVA’s major strength is to integrate tangible project re-
sults to the pure money value consideration, based on cost trend analysis (CTA). 
The current project situation is enlightened along three dimensions: 
• Costs (invested capital) 
• Work done (results) 
• Time spent 

Costs can be calculated either in money or in equivalent manpower-months. At 
any point in time, three values are needed for EVA calculations: 

1. Deliverables 

− Budgeted cost of work performed (BC) 

2. Burned value 

− Actual costs of work performed (AC) = Total costs to-date 

3. Planned costs (PCs) 

− Budgeted cost of work scheduled = Original planed costs to-date. 

The Earned Value (EV) is the result of: (planned total costs * completion grade 
to-date). The comparison of the three basic values results in six different views of 
the project: 

• EV > AC: Project costs are below planned values 
• EV = AC: Project costs correspond exactly to planned values 
• EV < AC: Project costs exceed planned values (costs overrun!) 
• EV > PC: The project is ahead of the time schedule 
• EV = PC: The project is in conformity to the time schedule 
• EV < PC: The project lies behind the time schedule (late delivery!) 

A qualified opinion about the overall project performance can be gained from 
these indicators. Higher costs as budgeted could mean either a major break-
through in the project’s progress or a cost overrun with deliverables lagging be-
hind schedule. 

Key Performance Indicators (KPIs) 

Four KPIs are relevant to perform the EVA: 
A) Schedule variance: EV – PC 
B) Cost variance: AC – EV 
C) Schedule variance in %: (EV – PC)/PC 
D) Cost variance in %: (AC – EV)/EV 

A&B give indication about values out of range at project end, mostly caused by 
a single source. C&D give indications about the relative variance, if the trend 
persists over time. 



8.2 Test Progress Reporting (TPR) 299 

Time

EVA components
Co

st
s Target schedule

Current schedule

to-date
schedule
variance

projection of
cost variance
at completionPC

AC

BC

to-date
cost variance

projection of schedule delay 
at completion

measurement point  

Fig. 8.1 EVA method 

The EVA method can be represented by this formula: 

 Performance measurement + Costs management + Time control. 

Figure 8.1 shows the components of this very effective measurement method. 

8.2 Test Progress Reporting (TPR) 

TPR should answer the following questions: 

Test coverage 

• Are enough test cases available to test all requirements? 

Scheduling 

• Are testing activities on schedule and on time? 
• If not, what are the consequences? 

Product stability 

• How stable is the product? 

Product quality 

• How good is the product at the present time? 



300 8 Measuring Test Efforts 

Product reliability 

• Is the product reliable enough? 

Showstoppers 

• Are heavy defects still unsolved? how many? 
• Are these defects concentrated on few components? 
• What are the main causes of those defects? 

Resources 

• Is the situation under control? 
• Are shifts or adjustments required? in which areas? 

Test performance 

• How well are testers performing? 
• Are corrective actions required? 

The testing report is an important communication vehicle which combine hard 
facts and figures with soft factors. The document should contain different ele-
ments defining accurately the present situation: 

• Deployment 
• Financials 
• Learning 
• Release status 
• Scheduling 
• Management decisions 
• Project decisions 
• Process improvements 
• Quality/reliability/stability statements 
• Resources situation 
• Stakeholders awareness. 

8.2.1 Technical Measurement 

The most difficult question to answer with some confidence in a project, is to 
determine if the product under development provides enough of the features ex-
pected in a good quality: well-enough documented, user-friendly enough, and 
thoroughly validated by regulators and stakeholders. 

Usually the pragmatic approach is to look for defect arrivals that stabilize at a 
very low level, or times between failures becoming far apart, or show stoppers 
(critical bugs) that have disappeared. Long-living defects are generally related to 
poor or outdated test data, but quite often data from front systems or delivery ap-
plications don’t deliver as expected. Many software reliability models are based 
on the assumption that declining patterns of defect arrivals shows the real state of 



8.2 Test Progress Reporting (TPR) 301 

the product. Unit of time for measuring the defect arrivals pattern in a project is 
usually a week and the period of observation may vary from a couple of weeks to 
several months. 

In practice, defects found during testing are tracked by using three distinct 
views: 

• Incidents reported during each testing phase (including incidents not related to 
pure software defects: e. g., handling errors, package build problems, local 
mapping problems, and the wrong documentation) 

• Defects remaining after validation (qualified software problems) 
• Overall defects backlog. All open defects independently of the release under 

test, for all locations. 

The last metric is useful to analyze the aging of defects by SWC to see if proc-
ess improvements are required in the software development cycle. 

In large information systems, some classes of defects are long-living in nature. 
The defect tracking record can include many releases of a system or application 
and can span a period of many years. Figure 8.2 shows the defect arrivals in a 
large-scale project during a one year period covering four test phases. 

If the pattern of defect arrivals deviates from the expected normal (statistical) 
distribution, this could indicates that design and/or process problems exit in the 
project organization, which lead necessarily to an insufficient software quality. 
This kind of problem appears in Fig. 8.3. 

If the pattern of problem arrivals in production shows a degradation, it could 
means that regression testing is not working properly or testing in general is not 
effective enough. The principal causes could be: QA is not implemented, testing 
processes are inadequate, there are staffing problems, or there is a high attrition 
rate leading to knowledge deficits. 

0

50

100

150

200

250

300

350

400

450

50 days 100 days 150 days 200 days 250 days 300 days

Defect arrivals  s howing the S W maturity grade

IIT

CIT

S TE

AIT

 

Fig. 8.2 Defect arrivals by test phase 



302 8 Measuring Test Efforts 

0

50
100

150
200

250
300

350
400

450

 1–60 61–90 91–120 121–180 181–240

time frame in days

de
fe

ct
s 

fo
un

d

AIT
IIT
STE
CT Atypical failures distribution

in a software project

 

Fig. 8.3 Atypical failure distribution 

 

Fig. 8.4 Software quality degradation over time 



8.2 Test Progress Reporting (TPR) 303 

What is a Technical Measurement? 

A technical measurement is: 

A set of measurement activities and measures used to provide insight into the 
technical solution: 

• Requirements 
• Progress 
• Risks 

A tracking process across the product life cycle: 

• Established early in the LC 
• Increasing levels of fidelity as the technical solution evolves 

A technical measurement should deliver quantified and credible measures 
about effectiveness and performance of the objects to be investigated. 

Measures of effectiveness (MOE) = measures of success that are closely related to 
the achievement of the project or operational objective being evaluated under 
specified conditions. 
Measures of Performance (MOP) = measures that characterize physical or func-
tional attributes relating to the system operation. 

MOPs are used to: 

− Compare alternatives to quantify technical or performance requirements as 
derived from MOEs 

− Investigate performance sensitivities to changes in assumptions from the 
technical view 

− Define key performance parameters (KPPs) 
− Assess achievement KPPs 

Technical measures are interdependent. (Source: PSM TWG-TM Guide, 2006) 

8.2.2 Test Monitoring 

Monitoring retest results over time is complementary to TPR because it could 
indicate weaknesses in the ITP process, or a shortage in analysis or organizational 
problems. From my experience, I recommend to create your own monitoring indi-
cators. In this category, the ratio of defects ready to be retested (“fixed for retest” 
= FFR) compared to those already solved in the release under test (“retested OK” 
= ROK) is a very useful one. In the following diagram it is evident that the defect 
solving process gets out of control. The reason of this degradation must be ana-
lyzed as soon as possible and corrective measures should follow. 



304 8 Measuring Test Efforts 

Fig. 8.5 Monitoring  
retest success 

-4.00

1.00

6.00

11.00

16.00
21.00

2 3
4

5

6

7

8

9

10

11

12
13

14
15161718

19
20

21

22

23

24

25

26

27

28
29

30
31

average

out of
range

 ROK / FFR indicator

8.2.3 Implementing TPR 

To be able to produce TPR reports, the test cases must be provided with TPR 
values defined in special fields. This is a straightforward task to implement them 
in the ITP. 

Using TD/QC as ITP, new attributes (“user fields”) for reporting are defined in 
the actual TD instance (your target project in this case). To open those items, TD 
administration rights are required. 

After having completed this setup, the test cases are then captured in the Test-
Lab module and the new attributes for TPR are populated with appropriate values. 
Testsets are built in the TestPlan module and the tests executed, producing defects 
which are raised in the Defect module. 

 

Fig. 8.6 Test progress reporting in TestDirector  



8.2 Test Progress Reporting (TPR) 305 

8.2.4 Test Quality Measurement 

TPR requires combining the two different views of testing: business and IT views, 
and producing meaningful reports. 

The two partners in testing should measure the software maturity progress  
using three identical vectors: 
1.  Stability grade of the SUT 

− Overall throughput (by increasing data volumes) 
− Processing problems in production end-to-end stability 

2.  Quality of the SUT 
− Performance 
− Design 
− User’s comfort 

3.  Functionality provided by the SUT 
− New features 
− Improved capability 
− Scalability 
− Global implementation 

The three vectors recommended to measure the desired software quality are il-
lustrated in Fig. 8.7. 

Fig. 8.7 Measurement dimensions in test  
progress reporting 

Fu
nc

tio
na

lit
y

Quality Sta
bili

ty

TPR measurement vectors

8.2.5 Test Progress Measurement 

Using TD/QC it is easy to implement a good TPR. Firstly, create the schema to be 
applied to all test cases for measuring the effectiveness of the planned tests. This 
includes: the category of the tests, the mandatory criteria to be fulfilled, the weight-
ing applied to each TC, and new injected defects. Secondly, generate standard and 
customized reports for the different management roles. See Fig. 8.8 for details. 



306 8 Measuring Test Efforts 

Test Case n

Test Case 2
Go/NoGo CRITERIA
    - 1 ...
    - 2 ...
    - 3 ... Test Case 1

    - Weighting
      factor ..%

CATEGORY
       - 1 ...
       - 2 ...
       - 3 ...

Test Run n

Test Run 2

Test Run 1

DefectsTC status

Test Progress Reporting Schema

Standard + customized reports  

Fig. 8.8 Attributes and artifacts required for TPR 

8.2.6 Test Progress Horizon 

Other ITP attributes help to track the results of the test activities along the time 
axis. The “plan fix date” is used to schedule a completion date to solve each 
SUT’s bug individually. The “plan for release” and “planned in version” attributes 
are used to define the global test horizon of a release or of an individual software 
component to be delivered in predefined time intervals, according to the project 
plan. The test horizon for a release is scheduled along the different test phases and 
is terminated with the production signoff. 

8.2.7 Test Progress Prediction 

One of the difficulties in testing is to evaluate the state of the work in progress, 
considering all important aspects of the SUT at a given point in time. As we stated 
for SW quality measurement, both business and IT must use identical vectors and 
criteria to give an objective valuation of the test progress status. It is recom-
mended to use the quality vectors as discussed above combined with the attributes 
related to the test horizon to obtain an accurate test completion curve. See the 
example in Fig. 8.9. 

Factors or incidents negatively influencing the overall test progress must be 
also taken into account and commented in the report: test infrastructure problems, 
staffing shortage, data delivery problems, synchronization with locations abroad, 
and so on. Therefore, a realistic test planning should include a buffer time before 
PSO. Figure 8.10 illustrates this point. 



8.2 Test Progress Reporting (TPR) 307 

0%

40%

80%

100%

W01 W03 W05 W07 W09 W11

completion

PSO

today ???

Fu
nc

tio
na

lit
y

Sta
bili

tyQuality

TPR measurement vectors

 

Fig. 8.9 Test progress prediction 

82%

100%

T+1 T+5

78%

85%

90%

T+10

IT

BU

optimum

     Buffer time

 - consolidate
   results
 - solve mapping
   problems
 - make 
   multi-location
   adjustments
 - synchronize data
 - ....

PSO

0%

40%

80%

100%

W01 W05 W07 W09 W11 PSO

???

Functionality
Stability
Quality

today

W03

 

Fig. 8.10 Test progress prediction refinement 



308 8 Measuring Test Efforts 

Table 8.1 Report design principles 

How to produce meaningful, useful and reusable testing reports 

Identify Target audience 
Isolate Information needed 
Design Reports meeting: 

• informational needs 
• decisional needs 

Create Reports which are: 
• Concise 
• Precise 
• Easy-to-understand 
• Compliance-conform (SOX) 

Identify Required data elements in the test repository: 
Attributes used in all TD/QC’s modules 

Set Filters in TD/QC to select required records 
Set Sorting criteria for each report 
Store Filters and sorting criteria as “favorites” in TD/QC 
Use Favorites to produce reports 
Adapt Favorites to produce new reports 

Table 8.1 summarizes the design principles to produce useful reports. 

8.2.8 Test Progress Reporting with TD/QC 

Using an integrated test platform and its extended reporting capabilities allows 
you to not only produce in-depth analysis showing the test results but also to un-

1 2 3 4 5 6 7 8

Test Name Components Test Phase Scenario Execution Status Request ID Release
Test 

Engineer

CIT_Test 01 SWC1-2 CIT Any Passed 54521 7.0.0 Mason
CIT_Test 02 SWC2-3 CIT Any Passed 80673 7.0.0 Collani
CIT_Test 03 SWC1-3 CIT Any Not completed 80673 7.0.0 Collani
CIT_Test 04 SWC2-4 CIT Any Not completed 21475 7.0.0 Collani
CIT_Test 05 SWC1-4 CIT Any No Run 71189 7.0.0 Wynner
CIT_Test 06 SWC1-4 CIT Any Failed 71189 7.0.0 Wynner
IIT_Test 32b All IIT U-1 Passed 98093 7.0.0 Johnson
IIT_Test 33 All IIT U-1 Passed 98093 7.0.0 Willcox
IIT_Test 34 All IIT U+1 Not completed 98093 7.0.0 Kyer
IIT_Test 35 All IIT U+2 Passed 98093 7.0.0 McCormick
AIT_Test 11 All AIT U-1 Not completed All 7.0.0 Goldman
AIT_Test 12 All AIT U-1 Passed All 7.0.0 Maharaji
AIT_Test 13 All AIT U+1 Passed All 7.0.0 Maharaji
AIT_Test 14 All AIT U+2 Passed All 7.0.0 Maharaji
STE_Test 01 SWC1-3 STE Any Not completed All 7.0.0 Henry
STE_Test 02 SWC2-4 STE Any Failed All 7.0.0 Henry
STE_Test 03 All STE U-1 Passed All 7.0.0 Henry
STE_Test 04 All STE U-1 Passed All 7.0.0 Henry
STE_Test 05 All STE U+1 Passed All 7.0.0 Henry

TEST PLANNING REPORT

 
Fig. 8.11 Test planning report 



8.2 Test Progress Reporting (TPR) 309 

cover possible deficiencies in the test processes (e. g., ITC, monitoring, problem 
solving) and the documentation process. 

Requirements, test case status, test runs, defect arrivals, defect aging, and other 
trends can be easily monitored by producing customized reports and graphs. The 
test case planning report documents the overall situation of all test cases being in 
work at reporting time. 

A graphical representation could give indications about possible deviations 
from nominal planning. In our example, the number of failed and unused test cases 
compared to passed test cases is worth further investigation. 

In this case, the quality of the last test campaign is degrading. 
The definition of reports and graphs can be stored for reuse using the “favorites” 

option which is available in all TD/QC modules. If you declare the selected reports 
or graphs as “public,” all project members will then be able to access this informa-
tion at their finger tip. The default option is “private” and not accessible to others. 

Reports in tabular form can also be easily produced and exported to Winword 
and Excel as flat files. 

 

Fig. 8.12 Test status over time 



310 8 Measuring Test Efforts 

D
ef

ec
t I

D
S

ta
tu

s
D

et
ec

te
d 

on
 D

at
e

A
ss

ig
ne

d 
To

S
W

C
Te

st
 p

h
S

um
m

ar
y

P
rio

rit
y

S
ev

er
ity

P
la

nn
ed

 fi
x 

da
te

R
eq

.
R

ee
la

se
s

30
41

9
re

op
en

30
.0

1.
19

99
Xb

35
16

8
S

W
C

1
C

T
C

D
S

 S
S

P
IN

V
 F

ile
s 

W
ro

ng
 E

rr
or

 T
ex

t /
 M

es
sa

ge
1-

Lo
w

1-
Lo

w
1.

0.
6

30
65

0
re

op
en

06
.0

4.
19

99
Xb

35
16

8
S

W
C

1
C

IT
S

W
C

1:
 V

al
id

ity
 c

he
ck

 r
ul

es
 s

cr
ip

t t
o 

be
 a

m
en

de
d 

w
ith

2-
M

ed
iu

m
2-

M
ed

iu
m

1.
0.

2
30

76
3

re
op

en
18

.0
5.

19
99

Xb
32

20
0

S
W

C
1

A
T

D
ef

ec
t 5

52
2 

N
O

K
3-

Hi
gh

3-
Hi

gh
1.

0.
3

30
21

5
re

op
en

18
.0

2.
20

00
Xb

22
03

6
S

W
C

1
C

IT
IN

H_
S

C
C

: 
C

ha
ng

e 
Tr

ig
ge

r 
P

ro
ce

du
re

2-
M

ed
iu

m
2-

M
ed

iu
m

09
.0

3.
20

00
1.

0.
3

30
43

5
re

op
en

18
.0

2.
20

00
Xb

32
20

0
S

W
C

1
C

T
S

W
C

1_
G

UI
_A

D
J 

E
rr

or
-C

od
es

 in
 T

as
k

2-
M

ed
iu

m
2-

M
ed

iu
m

1.
0.

3
30

47
6

re
op

en
04

.1
0.

19
99

Xb
22

03
6

S
W

C
1

IIT
er

ro
ne

ou
s 

re
ru

ns
 a

re
 n

ot
 tr

ap
pe

d 
in

 P
P

F
2-

M
ed

iu
m

2-
M

ed
iu

m
14

.0
5.

20
00

1.
0.

4
30

47
8

re
la

te
d 

to
 R

eq
14

.1
0.

19
99

Xb
26

19
9

S
W

C
1

A
IT

R
es

ub
m

is
si

on
 n

ic
ht

ko
nt

ie
rb

ar
er

 B
TX

A
E

s 
au

s 
LV

R
 v

o
1-

Lo
w

2-
M

ed
iu

m
31

.0
1.

20
00

A
B

41
2

1.
0.

3
30

47
9

re
op

en
22

.1
0.

19
99

Xb
22

03
6

S
W

C
1

A
IT

IN
H-

E
xc

ep
tio

ns
1-

Lo
w

1-
Lo

w
14

.0
5.

20
00

1.
0.

3
30

48
0

re
la

te
d 

to
 R

eq
14

.1
0.

19
99

Xb
26

19
9

S
W

C
1

A
IT

R
es

ub
m

is
si

on
 n

ic
ht

ko
nt

ie
rb

ar
er

 B
TX

A
E

s 
au

s 
LV

R
 v

o
1-

Lo
w

2-
M

ed
iu

m
31

.0
1.

20
00

C
B

11
0

1.
0.

3
30

57
5

re
op

en
08

.0
3.

20
00

Xb
22

03
6

S
W

C
1

S
TE

S
W

C
1 

  
A

dd
 o

j_
te

st
 to

 d
pn

d 
an

d 
cl

au
s

1-
Lo

w
2-

M
ed

iu
m

1.
0.

5
30

65
6

R
eo

pe
n

18
.0

3.
20

00
Xb

97
45

0
S

W
C

1
S

TE
S

W
C

1_
XN

5:
 N

P
 N

et
tin

g 
on

ly
 d

on
e 

on
 S

Q
W

 c
ur

re
nc

y
3-

Hi
gh

5-
Ur

ge
nt

25
.0

4.
20

00
1.

0.
3

30
20

5
re

la
te

d 
to

 R
eq

19
.0

1.
20

00
Xb

05
26

5
S

W
C

1
C

IT
IN

H 
- 

M
is

si
ng

 r
ul

e 
pa

ra
m

et
er

 fo
r 

se
cu

rit
y 

po
si

tio
ns

 N
O3

-H
ig

h
4-

V
er

y 
Hi

gh
07

.0
2.

20
00

A
B

42
0

1.
0.

5
30

66
6

R
eo

pe
n

21
.0

3.
20

00
Xb

97
45

0
S

W
C

1
S

TE
S

W
C

1 
  

D
o 

no
t N

P
 p

os
tin

gs
 b

y 
S

W
C

1T
3-

Hi
gh

3-
Hi

gh
25

.0
4.

20
00

1.
0.

4
30

67
2

Fi
xe

d 
fo

r 
re

-t
es

t
22

.0
3.

20
00

Xb
97

45
0

S
W

C
1

S
TE

S
W

C
1:

 D
en

or
m

 G
LA

ID
 d

ef
au

lts
5-

Ur
ge

nt
5-

Ur
ge

nt
1.

0.
4

30
67

3
O

pe
n

22
.0

3.
20

00
Xb

29
29

8
S

W
C

1
A

IT
S

W
C

1 
C

D
S

: 
C

he
ck

su
m

m
e 

fü
r 

 R
O

L 
Fi

le
s 

ei
ns

ch
al

te
n2

-M
ed

iu
m

2-
M

ed
iu

m
25

.0
4.

20
00

1.
0.

3
30

65
0

O
pe

n
23

.0
3.

20
00

Xb
32

20
0

S
W

C
1

C
T

S
W

C
1_

G
UI

_A
D

J 
M

an
ua

l I
np

ut
 -

 E
xc

el
 U

pl
oa

d 
- 

Fi
le

n
1-

Lo
w

2-
M

ed
iu

m
21

.0
4.

20
00

1.
0.

3
30

76
3

Fi
xe

d 
fo

r 
re

-t
es

t
24

.0
3.

20
00

Xb
97

45
0

S
W

C
1

S
TE

S
W

C
1 

de
no

rm
: 

In
co

rr
ec

t p
c_

id
 d

ef
ua

lt 
de

riv
at

io
n

5-
Ur

ge
nt

5-
Ur

ge
nt

1.
0.

3
30

21
5

O
pe

n
24

.0
3.

20
00

Xb
97

45
0

S
W

C
1

S
TE

S
W

C
1_

XN
5:

 M
is

si
ng

 F
lo

w
 C

la
ss

 in
 N

P
 P

os
tin

gs
3-

Hi
gh

3-
Hi

gh
04

.0
5.

20
00

1.
0.

4
30

73
3

Fi
xe

d 
fo

r 
re

-t
es

t
25

.0
3.

20
00

t2
21

29
6

S
W

C
1

S
TE

S
W

C
1 

P
P

F_
W

A
IT

 lo
ng

ru
nn

er
 p

ar
al

le
l h

in
ts

2-
M

ed
iu

m
5-

Ur
ge

nt
14

.0
4.

20
00

1.
0.

5
30

73
5

Fi
xe

d 
fo

r 
re

-t
es

t
05

.0
4.

20
00

Xb
97

45
0

S
W

C
1

C
IT

S
W

C
1_

XN
5:

 -
 A

P
P

L_
S

Y
S

_I
D

 o
f N

P
N

TF
 B

al
an

ci
ng

 P
4-

V
er

y 
Hi

gh
3-

Hi
gh

25
.0

4.
20

00
1.

0.
4

30
74

8
N

ew
05

.0
4.

20
00

Xb
28

23
2

S
W

C
1

S
TE

S
W

C
1_

XN
5:

 M
is

si
ng

 S
W

C
1T

 fo
r 

B
S

 P
os

iti
on

 w
ith

 C
A2

-M
ed

iu
m

2-
M

ed
iu

m
15

.0
4.

20
00

1.
0.

4
30

75
3

O
pe

n
11

.0
4.

20
00

Xb
97

45
0

S
W

C
1

S
TE

S
W

C
1_

XN
5:

 N
P

 P
os

tin
gs

 w
ith

ou
t f

lo
w

 c
la

ss
3-

Hi
gh

4-
V

er
y 

Hi
gh

25
.0

4.
20

00
1.

0.
4

30
75

5
N

ew
13

.0
4.

20
00

Xb
97

45
0

S
W

C
1

S
TE

S
W

C
1_

XN
5 

- 
P

&
L 

P
os

tin
gs

 w
ith

 S
W

C
1T

 b
ut

 w
ith

ou
t 

3-
Hi

gh
4-

V
er

y 
Hi

gh
25

.0
4.

20
00

1.
0.

3
30

75
6

Fi
xe

d 
fo

r 
re

-t
es

t
13

.0
4.

20
00

Xb
32

20
0

S
W

C
1

C
T

S
W

C
1_

G
UI

_A
D

J 
E

xc
el

 U
pl

oa
d 

V
al

id
ie

ru
ng

 P
ro

to
ko

ll 
r2

-M
ed

iu
m

2-
M

ed
iu

m
1.

0.
4

30
74

8
N

ew
15

.0
4.

20
00

Xb
97

45
0

S
W

C
1

S
TE

S
W

C
1_

XN
5:

 N
P

 N
et

tin
g 

P
os

tin
gs

 w
ith

 D
ou

bl
ed

 A
m

ou
n3

-H
ig

h
4-

V
er

y 
Hi

gh
30

.0
4.

20
00

1.
0.

3
30

75
3

O
pe

n
20

.0
4.

20
00

Xb
19

79
1

S
W

C
1

S
TE

S
ec

ur
ity

 S
et

tle
m

en
t T

ra
ns

ac
tio

ns
 a

re
 b

oo
ke

d 
on

 a
cc

o5
-U

rg
en

t
5-

Ur
ge

nt
30

.0
4.

20
00

1.
0.

3
30

65
0

Fi
xe

d 
fo

r 
re

-t
es

t
20

.0
4.

20
00

t2
01

32
7

S
W

C
1

S
TE

S
W

C
1_

XN
5:

 IN
H_

S
C

C
: 

C
TC

D
 4

1:
 C

ha
ng

e 
G

LA
ID

-D
5-

Ur
ge

nt
5-

Ur
ge

nt
22

.0
4.

20
00

1.
0.

4
30

76
3

N
ew

20
.0

4.
20

00
Xb

22
03

6
S

W
C

1
S

TE
S

W
C

1_
XN

5 
- 

 R
O

L 
Tr

an
sa

ct
io

ns
 h

av
e 

to
 b

e 
fil

te
re

d 
3-

Hi
gh

3-
Hi

gh
27

.0
4.

20
00

1.
0.

5
30

21
5

N
ew

20
.0

4.
20

00
Xb

22
03

6
S

W
C

1
S

TE
S

W
C

1_
XN

5 
- 

R
em

ov
e 

C
ha

ng
es

 o
f D

ef
ec

t 3
07

56
1-

Lo
w

1-
Lo

w
01

.0
7.

20
00

30
76

2
N

ew
21

.0
4.

20
00

S
W

C
1

C
T

C
D

S
  

R
O

L 
W

ro
ng

 V
al

ue
s 

in
 IT

E
M

 w
he

n 
in

va
lid

 n
um

b
2-

M
ed

iu
m

2-
M

ed
iu

m
30

29
4

O
pe

n
04

.0
2.

20
00

Xb
97

97
4

S
W

C
1 

IIT
P

os
ta

ct
iv

at
io

n 
is

 n
ot

 s
et

up
 a

nd
 n

ot
 w

or
ki

ng
2-

M
ed

iu
m

1-
Lo

w
31

.0
3.

20
00

30
68

3
O

pe
n

24
.0

3.
20

00
t2

00
02

2
S

W
C

1 
C

T
In

iti
al

is
e 

S
W

C
1 

2-
M

ed
iu

m
2-

M
ed

iu
m

31
.0

5.
20

00
1.

0.
4

30
70

3
N

ew
25

.0
4.

20
00

Xb
40

65
1

S
W

C
1 

IIT
HH

I_
C

LR
_S

E
T_

IN
IT

_C
LR

_C
 -

> 
qu

ot
ed

 s
tri

ng
 n

ot
 p

ro
2-

M
ed

iu
m

2-
M

ed
iu

m
1.

0.
3

30
70

6
O

pe
n

08
.0

2.
20

00
Xb

40
65

1
S

W
C

3
IIT

C
S

M
A

 N
ot

 a
ll 

S
W

C
1 

C
S

M
A

 S
W

C
1l

s 
gi

ve
 b

ac
k 

pr
op

e1
-L

ow
1-

Lo
w

07
.0

3.
20

00
1.

0.
4

D
ef

ec
ts

 t
ra

ck
in

g
 li

st
 

sh
ow

 s
to

pp
er

s
m

is
si

ng
 d

et
ai

ls
ou

td
at

ed
 s

ta
tu

s 
in

fo
rm

at
io

n
LE

G
EN

D
:

 

Fig. 8.13 List of actual defects produced using TestDirector and exported in Excel 

The defects tracking list is one of the most useful instruments to follow the 
testing progress in a project. It can be generated in TD/QC and exported to Excel 
to be further processed and enhanced. Highlighting relevant facts shows deficien-
cies as illustrated in Fig. 8.13. 



8.2 Test Progress Reporting (TPR) 311 

 

Fig. 8.14 Defect arrivals monitored over a long period of time 

The defects tracking list is an important instrument because it helps to detect 
anomalies early in the ITC process such as: 

• Showstoppers (red in the list) 
• Missing information (yellow) 
• Outdated defect status (pink) 
• Long delay to fix defects 
• Special tracking item (grey) 

8.2.9 Central Reporting with TD/QC 

In a rapidly changing business world, strategic initiatives are started to generate 
growth coupled with IT programs initiated to keep pace with technology trends 
(e. g., legacy platform renewal). These megatrends result in large-scale projects 
mobilizing considerable resources requiring tight control about all testing and 
implementation activities locally and abroad. 

In a multi-location project, central reporting is essential to steer the test activi-
ties efficiently by measuring the test progress in a coordinated and coherent way. 
TD/QC provides the necessary functions to customize attributes, lists to meet the 



312 8 Measuring Test Efforts 

requirements of a multi-dimension reporting. Prerequisites for a consolidated re-
porting is a common setting for all key attributes, values, and lists in all relevant 
projects. 

For project reporting at the highest level, it is then necessary to collect, aggre-
gate, and consolidate test results along multiple dimensions: 

• Geographical units (multiple locations) 
• Solution/product (all projects related to a product/application) 
• Aggregation of solution(s)/product(s) 
• Aggregation of projects across multiple solution domains 

An integrated test platform like TestDirector for Quality Center is ideally suited 
to do this job. To meet those requirements, user-defined attributes must be created 
in each TD/QC instance (project) to track properly, and with great accuracy, the 
overall testing progress. 

The aggregation of results is only possible if the attributes are populated with 
valid values, whose range are generally communicated by the IT organization to 
the projects. The most common attributes used for central reporting with TD/QC 
are listed below. 

Attributes Needed for Central Reporting 

1. Geographical entity  {location/country/region} 
2. Project   {all relevant projects} 
3. Go criteria   {for each relevant test case} 
4. Weight factor  {for each relevant test case} 
5. Category   {for each relevant test case} 
6. Environment   {Dev1/Dev2/Test1/Test2} 
7. Sub-environment  {AIT/CT/CIT/IIT/MIT/STE/UAT} 
8. Risk factor   {low/medium/high/very high} 
9. Defect priority  {low/medium/high/very high} 
10. Defect severity  {low/medium/high/critical} 

Remarks Concerning the Setting 

Attributes 3, 4, and 5 can be defined n times for individual test cases. Multiple 
attributes of the same type for test cases make sense in rare cases only. The granu-
larity of reporting should be in relation with the criticality of the SUT’s compo-
nents to be reported this way. Attributes 6 and 7 should be defined as shown in 
Table 8.2. 

The sub-environment can be further split into individual locations by providing 
a suffix for the organizational units at the national and/or the international level: 
AIT<location 1…n>, UAT<location 1…n>. 

This schema can be applied to end-to-end test environments (IIT, AIT) and also 
to usability tests (UATs). 



8.2 Test Progress Reporting (TPR) 313 

Table 8.2 Test environment attributes implemented in TestDirector for TPR   

Environments  

Dev1 Dev2 Te1 Te2 

CT IIT AIT STE Sub-Environments 
CIT MIT UAT n/a      

Who Needs Reports? 

Based on my experience with TD/QC central reporting, the following roles need 
adequate reports: 

1.  Management/Stake holders 
2.  Project managers 
3.  Test managers 
4.  QA managers 
5.  Auditors 
6.  Developers 
7.  Test Engineers 

For a given product release, it is necessary to cover all aspects of the actual test 
situation by measuring: 

A. The test coverage status 
B. The test progress 
C. The test results 
D. The defect situation 
E. The PSO readiness (roll-out) 
F. The test documentation status 

Table 8.3 Role-based measurement aspects for test progress reporting 

Role Aspect Measurement  

1 A Coverage status 
1 E Correctness 
1 F Regulatory req. 
2 A Completeness 
2 B Efficiency 
2 D Reliability 
3 A Correctness 
3 B Correctness 
3 C Functionality  
3 F Testability 
4 D Correctness 
5 E Correctness 



314 8 Measuring Test Efforts 

Selecting the aspects of measurement applied to the roles involved in the pro-
ject should help to focus and to bundle the information material to produce sound 
reports with TD/QC. 

As reflected in Table 8.3, stake holders and management have an interest in 
knowing if the documentation aspects are correctly addressed in the project. This 
is because the conformity of IT systems to tight regulation rules (e. g., SOX, Basel 
II, and others) is a vital necessity today. 

Metrics for Central Reporting 

The Software Quality Metrics Methodology (IEEE Std 1061-1998) is the standard 
that specifies the form of a set of document for use in eight defined stages of soft-
ware testing, each stage potentially producing its own separate type of document. 
In practice, test summary reports are defined by using performance indicators. A 
performance indicator is a particular value or characteristic used to measure output 
or outcome, measures of software quality, performance efficiency, and customer 
satisfaction. 

Based on experiences in large-scale projects, I suggest to define and use the fol-
lowing indicators for central reporting. 

Table 8.4 Indicators for test progress reporting  

Requirements status 

RS1 Number of requirements without TC 
RS2 Percentage of req. coverage by status: (not covered/failed/passed/not run/not used) 
RS3 Requirements coverage status (traffic light) 
RS4 Number of requirements by coverage status 
RS5 Number of requirements by risk level + coverage status 
Test progress 
TP1 Number of test cases by SWC and by release 
TP2 Number of test cases by TC status 
Test results 
TR1 Percentage of executed tests by TC status 
TR2 Number of of executed tests by TC status 
TR3 TC execution status (traffic light) 
Defects resolution 
DR1 Number of defects by priority + severity 
DR2 Percentage of defects by severity + severity 
DR3 Total of defects by priority and status 
DR4 Aging of defects by status 
DR5 Defects resolution overall (traffic light)  
DR6 Number of showstoppers (severity >= “high”) 

Note: A traffic light shows an aggregated status with three colors (green/yellow/red) correspond-
ing to predefined threshold values. 



8.2 Test Progress Reporting (TPR) 315 

Generating Reports 

The central reporting process should be fully automated via scripts which execute 
the necessary steps like: <selection of individual TD/QC project instances>, <test 
progress calculations>, <aggregation of results>, <generation of tables and 
graphs>, and <report publication>. 

Examples of Reports and Graphs 

Test progress reporting covers all aspects of the test activities: requirements cov-
erage, test planning, test case status, test results, and defects tracking. We show 
here which reports and graphs reflect best the test situation with appropriate re-
ports and graphs. 

Requirements overview: 

 

Fig. 8.15 Monitoring the test coverage in TestDirector 



316 8 Measuring Test Efforts 

 

Fig. 8.16 Requirements report in TestDirector 



8.2 Test Progress Reporting (TPR) 317 

Test case status: 

 

Fig. 8.17 Overall status of test cases in a release 



318 8 Measuring Test Efforts 

Test execution status: 

 

Fig. 8.18 Test execution report in TestDirector 

 

Fig. 8.19 Test execution grid in TestDirector 



8.2 Test Progress Reporting (TPR) 319 

 

Fig. 8.20 Test execution graph in TestDirector  



320 8 Measuring Test Efforts 

 

Fig. 8.21 Cross test set progress graph in TestDirector 



8.2 Test Progress Reporting (TPR) 321 

Test progress status: 

 

Fig. 8.22 Test progress graph using data produced in TestDirector 



322 8 Measuring Test Efforts 

Defect tracking status: 

 

Fig. 8.23 Test defects status report in TestDirector  

Defect ID S tatus Detected on DateAss igned T o S WC T est ph S ummary P riority S everity P lanned fix date R eq. R eelases
30419 reopen 30.01.1999 Xb35168 S WC 1 C T C DS  S S P INV F iles  Wrong E rror T ext / Message 1-Low 1-Low 1.0.6
30650 reopen 06.04.1999 Xb35168 S WC 1 C IT S WC 1: Validity check rules  script to be amended 2-Medium 2-Medium 1.0.2
30763 reopen 18.05.1999 Xb32200 S WC 1 AT Defect 5522 NOK 3-High 3-High 1.0.3
30215 reopen 18.02.2000 Xb22036 S WC 1 C IT INH_S C C : C hange T rigger P rocedure 2-Medium 2-Medium 09.03.2000 1.0.3
30435 reopen 18.02.2000 Xb32200 S WC 1 C T S WC 1_G UI_ADJ E rror-C odes  in T ask 2-Medium 2-Medium 1.0.3
30476 reopen 04.10.1999 Xb22036 S WC 1 IIT erroneous  reruns  are not trapped in P P F 2-Medium 2-Medium 14.05.2000 1.0.4
30478 related to R eq 14.10.1999 Xb26199 S WC 1 AIT R esubmiss ion nichtkontierbarer BT XAE s  aus  LVR1-Low 2-Medium 31.01.2000 AB412 1.0.3
30479 reopen 22.10.1999 Xb22036 S WC 1 AIT INH-E xceptions 1-Low 1-Low 14.05.2000 1.0.3
30480 related to R eq 14.10.1999 Xb26199 S WC 1 AIT R esubmiss ion nichtkontierbarer BT XAE s  aus  LVR1-Low 2-Medium 31.01.2000 C B110 1.0.3
30575 reopen 08.03.2000 Xb22036 S WC 1 S T E S WC 1   Add oj_test to dpnd and claus 1-Low 2-Medium 1.0.5
30656 R eopen 18.03.2000 Xb97450 S WC 1 S T E S WC 1_XN5: NP  Netting only done on S QW curre 3-High 5-Urgent 25.04.2000 1.0.3
30205 related to R eq 19.01.2000 Xb05265 S WC 1 C IT INH - Miss ing rule parameter for security pos ition 3-High 4-Very High 07.02.2000 AB420 1.0.5
30666 R eopen 21.03.2000 Xb97450 S WC 1 S T E S WC 1   Do not NP  postings  by S WC 1T 3-High 3-High 25.04.2000 1.0.4
30672 F ixed for re-test 22.03.2000 Xb97450 S WC 1 S T E S WC 1: Denorm G LAID defaults 5-Urgent 5-Urgent 1.0.4
30673 Open 22.03.2000 Xb29298 S WC 1 AIT S WC 1 C DS : C hecksumme für  R OL F iles  einscha2-Medium 2-Medium 25.04.2000 1.0.3
30650 Open 23.03.2000 Xb32200 S WC 1 C T S WC 1_G UI_ADJ Manual Input - E xcel Upload - F 1-Low 2-Medium 21.04.2000 1.0.3
30763 F ixed for re-test 24.03.2000 Xb97450 S WC 1 S T E S WC 1 denorm: Incorrect pc_id defualt derivation 5-Urgent 5-Urgent 1.0.3
30215 Open 24.03.2000 Xb97450 S WC 1 S T E S WC 1_XN5: Miss ing F low C lass  in NP  P ostings 3-High 3-High 04.05.2000 1.0.4
30733 F ixed for re-test 25.03.2000 t221296 S WC 1 S T E S WC 1 P P F _WAIT  longrunner parallel hints 2-Medium 5-Urgent 14.04.2000 1.0.5
30735 F ixed for re-test 05.04.2000 Xb97450 S WC 1 C IT S WC 1_XN5: - AP P L_S YS _ID of NP NT F  Balancing4-Very High 3-High 25.04.2000 1.0.4
30748 New 05.04.2000 Xb28232 S WC 1 S T E S WC 1_XN5: Miss ing S WC 1T  for BS  P os ition with 2-Medium 2-Medium 15.04.2000 1.0.4
30753 Open 11.04.2000 Xb97450 S WC 1 S T E S WC 1_XN5: NP  P ostings  without flow class 3-High 4-Very High 25.04.2000 1.0.4
30755 New 13.04.2000 Xb97450 S WC 1 S T E S WC 1_XN5 - P &L P ostings  with S WC 1T  but witho3-High 4-Very High 25.04.2000 1.0.3
30756 F ixed for re-test 13.04.2000 Xb32200 S WC 1 C T S WC 1_G UI_ADJ E xcel Upload Validierung P rotok2-Medium 2-Medium 1.0.4
30748 New 15.04.2000 Xb97450 S WC 1 S T E S WC 1_XN5: NP  Netting P ostings  with Doubled Am3-High 4-Very High 30.04.2000 1.0.3
30753 Open 20.04.2000 Xb19791 S WC 1 S T E S ecurity S ettlement T ransactions  are booked on 5-Urgent 5-Urgent 30.04.2000 1.0.3
30650 F ixed for re-test 20.04.2000 t201327 S WC 1 S T E S WC 1_XN5: INH_S C C : C T C D 41: C hange G LAID5-Urgent 5-Urgent 22.04.2000 1.0.4
30763 New 20.04.2000 Xb22036 S WC 1 S T E S WC 1_XN5 -  R OL T ransactions  have to be filter 3-High 3-High 27.04.2000 1.0.5
30215 New 20.04.2000 Xb22036 S WC 1 S T E S WC 1_XN5 - R emove C hanges  of Defect 30756 1-Low 1-Low 01.07.2000
30762 New 21.04.2000 S WC 1 C T C DS   R OL Wrong Values  in IT E M when invalid nu2-Medium 2-Medium
30294 Open 04.02.2000 Xb97974 S WC 1 IIT P ostactivation is  not setup and not working 2-Medium 1-Low 31.03.2000
30683 Open 24.03.2000 t200022 S WC 1 C T Initialise S WC 1 2-Medium 2-Medium 31.05.2000 1.0.4
30703 New 25.04.2000 Xb40651 S WC 1 IIT HHI_C LR _S E T _INIT _C LR _C  -> quoted string not 2-Medium 2-Medium 1.0.3
30706 Open 08.02.2000 Xb40651 S WC 3 IIT C S MA Not all S WC 1 C S MA S WC 1ls  give back pro1-Low 1-Low 07.03.2000 1.0.4

Defects tracking list 

show stoppers missing details outdated status informationLEGEND:  

Fig. 8.24 List of actual defects produced using TestDirector and exported in Excel 

 
 



 

323 P. Henry, The Testing Network, 
© Springer 2008 

Chapter 9  
Test Issues 

9.1 Risk Management 

A risk is a potential problem that might endanger the completion of a project, or 
that might keep the team from achieving successfully some tasks or fulfilling 
customer’s needs in some way. At the beginning of the twenty-first century, enter-
prises face many risks in the global economy, which are mainly related to: reputa-
tion, finance/treasury, technology, operations, legal issues, and regulations. 

In a software project, risks can emerge from operations, technology, or compli-
ance issues. Effective end-to-end management of IT risks is much more difficult 
than a couple of years ago for two main reasons: 

• The growing impact of IT risk on business in general 
• The boundaries of organizations have changed. 

Globalization and the resulting massive outsourcing of IT resources have in-
creased dramatically in the 2000s, generating new risks in a complex multicultural 
context. The central question is to know which factors must be addressed to con-
trol and mitigate risks in an IT environment. 

9.1.1 Risk Management in the Enterprise IT Project 

Figure 9.1 shows how risk management efforts fit into the typical IT project 
within an enterprise. Managers define overall risk parameters at the start of the 
assessment effort (which should begin before the issuance of the project Request 
for Proposal (RFP)) and adapt them along the way. For the duration of the project, 
management measures risk parameters. 

Procurement involves measures to assure that risk parameters remain below 
tolerance thresholds, that auditing and testing efforts track these parameters, and 



324 9 Test Issues 

that managers hand the risk profile off to those who operate and perform accep-
tance testing of the results. The risk management process continues throughout the 
lifecycle of initiative results. [BB07] 

Project leadership

Operational leadership

Planning

Tracking, validation and verification
Procurement

Technical conflicts and resolutions
Project development

Audit and assessment

Project delivery

Acceptance testing

Workshops

Requirements, architectures,
RFPs, evaluations

Facilitation

Dialogues

Dialogues, project reviews, validation, verification

ITC, IPM, TPR

adapted from: B. Blakley, Burton Group – 2007

Process points for risk management in IT projects

 

Fig. 9.1 Risk process points 

9.1.2 The Scope of IT Risk Management 

In an interview published in 2005, Richard Hunter, a Gartner analyst, resumed the 
situation concerning IT risks in the following terms: 

IT risk management includes four broad categories of risk, encompassing a 
wide range of risk factors. These four broad categories are: 

• Risks to the continuity of business 
• Risks to the integrity of the information handled by the business, and the 

systems that handle this information 
• Risks to the accuracy of the information handled by the business 
• Risks associated with the strategic interests of the business 

In general, IT organizations spend the most on risks related to accuracy and in-
tegrity, and they spend the least on flexibility, agility, and other strategic risks. 



9.1 Risk Management 325 

Best Practices 

The three best approaches to cope with these risks are as follows: 

• Focus on the process to identify, assess, and act on and monitor the effects of 
actions on IT risk 

• Focus on the expertise of a group of people responsible for managing those 
risks on behalf of the enterprise 

• Simplify the infrastructure. 

So, there are three basic aspects of excellence in IT risk management: 

• Robust, reliable IT processes 
• Substantial, proven expertise 
• A strong infrastructure simplification. 

9.1.3 Risk-Based Testing 

In general, standard approaches to testing are implicitly designed to address risks 
in a software project reasonably well. However, in large projects – and depending 
of the nature of the project and its context – more stringent procedures and meas-
ures must be adopted to find important vulnerabilities or flaws in the product and 
to avoid that unexpected problems with potential high impact can occur. Due to 
regulations in place, developing software solutions in the finance sector requires 
higher confidence in testing to be sure that the right things are thoroughly tested. 

In a software project, each risk carries a probability to occur and can generate 
an impact that might be designated as low, medium, or high. A permanent risk 
analysis should take place during all phases of the project to determine where 
testing should be focused. 

A catalogue of questions helps to detect potential or real risk areas. The inves-
tigation should cover the following topics: 

• Is the new solution using cutting-edge technology? 
• Which parts of the solution use cutting-edge technology (HW/SW)? 
• Which parts of the requirements are unclear or poorly documented? 
• Which parts of the solution are most complex? 
• Which functionality has the largest financial impact on users? 
• Which functionality has the largest security impact? 
• Which functionality is most important to the project? 
• Which functionality is most visible to the users? 
• Which aspects of the solution are most important to the customer and spon-

sor? 
• Which aspects of the solution caused problems in similar projects? 
• Which aspects of similar projects caused large maintenance expenses? 
• What kind of problems would be the most visible to customers? 



326 9 Test Issues 

Risk Matrix

PROBABILITY

R1: Business requirements

R2: Costs
• -

R3: Delivery
•

R4: Complexity/ dependencies
• -

R5: Processes
•

R6: Staffing/Know-how
•

R7:  HW/SW Technology
•

R8: Quality aspects for users
R5

R6

Low Medium High

Low

Medium

High

R2

R8

R4

R6

R5

R7

R1

R3

Identified Risks 

IMPACT  

Fig. 9.2 Risk identification and risk evaluation 

• What kind of problems would cause the most customer service complaints? 
• Which parts of the project are outsourced? 
• Which processes are not well implemented? 
• Are requirements changing permanently? 

In practice, eight main categories of risks should be tracked continuously: 
• Business requirements 
• Costs 
• Delivery 
• Complexity/dependencies 
• Processes (including project management) 
• Staffing/know-how 
• Technology 
• Quality aspects for endusers 

Because large information systems are composed of many software compo-
nents having a network of cross-dependencies, it is strongly recommended to track 
all requirement changes permanently with an analytic dashboard. Before imple-
menting a sophisticated solution, first use a simple risk matrix. Figure 9.2 shows a 
typical risk diagram used in large IT projects to track and detect potential risks 
before they can materialize. 

The diagram must be commented by the project’s managers, who should pro-
pose corrective measure(s) for each identified risk. An implementation plan must 
also be proposed. Risk reports should be produced on a weekly or bi-monthly 
basis, depending on the size, significance, and complexity of the project. In some 
situations, additional measures may be necessary, including a daily briefing and 
weekly goals. 



9.1 Risk Management 327 

Risk primary factors

Poor quality software/technology

Business environment change

Quality assurance (functional, integration, and system testing) 

Development issues (design/architecture/code/testing, etc.)

Requirements governance (i.e., scope creep)

Change management

Project management (including resource and budget management)

Business requirements definition

Deployment or rollout issues

When IT initiatives have failed to produce the expected business outcomes in your company,
what have been the primary factors?

Outsourcing/Offshoring failure

Production application/Service management 

Security

Performance assurance (Load/perf. testing – Appl./System tuning)

28%

24%

19%

17%

12%

12%

12%

11%

11%

10%

10%

9%

7%

Source: Burton Group  

Fig. 9.3 Classification of risk factors in large IT projects 

Figure 9.3 shows a classification of primary factors causing IT initiatives to fail 
producing the expected business outcomes. 

9.1.4 Limitations on Risk Management 

Some common errors repeatedly surface in risk management decision-making. 
Many of these errors are closely related to well-known and widely published hu-
man cognition errors and group behaviors; these errors occur in a whole variety of 
management settings. Here is a list of possible pitfalls: 

1.  Excessive or inappropriate grouping of risk components. The complexity of 
modern information systems ensures that risk managers cannot effectively 
enumerate all possible combinations of threats, vulnerabilities, and conse-
quences. As a result, there is a tendency to group them, associate properties 
with those groupings and then perform risk analysis based on those groupings. 

2.  Overestimating the capabilities of threats. 
3.  Habituation. Another common error results from the human tendency to feel 

safer and more trusting after a period without any negative experiences. 



328 9 Test Issues 

4.  Neglect of effective protection. A closely related phenomenon stems from the 
fact that the most effective protection tends to be silent and does not interfere 
with normal user behavior. 

5.  Misinterpretation of statistical data. Another major limitation to risk man-
agement is the tendency to misinterpret facts and figures. 

6.  The basis for decisions not carried forward. A major problem in under-
standing and updating historical decisions is the lack of adequate risk man-
agement documentation. The cause is often a missing or deficient documenta-
tion process. 

7.  Time effects are underestimated. While time has always been a part of under-
standing physical security, there is a tendency to neglect time in information 
systems security. 

8.  Incremental changes are underestimated. While rapid changes and large-scale 
events drive a reasonable understanding of time into risk management and 
mandate revisitation on an on-going basis, incremental change is another 
source of errors in risk management. 

9.  Interdependencies and complexity are underestimated. Interdependencies 
between various organisational entities in large projects and complex techni-
cal interactions must also be considered. 

10.  Reactive approaches fail. Because of the complexity associated with risk 
management, it is seldom possible to anticipate all possibilities, and yet a 
purely reactive approach is also doomed to failures. 

11.  Lack of attention to business risks and inadequate high-level focus. The last 
major source of risk management failure is the focus on technology risks 
while ignoring business risks. Lacking the necessary information, and experi-
ence, risk management staff often make unjustified business threat assump-
tions, misunderstand business vulnerabilities, and depend on consultants to 
back up their decisions with an  based on poor assumptions. [BB07] 

9.1.5 Risks Related to Compliance 

The significance of compliance management has considerably increased after the 
Enron Corporation’s bankruptcy in late 2001: “In just 15 years, Enron grew from 
nowhere to be America’s seventh largest company, employing 21,000 staff in 
more than 40 countries. But the firm’s success turned out to have involved an 
elaborate scam. Enron lied about its profits and stands accused of a range of shady 
dealings, including concealing debts so they didn’t show up in the company’s 
accounts.” reported BBC News. 

It became worse as the accounting firm Andersen was indicted by a federal 
grand jury for obstruction of justice for shredding sensitive documents related to 
the bankruptcy of Enron. The scandal has since become a popular symbol of wil-
ful corporate fraud and corruption. Similar cases – such as Tycon International, 



9.1 Risk Management 329 

and WorldCom (now MCI) – resulted in a decline of public trust in accounting 
and reporting practices. 

On the initiative of US Senator Paul Sarbanes and Representative Michael G. 
Oxley, the Sarbanes-Oxley Act of 2002 (Pub. L. No. 107–204, 116 Stat. 745) was 
promulgated to avoid major financial frauds in the future. 

The Sarbanes-Oxley Act is also known as the Public Company Accounting Re-
form and Investor Protection Act of 2002, and commonly called SOX or SarbOx. 
The Basel II agreement followed short after. 

Fig. 9.4 Senator Sarbanes and  
Representative Oxley 

The Scope and Extent of the Act 

The Sarbanes-Oxley Act includes three set of rules: 

• The Sarbanes-Oxley Act of 2002 (H.R. 3763) 
• The rules of the PCAOB 
• The rules of the SEC 

The scope of the act focuses on the following: 

• Internal controls: process/policies/activities 
• Compliance and reporting: transparency/accuracy 
• Governance: accountability/responsibility/an avoidance of conflict of interest 

(Source: MTG Management Consultants) 

SOX Requirements 

The Gartner Group describes the Sarbanes-Oxley requirements in the following 
terms: 

“A push is taking place outside of the US to follow the Sarbanes-Oxley re-
quirements. Canadian regulators are adopting new rules that ate almost direct 
copies of the U.S. rules for internal controls on financial reporting. In Europe, 
because of competitiveness for investment and a trend toward demonstrating and 



330 9 Test Issues 

proving corporate responsibility, many companies that don’t report to the US SEC 
are still implementing Sarbanes-Oxley, including having external auditors report 
on their internal controls. Other developments in audit and regulations such as 
International Financial Reporting Standards and Basel II (for banks) are encourag-
ing companies worldwide to improve financial processes, which then leads to an 
emphasis cn improving internal controls. As the European Union Data Protection 
Directive set a standard for privacy regulation, Sarbanes-Oxley is setting a stan-
dard for corporate governance regulation. Although US legislation like Sarbanes-
Oxley does touch enterprises in more-developed economies and around the world, 
every nation has its own regulatory environment and challenges. In Europe, these 
challenges can come from central and local government organizations at the na-
tional level, as well as from the European Union and other multinational regula-
tory bodies. Some of these will be industry-specific, like the Basel II accord, and 
some, especially regulations related to corporate ethics and organizational struc-
ture, apply across alI industries. Some are enforced by law, and some by either the 
“carrot” benefits and value, like Basel II) or the “stick” (fines and sentences), or a 
combination of both.” The various regulatory initiatives lead to various responses 
including many common components. 

The SOX Landscape 

Sarbanes-Oxley requires companies to adopt and declare a framework used to 
define and assess internal controls. Two control frameworks have emerged as 
foundational to the compliance efforts and have been adopted by the majority of 
companies: 

• COSO, primarily for financial processes, is an integrated framework provid-
ing specific guidance on implementing and maintaining internal controls. En-
dorsed by the SEC, COSO is the most widely adopted company-wide control 
framework. 

• COBITTM, or control objectives for information and related technologies, is 
an IT framework that maps to COSO (COSO offers little detail for IT con-
trols). 

In addition, IT process frameworks such as ITIL (IT infrastructure library) and 
CMMI (Capability maturity model integrated) assist in achieving compliance by 
facilitating the adoption of mature, effective processes on which to impose the 
control framework. ITIL adoption is increasing rapidly, driven by compliance 
concerns. Figure 9.5 is an illustration of the SOX Process and Control Frame-
works published by HP/Mercury. 

Sustainable compliance with Sarbanes-Oxley means the death of “ad-hoc” IT 
processes. The Sarbanes-Oxley Section 404 affirmation requirement spans all 
processes that affect the business cycle of the company and any software applica-
tions used to support those processes, directly or indirectly. It also requires that 
these processes be effectively controlled. 



9.1 Risk Management 331 

Appl.

control

control
control

control Appl.

Appl.control

Appl.control

Appl.

control

control

control

Appl.

Company-level
Controls COSO Application

Controls
COBiT TM IT General

Controls

Financial Processes

Enterprise Business Processes

IT Processes
ITIL® / CMMI ®

COSO      – Control and risk management 
for corporate governance
COBiT TM – IT Control Objectives

 Control Frameworks 

 IT Process Frameworks ITIL® / CMMI ® – IT Best Practices
 Source: HP/Mercury , 2007 

SOX Landscape

 

Fig. 9.5 SOX process and control frameworks 

SOX Compliance Components 

Five components are necessary to implement SOX compliance: 

1.  Monitoring 
2.  Information and communication 
3.  A control environment 
4.  Control activities 
5.  Risk assessment 

These components are used to manage the SOX process for operations, finan-
cial reporting, and compliance across all company’s organizational units and ac-
tivities. Figure 9.6 shows the compliance components of the SOX framework in 
the different domains: 

• Monitoring 
• Information and communication 
• Control environment 
• Risk assessment 
• Control activities 



332 9 Test Issues 

Source: MTG Management Consultants

              Monitoring

. Assessment of a control
  system's performance over time.
. Combination of ongoing and
  separate evaluation.
. Management and supervisory
  activities.
. Internal audit activities.

Information & Communication
. Pertinent information identified,
  captured and communicated in
  a timely manner.
. Access to internal and externally
  generated information.
. Flow of information that allows
  for successful control actions
  from instructions on
  responsibilities to summary of
  findings for management action.

        Control Environment

. Sets tone of organization-
  influencing control consciousness
  of its people.
. Factors include integrity, ethical
  values, competence, authority,
  responsability.
. Foundation for all other
  components of control. 

           Risk Assessment

. Risk assessment is the
  identification of relevant risks
  to achieving the entity's
  objectives - forming the basis
  for determining control
  activities.

          Control Activities

. Policies/procedures that ensure
  management directives are
  carried out.
. Range of activities including
  approvals, authorizations,
  verifications, recommendations,
  performance reviews,
  asset security and segregation
  of duties.

OPERATIO
NS

FIN
ANCIA

L 

REPORTIN
G

COMPLI
ANCE

Ac
tiv

ity
 2

Ac
tiv

ity
 1

U
ni

t 
A

U
ni

t 
B

 Information & Communication

Monitoring

Control Activities

Risk Assessment

Control Environment

 

Fig. 9.6 SOX compliance components 

IT Applications and SOX 

Two types of applications are SOX-sensitive: core applications (COAs) and en-
duser applications (EUAs). 

COAs are those applications developed and maintained by financial institutions 
and banks that are in use on mainframe computers or on a distributed IT infra-
structure. SOX-404 relevant COAs are applications that support accounting activi-
ties in SOX-significant business entities. They are involved in initiating, authoriz-
ing, transferring, processing, recording, consolidating, reporting, and archiving 
transactions in the accounting records. To control COAs under SOX principles, 
different approaches are possible: 

1.  Black-box testing  
(controls around the applications) 

2.  Usability testing  
(relies on the tests that have been performed prior SW rollout) 

3.  Validation testing  
(Benchmark validation testing for old legacy applications) 

EUAs are those applications that run on personal computers and are maintained 
locally by the end user. EUAs are generally not connected to COAs, but may be an 
integral part of a business or financial process. They can be used to perform spe-
cial financial transactions or calculations and do not operate necessarily under the 
same control framework than COAs. However, enduser applications will basically 
have identical characteristics to the SOX relevant core IT applications. 



9.1 Risk Management 333 

Assessing Material Risks 

The purpose of SOX audits is to identify material errors in financial reporting. 
From the IT perspective, this means that financial applications have to be audit-
compliant very early in the solution life cycle (e. g., during development and test-
ing). To assess material risks, fundamental questions must be answered at the 
corporate level: 
• What can be done to ensure that all IT systems are accurately recording mate-

rial transactions? 
• What can be done to ensure that all IT systems remain accurate during their 

life cycle? 
• How can be ensured that only authorized persons are allowed access to the IT 

systems? 
• How can be ensured that, in the event of a system failure, material financial 

data and systems can be recovered? 
As mentioned in previous chapters related to test platforms and Tools, an ITP 

provides the full functionality to implement core test processes and to manage the 
full range of test assets to satisfy all audit and compliance exigences. 

The Basel II Accord 

The Basel II accord provides the most comprehensive set of global regulatory stan-
dards for the alignment of credit, market, and operational risk practices to date. 
Companies in the OECD markets will increasingly standardize risk performance 
measures around the Basel II accord. Reduction of systemic risk was a main reason 
for refining the risk weighted reserve standards during the Basel II discussions. 

Global companies will be encouraged and, in some countries, required to adopt 
more sophisticated methods of risk management, as outlined by the Basel Com-
mittee, such as the “Internal Ratings-Based” approach. 

9.1.6 Implementing Sarbanes-Oxley in TestDirector 

Section 404 from SOX includes three control categories: 
• Company-level controls (or entity controls), including enterprise policies, 

corporate governance, and information sharing 
• Application controls for both financial/ERP systems and specialized applica-

tions, covering such areas as segregation of duty, authorization, validity, and 
accuracy 

• IT general controls, governing program development, program changes, com-
puter operations, and access to programs and data. HP/Mercury offers so-
called SOX Accelerators addressing all three control categories enabling com-
panies to automate and enforce their compliance processes. 



334 9 Test Issues 

Using the COBIT framework as the general controls environment in relation to 
SOX provides governance over thirty-four high level processes, one for each IT 
process, grouped in four domains: 

1.  Planning and organization 
2.  Acquisition and implementation 
3.  Delivery and support 
4.  Monitoring. 

Hewlett-Packard recommends to use the COBIT framework as a guide to start 
implementing SOX-relevant test cases with an appropriate tree structure in the 
TestPlan module. In addition, the TD/QC setting must be enhanced with user-
defined fields to design accurate tests to hold COBIT testing guidelines. Those 
attributes are: 

• The COBIT domain 
• The COBIT process 
• The control frequency 

− how often the control activity is performed to meet the control objective 

• The planned deviation rate 

− the allowance for error 

• The execution type 

− compliance, functional or both 

• The sample size 

− the number of tests to be completed based on the control frequency 

• The tested application 

− the application or system name, if applicable 

• The population 

− a specific and identifiable grouping from which the tester chooses an inci-
dent or sample from which to test. The population must refer to a specific 
set of values, in a selected timeframe. Because tests can be combined into 
various test sets in the TestLab module, you can perform the specific im-
plementation of the various control activities on an application-by-
application basis. (Source: HP/Mercury) 



9.1 Risk Management 335 

9.1.7 The Impact of International Regulations on IT 

All global regulatory standards should heavily impact existing IT solutions and 
procedures. The IT organization must provide a clear status of internal controls at 
any given time, the ability to assess the cause of specific problems, and the ability 
to track testing and remediation. The evolution of technology for compliance 
management as seen by the Gartner Group is shown in Fig. 9.7. 

In a study entitled “Sarbanes-Oxley Act and Impact of Non-compliance” 
Robert E. Kaelin stated: “The SOX impact is more than technical, more than ana-
lytical, more than financial. SOX places a burden of responsibilities on all em-
ployees, not just the accountants. SOX will impact the role of IT in its user’s 
business and data. SOX will change any IT organization whose culture is one 
of containment.” 

To reach IT compliance in this new context requires a mix of new control and 
certification processes, some audit workflow software – like Aris SOX Audit 
Manager – and appropriate SOX consultancy. SOX reporting is described in detail 
under Sarbanes-Oxley Act paragraph 404. 

2001    2002    2003    2004    2005    2006    2007    2008

Sarbanes-Oxley
        Act

SEC 17.4
    a/b

 First SEC   
  actions
under SOX

  U.K. OFR
regulations

Major spending
begins on strategic
compliance & risk
management

Risk & control
standards 
converge Basel II

in effect

Ubiquitous content
& asset data mgt
standards emerge

Integration of compliance
architectures commences

Integrated compliance
& ERM architectures
emerge

Smaller-Caps
companies 1st
SOX deadlineSEC fund

registration

New IASB
standards

Corporate
fraud & ethical
failures

California
senate bill
1386

IT spending dip

Evolution of technology for compliance management

Source: Cutter Consortium 

Fig. 9.7 SOX evolution 

Requirements for Process Management 

The Cutter Consortium published in 2007 a paper from Brian J. Dooley [DO07] 
which resumes the effects of compliance on operations and costs. Among all con-
trol objectives required by new regulations, providing a capability to manage 
processes that occur outside of IT as well a capability to manage specific IT proc-



336 9 Test Issues 

esses is essential. The Cutter Consortium enumerates primary objectives within 
the IT environment including: 
• The creation and maintenance of a complete versioning and audit history of 

software processes, and policy change 
• Development and adherence to a formal development methodology 
• The maintenance of adequate project documentation 
• The maintenance of a secure systems acquisition and change procedure 
• The incorporation of rigorous testing 
• The maintenance of control of movement of applications from development to 

production 
• Automation and ensuring that there is a robust approval process in place for 

new systems 
• Ensuring that all modifications to systems are reviewed, even if changes were 

made for immediate necessity or emergency reasons 
• Enforcement of formal policies and procedures for system security 
• Ensuring that user account security policies are in place and enforced. 

For the most part, any compliance measure needs an audit trail, and it must be 
clear why changes were made and that adequate security was in place. This is the 
controls side of the compliance problem. 

The Overall Impact of Compliance 

Mercury and The Economist Intelligence Unit published, in 2006, a survey and 
white paper [GA07] based on 808 IT executives in the US, Europe, the Middle 
East and Africa (EMEA), and Asia-Pacific. It reveals that a rising number of regu-
lations have turned the challenge of compliance into a major issue for today’s 
global IT executives. For respondent companies with over US $8 billion in turn-
over, compliance ranks as a leading strategic IT priority. Implementing regulatory 
compliance programs was cited as one of the biggest current challenges facing IT 
by over 80% of the largest companies in the Asia-Pacific region, 45% of the larg-
est EMEA companies, and 74% of all US companies. Table 9.1 gives an overview 
of all industries affected by regulations at the present time. 

Each new regulation creates the need for new processes, which, in turn, require 
modifications to IT applications. “When you change policy you change business 
processes. When you change business processes you change IT systems and appli-
cations,” explains Christopher Lochhead, Chief Marketing Officer of Mercury. 

For IT departments, the new reporting requirements are driving a shift toward 
systems that have become far more formalized, process-oriented, and documented 
than before. Creating the organizational structure to manage the demands of com-
plex, multifaceted compliance projects are proving to be a major challenge for 
companies and their IT departments. 



9.1 Risk Management 337 

Table 9.1 Regulations affected industries (Source: Cutter Consortium) 

Regulation Enforcement group Affected industries 

Sarbanes-Oxley (Sarbox or SOX) Federal Communications 
Commission (FCC),  
US government 

Publicly traded  
US companies 

Basel II Basel Committee on  
Banking Supervision 

Banking systems for G10  
countries 

The Gramm-Leach-Bliley  
Act (GLBA), the Financial  
Modernization Act of 1999 

US government Financial services, including 
banks, life insurance, and  
brokers 

Title 21 Code of Federal  
Regulations (21 CFR Part 11):  
Electronic Records; Electronic 
Signatures 

US Federal Drug  
Administration (FDA) 

Pharmaceutical companies 

Federal Information Security  
Management Act (FISMA) 

US government US federal agencies 

Health Insurance Portability  
Accountability Act (HIPAA) 

US government US health care and insurance 
providers and their affiliates 

Europe, Middle East, and Africa 
(EMEA) privacy laws 

European Union Companies conducting  
business in European, Middle 
East, or African countries 

The Conclusion of the Survey 

Compliance challenges can only become more complex as organizations outsource 
and collaborate with more partners in the course of executing a business process or 
a transaction. It is becoming apparent that domestic regulations can drive global 
trends. There is a compliance knock-on effect, as companies in the US or Europe 
demand more visibility into their overseas partners business processes to ensure 
that every step of the supply chain is compliant. 

At the same time, IT technology continues its march toward Web services and 
loosely coupled architectures. This would seem to mark the unravelling of many 
of the IT governance and alignment procedures that management fought so hard to 
institutionalize. 

There is no doubt that regulatory compliance is one of the biggest challenges 
facing global organizations. and in many cases IT will be the main workhorse for 
compliance projects. The stakes are high: firms that fail to govern IT projects in 
order to minimize the cost and risk associated with compliance could face severe 
penalties. Increasingly, an improved regulation of the business will depend on the 
improved regulation of IT projects through sound IT governance practices. 

Figure 9.8 reflects the impact of compliance initiatives on the business. 



338 9 Test Issues 

WHICH OF THE FOLLOWING ISSUES WILL HAVE THE BIGGEST IMPACT
              ON YOUR IT OPERATIONS IN THE NEXT THREE YEARS?
% of respondents that rated each regulation as having a high impact on their IT operations

68

36

46

70

32

52

19

8

32

55

13

39

23

29

42

48

28

35

0 10 20 30 40 50 60 70 80

Sarbanes-Oxley

Basel II

International Accouting
Standards (IAS/IFRS)

Data privacy laws

Anti-money laundering
legislation

Other country-specific
compliance

US Asia Pacific EMEA

Source: Mercury, 2006  

Fig. 9.8 Impact of compliance initiatives on the business 

9.1.8 Recommended Lectures 

• Complying with Sarbanes-Oxley: Addressing the IT issues and risks by 
Mahesh Raisinghani & Bhuvan Unhelkar.Cutter IT Journal Vol. 20, No. 1. 
http://www.cutter.com. 

• Managing non-quantifiable security risks. Bob Blakley, the Burton Group – 
Ref. 14936 - Version 1.0, January 11, 2007. 

• Sarbanes-Oxley: What have companies learned en route to compliance? 
Robert N. Charette, Guest Editor – Cutter IT Journal Vol. 20, No. 1. 

• Surfing the SOX wave thanks to CMMI. Laurent Janssens and Peter Leeson – 
Cutter IT Journal Vol. 20, No. 1. 

• Sarbanes-Oxley Act and impact of non-compliance. Robert E. Kaelin, MTG 
Management Consultants – May 3, 2005. 

• Project due diligence: Independent Verification and Validation. Comprehen-
sive Consulting Solutions Inc. March, 2001. 

• Sarbanes-Oxley and its impact on IT Outsourcing. Chuck Vermillion, CEO, 
OneNeck IT Services. http://www.oneneck.com/ 

• SOX and IT. Network Instruments white paper published in 2006. 
http://www.networkinstruments.com/ 

• Assessing SOX’s impact on IT. Michael Rasmussen and Paul Hamerman – 
Forrester Research Inc. Nov. 2006. 



9.2 IPC Management 339 

9.2 IPC Management 

In Sect. 5.2, we examined two processes related to incidents and problems by 
testing software: 

• Incident tracking and channeling 
• Incident problem management 

Quality problems arising in the production environment or worse, by custom-
ers, are the consequence of deficiencies in the testing processes. Their impact can 
be tremendously damaging for customers and for the reputation of a company. It is 
therefore mandatory to avoid – in any case – the escalation of a problem in the 
productive environment to a crisis. This is the objective of people in charge of the 
IPC process to keep things under control and to master difficult situations before 
they get out of control. 

9.2.1 Detecting Danger Areas in the Project 

As part of the risk mitigation process, the project management must be able to 
diagnostic the presence of “hot spots” in the product: areas where there are unusu-
ally many bugs or long-lasting bugs difficult to resolve. In the preceding chapter 
the risk primary factors were explained and the main risks areas identified. Earlier 
in Sect. 7.2, we saw that anomalies coming from various problem sources can 
develop their own dynamic, generating cascading defects. Using the causal chain 
analysis method, it is relatively easy to detect and anticipate hot spots in a product 
under test. In general, few software components cause the most defects and they 
are the primary candidates for hot spots. Consequently, they are primary targets 
for intensifying testing until defect arrivals reach an acceptable level. 

Figure 9.9 shows an example of hot spots in the test perimeter. 
In this diagram we identify data values, code, data availability, technical proc-

esses, timing, data quality, and documentation as problem sources. You remember 
that documentation is also a test artifact. 

Hot spots can build up if: 

• Logic is based partially on wrong assumptions or outdated specifications 
• Code is produced by multiple providers with poor, outdated, or incomplete 

development standards 
• Data availability is depending on applications delivering across multiple busi-

ness domains or/and with tight time constraints 
• Transactions can be heavily impacted by flaws in technical processes 
• Technical processes can be disturbed by timing problems, parallelization 

issues or infrastructure deficiencies 



340 9 Test Issues 

• Documentation process is not implemented uniformly in the project and as a 
result documentation is not upto-date or missing 

• Data quality suffers from data availability problems due to deficient mainte-
nance processes 

• Other causes can be found 

DO

NEW  BUSINESS REQUIREMENTS (ALL ASPECTS)

T
E
C
H

N
IC

A
L 

R
E
Q

U
IR

EM
EN

T
S
 

O
V
E
R
A
LL

 R
EQ

U
IR

E
M

E
N

T
S

BP LM

CD

DQ

KH

DA

LG

RL

TO

PI

PB

DP

BR

BR

LEGACY WORLD'S EXISTING REQUIREMENTS  (DATA, PROCESSES, TOOLS)

KH

IF

Results

DD

NM

DS

BP

NSP

TPPM TR

DV

O
V
E
R
A
LL

 R
EQ

U
IR

E
M

E
N

T
S

HD

TM

UNATTENDED PROCESSKNOWN REQT. UNKNOWN REQT. UNEXPECTED SIDE-EFFECT/ANOMALY EXPECTED CAUSE-EFFECT PATH  

Fig. 9.9 Diagram showing hot spots in the test perimeter 

If defect aging is not analyzed systematically, it can take a while before aware-
ness is gained that a particular subsystem performs poorly. It is the test manager’s 
job to analyze the defect situation and to report hot spots at the ITC board. The 
radiance of hot spots is generally proportional to the size of the SUT and to the 
number of SWCs interacting in the test perimeter. Information related to SWC 
dependencies and historical information documenting defect aging at the level of 
individual software component should provide a realistic perception of problem 
areas. To eliminate hot spots, an extra development effort (redesign or rework) 
must be taken into account and properly budgeted. An alternative to rework is to 
“debug the code into working,” which means to continue testing until discovering 
a much lower number of defects with a normal profile. 

An another alarm signal is when in regression testing, a disproportionately high 
number of bug fixes or other changes break what used to work. 



9.2 IPC Management 341 

9.2.2 IPC Management 

In a highly complex IT environment technical risks are immanent and an appro-
priate support organization must be implemented to detect and analyze production 
problems, to assign them to solvers and to monitor the implementation of the solu-
tion in urgency. Most of the time workarounds will be implemented (e. g., data and 
code fixes) before the correct solution can be validated in the test environment. 
See the Glossary for further explanation. 

Figure 9.10 depicts the three levels of support necessary to deal with incidents 
and the escalation levels up to crisis management. 

If the major incident persists and gets bigger, problem management takes place. 
A task force will be built after the downtime of a service or software component 
exceeding agreed operational times without interruption of service. IT operations 
for mission-critical applications and systems requiring a 24 x 7 availability 
(24 hours x 7 days) are generally specified with service level agreements (SLAs). 
SLAs are internal contracts between IT (service provider) and business units (cus-
tomers) used in large organizations to cover all technical, organizational, financial, 
and quality aspects of the services delivered. The efficiency and quality of services 
covered by an SLA are measured using key performance indicators (KPIs). 

Time

Impact
level

Inc
ide

nt

Pro
ble

m

Support

1st level
2nd level

3rd level

Critical

Very high

High

Medium

Low

       Crisis
Management

Task force

 

Fig. 9.10 IPC management 

9.2.3 Crisis Management 

If a major problem escalates rapidly, a task force is necessary to bundle the re-
sources and competencies in order to stabilize the situation very quickly and effi-
ciently. It is a temporary group built for the purpose of solving a major impact 



342 9 Test Issues 

issue in a short time period, under one leadership. The task force has the following 
duties: 

• Make diagnostic of the initial situation 
• Detect and analyze problem areas 
• Check the actual and potential impacts of the initial situation: the form the 

loss or damage will take: how that degree of damage or loss is likely to esca-
late, and the time within which business processes should be recovered 

• Propose corrective actions 
• Nominate responsibles as problem solvers in each problem area 
• Coach the responsibles and mesure the progress accomplished 
• Control the implementation of measures 

The task force leader reports to top management and to stake holders. 
 
 



 

343 

Conclusion 

 
Evolving software needs not only new processes and tools. In an interview pub-
lished in Software Development Times, July 15, 2007, Irving Wladawsky-Berger, 
Chairman Emeritus of the IBM Academy of Technology said: “The biggest chal-
lenge today isn’t the software, it’s the people. In a typical business, the number of 
processes that are back-office are far smaller than the number that are more mar-
ket-facing. Most of the market-facing stuff is done with labor. Most of the back-
office stuff has been successfully automated. […] If you are going to apply tech-
nology to a process, processes that are deterministic are much easier. Processes 
involving people are far, far more complicated because people are not predictable. 
We are now in a situation where, not only do we have these incredible complex 
systems we want to go after, but a huge part of those systems are not deterministic, 
not predictable in nature. That means we have to find new approaches for design-
ing technology for these systems. Any business you run in constantly in a shift, so 
the architectures for this very complex systems have to be flexible and adaptable. 
That’s not where we are today.”  In the present IT world we see significant ad-
vances in testing with networked processes, and integrated test platforms enabling 
geographically distributed teams to share their work and to compare results around 
the world across multiple time zones. Pushed by fourth generation test automation 
methodology – like Model-Based Testing – test automation is gaining more and 
more momentum. This permits companies to keep up-to-date large test assets 
evolving as fast as business needs. The good news is that these methodologies, 
processes and tools are not only affordable for multinational corporations, but can 
be efficiently used and adapted to the needs of medium-size and innovative com-
panies as well. As we can see around us every day, good products and solutions 
are built using tools, processes and advanced methods but – more importantly – by 
people having the right mindset to adapt quickly and efficiently. 

 



 

Appendices 



 

347 

Appendix A  
Useful Aids 

A.1 Templates 

A.1.1 Data Profile 

DATA Profile Template 

Requested Created in Test – DBSW  
Component 

Function  
to be tested by date by date 

Testcase-ID 

       
       

Description data profile 

File/Table 
identifier 

Records needed Additional info Remarks 

    
    

Detailed requirements (for input purposes in test database) 

Attributes Value(s) Remarks 

File/Table identifier   
   
   

Expected results (according defined test steps) 

Attributes Value(s) Remarks 

File/Table identifier   
   
   



348 Appendix A Useful Aids 

A.1.2 Project Status 

Project:                                                                                 date:        yy-mm-dd 

Overall project status    

Project Delivery  Resources  Risks  Status mark 
with “G, Y, R”

 

Project number  NNNNNNN Project start  yy-mm-dd Project end        yy-mm-dd 

      

Release Major Milestones  
(Deliverables) 

Original 
end date 

Actual  
end date 

Plan/
act. 

%  
completed 

      
      
      
      
      
      
      
      
      
      
      
      
      

Status definition 
G Project progress is  

compliant to  
planning 

Y Timing, costs a/o deliverables 
are not on track. Management 
attention is required. 

R Timing, costs a/o deliverables are 
not on track. Seriously in danger. 
Management actions are urgently 
required. 

      

Project responsibles 
Stake holders 
Author 

Business                       IT                        

date  yy-mm-dd 

 
 
 
 
 
 
 
 
 
 



Appendix A Useful Aids 349 

 Project:                                                                                   date:       yy-mm-dd 

Project Delivery 

Status – mark with 
“G, Y, R” 

G Y R Reasons/Implications 
for IT 

Reasons/Implications 
for Business 

Measures 
Yes/No (#) 

Assessment plan/actual 

Milestones 

      

Expected milestone  

achievement 

      

Changes in project scope       
Delivery quality       
 

Resources 

Status – mark with 
“G, Y, R” 

G Y R Reasons/Implications 
for IT 

Reasons/Implications 
for Business 

Measures 
Yes/No (#) 

Are planned resources 

available 

Assessment Plan/actual 

(Manpower and Skills) 

      

Soft Factors       
General remark: Yellow (Y) and Red (R) assessments must be documented with Implications and Measures. 

Risks 

Status – mark with 
“G, Y, R” 

G Y R Reasons/Implications 
for IT 

Reasons/Implications 
for Business 

Measures 
Yes/No (#) 

Project Setup       
Business Requirements       
Quality Management       
IT-Architekture, Specs, 

Implementation, Testing 

      

Dependencies (int/ext)       
Infrastructure       
 

Measures to be implemented/Requests/Assessment 

Item # Description Responsible Deadline Plan/Actual Forecast 
      
      

Success of initiated Measures 

Item # Comment Success 
   
      

Commitment 

Project responsibles  Business                              IT                                            
Stake holders                                                       
Author                                                                  date yy-mm-dd  



350 Appendix A Useful Aids 

A.1.3 Release Flash 

SWC – Release flash n.n.n.n 

Purpose of this release 

    

    

  01. Modification in this release 
Solution Domain 

  02. Implemented requests (RQs) 

  03. Corrected production tickets 
Solution 

  04. Fixed defects 

  05. New functions 
SWC Name 

  06. Performance optimization 

   07. Dependencies 

Version: n.n.n.n 

Status: … 

Date: .. / .. / .. 

  08. Standard Software 
 
09. Patches applied 

References: 

………… 

  10. Delivery schedule 

 



Appendix A Useful Aids 351 

A.1.4 Top-Down Process Modelling 

t

-
g

n

t

Projekt-
vorbereitungs-

Prozess
Anfrage

Feedback

Marketing-
Prozess

ERFA-
Mikro-

Prozess

Hier handelt es sich
um eine Erfahrungs-
austauschgruppe

Schulungs-
Prozess

Bei den Schulungen werden
sowohl Idee als auch Methode
und Tool vermittelt.

Gespräche

Ausbildung

Flyer

Konventionen

Schnelleinstieg

DB-/
Benutzerkonzept

Handbücher

Roadshow

What kind
of

processes?

Dritte
Competence 

Center Process
Management

Kunden
des CC

CC-Führung

Anwendung
(Coaching-
Prozess)

Projekt-
vorbereitungs-

Prozess

Prozess-
entwicklung

durchführung

Anfrage

Beratung

Information

Anfrage

Wissens-
aufbereitung-

Prozess

Wissens-
weitergabe

Prozess

Informationen

Wissen

Erfahrung

Wissens-
angebots-
Prozess

Anfrage

Vorgaben
Kennzahlen

UnterstützungsprozesseLeistungsprozesse Führungsprozess

Process landscape

Context diagramm

Process detail matrix

Task diagram

Macro
Design

Micro
Design

Draft
Design

IT Process Landscape Design

- Macro processes
- Work performed
- SLAs

Overall Context Diagram Design

- Macro processes
IPC/ITC/TCM/TDM/TSM

- Detail tasks
- Identification of services

Process Detail Matrix

- Process detail design
- Description of services
- Definition of jobs

Using Processes

- IPC/ITC/TCM/TDM/TSM
- Measurements
- Enhancements
- Information
- Escalation

-

Anfrage

Gespräche

Flye

n

Handbücher

w

Feedback

-

Schnelleinstieg

Benutzerkonzept

Benutzerkonzept

A1

Schulungs-
Bedürfnis

Schulung
durchgeführt

ODER-Verknüpfung

Methoden-
Schulung
notwendig

Tool-
Schulung
notwendig

variante

ABACUS

A2 A3

To whom?

What?

In which
quality?

 

A.1.5 Software Test Documentation (IEEE Standard) 

IEEE Std 829-1998  
IEEE Standard for Software Test Documentation – Description 

Abstract: A set of basic software test documents is described.  
This standard specifies the form and content of individual test documents.  
It does not specify the required set of test documents. 

Keywords: test case specification, test design specification, test incident report, 
test item transmittal report, test log, test plan, test procedure specification, test 
summary report. 

Content  

1.  Scope 
2.  References 
3.  Definitions 
4.  Test plan 
 4.1  Purpose 
 4.2  Outline 



352 Appendix A Useful Aids 

5.  Test design specification 
 5.1  Purpose 
 5.2  Outline 
6.  Test case specification 
 6.1  Purpose 
 6.2  Outline 
7.  Test procedure specification 
 7.1  Purpose 
 7.2  Outline 
8.  Test item transmittal report 
 8.1  Purpose 
 8.2  Outline 
9.  Test log 
 9.1  Purpose 
 9.2  Outline 
10.  Test incident report 
 10.1  Purpose 
 10.2 Outline 
11.  Test summary report 
 11.1 Purpose 
 11.2 Outline 

Annex  A Examples 
  A.1 Corporate payroll system test documentation 

Annex  B Implementation and usage guidelines 
  B.1 Implementation guidelines 
  B.2 Additional test-documentation guidelines 
  B.3 Usage guidelines 

Annex  C Guidelines for compliance with IEEE/EIA 12207.1-1997 
  C.1 Overview 
  C.2 Correlation 
  C.3 Document compliance – Test plan 
  C.4 Document compliance – Test procedure 
  C.5 Document compliance – Test report 



Appendix A Useful Aids 353 

A.2 Checklists 

A.2.1 Cause-Effect Checklist 

If you don’t know how to circumscribe a problem, try to answer these questions: 

• How did this happen? 
• Was the software installation successful before testing? 
• Was the test infrastructure fully available during test activities? 
• Was the software package build successful? 
• Was the right software release installed? 
• Were there related activities producing the same symptom? 
• Were other activities affected by the technical issue, causing difficulty? 
• Were users involved during the appearance of the symptoms? 
• What was the timing distribution of the symptom? 
• Was data used to generate the symptom? 
• Was a measurement made? 
• Was there a reexecution of particular tests? 
• Was there a redesign of new tests, or were specific tests required? 

A.2.2 Code Review Checklist 

General 

• Has the design properly been translated into code? (The result of the proce-
dural design should be available during this review.) 

• Are there misspellings and typos? 
• Has proper use of language conventions been made? 
• Is there compliance with coding standards for language style, comments, and 

module prologue? 
• Are there incorrect or ambiguous comments? 
• Are comments useful or are they simply alibis for poor coding? 
• Are there any comments? 
• Is code self-commented (i.e., clear enough)? 
• Are there overly long sub-routines or methods that could be broken up? 
• Are data types and data declarations proper? 
• Are physical constants correct? 
• Are there redundant operations for which there is no compensating benefit? 
• Has maintainability been considered? 
• Is there any technical documentation? 
• Are technical docs accurate and up-to-date? 



354 Appendix A Useful Aids 

Completeness/Superfluity 

• Are all referenced data defined, computed, or obtained from external sources? 
• Is all defined data used? 
• Are all referenced subprograms defined? 
• Are all defined subprograms used? 
• Are there any data or subprograms defined or referenced which are not used? 

(Extra baggage) 

Efficiency 

• Are all non loop dependent computations kept out of loop? 
• Are all compound expressions defined once? 
• Is data grouped for efficient processing? 
• Is data indexed and referenced for efficient processing? 

Source: http://mozilla.org/projects/seamonkey//rules/code_review.html 

A.2.3 Functionality Checklist 

• Which functionality is: 

− most important to the technical artifact’s purpose? 
− most visible to the user? 

• Which functionality has: 

− the largest safety impact? 
− the largest financial impact on users? 

• Which aspects of the application 

− are most important to the customers? 
− can be tested early in the development cycle? 

• Which parts of the application were developed in rush mode? 
• Which parts of the code are most complex, and thus most subjects to failures? 
• Which parts of the requirements and design are unclear or poorly docu-

mented? 
• Which aspects of similar/related previous projects caused problems? 
• Which aspects of similar/related previous projects had large maintenance 

costs? 
• What are the highest-risk aspects of the application? 
• What kinds of problems would cause the worst publicity? 
• What kinds of problems would cause the most customer service complaints? 
• What kinds of tests could easily cover multiple functionalities? 
• Which tests will have the best high-risk-coverage to time-required ratio? 



Appendix A Useful Aids 355 

A.2.4 How to Create Component Test Cases 

1.  By analyzing the final specification, identify what has to be tested using the 
functional decomposition (FD) method.  

2.  List all functions and sub-functions found.  
3.  Document functional dependencies by using context diagrams. 
4.  Identify test conditions for each function in the list. 
5.  Allocate priority to test conditions by knowing what to test first. 
6.  Design and build logical TCs to exercise the test conditions, starting with 

those which have the highest priority.  
7.  Calculate and capture the expected results in the test suite.  
8.  Document the predicted outcome of the system after having tested the TCs. 
9.  Choose the test scenarios to implement. 
10.  Verify the test data requirements for all test environments. 
11.  Implement the test data in the test suite (with Test Director) 
12.  Add physical elements of the TCs. 
13.  Write/adapt test scripts as required. 
14.  Link the TCs to the corresponding test sets in all test environments. The test 

sets should reflect real-world scenarios. 
15.  Verify the test coverage. 

A.2.5 Investigation of a Technical Problem 

Every technical problem or engineering position can be addressed this way: 

1.  Statement of problem  
A brief, concise problem statement, describing the key issue for which the 
technical position provides recommended solution(s). 

2.  Typical requirements  
A description of requirements already available in other projects or companies 
in a similar problem area.  

3.  Alternatives 
Technologies, products, features or work arounds available today or in the 
near term that might be considered to address the statement of the problem. 

4.  Evaluation criteria  
Factors that managers should consider in choosing among alternatives. 

5.  Future developments  
Such alternatives could impact future solution(s) and should be monitored  
accordingly. 

6.  Statement and basis for position  
This is perhaps the most important part of the technical position: what man-
agement should do and why. 



356 Appendix A Useful Aids 

7.  The relationship to other components  
A brief description of other technical positions in the global or partial solution 
that are affected or influenced by the choice of alternatives made in this tech-
nical position. 

8.  Revision history  
A chronological list of updates to the technical position.  

A.2.6 ODC Triggers Usage 

INSPECTION UNIT TEST SYSTEM TEST 

Backward compatibility Combination path Block test 
Design conformance Coverage HW configuration 
Documentation Interaction Recovery 
Lateral compatibility Sequencing Start/Restart 
Logic flow Simple path Stress load 
Rare situations Variation SW configuration 
Side-effects  Workload 

A.2.7 Process Design Parameters 

PROCESSES 
Process ID Process name 
P1 Change management 
P2 Documentation 
P3 Information channelling 
P4 Incident tracking  
P5 Test planning 
P6 Risk management 
P7 Test artifact management 
P8 Test case management 
P9 Test data management 
P10 Test process management 

 

 
 
 
 
 
 



Appendix A Useful Aids 357 

DELIVERABLES 
Result ID Artifacts 
R1 Production signoff 
R2 Progress measurement 
R3 Packages 
R4 Review findings 
R5 Risk situation 
R6 Test cases  
R7 Test plans 
R8 Test process enhancements 
R9 Test results 
R10 Test reports 
R11 Test sets 
R12 Test specifications 
R13 Test data 
R14 Fixes 

 

PROCESS PARAMETERS 
p1 p2 p3 p4 p5 p6 p7 p8 

                
                
                
                
                
                
                
                
                
                

 

PARAMETER PURPOSE MEANING 

p1 origin who is the emitter/sender/originator? 
p2 object which product/service? 
p3 content what? 
p4 procedure/method (how?) how prepared/processed/changed? 
p5 quantity/volume which quantities/volumes? 
p6 timing (wenn?) delivery date/time? 
p7 frequency/periodicity how frequently? 
p8 receiver/customer who is the customer? 



358 Appendix A Useful Aids 

A.2.8 Requirements Definition 

Business requirements have to be complete and need to reflect a high level of 
overall consistency. This can be achieve by addressing the following aspects: 

Completeness 

• Functional completeness 

− Is the functions domain clearly delimited?  

• Content completeness 

− Are all significant values properly described? 

• Internal completeness 

− Are all cross-references available? 

• External completeness 

− Are all mandatory documents available? 

• Omissions  

− Is something important missing? 

Consistency 

• Terminological consistency 

− Are all terms and abbreviations unique and correctly explained? 

• Internal consistency 

− Are all requirements free of contradictions/incompatibilities? 

• External consistency 

− Are all external objects compatible with the requirements? 

• Circular consistency 

− Do cyclic references exist? 

 
 
 
 



Appendix A Useful Aids 359 

Category Description 

Functional requirements Requirements that define those features of the system that will 
specifically satisfy a consumer need, or with which the  
consumer will directly interact. 

Operational requirements Requirements that define those “behind the scenes” functions  
that are needed to keep the system operational over time. 

Technical requirements Requirements that identify the technical constraints or define  
conditions under which the system must perform. 

Transitional requirements Requirements that define those aspects of the system that must  
be addressed in order for the system to be successfully  
implemented in the production environment, and to relegate 
support responsibilities to the performing organization.   

Source: NYS 

A.2.9 Test Case Conformity Checklist 

• Does each requirement that applies to the specimen have its own TC? 
• Does each design element that applies to the specimen have its own TC? 
• Have all test conditions for all functions been tested within at least one TC? 
• Specifically, have conditions been tested which lead to the abortion or exit ot 

the related task, process, or the whole application? 
• Has a list of common errors been used to write TCs to detect errors that have 

been common in the past? 
• Have all simple boundaries been tested, such as maximum, minimum, and 

off-by-one boundaries? 
• Have compound boundaries been tested, such as combinations of input data 

that might result in computed variable(s) becoming too small or too large? 
• Do TCs check for the wrong kind of data? 
• Do TCs check if data is unavailable at run time? 
• Are representative, middle-of-the-road values tested? 
• Specifically, have maximum and minimum values for configuration parame-

ters been tested? 
• Do TCs check negative or unusual conditions? 



360 Appendix A Useful Aids 

A.2.10 Test Case Review Checklist 

The review process should ensure that the planned test cases are ready to run and 
should guarantee: 

• The availability of all design documents 
• The completeness of the test cases according to business specifications 
• The consistency and cross-referencing of the test cases according to test sce-

narios 
• The clearness and comprehensibility of the test case description 
• The completeness of the test cases (e.g., prerequisites, required test data, post 

test activities). 

The review process covers the following subjects:  

• Documentation 
• A high level check for scope and completeness 
• Dependencies 
• Development and IT analysis & design TCs 

Documentation 

1. Is the IT analysis & design specification available and up-to-date? 
2. Are the business specifications available and up-to-date? 
3. Are the external interface specifications available and up-to-date? 
4.  Are all required TCs fully implemented and ready for review in TD? 

High level check for scope and completeness 

5. Are all affected and dependent requirements identified and complete? 
6. Are the business transactions clearly specified? 
7. Is the target functionality clearly specified? 
8. Is the need for changing or adding new business rules documented? 
9. Is the need for changing or adding new static data documented? 
10. Is the need for changing or adding new reference data documented? 
11. Are external and internal aspects related to modifications documented? 
12. Is the need for changing or adding new meta data documented? 
13. Is the migration scenario documented? 
14. Is the impact to volume and performance documented? 
15. Is the estimated testing effort in accordance to the analysis and development 

efforts? 
16. Are there any open issue(s) not assigned or overdue? 

Dependencies 

17. Are interfaces to any SWC affected in any form by this change? 
18. Are other SWC packages dependent on this change? 
19. Are data model modifications required? 
20. Are workflow changes required? 



Appendix A Useful Aids 361 

21. Are calendar functions and tables affected by this change? 
22. Is a special tool required? 
23. Are common service modules impacted by this change? 
24. Are updates to other related documents required? 

Development and IT analysis & design TCs 

25. Are the TCs linked to the requirements and test sets? 
26. Are error handling and exceptions covered by corresponding test steps? 
27. Is the test coverage in accordance to the requirements? 
28. Is the test case structure reasonable? 
29. Is the end-to-end scope correctly addressed? 
30. Is a role assigned to ensure the readiness of the TC prerequisites? 
31. Is additional IIT test data required? 
32. Is additional AIT test data required? 
33. Are post test activities required and assigned? 

A.2.11 Test Findings 

Do What? 

Categorize Causes of suspected problems 
Confirm Suspects (reproduce it/reproduce symptoms/validate accuracy of scripts used) 
Document all the findings – store them in a knowledge database 
Exploit Results generated by testing test cases 
Identify Suspects (via graphs/charts/user’s observation) 
Publish Lessons learned 
Report visually → make sure the pictures tells the story well 
 verbaly → discuss the symptoms with people involved 
 via demonstration → “seeing is believing” is the best method to convince 

your users and managers. Show the symptoms found and surely identified (no 
room for speculations). 

Resolve Problems discovered 
Sort Events observed 
Test Test cases → adapt them → create new one 
Verify Effect-cause relationship 

 



 

363 

Appendix B  
Sarbanes-Oxley Compliance 

 
SOX was implemented in the wake of corporate reporting scandals, with the goal 
“to protect investors by improving the accuracy and reliability of corporate disclo-
sures made pursuant to the securities laws, and for other purposes.” 

SOX contains 11 titles that describe specific mandates and requirements for fi-
nancial reporting. 

Title I – Public Company Accounting Oversight Board (PCAOB) 

This title establishes independent oversight of external corporate audits. It creates 
and defines a central oversight board tasked with registering public accounting 
firms as compliance auditors, defining the specific processes and procedures for 
compliance, audits, inspecting, and policing conduct and quality control of those 
public accounting firms, and enforcing compliance with the specific mandates of 
SOX. 

Title II – Auditor Independence 

This title establishes practices to ensure that auditors remain independent and 
limits conflicts of interests. It describes the requirements and limits for firms that 
perform SOX-mandated audits. It also describes pre-approval requirements, audi-
tor rotation policy, conflict of interest issues, and auditor reporting requirements. 

Title III – Corporate Responsibility 

This title mandates that senior executives take individual responsibility for the 
accuracy and completeness of corporate financial reports. It defines the interaction 
of external auditors and corporate audit committees, and specifies the responsibil-



364 Appendix B Sarbanes-Oxley Compliance 

ity of corporate officers for the accuracy and validity of corporate financial re-
ports. Enumerates specific limits on the behaviors of corporate officers and de-
scribes specific forfeitures of benefits and civil penalties for non-compliance. 

Title IV – Enhanced Financial Disclosures 

This title describes enhanced reporting requirements for financial transactions, 
including off balance sheet transactions, pro forma figures, and stock transactions 
of corporate officers. 

This title also requires internal controls for assuring the accuracy of financial 
disclosures, and mandates both audits and reports on those controls. It also re-
quires timely reporting of material changes of financial conditions, and specifies 
enhanced reviews by the SEC or its agents of corporate reports. 

Title V – Analyst Conflicts of Interest 

This title establishes requirements to restore investor confidence in securities ana-
lysts and to protect analysts from retribution. It also defines codes of conduct for 
securities analysts and requires disclosure of knowable conflicts of interest. 

Title VI – Commission Resources and Authority 

This title establishes practices to restore investor confidence in securities advisors. 
It also defines the SEC’s authority to censure or bar securities professionals from 
practice, establishes authority to deny the sale of penny stocks by those found in 
breach of SEC standards, and defines conditions under which a person can be 
barred from practicing as a broker, adviser or dealer. 

Title VII – Studies and Reports 

This title defines a series of studies and reports to be issued by government agen-
cies to analyze the regulatory conditions that led to – and allowed – the corporate 
scandals that prompted the passage of SOX. Studies and reports include the effects 
of consolidation of public accounting firms, the role of credit rating agencies in 
the operation of securities markets, securities violations and enforcement actions, 
and whether investment banks assisted Enron, Global Crossing and others to ma-
nipulate earnings and obfuscate true financial conditions. 



Appendix B Sarbanes-Oxley Compliance 365 

Title VIII – Corporate and Criminal Fraud Accountability 

This title is also referred to as the Corporate and Criminal Fraud Act of 2002. It 
describes specific criminal penalties for fraud by manipulation, destruction, or 
alteration of financial records or other interference with investigations. It also 
provides certain protections for whistle-blowers. 

Title IX – White-Collar Crime Penalty Enhancements 

This title is also referred to as the White Collar Crime Penalty Enhancement Act 
of 2002. It increases the criminal penalties associated with white collar crimes and 
conspiracies. It also recommends stronger sentencing guidelines and specifically 
adds failure to certify corporate financial reports as a criminal offense. 

Title X – Corporate Tax Returns 

This title specifies that the CEO should sign corporate tax returns. 

Title XI – Corporate Fraud Accountability 

This title is also referred to as the Corporate Fraud Accountability Act of 2002. It 
specifically identifies corporate fraud and records tampering as criminal offenses 
and ties those offenses to specific penalties. It also revises sentencing guidelines 
and strengthens penalties and enables the SEC to temporarily freeze large or un-
usual payments. 

Sections 302 and 404 

Sections 302 and 404 have greatest direct impact on corporate IT departments. 
Requiring that chief executives ensure that accurate financial data is provided to 
investors, auditors, and the SEC in periodic reports, and that both the data and the 
internal control processes that it provides are validated through external audit. 

Section 302 requires that CEOs and CFOs take personal responsibility for the 
internal controls that feed up into any quarterly or annual financial reports. By 
signing those reports, executive officers specifically attest that: 

• The report is current, accurate, complete and does not mislead or misrepresent 
financial conditions 

• Internal corporate controls have been designed, implemented and maintained to 
ensure accurate information 

• Internal controls are designed to specifically inform corporate officers of cur-
rent financial conditions 



366 Appendix B Sarbanes-Oxley Compliance 

• The internal controls have been evaluated for effectiveness within 90 days prior 
to the report, and the results of such evaluations are included in the report 

• Deficiencies or weaknesses in internal controls that could diminish the accu-
racy or availability of current financial data have been reported to the auditor 
and auditing committee in preparation of a report 

• Recent changes to internal controls to correct those deficiencies are docu-
mented within the report itself. 

Section 404 requires that an internal control report be prepared as part of the 
corporation's annual report. This internal control report is also delivered to audi-
tors who verify the accuracy and effectiveness of those internal controls and make 
recommendations for correcting deficiencies. 

By focusing individual responsibility on both chief executives and their audi-
tors for the accuracy of financial information, SOX essentially forces organiza-
tions to take direct and active control of both their internal business processes and 
their information infrastructure, or risk substantial civil and criminal penalties. 

What does it mean for IT? Reports are only as good as the data on which they 
are based. IT will feel the pressure as senior executives demand stricter account-
ability from every department that rolls data up into corporate reports. 

Since IT systems underpin the activities of nearly every department, IT will re-
ceive increased focus and scrutiny. 

 



 

367 

Appendix C  
Test Platforms and Tool Providers 

In 2005 a well-founded test tool survey that was carried out in over 400 organiza-
tions world-wide ranging from IT companies with no more than 200 employees to 
large multinationals. The results can be used by the professional tester to under-
stand the current situation, and to identify areas where tools could be used benefi-
cially. 

No less than 88% of the companies that participated in the survey indicated that 
they had at least one test tool. The data distinguishes between the areas of techni-
cal applications (e.g., industry, embedded software, and telecommunications) and 
information systems (e.g., banking, insurance and government). The following 
table shows the test tools implementation ratio. (Source: http://www.tt-medal.org/)  

The integration of proprietary or legacy test notations and tools needs to be ad-
dressed. Currently, the effort needed for test development is so high that industry 
is forced to accept poor test coverage with a cost of decreased product quality, and 
the difficulty of defining high quality tests from informal system specifications. 
This requires automatic test case generation technologies, production of tests from 
models, and systematic testing methodologies integrated with testing tools. Fi-
nally, test reuse provides rapid implementation of test solutions for particular need 
with predefined tests. Also, the quality of the test is increased by utilizing already 
developed and executed tests. Test quality can be also ensured by means of test 
validation methodologies that are integrated into automated tools. 

 



368 Appendix C Test Platforms and Tool Providers 

TT-Medal is a European research project on tests and testing methodologies for 
advanced languages. In TT-Medal key roles are assigned to international stan-
dards, the Testing and Test Control Notation (TTCN-3) by ETSI and ITUT, the 
Unified Modelling Language (UML2.0) and its testing profile by the OMG. 

1. Data Test/Performance Solution 
Compuware File-AlD/CS 
Compuware Vantage 
dbMonster 
Embarcadero Performance Center 
Mercury LoadRunner 
Microsoft Visual Studio Team Edition for Software Testers 
2. Functional Test Solution 
Bredax Goldancer  
Cumpuware TestPartner 
Empirix e-Test Suite  
FanfareSVT 
Froglogic Squish   
IBM Rational FunctionalTester  
Infragistics TestAdvantage for Windows Forms 
ITKO LISA  
Mercury Quick Test Professional (QTP) 
Mercury WinRunner  
Microsoft Visual Studio Team Edition for Software Testers 
Newmerix Automate!Test 
Parasoft WebKing  
RadView WebFT 
Seapine QA Wizard 
Shunra Virtual Enterprise 
Solstice Integra Suite 
Worksoft Certify 
3. Static/Dynamic Code Analysis Solution 
Agitar Agitator 8c Management Dashboard 
Compuware DevPartner Java Edition 
Compuware DevPartner Studio 
Eclipse Test & Performance Tools Platform 
Enerjy CQ2 
IBM Rational Purify/Plus 
Instantiations CodePro Analytix 
Klocwork K7  
McCabe IQ 
Microsoft Visual Studio Team Edition for Software Testers  
Parasoft Jtest 
SPl Dynamics DevInspect 
Sun dbx 



Appendix C Test Platforms and Tool Providers 369 

4. Test/QA management 
Agitar Agitator & Management Dashboard   
Borland SilkCentral Test Manager 
Compuware Application Reliability Solution (CARS) 
Compuware QADirector  
Empirix e-Test TestSuite 
McCabe IQ   
Mercury TestDirector for Quality Center  
Microsoft Visual Studio Team Edition for Software Testers   
Pragmatic Defect Tracker  
Seapine QA Wizard 
Stelligent Convergence 
TechExcel DevTest   
TRAQ QATrac Professional 
VMWare Workstation 
5. Defect/issue management 
Borland StarTeam 
Mercury TestDirector for Quality Center  
Microsoft Visual Studio Team Edition for Software Testers 
MKS Integrity for Process & Workflow  
Mozilla Organization's Bugzilla  
Pragmatic Software Planner 
Seapine TestTrack Pro  
TechExcel DevTrack 
VersionOne V1 Agile Enterprise 
6. Load/performance test solution 
AMD CodeAnalyst   
Apache JMeter   
Borland SilkPerformer 
Compuware QALoad   
Compuware Vantage 
Empirix e-Test Suite 
IBM Rational Performance Test 
Intel Vtune Performance Analyzer 
iTK0 LlSA  
Intel Thread Checker 
Mercury LoadRunner 
Microsoft Visual Studio Team Edition for Software Testers 
Parasoft WebKing 
RadView WebLoad 
Shunra Virtual Enterprise 



370 Appendix C Test Platforms and Tool Providers 

Sun NetBeans Profiler 
Sun Performance Analyzer 
ThinGenius TLoad 
7. SOA/Web services test solution 
Empirix e-Test Suite  
Infragistics TestAdvantage for Windows Forms  
iTK0 LISA  
Mercury QuickTest Professional 
Mindreef  SOAPscope Server  
Parasoft S0Atest   
Solstice Integra Suite   
Watchfire AppScan 
8. Security test solution 
Beyond Security beSTORM 
Cenzic Hailstorm 
Compuware DevPartner Security Checker 
Microsoft Visual Studio Team Edition for Software Testers 
Ounce Labs Ounce 
SPI Dynamics QAInspect   
Watchfire AppScan 
9. Test automation solution 
Borland SilkCentral Test Manager   
Bredex GUldancer   
Compuware Application Reliability Solution (CARS) 
Compuware QACenter Enterprise Edition  
FanfareSVT 
Instantiations WIndowTester  
Infragistics TestAdvantage for Windows Forms 
Mercury Quick Test Professional 
Mercury WinRunner 
Newmerix Automate!Test 
Seapine QA Wizard   
Solstice Integra Suite 
10. Embedded/mobile test and performance 
Coverity 
FanfareSVT 
IBM Rational TestRealTime 
Mercury Quick Test Professional 
PolySpace  
Reactive Systems’ Reactis 



Appendix C Test Platforms and Tool Providers 371 

11. SCM/build management solution 
Apache Ant  
Catalyst Openmake 
Electric Cloud ElectricAccelerator 
IBM Rational BuildForge  
Microsoft Visual Studio Team Edition for Software Testers 
MKS Source 
Seapine Surround SCM 
Select Component Manager 
Vsoft FinalBuilder 
12. .NET Test and Performance Solution 
BMC AppSight Solution   
Compuware DevPartner Studio  
Compuware TestPartner  
Compuware Vantage  
Empirix e-Test Suite 
Infragistics TestAdvantage for Windows Forms  
Mercury Diagnostics   
Mercury LoadRunner  
Mercury QuickTest Professional 
Microsoft Visual Studio Team Edition for Software Testers 
NUnit 
RadView WebLoad Analyzer 
13. Java test suite performance solution 
Agitar Agitator & Management Dashboard 
Apache JMeter 
Bredex GUIdancer 
Compuware DevPartner Java Edition  
Compuware OptimalJ 
Compuware TestPartner 
Compuware Vantage 
Eclipse Test et Performance Tools Platform 
Enerjy CQ2 
iTKO LISA 
JUnit 
Mercury Diagnostics 
Mercury LoadRunner  
Mercury Quick Test Professional 
Panasoft Jtest 



372 Appendix C Test Platforms and Tool Providers 

14. Integrated test suite 
Mercury Quality Center 
Compuware Application Reliability Solution (CARS) 
Compuware QA Center Enterprise Edition 
Microsoft Visual Studio Team Edition for Software Testers 
Newmerix Automate!Test 
Solstice Integra Suite 
VMware VMTN Subscription 
15. Commercial ALM solution under $500/seat 
Pragmatic Software Planner 
Rally Software’s Rally 
VersionOne V1 Agile Enterprise 
16. Commercial Test/QA solution under $500/seat 
Intel Vtune Performance Analyzer 
Pragmatic Defect Tracker  
TRAQ QATrac Professional 
17. Free test/QA solution 
JUnit 
Apache Ant 
Eclipse Test & Performance Tools Platform 
Mozilla Organization’s Bugzilla 
NUnit  
Sun dbx 
18. New solutions  
Agitar Agitator & Management Dashboard  
Electric Cloud ElectricAccelerator 
Energy CQ2  
FanfareSVT 
Froglogic Squish 
Mindreef SOAPscope Server 
Ounce Labs’ Ounce  
Solstice Integra Suite 
ThinGenius TLoad   
VersionOne V1 Agile Enterprise  

Source: STP 
 



 

373 

Appendix D  
Acronyms 

 
.NET dot NET (Microsoft Platform) 
3VL 3 Valued Logic 
AI Abstract Interpretation 
AIT Application Integration Test 
AMDD Agile Model-Driven Development 
APS Application Platform Suites 
BDD Binary Decision Diagrams 
BMC Bounded Model Checking 
BP Business Process 
BPEL Business Process Execution Language 
BPs Business Processes 
BR Business Requirement 
BRE Business Rule Engine 
BRM Business Rules Management 
BRs Business Requirements 
BSO Business Case Sign-Off 
BUT Basis Unit Test 
BUT Business Testing 
C&E Cause and Effect 
CASE Computer Aided Software Engineering 
CASRE Computer Aided Software Reliability Estimation 
CAST Computer-Aided Software Testing 
CAV Computer-Aided Verification 
CBL Central Business Logic 
CBSE Component Based Software Engineering 
CCA Causal Chain Analysis 
CCs Causal Chains 
CD Code 
CDR Critical Design Review 
CE Cause-Effect 



374 Appendix D Acronyms 

CICS Customer Information Control System 
CIT Component Integration Test 
CLC Component Life Cycle 
CMM Capability Maturity Model®  
CMMI Capability Maturity Model® Integration 
COA Core Applications 
COM Component Object Model 
CORBA Common Object Request Broker Architecture 
COTS Commercial Off The Shelf Application 
CPM Control Processing Module 
CT Component Test 
CTL Computation Tree Logic 
CTM Content Management 
CTM Classification-Tree Method 
CTP Critical Technical Parameters 
CTP Compliance Testing Process 
DA Data Availability 
DB Database 
DBMS Database Management System 
DD Data Delivery 
DEV Development 
DP Data Processing 
DPM Design Precedence Matrix 
DQ Data Quality 
DS Data Structure 
DSM Dependency Structure Matrix/Design Structure Matrix 
DT Development Testing  
DUA Device User Agent 
DV Data Value 
DWH Data Warehouse 
EAI Enterprise Application Integration  
EAS Enterprise Application Server 
EDA Event-driven Architecture 
EIS Enterprise Information Systems 
EJB Enterprise Java Bean 
EMC Explicit Model Checking 
ERR Extended Random Regression 
ERRT Extended Random Regression Testing 
ERS Event Recorder Service 
ESB Enterprise Service Bus 
ESC Extended Static Checker  
EUA End-User Applications 
EVA Earned Value Analysis 
EVT Evolutionary Safety Testing 
FFA Force Field Analysis 



Appendix D Acronyms 375 

F&F Front & Factory  
FD Functional Dependency 
FEMSYS Formal Design of Safety Critical Embedded Systems 
FMCAD Formal Methods in Computer-Aided Design 
FME Formal Methods Europe 
FMEA Failure Mode Effect Analysis 
GAT General Acceptance Test 
GUI Graphical User Interface 
HD Handling 
HTTP Hyper Text Transfer Protocol 
HW Hardware 
IDE Integrated Development Environment   
IEC International Electrotechnical Commission  
IER Independent Expert Review 
IF Infrastructure 
IHD In House Development 
IIT IT Integration Test (synonym: MIT) 
IP  Internet Protocol 
IPM Incident and Problem Management 
IPPD Integrated Product and Process Development 
IS Information System 
ISECOM Institute for SECurity and Open Methodologies 
ISM Information Security Management   
ISM3 Information Security Management Maturity Model 
ISO International Standards Organization  
IT Information Technology 
ITC Incident Tracking and Channeling 
ITGC Information Technology General Control 
ITP Integrated Test Platform 
ITT IT Testing 
J2EE Java 2 Enterprise Edition 
J2ME Java 2 Micro Edition 
J2SE Java 2 Standard Edition 
JAX-WS Java API for XML Web Services 
JCS Job Control System 
JD Join Dependency 
JITC Joint Interoperability Test Command 
JML Java Modeling Language 
KDT Keyword-Driven Testing 
KH Know How 
KPA Key Process Area 
KPP Key performance parameters 
LAN Local Area Network 
LDM Logical Data Model 
LDS Logical Data Structure 



376 Appendix D Acronyms 

LG Logic 
LM Logical Model 
LR Legacy Requirements 
LST Long Sequence Testing 
LTL Linear Temporal Logic 
M&S Modeling & Simulation 
MAIS Major Automated Information Systems 
MAN Metropolitan-Area Network 
MB Megabyte 
MB3T Model-Based Black-Box Testing 
MBD Model-Based Development 
MBIT Model-Based Integration and Testing 
MBT Model-Based Testing 
MC Model Checking 
MDM Master Data Management 
METS   Minimal Essential Test Strategy 
MIT Module Integration Test 
MOE Measure of effectiveness 
MOP Measure of performance 
MSC Message Sequence Chart 
MTOM Message Transmission Optimization Mechanism 
MVD Multi-Valued Dependencies 
NCAA Net Work Centric Application Architecture 
NM Norms   
NSP New Strategic Platform 
OCL Object Constraint Language 
ODC Orthogonal Defect Classification 
OLAP Online Analytical Processing 
OLTP Online Transaction Processing 
ORB Object Request Broker 
OS Operating System 
OTRR Operational Test Readiness Reviews 
OUG Oracle User Group 
PAN Personal Area Network 
PB Package Build 
PC Personal Computer 
PDM Physical Data Model 
PDR Product Design Review 
PI Package Installation 
PLC Product Life Cycle 
PM Physical Model 
POR Partial Order Reduction 
PS Problem Source 
PSM Practical Software Measurement/Problem Solving Matrix 
PSO Production Sign-Off 



Appendix D Acronyms 377 

PSP Personal Software Process 
PTE Performance Test 
QA Quality Assurance 
QC Quality Center™ from MERCURY/HP  
QTP Quick Test Professional™ from MERCURY/HP 
RAC Real Applications Clusters (Oracle) 
RAD Rapid Application Development 
RDB  Relational Database 
RDBMS Relational Database Management System  
RDS Rules-Driven Systems  
RL Rules 
RPC Remote Procedure Call 
RQM Requirement Management 
RSO Requirement Sign-Off 
SA Static Analyzator 
SAM Solution Asset Management 
SAN Storage Area Network 
SAP Systeme, Anwendungen, Produkte 
SAT Satisfiability Checking 
SBA Service Broker Architecture 
SCA Software Communication Architecture 
SCCM Software Change and Configuration Management 
SCE Software Capability Evaluation 
SCR Software Cost Reduction 
SD Solution Domain 
SDL Specification and Description Language  
SDR System Design Review 
SIS Software-Intensive System 
SIT System Integration Test 
SLA Service Level Agreement 
SLC Solution Life Cycle  
SMC Symbolic Model Checking 
SMERFS Statistical Modeling and Estimation of Reliability Functions for 

Systems 
SMP Symmetric MultiProcessing  
SMT Simultaneous Multithreading 
SMV Symbolic Model Verifier 
SOA Service Oriented Architecture 
SOAP Simple Object Access Protocol 
SOBA Service Oriented Business Application 
SOX Sarbanes-Oxley Act of 2002 (public company accounting reform) 
SP Strategic Platform 
SPOF Single-Point-Of-Failure 
SQL Structured Query Language 
SRM Software Reliability Modeling 



378 Appendix D Acronyms 

SRS Software Requirements Specification 
SSC Standard Software Customization 
SSD Standard Software Development 
SSL Secure Socket Layer 
SSO Specification Sign-Off 
ST Standards 
STB Safety Test Builder 
STE System Test 
STP Straight Through Processing 
SUT System Under Test 
SW Software 
SWC Software Component 
SWCs Software Components 
T & E Test and Evaluation 
TA Test Automation  
TACAS Tools and Algorithms for the Construction and Analysis of Systems 
TAF Test Automation Framework 
TB Terabyte 
TC Test Case 
TCM Test Case Management 
TCs Test Cases 
TD Test Data 
TD Test Director 
TD/QC Test Director™ for Quality Center 
TDD Test-Driven Development 
TDG Test Data Generation 
TDM Test Data Management 
TDP Test Data Platform  
TDR Test Data Requirements 
TDS Table-Driven System 
TDT Test-Driven Testing 
TEMP Test and Evaluation Master Plan 
TGT Test Generator Tool 
TM Time Management 
TN Testing Network 
TO Tools 
TP Technical Process 
TPM Test Platform Management 
TPN Test Process Network 
TPR Test Progress Reporting 
TPs Technical Processes 
TPT Time Partition Testing 
TR Technical Resource 
TRM Test Run Management 
TRX Transaction 



Appendix D Acronyms 379 

TS Test Set 
TSM Test Suite Management 
TSP Team Software Process 
TTCN Testing and Test Control Notation 
TTS Transportable Table Space 
TVC Testing Value Chain 
UDDI Universal Description Discovery & Integration 
U.S. SEC US Securities and Exchange Commission 
UAT User Acceptance Test 
URI Uniform Resource Identifier 
URL Uniform Resource Locator 
USI User Specific Interface 
UT Unit Test 
V&V Validation and Verification 
W2K Windows 2000 
WAM Web Access Management 
WF Workflow 
WIPT Working-level Integrated Product Team 
WLAN Wireless Local Area Network 
xCS Generic Control System (©HEP Digital Creations) 
XML Extensible Markup Language 
XP Windows XP 
z/OS Operating System from IBM™ mainframe series 

 



 

381 

Glossary 

2-way testing see pairwise testing 

3VL 3 Valued Logic. Logic utilizing 3 types of responses: true, false or un-
known. 

acceptance test Formal testing conducted to enable a user, customer, or other 
authorized entity to determine whether to accept a system or component. [IEEE] 
See beta test. 

access control Access control is the ability to restrict access by an entity (person 
or process) to objects based upon rules (the authorization information) online, that 
is at the time the object is accessed. To implement proper access control, the sys-
tem that is enforcing access control has to interact with the authorization informa-
tion store to determine if the entity attempting to access the resource is allowed to 
perform the required action. 

accreditation The official certification that a model, simulation, or federation of 
models and simulations and its associated data is acceptable for use for a specific 
purpose. 

ad hoc test Testing carried out using no recognized test case design technique. 

agent A computer program that: 

• can accept tasks 
• can figure out which actions to execute in order to perform these tasks 
• can actually perform these actions without supervision 
• is capable of performing a set of tasks and providing a set of services. 

aggregation An aggregation in SOA is a cluster of services bound together to 
create a solution. 



382 Glossary 

alpha test The first phase of testing in a software development process which is 
typically done in-house. It includes unit testing, component testing, and system 
testing.  

AHP The analytic hierarchy process is a powerful and flexible decision making 
process to help people set priorities and make the best decision when both qualita-
tive and quantitative aspects of a decision need to be considered. By reducing 
complex decisions to a series of one-on-one comparisons, and then synthesizing 
the results, AHP not only helps decision makers arrive at the best decision, but 
also provides a clear rationale that it is the best. 

arc test see branch test  

application An application is one of potentially several applications that are 
hosted by a platform. The purpose of a platform is to host applications. A specific 
application specification includes containment bounds, physical resources, time 
resources, and functionality. 

assertion An assertion is a statement (logical predicate) about the value of the 
program variables, which may or may not be valid at some point during the pro-
gram computation. 

attribute An attribute is a description of a data element that refers to a entity. 

auditing  

1. An examination of the records and reports of an enterprise by specialists other 
than those responsible for their preparation.  

2. A special kind of logging which shows who has done what and when on the 
system. 

autonomy Autonomy is the ability of an agent to operate without supervision. 

availability A system is highly available when it reaches nearly 100% of the 
expected operation time. The availability rate is commonly expressed in %, some-
times also in number of nines (4 nines means 99.99%, 6 nines means 99.9999%. 

backward compatibility Compatible with earlier models or versions of the same 
product. A new version of a program is said to be backward compatible if it can 
use files and data created with an older version of the same program. A computer 
is said to be backward compatible if it can run the same software as the previous 
model of the computer. 

base data The original source data on which a business is based. 

basic block A sequence of one or more consecutive, executable statements con-
taining no branches. 

basis test set A set of test cases derived from the code logic which ensure that 
n% branch coverage is achieved. 

bebugging see error seeding [Abbott] 



Glossary 383 

behavior The combination of input values and preconditions and the required 
response for a function of a system. The full specification of a function would 
normally comprise one or more behaviors. 

best practice A documented practice aimed at lowering an identified risk in a 
system acquisition. Methodologies and tools that consistently yield productivity 
and quality results when implemented in a minimum of 10 organizations and 50 
software projects, and is asserted by those who use it to have been beneficial in all 
or most of the projects. 

beta test The second phase of software testing in which a sampling of the in-
tended audience tries the product out. This term derives from early 1960s termi-
nology for product cycle checkpoints, first used at IBM, but later standard 
throughout the industry. Operational testing at a site not otherwise involved with 
the software developers. 

big-bang test Integration testing where no incremental testing takes place prior 
to all the system’s components being combined to form the system. 

binary gate A checkpoint in project management with only two possible states, 
done or not done, complete or incomplete, pass or fail – in contrast to the concept 
of “percent completion.” It is the basis for reporting status on larger aggregate 
tasks. 

black box test A test conducted on a complete, integrated system to evaluate the 
system’s compliance with its specified requirement. A black box test ignores the 
internal mechanism of a system or component and focuses solely on the outputs 
generated in response to select inputs and execution conditions. See functional test 
case design 

bottom-up testing An approach to integration testing where the lowest level 
components are tested first, then used to facilitate the testing of higher level com-
ponents. The process is repeated until the component at the top of the hierarchy  
is tested. 

boundary value An input value or output value which is on the boundary  
between equivalence classes, or an incremental distance on either side of the 
boundary. 

boundary value analysis A test case design technique for a component in which 
test cases are designed which include representatives of boundary values. 

boundary value coverage The percentage of boundary values of the compo-
nent’s equivalence classes which have been exercised by a test case suite. 

boundary value test see boundary value analysis 

boundary value An input value or output value which is on the boundary  
between equivalence classes, or an incremental distance on either side of the 
boundary. 



384 Glossary 

branch A conditional transfer of control from any statement to any other state-
ment in a component, or an unconditional transfer of control from any statement to 
any other statement in the component except the next statement, or when a com-
ponent has more than one entry point, a transfer of control to an entry point of the 
component. 

branch condition combination coverage The percentage of combinations of all 
branch condition outcomes in every decision that have been exercised by a test 
case suite. 

branch condition combination testing A test case design technique in which 
test cases are designed to execute combinations of branch condition outcomes. 

branch condition coverage The percentage of branch condition outcomes in 
every decision that have been exercised by a test case suite. 

branch condition testing A test case design technique in which test cases are 
designed to execute branch condition outcomes. 

branch condition see decision condition 

branch coverage The percentage of branches that have been exercised by a test 
case suite. 

branch outcome see decision outcome  

branch point see decision 

branch test A test case design technique for a component in which test cases are 
designed to execute branch outcomes. 

bug see fault, failure 

bug seeding see error seeding 

business case The business case addresses, at a high level, the business need(s) 
that the project seeks to meet. It includes the reasons for the project, the expected 
business benefits, the options considered (with reasons for rejecting or carrying 
forward each option), the expected costs of the project, a GAP analysis and the 
expected risks. The business case is owned by the stakeholders. The business case 
is a document which provides justification for the commitment of resources to a 
project or program. 

business function A characterized business task to be done. A business function 
can be decomposed in one or more business functions. 

business objectives The mission or goals of an enterprise described at the next 
level of detail. 

business rule A statement that defines or constrains some aspect of the business. 
It is intended to assert the business structure or control or influence the behavior of 
the business. 



Glossary 385 

business service A business service is a defined business operation exposed by 
at least one business system. A business service is a subset of an interface fulfill-
ing precise criteria. 

business solution A specific IT service enabling the user to perform a defined set 
of business functions.  

business system An entity providing information and offering business services 
to the clients of this business system and to other business systems. A business 
system groups and integrates a set of business functions to solve a set of specific 
requirements. 

capture/playback tool A test tool that records test input as it is sent to the soft-
ware under test. The input cases stored can then be used to reproduce the test at 
a later time. 

capture/replay tool see capture/playback tool 

cause-effect graph A graphical representation of inputs or stimuli (causes) with 
their associated outputs (effects), which can be used to design test cases. See Ishi-
kawa diagram 

cause-effect graphing A test case design technique in which test cases are de-
signed by consideration of cause-effect graphs. See Ishikawa diagram 

certification 

1. The process of confirming that a system or component complies with its 
specified requirements and is acceptable for operational use. [IEEE] 

2. The process by which systems with predefined capabilities are evaluated for 
the satisfaction of requirements for interoperability, compatibility, and inte-
gration. [DoD]  

chain A chain is a collection of jobs organized in steps. 

class testing Class testing is testing that ensures a class and its instances (objects) 
perform as defined. 

cleanroom A theory-based team-oriented process for development and certifica-
tion. 

clear box test (Also known as structural testing). A test that takes into account 
the internal mechanism of a system or component. Types include branch testing, 
path testing, and statement testing. 

CMMI Capability maturity model integration is a process improvement ap-
proach that provides organizations with the essential elements of effective proc-
esses. It can be used to guide process improvement across a project, a division, or 
an entire organization. [Carnegie Mellon SIE]  



386 Glossary 

code-based test Designing tests based on objectives derived from the implemen-
tation (e.g., tests that execute specific control flow paths or use specific data 
items). 

code coverage An analysis method that determines which parts of the software 
have been executed (covered) by the test case suite and which parts have not been 
executed and therefore may require additional attention. 

compatibility test Testing whether the system is compatible with other systems 
with which it should communicate. backward and lateral compatibility 

complete path test see exhaustive testing 

compliance Compliance to standards and regulations may be mandated at differ-
ent levels of the performing organization, or managed and tracked by the project 
team directly. Standards, norms and regulations are generally described in the 
project plans so that their effects are known or largely predictable. In the reverse 
case, uncertainties and risks are injected in the projet and they must be managed 
accordingly. See risk management 

compliance testing Compliance testing is that part of an internal control review 
which assesses whether actual practice follows, or complies with, prescribed poli-
cies and procedures. 

component A minimal software item for which a separate specification is avail-
able. A separately compilable portion of the program. 

component specification A description of a component’s function in terms of its 
output values for specified input values under specified preconditions. 

component test 

1. The testing of individual software components. [IEEE]  
2. Component testing is the act of subdividing an object-oriented software sys-

tem into units of particular granularity, applying stimuli to the component’s 
interface and validating the correct responses to those stimuli, in the form of 
either a state change or reaction in the component, or elsewhere in the system.  

composite events Composite events are built up from events occurring at differ-
ent times using operators such as disjunction, conjunction, and sequential compo-
sition. 

computation data use A data use not in a condition, called C-use.  

concept A concept is an abstraction or a notion inferred or derived from specific 
instances within a problem domain. 

condition A Boolean expression containing no Boolean operators.   

condition coverage see branch condition coverage 

condition outcome The evaluation of a condition to TRUE or FALSE. 



Glossary 387 

configuration identification An element of configuration management, consist-
ing of selecting the configuration items for a product, assigning unique identifiers 
to them, and recording their functional and physical characteristics in technical 
documentation. See configuration management/configuration item/product 

configuration item An aggregation of work products that is designated for con-
figuration management and treated as a single entity in the configuration manage-
ment process. configuration management 

configuration management 

1. A management process for establishing and maintaining consistency of a 
product’s performance, functional, and physical attributes with its require-
ments, design and operational information throughout its life. 

2. Configuration management covers the processes used to control, coordinate, 
and track code, requirements, documentation, problems, change requests, de-
signs, tools/compilers/libraries/patches, changes made to them, and who 
makes the changes. 

configuration unit The lowest-level configuration entity of a configuration item 
or component that should be placed into, and retrieved from, a configuration man-
agement library system. configuration item 

conformance criterion Some method of judging whether or not the component’s 
action on a particular specified input value conforms to the specification. 

conformance testing The process of testing that an implementation conforms to 
the specification on which it is based. 

constraint A restriction or limitation of one or more values to be confined within 
prescribed bounds. 

continuous integration A set of unit tests at every check-in of code to continu-
ously integrate every small change and catch any integration issues immediately – 
and then repair them. 

control flow An abstract representation of all possible sequences of events in a 
program’s execution. 

control flow graph The diagrammatic representation of the possible alternative 
control flow paths through a component. 

control flow path see path 

conversion test Testing of programs or procedures used to convert data from 
existing systems for use in replacement systems. 

correctness The degree to which software conforms to its specification. 

coupling-based test Coupling-based testing requires that the program execute 
from definitions of actual parameters through calls to uses of the formal parame-
ters.  



388 Glossary 

coupling path Coupling path is a sequence of statements that, when executed, 
proceed from a definition of a variable, through a call to a method or a return from 
a method, to a use of that variable. 

coverage 

1. The degree, expressed as a percentage, to which a specified coverage item has 
been exercised by a test case suite. 

2. The extent to which a criterion is satisfied. 

coverage item An entity or property used as a basis for testing. 

C-use see computation data use 

customer The party (individual, project, or organization) responsible for accept-
ing the product or for authorizing payment. The customer is external to the project, 
but not necessarily external to the organization. The customer may be a higher-
level project. 

data center A physical structure, usually a standalone building, that is designed 
to house a multiplicity of computers. Data centers can be private, serving a single 
company or, more commonly, a public “utility” serving a variety of companies. 

data definition An executable statement where a variable is assigned a value. 

data definition C-use coverage The percentage of data definition C-use pairs in 
a component that are exercised by a test case suite. 

data definition C-use pair A data definition and computation data use, where 
the data use uses the value defined in the data definition. 

data definition P-use coverage The percentage of data definition P-use pairs in 
a component that are exercised by a test case suite. 

data definition P-use pair A data definition and predicate data use, where the 
data use uses the value defined in the data definition. 

data definition-use coverage The percentage of data definition-use pairs in a 
component that are exercised by a test case suite. 

data definition-use pair A data definition and data use, where the data use uses 
the value defined in the data definition. 

data definition-use test A test case design technique for a component in which 
test cases are designed to execute data definition-use pairs. 

data flow coverage Test coverage measure based on variable usage within the 
code. Examples are data definition-use coverage, data definition P-use coverage, 
data definition C-use coverage, etc. 

data flow testing Testing in which test cases are designed based on variable 
usage within the code. 



Glossary 389 

data management Principles, processes, and systems for the sharing and man-
agement of data. 

data use An executable statement where the value of a variable is accessed.  

debugging The process of finding and removing the causes of failures in soft-
ware. 

decision A program point at which the control flow has two or more alternative 
routes. 

decision condition A condition within a decision. 

decision coverage The percentage of decision outcomes that have been exercised 
by a test case suite. 

decision making Decision making includes analyzing the problem to identify 
viable solutions, and then making a choice from among them. Decisions can be 
made or obtained from entities involved in the project (including stakeholders). 
Once made, decisions must be implemented. Decisions taken at a given point in 
time and in a particular context may appear either as “right” or as the best com-
promise. Decisions must be clearly communicated and without delay. 

decision outcome The result of a decision (which therefore determines the con-
trol flow alternative taken). 

decision table A table used to show sets of conditions and the actions resulting 
from them. 

defect density Number of defects per unit of product size (e.g., problem reports 
per 1000 lines of code (Klocs)) 

defined process A managed process that is tailored from the organization’s set 
of standard processes according to the organization’s tailoring guidelines, has a 
maintained process description, and contributes work products, measures, and 
other process improvement information to the organization’s process assets. 

derived requirements Requirements that are not explicitly stated in the cus-
tomer requirements, but are inferred:  

1. from contextual requirements (e.g., applicable standards, laws, policies, 
common practices, and management  decisions), or  

2. from requirements needed to specify a product component. Derived require-
ments can also arise during analysis and design of components of the product 
or system. 

 See product requirements/programmatic requirements. 

design-based test Designing tests based on objectives derived from the architec-
tural or detail design of the software (e.g., tests that execute specific invocation 
paths or probe the worst case behavior of algorithms). 



390 Glossary 

design review A formal, documented, comprehensive, and systematic examina-
tion of a design to evaluate the design requirements and the capability of the de-
sign to meet these requirements, and to identify problems and propose solutions. 

desk checking The testing of software by the manual simulation of its execution.  

detectable event-type An event-type defined in terms of its detection condition. 
See detectable events 

detectable events Events classified in 3 main categories: 

1. temporal events, which pick elements of the flow of time itself, either abso-
lutely (e.g., calendar dates, clock times) or relatively (in terms of some refer-
ence event). 

2. explicit events, which include any events detected by other application pro-
grams and input as primitive events into the DBMS. 

3. database events, corresponding to database operations. 

development context The development context specifies whether a methodology 
is useful in creating new software, reengineering or reverse engineering existing 
software, prototyping or designing for or with reuse components. 

development process A development process is a series of actions, changes, and 
functions that, when performed, result in a working computerized system. 

developmental configuration In configuration management, the evolving prod-
uct and associated documentation that define the evolving configuration of a con-
figuration item during development. Note: The developmental configuration is 
under the developer’s control, and therefore is not called a baseline. See configu-
ration item/configuration management 

dirty test see negative test [Belzer] 

DMZ Short for demilitarized zone. A computer or small sub-network that sits 
between a trusted internal network, such as a corporate private LAN, and an un-
trusted external network, such as the Internet. 

documentation test Testing concerned with the accuracy of documentation.  

domain The set from which values are selected.  

domain test see equivalence partition test 

dynamic analysis The process of evaluating a system or component based upon 
its behavior during execution. [IEEE] 

effectiveness analysis An analytical approach to assess how well a design solu-
tion will perform or operate given anticipated environments, utilization rates, and 
operational scenarios.  



Glossary 391 

emergence From the mutual interaction of the parts of a system there arise char-
acteristics which cannot be found as characteristic of any of the individual parts. 
This is an emergence effect. 

emulator A device, computer program, or system that accepts the same inputs 
and produces the same outputs as a given system. [IEEE,DOB] 

ERM Enterprise risk management is a process, affected by an entity’s board of 
directors, management and other personnel applied in a strategy setting and across 
the enterprise, designed to identify potential events that may affect the entity, and 
manage risk to be within its risk appetite, to provide reasonable assurance regard-
ing the achievement of entity objectives. 

entity An entity is a logical or physical object about which there is a requirement 
to store data.  

entry point The first executable statement within a component. 

entry criteria States of being that must be present before an effort can begin 
successfully. 

equivalence partition see equivalence class 

equivalence class A portion of the component’s input or output domains for 
which the component’s behavior is assumed to be the same from the component’s 
specification. 

equivalence partition coverage The percentage of equivalence classes gener-
ated for the component, which have been exercised by a test case suite. 

equivalence partition test A test case design technique for a component n which 
test cases are designed to execute representatives from equivalence classes. 

error A human action that produces an incorrect result. [IEEE] 

error guessing A test case design technique where the experience of the tester is 
used to postulate what faults might occur, and to design tests specifically to ex-
pose them. 

error seeding The process of intentionally adding known faults to those already 
in a computer program for the purpose of monitoring the rate of detection and 
removal, and estimating the number of faults remaining in the program. [IEEE] 

event Something that happens at a given place and time. primitive events and 
composite events 

exception Exception is a programming language facility for managing errors. It 
helps to distinguish the normal flow of execution from exceptional cases. When 
the code encounters a problem that it can’t handle, it stops dead and throws up an 
exception – an object representing the error. An exception-handle code is then 
generated which will be handled by the program.  



392 Glossary 

executable statement A statement which, when compiled, is translated into 
object code, which will be executed procedurally when the program is running and 
may perform an action on program data. 

exercised A program element is exercised by a test case when the input value 
causes the execution of that element, such as a statement, branch, or other struc-
tural element. 

exhaustive testing A test case design technique in which the test case suite com-
prises all combinations of input values and preconditions for component variables. 
Executing a program with all possible combinations of inputs or values for pro-
gram variables. 

exit point The last executable statement within a component.  

exit criteria Output requirements to a specified operation. 

expected outcome see predicted outcome 

expression An expression is an indication or specification of a value. 

extended random regression testing A test method which strings together a set 
of existing functional regression tests that a program has already passed, running 
them in a long random sequence. [IEEE] 

extranet A collaborative Internet-based technology that creates a network to link 
businesses with their suppliers, customers or other external business partners and 
facilitates productive inter-company relationships. An extranet can be constructed 
as a direct extension of a company’s Intranet or as a connection to enable compa-
nies to collaborate via the Internet. Either way, an extranet is a private, secure 
environment. Individuals cannot access an extranet without permission. 

facility test see functional test case design 

failure Deviation of the software from its expected delivery or service. [Fenton] 
An event in which an item fails to perform one or more of its required functions 
within specified limits under specific conditions (DACS Software Reliability 
Sourcebook). 

fault A manifestation of an error in software. A fault, if encountered may cause a 
failure. [dob] 

feasible path A path for which there exists a set of input values and execution 
conditions which causes it to be executed. 

feature test see functional test case design 

FSM A finite state machine is a computational model consisting of a finite num-
ber of states and transitions between those states, possibly with accompanying 
actions. A technique for modeling user’s behavior (synonymous with “finite state 
automata”). 



Glossary 393 

fit for purpose test Validation carried out to demonstrate that the delivered sys-
tem can be used to carry out the tasks for which it was acquired. 

FK A foreign key is a field or group of fields in a database record that point to a 
key field or group of fields forming a key of another database record in some 
(usually different) table. Usually a foreign key in one table refers to the primary 
key (PK) of another table. This way references can be made to link information 
together and it is an essential part of database normalization. Foreign keys that 
refer back to the same table are called recursive foreign keys. 

functional analysis Examination of a defined function to identify all the sub-
functions necessary to the accomplishment of that function; identification of func-
tional relationships and interfaces (internal and external) and capturing these in a 
functional architecture; and flow down of upper-level performance requirements 
and assignment of these requirements to lower-level sub-functions. functional 
architecture 

functional architecture The hierarchical arrangement of functions, their internal 
and external (external to the aggregation itself) functional interfaces and external 
physical interfaces, their respective functional and performance requirements, and 
design constraints. functional baseline 

functional baseline The initially approved documentation describing a system’s 
or product’s functional performance, interoperability, and interface requirements 
and the verification required to demonstrate the achievement of those specified 
requirements. functional architecture 

functional specification The document that describes in detail the characteristics 
of the product with regard to its intended capability. [BS, Part] 

functional test case design Test case selection that is based on an analysis of the 
specification of the component without reference to its internal workings. 

glass box test see structural test case design 

goal Required process components that can be either generic goals or specific 
goals. Each goal within a process area must be achieved to consider the process 
area to be achieved. 

graph A graph is a diagram describing a task, showing the nodes where the user 
interface may rest and the transitions between these nodes. A graph is essentially a 
state transition diagram of the type used to describe finite state machines prior to 
the invention of the statechart notation by David Harel in 1987, which was 
adopted by Object Management Group for inclusion in the UML. 

guerrilla testing This is testing that opportunistically seeks to find severe bugs, 
wherever they may be. 

inch pebble Inch pebble is the completion of each task in the lowest-level of the 
work break down in the project. 



394 Glossary 

incremental test Integration testing where system components are integrated 
into the system one at a time until the entire system is integrated. 

independence Separation of responsibilities which ensures the accomplishment 
of objective evaluation. [DOB] 

infeasible path A path which cannot be exercised by any set of possible input 
values. 

information object Abstraction describing an entity in the real world used to 
model business information held by one or more business systems. 

information system The entire infrastructure, organization, personnel, and com-
ponents that collect, process, store, transmit, display, disseminate, and act on in-
formation. [DoD] 

information technology Any equipment, or interconnected system, or subsystem 
of equipment, that is used in the automatic acquisition, storage, manipulation, 
management, movement, control, display, switching, interchange, transmission, or 
reception of data or information. This includes computers, ancillary equipment, 
software, firmware, and similar procedures, services (including support services) 
and related resources. [DoD] 

initialization Initialization is the process of locating and using the defined values 
for variable data that is used by a computer program. 

input A variable (whether stored within a component or outside it) that is read by 
the component. 

input domain The set of all possible inputs. 

input value An instance of an input. 

inspection A group review quality improvement process for written material. It 
consists of two aspects; product (document itself) improvement and process im-
provement (of both document production and inspection). [Graham] 

installability The ability of a software component or system to be installed on a 
defined target platform allowing it to be run as required. Installation includes both 
a new installation and an upgrade. 

integrated product and process development Integrated product and process 
development provides a systematic approach to product development that achieves 
a timely collaboration of relevant stakeholders throughout the product life cycle to 
better satisfy customer needs. 

integration test Testing in which software components, hardware components, 
or both are combined and tested to evaluate the interaction between them. In inte-
gration testing the consistency of assumptions should also be verified. See accept-
ance test/regression test/unit test. 

integrity Integrity ensures the completeness and correctness of Information. 



Glossary 395 

interface An interface is a specified set of interactions (e.g., operations, events, 
flows) between a software component and its environment. 

interoperability 

1. The ability of systems, units, or forces to provide services to and accept ser-
vices from other systems, units, or forces and to use the services so exchanged 
to enable them to operate effectively together.  

2. The condition achieved among communications-electronics systems or items 
of communications-electronics equipment when information or services can 
be exchanged directly and satisfactorily between them and or their users. The 
degree of interoperability should be defined when referring to specific cases.  

3. The ability to exchange data in a prescribed manner and the processing of 
such data to extract intelligible information that can be used to control/coordi-
nate operations. [DoD]   

intranet An intranet is a network based on the internet TCP/IP open standard. 
An intranet belongs to an organization, and is designed to be accessible only by 
the organization’s members, employees, or others with authorization. An intra-
net’s Web site looks and act just like other Web sites, but has a firewall surround-
ing it to fend off unauthorized users. Intranets are used to share information. Se-
cure intranets are much less expensive to build and manage than private, 
proprietary-standard networks. 

invariant An invariant at a given program point is an assertion which holds dur-
ing execution whenever control reaches that point. 

Ishikawa diagram The Ishikawa diagram is a graphical method for finding the 
most likely causes for an undesired effect. The method was first used by Kaoru 
Ishikawa is the 1960s. Also named fishbone diagram. 

ISO The International Organization for Standardization is a network of the na-
tional standards institutes of 156 countries, on the basis of one member per coun-
try, with a Central Secretariat in Geneva, Switzerland, that coordinates the system. 

ISO/IEC 15504 (SPICE) The Software Process Improvment and Capability 
dEtermination (SPICE) project is developing the ISO/IEC 15504 standard to ad-
dress all processes involved in software acquisition, development, operation, sup-
ply maintenance and support. It has been created to be aligned closely with 
ISO/IEC 12207:1995 “Software Life Cycle Processes.” ISO/IEC 15504 is in-
tended to be harmonious with ISO 9000. SE-CMM which used the two-axis-
architecture of the ISO/IEC 15504 process model. 

IT audit An IT audit is basically the process of collecting and evaluating evi-
dence of an organization’s information systems, practices, and operations. IT audi-
tors look not only at physical controls as a security auditor would, but they also 
look at business and financial controls within an organization. IT auditors help 
organizations comply with legislation, making sure they keeping data and records 



396 Glossary 

secure. These auditors don’t actually implement any fixes; they just offer an inde-
pendent review of the situation. 

job A job is a processing element which owns one or more execution steps.  

KPP A key performance parameter are those capabilities or characteristics con-
sidered most essential for successful mission accomplishment.  Failure to meet a 
KPP threshold can be cause for the concept or system selection to be re-evaluated 
or the program to be reassessed or terminated. The failure to meet a specific KPP 
threshold cam be cause for the family-of-systems or system-of systems concept to 
be reassessed or the contributions of the individual systems to be reassessed. 
[DoD] 

lateral compatibility Lateral compatibility requires that products are able to 
function with other products of the same generation. 

last-def. A statement that contains a definition of a variable that can reach a call-
site or a return is called a last-def. 

LCSAJ A linear code sequence and jump, consisting of the following three items 
(conventionally identified by line numbers in a source code listing): 

1. the start of the linear sequence of executable statements, 
2. the end of the linear  sequence,  
3. the target line to which control flow is transferred at the end of the linear 

sequence. 

LCSAJ coverage The percentage of LCSAJs of a component which are exer-
cised by a test case suite. 

LCSAJ testing A test case design technique for a component in which test cases 
are designed to execute LCSAJs. 

logic-coverage test see structural test case design [Myers] 

logic-driven test see structural test case design 

maintainability The ease with which the system/software can be modified to 
correct faults, modified to meet new requirements, modified to make future main-
tenance easier, or adapted to a changed environment. 

maintainability requirements A specification of the required maintainability 
for the system/software. 

maintainability test Testing to determine whether the system/software meets the 
specified maintainability requirements.  

Markov chain A discrete, stochastic process in which the probability that the 
process is in a given state at a certain time depends only on the value of the imme-
diately preceding state. A technique for modeling a user’s behavior. 



Glossary 397 

master data Agreed to, standard reference data that can be shared across sys-
tems. 

MDM Mater data management, also known as reference data management, is a 
discipline in information technology (IT) that focuses on the management of refer-
ence or master data that is shared by several disparate IT systems and groups. 
MDM is required to warrant consistent computing between diverse system archi-
tectures and business functions. Large companies often have IT systems that are 
used by diverse business functions and span across multiple countries. These sys-
tems usually need to share key data that is relevant to the parent company (e.g., 
products, customers and suppliers). It is critical for the company to consistently 
use these shared data elements through various IT systems. MDM also becomes 
important when two or more companies want to share data across corporate 
boundaries. In this case, MDM becomes an industry issue such as is the case with 
the finance industry and the required STP (straight through processing). 

measures of effectiveness Operational measures of success that are closely re-
lated to the achievement of the mission or operational objective being evaluated, 
in the intended operational environment under a specified set of conditions. 

measures of performance Measures that characterize physical or functional 
attributes relating to the system operation. 

message A means of exchanging facts, objects or intellectual artifacts between 
entities. 

MSC A message sequence chart is a part of the testing and test control notation 
(TTCN) used to record the purpose of a test. 

metadata Metadata is data that describe other data. Generally, a set of metadata 
describes a single set of data, called a resource. Metadata is information that de-
scribes or provides context for data, content, business processes, services, business 
rules and policies that support an organization’s information systems. 

methodology A methodology is the set of guidelines for covering the whole life 
cycle of system development both technically and from a management point of 
view. When evaluating a methodology, it must be checked whether it provides the 
following features: 

1. a full set of techniques (rules, guidelines, heuristics)  
2. a comprehensive set of concepts and models 
3. guidelines for the project management 
4. a fully delineated set of deliverables 
5. a full life cycle process 
6. a modelling language 
7. quality assurance 
8. a set of metrics 
9. coding standards 
10. reuse advice 



398 Glossary 

model-based test An approach that bases common testing tasks – such as test 
case generation and test result evaluation – on a model of the application under 
test. 

model checking Model checking is a family of techniques, based on systematic 
and exhaustive state-space exploration, for verifying properties of concurrent 
systems. Properties are typically expressed as invariants (predicates) or formulas 
in a temporal logic. Model checkers are traditionally used to verify models of 
software expressed in special modelling languages, which are simpler and higher-
level than general-purpose programming languages. 

modified condition/decision coverage The percentage of all branch condition 
outcomes that independently affect a decision outcome that have been exercised 
by a test case suite. 

modified condition/decision test A test case design technique in which test 
cases are designed to execute branch condition outcomes that independently affect 
a decision outcome. 

multiple condition coverage see branch condition combination coverage 

multi-threading Multi-threading is the ability of a program or an operating sys-
tem process to manage its use by more than one user at a time and to even manage 
multiple requests by the same user without having to have multiple copies of the 
programming running in the computer. Each user request for a program or system 
service (and here a user can also be another program) is kept track of as a thread 
with a separate identity. As programs work on behalf of the initial request for that 
thread and are interrupted by other requests, the status of work on behalf of that 
thread is kept track of until the work is completed. 

multi-tier architecture In software engineering, multi-tier architecture (often 
referred to as n-tier architecture) is a client-server architecture in which an appli-
cation is executed by more than one distinct software agent. 

mutation analysis A method to determine the test case suite thoroughness by 
measuring the extent to which a test case suite can discriminate the program from 
slight variants (mutants) of the program. See error seeding 

n-tier architecture see multi-tier architecture 

negative test Testing aimed at showing that software does not work. [Belzer] 

non-conformity A departure of a quality characteristic from its intended level or 
state that occurs with a severity sufficient to cause an associated product or service 
not to meet a specification requirement. 

non-functional requirements test Testing of those requirements that do not 
relate to functionality, i.e., performance, usability, etc. 

N-switch coverage The percentage of sequences of N-transitions that have been 
exercised by a test case suite. 



Glossary 399 

N-switch test A form of state transition testing in which test cases are designed 
to execute all valid sequences of N-transitions. 

N-transitions A sequence of N+ transitions. 

offshoring Offshoring means moving work from the company’s home country to 
another country. However, it doesnot involve a third party. [Wipro Technologies] 

outsourcing To outsource means that a company buys work that was previously 
done in-house (i.e., within the company itself). The outsourced work can be done 
either offshore or elsewhere within the customer’s home country. [Wipro Tech-
nologies] 

operational interoperability The operational ability (effectiveness and suitabil-
ity) of systems, units, or forces to provide services/information to and accept ser-
vices/information from other systems, units, or forces to operate effectively to-
gether, under realistic combat conditions, by typical military users employing the 
necessary tactics, techniques and procedures (or concepts of operations). [DoD] 

operational services Services required to operate systems: 

1. Application/system monitoring 
2. Backup/recovery 
3. Configuration management 
4. Hardware control and distribution 
5. IT service management 
6. Job scheduling 
7. Performance and availability management 
8. Problem management 
9. Software control and distribution 
10. Storage management 

operational test Testing conducted to evaluate a system or component in its 
operational environment. [IEEE] 

oracle A mechanism to produce the predicted outcomes to compare with the 
actual outcomes of the software under test. [Adrion] 

outcome An ability to design a system, component, or process to meet desired 
needs. In testing the outcome describes also the system’s state after testing opera-
tions have been accomplished. The actual outcome or predicted outcome. See 
branch outcome/condition outcome/decision outcome 

output A variable (whether stored within a component or outside it) that is writ-
ten to by the component. 

output domain The set of all possible outputs. 

output value An instance of an output. 



400 Glossary 

pairwise testing Pairwise testing (or 2-way testing) is a specification-based 
testing criterion, which requires that for each pair of input parameters of a system, 
every combination of valid values of these two parameters be covered by at least 
one test case. 

parameter A parameter is a variable that can be assigned a value from outside 
the test in which it is defined. Parameters provide flexibility by allowing each 
calling test to dynamically change their values. 

partition test Test in which the input domain of the system under test is parti-
tioned into disjoint sub domains and test cases are constructed based on this parti-
tioning. See equivalence partition test [Belzer] 

path A sequence of executable statements of a component, from an entry point to 
an exit point. 

path coverage The percentage of paths in a component exercised by a test case 
suite. 

path sensitizing Choosing a set of input values to force the execution of a com-
ponent to take a given path. 

path test A test case design technique in which test cases are designed to execute 
paths of a component. 

performance test Testing conducted to evaluate the compliance of a system or 
component with specified performance requirements. [IEEE] 

Petri network An abstract model of information handling that shows static and 
dynamic properties of a system; usually represented as a graph with two vertices 
called places and transitions, and connected by edges. Markers, called tokens, 
indicate the dynamic behavior of the network. [SEMATECH] 

portability The ease with which the system/software can be transferred from one 
hardware or software environment to another. 

portability requirements A specification of the required portability for the sys-
tem/software. 

portability test Testing to determine whether the system/software meets the 
specified portability requirements. 

precondition Environmental and state conditions which must be fulfilled before 
the component can be executed with a particular input value. Generally speaking, 
it is an assertion at program entry. 

post-condition A post-condition is an assertion at program exit. 

predicate A logical expression which evaluates to TRUE or FALSE, normally to 
direct the execution path in code. 

predicate data use A data use in a predicate. 



Glossary 401 

predicted outcome The behavior predicted by the specification of an object 
under specified conditions. 

primitive events Primitive events are events that occur in a specific moment in 
time, i.e., an instantaneous occurrence. 

priority Sequence in which an incident or problem needs to be resolved, based 
on impact and urgency. 

proactiveness Proactiveness is the ability of an agent to pursue new goals de-
pending on the contextual situation. 

problem definition A problem can be described as the difference between a 
current state and a goal state. To define a problem following techniques can be 
used: 

1. finding out what the problem came from, 
2. the exploration of the problem domain, 
3. the description of present state and desired state, 
4. causal analysis/mind mapping, 
5. synthesis 

problem solving Problem solving requires distinguishing between causes and 
symptoms; it also involves a combination of problem definition and decision mak-
ing. Problems may be internal (resources allocation, funding) or external to the 
organization. Problems may be technical (a cutting-edge solution requires more 
hardware resources as planned), managerial (the software factory is not producing 
according to plan), interpersonal (personality or style clashes) or cultural (a new 
paradigm). 

process 

1. A process is a sequence of changes of properties/attributes of a system/object. 
More precisely, and from the most general systemic perspective, every proc-
ess is a particular trajectory (or part thereof) in a system’s phase space. 
[Wikipedia] 

2. A process is also a set of logically related tasks performed to achieve a de-
fined (business or technical) outcome. [JJSC] 

process owner The person (or team) responsible for defining and maintaining a 
process. At the organizational level, the process owner is the person (or team) 
responsible for the description of a standard process; at the project level, the de-
fined process. A process may therefore have multiple owners at different levels of 
responsibility. See standard process/defined process 

product A product is a work product or intellectual artifact that is delivered to 
the customer. 

product baseline In configuration management, the initial approved technical 
data package (including, for software, the source code listing) defining a configu-



402 Glossary 

ration item during the production, operation, maintenance, and logistic support of 
its life cycle. See configuration management/configuration item. [derived from 
IEEE 610.12-1990] 

product component Any work product that must be engineered (requirements 
defined, designed, and the integrated solution developed) to achieve the intended 
use of the product throughout its life cycle. Product components may be a part of 
the product delivered to the customer or serve in the manufacture or use of the 
product. A car engine and a piston are examples of product components of a car 
(the product). The manufacturing process to machine the piston, the repair process 
used to remove the engine from the car for repair, and the process used to train the 
mechanic to repair the engine are also examples of product components. 

product component requirements Product component requirements provide a 
complete specification of a product component, including fit, form, function, per-
formance, and any other requirement. 

product life cycle The period of time that begins when a product is conceived 
and ends when the product is no longer available for use. [derived from IEEE 
610.12-1990] 

product line A group of products sharing a common, managed set of features 
that satisfy specific needs of a selected market or mission. 

product quality objectives Specific objectives, which if met, provide a level of 
confidence that the quality of a product is satisfactory. See quantitative objective/ 
specific goal 

product requirements A refinement of the customer requirements into the de-
velopers’ language, making implicit requirements into explicit derived require-
ments. The developer uses the product requirements to guide the design and build-
ing of the product. product component requirements/derived requirements/ 
programmatic requirements  

programmatic requirements A refinement of the customer requirements into 
the developers’ language, making implicit requirements into explicit derived re-
quirements. The developer uses the product requirements to guide the design and 
building of the product. product component requirements/derived requirements/ 
programmatic requirements 

progressive test Testing of new features after regression testing of previous 
features. [Belzer] 

project A managed set of interrelated resources that delivers one or more prod-
ucts to a customer or end user. This set of resources has a definite beginning and 
end and typically operates according to a plan. Such a plan is frequently docu-
mented and specifies the product to be delivered or implemented, the resources 
and funds used, the work to be done, and a schedule for doing the work. 



Glossary 403 

project manager The person responsible for planning, directing, controlling, 
structuring, and motivating the project. 

project progress and performance What a project achieves with respect to 
implementing project plans, including effort, cost, schedule, and technical per-
formance. 

project stakeholders The project management team must identify the stake-
holders, determine what their needs and expectations are, and then manage and 
influence those expectations. This task is essential for a project to besuccessful. 
Stakeholder identification is often especially difficult. 

property A property is a special capability or a characteristic. 

protocol A protocol is an ordered set of messages that together define the admis-
sible patterns of a particular type of interaction between entities. 

prototype A preliminary type, form, or instance of a product or product compo-
nent that serves as a model for later stages or for the final, complete version of the 
product. [derived from IEEE 610.1990]. This model (physical, electronic, digital, 
analytical, etc.) can be used for the purpose of, but not limited to: 

1. assessing the feasibility of a new or unfamiliar technology, 
2. assessing or mitigating technical risk, 
3. validating requirements, 
4. demonstrating critical features, 
5. qualifying a product, 
6. qualifying a process, 
7. characterizing performance or product features, or 
8. elucidating physical principles. 

proxy Application which typically is used on a firewall server. The actual appli-
cation server is on a private network behind the firewall. Clients connect to the 
firewall, which also behave like the application server. The firewall in turn pre-
tends to be a client and sends the client request it has received to the actual applica-
tion server. The firewall applies some logic to decide whether the request is valid. 

pseudo-random A series which appears to be random but is in fact generated 
according to some prearranged sequence. 

P-use see predicate data use 

QA test see beta test, acceptance test 

quality The ability of a set of inherent characteristics of a product, product com-
ponent, or process to fulfill requirements of customers. [derived from ISO DIS 
9000:2000] 

quality assurance A planned and systematic means for assuring management 
that defined standards, practices, procedures, and methods of the process are 
applied. 



404 Glossary 

quality control The operational techniques and activities that are used to fulfill 
requirements for quality. See quality assurance [ISO 8402-1994] 

quality management system All activities of the overall management function 
that determine the quality policy, objectives, and responsibilities, and implements 
them through quality planning, quality control, quality assurance, and quality 
improvement within the quality management system. 

quality planning The activities that establish the objectives and requirements for 
quality and for the application of quality management system elements. 

quality scenarios Quality scenarios are descriptions that embody quality re-
quirements and make them concrete. 

quantitative objective Desired target value expressed as quantitative metrics.  

random test A test in which test cases are selected randomly from the input 
domain of the system under test. 

reactiveness Reactiveness is the ability of an agent to respond in a timely man-
ner to changes in the environment. 

recovery test Testing aimed at verifying the system’s ability to recover from 
varying degrees of failure. 

reference data Data about an entity which can be referenced in an event. In the 
finance industry, reference data refers to the static information that describes as-
sets and account entries used in the processing of transactions, in compliance 
measurement, analytics, risk management and client reporting. Reference data 
describes the underlying accounts and parties involved in a transaction. 

reference data management see master data management (MDM) 

regression test Retesting of a previously tested program following modification 
to ensure that faults have not been introduced or uncovered as a result of the 
changes made. See acceptance test/integration test/unit test 

regulation A regulation is a document which lays down product, process or 
service characteristics, including the applicable administrative provisions, with 
which compliance is mandatory. [ISO] 

reliability The ability of the system/software to perform its required functions 
under stated conditions for a specified period of time, for a specified number of 
operations and under specific conditions. 

reliability requirements A specification of the required reliability for the sys-
tem/software. 

reliability test Testing to determine whether the system/software meets the 
specified reliability requirements. 



Glossary 405 

requirement A requirement is: 

1. A condition or capacity needed by a user to solve a problem or achieve an 
objective. 

2. A capability that must be met or possessed by a system or software compo-
nent to satisfy a contract, standard,  specification, or other formally imposed 
documents. Requirements may be functional or non-functional. 

3. A documented representation of a condition or capability as described in 1 
or 2.  

requirements analysis The determination of product-specific performance and 
functional characteristics based on analyses of: customer needs, expectations, and 
constraints, operational concept, projected utilization environments for people, 
products, processes and measures of effectiveness. 

requirements-based test Designing tests based on objectives derived from re-
quirements for the software component (e.g., tests that exercise specific functions 
or probe the non-functional constraints such as performance or security). See func-
tional test case design 

result see outcome 

reverse proxy A reverse proxy is a firewall component that allows safe inbound 
HTTP traffic from an external network. A reverse proxy has four main functions: 

1. to perform access control based on the requested URL 
2. to act as end point for SSL traffic 
3. to perform authentication on incoming traffic 
4. to verify the correctness of the incoming protocol  

To the external network, the reverse proxy appears to be a normal web server. 
However, when accessed, the above functions are invoked and the requested 
page is retrieved from the internal network or inner DMZ.  

review A process or meeting during which a work product, or set of work prod-
ucts, is presented to project personnel, managers, users or other interested parties 
for comment or approval. [IEEE] 

risk management The process of analyzing potential risks and determining how 
to best handle such risks in a project. 

Rules-Driven System (RDS) A rule-driven system is designed to handle large 
amounts of complex logic and variations of the original design specification very 
quickly. A RDS provide system-wide error and consistency checks to the business 
logic to ensure correct execution of the final system. 

security requirements A specification of the required security for the sys-
tem/software. 

security test Testing to determine whether the system/software meets the speci-
fied security requirements. 



406 Glossary 

security Preservation of confidentiality, integrity, and availability of information, 
where availability is ensuring that authorized users have access to information and 
associated assets when required, and confidentiality is ensuring that information is 
accessible only to those authorized to have access. 

semantic network A semantic network or net is a graphic notation for represent-
ing knowledge in patterns of interconnected nodes and arcs. Computer implemen-
tations of semantic networks were first developed for artificial intelligence and 
machine translation. 

service A service is an interface that is supplied by an agent to the external 
world. It is a set of tasks that together offer some functional operation. A service 
can consist of other services. Technically, services are software modules that use a 
separable platform-independent and well-defined public programmatic interface. 

serviceability test see maintainability test 

session management The management of the objects used to track user interac-
tion with a web application across multiple HTTP requests. 

signal A signal is an error reporting mechanism, largely used for errors sent by 
the execution environment to the running program. The operating system traps a 
number of exceptional events. These well-defined events are delivered to the ap-
plication in signals that interrupt the program’s normal flow of execution, jumping 
into a nominated signal handler function. Signals are the software equivalent of a 
hardware interrupt. 

simple sub-path A sub-path of the control flow graph in which no program part 
is executed more than necessary. 

simulation The representation of selected behavioral characteristics of one 
physical or abstract system by another system. [ISO] 

simulator A device, computer program, or system used during software verifica-
tion, which behaves or operates like a given system when provided with a set of 
controlled inputs. [IEEE,DOB] 

single-threaded A group of instructions that completes the processing of one 
message before starting another. See multithreading 

Software-Oriented Architecture (SOA) Service oriented architecture is an 
evolution of distributed computing and modular programming. SOAs build appli-
cations out of software services. Services are relatively large, intrinsically unasso-
ciated units of functionality, which have no calls to each other embedded in them. 
They typically implement functionalities most humans would recognize as a ser-
vice, such as filling out an online application for an account, viewing an online 
bank statement, or placing an online book or airline ticket order. Instead of ser-
vices embedding calls to each other in their source code, protocols are defined 
which describe how one or more services can talk to each other. This architecture 
then relies on a business process expert to link and sequence services, in a process 



Glossary 407 

known as orchestration, to meet a new or existing business system requirement. 
[Wikipedia] 

software component A software component (SWC) represents a modular, de-
ployable part of a system or application that exposes a set of interfaces. It consists 
of a group of binary executable or script files. Usually a SWC can be deployed on 
only one hardware system. 

software engineering The software engineering discipline covers the develop-
ment of software systems. Software engineers focus on applying systematic, disci-
plined, and quantifiable approaches to the development, operation, and  mainte-
nance of software. 

software product line A software product line is a set of software intensive 
systems that share a common, managed set of features satisfying the specific needs 
of a particular market segment or mission and that are developed from a common 
set of core assets in a prescribed way. 

software reliability Software reliability is defined as: “the probability that a 
given software program operates for some time period, without an external soft-
ware error, on the machines(s) for which is was designed given that it is used 
within design limits.” NASA-STD-8739.8 defines software reliability as a disci-
pline of software assurance that: 

1. defines the requirements for software controlled system fault/failure detection, 
isolation, and recovery, 

2. reviews the software development processes and products for software error 
prevention and/or reduced functionality states and, 

3. defines the process for measuring and analyzing defects and defines/derives 
the reliability and maintainability factors. 

Software Requirements Specifications (SRS) A software requirements speci-
fication is a document that clearly and precisely describes each of the essential 
requirements (functions, performance, design constraints, and quality attributes)  
of the software and the external interfaces. Each requirement is defined in such  
a way that its achievement can be objectively verified by a prescribed method.  
For example: inspection, demonstration, analysis, or test. [ANSI/IEEE Standard 
830-1984] 

source statement see statement 

special cause of process variation A cause of a defect that is specific to some 
transient circumstance and not an inherent part of a process.  

specific goal A goal that is attained by performing specific practices within a 
process area. An organization must attain the associated goals of a process area to 
satisfy its requirements or the requirements of one of its capability levels. 

specific practice A practice contained in a process area that describes an essen-
tial activity to, in part or in whole, accomplish a goal of the process area. See spe-
cific goal 



408 Glossary 

specification A description, in any suitable form, of requirements. 

Specification and Description Language (SDL) A specification and description 
language is defined by International Telecommunication Union (ITU) Recom-
mendation Z.100. The language is intended to be used from requirements to im-
plementation, is suitable for real-time stimulus-response systems, is presented in a 
graphical form, has a model based on communicating processes (extended finite 
state machines), and provides an object-oriented description of SDL components. 

specification test An approach to testing wherein the testing is restricted to veri-
fying the system/software meets the specification. 

specified input An input for which the specification predicts an outcome. 

spin loops Loops that iterate while waiting for a resource to free or an event to 
occur. 

sponsor 

1. The individual or group within the performing organization who provides the 
financial resources, in cash or in kind, for the project. In addition to these 
there are many different names and categories of project  stakeholders – inter-
nal and external, owners and funders, suppliers and contractors, team mem-
bers and their families, government agencies and media outlets, individual 
citizens, temporary or permanent lobbying organizations, and society at large. 

2. The naming or grouping of stakeholders is primarily an aid to identifying 
which individuals and organizations view themselves as stakeholders. Stake-
holder roles and responsibilities may overlap, as when an engineering firm 
provides financing for a plant it is designing. Managing stakeholder expecta-
tions may be difficult because stakeholders often have very different objec-
tives that may come into conflict. 

SSL protocol The SSL protocol has been designed to secure data exchanges 
between two applications – mainly between a Web server and a browser. This 
protocol is widely used and is compatible with most Web browsers. At the net-
work level, the SSL protocol is inserted between the TCP/IP layer (low level) and 
the HTTP high level protocol. SSL has been designed mainly to work with HTTP. 
[Webopedia] 

SSL proxy Reverse proxy specialized to handle SSL sessions. See proxy and 
SSL session 

SSL session Session handling over an encrypted connection using the SSL pro-
tocol. See SSL protocol 

stable process The state in which all special causes of process variation have 
been removed and prevented from recurring so that only the common causes of 
process variation of the process remain. 



Glossary 409 

staged representation A capability maturity model structure wherein attaining 
the goals of a set of process areas establishes a maturity level; each level builds a 
foundation for subsequent levels. 

stakeholder A group or individual that is affected by or is in some way account-
able for the outcome of an undertaking. 

standard Document approved by a recognized body that provides, for common 
and repeated use, rules, guidelines or characteristics for products, processes or 
services with which compliance is not mandatory (ISO). 

standard process A standard process describes the fundamental process ele-
ments that are expected to be incorporated into any defined process. It also de-
scribes the relationships (e.g., ordering and interfaces) between these process ele-
ments. See defined process [ISO/IEC 15504-9] 

states States represent different contexts in which system, component or device 
behaviors occur. 

state chart A behavior diagram specified as part of the unified modeling lan-
guage (UML). A statechart depicts the states that a system or component can as-
sume, and shows the events or circumstances that cause or result from a change 
from one state to another. A statechart is a complete graphical characterization of 
a system’s potential behavior to the level of detail required for the simulation. It 
consists of discrete “states” and “transitions.” Each state represents a distinct con-
text for behaviors of the device, such as an ON state and an OFF state. 

state machine A state machine is any device that stores the status of something 
at a given time and can operate on input to change the status and/or cause an ac-
tion or output to take place for any given change. Any program that changes the 
state of the computing system is a state machine. A program is a state machine if it 
can behave differently with identical inputs.   

statement An entity in a programming language which is typically the smallest 
indivisible unit of execution. 

state transition test A test case design technique in which test cases are de-
signed to execute state transitions. 

state transition A potential pathway among allowable states of a system, com-
ponent or device. See Petri network 

statement coverage The percentage of executable statements in a component 
that have been exercised by a test case suite. 

statement of work A description of contracted work required to complete a 
project. See project 

statement test A test case design technique for a component in which test cases 
are designed to execute statements. 



410 Glossary 

static analysis Analysis of a program carried out without executing the program.   

static analyzer A tool that carries out static analysis. 

static data Database information that changes little over time. 

static test Testing of an object without execution on a computer. 

statistical predictability The performance of a quantitative process that is con-
trolled using statistical and other quantitative techniques. 

statistical process control Statistically based analysis of a process and meas-
urements of process performance, which will identify common and special causes 
of variation in the process performance, and maintain process performance within 
limits. 

statistical test A test case design technique in which a model is used of the sta-
tistical distribution of the input to construct representative test cases. 

stochastic process Formally, an indexed set of random variables. Typically, the 
index denotes time, and the random variables show how the state of a system 
evolves over time. 

storage test Testing whether the system meets its specified storage objectives. 

stress test Testing conducted to evaluate a system or component at or beyond the 
limits of its specified requirements. [IEEE] 

structural coverage Coverage measures based on the internal structure of the 
component. 

structural test see structural test case design and clear box text 

structural test case design Test case selection that is based on an analysis of the 
internal structure of the component. 

structured basis test A test case design technique in which test cases are derived 
from the code logic to achieve % branch coverage. 

stub A skeletal or special-purpose implementation of a software module, used to 
develop or test a component that calls or is otherwise dependent on it. [IEEE] 

sub-path A sequence of executable statements within a component.  

sub-process A process that is part of a larger process. See process  

supplier 

1. The entity delivering product(s) or performing services being acquired.  
2. An individual, partnership, company, corporation, association, or other ser-

vice, having a agreement (contract) with an acquirer for the design, develop-
ment, manufacture, maintenance, modification, or supply of items under the 
terms of a contract. 



Glossary 411 

surrogate see reverse proxy 

sustainment environment An infrastructure (organizational structure, mission 
and functions, concept of operations, and resources (people, facilities, and fund-
ing) necessary to sustain a product. 

symptom 

1. A characteristic sign or indication of the existence of something else than 
expected. 

2. A sign or an indication of disorder experienced by a user as change from 
normal function, behavior, or appearance. 

symbolic evaluation see symbolic execution 

symbolic execution A static analysis technique that derives a symbolic expres-
sion for program paths. 

syntax test A test case design technique for a component or system in which test 
case design is based upon the syntax of the input. 

system A system is an entity which maintains its existence through the mutual 
interaction of its parts. 

system test The process of testing an integrated system to verify that it meets 
specified requirements. [Hetzel] 

systems engineering The interdisciplinary approach governing the total techni-
cal and managerial effort required to transform a set of customer needs, expecta-
tions, and constraints into a product solution and support that solution throughout 
the product’s life cycle. This includes the definition of technical performance 
measures, the integration of engineering specialties towards the establishment of a 
product architecture, and the definition of supporting life cycle processes that 
balance cost, performance, and schedule objectives. The systems engineering 
discipline covers the development of total systems, which may or may not include 
software. 

table Tables are concise, graphical representations of relationships. They trans-
form information of one kind into information of another kind. Similarly, any 
collection of conditions may be transformed into a series of actions in a decision 
table. With regard to information systems, the defacto definition of the term 
“table” is a data structure consisting of a series of rows and columns. The num-
ber of columns in a given table is usually fixed, while the number of rows is 
variable. 

target profile In continuous representations of CMMI models, a list of process 
areas and their corresponding capability levels that represent an objective for 
process improvement. 



412 Glossary 

task A task is a piece of work that can be assigned to an agent or performed by it. 
It may also be a function to be performed and may have time constraints. A task 
includes one or more chains to be executed. 

technical data package The technical data package provides the description of a 
product or product component throughout the product life cycle. This description 
may support an acquisition strategy or the implementation, production, engineer-
ing, and logistics phases. A complete technical data packageprovides the follow-
ing items to the extent applicable for a given product component:  

1. product component descriptions in terms of required life cycle functionality 
and performance 

2. developed process descriptions if not described as separate product compo-
nents 

3. key product characteristics 
4. required physical characteristics and constraints 
5. interface requirements 
6. materials requirements (bills or material and material characteristics) 
7. fabrication/manufacturing requirements (for both the original equipment 

manufacturer and field support) 
8. the verification criteria used to ensure requirements have been achieved 
9. conditions of use (environments) and operating/usage scenarios, modes and 

states for operations. support, training, manufacturing, disposal, and verifica-
tions throughout the life cycle 

10. rationale for decisions (requirements, requirement allocations, design 
choices). 

technical measurement Set of measurement activities and measures used to 
provide insight into the technical solution. 

technical performance measures Measures used to assess design progress, 
compliance to performance requirements, and technical risks. 

technical requirements Properties (attributes) of products or services to be ac-
quired or developed. 

technical requirements test see non-functional requirements test 

test 

1. An activity in which a system or component is executed under specified con-
ditions, the results are observed or recorded, and an evaluation is made of 
some aspect of the system or component.  

2. To conduct an activity as in (1).  
3. A set of one or more test cases. 
4. Testing is a technical investigation of a product, done to expose quality-

related information. [Ka04] 



Glossary 413 

test artifact A test artifact is an abstract object in the digital world to be tested 
by a software component to verify the correct response or result of the code devel-
oped. [HEP06] 

test automation The use of software to control the execution of tests, the com-
parison of actual outcomes to predicted outcomes, the setting up of test precondi-
tions, and other test control and test reporting functions. 

test case 

1. A set of inputs, execution preconditions and expected outcomes developed for 
a particular objective, such as to exercise a particular program path or to ver-
ify compliance with a specific requirement. [IEEE, Standard 610] 

2. Documentation specifying inputs, predicted results, and a set of execution 
conditions for a test item. [IEEE, Standard 829-1983] 

test case design technique A method used to derive or select test cases. 

test case suite A collection of one or more test cases for the software under test. 

test comparator A test tool that compares the actual outputs produced by the 
software under test with the expected outputs for that test case. 

test completion criterion A criterion for determining when planned testing is 
complete, defined in terms of a test measurement technique. 

test coverage A measure of the proportion of a program exercised by a test suite, 
usually expressed as a percentage. This will typically involve collecting informa-
tion about which parts of a program are actually executed when running the test 
suite in order to identify which branches of conditional statements which have 
been taken. See coverage 

TestDirector™ for Quality Center TestDirector from HP/Mercury is a test 
repository providing: workgroup functionality, test planning, bug tracking, re-
quirements administration, test cases and test sets management. It integrates each 
phase of the testing process: planning, design, execution of tests, incident follow-
up, analysis of test results, and reporting. [HP] 

test-driven development Evolutionary approach to development which com-
bines test-first development and refactoring. TDD is also a programming tech-
nique aiming at writing clean code that works. [Astels 2003] [Beck 2003] 

test driver A program or test tool used to execute software against a test case 
suite. 

test environment A description of the hardware and software environment in 
which the tests will be run, and any other software with which the software under 
test interacts when under test including stubs and test drivers. 

test procedure Detailed instructions for the setup, execution, and evaluation of 
results for a given test case evaluation of results for a given test case. 



414 Glossary 

test scaffolding see class testing 

test session Execution or “run” of one or more test sets to obtain either prede-
fined test results or unexpected results (defects). 

test set A collection or group of test cases bundled in a logic way to perform a 
test session. In Test Director, the test sets are defined and used in “Testlab.” 

trade study An evaluation of alternatives based on criteria and systematic analy-
sis, to select the best alternative for attaining determined objectives. 

testing criterion A testing criterion is a rule or collection of rules that impose 
requirements on a set of test cases. 

transaction A transaction means one or more processing steps on data grouped 
in one atomic operation that may be done persistent (commit) or revoked (roll-
back). In the legacy world the term is also used to call single processing steps on 
the mainframe. In this case each processing step may itself contain more than one 
program call controlled by the workflow engine. The difference between the two 
is that the first defines a data manipulation and the latter a process chain. A J2EE 
transaction means the first transaction type – in its distributed version. 

transaction data A record of an event. 

transition see state transition 

thread In the Internet a thread is a sequence of responses to an initial message 
posting. In computer programming, a thread is placeholder information associated 
with a single use of a program that can handle multiple concurrent users. From the 
program’s point-of-view, a thread is the information needed to serve one individ-
ual user or a particular service request. If multiple users are using the program or 
concurrent requests from other programs occur, a thread is created and maintained 
for each of them. The thread allows a program to know which user is being served 
as the program alternately gets re-entered on behalf of different users. 

trigger An event or situation that activates or releases or causes something to 
happen. 

unit test Testing of individual hardware or software units or groups of related 
units. See acceptance test/integration test/regression test.   

urgency Measure of the business criticality of an incident or problem based on 
the expected impact on the business and the customer’s needs. 

use case 

1. A piece of functionality in the system that gives a user a result of value. 
2. A technique for reasoning about/describing the behavior of a system in a 

concrete setting.  
3. A technique for capturing functional requirements and making them concrete 

instead of conceptual. 



Glossary 415 

validation The process of determining the degree to which an implementation 
and its associated data accurately represent the real world from the perspective of 
the intended uses of the system. 

value A “value” is any given specific instance of an attribute. 

verification The process of determining that an implementation and its associ-
ated data accurately represent the conceptual description and specifications. 

version control The establishment and maintenance of baselines and the identi-
fication of changes to baselines that make it possible to return to the previous 
baseline. 

well-defined process A documented, consistent, and complete process that has 
specified entry criteria, inputs, task descriptions, verification descriptions and 
criteria, outputs, and exit criteria. See defined process/stable process/standard 
process  

white box test see clear box test 

workaround A method of avoiding an incident or problem, either from a tempo-
rary fix or from a technique that means the customer is not reliant on a particular 
aspect of the service that is known to have a problem. 

work breakdown structure An arrangement of work elements and their rela-
tionship to each other and to the end product. 

work product Any artefact produced by a process. This may include files, docu-
ments, parts of the product, services, processes, specifications, and invoices. Ex-
amples of processes as work products include a manufacturing process, a training 
process, and a disposal process. A key distinction between a work product and a 
product component is that a work product need not be engineered. 

work product and task attributes Characteristics of products, services, and 
project tasks used to help in estimating project work. These characteristics include 
items such as size, complexity, weight, form, fit, or function. They are typically 
used as one input to deriving other project and resource estimates (e.g., effort, 
cost, schedule): 

• product component descriptions in terms of required life cycle functionality 
and performance 

• developed process descriptions if not described as separate product compo-
nents 

• key product characteristics 
• required physical characteristics and constraints 
• interface requirements 
• materials requirements (bills or material and material characteristics) 
• fabrication/manufacturing requirements (for both the original equipment 

manufacturer and field  support) 



416 Glossary 

• the verification criteria used to ensure requirements have been achieved 
• conditions of use (environments) and operating/usage scenarios. modes and 

states for operations, support, training, manufacturing, disposal, and verifica-
tions throughout the life cycle 

• a rationale for decisions (requirements, requirement allocations, design 
choices) 

Sources: 
ABBOTT ADRION ANSI ASTELS BECK BELZER CMU DOB DoD
FENTON GRAHAM HP HETZEL IEC IEEE ISO JJSC MERCURY 
MYERS NASA PART SEMATECH SIE WEBOPEDIA WIKIPEDIA 

 



 

417 

Bibliography 

[Ans92] ANSI X3,135-1992, American National Standard for Information Systems – Database 
Language – SQL, November 1992. 

[Bach94] James Bach: “Process Evolution in a Mad World”. In: Proceedings of the Seventh 
International Quality Week, (Software Research, San Francisco, CA), 1994. 

[BaGi06] G. Barnett, M. Gilbert: “Legacy renewal strategies“. Ovum Europe Ltd, 2006. 
[BB01] B. Boehm, V. Basili: “Software defect reduction top 10 list”. In: Computer. Nr. 1, 2001, 

S. 135–137. 
[BB07] B. Blakley: “Risk Management: Concepts and Frameworks”. In: Security and Risk 

Management Strategies – In-Depth Research Overview Nr.14936, Burton Group, 2007. 
[Be01] F. Belli: “Finite-State Testing and Analysis of Graphical User Interfaces”, Proc. 12th 

ISSRE, IEEE Computer Society Press, 2001, 34–43 
[Be90] Boris Beizer: “Software Testing Techniques (2/e)”. Van Nostrand Reinhold, 1990. 
[Be99] K. Beck: “Extreme Programming Explained: Embrace Change”. Reading 1999. 
[BeGü06] F. Belli, B. Güldali: “A holistic approach to test-driven model checking”. University 

of Paderborn, Dept. of Computer Science, Electrical Engin. and Mathematics. 
[BeWa05] D.J. Berndt, A. Watkins: “High Volume Software Testing using Genetic Algorithms“. 

College of Business Administration, University of South Florida. 
[BFG02] Benedikt, M., J. Freire, P. Godefroid, VeriWeb: “Automatically Testing Dynamic Web 

Site”. http://www2002.org/CDROM/alternate/654/, Bell Laboratories, Lucent Technologies. 
[BL71] L.A. Belady, M.M. Lehman: “Programming System Dynamics, or the Meta-Dynamics of 

Systems in Maintenance and Growth”. Technical report, IBM T.J. Watson Research Center, 
1971. 

[BL85] L.A. Belady, M.M. Lehman: “Program Evolution: Processes of Software Change”. 
Academic Press, 1985. 

[BlBuNa04] M. Blackburn, Robert Busser, Auron Nauman: “Why model-based test automation 
is different and what you should know to get started”. Software Productivity Consortium, 
2004. 

[Bo76] B. Boehm: “Software Engineering”. In: IEEE Trans. on Comp. Nr. 12, 1976, S. 1226–
1241. 

[Bo81] B. Boehm: “An experiment in small-scale application software engineering”. In: IEEE 
Transactions on Software Engineering. Nr. 5, 1981, S. 482–493. 

[BP84] V. Basili, B.T. Perricone: “Software errors and complexity: an empirical investigation”. 
In: Communications of the ACM. Nr. 1, Jg. 27, 1984, S. 42–52. 



418 Bibliography 

[Br06] Braspenning, N.C.W.M., van de Mortel-Fronczak, J.M., and Rooda, J.E., “A model-based 
integration and testing approach to reduce lead time in system development”. In: Proceed-
ings of the 2nd workshop on Model-Based Testing (MBT2006), March 25–26, Vienna, 
Austria, 2006. To appear in Electronic Notes in Theoretical Computer Science. 

[CDSS06] Marko Conrad, Heiko Dürr, Ingo Stürmer, Andy Schürr: “Graph Transformations for 
Model-Based Testing“. DaimlerChrysler AG & University of the Federal Armed Forces, 
Munich, 2006. 

[Ch92] Ram Chillarege: “Orthogonal Defect Classification – A Concept for In-Process Meas-
urements”. IEEE Transactions on Software Engineering. Vol. 18, No.11, November 1992. 

[Ch96] Ram Chillarege: “Orthogonal Defect Classification”. In: Michael R. Lyu (Hrsg.): Hand-
book of software reliability engineering. Los Alamitos, California u. a. 1996, S. 359–400. 

[CMM93] Paulk, M.C., B. Curtis, M.B. Chrissis, and C.V. Weber. “Capability Maturity Model 
for Software”, Version 1.1 (CMU/SEI-93-TR-024), Software Engineering Institute, Carne-
gie Mellon University, Pittsburgh, PA, February 1993. 

[Curtis95] Mark C. Paulk, Charles V. Weber, and Bill Curtis (ed): “The Capability Maturity 
Model: Guidelines for Improving the Software Process”. Addison-Wesley, 1995. 

[Da92] Davis, A. (1992): “Software Requirements: Objects, Functions and States”. Prentice-
Hall. 

[DeMarco82] Tom DeMarco: “Controlling Software Projects: Management, Measurement, and 
Estimation”. Prentice Hall, 1982. 

[DO07] Brian J. Dooley (2007): “Compliance Effects on Operations and Costs”. Cutter Consor-
tium, Enterprise Risk Management & Governance, Vol 4, No.6. 

[FAG76] Fagan, Michael E.: “Design and Code Inspections to Reduce Errors in Program Devel-
opment”. IBM Systems Journal, Vol. 15, No. 3, 1976. 

[Fi94] Finkelstein, A. (1994): “Requirements Engineering: a review and research agenda”. Proc 
1st Asian & Pacific Software Engineering Conference, IEEE CS Press. 

[FoLe95] Fogler and LeBlanc: “Strategies for Creative Problem Solving”. Prentice Hall, 1995. 
[GA07] John Gauntt: ”Sustainable Compliance – Industry regulation and the role of IT Govern-

ance”. White paper produced by Mercury & The Economist Intelligence Unit. Editor: Ga-
reth Lofthouse, 2006. 

[GI03] Henry Kamau Gichahi: “Rule-based Process Support for Enterprise Information Portal”. 
Master Thesis. Technische Universität Hamburg-Harburg – Arbeitsbereich Soft-
waresysteme, February 2003. 

[Good06] Peter Goodliffe: “To err is human – Dealing with the Inevitable – Error Conditions in 
Code”. No Starch press, 2006. 

[Hud05] Bryan Huddleston, Quest Software: “Understanding Data Growth and Best Methodolo-
gies for SQL Optimization with Toad(R) for Oracle Xpert”. White Paper, February 2005. 

[Humphrey89] Watts Humphrey: “Managing the Software Process, Addison-Wesley” 1989. 
[IEEE01] S.G. Eick, T.L. Graves, A.F. Karr, J.S. Marron, A. Mockus: “Does Code decay?”. 

Assessing the Evidence from Change Management Data, IEEE SE, Vol. 27, No.1, January 
2001. 

[IEEE90] IEEE Standard Glossary of Software Engineering Terminology. New York 1990. 
[ISTQB07] ISTQB® Certified Tester – Foundation Level Syllabus Version 2007 (Pages 38–40), 

April 12, 2007. 
[Ja95] Jackson, M. (1995): “Software Requirements & Specifications”. Addison-Wesley. 
[Ka04] C. Kaner, J.D, Ph.D. (2004): “The Ongoing Revolution in Software Testing”. Software 

Test & Performance Conference, December 8, 2004. 
[Kaner93] C. Kaner, J. Falk, H.Q. Nguyen: “Testing Computer Software (2/e)”. Van Nostrand 

Reinhold, 1993. 
[Kaner96] C. Kaner: “Software Negligence & Testing Coverage”. in Proceedings of STAR 96, 

(Software Quality Engineering, Jacksonville, FL), 1996. 
[KBP02] C. Kaner, J. Bach, B. Pettichord: “Lessons Learned in Software testing”. John Wiley & 

Sons, 2002. 



Bibliography 419 

[KeTr81] C.H. Kepner, Tregoe: “The New Rational Manager”. Princeton Research Press, Prince-
ton, NJ, 1981. 

[KS97] G. Kotonya, P. Sommerville: “Requirements Engineering: Processes and Techniques”. 
John Wiley & Sons, 1997. 

[LV01] S. Lauesen, O. Vinter: “Preventing requirement defects: An experiment in process im-
provement”. In: Requirements Engineering. Nr. I. Jg. 6. 2001, 37–50. 

[Lyu96] Michael R. Lyu (ed.): “Handbook of Software Reliability Engineering”. McGraw-Hill, 
1996. 

[Maier79] Maier, D., Mendelzon, A.O., and Sagiv, Y. [1979]. “Testing Implications of Data 
Dependencies”, ACM TODS 4:4, December 1979, 455–469. 

[Maier80] Maier, D., Mendelzon, A.O., Sadri, F., Ullman, J.D. [1980]. “Adequacy of Decompo-
sitions of Relational Databases”. Journal of Computer and System Sciences 21:3, 368–379, 
December 1980. 

[Maier81] Maier, D., Sagiv, Y., and Yannakakis, M. [1981]. “On the Complexity of Testing 
Implications of Functional and Join Dependencies”. JACM 28:4, October 1981. 

[Maier83] Maier, D. [1980]. “The Theory of Relational Databases”, Computer Science Press, 
1983. 

[Marick95] Brian Marick: “The Craft of Software Testing”. Prentice Hall, 1995. 
[Marick97] Brian Marick: “Classic Testing Mistakes”. in Proceedings of STAR 97, (Software 

Quality Engineering, Jacksonville FL), 1997. 
[Mosteller77] Frederick Mosteller, John W. Tukey: “Data Analysis and Regression”. Addison-

Wesley, 1977. 
[MUBL07] Mark Utting, Bruno Legeard: “Practical Model-based testing – A tools approach”, 

Morgan Kaufmann Publishers, 2007. 
[Musa87] J. Musa, A. Iannino, K. Okumoto: “Software Reliability: Measurement, Prediction”. 

McGraw-Hill, 1987. 
[NISS113] Stephen G. Eick, P. Schuster, A. Mockus, Todd L. Graves, Alan F. Karr: „Visualizing 

Software Changes“. National Institute of Statistical Sciences, Technical Report Number 
113, December 2000. www.niss.org. 

[Pur07] Jonathan Purdy: “Data Grids and Service-Oriented Architecture” - An ORACLETM 
white paper. ORACLE Corporation, updated May 2007. 

[RAD02] Radice, Ronald A., “High Quality Low Cost Software Inspections”. Paradoxicon 
Publishing, 2002, ISBN 0-9645913-1-3. 

[RUS91] Russell, Glen W., “Experience with Inspection in Ultra-large-Scale Developments”. 
IEEE Software, January 1991. 

[UPL06] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-based testing. Techni-
cal Report 04/2006, Computer Science Department, The University of Waikato, April 2006. 
hthttp://www.cs.waikato.ac.nz/pubs/wp. 

[Van06] Glenn Vanderburg: “Buried Treasure” article in „No Fluff, Just Stuff Anthology“, 
compiled by Neal Ford. The 2006 Edition. ISBN 0-9776166-6-5. 

[Wa06] Holger Wagner: “Das chronische Problem der Anforderungsanalyse und die Frage: 
Fehler vermeiden oder früh entdecken?”. Oral Avci. 



 

421 

Links 

ASTQB® 

American Software Testing Qualifications Board http://www.astqb.org/ 

BASEL II 

American Bankers Association 
www.snb.ch 

British Bankers Association 
www.bba.org.uk 

Bank for International Settlements 
www.bis.org/bcbs/ 

Committee of European Banking Supervisors 
www.c-ebs.orq 

Swiss Federal Banking Commission 
www.ebk.ch 

European Central Bank 
www.ecb.int 

European Banking Federation 
www.fbe.be 

Federal Preserve 
www.federalreserve.gov 

Financial Services Authority 
www.fsa.gov.uk 



422 Links 

International Accounting Standards Board 
www.iasb.org 

International Federation of Accountants 
www.ifac.org 

The Institute of International Finance 
www.iif.com 

International Organization of Securities Commissions 
www.iosco.org 

International Swaps and Derivatives Association 
www.isda.org 

London Investment Banking 
www.liba.org.uk 

Office of the Comptroller of the Currency 
www.occ.treas.gov 

Swiss Bankers Association 
www.swissbanking.org 

Swiss National Bank 
www.snb.ch 

Conformity Assessment 

http://www.esi.es/ 
http://www.iso.org/iso/en/ISOOnline.frontpage 
http://www.wssn.net/WSSN/ 
http://www.dacs.dtic.mil/techs/roispi2/ 

ISO 

ISO Management Systems 
http://www.iso.org/iso/iso-management-systems 

ISO 9001–2000 
http://www.praxiom.com/iso-9001.htm 

ISO IEC 27001 2005 
http://www.praxiom.com/iso-27001.htm 

ISO IEC 27002 2005 
http://www.praxiom.com/iso-17799-2005.htm 



Links 423 

ISO IEC 90003 2004 
http://www.praxiom.com/iso-90003.htm 

ISO 829-1998 - IEEE standard for software test documentation 
http://standards.ieee.org/reading/ieee/std_public/description/se/ 
829-1998_desc.html 

ISTQB® 

International Software Testing Qualifications Board 
http://www.istqb.org/ 

Mainframe Migration Alliance 

www.mainframemigration.org 

METS Method 

Presentation 
http://www.gregpaskal.com/mets/Presentation/METS_Presentation_p01.htm 

Hands on 
http://www.gregpaskal.com/mets/Presentation/METS_Web_Testing_p01.htm 

Worksheets 
http://www.gregpaskal.com/mets/Worksheets/METS_Worksheet_PTG.htm 

ODC Method 

http://www.chillarege.com/odc/odcbackground.html 

SARBANES-OXLEY 

Complying with Sarbanes-Oxley: Addressing the IT issues and risks 
http://www.cutter.com 

Sarbanes-Oxley and its impact on IT Outsourcing by Chuck Vermillion, CEO, 
OneNeck IT Services. 
http://www.oneneck.com 

SOX and IT Network Instruments white paper published in 2006 
http://www.networkinstruments.com 



424 Links 

SOA – Design, Governance, Implementation & Security 

Understanding SOA Security Design and Implementation (RedBook) 
http://www.redbooks.ibm.com/abstracts/sg247310.html?Open 

Service-Oriented Architecture 
http://www.oracle.com/technologies/soa/index.html 

Open SOA Collaboration Project 
http://www.osoa.org 

Static Analyzers 

Astree (CNRS, France) 
http://www.astree.ens.fr/• CGS (C Global Surveyor, NASA ARC) 
http://ase.arc.nasa.gov/brat/cgs/ 

CheckMate 
http://www.bluestone-sw.com/ 

C-Kit (Bell Labs) 
http://cm.bell-labs.com/cm/cs/what/smlnj/doc/ckit 

CodeSonar (Grammatech)   
http://www.grammatech.com/products/codesonar/overview.htm 

CodeSurfer 
http://www.grammatech.com/products/codesurfer 

Coverity 
http://coverity.com/ 

ESC (Compaq/HP)  
http://research.compaq.com/SRC/esc/EscModula3.htm 

KlocWork 
http://klocwork.com/ 

LC-Lint 
http://larch-www.lcs.mit.edu:8001/larch/lclint.htm 

Orion (Bell Labs) 
http://cm.bell-labs.com/cm/cs/what/orion/ 

Parasoft CodeWizard 
http://www.parasoft.com/ 

Plum Hall SQS 
http://www.plumhall.com/ 



Links 425 

PolySpace 
http://www.polyspace.com/ 

PREfix and PREfast (Microsoft) 
http://research.microsoft.com/users/jpincus/icsm.ppt 

Purify (Rational) 
http://www.rational.com/products/pqc/index.jsp 

QA C 
http://www.programmingresearch.com/ 

Safer C (Oakwood Computing) 
http://www.oakcomp.co.uk/SCT_About.html 

Uno (Bell Labs) 
http://spinroot.com/uno/ 

Vault (MicroSoft) 
http://research.microsoft.com/vault/ 

 

 
http://www.hp.com/ 

 
http://www.ibm.com/us/ 

 http://www.oracle.com/ 

 
http://www.sap.com/ 

 



 

427 

Index 

3 

3VL  265 

A 

Agile Model-Driven Development  373 
Agile Software Development  43 
analysis  128, 162, 203, 303, 360, 361, 

363–379, 381–398, 401–419 
analysis tool  233, 285, 286, 290 
application integration test  58, 373 
artifact management  356 
attributes  121, 143, 172, 212, 240, 271, 

303, 347 
automated test  92, 178, 203, 217 
AWR  267 

B 

backward and lateral compatibility  10, 11, 
117, 386 

backward compatibility  117, 241, 251, 
255, 356, 382 

backward compatibility  44 
banking platform renewal  11 
Basel II  4, 110, 133, 196, 264, 314, 329, 

330, 333, 337, 421 
binary decision diagrams  373 
bi-temporality  134, 135, 246, 271 
bi-temporality issues  271 
bottleneck  119, 232, 256, 270 
bounded model checking  373 
BTO  80 
building blocks  121 
Business and IT  8, 110, 159, 271, 305 

business case  8, 21, 28, 182, 373, 384 
business data  31, 123, 130–134, 263, 273 
business data categorization  123 
business data growth  126 
business data life cycle  134 
business pressure  51, 109, 110, 182,  

248, 288 
business process  9, 77, 80, 104–107,  

109–126, 168, 246, 336, 366 
business requirement  14, 44, 246–250, 

326, 349, 358 
business rules  19, 32, 39, 85, 109–123, 

133, 271 
business rules management  35, 36, 133, 

271, 373 
business testing  57, 97, 373 

C 

calendar  128, 137–141, 193, 240, 246, 
270–273 

causal chain analysis  339, 373 
causal chain examples  248 
causal chains explained  24, 244 
causality violation  138, 272, 273 
cause-effect  57, 162, 238, 353, 373, 385 
causes  186, 205, 235–253, 261, 274,  

287, 340 
CBL  56, 116, 143, 170, 265 
CCN  245 
central reporting  194, 311–315 
characteristics of tables  146 
checklists  4, 5, 353 
CIT  59, 127, 161, 166, 174, 263, 312 
classification  192, 236–241, 327, 374, 

376, 418 



428 Index 

Classification-Tree Method  374 
CMMI  26, 65, 196, 330, 338 
COA  332 
COBIT  190, 191, 330, 334 
code review  266, 353 
commercial SA tools  69, 230, 231 
commercial testing tools  232 
complex network  114 
complex systems  18, 41, 120, 343 
complex testing  12 
complexity  2, 12–14, 118, 235, 289–291, 

326–328 
compliance  4, 19, 104, 164, 190, 198, 

210–212, 328–338 
compliance testing  190, 374, 386 
component based software engineering  

373 
component integration test  see CIT 
component life cycle  374 
component test  see CT 
computation tree logic  374 
Computer-aided Software Testing  373 
Computer-aided Verification  373 
configuration management  97, 206 
conflicting requirements  249 
conformity assessment  27, 422 
congestion  256, 278, 280–282 
constraints  34, 118, 133, 182, 193,  

260, 339 
construction and analysis of systems  378 
content management  374 
core processes  159, 205 
core testing processes  14, 159, 217 
costs  7–16, 95–107, 109–111, 194–198, 

287, 297–299, 326, 335 
costs overrun  298 
COTS  109, 284, 286 
crash  63, 179 
CRC  279, 280 
create component test cases  355 
crisis management  341 
critical design review  41, 373 
critical technical parameters  see CTP 
CT  57–59, 87, 127, 161, 174, 179, 312 
CTA  298 
CTP  153, 154, 190 

D 

danger areas  339 
dashboard  28, 229, 230, 326 
data and time aspects  121, 270 
data availability  119, 246, 258, 339,  

340, 374 

data definition  388 
data delivery  187, 246, 251–259 
data delivery problems  306 
data life cycle  31, 134, 273 
data load  161 
data loss  64, 165 
data processing  149, 246, 258, 374 
data profile  168, 209, 347 
data pump  268, 269 
data quality  33, 133, 246, 339, 340, 374 
data space  135–139, 246, 259, 270, 273 
data state  271 
data structure  143, 148, 240–254, 263, 

269, 374, 411 
data transfer  142, 269 
data value  98, 166, 246, 264, 265,  

339, 374 
database  9, 98, 116, 130, 143–152, 256, 

261–274 
database testing  262, 270, 273 
data-dependent testing  262, 293 
DB2  116, 151, 232, 262 
deadlock  274, 275 
defect  13–15, 19, 20, 23, 24, 27, 29,  

180–190, 193, 235–241, 243–245, 247, 
260, 261, 263, 294 

defect classification  236–238, 376, 418 
defect classification schemes  236 
delivery plan  128, 270 
dependency  145, 265, 374, 375 
design  20–23, 41–47, 143, 162–170,  

172–174, 176 
design verification  23, 49, 69, 70 
development  2–4, 7–10, 12–16, 19, 20, 

22, 40–47, 109–111 
DHCP  280, 281 
different views of testing  55, 56, 305 
dimension  89, 135, 143, 144, 257, 298, 

305, 312 
distributed testing  185, 192–194, 201, 

212, 225 
document generator  228, 229 
document management  196, 250 
documentation  22, 196–198, 228, 237, 

240, 241 
DUA  115 
dynamic test methods  57, 59 
dysfunction  185, 186, 188, 258, 279 

E 

earned value analysis  374 
ECA  32 
effect analysis  375 



Index 429 

elicitation  17, 18 
end-user applications  374 
engineering  41, 97, 110, 237, 238, 241 
environmental changes  27 
environmental factors  51, 109, 110, 134, 

156, 243 
EUA  332 
EVA  182, 195, 297–299 
event  263, 270, 274, 276, 280–282,  

285, 296 
event recorder service  374 
explicit model checking  374 
exploratory testing  46, 56, 71, 72 
export  152, 212, 222, 267–269, 309, 322 
extended random regression testing   

374, 392 
extended random regression testing  76 
extended static checker  230, 374 
Extensible Markup Language  379 

F 

failure  15, 23, 25, 26, 38, 153, 236,  
274, 278 

failure mode  375 
Failure Mode Effect Analysis  375 
fault  15, 38, 68, 109, 138, 236, 238, 239, 

243, 246, 247, 274 
FDs  144, 149, 150 
FFA  105 
fishbone diagram  242, 243, 395 
fix  184, 240, 274, 275, 287, 290, 295 
Formal Methods in Computer-Aided 

Design  375 
frequent causes of problems  274 
Front & Factory  125, 375 
functional decomposition  167, 355 
functional testing  59, 60, 62, 100,  

163, 204 
functionality  30, 41, 165–168, 212, 271, 

280, 289–291 
functionality check  354 
functions  17, 39, 103–105, 117, 213,  

256, 279 

G 

global testing  13, 99, 212 

H 

handling 137, 180, 185, 246, 250, 296, 301 
hardware  12, 109, 112–114, 117, 240, 

247, 262, 279 

High-availability (HA) Solutions  120 
hot spot  256, 339, 340 
HP  77, 102, 176, 192, 211, 230, 330 
human factor  8, 196 

I 

IBM  10, 79, 112, 123, 143, 233, 262 
identifying problem sources  244 
IEEE  38, 67, 164, 236–238, 287, 314, 351 
IIT  80, 103, 127, 152, 166, 174, 179 
impact of international regulations   

210, 335 
implementation  176, 221, 249, 305, 311, 

334, 341 
implementing TPR  304 
in house development  375 
incident  29, 118, 183–186, 188, 241, 243, 

244, 247, 275, 286, 339, 341 
Incident and Problem Management  183, 

184, 375 
Incident Tracking and Channeling  see ITC 
independent expert review  375 
information  28–30, 32–35, 100–102, 110, 

121, 134, 139, 142–144, 146, 209–211 
information channeling  199–201, 203 
information life cycle  30 
information security management  375 
information security management maturity 

model  375 
information technology  10, 29, 43, 192, 

375, 394, 397 
infrastructure  12, 26, 112–114, 118, 119, 

159, 161, 246, 247, 278 
inspections  3, 57, 64, 65, 418, 419 
instability  275 
integrated product and process 

development  375, 394 
integrated test platform  see ITP 
integration  11, 80, 109, 112, 153 
integration test  41, 58 
interface  27, 78–80, 110, 114, 214,  

217, 276 
international regulations  210, 335 
investigation of a technical problem   

293, 355 
IPC Management  339, 341 
IPM  183 
Ishikawa Diagram  207, 242, 244, 385, 395 
issue  10, 119, 205, 246, 268–271, 285, 

323, 336, 338, 339 
ISTQB  59, 60, 204 
IT specifications  4, 168, 173 
IT technology  1, 109, 111, 337 



430 Index 

IT testing  57, 334, 375, 382 
ITC  185–188, 193, 195, 236, 309, 311 
iterative development  3, 46 
ITP  96, 200, 211–214, 217, 219, 303,  

306, 333 

J 

Java Modeling Language  375 
Java Virtual Machine  276 
job control system  79, 147, 246, 375 
JVM  276 

K 

Kepner-Tregoe  242 
key indicators  270 
key process area  375 
know how  290, 296, 353, 375 
knowledge  4, 9, 15, 16, 35, 39, 127,  

135–138, 140, 170, 202, 204, 211–213, 
219, 230, 241, 261, 271, 273, 295, 301, 
361, 406, 435 

KPI  230, 341 
KPP  154 

L 

lateral compatibility  10, 11, 117, 241, 356, 
386, 396 

LDG  180 
legacy requirements  376 
legacy world  246, 414 
lessons learned  241, 261, 284, 285,  

361, 418 
linear temporal logic  376 
logic  33, 65, 78, 109, 110, 121–123,  

137–139, 143, 145–147, 150, 249, 251, 
255, 256, 294 

logical data model  246, 375 
logical model  249, 255, 376 
LST  278 

M 

mainframe  9, 103, 112, 116, 247, 332 
Major Automated Information Systems  

376 
master data management  33, 34, 121, 122, 

376, 404 
MB3T  376 
MBD  83, 84 
MBT  21, 83, 85, 87–92, 96, 98, 100, 101, 

105, 106, 118, 214 

MDM  121–123, 131 
memory leak  76, 231, 233, 268, 274,  

276–278 
Mercury Interactive  24, 104 
Message Sequence Chart  376, 397 
metadata  33, 77, 123–125, 152, 269, 274 
METS  72, 73 
Microsoft  64, 83, 193, 231, 283, 368–373 
Minimal Essential Test Strategy  72, 376 
missing requirements  59, 274 
mission impossible  28 
MIT  12, 57, 162, 174, 272, 312 
model checking  91, 93, 95 
Model-Based Integration and Testing  93, 

376, 418 
Model-Based Testing  see MBT 
Modeling & Simulation  376 
module integration test  376 
modules  60, 69, 204, 221, 222, 224, 225, 

284–286, 289, 308 
MOE  153, 303 
MOP  153, 303 
multibyte  269 
multi-layered test domain  109, 117 
multiple causes  64, 240, 253 
multithreading  269, 377, 406 
multi-tier architecture  116, 398 

N 

neighbor processes  159, 205 
network  79, 114–116, 157–159, 193–195, 

244–246, 277–282, 343 
network problems  274, 278 
network-centric applications  277, 281 
network-centric systems  112, 235, 278 
new strategic platform  109, 117, 143, 246, 

247, 376 
non-conformity  398 
norms  197, 198, 246, 376, 386 
null value  264 

O 

ODC  162, 237–241, 244, 356 
ODC triggers  356 
Off-shoring  107 
old and new worlds  9 
operating system  12, 79, 109, 112, 151, 

262, 285 
ORACLE  84, 94, 116, 139, 151, 256, 

262–269 
ORACLE objects  269 
ORD  153, 256 



Index 431 

Orthogonal Defect Classification  238, 
376, 418 

other time aspects  139 
outdated tests  27 
outsourcing  14, 107, 175, 195, 323, 338 

P 

package  205–207, 209, 246, 283, 284, 
301, 353 

package build  205–207, 246, 250, 274, 
301, 353, 376 

package installation  209, 246, 250, 376 
para-functional test  62 
parameter  152–154, 266–268, 284, 295, 

303, 323, 356 
Partial Order Reduction  376 
people  1–3, 9, 35, 50, 106, 200, 339, 343 
perception  340 
performance  11, 70, 72, 112, 118–120, 

153, 267, 289 
performance test  58, 63, 162, 234, 369, 

377, 400 
performance testing  62, 63, 72 
personal software process  377 
physical data model  246, 376 
physical model  51, 249, 260, 376 
PL/SQL  256, 262, 264, 265, 268, 269 
planned testing  71, 413 
Practical Software Measurement  376 
practice  20, 194, 202, 244, 275, 289, 329 
preconditions  62, 164, 383, 386, 392, 413 
problem  8–10, 18–20, 22, 23, 26, 119, 

150, 270–276, 293–296, 339–342 
problem source  244, 245, 247, 339, 376 
procedure  33–35, 128, 151, 241–243, 284, 

335–337, 351 
process  155–160, 162, 165, 182–187, 190, 

192–198, 202–207, 324–326, 339, 351 
process design parameters  356 
process network  155, 157–159, 378 
processing  12, 252, 254–259, 262, 271, 

273, 276, 294 
product design review  41, 376 
product life cycle  20, 303, 376, 394,  

402, 412 
project progress measurement  297 
project status  50, 53, 204, 220, 348 
PSO  45, 50, 182, 183, 306, 313 

Q 

QC  see TD/QC 
QTP  80, 98, 100, 163, 180, 233, 368 

quality assurance  72, 104, 219, 377, 397, 
403, 404 

Quality Center  see TD/QC 
quality control  207, 363, 404 
queue  119, 120 

R 

rapid testing  72 
RDB  74, 148, 265 
RDBMS  151 
RDBS  264 
recommendations  22, 52, 66, 81, 132,  

202, 284 
recommended lectures  338 
regression test  27, 73, 105, 340, 374 
relational database  10, 116, 148, 151, 264, 

265, 269 
release  51, 52, 56, 209, 301, 306, 314 
release flash  29, 105, 163, 179, 201,  

209, 350 
requirements  14–24, 28, 38, 117,  

221–226, 263, 274 
requirements definition  24, 182, 358 
resources  12, 23, 97, 101, 156, 289, 349 
reviews  52, 64, 65, 67, 364, 376, 407 
risk factors  25, 289, 324, 327 
risk management  160, 210, 323–325, 327, 

328, 333 
risk-based testing  210, 325 
risks  21, 22, 182, 210, 289, 339, 341 
ROE  106 
ROI  28, 64, 106, 297 
RQM  214 
rules  25, 32–37, 39, 133, 134, 271,  

314, 329 

S 

SAP  10, 26, 109, 214 
Sarbanes-Oxley  see SOX 
Sarbanes-Oxley Act  see SOX 
Satisfiability Checking  377 
SBA  115 
scalability issues  101, 119, 120 
scenario testing  76, 271 
scheduling  35, 180, 202, 225, 275,  

299, 300 
scope  8, 182, 210, 324, 329 
script  96, 97, 99–102, 224, 407–409 
security testing  63 
Service-Oriented Architecture  see SOA 
setting  27, 162, 221, 312, 327, 330, 334 
simultaneous multithreading  377 



432 Index 

single points of failure  120 
SIT  80 
situational analysis  71, 242 
skills improvement  4, 202 
SLAs  7, 341 
slow down  256 
SOA  8–10, 12, 13, 77–81, 109, 112,  

118–122, 234 
soa testing  70, 77 
SOAP  112, 121, 233 
software aging  287–289 
software change  377 
software component  42, 49, 97, 98,  

116–118, 339–341 
Software Cost Reduction  377 
software development methods  2, 4,  

40, 43 
software engineering  2, 28, 238, 248, 290, 

373, 398 
software installation  353 
software package build  205–207, 250, 

274, 284, 353 
software reliability  38, 39, 300 
Software Requirements Specification   

378, 407 
Software Test Documentation  351, 423 
Software-Intensive System  377 
solution asset management  377 
solution domain  138, 185, 214, 273, 283, 

312, 350 
solution life cycle  82, 109, 163, 333, 377 
SOX  100, 110, 329–335, 337, 338, 363, 

364, 366 
Specification and Description Language  

377, 408 
specification tables  146, 148 
specifications  7, 27, 148, 205, 357,  

360, 418 
specs  see specifications 
SQA  219 
SQL  128, 130, 143, 206, 262, 264–269 
SQL optimization challenges  262, 265 
SQL tuning sets  266, 267 
SSC  58 
staged delivery  47, 48 
stakeholder  22, 182, 211, 300, 384,  

389, 394 
standard process  389, 401, 409, 415 
standard software customization  378 
standards  25, 27, 52, 53, 55, 56, 246, 251, 

330, 333, 335 
standards and regulations  386 
statement of work  409 
static analysis  57, 68, 230, 231, 410, 411 

static test methods  57, 64 
Statistical Modeling and Estimation of 

Reliability  377 
STE  12, 57, 72, 104, 152, 263, 312 
strategy elaboration  160 
structural testing  59, 60, 385 
support processes  159, 195, 196 
sustainment environment  411 
SUT  31, 85, 90, 95, 180–183, 305, 340 
SW package build  283 
Symbolic Model Checking  377 
Symbolic Model Verifier  377 
symptom  133, 236, 240, 247, 261, 282, 

353, 361 
synchronization  43, 96, 139, 151, 277, 306 
system design review  41, 377 
system test  12, 72, 128, 263, 352, 356, 

378, 382, 411 
systems engineering  411 

T 

TA  see test automation 
table  90, 101, 143, 144, 146–152, 252, 

256, 260, 261 
Table-Driven Systems  143, 150, 166, 270 
tablespace  151, 152, 272 
tabular representation of data  143 
target profile  411 
TC  see test case 
TC archiving  178 
TC design  164, 166–168 
TC implementation  176 
TC review  173, 174 
TCs  see test case 
TD administration  219, 304 
TD modules  222, 225 
TD/QC  174, 217, 219–221, 228, 304, 

308–315, 334 
TDM  126–128, 131–133, 263 
TDS  74, 95, 143, 145, 146, 150, 151,  

270, 277 
TDS Testing  150 
technical data package  401, 412 
technical measurement  300, 303, 412 
technical process  246, 250, 258–260, 270, 

294, 295 
technical requirements  18, 74, 153, 246, 

359, 412 
technical resource  81, 97, 246, 378 
technology  9–11, 21, 43, 77, 90, 92, 104 
templates  4, 5, 347 
TERADATA  33, 263 
Test and Evaluation  160 



Index 433 

Test and Evaluation Master Plan  378 
test artifacts  29–31, 163, 164, 176,  

212–214 
test automation  91, 95, 97–100, 102,  

104–107, 378, 417 
test automation framework  100, 102, 378 
test case  164, 173, 180, 224, 304, 312, 

334, 355 
test case conformity  359 
test case management  356, 378 
test case review  175, 360 
test control notation  87, 368, 379, 397 
test data management  75, 81, 125, 126, 

209, 356, 378 
test data platform  75, 128, 130, 131,  

161, 378 
test data volume  161, 263 
Test Director  see TD/QC 
Test Domain  109, 117, 118, 172, 201, 

244, 246 
test findings  261, 361 
Test Generator Tool  378 
test monitoring  303 
test neighbor processes  159, 205 
test objectives definition  162 
test perimeter  244–247, 261, 339, 340 
test planning  71, 161, 356, 413 
test platform management  193, 214, 378 
test procedure  160, 351, 352, 413 
test process  158–160, 195, 196, 202–204, 

356, 378 
test process landscape  159 
Test Process Network  8, 158, 159, 378 
test progress measurement  305 
test progress prediction  306, 307 
Test Progress Reporting  299, 304, 308, 

313–315, 378 
test results analysis  181 
test runs  180, 181, 191, 213, 225, 309 
test set  178, 179, 182, 223, 225, 320,  

379, 382 
test set build  178 
test strategy elaboration  160 
test suite  168, 169, 234 
test suite management  see TSM 
test support processes  196 
test technology  82, 172 
TestDirector  217, 220, 232, 310, 312, 313, 

315, 316, 318–322, 333, 369 
TestDirector for Quality Center  see 

TestDirector 
Test-driven Development  378, 413 
testing challenges  7, 184 
Testing Network  155, 194, 211, 217, 378 

testing predictability  31, 32 
Testing Value Chain  4, 50–52, 106,  

181, 182, 379 
TestLab  176, 180, 203, 222, 223, 225, 

304, 334, 414 
TestPlan  176, 177, 203, 222–225,  

304, 334 
time  29, 133–144, 246, 256, 259, 265, 

270–273, 276 
time lag  273 
time management  72, 139, 246,  

256, 378 
timing  76, 102, 107, 135, 180,  

236, 240 
tools  211, 214, 230–232, 234, 367,  

371, 372 
Tools and Algorithms  378 
top-down process modelling  351 
topology  109, 116 
TPM  193, 194, 215–217 
TPN  158, 159 
TPR  see Test Progress Reporting 
traceability  185, 206, 212, 225, 226 
training  202–204, 216 
transaction  121, 125, 360, 364, 376,  

404, 414 
transient tables and data  148 
transportable table space  379 
TSM  75 
TTCN-3  87, 368 
TTS  152 
TVC  50–52, 182 
TZs  142 

U 

UAT  57, 133, 161, 174, 179, 312 
unit test  41, 58, 71, 76, 162 
usage of tables  146 

V 

Validation and Verification  23, 42,  
48, 379 

value of testing  14 
version control  124, 240, 290, 415 
V-Model  16, 41, 42, 44, 47–49,  

55, 56 
VPD  256 

W 

waiting time  246 
waits  274 



434 Index 

waterfall and agile methods compared   
46 

well-designed service  121 
work product  387, 389, 401, 402, 405, 415 
workflow  219, 221, 225, 227, 228,  

379, 414 
wrong parameters  274, 284 

X 

xCS  146, 379 

Z 

z/OS  112, 113, 127, 379 

 



 

435 

Acknowledgements 

 
I would like to thank the many friends and colleagues from whom I received valu-
able ideas, and for asking interesting questions about testing in a complex world, 
which motivated me to write this book. A special mention goes to the LEIRIOS 
team, which familiarized me with model-based testing: Laurent Py, Bruno 
Legeard, Joseph Narings, and Eddy Bernard, at www.leirios.com. 

I am grateful to the reviewers of the original text for their helpful comments 
and suggestions. 

Special thanks for granting me the permission to reprint illustrations goes to the 
following persons and institutions: 

• Laura Gould, www.elsevier.com 
• Allison Fletcher, www.gartner.com 
• Edith Krieg, Lukas Houck, and Juergen Pilz, Hewlett-Packard, www.hp.com 
• Robert K. Kaelin, Senior Partner, COO, MTG Management Consultants, 

www.mtgmc.com 
• Vera Ahlborn and Christian Rodatus, Teradata GmbH, www.teradata.com 
• Almuth-Ines Spiess and Alfred Beer, TÜV SÜD Rail GmbH,   

www.tuev-sued.de/rail 
• Bob Kimmel, USGS, www.usgs.gov 

Permission to reprint illustrations: 

Figures 2.2, 4.2 courtesy of Gartner Group 
Figure 2.5 courtesy of NASA 
Figures 2.7, 7.25, 7.26, 7.27 courtesy of NIST 
Figure 2.9 courtesy of USIGS 
Figure 2.21 courtesy of TÜV SÜD Rail GmbH 
Figures 3.5, 3.7 courtesy of Daimler Benz 
Figures 3.6, 3.8, 3.9 courtesy of Elsevier 
Figure 4.8, 7.20 courtesy of Teradata Corporation 
Figure 4.27 courtesy of ORACLE Corp. 



436 Acknowledgements 

Figures 5.27, 5.28, 6.7, 6.8, 6.9, 9.5, Table 6.1, courtesy of Hewlett-Packard De-
velopment Company, L.P. 

Figures 9.1, 9.3 courtesy of Burton Group 
Figures 9.6 courtesy of MTG Management Consultants 
Figures 9.7, Table 9.1 courtesy of Cutter Consortium 

Finally, I would like to thank my family for the encouragement and advice pro-
vided along the years, during the writing of this book. 

 



 

437 

Copyrights and Trademarks 

 
Mercury Interactive, Mercury, the Mercury logo, Mercury Quality Center, Mer-
cury Application Delivery Foundation, Mercury Functional Testing, Mercury 
Business Process Testing, Application Delivery Dashboard, Performance Center, 
LoadRunner, Change Impact Testing, WinRunner, Quick Test Professional and 
Mercury TestDirector for Quality Center are trademarks or registered trademarks 
of Hewlett-Packard Development Company, L.P. in the United States and/or other 
foreign countries. 

IBM, DB2, DB2 Universal Database, OS/2, Parallel Sysplex, MVS/ESA, AIX, 
S/390, AS/400, OS/390, OS/400, iSeries, pSeries, xSeries, zSeries, z/OS, AFP, 
Intelligent Miner, WebSphere, Netfinity, Tivoli, and Informix are trademarks or 
registered trademarks of IBM Corporation in the United States and/or other coun-
tries. 

HTML, XML, XHTML and W3C are trademarks or registered trademarks of 
W3C®, World Wide Web Consortium, Massachusetts Institute of Technology. 

Java is a registered trademark of Sun Microsystems, Inc. 
JavaScript is a registered trademark of Sun Microsystems, Inc., used under license 
for technology invented and implemented by Netscape. 

NCR and Teradata are trademarks or registered trademarks of NCR Corporation in 
the United States and other countries. 

Microsoft Windows is a registered trademark of Microsoft Corporation in the 
United States and other countries. 

“Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle 
Corporation and/or its affiliates.” 
Oracle® database was developed by Oracle. 



438 Copyrights and Trademarks 

SAP, R/3, mySAP, mySAP.com, xApps, xApp, and other SAP products and ser-
vices mentioned herein as well as their respective logos are trademarks or regis-
tered trademarks of SAP AG in Germany and in several other countries all over 
the world. National product specifications may vary. 

UNIX®, X/Open, OSF/1, and Motif are registered trademarks of X/Open Com-
pany Ltd. 

All other company, brand, and product names are marks of their respective 
holder. 

This publication is designed to provide accurate information in regard to the 
subject matter covered. 

No portion of this book, nor any of its contents, may be reproduced without the 
written consent of the publisher. 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




