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Preface

This is a book about Software for Data Analysis: using computer software
to extract information from some source of data by organizing, visualizing,
modeling, or performing any other relevant computation on the data. We
all seem to be swimming in oceans of data in the modern world, and tasks
ranging from scientific research to managing a business require us to extract
meaningful information from the data using computer software.

This book is aimed at those who need to select, modify, and create
software to explore data. In a word, programming. Our programming will
center on the R system. R is an open-source software project widely used
for computing with data and giving users a huge base of techniques. Hence,
Programming with R.

R provides a general language for interactive computations, supported by
techniques for data organization, graphics, numerical computations, model-
fitting, simulation, and many other tasks. The core system itself is greatly
supplemented and enriched by a huge and rapidly growing collection of soft-
ware packages built on R and, like R, largely implemented as open-source
software. Furthermore, R is designed to encourage learning and develop-
ing, with easy starting mechanisms for programming and also techniques
to help you move on to more serious applications. The complete picture—
the R system, the language, the available packages, and the programming
environment—constitutes an unmatched resource for computing with data.

At the same time, the “with” word in Programming with R is impor-
tant. No software system is sufficient for exploring data, and we emphasize
interfaces between systems to take advantage of their respective strengths.

Is it worth taking time to develop or extend your skills in such program-
ming?

the right questions and providing trustworthy answers to them are the key
to analyzing data, and the twin principles that will guide us.

v

Yes, because the investment can pay off both in the ability to ask
questions and in the trust you can have in the answers. Exploring data with
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What’s in the book?

A sequence of chapters in the book takes the reader on successive steps
from user to programmer to contributor, in the gradual progress that R

encourages. Specifically: using R; simple programming; packages; classes
and methods; inter-system interfaces (Chapters 2; 3; 4; 9 and 10; 11 and
12). The order reflects a natural progression, but the chapters are largely
independent, with many cross references to encourage browsing.

Other chapters explore computational techniques needed at all stages:
basic computations; graphics; computing with text (Chapters 6; 7; 8).
Lastly, a chapter (13) discusses how R works and the appendix covers some
topics in the history of the language.

Woven throughout are a number of reasonably serious examples, ranging
from a few paragraphs to several pages, some of them continued elsewhere
as they illustrate different techniques. See “Examples” in the index. I
encourage you to explore these as leisurely as time permits, thinking about
how the computations evolve, and how you would approach these or similar
examples.

The book has a companion R package, SoDA, obtainable from the main
CRAN repository, as described in Chapter 4. A number of the functions and
classes developed in the book are included in the package. The package
also contains code for most of the examples; see the documentation for
"Examples" in the package.

Even at five hundred pages, the book can only cover a fraction of the
relevant topics, and some of those receive a pretty condensed treatment.
Spending time alternately on reading, thinking, and interactive computation
will help clarify much of the discussion, I hope. Also, the final word is with
the online documentation and especially with the software; a substantial
benefit of open-source software is the ability to drill down and see what’s
really happening.

Who should read this book?

I’ve written this book with three overlapping groups of readers generally
in mind.

First, “data analysts”; that is, anyone with an interest in exploring data,
especially in serious scientific studies. This includes statisticians, certainly,
but increasingly others in a wide range of disciplines where data-rich studies
now require such exploration. Helping to enable exploration is our mission
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here. I hope and expect that you will find that working with R and re-
lated software enhances your ability to learn from the data relevant to your
interests.

If you have not used R or S-Plus R© before, you should precede this book
(or at least supplement it) with a more basic presentation. There are a
number of books and an even larger number of Web sites. Try searching
with a combination of “introduction” or “introductory” along with “R”.
Books by W. John Braun and Duncan J. Murdoch [2], Michael Crawley
[11], Peter Dalgaard [12], and John Verzani [24], among others, are general
introductions (both to R and to statistics). Other books and Web sites are
beginning to appear that introduce R or S-Plus with a particular area of
application in mind; again, some Web searching with suitable terms may
find a presentation attuned to your interests.

A second group of intended readers are people involved in research or
teaching related to statistical techniques and theory. R and other modern
software systems have become essential in the research itself and in commu-
nicating its results to the community at large. Most graduate-level programs
in statistics now provide some introduction to R. This book is intended to
guide you on the followup, in which your software becomes more important
to your research, and often a way to share results and techniques with the
community. I encourage you to push forward and organize your software to
be reusable and extendible, including the prospect of creating an R package
to communicate your work to others. Many of the R packages now available
derive from such efforts..

The third target group are those more directly interested in software
and programming, particularly software for data analysis. The efforts of the
R community have made it an excellent medium for “packaging” software
and providing it to a large community of users. R is maintained on all the
widely used operating systems for computing with data and is easy for users
to install. Its package mechanism is similarly well maintained, both in the
central CRAN repository and in other repositories. Chapter 4 covers both
using packages and creating your own. R can also incorporate work done in
other systems, through a wide range of inter-system interfaces (discussed in
Chapters 11 and 12).

Many potential readers in the first and second groups will have some
experience with R or other software for statistics, but will view their involve-
ment as doing only what’s absolutely necessary to “get the answers”. This
book will encourage moving on to think of the interaction with the software
as an important and valuable part of your activity. You may feel inhibited by
not having done much programming before. Don’t be. Programming with
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R can be approached gradually, moving from easy and informal to more
ambitious projects. As you use R, one of its strengths is its flexibility. By
making simple changes to the commands you are using, you can customize
interactive graphics or analysis to suit your needs. This is the takeoff point
for programming: As Chapters 3 and 4 show, you can move from this first
personalizing of your computations through increasingly ambitious steps to
create your own software. The end result may well be your own contribution
to the world of R-based software.

How should you read this book?

Any way that you find helpful or enjoyable, of course. But an author
often imagines a conversation with a reader, and it may be useful to share
my version of that. In many of the discussions, I imagine a reader pausing to
decide how to proceed, whether with a specific technical point or to choose
a direction for a new stage in a growing involvement with software for data
analysis. Various chapters chart such stages in a voyage that many R users
have taken from initial, casual computing to a full role as a contributor to
the community. Most topics will also be clearer if you can combine reading
with hands-on interaction with R and other software, in particular using the
Examples in the SoDA package.

This pausing for reflection and computing admittedly takes a little time.
Often, you will just want a “recipe” for a specific task—what is often called
the “cookbook” approach. By “cookbook” in software we usually imply that
one looks a topic up in the index and finds a corresponding explicit recipe.
That should work sometimes with this book, but we concentrate more on
general techniques and extended examples, with the hope that these will
equip readers to deal with a wider range of tasks. For the reader in a hurry,
I try to insert pointers to online documentation and other resources.

As an enthusiastic cook, though, I would point out that the great cook-
books offer a range of approaches, similar to the distinction here. Some, such
as the essential Joy of Cooking do indeed emphasize brief, explicit recipes.
The best of these books are among the cook’s most valuable resources. Other
books, such as Jacques Pépin’s masterful La Technique, teach you just that:
techniques to be applied. Still others, such as the classic Mastering the Art
of French Cooking by Julia Child and friends, are about learning and about
underlying concepts as much as about specific techniques. It’s the latter
two approaches that most resemble the goals of the present book. The book
presents a number of explicit recipes, but the deeper emphasis is in on con-
cepts and techniques. And behind those in turn, there will be two general
principles of good software for data analyis.
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Chapter 1

Introduction: Principles and
Concepts

This chapter presents some of the concepts and principles that
recur throughout the book. We begin with the two guiding prin-
ciples: the mission to explore and the responsibility to be trust-
worthy (Sections 1.1 and 1.2). With these as guidelines, we then
introduce some concepts for programming with R (Section 1.3,
page 4) and add some justification for our emphasis on that sys-
tem (Section 1.4, page 9).

1.1 Exploration: The Mission

The first principle I propose is that our Mission, as users and creators of
software for data analysis, is to enable the best and most thorough explo-
ration of data possible. That means that users of the software must be ale to
ask the meaningful questions about their applications, quickly and flexibly.

Notice that speed here is human speed, measured in clock time. It’s
the time that the actual computations take, but usually more importantly,
it’s also the time required to formulate the question and to organize the
data in a way to answer it. This is the exploration, and software for data
analysis makes it possible. A wide range of techniques is needed to access
and transform data, to make predictions or summaries, to communicate
results to others, and to deal with ongoing processes.

Whenever we consider techniques for these and other requirements in the
chapters that follow, the first principle we will try to apply is the Mission:

1
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How can these techniques help people to carry out this specific kind of
exploration?

Ensuring that software for data analysis exists for such purposes is an
important, exciting, and challenging activity. Later chapters examine how
we can select and develop software using R and other systems.

The importance, excitement, and challenge all come from the central
role that data and computing have come to play in modern society. Science,
business and many other areas of society continually rely on understanding
data, and that understanding frequently involves large and complicated data
processes.

A few examples current as the book is written can suggest the flavor:

• Many ambitious projects are underway or proposed to deploy sensor
networks, that is, coordinated networks of devices to record a variety
of measurements in an ongoing program. The data resulting is essen-
tial to understand environmental quality, the mechanisms of weather
and climate, and the future of biodiversity in the earth’s ecosystems.
In both scale and diversity, the challenge is unprecedented, and will
require merging techniques from many disciplines.

• Astronomy and cosmology are undergoing profound changes as a result
of large-scale digital mappings enabled by both satellite and ground
recording of huge quantities of data. The scale of data collected allows
questions to be addressed in an overall sense that before could only be
examined in a few, local regions.

• Much business activity is now carried out largely through distributed,
computerized processes that both generate large and complex streams
of data and also offer through such data an unprecedented opportu-
nity to understand one’s business quantitatively. Telecommunications
in North America, for example, generates databases with conceptually
billions of records. To explore and understand such data has great
attraction for the business (and for society), but is enormously chal-
lenging.

These and many other possible examples illustrate the importance of what
John Tukey long ago characterized as “the peaceful collision of computing
and data analysis”. Progress on any of these examples will require the ability
to explore the data, flexibly and in a reasonable time frame.
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1.2 Trustworthy Software: The Prime Directive

Exploration is our mission; we and those who use our software want to
find new paths to understand the data and the underlying processes. The
mission is, indeed, to boldly go where no one has gone before. But, we need
boldness to be balanced by our responsibility. We have a responsibility for
the results of data analysis that provides a key compensating principle.

The complexity of the data processes and of the computations applied
to them mean that those who receive the results of modern data analysis
have limited opportunity to verify the results by direct observation. Users of
the analysis have no option but to trust the analysis, and by extension the
software that produced it. Both the data analyst and the software provider
therefore have a strong responsibility to produce a result that is trustworthy,
and, if possible, one that can be shown to be trustworthy.

This is the second principle: the computations and the software for data
analysis should be trustworthy: they should do what they claim, and be seen
to do so. Neither those who view the results of data analysis nor, in many
cases, the statisticians performing the analysis can directly validate exten-
sive computations on large and complicated data processes. Ironically, the
steadily increasing computer power applied to data analysis often distances
the results further from direct checking by the recipient. The many com-
putational steps between original data source and displayed results must all
be truthful, or the effect of the analysis may be worthless, if not pernicious.
This places an obligation on all creators of software to program in such a
way that the computations can be understood and trusted. This obligation
I label the Prime Directive.

Note that the directive in no sense discourages exploratory or approx-
imate methods. As John Tukey often remarked, better an approximate
answer to the right question than an exact answer to the wrong question.
We should seek answers boldly, but always explaining the nature of the
method applied, in an open and understandable format, supported by as
much evidence of its quality as can be produced. As we will see, a number
of more technically specific choices can help us satisfy this obligation.

Readers who have seen the Star Trek R© television series1 may recognize
the term “prime directive”. Captains Kirk, Picard, and Janeway and their
crews were bound by a directive which (slightly paraphrased) was: Do noth-
ing to interfere with the natural course of a new civilization. Do not distort

1Actually, at least five series, from “The Original” in 1966 through “Enterprise”, not
counting the animated version, plus many films. See startrek.com and the many reruns
if this is a gap in your cultural background.
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the development. Our directive is not to distort the message of the data,
and to provide computations whose content can be trusted and understood.

The prime directive of the space explorers, notice, was not their mission
but rather an important safeguard to apply in pursuing that mission. Their
mission was to explore, to “boldly go where no one has gone before”, and
all that. That’s really our mission too: to explore how software can add
new abilities for data analysis. And our own prime directive, likewise, is an
important caution and guiding principle as we create the software to support
our mission.

Here, then, are two motivating principles: the mission, which is bold
exploration; and the prime directive, trustworthy software. We will examine
in the rest of the book how to select and program software for data analysis,
with these principles as guides. A few aspects of R will prove to be especially
relevant; let’s examine those next.

1.3 Concepts for Programming with R

The software and the programming techniques to be discussed in later chap-
ters tend to share some concepts that make them helpful for data analysis.
Exploiting these concepts will often benefit both the effectiveness of pro-
gramming and the quality of the results. Each of the concepts arises nat-
urally in later chapters, but it’s worth outlining them together here for an
overall picture of our strategy in programming for data analysis.

Functional Programming

Software in R is written in a functional style that helps both to understand
the intent and to ensure that the implementation corresponds to that intent.
Computations are organized around functions, which can encapsulate spe-
cific, meaningful computational results, with implementations that can be
examined for their correctness. The style derives from a more formal theory
of functional programming that restricts the computations to obtain well-
defined or even formally verifiable results. Clearly, programming in a fully
functional manner would contribute to trustworthy software. The S lan-
guage does not enforce a strict functional programming approach, but does
carry over some of the flavor, particularly when you make some effort to
emphasize simple functional definitions with minimal use of non-functional
computations.

As the scope of the software expands, much of the benefit from functional
style can be retained by using functional methods to deal with varied types
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of data, within the general goal defined by the generic function.

Classes and Methods

The natural complement to functional style in programming is the definition
of classes of objects. Where functions should clearly encapsulate the actions
in our analysis, classes should encapsulate the nature of the objects used
and returned by calls to functions. The duality between function calls and
objects is a recurrent theme of programming with R. In the design of new
classes, we seek to capture an underlying concept of what the objects mean.
The relevant techniques combine directly specifying the contents (the slots),
relating the new class to existing classes (the inheritance), and expressing
how objects should be created and validated (methods for initializing and
validating).

Method definitions knit together functions and classes. Well-designed
methods extend the generic definition of what a function does to provide a
specific computational method when the argument or arguments come from
specified classes, or inherit from those classes. In contrast to methods that
are solely class-based, as in common object-oriented programming languages
such as C++ or Java, methods in R are part of a rich but complex network
of functional and object-based computation.

The ability to define classes and methods in fact is itself a major advan-
tage in adhering to the Prime Directive. It gives us a way to isolate and
define formally what information certain objects should contain and how
those objects should behave when functions are applied to them.

Data Frames

Trustworthy data analysis depends first on trust in the data being analyzed.
Not so much that the data must be perfect, which is impossible in nearly
any application and in any case beyond our control, but rather that trust
in the analysis depends on trust in the relation between the data as we use
it and the data as it has entered the process and then has been recorded,
organized and transformed.

In serious modern applications, the data usually comes from a process
external to the analysis, whether generated by scientific observations, com-
mercial transactions or any of many other human activities. To access the
data for analysis by well-defined and trustworthy computations, we will ben-
efit from having a description, or model, for the data that corresponds to
its natural home (often in DBMS or spreadsheet software), but can also be
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a meaningful basis for data as used in the analysis. Transformations and
restructuring will often be needed, but these should be understandable and
defensible.

The model we will emphasize is the data frame, essentially a formulation
of the traditional view of observations and variables. The data frame has a
long history in the S language but modern techniques for classes and meth-
ods allow us to extend the use of the concept. Particularly useful techniques
arise from using the data frame concept both within R, for model-fitting,
data visualization, and other computations, and also for effective commu-
nication with other systems. Spreadsheets and relational database software
both relate naturally to this model; by using it along with unambiguous
mechanisms for interfacing with such software, the meaning and structure
of the data can be preserved. Not all applications suit this approach by
any means, but the general data frame model provides a valuable basis for
trustworthy organization and treatment of many sources of data.

Open Source Software

Turning to the general characteristics of the languages and systems available,
note that many of those discussed in this book are open-source software
systems; for example, R, Perl, Python, many of the database systems, and
the Linux operating system. These systems all provide access to source code
sufficient to generate a working version of the software. The arrangement is
not equivalent to “public-domain” software, by which people usually mean
essentially unrestricted use and copying. Instead, most open-source systems
come with a copyright, usually held by a related group or foundation, and
with a license restricting the use and modification of the software. There
are several versions of license, the best known being the Gnu Public License
and its variants (see gnu.org/copyleft/gpl.html), the famous GPL. R is
distributed under a version of this license (see the "COPYING" file in the home
directory of R). A variety of other licenses exists; those accepted by the Open
Source Initiative are described at opensource.org/licenses.

Distinctions among open-source licenses generate a good deal of heat
in some discussions, often centered on what effect the license has on the
usability of the software for commercial purposes. For our focus, particularly
for the concern with trustworthy software for data analysis, these issues are
not directly relevant. The popularity of open-source systems certainly owes
a lot to their being thought of as “free”, but for our goal of trustworthy
software, this is also not the essential property. Two other characteristics
contribute more. First, the simple openness itself allows any sufficiently
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competent observer to enquire fully about what is actually being computed.
There are no intrinsic limitations to the validation of the software, in the
sense that it is all there. Admittedly, only a minority of users are likely to
delve very far into the details of the software, but some do. The ability to
examine and critique every part of the software makes for an open-ended
scope for verifying the results.

Second, open-source systems demonstrably generate a spirit of commu-
nity among contributors and active users. User groups, e-mail lists, chat
rooms and other socializing mechanisms abound, with vigorous discussion
and controversy, but also with a great deal of effort devoted to testing and
extension of the systems. The active and demanding community is a key to
trustworthy software, as well as to making useful tools readily available.

Algorithms and Interfaces

R is explicitly seen as built on a set of routines accessed by an interface,
in particular by making use of computations in C or Fortran. User-written
extensions can make use of such interfaces, but the core of R is itself built on
them as well. Aside from routines that implement R-dependent techniques,
there are many basic computations for numerical results, data manipulation,
simulation, and other specific computational tasks. These implementations
we can term algorithms. Many of the core computations on which the R

software depends are now implemented by collections of such software that
are widely used and tested. The algorithm collections have a long history,
often predating the larger-scale open-source systems. It’s an important con-
cept in programming with R to seek out such algorithms and make them
part of a new computation. You should be able to import the trust built up
in the non-R implementation to make your own software more trustworthy.

Major collections on a large scale and many smaller, specialized al-
gorithms have been written, generally in the form of subroutines in For-

tran, C, and a few other general programming languages. Thirty-plus years
ago, when I was writing Computational Methods for Data Analysis, those
who wanted to do innovative data analysis often had to work directly from
such routines for numerical computations or simulation, among other topics.
That book expected readers to search out the routines and install them in
the readers’ own computing environment, with many details left unspecified.

An important and perhaps under-appreciated contribution of R and
other systems has been to embed high-quality algorithms for many computa-
tions in the system itself, automatically available to users. For example, key
parts of the LAPACK collection of computations for numerical linear algebra
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are included in R, providing a basis for fitting linear models and for other
matrix computations. Other routines in the collection may not be included,
perhaps because they apply to special datatypes or computations not often
encountered. These routines can still be used with R in nearly all cases, by
writing an interface to the routine (see Chapter 11).

Similarly, the internal code for pseudo-random number generation in-
cludes most of the well-regarded and thoroughly tested algorithms for this
purpose. Other tasks, such as sorting and searching, also use quality al-
gorithms. Open-source systems provide an advantage when incorporating
such algorithms, because alert users can examine in detail the support for
computations. In the case of R, users do indeed question and debate the
behavior of the system, sometimes at great length, but overall to the benefit
of our trust in programming with R.

The best of the algorithm collections offer another important boost for
trustworthy software in that the software may have been used in a wide
variety of applications, including some where quality of results is critically
important. Collections such as LAPACK are among the best-tested substan-
tial software projects in existence, and not only by users of higher-level
systems. Their adaptability to a wide range of situations is also a frequent
benefit.

The process of incorporating quality algorithms in a user-oriented system
such as R is ongoing. Users can and should seek out the best computations
for their needs, and endeavor to make these available for their own use and,
through packages, for others as well.

Incorporating algorithms in the sense of subroutines in C or Fortran is a
special case of what we call inter-system interfaces in this book. The general
concept is similar to that for algorithms. Many excellent software systems
exist for a variety of purposes, including text-manipulation, spreadsheets,
database management, and many others. Our approach to software for data
analysis emphasizes R as the central system, for reasons outlined in the next
section. In any case, most users will prefer to have a single home system for
their data analysis.

That does not mean that we should or can absorb all computations di-
rectly into R. This book emphasizes the value of expressing computations in
a natural way while making use of high-quality implementations in whatever
system is suitable. A variety of techniques, explored in Chapter 12, allows
us to retain a consistent approach in programming with R at the same time.
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1.4 The R System and the S Language

This book includes computations in a variety of languages and systems, for
tasks ranging from database management to text processing. Not all systems
receive equal treatment, however. The central activity is data analysis,
and the discussion is from the perspective that our data analysis is mainly
expressed in R; when we examine computations, the results are seen from an
interactive session with R. This view does not preclude computations done
partly or entirely in other systems, and these computations may be complete
in themselves. The data analysis that the software serves, however, is nearly
always considered to be in R.

Chapter 2 covers the use of R broadly but briefly ( if you have no ex-
perience with it, you might want to consult one of the introductory books
or other sources mentioned on page vii in the preface). The present section
give a brief summary of the system and relates it to the philosophy of the
book.

R is an open-source software system, supported by a group of volunteers
from many countries. The central control is in the hands of a group called
R-core, with the active collaboration of a much larger group of contributors.
The base system provides an interactive language for numerical computa-
tions, data management, graphics and a variety of related calculations. It
can be installed on Windows, Mac OS X, and Linux operating systems, with
a variety of graphical user interfaces. Most importantly, the base system
is supported by well over a thousand packages on the central repository
cran.r-project.org and in other collections.

R began as a research project of Ross Ihaka and Robert Gentleman in the
1990s, described in a paper in 1996 [17]. It has since expanded into software
used to implement and communicate most new statistical techniques. The
software in R implements a version of the S language, which was designed
much earlier by a group of us at Bell Laboratories, described in a series of
books ([1], [6], and [5] in the bibliography).

The S-Plus system also implements the S language. Many of the com-
putations discussed in the book work in S-Plus as well, although there are
important differences in the evaluation model, noted in later chapters. For
more on the history of S, see Appendix A, page 475.

The majority of the software in R is itself written in the same language
used for interacting with the system, a dialect of the S language. The lan-
guage evolved in essentially its present form during the 1980s, with a gen-
erally functional style, in the sense used on page 4: The basic unit of pro-
gramming is a function. Function calls usually compute an object that is a
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function of the objects passed in as arguments, without side effects to those
arguments. Subsequent evolution of the language introduced formal classes
and methods, again in the sense discussed in the previous section. Methods
are specializations of functions according to the class of one or more of the
arguments. Classes define the content of objects, both directly and through
inheritance. R has added a number of features to the language, while remain-
ing largely compatible with S. All these topics are discussed in the present
book, particularly in Chapters 3 for functions and basic programming, 9 for
classes, and 10 for methods.

So why concentrate on R? Clearly, and not at all coincidentally, R reflects
the same philosophy that evolved through the S language and the approach
to data analysis at Bell Labs, and which largely led me to the concepts I’m
proposing in this book. It is relevant that S began as a medium for statistics
researchers to express their own computations, in support of research into
data analysis and its applications. A direct connection leads from there to
the large community that now uses R similarly to implement new ideas in
statistics, resulting in the huge resource of R packages.

Added to the characteristics of the language is R’s open-source nature,
exposing the system to continual scrutiny by users. It includes some al-
gorithms for numerical computations and simulation that likewise reflect
modern, open-source computational standards in these fields. The LAPACK

software for numerical linear algebra is an example, providing trustworthy
computations to support statistical methods that depend on linear algebra.

Although there is plenty of room for improvement and for new ideas, I
believe R currently represents the best medium for quality software in sup-
port of data analysis, and for the implementation of the principles espoused
in the present book. From the perspective of our first development of S

some thirty-plus years ago, it’s a cause for much gratitude and not a little
amazement.



Chapter 2

Using R

This chapter covers the essentials for using R to explore data in-
teractively. Section 2.1 covers basic access to an R session. Users
interact with R through a single language for both data analy-
sis and programming (Section 2.3, page 19). The key concepts
are function calls in the language and the objects created and
used by those calls (2.4, 24), two concepts that recur through-
out the book. The huge body of available software is organized
around packages that can be attached to the session, once they
are installed (2.5, 25). The system itself can be downloaded and
installed from repositories on the Web (2.6, 29); there are also
a number of resources on the Web for information about R (2.7,
31).

Lastly, we examine aspects of R that may raise difficulties for
some new users (2.8, 34).

2.1 Starting R

R runs on the commonly used platforms for personal computing: Windows R©,
Mac OS X R©, Linux, and some versions of UNIX R©. In the usual desktop en-
vironments for these platforms, users will typically start R as they would
most applications, by clicking on the R icon or on the R file in a folder of
applications.

An application will then appear looking much like other applications
on the platform: for example, a window and associated toolbar. In the

11
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standard version, at least on most platforms, the application is called the
"R Console". In Windows recently it looked like this:

The application has a number of drop-down menus; some are typical of most
applications ("File", "Edit", and "Help"). Others such as "Packages" are
special to R. The real action in running R, however, is not with the menus
but in the console window itself. Here the user is expected to type input to R

in the form of expressions; the program underlying the application responds
by doing some computation and if appropriate by displaying a version of the
results for the user to look at (printed results normally in the same console
window, graphics typically in another window).

This interaction between user and system continues, and constitutes an
R session. The session is the fundamental user interface to R. The following
section describes the logic behind it. A session has a simple model for
user interaction, but one that is fundamentally different from users’ most
common experience with personal computers (in applications such as word
processors, Web browsers, or audio/video systems). First-time users may
feel abandoned, left to flounder on their own with little guidance about what
to do and even less help when they do something wrong. More guidance is
available than may be obvious, but such users are not entirely wrong in their
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reaction. After intervening sections present the essential concepts involved
in using R, Section 2.8, page 34 revisits this question.

2.2 An Interactive Session

Everything that you do interactively with R happens in a session. A session
starts when you start up R, typically as described above. A session can
also be started from other special interfaces or from a command shell (the
original design), without changing the fundamental concept and with the
basic appearance remaining as shown in this section and in the rest of the
book. Some other interfaces arise in customizing the session, on page 17.

During an R session, you (the user) provide expressions for evaluation
by R, for the purpose of doing any sort of computation, displaying results,
and creating objects for further use. The session ends when you decide to
quit from R.

All the expressions evaluated in the session are just that: general ex-
pressions in R’s version of the S language. Documentation may mention
“commands” in R, but the term just refers to a complete expression that
you type interactively or otherwise hand to R for evaluation. There’s only
one language, used for either interactive data analysis or for programming,
and described in section 2.3. Later sections in the book come back to ex-
amine it in more detail, especially in Chapter 3.

The R evaluator displays a prompt, and the user responds by typing a
line of text. Printed output from the evaluation and other messages appear
following the input line.

Examples in the book will be displayed in this form, with the default
prompts preceding the user’s input:

> quantile(Declination)
0% 25% 50% 75% 100%

-27.98 -11.25 8.56 17.46 27.30

The "> " at the beginning of the example is the (default) prompt string. In
this example the user responded with

quantile(Declination)

The evaluator will keep prompting until the input can be interpreted as a
complete expression; if the user had left off the closing ")", the evaluator
would have prompted for more input. Since the input here is a complete
expression, the system evaluated it. To be pedantic, it parsed the input text
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and evaluated the resulting object. The evaluation in this case amounts to
calling a function named quantile.

The printed output may suggest a table, and that’s intentional. But in
fact nothing special happened; the standard action by the evaluator is to
print the object that is the value of the expression. All evaluated expressions
are objects; the printed output corresponds to the object; specifically, the
form of printed output is determined by the kind of object, by its class (tech-
nically, through a method selected for that class). The call to quantile()

returned a numeric vector, that is, an object of class "numeric". A method
was selected based on this class, and the method was called to print the
result shown. The quantile() function expects a vector of numbers as its
argument; with just this one argument it returns a numeric vector containing
the minimum, maximum, median and quartiles.

The method for printing numeric vectors prints the values in the vec-
tor, five of them in this case. Numeric objects can optionally have a names

attribute; if they do, the method prints the names as labels above the num-
bers. So the "0%" and so on are part of the object. The designer of the
quantile() function helpfully chose a names attribute for the result that
makes it easier to interpret when printed.

All these details are unimportant if you’re just calling quantile() to
summarize some data, but the important general concept is this: Objects
are the center of computations in R, along with the function calls that create
and use those objects. The duality of objects and function calls will recur
in many of our discussions.

Computing with existing software hinges largely on using and creating
objects, via the large number of available functions. Programming, that is,
creating new software, starts with the simple creation of function objects.
More ambitious projects often use a paradigm of creating new classes of
objects, along with new or modified functions and methods that link the
functions and classes. In all the details of programming, the fundamental
duality of objects and functions remains an underlying concept.

Essentially all expressions are evaluated as function calls, but the lan-
guage includes some forms that don’t look like function calls. Included are
the usual operators, such as arithmetic, discussed on page 21. Another use-
ful operator is `?`, which looks up R help for the topic that follows the
question mark. To learn about the function quantile():

> ?quantile

In standard GUI interfaces, the documentation will appear in a separate
window, and can be generated from a pull-down menu as well as from the
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`?` operator.
Graphical displays provide some of the most powerful techniques in data

analysis, and functions for data visualization and other graphics are an es-
sential part of R:

> plot(Date, Declination)

Here the user typed another expression, plot(Date, Declination); in this
case producing a scatter plot as a side effect, but no printed output. The
graphics during an interactive session typically appear in one or more sepa-
rate windows created by the GUI, in this example a window using the native
quartz() graphics device for Mac OS X. Graphic output can also be produced
in a form suitable for inclusion in a document, such as output in a general
file format (PDF or postscript, for example). Computations for graphics are
discussed in more detail in Chapter 7.

The sequence of expression and evaluation shown in the examples is es-
sentially all there is to an interactive session. The user supplies expressions
and the system evaluates them, one after another. Expressions that pro-
duce simple summaries or plots are usually done to see something, either
graphics or printed output. Aside from such immediate gratification, most
expressions are there in order to assign objects, which can then be used in
later computations:

> fitK <- gam(Kyphosis ∼ s(Age, 4) + Number, family = binomial)

Evaluating this expression calls the function gam() and assigns the value of
the call, associating that object with the name fitK. For the rest of the
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session, unless some other assignment to this name is carried out, fitK can
be used in any expression to refer to that object; for example, coef(fitK)
would call a function to extract some coefficients from fitK (which is in this
example a fitted model).

Assignments are a powerful and interesting part of the language. The
basic idea is all we need for now, and is in any case the key concept: As-
signment associates an object with a name. The term “associates” has a
specific meaning here. Whenever any expression is evaluated, the context
of the evaluation includes a local environment, and it is into this environ-
ment that the object is assigned, under the corresponding name. The object
and name are associated in the environment, by the assignment operation.
From then on, the name can be used as a reference to the object in the en-
vironment. When the assignment takes place at the “top level” (in an input
expression in the session), the environment involved is the global environ-
ment. The global environment is part of the current session, and all objects
assigned there remain available for further computations in the session.

Environments are an important part of programming with R. They are
also tricky to deal with, because they behave differently from other objects.
Discussion of environments continues in Section 2.4, page 24.

A session ends when the user quits from R, either by evaluating the
expression q() or by some other mechanism provided by the user interface.
Before ending the session, the system offers the user a chance to save all the
objects in the global environment at the end of the session:

> q()
Save workspace image? [y/n/c]: y

If the user answers yes, then when a new session is started in the same
working directory, the global environment will be restored. Technically, the
environment is restored, not the session. Some actions you took in the
session, such as attaching packages or using options(), may not be restored,
if they don’t correspond to objects in the global environment.

Unfortunately, your session may end involuntarily: the evaluator may be
forced to terminate the session or some outside event may kill the process.
R tries to save the workspace even when fatal errors occur in low-level C

or Fortran computations, and such disasters should be rare in the core R

computations and in well-tested packages. But to be truly safe, you should
explicitly back up important results to a file if they will be difficult to re-
create. See documentation for functions save() and dump() for suitable
techniques.
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Customizing the R session

As you become a more involved user of R, you may want to customize your
interaction with it to suit your personal preferences or the goals motivating
your applications. The nature of the system lends itself to a great variety
of options from the most general to trivial details.

At the most general is the choice of user interface. So far, we have
assumed you will start R as you would start other applications on your
computer, say by clicking on the R icon.

A second approach, available on any system providing both R and a
command shell, is to invoke R as a shell command. In its early history,
S in all its forms was typically started as a program from an interactive
shell. Before multi-window user interfaces, the shell would be running on
an interactive terminal of some sort, or even on the machine’s main console.
Nowadays, shells or terminal applications run in their own windows, either
supported directly by the platform or indirectly through a client window
system, such as those based on X11. Invoking R from a shell allows some
flexibility that may not be provided directly by the application (such as run-
ning with a C-level debugger). Online documentation from a shell command
is printed text by default, which is not as convenient as a browser interface.
To initiate a browser interface to the help facility, see the documentation for
help.start().

A third approach, somewhat in between the first two, is to use a GUI
based on another application or language, potentially one that runs on mul-
tiple platforms. The most actively supported example of this approach is
ESS, a general set of interface tools in the emacs editor. ESS stands for Emacs
Speaks Statistics, and the project supports other statistical systems as well
as R; see ess.r-project.org. For those who love emacs as a general com-
putational environment, ESS provides a variety of GUI-like features, plus
a user-interface programmability characteristic of emacs. The use of a GUI
based on a platform-independent user interface has advantages for those who
need to work regularly on more than one operating system.

Finally, an R session can be run in a non-interactive form, usually invoked
in a batch mode from a command shell, with its input taken from a file or
other source. R can also be invoked from within another application, as part
of an inter-system interface.

In all these situations, the logic of the R session remains essentially the
same as shown earlier (the major exception being a few computations in R

that behave differently in a non-interactive session).
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Encoding of text

A major advance in R’s world view came with the adoption of multiple
locales, using information available to the R session that defines the user’s
preferred encoding of text and other options related to the human language
and geographic location. R follows some evolving standards in this area.
Many of those standards apply to C software, and therefore they fit fairly
smoothly into R.

Normally, default locales will have been set when R was installed that
reflect local language and other conventions in your area. See Section 8.1,
page 293, and ?locales for some concepts and techniques related to locales.
The specifications use standard but somewhat unintuitive terminology; un-
less you have a particular need to alter behavior for parsing text, sorting
character data, or other specialized computations, caution suggests sticking
with the default behavior.

Options during evaluation

R offers mechanisms to control aspects of evaluation in the session. The
function options() is used to share general-purpose values among functions.
Typical options include the width of printed output, the prompt string
shown by the parser, and the default device for graphics. The options()

mechanism maintains a named list of values that persist through the session;
functions use those values, by extracting the relevant option via getOption():

> getOption("digits")
[1] 7

In this case, the value is meant to be used to control the number of digits
in printing numerical data. A user, or in fact any function, can change this
value, by using the same name as an argument to options():

> 1.234567890
[1] 1.234568
> options(digits = 4)
> 1.234567890
[1] 1.235

For the standard options, see ?options; however, a call to options() can
be used by any computation to set values that are then used by any other
computation. Any argument name is legal and will cause the corresponding
option to be communicated among functions.
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Options can be set from the beginning of the session; see ?Startup. How-
ever, saving a workspace image does not cause the options in effect to be
saved and restored. Although the options() mechanism does use an R ob-
ject, .Options, the internal C code implementing options() takes the object
from the base package, not from the usual way of finding objects. The code
also enforces some constraints on what’s legal for particular options; for ex-
ample, "digits" is interpreted as a single integer, which is not allowed to be
too small or too large, according to values compiled into R.

The use of options() is convenient and even necessary for the evalu-
ator to behave intelligently and to allow user customization of a session.
Writing functions that depend on options, however, reduces our ability to
understand these functions’ behavior, because they now depend on exter-
nal, changeable values. The behavior of code that depends on an option
may be altered by any other function called at any earlier time during the
session, if the other function calls options(). Most R programming should
be functional programming, in the sense that each function call performs
a well-defined computation depending only on the arguments to that call.
The options() mechanism, and other dependencies on external data that
can change during the session, compromise functional programming. It may
be worth the danger, but think carefully about it. See page 47 for more on
the programming implications, and for an example of the dangers.

2.3 The Language

This section and the next describe the interactive language as you need to
use it during a session. But as noted on page 13, there is no interactive lan-
guage, only the one language used for interaction and for programming. To
use R interactively, you basically need to understand two things: functions
and objects. That same duality, functions and objects, runs through every-
thing in R from an interactive session to designing large-scale software. For
interaction, the key concepts are function calls and assignments of objects,
dealt with in this section and in section 2.4 respectively. The language also
has facilities for iteration and testing (page 22), but you can often avoid
interactive use of these, largely because R function calls operate on, and
return, whole objects.

Function Calls

As noted in Section 2.2, the essential computation in R is the evaluation
of a call to a function. Function calls in their ordinary form consist of
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the function’s name followed by a parenthesized argument list; that is, a
sequence of arguments separated by commas.

plot(Date, Declination)
glm(Survived ∼ .)

Arguments in function calls can be any expression. Each function has
a set of formal arguments, to which the actual arguments in the call are
matched. As far as the language itself is concerned, a call can supply any
subset of the complete argument list. For this purpose, argument expressions
can optionally be named, to associate them with a particular argument of
the function:

jitter(y, amount = .1 * rse)

The second argument in the call above is explicitly matched to the formal
argument named amount. To find the argument names and other information
about the function, request the online documentation. A user interface to R

or a Web browser gives the most convenient access to documentation, with
documentation listed by package and within package by topic, including
individual functions by name. Documentation can also be requested in the
language, for example:

> ?jitter

This will produce some display of documentation for the topic "jitter",
including in the case of a function an outline of the calling sequence and
a discussion of individual arguments. If there is no documentation, or you
don’t quite believe it, you can find the formal argument names from the
function object itself:

> formalArgs(jitter)
[1] "x" "factor" "amount"

Behind this, and behind most techniques involving functions, is the simple
fact that jitter and all functions are objects in R. The function name is a
reference to the corresponding object. So to see what a function does, just
type its name with no argument list following.

> jitter
function (x, factor = 1, amount = NULL)
{

if (length(x) == 0)
return(x)

if (!is.numeric(x))
stop("’x’ must be numeric")

etc.
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The printed version is another R expression, meaning that you can input such
an expression to define a function. At which point, you are programming in
R. See Chapter 3. The first section of that chapter should get you started.

In principle, the function preceding the parenthesized arguments can be
specified by any expression that returns a function object, but in practice
functions are nearly always specified by name.

Operators

Function calls can also appear as operator expressions in the usual scientific
notation.

y - mean(y)
weight > 0
x < 100 | is.na(date)

The usual operators are defined for arithmetic, comparisons, and logical
operations (see Chapter 6). But operators in R are not built-in; in fact,
they are just special syntax for certain function calls. The first line in the
example above computes the same result as:

`-`(y, mean(y))

The notation `-` is an example of what are called backtick quotes in R. These
quotes make the evaluator treat an arbitrary string of characters as if it was
a name in the language. The evaluator responds to the names "y" or "mean"

by looking for an object of that name in the current environment. Similarly
`-` causes the evaluator to look for an object named "-". Whenever we
refer to operators in the book we use backtick quotes to emphasize that this
is the name of a function object, not treated as intrinsically different from
the name mean.

Functions to extract components or slots from objects are also provided
in operator form:

mars$Date
classDef@package

And the expressions for extracting subsets or elements from objects are also
actually just specialized function calls. The expression

y[i]

is recognized in the language and evaluated as a call to the function `[`,
which extracts a subset of the object in its first argument, with the subset
defined by the remaining arguments. The expression y[i] is equivalent to:



22 CHAPTER 2. USING R

`[`(y, i)

You could enter the second form perfectly legally. Similarly, the function
`[[` extracts a single element from an object, and is normally presented as
an operator expression:

mars[["Date"]]

You will encounter a few other operators in the language. Frequently
useful for elementary data manipulation is the `:` operator, which produces
a sequence of integers between its two arguments:

1:length(x)

Other operators include `∼`, used in specifying models, `%%` for modulus,
`%*%` for matrix multiplication, and a number of others.

New operators can be created and recognized as infix operators by the
parser. The last two operators mentioned above are examples of the general
convention in the language that interprets

%text%

as the name of an operator, for any text string. If it suits the style of
computation, you can define any function of two arguments and give it, say,
the name `%d%`. Then an expression such as

x %d% y

will be evaluated as the call:

`%d%`(x, y)

Iteration: A quick introduction

The language used by R has the iteration and conditional expressions typical
of a C-style language, but for the most part you can avoid typing all but the
simplest versions interactively. The following is a brief guide to using and
avoiding iterative expressions.

The workhorse of iteration is the for loop. It has the form:

for( var in seq ) expr
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where var is a name and seq is a vector of values. The loop assigns each
element of seq to var in sequence and then evaluates the arbitrary expression
expr each time. When you use the loop interactively, you need to either
show something each time (printed or graphics) or else assign the result
somewhere; otherwise, you won’t get any benefit from the computation. For
example, the function plot() has several “types” of x-y plots (points, lines,
both, etc.). To repeat a plot with different types, one can use a for() loop
over the codes for the types:

> par(ask=TRUE)
> for(what in c("p","l","b")) Declination, type = what)

The call to par() caused the graphics to pause between plots, so we get to
see each plot, rather then having the first two flash by. The variables Date

and Declination come from some data on the planet Mars, in a data frame
object, mars (see Section 6.5, page 176). If we wanted to see the class of
each of the 17 variables in that data frame, another for() loop would do it:

for(j in names(mars)) print(class(mars[,j]))

But this will just print 17 lines of output, which we’ll need to relate to the
variable names. Not much use.

Here’s where an alternative to iteration is usually better. The workhorse
of these is the function sapply(). It applies a function to each element of
the object it gets as its first argument, so:

> sapply(mars,class)
Year X Year.1 Month

"integer" "logical" "integer" "integer"
Day Day..adj. Hour Min

etc.

The function tries to simplify the result, and is intelligent enough to include
the names as an attribute. See ?sapply for more details, and the “See Also”
section of that documentation for other similar functions.

The language has other iteration operators (while() and repeat), and
the usual conditional operators (if ... else). These are all useful in pro-
gramming and discussed in Chapter 3. By the time you need to use them
in a non-trivial way interactively, in fact, you should consider turning your
computation into a function, so Chapter 3 is indeed the place to look; see
Section 3.4, page 58, in particular, for more detail about the language.

plot(Date,
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2.4 Objects and Names

A motto in discussion of the S language has for many years been: every-
thing is an object. You will have a potentially very large number of objects
available in your R session, including functions, datasets, and many other
classes of objects. In ordinary computations you will create new objects or
modify existing ones.

As in any computing language, the ability to construct and modify ob-
jects relies on a way to refer to the objects. In R, the fundamental reference
to an object is a name. This is an essential concept for programming with
R that arises throughout the book and in nearly any serious programming
project.

The basic concept is once again the key thing to keep in mind: references
to objects are a way for different computations in the language to refer to
the same object; in particular, to make changes to that object. In the S

language, references to ordinary objects are only through names. And not
just names in an abstract, global sense. An object reference must be a name
in a particular R environment. Typically, the reference is established initially
either by an assignment or as an argument in a function call.

Assignment is the obvious case, as in the example on page 15:

> fitK <- gam(Kyphosis ∼ s(Age, 4) + Number, family = binomial)

Assignment creates a reference, the name "fitK", to some object. That ref-
erence is in some environment. For now, just think of environments as tables
that R maintains, in which objects can be assigned names. When an assign-
ment takes place in the top-level of the R session, the current environment
is what’s called the global environment. That environment is maintained
throughout the current session, and optionally can be saved and restored
between sessions.

Assignments appear inside function definitions as well. These assign-
ments take place during a call to the function. They do not use the global
environment, fortunately. If they did, every assignment to the name "x"

would overwrite the same reference. Instead, assignments during function
calls use an environment specially created for that call. So another reason
that functions are so central to programming with R is that they protect
users from accidentally overwriting objects in the middle of a computation.

The objects available during an interactive R session depend on what
packages are attached; technically, they depend on the nested environments
through which the evaluator searches, when given a name, to find a corre-
sponding object. See Section 5.3, page 121, for the details of the search.



2.5. FUNCTIONS AND PACKAGES 25

2.5 Functions and Packages

In addition to the software that comes with any copy of R, there are many
thousands of functions available to be used in an R session, along with a
correspondingly large amount of other related software. Nearly all of the
important R software comes in the form of packages that make the software
easily available and usable. This section discusses the implications of using
different packages in your R session. For much more detail, see Chapter 4,
but that is written more from the view of writing or extending a package.
You will get there, I hope, as your own programming efforts take shape.
The topic here, though, is how best to use other people’s efforts that have
been incorporated in packages.

The process leading from needing some computational tool to having it
available in your R session has three stages: finding the software, typically in
a package; installing the package; and attaching the package to the session.

The last step is the one you will do most often, so let’s begin by assuming
that you know which package you need and that the required package has
been installed with your local copy of R. See Section 2.5, page 26, for finding
and installing the relevant package.

You can tell whether the package is attached by looking for it in the
printed result of search(); alternatively, you can look for a particular ob-
ject with the function find(), which returns the names of all the attached
packages that contain the object. Suppose we want to call the function
dotplot(), for example.

> find("dotplot")
character(0)

No attached package has an object of this name. If we happen to know that
the function is in the package named lattice, we can make that package
available for the current session. A call to the function library() requests
this:

library(lattice)

The function is library() rather than package() only because the original S

software called them libraries. Notice also that the package name was given
without quotes. The library() function, and a similar function require(),
do some nonstandard evaluation that takes unquoted names. That’s another
historical quirk that saves users from typing a couple of quote characters.

If a package of the name "lattice" has been installed for this version of
R, the call will attach the package to the session, making its functions and
other objects available:
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> library(lattice)
> find("dotplot")
[1] "package:lattice"

By “available”, we mean that the evaluator will find an object belonging
to the package when an expression uses the corresponding name. If the
user types dotplot(Declination) now, the evaluator will normally find the
appropriate function. To see why the quibbling “normally” was added, we
need to say more precisely what happens to find a function object.

The evaluator looks first in the global environment for a function of this
name, then in each of the attached packages, in the order shown by search().
The evaluator will generally stop searching when it finds an object of the
desired name, dotplot, Declination, or whatever. If two attached packages
have functions of the same name, one of them will “mask” the object in the
other (the evaluator will warn of such conflicts, usually, when a package is
attached with conflicting names). In this case, the result returned by find()

would show two or more packages.
For example, the function gam() exists in two packages, gam and mgcv. If

both were attached:

> find("gam")
[1] "package:gam" "package:mgcv"

A simple call to gam() will get the version in package gam; the version in
package mgcv is now masked.

R has some mechanisms designed to get around such conflicts, at least
as far as possible. The language has an operator, `::`, to specify that an
object should come from a particular package. So mgcv::gam and gam::gam

refer unambiguously to the versions in the two packages. The masked version
of gam() could be called by:

> fitK <- mgcv::gam(Kyphosis ∼ s(Age, 4) + etc.

Clearly one doesn’t want to type such expressions very often, and they
only help if one is aware of the ambiguity. For the details and for other
approaches, particularly when you’re programming your own packages, see
Section 5.3, page 121.

Finding and installing packages

Finding the right software is usually the hardest part. There are thousands
of packages and smaller collections of R software in the world. Section 2.7,
page 31, discusses ways to search for information; as a start, CRAN, the
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central repository for R software, has a large collection of packages itself,
plus further links to other sources for R software. Extended browsing is
recommended, to develop a general feel for what’s available. CRAN supports
searching with the Google search engine, as do some of the other major
collections.

Use the search engine on the Web site to look for relevant terms. This
may take some iteration, particularly if you don’t have a good guess for the
actual name of the function. Browse through the search output, looking for
a relevant entry, and figure out the name of the package that contains the
relevant function or other software.

Finding something which is not in these collections may take more in-
genuity. General Web search techniques often help: combine the term "R"

with whatever words describe your needs in a search query. The e-mail lists
associated with R will usually show up in such a search, but you can also
browse or search explicitly in the archives of the lists. Start from the R home
page, r-project.org, and follow the link for "Mailing Lists".

On page 15, we showed a computation using the function gam(), which
fits a generalized additive model to data. This function is not part of the
basic R software. Before being able to do this computation, we need to find
and install some software. The search engine at the CRAN site will help out,
if given either the function name "gam" or the term "generalized additive

models". The search engine on the site tends to give either many hits or no
relevant hits; in this case, it turns out there are many hits and in fact two
packages with a gam() function. As an example, suppose we decide to install
the gam package.

There are two choices at this point, in order to get and install the pack-
age(s) in question: a binary or a source copy of the package. Usually,
installing from binary is the easy approach, assuming a binary version is
available from the repository. Binary versions are currently available from
CRAN only for Windows and Mac OS X platforms, and may or may not be
available from other sources. Otherwise, or if you prefer to install from
source, the procedure is to download a copy of the source archive for the
package and apply the "INSTALL" command. From an R session, the function
install.packages() can do part or all of the process, again depending on
the package, the repository, and your particular platform. The R GUI may
also have a menu-driven equivalent for these procedures: Look for an item
in the tool bar about installing packages.

First, here is the function install.packages(), as applied on a Mac OS

X platform. To obtain the gam package, for example:
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install.packages("gam")

The function will then invoke software to access a CRAN site, download
the packages requested, and attempt to install them on the same R system
you are currently using. The actual download is an archive file whose name
concatenates the name of the package and its current version; in our example,
"gam 0.98.tgz".

Installing from inside a session has the advantage of implicitly specifying
some of the information that you might otherwise need to provide, such as
the version of R and the platform. Optional arguments control where to put
the installed packages, whether to use source or binary and other details.

As another alternative, you can obtain the download file from a Web
browser, and run the installation process from the command shell. If you
aren’t already at the CRAN Web site, select that item in the navigation frame,
choose a mirror site near you, and go there.

Select "Packages" from the CRAN Web page, and scroll or search in the
list of packages to reach a package you want (it’s a very long list, so searching
for the exact name of the package may be required). Selecting the relevant
package takes you to a page with a brief description of the package. For the
package gam at the time this is written:

At this stage, you can access the documentation or download one of the
proffered versions of the package. Or, after studying the information, you
could revert to the previous approach and use install.packages(). If you
do work from one of the source or binary archives, you need to apply the
shell-style command to install the package. Having downloaded the source
archive for package gam, the command would be:



2.6. GETTING R 29

R CMD INSTALL gam_0.98.tar.gz

The INSTALL utility is used to install packages that we write ourselves as
well, so detailed discussion appears in Chapter 4.

The package for this book

In order to follow the examples and suggested computations in the book,
you should install the SoDA package. It is available from CRAN by any of the
mechanisms shown above. In addition to the many references to this package
in the book itself, it will be a likely source for new ideas, enhancements, and
corrections related to the book.

2.6 Getting R

R is an open-source system, in particular a system licensed under the GNU
Public license. That license requires that the source code for the system
be freely available. The current source implementing R can be obtained
over the Web. This open definition of the system is a key support when
we are concerned with trustworthy software, as is the case with all similar
open-source systems.

Relatively simple use of R, and first steps in programming with R, on the
other hand, don’t require all the resources that would be needed to create
your local version of the system starting from the source. You may already
have a version of R on your computer or network. If not, or if you want a
more recent version, binary copies of R can be obtained for the commonly
used platforms, from the same repository. It’s easier to start with binary,
although as your own programming becomes more advanced you may need
more of the source-related resources anyway.

The starting point for obtaining the software is the central R Web site,
r-project.org. You can go there to get the essential information about R.
Treat that as the up-to-date authority, not only for the software itself but
also for detailed information about R (more on that on page 31).

The main Web site points you to a variety of pages and other sites for
various purposes. To obtain R, one goes to the CRAN repository, and from
there to either "R Binaries" or "R Sources". Downloading software may
involve large transfers over the Web, so you are encouraged to spread the
load. In particular, you should select from a list of mirror sites, preferably
picking one geographically near your own location. When we talk about the
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CRAN site from now on, we mean whichever one of the mirror sites you have
chosen.

R is actively maintained for three platforms: Windows, Mac OS X, and
Linux. For these platforms, current versions of the system can be obtained
from CRAN in a form that can be directly installed, usually by a standard in-
stallation process for that platform. For Windows, one obtains an executable
setup program (a ".exe" file); for Mac OS X, a disk image (a ".dmg" file) con-
taining the installer for the application. The Linux situation is a little less
straightforward, because the different flavors of Linux differ in details when
installing R. The Linux branch of "R Binaries" branches again according to
the flavors of Linux supported, and sometimes again within these branches
according to the version of this flavor. The strategy is to keep drilling down
through the directories, selecting at each stage the directory that corre-
sponds to your setup, until you finally arrive at a directory that contains
appropriate files (usually ".rpm" files) for the supported versions of R.

Note that for at least one flavor of Linux (Debian), R has been made a
part of the platform. You can obtain R directly from the Debian Web site.
Look for Debian packages named "r-base", and other names starting with
"r-". If you’re adept at loading packages into Debian, working from this
direction may be the simplest approach. However, if the version of Debian

is older than the latest stable version of R, you may miss out on some later
improvements and bug fixes unless you get R from CRAN.

For any platform, you will eventually download a file (".exe", "dmg",
".rpm", or other), and then install that file according to the suitable ritual
for this platform. Installation may require you to have some administration
privileges on the machine, as would be true for most software installations.
(If installing software at all is a new experience for you, it may be time
to seek out a more experienced friend.) Depending on the platform, you
may have a choice of versions of R, but it’s unlikely you want anything
other than the most recent stable version, the one with the highest version
number. The platform’s operating system will also have versions, and you
generally need to download a file asserted to work with the version of the
operating system you are running. (There may not be any such file if you
have an old version of the operating system, or else you may have to settle
for a comparably ancient version of R.) And just to add further choices, on
some platforms you need to choose from different hardware (for example,
32-bit versus 64-bit architecture). If you don’t know which choice applies,
that may be another indication that you should seek expert advice.

Once the binary distribution has been downloaded and installed, you
should have direct access to R in the appropriate mechanism for your plat-
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form.

Installing from source

Should you? For most users of R, not if they can avoid it, because they
will likely learn more about programming than they need to or want to. For
readers of this book, on the other hand, many of these details will be relevant
when you start to seriously create or modify software. Getting the source,
even if you choose not to install it, may help you to study and understand
key computations.

The instructions for getting and for installing R from source are contained
in the online manual, R Installation and Administration, available from the
Documentation link at the r-project.org Web site.

2.7 Online Information About R

Information for users is in various ways both a strength and a problem with
open-source, cooperative enterprises like R. At the bottom, there is always
the source, the software itself. By definition, no software that is not open to
study of all the source code can be as available for deep study. In this sense,
only open-source software can hope to fully satisfy the Prime Directive by
offering unlimited examination of what is actually being computed.

But on a more mundane level, some open-source systems have a reputa-
tion for favoring technical discussions aimed at the insider over user-oriented
documentation. Fortunately, as the R community has grown, an increasing
effort has gone into producing and organizing information. Users who have
puzzled out answers to practical questions have increasingly fed back the
results into publicly available information sources.

Most of the important information sources can be tracked down starting
at the main R Web page, r-project.org. Go there for the latest pointers.
Here is a list of some of the key resources, followed by some comments about
them.

Manuals: The R distribution comes with a set of manuals, also available
at the Web site. There are currently six manuals: An Introduction
to R, Writing R Extensions, R Data Import/Export, The R Language
Definition, R Installation and Administration, and R Internals. Each
is available in several formats, notably as Web-browsable HTML docu-
ments.
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Help files: R itself comes with files that document all the functions and
other objects intended for public use, as well as documentation files
on other topics (for example, ?Startup, discussing how an R session
starts).

All contributed packages should likewise come with files documenting
their publicly usable functions. The quality control tools in R largely
enforce this for packages on CRAN.

Help files form the database used to respond to the help requests from
an R session, either in response to the Help menu item or through the
`?` operator or help() function typed by the user.

The direct requests in these forms only access terms explicitly labeling
the help files; typically, the names of the functions and a few other
general terms for documentation (these are called aliases in discussions
of R documentation). For example, to get help on a function in this
way, you must know the name of the function exactly. See the next
item for alternatives.

Searching: R has a search mechanism for its help files that generalizes
the terms available beyond the aliases somewhat and introduces some
additional searching flexibility. See ?help.search for details.

The r-project.org site has a pointer to a general search of the files
on the central site, currently using the Google search engine. This pro-
duces much more general searches. Documentation files are typically
displayed in their raw, LATEX-like form, but once you learn a bit about
this, you can usually figure out which topic in which package you need
to look at.

And, beyond the official site itself, you can always apply your favorite
Web search to files generally. Using "R" as a term in the search pattern
will usually generate appropriate entries, but it may be difficult to
avoid plenty of inappropriate ones as well.

The Wiki: Another potentially useful source of information about R is the
site wiki.r-project.org, where users can contribute documentation.
As with other open Wiki sites, this comes with no guarantee of accu-
racy and is only as good as the contributions the community provides.
But it has the key advantage of openness, meaning that in some “sta-
tistical” sense it reflects what R users understand, or at least that
subset of the users sufficiently vocal and opinionated to submit to the
Wiki.
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The strength of this information source is that it may include material
that users find relevant but that developers ignore for whatever reason
(too trivial, something users would never do, etc.). Some Wiki sites
have sufficient support from their user community that they can func-
tion as the main information source on their topic. As of this writing,
the R Wiki has not reached that stage, so it should be used as a sup-
plement to other information sources, and not the primary source, but
it’s a valuable resource nevertheless.

The mailing lists: There are a number of e-mail lists associated officially
with the R project (officially in the sense of having a pointer from the
R Web page, r-project.org, and being monitored by members of R
core). The two most frequently relevant lists for programming with
R are r-help, which deals with general user questions, and r-devel,
which deals generally with more “advanced” questions, including fu-
ture directions for R and programming issues.

As well as a way to ask specific questions, the mailing lists are valu-
able archives for past discussions. See the various search mechanisms
pointed to from the mailing list Web page, itself accessible as the
Mailing lists pointer on the r-project.org site. As usual with tech-
nical mailing lists, you may need patience to wade through some long
tirades and you should also be careful not to believe all the assertions
made by contributors, but often the lists will provide a variety of views
and possible approaches.

Journals: The electronic journal R News is the newsletter of the R Foun-
dation, and a good source for specific tutorial help on topics related
to R, among other R-related information. See the Newsletter pointer
on the cran.r-project.org Web site.

The Journal of Statistical Software is also an electronic journal; its
coverage is more general as its name suggests, but many of the articles
are relevant to programming with R. See the Web site jstatsoft.org.

A number of print journals also have occasional articles of direct or in-
direct relevance, for example, Journal of Computational and Graphical
Statistics and Computational Statistics and Data Analysis.
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2.8 What’s Hard About Using R?

This chapter has outlined the computations involved in using R. An R session
consists of expressions provided by the user, typically typed into an R console
window. The system evaluates these expressions, usually either showing the
user results (printed or graphic output) or assigning the result as an object.
Most expressions take the form of calls to functions, of which there are many
thousands available, most of them in R packages available on the Web.

This style of computing combines features found in various other lan-
guages and systems, including command shells and programming languages.
The combination of a functional style with user-level interaction—expecting
the user to supply functional expressions interactively—is less common. Be-
ginning users react in many ways, influenced by their previous experience,
their expectations, and the tasks they need to carry out. Most readers of
this book have selected themselves for more than a first encounter with the
software, and so will mostly not have had an extremely negative reaction.
Examining some of the complaints may be useful, however, to understand
how the software we create might respond (and the extent to which we can
respond). Our mission of supporting effective exploration of data obliges us
to try.

The computational style of an R session is extremely general, and other
aspects of the system reinforce that generality, as illustrated by many of the
topics in this book (the general treatment of objects and the facilities for
interacting with other systems, for example). In response to this generality,
thousands of functions have been written for many techniques. This diversity
has been cited as a strength of the system, as indeed it is. But for some
users exactly this computational style and diversity present barriers to using
the system.

Requiring the user to compose expressions is very different from the
mode of interaction users have with typical applications in current com-
puting. Applications such as searching the Web, viewing documents, or
playing audio and video files all present interfaces emphasizing selection-
and-response rather than composing by the user. The user selects each step
in the computation, usually from a menu, and then responds to the op-
tions presented by the software as a result. When the user does have to
compose (that is, to type) it is typically to fill in specific information such
as a Web site, file or optional feature desired. The eventual action taken,
which might be operationally equivalent to evaluating an expression in R, is
effectively defined by the user’s interactive path through menus, forms and
other specialized tools in the interface. Based on the principles espoused
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in this book, particularly the need for trustworthy software, we might ob-
ject to a selection-and-response approach to serious analysis, because the
ability to justify or reproduce the analysis is much reduced. However, most
non-technical computing is done by selection and response.

Even for more technical applications, such as producing documents or
using a database system, the user’s input tends to be relatively free form.
Modern document-generating systems typically format text according to
selected styles chosen by the user, rather than requiring the user to express
controls explicitly. These differences are accentuated when the expressions
required of the R user take the form of a functional, algebraic language rather
than free-form input.

This mismatch between requirements for using R and the user’s experi-
ence with other systems contributes to some common complaints. How does
one start, with only a general feeling of the statistical goals or the “results”
wanted? The system itself seems quite unhelpful at this stage. Failures are
likely, and the response to them also seems unhelpful (being told of a syntax
error or some detailed error in a specific function doesn’t suggest what to
do next). Worse yet, computations that don’t fail may not produce any
directly useful results, and how can one decide whether this was the “right”
computation?

Such disjunctions between user expectations and the way R works be-
come more likely as the use of R spreads. From the most general view, there
is no “solution”. Computing is being viewed differently by two groups of
people, prospective users on one hand, and the people who created the S

language, R and the statistical software extending R on the other hand.
The S language was designed by research statisticians, initially to be used

primarily by themselves and their colleagues for statistical research and data
analysis. (See the Appendix, page 475.) A language suited for this group
to communicate their ideas (that is, to “program”) is certain to be pitched
at a level of abstraction and generality that omits much detail necessary for
users with less mathematical backgrounds. The increased use of R and the
growth in software written using it bring it to the notice of such potential
users far more than was the case in the early history of S.

In addition to questions of expressing the analysis, simply choosing an
analysis is often part of the difficulty. Statistical data analysis is far from
a routine exercise, and software still does not encapsulate all the expertise
needed to choose an appropriate analysis. Creating such expert software
has been a recurring goal, pursued most actively perhaps in the 1980s, but
it must be said that the goal remains far off.

So to a considerable extent the response to such user difficulties must
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include the admission that the software implemented in R is not directly
suited to all possible users. That said, information resources such as those
described earlier in this chapter are making much progress in easing the
user’s path. And, those who have come far enough into the R world to be
reading this book can make substantial contributions to bringing good data
analysis tools to such users.

1. Specialized selection-and-response interfaces can be designed when the
data analysis techniques can be captured with the limited input pro-
vided by menus and forms.

2. Interfaces to R from a system already supporting the application is
another way to provide a limited access expressed in a form familiar
to the user of that system. We don’t describe such interfaces explicitly
in this book, but see Chapter 12 for some related discussion.

3. Both educational efforts and better software tools can make the use
of R seem more friendly. More assistance is available than users may
realize; see for example the suggestions in Section 3.5. And there
is room for improvement: providing more information in a readable
format for the beginning user would be a valuable contribution.

4. Last but far from least in potential value, those who have reached a
certain level of skill in applying data analysis to particular application
areas can ease their colleagues’ task by documentation and by provid-
ing specialized software, usually in the form of an R package. Reading
a description in familiar terminology and organized in a natural struc-
ture for the application greatly eases the first steps. A number of such
packages exist on CRAN and elsewhere.



Chapter 3

Programming with R:
The Basics

Nearly everything that happens in R results from a function call.
Therefore, basic programming centers on creating and refining
functions. Function definition should begin small-scale, directly
from interactive use of commands (Section 3.1). The essential
concepts apply to all functions, however. This chapter discusses
functional programming concepts (Section 3.2, page 43) and the
relation between function calls and function objects (3.3, 50).
It then covers essential techniques for writing and developing
effective functions: details of the language (3.4, 58); techniques
for debugging (3.5, 61), including preemptive tracing (3.6, 67);
handling of errors and other conditions (3.7, 74); and design of
tests for trustworthy software (3.8, 76).

3.1 From Commands to Functions

Writing functions in R is not separate from issuing commands interactively,
but grows from using, and reusing, such commands. Starting from basic
techniques for reuse, writing functions is the natural way to expand what
you can do with the system. Your first steps can be gradual and gentle. At
the same time, the functions you create are fully consistent with the rest of
the language, so that no limits are placed on how far you can extend the
new software.

Exploring data for new insights is a gradual, iterative process. Occasion-
ally we get a sudden insight, but for the most part we try something, look at

37
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the results, reflect a bit, and then try something slightly different. In R, that
iteration requires entering slightly different expressions as the ideas change.
Standard user interfaces help out by allowing you to navigate through the
session history, that is, the expressions you have previously typed. Hitting
the up-arrow key, for example, usually displays the last line typed. With
the line displayed, one can navigate back and forth to alter parts of the
expression.

Manipulation of the history is a good way to correct simple errors and
try out small changes in the computations, particularly when the expressions
you have been typing are starting to be longer and more complicated. In the
following snippet, we’re recreating an ancient example studied in several text
books; our version is based on that in A Handbook of Statistical Analysis
Using R [14, Chapter 9]. This example involves the software for fitting
models, but you can imagine this being replaced by whatever software in
R is relevant for your applications. Following the reference, we start by
constructing a fairly complicated linear model.

> formula <- rainfall ∼ seeding *
+ (sne + cloudcover + prewetness + echomotion) + time
> model <- lm(fromula, data = clouds)
Error in model.frame(formula = fromula, data = ....:

> model <- lm(formula, data = clouds)

On the first attempt to create a model, we misspelled the name of the
formula object, then backed up the history to edit and re-enter the line.
The benefits of navigating the history aren’t just for errors. Let’s pursue
this example a bit. It’s a small dataset, but we can show the kind of gradual,
iterative computing typical of many applications.

The model tries to fit rainfall to some variables related to cloud seeding,
arguably with a rather complicated model for 24 poor little observations.
So a data analyst might wonder what happens when the model is simplified
by dropping some terms. Here is some further analysis in R that drops one
of the variables, sne. Doing this correctly requires dropping its interaction
with seeding as well. The user who can work out how to do this needs to
have some experience with the model-fitting software. Examining the terms
in the model by calling the anova() or terms() function will show which
terms include the variable we want to drop.

A call to the function update() updates a model, giving a formula in
which "." stands for the previous formula, following by using ± to add or
drop terms (see ?update for details). In the example below, we generate the

Oops---back up and edit last input lineobject "fromula" not found
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updated model and then produce a scatter plot of the two sets of residuals,
with the y = x line plotted on it, to see how the residuals have been changed.

> model2 <- update(model, ∼ . - sne - seeding:sne)
> plot(resid(model), resid(model2))
> abline(0,1)

Looking at the plot, it’s noticeable that the largest single residual has been
made quite a bit larger, so we select this point interactively with identify()

to indicate which observation this was.

> identify(resid(model), resid(model2))

To pursue the data analysis we might ask some questions about run number
15. But our focus is on the computing. Notice that the arguments in the
call to identify() are identical to the call to plot(), so once again typing
can be saved and errors avoided by backing up the history and editing the
line. Keep the session history in mind as a technique for adapting your use
of R.

Depending on the interface being used, something more powerful than
line-by-line navigation may be available to display or edit the history: The
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Mac OS X interface can display the history in a separate panel. The history
can also be saved to a file; see ?savehistory. When portions of the history file
have been saved, a text editor or the editor built into the R GUI can facilitate
larger changes. The changed code can be returned to R and evaluated by
using the source() function. Some specialized interfaces, such as ESS, will
have short cuts; in ESS for example, there are special key combinations to
evaluate whole buffers or regions in emacs.

As soon as you notice that the changes you are making are at all substan-
tial or start to see recurring patterns in them, consider turning the patterns
into an R function. A function potentially has several advantages at this
stage.

• It helps you to think about the patterns and often to see where they
might lead (in my opinion this is the most important advantage).

• You will often have less typing on each call to the function than would
be needed to repeatedly edit the lines of history.

• The computations done in the call to the function are local, which can
sometimes avoid undesirable side effects.

Even seemingly minor examples can prove interesting, as well as providing
practice in designing functions. Continuing the previous example, suppose
we decide to delete a different variable from the full model. By bringing
back the relevant lines of the history we can construct the same sequence
of calls to update(), plot() and abline(). But at this point, and imagining
doing the same editing a third or fourth time, the advantages of a function
become relevant.

The three commands to update and plot the model are the key; by
copying them to an editor and adapting them, we can create a function
callable in a variety of ways. Here’s a simple version. Let’s look at it first,
and then explicitly set out the editing techniques to turn history into a
function.

upd <- function(drop) {
model2 <- update(model, drop)
plot(resid(model), resid(model2))
abline(0,1)
model2

}

The three lines of the history file are in lines 2 to 4. To make it a usable
function, the piece that will be different each time—a formula in this case—
is replaced by the name of an argument, drop. Once we decide to have a
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function, like all functions in R it will return an object as its value, the last
expression computed. That object might as well be the new model.

When converting more than one line from the history into a function,
one must enclose all the lines inside braces to make the multiple expressions
into a single expression, simply because the function body is required in
the language to be a single expression. This single expression is turned
into a function by preceding it with the keyword function followed by a
parenthesized list of the arguments.

The expression consisting of the function keyword, the argument list,
and the body corresponds to a function definition or declaration in many
languages. But here is a key concept in programming with R: This is not
a declaration but an expression that will be evaluated. Its value is a func-
tion object and this object is then assigned, as "upd" in the example. The
distinction may seem subtle, but it underlies many powerful programming
techniques to be discussed in this and later chapters. Whereas in many
languages (for example, Perl, C, or Fortran), the function or subroutine name
would be part of the definition, in R a function results from evaluating an
expression and we choose to assign the function object, for the convenience
of referring to it by name. The function is the object, and is therefore as
available for computing in R as any other object. Do please reflect on this
paragraph; it will be worth the effort. For more details, see Section 3.3, page
50, and Section 13.3, page 460.

From an editor we can save the source in a file. Either the source()

function or some equivalent technique in the GUI will evaluate the contents
of the file. Now upd() is a function available in the session. We can create
and examine several different models using it.

> modelSne <- upd(∼. - sne - seeding:sne)
> modelCover <- upd(∼. - cloudcover - seeding:cloudcover)
> modelEcho <- upd(∼. - echomotion - seeding:echomotion)

As often happens, the process of thinking functionally has changed the ap-
proach a little in ways that can prove useful. Now that each model is gener-
ated by a function call, it’s natural to save them as separate objects, which
can then be used easily in other comparisons.

What also happens frequently once a function has been written is to ask
whether the function might be extended to be useful in other applications.
The first version was for immediate use, but what about a few changes?
Notice that upd() always starts from a fixed object, model. This reduced the
typing needed to call upd(), but it also restricted the function to a special
situation. This version of upd() only works if we have assigned model in the
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session, that is, in the global environment. That’s not only restrictive but
dangerous, if model existed but was not what we assumed. The function
would become generally applicable (our Mission of exploring) and also more
trustworthy (our Prime Directive) if we took that global reference and made
it instead an argument:

upd <- function(model, drop) {

The rest of the function definition stays the same. A little more typing is
needed for the examples:

> modelSne <- upd(model, ∼. - sne - seeding:sne)
> modelCover <- upd(model, ∼. - cloudcover - seeding:cloudcover)
> modelEcho <- upd(model, ∼. - echomotion - seeding:echomotion)

But now upd() is a potentially reusable function, and notice that the three
calls above have the same first argument, which then only needs to be typed
once if we continue to edit the previous call from the session history. The
calls themselves are pretty exotic still, in the sense that each takes a formula
to define what variable is to be dropped from the model. The example
assumed that the original user/programmer was familiar with model-fitting
in R, so that a formula in the argument would be acceptable.

Another helpful step in developing functions is often to consider rewriting
them for others to use. In this case, one’s colleagues might be interested
in examining the models, but not prepared to figure out obscure formula
arguments. What our function is really doing on each call is to drop all the
terms in the model that include a specified variable ("sne", "cloudcover"

and "echomotion" in the example above). The natural functional interface
would take a model and the name of a variable as arguments and return
the model with all terms involving that variable dropped. An additional
computation is required to construct the formulas of the form shown above,
starting from the model and the name of the variable.

Going from the variable to the formula is an exercise in computing with
text, and is shown as the function dropFormula() in Section 8.4, page 304.
If we assume that dropFormula() is available, we arrive at a “final” version
of our function:

dropModel <- function(model, drop) {
model2 <- update(model,

dropFormula(model, drop))
plot(resid(model), resid(model2),

xlab = "Original Residuals",
ylab = paste("Residuals after dropping", drop))
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abline(0,1)
model2

}

The function has also been modified to provide more meaningful labels on
the plot.

The dropModel() function is now in a form that might be a contribution
to one’s colleagues (and that will be easier for the author to use as well). The
pattern of changes, gradually adding to a simple original idea, is typical of
much programming with R. Such incremental expansion is natural and not
to be discouraged. However, there should come a time for thinking about
the design, as this simple example suggests. Software tends to be written
for convenience, initially, but it’s important to realize when some design
concepts need to be applied. In particular, discussing the concepts behind
functions is a good next step for programming with R.

3.2 Functions and Functional Programming

This section examines the underlying concept of a function in R, which
in spirit relates to the functional programming model for languages. The
concept is helpful in designing functions that are useful and trustworthy,
even though not everything in R conforms to functional programming.

Creating a function in R is extremely simple. Users of R should quickly
get into the habit of creating simple functions, which will make their work
more effective (through adaptability to related problems and ease of modifi-
cation) and also more trustworthy (through a simple interface and freedom
from side effects). Extensive use of functions is good from the view of both
our fundamental principles, the Mission and the Prime Directive.

So no one should be embarrassed by creating a function that seems trivial
or not ideally designed, if it helps further the analysis. On the other hand,
after using and modifying a function, you may realize that it is starting to
play a more serious role. Consider at that point an examination of both its
meaning and its implementation. The concepts of functions and functional
programming in R will help in this examination.

The language we are using, and now contributing to, can be called a
functional language in two important senses. One is a technical sense, in that
the S language shares, although only partially, a model of computation by
function evaluation, rather than by procedural computations and changes of
state. The other sense derives from the observation that users communicate
to R through function calls almost entirely, so that to use R well, the user
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must understand what particular functions do. Therefore, the functionality
of an R function, in a non-technical sense, must be clear and well-defined.
The version of the S language known later as S3 introduced functions as a
central concept.

The function concept

The concept of a function, in a pure form, is intuitively something like this:

A pure function in R is completely specified by the value re-
turned from a call to that function, for every possible value of
the function’s arguments.

In other words, whatever objects are chosen to be arguments to the function
unambiguously define what object is returned, and no information is needed
to define the function other than this relationship between arguments and
value. If this relationship can be described meaningfully it defines the func-
tion, abstracted away from the issue of what method the implementer of the
function uses to achieve the intended result.

If we restrict ourselves temporarily to functions with only one argument,
this definition deliberately mimics the mathematical definition of a function:
the mapping of any element in the domain (the possible argument objects)
into an element of the range (the corresponding value objects). Common R

functions correspond to just such familiar mathematical functions, such as
numerical transformations (sqrt()) or summaries (mean()). The extension
to functions of multiple arguments does not affect the mathematical analogy,
because the “domain” could be a mathematical product-space over all the
arguments.

In R, as opposed to mathematics, the arguments correspond to objects.
Functions following the concept take such objects and return another object
as the value of a function call. Well-defined functionality implies a clear re-
lation between the arguments and the value. Such function concepts extend
to arguments that can be many kinds of objects. For example, the function
lapply() takes another function as one of its arguments and applies that
function to the elements of a list; that is, it evaluates the supplied function
with each of the elements of the list as an argument. The result fits the con-
cept with no difficulty, provided that the function supplied as an argument
conforms to the concept.

In R (and perhaps in mathematics as well), it matters very much how
the function is “specified”. A useful function (for our Mission) has a clear,
simple, and unambiguous specification for its users. That does not mean that
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the definition of the function is limited to only certain classes of arguments.
Functions can be defined as generic functions, allowing methods for new
classes of objects. The complete definition of the function specifies the
values returned from all of the current methods. Here especially a clear,
consistent definition is needed.

For example, the subset operator, `[`, is a generic function with a variety
of methods for many classes of objects, with new methods arriving frequently
in new packages. The function does have a fairly clear intuitive definition,
somewhat along the lines: “Given an object, x, and one or more index
objects as arguments, `[` returns an object containing data from x, selected
according to the index argument(s).” Whether a new method for the generic
function conforms well to the definition cannot be controlled in advance, but
writing methods that do so is an important criterion for good software in R.

As a more extended example, the software in R for statistical models (see
Section 6.9, page 218) illustrates an application of the function concept. The
functions to fit various types of model all take two primary arguments, a
formula expressing the structure of the model and a source of data; they then
return an object representing the model of this type estimated consistent
with the arguments. In principle, the correspondence is clearly defined; for
example, the function lm() fits a linear model using least-squares to estimate
coefficients for the formula and data supplied. Additional functions then
produce auxiliary information such as residuals, with the fitted model now
an argument. In particular, the update() function used in Section 3.1, page
39, takes the fitted model and another formula, and returns a new fitted
model.

Methods and classes can be understood in a functional language like S

largely as a means of maintaining meaningful and well-defined computations
while generalizing functionality. The essence of a method is that it provides
one definition, that is one implementation, of a function, but only for a re-
stricted range of arguments. The restriction specifies that certain arguments
must belong to or inherit from specified classes; the restriction is technically
the signature of the method. The generic function should specify the value
in a meaningful way, but the validity of the computations must be consid-
ered separately for each method. A well-designed system of methods and
classes allows one to proceed step by step to examine the trustworthiness of
the computation. It’s a key part of programming with R, examined in detail
in Chapters 9 and 10.
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Functional programming languages

R shares a number of features with functional programming languages and
is sometimes listed among them (currently in Wikipedia, for example). The
pure function concept discussed above is in the spirit of functional program-
ming, but proponents of such languages could justifiably object that nothing
enforces the concept in programming with R. Languages defined explicitly
for functional programming often use forms of computing that are quite
different from the explicit, sequential evaluation in R.

Functional programming is a general philosophy and model for how pro-
gramming languages should work. A general discussion is outside the scope
of this book, but our understanding of computing with R will benefit from
examining the ways in which R follows this model, and equally the ways in
which it may extend or deviate from the model.

A non-technical definition of the functional programming philosophy
could expand on the pure function concept on page 44 somewhat as fol-
lows.

A functional programming language provides for the definition
of functions. The functions are free of side effects: the value of
a function call entirely defines the effect of that call. The func-
tion is defined entirely by the value corresponding to all possible
arguments, independent of external information. The function
defines that value by implicit enumeration over all possible ar-
guments, not by procedural computations that change the value
of objects.

The goal of functional programming has much in common with our Prime
Directive: to provide software that is understandable and as demonstrably
correct as possible. Strict versions aim to prove results about functions,
including their “correctness”.

Most books on functional programming aim their comparisons at tradi-
tional procedural languages such as C. For our own purposes, we need to
assess the concept against R, or more generally the S language. Functional
programming from our view has three main requirements.

1. Freedom from external side effects: calling the function has no effect
on any later computation, either in another call to this function or any
other function call.

2. Freedom from external influences: the value of a function call depends
only on the arguments and the function definitions used.
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3. Freedom from assignments: roughly, the function can be defined with-
out repeatedly assigning or modifying internal objects (often called
“state variables”).

R does not guarantee any of these but many functions satisfy some of the
requirements, less so as one goes down the list. Analyzing a function for
any of the requirements proceeds top-down, in the sense that one examines
the code of the current function; if that code passes, one then examines the
functions called by this function for the same requirement.

External side effects are most obviously carried out by non-local assign-
ments, either through the operator `<<-` or the assign() function. There
are other forms of side effect, such as writing files, printing or plotting.
These can all be fairly easily detected and often are more irrelevant to a
functional view rather than seriously damaging to it (see page 48). More
insidious are functions, such as options(), that create a hidden side effect,
usually in C code.

External influences are values that the function uses in its computations.
Some of these are part of the installation (such as machine constants or oper-
ating system information). These do make the function definition less global,
but for most practical purposes software should not ignore them if they are
part of the true definition. For example, the value of functions related to
numerical computations is, and must be, dependent on the domain of numer-
ical arguments if we use ordinary computer hardware for the computations.
Owners of 64-bit machines would not appreciate results computed to 32-bit
accuracy to avoid external influences. The dependency does need to be con-
sidered in assessing results, as in the discussion of testing in Section 3.8,
page 76. Dependencies on software outside of R, such as operating system
capabilities, are potentially more disruptive. In R, explicit dependence on
these values comes through global objects .Machine and .Platform. Indirect
dependence is more common, and can only be detected from knowledge of
the functions called.

More dangerous still are the effects of function options() and a few
other functions with similar behavior, that preserve user-set values globally.
If these options are used in a function, directly or as default values, the value
returned by a call to the function can be arbitrarily distorted by undetected
computations earlier in the session. A call to options() can set named
elements in a global object, regardless of where the call originated. So
computations inside one function can leave a permanent effect on other
functions.

Most of the options relate to values used for graphical and printed out-
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put, which are not very testable computations anyway. But a few can be
directly damaging to computed results. For example, the option ts.eps

is used as a default in testing frequencies in the ts() function. A call to
options() that set this option, no matter where it occurred, could alter
later results of a call to ts(). Here functional programming has a clear
message: Avoid dependencies on options() if you want functions to have
predictable behavior. Use arguments for analogous parameters, and supply
those with defaults that are constants or at worst that can be computed
from knowing the hardware and operating system context.

The third requirement in the list on page 47, freedom from assignments
entirely, aims to avoid analysis of the changing “state” of the local variables,
and is the most difficult to follow or even approximate in R (as it is to some
extent in all functional languages). Avoiding repeated assignments to state
variables is closely related to avoiding iteration. Functional programming
languages often advocate extensive use of recursive computations instead of
iteration, but traditionally deeply recursive computations are a bad idea in
R because of memory growth and computational overhead. The discussion
of vectorizing (Section 6.4, page 157) is in fact the closest analog in R to the
spirit of state-free computing. Good examples of vectorizing often build up
computations from other whole-object computations in a way that follows
the spirit of functional programming.

Functions with output

Most good functions in R exist for the purpose of creating an object, but
some functions legitimately serve other purposes. Displaying printed and
graphical output to the user is an important part of data analysis, and some
functions exist largely or entirely for display. The graphics package is a
prime example, with most functions existing to produce graphical output.
(It’s relevant that the graphics model underlying this software comes from
an ancient Fortran graphics library pre-dating S.) More modern graphics
software, such as the grid and lattice packages, conform more closely to
a functional view by producing graphics objects. Still, in a system where
nearly everything is the result of a function call, some functions must exist
to produce output.

The function plot() is the best known function in the graphics package,
so examining it from our conceptual perspective is useful. The R docu-
mentation describes the purpose as a “generic function for the plotting of
R objects”. In this sense, the function can be regarded as one of several
functions that provide information about objects based on their class (func-
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tions show(), print(), and summary() being others). These functions tend
to be attached very closely to single arguments; either they have only one
argument, or additional arguments tend to be tuning parameters to control
what the function does. Methods corresponding to this argument are often
valuable, as discussed in Chapter 10. Given such methods, users can expect
the function to be defined for any class of objects, and with luck the design-
ers of the class have taken the trouble to create a suitable method for these
objects, unless an inherited method turns out to be adequate. In particular,
the functions plot() and print() can be thought of as the visualization and
printed ways of showing the objects; the original intent of show() was to
produce the best default way to show the object, printed, plotted, or some
other medium (in practice, nearly all show() methods print).

With this concept, it’s not fatal that plot() produces no useful value,
since its side effect is the purpose. The details of the (default) method are
hidden somewhat because the actual graphical output relies on functions
that are only interfaces to C code, and so hard to understand.

In terms of a generic function, however, the main difficulty with plot() is
that the documented purpose of the function does not, in fact, describe all it
does. The original plot() function in S was for scatter or x-y plots, intended
to visualize the relation between two objects, specifically two numeric vec-
tors. In fact, the x-y plot provides a good framework for understanding R

graphics generally (see Section 7.2, page 242).

The notion of using plot() to visualize a single object was first an op-
tion, if the second argument was omitted; later, it became more of a focus
particularly when S3 methods were introduced for statistical models. In ret-
rospect, better design might have resulted from introducing a new generic
function specifically for visualizing a single object.

Given all the history, it’s too late to discourage use of plot() or the
design of new methods for it. But being relatively clear and explicit about
the conceptual intent of an important function should be a goal for future
programming with R. Based on the lack of a returned object to analyze,
on the obscurity resulting from doing most calculations in C, and on the
confusion about its purpose, we can’t give the plot() function a very high
grade on our functional programming criteria.

Later approaches to graphical computing in R, such as that in the lattice
package, get closer to functional style by producing graphics objects, the
actual output being generated by methods (S3 methods for print() in most
cases).
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Functions with external side effects

A second type of function that deviates from the functional concept exists for
the effect it has either on an R environment or on the R session, that is on the
evaluator itself. Examples of the former are non-local assignment functions
(`<<-` and assign()) and the programming tools for methods and classes (as
discussed in Chapters 9 and 10). Non-local assignments are encountered in a
style of programming known as “closures”. The technique is discussed, and
commented on, in Section 5.4, page 125; essentially, it involves creating an
environment shared by several functions, which then alter non-local objects
in the shared environment.

Functions such as setMethod() and setClass() in the methods package
are called for their side effect of assigning metadata containing corresponding
definitions. They could have been made more functional in appearance by
doing ordinary assignments, but the objects created must have special names
to trigger the appropriate actions when packages are attached, and also so
that classes can have the same name as corresponding functions to generate
objects from the class (for example, matrix()). The non-functional aspects
are fairly harmless as long as other software calls these functions at the top
level, preferably in the source defining an R package.

The main function to modify the evaluator is options(), which can be
used to specify values visible to all computations. Its actions are handled at
the C level, and modify a list of values, some known to the base implemen-
tation of R and others optionally shared among functions. In either case,
code in one function can modify values then seen by any other function, a
mechanism strongly at odds with functional programming.

All these programming mechanisms could to some extent be replaced
by more functionally oriented alternatives. With options() especially, some
fairly deep changes would be required, such as making the evaluator itself
an object with relevant options as properties.

Most of the existing non-functional features in the core packages are
either too entrenched or too useful to be removed. The hope is that fu-
ture mechanisms will be consistent with functional programming or else will
explicitly apply a clear alternative programming model.

3.3 Function Objects and Function Calls

This section looks at function objects as created by evaluating the function

expression in the language. A function object defines how R evaluates a call
to this function. All functions defined in the language share a basic structure
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that allows us to deal with them consistently and to develop programming
tools working directly with function objects.

Function calls are objects also, and the R evaluator uses both objects
to evaluate the call. This section concentrates on fairly practical issues,
which the object view helps clarify. For a deeper look, see Chapter 13, and
particularly Section 13.3, page 460.

Function objects

A function object is created by evaluating an expression of the form:

function ( formal arguments ) body

The object created has object type "closure". Like all object types, closures
are defined in the base-level C software. Three essential properties define
a closure object: the formal arguments, the body, and the environment.
The three properties are available from corresponding functions, formals(),
body(), and environment().

R also has a set of primitive functions, implemented directly in C. Prim-
itive functions have either type "builtin" or type "special", according to
whether they evaluate their arguments. New primitive functions cannot be
created by users. We won’t consider primitive functions in this chapter ex-
cept when their behavior requires it, usually because they get in the way of
a uniform treatment of functions.

In the grammar of the S language, the formal arguments are a comma-
separated list of argument names, each name optionally followed by the cor-
responding default expression, that is, by the syntactic operator "=" and an
arbitrary expression. (The use of "=" here is related to the assignment oper-
ator, but is translated directly into the function object; it does not generate
a call to the R operator `=`.) The function formals() returns an ordinary
list object, with its names attribute being the formal argument names of
the function, and named elements being the unevaluated expressions for the
corresponding argument’s default value.

The body is any complete expression, but typically a sequence of expres-
sions inside braces. The function body() returns the body of the function as
an unevaluated expression.

Function objects in R have a third important property, their environ-
ment. When a function is created by evaluating the corresponding expres-
sion, the current environment is recorded as a property of the function. A
function created during an R session at the top level has the global environ-
ment as its environment:
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> f <- function(x)x+1
> environment(f)
<environment: R GlobalEnv>
> identical(environment(f), .GlobalEnv)
[1] TRUE

The environment of a function is important in determining what non-local
objects are visible in a call to this function. The global environment is,
by definition, the environment in which top-level expressions are evaluated,
such as those entered by the user. When an object name appears in a top-
level expression, the evaluator looks first in the global environment, then
in the environments currently attached to the R session, as suggested by
the result of search(). (See Section 5.3, page 121 for a discussion.) For a
call to a function defined at the top level, the behavior is similar. When a
name is to be evaluated inside the call, the evaluator first looks locally for
an object, such as an argument, in the call itself. If the name doesn’t match,
the evaluator looks in the environment of the function, and then through
the parent environments as necessary. Thus objects visible in the session
will be visible inside the call as well.

In two important cases, functions have environments other than the
global environment. If a package is created with a namespace, that names-
pace is the environment of all functions it contains. And if a function is
created dynamically during a call to another function, the current environ-
ment of the call becomes the function’s environment. We will deal with the
implications of both of these later in this chapter. Also, generic functions
and methods (Chapter 10) are objects from classes that extend ordinary
functions, to add additional information. These objects have special envi-
ronments to provide that information efficiently.

Function calls

The evaluation of a function call is the most important step in computations
using R. It also proceeds quite differently from the behavior of languages such
as C or Java R©.

The essential communication between the calling and the called function
in R, as in any functional language, is via the argument expressions. The
call to a function is an object in the language. Technically, a function is not
a vector, but its elements are defined and can be used. The first element
identifies the function to call, usually by name but potentially as an actual
function object. The remaining elements are the unevaluated expressions
for each of the actual arguments in the call, which will be matched to the
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formal arguments of the function definition. Here is a call to the function
mad(), from the example on page 56.

> myCall <- quote(mad(xx[,j], constant = curConst, na.rm = TRUE))
> myCall[[1]]
mad
> myCall[[2]]
xx[, j]
> names(myCall)
[1] "" "" "constant" "na.rm"

The first actual argument is given without a name, the second and third have
names given by the syntactic operator "=". As in the function definition,
the argument names are transferred directly to the names attribute of the
call object.

Evaluation of a call proceeds first by matching the actual arguments
to the formal arguments, resulting in an object for each formal argument.
Details of what “matching” means can be left for Chapter 13, but the rules
work as follows. If the function does not have "..." as one of its arguments,
then arguments are matched by three mechanisms, applied in this order:

1. the name in the call matches exactly to the name of the formal argu-
ment;

2. the name in the call matches a initial substring of exactly one formal
argument (known traditionally as partial matching); or,

3. unnamed actual arguments are matched in order to any formal argu-
ments not already matched by the first two steps.

In the example call above, the names constant and na.rm each match one
of the formal arguments exactly. The unnamed argument then matches the
first available formal arguments, in this case the first formal argument, x

(see the example below).
Having "..." in the formal arguments changes the matching in two ways.

The "..." argument itself is matched, not to a single argument, but to a
list of all the arguments left unmatched by the process above. This list has
no direct equivalent as an R expression, and in fact it is only used to fill
in arguments in a subsequent call. You can see the unevaluated matching
arguments in a browser, for debugging purposes:

substitute(c(...))
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where c() could have been any function. The second effect of "..." is
that any formal arguments coming after "..." in the definition will only be
matched by the first mechanism above, exact name matching.

A comment on partial matching: I would recommend avoiding this mech-
anism in programming. It might have been useful in the old days before
interactive user interfaces with name completion, but it’s largely an unfor-
tunate relic now, one that is unlikely to disappear, however, for reasons
of compatibility. In writing functions, it can lead to confusing code and
produce some nasty bugs, in combination with "...".

When the arguments have been matched, the evaluator creates an envi-
ronment in which to evaluate the body of the function. The environment
has objects assigned for each of the formal arguments, represented by a spe-
cial type of objects, known as promises, which are essentially only available
for computations in C. The promise object contains the expression corre-
sponding to either the matching actual argument or the default expression,
a reference to the environment where the expression should be evaluated,
and some special structure that ensures the argument will be evaluated only
once. Promises corresponding to actual arguments will be evaluated in the
environment from which the function was called. Promises for default ex-
pressions will be evaluated in the environment created for this call.

Example: A function and calls to it

As an example in this section, let’s look at the function mad() from the stats

package in the core R code. This function computes the median absolute
deviation of a numeric vector, an estimate of scale for samples from distribu-
tions used when greater robustness is desired than provided by the standard
deviation.

> mad
function (x, center = median(x), constant = 1.4826, na.rm = FALSE,

low = FALSE, high = FALSE)
{

if (na.rm)
x <- x[!is.na(x)]

n <- length(x)
constant * if ((low || high) && n%%2 == 0) {

if (low && high)
stop("’low’ and ’high’ cannot be both TRUE")

n2 <- n%/%2 + as.integer(high)
sort(abs(x - center), partial = n2)[n2]

}
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else median(abs(x - center))
}
<environment: namespace:stats>

The function has 6 arguments, with default expressions for all but the first.

> dput(formals(mad))
list(x = , center = median(x), constant = 1.4826, na.rm = FALSE,

low = FALSE, high = FALSE)

(Because the elements of the list returned by formals() are expressions,
it’s usually easier to look at the value via dput() rather than through the
standard printing method for lists.)

One odd detail relates to arguments that do not have a default expres-
sion. The element in the formals list corresponding to x appears to be
empty, but it must be an object. (Everything is an object.) In fact, it is an
anomalous name or symbol object in R, with an empty string as its content.
However, you can do almost no computation with this object, because it
is interpreted as a missing argument in any other function call, except to
missing() itself:

> xDefault <- formals(mad)$x
> class(xDefault)
Error: argument "xDefault" is missing, with no default
> missing(xDefault)
[1] TRUE

The printout for mad() ends with "<environment: namespace:stats>",
indicating that the stats package has a namespace, and this namespace is
the environment for the function. Environments for function objects are
important in that they determine what other objects are visible from within
a call to the function; most important, they determine what other functions
can be called from within this one, and which versions of those functions
will be found. As always in evaluation, a name will be looked up first in the
current environment. Inside a function call, this environment is a local one
created for the call. If the name is not found in the current environment,
the evaluator looks next in the parent of that environment, which is the
function object’s environment. The search continues as necessary through
the chain of parent environments.

The package’s namespace contains all the objects defined as part of that
package. Its parent is a special environment containing all the objects from
other packages that the designer of the current package (stats in the case of
mad()) considers relevant, and the parent of that environment in turn is the
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base package. Thus a namespace allows the package designer to control the
external objects visible to the package, with no danger of finding unintended
definitions. Without a namespace, the function’s environment is the global
environment, meaning that objects defined during the session can change
the function’s behavior–nearly always a bad idea. See page 69 for how to
use trace() to deliberately change a function for debugging or development.
Details of namespaces in packages are discussed in Section 4.6, page 103.

Next, let’s examine how a call to the mad() function would be evaluated.

mad(xx[,j], constant = curConst, na.rm = TRUE)

The matching rules match the three actual arguments to x, center, and
na.rm, as we can check by using the match.call() function:

> match.call(mad,
+ quote(mad(xx[,j], constant = curConst, na.rm = TRUE)))
mad(x = xx[, j], constant = curConst, na.rm = TRUE)

The evaluator creates a new environment for the call and initializes promise
objects for all six formal arguments. When arguments need to be evaluated,
the expressions for the three arguments above will be evaluated in the en-
vironment from which the call came. The remaining arguments will be set
up to evaluate their default expression in the new environment. Default ex-
pressions can involve other arguments; for example, evaluating the default
expression for center uses the object x, the first formal argument. Such
cross-connections can affect the order in which arguments are evaluated. It
is possible to create invalid patterns of default expressions, as in:

function(x, y, dx = dy, dy = dx)

This fails if both dx and dy are missing. Here the special structure of
promises allows the evaluator to detect the recursive use of a default ex-
pression.

The six objects corresponding to formal arguments can be re-assigned, as
with any other objects (in the example, x may be reassigned to remove NAs).
This overwrites the promise object, which may cause the value of missing()
to change for this object (be careful to evaluate missing() before any such
assignment can occur). Just to re-emphasize a fundamental property: The
assignment to x has no effect on the object that supplied the x argument.



3.3. FUNCTION OBJECTS AND FUNCTION CALLS 57

Operators

Operators, as objects, are simply functions. Because the S language uses C-
style, or “scientific” notation for expressions, the grammar recognizes certain
tokens when they appear as prefix (unary) or infix (binary) operators. The
definitions of the corresponding names as function objects will have one or
two arguments and those arguments will not be supplied by name (at least
when the function is used as an operator). In addition, R uses standard
notation for subset and element computations, corresponding to the operator
functions `[` and `[[`. Otherwise, nothing much distinguishes the operators
from any other functions.

Operators with specific notation in the language are defined in the base

package and should not be redefined. For many of the operators, defining
methods involving new classes makes sense, however. Section 2.3, page 21
discusses some of the more frequently used operators. Here are the operators
in the base package.

"!" "!=" "$" "$<-" "%%" "%*%" "%/%" "%in%" "%o%"
"%x%" "&" "&&" "(" "*" "+" "-" "/" ":"
"::" ":::" "<" "<-" "<<-" "<=" "=" "==" ">"
">=" "@" "[" "[<-" "[[" "[[<-" "∧" "{" "|"
"||" "∼"

The object names shown were determined heuristically. The computation
that produced them is shown as an example of computing with regular
expressions (see Section 8.3, page 303).

Entirely new operators can be written. Any function object with a name
having the pattern:

%text%

can be used as an infix or prefix operator. Suppose, for example, we wanted
an operator `%perp%` that returned the component of numerical data y per-
pendicular to numerical data x. We just define a function with the desired
name and the correct definition. The new operator is immediately available.

> `%perp%` <- function(y,x)
+ lsfit(x,y, intercept = FALSE)$residuals
> x <- 1:10
> y <- x + .25 * rnorm(10)
> y %perp% x
[1] -0.01586770 0.46343491 0.10425361 0.03214478 -0.37062786
[6] -0.13236174 0.25112041 -0.22516795 0.34224256 -0.17417146
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3.4 The Language

The “programming” language for R is the same language used for interactive
computation. In both contexts, function calls are the essence, as discussed in
Section 2.3, page 19. The functional programming approach encourages new
functions to be built up from calls to existing functions, without introducing
complex procedural controls. Initially, new functions will be easier to write
and debug if they are simple extensions of interactive computing.

But as you design more extensive functions and other software, you will
eventually need some added constructions. This section examines some of
the key techniques in the language, most of which have to do with flow of
control; that is, deciding what computations to do, returning a value for the
function call, and controlling iterations (“looping”).

By far the most commonly used looping construct is the for() expression,
such as:

for(i in 1:p)
value[i,1] <- which.max(x0[,i])

(But see Section 6.8, page 212 for this specific loop.) The general syntax is:

for(name in range ) body

where syntactically name is a name (or anything in back quotes), and both
range and body are general expressions. The body is evaluated repeatedly
with name assigned the first element of the evaluated range, then the second,
and so on. Let’s refer to this object as the index variable. Something like
the example, with the index variable being a numeric sequence, is the most
common usage. In that example, we’re indexing on the columns of v. The
evaluated range will typically relate to some sort of vector or array. Quite
often, there will be two or more parallel objects (perhaps we’re indexing the
rows or columns of a matrix or data frame, along with a parallel vector or
list, say). Then indexing by a sequence is essential.

The most common error in this most common example is to forget that
sometimes the range of the loop may be empty. R is quite prepared to deal
with vectors of length 0 or matrices with 0 rows or columns. In programming
with R, we should either check or guarantee that the range of the loop is not
empty, or else write the code to work if it is. A for() loop using the `:`

operator is immediately suspect. Two alternatives should be used instead:

seq(along = object )
seq(length = number )
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These both produce a sequence which is empty if the object has length 0

or if the number computes as 0 (beware: in the current implementation,
you are responsible for rounding error; any positive fraction is treated as 1).
Unless we really knew what we were doing, the example above should have
been:

for(i in seq(length = p))
value[i,1] <- which.max(x0[,i])

Another detail to note is that, in R, the assignment implied for the index
variable is an ordinary assignment in the environment of the computation.
For example, if p > 0 in our example, then i will have the value p after the
loop is finished, regardless of what if any assignment of i existed before the
loop was evaluated. (S-Plus reverts the index variable to its previous value,
if any, on exiting the loop.)

Other loops are:

while(test ) body

repeat body

in which test evaluates to test a condition, and body is again any expression
but typically a braced sequence of expression. (See below for testing a
condition, which is a highly special computation in R.)

In any loop, two special reserved words are available:

next: this terminates evaluation of the body of the loop for this
iteration;

break: this terminates evaluation of the complete loop expres-
sion.

To be useful, either of these control expressions will occur conditionally on
some test.

The value of any loop expression is the value of the body, the last time
it is evaluated. A loop that is evaluated zero times has value NULL. Pro-
gramming will usually be clearer if the loop is used to assign or modify local
variables, with the value of the loop itself ignored. The value may be un-
clear if the control expressions are used, because it will depend on where
in the loop a break or next occurred. Also, if you’re concerned with S-Plus

compatibility, be aware that loops there have no useful value.
The conditional test expression has the forms:

if(test ) expression1

if(test ) expression1 else expression2
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The optional else part to the conditional expression can cause problems,
particularly when expressions are being typed at the top level. The eval-
uator will treat the version without else as a complete expression, and an
expression starting with else is a syntax error. When the expressions are
inside braces, as is typically the case, then a newline can intervene between
expression1 and else.

An important and sometimes tricky aspect of programming in the S

language is testing a condition. This arises primarily in if() and while()

expressions. A conditional expression, such as:

if(length(x) > 0)
x <- x - mean(x)

looks both innocuous and much like programming in other languages. But
it is in fact quite exceptional for an R expression, because the test must
evaluate to a single TRUE or FALSE value if the expression as a whole is to
work as expected. Similarly, the condition expression in a while() loop must
evaluate to a single logical value:

while( rse > epsilon) {
wgt <- update(wgt, curModel)
curModel <- lm(formula, weight = wgt)
rse <- sqrt(var(resid(curModel)))

}

Exceptionally for the S language, the expressions here are required to eval-
uate to a single value, and in addition to only one of two possible logical
values, for the computation to be trustworthy. The code above may look
reasonable and may even work for most examples, but it is in fact a potential
trap. What if one of the arguments is a vector of length other than 1? Or
if one of them evaluates to a non-numeric result, such as NA?

Code written for tests and loops should take care to avoid confusing
errors and even more to ensure that no invalid results can sneak through.
The use of special functions and the avoidance of nice-looking but dangerous
expressions (such as the comparison in the loop above) can usually produce
trustworthy results. See Section 6.3, page 152 for some techniques.

One more control structure is the function return(). As in most lan-
guages, this has the effect of ending the current call, with the value of the
call being the value of the (single) argument to return().

Functions in R can call themselves recursively, directly or indirectly. No
special language mechanism is required, but good programming practice uses
a special technique to make sure the recursive call is to the correct function.
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A call to Recall() finds the function currently being called and calls that
function recursively. Why? Because it’s the function as an object that must
be recalled. Various special circumstances might have changed the reference
for the original name. Although not likely to occur often, mistakes of this
form could cause very obscure bugs or, worse, subtly incorrect results. A
variety of tools in R help to ensure that the correct function object is used.
Simple recursion uses Recall(); function local() controls the context of an
expression; functions callGeneric() and callNextMethod() provide similar
facilities for programming with methods.

3.5 Interactive Debugging by Browsing

The term “debugging” has an unpleasant connotation, suggesting software
pesticides or other disagreeable treatments. The suggestion is sometimes
justified, particularly in dealing with large systems or primitive program-
ming environments. In R, the experience should be more productive and
pleasant.

Debugging is not just to recover from bugs, but to study software while
it is being developed and tested. Flexible tools that are easy to apply can
make the process more effective and much less painful.

In an interactive language such as R, particularly one that can compute
with the language itself, debugging should include techniques for browsing
interactively in the computation, and for modifying functions interactively
to aid in understanding them. These techniques are powerful and often
under-utilized by programmers. They do follow a different approach than
the debugging used for most programming languages, an approach aimed at
building directly on the concepts and techniques in R.

One thing that debugging procedures in any language should not be is
complicated. There are few things more annoying than having to debug
your debugging. Similarly, debugging should not involve learning another
language or programming procedure. The main goal of the techniques dis-
cussed in this section is to get us back to ordinary interaction with R.

Along these lines, users familiar with more traditional programming lan-
guages such as C are often surprised at the absence of a separate debugger
program (such as gdb for C programming) or a debugging mode (as is used
with Perl). In fact, because R is implemented as an application written in
C, you can use such an overlaid debugging tool with R, by invoking the ap-
plication with a debugger argument (see the documentation for R itself on
your platform). But debugging at the C level will be irrelevant for most R
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users. And debuggers of this type, whatever the language being debugged,
usually have their own command syntax. The user of the debugger sets
break points in the program; when the break point is reached, the user must
enter commands in the debugger language to examine or modify variables.

Debugging in this style is unnatural in R. We already have a highly
interactive language. What’s needed is usually just to interact as we usually
do, but at a time and in a context appropriate to the current programming
problem. Instead of waiting until the current expression is complete, we
either arrange to browse interactively in the middle of the computation,
or enter when an error occurs. From either context, the user can examine
local variables in the current function calls, using all the same tools that
one would normally have at the command prompt, plus some additional
functions specifically for debugging.

This section discusses two fundamental mechanisms:

1. Browsing in the context of a particular function call (using the func-
tion browser()). This involves typing ordinary expressions involving
the arguments and other variables visible from the call, in order to
examine the current state of computations. Essentially, the standard
R interaction with the parser and evaluator is moved into the context
of a function call.

2. Navigating a stack of nested function calls, either currently active
(using the function recover()) or saved from past computation (the
function debugger()).

In the next section, we discuss a related tool, the trace() function, which in-
serts code dynamically into a function or method, typically to call browser()
or recover(), but in principle for any purpose you like. Combining the two
sets of tools gives a powerful environment both for debugging and more
generally for studying R software interactively.

After an error: The error option

A user dealing with well-tested software in what’s assumed to be a routine
way does not expect computations to stop with an error. If they do, the
user is unlikely to have the information or the desire to look deeply into
what happened where the error was generated. The default R error action is
just to print an error message and exit from the top-level expression being
evaluated.

As soon as we are involved in programming, the situation changes. We
now want to specify a debugging action to take when an error occurs. The
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action is specified by the value of the global error option, specified by a call
to the options() function as either a function or an unevaluated expression.
Once you begin any serious programming, you will benefit from being able
to recover information whenever an error occurs. The recommended option
during program development is:

options(error = recover)

If much of your R activity is programming, you may want to have this option
specified at session startup, for example by adding it to the .Rprofile file
(see ?Startup).

With this option in place, an error during an interactive session will
call recover() from the lowest relevant function call, usually the call that
produced the error. You can browse in this or any of the currently active
calls, and recover arbitrary information about the state of computation at
the time of the error.

If you don’t want to debug interactively at the time of the error, an al-
ternative to recover() as an error option is options(error = dump.frames),
which will save all the data in the calls that were active when an error oc-
curred. Calling the function debugger() later on then produces a similar
interaction to recover(). Usually, there is no advantage to dump.frames(),
since recover() behaves like dump.frames() if the computations are not in-
teractive, allowing the use of debugger() later on. Also, some computations
don’t “save” well, so you may find debugging harder to do later on. For ex-
ample, interactive graphics and input/output on connections will be easier
to study right away, rather than from a dump.

The browser() function

The browser() function is the basic workhorse of studying computations
interactively on the fly. The evaluation of the expression:

browser()

invokes a parse-and-evaluate interaction at the time and in the context where
the call to browser() took place. The call to browser() is just an ordinary
call: It’s evaluating the call that does something special. The function
invokes some C code that runs an interaction with the user, prompting for
R expressions, parsing and evaluating them in approximately the same way
as top-level expressions, but as if the expressions occurred in the current
context.

A call to browser() can appear anywhere a function call is legal:
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if(min(weights) < 1e-5)
browser() ## but don’t do this!

You should not manually insert calls to browser() or other debugging code
into your functions. It’s all too easy to leave the calls there, particularly
if they are only used conditionally on some test, as in the example above.
The result will be to plunge you or your users into an unwanted debugging
situation sometime later. You might be surprised at how irritated your users
may become in such circumstances.

Specifying recover as the error option will get you to the browser in any
chosen function call active at the time of an error. For all other purposes, use
the trace() function, as described in Section 3.6, page 67. Simple situations
can be handled simply, and the edit= argument to trace() allows debug-
ging to be inserted anywhere. Any conditional calls or other specialized
expressions can then be entered and used, then removed simply by calling
untrace().

Browsing in multiple contexts: recover()

A call to browser() can examine all the information local to a particular
function call, but an additional tool is needed to examine interactively the
information in a nested sequence of calls. The function recover() is designed
for this purpose. It essentially manages navigation up and down the calls
and invokes browser() for interactions in a particular call. The recover()

function begins the interaction by listing the currently active function calls
(the traceback). The user enters the number of the relevant call from the
list, or 0 to exit. All other interaction is with the function browser() in
the usual way. The user can examine any information visible in the chosen
context, and then return to recover() (by entering an empty line) to select
another context. Let’s begin with an example.

Suppose the call to recover() comes from the function .Fortran(), the
R interface to Fortran routines. The context here is a call to the aov() func-
tion, which fits analysis-of-variance models in R by creating linear regression
models. There might have been an error in a Fortran computation, but in this
case we just wanted to see how the aov() function used Fortran subroutines
for its numerical work. To do that, we inserted a call to recover() using
trace() (see page 74 for the details). The initial printout is:

> aov(yield ∼ N + K + Error(block/(N + K)), data=npk)
Tracing .Fortran("dqrls", qr = x, n = n, p = p, .... on entry
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Enter a frame number, or 0 to exit

1: aov(yield ∼ N + K + Error(block/(N + K)), data = npk)
2: eval(ecall, parent.frame())
3: eval(expr, envir, enclos)
4: lm(formula = yield ∼ block/(N + K), data = npk, ....
5: lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...)
6: .Fortran("dqrls", qr = x, n = n, p = p, ...

Selection:

You may see now why recover() was a useful function to call. There are at
least three contexts of interest: aov() for the original computation, lm() for
the linear model, and lm.fit() for the numerical details. By starting from
recover(), we can decide to browse in any of these.

The user responds with the number for the call we first want to browse
in. If we’re interested in the computations that produced the linear model,
we want aov(), call number 1.

Selection: 1
Called from: eval(expr, envir, enclos)
Browse[1]> objects()
[1] "Call" "Terms" "allTerms" "contrasts"
[5] "data" "eTerm" "ecall" "errorterm"
[9] "formula" "indError" "intercept" "lmcall"
[13] "opcons" "projections" "qr"
Browse[1]> ecall
lm(formula = yield ∼ block/(N + K), data = npk, singular.ok = TRUE,

method = "qr", qr = TRUE)
Browse[1]>

Now we are in the browser, and can do any computations we want; in the
example above, we asked for all the local objects in the call, and then looked
at a constructed formula used in the call to lm().

If at this point we want to browse in lm() instead, we exit the browser
(by entering an empty line). That puts us back in the menu from recover()

and we can enter 4 to examine the call to lm().
Once we’re done entirely with the interaction, entering 0 to recover()

exits that function.
Notice that the browser() function would not work conveniently if called

directly as an error option or with trace() in this example. In a single call
to browser(), only objects visible from the particular call can be examined.
The visible objects will not include the local objects in other calls.
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You could call recover() interactively from browser(), but if you expect
to examine more than one currently active function, a simpler choice is to
specify recover directly, either as the error option or in a call to trace().

Browsing on warnings

Warning messages are the grey area of debugging: supposedly not serious
enough to interrupt the computation, but worth nagging the user about.
These are the buzzing insects of debugging; annoying rather than a direct
threat. But even if you are currently convinced the warning messages are
harmless, if they persist your users (including yourself when you come back
later) may not be so sure.

The simple control over warnings is an argument to options(). Unlike
the error option, however, the argument warn= is just an integer expressing
the level of seriousness to give warnings. The default is 0, meaning to collect
warnings and report them at the end of the expression. Warnings are often
issued in a loop, usually the same warning repeatedly. In this case, the
standard action is to save up the warnings (50 maximum), and treat the
user to the annoying message:

> bar(rnorm(10))
[1] 13
There were 30 warnings (use warnings() to see them)

Negative values of the warn option say to ignore all warnings. However,
this strategy is not a good idea unless you really know what warnings can
be issued during the enclosed computation. If you or a user of your software
did something unanticipated to inspire a warning, that information is now
lost.

That leaves us with only one strategy: figure out what caused the warn-
ing and if possible avoid it. The simplest mechanism to look deeper is again
the warning level option. Setting it to 2 or more converts warnings into
errors:

> options(warn=2)
> bar(rnorm(10))
Error in foo(x) : (converted from warning) There were missing
values in x

At this point, if you have set options(error=recover), you can proceed to
debug in the usual way.

The techniques for using trace() can also be adapted to deal with warn-
ings, in case you need to keep running after examining the computations
interactively. The simple way is:
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trace(warning, recover)

which will let you examine computations from the point where warning()

was called (but it won’t work if the warning is issued from C code, as is often
the case). A third approach is to use condition handlers (Section 3.7, page
74). These require more programming to set up, but introduce no global
changes that need to be undone and are also somewhat more flexible.

3.6 Interactive Tracing and Editing

Waiting for errors to occur before worrying about debugging is not always
a good strategy. By the time the error occurs, the relevant information to
track down the problem may no longer exist. And the worst problems in
computation are not fatal errors at all, but wrong answers from an evaluation
that seems normal. That’s the message of the Prime Directive. Even if no
mistakes are expected or encountered, we may want to study computations
as they take place, for reasons such as performance or just to examine some
intermediate results.

For these situations, the trace() function is the most useful debugging
tool. Its name is too modest; general use of trace() doesn’t just trace
what happens in functions, but can be used to insert interactive debugging
of any kind at the start, on exit, or anywhere in the body of a function.
The function provides a powerful mechanism to examine the computations
during the evaluation of a function or method, whether one you have written
or software from an attached package (packages with namespaces included).

Calling trace() adds computations to a specified function, f. In the
simplest use, a function is supplied by name to be called, without arguments,
at the start of each call to f and/or just before the call returns. The function
supplied is usually browser or recover. For example:

trace(f1, recover)
trace(f2, exit = browser)
trace(f3, browser, exit = browser)

All future calls to f1() will begin with a call to recover(); calls to f2()

will call browser() on exit, and calls to f3() will call browser() on both
entry and exit. These are the quick-and-easy forms of interactive tracing,
sufficient for many applications.

A second, more powerful use combines trace() with interactive editing
of the function. Instead of a fixed change, any modification can be made,
and the edited version now, temporarily, takes the place of the original. This
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not only allows arbitrary debugging code, it provides the most convenient
way to experiment with changes in a function from a package.

Why use trace()?

The mechanism of trace() is simple: It constructs a modified version of
the function object and re-assigns that in the environment from which the
original came. “But, I could do that myself!”, you may say. Yes, at least in
simple cases, but there are several advantages to letting trace() handle the
details, some of them important.

There is no need to make changes in a source file, and therefore less
chance that you will forget to remove the changes later on. With trace()

the modified function reverts automatically to the untraced version, either
at the end of the session or after the call:

untrace(f)

The use of trace() allows you to examine or even temporarily modify
functions or methods in attached packages, including packages using the
namespace mechanism (even functions not exported from the namespace).
For such functions direct editing may not work, for reasons we explore on
page 72. If you want to debug or modify code in a loaded namespace,
trace() may be the only straightforward mechanism.

The option of editing interactively is the most general form of tracing,
but also in a sense the most natural. We are back to the intuitive notion
of just editing the function, but with the trace() mechanism handling the
details. In fact, trace() with edit=TRUE is often a convenient way to try out
changes in a function from a package, without having to alter and reinstall
the package. The edited changes don’t need to be restricted to debugging
code.

All the techniques can be applied to any formal method in the same way
as to an ordinary function by supplying the method’s signature to trace()

(see page 71).

Tracing and browsing

A simple but effective form of tracing is to invoke browser() on entry to a
function. The special command "n" causes the browser to step through the
subexpressions of the function, printing the next subexpression each time
before evaluating it. Here is a simple trace-and-browse session with the
function zapsmall():
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> trace(zapsmall, browser)
Tracing function "zapsmall" in package "base"
[1] "zapsmall"
> zapsmall(xx)
Tracing zapsmall(xx) on entry
Called from: eval(expr, envir, enclos)
Browse[1]> n
debug: {

if (length(digits) == 0)
stop("invalid ’digits’")

if (all(ina <- is.na(x)))
return(x)

mx <- max(abs(x[!ina]))
round(x, digits = if (mx > 0)

max(0, digits - log10(mx))
else digits)

}
Browse[1]> n
debug: if (length(digits) == 0) stop("invalid ’digits’")
Browse[1]> n
debug: if (all(ina <- is.na(x))) return(x)
Browse[1]> n
debug: mx <- max(abs(x[!ina]))
Browse[1]> any(ina)
[1] FALSE
Browse[1]>

Here the function returns--

[1] 1.9750906 -0.7128754
etc.

The first "n" prints the expression to be evaluated, then each subexpression
is printed and evaluated after the user returns an empty line. Before that,
one can evaluate any expression, as we did here with any(ina).

Simple tracing such as this can be useful, but is limited. In this example,
the author of zapsmall() was showing off by computing the whole result in
one long and rather obscure expression. We can’t examine that before the
function returns, because it wasn’t assigned, leading us to want to edit the
function being traced.

Tracing with editing

For completely general tracing, supply the optional argument

edit = TRUE

debug: round(x, digits = if (mx > 0) max(0, digits - log10(mx)) else digits)

0.0781455 -1.2417132 1.73532470.7709643
Browse[1]>
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in the call to trace(). The effect of the edit argument is to invoke an editor,
initialized with the current definition of the function or method. You can edit
the code in any way you like. After you save the result and exit the editor,
the modified definition is inserted by trace() as a temporary modification
of the original. You can cancel tracing by calling untrace() as usual.

In the trace of zapsmall() above, suppose we call trace() again:

> trace(zapsmall, edit = TRUE)

We then enter an editor (typically the editor associated with the GUI), and
can make any changes. Saving and exiting will install the edited function.

In this example, we would edit the last subexpression to:

value <- round(x, digits = if (mx > 0)
max(0, digits - log10(mx))

else digits)
value

Now we can examine the value before it’s returned. If you try this example
yourself, you will notice that the effect of the previous tracing is left in,
when edit=TRUE; the function begins with the line:

.doTrace(browser(), "on entry")

The reasoning in trace() is that editing will often be iterated, and one does
not want to have to retype all the changes.

As a second example, let’s trace a function with an internal loop, in
particular the function binaryCount() discussed in Section 9.7, page 374:

binaryCount <- function(nodes, leafValues) {
nL <- length(leafValues)
nN <- nrow(nodes)
left <- nodes[,1]; right <- nodes[, 2]

left <- ifelse(left<0, -left, left + nL)
right <- ifelse(right<0, -right , right + nL)

count <- c(leafValues, rep(NA, nN))

while(any(is.na(count)))
count <- c(leafValues, count[left] + count[right])

count[-seq(length=nL)]
}
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Never mind what it does in detail; the main interest is in the while() loop,
which continues as long as there are NA values in the vector count. Suppose
we want to know how many times the code goes through the loop, and
perhaps how many NA values are left on each iteration. This cannot be done
by simple tracing, and if binaryCount() is in a package namespace we can’t
easily change it there by ordinary editing (see page 73). The solution is to
use trace() with editing:

trace(binaryCount, edit = TRUE)

In the interactive editor, we edit the loop, to something like:

iter <- 1
while (any(is.na(count))) {

message(iter, ": ", sum(is.na(count)))
iter <- iter + 1
count <- c(leafValues, count[left] + count[right])

}

Now each call to binaryCount(), whether directly or from some other func-
tion in the package, prints out information about the iterations; for example:

> nodeArea <- binaryCount(usTree@nodes, Area)
1: 49
2: 32
3: 21
4: 15
5: 11
6: 7
7: 4
8: 2
9: 1

If you want to change the tracing but start from the current traced version,
call trace() with edit=TRUE again. The version you see in the editor will be
whatever is current, either with or without tracing. To delete the edits, call
untrace(binaryCounts).

The edit version of trace() behaves like the edit() function in R (for
the good reason that it in fact calls edit()). By default the call to trace()

invokes the default editor for the local user interface, or as specified by the
editor option or a corresponding shell variable setting (see ?options).

Tracing specific methods

All the techniques for tracing functions apply as well to tracing methods.
Supply the signature= argument to trace() with the same signature that
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would select the method, and the modified definition will be set to be the
corresponding method for that function. Suppose, for example, that we want
to trace the method for function show() corresponding to class "gpsPath":

trace(show, exit = browser, signature = "gpsPath")

A call to browser() will now be inserted into the original method, and the
result set as the "gpsPath" method for show().

all the tracing mechanisms extend to methods, in particular the edit option.
When trace() is applied to a method, it finds the current method def-

inition by a call to selectMethod(), which will return either an explicitly
defined method or one inherited from another signature. It’s not necessary
that the signature appeared in an explicit setMethod() call for this function.
Notice, however, that after specifying the trace, the traced definition will
be installed by an explicit call to setMethod(). Therefore, subclasses of the
classes in the signature= argument may select the traced method as well.

How tracing works

The basic idea is entirely simple and epitomizes the S-language style of
using dynamically created objects. Evaluating trace(f, ...) creates a new
version of the function object f, containing calls to an interactive browser
(or any other computations you like), and assigned in place of the original
function or method.

The object created by trace() extends both class "function" and a vir-
tual class, "traceable". The latter class provides the methods to restore the
original version of the function or method, while the new object still behaves
like a function or method definition, as the case may be. The mechanism
is in fact open-ended in the sense that any class extending "function" can
have a traceable version. Section 9.4, page 353 discusses the class mechanism
used, which illustrates the value of multiple inheritance.

For a plain function, the new object is assigned directly. For a method,
the new method is inserted in the appropriate generic function, effectively
as if the new definition were assigned via a call to setMethod(), but only
for the current session. For non-method objects, what happens depends
on where the original object came from. An object modified for tracing is
always assigned back into the original environment. Emphasis on always.
For objects from the global environment, an ordinary assignment takes place.
Notice that as a result, if you save the image of that environment when you
quit, traced versions of these functions will still be traced when you load

Because method definition objects belong to a class that extends "function",
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that data image again. If that’s not what you want, you need to untrace()

the functions before saving.
For objects from other environments, particularly from packages, the

situation is different. First, the traced versions of functions in packages
are stored in the environment for that package in the current session, and
therefore will have no life after the session ends. In particular, they cannot
accidentally override the package’s version of that function in later sessions,
even if you save the global environment when you quit.

Second, the trace() mechanism works for objects in namespaces as well,
which can be key for debugging. The namespace mechanism is discussed
in Section 4.6, page 103, but the aspect relevant to debugging is that when
a function in a namespace calls another function, the evaluator looks for
the function only in the same namespace and in the objects that namespace
imports. It does not look in the global environment. As a result, an attempt
to trace computations in a function in a namespace by creating an edited
version by hand will usually fail. The edited version is normally saved in
the global environment, but other functions in the package’s namespace will
ignore this version and continue to call the untraced version.

For this reason, trace() always assigns the modified function back into
the original namespace. It does this even to the extent of overriding locked
environments. Normally such overrriding is both antisocial and undesirable,
but for the sake of debugging it avoids having to create a whole separate
version of the package’s software just to trace a single function.

With the same mechanism, you can trace functions in a namespace that
are not exported. You might discover such functions by seeing them called
from exported functions. These functions will not be visible by name; to
trace them, you must use the “triple colon” notation. For example, packages
with a namespace may define functions to be automatically called when the
namespace is loaded or unloaded (see ?.onLoad). These functions should not
be exported, but it’s possible you might want to put a call to the browser in
one of them, perhaps to better understand the state of the package when it
is loaded or unloaded (admittedly, a highly advanced bit of programming).
To call the browser at the end of the unloading of the methods package, for
example:

> trace(methods:::.onUnload, exit = browser)
Tracing function ".onUnload" in package "methods (not-exported)"
[1] ".onUnload"

The comment "not-exported" in the printed message confirms that this
function is not exported from the package.
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R implements some fundamental computations as primitive functions.
These peculiar objects are not true functions, but essentially an instruc-
tion to send the evaluator to a particular C-level computation. Primitives
have no formal arguments and no expression as a function body. It barely
makes sense to use trace() with primitives, because there is nothing to ex-
amine inside the call. However, we may want to inspect computations in
other functions just before or just after the evaluation of the call to the
primitive, which we can do by inserting an entry or exit trace expression in
the primitive. The primitive is not actually a function object, so the trace
mechanism works by creating an ordinary function containing the tracer ex-
pression plus an invocation of the primitive. Here’s an example, using the
.Fortran() function.

> trace(.Fortran, recover)
Tracing function ".Fortran" in package "base"
[1] ".Fortran"

The use of recover() as the trace action suits our need to examine the
function that called .Fortran().

3.7 Conditions: Errors and Warnings

The actions taken traditionally on errors and warnings have been folded
into a general condition mechanism in more recent versions of R. Similar to
mechanisms in other languages such as Java and Lisp, the condition mech-
anism allows for much more general programming both to generate and to
handle conditions that may alter the flow of computations.

In this general formulation "condition" is a class of objects1, with sub-
classes "error", "warning", "message", and "interrupt". Programmers can
introduce new classes of conditions. Corresponding conditions are gener-
ated by a call to signalCondition() with an object of the corresponding
class passed as an argument. See ?signalCondition.

Two general controlling calls are available for handling conditions:

withCallingHandlers(expr, ...)
tryCatch(expr, ...)

In both cases expr is the expression we want to evaluate (a literal, not an
object constructed by quote() or other computations). The "..." argu-
ments are named by the name of the condition (error=, etc.) and supply

1An S3 class, at the time this is written.
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handler functions for the corresponding condition. In addition, tryCatch()
takes a finally= argument. Handler functions are functions that take a
single argument, condition; when the handler function is called, that argu-
ment will be a condition object. Utility functions conditionMessage() and
conditionCall() return the character string message for the condition and
the originating function call from which the condition occurred.

The form of the two controlling function calls is similar, but they operate
quite differently. Supplying handlers to withCallingHandlers() is much like
specifying a function as an error option, except for the argument. When the
condition occurs, the handler will be called from that context. The usual
interactive debugging mechanisms are available. Here is a simple handler
function from the SoDA package that prints the message and call, and then
starts up the recover() function to browse in the current function calls.

recoverHandler <- function(condition) {
string1 <- function(what) if(length(what) > 1)
paste(what[[1]], "...") else what

message("A condition of class \"",
string1(class(condition)), "\" occurred, with message:\n",
conditionMessage(condition))

call <- conditionCall(condition)
if(!is.null(call))
message(

"The condition occurred in: ", string1(deparse()))
recover()

}

The use of withCallingHandlers() requires more specification for each ex-
pression, but it provides much greater flexibility than a traditional error
option. Any condition can be handled and the specification of handlers is
local to this expression evaluation. The following excerpt tracks the occur-
rence of warnings in multiple calls to as.numeric() via lapply().

warned <- FALSE
opt <- options(warn= -1); on.exit(options(opt))
nValue <- withCallingHandlers(lapply(value, as.numeric),

warning = function(cond) warned <<- TRUE)

The handler sets a variable, warned, in the calling function. After the
lapply() call is finished the calling function will decide what to do about
the warnings. (The excerpt is from function splitRepeated(), for importing
data with repeated values; see Section 8.2, page 296 for the rest of the com-
putation.) More than one handler for the same condition can be supplied.
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In particular, the standard handlers will be called after handlers specified
in the call have returned. That’s why the excerpt above used options() to
turn off printing of warnings during the call to withCallingHandlers().

Note the non-local assignment, warned <<- TRUE, in the function passed
in as a handler. Because warned has previously been assigned locally in
the call to splitRepeated(), where the handler function was also created,
the non-local assignment will also take place there. The rule behind the
mechanism is explained in Section 13.5, page 467.

The paradigm for tryCatch() is a generalization of the try() function.
The expression is evaluated; if none of the handled conditions occurs, the
value of the expression is returned as the value of tryCatch(). If a condition
does occur, the corresponding handler is called, and the value of that call
is returned from tryCatch(). If the finally= argument is supplied, that
expression is evaluated after the handler returns, but does not affect the
value of tryCatch(). I have found withCallingHandlers() more useful for
program development, and tryCatch() more appropriate when some value
should be returned to signal a condition, overriding the standard behavior.

The use of tryCatch() can overcome what Bill Venables calls “design
infelicities”; for example, suppose I want to test whether a particular package
can be attached, but I only want to test, with no errors or warning messages
to confuse my users. The function require(), with its quietly= argument,
might appear to do the trick, but it still generates a warning if the package
is not available, and an error if the package exists but cannot be loaded
(wrong version of R, perhaps). The computation to silently return FALSE in
any of these situations is:

tryCatch(require(pkg, quietly = TRUE, character.only = TRUE),
warning = function(w) FALSE,
error = function(w) FALSE

)

Silently ignoring errors is not generally a good idea, but when you’re sure
you can do so, this is the way.

3.8 Testing R Software

In the spirit of the Prime Directive, to provide trustworthy software, we
would like to provide assurances that our software does what it aims to do.
Programming practices leading to good functional design (Section 3.2, page
43) help, allowing readers to understand what is happening. In addition,
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some assurances have to be empirical: “See, the software really does what
we claim.”

Testing R software is particularly important in the context of creating
a package, as described in Chapter 4, especially Section 4.5, page 101. In
fact, a serious need to test your software is one of the hints that it is time
to organize it as a package, so that the tests will be visible and can be run
systematically. Even before that stage, when programming primarily to use
the results, you need some evidence that your software is trustworthy, in
order to present those results with confidence. For this purpose, it’s good
to accumulate some source files to remind you of tests that were helpful.

Tests can be incorporated most easily if they are assertion tests; that is,
expressions that are asserted to evaluate to the logical value TRUE. Assertion
tests can be automated so human intervention is not required as long as the
assertion is in fact valid. R comes with a function designed precisely to run
assertion tests, stopifnot(), which takes any number of literal expressions
as arguments. As its name suggests, this function generates an error if one
of the expressions does not evaluate to TRUE:

stopifnot(is(x, "matrix"))

In some testing situations, one may want to continue after an assertion
failure. One useful general technique is to make the call to stopifnot()

itself an argument to try(). The function try() catches any error occurring
during the evaluation of its argument; the error message will normally be
printed, but evaluation will continue. You don’t need to use stopifnot() to
generate a warning from try() if a computation fails, but the two functions
together are a good way to advertise an assertion that you want to make
a warning, or simply to ensure that the software goes on to make further
tests.

A different testing situation arises when our software should detect an er-
ror either on the user’s part or because the input data fails some requirement.
The test needed here is to run an example and verify that it does indeed
generate an error. The logic is a bit tricky, so package SoDA contains a utility
for the purpose, muststop(). This takes a literal expression and catches any
error in its evaluation; failure to catch an error causes muststop() itself to
generate an error.

The use of stopifnot() and similar tools assumes that we can reliably
test an assertion. Important tests may be difficult to make precise, particu-
larly for quantitative applications. The more forward-looking and valuable
your software, the harder it may be to specify precise tests.
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Tests involving difficult computations often take refuge in the belief that
the computation worked once. An object that resulted from a successful
run is saved and treated as a standard. The test then compares that object
with the result of a current computation asserted to be equivalent to that
producing the standard object. Another approach is available if there are
two methods that in principle give the same result, allowing the test to
compare the two methods. If one method is, say, simple but slow then that
can be treated tentatively as the standard.

Either way, the resulting assertion test must compare two objects, of-
ten including computed numerical results, and report non-equality, within
expected accuracy. One cannot guarantee to distinguish errors in program-
ming from unavoidable differences due to inexact numerical computations,
if two expressions are not precisely identical. However, if we believe that
likely mistakes will make a substantial change in the numerical result, then
a rough test is often the important one. Do, however, use functions such
as all.equal(), identical(), and other tools, rather than computations us-
ing the comparison operators. Section 6.7, page 196, deals with numerical
comparisons in more detail.



Chapter 4

R Packages

This chapter looks at the organization and construction of R

packages. You mainly need this information when you decide to
organize your own code into package form, although it’s useful to
understand packages if you need to modify an existing package
or if you have problems installing one.

Section 4.2, page 80, introduces the concept and some basic tools;
following sections cover creating the package (4.3, 85); producing
documentation (4.4, 95); adding test software (4.5, 101); using
the namespace mechanism (4.6, 103); and including other soft-
ware, whether written in C and related languages (4.7, 108) or
from other systems (4.8, 108).

But first, some encouragement.

4.1 Introduction: Why Write a Package?

Unquestionably, one of the great strengths of R is the ability to share soft-
ware as R packages. For the user, packages provide relatively reliable, conve-
nient, and documented access to a huge variety of techniques, in open-source
software. For authors, packages provide both a communication channel for
the their work and a better way to organize software even for reusing it
themselves.

The early position of this chapter in the book reflects some advice: Con-
sider organizing your programming efforts into a package early in the pro-
cess. You can get along with collections of source files and other miscellany,
but the package organization will usually repay some initial bother with
easier to use and more trustworthy software.

79
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Admittedly, initial bother does exist: Using the R package tools con-
strains the organization of your software and requires explicit setup. If you
go on to use the check command to test your package, the requirements
become even more fussy. Isn’t this against the spirit of starting small and
proceeding through gradual refinement? Why, then, am I encouraging pro-
grammers using R to write packages, and earlier rather than later?

The answer largely comes from the Prime Directive: making your soft-
ware trustworthy. As the term “package” suggests, R packages allow you
to provide in a single convenient package your functions and other software
along with documentation to guide users and with tests that validate im-
portant assertions about what the software does. Once you realize that your
current programming may be of future value, to you or to others, then good
documentation and key tests will likely pay off in fewer future mistakes, in
easier reuse of your software, and in increasing the benefits to others from
your efforts.

The sooner the software is organized to obtain these benefits, the less
will be the initial hurdle, so even the gradual refinement goal benefits, given
that you would need to create a package eventually.

The package organization becomes more helpful as the package becomes
more ambitious. For example, if you want to include compiled code in C or
Fortran, package installation will automatically maintain up-to-date object
code, including a dynamically linkable object library.

As for the fuss and occasional bureaucratic intrusions, there are tools
to help. R comes with a number of them, and we add some more in this
chapter.

4.2 The Package Concept and Tools

An R package is a collection of source code and other files that, when installed
by R, allows the user to attach the related software by a call to the library()

function. During development, the files are organized in a standardized way
under a single source directory (aka folder). For distribution, the source
is organized as a compressed archive file by the build tool. The package is
not used from the source directory or archive; instead, the source is used to
generate an installed version of the package in another directory. R itself
provides basic tools for installing and testing packages, and for constructing
the archives and other files needed to ship and document packages. In this
chapter we illustrate the construction of a package using as an example the
SoDA package associated with this book.
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Packages exist so they can be used during an R session. A package is
attached to the session by giving its name as an argument to library()

or require(). The concept behind attaching the package is that the name
refers to a subdirectory of that name, underneath a library directory. In-
side that subdirectory are files and other subdirectories that can be used
by the R evaluator and other utilities. In the original, simplest, and still
very common situation, the package consists of some R functions and their
documentation. As time has passed, the simple original concept has ex-
panded in many directions: R objects in the package can be represented
efficiently, enabling packages with many and/or large objects (lazy loading);
packages can control what other packages they use and what functions they
make public (namespaces); software can be included in the package written
in other languages, primarily languages related to C, but in principle any
language; documentation can be processed into different forms, suitable for
the local environment and supplemented with files to help searching; files
will be included that are not directly used in the session but that allow for
checking that the package behaves as asserted.

Packages are managed by a set of tools that comes with R itself (you
may need to add some support tools; see page 84). The tools are usually
accessed from a command shell, in the UNIX/Linux style, although a GUI may
hide the shell from the user. The shell commands take the form

R CMD operation

where operation is one of the R shell tools. By invoking the tool in this
R-dependent way, one ensures that the tool has access to information about
the local installation of R. The operation encountered most often in devel-
oping your own packages will be installation, taking your source package
and making it available as an installed package. As a shell-style command,
installation is carried out by:

$ R CMD INSTALL packages

This step works basically the same whether you’re writing your own pack-
age or downloading a source or binary package from one of the archives.
If you are installing packages from a repository, packages will typically be
one or more files downloaded from the repository. If you are developing
packages, the packages argument may be the names of source directories.
The command also takes a variety of shell-style options to control the in-
stallation, such as the option "-l directory ", specifying a library directory
under which to install the package.
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For example, if SoDA is a directory under the current directory contain-
ing the source for that package, we can install it under a library subdirectory,
RLibrary, of the login directory by the command:

$ R CMD INSTALL -l ∼/RLibrary SoDA

When you’re getting near to distributing your package to other users or even
other machines, however, it’s better to use the build command (below) first.
That way the installation uses the actual archive you will be distributing.

Other tools allow you to check the package and to build archive files
so the package can be shipped to other sites. R also provides the function
package.skeleton() to create a directory structure and some files suitable
for a new package; see Section 4.3.

The shell command

$ R CMD build packages

will build an archive file for each of the source packages. For example:

$ R CMD BUILD SoDA
* checking for file ’SoDA/DESCRIPTION’ ... OK
* preparing ’SoDA’:
* checking DESCRIPTION meta-information ... OK
* cleaning src
* removing junk files
* checking for LF line-endings in source files
* checking for empty or unneeded directories
* building ’SoDA_1.0.tar.gz’

After printing a variety of messages, the command creates a compressed tar

archive of the package. The name includes the package name and its current
version, SoDA and 1.0 in this case. This is a source archive, essentially like
those on the CRAN repository, allowing you to move your package around
and distribute it to others.

Once the archive file has been built, it can then be used to drive the
installation:

$ R CMD INSTALL -l ∼/RLibrary SoDA_1.0.tar.gz

Besides allowing installation on multiple sites, working from the build has
the advantage, for packages that include C or Fortran code, that object code
is not left lying around in the source directory.

The build command can be used to build “binary” archives of packages,
by using the --binary option to the command:
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$ R CMD build --binary SoDA
* checking for file ’SoDA/DESCRIPTION’ ... OK
* preparing ’SoDA’:
*

Various messages ...

* building binary distribution
* Installing *source* package ’SoDA’ ...

More messages ...

** building package indices ...
packaged installation of ’SoDA’ as

SoDA_1.0_R_i386-apple-darwin8.10.1.tar.gz
* DONE (SoDA)

The build is always done from a source directory, regardless of whether you
are building a source or binary version. The name of the binary archive
file created includes both the version number of the package, taken from
the "DESCRIPTION" file, and also a code for the platform, taken from the
environment variable R PLATFORM. Source archives are potentially platform-
independent, even when they contain saved images of data files, but binary
archives will frequently be platform-dependent, as the name indicates. They
could also be dependent on the current version of R, but this information is
not currently included in an already very long file name.

To check the correctness of packages, you can use the shell command:

$ R CMD check packages

This command will attempt to install the package, will check for appropri-
ate documentation, will run any tests supplied with the package, and will
apply a variety of specialized checks, such as for consistency of method defi-
nitions. Both build and check try to enforce the file and directory structure
recommended for R packages.

A package can be uninstalled by the command:

$ R CMD REMOVE packages

Options will potentially include -l, to specify the library where the package
currently resides.

A variety of additional tools are provided, mostly for specialized control
of the package definition. Some are discussed in this chapter, others in the
Writing R Extensions manual.
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Some of the tools, particularly check, may seem to have an overly fussy
definition of what goes into a package, but bear with them. They ensure that
your package makes sense to the tools that manage packages, which means
that your package is more likely to be valuable to a wider range of potential
users. And the pain of dealing with detailed requirements is preferable
to distributing a package with avoidable errors. Some additional tools are
included with the SoDA package to handle some nonstandard features.

Even more than in other discussions, keep in mind that the final word
about R is always with the online documentation and with the system source
itself. A chapter of the Writing R Extensions manual provides a discussion
of writing packages, with pointers to other documentation. That document
is precise and the place to go for the latest information, but it is a little terse;
in the present chapter, we concentrate as usual on the underlying ideas and
how they relate to your likely programming needs.

Setting up the R tools

The R tools for managing packages were largely developed in the UNIX/Linux

world. They assume a command shell and various utilities traditionally
part of that computing environment. If you’re also computing in such an
environment, the tools will usually have the resources they need, with little
or no intervention on your part, at least until you include software written
in other languages, rather than using only R source.

R itself runs on platforms other than Linux or UNIX. On Windows and
Mac OS X platforms, R is available bundled into a suitable GUI. Repositories
of R packages, notably CRAN, provide binary versions (that is, previously
installed versions) of most of the packages on their site. These allow users
on Windows and Mac OS X platforms to use R through the GUI and to install
binary packages from there.

The situation changes when you need to install a package from source,
whether one of your own packages or a package only available in source form.
The catch at this point is that the platform does not, by default, contain
all the tools required. Open-source, free versions of the necessary tools do
exist, but some effort will be required on your part to obtain them.

The following summary should be sufficient for packages using only R

code, but for details and more up-to-date information, see the Web pages
at CRAN devoted to installing R on Mac OS X and on Windows. The Mac

OS X situation is simpler. Although the system does not come with all the
needed tools, it is in fact based on the BSD software, a UNIX-like open-source
system; therefore, the tools are in fact mostly available in the development
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environment for the platform. That environment, called Xcode tools, is
available to anyone with a current version of the operating system. It can
usually be installed from the discs supplied with the operating system, or
if necessary from the Web. For details and other tools, drill down to the R

for Mac tools page at the CRAN Web site.
The Windows situation is more specialized to R, and somewhat more

fragmented. A package of shell tools specially chosen for compiling R is
available. As this book is written, you need to look first in Appendix E to
the online R Installation and Administration Manual, at the R or CRAN Web
sites. In addition to this toolkit, some other items are currently needed for
certain extensions and documentation. However, the Windows tools for R are
currently changing (usually for the better), and the specific Web sites for
downloading may change also, so I won’t try to give more specific advice
here.

4.3 Creating a Package

To create a new source package, you must create a directory (usually with
the same name you intend to call the package), and put inside that directory
some special files and subdirectories containing the source code, documen-
tation and possibly other material from which the installed package can be
created. The actual structure can vary in many ways, most of which we
discuss in the remainder of the chapter. It’s far from free form, however,
because the tools that install, check, and build from the source package look
for specially formatted information in specifically named files and directo-
ries. Your chances of having suitable information available for the tools will
be increased by using some special functions to create an initial version of
the package itself and initial versions of information about added material
later on.

You can create an initial directory for your package with suitable files
and subdirectories in one step by calling the function package.skeleton().
It’s strongly recommended to start this way, so package.skeleton() can
provide the requirements for a valid R package. The side effect of the call to
package.skeleton() is to create the directory with the name of your package,
and under that to create a number of other directories and files. Specifically,
you get source files and documentation files for functions and other objects,
based on the arguments in the call to package.skeleton(). You also get the
essential "DESCRIPTION" file for the package as a whole, and a corresponding
package documentation file for the package. In this section we cover getting
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started, filling in general information, and adding new R objects.
The arguments to package.skeleton() allow you to start from either files

containing R source code or a list of R objects. Either will generate files in
the source package. Having initialized the new package, we can add more
functions and other objects, again starting from source files or saved data
objects. We can also add other material, including code from essentially any
programming language.

The package for this book is called SoDA, and we start it off with three
functions, providing these as objects. We assign the names of those functions
to the character vector SoDAObjects and call package.skeleton() with three
arguments: the name of the package (which is also the name of the directory
to be created), the object names and the path, that is the dircectory in which
to create the source code for the new package. In this case the new directory
is stored under subdirectory "RPackages" of the login directory, denoted
by "∼/RPackages". It’s convenient to keep all source packages under one
directory, to simplify installation.

> SoDAObjects <- c("geoXY", "geoDist", "packageAdd")
> package.skeleton("SoDA", SoDAObjects, path = "∼/RPackages")
Creating directories ...

and further messages

The call to package.skeleton() prints a number of messages, but we cover
the essentials below rather than try to explain everything here. Let’s go next
to a command shell to see what we got from the call to package.skeleton()1.
Because of the path= argument we supplied to package.skeleton(), a direc-
tory called "SoDA" has been created under the "RPackages" directory.

$ cd ∼/RPackages
$ ls -R SoDA
SoDA:
DESCRIPTION R Read-and-delete-me man
SoDA/R:
geoDist.R geoXY.R packageAdd.R

SoDA/man:
geoDist.Rd geoXY.Rd
packageAdd.Rd SoDA.package.Rd

Under the "SoDA" directory there are two subdiretories, "R" and "man", and
two additional files, "DESCRIPTION" (page 90) and "Read-and-delete-me".

1The behavior of package.skeleton() is still evolving as this is written, so details
shown here may change.
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The "R" directory is for R source files, and one file has been generated for
each of the objects we supplied in the list for package.skeleton(). The
"man" directory has source for the R online documentation; see Section 4.4,
page 95. There are files for each of the objects we supplied, and a fur-
ther file for the overall package documentation. Some other subdirectories
are meaningful for packages, but are not created automatically, or only if
the arguments to package.skeleton() require them. The "src" directory is
meant for source code in the C language, and in related languages such as
Fortran or C++ (see Section 4.7, page 108). Files in a directory "data" create
data objects in the installed package, handled differently from source code.
Files in a directory "inst" are copied without change into the installation
directory for the package (giving a convenient way to refer to arbitrary files,
including software from other languages; see Section 4.8, page 108). A di-
rectory "tests" is used to provide files of R code to test the correctness of
the package (Section 4.5, page 101 discusses testing). For more details on
these directories, see Section 4.3, page 92.

The "Read-and-delete-me" file contains instructions for you, the pro-
grammer, about what to do next to make your package legitimate. You
should, as suggested by the name of the file, read it and follow the instruc-
tions. You can then throw the file away. The rest of the files constructed will
generally become part of your package, although you may want to combine
documentation for related functions, rather than keep the separate docu-
mentation file for each object.

The directory created is the source directory for your package, but you
and other users cannot yet use this package. To attach the objects in the
new package in the same way one uses the packages supplied with R, the
new package must be installed as shown on page 81.

Data objects in packages

Packages provide a simple way to supply data objects as examples or refer-
ences. Many packages in various archives exist mainly for this purpose and
even in a package more centered on methodology, you will often want to
include relevant data. Data objects differ from functions and other software
objects in several ways. They are usually larger, sometimes much so; they
frequently were created either outside R or by an extended sequence of com-
putations; and documentation for them follows a different natural pattern
than that for functions. For all these reasons, installing and distributing
data objects presented some problems in the early development of R. Sev-
eral approaches evolved, and remain. However, the "LazyData" mechanism
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shown below works conveniently for nearly all purposes, so you can largely
ignore discussions of earlier techniques.

Data objects in source packages may need to be represented by files that
are not simply R source. Even if we didn’t mind the inefficiency of generating
a large data frame object by parsing and evaluating a dump() version of the
object on a file, this form of the data would be inconvenient and error-prone.
To allow for differing source forms, the package structure provides for a
directory "data" under the source package directory. Files in this directory
will be interpreted as generating data objects in the installed directory.
What happens to those objects depends on options in the "DESCRIPTION"

file. The recommended approach includes in the file a line:

LazyData: yes

When the package is installed, the data objects will be included in the form
of promises, essentially indirect references to the actual object that will be
expanded the first time the object’s name needs to be evaluated. An earlier
strategy required the user to call the data() function to load the object after
the package had been attached; this can now essentially be avoided.

Data objects in the source package "data" directory can come in several
form, including:

binary data objects: Files can be created by calls to the save() function that
contain binary versions of one or more objects from an environment.
The function is essentially the same mechanism used to save the image
of objects from an R session. It saves (nearly) any R object. Note that
both the object and the associated name in the environment are saved.
By convention the files generated have suffix either ".rda" or ".Rdata".
File names of this form in the "data" directory will be interpreted as
saved images. Notice that the name of the file has no effect on the
name(s) of the objects installed with the package.

Binary data files are in a sense the most general way to provide data
objects and, also, the least self-descriptive. From the view of the Prime
Directive principle, they would be frowned upon, because the user has
no way to look back at their actual construction. Still, for objects
whose creation involved some nontrivial computation using external
sources the binary object option is by far the easiest, giving it sup-
port from the Mission principle. A conscientious package provider will
include details of the data construction in the corresponding documen-
tation.
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comma-separated-values files: This is a format frequently used to export
data from spreadsheets and other packages. R reads such files with
the function read.csv(). Files with the ".csv" suffix will be installed
this way. Notice that now the file name does define the object name,
after removing the ".csv" suffix.

R assignments: The opposite extreme from binary data objects is a piece
of R source code. This could, in fact, have been included in the "R"

directory of the source package, but if the computation defines a data
object it makes somewhat more sense to include it here. The form is
most useful for fairly simple objects that have an explicit definition
not depending on outside data. For example, the file "dowNames.R" in
the SoDA package defines an object to hold the conventional (English-
language) days of the week:

dowNames <-

"Saturday")

Notice that the R expressions have to generate the objects in the target
environment, usually by assignment expressions. Now we’re back to
the file name being irrelevant.

Adding to source packages

Once the package has been initialized, you can add any additional material.
To add R source code, copy the source files into the R subdirectory of your
package source. If we have a file "binaryRep.R" that we want to add to the
SoDA package previously initialized:

$ cp binaryRep.R ∼/RPackages/SoDA/R/

You should also create some documentation for any added functions and
other R objects (Section 4.4, page 95 discusses documentation).

To add new files of R source and generate a single documentation shell
for all the functions in each file, use the function packageAdd() in the SoDA

package

packageAdd(pkg, files, path)

where pkg is the name of the package ("SoDA" in our example), files is
the vector of one or more file names containing R source, and path is the

c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
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location for the package source (as in package.skeleton(). The function is
called when the target package has been installed and included in the current
session, say by a call to require(). To add the objects in file "triDiagonal.R"
to our SoDA package and to document all of the functions in that file together:

> packageAdd("SoDA", "triDiagonal.R", "∼/RPackages")
Wrote documentation to "∼/RPackages/SoDA/man/triDiagonal.Rd"
Copied file triDiagonal.R to ∼/RPackages/SoDA/R/triDiagonal

The "DESCRIPTION" file

As its name suggests, this file gives general information describing the pack-
age in which it appears. The contents and format of the file are a bit of
a catch-all, but it has proved to be a flexible way to automate handling of
the package, along with providing some overall documentation. Running
package.skeleton() creates the file, which the author then needs to edit to
provide specific information, following the hints in the file itself:

Package: SoDA
Type: Package
Title: What the package does (short line)
Version: 1.0
Date: 2007-11-15
Author: Who wrote it
Maintainer: Who to complain to <yourfault@somewhere.net>
Description: More about what it does (maybe more than one line)
License: What license is it under?

In addition to the fields created automatically, there are a number of others
that guide the installation process. Fields in the file are denoted by names at
the start of the line, followed by ":". Fields can be continued over multiple
lines but to be sure the following lines are not interpreted as a new field, start
each line with white space. Warning : The field names are case-sensitive.
You need to follow the capitalization patterns below (not always obvious).

Important fields include the following:

Package: This is the official name of the package, and therefore of the di-
rectory created when the package is installed.

Title, Description: These go into the online package documentation. The
information is likely repeated in the file of package-specific documen-
tation in the "man" directory, possibly in an expanded form. (Because
both files are created by package.skeleton() you need to copy the
contents manually when creating the new package.)
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Version: The version is a multi-numeric-field identifier. The key require-
ment is that when interpreted as such, the version increases through
time. This is the mechanism used to require a sufficiently modern ver-
sion of other packages (see the Depends field below). Authors show a
wonderful variety of styles for this field. If you want to follow the R

style, have a major version number (possibly 0) before the first period,
a minor version after, and optionally a patch number at the end, sep-
arated by a period or a dash. Major versions of R itself conventionally
mark serious changes, possibly with major incompatibilities.

Depends: This important optional field states what other packages this pack-
age must have available in order to run, and optionally puts constraints
on the versions. A particularly common constraint is to require that
the version of R itself be sufficiently recent, as in the line:

Depends: R(>= 2.4), lattice

A package with this line in the "DESCRIPTION" file can not be installed
in a version of R older than 2.4.0. You don’t need to be explicit
about depending on R or the packages normally installed with the
system, unless the version is required. Warning : Although the version
requirement looks like R, the tool that actually reads it is none too
bright; currently, you must write the expression as shown, including
the space after the `>=` operator. See page 94 for more details on
requiring other packages.

License: This identifies the license agreement you want people to accept
when they use your package. It only matters if you intend to distribute
your package. Vast amounts of time and data transmission have gone
into arguments about the merits and meaning of the various licenses,
a topic that this book will avoid. Look at the license entries for other
packages on CRAN, or take the current R choice (which is printed, with
comments, by calling the function license()).

LazyLoad, LazyData: These fields are options; normally, the rest of the line
just contains "Yes" or "No" to turn the options on or off. The options
are desirable for packages that are large, either in the sense of many
objects or of large objects. The LazyLoad option provides more efficient
attachment of large packages, by using a reference to a binary version
of the objects. See page 92.
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Files and directories in a source package

The tools for handling R packages have a highly structured view of what
directories and files to expect, within the directory that contains a source
package. You are not much restricted by this structure; essentially anything
can be added to the installed package, although you can’t omit certain es-
sential ingredients if you plan to have functions, data, documentation or
other specialized material.

Table 4.1 lists special directory names known to the INSTALL command
and other package tools. Each of these is located in your source package
directory (∼/RPackages/SoDA for our example). Adding other files or sub-
directories in that directory will do nothing for your intalled package—the
INSTALL command will simply ignore them. (You can add arbitrary stuff,
but put it in the "inst" directory, as noted in the table.) The source di-
rectories affect directories in the installed package, as listed in the second
column of the table. These are subdirectories of the directory with your
package’s name, under the "library" directory. So, with our convention
of installing into RLibrary under the login directory, the directories for our
example package would be ∼/RLibrary/SoDA/R, and so on.

In addition to the directories, two files are special: the "DESCRIPTION"

file, discussed on page 90; and file "INDEX", which, if it exists, is used to
construct the online index to interesting topics in the package. However,
the "INDEX" file in the installed package is usually generated automatically
from the documentation in the "man" directory, so you would not normally
need to provide one.

Precomputing objects

In early versions of R, the effect of library() was essentially to evaluate
the corresponding source at the time the package was attached. For large
packages, and especially for those including class and method definitions, it
is more efficient to prepare the contents of the package at installation time,
leaving less to do during the session. The essential mechanism is to evaluate
the package source when INSTALL runs and to save the resulting collection of
R objects to be attached by library(), with the recommended mechanism
being lazy loading. Lazy loading uses a mechanism in R called promises
such that the individual objects in the package’s environment are in effect
indirect references to the actual objects, promises to produce that object the
first time that, for example, the corresponding function is called. If only a
few of the functions in the package are used in a particular session, the cost
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Source Installed What Happens
Directory Directories
"R" "R" A concatenated source file is made, plus op-

tional processed objects.
"data" "data" Loadable versions of the data objects are cre-

ated, plus optional lazy data promises.
"demo" "demo" Demonstrations to be run by the demo() func-

tion are copied.
"exec" "exec" Executable scripts are copied.
"inst" "." All contents are copied (recursively) to the in-

stalled package’s directory.
"man" (various) Documentation processing creates versions of

the documentation in various formats (de-
pending on the platform and available tools),
and also generates the examples as R source
(in "R-ex"). See page 100.

"po" Translation files are created for base messages
in the local language. You’re unlikely to be
involved with this unless you’re a translator.

"src" "libs" A compiled library is created from source code
in C, etc., for dynamic linking into R.

"tests" "tests" Files of test code in R will be run by the check

command (see page 102).

Table 4.1: Source package directories that have special meaning to the R
package utilities.

in time and space of accessing the unused functions is mostly avoided. The
main advantage, however, is in precomputing the objects during installation,
rather than when attaching the package.

The author of the package selects the mechanism by entering information
in the DESCRIPTION file.

LazyLoad: yes
LazyData: yes

The "LazyData" directive applies the same mechanism to objects in the
"data" directory. See Section 13.2, page 457, for how the mechanism works.
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Requiring other packages, in various ways

The R installation procedure allows package authors to declare that their
package requires certain other packages, and also that the version of either
a package or of R itself must be sufficiently recent. This information is
encoded in the DESCRIPTION file, usually in the Depends entry. For example:

Depends:R(>= 2.3), lattice(>= 0.13),nlme

There are in fact three entries of this form, "Depends", "Imports", and
"Suggests". The first two are for true requirements, without which the
package will not run. The "Depends" entry is used if the other package is
expected to be attached by this package’s code; the "Imports" entry should
be used instead if this package uses the namespace mechanism to import from
the other package (Section 4.6, page 103). The "Suggests" entry is typically
for packages needed only to run examples.

The version numbers for R and for required packages will be used at
installation time, to prevent your package being installed with too old a ver-
sion of the corresponding software. In choosing what version(s) to require,
the cautious approach would be to require the version current when you
finish developing the source for your package. You might get by with an
earlier version, but assuming so incorrectly can lead to bad problems.

Making changes in an installed package

After you have set up your programming project with an R package, you will
usually go on to make further changes and extensions. You will often alter-
nate making changes, trying them out, and then making more changes. For
isolated software that you source() into the global environment or load via
a GUI, the process is simple: source in the new version and re-run whatever
test you’re currently using. When the changes are to be made in a package,
the pattern has to be a little more extended.

Basically, there are two ways to work. The first is the most general and
the safest, but requires three steps. Go back to the source of the package
and make your editing changes. Then use INSTALL to copy the changes to the
installed version of the package. Finally, unload and re-attach the package
in the R session to try your tests again. (For changes in R functions, that’s
enough; but for the changes involving compiled code in C-level languages or
those that depend on initializing the package, you may need to exit R and
start a new session.)

An alternative approach is available, and more convenient when it ap-
plies. If you’re making detailed changes to a function, trying to get some-
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thing to work, quite a number of steps may be needed. To avoid installation
and unloading each time, I suggest using the edit= option to the trace()

function, discussed in Section 3.6, page 69. You can make any changes to
the body of a function, save it in the editor, and quit. The trace() func-
tion will then always save the edited version back in the environment from
which it came, so that changes are immediately available for testing. Just
remember, when the revised function does work, to save it somewhere else,
so you can then copy it to the source for your package. (You can just call
trace() one last time and do a "Save As" or equivalent in the editor.) The
same mechanism applies to editing a method, by supplying the appropriate
signature= argument to trace().

However, using trace() is only possible for editing the body of a function,
not for changing arguments or default expressions. And it won’t help when
you want to add or remove objects from the package; in that case, you must
go back to the basic approach of re-installing.

Warning : What you should not do is to put an edited version of the func-
tion into the top-level environment, simple as that may seem, particularly
if your package has a namespace. If the function’s behavior depends on the
package’s environment, that behavior may change, with possibly disastrous
results. If you put a revised version of a function in the global environment,
and if your package has namespace, other functions in the package will not
see the revised version, and your new function may see wrong objects as
well. The trace() mechanism allows editing objects in namespaces (Section
4.6, page 105).

4.4 Documentation for Packages

Let’s face it: Most of us don’t enjoy the details of documenting our software,
much as we may appreciate the importance of the result. Documenting R

packages is not likely to be an exception. The R-specific documentation,
which we call Rd documentation after the suffix for the files created, is pro-
cessed into a number of forms by utilities provided, with the result that
it is available conveniently in several interactive versions and potentially
in printed form as well. Unfortunately, the programmer is responsible for
writing text in the appropriate markup language, roughly a dialect of TEX;
at present, there are no general tools that eliminate this step. Documenta-
tion is needed for functions, classes, methods, and general objects, as well
as for miscellaneous topics. Rd documentation comes in several types, de-
pending on the type of topic being documented. In this section we look at
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the process of creating documentation for a package, describing utilities and
the main features of the markup language. Some documentation generation
tools help, particularly in getting the process underway by creating outlines
of the Rd files. The support tools are also strong on checking the adequacy
and accuracy of the documentation, to the extent possible.

Documentation you may need to create, and tools to help get started,
include the following.

• Overall description of the package. A package will usually have
one Rd file of documentation of type package, documenting the overall
purpose and contents. For the package named SoDA, the documentation
is invoked in R as package?SoDA.

If you called package.skeleton() to create the package, that produces
an initial package documentation file. However, there’s an advantage
to recreating the file with the promptPackage() function after you’ve
installed the package, by which time you should also have filled in
the DESCRIPTION() file. The Rd file has information derived from the
current content of the package, which is likely to be more useful after
you’ve reached the installation stage.

For the SoDA package, package documentation could be initialized by:

> promptPackage("SoDA")
Created file named ’SoDA-package.Rd’.
Edit the file and move it to the appropriate directory.

Further editing will usually be needed. The package need not be at-
tached when promptPackage() is called.

• Functions. The Rd documentation for functions has specialized sec-
tions for describing the arguments and the value returned by the func-
tions, as shown on page 100. Multiple functions can be described in
one file, suitable when several functions are similar. R functions are ob-
jects from which the names and default expressions for arguments can
be extracted; the utility function prompt() and related tools construct
initial outlines of Rd files from the function objects. Similarly, the
check command utility complains if documentation and actual func-
tions don’t match, or if documentation is missing for some functions.

• Classes and methods. Classes, like functions, are represented by
objects from which metadata defines properties of the class that should
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be documented. The utility promptClass() generates an outline of
the class documentation. Because classes and functions can have the
same name, documentation for a class C is stored as "C-class.Rd" and
displayed by the R expression class?C.

Similarly, methods for a generic function are defined by metadata ob-
jects. Outline documentation for them is generated by the utility func-
tion promptMethods(). Documentation of methods tends to be more
distributed than for functions or classes, because methods in R are
indexed by both the generic function and the argument classes in the
method signatures. Commonly used functions (arithmetic and other
operators, for example) often have methods in several packages, in
separate files. There is a syntax for specifying documentation for a
particular method (see page 99).

• Other objects. Packages can contain arbitrary objects in addition
to the functions, classes and methods providing programming. These
should also have Rd documentation. Such documentation is suitable
for datasets, tables of values needed for computation and in general for
information that users may need to consult. The same prompt() utility
function produces outlines of such documentation. It uses the str()

function to print out a summary of the structure of the object, but
the skeleton documentation tends to be less useful than for functions,
whose structure the utility understands better. In principle, methods
can be written to customize prompt() for any class of objects; currently,
this has been done for data frame objects.

R utilities for package management encourage complete documentation
of functions and other objects. If you plan to use the check command to test
your package a stronger verb such as “nag” or “badger” rather than “en-
courage” would be more accurate. The command expects documentation
for all visible objects in the package, principally functions but also classes,
methods, and data objects. The codoc() function in package tools compares
function documentation with the function definition and reports inconsisten-
cies, and similarly does some consistency checking for methods and classes.
The check command runs this function, or you can use it directly, giving it
the name of your package as an argument.

With large packages, you may find the documentation requirements time-
consuming, but check and the other quality-assurance utilities are working
for the benefit of users, so try to work with them. The functions prompt(),
promptPackage(), promptMethods(), and promptClass() help to get started.
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We add the function promptAll() in the SoDA package, to incorporate all the
objects in a file of R source code.

You will generally need to edit the contents of the files created to add
some substance to the documentation. The files contain hints about what
needs to be added; in simple examples you may be able to get by without
much knowledge of the documentation format, perhaps by copying existing
files. If you have access to the source version of an existing package, you can
also look in the "man" subdirectory for existing ".Rd" files to use as examples.
Eventually, however, it will be helpful to actually understand something
about the documentation format. A few key points are summarized here.

Documentation format and content

Detailed documentation for R objects is written in a markup system that is
based on the TEX markup language. It helps to have some familiarity with
TEX or LATEX, but the R markup is more specialized and easier to learn, at
least for packages that do not involve mathematical descriptions. While the
input is related to TEX, the output of the documentation is in several forms,
all produced by R utilities from the single source document.

The original purpose of Rd files was to produce online documentation
in response to the help() function or the `?` operator, help("topic ") or
?topic . Each topic corresponds to an alias command in the documentation,

\alias{topic }

Some of the aliases will be generated automatically by the prompt utilities,
but you will need to add others if, for example, you document some addi-
tional functions in an existing file (see promptAll() in the SoDA package as
an alternative).

The syntax for topic has been extended to allow for documentation types
and for signature information needed when documenting methods. A par-
ticular type of documentation allows for documentation based on a package
name, on a class name, or on methods associated with a function. For
example:

> class?ts
> methods?show
> package?Matrix

These three expressions display documentation on the class "ts", the meth-
ods for function show() and the Matrix package. The type argument to
`?` allows us to distinguish these requests from possible documentation for
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functions ts(), show(), and Matrix(). Documentation types are coded into
the topic in the alias command by following the topic with a hyphen and
the type:

\alias{ts-class}
\alias{show-methods}
\alias{Matrix-package

The rule is that the actual topic comes first, and the type comes last, pre-
ceded by "-". As a result, all the documentation relating to "ts" is sorted
alphabetically together, making it easier to find in a typical browser inter-
face, where one might find topics "ts", "ts-class" and/or "ts-methods".
The `?` operator knows about documentation types, but most browser in-
terfaces currently don’t, so you need to search in an alphabetical list of
topics for a particular package. Because the type follows the topic in the
alias, all the documentation for "ts", for example, will be adjacent, whether
for function, class, or methods.

Documentation is possible for individual methods as well. For individ-
ual methods, the syntax for topic follows the name of the function with
the classes in the method signature, separated by commas, then a hyphen
and the type, method. So the alias command documenting the method for
function show() for class "traceable" would be:

\alias{show,traceable-method}

and for function Arith() with signature c("dMatrix", "numeric"):

\alias{Arith,dMatrix,numeric-method}

The syntax for topics is not the most flexible; in particular, white space is
not ignored. Fortunately, most of the time the utilities will generate the
alias commands for you. The promptMethods() utility will produce aliases
from all the methods defined for a given function in a package. If you want
to split the documentation, you can move some of the alias lines to other
files.

The various prompt utilities all have as their objective to use as much
information as possible from the R object to initialize a corresponding docu-
mentation file, along with hints to the human about the information needed
to complete the file. The file consists of various sections, delimited in the
style of TEX commands, that is, a command name preceded by a backslash
and followed by one or more arguments. TEX arguments are each enclosed
in braces and follow one another with no separating commas or blanks.
The section of the documentation file giving the calls to functions is the
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\usage command, with one argument in braces, typically extending over
several lines. This section can be generated automatically by prompt() from
the function object. As an example, consider the function packageAdd() in
package SoDA. We can create a skeleton of documentation for it:

> prompt(packageAdd)
Created file named ’packageAdd.Rd’.
Edit the file and move it to the appropriate directory.

The resulting file will contain a usage section:

\usage{
packageAdd(pkg, files, path = ".")
}

In addition to the usage section, the documentation requires separate de-
scriptions of each of the arguments; here, prompt() can create a skeleton of
the required list, but can only prompt the human to fill in a meaningful
description:

\arguments{
\item{pkg}{ ∼∼Describe \code{pkg} here∼∼ }
\item{files}{ ∼∼Describe \code{files} here∼∼ }
\item{path}{ ∼∼Describe \code{path} here∼∼ }

}

Other aspects of function documentation are handled similarly. Try out
prompt() on a function and look at the results, which are largely self-
explanatory.

Although prompt() creates one documentation file per object, there are
advantages to documenting closely related functions together. Such func-
tions often share arguments. Documenting the common arguments in one
place is both easier and less likely to produce inconsistencies later on. Clar-
ifying which of the functions should be used or how the functions work
together is also easier if they are documented together. Package SoDA in-
cludes a function promptAll() that generates a single outline documentation
file for all the functions in a single file of source.

Installing documentation

The documentation files in a source package must be stored in directory man

under the main directory for the package. All files with the ".Rd" suffix in
that directory will be processed when the INSTALL command is executed for
the package. Installing the documentation creates several forms of output
documentation; for example, building the SoDA package gives the message:
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>>> Building/Updating help pages for package ’SoDA’
Formats: text html latex example

followed by a list of the documentation generated. If the same package was
previously installed in the same place, only the modified documentation files
will actually be processed. Of the four formats mentioned in the message,
the first three are alternative translations of the ".Rd" files. The fourth is
a directory of R source corresponding to the Examples section of each ".Rd"

file. These are run when the user invokes the example() function in R with
the topic name documented in that file. The example files are also run by
the check command, and so form part of the testing facilities for the package,
as discussed in the next section.

4.5 Testing Packages

As you program using R, I encourage you to grow a set of tests that help
to define what your new software is intended to do. Section 3.8, page 76
provides some suggestions and techniques for testing R software. These can
be used at any stage, but as your projects grow and become more ambitious,
having good tests becomes that much more important.

The organization of R packages provides a place to put tests (two places,
actually) and a shell level command to run these tests, along with a range
of other checks on the package. The command is:

$ R CMD check packages

where packages gives the names of one or more source packages or pack-
age archive files. Think of the check command as parallel to the INSTALL

command. It is run in the same place and on the same source directory or
archive file.

The check command does much more than just run some tests. It first
checks that the source package can in fact be installed, then checks for
a variety of requirements that are imposed on packages submitted to the
central CRAN archive.

This section is mainly concerned with testing the software; after dis-
cussing that aspect, we look at some of the other checks. The documentation
for the package will normally have a number of examples; the organization
of the documentation files includes an Examples section, encouraging pro-
grammers to provide expressions that can be executed to show the behavior
of the documented software. Installation of the package creates files of R
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source corresponding to each of the example sections in the package’s doc-
umentation. The check command runs all the examples for this package.

In addition, a source package can optionally contain a subdirectory
named tests. The check command examines this directory if it exists and
takes two possible actions:

1. Any file whose name ends in ".R" is treated as an R source file and is
evaluated, roughly as if the contents were entered as user input, with
the package attached.

2. A file with a corresponding name, but ending in ".Rout.save", is as-
sumed to be the intended output of evaluating the ".R" file. The actual
output is compared to this file, and any differences are reported.

The tests directory and the Examples sections offer plenty of scope for in-
stalling test code. The question we want to address here is: How best to use
them to improve the quality of the packages while not giving the package
writer unnecessary problems?

The two locations for test code have grown up with the increasing at-
tention to quality assurance in the central R archive. They have different
goals and advantages. The Examples sections are primarily to show users
how functions in the package behave. The user types, say, example(lm) to
see the examples from the corresponding documentation page, ?lm. The
printed output (and optionally graphics) can be voluminous, and is in this
case. Here’s part of it:

> example(lm)

lm> ctl <- c(4.17, 5.58, 5.18, 6.11, 4.5, 4.61, 5.17,
4.53, 5.33, 5.14)

lm> trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03,
4.89, 4.32, 4.69)
.......

lm> anova(lm.D9 <- lm(weight ~ group))
Analysis of Variance Table

Response: weight
Df Sum Sq Mean Sq F value Pr(>F)

group 1 0.6882 0.6882 1.4191 0.249
Residuals 18 8.7293 0.4850
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.....

lm> plot(lm.D9, las = 1)

lm> par(opar)

lm> stopifnot(identical(lm(weight ~ group, method = "model.frame"),
model.frame(lm.D9)))

The last line uses a utility for testing, the stopifnot() function (see Section
3.8, page 76), and is clearly there only for testing purposes.

Results of running tests in the "tests" directory, on the other hand, are
not visible to users except when the check command is run. Usually, that’s
the more natural place to put code that is not informative for users but
tests important assertions about the functions in the package. It’s possible
to hide code in the Examples section, and you may prefer to put tests closely
related to documented features there to keep the association clear.

In any case, it is much better to have tests than not. The maintainers of
the core R code try to keep test code from important bug fixes, in the form
of expressions that didn’t work until the bug was fixed, but now are asserted
to succeed. This is the essence of “regression testing” in the software sense,
and it’s a very good habit to get into for your packages.

As Section 3.8 suggests, it helps to organize test computations in terms of
assertions about what your software should do. Tools such as stopifnot(),
identical(), and all.equal() will help; some other common techniques are
to be avoided, notably using comparison operators. Relying on the exact
form of output is not a good idea, unless that output was in fact the purpose
of the function. For this reason, I would discourage use of the ".Rout.save"

mechanism for most purposes; it’s difficult to avoid spurious differences that
then burn up the programmer’s time looking for possible bugs. But, to
repeat: better to have plenty of tests than none or too few, even if the tests
are not ideal.

4.6 Package Namespaces

For trustworthy computation, the software we write and use, such as the
software in an R package, should be well defined: The essential concept of
functional programming in the S language and in R is precisely that one
should be able to read the definition of a function and figure out from that
what the function does. Because nearly all functions call other functions,
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these must also be well defined, even when they come from other packages.
That has always been a potential catch with the S language. Because of
dynamic searching, a function I intended my package to use might be hidden
by some other package, potentially with disastrous consequences (see the
example below).

To avoid such problems and to allow R software to be better defined, the
namespace mechanism has been added. This allows an R package to define
what external software it uses (what objects from what other packages it
imports), and also what software it wishes to make public (what objects it
exports). The result is a clearer and more reliable definition of the package’s
behavior; whenever you are concerned with quality code, use of a namespace
is recommended. The ability to define exports helps prevent confusion from
multiple objects with the same name. Namespaces also allow somewhat
more efficient loading of the software in most cases. But in the spirit of our
Prime Directive the increase in trust is the key property.

Why and when to give your package a namespace

The need for namespaces in R comes from the traditional S language eval-
uation model, and in particular from the way functions are found. Each
attached package appears on the search list, search():

> search()
[1] ".GlobalEnv" "tools:quartz" "package:methods"
[4] "package:stats" "package:graphics" "package:grDevices"
[7] "package:utils" "package:datasets" "Autoloads"
[10] "package:base"

In traditional evaluation, when a function in one of these packages calls
another function, f() say, the evaluator looks for a function object named
"f" in the same package or in one of the packages following on the search
list (in R, the environment of the package and the enclosing environments).

The dynamic search for each function presents a danger when functions
in a package rely on calling functions in a different package. Suppose, for
example, a package is written that uses the function gam() from the package
of the same name. In fact, there are two packages in the CRAN repository
with a function named "gam", gam and mgcv. The functions are similar but
not identical. If both packages were attached in a session using the new
package, the wrong function might be called. Although this situation may
not seem very likely, the result could be potentially disastrous if the un-
intended function returned a wrong answer that was not detected. Even



4.6. PACKAGE NAMESPACES 105

aside from errors, the writer of the new package should have the ability to
state precisely what other software the new package uses. One would like a
mechanism to declare and enforce such dependencies.

The namespace mechanism provides R programmers that ability. The
programmer includes a file called NAMESPACE in the top level of the source
package. That file consists of directives, looking like expressions in the R

language, that specify both what the package imports and what it exports.
The imports can be either entire packages or specified objects, classes, or
methods from a package. The exports are always explicit lists of objects,
classes or methods.

Nearly any mature package doing important tasks will benefit from using
the namespace mechanism. There are some cautionary points, however,
which may suggest holding off until the initial development of a package has
stabilized somewhat.

• A namespace requires being explicit, particularly about what is ex-
ported. If the contents of the package are changing, revising the
namespace for every new function or change in function name can
be a burden. Exports can be defined as regular expression patterns,
which can circumvent explicit exports (see the example below), but
this means that you must tailor the names of functions you do not
want to export, somewhat defeating the namespace idea.

• Namespaces are sealed ; that is, once installed and attached to the ses-
sion, no changes can normally be made. This means that revising a
function by changing the underlying source code requires reinstalling
the package, a considerable overhead. The trace() function, called
with the argument edit=TRUE, is deliberately designed to allow modi-
fication of objects in namespaces, because otherwise debugging would
be very difficult. See page 94. The same mechanism can be used to
edit non-exported functions, but these must be addressed by the `:::`

operator.

The trace-and-edit mechanism works quite well for trying out changes
quickly, but does require you to then save the modified version back
in the package’s source files. Otherwise the changes will be lost when
you quit the current session.

• Packages with namespaces use a different mechanism when the package
is attached to the R session. In particular, the mechanism for having an
action take place when the package is attached, .First.lib(), must be
replaced, usually by the function .onLoad(), called when the package
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is loaded, but possibly also by the function .onAttach(), called when
the previously loaded package is attached.

A reasonable rule of thumb is that a package sufficiently mature and impor-
tant to be offered beyond the friendly-user level is ready for a namespace.
Packages with particularly sensitive dependencies on other packages may
need the mechanism well before that stage.

The NAMESPACE file and its effect

To apply the namespace mechanism to your package, you must write a se-
quence of namespace directives in a file called "NAMESPACE" that resides in the
top-level directory of your packages source. The directives look roughly like
R expressions, but they are not evaluated by the R evaluator. Instead, the
file is processed specially to define the objects that our package sees and the
objects in our package that are seen by other software. The namespace direc-
tives define two collections of objects referenced by names; specifically, two
R environments, one for the objects that perform the computations inside
the package and the other for the objects that users see when the package
is attached in an R session. The first of these is referred to as the package’s
namespace. The second, the result of the export directives in the NAMESPACE

file, is the environment attached in the search list. When you access the
two environments explicitly, they will print symbolically in a special form.
For package SoDA, the environments would be <environment:namespace:SoDA>
and <environment:package:SoDA>, respectively.

The package’s namespace contains all the objects generated by installing
the package, that is, all the objects created by evaluating the R source in
the package’s R subdirectory. The same objects would have been generated
without a NAMESPACE file. The difference comes if we ask about the parent
environment of the namespace; that is, what objects other than local objects
are visible. Without a NAMESPACE file, the sequence of parent environments is
defined by the search list when this package is attached during the session.
The resulting uncertainty is just what the NAMESPACE file avoids.

1. The parent of the namespace is an environment containing all the
objects defined by the import commands in the NAMESPACE file.

2. The parent of that environment is the namespace of R’s base package.

In other words, computations in the package will see the explicitly imported
objects and the base package, in that order, regardless of what other pack-
ages are attached in the session.
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Here are some examples. To import all the exported objects from pack-
age methods include the directive:

import(methods)

To import only the functions prompt() and recover() from package utilities,
include:

importFrom(utilities, prompt, recover)

For stable packages, importing the whole package is simple and reasonably
safe, particularly if the package is part of R’s core code or is a widely used
package; it’s pretty unlikely that a change in the exports will cause problems.
Importing large packages as a whole does involve some increased work at
install time and a larger environment to be attached, but neither of these
is likely to be a serious consideration. On the other hand, if most of the
imported package is irrelevant, importing an explicit list of functions makes
the relation between the packages clear.

The contents of the package’s exports have to be stated explicitly and
positively. There is no current way to say that particular objects are private.

export(promptAll, packageAdd)

The traditional UNIX-inspired convention is to treat function names begin-
ning with a dot as private. This is not always safe in R, because the system
itself uses such names for some special purposes. But if you wanted to say
that all objects whose names start with a letter are exported:

exportPattern("∧[a-zA-Z]")

Classes and methods require special consideration. Classes defined in the
package require a special exportClass() directive to be exported:

exportClass(GPSTrack)

Currently, methods need to be exported explicitly if they are defined for a
generic function in another package:

exportMethods(show)

However, if the generic function is itself an exported function in the package,
methods are included automatically.
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4.7 Including C Software in Packages

We have emphasized creating a package as a natural step in your program-
ming with R. It’s likely then that your first efforts will emphasize functions
written in R, perhaps along with some other R software or data. R objects
that can be created by sourcing in R code are the easiest software to include
in your package, as discussed in section 4.3. Basically, just put the source
files in the directory R of your package source and the INSTALL command will
include the objects.

But R code is not the only code you can include in a package. Basically,
any software that can be invoked from R can be included. Packages are
generally the best way, in fact, to “package” any software to be called from
R.

Software written in nearly any computer language can be usefully pack-
aged for use with R, but some languages are treated specially. Basically,
C and C-related languages (including Fortran) have a reserved place in the
package’s directory structure, in the directory src. The INSTALL command
will automatically compile such source code and collect it into a suitable
library file to be linked dynamically with R when first needed.

Techniques for incorporating C and Fortran software into R are discussed
in Chapter 11. See that chapter for how to adapt the code and invoke it from
R. Once the source files are stored in the src subdirectory of your source
package, running the INSTALL command will automatically compile a version
of the code that is linked dynamically to the R session when the package is
loaded or attached. The details vary slightly depending on the operating
system, but basically the install procedure creates an archive library file, for
example SoDA.so, containing all the object code for the software in the src

directory.
The library file must be loaded into the R application, either by the

"useDynLib" directive in the namespace or by the library.dynam() function
if there is no namespace. You should also add code to register the interfaced
routines. Registering routines adds an important check that the interface
from R is calling the routine correctly. See Section 11.5, page 426, for both
loading and registering.

4.8 Interfaces to Other Software

Software from essentially arbitrary languages, as well as arbitrary data files,
can be included in the installed package, by putting it into a directory inst
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under the package source directory. Installation will copy this material into
the installed package, but the programmer is largely left to turn the software
into a form that can be called from R.

Usually, the software will be run from within an R function. The two
main issues to resolve are finding the relevant command file and communi-
cating data to and from the command. If the software is in the form of a file
that could be run as a shell command, the system() function in R will invoke
the command. Chapter 12 discusses how to make use of such software; in
this section, we discuss how to organize the required source files.

Files are usually made accessible by including them in the source for
a package. Files that are placed in the inst subdirectory of the package’s
source directory will be copied to the top-level directory of the installed
package. To execute or open those files, you must address them relative to
that directory. The path of that directory can be found by calling the func-
tion system.file(). For example, if there is a package called "P1" installed,
its installed directory is obtained by:

> system.file(package = "P1")
[1] "/Users/jmc/RLibrary/P1"

A call to system.file() can return one or more file names in any subdirec-
tory of the installed package’s directory. Suppose we had some Perl code in
files "findDateForm.perl", "hashWords.perl", and "perlMonths.perl" in the
source directory for package "P1"; specifically, in a directory "inst/perl/"

under the source directory for this package.
Files under directory "inst" will all be copied to the installed package’s

top directory, preserving directory structure. Therefore, the files in this case
will be in subdirectory "perl", and the three file names, with the complete
path, can be obtained from system.file(). The arguments to that function
give each level of subdirectory. Multiple strings produce multiple file names.

> system.file("perl",
+ c("findDateForm.perl", "hashWords.perl", "perlMonths.perl"),
+ package = "P1")
[1] "/Users/jmc/RLibrary/P1/perl/findDateForm.perl"
[2] "/Users/jmc/RLibrary/P1/perl/hashWords.perl"
[3] "/Users/jmc/RLibrary/P1/perl/perlMonths.perl"

Empty strings are returned for files that do not exist. If you want to con-
struct a file name to create a new file, call system.file() with only the
package= argument and paste onto that the necessary file and directory
names. Windows users should note that R generates strings for file locations
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using the forward slash, not the Windows backslash (to ensure that software
generating file paths is platform-independent).

To avoid conflicts, you should usually organize the inst directory into
subdirectories, as we did above with a subdirectory "perl". There is a con-
vention that subdirectory exec is for executable scripts. You can choose
other subdirectory names as you wish, but remember that installation al-
ready generates a number of files and directories in the installed package,
some of which you won’t likely be expecting. To be safe, check the existing
contents of the package’s installed directory before creating a new file or
subdirectory in the source directory inst:

> list.files(system.file(package="P1"))
[1] "CONTENTS" "DESCRIPTION" "INDEX" "Meta"
[5] "NAMESPACE" "R" "R-ex" "data"
[9] "help" "html" "latex" "man"
[13] "perl"

Other than the "perl" directory, the package "P1" has no special files, so the
above is about the minimum you can expect in the installation directory.



Chapter 5

Objects

Everything in R is an object; that is, a dynamically created, self-
describing container for data. This chapter presents techniques
for managing objects. Section 5.1 introduces the fundamental
reference technique: assigning a name in an environment. Sec-
tion 5.2, page 115, discusses the replacement operation, by which
assigned objects are modified. Section 5.3, page 119, discusses
the environments, in which objects are assigned. R allows as-
signments to nonlocal environments, discussed in Section 5.4,
page 125, and including the technique known as closures. The
final two sections discuss the transfer of R data and objects to
and from external media: Section 5.5, page 131, describes con-
nections, the R technique for dealing with an external medium;
Section 5.6, page 135, covers the techniques for transferring data
and objects.

5.1 Objects, Names, and References

The central computation in R is a function call, defined by the function
object itself and the objects that are supplied as the arguments. In the
functional programming model, the result is defined by another object, the
value of the call. Hence the traditional motto of the S language: everything
is an object—the arguments, the value, and in fact the function and the call
itself: All of these are defined as objects.

Think of objects as collections of data of all kinds. The data contained
and the way the data is organized depend on the class from which the object
was generated. R provides many classes, both in the basic system and in
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various packages. Defining new classes is an important part of programming
with R. Chapter 6 discusses existing classes and the functions that compute
on them. Chapters 9 and 10 discuss new classes and new functional com-
putational methods. The present chapter explores computations to create
and organize objects, regardless of their class or contents. The fundamental
dualism in all aspects of R and the S language, the dualism between function
calls and objects, is reflected in all these discussions.

As in any programming language, it’s essential to be able to refer to
objects, in a particular context, in a way that is consistent and clear. In
the S language, there is one and only one way to refer to objects: by name.
More precisely, the combination of a name (that is, a non-empty character
string) and an environment (or context) in which the name is evaluated is the
fundamental reference to an object in R. So, the value of the expressions pi

or lm in the global environment, or the value of x inside a particular function
call, will refer to a specific object (or generate an error, if no corresponding
object can be found). The next section elaborates on environments and
related ideas: basically, any computation in R takes place in an environment
that defines how the evaluator will search for an object by name.

Whenever we talk about a reference to an object, in any language, the
key is that we expect to use that reference repeatedly, in the confidence
that it continues to refer to the same object. References do usually include
the ability to change the object, what is sometimes called a mutable object
reference, but which in R we can reduce to an assignment. Unless some
explicit assignment has occurred, using an object reference means we can be
confident that successive computations will see consistent data in the object.
It’s essentially a sanity requirement for computing: otherwise, there is no
way to understand what our computations mean.

A name, with an associated environment, provides a reference in exactly
this sense in R, for normal objects and programming style. As for that qual-
ification, “normal”, it excludes two kinds of abnormality. R permits some
non-standard functions that explicitly reach out to perform non-local as-
signments. They have their place, and are discussed in section 5.4, but we’ll
exclude them from the current discussion. In addition, there are some non-
standard classes of objects whose behavior also breaks the general model, as
discussed beginning on page 114. These too are excluded by the term “nor-
mal”. (Notice again the duality of functions and objects in the exceptions
to normal behavior.)

The reference of a name to an object is made by an assignment, for
example:
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lmFit <- lm(survival ∼ ., study2004)

This expression creates an object named lmFit in the current environment.
Having created the object, we can now use it, perhaps to generate some
printed or plotted summaries, or to create some further named objects:

lmResid <- lmFit$residuals

As long as no second assignment for the name lmFit took place in the same
context, we can be confident that the new object was computed from the
lmFit object created above—the same object in all respects, regardless of
what other computations took place involving lmFit.

The assurance of consistency is key for providing clear and valid software.
Suppose, between the two assignments you saw an expression such as

verySubtleAnalysis(lmFit)

Suppose you had no clue what this function was doing internally, except
that all its computations are normal in our current sense, and that lmfit

is a normal object. You can then be quite confident that the intermedi-
ate computations will not have modified lmFit. Such confidence allows a
top-down analysis of the computations, contributing directly to trustworthy
software and to our Prime Directive.

We said that names are the only general form of reference in R, and that
statement is important to understand. In the second assignment above,
lmFit$residuals extracts a component of the lmFit object. To emphasize,
the computation extracts the information, as a new object, rather than
creating a reference to the portion of lmFit that contains this information.
If a following computation changes lmFit, there will be no change in lmResid.

The statement that nearly all object references in R start from assign-
ments needs some elaboration, too. As later sections in this chapter discuss,
there are many ways to get access to objects in R: from packages, saved
images, and other files. However, these objects were nearly always created
by assignments, and then saved in other forms.

The most important objects not created by an assignment are the ar-
guments in a function call. The R evaluator creates an association between
the name of the argument and the expression supplied in the actual call.
If you are writing a function with an argument named x, then inside the
function definition, you can use the name x and be confident that it refers
to the corresponding argument in the call. The mechanism involved is ex-
tremely important in the way R works, and is somewhat different from an
assignment. Section 13.3, page 460, discusses the details. For the most part,
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however, you just use the argument names in the body of the function in
the same way as any other names.

Exceptions to the object model

Most classes of objects in R behave according to the model described in this
section, but a few do not. You need to be careful in using such objects,
because they do not give you the usual safety of knowing that local changes
really are local. Three classes of such exceptional objects are connections,
environments, and external pointers. The discussion here summarizes how
and why these objects are exceptions to the normal object behavior.

Connections: The class of connection objects represents streams of bytes
(characters, usually). Files on disc and other data streams that behave
similarly can be used in R by creating a connection object that refers to
the data stream. See Section 5.5, page 131, for a general discussion of
connections.

The connection refers to a data stream that often has some sort of phys-
ical reality in the computer; as a result, any computation that uses the
connection object will deal with the same data stream. Reading from a con-
nection in one function call will alter the state of the stream (for example,
the current position for reading from a file). As a result, computations in
other functions will be affected. Connection objects in a function call are not
local. Ignoring the non-local aspect of a connection object leads to obvious,
but easy-to-make, errors such as the following.

wRead <- function (con) {
w <- scan(con, numeric(), n=1)
if(w > 0)

w * scan(con, numeric(), n=1)
else

NA
}

The function wread() is intended to read a weight w from connection con

and then to return either the weight times the following data value on the
connection, if the weight is positive, or NA otherwise. The danger is that
wRead sometimes reads one field from the connection, and sometimes two. If
connections were ordinary objects (if, say, we were just picking items from
a list), the difference would not matter because the effect would be local to
the single call to wRead. But con is a connection. If it contained pairs of
numbers, as it likely would, then the first non-positive value of w will cause
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wRead to leave the following field on the connection. From then on, disaster
is likely.

The recommended fix, here and in general, is that all computations on
a connection should leave the connection in a well-defined, consistent state.
Usually that means reading (or writing) a specific sequence of fields. Each
function’s specification should include a description of what it does to the
connection. Unfortunately, most of the base functions dealing with con-
nections are implemented as internal C code. Their definition is not easily
understood, and different functions can behave inconsistently.

Environments: As discussed in section 5.3, one can access a reference to
the environment containing objects as if it were itself an object. In detailed
programming tasks, you may need to pass such objects to other functions, so
they can search in the right place for a particular name, for example. But
environments are not copied or made local to a particular function. Any
changes made to the environment will be seen by all software using that
environment from now on.

Given that environment objects have this highly non-standard behavior,
it might have been better if standard R computations were not allowed for
them. Unfortunately a number of basic functions do appear to work nor-
mally with environments, including replacement functions for components
("$") and attributes (attr). Don’t be fooled: the effects are very different.
Avoid using these replacement functions with environments.

External pointers: These are a much more specialized kind of object, so
the temptation to misuse them arises less often. As the name suggests, they
point to something external to R, or at least something that the R evaluator
treats that way. As a result, the evaluator does none of the automatic
copying or other safeguards applied to normal objects. External pointers
are usually supplied from some code, typically written in C, and then passed
along to other such code. Stick to such passive use of the objects.

For all such non-standard objects, one important current restriction in
programming is that they should not be extended by new class definitions.
They can, with care, be used as slots in class definitions.

5.2 Replacement Expressions

In discussing names as references, we stated that an object assigned in an
environment would only be changed by another assignment. But R compu-
tations frequently have replacement expressions such as:

diag(x) <- diag(x) + epsilon



116 CHAPTER 5. OBJECTS

z[[i]] <- lowerBound
lmFit$resid[large] <- maxR

Don’t these modify the objects referred to by x, z and lmFit? No, technically
they do not: A replacement creates a new assignment of an object to the
current name. The distinction usually makes little difference to a user, but it
is the basis for a powerful programming technique and affects computational
efficiency, so we should examine it here.

The expressions above are examples of a replacement expression in the
S language; that is, an assignment where the left side is not a name but
an expression, identifying some aspect of the object we want to change.
By definition, any replacement expression is evaluated as a simple assign-
ment (or several such assignments, for complex replacement expressions),
with the right side of the assignment being a call to a replacement function
corresponding to the expression. The first example above is equivalent to:

x <- `diag<-`(x, value = diag(x) + epsilon)

The mechanism is completely general, applying to any function on the left
side of the assignment defined to return the modified object. The implica-
tion is that a new complete object replaces the existing object each time a
replacement expression is evaluated.

It may be important to remember how replacements work when replacing
portions of large objects. Each replacement expression evaluates to a new
assignment of the complete object, regardless of how small a portion of the
object has changed. Sometimes, this matters for efficiency, but as with
most such issues, it’s wise not to worry prematurely, until you know that
the computation in question is important enough for its efficiency to matter.
The classic “culprit” is an expression of the form:

for(i in undefinedElements(z))
z[[i]] <- lowerBound

The loop in the example will call the function for replacing a single element
some number of times, possibly many times, and on each call a new version
of z will be assigned, or at least that is the model. In this example, there
is no doubt that the programmer should have used a computation that is
both simpler and more efficient:

z[undefinedElements(z)] <- lowerBound

In the jargon that has grown up around S-language programming the distinc-
tion is often referred to as “vectorizing”: the second computation deals with
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the whole object (in this case, a vector). Some suggestions and examples
are provided in Section 6.4, page 157.

However, as is often the case, predicting the actual effect on efficiency
requires considerable knowledge of the details, another reason to delay such
considerations in many applications. The example above, in fact, will usu-
ally prove to be little more efficient in the vectorized form. The replacement
function `[[<-` is one of a number of basic replacements that are defined as
primitives; these can, sometimes, perform a replacement in place. The dis-
tinction is relevant for efficiency but does not contradict the general model.
Primitive replacement functions generally will modify the object in place,
without duplication, if it is local. If so, then no difference to the overall
result will occur from modification in place.

As a result, a simple loop over primitive replacements will at most tend
to produce one duplicate copy of the object. Even if the object is not local,
the first copy made and assigned will be, so later iterations will omit the
duplication.

The argument for this particular vectorizing is still convincing, but be-
cause the revised code is a clearer statement of the computation. It’s also
likely to be slightly faster, because it eliminates the setup and execution of
some number of function calls. Even this distinction is not likely to be very
noticeable because the replacement function is a primitive.

Replacement functions

The ability to write new replacement functions provides an important pro-
gramming tool. Suppose you want to define an entirely new form of replace-
ment expression, say:

undefined(z) <- lowerBound

No problem: just define a function named `undefined<-`. For an existing re-
placement function, you may often want to define a new replacement method
to replace parts of objects from a class you are designing; for example, meth-
ods for replacements using `[` or `[[` on the left of the assignment. Again,
no special mechanism is needed: just define methods for the corresponding
replacement function, `[<-` or `[[<-`.

To work correctly, replacement functions have two requirements. They
must always return the complete object with suitable changes made, and
the final argument of the function, corresponding to the replacement data
on the right of the assignment, must be named "value".
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The second requirement comes because the evaluator always turns a
replacement into a call with the right-hand side supplied by name, value=,
and that convention is used so that replacement functions can have optional
arguments. The right-hand side value is never optional, and needs to be
supplied by name if other arguments are missing.

Let’s define a replacement function for undefined(), assuming it wants
to replace missing values with the data on the right-hand side. As an extra
feature, it takes an optional argument codes that can be supplied as one or
more numerical values to be interpreted as undefined.

`undefined<-` <- function(x, codes = numeric(), value) {
if(length(codes) > 0)

x[ x %in% codes] <- NA
x[is.na(x)] <- value
x

}

If the optional codes are supplied, the `%in%` operator will set all the ele-
ments that match any of the codes to NA.

Notice that one implication of the mechanism for evaluating replacement
expressions is that replacement functions can be defined whether or not the
ordinary function of the same name exists. We have not shown a function
undefined() and no such function exists in the core packages for R. The
validity of the replacement function is not affected in any case. However, in
a nested replacement, where the first argument is not a simple name, both
functions must exist; see Section 13.5, page 466.

Replacement methods

Methods can be written for replacement functions, both for existing func-
tions and for new generic functions. When a class naturally has methods
for functions that describe its conceptual structure, it usually should have
corresponding methods for replacing the same structure. Methods for `[`,
`[[`, length(), dim(), and many other similar functions suggest methods
for `[<-`, `[[<-`, etc.

New replacement functions can also be made generic. To create a generic
function similar to the `undefined<-` example:

setGeneric("undefined<-",
function(x, ..., value) standardGeneric("undefined<-"),
useAsDefault = FALSE)
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The argument, code, in the original function was specific to the particular
method that function implemented. When turning a function into a generic,
it often pays to generalize such arguments into "...".

We chose not to use the previous function as the default method. The
original function above was fine for casual use, but the operator `%in%` calls
the match() function, which is only defined for vectors. So a slightly better
view of the function is as a method when both x and value inherit from class
"vector". A default value of NULL for code is more natural when we don’t
assume that x contains numeric data.

setMethod("undefined<-",
signature(x="vector", value = "vector"),
function(x, codes = NULL, value) {

if(length(codes) > 0)
x[x %in% codes] <- NA

x[is.na(x)] <- value
x

})

Class "vector" is the union of all the vector data types in R: the numeric
types plus "logical", "character", "list", and "raw". A method for class
"vector" needs to be checked against each of these, unless it’s obvious that
it works for all of them (it was not obvious to me in this case). I leave it
as an exercise to verify the answer: it works for all types except "raw", and
does work for "list", somewhat surprisingly. A separate method should be
defined for class "raw", another exercise.

A convenience function, setReplaceMethod(), sets the method from the
name of the non-replacement function. It’s just a convenience, to hide the
addition "<-" to the name of the replacement function.

5.3 Environments

An environment consists of two things. First, it is a collection of objects each
with an associated name (an arbitrary non-empty character string). Second,
an environment contains a reference to another environment, technically
called the enclosure of that environment, but also referred to as the parent,
and returned by the function parent.env().

Environments are created by several mechanisms. The global environ-
ment contains all the objects assigned there during the session, plus possibly
objects created in a few other ways (such as by restoring some saved data).
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The environment of a function call contains objects corresponding to the
arguments in the function call, plus any objects assigned so far during the
evaluation of the call. Environments associated with packages contain the
objects exported to the session or, in the package’s namespace, the objects
visible to functions in the package. Generic functions have environments
created specially to store information needed for computations with meth-
ods. Environments created explicitly by new.env() can contain any objects
assigned there by the user.

When the R evaluator looks for an object by name, it looks first in the
local environment and then through the successive enclosing environments.
The enclosing environment for a function call is the environment of the
function. What that is varies with the circumstances (see page 123), but in
the ordinary situation of assigning a function definition, it is the environment
where the assignment takes place. In particular, for interactive assignments
and ordinary source files, it is the global environment.

The chain of enclosing environments for any computation determines
what functions and other objects are visible, so you may need to understand
how the chaining works, in order to fully understand how computations will
work.

In this section we give some details of environments in various contexts,
and also discuss some special programming techniques using environments.
A general warning applies to these techniques. As mentioned earlier in the
chapter, the combination of a name and an environment is the essential
object reference in R. But functional programming, which is central to R

(section 3.2), generally avoids computing with references. Given that, it’s
not surprising that computing directly with environments tends to go outside
the functional programming model. The techniques may still be useful, but
one needs to proceed with caution if the results are to be understandable
and trustworthy.

Environments and the R session

An R session always has an associated environment, the global environment.
An assignment entered by a user in the session creates an object with the
corresponding name in the global environment:

sAids <- summary(Aids2)

Expressions evaluated directly in the session are also evaluated in the global
environment. For the expression above, the evaluator needs to find a func-
tion named "summary" and then, later, an object named "Aids2". As always,
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the evaluator looks up objects by name first in the current environment
(here the global environment) and then successively in the enclosing or par-
ent environments.

The chain of environments for the session depends on what packages
and other environments are attached. The function search() returns the
names of these environments, traditionally called the “search list” in the S

language. It’s not a list in the usual sense. The best way of thinking of the
search list is as a chain of environments (and thus, conceptually a list).

At the start of a session the search list might look as follows:

> search()
[1] ".GlobalEnv" "package:stats" "package:graphics"
[4] "package:grDevices" "package:utils" "package:datasets"
[7] "package:methods" "Autoloads" "package:base"

The global environment comes first. Its enclosing environment is the second
environment on the search list, which has the third environment as its parent,
and so on. We can see this by calling parent.env():

> ev2 <- parent.env(.GlobalEnv); environmentName(ev2)
[1] "package:stats"
> ev3 <- parent.env(ev2); environmentName(ev3)
[1] "package:graphics"

(If you wonder why the call to environmentName(), it’s because the printed
version of packages as environments is confusingly messy; environmentName()
gets us back to the name used by search().)

The arrangement of enclosing environments, whereby each package has
the next package in the search list as its parent, exists so that R can follow
the original rule of the S language that the evaluator searches for names in
the search list elements, in order.

In evaluating summary(Aids2), the evaluator finds the function object
summary in the base package. However, object "Aids2" is not found in any
of the elements of the search list:

> find("summary")
[1] "package:base"
> find("Aids2")
character(0)

That object is contained in the package MASS. To obtain it, the package must
be attached to the search list, or the object must be explicitly extracted
from the package. Attaching the package, say by calling require(), alters
the search list, and therefore the pattern of enclosing environments.
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> require(MASS)
Loading required package: MASS
[1] TRUE
> search()
[1] ".GlobalEnv" "package:MASS" "package:stats"
[4] "package:graphics" "package:grDevices" "package:utils"
[7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"
> ev2 <- parent.env(.GlobalEnv); environmentName(ev2)
[1] "package:MASS"
> ev3 <- parent.env(ev2); environmentName(ev3)
[1] "package:stats"

The search by name for objects now looks in the environment for package
MASS before the previous environments in the search list. If there happened
to be a function summary() in that package, it would be chosen rather than
the function in the base package. The function require() would have warned
the user if attaching the package introduced any name conflicts.

However, possible conflicts between packages are a worry; with the very
large number of packages available, some conflicts are inevitable. Package
mgcv and package gam on CRAN both have a function gam(). The two func-
tions are similar in purpose but not identical, so one might want to compare
their results. To do so, one needs to be explicit about which function is
being called. The `::` operator prepends the name of the package to the
function name, so that mgcv::gam() and gam::gam() refer uniquely to the
two functions.

For programming rather than interactive analysis, the problem and the
approach are slightly different. If your function calls functions from other
packages, you would like to be assured that the intended function is called
no matter what other packages might be used in some future session. If
the function was loaded into the global environment, say by using source(),
such assurance is not available. In our previous example, you cannot ensure
that a future user has the intended package in the search list, ahead of the
unintended one, when you call gam(), and similarly for every other function
called from a package. The problem remains when your function is in a
simple package, because the original R model for package software is basically
that of source-ing the code in the package when the package is attached. In
either case, the environment of the function is the global environment. If
a name is encountered in a call to any such function, then by the general
rule on page 120, the evaluator searches first in the call, then in the global
environment, and then in its enclosing environments. So the object found
can change depending on what packages are attached.
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Using `::` on every call is clearly unreasonable, so a more general mech-
anism is needed to clarify what software your software expects. This is one
of the main motivations for introducing the NAMESPACE mechanism for R

packages. A "NAMESPACE" file in the package source contains explicit direc-
tives declaring what other packages are imported, potentially even what
individual objects are imported from those packages. The mechanism im-
plementing the imports can be understood in terms of the current discussion
of environments. If the package SoDA had no namespace file, then a function
from the package, say binaryRep() would have the global environment as its
environment. But SoDA does have a namespace file and:

> environment(binaryRep)
<environment: namespace:SoDA>

The namespace environment constructed for the package restricts the visible
objects to those in the namespace itself, those explicitly imported, and the
base package. To implement this rule, the parent of the package’s namespace
is an environment containing all the imports; its parent is the base package’s
namespace.

In most circumstances, the namespace mechanism makes for more trust-
worthy code, and should be used in serious programming with R. See Section
4.6, page 103 for the techniques needed.

Environments for functions (continued)

Functions are usually created by evaluating an expression of the form:

function ( formal arguments ) body

As discussed in Section 3.3, page 50, the evaluation creates a function object,
defined by its formal arguments, body, and environment. The function is
basically just what you see: the same definition always produces the same
object, with one important exception. When it is created, the function
object gets a reference to the environment in which the defining expression
was evaluated. That reference is a built-in property of the function.

If the expression is evaluated at the command level of the session or in a
file sourced in from there, the environment is the global environment. This
environment is overridden when packages have a namespace, and replaced
by the namespace environment. There are two other common situations
in programming that generate function environments other than the global
environment.
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Function definitions can be evaluated inside a call to another function.
The general rule applies: the function is given a reference to the environment
created for the evaluation of that call. Ordinarily, the environment of the
call disappears after the call is complete, whenever storage is cleaned up by
a garbage collection.

However, there is an R programming technique that deliberately cre-
ates functions that share a more persistent version of such an environment.
The goal is usually to go beyond a purely functional approach to program-
ming by sharing other objects, within the same environment, among several
functions. The functions can then update the objects, by using non-local
assignments.

For a discussion of programming this way, and of alternatives, see Section
5.4, page 125. Software that is used by calling functions from a list of
functions (in the style of z$f(· · · )), or that discusses R closures, likely makes
use of this mechanism.

The other commonly encountered exception is in generic functions (those
for which methods are defined). These mainly exist for the purpose of select-
ing methods, and are created with a special environment, whose enclosure is
then the function’s usual environment (typically the namespace of the pack-
age where the function is defined). The special environment is used to store
some information for rapid selection of methods and for other calculations.
A few other objects involved in method dispatch, such as methods includ-
ing a callNextMethod(), also have specialized environments to amortize the
cost of searches. Unlike package namespaces, the special environments for
method dispatch don’t change the fundamental rules for finding names. The
specialized environments are an implementation detail, and might in prin-
ciple disappear in later versions of R.

Computing with environment objects

Environments arise mostly in the background when expressions are evalu-
ated, providing the basic mechanism for storing and finding objects. They
can themselves be created (by new.env()) and used as objects, however.
Doing so carries risks because environments are not standard R objects.
An environment is a reference. Every computation that modifies the en-
vironment changes the same object, unlike the usual functional model for
computing with R.

If you do want to use environments directly, consider using the following
basic functions to manipulate them, in order to make your programming
intentions clear. The functions actually predate environments and R itself,
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and form the traditional set of techniques in the S language for manipulating
“database” objects. A 1991 Bell Labs technical report [4] proposed them for
database classes. Explicit computation with environments often treats them
essentially as database objects. For a more modern approach to a database
interface to R, see the DBI package, and Section 12.7, page 446.

The five basic computations, in their R form with environments, are:

assign(x, value, envir =) Store the object value in the environment,
as the character string name, x.

get(x, envir =) Return the object associated with the name from the
environment..

exists(x, envir = ) Test whether an object exists associated with the
name.

objects(envir = ) Return the vector of names for the objects in the en-
vironment.

remove(list = , envir = ) Remove the objects named as list from the
environment.

The five functions are widely used, but are presented here with somewhat
specialized arguments, needed in order to use them consistently with envi-
ronments. In addition, both functions get() and exists() should be called
with the optional argument inherits = FALSE, if you want to search only in
the specified environment and not in its enclosures.

If your programming includes defining new classes, it’s natural to em-
bed computations with environments in a special class, to clarify the inten-
tions and hide confusing details. Be warned however: You cannot make
class "environment" a superclass of a new class, such as by contains =

"environment" in the call to setClass(). Because environment objects are
references, objects from the new class will actually have the same reference,
including all slots and other properties.

You can use an environment as a slot in a new class, provided as always
that your computations take account of the environment’s non-standard
behavior.

5.4 Non-local Assignments; Closures

Many computational objects are naturally thought of as being repeatedly
updated as relevant changes occur. Whenever an object represents a sum-
mary of an ongoing process, it requires computations to change the object
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when new data arrives in the process. Other objects that represent physical
or visual “real things” also lend themselves to updating; for example, an
object representing a window or other component of a user interface will be
updated when some preference or other internal setting is changed.

The S language provides a very general mechanism for updating a local
object, via replacement expressions (Section 5.2, page 115).

R introduces an alternative mechanism, in which functions share a com-
mon environment and update non-local objects in that environment. The
mechanism is inspired by other languages; in particular, it has something in
common with reference-based object-oriented programming systems, but it
does not use formal class definitions. As such, it departs significantly from
a functional programming style. All the same, it does enable some use-
ful computations, so let’s examine it, show an example, along with a more
functional alternative, and then assess the pros and cons.

The trick is made possible by two techniques: non-local assignments and
the environment created by a function call. Any assignment or replacement
with the `<-` or `=` operator can be made non-local by using the operator
`<<-` instead. The meaning is quite different, however, and also different
from the same operator in S-Plus. Consider the assignment:

dataBuf <<- numeric(0)

The rule for such assignments in R is to search for the name through all
the enclosing environments, starting from the environment of the function
in which the assignment is evaluated. If an existing object of this name is
found, the assignment takes place there; otherwise, the object is assigned
in the global environment. This is an unusual rule and can have strange
consequences (for example, if the name is first encountered in one of the
attached packages, an attempt is made to assign in that package, usually
failing because the package environment is locked). The intended use in
most cases is that an object will have been initialized with this name in an
enclosing environment; the `<<-` operator then updates this object.

The other part of the trick involves assigning one or more functions inside
a function call, by evaluating an ordinary definition, but inside another
call. The primitive code that evaluates the `function` expression sets the
environment of the function object to the environment where the evaluation
takes place, in this case the local environment of the call. Because the
assignment is local, both function and environment normally disappear when
the call is completed, but not if the function is returned as part of the value of
the call. In that case, the object returned preserves both the function and its
environment. If several functions are included in the object returned, they
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all share the same environment. The R programming mechanism referred
to as a closure uses that environment to keep references to objects that can
then be updated by calling functions created and returned from the original
function call.

Here is an example that illustrates the idea. Suppose a large quantity of
data arrives in a stream over time, and we would like to maintain an estimate
of some quantiles of the data stream, without accumulating an arbitrarily
large buffer of data. The paper [7] describes a technique, called Incremental
Quantile estimation (IQ), for doing this: a fixed-size data buffer is used
to accumulate data; when the buffer is full, an estimate of the quantiles
is made and the data buffer is emptied. When the buffer fills again, the
existing quantile estimates are merged with the new data to create a revised
estimate. Thus a fixed amount of storage accumulates a running estimate
of the quantiles for an arbitrarily large amount of data arriving in batches
over time.

Here’s an implementation of the updating involved, using closures in R.

newIQ <- function(nData = 1000, probs = seq(0, 1, 0.25)) {
dataBuf <- numeric(0)
qBuf <- numeric(0)

addData <- function(newdata) {
n <- length(newdata);
if(n + length(dataBuf) > nData)

recompute(newdata)
else

dataBuf <<- c(dataBuf, newdata)
}

recompute <- function(newdata = numeric(0)) {
qBuf <<- doQuantile(qBuf, c(dataBuf, newdata), probs)
dataBuf <<- numeric(0)

}

getq <- function() {
if(length(dataBuf) > 0)

recompute()
qBuf

}

list(addData = addData, getQ = getQ)
}
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Our implementation is trivial and doesn’t in fact illustrate the only tech-
nically interesting part of the computation, the actual combination of the
current quantile estimate with new data using a fixed buffer, but that’s not
our department; see the reference. We’re interested in the programming for
updating.

For each separate data stream, a user would create an IQ “object”:

myData <- newIQ()

The actual returned object consists of a list of two functions. Every call to
newIQ() returns an identical list of functions, except that the environment of
the functions is unique to each call, and indeed is the environment created
dynamically for that call. The shared environment is the business end of
the object. It contains all the local objects, including dataBuf and qBuf,
which act as buffers for data and for estimated quantiles respectively, and
also three functions. Whenever data arrives on the stream, a call to one of
the functions in the list adds that data to the objects in the environment:

> myData$addData(newdata)

When the amount of data exceeds the pre-specified maximum buffer size,
quantiles are estimated and the function recompute(), conveniently stored
in the environment, clears the data buffer. Whenever the user wants the
current quantile estimate, this is returned by the other function in the list:

> quants <- myData$getQ()

This returns the internal quantile buffer, first updating that if data is waiting
to be included.

Because the computation is characteristic of programming with closures,
it is worth examining why it works. The call to newIQ() assigns the two
buffers, in the environment of the call. That environment is preserved be-
cause the functions in the returned list have a reference to it, and therefore
garbage collection can’t release it.

When the addData() function does a non-local assignment of dataBuf, it
applies the rule on page 126 by looking for an object of that name, and finds
one in the function’s environment. As a result, it updates dataBuf there;
similarly, function recompute() updates both dataBuf and qBuf in the same
environment. Notice that recompute() shares the environment even though
it is not a user-callable function and so was not returned as part of the list.

It’s helpful to compare the closures implementation to one using replace-
ment functions. In the replacement version, the buffers are contained explic-
itly in the object returned by newIQ() and a replacement function updates
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them appropriately, returning the revised object. Here’s an implementation
similar to the closure version.

newIQ <- function(nData = 1000, probs = seq(0, 1, 0.25))
list(nData = nData, probs = probs,

dataBuf = numeric(0), qBuf = numeric(0))

`addData<-` <- function(IQ, update = FALSE, value) {
n <- length(value);
if(update || (n + length(IQ$dataBuf) > IQ$nData))

recompute(IQ, value)
else {

IQ$dataBuf <- c(IQ$dataBuf, value)
IQ

}
}

recompute <- function(IQ, newdata = numeric(0)) {
IQ$qBuf <- doQuantile(qBuf, c(IQ$dataBuf, newdata), probs)
IQ$dataBuf <- numeric(0)
IQ

}

getq <- function(IQ) {
if(length(IQ$dataBuf) > 0)

IQ <- recompute(IQ)
IQ$qBuf

}

This version of addData() is a replacement function, with an option to up-
date the quantile estimates unconditionally. The logic of the computation is
nearly the same, with the relevant objects now extracted from the IQ object,
not found in the environment. Typical use would be:

> myData <- newIQ()
.......

> addData(myData) <- newdata
.......

> getq(myData)

The user types apparently similar commands in either case, mainly distin-
guished by using the `$` operator to invoke component functions of the IQ
object in the closure form, versus an explicit replacement expression in the
alternate version. Even the implementations are quite parallel, or at least
can be, as we have shown here.
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What happens, however, follows a very different concept. Closures cre-
ate a number of object references (always the same names, but in unique
environments), which allow the component functions to alter the object in-
visibly. The component functions correspond to methods in languages such
as C++, where objects are generally mutable, that is, they can be changed
by methods via object references.

The replacement function form follows standard S-language behavior.
General replacement functions have often perplexed those used to other
languages, but as noted in section 5.2, they conform to the concept of local
assignments in a functional language.

Are there practical distinctions? Closures and other uses of references
can be more efficient in memory allocation, but how much that matters may
be hard to predict in examples.

The replacement version requires more decisions about keeping the quan-
tile estimates up to date, because only an assignment can change the object.
For example, although getq() always returns an up-to-date estimate, it can-
not modify the non-local object (fortunately for trustworthy software). To
avoid extra work in recomputing estimates, the user would need to reassign
the object explicitly, for example by:

myData <- recompute(myData)

Another difference between the versions arises if someone wants to add
functionality to the software; say, a summary of the current state of the
estimation. The replacement version can be modified in an ordinary way,
using the components of any IQ object. But notice that a new function in
the closure version must be created by newIQ() for it to have access to the
actual objects in the created environment. So any changes can only apply
to objects created after the change, in contrast to the usual emphasis on
gradual improvement in R programming.

Finally, I think both versions of the software want to evolve towards a
class-and-method concept. The IQ objects really ought to belong to a class,
so that the data involved is well-defined, trustworthy, and open to extension
and inheritance. The replacement version could evolve this way obviously;
what are currently components of a list really want to be slots in a class.

The closure version could evolve to a class concept also, but only in a
class system where the slots are in fact references; again, this has much of
the flavor of languages such as C++ or Java.
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5.5 Connections

Connection objects and the functions that create them and manipulate them
allow R functions to read and interpret data from outside of R, when the data
can come from a variety of sources. When an argument to the R function is
interpreted as a connection, the function will work essentially the same way
whether the data is coming from a local file, a location on the web, or an R

character vector. To some extent, the same flexibility is available when an
R function wants to write non-R information to some outside file.

Connections are used as an argument to functions that read or write; the
argument is usually the one named file= or connection=. In most cases, the
argument can be a character string that provides the path name for a file.

This section discusses programming with connection objects, in terms of
specifying and manipulating them. Section 5.6 discusses the functions most
frequently used with connections.

Programming with connections

For programming with R, the most essential fact about connections may
be that they are not normal R objects. Treating them in the usual way
(for example, saving a connection object somewhere, expecting it to be self-
describing, reusable, and independent of other computations) can lead to
disaster. The essential concept is that connections are references to a data
stream. A paradigm for defensive programming with connections has the
form:

con <- create (description , open )
## now do whatever input or output is needed using con
close(con)

where create is one of the functions (file(), etc.) that create connections,
description is the description of the file or command, or the object to be
used as a text connection, and open is the string defining the mode of the
connection, as discussed on page 134.

Two common and related problems when programming with connections
arise from not explicitly closing them and not explicitly opening them (when
writing). The paradigm shown is not always needed, but is the safest ap-
proach, particularly when manipulating connections inside other functions.

Connections opened for reading implement the concept of some entity
that can be the source of a stream of bytes. Similarly, connections opened
for writing represent the corresponding concept of sending some bytes to
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the connection. Actually, hardly any R operations on connections work
at such a low level. The various functions described in this chapter and
elsewhere are expressed in terms of patterns of data coming from or going
to the connection. The lower level of serial input/output takes place in the
underlying C code that implements operations on connections.

Connections in R implement computations found at a lower level in C.
The most useful property of a connection as an object is its (S3) class.
There exist S3 methods for connection objects, for functions print() and
summary(), as well as for a collection of functions that are largely meaningful
only for connection-like objects (open(), close(), seek(), and others).

However, connections are distinctly nonstandard R objects. As noted
on page 114, connections are not just objects, but in fact references to an
internal table containing the current state of active connections. Use the
reference only with great caution; the connection object is only usable while
the connection is in the table, which will not be the case after close()

is called. Although a connection can be defined without opening it, you
have no guarantee that the R object so created continues to refer to the
internal connection. If the connection was closed by another function, the
reference could be invalid. Worse still, if the connection was closed and
another connection opened, the object could silently refer to a connection
totally unrelated to the one we expected. From the view of trustworthy
software, of the Prime Directive, connection objects should be opened, used
and closed, with no chance for conflicting use by other software.

Even when open and therefore presumably valid, connections are non-
standard objects. For example, the function seek() returns a “position”
on the connection and for files allows the position to be set. Such position
information is a reference, in that all R function calls that make use of the
same connection see the same position. It is also not part of the object
itself, but only obtained from the internal implementation. If the position
is changed, it changes globally, not just in the function calling seek().

Two aspects of connections are relevant in programming with them:
what they are and how information is to be transferred. These are, respec-
tively, associated with the connection class of the object, an enumeration
of the kinds of entities that can act as suitable sources or sinks for input or
output; and with what is known as the connection mode, as specified by the
open argument to the functions that create a connection object.
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Connection classes

Connections come from the concept of file-like entities, in the C program-
ming tradition and specifically from the Posix standards. Some classes of
connections are exactly analogous to corresponding kinds of file structures
in the Posix view, other are extensions or analogs specific to R. The first group
includes "file", "fifo", "pipe", and "socket" connection objects. Files are
the most common connections, the others are specialized and likely to be
familiar only to those accustomed to programming at the C level in Linux or
UNIX. Files are normally either specified by their path in the file system or
created as temporary files. Paths are shown UNIX-style, separated by "/",
even on Windows. There are no temporary files in the low-level sense that
the file disappears when closed; instead, the tempfile() function provides
paths that can be used with little danger of conflicting with any other use
of the same name.

Three classes of connections extend files to include compression on input
or output: . They differ in the kind of compression done. Classes "gzfile"

and "bzfile" read and write through a compression filter, corresponding to
the shell commands gzip and bzip2. The "unz" connections are designed
to read a single file from an archive created by the zip command. All
of these are useful in compressing voluminous output or in reading data
previously compressed without explicitly uncompressing it first. But they
are not particularly relevant for general programming and we won’t look at
examples here.

The "url" class of connections allow input from locations on the Web
(not output, because that would be a violation of security and not allowed).
So, for example, the “State of the Union” summary data offered by the
swivel.com Web site is located by a URL:

http://www.swivel.com/data sets/download file/1002460

Software in R can read this remote data directly by using the connection:

url("http://www.swivel.com/data_sets/download_file/1002460")

Text connections (class "textConnection") use character vectors for in-
put or output, treating the elements of the character vector like lines of text.
These connections operate somewhat differently from file-like connections.
They don’t support seeking but do support pushBack() (see that function’s
documentation). When used for output, the connections write into an object
whose name is given in creating the connection. So writing to a text con-
nection has a side effect (and what’s more, supports the idea of a non-local
side effect, via option local=FALSE).
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Modes and operations on connections

The modes and operations on connections, like the objects themselves, come
largely from the C programming world, as implemented in Posix-style soft-
ware. The operation of opening a connection and the character string ar-
guments to define the mode of the connection when opened were inspired
originally by corresponding routines and arguments in C. You don’t need to
know the C version to use connections in R; indeed, because the R version
has evolved considerably, knowing too much about the original might be a
disadvantage.

Connections have a state of being open or closed. While a connection
is open, successive input operations start where the previous operation left
off. Similarly, successive output operations on an open connection append
bytes just after the last byte resulting from the previous operation.

The mode of the connection is specified by a character-string code sup-
plied when the connection is opened. A connection can be opened when it is
created, by giving the open= argument to the generating function. The con-
nection classes have generating functions of the name of the class (file(),
url(), etc.) A connection can also be opened (if it is not currently open) by
a call to the open() function, taking an open= argument with the same mean-
ing. Connections are closed by a call to close() (and not just by running
out of input data, for example).

The mode supplied in the open= argument is a character string encoding
several properties of the connection in one or two characters each. In its
most general form, it’s rather a mess, and not one of the happier borrowings
from the Posix world. The user needs to answer two questions:

• Is the connection to be used for reading or writing, or both? Character
"r" means open for reading, "w" means open for writing (at the be-
ginning) and "a" means open for appending (writing after the current
contents).

Confusion increases if you want to open the connection for both read-
ing and writing. The general notion is to add the character "+" to one
of the previous. Roughly, you end up reading from the file with and
without initially truncating it by using "w+" and "a+".

• Does the connection contain text or binary data? (Fortunately, if you
are not running on Windows you can usually ignore this.) Text is the
default, but you can add "t" to the mode if you want. For binary
input/output append "b" to the string you ended up with from the
first property.
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So, for example, open="a+b" opens the connection for both appending and
reading, for binary data.

The recommended rules for functions that read or write from connections
are:

1. If the connection is initially closed, open it and close it on exiting from
the function.

2. If the connection is initially open, leave it open after the input/output
operations.

As the paradigm on page 131 stated, you should therefore explicitly open a
connection if you hope to operate on it in more than one operation.

Consider the following piece of code, which writes the elements of a
character vector myText, one element per line, to a file connection, to the file
"myText.txt" in the local working directory:

txt <- file("./myText.txt")
writeLines(myText, txt)

The output is written as expected, and the connection is left closed, but with
mode "w". As a result, the connection would have to be explicitly re-opened
in read mode to read the results back. The default mode for connections is
read-only ("r"), but writeLines() set the mode to "wt" and did not revert
it; therefore, a call to a read operation or to open() with a read mode would
fail. Following the paradigm, the first expression should be:

txt <- file("./myText.txt", "w+")

Now the connection stays open after the call to writeLines(), and data can
be read from it, before explicitly closing the connection.

5.6 Reading and Writing Objects and Data

R has a number of functions that read from external media to create objects
or write data to external media. The external media are often files, specified
by a character string representing the file’s name. Generally, however, the
media can be any connection objects as described in Section 5.5.

In programming with these functions, the first and most essential dis-
tinction is between those designed to work with any R object and those
designed for specific classes of objects or other restricted kinds of data. The
first approach is based on the notion of serializing, meaning the conversion
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of an arbitrary object to and from a stream of bytes. The content of the
file is not expected to be meaningful for any purpose other than serializing
and unserializing, but the important property for programming is that any
object will be serialized. The second type of function usually deals with files
that have some particular format, usually text but sometimes binary. Other
software, outside of R, may have produced the file or may be suitable to deal
with the file.

Serializing: Saving and restoring objects

The serializing functions write and read whole R objects, using an internal
coding format. Writing objects this way and then reading them back should
produce an object identical to the original, in so far as the objects written be-
have as normal R objects. The coding format used is platform-independent,
for all current implementations of R. So although the data written may be
technically “binary”, it is suitable for moving objects between machines,
even between operating systems. For that reason, files of this form can be
used in a source package, for example in the "data" directory (see Section
4.3, page 87).

There are two different approaches currently implemented. One, repre-
sented by the save() and load() functions, writes a file containing one or
more named objects (save()). Restoring these objects via load() creates
objects of the same names in some specified R environment. The data for-
mat and functions are essentially those used to save R workspaces. However,
the same mechanism can be used to save any collection of named objects
from a specified environment.

The lower-level version of the same mechanism is to serialize() a single
object, using the same internal coding. To read the corresponding object
back use unserialize(). Conceptually, saving and loading are equivalent to
serializing and unserializing a named list of objects.

By converting arbitrary R objects, the serialize() function and its rel-
atives become an important resource for trustworthy programming. Not
only do they handle arbitrary objects, but they consider special objects
that behave differently from standard R objects, such as environments. To
the extent reasonable, this means that such objects should be properly pre-
served and restored; for example, if there are multiple references to a single
environment in the object(s) being serialized, these should be restored by
unserialize() to refer to one environment, not to several. Functions built
on the serializing techniques can largely ignore details needed to handle a
variety of objects. For example, the digest package implements a hash-
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style table indexed by the contents of the objects, not their name. Using
serialize() is the key to the technique: rather than having to deal with dif-
ferent types of data to create a hash from the object, one uses serialize()

to convert an object to a string of bytes. (See Section 11.2, page 416, for an
example based on digest.)

Two caveats are needed. First, references are only preserved uniquely
within a single call to one of the serializing functions. Second, some objects
are only meaningful within the particular session or context, and no magic
on the part of serialize() will save all the relevant context. An example
is an open connection object: serializing and then unserializing in a later
process will not work, because the information in the object will not be valid
for the current session.

Reading and writing data

The serializing techniques use an internal coding of R objects to write to a
file or connection. The content of the file mattered only in that it had to be
consistent between serializing and unserializing. (For this reason, serializing
includes version information in the external file.)

A different situation arises when data is being transferred to or from
some software outside of R. In the case of reading such data and constructing
an R object, the full information about the R object has to be inferred from
the form of the data, perhaps helped by other information. General-purpose
functions for such tasks use information about the format of character-string
data to infer fairly simple object structure (typically vectors, lists, or data-
frame-like objects). Many applications can export data in such formats,
including spreadsheet programs, database software, and reasonably simple
programs written in scripting, text manipulation, or general programming
languages. In the other direction, R functions can write text files of a similar
form that can be read by these applications or programs.

Functions scan() and read.table() read fields of text data and interpret
them as values to be returned in an R object. Calls to scan() typically return
either a vector of some basic class (numeric or character in most cases), or
a list whose components are such vectors. A call to read.table() expects
to read a rectangular table of data, and to return a data.frame object, with
columns of the object corresponding to columns of the table. Such tables
can be generated by the export commands of most spreadsheet and database
systems. Section 8.2, page 294, has an example of importing such data.

A variety of functions can reverse the process to write similar files: cat()

is the low-level correspondence to scan(), and write.table() corresponds to
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read.table().
These functions traditionally assume that file arguments are ordinary

text files, but they can in fact read or write essentially any connection. Also,
functions exist to deal with binary, raw, data on the connection rather than
text fields. See the documentation for functions readBin() and writeBin().

For many applications, these functions can be used with modest human
effort. However, there are limitations, particularly if you need an interface
to other software that deals with highly structured or very large objects.
In principle, specialized inter-system interfaces provide a better way to deal
with such data. Some interfaces are simple (but useful) functions that read
the specialized files used by other systems to save data. At the other ex-
treme, inter-system interfaces can provide a model in one language or sys-
tem for computing in another, in a fully general sense. If a suitable general
inter-system interface is available and properly installed, some extra work to
adapt it to your particular problem can pay off in a more powerful, general,
and accurate way of dealing with objects in one system when computing in
another. See Chapter 12 for a discussion.



Chapter 6

Basic Data and
Computations

This chapter surveys a variety of topics dealing with different
kinds of data and the computations provided for them. The
topics are “basic” in two senses: they are among those most often
covered in introductions to R or S-Plus; and most of them go back
to fairly early stages in the long evolution of the S language.

On the data side, we begin with the various ways of organiz-
ing data that have evolved in R. Then object types (Section 6.2,
page 141), which characterize data internally; vectors and vec-
tor structures (6.3, 143); and data frames (6.5, 166). Matrices
and their computations are discussed together in Section 6.8,
page 200. Other computational topics are: arithmetic and other
operators (6.6, 184); general numeric computations (6.7, 191);
statistical models (6.9, 218); random generators and simulation
(6.10, 221); and the special techniques known as “vectorizing”
(6.4, 157).

Many of the topics deserve a whole chapter to themselves, if
not a separate book, given their importance to data analysis.
The present chapter focuses on some concepts and techniques
of importance for integrating the data and computations into
programming with R, particularly viewed from our principles of
effective exploration and trustworthy software. Further back-
ground on the topics is found in many of the introductions to R,
as well as in the online R documentation and in some more spe-
cific references provided in the individual sections of the chapter.

139
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6.1 The Evolution of Data in the S Language

Since its beginnings in 1976, the S language has gone through an evolution of
concepts and techniques for representing data and organizing computations
on data structures. Four main epochs can be identified, all of which are still
with us, and all of which need to be understood to some extent to make use
of existing software, and sometimes for new programming as well. Labeled
by the names used for the corresponding mechanisms in R, the main epochs
are:

1. Object types, a set of internal types defined in the C implementation,
and originally called modes in S;

2. Vector structures, defined by the concept of vectors (indexable objects)
with added structure defined by attributes;

3. S3 classes, that is, objects with class attributes and corresponding
one-argument method dispatch, but without class definitions;

4. Formal classes with class definitions, and corresponding generic func-
tions and general methods, usually called S4 classes and methods in
R.

This section summarizes the relevance of each approach, with pointers to
further details in this chapter and elsewhere. The main recommendation is
to use formal classes and methods when developing new ideas in data struc-
ture, while using the other approaches for specialized areas of computing.

Object types: All implementations of the S language have started from
an enumeration of object types or modes, implied by the very first design
documents (such as the figure on page 476). In R, this takes the form of a
field in the internal C structure, and the corresponding function typeof().
You need to deal with object types for some C extensions and when defining
classes that extend a specific type. Section 6.2 gives details.

Vectors and vector structures: The concept of objects as dynamically in-
dexable by integer, logical and perhaps character expressions also goes back
to the early days. The S3 version of the language around 1988 added the
notion of vector structures defined by named attributes, seen as complemen-
tary to the vector indexing. Section 6.3, page 143, discusses these concepts,
which remain important for computing effectively with the language. The
term vectorizing has evolved for computations with vectors that avoid in-
dexing, by expressing computations in “whole object” terms. In favorable
applications, efficiency and/or clarity benefits; see Section 6.4, page 157.
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S3 classes: As part of the software for statistical models, developed
around 1990 and after, a class attribute was used to dispatch single-argument
methods. The attribute contained one or more character strings, providing
a form of inheritance. Otherwise, the change to data organization was min-
imal; in particular, the content of objects with a particular class attribute
was not formally defined. S3 classes are needed today to deal with soft-
ware written for them (for example, the statistical model software (Section
6.9, page 218) and also for incorporating such data into modern classes and
methods (see Section 9.6, page 362 for programming with S3 classes).

Formal (S4) classes: The S3 classes and methods gave a useful return
on a small investment in changes to the language, but were limited in flex-
ibility (single-argument dispatch) and especially in supporting trustworthy
software. Classes with explicit definitions and methods formally incorpo-
rated into generic functions have been developed since the late 1990s to
provide better support. That is the programming style recommended here
for new software—chapters 9 and 10, for classes and methods respectively.

6.2 Object Types

For most purposes, class(x) is the way to determine what kind of thing
object x really is. Classes are intended to be the official, public view, with
as clear and consistent a conceptual base as possible. Deep down, though,
objects in R are implemented via data structures in C. By definition, the
object type corresponds to the set of possible types encoded in those struc-
tures. For a complete list of the internal types at the C level, see the R
Internals manual in the R documentation or at the CRAN Web site. The
function typeof() returns a character string corresponding to the internal
object type of an object.

Table 6.1 lists the object types commonly encountered in R programming.
The first column gives the class name for simple objects of the object type
named in the second column. The expressions in the third column will
evaluate to an object of the corresponding object type.

The classes in the rows down to the first line in the table are the basic
vector classes; these correspond to a object type of the same name, except
for type "double", indicating the specific C declaration for numeric data. For
more discussion of these, see section 6.3. The classes in the second group
of rows are the basic classes for dealing with the language itself. The first
three object types correspond to function objects in R: "closure" for ordi-
nary functions, "builtin" and "special" for primitive functions. (For details
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Class(es) Object Type(s) Examples
"logical" "logical" TRUE; FALSE

"numeric" "double" 1; 0.5; 1e3

"integer" "integer" as.integer(1)

"character" "character" "Carpe \n Diem"

"list" "list" list(a=1,b=plot)

"complex" "complex" 1 + .5i

"raw" "raw" as.raw(c(1,4,15))

"expression" "expression" expression(a,1)

"function" "closure" function(x)x+1

"builtin" `sin`

"special" `if`

"call" "language" quote(x+1)

"{", etc. quote({})
(many) "S4" new("track")

"name" "symbol" quote(x)

"environment" "environment" .GlobalEnv

Table 6.1: Object Types in R. The types in the first group are vectors, the
types in the first and second behave as non-reference objects. See the text
for details, and for types generated from C.

on primitive functions, see Section 13.4, page 463.) Primitive functions are
an R implementation extension, not part of the S language definition; for this
reason, objects of all three object types have class "function". Conversely,
one object type, "language", corresponds to essentially all the unevaluated
expressions other than constants or names. Function calls, braced subex-
pressions, assignments, and other control structures have specific classes as
objects, but all are in fact implemented by one object type. In effect, R

organizes all "language" objects as if they were function calls. The last row
in the second group, "S4", is used for objects generated from general S4
classes.

All the classes down to the second line in the table behave normally
as arguments in calls, and can be used in class definitions. Classes can be
defined to extend these classes, an important ability in programming with
R. We might want a new class of data with all the properties of character
vectors, but with some additional features as well. Similarly, programming
techniques using the language might need to define objects that can behave
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as functions but again have extra features. Examples of such classes are
shown in Chapter 9, on pages 370 and 356. Objects from such classes retain
the corresponding basic type, so that legacy code for that type works as it
should. If x has a class extending "character" or "function", then the value
of typeof(x) will be "character" or "function" correspondingly. Objects
from classes that do not extend one of the basic object types have type
"S4".

In contrast to the types in the first two groups of the table, the object
types in the third group are essentially references. Passing .GlobalEnv as an
argument to a function does not create a local version of the environment.
For this reason, you should not attach attributes to such objects or use them
in the contains= part of a class definition, although they can be the classes
for slots.

Besides the object types in the table, there are a number of others that
are unlikely to arise except in very specialized programming, and in the
internal C code for R. These include "pairlist", "promise", "externalptr",
and "weakref". Except for the first of these, all are reference types. For a
complete table of types, see Chapter 2 of the R Language Definition manual.

6.3 Vectors and Vector Structures

The earliest classes of objects in the S language, and the most thoroughly
“built-in” are vectors of various object types. Essentially, a vector object is
defined by the ability to index its elements by position, to either extract or
replace a subset of the data. If x is a vector, then

x[i]

is a vector with the same type of data, whenever i defines a set of indices
(in the simplest case, positive integer values). If y is also a vector (in the
simplest case, with the same type of data as x), then after evaluating

x[i] <- y

the object x will be a vector of the same type of data. The range of possibil-
ities for i and y is much more general than the simple cases, but the simple
cases define the essence of the vector class, and the general cases can be
understood in terms of the simplest case, as discussed on page 146.

An early concept for organizing data in the S language was the vector
structure, which attached attributes to vectors in order to imply structure,
such as that of a multi-way array. Vector structures were a step on the way
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to classes of objects, and usually can be subsumed into class definitions.
However, there are some objects and computations in R that still work di-
rectly on attributes, so an understanding of vector structures is included,
starting on page 154.

Basic classes of vectors

Table 6.2 shows the basic classes of vectors built into R. Identically named
functions (numeric(), logical(), etc.) generate vectors from the correspond-
ing classes.

Class Data Contained
"logical" Logicals: (TRUE, FALSE).
"numeric" Numeric values.
"character" Character strings.
"list" Other R objects.
"complex" Complex numbers.
"raw" Uninterpreted bytes.
"integer" Integer numeric values.
"single" For C or Fortran only
"expression" Unevaluated expressions.

Table 6.2: The vector classes in R.

The basic vector classes are the essential bottom layer of data: indexable
collections of values. Single individual values do not have a special character
in R. There are no scalar objects, either in the sense of separate classes or
as an elementary, “sub-class” layer, in contrast to other languages such as
C or Java. Computations in the language occasionally may make sense only
for single values; for example, an if() test can only use one logical value.
But these are requirements for the result of a particular computation, not
a definition of a different kind of data (for computations that need a single
value, see page 152).

For the basic vectors, except for "list" and "expression", the individual
elements can only be described in terms of the implementation, in C. In terms
of that language, the data in each vector class corresponds to an array of
some C type. Only when writing code in C to be used with R are you likely
to need the explicit type, and even then the best approach is to hide the
details in C macros (see Section 11.3, page 420).

Numeric data occasionally involves considering two other classes, "integer"
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and "single." The type for data of class "numeric", as returned by typeof(),
is "double", indicating that the internal data is double-precision floating
point. There is also a separate class and type for "integer" data. You
can force data into integer (via function as.integer()) and a few functions
do return integer results (function seq() and operator `:`), but because R

does not do separate integer computations very often, trying to force integer
representation explicitly can be tricky and is usually not needed.

Users sometimes try to force integer representation in order to get “ex-
act” numerical results. In fact, the trick required is not integer representa-
tion, but integral (i.e., whole number) values. These are exactly represented
by type "double", as long as the number is not too large, so arithmetic will
give exact results. Page 192 shows an example to generate “exact” values
for a numeric sequence.

The "single" class is still more specialized. Essentially, it exists to notify
the interface to C or Fortran to convert the data to single precision when
passing the vector as an argument to a routine in those languages. R does
not deal with single-precision numeric data itself, so the class has no other
useful purpose.

The S language includes a built-in vector type representing points in the
complex plane, class "complex".1 See ?complex for generating complex vec-
tors and for manipulating their various representations. The class has its
own methods for arithmetic, trigonometric, and other numerical computa-
tions, notably Fourier transforms (see ?fft). Most functions for numerical
computations do accept complex vectors, but check the documentation be-
fore assuming they are allowed. Complex data is also suitable for passing to
subroutines in Fortran or C. Fortran has a corresponding built-in type, which
can be used via the .Fortran() interface function. There is a special C struc-
ture in R for calls to .C(), which also matches the complex type built into
modern C compilers on “most” platforms. Section 11.2, page 415 discusses
the interfaces to C and Fortran; for the latest details, see section 5.2 of the
Writing R Extensions manual.

Vectors of type "raw" contain, as the name suggests, raw bytes not as-
sumed to represent any specific numeric or other structure. Although such
data can be manipulated using x[i]-style expressions, its essential advantage
is what will not be done to it. Aside from explicitly defined computations,
raw vectors will not likely be changed, and so can represent information

1Statistics research at Bell Labs in the 1970s and before included important work in
spectral analysis and related areas, relying on computations with complex data. Complex
vectors became a built-in object type with S3.
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outside standard R types, exactly and without accidental changes. Neither
of these properties applies, for example, if you try to use numeric data to
represent exact values. Even if the initial data is exactly as expected, nu-
meric computations can easily introduce imprecision. On the other hand,
you can generally count on "raw" data remaining exactly as created, unless
explicitly manipulated. For this reason, objects of class "raw" may be used
to pass data from arbitrary C structures through R, for example.

Vectors of type "expression" contain unevaluated expressions in the lan-
guage. The main advantages of such an object over having a "list" object
with the same contents are the explicit indication that all elements should be
treated as language expressions and the generating function, expression(),
which implicitly quotes all its arguments:

> transforms <- expression(sin(x), cos(x), tan(x))

You can mix such literal definitions with computed expressions by replacing
elements of the vector:

> transforms[[4]] <- substitute(f(x), list(f=as.name(fname)))

Indexing into vectors

The most important data manipulation with vectors is done by extracting or
replacing those elements specified by an index expression, using the function
in R represented by a pair of single square brackets:

x[i]
x[i] <- y

These are the fundamental extraction and replacement expressions for vec-
tors.

When i is a vector of positive values, these index the data in a vector,
from 1 for the first element to length(x) for the last. Indexing expressions
of type "logical" are also basic, with the obvious interpretation of selecting
those elements for which the index is TRUE. If you have used R or the S

language at all, you have likely used such expressions. It’s valuable, however,
to approach them from the general concept involved, and to relate various
possibilities for the objects x, i, and y in the example to the general concept.

In contrast to programming languages of the C/Java family, expressions
like x[i] are not special, but are evaluated by calling a reasonably normal R

function, with the name `[`. As with any functional computation in the S

language, the value is a new object, defined by the arguments, x and i. The
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expression does not “index into” the vector object in the sense of a reference
as used in other languages. Instead, evaluating x[i] creates a new object
containing the elements of x implied by the values in i. As an example, let’s
use the sequence function, seq(), to generate a vector, and index it with
some positive values.

> x <- seq(from=1.1, to=1.7, by=.1)
> x
[1] 1.1 1.2 1.3 1.4 1.5 1.6 1.7
> length(x)
[1] 7
> x[c(1,3,1,5,1,7)]
[1] 1.1 1.3 1.1 1.5 1.1 1.7

Repeated values in the positive index are entirely within the standard def-
inition, returning the values selected in the order of the index. Positive
index values are silently truncated to integers: x[1.9], x[1.01], and x[1] all
return the same subset.

When the index is a logical vector, it arises most naturally as the value
of a test applied to x itself and/or to another vector indexed like x.

> x[x>1.45]
[1] 1.5 1.6 1.7

Logical indexes are applied to the whole vector; in particular, if i has length
less than that of x, it is interpreted as if it were replicated enough times to
be the same length as x. The logical index c(TRUE, FALSE) extracts the
odd-numbered elements of any vector:

> x[c(TRUE, FALSE)]
[1] 1.1 1.3 1.5 1.7

Note the second special rule below, however, for the case that i is longer
than x.

The behavior of the replacement expression, x[i] <- y, is to create and
assign a new version of x in the current evaluation environment. In the
new version, the values in x indexed by i have been replaced by the corre-
sponding elements of y. Replacement expressions are evaluated by calling
the corresponding replacement function, as discussed in Section 5.2, page
117. In this case the replacement function is `[<-`, and the expression is
equivalent to:

x <- `[<-`(x, i, y)
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The behavior of replacement functions is still within a simple functional
model: A replacement function computes and returns a new object, which
is then assigned in the current environment, with the same name as before.
In this case the new object is a copy of the old, with the indexed values
replaced.

Unlike extraction, replacement can change the type of x. There is an
implied ordering of basic vector types from less information to more. Log-
icals have only two values, numerics many, strings can represent numbers,
and lists can hold anything. If the type of y is more general than that of x,
the replacement will convert x to the type of y. For example:

> x[2] <- "XXX"
> x
[1] "1.1" "XXX" "1.3" "1.4" "1.5" "1.6" "1.7"

The numeric vector is converted to a character vector, on the reasoning
that this would preserve all the information in x and in y. More details on
conversions between basic types are given on page 149.

For simple positive or logical indexing expressions, the interpretation
follows naturally from the concept of a vector. There are in addition a num-
ber of extensions to the indexing argument in the actual implementation.
These can be convenient and you need to be aware of the rules. For your
own computing, however, I would discourage taking too much advantage of
them, at least in their more esoteric forms. They can easily lead to errors
or at least to obscure code. With that in mind, here are some extensions,
roughly ordered from the innocuous to the seriously confusing.

1. The index can be a vector of negative values. In this case, the inter-
pretation is that the value should be all the elements of x except the
elements corresponding to -i.

> x[-c(1,7)]
[1] 1.2 1.3 1.4 1.5 1.6

With this interpretation, the order of the negative values is ignored,
and so are repeated values. You cannot mix positive and negative
values in a single index.

2. An index for extraction or replacement can be longer than the current
length of the vector. The interpretation is that the length of x is set
to the largest index (implicitly) and the expression is applied to the
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“stretched” version. Replacements can change the length of a vector
by assigning beyond its current length.

Increasing the length of a vector is interpreted as concatenating the
appropriate number of NA items, with NA being interpreted as an un-
defined value suitable for the type of the vector.

> length(x)
[1] 7
> x[c(1,9)]
[1] 1.1 NA
> x[c(1,9)] <- -1
> x
[1] -1.0 1.2 1.3 1.4 1.5 1.6 1.7 NA -1.0

Logical, numeric, character and complex object types have a built-in
NA form; lists and expressions use NULL for undefined elements; type
"raw" uses a zero byte.

3. Integer index arguments can contain 0 values mixed in with either all
positive or all negative indices. These are ignored, as if all the 0 values
were removed from the index.

4. When the index contains an undefined value, NA, the interpretation for
extraction is to insert a suitable NA or undefined value in the corre-
sponding element of the result, with the interpretation of undefined as
above for the various types. In replacements, however, NA elements in
the index are ignored.

R also has single-element extraction and replacement expressions of the
form x[[i]]. The index must be a single positive value. A logical or negative
index will generate an error in R, even if it is equivalent to a single element
of the vector.

Conversion of vector types

The basic vector types have some partial orderings from more to less “sim-
ple”, in the sense that one type can represent a simpler type without losing
information. One ordering, including the various numeric types, can be
written:

"logical", "integer", "numeric", "complex", "character", "list"
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If a simpler vector type (to the left in the ordering) is supplied where a
less simple vector type is wanted, an automatic conversion will take place
for numeric and comparison operators (see Section 6.6, page 186). The
conversion rules are implemented in the internal code and are not part of
the inheritance relations used when methods are dispatched. Defining a
method corresponding to an argument of class "numeric", for example, does
not result in that method being used when the argument is of class "logical"
or "integer", even though those classes are “simpler” in terms of the listing
above. That implementation decision could be argued, but it’s perhaps best
just to realize that the two parts of the language—basic code for operators
and formal class relations—were written at very different times. In the early
coding, there was a tendency to make as many cases “work” as possible. In
the later, more formal, stages the conclusion was that converting richer
types to simpler automatically in all situations would lead to confusing, and
therefore untrustworthy, results.

The rules of conversion are basically as follows.

• Logical values are converted to numbers by treating FALSE as 0 and
TRUE as 1.

• All simpler types are converted to "character" by converting each
element individually (as, for example, in a call to cat() or paste()).

• All simpler types are converted to "list" by making each element into
a vector of length 1.

• Numeric values are converted to "complex" by taking them to be the
real part of the complex number.

Class "raw" is not included in the ordering; generally, your best approach is
to assume it is not automatically converted to other types. Vectors of type
"raw" are not numeric, and attempts to use them in numeric expressions will
cause an error. They are allowed with comparison operators, however, with
other vectors of any of the basic types except "complex". The implementa-
tion of the comparisons with types "logical", "integer", and "numeric" uses
roughly the following logic. Interpret each of the elements (single bytes, re-
member) in the "raw" vector as a corresponding integer value on the range 0

to 255 (28−1), and then use that conversion in the comparison. This should
be equivalent to applying the comparison to as.numeric(x) where x is the
vector of type "raw". Watch out for comparisons with "character" vectors
however. The rule, natural in itself, is that the comparison should be done
as if with as.character(x). But as.character() converts "raw" vectors by
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replacing each element by the two hexadecimal characters that represent it,
basically because this is how "raw" vectors are printed. As a result, the com-
parison is not at all the same as if the"raw" vector had first been converted
to the numeric vector of its byte code. On the whole, avoid comparisons
of "raw" vectors with "character" vectors, because they are only sensible if
the character elements are each the print version of byte codes (and in this
case they probably should have been converted to "raw" anyway). And just
to make things worse, there is another conversion, rawToChar(), which inter-
prets the bytes as character codes, entirely different from as.character().
The situation is further complicated by the existence in modern R of multi-
ple character encodings to deal with international character sets. Read the
documentation carefully and proceed with caution.

Besides automatic conversions, explicit coercion can be performed be-
tween essentially any of the basic vector classes, using as(). For the general
behavior of as(), see Section 9.3, page 348; in the case of basic vector classes
the methods used are identical to the corresponding class-specific functions,
as.integer(), as.character(), etc. Some additional general rules for coer-
cion include:

• Numeric values are coerced to logical by treating all non-zero values
as TRUE.

• General numeric values are converted to integer by truncation towards
zero.

• Complex values are converted to numeric by taking their real part.

• Character data is coerced to simpler types roughly as if the individ-
ual values were being read, say by scan(), as the simpler type. On
elements for which scan would fail, the result is NA, and a warning is
issued (but not an error as scan() would produce).

• Lists are converted to simpler types only if each element of the list is
a vector of length one, in which case the coercion works one element
at a time. (If an element is itself a list of length 1, that produces an
NA, perhaps accidentally.)

• Conversion from "raw" to all numeric types generally treats each byte
as an integer value; conversion to "raw" generally converts numeric
values to integer, uses values that fit into one byte and sets all others
to 00 (which is generally used instead of NA with type "raw").
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Conversion from "raw" to "character" produces the hexadecimal codes,
from "00" to "ff". Unfortunately, conversion from "character" to
"raw" first converts to integer, not likely to be what you want. The
inverse of the conversion to "character" is scan(x, raw()).

As will perhaps be clear, the wise approach is to look for ambiguous conver-
sions and either deal with them as makes sense for your own application or
else generate an error. The rules are pretty reasonable for most cases but
should not be taken as universally appropriate.

Single values when you need them

Vectors in the S language play a particularly important role in that there are
no scalar object types underlying them, and more fundamentally there is no
lower layer beneath the general model for objects in the language. Contrast
this with Java, for example. Java has a general model of classes, objects
and methods that forms the analogous programming level to programming
with R. The implementation of a Java method, however, can contain scalar
variables of certain basic types, which are not objects, as well as arrays,
which are objects (sort of) but not from a class definition. The situation in
R is simpler: everything is an object and anything that looks like a single
value of type numeric, logical or character is in fact a vector. The lower
layer is provided instead by the inter-system interface to C, as discussed in
Chapter 11.

However, some computations really do need single values. To ensure
that you get those reliably and that the values make sense for the context
may require some extra care.

By far the most common need for single values comes in tests, either
conditional computations or iterations.

if(min(sdev) > eps)
Wt <- 1/sdev

The condition in the if expression only makes sense if min(sdev) > eps eval-
uates to a single value, and that value must be unambiguously interpretable
as TRUE or FALSE. Similarly, the condition in a while loop must provide a
single TRUE or FALSE each time the loop is tested.

So, what’s the problem? Often no problem, particularly for early stages
of programming. If we know that eps was supplied as a single, positive
numeric value and that sdev is a non-empty vector of numbers (none of them
missing values and, most likely, none of them negative), then min(sdev) is a
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single numeric value and the comparison evaluates to a single TRUE or FALSE.
The test will either pass or not, but in any case will be computable.

Problems can arise when such a computation occurs inside a function
with the objects eps and sdev passed in or computed from arguments. Now
we are making assertions about the way in which the function is called.
As time goes by, and the function is used in a variety of contexts, these
assertions become more likely to fail. For the sake of the Prime Directive
and trustworthy software, tests of the arguments should be made that ensure
validity of the conditional expression. The tests are best if they are made
initially, with informative error messages.

As your functions venture forth to be used in unknown circumstances,
try to add some tests on entry that verify key requirements, assuming you
can do so easily. Don’t rely on conditional expressions failing gracefully
deep down in the computations. Failure of assumptions may not generate
an error, and if it does the error message may be difficult to relate to the
assumptions.

Consider two failures of assumptions in our example: first, that sdev was
of length zero; second, that it contained NAs. For trustworthy computation
we might reasonably want either to be reported as an error to the user.
As it happens, the second failure does generate an error, with a reasonable
message:

> if(min(sdev) > eps) Wt <- 1/sdev
Error in if (min(sdev) > eps) Wt <- 1/sdev :

missing value where TRUE/FALSE needed

With a zero length vector, however, min() returns infinity, the test succeeds
and Wt is set to a vector of length zero. (At least there is a warning.)

If the test is computationally simple, we can anticipate the obvious fail-
ures. For more elaborate computations, the test may misbehave in unknown
ways. Having verified all the obvious requirements, we may still feel nervous
about obscure failures. A strategy in such situations is to guarantee that
the computation completes and then examine the result for validity.

Evaluating the expression as an argument to the function try() guar-
antees completion. The try() function, as its name suggests, attempts to
evaluate an expression. If an error occurs during the evaluation, the func-
tion catches the error and returns an object of class "try-error". See ?try

for details and Section 3.7, page 74, for a related programming technique.
Here is an ultra-cautious approach for this example:

testSd <- try(min(sdev) > eps)
if(identical(testSd, TRUE))
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Wt <- 1/sdev
else if(!identical(testSd, FALSE))

if(is(testSd, "try-error"))
stop("Encountered error in testing sdev "̈,

testSd, ""̈)
else

stop("Testing sdev produced an invalid result: ",
summaryString(testSd))

The only legitimate results of the test are TRUE and FALSE. We check for
either of these, identically. If neither is the result, then either there was
an error, caught by try(), or some other value was computed (for example,
NA if there were any missing values in sdev). With try(), we can re-issue
an error message identifying it as a problem in the current expression. For
more complicated expressions than this one, the message from the actual
error may be obscure, so our extra information may be helpful.

In the case of an invalid result but no error, one would like to describe the
actual result. In the example, the function summaryString() might include
the class and length of the object and, if it is not too large, its actual
value, pasted into a string. Writing a suitable summaryString() is left as an
exercise. A reasonable choice depends on what you are willing to assume
about the possible failures; in the actual example, there are in fact not very
many possibilities.

Some situations require single values other than logicals for testing; for
example, computing the size of an object to be created. Similar guard
computations to those above are possible, with perhaps additional tests for
being close enough to a set of permitted values (positive or non-negative
integers, in the case of an object’s size, for example).

Overall, trustworthy computations to produce single values remain a
challenge, with the appropriate techniques dependent on the application.
Being aware of the issues is the important step.

Vector structures

The concept of the vector structure is one of the oldest in the S language,
and one of the most productive. It predates explicit notions of classes of ob-
jects, but is best described using those notions. In this section we describe
the general "structure" class, and the behavior you can expect when com-
puting with objects from one of the classes that extend "structure", such
as "matrix", "array", or "ts". You should keep the same expectations in
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mind when writing software for structure classes, either methods for existing
classes or the definition of new classes. We use the name of the correspond-
ing formal class, “structure”, to mean “vector structure” throughout this
section, as is common in discussions of R.

A class of objects can be considered a structure class if it has two prop-
erties:

1. Objects from the class contain a data part that can be any type of
basic vector.

2. In addition to the data part, the class defines some organizational
structure that describes the layout of the data, but is not itself depen-
dent on the individual values or the type of the data part.

For example, a matrix contains some data corresponding to a rectangular
two-way layout, defined by the number of rows and columns, and optionally
by names for those rows and columns. A time-series object, of class "ts",
contains some data corresponding to an equally-spaced sequence of “times”.

Matrices and time-series are regular layouts, where the structure infor-
mation does not grow with the total size of the object, but such regularity is
not part of the requirement. An irregular time series, with individual times
for the observations, would still satisfy the structure properties.

The importance of the "structure" class comes in large part from its im-
plications for methods. Methods for a number of very heavily used functions
can be defined for class "structure" and then inherited for specific structure
classes. In practice, most of these functions are primitives in R, and the base
code contains some of the structure concept, by interpreting certain vector
objects with attributes as a vector structure. The base code does not always
follow the structure model exactly, so the properties described in this section
can only be guaranteed for a formal class that contains "structure".

The two properties of vector structures imply consequences for a number
of important R functions. For functions that transform vectors element-by-
element, such as the Math() group of functions (trigonometric and logarith-
mic functions, abs(), etc.), the independence of data and structure implies
that the result should be a structure with the data transformed by the func-
tion, but with the other slots unchanged. Thus, if x is a matrix, log(x) and
floor(x) are also matrices.

Most of the functions of this form work on numeric data and return
numeric data, but this is not required. For example, format(x) encodes
vectors as strings, element-by-element, so that the data returned is of type
"character". If x is a vector structure, the properties imply that format(x)
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should be a structure with the same slots as x; for example, if x is a matrix,
then format(x) should be a character matrix of the same dimensions.

Binary operators for arithmetic, comparisons, and logical computations
are intrinsically more complicated. For vectors themselves, the rules need to
consider operands of different lengths or different types. Section 6.6, page
186, gives a summary of the R behavior. What if one or both of the operands
is a vector structure? If only one operand is a structure, and the result would
have the same length as the structure, the result is a structure with the same
slots. If both operands are structures, then in general there will be no ratio-
nal way to merge the two sets of properties. The current method for binary
operators (function Ops()) returns just the vector result. In principle, the
structure might be retained if the two arguments were identical other than
in their data part, but testing this generally is potentially more expensive
than the basic computation. Particular structure classes such as "matrix"

may have methods that check more simply (comparing the dimensions in
the "matrix" case).

The base package implementation has rules for matrices, arrays, and
time-series. If one argument is one of these objects and the other is a
vector with or without attributes, the result will have the matrix, array, or
time-series structure unless it would have length greater than that of the
structure, in which case the computation fails. The rule applies to both
arithmetic and comparisons. Operations mixing arrays and time-series or
arrays with different dimensions produce an error. See Section 6.8, page
200, for more discussion of computations with matrix arguments.

For vectors with arbitrary attributes, the current base code in R for op-
erators and for element-by-element functions is not consistent with treating
these as a vector structure. Numeric element-by-element functions usually
retain attributes; others, such as format() drop them. For arithmetic oper-
ators, if one argument has attributes, these are copied to the result. If both
arguments have attributes, then if one argument is longer than the other,
arithmetic operators use its attributes; if the arguments are of equal length,
the result combines all the attributes from either argument, with the left-
hand value winning for attributes appearing in both arguments. Comparison
operators drop all attributes, except for the names attribute.

The overall message is clear: For consistent vector structure behavior,
you should create an explicit class, with "structure" as a superclass.

To create a vector structure class formally, call setClass() with the
contains= argument specifying either class "structure" or some other S4
vector structure class. Class "structure" is a virtual class that extends
class "vector", which in turn extends all the basic vector object types in R.
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For example, here is a class "irregTS" for an irregular time-series structure,
with an explicit time slot.

setClass("irregTS", representation(time = "DateTime"),
contains = "structure")

Objects from this class will inherit the structure methods, providing much
of the desired behavior automatically. Methods then need to be added for
the particular behavior of the class (at the least, a show() method and some
methods for `[`.)

One can program methods for various functions with class "structure"

in the signature. The methods will be inherited by specific vector structure
classes such as "irregTS". In addition, methods are supplied in R itself
for the formal "structure" class that implement the vector structure view
described in this section. For a list of those currently defined:

showMethods(classes = "structure")

This will list the corresponding signatures; another showMethods() call for a
particular function with includeDefs = TRUE will show the definitions.

An important limitation arises because the informal vector structures
such as matrices, arrays, time-series, and S3 classes will not inherit formal
methods for class "structure", at least not with the current version of R.
Nor does it generally work to have such informal vector structures in the
contains= argument of a formal class definition, largely for the same reason.
So formal and informal treatment of vector structures don’t currently benefit
each other as much as one would like.

6.4 Vectorizing Computations

Over the history of R and of S, there has been much discussion of what
is variously called “avoiding loops”, “vectorizing computations”, or “whole-
object computations”, in order to improve the efficiency of computations.
The discussion must appear rather weird to outsiders, involving unintuitive
tricks and obscure techniques. The importance of vectorizing is sometimes
exaggerated, and the gains may depend subtly on the circumstances, but
there are examples where computations can be made dramatically faster.
Besides, re-thinking computations in these terms can be fun, and occasion-
ally revealing.

The original idea, and the name “vectorizing”, come from the contrast
between a single expression applied to one or more R vectors, compared to
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a loop that computes corresponding single values. Simple vector objects
in R consist of n elements, typically numbers. The value of n is often the
number of observed values in some data, or a similar parameter describ-
ing the size of our application. Very important practical problems involve
large applications; n may of necessity be large, and in any case we would
like our computations to be reasonably open to large-data applications. A
computation of interest that takes one or more such vectors and produces a
new vector nearly always takes computing time proportional to n, when n
is large. (At least proportional: for the moment let’s think of computations
that are linear in the size of the problem. The interest in vectorizing will
only be stronger if the time taken grows faster than linearly with n.)

Vectorizing remains interesting when the parameter n is not the size of
a vector, but some other parameter of the problem that is considered large,
such as the length of loops over one or more dimensions of a multiway array;
then n is the product of the dimensions in the loops. In other examples, the
loop is an iteration over some intrinsic aspect of the computation, so that
n is not a measure of the size of the data but may still be large enough to
worry about. In an example below, n is the number of bits of precision in
numeric data, not a variable number but still fairly large.

We’re considering linear computations, where elapsed time can be mod-
eled reasonably well, for large n, by a+bn, for some values of a and b, based
on the assertion that some multiple of n calls to R functions is required.
The goal of vectorizing is to find a form for the computation that reduces
the proportionality, b. The usual technique is to replace all or part of the
looping by a single expression, possibly operating on an expanded version
of the data, and consisting of one or more function calls. For the change to
be useful, these functions will have to handle the larger expanded version
of the data reasonably efficiently. (It won’t help to replace a loop by a call
to a function that does a similar loop internally.) The usual assumption is
that “efficiently” implies a call to functions implemented in C. Notice that
the C code will presumably do calculations proportional to n. This is not
quantum computing! The hope is that the time taken per data item in C

will be small compared to the overhead of n function calls in R.
The fundamental heuristic guideline is then:

Try to replace loops of a length proportional to n with a smaller
number of function calls producing the same result, usually calls
not requiring a loop in R of order n in length.

Functions likely to help include the following types.
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1. Functions that operate efficiently on whole objects to produce other
whole objects, usually of the same size and structure; examples include
the arithmetic and other binary operators, numerical transformation,
sorting and ordering computations, and some specialized filtering func-
tions, such as ifelse().

2. Operations that extract or replace subsets of objects, using expressions
of the form x[i], provided that the indexing is done on a significantly
sizable part of x.

3. Functions that efficiently transform whole objects by combining indi-
vidual elements in systematic ways, such as diff() and cumsum().

4. Functions to transform vectors into multi-way arrays, and vice versa,
such as outer() and certain matrix operations;

5. Functions defined for matrix and array computations, such as matrix
multiplication, transposition, and subsetting (these are used not just
in their standard roles, but as a way to vectorize other computations,
as the example below shows).

6. New functions to do specialized computations, implemented specially
in C or by using some other non-R tools.

A different approach uses functions that directly replace loops with se-
quences of computations. These are the apply() family of functions. They
don’t precisely reduce the number of function calls, but have some other
advantages in vectorizing. The apply() functions are discussed in Section
6.8, page 212.

The craft in designing vectorized computations comes in finding equiva-
lent expressions combining such functions. For instance, it’s fairly common
to find that a logical operation working on single values can be related to
one or more equivalent numerical computations that can apply to multiple
values in one call. Other clues may come from observing that a related,
vectorized computation contains all the information needed, and can then
be trimmed down to only the information needed. None of this is purely
mechanical; most applications require some reflection and insight, but this
can be part of the fun.

First, a simple example to fix the idea itself. Suppose we want to trim
elements of a vector that match some string, text, starting from the end
of the vector but not trimming the vector shorter than length nMin (the
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computation arises in summarizing available methods by signature). The
obvious way in most programming languages would be something such as:

n <- length(x)
while(n > nMin && x[[n]] == text)

n <- n-1
length(x) <- n

Quite aside from vectorizing, the use of `==` in tests is a bad idea; it can
return NA and break the computation. Instead, use an expression that will
always produce TRUE or FALSE.

Back to vectorizing. First, let’s think object rather than single number.
We’re either looking for the new object replacing x, or perhaps the condition
for the subset of x we want (the condition is often more flexible). The key in
this example is to realize that we’re asking for one of two logical conditions
to be true. Can we express these in vector form, and eliminate the loop? If
you’d like an exercise, stop reading here, go off and think about the example.

The idea is to compute a logical vector, call it ok, with TRUE in the first
n elements and FALSE in the remainder. The elements will be TRUE if either
they come in the first nMin positions or the element of x does not match
text. The two conditions together are:

seq(along = x) <= nMin # c(1,2,...,n) <= nMin;
| is.na(match(x, text))

The use of seq() here handles the extreme case of zero-length x; the func-
tion match() returns integer indices or NA if there is no match. See the
documentation for either of these if you’re not familiar with them.

The vectorized form of the computation is then:

ok <- seq(along = x) <= nMin | is.na(match(x, text))

Chances are that either ok or x[ok] does what we want, but if we still wanted
the single number n, we can use a common trick for counting all the TRUE

values:

n <- sum(ok)

The computations are now a combination of a few basic functions, with no
loops and so, we hope, reasonably efficient. Examining is.na(), match(),
and sum() shows that all of them go off to C code fairly quickly, so our hopes
are reasonable.

If that first example didn’t put you off, stay with us. A more extended
example will help suggest the process in a more typical situation.
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Example: Binary representation of numeric data

Our goal is to generate the internal representation for a vector of numeric
data. Numeric data in R is usually floating point, that is, numbers stored
internally as a combination of a binary fraction and an integer exponent
to approximate a number on the real line. As emphasized in discussing
numeric computations (Section 6.7, page 191), it’s occasionally important to
remember that such numbers are only an approximation and in particular
that most numbers displayed with (decimal) fractional parts will not be
represented exactly.

Suppose we wanted to look at the binary fractions corresponding to some
numbers. How would we program this computation in R?

To simplify the discussion, let’s assume the numbers have already been
scaled so .5 <= x < 1.0 (this is just the computation to remove the sign
and the exponent of the numbers; we’ll include it in the final form on page
165). Then all the numbers are represented by fractions of the form:

b12−1 + b22−2 + · · · + bm2−m

where m is the size of the fractional part of the numerical representation,
and bi are the bits (0 or 1) in the fraction. It’s the vector b of those bits we
want to compute. (Actually, we know the first bit is 1 so we only need the
rest, but let’s ignore that for simplicity.)

This is the sort of computation done by a fairly obvious iteration: replace
x by 2x; if x >= 1 the current bit is 1 (and we subtract 1 from x); otherwise
the current bit is zero. Repeat this operation m times. In a gloriously C-like
or Perl-like R computation:

b <- logical(m)
for(j in 1:m) {

x <- x * 2
b[[j]] <- (x >= 1)
if(b[[j]])

x <- x - 1
}

We will vectorize this computation in two ways. First, the computation as
written only works for x of length 1, because the conditional computation
depends on x >= 1 being just one value. We would like x to be a numeric
vector of arbitrary length; otherwise we will end up embedding this compu-
tation in another loop of length n. Second, we would like to eliminate the
loop of length m as well. Admittedly, m is a fixed value. But it can be large
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enough to be a bother, particularly if we are using 64-bit numbers. The sit-
uation of having two parameters, either or both of which can be large, is a
common one (think of the number of variables and number of observations).

Eliminating the loop over 1:m can be done by a conversion rather typical
of vectorizing computations. Notice that the iterated multiplication of x by
2 could be vectorized as multiplying x by a vector of powers of 2:

pwrs <- 2∧(1:m)
xpwrs <- x*pwrs

Getting from here to the individual bits requires, excuse the expression, a
bit of imaginative insight. Multiplying (or dividing) by powers of 2 is like
shifting left (or right) in low-level languages. The first clue is that the i-th
element of xpwrs has had the first i bits of the representation shifted left of
the decimal point. If we truncate xpwrs to integers and shift it back, say as

xrep <- trunc(xpwrs)/pwrs

the i-th element is the first i bits of the representation: each element of xrep
has one more bit (0 or 1) of the representation than the previous element.
Let’s look at an example, with x <- .54321:

> xrep
[1] 0.5000000 0.5000000 0.5000000 0.5000000 0.5312500 0.5312500
[7] 0.5390625 0.5429688 0.5429688 0.5429688 0.5429688 0.5429688
[13] 0.5430908 0.5431519 0.5431824 0.5431976 0.5432053 0.5432091
[19] 0.5432091 0.5432091 0.5432096 0.5432098 0.5432099 0.5432100

Next, we isolate those individual bits, as powers of two (bj2−j): the first
bit is xrep[[1]], and every other bit j is xrep[[j]] - xrep[[j-1]]. The
difference between successive elements of a vector is a common computation,
done by a call to the function diff(). Using that function:

bits <- c(xrep[[1]], diff(xrep)

We would then need to verify that the method used for diff() is reasonably
efficient. An alternative is to realize that the m−1 differences are the result
of subtracting xrep without the first element from xrep without the last
element: xrep[-1] - xrep[-m], using only primitive functions. When we
account for multiple values in x, however, we will need a third, more general
computation.

Assuming we want the individual bits to print as 0 or 1, they have to be
shifted back left, which is done just by multiplying by pwrs. Now we have a
complete vectorization for a single value. With the same value of x:
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> pwrs <- 2∧(1:m)
> xpwrs <- x*pwrs
> xrep <- trunc(xpwrs)/pwrs
> bits <- c(xrep[[1]], diff(xrep))*pwrs
> bits
[1] 1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1

The computations all operate on vectors of length m; in particular, in the
second line, the single value in x is replicated in the multiplication.

The remaining task is to generalize the computation to n values in x. We
need n instances of each of the length-m computations. As is often the case,
we can get the desired result by expanding the objects into matrices, here
with n rows and m columns. To begin, we replicate the x into m columns and
define pwrs as a matrix with n identical rows. All the computations down
to defining xrep expand to compute n*m values at once:

n <- length(x)
x <- matrix(x, n, m)
pwrs <- matrix(2^(1:m), n, m, byrow = TRUE)
xpwrs <- x*pwrs
xrep <- trunc(xpwrs)/pwrs

What about c(xrep[[1]], diff(xrep))? Now we want this computation to
apply to each row of the matrix, indexing on the columns. Remember that
diff() was just a function to subtract x[[2]] from x[[1]], etc. We could
introduce a loop over rows, or use the apply() function to do the same loop
for us.

But in fact such patterned row-and-column combinations can usually
be done in one function call. Here we do need a “trick”, but fortunately
the trick applies very widely in manipulating vectors, so it’s worth learn-
ing. Differences of columns are simple versions of linear combinations of
columns, and all linear combinations of columns can be written as a matrix
multiplication.

bits <- xrep %*% A

with A some chosen m by m matrix. The definition of matrix multiplication
is that, in each row of bits, the first element is the linear combination of
that row of xrep with the first column of A, and so on for each element.

This trick is useful in many computations, not just in examples similar
to the current one. For example, if one wanted to sum the columns of a
matrix, rather than doing any looping, one simply multiplies by a matrix
with a single column of 1s:
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x %*% rep(1, ncol(x))

The vector on the right of the operator will be coerced into a 1-column
matrix.

To see the form of A, consider what we want in elements 1, 2, . . . of each
row—that determines what columns 1, 2, . . . of A should contain. The first
element of the answer is the first element of the same row of xrep, meaning
that the first column of A has 1 in the first element and 0 afterwards. The
second element must be the second element minus the first, equivalent to
the second column being -1, 1, 0, 0, . . .. The form required for A then
has just an initial 1 in the first column, and every other column j has 1 in
row j and -1 in row j − 1:

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 -1 0 0 0 0 0 0 0 0
[2,] 0 1 -1 0 0 0 0 0 0 0
[3,] 0 0 1 -1 0 0 0 0 0 0

· · ·

Constructing this sort of matrix is the other part of the trick. We take
account of the way R stores a matrix; namely, by columns. If we lay out all
the columns one after the other, the data in A starts off with 1 followed by
m-1 zeroes, followed by -1, and then followed by the same pattern again. By
repeating a pattern of m+1 values, we shift the pattern down by one row each
time in the resulting matrix. We can create the matrix by the expression:

A <- matrix(c(1, rep(0, m-1), -1), m, m)

The general thought process here is very typical for computing patterned
combinations of elements in matrices. The example in Section 6.8, page 206,
constructs a general function to produce similarly patterned matrices.

This is clearly a computation with enough content to deserve being a
function. Here is a functional version. We have also added the promised
code to turn an arbitrary x into a sign, an exponent, and a binary fraction
on the range .5 <= x < 1.0. The complete representation is then made up
of three parts: sign, exponent, and the bits corresponding to the fraction.

We express this result in the form of a new class of objects. The three
parts of the answer are totally interdependent, and we would be inviting
errors on the part of users if we encouraged arbitrary manipulations on them.
Having a special class allows us to be specific about what the objects mean
and what computations they should support. Some extra work is required
to create the class, but the results of the computations will be easier to
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understand and to work with when their essential structure is captured in
a class definition. Our users will benefit in both insightful exploration (the
Mission) and trustworthy software (the Prime Directive) from our extra
effort. (The details are explored in Section 9.2, page 343; for now, just
consider them part of the background.)

binaryRep <-
function(data, m = .Machine$double.digits) {

x <- data
n <- length(x)

xSign <- sign(x)
x <- xSign * x
exponent <- ifelse(x > 0, floor(1+log(x, 2)), 0)
x <- x/2 ∧ exponent
pwrs <- binaryRepPowers(n, m)
x <- matrix(x, n, m)
xpwrs <- x * pwrs
xrep <- trunc(xpwrs)/pwrs
bits <- (xrep %*% binaryRepA(m)) *pwrs

bits[] <- as.integer(bits[])
new("binaryRep", original = data,

sign = as.integer(xSign),
exponent = as.integer(exponent),
bits = binaryRepBits(bits))

}

The body of the function is in three parts, separated by empty lines. It’s
the middle part that we are concerned with here, the rest has to do with
the class definition and is discussed on page 343.

The function sign() returns ±1, and multiplying by the sign shifts x to
positive only. The next line computes the exponent, specifically the largest
integer power of 2 not larger than x (play with the expression floor(1+log(x,

2)) to convince yourself). Dividing by 2 to this power shifts x to be larger
than .5 but not larger than 1. The rest of the computation is just as we
outlined it before.

This has been a long example, but in the process we have touched on
most of the mechanisms listed on page 158. We have also worked through
heuristic thinking typical of that needed in many vectorizing computations.
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6.5 Statistical Data: Data Frames

Through most of this book, we use the term data in the computational
sense, meaning numerical or other information in some form that can be
stored and processed. But in statistics, and more generally in science, the
term has an older meaning, from the Latin “datum” for a “given”, and so
for an observed value.2 We examine in this section one concept central to
data in this sense, the data frame, and its implementation in a variety of
computational contexts.

The topic is large and important, so while this section is not short, we
can only cover a few aspects. The plan is as follows. We start with some re-
flections on the concept (as usual, you can skip this to get on to techniques).
Next, we examine how data frames as a concept can be used in several lan-
guages and systems: in R (page 168 ), in Excel and other spreadsheets (page
173), and in relational database systems (page 178). Each of these discus-
sions focuses on aquiring and using data corresponding to data frames in the
corresponding system. Finally, on page 181, we consider transferring data
frames between systems, mostly meaning between R and other systems.

The data frame concept

The concept of a data frame lies at the very heart of science. Gradually, very
long ago, and in more than one place, people began to act on the belief that
things could be meaningfully observed, and that taking these observations
as given could lead to true, or at least useful, predictions about the future.
This is in fact the central notion for our computational discussion: that
there are things that can be observed (in data analysis called variables),
and that it’s meaningful to make multiple observations of those variables.
The computational version of the concept is the data frame. This section
deals mainly with practical computations that implement the data frame
concept.

If we look for early evidence of the underlying concept, we must go back
long before science as such existed. Consider, for example, the structures
known as “calendar stones” and the like. These are structures created to
behave in a particular way at certain times of the year (typically the summer
or winter solstice). Stonehenge in England, built some five thousand years
ago, is designed so that the rising sun on the winter solstice appears in a

2The American Heritage Dictionary [13] has a nice definition including both senses. It
also disposes of the pedantry that “data” is always plural: in modern usage it can be a
“singular mass entity like information”.
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particular arch of the monument. Some modern interpretations suggest that
the monument is designed to match several patterns in the sun/earth/moon
system (for example, the book by John North [20]). Similar devices existed
in the ancient Near East and Central America.

Think of the process of designing such a calendar stone. Someone must
observe the positions of the sun as it rises each day. At Stonehenge, this
position will appear to move farther south each day as winter approaches,
until at the solstice the sun “stands still”, and then begins to move back
north. If the site is designed also to correspond to changes in the appearance
and position of the moon, corresponding observations for its changes had to
be made.

The builders of Stonehenge had no written language, so they probably
did not record such data numerically. But they must have made systematic
observations and then drew inferences from them. From the inferences they
designed a huge structure whose orientation came from a fundamentally
scientific belief that observing data (in particular, observing variables such
as length of day and sunrise position) would lead to a useful prediction.
Where the sun stood still last year predicts where it will stand still in the
years to come.

We seem to have digressed a long way indeed from software for data
analysis, but not really. It can’t be stressed too emphatically how funda-
mental the data frame concept is for scientific thinking or even for more
informal empirical behavior. We select observable things, variables, and
then make observations on them in the expectation that doing so will lead
to understanding and to useful models and prediction.

Two consequences for our needs arise from the fundamental role of data
frame concepts. First, the concepts have influenced many areas of comput-
ing, scientific and other. Software ranging from spreadsheets to database
management to statistical and numerical systems are all, in effect, realizing
versions of the data frame concept, different in terminology and organiza-
tion, but sharing ideas. We will benefit from being able to make use of many
such systems to capture and organize data for statistical computation. Sec-
ond and related, in order to exploit these diverse systems, we need some
central framework of our own, some statement of what data frames mean
for us. Given that, we can then hope to express our computations once,
but have them apply to different realizations of the data frame ideas. From
the perspective of R, it is the class definition mechanism that gives us the
essential tools for a central description of data frames. Section 9.8, page 375
outlines one such framework.
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The "data.frame" class in R

The S language has included the specific "data.frame" class since the in-
troduction of statistical modeling software (as described in the Statistical
Models in S book [6]). This is an informal (“S3”) class, without an explicit
definition, but it is very widely used, so it’s well worth describing it here and
considering its strengths and limitations. Section 9.8, page 375, discusses
formal class definitions that might represent "data.frame" objects.

A "data.frame" object is essentially a named list, with the elements of
the list representing variables, in the sense we’re using the term in this
section. Therefore, each element of the list should represent the same set
of observations. It’s also the intent that the object can be thought of as a
two-way array, with columns corresponding to variables. The objects print
in this form, and S3 methods for operators such as `[` manipulate the data
as if it were a two-way array. The objects have some additional attributes
to support this view, for example to define labels for “rows” and “columns”.
Methods allow functions such as dim() and dimnames() to work as if the
object were a matrix. Other computations treat the objects in terms of the
actual implementation, as a named list with attributes. The expression

w$Time

is a legal way to refer to the variable Time in data frame w, and less typing
than

w[, "Time"]

However, using replacement functions to alter variables as components of
lists would be dangerous, because it could invalidate the data frame by
assigning a component that is not a suitable variable. In practice, a large
number of S3 methods for data frames prevent most invalid replacements.

Because of the focus on software for statistical models, the variables
allowed originally for "data.frame" objects were required to be from one
of the classes that the models software could handle: numerical vectors,
numerical matrices, or categorical data ("factor" objects). Nothing exactly
enforced the restriction, but other classes for variables were difficult to insert
and liable to cause strange behavior. R has relaxed the original restrictions,
in particular by providing a mechanism to read in other classes (see the
argument colClasses in the documentation ?read.table and in the example
below).

As a first example, let’s read in some data from a weather-reporting
system as a data frame, and then apply some computations to it in R.
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value form. Here are the first 10 lines of an exported file:

Time,TemperatureF,DewpointF,PressureIn,WindDirection,WindDirectionDegrees,\
WindSpeedMPH,WindSpeedGustMPH,Humidity,HourlyPrecipIn,Conditions,Clouds,\
dailyrainin,SoftwareType

2005-06-28 00:05:22,72.7,70.6,30.13,ESE,110,3,6,93,0.00,,-RA,,VWS V12.07

2005-06-28 00:15:46,72.7,70.6,30.12,ESE,105,2,5,93,0.00,,-RA,,VWS V12.07

2005-06-28 00:35:28,72.7,70.3,30.12,East,100,3,6,92,0.00,,OVC024,,VWS V12.07

2005-06-28 00:45:40,72.5,70.1,30.12,ESE,113,6,6,92,0.00,,OVC024,,VWS V12.07

2005-06-28 01:05:04,72.5,70.1,30.11,ESE,110,0,7,92,0.00,,OVC100,,VWS V12.07

2005-06-28 01:15:34,72.5,70.1,30.10,East,91,1,2,92,0.00,,OVC100,,VWS V12.07

2005-06-28 01:35:09,72.3,70.2,30.10,SE,127,0,5,93,0.02,,OVC009,0.02,VWS V12.07

2005-06-28 01:45:33,72.3,70.5,30.09,ESE,110,2,2,94,0.04,,OVC009,0.04,VWS V12.07

2005-06-28 02:05:21,72.3,70.5,30.09,ESE,110,1,6,94,0.04,,OVC009,0.04,VWS V12.07

The first line contains all the variable names; to show it here we have broken
it into 3, but in the actual data it must be a single line. R has a function,
read.table(), to read files that represent "data.frame" objects, with one
line of text per row of the object, plus an optional first line to give the
variable names.

Two file formats are widely used for data that corresponds to data
frames: comma-separated-values files (as in the example above) and tab-
delimited files. Two corresponding convenience functions, read.csv() and

For the data above:

weather1 <- read.csv("weather1.csv")

The result has the desired structure of a data frame with the variables named
in the first line of the file:

> colnames(weather1)
[1] "Time" "TemperatureF"
[3] "DewpointF" "PressureIn"
[5] "WindDirection" "WindDirectionDegrees"
[7] "WindSpeedMPH" "WindSpeedGustMPH"
[9] "Humidity" "HourlyPrecipIn"

[11] "Conditions" "Clouds"
[13] "dailyrainin" "SoftwareType"
> dim(weather1)
[1] 92 14

All is not quite well, however. The first column, Time, does not fit the origi-
nally planned variable classes, not being either numeric or categorical. The

Software for a weather station provides for data export in comma-separated

read.delim(), correspond to such files. Both functions then call read.table().
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entries for the column contain date-times in the international standard for-
mat: 2005-06-28 00:05:22, for example. Some R software does understand
time formats but they are not automatically converted in read.table(). Be-
cause the text is not numeric, the default action is to treat the column as
a factor, but because each time is distinct, the factor has as many levels as
there are observations.

> wTime <- weather1$Time
> class(wTime)
[1] "factor"
> length(levels(wTime))
[1] 92

R has an S3 class "POSIXct" that corresponds to time represented numeri-
cally. S3 methods exist to convert from character data to this class. The
function read.table() allows variables from this class, and from any class
that can be coerced from a character vector, through an optional argu-
ment colClasses, in which the user specifies the desired class for columns of
the data frame. If told that the Time column should have class "POSIXct",
read.table() will make the correct conversion.

So with a slight extension to the previous call, we can set the Time

variable to an appropriate class:

> weather1 <- read.csv("weather1.csv",
+ colClasses = c(Time = "POSIXct"))

Now the variable has a sensible internal form, with the advantage that it
can be treated as a numeric variable in models and other computations.

The colClasses argument is one of several helpful optional arguments
to read.table() and its friends:

colClasses: The colClasses argument supplies the classes (the names, as
character strings) that you want for particular columns in the data.
Thus, for example, "character" keeps the column as character strings,
where the default is to turn text data into factors, but see as.is below.
This argument can also be used to skip columns, by supplying "NULL"

as the class.

skip: The number of initial lines to omit.

header: Should the first row read in be interpreted as the names for the
variables?
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as.is: Should text be treated as character vectors, rather than the tradi-
tional default, which turns them into factors? It can be a per-column
vector, but if factors are irrelevant, just supply it as TRUE.

There are many other arguments; see ?read.table. Similar choices arise
when importing data into other systems, such as spreadsheet or database
programs. The discussion continues on page 182.

Once data frame objects are created, they can be used with a variety
of existing R packages, principally for statistical models (see Section 6.9,
page 218) and for the trellis/lattice style of plotting (see Section 7.6, page
280). These both use the idea of formula objects to express compactly some
intended relation among variables. In the formula, the names of the variables
appear without any indication that they belong to a particular data frame
(and indeed they don’t need to). The association with the data frame is
established either by including it as an extra argument to the model-fitting
or plotting function, or else by attaching the data frame to make its variables
known globally in R expressions. The attachment can be persistent, by using
the attach() function, or for a single evaluation by using the with() function,
as shown on page 172.

For example, to plot temperature as a function of time in our example,
one could use the xyplot() function of the lattice package to produce Figure
6.1 on page 172:

> xyplot(TemperatureF ∼ Time, data = weather1)

The labels on the horizontal axis in the plot need some help, but let’s con-
centrate here on the relationship between the data and the computations.
The data argument to xyplot() and to similar plotting and model-fitting
functions supplies a context to use in evaluating the relevant expressions
inside the call to the function. The details are sometimes important, and
are explored in the discussions of model software and lattice graphics. The
essential concept is that the object in the data argument provides references
for names in the formula argument. Formulas are special in that the explicit
operator, `∼`, is symbolic (if you evaluate the formula, it essentially returns
itself). In the xyplot() call, the left and right expressions in the formula are
evaluated to get the vertical and horizontal coordinates for the plot. You
could verbalize the call to xyplot() as:

Plot: TemperatureF ∼ (as related to) Time

The data frame concept then comes in via the essential notion that the
variables in the data frame do define meaningful objects, namely the obser-
vations made on those named variables.
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Figure 6.1: Scatter plot of variables from a data frame of weather data.

One can use the same conceptual framework in general computations,
either locally by explicitly evaluating an expression using with():

> with(weather1, mean(diff(Time)))
Time difference of 15.60678 mins

or persistently by attaching the data frame to the session:

> attach(weather1)
> mean(diff(Time))
Time difference of 15.60678 mins

Using attach() has the advantage that you can type an arbitrary expression
involving the variables without wrapping the expression in a call to with().
But the corresponding disadvantage is that the variable names may hide or
be hidden by other objects. R will warn you in some cases, but not in all.
For this reason, I recommend using a construction such as with() to avoid
pitfalls that may seem unlikely, but could be disastrous.

As an example of the dangers, suppose you had earlier been studying
a different set of weather data, say weather2, and for convenience “copied”
some of the variables to the global environment:

> Time <- weather2$Time
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The global Time object hides the one in the attached data frame, and if
the attach() occurred earlier, no warning is issued. You’re supposed to
remember the explicit assignment. But if you were, say, to evaluate a model
formulated in terms of several variables in the weather1 data, you could
easily forget that just one of those happened to have been hidden. Nothing
in the expression itself would reveal that you had just computed an incorrect
answer, seriously violating the Prime Directive.

Therefore, the general advice is always: if the answer is important, make
the computations explicit about what data is used, as the with() function
did above. The data supplied to with() will be searched first, so that other
sources of data will not override these. There is still a chance to mistakenly
use an object that is not in the supplied data (perhaps a mistyped name),
because R insists on looking for objects in the chain of parent environments of
the data object. To be strict about all the available objects in a call to with()

requires constructing an environment with a suitable parent environment.
For example, if ev is an environment object:

parent.env(ev) <- baseenv()

will set the parent environment of ev to the environment of the base package,
essentially the minimum possible. If you’re starting with a "data.frame"

object rather than an environment, the same restriction can be enforced by
using the enclos argument to eval() or evalq(). The strict way to evaluate
diff(Tiime) as above would be

evalq(diff(Time), weather1, baseenv())

If the expression requires functions from a package, you need something
more generous than baseenv(). It’s often useful to evaluate an expression
using the namespace of a relevant package. For example, to evaluate an
expression using the namespace of package "lattice":

evalq(xyplot(TemperatureF ∼ Time), weather1,
asNamespace("lattice"))

Data frame objects in spreadsheet programs

Because spreadsheets are all about two-way layouts, they have a natural
affinity for the data frame concept. In fact, Excel and other spreadsheets are
very widely used for computations on data that can be viewed as a data
frame. It has been asserted, not always facetiously, that Excel is the world’s
most widely used statistical software. Spreadsheets include facilities for
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summaries and plotting that are applied in many data-intensive activities.
They are less likely to have a wide range of modern data analysis built in,
making R a natural complement for serious applications.

This section will present some techniques for using data frame objects
inside spreadsheet programs. Combined with techniques for exporting data
from R, these will allow the results of analysis to be brought into the spread-
sheet. More sophisticated techniques for interfacing to R from a spreadsheet
are possible and desirable, but considerably more challenging to program.
See, for example, RDCOMEvents and related packages at the omegahat Web site;
this approach would in principle allow sufficiently intrepid programmers to
access R functions and objects from the spreadsheet, at least for Windows

applications. The interface in the other direction, for analysis based in R, is
discussed in Chapter 12.

Excel is very widely used, but is not the only spreadsheet program.
Its competitors include several open-source systems, notably OpenOffice.org.
Most of the techniques discussed below are found in OpenOffice.org and other
spreadsheets as well, perhaps with some variation in user interface. In the
discussion below, using “spreadsheet” to describe a system means Excel or
one of its major competitors.

Let’s begin by importing into Excel the same csv file shown on page 169.
To import the file, select the menu item for importing external data from a
text file. In the version of Excel I’m using, the import menu selection is:

Data > Get External Data > Import Text File...

You then interact with an Excel “Wizard” in a sequence of dialogs to identify
the file, choose the delimiter (comma) and specify the format for individual
columns (usually "General", but see below). The text file is then imported
as a worksheet, in Excel terminology. Here’s the upper left corner:
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With the spreadsheet, as in the previous section with R, there are a few
details to get right, which will also raise some points of general interest.

In an R "data.frame" object the variable names are attributes of the
data, but in a spreadsheet essentially everything resides in the worksheet
itself. Concepts of slots or attributes are uncommon; instead, spreadsheets
use individual cells informally to store items other than data values. It’s a
typical convention to take the first row, or several rows, to include names
for the columns and other contextual information. Formally, however, the
columns are always "A", "B", "C", etc. and the rows are always "1", "2", "3",
etc. The first row happens to contain text items "Time", "TemperatureF",
"DewpointF", etc. that we will use to label variables. The remaining rows
contain the actual data in the usual sense.

Having a column that contains its name as the first element would pose
a problem in R if the data were numeric or any other class than "character".
The class of the variable would have to be something able to contain either
a string or a number, and computations on the variable would be more
complicated. Fortunately, the presence of a name in the first row of every
column is less crippling in Excel. For one thing, many computations are
defined for a range in the worksheet, a rectangular subset of the worksheet
defined by its upper-left and lower-right corners cells. So the data-only
part of the worksheet starts at the "$A$2" cell, in spreadsheet terminology,
meaning the first column and the second row.

Names in the first row can cause problems, however, when specifying the
format for importing the csv file. The Excel wizard allows you to choose a
format (numeric, text, date) for each column. Because the variable names
are stored in the first row, you cannot choose numeric for TemperatureF or
date for Time. Instead, Excel allows and suggests choosing format "General",
which means that each cell is formatted according to a heuristic interpre-
tation of its contents. Typically, the first cell in each column is text and
the rest will be date, number, or text appropriately. If you do this in the
present example, however, you will see some strange cells labeled "Name?"

in the column for the Clouds variable. That’s because several cells for this
column are recorded in the file as "-RA" and the Excel heuristic throws up its
hands for this entry: it starts out looking like a number but then turns into
text. The fix is to specify this column manually as "Text" to the wizard, so
as not to lose information. The result then looks as it did in the file:
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Take a warning from the example, however. Although the spreadsheet may
seem to be dealing with objects in a similar sense to R, that is not really
the case. The spreadsheet model for computation is quite different, with
an emphasis on cells and ranges of cells as basic concepts. Rather than
using class definitions to add extra information, spreadsheet programs tend
to differentiate cells within the table.

Nevertheless, there is enough commonality between the systems to allow
for exporting and importing data. For the example we’ve been looking at,
the only catch is that dates are by default saved in the local format, not the
international standard. Inferring the format of dates is an example in the
discussion of computing with text in Chapter 8 (see Section 8.6, page 321).

Worksheets can be exported into the same csv format used to import
the data. To illustrate exporting data frames, let’s look at a truly classic
data set, the observations taken by Tycho Brahe and his colleagues on the
declination of Mars (the angle the planet makes with the celestial equator).
There are over 900 observations taken in the late 16th century. This fasci-
nating dataset, which inspired Johannes Kepler to his studies of the orbit
of Mars, was made available in an Excel spreadsheet by Wayne Pafko at the
Web site pafko.com/tycho. Suppose we want to export the data, to be
used as a data frame in R. The data may be read into Excel, or into other
spreadsheet programs that accept Excel files. A menu selection, typically
Save As, will give you an option to save as a comma-separated-values, or
".csv" file. The upper-left corner of the worksheet looks like this:
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In this example, we use OpenOffice.org rather than Excel to open and then save
the spreadsheet. The program provides some useful flexibility, including a
simple option to save the data with quoted text fields. The first few lines
of the resulting ".csv" file (with lines truncated to fit on the printed page)
are:

"Tycho Brahe’s Mars Observations",,,,,,,,,,,,,,,,,,,
,"Source: Tychonis Brahe Dani Opera Omnia",,,,,,,,,,,,,,,,,,,
,"Imput by: Wayne Pafko (March 24, 2000)",,,,,,,"Brahe’s Declinati
,"[MS] = Mars Symbol (you know...the ""male"" sign)",,,,,,,"(not a
,,,,,,,,,,,,,,,,,,,,
,"Year","Day","Time","Quote","Volume","Page",,"Year","Month","Day"
,1582,"DIE 12 NOUEMBRIS, MANE.",,"Declinatio [MS] 23 7 B",10,174
,1582,"DIE 30 DECEMBRIS",,"Afc. R. [MS] 107o 56’ Declin. 26o 3
,1582,"DIE 27 DECEMBRIS",,"declinatio [MS] 26o 22 1/3’ et Afcenfi

The row numbers and the column letters shown in the spreadsheet are not
part of the actual data and are not saved.

Then the read.csv() function can import the data into R, as in the
example on page 169. The first five lines of the file are comments, which
we’d like to skip. Also, the text data is just text, so we need to suppress
the default computations to turn text into factor variables, by supplying the
option as.is = TRUE. With two optional arguments then, we can read in the
data and examine it:

> mars <- read.csv("mars.csv", skip = 5, as.is = TRUE)
> dim(mars)
[1] 923 21
> sapply(mars, class)

X Year Day Time
"logical" "integer" "character" "character"

Quote Volume Page X.1
"character" "integer" "integer" "logical"

Year.1 Month Day.1 Day..adj.
"integer" "integer" "integer" "integer"

Hour Min Days.since.1.AD Date
"integer" "numeric" "numeric" "numeric"

X.2 Dec..deg. Dec..min. Dec..sec.
"numeric" "integer" "integer" "integer"

Declination
"numeric"

The call to sapply() computes and displays the class of each of the variables
in the data frame, exploiting its implementation as a list.
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In this example, we might have chosen to preprocess the text data to
remove uninteresting columns, such as two empty fields, X and X.1. However,
these do no particular harm. Cleaning up after reading into R is probably
easier in this case. In case you’re wondering what the 21 variables are
doing: The spreadsheet contains a number of intermediate variables used to
arrive at numeric estimates of time and declination, starting from the highly
irregular journal entries (in variable Quote). The computation is nontrivial
and the data would be fascinating to examine as an example of text analysis.

Data frames in a relational database

From the perspective of statistical computing, the most essential feature
of relational databases is that their model for data centers on the table, a
two-way organization of columns (our variables) by rows (our observations),
providing a thoroughly natural analog to a data frame. The analogy is
very useful. In this section, we concentrate on using the tools of relational
database software directly to store and access data from the data frame
perspective. In addition, R packages provide inter-system interfaces to such
software, so that SQL queries, such as those illustrated here, can be invoked
from R. A discussion of the intersystem interface aspect is provided in Section
12.7, page 446. In addition, database systems usually allow exporting of
tables as comma-separated-values files, so that the techniques discussed on
page 181 can be used.

Relational databases intersect statistical computing most frequently be-
cause such databases are sources of data for analysis. The databases have
often been organized and collected for purposes such as business transac-
tions, commercial record keeping, or government information, as well as for
scientific data collection. In this context, the data analysis is usually only
concerned with extracting data (queries in database terminology), possibly
also applying some summary calculation at the same time. Frequently these
databases are very large, relative to the size of data objects used directly
for analysis. In fact, relational databases may also be worth considering for
data that is constructed or modified during the analysis (data manipulation
or transactions in database terminology), either because of the software’s
ability to handle large amounts of data or to interface both read-only and
modifiable portions of the data.

Access to data in relational databases other than for whole tables uses
queries expressed in SQL, the S tructured Query Language. SQL is common
to essentially all relational database systems, and is in fact an international
standard language. In spite of its name, the language includes data manip-
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ulation and transaction commands as well as queries.
It’s fortunate that SQL is supported by essentially all relational database

systems, because there are many of these, and when the database was created
for purposes other than data analysis, the analyst usually must use whatever
particular system was chosen for this database. Of the many such systems,
three will usefully stand in for the range of options.

SQLite: An open-source system implemented as a C library and therefore
embeddable in other applications, including R.

MySQL
R©: Also an open-source system, emphasizing competitive capability

for large applications.

Oracle
R©: One of the most successful commercial systems.

SQLite is usually the easiest to interface to R and to install on a particular
platform. All three systems are implemented on a wide range of platforms,
however. The other two are more likely to be competitive for large applica-
tions, and they do explicitly compete for such applications. In the following
discussion we use DBMS to stand for one of these three or some other rea-
sonably compatible relational database system.

SQL’s design dates back to the 1970s, when computer languages for busi-
ness applications often tried to look like human languages, specifically En-
glish. “Wouldn’t it be nice if you could talk to your computer in English?”
Perhaps, and modern technology does make that possible for some purposes,
where simple tasks and voice recognition get us close to being able to talk
to the machine in more-or-less ordinary English. Unfortunately, that was
not what SQL and similar languages provided; instead, they introduced com-
puter languages whose grammar was expressed in terms of English-language
keywords and a syntax that combined the keywords into a fixed range of
“phrases”. English input not matching the grammar would be unintelli-
gible to the parser, however natural to the programmer. In addition, the
grammars of such languages tended to enumerate the expected requirements
rather than starting with higher-level concepts such as objects, classes, and
functional computing. The absence of such concepts makes the use of these
languages less convenient for our purposes.

Most of these languages have faded from view, but SQL is definitely still
with us. Fortunately, its English-like grammar is fairly simple, particularly
if we’re concerned largely with extracting data from tables.

Queries are performed by the SELECT command in SQL. (We follow a com-
mon convention by showing all command names and other reserved words
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in SQL in upper case, but beware: SQL is usually case-insensitive, so don’t
rely on upper case and lower case to distinguish names.)

The SELECT command plays the role of expressions using the operator
`[` in R for extracting subsets from two-way tables. The command takes
three “arguments”, modifiers that correspond to the table object, the col-
umn subset, and the row subset. (There are also a number of optional
modifiers.) In the terminology of English or other natural languages, the
column subset is given by the direct object of the SELECT verb, the table by
a FROM phrase, and the row subset by a WHERE clause. Suppose weather is a
table in a DBMS database, with columns including Date, TemperatureF, and
Conditions. Then a query that selects TemperatureF and Conditions from
the rows for a particular date could be written:

SELECT TemperatureF, Conditions
FROM weather
WHERE Date == 2005-06-28 ;

Columns are specified by a comma-separated list of names or by "*" to
select all columns. The table modifier is usually just a name, but it can also
construct a table by combining information from several existing tables (the
JOIN operation in SQL).

The WHERE clause is a logical expression involving columns of the table.
The rows for which the expression is TRUE will be in the selected data. Simple
expressions look familiar to users of R or other C-style languages, as above.
To combine simple comparisons, use the AND and OR infix operators.

Notice that only expressions involving data in the columns can be used
as row subsets: there are no intrinsic row numbers; unlike "data.frame"

objects in R or a worksheet in spreadsheet, tables in SQL are not stored in
a specific order by rows. This design decision was made partly for practical
reasons, so that storage and updating could be done in a flexible, efficient
way. But it makes considerable sense intrinsically as well. If we think of
data frames in a general sense, the assumption that the “row numbers” of
observations are meaningful is often not correct, and can lead to misleading
results. One sometimes thinks of rows as representing the time when the
observations are made, but those times may be unknown or meaningless
(if observations were made at several recording sites, for example). Better
in most cases to require time, place and/or other ordering variables to be
included explicitly when they make sense.

Queries in SQL can have additional modifiers to add various features: to
order the output, either by grouping together rows having the same value(s)
on some column(s) or by sorting according to some column(s) (the GROUP and
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ORDER modifiers); to filter the selected data on further criteria (the HAVING

modifier); to direct the output to a file (the INTO modifier); and several
others.

From a modern language perspective, it’s easy to deplore the ad hoc
nature of SQL, but its wide availability and efficiency in handling large
amounts of data compensate for programming ugliness. In any case, if your
applications are large, you’re unlikely to avoid programming with relational
databases forever. Do be careful, however, if you want to create SQL software
that is portable among database systems. Nearly all major systems extend
the standard SQL language definition, in sometimes inconsistent ways. A
good SQL manual for a particular system should clarify the nonstandard
parts, but don’t count on it.

External files for data frames

A "data.frame" object in R or a table in a spreadsheet or relational database
implements a version of the data frame concept. In many applications, you
will need to add such data directly or communicate it between systems.
There are several approaches, but two that work for most applications are
either to enter data from a file of text in a standard format or to use an
inter-system interface in one system to access data managed by another.
Inter-system interfaces are described in Chapter 12. For large or otherwise
computationally intensive applications, they have advantages of efficiency
and flexibility over using files. They do require some initial setup and pos-
sibly customization, so it’s reasonable to start with external files for less
demanding applications. Files are also needed for getting data into a sys-
tem or for communicating where an inter-system interface is not available.
We consider here some questions that arise when preparing files to contain
data-frame-style data, and techniques for dealing with the questions.

Once again, the basic data frame concept of observations and variables
is the key: files are simplest when organized as lines of text corresponding
to observations in the data frame, with each line containing values for the
variables, organized as fields by some convention. R, spreadsheets, and most
DBMS can import data from a text file laid out as lines of fields, with the
fields separated by a specified character (with the tab and the comma the
usual choices). Many other software systems also either export or import
data in one of these forms. There are differences in detail among all the
systems, so expect to do some cleaning of the data, particularly if you’re
exporting it from a more specialized system.

Text files using tabs or commas are often called “tab delimited files” or
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“comma-separated-values files” respectively. They work roughly the same
way, again up to the inevitable details. Here again is the beginning of the
weather-station data introduced on page 169 and used to illustrate input of
such data into R:

Time,TemperatureF,DewpointF,PressureIn,WindDirection,WindDirectionDegrees,\
WindSpeedMPH,WindSpeedGustMPH,Humidity,HourlyPrecipIn,Conditions,Clouds,\
dailyrainin,SoftwareType

2005-06-28 00:05:22,72.7,70.6,30.13,ESE,110,3,6,93,0.00,,-RA,,VWS V12.07

2005-06-28 00:15:46,72.7,70.6,30.12,ESE,105,2,5,93,0.00,,-RA,,VWS V12.07

2005-06-28 00:35:28,72.7,70.3,30.12,East,100,3,6,92,0.00,,OVC024,,VWS V12.07

2005-06-28 00:45:40,72.5,70.1,30.12,ESE,113,6,6,92,0.00,,OVC024,,VWS V12.07

2005-06-28 01:05:04,72.5,70.1,30.11,ESE,110,0,7,92,0.00,,OVC100,,VWS V12.07

2005-06-28 01:15:34,72.5,70.1,30.10,East,91,1,2,92,0.00,,OVC100,,VWS V12.07

2005-06-28 01:35:09,72.3,70.2,30.10,SE,127,0,5,93,0.02,,OVC009,0.02,VWS V12.07

2005-06-28 01:45:33,72.3,70.5,30.09,ESE,110,2,2,94,0.04,,OVC009,0.04,VWS V12.07

2005-06-28 02:05:21,72.3,70.5,30.09,ESE,110,1,6,94,0.04,,OVC009,0.04,VWS V12.07

The basic idea seems trivial, just values separated by a chosen character.
Triviality here is a good thing, because the concept may then apply to a
wide variety of data sources.

Here is a checklist of some questions you may need to consider in practice.

1. The first line: Variable names or not?

2. One line per observation or free-format values?

3. What are the field types (classes)?

4. What about special values in the fields?

For each question, you need to understand the requirements of the system
that will import the data. Options in the system may let you adapt to the
details of the file at hand, but expect to do some data cleaning in many cases.
Data cleaning in this context requires computing with text, the subject of
Chapter 8; that chapter presents some additional techniques related to the
questions above.

First, variable names: Are they included in the data; does the target
system want them; and do you want them? The answer to the first part de-
pends on where the data came from. Many specialized systems that support
data export in one of the data-frame-like formats do generate an initial line
of column names. The names will be meaningful to the originating system,
so they may not be in the natural vocabulary of the data analysis, but it’s
a good default to leave them alone, to reduce the chance of confusion when
you look back at the documentation of the originating system to understand
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what some variable means. As for the target system, R’s read.table() func-
tion allows them optionally, spreadsheets have no concept of variable names
but an initial row of labels is a common convention, and for a relational
database, you can’t usually provide variable names in the imported table
(and in any case you will have to have defined names and types for the
variables before doing the import). Once you have decided what you need
to do, removing/adding/changing the first line should be easy, but you may
want to check that the line does really look like variable names if it should
(and doesn’t if it shouldn’t).

For the free-format question, we usually need to ensure that lines in the
file correspond to rows in the data frame. All three systems we’ve discussed
really believe in importing lines of text. A line with p fields has p−1 delimiter
characters, as shown in our example where p == 14. If the exporting system
takes “comma separated values” literally, however, it may include a trailing
delimiter at the end of each line or, worse, believe the input can be in free
format ignoring the one-line/one-row correspondence. Excel does not mind
the trailing comma, but the other systems do; and none of them will accept
input in free format.

Turning free form input into regular lines is an exercise in computing with
text, and can be handled either in R or in a language such as Perl or Python.
The comparison is a good example of the tradeoffs in many applications:
R is simpler, partly because it absorbs all the data in free form, and then
just recasts it in a fixed number of fields per row. Perl has to do some more
complicated book-keeping to read free-form lines and write fixed-form when
enough fields have been read. But the extra logic means that the Perl code
deals more efficiently with data that is large enough to strain memory limits
in R. The details are presented as an example of computing with text in
Section 8.6, page 325.

The third question, specifying the types or classes, may require attention
to ensure that the contents of each variable conform to what the receiving
system expects in that variable. All three systems need some specification of
the “class” of data expected, although in both R and spreadsheets the vari-
ables can contain arbitrary character strings, so specification is only needed
when something more specialized is expected. Standard SQL on the other
hand is throughly old-fashioned in requiring declarations for the columns
when the table is created (prior to actually filling the table with any data).
The declarations even require widths (maximum number of characters) for
text fields. A declaration for the table in our example might look something
like:
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CREATE TABLE weather (Time DATETIME, TemperatureF FLOAT, DewpointF FLOAT,

WindSpeedMPH FLOAT, WindSpeedGustMPH FLOAT, Humidity FLOAT,

HourlyPrecipIn FLOAT, Conditions VARCHAR(20), Clouds VARCHAR(20),

dailyrainin FLOAT, SoftwareType VARCHAR(20)

);

The weather data has an initial field giving the date and time, and then a
variety of fields containing either numeric values or character strings, the
strings usually coding information in a more-or-less standardized way. For
all the systems, date/time and numeric fields are common occurrences, but
each system has its own view of such data, and the data in the input needs
to be checked for conformity.

The fourth question, special values, arises because transferring data from
one system to another may require attention to conventions in the two sys-
tems about how values are represented. There are many potential issues:
different conventions according to locale for dates and even for decimal num-
bers, techniques for quoting strings and escaping characters, and conventions
for missing values. Techniques may be available in the receiving system to
adjust for some such questions. Otherwise, we are again into text compu-
tations. For example, Section 8.6, page 321, has computations to resolve
multiple formats for dates.

6.6 Operators: Arithmetic, Comparison, Logic

The S language has the look of other languages in the C/Java family, in-
cluding a familiar set of operators for arithmetic, comparisons and logical
operations. Table 6.3 lists them. Operators in the S language are more in-
tegrated, less specialized, and open to a wider role in programming than in
many languages. In C, Java, and similar languages, the operators are nearly
always built in. They translate into low-level specialized computations, and
often assume that arguments are simple data. In languages that support
OOP-style classes and methods, methods are not natural for operators, be-
cause method invocation is itself an operator (usually ".").

In R, each operator is a function, with the rights and generality of other
functions, for the most part. Operator expressions are evaluated as function
calls; all that is fundamentally different is that one can write these function
calls in the familiar operator form. In fact

x+1

could legally be written as `+`(x, 1), and would return the same value.

PressureIn FLOAT, WindDirection VARCHAR(10), WindDirectionDegrees FLOAT,
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An operator in R is in fact anything the parser is willing to treat as one.
Binary and unary operators (sometimes called infix and prefix operators)
are any pattern op for which the parser will interpret the forms

e1 op e2 # or
op e1

as equivalent to the function calls

`op`(e1, e2) # or
`op`(e1)

Here e1 and e2 stand for arbitrary expressions. The "`" quotes mean that
the string will be treated as a name, to be looked up as the name of a
function object.

It is true that many built-in operators are primitive functions, which
does occasionally make them special for programming (for the way primitives
work, see Section 13.4, page 463). However, this only becomes relevant after
finding the particular object corresponding to the operator’s name, and does
not differ fundamentally from the treatment of any primitive function.

Table 6.3 on page 186 shows operators found in the base package of R.
This section examines the implementations, particularly of the arithmetic
and comparison operators. The implementations handle arguments from
commonly occurring classes, such as vectors of the various basic R object
types, matrices, arrays and time-series. For more information on the other
operators, see the function index of the book and/or the online documenta-
tion for the operators.

From a programming view, operators in R are part of its extensible func-
tional model. They can be extended to apply to new classes of objects, by
defining methods to use when the arguments come from such classes. Op-
erator methods are discussed in Section 10.3, page 389. If a group name is
shown in a row of Table 6.3, methods for all the operators in the group may
be provided by defining a method for the corresponding group generic (see
Section 10.5, page 404).

New operators can be introduced using a lexical convention that %text%

can appear as a binary operator. Just define a function of two arguments,
assign it a name matching this pattern, and users can insert it as an opera-
tor. R has added operators `%in%` and `%x%` to the language, for example,
to carry out matching and compute Kronecker products respectively. The
grammar only recognizes such operators in binary form; you cannot define
a new unary operator.
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Operator Group Comment
`+`, `-`, `*`, `/`,
`∧`, `%%`, `%/%`

Arith() Operations for numerical arithmetic,
the last two being modulus and
truncated division. The arguments
are, or are coerced to, "numeric" or
"complex".

`>`, `<`, `>=`, `<=`,
`==`, `!=`

Compare() Comparison operations, defined for ar-
guments that are, or are coerced to,
"numeric", "character", or "complex".

`&`, `|`, `!` Logic() Logical operations “and”, “or”, and
“not”.

`&&`, `||` Control operations, only valid with
single logical values as arguments.

`%%`, `%in%`, `%o%`,
`%*%`, `%x%`

Binary operators using the general
convention that `%text%` is an oper-
ator name.

`$`, `?` `@`, `∼`,
`:`, `::`, `:::`

Other binary operators.

Table 6.3: Binary and unary operators defined in the base package of R.

Table 6.3 is not quite complete. The various assignment operators are all
treated as binary operators (with limited programming allowed; for example,
methods cannot be defined for them). Among the miscellaneous operators,
`?` and `∼` can also be used as unary operators.

Rules for operator expressions with vector arguments

There are general rules for the arithmetic and comparison operators, spec-
ifying the objects returned from calls to the corresponding functions, de-
pending on the class and length of the arguments. The rules date back to
the early design of the S language. Restricting our attention to the basic
vector object types, the following summarizes the current rules in the base

package implementation.

1. If the arguments are of the same type and length, the operation is
unambiguous. The value returned will be of that length and either of
the same type or "logical", depending on the operator.

Arithmetic operators work on "logical", "numeric", and "complex"
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data, but not on "raw","character", or "list". Comparison operators
work on all types, but not if both arguments are lists.

2. Given two arguments of different type, one will be coerced to the type
of the other argument before the operation takes place. Arithmetic
operations are limited to the four types mentioned in item 1, but
for comparisons nearly anything goes, other than a few comparisons
with "complex" data. Conversions are made to the less simple type,
according to the rules discussed in Section 6.3, page 149.

3. If one argument is shorter than the other, it will be implicitly replicated
to the length of the other argument before the operation takes place,
except that a zero-length operand always produces zero-length results.
A warning is given if the longer length is not an exact multiple of the
shorter.

For more details on conversions see Section 6.3, page 149.
As mentioned, most of these rules date back to early in the evolution

of the S language, and are unlikely to change. With hindsight though, I’m
inclined to think the original design was too eager to produce an answer,
for any arguments. Some of the rules, such as those for replicating shorter
objects, were heuristics designed to work silently when operating on a matrix
and one of its rows or columns.

For important computations, stricter rules that only allow unambigu-
ous mixing of types and lengths would be more trustworthy. The function
withStrictOps() in the SoDA package allows you to evaluate any expression
applying such rules. A call to withStrictOps() either returns the value of
the expression or generates an error with an explanation of the ambiguities.
Mixtures of types are allowed only for numeric types, including complex
(no logical/numeric conversion, for example). Unequal lengths are allowed
only if one operand is a “scalar”, of length 1. I would recommend running
examples whose validity is important with these rules in place; in other
words, when the Prime Directive weighs heavily on you, it pays to check for
ambiguous code.

Arithmetic and comparison operators deal with vector structures as well
as simple vectors, both in general and specifically for matrices, multi-way
arrays, and time-series. Classes can be formally defined to be vector struc-
tures (see Section 6.3, page 154), in which case they inherit methods from
class "structure". As noted on page 156, the current base package rules
do not treat vectors with arbitrary attributes as a vector structure. You
should use a formal class definition that extends "structure" rather than
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relying on the base package behavior to obtain trustworthy results for vector
structures.

Arithmetic operators

Arithmetic operations with numeric arguments go back to the early history
of computing with “floating-point numbers”. Down to the 1970s, software
for these computations was complicated by a variety of representations and
word lengths. An essential step forward was the adoption of the IEEE
floating point standard, which mandated aspects of both the representation
and the way computations should behave. The standard included a model
for the numbers, with parameters expressing the range of numbers and the
accuracy. The model also included both Inf, to stand for numbers too large
to be represented, and NaN for the result of a computation that was N ot a
Number; for example,

> 0/0
[1] NaN

The S language adopted the model, and R includes it. The object .Machine

has components for the parameters in the model; see its documentation. We
look at some details of numeric computations in Section 6.7, page 191.

For most numeric computations in R, numeric means double-precision,
type "double". This is certainly true for arithmetic. The operators will take
arguments of type logical or integer as well as numeric, but the results will
nearly always be of type "double", aside from a few computations that pre-
serve integers. Logicals are interpreted numerically by the C convention that
TRUE is 1 and FALSE is 0. Complex arithmetic accepts "numeric" arguments
with the usual convention that these represent the real part of the complex
values. Raw and character data are not allowed for arithmetic.

Arithmetic operators allow operands of different lengths, according to
the rules described on page 186, calling for replicating the shorter operand.
R warns if the two lengths are not exact multiples. The following examples
illustrate the rules.

> 1:5 + 1
[1] 2 3 4 5 6
> 1:6 + c(-1, 1)
[1] 0 3 2 5 4 7
> 1:5 + c(-1, 1)
[1] 0 3 2 5 4
Warning message:
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longer object length
is not a multiple of shorter object length in: 1:5 + c(-1, 1)

The second and third examples would be errors if the strict rules imple-
mented by the function withStrictOps() were applied.

Comparison and logical operators.

The comparison operators (`>`, `>=`, `<`, `<=`, `==`, and `!=`), when given
two vectors as arguments return a logical vector with elements TRUE, FALSE, or
NA reflecting the result of the element-by-element comparisons. Arguments
will be implicitly replicated to equal length and coerced to a common type,
according to the ordering of types shown in Section 6.3, page 149. So,
for example, comparing numeric and character data implicitly converts the
numbers to character strings first.

Comparison expressions in R look much like those in languages such as
C, Java, or even Perl. But they are designed for different purposes, and need
to be understood on their own. The purpose of a comparison in R is to
produce a vector of logical values, which can then be used in many other
computations. One typical use is to select data. The logical vector can be
used to select those elements of any other object for which the comparison
is TRUE.

y[ y > 0 ]; trafficData[ day != "Sunday", ]

Comparisons are often combined using the logical operators:

weekend <- trafficData[ day == "Sunday" | day == "Saturday", ]

Combinations of comparisons and logical operators work in R similarly to
conditions in database selection. If you’re familiar with database software
queries, using SQL for example, then consider the comparison and logical
operators as a way to obtain similar data selection in R.

One consequence of the general operator rules on page 186 needs to be
emphasized: The comparison operators are not guaranteed to produce a sin-
gle logical value, and if they do, that value can be NA. For really trustworthy
programming, try to follow a rule such as this:

Don’t use comparison operators naked for control, as in if()

expressions, unless you are really sure the result will be a single
TRUE or FALSE. Clothe them with an expression guaranteed to
produce such a value, such as a call to identical().
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Violations of this rule abound, even in core R software. You may get away
with it for a long time, but often that is the bad news. When the expression
finally causes an error, the original programming experience may be long
gone, possibly along with the programmer responsible.

The most commonly occurring unsafe practice is to use the "==" operator
for control:

if(parameters$method == "linear") # Don’t do this!

value <- lm(data)

What can go wrong? Presumably parameters is meant to be an object with
components corresponding to various names, usually an R list with names.
If one of the names matches "method" and the corresponding component is a
single character string or something similar, the computation will proceed.
Someday, though, the assumption may fail. Perhaps the computations that
produced parameters changed, and now do not set the "method" component.
Then the unfortunate user will see:

Error in if (parameters$method == "linear") ... :
argument is of length zero

The if expression may have looked reasonable, particularly to someone used
to C-style languages, but it did not actually say what it meant. What we
meant to say was:

if(the object parameters$method is identical to

the object "linear" )

A function defined to implement this definition would return TRUE if the
condition held and FALSE in all other circumstances. Not surprisingly, there
is such a function, identical(). The condition should have been written:

if(identical(parameters$method, "linear"))
value <- lm(data)

For more on techniques to produce such single values, see Section 6.3, page
152.

The two operators `&&` and `||`, however, are specifically designed for
control computations. They differ from `&` and `|` in that they are expected
to produce a single logical value and they will not evaluate the second ar-
gument if that argument cannot change the result. For example, in the
expression

if(is(x, "vector") && length(x)>0) x[] <- NA
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the expression length(x)>0 will not be evaluated if is(x, "vector") evalu-
ates to FALSE. Here too, however, the evaluation rules of R can be dangerously
generous. Arguments to these operators can be of length different from 1.
Only the first element will be used, but no warning is issued, and if one ar-
gument is of length zero, the result is silently NA. Therefore, the arguments
to `&&` and `||` themselves need to follow the guidelines for computing
single logical values.

6.7 Computations on Numeric Data

Numeric data in R can in principle be either "double" or "integer", that is,
either floating-point or fixed-point in older terminology. In practice, numeric
computations nearly always produce "double" results, and that’s what we
mean by the term "numeric" in this discussion. Serious modern numeric
computation assumes the floating-point standard usually known as “IEEE
574” and R now requires this. The standard enforces a number of important
rules about how numeric data is represented and how computations on it
behave. Most of those don’t need to concern us explicitly, but a brief review
of floating-point computation will be useful here.

Standard floating-point numbers have the form ±b2k where b, known as
the significand,3 is a binary fraction represented by a field of m bits:

b12−1 + b22−2 + · · ·+ bm2−m

and k, the exponent is an integer field of fixed width. Given the size of the
floating-point representation itself (say, 32 or 64 bits) the standard specifies
the width of the fraction and exponent fields. Floating-point numbers are
usually normalized by choosing the exponent so that the leading bit, b1, is
1, and does not need to be stored explicitly. The fraction is then stored as a
bit field b2 · · · bm. The ± part is conceptually a single sign bit. The exponent
represents both positive and negative powers, but not by an internal sign
bit; rather, an unsigned integer is interpreted as if a specific number was
subtracted from it. All that matters in practice is that the exponent behaves
as if it has a finite range −ku < k <= ku. In the standard, only a few
choices are allowed, mainly single and double precision. However, the model
is general, and future revisions may add further types.

In addition to the general patterns for floating-point numbers, the stan-
dard defines some special patterns that are important for its operations.

3In my youth, this was called the mantissa, but the standard deprecates this term
because it has a conflicting usage for logarithms.
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Zero, first off, because that cannot be represented as a normalized number;
in fact, the standard includes both ±0. Then a pattern to represent “in-
finity”; that is, numbers too large in absolute value for the representation.
This we will write as ±Inf. Finally, a pattern called NaN (N ot a Number)
indicates a result that is undefined as a number. This is related to the
long-standing value NA in the S language standing for a N ot Available, or
missing value. The latter is more general and should be used in most R

programming; see page 194.
The standard also set down requirements for arithmetic operations and

for rounding. If you want to understand more about floating-point compu-
tations and the standard, there is a huge literature. One of the best items is
an unpublished technical report by one of numerical analysis’ great figures
and eccentrics, W. Kahan [18].

Details of numerical representation are usually far from your thoughts,
and so they should be. A few important consequences of floating-point
representation are worth noting, however. The finite set of floating-point
numbers represented by the standard, for a given word size, are essentially a
model for the mathematical notion of real numbers. The standard models all
real numbers, even though only a finite subset of real numbers correspond
exactly to a particular floating-point representation. The general rule of
thumb is that integer values can be represented exactly, unless they are very
large. Numbers expressed with decimal fractions can be represented exactly
only if they happen to be equal to an integer multiplied by a negative power
of 2. Otherwise, the stored value is an approximation. The approximation
is usually hidden from the R user, because numbers are approximated from
decimal input (either parsed or read from a file), and printed results usually
round the numbers to look as if they were decimal fractions.

The approximate nature of the floating-point representation sometimes
shows up when computations are done to produce numbers that we think
should be exactly zero. For example, suppose we want the numbers (-.3,

-.15, 0., .15, .3). The function seq() computes this, taking the first
element, the last, and the step size as arguments. But not quite:

> seq(-.45, .45, .15)
[1] -4.500000e-01 -3.000000e-01 -1.500000e-01 -5.551115e-17
[5] 1.500000e-01 3.000000e-01 4.500000e-01

Did something go wrong? (Every so often, someone reports a similar exam-
ple as a bug to the R mailing lists.)

No, the computation did what it was asked, adding a number to the
initial number to produce the intermediate results. Neither number is rep-
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resented exactly as a binary fraction of a power of 2, as we can see using
the binaryRep() function developed as an example in Section 6.4, page 161:

> binaryRep(c(-.45, .15))
Object of class "binaryRep"
1: -.11100110011001100110011001100110011001100110011001101 * 2∧-1

(-0.45)
2: .10011001100110011001100110011001100110011001100110011 * 2∧-2

(0.15)

In fact, we can see what probably happens in the computation:

> binaryRep(c(3 * .15))
Object of class "binaryRep"
1: .11100110011001100110011001100110011001100110011001100 * 2∧-1

(0.45)

Notice that the last bit is different from the representation of -.45; the
difference is in fact, 2−54, or 5.551115e-17.

There is nothing numerically incorrect in the computed result, but if you
prefer to get an exact zero in such sequences, remember that integer values
are likely to be exact. Rescaling an integer sequence would give you the
expected result:

> seq(-3, 3, 1) * .15
[1] -0.45 -0.30 -0.15 0.00 0.15 0.30 0.45

Although seq() returns a result of type "integer", that is not the essential
point here. Integer values will be represented exactly as "double" numbers
so long as the absolute value of the integer is less than 2m, the length of the
fractional part of the representation (254 for 32-bit machines).

Numbers that are too large positively or negatively cannot be repre-
sented even closely; the floating-point standard models these numbers as
Inf and -Inf. Another range of numbers cannot be represented because
they are too close to zero (their exponents are too negative for the model).
These numbers are modeled by 0. In terms of arithmetic operations, these
two ranges of numbers correspond to overflow and underflow in older termi-
nology; in R, overflow and underflow just produce the corresponding values
in the floating-point standard, with no error or warning.

The standard specifies that arithmetic operations can also produce NaN.
If either operand is a NaN, the result will be also. In addition certain com-
putations, such as 0/0, will generate a NaN.
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The NaN pattern will immediately remind R users of the NA pattern, which
also represents an undefined value, although not just for floating-point num-
bers. The two patterns arose separately, but R treats NaN in numeric data
as implying NA. Therefore, for most purposes you should use the function
is.na() to test for undefined values, whether they arose through numerical
computations or from other sources. There is also a function is.nan() that
in principle detects only values generated from floating-point operations.
Much more important in thinking about undefined values than the distinc-
tion between NA and NaN is to be careful to treat either as a pattern, not
as a value. Always use the functions to detect undefined values rather than
testing with identical(), and certainly never use the `==` operator:

identical(x, NaN) # Never do this! Use is.nan() instead.

x == NA; x == NaN # Always wrong!

The first expression is lethally dangerous. The floating-point standard de-
fines NaN in such a way that there are many distinct NaN patterns. There is
no guarantee which pattern an internal computation will produce. There-
fore identical(x, NaN) may sometimes be TRUE and at other times FALSE

on numerical results for which is.nan(x) is TRUE. The second and third ex-
pressions always evaluate to NA and NaN, and so will always be wrong if you
meant to test for the corresponding condition.

Having warned against comparisons using the objects NA and NaN, we now
have to point out that they are quite sensible in some other computations.
For example, if input data used a special value, say 9999 to indicate missing
observations, we could convert those values to the standard NA pattern by
assigning with the NA object.

x[ x == 9999] <- NA

Just a moment, however. If you have been reading about the generally
inexact numeric representation of decimal numbers, you would be wise to ask
whether testing for exact equality is dangerous here. The answer depends
on how x arose; see below on page 196 for some discussion.

Similar computations can set elements to the floating-point NaN pattern:

x[ x < 0 ] <- NaN

When does it make sense to use NaN versus NA? Because the NaN pattern
is part of the floating-point standard, it’s natural to insert it as part of
a numeric calculation to indicate that the numeric value of the result is
undefined for some range of inputs. Suppose you wanted a function inv to
be 1/x, but only for positive values, with the transform being undefined for
negative values.
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invPos <- function(x) {
ifelse( x<0, NaN, 1/x)

}

Regular missing values (NA) will now be distinguished from numerically un-
defined elements.

> xx <- c(NA, -1, 0, 1, 2)
> invPos(xx)
[1] NA NaN Inf 1.0 0.5

Similar built-in mathematical functions follow the same pattern (for exam-
ple, log() and sqrt()), but with a warning message when NaN is generated.
The use of ifelse() here makes for simple and clear programming, but keep
in mind that the function evaluates all its arguments, and then selects ac-
cording to the first. That’s fine here, but you might need to avoid computing
the values that will not be used in the result, either because an error might
occur or because the computations would be too slow. If so, we would be
thrown back on a computation such as:

invPos <- function(x) {
value <- rep(NaN, length(x))
OK <- x >= 0
value[OK] <- 1/x[OK]

}

As an exercise: This version fails if x has NAs; how would you fix it?
Turning back to general treatment of NA, you may encounter a replace-

ment version of is.na():

is.na(x) <- (x == 9999)

The right side of the assignment is interpreted as an index into x and internal
code sets the specified elements to be undefined. The catch with using
the replacement function is interpretation: What is it supposed to do with
elements that are already missing? Consider:

> x <- c(NA, 0, 1)
> is.na(x) <- c(FALSE, FALSE, TRUE)

What should the value of is.na(x) be now? You could expect it to be the
pattern on the right of the assignment, but in fact the replacement does not
alter existing NA elements. (What value would it use for those elements?)

> is.na(x)
[1] TRUE FALSE TRUE

Given the ambiguity, I suggest using the direct assignment.
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Numerical comparisons

Numerical comparisons are generally applied in R for one of two purposes:
filtering or testing. In filtering, a computation is to be applied to a portion
of the current data, with a numerical comparison determining that portion:

x[ x<0 ] <- NaN

In testing, a single logical value will control some step in a calculation,
maybe the convergence of an iterative computation:

if(abs(xNew - xOld) < xeps)
break

Discussions of numerical accuracy often mix up these situations, but the
whole-object computational picture in R makes them quite distinct. Con-
siderations of numerical accuracy and in particular of the effect of numer-
ical error in floating-point representation (so-called “rounding error”) have
some relevance to both. But it’s testing that provides the real challenge,
and rounding error is often secondary to other limitations on accuracy.

Having said that, we still need a basic understanding of how numerical
comparisons behave in order to produce trustworthy software using them.
The six comparison operators will produce logical vectors. The rules for
dealing with arguments of different length are those for operators generally
(see page 189). As with other operators, the wise design sticks to arguments
that are either the same length and structure, or else with one argument a
single numeric value.

The elements of the object returned from the comparison will be TRUE,
FALSE, or NA, with NA the result if either of the corresponding elements in the
arguments is either NA or NaN.

The two equality operators, `==` and `!=`, are dangerous in general sit-
uations, because subtle differences in how the two arguments were computed
can produce different floating-point values, resulting in FALSE comparisons
in cases where the results were effectively equal. Some equality comparisons
are safe, if we really understand what’s happening; otherwise, we usually
need to supply some information about what “approximately equal” means
in this particular situation.

Floating-point representation of integer numbers is exact as long as the
integers are within the range of the fractional part as an integer (for 64-bit
double precision, around 1017). Therefore, provided we know that all the
numeric computations for both arguments used only such integer values,
equality comparisons are fine.
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x[ x == 9999 ] <- NA

If the data were scanned from decimal text, for example, this test should be
valid. A safer approach is to apply the tests to the data as character vectors,
before converting to numeric, but this might not be simple if a function such
as read.table() was reading a number of variables at once.

As should be obvious, just the appearance of integer values when an
object is printed is no guarantee that equality comparisons are safe. The
following vector looks like integers, but examining the remainder modulo 1

shows the contrary:

> x
[1] 10 9 8 7 6 5 4 3 2 1 0
> x%%1
[1] 0.000000e+00 1.776357e-15 0.000000e+00 8.881784e-16
[5] 0.000000e+00 0.000000e+00 8.881784e-16 0.000000e+00
[9] 4.440892e-16 8.881784e-16 0.000000e+00

No surprise, after we learn that x<-seq(1.5,0,-.15)/.15, given the example
on page 192.

Using greater-than or less-than comparisons rather than equality com-
parisons does not in itself get around problems of inexact computation, but
just shifts the problem to considering what happens to values just on one
side of the boundary. Consider:

x[ x<0 ] <- NaN

This converts all negative numbers to numerically undefined; the problem is
then whether we are willing to lose elements that came out slightly negative
and to retain elements that came out slightly positive. The answer has to
depend on the context. Typically, the filtering comparison here is done so
we can go on to another step of computation that would be inappropriate
or would fail for negative values. If there is reason to retain values that
might be incorrectly negative as a result of numerical computations, the
only safe way out is to know enough about the computations to adjust
small values. It’s not just comparison operations that raise this problem,
but any computation that does something discontinuous at a boundary. For
example,

xx <- log(x)

has the same effect of inserting NaN in place of negative values. Once again, if
we need to retain elements computed to be slightly negative through inexact
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computation, some adjustment needs to be made and that in turn requires
considerable understanding of the context.

When we turn from filtering during the computation to testing for control
purposes, we have the additional requirement of choosing a single summary
value from the relevant object. R deals with objects, but tests and condi-
tional computations can only use single TRUE or FALSE values. Typical tests
discussed in the numerical analysis literature involve comparisons allowing
for a moderate difference in the low-order bits of the floating-point repre-
sentation, plus some allowance for the special case of the value 0. We saw
on page 192 that seemingly identical computations can produce small dif-
ferences in the floating-point representation of the result. For a non-zero
correct result, then, the recommendation is to allow for relative error cor-
responding to a few ulps (units in the last place). A correct value 0 is a
special case: If the correct test value is 0 then the computed value has to be
tested for sufficiently small absolute value, because relative error is mean-
ingless. There are some good discussions of how to do such comparisons
very precisely (reference [18]; also search the Web, for example for “IEEE
754”).

The first problem in applying tests in this spirit in practice is to deal
with objects, not single values. The function all.equal.numeric() in basic R

implements a philosophy designed to treat objects as equal if they differ only
in ways that could plausibly reflect inexact floating-point calculations. Given
arguments current and target and a suitable small number, tolerance, it
tests roughly:

mean(abs(current - target))/mean(abs(target)) < tolerance

as long as mean(abs(target)) is non-zero, and

mean(abs(current - target)) < tolerance

otherwise. Tests of this sort are fine as far as they go, but unfortunately
only apply to a small minority of practical situations, where there is a clear
target value for comparison and usually where deviations from the target
can be expected to be small.

We created the all.equal methods originally to test software for sta-
tistical models, when it was installed in a new computing environment or
after changes to the software itself. The tests compared current results to
those obtained earlier, not “exact” but asserted to be correct implemen-
tations, run in an environment where the needed numerical libraries also
worked correctly for these computations. (This is “regression” testing in
the computational, not statistical, sense.) Numerical deviations were only
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one aspect; all.equal() methods also check various structural aspects of
the current and target objects.

The general problem, unfortunately, is much harder and no automatic
solution will apply to all cases. Testing numerical results is an important
and difficult part of using statistical software. Providing numerical tests is
an equally important and difficult part of creating software. Most of the
difficulty is intrinsic: It is often harder to test whether a substantial numer-
ical computation has succeeded (or even to define clearly what “succeeded”
means) than it is to carry out the computation itself. Computing with R

does have the advantage that we can work with whole objects representing
the results of the computation, providing more flexibility than computa-
tions with single numbers or simple arrays. Also, the interactive context of
most R computation provides rich possibilities for choosing from a variety of
tests, visualizations, and summaries. It’s never wise to base an important
conclusion on a single test.

With all these disclaimers firmly in mind, we can still consider a sim-
ple style of test, analogous to the all.equal.numeric() logic above, to be
adapted to specific testing situations. Two relevant considerations corre-
spond to convergence and uncertainty. In convergence tests, one would
like to test how near the iterative computation is to the target, but natu-
rally the target is generally unknown. With luck, some auxiliary criterion
should apply at the target. In linear least-squares regression, for example, at
the target model the residuals are theoretically orthogonal to the predictor;
therefore, comparing the inner products of residuals with columns of X to
the value 0 would be a way of testing an iterative computation. Care is still
needed in choosing tolerance values for the comparison.

New methods for complicated problems often have no such outside crite-
rion. The natural inclination is then to test the iteration itself. The target

and current objects are taken to be the parameters of the model or some
other relevant quantity, from the current and previous iteration. Such a test
may work, and in any case may be all you can think of, but it is rarely
guaranteed and can be dangerously over-optimistic. Use it by all means,
if you must, but try to experiment thoroughly and if possible replace it or
calibrate by whatever theory you can manage to produce. Some examples
of related test criteria are discussed when we consider software for statistical
models in Section 6.9, page 218.

Issues of uncertainty, on the other hand, correspond to questions about
the data being used. Limitations in our ability to measure the data used in
a model or other statistical computation, or even limitations in our ability
to define what is being measured, must naturally translate into uncertainty
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in any parameters or other summaries computed. Some tests or measures
based on these uncertainties are essential as part of reporting a model if we
are not to run the risk of implying more accurate knowledge than we really
possess. If nothing else, it’s a good idea to do some simulations using as
plausible assumptions as can be made about the uncertainties in the data,
to see how reproducible are the results of the computation.

6.8 Matrices and Matrix Computations

Matrix computations are the implementation for much fundamental statis-
tical analysis, including model-fitting and many other tasks. They also have
a central role in a wide variety of scientific and engineering computations
and are the basis for several software systems, notably MATLAB R©. Matrices
play an important role in R as well, but less as the basic objects than as an
example of some general approaches to data and computation.

In spite of the conceptual difference, many matrix computations will look
similar in R to those in other systems. A matrix object can be indexed by
rows and columns. R includes most of the widely used numerical methods for
matrices, either in the base package or in add-on packages, notably Matrix.
The usual search lists and tools will likely find some functions in R to do
most common matrix computations.

This single section has no hope of covering matrix computations in de-
tail, but it examines the concept of a matrix in R, its relation to some other
concepts, such as general vector structures, and a variety of techniques of-
ten found useful in programming with matrix objects. We discuss different
techniques for indexing matrices and use these in an extended example of
constructing matrices with a particular pattern of elements (page 206). We
discuss the apply() family of functions (page 212), consider some basic nu-
merical techniques (page 214), and finally look briefly at numerical linear
algebra (page 216).

Moving from the inside out, first, the "matrix" class extends the "array"

class: a matrix is a multi-way array in which “multi” happens to be “two”.
The defining properties of an R matrix, its dimension and optional dimnames
are simply specializations of the same properties for a general multi-way
array. Indexing of elements is also the same operator, specialized to two
index expressions.

An array, in turn, is a special case of the classic S language concept of
a vector structure discussed in Section 6.3, page 154; that is, a vector that
has additional properties to augment what one can do, without losing the
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built-in vector computations, such as ordinary indexing by a single variable
and the many basic functions defined for vectors.

As a result of what a matrix is in R, there are some important things
it is not; most importantly, it is not itself a basic concept in the system,
contrasting with MATLAB, for example. Neither is the multi-way array a
basic concept, contrasting with the APL language, from which many of the
array ideas in the S language were derived. Arrays never stop being vectors
as well. Many useful computational techniques come from combining vector
and matrix ways of thinking within a single computational task.

To make a vector, x, into a matrix, information is added that defines
dim(x), its dimensions. For a matrix, dim(x) is the vector of the number of
rows and columns. The elements of x are then interpreted as a matrix stored
by columns. For general k-way arrays, the same information is added, but
dim(x) has length k. As a result, any vector can be made a matrix, not just
a numeric vector. The data part of a matrix can be a vector of any of the
basic types such as "logical", "character", or even "list".

The programming model for matrices, and for arrays in general, includes
the mapping between matrix indexing and vector indexing. That mapping
is defined by saying that the first index of the matrix or array varies most
rapidly. Matrices are stored as columns. Three-way arrays are stored as
matrices with the third index constant, and so on. Fortran prescribed the
same storage mechanism for multi-way arrays (not a coincidence, given the
history of S).

Because matrices in R are an extension of basic vectors rather than a
built-in structure at the lowest level, we might expect more specialized ma-
trix languages, such as MATLAB, to perform more efficiently on large matrix
objects. This is fairly often the case, particularly for computations that in
R are not directly defined in C.

Extracting and Replacing Subsets of a Matrix

To see how matrix and vector ideas work together, let’s consider expressions
to manipulate pieces of a matrix. Subsets of a matrix can be extracted or
replaced by calls to the `[` operator with four different forms for the index
arguments:

1. two index arguments, indexing respectively the rows and columns;

2. a single index argument that is itself a two-column matrix, each row
specifying the row and column of a single element;
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3. a single logical expression involving the matrix and/or some other
matrix with the same number of rows and columns;

4. a single numeric index, using the fact that matrices are stored by
column to compute vector index positions in the matrix.

All four techniques can be useful, and we will look at examples of each. The
first case returns a matrix (but see the discussion of drop= on page 203),
the other three return a vector. All four can be used on the left side of an
assignment to replace the corresponding elements of the matrix.

The third and fourth methods for indexing are not specially restricted to
matrices. In fact, we’re using some basic properties of any vector structure:
logical or arithmetic operations produce a parallel object with the same
indexing of elements but with different data. And any structure can be
subset by a logical vector of the same size as the object. Because a matrix or
other structure is also a vector by inheritance, comparisons and other logical
expressions involving the object qualify as indexes. This is the fundamental
vector structure concept in R at work.

Similarly, the indexing in the fourth form is matrix-dependent only in
that we have to know how the elements of the matrix are laid out. Similarly
for time-series or any other structure class, once we use knowledge of the
layout, any vector indexing mechanism applies.

Indexing rows and columns

The obvious way to index a matrix, x[i, j], selects the rows defined by
index i and the columns defined by index j. Any kind of indexing can be
used, just as if one were indexing vectors of length nrow(x) and ncol(x),
respectively. Either index can be empty, implying the whole range of rows
or columns. Either index can be positive or negative integers, or a logical
expression. Consider, for example:

x[ 1:r, -1 ]

The first index extracts the first r rows of the matrix, and in those rows the
second index selects all the columns except the first. The result will be an
r by ncol(x)-1 matrix. As with vectors, the same indexing expressions can
be used on the left of an assignment to replace the selected elements.

The result of selecting on rows and columns is itself a matrix, whose
dimensions are the number of rows selected and the number of columns
selected. However, watch out for selecting a single row or column. In this
case there is some question about whether the user wanted a matrix result or
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a vector containing the single row or column. Both options are provided, and
the choice is controlled by a special argument to the `[` operator, drop=.
If this is TRUE, single rows and columns have their dimension “dropped”,
returning a vector; otherwise, a matrix is always returned. The default is,
and always has been, drop=TRUE; probably an unwise decision on our part
long ago, but now one of those back-compatibility burdens that are unlikely
to be changed. If you have an application where maintaining matrix subsets
is important and single rows or columns are possible, remember to include
the drop=FALSE argument:

model <- myFit(x[whichRows,,drop=FALSE], y[whichRows])

Indexing with a row-column matrix

Row and column indices can be supplied to `[` as a single argument, in
the form of a two-column matrix. In this form, the indices are not applied
separately; instead, each row i of the index matrix defines a single element
to be selected, with [i, 1] and [i, 2] being the row and column of the element
to select. For an example, suppose we wanted to examine in a matrix, x, the
elements that corresponded to the column-wise maxima in another matrix,
x0 (maybe x0 represents some initial data, and x the same process at later
stages). Here’s a function, columnMax(), that returns a matrix to do this
indexing.

columnMax <- function(x0) {
p <- ncol(x0)
value <- matrix(nrow = p, ncol = 2)
for(i in seq(length = p))

value[i,1] = which.max(x0[,i])
value[,2] <- seq(length = p)
value

}

The function which.max() returns the first index of the maximum value
in its argument. The matrix returned by columnMax() has these (row) in-
dices in its first column and the sequence 1:p in its second column. Then
x[columnMax(x0)] can be used to extract or replace the corresponding ele-
ments of x.

> x0
[,1] [,2] [,3]

[1,] 11.4 11.0 9.2
[2,] 10.0 10.1 10.4
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[3,] 9.2 8.9 8.7
[4,] 10.7 11.5 11.2
> columnMax(x0)

[,1] [,2]
[1,] 1 1
[2,] 4 2
[3,] 4 3
> x

[,1] [,2] [,3]
[1,] 11.1 11.0 9.0
[2,] 9.6 10.1 10.5
[3,] 9.2 8.7 9.0
[4,] 10.7 11.6 11.0
> x[columnMax(x0)]
[1] 11.1 11.6 11.0

It takes a little thought to keep straight the distinction between indexing
rows and columns separately, versus indexing individual elements via a ma-
trix of row and column pairs. In the example above, suppose we take the
row indices, the first column, from columnMax(x0), and index with that:

> rowMax <- unique(columnMax(x0)[,1]); x[rowMax,]
[,1] [,2] [,3]

[1,] 11.1 11.0 9
[2,] 10.7 11.6 11

This does something different: it creates a new matrix by selecting those
rows that maximize some column of x0, but keeps all the corresponding
columns of x.

Notice the use of unique(), so that we don’t get multiple copies of the
same row. In indexing any object, R allows a positive integer index to appear
any number of times, and then repeats the same selection each time. Your
application may or may not want to replicate the selection, so remember to
eliminate any duplicates if it does not.

Indexing matrices with logical expressions

Logical index expressions typically involve the matrix whose values we want
to select or replace, or perhaps some companion matrix of the same dimen-
sions. For example, the value of a comparison operation on a matrix can be
used as a single index to subset that matrix. To set all the negative values
in x to NA:

x[ x < 0 ] <- NA
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(When dealing with missing values, watch out for the opposite computation,
however. To refer to all the missing values in x, use x[is.na(x)], and never
use NA in comparisons; see Section 6.7, page 192.)

Indexing in this form applies to any vector or vector structure, and
uses nothing special about matrices. However, two auxiliary functions for
matrices can be useful in logical indexing, row() and col(). The value of
row(x) is a matrix of the same shape as x whose elements are the index of the
rows; similarly, col(x) is a matrix containing the index of the columns of x.
The function triDiag() on page 207 shows a typical use of these functions.

Indexing matrices as vectors

The fourth indexing technique for matrices is to use knowledge of how a
matrix is laid out as a vector; namely, by columns. Logical indices are in a
sense doing this as well, because the logical expression ends up being treated
as a vector index. However, when the expression involves the matrix itself
or other matrices of related shape, the code you write should not require
knowledge of the layout.

In contrast, we now consider numeric index expressions explicitly involv-
ing the layout. Using these is somewhat deprecated, because the reliance on
the physical storage of matrix elements in R tends to produce more obscure
and error-prone software. On the other hand, knowledge of the layout is
required if you write C software to deal with matrices (Section 11.3, page
424). And computations for some general indexing are more efficient if done
directly. Don’t worry that the column-wise layout of matrix elements might
change. It goes back to the original desire to make objects in the S language
compatible with matrix data in Fortran.

If the matrix x has n rows and p columns, elements 1 through n of x

are the first column, elements n + 1 through 2n the second, and so on.
When you are programming in R itself, the arrangement works identically
regardless of the type of the matrix: "numeric", "logical", "character", or
even "list". Be careful in using non-numeric matrix arguments in the C

interface, because the declaration for the argument corresponding to the R

matrix must match the correct C type for the particular matrix (Section
11.3, page 424).

From examination of data manipulation functions in R, particularly the
seq() function and arithmetic operators, you can construct many special
sections of a matrix easily. For example, suppose we wanted to select or
replace just the elements of x immediately to the right of the diagonal; that
is, elements in row-column positions [1,2], [2,3], and so on. (Sections such
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as this arise often in numerical linear algebra.) As vector indices, these are
positions n + 1, 2n + 2, . . .. A function that returns them is:

upper1 <- function(x) {
n <- nrow(x); p <- ncol(x)
seq(from = n+1, by = n+1, length = min(p-1, n))

}

There is one small subtlety in defining functions of this form: computing
the length of the sequence. Often the length depends on the shape of the
matrix, specifically whether there are more columns or rows. Try out your
computation on matrices that are both short-and-wide and long-and-skinny
to be sure.

> xLong <- matrix(1:12, nrow = 4)
> xLong

[,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12
> xLong[upper1(xLong)]
[1] 5 10
> xWide <- matrix(1:12, nrow = 2)
> xWide

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 3 5 7 9 11
[2,] 2 4 6 8 10 12
> xWide[upper1(xWide)]
[1] 3 6

Example: Matrix indexing and tridiagonal matrices

To illustrate some additional techniques and to clarify the different mecha-
nisms, we will develop a function that can be implemented in different ways
by three of the four matrix indexing techniques. Let’s consider what are
called banded matrices, and in particular tri-diagonal matrices. A number
of numerical techniques with matrices involve special forms in which all the
elements are zero except for those on the diagonal or next to the diagonal.
In general, this means there are at most 3 nonzero elements in each row or
column, leading to the term tri-diagonal matrix. Multiplication by a banded
matrix applies linear combinations to nearby elements of each column or row
of another matrix. This technique aids in vectorizing a computation that
might otherwise involve looping over the rows of the matrix. We used this
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technique in the example on computing binary representations (Section 6.4,
page 163).

Suppose we wanted a function to construct a general tri-diagonal matrix.
The natural way to define the matrix is usually by specifying three vectors of
numbers, the diagonal, the values above the diagonal, and the values below
the diagonal. For example a 5 by 5 matrix of this form is:

[,1] [,2] [,3] [,4] [,5]
[1,] 2 1 0 0 0
[2,] -1 2 1 0 0
[3,] 0 -1 2 1 0
[4,] 0 0 -1 2 1
[5,] 0 0 0 -1 2

In this case the diagonal is rep(2, 5), the upper off-diagonal elements are
rep(1, 4), and the lower off-diagonal elements rep(-1, 4). A nice utility
would be a function:

triDiag(diagonal, upper, lower, nrow, ncol)

If it adopted the usual R convention of replicating single numbers to the
length needed, and set ncol = nrow by default, we could create the matrix
shown by the call:

triDiag(2, 1, -1, 5)

Three different matrix indexing techniques can be used to implement func-
tion triDiag(). (All three versions are supplied with the SoDA package, so
you can experiment with them.)

An implementation using logical expressions is the most straightforward.
The expressions row(x) and col(x) return matrices of the same shape as x

containing the corresponding row and column indices.

> row(x)
[,1] [,2] [,3] [,4] [,5]

[1,] 1 1 1 1 1
[2,] 2 2 2 2 2
[3,] 3 3 3 3 3
[4,] 4 4 4 4 4
[5,] 5 5 5 5 5

This immediately tells us how to implement the triDiag() function: the
upper diagonal elements always have a column index one greater than the
row index, and conversely the lower diagonal elements have row index one
greater than the column index. The diagonal has equal row and column
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indices, but another useful auxiliary matrix function, diag(), lets us con-
struct the matrix with its diagonal elements already in place, and all other
elements set to 0. Here, then, is a definition of triDiag():

triDiag <- function(diagonal, upper, lower,
nrow = length(diagonal), ncol = nrow) {

value <- diag(diagonal, nrow, ncol)
R <- row(value)
C <- col(value)
value[C == R + 1] <- upper
value[C == R - 1] <- lower
value

}

The value is created initially with the specified diagonal elements. Then the
upper and lower off-diagonal elements are inserted using logical expressions,
on the left of an assignment, to replace the correct elements. The function
diag() and the two replacements use the standard R rule of replicating single
values to the necessary length.

A second version of tridiag() can be implemented using a single matrix.
The implementation is not as simple, but has some efficiency advantages for
large problems that are typical of using explicit indices. Once again we
use the fact that the upper diagonal has column indices one greater than
row indices, and the lower diagonal has column indices one less than row
indices. But in this case we will construct explicitly the two-column matrix
with the row and column indices for each of these. For the moment, assume
the desired matrix is square, say r by r. Then the upper diagonal is the
elements [1, 2], [2, 3], . . ., [r-1, r]. The matrix index corresponding to
the upper diagonal has 1:(r-1) in its first column and 2:r in its second
column. Given these two expressions as arguments, the function cbind()

computes just the index required. The whole computation could then be
done by:

value <- diag(diagonal, nrow = nrow, ncol = ncol)
rseq <- 2:r
value[cbind(rseq-1, rseq)] <- upper
value[cbind(rseq, rseq-1)] <- lower

What makes this version more efficient than the logical expressions above
for large problems? Only that it does not create extra matrices of the same
size as x, as the previous implementation did. Instead it only needs to create
two matrices of size 2*r. Don’t take such considerations too seriously for
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most applications, but it’s the sort of distinction between “quadratic” and
“linear” requirements that can be important in extreme situations.

What makes this version more complicated is that the precise set of
elements involved depends on whether there are more rows or columns. The
expressions shown above for the case of a square matrix will not work for the
non-square case. There will be nrow upper-diagonal elements, for example,
if ncol>nrow, but only nrow-1 otherwise. Conversely, there are min(ncol,

nrow-1) lower diagonal elements.

> triDiag(2, 1, -1, 4, 6)
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 2 1 0 0 0 0
[2,] -1 2 1 0 0 0
[3,] 0 -1 2 1 0 0
[4,] 0 0 -1 2 1 0
> triDiag(2, 1, -1, 6, 4)

[,1] [,2] [,3] [,4]
[1,] 2 1 0 0
[2,] -1 2 1 0
[3,] 0 -1 2 1
[4,] 0 0 -1 2
[5,] 0 0 0 -1
[6,] 0 0 0 0

The general implementation of triDiag() using matrix index arguments
then has the following form.

triDiag2 <- function(diagonal, upper, lower,
nrow = length(diagonal), ncol = nrow) {

value <- diag(diagonal, nrow = nrow, ncol = ncol)
n <- min(nrow, ncol-1)
if(n>0) {

rseq <- 1:n
value[cbind(rseq, rseq+1)] <- upper

}
n <- min(nrow-1, ncol)
if(n > 0) {

rseq <- 1:n
value[cbind(rseq+1, rseq)] <- lower

}
value

}

We also needed to look out for “degenerate” cases, where the resulting lower-
or upper- diagonal was missing altogether (of length 0). Convince yourself
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that the logical expressions involving row(x) and col(x) take care of all these
variations.

As a third implementation, let’s consider using the explicit layout of a
matrix to analyze the index values needed to fill in the data elements, and
derive a simple computation to generate them. The implementation will
repay presenting in detail (perhaps somewhat more than the actual function
deserves) because the process of analysis illustrates a useful approach to
many problems. We will derive a pattern for the data needed, and find
some R utilities that generate this pattern as an object.

Let’s look again at the example of a tridiagonal matrix, but this time
thinking about the storage layout.

[,1] [,2] [,3] [,4] [,5]
[1,] 2 1 0 0 0
[2,] -1 2 1 0 0
[3,] 0 -1 2 1 0
[4,] 0 0 -1 2 1
[5,] 0 0 0 -1 2

Starting with the first column, what are the index values for the non-zero
elements? The first and second row of the first column are the first two
elements; then the first three elements in the second column; then the second
through fourth in the third column; and so on, shifting down one index for
the three non-zero elements in each successive column. With a matrix having
n rows, the non-zero elements appear in positions with the following pattern:
1, 2, n + 1, n + 2, n + 3, 2n + 2, 2n + 3, 2n + 4, 3n + 3, 3n + 4, 3n + 5,
. . .. These come in triples, except for the first two. Let’s make each triple
correspond to the row of a matrix. Notice that the first element of each row
is a multiple of n + 1, the second adds 1 to the first and the third adds 2 to
the first. 

−− 1 2
(n + 1) (n + 1) + 1 (n + 1) + 2

2(n + 1) 2(n + 1) + 1 2(n + 1) + 2
· · ·


If we fill the empty upper-left element with 0, it becomes obvious that the
matrix can be computed by adding (0, 1, 2) for the columns and (0, (n +
1), 2(n + 1), . . . for the rows.

The pattern of applying a function to a set of row values and a set of
column values occurs in many matrix computations. It is handled by the
R function outer(), which takes row values, column values, and the applied
function as its arguments. The name outer refers to the outer product of
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two vectors, but instead of multiplying elements here, we add them; with
n = 5,

> outer((0:4)*6, 0:2, `+`)
[,1] [,2] [,3]

[1,] 0 1 2
[2,] 6 7 8
[3,] 12 13 14
[4,] 18 19 20
[5,] 24 25 26

Convince yourself that the 3 columns are in fact the positions of the upper-
diagonal, diagonal, and lower-diagonal non-zero elements of a 5 by 5 matrix,
with the exception that the [1,1] element and the [5,3] element of the index
matrix are outside the range, and have to be dropped out by our function.
The third argument to outer() uses “backtick” quotes to pass in a name for
the operator, `+`.

By extracting the suitable elements of the three columns from the index
matrix, we can insert the correct upper, diagonal, and lower values. Here
then is a third definition of triDiag():

triDiag3 <- function(diagonal, upper, lower,
nrow = length(diagonal), ncol = nrow) {

value <- matrix(0, nrow = nrow, ncol = ncol)
r <-max(nrow, ncol)
if(r > 1) {

nu <- min(nrow, ncol-1)
nl <- min(nrow-1, ncol)
index <- outer((0:nu)*(nrow+1), 0:2, `+`)
value[index[1:min(nrow, ncol), 2]] <- diagonal
if(nu > 0)

value[index[-1, 1]] <- upper
if(nl > 0)

value[index[1:nl, 3]] <- lower
}
value

}

As with the second version of triDiag(), the number of lower- and upper-
diagonal elements depends on whether there are more rows or columns in
the matrix. By experimenting with the function (supplied in package SoDA),
you can test whether the range of values inserted is indeed correct for square,
wide, and skinny matrices.
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In this version, we need to be even more careful about special cases. The
compensation is that the call to outer() does all the actual index calculations
at once. This version also generalizes to an arbitrary “bandwidth”, that is
to upper- or lower-diagonal elements removed by more than just one place
from the diagonal.

The apply() functions

One frequently wants to assemble the results of calling a function repeatedly
for all of the rows or all of the columns of a matrix. In the columnMax()

example on page 203, we assembled a vector of all the row indices maximizing
the corresponding columns, by iterating calls to the function which.max()

for each column. The function apply() will perform this computation, given
three arguments: a matrix, a choice of which dimension to “apply” the
function to (1 for rows, 2 for columns), and a function to call. A single call
to apply() will then produce the concatenated result of all the calls.

In the case of columnMax(), using apply() allows the function to be
rewritten:

columnMax <- function(x0) {
p <- ncol(x0)
cbind(apply(x0, 2, which.max),

seq(length = p))
}

We showed apply() used with a matrix, and this indeed is the most common
case. The function is defined, however, to take a general multi-way array
as its first argument. It also caters to a wide range of possibilities for de-
tails such as the shape of the results from individual function calls and the
presence or not of dimnames labels for the array. See ?apply for details.

The apply() idea is more general than arrays, and corresponds to the
common notion of an iteration operator found in many functional languages.
The array version came first, and stole the general name "apply", but a
number of other functions apply a function in iterated calls over elements
from one or more lists: lapply(), mapply(), rapply(), and sapply(). The
first three differ in the way they iterate over the list object(s), while the
last attempts to simplify the result of a call to lapply(). For an example of
mapply(), see Section 8.6, page 319.

There are at least two reasons to prefer using apply() and friends to an
explicit iteration.

1. The computation becomes more compact and clearer.
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2. The computation should run faster.

The first of these is often true, and certainly applies to the columnMax() ex-
ample. The second reason, however, is more problematic, and quite unlikely
for apply() itself, which is coded in R, though carefully. The other functions
do have a chance to improve efficiency, because part of their computation
has been implemented in C. However, none of the apply mechanisms changes
the number of times the supplied function is called, so serious improvements
will be limited to iterating simple calculations many times. Otherwise, the
n evaluations of the function can be expected to be the dominant fraction
of the computation.

So, by all means use the apply() functions to clarify the logic of com-
putations. But a major reprogramming simply to improve the computation
speed may not be worth the effort.

One detail of apply() that sometimes causes confusion is its behavior
when we expect to construct a matrix or array result. The function works
by concatenating the results of successive calls, remembering each time the
length of the result. If the length is identical each time, the result will be
a vector (for results of length 1) or a matrix (for vector results of length
greater than 1). But the matrix is defined, naturally enough, by taking the
length as the first dimension, because that’s the way the values will have
been concatenated.

Users may be surprised, then, if they apply a function to the rows that
always returns a result that looks like the row (i.e., of length ncol(x)). They
might expect a matrix of the same shape as x, but instead the result will be
the transpose of this shape. For example:

> xS
[,1] [,2] [,3]

[1,] 6 9 12
[2,] 2 3 5
[3,] 8 11 10
[4,] 1 4 7
> apply(xS,1,order)

[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] 2 2 3 2
[3,] 3 3 2 3
> apply(xS,2,order)

[,1] [,2] [,3]
[1,] 4 2 2
[2,] 2 4 4
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[3,] 1 1 3
[4,] 3 3 1

Just remember to transpose the result when applying over rows.

Numerical computations with matrices

Numerical matrix computations, including those based on mathematical
ideas of linear algebra, are fundamental to many statistical modeling and
analysis techniques. Matrix computations are also useful ways to formulate
computations that might otherwise be programmed as iterations of elemen-
tary arithmetic, with the matrix version being significantly more efficient
for large problems.

In fact, some numerical computations with matrices may be measur-
ably more efficient in terms of CPU time than other computations that do
the same number of arithmetic operations. Examples include matrix mul-
tiplication and other similar operations, usually based on inner products,∑n

i=1 xiyi, or scalar products, {yi + axi, i = 1, · · · , n}. Subprograms for
these, usually in Fortran, are known as Basic Linear Algebra Subroutines, or
BLAS. The computations done by these subprograms are themselves quite
simple and capable of being programmed efficiently. But at the same time
a number of higher-level operations can be programmed to do much of their
computation through calls to the BLAS routines, leading to efficient im-
plementations, even for quite large problems. Matrix multiplication, for
example, is just an iteration of inner products. Many decompositions of
numerical linear algebra use BLAS for most of their numerical computation.
Linear least-squares fitting, in turn, can be written in terms of numerical
decompositions and other efficient matrix operations.

R users don’t need to be aware of the underlying operations directly.
Functions for numerical linear algebra, statistical models and other applica-
tions will make use of the operations through interfaces to compiled code..
If you are installing R from source on a special computing platform, some
extra steps may be needed to ensure you get efficient versions of the sub-
programs. See the installation instructions and related Web pages and FAQ
lists for your particular platform.

But when does the speed really matter? Throughout this book, our
Mission is exploring data—asking questions and trying out new ideas—and
the other essential criterion is the Prime Directive—providing trustworthy
software. Blazingly fast numerical computation does not directly relate to
the Prime Directive and only serves the Mission when it widens the range
of potential computations. The CPU unit on your computer is likely to be
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idle most of the time, and so it should be if you are spending that time
constructively thinking about what you want to do or contemplating some
interesting data analysis. For many applications the difference between a
very fast numerical method and a similar, less optimized computation would
be barely noticeable. It would be a mistake to choose a computation because
of numerical speed, if an alternative choice would give more informative
results. Having said all that, there remain applications that test the speed
of even current computers. Knowing about fast methods can occasionally let
us ask questions for such applications that would otherwise not be practical.
If you think you have computing needs at this level, by all means try to
apply the matrix techniques to your application (see, for example, Section
6.4, page 161, where some of these techniques are applied to “vectorize” a
computation).

Matrix operations and matrix arithmetic

Matrices in R that contain numerical data can be used with all the standard
arithmetic and comparison operators. The computations work element-by-
element and generally return a matrix of the same dimension as the argu-
ments. Consider computations such as:

x + y; x / y; x ∧ y; x %% y; x >= y;

When either x or y is a matrix, the correct answer is obvious if the other
argument is either another matrix of the same dimensions or a numeric
vector of length 1 (a “scalar”). So, if x is an n by p matrix, the result of
each of the following expressions is also a matrix of this shape:

x ^ 2; x + 1/x; abs(x) >= .01

As the third example shows, the various mathematical and other functions
that operate elementwise return a matrix with unchanged dimensions when
called with a matrix argument.

Operators called with matrix arguments other than the two cases above
are always less clearly defined. R allows a few without comment, warns on
some, and generates an error on others.

1. An error results if the arguments are two matrices of different dimen-
sions.

2. An error also results if one argument is a vector larger than the matrix
(i.e., of length greater than np).
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3. If one argument is a vector exactly of length np, the computation
completes silently.

4. If one argument is a vector of length less than np, the vector is im-
plicitly repeated to be of length np. If the original vector was the
length of a column, n, the computation silent; otherwise, a warning is
generated.

Getting the answer you expect from the last two cases depends on knowing
the representation of a matrix; namely, as a structure with data stored by
columns.

Numerical linear algebra

This section outlines some of the central tools for numerical computations
on matrices, the functions implementing key concepts in numerical linear
algebra, particularly computations related to statistical computing. Most of
the functions interface to implementations in Fortran or C of corresponding
algorithms. Many of the algorithms are taken directly or with some modifi-
cation from LAPACK, a collection of Fortran subroutines well tuned for both
accuracy and speed.

Applications of linear algebra in statistical computing largely come from
considering linear combinations of quantitative variables. The standard
functions for linear models and analysis of variance, as supplied in the stats

package, and extended in a number of other R packages, provide users with
an interface to the models that largely hides the underlying linear algebra.
You should use functions at that higher level unless you really need to work
with the fundamental linear algebra relations directly. If you’re uncertain,
read the documentation for related statistical model software and determine
whether it could meet your needs. If so, use it, because many details will
be handled that could otherwise compromise the quality of the computed
results.

If you really do want to deal with the linear algebra directly, press on,
but you may still want to use utilities from the statistical models software
to convert from variables such as factors into the matrix arguments used for
linear algebra; see, for example, ?data.matrix and ?model.frame.

The fundamental role of linear algebra in statistical computing dates
back a couple of centuries, and is based on the ability to solve two related
computational problems. The first is to find a vector or matrix β that
satisfies a set of linear equations. Using the S language operator, `%*%`, for
matrix multiplication:
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a %*% β = b

where a is a square, p by p, matrix and b is either a vector of length p or
a matrix with p rows. The second problem is linear least-squares, finding a
vector or matrix β that minimizes the column sums of squares

y - x %*% β

where x is an n by p matrix and y is either a vector of length n or a matrix
with n rows.

R functions to solve both of these problems are available and apply to
most applications. They are solve() for linear equations and lm.fit() for
least squares. If your application seems to be expressed naturally as one or
the other of the two numerical problems, you can probably go away now and
use the appropriate function. If you think you need to dig deeper, read on.

The main computational tools for these problems use some fundamental
matrix decompositions, that is, the computation of special matrices and
vectors which if combined, usually by matrix multiplication, would closely
approximate the original matrix. The special forms of the decomposition
allow them to express the solution to the two problems straightforwardly in
most cases, and also make them useful tools in other problems. To see how
these relate to modern numerical linear algebra, a little history is needed.

Prior to large-scale electronic computing, the linear least-squares prob-
lem would be solved by reducing it to a special linear equation. Linear
equations, in turn, could be solved for at least single-digit values of p. When
computers came along, software to solve linear equations was very high prior-
ity, particularly motivated by military applications and problems in physics.
From about the 1960’s, software based on matrix decompositions was de-
veloped for linear equations, for direct solutions to least-squares problems,
and for other problems, such as solving differential equations. The program
libraries implementing these results have continually improved in accuracy,
speed, and reliability. In particular, the LAPACK software for linear algebra
is the current reference for numerical linear algebra, and forms the base for
these computations in R.

What does this history imply for modern statistical computing? First,
that computations expressed in terms of the standard operations of linear
algebra can be applied with confidence, even for quite large problems. If
the matrices involved are not so large that manipulating them in R at all is
impractical, then at least some operations of linear algebra will also likely be
practical for them. Second, a fairly wide range of other computations can be
usefully solved by reducing them to operations in linear algebra, either di-
rectly through some imaginative re-casting (see the discussion of vectorizing
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in Section 6.4, page 158) or by an iterative computation where each iteration
is carried out by linear computations (as is the case for some important sta-
tistical models). The speed and accuracy provided by LAPACK and similar
software means that iterated linear computations may be competitive with
other implementations, even though the amount of “arithmetic” seems to
be larger.

In addition to the functions for fitting statistical models and the func-
tions solve() and lm.fit() to solve equations and least-squares problems,
the base code for R provides access to several matrix decompositions. These
organize themselves naturally on two dimensions; first, on whether the ma-
trix in question is rectangular or square; and, second, between simple de-
compositions and those that maximize an approximation for each submatrix.
The simple decompositions are mainly the qr() function for the QR decom-
position, for rectangular matrices; and the chol() function for the Choleski
decomposition, essentially for cross-products and other matrices with similar
form. The maximizing decompositions are function svd() for the singular-
value decomposition of rectangular matrices and eigen() for the eigenvalue
decomposition of symmetric square matrices. See the online documentation
and the references there for some of the details. To really understand the
decomposition will require digging into the numerical analysis background.
Try the documentation of LAPACK and good books on the subject, such as
Matrix Algorithms by G. W. Stewart [22].

Beyond the base code for R, there are now a number of packages that
extend the range of numerical linear algebra software available. If you have
special needs, such as computations for sparse matrices or other decomposi-
tions, browse in the documentation for the Matrix package by Douglas Bates
and Martin Maechler.

6.9 Fitting Statistical models

R and S-Plus both contain software for fitting and studying the types of sta-
tistical model considered in the book Statistical Models in S [6]. Many of
the techniques described in the book are supplied in the stats package; a
number of other packages fill in the gaps and add other similar types of
models or additional techniques. From a programming viewpoint the essen-
tial property of the software is that it takes a functional, object-based view
of models. For software details, see documentation of the stats package.
In addition to the original reference, nearly all the general introductions
to statistics using R cover the basics; Modern Applied Statistics with S by
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Venables and Ripley [23] gives a broad, fairly advanced treatment.
There are many other sources of software for statistical models as well

(notably for Bayesian model inference and graph-based model formulations).
We will not cover any of these here; in many cases, there are either R im-
plementations or R interfaces to software implemented in other languages.
Good starting points for a search are the "Related Projects" pointer on the
R home page and the usual Web search resources, such as rseek.org.

In the Statistical Models in S approach, the functions to fit various types
of model all take two primary arguments, a formula expressing the structure
of the model and a source of data; they then return an object representing
a fitted model estimated according to the arguments. The type of model
(linear least-squares, etc.) depends on the choice of function and possibly
also on other arguments.

The various top-level fitting functions can be viewed as generators for
corresponding classes of objects. For example, the function lm() fits a lin-
ear model using least-squares to estimate coefficients corresponding to the
formula and data supplied, and returns an object of (S3) class "lm", whose
elements define the fit.

Other functions then take the fitted model object as an argument and
produce auxiliary information or display the model in graphical or printed

and fitted(), with the interpretation depending on the type of model. The
function update() will allow modification of the fitted model for changes
in the data or model. These are S3 generic functions, with methods corre-
sponding to the class of the fitted model. General functions such as plot(),
print(), and summary() also have S3 methods for most classes of models.

The various model-fitting functions share the same main arguments and,
for the most part, similar computational structure. Here are the main steps,
using lm() as an example. The functions generally have arguments formula

and data, and it is from the combination of these that the model-fitting
proceeds:

lm(formula, data, ...)

Caution: formula is always the first argument, but data is not always the
second: check the arguments for the particular function.

The formula argument must be an object of the corresponding "formula"

class, which is generated by a call to the `∼` operator. That operator
returns its call as its value, promoted to the "formula" class, meaning that
the formula is essentially a symbolic constant describing the structure of

form. Functions specifically related to the model software include residuals()
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the model, with one sometimes crucial addition: It has an attribute with a
reference to the environment in which the call took place.

The convention is to read the `∼` as “is modeled by”, so the left-side
argument to the operator is the variable or derived quantity being modeled
and the right-side argument is the expression for the predictor. Just how the
arguments are interpreted depends on the kind of model. Linear models and
their extensions use conventions about the meaning of other operators (`+`,
`*`, and `:`) to indicate combinations of terms, along with other functions
that are interpreted as they usually would be in R. Other models will use
other conventions.

The data argument is optional and if supplied is usually an object of S3
class "data.frame", containing named variables, each of which corresponds
to values on the same n observations. Some of the names will typically
appear in the formula object, and if so, those variables will be used in
fitting the model.

Section 6.5, page 168 discusses "data.frame" objects generally. For
model-fitting, some classes of variables that are valid in a data frame may
not be valid in a particular type of model. Linear models and their exten-
sions in glm() and gam() essentially only allow numeric predictors, which can
be supplied as "numeric", "matrix" or "factor" objects. The matrix must
be numeric with n rows. A factor is included by being coded numerically
using contrasts to differentiate observations according to the levels of the
factor.

The formula and data arguments are used to prepare the more explicit
data required to fit the model. The form depends on the type of model but
again linear models provide an example typical of many types of model.

The preparation of a linear model for actual fitting by lm.fit() proceeds
in two steps. First, a data frame containing the specific variables implied by
the formula and data arguments is computed by the model.frame() function.
Then the matrix for the linear model fitting itself is computed from the
model frame by the model.matrix() function.

The computation of the model frame brings the formula and the supplied
data frame together, evaluating expressions derived from the formula by an
explicit call to eval(). The purpose of the call is to form a data frame
containing all the variables appearing in the formula; this is the “model
frame” object. The model frame also has a "terms" object as an attribute;
essentially, this is the formula with some extra attributes. When the data

argument is supplied and all the variables in the model are found in that
object, the result is to select the suitable variables, and all is well. That’s
the trustworthy approach: Assemble all the relevant variables explicitly in a
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data frame, and supply that data frame to the model-fitting function (lm(),
gam(), etc.).

Otherwise, the computations for the model frame must look elsewhere
for some or all of the variables. The critical fact is that the computations
look in the environment of the formula object, stored in the object as the
environment where the formula was created.

If the formula was typed by the user interactively, then the call came
from the global environment, meaning that variables not found in the data
frame, or all variables if the data argument was missing, will be looked up in
the same way they would in ordinary evaluation. But if the formula object
was precomputed somewhere else, then its environment is the environment
of the function call that created it. That means that arguments to that call
and local assignments in that call will define variables for use in the model
fitting. Furthermore, variables not found there will be looked up in the
parent (that is, enclosing) environment of the call, which may be a package
namespace. These rules are standard for R, at least once one knows that an
environment attribute has been assigned to the formula. They are similar
to the use of closures described in Section 5.4, page 125.

Where clear and trustworthy software is a priority, I would personally
avoid such tricks. Ideally, all the variables in the model frame should come
from an explicit, verifiable data source, typically a data frame object that
is archived for future inspection (or equivalently, some other equally well-
defined source of data, either inside or outside R, that is used explicitly to
construct the data for the model).

Once the model formula and (in the case of linear-style models) the
model matrix have been constructed, the specific fitting mechanism for this
class of models takes over, and returns an object from the corresponding
S3 class, such as "lm", "gam", "nls" and many more. The mechanisms
and the interpretation of the fitted model objects that result vary greatly.
Generally, however, you can get a good picture of the programming facilities
provided by looking for S3 methods associated with the generic functions for
models (residuals(), update(), etc.) and for printed or graphical summaries
(print(), summary(), plot(), etc.).

6.10 Programming Random Simulations

This section considers some programming questions related to the use of

Carlo method.
pseudo-random generators, or less directly, computations involving the Monte-
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We begin by summarizing the overall organization of simulation func-
tions in R, with an assessment of the level of trust one can have in their
“correctness”. A second issue for trustworthy simulation results is that oth-
ers can reproduce them; on page 226 we discuss techniques for this goal.
We then show a related example that examines how robust a simulation
is to small failures in reproducibility (page 230). Finally, on page 234, we
consider the use of generators in low-level code, such as C or C++, which we
may want to use for efficiency.

The starting point for simulating in R is a set of “random generator”
functions that return a specified number of values intended to behave like a
sample from a particular statistical distribution. Because no common gen-
erators in practice use an external source thought to be truly random, we
are actually talking about pseudo-random generators; that is, an ordinary
computation that is meant to simulate randomness. We follow common cus-
tom in this section by dropping the “pseudo-” when we talk about random
generators; you can mentally put it back in, and prepend it to statements
about how “likely” some event is, or to other properties of sequences from
pseudo-random generators.

Basic concepts and organization

R provides random generators for a variety of statistical distributions as
well as some related generators for events, such as sampling from a finite
set. Conceptually, all the generators in the stats package work through the
package’s uniform generator, either at the R level or the C level. This leads
to the key techniques for achieving trustworthy software for simulation, as
we explore on page 226, but the concept is worth noting now.

Random generators don’t follow the functional programming model, as
implemented in R or in most other systems, because they depend on a cur-
rent global state for the generator. How would we formulate a functional
approach to simulation? Given that all generators work through the uni-
form generator, we could imagine an object that is our personal stream of
uniform random numbers. If this stream was an argument to all the actual
generators and to any other function for simulation, then all the remaining
computations can be defined in terms of the stream. In practice, this would
require quite a bit of reorganization, but the essential point is that no other
external dependence is required.

In practice, such a stream is represented by a seed for the generator. A
combination of techniques in the stats package and some extensions in the
SoDA package can get us trustworthy software, essentially by incorporating
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sufficient state information with the computed results.
Functions for probability distributions in R are organized by a naming

tradition in the S language in which the letters "r", "p", "q", and "d" are
prepended to a fixed name for a distribution to specify functions for random
numbers, cumulative probability, quantiles, and density function values for
the distribution. So, "unif" is the code for the uniform distribution, result-
ing in functions runif(), punif(), qunif(), and dunif() (admittedly, none
but the first of these is hard to program). Similar functions are defined for
the normal ("norm"), Poisson ("pois"), and a number of others, all on the
core package stats; to look for the distribution you need, start with:

help.search("distribution", package = "stats")

Some distributions may not have all four functions. If no random generator
is provided but a quantile function does exist, you can get a random sample
by what’s known as the probability integral transformation, which just says to
compute the quantiles corresponding to a sample from the standard uniform
distribution. The Studentized range ("tukey") distribution has a quantile
version but no random generator, so you could define a rough version for it
as:

rtukey <- function(n, ...)
qtukey(runif(n), ...)

Where some functions are missing, there may be numerical issues to consider,
so it’s a good idea to check the documentation before putting too much faith
in the results.

Additional random generators are supplied in other packages on CRAN

and elsewhere; for these non-stats generators, especially, you should check
whether they are integrated with the basic uniform generator if trustworthy
results are important.

Are pseudo-random generators trustworthy?

From early days, statistical users of generators have asked: “Can the num-
bers be treated as if they were really random?”. The question is difficult
and deep, but also not quite the relevant one in practice. We don’t need
real randomness; instead, we need to use a computed simulation as the ap-
proximate value of an integral (in simple cases) or an object defined as a
probabilistic limit (for example, a vector of values from the limiting distri-
bution of a Markov chain). All we ask is that the result returned be as good
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an approximation to the limit value as probability theory suggests. (We’d
even settle for “nearly as good”, if “nearly” could be quantified.)

Good current generators justify cautious confidence, with no absolute
guarantees, for all reasonably straightforward computations. Popular gen-
erators, such as the default choice in R, have some theoretical support
(although limited), have performed adequately on standard tests, and are
heavily used in an increasingly wide range of applications without known
calamitous failures. R’s default generator is also blazingly fast, which is an
important asset as well, because it allows us to contemplate very extensive
simulation techniques.

If this sounds like a lukewarm endorsement, no radically better support
is likely in the near future, as we can see if we examine the evidence in a
little more detail.

As in the stats package, we assume that all simulations derive from
a uniform pseudo-random generator, that is, a function that simulates the
uniform distribution on the interval 0 < x < 1. Function runif() and
a corresponding routine, unif_rand, at the C level are the source of such
numbers in R.

If one completely trusted the uniform generator, then that trust would
extend to general simulations, as far as approximating the probabilistic limit
was concerned. There would still be questions about the logical correctness
of the transformation from uniforms to the target simulation, and possibly
issues of numerical accuracy as well. But given reassurances about such
questions, the statistical properties of the result could be counted on.

The evidence for or against particular generators is usually a combination
of mathematical statements about the complete sequence, over the whole
period of the generator, and empirical tests of various kinds. A complete
sequence is a sequence from the generator with an arbitrary starting point
such that, after this sequence, the output of the generator will then repeat.

Generators going back to the early days provide equidistribution on the
complete sequence. That is, if one counts all the values in the sequence that
fall into bins corresponding to different bit representations of the fractions,
the counts in these bins will be equal over the complete sequence. More
recent generators add to this equidistribution in higher dimensions; that is,
if we take k successive numbers in the sequence to simulate a point in a
k-dimensional unit cube, then the counts in these k-dimensional bins will
also be equal over the complete sequence.

Such results are theoretically attractive, but a little reflection may con-
vince you that they give at best indirect practical reassurance. The period
of most modern generators is very long. The default generator for R, called
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the “Mersenne-Twister” has a period a little more than 106000, effectively
infinite. (To get a sense of this number, I would estimate that a computer
producing one random uniform per nanosecond would generate about 1025

numbers, an infinitesimal fraction of the sequence, before the end of the
earth, giving the earth a rather generous 10 billion years to go.)

Sequences of a more reasonable length are not directly predictable, nor
would you want them to be. Exact equidistribution over shorter subse-
quences is likely to bias results.

A more fundamental limitation of equidistribution results, however, is
that most use of generators is much less regular than repeated k-dimensional
slices. Certainly, if one is simulating a more complex process than a sim-
ple sample, the sequence of generated numbers to produce one value in the
final set of estimates will be equally complex. Even for samples from dis-
tributions, many algorithms involve some sort of “rejection” method, where
candidate values may be rejected until some criterion is satisfied. Here too,
the number of uniform values needed to generate one derived value will be
irregular. Some implications are considered in the example on page 230.

Turning to empirical results, certainly a much wider range of tests is pos-
sible. At the least, any problem for which we know the limiting distribution
can be compared to long runs of a simulation to test or compare the gener-
ators used. Such results are certainly useful, and have in the past shown up
some undesirable properties. But it is not easy to devise a clear test that
is convincingly similar to complex practical problems for which we don’t
know the answer. One needs to be somewhat wary of the “standardized test
syndrome” also, the tendency to teach students or design algorithms so as
to score well against standardized tests rather than to learn the subject or
do useful computations, respectively.

The results sound discouraging, but experience suggests that modern
generators do quite well. Lots of experience plus specific tests have tended
to validate the better-regarded generators. Subjective confidence is justified
in part by a feeling that serious undiscovered flaws are fairly unlikely to
coincide with the pattern of use in a particular problem; based on something
of a paraphrase of Albert Einstein to the effect that God is mysterious but
not perverse.

To obtain this degree of confidence does require that our results have
some relation to the theoretical and empirical evidence. In particular, it’s
desirable that the sequence of numbers generated actually does correspond
to a contiguous sequence from the chosen generator. Therefore, all the
generators for derived distributions should be based in a known way on
uniform random numbers or on compatible R generators from the standard
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packages. New generators implemented at the level of C code should also
conform, by using the standard R routines, such as unif_rand. One wants
above all to avoid a glitch that results in repeating a portion of the generated
sequence, as could happen if two computations used the same method but
inadvertently initialized the sequence at two points to the same starting
value. Taking all the values from a single source of uniforms, initialized
once as discussed below, guards against that possibility.

In using packages that produce simulated results, try to verify that they
do computations compatible with R. There are packages on CRAN, for ex-
ample, that do their simulation at the C level using the rand routine in the
C libraries. You will be unable to coordinate these with other simulations
in R or to control the procedures used. If you are anxious to have reliable
simulations, and particularly to have simulations that can be defended and
reproduced, avoid such software.

Reproducible and repeatable simulations

Ensuring that your simulation results can be verified and reproduced re-
quires extra steps, beyond what you would need for a purely functional
computation. Reproducible simulations with R require specifying which gen-
erators are used (because R supports several techniques) and documenting
the initial state of the generator in a reproducible form. Another computa-
tion that uses the same generators and initial state will produce the same
result, provided that all the numerical computations are done identically.
The extra requirement is not just so that the last few bits of the results will
agree; it is possible, although not likely, that numerical differences could
change the simulation itself. The possibility comes from the fact we noted
earlier: Nearly all simulations involve some conditional computation based
on a numerical test. If there are small numeric differences, and if we run a
simulation long enough, one of those conditional selections may differ, caus-
ing one version to accept a possible value and the other to reject the value.
Now the two sequences are out of sync, a condition we discuss as random
slippage on page 230. To avoid this possibility, the numerical represen-
tations, the arithmetic operations, and any computational approximations
used in the two runs must be identical.

The possibility of numerical differences that produce random slippage
emphasizes the need to verify that we have reproduced the simulation, by
checking the state of the generator after the second run. To do so, we need
to have saved the final state after the initial run. Verification is done by
comparing this to the state after supposedly reproducing the result. Both
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the two simulation results and the two states should match.
But reproducing a simulation exactly only tests that the asserted compu-

tations produced the results claimed, that is, the programming and software
questions. For simulations, another relevant question is often, “How do the
results vary with repeated runs of this computation?”. In other words, what
is the statistical variability? Repeated runs involve two or more evaluations
of the computation, conceptually using a single stream of random numbers,
in the sense introduced on page 222.

A simulation result is repeatable if the information provided al-
lows the same simulation to be repeated, with the same result
as running the simulation twice in a single computation.

The technique to assure repeatability is to set the state of the generator
at the beginning of the second run to that at the end of the first run.
Once more, we see that saving the state of the generator at the end of the
simulation is essential.

The SoDA package has a class, "simulationResult", and a related function
of the same name that wraps all this up for you. It records the result of an
arbitary simulation expression, along with the expression itself and the first
and last states of the generator. An example is shown on page 230.

The state, or seed as it is usually called, is a vector of numbers used by
a particular uniform generator. Intuitively, the generator takes the numbers
and scrambles them in its own fashion. The result is both a new state and
one or more pseudo-random uniform numbers. The generators are defined
so that n requests for uniform variates, starting from a given initial state
will produce the same final state, regardless of whether one asks for n vari-
ates at once or in several steps, provided no other computations with the
generator intervene. The information needed in the state will depend on
which generator is used.

The user’s control over the generator comes from two steps. First, the
generating method should be chosen. R actually has options for two gen-
erators, for the uniform and normal distributions. For completeness you
need to know both, and either can be specified, via a call to the function
RNGkind(). The call supplies the uniform and normal generator by name,
matched against the set of generators provided. For those currently avail-
able, see the documentation ?RNGkind. If you’re happy with the default
choices, you should nevertheless say so explicitly:

RNGkind("default", "default")
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Otherwise R will continue to use whatever choice might have been made
before. Provided we know the version of R, that specifies the generators
unambiguously.

Second, the numerical seed is specified. The simplest approach is to call:

set.seed(seed)

where seed is interpreted as a single integer value. Different values of seed

give different subsequent values for the generators. For effective use of
set.seed(), there should be no simple relation of the state to the numerical
value of seed. So, for example, using seed+1 should not make a sequence
“nearer” to the previous one than using seed+1000. On the other hand,
calling set.seed() with the same argument should produce the same sub-
sequent results if we repeat exactly the same sequence of calls to the same
generators.

The use of an actual seed object can extend the control of the generators
over more than one session with R. As mentioned before, the generators must
save the state after each call. In R, the state is an object assigned in the top-
level, global environment of the current session, regardless of where the call
to the generator occurred. This is the fundamentally non-functional mech-
anism. The call to set.seed() also creates the state object,.Random.seed,
in the global environment. After any calls to the uniform generator in R,
the state is re-saved, always in the global environment. Note, however, that
random number generation in C does not automatically get or save the state;
the programmer is responsible for this step. See the discussion and examples
on page 234.

When the generator is called at the beginning of a session, it looks for
.Random.seed in the global environment, and uses it to set the state before
generating the next values. If the object is not found, the generator is
initialized using the time of day. As you might imagine, the least significant
part of the time of day, say in milliseconds, would plausibly not be very
reproducible, and might even be considered “random”.

To continue the generator sequence consistently over sessions, it is suffi-
cient to save .Random.seed at the end of the session, for example by saving
the workspace when quitting. The .Random.seed object can also be used to
rerun the generator from a particular point in the middle of a simulation,
as the following example illustrates.
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Example: Reproducible computation using simulations for
model-fitting

One aspect of the Prime Directive is the ability to reproduce the result
of a computation: To trust the result from some software, one would at
least like to be able to run the computation again and obtain the same
result. It’s natural to assume that a fitted model is reproducible, given the
data and knowledge of all the arguments supplied to the fitting function
(and, perhaps, some information about the computing platform on which
the computation ran).

For classical statistical models such as linear regression, reproducibility is
usually feasible given this information. But a number of more modern tech-
niques for model-fitting, statistical inference, and even general techniques
for optimization make use of simulations in one form or another. Modern
Bayesian techniques do so extensively. But other techniques often use sim-
ulated values internally and here the dependence may be less obvious. A
whole range of optimization techniques, for example, use pseudo-random
perturbations.

The package gbm by Greg Ridgeway fits models by the technique of “gra-
dient boosting”. In Section 12.6, page 441, we look at the software as an
example of an interface to C++. Examining the code shows that the method
uses random numbers, but a casual reader of the literature might easily not
discover this fact. If not, the non-reproducibility of the results might be a
shock.

Running example(gbm) from the package produces gbm1, a model fitted
to some constructed data, and then continues the iteration on that model
to produce a refined fit, gbm2. If the results are reproducible, we should be
able to redo the second stage and get an object identical to gbm2:

> gbm2 <- gbm.more(gbm1,100,
+ verbose=FALSE) # stop printing detailed progress

> gbm22 = gbm.more(gbm1,100,verbose=FALSE)
> all.equal(gbm2, gbm22)

[1] "Component 2: Mean relative difference: 0.001721101"
[2] "Component 3: Mean relative difference: 0.0007394142"
[3] "Component 4: Mean relative difference: 0.0004004237"
[4] "Component 5: Mean relative difference: 0.4327455"

And many more lines of output

Component 2 is the fitted values. A difference of .1% is not huge, but it’s not
a reproducible computation, perhaps weakening our trust in the software.
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In fact, nothing is wrong except that we don’t have control of the state of
the generator.

Examining the implementation shows that the C++ code is import-
ing the R random number generator, but is not providing a mechanism
to set the seed. Once this is seen, a solution is straightforward. The
simulationResult() function in the SoDA package wraps the result of an
arbitrary expression to include the starting and ending states of the gener-
ator.

run2 <- simulationResult(
gbm.more(gbm1, 100, verbose = FALSE))

By making the previous expression the argument to simulationResult(), we
can at any time reset the generator to either the first or last state corre-
sponding to the run.

> .Random.seed <- run2@firstState
> gbm22 <- gbm.more(gbm1,100,verbose=FALSE)
> all.equal(run2@result, gbm22)
[1] TRUE

Remember that the generator looks for the seed only in the global environ-
ment; if the computation above were done in a function, the first step would
require:

assign(".Random.seed", run2@firstState, envir = .GlobalEnv)

Example: Are pseudo-random sequences robust?

Our next example investigates what happens when a sequence of generated
numbers is perturbed “a little bit”. As mentioned earlier, such slippage can
occur in an attempt to reproduce a simulation, if small numerical differences
cause a conditional result to be accepted in one case and rejected in the other.
To catch such an event is tricky, but we can emulate it and study the effect.
Does such a small change completely alter the remainder of the simulation
or is there a resynchronization, so that only a limited portion of the results
are changed?

Consider the following experiment. We simulate n = n1 + n2 values
from the normal distribution, in two versions. In the first version, nothing
else is generated. In the second version, we make the smallest possible
perturbation, namely that after n1 values are generated, we generate one
uniform variate, then go on to generate n2 more normals, as before. What
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should happen? And how would we examine the results of the two runs to
describe the perturbation?

In the simplest concept of a generator, each normal variate is generated
from a uniform variate. The obvious method is to compute the quantile
corresponding to the generated uniform, in this case qnorm(runif(1)). With
this computation, the second sample lost out on one normal value, but from
then on the samples should match, but just be off by one.

As it happens, the default normal generator in R is indeed defined as this
computation, known in Monte-Carlo terminology as the inversion method.
We might expect the slippage as described, but in fact that does not happen.
All the generated values in the second version are different from those in the
first version. Why? Because the inversion code uses two uniforms in order
to get a more extended argument for the quantile function. As a result, if
the slippage involves an even number, 2k, of uniforms, then the output will
resynchronize after k values, but slippage by an odd number of uniforms will
never resynchronize.

The default algorithm for normals shows the fragility, but an alternative
algorithm gives a more typical example. Let’s set the normal generator
technique by:

RNGkind(normal.kind = "Ahrens-Dieter")

This technique uses some tests to choose among alternative approximations,
so that the number of uniform values needed per normal variate is random
(well, pseudo-random). To see how slippage affects this algorithm, let’s
program our experiment. The computation in a general form is done by the
function randomSlippage() in the SoDA package, which does essentially the
following computation.

We carry out the preliminary simulation, and save the state:

g1 <- rnorm(n1)
saveSeed <- .Random.seed

Now we carry out the second simulation and save the result, twice. The
second time we reset the seed, but this time generate some uniforms (1 in
the simplest experiment), before the repeated simulation:

g21<-rnorm(n2)
assign(".Random.seed", saveSeed, envir = .GlobalEnv)
u1<-runif(slip)
g22<-rnorm(n2)
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The next step is to compare the second batch of normal variates, g21 and g22

from the two branches. The question of interest is whether the two sequences
resynchronize and if so, where. The generator starts off producing values
under the two situations. If at some point the two batches contain exactly
the same number, we expect this to have been produced by the same set of
uniforms in both cases, given our overall confidence in the uniform generator.
From this point on, the two sequences should be exactly identical, after
having slipped some amount on each sequence. The two slippage amounts
measure how much we have perturbed the simulation.

How to program this? Whenever the word “exactly” comes up in com-
parisons, it’s a clue to use the function match(). We’re dealing with numer-
ical values but are uninterested in these as numbers, only in equality of all
the bits. Suppose we match the two second-part sequences:

m <- match(g21, g22)

What do we expect in m? Because the second sequence inserted slip uni-
forms, we expect the first few elements of g21 won’t appear in g22. The
corresponding elements of m will be NA. If the sequence resynchronizes, some
element will match beyond some point, after whihc all the elements of m

should be successive positive integers. The two numbers representing the
slippage are the index of the first non-NA value in m, and the corresponding
element of m. In the following code, we find this index, if it exists, and
insert the two numbers into a row of the matrix of slippage values being
accumulated.

seqn2 <-() seq(along = g21)
m <- match(g21, g22)
k <- seqn2[!is.na(m)]
if(length(k) > 0) {

k <- k[[1]]
slippage[i,] <- c(k, m[[k]])

}

If the normal generator uses just one uniform, then we expect the second
item in the unperturbed generator to match the first in the perturbed gener-
ator if slip is 1. The corresponding row of the test results would be c(2, 1).
The Ahrens-Dieter generator uses one value most of the time, and applies
various tests using more uniform values to match the generated distribution
to the normal. Here is an example, doing 1000 runs, and then making a
table of the results:

> RNGkind("default", "Ahrens")
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> set.seed(211)
> xx <- randomSlippage(1000, rnorm(10), rnorm(10))
> table(xx[,1], xx[,2])

1 2 3 4 5 6 7 8
2 891 49 5 24 9 2 3 1
3 0 4 1 2 1 1 0 0
4 0 2 1 1 1 0 0 0
5 0 0 1 0 0 0 0 0
6 0 1 0 0 0 0 0 0

As expected, about 90% of the time the generator resynchronizes after miss-
ing one of the original values. The remainder of the pattern is more complex,
depending on the algorithm’s choices of alternative computation in the per-
turbed or unperturbed sequence.

Notice that the experiment specified both the initial seed and the types of
generator to use. The initial value of .Random.seed will contain the internal
version of both the seed and the choices of generator. This seed is included
as an attribute of the value returned by randomSlippage(), so to redo the
computations:

.Random.seed <- attr(xx, "seed")
newXX <- randomSlippage(1000, rnorm(10), rnorm(10))

The various other arguments could be inferred from the previously returned
value as well. When designing simulation experiments for serious applica-
tions, try to include such information in the object returned, particularly
the initial seed.

A few programming comments on randomSlippage(). It takes two literal
expressions as arguments, the computations to be done before and after the
slippage, as well as a third argument for the slippage itself, which defaults
to runif(1). As often in programming with R, we have turned the specific
experiment into a rather general technique with only a little extra work, by
computing with the language itself. The expression for the simulation after
the slippage can do anything at all, so long as it returns an object for which
the matching comparison makes sense. See the listing of the function in the
SoDA package for details.

A note on vectorizing : Because the result returned uses only the first
matching position, on the assumption that the two series are then synchro-
nized, one might object to matching the whole object. However, because
match() operates by creating a hash table, it is fast for comparing a number
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of values in its first argument. Testing for the first element, then the second
if necessary, and so on, would tend in fact to be slower.

The extra information from the full match also allows us to test our
assumption that the two sequences are synchronized if they ever have equal
elements. The randomSlippage() function includes a check argument, FALSE
by default, that optionally tests the assumption:

if(check && k1 < n2
&& ( any(diff(k) != 1) || any(diff(m[k]) != 1)))

stop("Non-synchronized .....")

In a sufficiently large simulation, exactly identical values could in principle
occur without the generator being resynchronized.

Pseudo-random generators in C

Simulating a process that is not simply a large sample of independently gen-
erated values often leads to a one-number-at-a-time computation. The next
value to be generated requires tests based on the preceding values and/or
involves trying various alternatives. It’s natural to look for computationally
efficient software in a language such as C in these cases. Software for simula-
tion is not trivial, however, and when written in such languages needs to be
both flexible to use and trustworthy, our two guiding principles. Whether
you are evaluating someone else’s software or planning your own, here are
some suggested guidelines.

The low-level implementation of techniques should not compromise users’
flexibility, their ability to use the simulation software to explore freely (the
Mission). That’s a guideline for all low-level code, and largely means that
the C code should be a small set of clear, functionally designed tools. The
standard approach via the .C() or .Call() interface would be to design a set
of R functions. The functions should have a clear purpose, be well-defined
in terms of their arguments and together give the user a flexible coverage of
the new simulation techniques.

From the viewpoint of trustworthy software (the Prime Directive), extra
care is particularly important with simulation, because programming errors
can be hard to detect. Because the computations are by definition (pseudo-
)random, some aspects of the code will only be tested rarely, so bugs may
only show up much later. Some special requirements come from the repro-
ducibility aspects noted above. For trustworthiness as well as convenience,
the techniques should conform to standard conventions about setting seeds
and choice of basic generators, in order for results of the new functions to
be reproducible and therefore testable.
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C-level access to the basic R generators is supplied by a simple interface
with access to the uniform, normal and exponential distributions. The offi-
cial interface is described in the Writing R Extensions manual, and consists
of the routines:

double unif rand();
double norm rand();
double exp rand();

For most purposes, the uniform generator is likely to be the essential inter-
face. It is essential for consistency with other simulation computations that
the C code get the state of the generator (that is, the seed) before calling
any of these routines and save the state after finishing the simulation. These
two operations are carried out by calling the C routines:

GetRNGstate();
PutRNGstate();

Therefore, any C routine that does some simulation and then returns
control to R should be organized somewhat like the following, imaginary
example. The following snippet uses the .C() interface, to a C routine
my simulation taking arguments for a vector pars of parameters defining
the simulation and a vector x in which to store and return some computed
values. The lower-level routine called in the loop will do something involv-
ing unif_rand and/or the normal or exponential routines, and return one
numeric value from the simulation. The simulation in the loop is bracketed
by getting the state of the generator and putting it back.

void my simulation(double *x, double *pars,
double *nx ref, double *npars ref) {

long nx = *nx ref, npars = *npars ref, i;

GetRNGstate(); /* initialize random seed */
for(i = 0; i <nx; i++) {

x[i] = do some simulation(pars, npars);
}

PutRNGstate(); /* save random seed before returning */

}

A more extensive computation may prefer to use C++, as is the case with
several packages on CRAN. For an example of a C++ interface to the R

generators, see Section 12.6, page 442.
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There are many libraries of random number generators, other than those
in R. However, from our guiding principles of usefulness and trustworthy
software, I think the burden of proof is on having a good reason not to use
the interface to the R generators. The basic generators have been carefully
studied and very extensively used in practice. They include a number of
currently competitive algorithms, and have facilities for introducing user-
defined generators (although that’s an activity probably best left to those
who specialize in the field). Most importantly, they can be combined with a
wide variety of other R software, both for simulation and for general support.

If you are using some simulation software in a package, I would recom-
mend testing whether the software is properly integrated with the basic R

simulation mechanism. The test is easy: set the seed to anything, do a
calculation, then reset the seed to the same value and repeat the calcula-
tion. If the two values are not identical (and you really have asked for the
identical computation from the package), then there is some "slippage" as
in our example. Quite possibly the slippage is total, in that the package is
using a different generator, such as that supplied with the basic C library.
Unless there is a good alternative mechanism, it’s a definite negative for the
package.



Chapter 7

Data Visualization and
Graphics

One of the main attractions of R is its software for visualizing
data and presenting results through displays. R provides func-
tions to generate plots from data, plus a flexible environment
for modifying the details of the plots and for creating new soft-
ware. This chapter examines programming for graphics using R,
emphasizing some concepts underlying most of the R software
for graphics. The first section outlines the organization of this
software. Section 7.2, page 242, relates the software to the x-y
plot as the most valuable model for statistical graphics with R.
The next four sections provide the essential concepts for com-
putational graphics in R (7.3, 253) and relate those to the three
main packages for general-purpose graphics, base graphics (7.4,
263), grid (7.5, 271), and lattice (7.6, 280).

A note on terminology: The terms graph and graphical may be ambigu-
ous. A graph can refer to a piece of graphics display or output, but it can
also refer to the mathematical concept of a set of nodes connected by edges.
And by extension, both uses can be applied to software related to one or
the other meaning. Similarly, the adjective graphical can refer to aspects of
either meaning or to the related software (for example, graphical parameters
on the one hand, and graphical models on the other). Both topics are rele-
vant and interesting for this book, though admittedly the mathematical one
is much less central. For clarity, the terms graphics and graphical through-
out the book refer to the topic of this chapter, and the term graph refers to
the thing with nodes and edges.

237
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7.1 Using Graphics in R

This section offers some background and suggestions mainly aimed at those
who are starting to use graphics in R, or adding graphics to a project not
currently using it. We begin with an outline of graphics packages in R, with
some suggestions for choosing software for a particular project. We then
discuss the options for output devices (page 240).

Graphics presentations are very powerful for examining some aspects of
data. Their essential advantage is that the eye can absorb a great deal of
information from suitable visual summaries; for example, summarizing the
relationship between two variables by versions of the classic “x-y” or “scat-
ter” plot (see Section 7.2, page 242). For exploring data, flexibility and a
clear understanding of how the graphics relate to the data are particularly
important. Graphics have an unequaled ability to simultaneously show pat-
terns in the data (curves and surfaces, for example) and also to relate the
data to those patterns (to show which points seem not to follow the curve).
Where printed versions of models and specific summary statistics necessarily
boil down the story into a few numbers or strings, graphics can leave much
more of the interpretation to the viewer.

The ability in R to produce relevant graphical summaries by simple pro-
gramming is one of the system’s main contributions to effectively exploring
data. Choosing clearly interpretable data visualization (such as the x-y
plot, again) adds to the trust users can place in the data analysis. So both
our fundamental principles motivate attention to graphics.

Graphics packages in R

Software in R exists to provide a wide variety of plots, describing particular
classes of objects or giving visual presentations related to various statistical
techniques. Many R packages provide specialized graphics. In addition, R

has two general packages for basic graphics programming, representing an
early and a more recent approach:

• the graphics package (Section 7.4), which implements the original
graphics computations in the S language;

• the grid package (Section 7.5), which implements a newer approach
to graphics computations.

For a particular project, you will usually be wise to choose one or the other
of the approaches. They cover roughly the same ground, but require extra



7.1. USING GRAPHICS IN R 239

effort to use together. In addition, a third general graphics package should
be mentioned:

• the lattice package (Section 7.6), which implements the “trellis”
model of data visualization.

The graphics package and the lattice packages both contain a number of
high-level functions, intended to produce a complete display from one call.
The graphics and grid package both contain a set of lower-level functions
for constructing graphics. A number of other packages provide graphics
for specialized purposes, most but not all of them based on the graphics

package.
How to choose an approach for a specific project? The following sugges-

tions may help:

1. Look first for an existing function that does what you want, or nearly
so, and start with that. Search among the high-level functions in the
lattice and graphics packages, and in other packages, for something
that sounds promising.

2. Existing software can often be customized either by using optional
arguments or graphical parameters, or by adding to the plot using low-
level functions from the same package used by the existing function.

3. If you must do a lot of new programming or if you are concerned to
end up with some high-quality new software, you should favor the grid

package, for the flexibility outlined in section 7.5.

Basically, use existing functions if those do what you want, or can be mod-
ified through changing the arguments and/or adding some straightforward
additional computations. Many R packages include specialized graphics for
the objects or the analysis they support, and the majority of these are based
on the graphics package. Both graphics and grid allow adding graphics ele-
ments to plots and both make use of graphical parameters to control drawing
details.

The graphics and grid package share a common model (see section 7.3),
but the graphics package is old in design, and somewhat fragmented and
inconsistent in implementation, because it grew up during the early days of
R development. The computations in grid use a more powerful model, often
more convenient for a serious programming effort, especially if the applica-
tion benefits from any of the key advantages of grid: manipulating graphics
objects, using graphics computations recursively, and dealing precisely with
the details of the graphics computation, such as the positioning and layout.



240 CHAPTER 7. DATA VISUALIZATION AND GRAPHICS

Graphics output and graphics devices

Both the traditional graphics package and the grid package eventually use
low-level device software for converting the graphics to some non-R form
that will then be displayed on a screen, included in a document, or otherwise
made visible. If you are using R interactively, graphics will usually be shown
automatically in a window, via a suitable default device for your operating
system and hardware. If you need to keep copies of some of the graphics
output, facilities in your R interface may provide a technique (the "Save As"

directive in a GUI, for example); if not, applications in the operating system
will usually allow you to copy the relevant portion of the screen. You will
not need to select a graphics device explicitly for any of these requirements.
On the other hand, you may need to be involved with devices if you want
to generate a substantial amount of graphics output, if you need to create
output for a specific documentation system, or if you want control over
detailed appearance of the graphics output. If so, read on in this section.

Computer graphics has always had an implicit distinction between on-
line graphics devices, to be used for interactive viewing, and offline devices
for generating reports. By the mid-1960s, graphics output devices provided
options for either high-quality output (via early microfilm recorders) or dy-
namic displays (via oscilloscopes and other “tubes”), but both were luxury
hardware.

The situation has changed greatly since then. Most users of statisti-
cal computing now have monitors with both reasonable resolution and dy-
namic capabilities. Most users also have access to printers, usually including
color, capable of quite high-quality static graphics. (Comparable capabilities
would not have been available forty years ago at any price, and the closest
approximations we had at Bell Labs represented a significant fraction of the
research budget for computer hardware.) Graphics devices remain a rele-
vant concept, but at a higher level. Modern devices for statistical graphics
are more typically defined in terms of other software rather than hardware:
the window manager for interactive displays and the formatting system for
printed output.

The package grDevices supports a number of such devices, and is used
by both basic approaches to graphics in R. See ?Devices for a list of available
devices. A suitable default device will produce plots in a window on your
monitor; on Windows or Mac OS X this will be a device using the native
graphics software; on Linux the X11 software is the usual default for online
displays. Off-line plots will be generated in one of the graphics languages or
formats, typically written to a file that will then be included in a document.
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The plots in this book, for example, used the pdf() function to create PDF

files, a good choice for portable output. If you want online graphics that is
platform-independent, the x11() device function is the best choice, but it is
not required on all platforms, so you may need to arrange to install it. If
you are running via a remote shell or using a network of computers, x11()
will be the most likely choice for online display.

Most programming of R graphics is device-independent, in the sense
that we describe graphics independently of the physical details of the de-
vice. Once we understand some of the options for choosing and controlling
the output, such details can be ignored most of the time in our program-
ming. Not entirely, however, and you need to watch out for hidden device
dependencies in your graphics techniques (see the example on page 251).
Whenever choices are made based on how the plot appears there is a danger
that the choice has been influenced by the device currently in use. Color
especially is highly subjective and will appear differently on different mon-
itors, still more so between displayed and printed graphics. A technique
that depends on color subtly risks a hidden dependence on the device being
used when the technique was programmed (for example, the choice of partial
transparency to improve scatter plots of large amounts of data depends on
the display, as well as on the particular data).

The grDevices package also contains some other software, providing tools
for controlling the rendering of graphics (color and fonts, for example). If
you do need to make explicit use of ranges of color to encode information
in a plot, flexible functions exist to create colors. See the documentation
for ?rainbow in the grDevices package, and other functions referenced there;
the CRAN repository has some other packages, such as RColorBrewer, for
specialized generation of colors. Section 7.3, page 258 presents some details
and an example.

Whatever the device, R graphics follows a static, “painting”, model (see
Section 7.3, page 253). Graphic elements are drawn, and remain visible until
painted over. Interaction can be added to allow the user to make changes,
perhaps in a non-programming style using the mouse or other input tech-
niques. But true dynamic graphics requires a different model; not least,
usually a concept of graphics objects as being modified and automatically
re-displayed by efficient dynamic computations. Integrating such computa-
tions with the data analysis using R is a powerful approach, but best done
via an interface to software specially designed for dynamic graphics. For
example, the GGobi software provides dynamic displays for high-dimensional
data (more than 2 or 3 variables) and for other dynamic data visualization.
Although the software is not written to use R graphics, there are interfaces
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between R and GGobi. See the book by Diane Cook and Deborah Swayne
[10] and the Web site, ggobi.org for details on GGobi.

7.2 The x-y Plot:
The Foundation of Statistical Graphics

One single idea epitomizes the value of statistical graphics, and provides a
model for the computations: the x-y plot, a plot that displays pairs of data
values from two quantitative variables.

First, the x-y plot brings the power and flexibility of visualization to
bear on what is arguably the most fundamental goal of scientific data anal-
ysis: to understand or predict the behavior of one variable based on the
observed pattern of one or more other variables. This idea recurs through-
out our discussions; for example, in arguing for the fundamental nature of
the data frame concept. Historically, it goes back to early scientific studies
and beyond. How does the position of Mars vary with the time of observa-
tion? How does the location of sunrise vary with the days of the year? How
does the time for an object to fall vary with distance? What is the relation
between body and brain weight for different species? Visualizing such rela-
tions provides a richer tool for observers, more open to new insights, than a
few numerical summaries.

Second, among visualization techniques, the x-y plot uses the visual en-
coding that we can read most informatively: position related to linear scales.
Intuitively, we spend our whole lives in activities that demand locating po-
sitions from left to right and from up to down. Perception studies reinforce
this intuition. We can infer quantitative information best from position;
and, although we see in three dimensions, the depth perception ability is
relatively weak compared to horizontal and vertical perception. Examples
in this section illustrate both these points.

It’s also relevant that our computer screens, and the paper pages that
preceded them as graphics devices, are flat and rectangular, just waiting for
an x-y plot to be drawn on them.

An x-y plot specializes to a scatter plot when the data values are dis-
played as “points” (as a symbol drawn at the locations on the plot that are
linear transformations of the x and y values). In the graphics package, a
scatter plot of log(brain) on the y-axis against log(body) on the x-axis is
produced by the function call:

plot(log(body), log(brain)) ## graphics package
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In the lattice package, based on grid, a similar plot, shown below, is pro-
duced by:

xyplot(log(brain) ∼ log(body)) ## lattice package

The plot in this case shows the relation between body weight and brain
weight for 62 species of mammals. The dataset is included in the MASS

package in R, and has been used as an example in many statistics texts; see
the references in the R documentation, ?mammals, of the dataset. That the
plot uses logarithmic transformations of the variables is itself the result of the
scientific analysis of this data, for which interactive use of data visualization
is important.

The basic scatter plot is a powerful tool in itself, but the x-y plot can
be adapted to display additional information, while retaining the power of
the x-y information. Minor additions to the R functions for scatter plots
can often add crucial information, through extra arguments or additional
function calls. The x-y plot provides a good starting point, both visual and
computational, for using graphics to explore data. The basic visual notion
represents two sets of quantitative values by plotted symbols (points), using
horizontal (x) and vertical (y) positions on the plot to represent numerical
values. But the plot need not simply display a symbol at each of the points.
Depending on the context, additional variables and/or relationships between
points can be coded on the plot. Some examples are shown at the end of
this section.
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If the number of points is very large, a simple scatter plot may lose
detail. A number of alternatives can be used to compensate: drawing the
points with partial transparency; replacing individual points with symbols
denoting clusters; or estimating and displaying a density function for the
points. Additional information about a variable (for example, that it rep-
resents a time or a physical location) can be important in making choices
about how to display the data. All the techniques still exploit the essential
x-y graphics. All are aimed at helping us examine the relation between the
variables.

The call to xyplot() emphasizes this aspect: the first argument to the
call is an S-language formula defining the relation to be shown. You could
read the formula “log(brain) ∼ log(body)” as “log(brain) as related to
log(body)”. (For the general use of formulas in graphics in the context of
the lattice package, see Section 7.6, page 280; they arise originally from
software for statistical models, discussed in Section 6.9, page 218.)

Much of the presentation of scientific results takes for granted that coding
numbers by position on a plot is an effective way to visualize quantitative
information, probably the most effective way. Our eye and brain are used to
estimating distances as we navigate through our surroundings, and gravity
enforces the horizontal/vertical distinction. It’s intuitively appealing that
we can infer patterns from positions more naturally and in more detail than
we could interpret coding via symbol size, color, or other parameters.1 To
see how widespread the use of this visualization mechanism is, look at papers
in scientific journals that discuss any sort of modeling or inference from data.
Even if the paper has no explicitly statistical content, chances are that plots
included to support or illustrate the ideas will include those of relations
visualized using x-y plots with curves, points or both.

Beyond the scatter plot itself, a large variety of other statistical graphics
use the same idea. For example, using one coordinate for a single variable
and the other for some computed variable or index gives rise to a variety of
useful plots, including time-series plots, probability plots and many others.
Collections of scatter plots, related to each other systematically, are essential
for dealing with more than one simple x-y relation. Pairwise scatter plots
(the “scatter plot matrix”) are a step in studying datasets with more than
two variables. More generally, multiple x-y plots can be presented together
to illustrate more than one relation among variables. What is known as
trellis graphics forms a particularly important collection of such scatter-

1See the books by W. S. Cleveland [9], [8] and references there for arguments based on
perception.
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plot-based methods. The lattice package implements the trellis graphics
techniques in R. Section 7.6, page 280, discusses the lattice package.

The older function plot() plays an important role as a generic way to
display objects. Its original notion, however, was again the classic scatter
plot, taking two numeric vectors as x and y arguments, the first used for the
horizontal coordinate and the second for the vertical coordinate of plotted
symbols (“points”). The term “scatter” suggests the notion of a scatter of
the points around some underlying relation between the variables. In the
original S use, likewise, plot() took on this extended role of displaying both
relations and the scatter of actual data, through optional arguments and
functions for additional graphics on the plot. See Section 7.4, page 263 for
the practical details of using plot().

The organization of the drawing area in R graphics also reflects that of
the x-y plot. The layout, with a central rectangular plot surrounded by
margins on four sides, defines the essential structure for nearly all the high-
level plots in the graphics package and underlies much of the trellis graphics
as well.

This organization follows intuitively from the x-y plot concept, and to a

Bottom Margin: side=1

Le
ft 

M
ar

gi
n:

 s
id

e=
2

Top Margin: side=3
R

ig
ht

 M
ar

gi
n:

 s
id

e=
4

Plot
  o

r P
an

el 

 R
eg

ion



246 CHAPTER 7. DATA VISUALIZATION AND GRAPHICS

considerable extent arose originally from generalizing early x-y plot soft-
ware into a general graphics capability. Once the organization is defined,
however, it lends itself to a variety of other graphics that are not strictly x-y
plots, from contour plots to box plots to bar charts and pie charts. The in-
formation in the plot and its relation to the data change, but the underlying
organization allows us to construct and adapt these graphics in a consis-
tent way. Later sections on the common graphics model and on the three
main general packages all use this structure as a basis for understanding R

graphics.
To close this section, here are two examples taking the basic x-y plot

and adapting it, first to provide some extra information, and then to define
a method for visualizing a class of objects. Programming details are not
important here—the examples use functions from the lattice and graphics

package, all discussed in the sections devoted to those packages—but the
intent of the programming should be clear without worrying about details.

Example: Examining residuals

As an example of adding information to a scatter plot, let’s consider ex-
amining patterns of residuals from a fitted linear model (from an artificial
example). One aspect of studying residuals is to look for patterns related
to the predictor variables: Are the residuals noticeably large (positive or
negative) in particular regions of the distribution of the predictor variables?
If so, this may suggest a better form for the model.

There are many possible techniques, including multivariate dynamic
graphics using a tool such as GGobi. But a simple idea is to make x-y
plots of pairs of predictor variables, but with points coded to show the size
of the residuals. Areas with predominantly positive residuals and those with
predominantly negative residuals are of interest.

A general visualization technique is to cut the range of a numeric vari-
able into a factor, and then use that factor to index a suitable graphical
parameter. The amount of information is reduced, but visual coding tech-
niques such as choice of symbol or color often do not convey more than, say,
3 to 5 levels clearly. Here we will code residuals from the model by a readily
visible aspect of the plotted points. There are several specific techniques;
we’ll examine two, the choice of plotting symbol and then, on page 258,
the color of the symbol. In both cases, it’s essential to use a simple coding
scheme that gives comparable weight to both extremes of the extra vari-
able. The ColorBrewer system refers to this as a divergent scale. The same
notion applies in choosing plotting symbols. Be careful that you don’t try
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to provide too much information and that the visual appearance does not
bias the interpretation. For plotting symbols, about 3 levels is the limit; for
our purposes we want to show negative, small, and positive residuals, and
to give the two extremes equal visual weight. Obvious symbols such as the
digits have little impact. Resist the temptation to use "+" and "-", since
the second symbol is visually only half of the first. Whatever we pick, some
visual experimenting will be needed. We’ll use "X", "=", and "O"; the middle
symbol is less strong, but we are not as interested in the middle values for
this plot. For that reason, we choose to divide the scale of the residuals into
5 values, coding the middle 3 levels as "=", the negative 20% as "X" and the
positive 20% as "O".

We can compute the scaled data by creating a grouping factor from the
residuals. Let’s assume these have been extracted into the object resids.
To get 5 groups of equal size, we use the function quantile() on resids,
with 6 break points on the probability scale, 0., .2, ..., 1.:

residGroups <- cut(resids, quantile(resids, seq(0., 1., len=6)))

Now we can do an x-y plot, but supply extra information according to the
residGroups factor created by cut(). The xyplot() function in the lattice

package does this nicely using a groups= argument. Having told xyplot()

how to group the displayed information, we can then specify graphical pa-
rameters to differentiate the groups: plotting character in this case, and
colors on page 258.

If x1 and x2 are the predictor variables of interest, the plot is generated
by the call:

xyplot(x2∼ x1, cex=1.5, lwd=2, groups = residGroups,
pch = c("X", "=", "=", "=", "O"), col="black")

The optional arguments to xyplot() include the graphical parameters pch

and col, the plotting character and color parameters in the common graphics
model for R (see Section 7.3, page 258). To keep color constant, we specified
it as a single value, not wanting it to interfere with the effect of plotting
symbol. The resulting plot is shown in Figure 7.1

There is a clearly visible pattern of increasingly negative ("X" ) residuals
near the diagonal, and of increasingly positive ("O") residuals away from
the diagonal. This pattern in the residuals suggests modifying the model to
include an interaction of x1 and x2.
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Figure 7.1: Scatter plot of residuals enhanced with plotting symbols to show
large positive ("O") and negative ("X") values.

Example: Plotting method for GPS data

As another example of adapting x-y plots, let’s design a function to plot
tracking data from a Global Positioning System (GPS) sensor. GPS track
data is a sample from a conceptually continuous path through space and
time, with three spatial variables (latitude, longitude and elevation) plus
date/time. In Section 9.2, page 342, we define a class, "GPSTrack", to rep-
resent GPS data; our goal in this example is a function that will provide a
plot() method for objects from that class.

As in the previous example, we have more than two variables, but now
the directional and time-related progress of the track is central to what the
objects mean. Can we convey this information in a plot? An x-y plot
is suggested by interpreting the geographic coordinates as in a map. An
ordinary scatter plot of map coordinates would convey some information.
Here’s a start, this time using plot() from the graphics package. Here
object is some object from the "GPSTrack" class. The function geoXY()

transforms latitude and longitude to coordinates on the surface of the earth,
measured by default from the lower left corner of the box enclosing the
data. The function is part of the SoDA package, and provides a convenient
alternative to choosing a particular projection. (See Section 11.2, page 419.)
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Given the coordinates, we generate a scatter plot, with the aspect ratio set
by the parameter asp to make distances on the plot proportional to actual
distances.

> xy <- geoXY(object@latitude, object@longitude)
> x <- xy$X; y <- xy$Y
> plot(x, y, asp = 1)

But our goal for this example was a plot() method that would adequately
represent objects from class "GPSTrack". Several aspects of "GPSTrack" data
are not seen in the scatter plot, any of which might be important in some
applications. First, the object represents a track, that is observations taken
at successive points in time from a conceptually continuous path followed
by the GPS receiver. Directionality in space is not clear in the plot. Second,
the data includes elevation as a third geographic coordinate, not used here.
Third, the time information might be important, for example to show the
relative speed with which parts of the track were traversed. Any of these
aspects can be accommodated within the general x-y plot concept. Let’s
begin by incorporating directional information from the track.

To acknowledge the continuous path, one could simply turn the plotted
points into a curve (that is, line segments between successive points) by
adding the argument type="l" to the call to plot(). However, that still does
not convey the direction of motion, and it may obscure the actual discrete
observations more than we should. An alternative is to draw arrows at each
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of the points, with small but visible arrowheads indicating the direction.
We’ll do that, but the details are not trivial, so we’ve now again crossed
that fundamental boundary to where we should write a function to capture
our ideas.

The graphics package has a function, arrows(), to draw line segments
with arrowheads on one or both ends. The nontrivial questions are how long
the individual arrows should be and how large the arrowheads. The function
does not do well by default on the second question. One could choose various
strategies and playing around interactively is recommended. We’ve chosen
in the example to make the arrows a fraction of the distance from the
preceding point; if fraction=1 we get a continuous curve with arrowheads.
Sizing the arrowheads is tricky, but we’ve chosen to scale them by the average
length of the arrows, with an argument head that is the fraction of that
distance to use. We’ll define a utility function, trackArrows(), to plot the
arrows, given the map coordinates and the two arguments above. Then a
plotting function using the arrows could be written:

plotGPSArrows <- function(object,
fraction = .75, head = .5, ...) {

xy <- geoXY(object@latitude, object@longitude)
x = xy[,1]; y = xy[,2]
plot(x, y, asp = 1, type = "n")
trackArrows(x, y, fraction, head, ...)

}

Here we use the plot() function again, but with type="n" it sets up the plot
and produces the box, axes, and so forth, but does not draw the actual data,
leaving the plot region blank for later use. This is often the natural way to
build new x-y plots with the graphics package, as in this case, where we
need only call our utility function to add the arrows.

Here is the utility function, with its own support function, arrowFrom(),
to compute the starting coordinates for the arrows.

arrowFrom <- function(u, fraction) {
n = length(u)
if(n < 2)

numeric(0)
else

u[-1]*(1-fraction) + u[-n]*fraction
}

trackArrows <- function(x, y,
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fraction, head, nArrowLengths = 5, ...) {
x0 = arrowFrom(x, fraction); y0 = arrowFrom(y, fraction)
x1 = x[-1]; y1 = y[-1]
## compute the average line length
delta = sqrt(mean((x1-x0)∧2 + (y1-y0)∧2, na.rm = TRUE))
## and convert it to inches for arrows()
delta = delta * (par("pin")[1]/diff(range(x, na.rm = TRUE)))
arrows(x0, y0, x1, y1, head * delta, ...)

}

The computations are nontrivial mainly in that arrows() takes the length of
the arrowhead in inches, so our computation in terms of the x-y coordinates
needs to be scaled, using the physical size of the plot. The resulting device
dependence is inconvenient and potentially misleading; the Prime Directive
should cause us to worry a little, if the method were incorporated in a more
complicated graphic display. In our example:

> plotGPSArrows(object)

A certain amount of squinting may be needed, but the display does provide
direction information reasonably clearly.

Next, elevation information. Notice that the plotGPSArrows() function
includes the "..." argument and passes it down to trackArrows(), which
passes it to arrows(). This sort of flexibility is recommended when writing
new functions using the graphics package. The caller of your new function

0 500 1000 1500 2000

0
50

0
10

00
15

00
20

00



252 CHAPTER 7. DATA VISUALIZATION AND GRAPHICS

can then customize the display by supplying graphical parameters. The
customization allows us in this example to code elevation by the color of the
arrows, another instance of cutting a variable into a factor to visualize it
(page 246).

Here is another utility function, arrowColors(), that takes some variable
(in our example, the elevation data), and a set of graphics colors. It com-
putes the average value of the variable at the beginning and end of each
segment, calls cut() to get as many levels as there are colors, and returns a
vector that assigns to each arrow segment the corresponding color:

arrowColors<- function(v, colors) {
n <- length(v); k <- length(colors)
midPoints <- (v[-1] + v[-n])/2
colors[cut(midPoints, k)]

}

This example has as its goal a method for the function plot(x, y, ...)

when x is a "GPSTrack" object, and y is missing. Now we’re at a point to
write a first version of a function that could serve as the method. It must
include all the arguments of plot(), but it’s allowed to add some extra
arguments that are matched from "...". These will include colors, a vector
of color parameters. Here’s a function, plotGPSTrack(), that could be the
definition of a method:

plotGPSTrack <- function(x, y,
colors = c("blue", "green", "brown"),
fraction = .75, head = .5, ...) {

elevationColors <- .arrowColors(x@elevation, colors)
plotGPSArrows(x, fraction, head, col = elevationColors)

}

With the default value for the colors argument, the lowest third of the
elevations will be drawn in blue, the middle in green and the highest in
brown. For a discussion of choosing colors, see page 258. For an alternative
way of coding elevation, via vertical segments, using the grid package, see
page 276.

Finally, what about time, or speed? Suppose we wanted to indicate
the speed with which the subject moved along the track. This is again an
additional variable, but one that is intimately related to the positions. If
the observations were made at roughly equal times, and we ignored changes
in elevation, then the distance between successive points on the plot would
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be a rough indication of speed. Visually that would mean that the length
of the arrow would be an approximate speedometer. If speed were the main
interest, the data could be replaced by an interpolated version at equally
spaced times. Without going that far, we could make the length of the
arrow reflect the average speed between successive GPS observations. See
function trackSpeed() in the SoDA package for the speed computations. A
modified version of the function plotGPSArrows() shown on page 250, scaling
the arrow lengths by speed, could have the form:

plotGPSArrows <- function(object,
fraction = 2, head = .5, ...) {

xy <- geoXY(object@latitude, object@longitude)
x = xy[,1]; y = xy[,2]
plot(x, y, asp = 1, type = "n")

speed <- speed * ( fraction/max(speed, na.rm=TRUE))
trackArrows(x, y, speed, head, ...)

}

A little note on vectorizing, that is, thinking in whole object computations:
Notice that the computations in trackArrows() do not change at all, even
though the argument fraction is now a vector instead of a single number.
All the computations involving fraction are whole-object, and implicitly
promote single values to vectors of the required length.

7.3 The Common Graphics Model

This section presents the common elements of the model for graphics that
has evolved in the S language over the years. It owes a good deal to the
ideas behind the x-y plot described in the previous section, which is one
reason for including that section in the chapter. This is not to say at all
that the computations are limited to such plots. It has supported a very
wide range of statistical computing, implying that the model is sufficiently
general to handle many forms of graphics. But the x-y plot is a paradigm
that may help to clarify the ideas, and it frequently provides an example in
discussing the graphics model.

This is a computational model for the graphics needed in data analysis,
including both data visualization and scientific graphics generally. It is
not designed for engineering drawing, animation or even business graphics;
although it has been used to some extent for such applications, the wealth of

speed <- trackSpeed(cbind(xy,object@elevation), object@time)
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modern graphics software suggests using interfaces to more suitable systems.
Also, the model is primarily for static graphics. Once displayed, the graphics
elements remain until “painted over” by another element that intersects the
same place. The static painting model is suitable if the graphics are to be
used without change as both displays and documents. Dynamic and high-
interaction graphics require other models for the computation.

The overall idea of graphics in R (and in the S language before that) is
that of drawing on a page. The effect of evaluating a sequence of calls to
graphics functions, or of drawing a graphics object with the grid package, is
to draw various graphics elements, each on top of the previous, onto a page.
When that page is finished, the software conceptually ejects it and starts on
a new, clean page.

The page in turn exists on a graphics device. In the early days, devices
were defined physically and the page was either literally a piece of paper in
a printer or plotter, or else the surface of a display. Today neither picture is
likely to be accurate. The device is generally another software system, typi-
cally a document generator or a window manager. The page in a document
is defined by a document processing system (for example, the pdf() and
postscript() devices produce output in the corresponding PDF or Postscript

languages). Actual printing, if it takes place, is done by processing output
files generated by the device function; however, the same output can be
viewed interactively.

Similarly, the R software doesn’t usually deal with a physical display
directly; instead, a window manager is used, by default either a function
using the window manager for the operating system (functions windows() in
Windows and quartz() in Mac OS X), or a window manager suitable for use
over a network of computers (most often x11()). Pages are cleared by the
window manager.

The graphics model for drawing on the page can be understood in terms
of three pieces:

1. the graphics elements that define what’s actually drawn;

2. the positioning that determines where graphics elements will be drawn;

3. control of drawing to refine what the graphics elements look like.

Graphics elements

The full set of graphics elements depends on the package, but the following
four are the most commonly used. They are all defined in terms of data
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as understood by the x-y plot; that is, in terms of pairs of x and y vectors
corresponding to horizontal and vertical coordinates, mapped in some way
to the current plot region.

points: A plotting symbol is added at each point defined by x-y data.

lines: A connected piecewise linear curve (i.e., connected line segments) is
added, drawn through the points defined by the x-y data.

segments: A line segment is added from each point specified by a first set
of x-y data to the point specified by the corresponding element of a
second set of x-y data.

text: Successive text strings (the elements of a character vector, text) are
added at each point defined by the x-y data.

Just what “added” means depends on the package. In the older graphics

package, the graphics are drawn immediately on the current plot. In the
grid package, the appropriate elements are added to a graphics object, and
this object is the value of the corresponding function call. The graphics

package has functions of the four names above, taking suitable x-y argu-
ments. The grid package has functions (pointsGrob(), linesGrob(), . . .) to
return the corresponding graphics objects, and also convenience functions
(grid.points(), grid.lines(), . . .) that draw the graphics element as well
as returning the object.

Positioning graphics

Positioning in the graphics model is always with respect to some rectangu-
lar region of the page, with x-y coordinates relating to the horizontal and
vertical edges of the region. In the x-y plot, for example, graphical output
representing the data is drawn in a rectangular region, the plot region in the
standard graphics model. Marginal ticks, labels and titles are drawn in the
rectangles above, below and to the sides.

By default, the whole page is used for the drawing, and rectangular
regions subdivide that. It’s also possible to specify part of the page and then
to define regions inside that. In the graphics package the regions follow a
fixed pattern: a figure region is defined on the page, and a plot region with
margins is defined relative to the figure, as in the diagram on page 245. The
grid package has much more generality, allowing regions (called viewports)
to be rotated in the enclosing viewport and, more importantly, supporting
an essentially arbitrary arrangement of nested viewports.
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Within a particular region or viewport, the software has to choose actual
drawing positions for the graphics elements. When using plot() or another
high-level graphics function, we can be conveniently vague about the inter-
pretation of x-y data as positions. The software can be expected to do
something sensible in order to display the data provided in an informative
way. In the actual graphics model, however, the correspondence between
x-y values and plotting positions must be defined before the graphics ele-
ment is drawn. In the graphics package the correspondence is specified as
what are called “user” coordinates, the range of x and y data values to be
mapped into the corners of the current plotting region. The grid package
is again more flexible, in that a variety of different correspondences can be
used simultaneously (by means of what grid calls different “units”).

Drawing information; graphical parameters

Drawing information controls the appearance of graphics elements when
they are drawn. The term rendering is sometimes used, but technically this
implies control down to the pixel level, and it’s important to keep in mind
that R graphics does not generally work at that level, but rather assumes
an interface to some other software to do the actual rendering. So the term
“drawing” rather than “rendering” is more appropriate in our discussion.

Typical examples of drawing information include the font type and size
for text and the colors used for any graphics elements. R graphics in all
forms uses in effect a fixed set of named graphical parameters. (Fixed, that
is, by the current implementation of the graphics or grid package. The set
of graphical parameters has grown and to some extent changed in meaning
over the years.)

A specification of drawing information in R graphics can be thought of
as a named list, with the element corresponding to a particular parameter
name being the value to set for that parameter. The way in which drawing
information is used varies between the graphics and grid packages, but
many of the parameter names and their interpretation are similar.

Individual graphical parameters often reflect the long evolution of S

graphics from Fortran subroutines. The older names tend to be short, typ-
ically 3 characters. The corresponding parameter values started as either
numeric values (one or a fixed small number) or else short character strings
(often a single character). R has generalized some of these parameters to
more natural forms, such as a string to identify a color (col="red") or font
(family="serif"). The common graphics model frequently uses numeric
codes that have standardized meaning when specifying, for example, the
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plotting symbol (pch) or type of line segment (lty). These and similar pa-
rameters can be integer codes, with 1 typically the default choice. To compli-
cate interpretation, many of the parameters have accreted extra conventions
in the interests of flexibility. Line types include codings for customized pat-
terns, colors accept strings encoding hexadecimal RGB specifications, and
plotting characters can be a character instead of a code. For programming,
we would prefer to spare our users (and ourselves) from such details. Try to
give users a natural and readable way to say what they want; if the specifi-
cation needs to be mapped into some arcane graphical parameters, dedicate
a utility function to that purpose.

There are in fact a number of such utilities available in R. Color is prob-
ably the greatest beneficiary for graphics purposes. Several useful functions
exist for generating sequences of colors that work well in many cases (for
example, grey() for grey scales, rainbow() for a variety of color sequences
and a number of more specialized color generating functions; see page 258).

Some other graphical parameters with numerical values are related to
size and position and are more natural to interpret. Size parameters are
positive numbers to be multiplied by some default. So "cex" determines
the size of characters (symbols or text) as a multiple greater or less than
1, applied to the current default text size. A position parameter may be a
number between 0 and 1, or a distance measured in specific units, such as
the inter-line distance for text. For other details of graphical parameters, see
the discussion in R Graphics (particularly the tables on pages 51 and 53 for
graphics and page 167 for grid). And as always the online documentation
should be the most current authority. See ?par for the graphics package
parameters and ?gpar for grid, along with other documentation referenced
by these entries.

The grid package has many of the same drawing parameters as the
traditional graphics package, but avoids many other traditional graphical
parameters that controlled positioning (grid achieves more general control
via its viewport facilities and by specialized arguments for particular prim-
itives, such as the just= argument instead of the adj parameter for po-
sitioning text.). The lattice package is somewhat special in that it has
an extensive set of graphical parameters inherited from the trellis graphics
model, partially overriding the grid parameters. The trellis model is dis-
cussed in Section 7.6, page 280; see also the online documentation for the
lattice package, specifically ?trellis.par.set and the useful graphical dis-
play of parameters from calling show.settings(), and for much more detail
the Lattice book [21].

The grid and graphics packages use their graphics parameters differ-
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ently. The graphics package keeps a graphics state associated with the de-
vice; drawing parameters are set in the device. They will be set permanently
by a call to the par() function, or temporarily by supplying the parameters
as named arguments to a function that draws graphics elements. In contrast,
the grid package associates parameters with a viewport or a graphics object.
We illustrate both styles in the examples for the individual packages. The
remainder of this section discusses the use of graphical parameters to control
color and font, two aspects of graphics having particularly rich possibilities.

Color parameters

Modern computer displays and printers, if they are of good quality, often
do a fine job of rendering colors vividly. Color is a dramatic and memorable
part of visual input, for most of us. It’s natural then to look to color to
convey information in statistical graphics. Through its graphics devices,
R provides a general way to specify colors in graphics elements. Colors
are generally provided as character strings. Common colors are given by
name ("red", "blue", etc.; the function call colors() returns all the built-in
names). The strings can also define colors using one of the universal color-
definition schemes (such as RGB or hsv), but you should generate non-trivial
color schemes via one of the tools discussed below, not directly.

There are both advantages and pitfalls to using color. Besides esthetic
appeal, color has the advantage that it cuts across all graphics elements.
Thus, output colored red can be linked in the mind whether it’s lines, text,
symbols, or filled areas that have that color. And strong color contrasts are
memorable.

There is a substantial difference in the ability of different humans to
perceive colors (especially for male humans), both in basic perception and
in the tendency to notice and remember colors. So one needs to be careful
not to code too much information into color contrasts. The caution applies
particularly if we try to use color to code a continuous range or to infer
quantitative information. Color shades from light to dark, or from one vivid
color gradually to another, can be helpful, but don’t expect them to be
unambiguously interpreted in the way that position on an axis often can be.

If you need to convey information through color, do take advantage of
tools for choosing the colors. The core package grDevices has a number of
functions to create ranges of colors: for example, rainbow() to create a set of
varied colors or colorRampPalette() to interpolate colors between limits. A
perceptually sophisticated and trustworthy tool for certain purposes is the
RColorBrewer package, which provides an interface to the ColorBrewer project,
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a systematic approach to choosing colors developed by Cynthia Brewer for
filling colored regions on maps. An excellent interactive Web site describes
the color selection (colorbrewer.org; see also a related book [3]). In Color-

Brewer, three different goals are supported for color choice: contrasting but
not necessarily ordered colors, called qualitative; a quantitative range “low
to high”, called sequential ; and a two-way quantitative range “negative to
positive”, called divergent.

The Web-based tool allows you to see recommended color schemes of
each type, for a varying number of color levels. The RColorBrewer package
generates a character vector of R color definitions corresponding to each
such scheme (the schemes are identified by a code name given on the Web
page plus the number of levels). The color schemes produced are carefully
chosen and valuable, but there is one important catch: They are intended
for coloring in regions on maps. You need to be careful when using them
for other graphics. One major distinction is that for such maps, all the
relevant geographic area is colored with one of the chosen colors. But for
other graphics, much of the display will remain in the background color.
In particular, if you are drawing symbols, text, or lines in different colors,
the background color may interfere with visibility of some of the displayed
information, as the example below illustrates.

Example: Color to examine residuals from a model

The overall motto for using color remains “Keep it simple!”. Color works
well, but the effect should be immediate, not the result of measuring or
subtle analysis. Let’s revisit the plot of residuals from a model; on page
246 we used plotting characters, dividing the range of the residuals into 5
equal-sized groups. Five levels of color is about as much as one wants, so we
can retain the grouping. In the ColorBrewer terminology, we want a divergent
color scale, in which values at either end of the range are equally visible.

It only remains to choose an appropriate set of colors. We’ll do this two
ways, first from ColorBrewer and then from colorRampPalette().

From the ColorBrewer Web site or from experimenting with various palettes
using display.brewer.pal() in R, we can select a suitable scale. We need to
select the desired palette by calling brewer.pal() with the number of levels
(5) and the name of the scale. Let’s use a scale going from red to green
(which as a divergent scale goes through yellow, with a character-string
code of "RdYlGn"). A scatter plot with the corresponding coding is created
by indexing the colors by the groups and using this as the col graphical
parameter:
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resCols <- brewer.pal(5, "RdYlGn")
plot(x1, x2, col = resCols[residGroups], main = "Color Brewer")

This gives the upper plot in Plate 1 (following this page). The middle level,
yellow on a white background, is hardly visible, as we might expect. In this
application, residuals near zero were not our main concern, but generally
the faint middle levels would be worrisome.

To avoid a light intermediate color, we could use colorRampPalette().
The colorRampPalette() function works indirectly, with a mechanism that
may seem odd but that is in fact very much in the spirit of the S language: A
call to this function returns another function. When that function is called it
returns as many colors as requested interpolating the colors specified. Then
these colors can be indexed by the groups as before. So the equivalent to
the previous plot, using colorRampPalette(), would be:

redBlueGreen <- colorRampPalette(c("red", "blue", "green"))
resCols <- redBlueGreen(5)
plot(x1, x2, col = resCols[residGroups], main = "Color Ramp")

The result is the lower plot in Plate 1.
Either plot works in this example for the main purpose of showing pat-

terns in the residual values. There is a clearly visible pattern of increas-
ingly negative (red) residuals near the diagonal, and of increasingly positive
(green) residuals away from the diagonal (visible even with plotting sym-
bols as shown on page 248). The color ramp version is somewhat more
interpretable, but still not perfect. The final green in the color ramp palette
is slightly lighter and so less strong than the final green in the ColorBrewer

palette. So although the second version avoided washing out points near
the middle of the range, the choice of end points in ColorBrewer balances the
divergent scale better. Subtleties such as this can also change depending on
the display or printed medium used. Color is pleasing, but tricky.

The lattice functions such as xyplot() can use color in much the same
way; xyplot() recognizes an extra argument, groups=, that does the indexing
of colors and other parameters for us. The function calls then take the form:

xyplot(x2 ∼ x1, groups = residGroups,col = resCols)

All these graphic coding techniques depend much more on how the coding
is done than does information conveyed by the x-y patterns themselves. For
trustworthy graphics, one should provide an explicit key to the coding. The
functions legend() in the graphics package and draw.key() in the lattice

package are designed to add an explanatory key to the plot itself. Calls to
them can be tedious to get right, but trustworthy graphical data analysis
needs the explanation.
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Font and text parameters

Early S-language graphics typically had primitive text-drawing facilities at
the level of the specific device. For that matter, text handling in scientific
computing generally started with an elementary model of undifferentiated
characters of fixed width for printing and plotting, and with fixed-length
coding internally (characters and “bytes” being essentially equivalent).

S and R have evolved since then, but computing with text has seen
an equally dramatic evolution. The two main driving forces have been
computer-based publication systems and the internationalization of com-
puting. Virtually all print media (books, journals, newspapers) are gener-
ated from software systems, typically document-input software (LaTeX, Word,
etc.) feeding into an output format or language (PDF, Postscript, etc.). At the
same time, increasing international use of computers has prompted efforts
to make computer text available in whatever human language its readers
expect, in whatever alphabet is required to display the language. From an
original restriction to the English-language alphabet coded in 8-bit bytes,
standards have moved to coding systems sufficiently general to represent all
widely used alphabets. The mapping from the human-language content to
the printed or displayed graphic has two main components, the encoding
scheme to interpret the stored text (based on language and locale, for ex-
ample, U.S. English or a traditional version of Chinese in Taiwan), and the
font that displays the text as a graphic on the screen or for printing. Fonts
depend on the encoding, but usually not on details of the locale (a font
suitable for U.S. English would typically work for Swiss French as well, but
not for Chinese). Human languages being what they are, many exceptions
and complications exist, but this general scheme applies most of the time.
For a general discussion of text encoding in R, see Section 8.1, page 293.

Computing with text intersects statistical computing and programming
with R in several ways, such as user input and generating text messages. For
graphics, however, we can usually submerge the details under a couple of
simplifications. Your graphics software usually wants to be a neutral pipeline
for text, taking in single character strings or vectors of them as arguments
and then displaying these as needed, typically via text graphics elements.
The main issues for the graphics software are where to position the text
and how large it should be when drawn. For this purpose, a piece of text
corresponding to a character string is envisioned as occupying a rectangular
region:
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Looked at in detail, the rectangular region is both an approximation and
somewhat arbitrary. The version shown here uses the units "strwidth" and
"strheight" in the grid package, applied to the text plotted, in order to
draw the rectangle. See Section 7.5, page 273, for a discussion of how to use
units in the grid package. The height uses a typographical convention that
measures from a “baseline” and ignores descenders such as on the "q" . An
alternative height unit is "lines", the distance between successive lines of
text, which usually gives a loose rectangle, taller than the actual text.

A non-rectangular curve could wrap around the text more closely (jogging
down around the “q”) and other definitions of string height are possible,
but the two sets of units shown are all that is easily available with current
software.

The R graphics packages allow users to select fonts, a selection that
will normally fall through to the graphics device software and, from there,
typically to one of a few general font systems used by the device (Postscript,
x11 or TrueType, for example). The device and the operating system will
determine precisely which font families are available, but in any case you
rarely want specific choices of font to be built into your functions or other
graphics software. In thegrid package, the parameters are fontfamily, which
might be "serif" or "sans" or others, and "fontface", which might be
"plain", "bold", "italic", or others. Setting these parameters in functions
should be avoided if you want your software to be really locale-independent.
(Further control of the interpretation of fontfamily is available for some
devices; see ?X11Font for example.) The fontsize parameter specifies the
desired font height; this parameter is fairly innocuous in terms of locale, but
the facilities in the grid package for using units to control position and size
are a more flexible mechanism (see Section 7.5, page 273).
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7.4 The graphics Package

The graphics package has widely used functions to create x-y plots, contour
plots, bar charts, and other “high-level” displays. As mentioned in the
introductory section, the general advice is to use the grid package for major
new programming with graphics, but overriding this general advice is the
good-sense principle of taking advantage of what has already been done. So,
the recommended uses of graphics package software mainly involve calling
existing high-level graphics functions (those that produce complete plots),
possibly also controlling the appearance of such plots, augmenting them,
and combining them to produce multiple plots.

If you are building a new kind of visual display from scratch, this can
also be done with the graphics package software, but if detailed control
over graphics is part of your design, you will usually have better results
with the more modern and more object-based grid software. Using grid

is recommended if you need to manipulate parts of the visual display as
objects, or for some aspects of controlling the appearance of the display
that are difficult to express in the graphics software (some examples are
mentioned later in this section).

The graphics package contains most of the graphics workhorses for data
visualization and related displays. A number of such functions are mentioned
in this section but not all, and there are many additional functions and
plotting methods (usually S3 methods) in other packages. Browsing online
is recommended. One useful technique is to bring up the list of functions
in graphics, using a browser initiated by help.start(). Then search in
that page for the string "Plots"; these are most of the high-level plotting
functions in the package. For more exhaustive searches, supply the same
string to help.search() or to search engines such as the Web site rseek.org

The plot() function

The plot() function is probably the busiest workhorse of the basic graphics
functions. If you look at the ?plot documentation in R, you will get the im-
pression that plot(x, ...) is a function for displaying a single object. That
is a very important role, but was not the original purpose of the function
(and plot() was a popular tool in the earliest versions of S). Originally ,
plot(x, y, ...) was designed to produce the classic scatter or x-y plot of
two numeric vectors discussed in Section 7.2:

> plot(mars$Date, mars$Declination)
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The x-y plot definition can be adapted via options in the call and/or the
addition of lower-level graphics computations to produce a very wide variety
of x-y plots.

Conversely, the use of plot() as a generic function could produce a data
visualization for any class of object or indeed for any pair of classes, using
S4 methods. The resulting displays need not be x-y plots in the graphics
sense. As a result the definition of plot() as a function has been diluted into
two quite separate ideas. The two definitions co-exist without difficulty, but
keep both in mind when looking for useful graphics functions. (The evolution
is an interesting example of the role of a function’s purpose in developing
software, as discussed in Section 3.2, page 48.)

Optional arguments in the call to plot() include many of the graphical
parameters, such as those controlling color, character size, plotting character
or symbol, and many others. The function has a few special “high-level” pa-
rameters, such as type= which controls how the x-y information is displayed.
The default is to plot a character or symbol at each position, but lines and
several other displays can be specified; see ?plot. Most of the relevant low-
level graphical parameters can also be supplied, optionally as vectors whose
elements will be used in succession in displaying the data. Powerful variants
on the plot can be designed, for example, by giving vectors parallel to the
x and y data. One can display other variables in this way; either discrete
levels of a factor or numeric values (depending on whether the parameter is
treated as discrete or continuous). The examples in Section 7.2 starting on
page 246 show additional variables coded into calls to plot().

The other essential technique for adapting plot() to special needs is to
add information to the result of the plot, using low-level graphics functions
such as lines(), points(), abline() and others. One of the values for the
type parameter is "n", meaning not to plot the data. The call to plot() then
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produces all the x-y display (the box, margins, axes and titles) but not the
x-y part itself. Arbitrary additional graphics can then be specified relative
to the world coordinate system and plot outline generated. The techniques
for customizing plots in this way apply to other high-level functions, at least
in part. For a general discussion see page 266.

Other high-level plots

boxplot() bxp() cdplot() contours() filled.contour()

fourfoldplot() hist() image() matplot() mosaicplot()

persp() spineplot() stars() stripchart()

Table 7.1: Some high-level functions in the graphics package

Some of the high-level plotting functions in the graphics package are
listed in Table 7.1. See the online documentation for any of these if they
sound interesting.

There are a number of functions omitted from the table for various rea-
sons. The functions coplot() and dotchart() implement versions of two
plots from trellis graphics, and for most purposes the functions in the lattice
package are preferable (they follow the trellis model more closely and are
more flexible). Some functions, such as curve(), are essentially methods to
plot specific classes of objects, in which case defining a method is usually the
preferred approach. A few functions, such as barplot() and pie(), although
nominally high-level, are very explicit in their graphics form, and don’t work
well for the kind of programming discussed in this section.

We can summarize the functions on the basis of their overall purpose.

boxplot(), bxp(), stripchart(): plot summaries of several sets of data, for
purposes of comparison of their distributions.

hist(): plots a histogram, of one set of data; see also density() in the stats

package.

contours(), filled.contour(), image(), persp(): produce various plots of
three-dimensional data, specifically based on values of a variable z

for a rectangular grid of x-y values.

related to categorical data.
cdplot(), fourfoldplot(), mosaicplot(), spineplot(): generate various plots
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matplot(), stars(): produce two (very different) plots related to matrices
(multivariate data).

Customizing plots from the graphics package

Discussions throughout this book emphasize that programming—making
software do what you want—is essential for any serious study of data.
Nowhere is that more true than in statistical graphics. Scarcely any data
visualization can be fully successful without some adjustment, to make it
communicate better or to make its appearance pleasing. We’ve also em-
phasized that programming should not be onerous, particularly at the early
stages of experimenting with new ideas. The R software generally lends it-
self to gradual learning, from simple adjustments on towards more ambitious
design. This too is reflected in graphics programming.

Initial steps in programming with the graphics package can be man-
aged by modifying simple calls to the functions discussed so far. Users can
customize the output of the high-level functions in four main ways:

1. by supplying optional arguments in the call that are special to the
function itself;

2. by supplying other arguments corresponding to graphics parameters
that are part of the general graphics software;

3. by adding output to the plot, through calls to additional graphics

functions, either low-level functions corresponding to the graphics el-
ements or more specialized functions;

4. by setting aspects of the graphics state globally, prior to the call,
either through calls to the function par() or through arguments to the
function that sets up the graphics device.

The techniques apply to any of the functions in Table 7.1, but most sim-
ply to the classic scatter plot based on a call to plot(), so we’ll start with
some examples of each customization mechanism, applied to the plot of Ty-
cho Brahe’s Mars data on page 263. In fact, that plot was itself programmed
a little, using graphical parameters and device settings. The result of the
call to plot() as shown on page 263, if we just type it interactively, is likely
to be something like this:
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The plot is square by default, which obscures the “message” of the data, that
shifting sinusoidal pattern that characterizes the planet’s apparent motion.
Interactively, we can stretch the width of the plot and clarify the message.
Assuming we want to program the same effect, say for a pdf file, what do
we do? The interactive feedback from resizing the quartz() window tells us
that a width:height ratio of about 2.5 is effective. A pdf file is generated by
calling the pdf() device function in R, and arguments to that function let
us specify a suitable width and height:

pdf(file = "Examples/marsPlot.pdf", width = 7.5, height = 3)

It then turns out that the plotted characters are too large, smearing the
shape of the curve and also lacking room to draw some of the axis labels.
Character size is controlled by one of the graphical parameters, cex=, which
multiplies the default size by a numerical ratio (a little experimentation
interactively shows 0.6 of the default to be a good choice here). We choose
to set the parameter permanently with a call to par(), and now we have the
code that really produced the plot on page 263.

pdf(file = "Examples/marsPlot.pdf", width = 7.5, height = 3)
par(cex=.6)
plot(mars$Date, mars$Declination)

To illustrate the other ways of modifying graphics, let’s bring in another
variable in the Mars data. The actual recorded entries in Brahe’s journal
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usually included both the date and the time of the observations, but some
of them omitted the time. We might want to investigate whether those
observations seem to be different. To do that, we use the text field, Time in
the data frame; if its width as a string is 0 we know there is no time recorded.
We’ll show this on the graphics in two ways. First, we use the graphical
parameter pch= for plotting symbol, this time as an argument to the plot()

function. As mentioned on page 256, this parameter has a numeric form
that indexes some standard plotting symbols, with the default value of 1.
We’ll replace this symbol with a cross (pch=3) for those observations with
no time recorded. A useful technique in using graphical parameters is often
to supply them as vector arguments of the same length as the number of
points being plotted. In this case we can create a vector with 1 and 3 in the
right place by something like:

noTime <- nchar(mars$Time)==0
pchTime <- ifelse(noTime, 3, 1)

and then giving the argument pch=pchTime to plot() puts crosses in the right
place.2 Graphical parameters can be given as arguments, such as pch=, to
nearly all drawing functions in the graphics package. Some other arguments
apply to so-called “high-level” functions (those that can produce a new page
of graphics); for example, xlab= and ylab= specify labels for the horizontal
and vertical axis labels. The automatic labels produced before are fine for
the R user doing the computing, but for a plot to show others, we would
prefer to set explicit labels. Specifying these gives us:

plot(mars$Date, mars$Declination,
xlab = "Date of Observation",
ylab = "Declination of Mars",
pch = pchTime)

2I might as well confess that certain S-language hackers are likely to write the compu-
tation for pchTime as c(1,3)[noTime+1]. This works because logical values convert to
numeric as 0 and 1, but please don’t use it. The call to ifelse() is more communicative,
even if it were slower, and it isn’t in this case.
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Next, let’s consider two examples of adding graphics to a plot, first an
explanatory legend on the plot telling what the two plotting symbols mean,
and then a one-dimensional scatter of those observations where no time was
entered (to see the distribution of those observations more clearly). The
scatter might be useful either for exploring the data or for communicating
what we’ve found to others. A legend, on the other hand, is an example of a
graphics add-on that is pretty much used only for communication. As with
the axis labels, the original user probably understands what the symbols
mean, but another viewer will likely appreciate some explanation.

Legends are an example of an add-on graphic specifically supplied in the
package, by the function legend() as it happens. The idea here is to add a
box to the plot, containing examples of the points or lines shown, matched
to some text (the "legend" explaining the meaning of the graphics). The
call to the legend() function does this by supplying arguments giving the
graphical parameter(s) that were used and a parallel vector of the descriptive
text. There remains the question of where to put the box. It’s one of those
decisions that usually can’t be made until you see what the plot looks like—
another reason why this sort of graphics add-on usually arises only when
we want to communicate the graphics to others. The R function helps with
the positioning by accepting some special strings for the x-y position; for
example, "right" means to put the box against the right side, centered
vertically. That seems a good choice because there’s some empty space
there on the plot. Then the other two arguments to legend() are the legend
itself and the corresponding parameter values, for pch in this case. We used
standard symbol 1 where time was given, and 3 otherwise. The appropriate
call to legend() is then:

legend("right", c("Time of Day Given", "No Time of Day"),
pch=c(1,3))

Now for the one-dimensional scatter of the observations for which no time
was entered. An attractive graphic here is to repeat these points just above
the top axis, to look something like this:
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There are two fairly obvious ways to plot this scatter in the graphics pack-
age, neither ideal and together showing some further useful techniques in
graphics programming. The most natural approach is to note that the scat-
ter produced by plot() is in fact equivalent to a call to the points() function
with the same x-y data. The equivalence would be obvious if plot() were
a function written in R, but instead it’s a generic and the corresponding
method uses C code, presumably for efficiency. But trust me, the result is
what you would get from calling points(), so the natural way to do the
added scatter is with this function, but with the y argument chosen to spec-
ify a vertical position in the upper margin.

The catch, and a general issue to remember, is that points() and all
standard drawing functions in the package expect to draw in the plot region,
that is, inside the box. Where the grid package has a fairly natural way
to do any drawing anywhere, the graphics package requires some trickery.
Specifically, to draw in the upper margin, we must compute a y coordinate
just above the box and we must set a graphical parameter to prevent the
default “clipping” of graphics output to the plot region. The parameter is
xpd=TRUE to “expand” drawing to the figure region. To get the needed y

coordinate generally we should retrieve the graphical parameter usr, which
is a vector of 4 numbers, the last being the maximum y coordinate. Easier
but dangerous in general is just to look at the plot and pick a value, say
31 in this case, after a little experimenting. The computation to add the
scatter is then:

points(Date[noTime], rep(31, sum(noTime)), xpd=TRUE, pch=3)

We have to replicate the y value the correct number of times, because plot-
ting functions, unlike many R functions, don’t recycle shorter vectors of
coordinates3 (although they do recycle graphical parameters).

The other approach to adding graphics to the margin is to find a function
that already draws in the margins and adapt it to our needs. The function
mtext() is a candidate, because it draws text in a margin, at specified co-
ordinates. In the graphics package, side=3 means the top margin, and the
argument at= then gives the x coordinates. So we can get approximately
the scatter we want with the call

mtext("+", side = 3, at = Date[noTime])

3The alert reader may have noticed that we used a trick to replicate 31 that converted
TRUE to 1 in calling sum(), just what I criticized as obscure in the previous footnote.
Well, the excuse is that the alternative here is quite a long, hard-to-read expression, and
it doesn’t fit on one printed line.
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The catch here is that word “approximately”: plotting the "+" character
is not quite the same as plotting symbol number 3, as you’ll see if you do
the above and look closely. And some symbols don’t correspond to ordinary
characters at all; fundamentally, we’re using a version of the text() graphics
element because there is no version of points() pre-defined to plot in the
margins. To carry out general graphics in arbitrary regions, the grid package
is more flexible. Although combining it with the graphics software is not
simple, the gridBase package provides some techniques (see Appendix B to
the R Graphics book [19]).

With the calls to points() and legend(), here’s the augmented scatter
plot:

7.5 The grid Package

The grid package is a basic graphics software system, providing the essentials
of the common graphics model: graphics elements to draw, a flexible system
for positioning graphics via viewports, and a set of drawing parameters.
It also supports an object-based view of graphics, by generating graphics
objects, or “grob”s in grid terminology, corresponding to the graphics.

The package is suitable to be used on its own to create new data visual-
izations and related tools. It can also be useful to extend existing graphics,
particularly those based on grid itself or on the lattice package. With
somewhat more effort, it can also extend software using the graphics pack-
age.

The reference for a thorough grounding in the grid package is Paul Mur-
rell’s book R Graphics [19], cited hereafter simply as R Graphics. The
present section introduces the main features, providing enough background
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to discuss programming with the package. It also complements R Graphics
in relating the discussion to the themes of this chapter, especially to the
common graphics model.

Graphics elements and graphics objects

Graphics elements are provided in grid for points, lines, segments, and text
as in the common graphics model (Section 7.3, page 254). There are a few
extra elements, but the main difference to keep in mind is that functions for
the elements can return graphics objects as well as, or instead of, drawing the
element. The package provides each element in two forms for the two pur-
poses. So linesGrob() returns a grob representing the connected-lines graph-
ics element, whereas grid.lines() also draws the lines.4 Similarly named
functions exist for other graphics elements; for example, grid has graphics
elements to draw circles, and two corresponding functions circlesGrob()

and grid.circles().
Following the common graphics model, the arguments to the graphics

elements functions in grid usually include x-y positions, provided by pairs
of arguments corresponding to the horizontal and vertical positions. But
grid provides much more flexibility than the basic graphics package in that
the x-y values can correspond to a variety of units, not just to the pre-
specified user coordinates for the region. This generality of positioning is in
fact key to using grid effectively; we discuss it in detail below in the context
of positioning and viewports.

In programming with the grid package, you can ignore graphics objects,
drawing graphics directly in the older style of S-language graphics. You will
still have the advantages of viewports, flexible positioning, and other tech-
niques. However, programming in the functional and object-based style we
have used in this book will often be more effective if you deal explicitly with
graphics objects in non-trivial use of the grid software. Graphics objects
are often key to reusing graphics software in a new context.

Graphics objects can be passed to functions to generate other graphics
objects. Basic graphics objects are returned by the functions corresponding
to the graphics elements. Graphics objects can be put together hierarchi-
cally. The general graphics object is a tree structure, a graphics tree of S3
class "gTree". A graphics tree is indeed a graphics object, meaning that the
facilities of grid can be incorporated into graphics trees; for example, they

4A note for users of S3 methods: although the grid package prepends "grid." to
many function names, this has nothing to do with the S3 naming convention that would
suggest methods for the grid() function in the graphics package.
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can have their own parameters and viewport. Specialized graphics trees are
the essential technique for creating new graphics with the grid package.

Positioning and viewports

All graphics in the grid package takes place in the context of a current
viewport, a rectangular portion of the display window (for display devices),
or of the output region on a page (for document-generating devices such as
pdf()). The viewport concept is the key to programming with grid. Precise
and flexible statistical graphics comes largely from manipulating viewports
to match your goals and from organizing your graphics functions so they in
turn can be used in other viewports in a flexible way. It will be worth going
over the concept carefully. For more details, see R Graphics, particularly
Chapter 6, and the online documentation, particularly ?viewport and the
other documentation referred to there.

A graphics device starts out with an initial viewport corresponding to
the whole drawing surface. Note that grid has little or no concept of graph-
ics objects that span more than one “page”. Programming with graphics
objects is largely restricted to defining objects within the current page. The
function grid.newpage() will cause the window to be cleared or the output
to move to a new page, if that makes sense. But within a particular graph-
ics objects, only the current page is accessible. In fact, for most purposes
you will benefit from programming within an arbitrary current viewport;
that is, assume your graphics functions are being called from an essentially
arbitrary context. The ability to nest viewports arbitrarily in grid makes
this approach very flexible. Your graphics function may correspond to an
arbitrarily complex drawing, but that does not prevent users from then em-
bedding that drawing in a variety of other contexts. (A graphics object to
represent vertical elevation is shown on page 276.)

All positioning is defined relative to the current viewport. This includes
the interpretation of x-y arguments for graphics elements, as well as the
definition of a new viewport within the current one. If you’re used to pro-
gramming with the older graphics package, you expect positions for graphics
elements to be in terms of user coordinates, which are called native units in
grid. But native units are not the only way to give positions; be warned that
they are often not even the default choice. Other units include: the parent
viewport itself, as the (0, 1) interval in each direction (called "npc" units,
standing for normalized parent coordinates); a variety of physical lengths,
such as millimeters or inches; and size related to either strings or general
graphics objects. These relative units are useful in positioning strings or
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graphics objects, particularly because grid lets you do arithmetic in mixed
units. For example, you can move a distance in text-related units from a
data-based position just by adding values in text units ("char" units in grid)
to values in native units.

As an example, consider drawing some text in a box, as we did in Section
7.3, page 262. Two functions, grid.text() and grid.rect() will draw the
text and the box, respectively. We need to tell both functions where to draw
the graphics, and how large to scale them. If you look at their documen-
tation, you will see that the functions have quite similar arguments, both
taking an x-y position that defaults to the middle of the current viewport.
If we’re happy with that position, and want to plot the character string in
the object, myText, then grid.text(myText) does the job. For the rectangle,
the same default centering is fine, but we need to specify the width and
height. Here is where thinking in terms of units is the right concept. There
are a variety of shortcuts, but the general technique is to call the function
unit(). Its first two arguments are a vector of numeric values and a string
identifying which units to use in interpreting the numbers. The expression:

unit(x, "native")

says to interpret the data x in terms of the "native" coordinate system,
which will have been set in the specification of some viewport (perhaps by
a high-level plotting function). From ?unit or the discussion in Chapter 5
of R Graphics you will see that units "strwidth" and "strheight", along
with the correct string, will supply scale information to any grid function
corresponding to plotting that string. The computation to produce the first
plot on page 262 is therefore just:

myText <- "The quick brown fox"
grid.text(myText)
grid.rect(width = unit(1, "strwidth", myText),

height = unit(1, "strheight", myText))

Notice that in this example, unit() takes a third argument. The "strwidth"

and "strheight" units have to be defined relative to a particular string,
supplied as the third argument. Units are always used for either horizontal
or vertical measurements in the current viewport, depending on the cor-
responding argument to the graphics function. In this case, the units are
supplied as the height= argument, and will be interpreted as a vertical mea-
surement. For native units or "npc" units the choice is unambiguous. But
when we’re using the size of a string or of a graphics object, we have to say
which we mean. If a string were plotted vertically, the string width is a rel-
evant distance for vertical units, for example. Hence there are two units for
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string size and two, "grobwidth" and "grobheight", for the size of graphics
objects.

As we saw on page 262, the "strheight" units follow a convention that
ignores pieces of some characters. If the goal is to guarantee that the box
includes all the plotted text, a different height is needed. For this purpose,
the unit "lines" is more appropriate. It indicates the inter-line spacing in
the current font and graphical parameters, independent of any particular
text. To get the second box on page 262, just change the last line in the
code above to:

height = unit(1, "lines"))

It’s this flexibility of using units in general ways in general contexts that
makes them a powerful tool for graphics computations.

For a slightly more challenging example, suppose we have some x-y
data, through which we will draw connected lines. In addition, we have
some vertical data, associated with the same n points. We’d like to draw
vertical line segments to code this variable. The example arises in designing
a graphics display for the "GPSTrack" class objects (in Section 7.2, page 252,
we suggested a less informative coding via color). Here, the vertical data is
the elevation slot. How should we scale the segments, so that information
about the data in elevation is visible, but does not overwhelm the display
of the x-y data?

The wide range of units in grid gives us great flexibility in specifying the
desired size. As often happens with graphics computations, an appropriate
strategy depends on how the resulting graphics elements are to be used.
One possibility is that the curve and the segments will take up a sizable
fraction of the viewing space; in other words, this is a main plot on its own.
In this case we just need to choose a scale that is visually big enough to see
the variation in values but not so big that it dominates the whole display.
We could choose a physical size, unit(5,"cm") or unit(1.5, "inches"), say.
Slightly more flexible is to use a text-related size, which might scale slightly
better if, for example, we switched to an array of plots with reduced-size
text. Suppose we decide to make the largest vertical values correspond to
two lines of text and the smallest values to be half a line of text. First, we
scale the original data, elevation in our example, to values on the range
desired, 0.5 to 2 (note the need to ignore NAs in the data).

vlim <- range(elevation, na.rm=TRUE)
v <- 1.5 * (elevation - vlim[[1]])/diff(vlim) + 0.5

In grid, we scale v as units of "lines" (vertical spacing between lines):
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xn <- unit(x, "native"); yn <- unit(y, "native")
segObject <- segmentsGrob(xn, yn, xn, yn + unit(v, "lines"))

We can now plot these segments, or use them for further computations. For
the GPS data shown on page 249:

The example above illustrates arithmetic and other computations with
unit objects, an important topic in grid graphics. To use objects of class
"unit" generally and effectively, the key concept is that these objects allow
the explicit computation of distances to be delayed until drawing time (for
graphics elements) or until a viewport object is pushed. The object returned
by a call to unit() essentially contains the arguments to the call, as an object
of S3 class "unit". Arithmetic on "unit" objects is supported by methods
that similarly delay the actual computations, returning an object of class
"unit.arithmetic".

The mechanism used here is quite simple, but you do need to understand
the concept to make use of the flexibility inherent in grid calculations, and
to avoid surprises. An expression that combines numeric objects, graphics
objects, and/or unit objects will return an object in which the numeric parts
have been computed in the ordinary way, but in which the graphics objects
and unit objects remain in “symbolic” form, essentially mirroring the func-
tion call that produced them. This is a simple and effective strategy because
all R function calls have a consistent, list-like structure before evaluation (see
Section 13.6, page 468, for a description of language objects). Methods for
arithmetic involving unit objects return an object with the same structure,
but with class "unit.arith"; by the time the method has been called, any
ordinary numeric arguments will have been evaluated.

Let’s look again at the computations leading to the graphics segments
above. First we converted x and y, presumably numeric data, into "native"
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units. The objects xn and yn contain the numeric values from x and y, but
with a special class indicating they are unit objects (and with information
about what type of units).

> class(xn)
[1] "unit"

Because unit objects are not just numbers, arithmetic and other computa-
tions defined for them cannot simply carry out the computations. Instead,
they essentially save the symbolic form of the computation, as an object of
class "unit.arithmetic":5

> class(yn + unit(v, "lines"))
[1] "unit.arithmetic" "unit"

A similar concept applies to graphics objects; again, the numeric computa-
tions needed to actually draw the lines, segments or other graphics will take
place at drawing time. The graphics object retains enough information to
do the computations in an object of a special class:

> class(segObject)
[1] "segments" "grob" "gDesc"

Like unit objects, graphics objects tend to retain the structure of the call
that produces them, in symbolic form. A "segments" object has components
x1, y1, . . ., corresponding to the arguments.

This strategy of retaining in symbolic form the computations that will
eventually draw the graphics means that graphics objects and unit objects
can be combined to essentially arbitrary depths: All that matters is that
the symbolic, list-like structure can be scanned by the eventual drawing
computations. In particular, graphics objects themselves can be used as unit
objects, with the eventual width and height of the drawn object defining the
unit.

For an example, let’s go back to the scaling of the segments on page
276. We scaled the segments in units of text lines, which is reasonable if the
combined graphics of the lines and segments occupies a large piece of the
display, because then we have ensured that the segments take up a sensible
amount of visual space.

A different situation arises if we want to use the combination of the
lines and the vertical segments together as a “glyph” representing the three

5The classes in grid are S3 classes; hence they can have more than one string in the
class. See Section 9.6, page 362, for using S3 classes with modern S4 classes.
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variables. We might then plot a whole set of these glyphs to study how these
variables vary with some other data, for example with two other variables
that provide x-y positions for the glyphs. In this case the size of the segments
must scale with the x-y data; otherwise, when the glyph becomes small only
the segments will be visible. A clean way to tie the two scales together is
to compute the graphics object for the lines and then relate the scale of the
segments to that. The grid package supports such computations by having
the units "grobwidth" and "grobheight". A call to the unit() function with
these units must supply a graphics object as a third argument. Again, the
key concept is that the graphics object will be retained symbolically inside
the "unit" object.

In the example above, suppose we decide that vertical segments should
be at most around one-fifth the scale of the object representing the connected
lines.

xn <- unit(x, "native"); yn <- unit(y, "native")
linesObject <- linesGrob(xn, yn)
segScale <- .1 * (unit(1, "grobwidth", linesObject) +

unit(1, "grobheight", linesObject))
segObject <- segmentsGrob(xn, yn, xn, yn+v * segScale)

Although the scaling is for vertical segments, we used both the width and
height of the graphics object in computations, effectively multiplying one-
fifth of the average of width and height by the vector v, which was previously
scaled to the range 0.5 to 2.0. We’re trying to do something sensible if the
curve drawn for the x-y data is very non-square. In particular, if it turns
out to be long and low, we wanted the vertical segments to remain visible.
But there’s no claim that this solution is the best: think about alternatives
and experiment with them.

In general, it should be clear now that graphics objects and unit objects
can be nested to any depth, allowing for very flexible computations. The
effects can sometimes be subtle. Notice above that we’re ending up using
the lines object three different ways, directly to draw the lines and twice
indirectly in computing unit objects. There will in fact be three separate
computations of the graphics object when drawing takes place. In general
it’s possible for such computations to produce different results, if they take
place in different contexts (which is not the case here). As long as you cling
to the concept that each graphics and unit object keeps a symbolic version
of its computation, you should be able to understand what will eventually
happen.
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Graphical parameters in grid

The grid package has a set of graphical parameters, all of which control
aspects of drawing; that is, of the appearance of graphics elements (lines
and text). Viewports and graphics objects have a component named "gp"

that contains graphical parameters specific to them. Graphical parameter
objects have S3 class "gpar" and can be created by a call to a function of the
same name. Arguments to the function have the names of specific graphical
parameters. Graphical parameters are specified in the functions that create
viewports and graphics objects.

To see the current values, use the function get.gpar(); with no argu-
ments, it returns all the parameters as a named list:

> names(get.gpar())
[1] "fill" "col" "lty" "lwd" "cex"
[6] "fontsize" "lineheight" "font" "fontfamily" "alpha"
[11] "lineend" "linejoin" "linemitre" "lex"

Most of these will be familiar from the general graphics model and from the
graphics package, as discussed starting at page 256 in section 7.3. For a
complete discussion, see section 5.4 of R Graphics, or the online documen-
tation ?gpar.

Testing your programming using the grid package

Because the grid package is concerned with programming for graphics rather
than with high-level functions for data visualization, testing out your ideas
directly may seem to be less straightforward. You do need to set up suit-
able viewports to produce results, but just a few lines are usually sufficient.
The key concept is that viewports nest; you can specify the physical size
you want, then the number of lines of margin inside that, then the data
coordinates, each specification will create a viewport nested inside the pre-
vious one. For our segments example on page 276, we wanted the overall
graphic to be 2 by 2 inches, with 2 margin lines on each side, and using some
previously computed coordinate ranges, xlim and ylim. The corresponding
specification was:

pushViewport(viewport(width = unit(2, "inches"),
height = unit(2, "inches")))

pushViewport(plotViewport(rep(2,4)))
pushViewport(dataViewport(xscale = xlim, yscale = ylim))

With the wide variety of units available, there are many variants on this;
see Chapter 5 of R Graphics.
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When the test code or example gets just a little more general, it pays to
turn it into a function, just as we have seen in so many aspects of program-
ming with R. Once again, the Mission applies: as we work out ideas about
graphics and data visualization, let’s try to make the software as helpful
and reusable as we can. The concepts of viewports and units in the grid

package help considerably.

7.6 Trellis Graphics and the lattice Package

Trellis graphics are techniques for statistical graphics based on the advice
and ideas presented in Visualizing Data by W. S. Cleveland [9]. The lattice

package by Deepayan Sarkar implements a version of trellis graphics for R,
using the grid package for the underlying graphics computations. The func-
tions in lattice represent both a data-analytic model for graphics and a
computational one. They embody a very definite viewpoint on what data
visualizations to produce as well as on how to produce them. The functions
generally make well-considered choices of details in layout and rendering of
statistical graphics, with little control required from the user. For many
applications, the result will be high-quality, trustworthy graphics with mini-
mal effort. On the other hand, trellis graphics are not ideally suited to build
entirely new visualizations from scratch; for this purpose, using the grid

package directly will typically work better.
There are many high-level graphics functions in lattice. For details on

all of them and on the package generally, you should use the Lattice book
by Deepayan Sarkar [21]. In this section we will discuss the overall graphics
model used and some techniques for programming with the package.

The trellis graphics model can best be understood starting from the
common graphics model and the x-y plot, as described in Section 7.3, page
253. Like the graphics package, lattice works with a central plot bordered
optionally by axes (ticks and labels) and/or marginal text. The central
graphics is often a version of the x-y plot: points, line segments or other
graphics that code information in x-y coordinates. Some lattice functions
display other graphics in the rectangular plot region (for example, 3D sur-
faces), but retain the same general plot/margins model.

Trellis adds to the common graphics model the use of multiple related
x-y plots to make up a single visualization. Trellis calls the individual plots
panels and lays out the panels in a rectangular array on one or more pages of
output (the resemblance of the resulting rectangles to a garden trellis gave
rise to the name “trellis”.) Multiple panels are used for several purposes,
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but especially to condition the plot in each panel according to variables in
addition to those used for the x-y coordinates. These variables are called
the givens in trellis. Each panel represents some value or interval for the
given variables, typically shown in the top margin, symbolically or by text.
The encoding is done in a strip in trellis terminology, by default a shaded
band on which information about the particular values of the conditioning
variable may be shown. The panels in a particular display are inter-related,
which allows the trellis graphics to make better use of the display space
(only repeating axes when needed, for example, rather than on each panel).

So far we have considered what is displayed; let’s turn now to how the
computations are organized. Like grid, but unlike the graphics package,
lattice produces objects representing the graphic to be displayed, rather
than doing the actual drawing. The object is of class "trellis" and contains
a fairly high-level description of the graphic. This is an S3 class, so don’t
expect to find a formal definition. In fact, it is a named list with some 40+
elements. There are around ten S3 methods in the lattice package that ma-
nipulate these objects. Most importantly, the plot is drawn by the print()

method for trellis objects, either automatically if the "trellis"-class object
is the result of a top-level expression, or explicitly by a call to print(). The
methods are hidden inside the package’s namespace. To examine the meth-
ods or debug code that uses them requires some standard trickery. First,
get the namespace environment from one of the lattice functions. There
is no way to unambiguously identify S3 methods, but those explicitly for
class "trellis" must have names ending in ".trellis". A heuristic to find
the methods is to look for the corresponding regular expression among the
objects in the lattice namespace, which is the environment of an ordinary
function from the package:

> ev <- environment(xyplot)
> ev
<environment: namespace:lattice>
> objects(ev, pattern = "[.]trellis$")
[1] "[.trellis" "dim.trellis"
[3] "dimnames.trellis" "plot.trellis"
[5] "print.summary.trellis" "print.trellis"
[7] "summary.trellis" "t.trellis"
[9] "tmd.trellis" "update.trellis"

Now we can, for example, trace code in one of the methods, using the `:::`

operator to access objects that are not exported.

> trace(lattice:::print.trellis, edit = TRUE)
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(The printed code in this case is over 500 lines long, so we won’t examine it
here.)

Trellis objects are generated by calls to one of the high-level plotting
functions in the lattice package; for example, xyplot(), bwplot() (a ver-
sion of Tukey’s box plots), wireframe() (plotting three-dimensional sur-
faces), splom() (scatter plots of pairs of variables), and some ten others.
The visualizations involve differing numbers of variables, one, two, three,
or arbitrarily many. The typical user interface for all of these, however, is
made uniform via the S-language formula mechanism. Formulas were origi-
nally designed for use in statistical model software (introduced in the book
Statistical Models in S [6]). Model formulas generally have the form

y ∼ x

meaning that y is to be modeled by x. Trellis took over the same formula
for a plot that showed the relationship of y to x, that is, an x-y plot of the
variables. The conventions for S formulas included operators `+` and `*` to
correspond to combinations of the groups generated in variables x and y. In
trellis graphics, an additional operator was added to the formula convention:
`|` meaning “given”. Thus

y ∼ x | z

means to show the relationship of y to x, conditional on a range of values
for z.

Formulas can be extended to visualizing a single object, conditional on
one or more other variables. In this case the left side variable in the formula
is omitted; for example,

∼ x | u * v

specifies a visualization of x, conditional on combinations of two other vari-
ables u and v. The expression in front of the `|` operator can represent
a single variable or an object such as a data frame that contains multiple
variables.

To see this sort of formula in use, Figure 7.2 is a box-and-whisker plot
of the famous “Fisher iris data”, visualizing the distribution of sepal length
by a box-and-whisker summary, conditional on each combination of species
and a discretized version of petal length, with three levels. First, we define
u to be the 3-level version of Petal.Length, and then construct the trellis
display of Sepal.length given the 3 by 3 interaction of u and Species.

> u <- cut(Petal.Length, breaks = 3)
> bwplot( ∼ Sepal.Length | u * Species)
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Figure 7.2: Box and whisker plot of sepal length, conditioned on petal length
and species.

As an example of data visualization, this plot illustrates both the cluster-
ing of the iris data by species (all the setosa values and none of the other
species’ fall in the bottom third of the sepal length range) and the corre-
lation between sepal and petal size (the values of sepal length shift to the
right between the second and third columns of the display).

In terms of statistical computing, the example illustrates an important
strength of lattice: producing a complex plot with a great deal of informa-
tion and carefully chosen drawing details, from a simple and fairly intuitive
function call.

Trellis graphics shares the common graphics model followed by most S-
language graphics, including the central role for the concepts of the x-y plot.
This shows up most clearly when we examine the structure of "trellis"

objects, and also helps us understand how to control the details of trellis
graphics.

Trellis objects

As noted earlier in the section, trellis graphics are organized around the no-
tion of panels, each of which displays a plot, often an x-y plot. Regardless
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of the particular high-level trellis plot, each "trellis" object in effect con-
tains a description of these panels. The components of the "trellis" object
correspond to different aspects of the panels. Some individual components
are themselves a list, whose elements are the corresponding information for
each panel. In the box-and-whiskers example above, there are 9 panels,
so such components would be lists of length 9. Other components contain
information that applies unchanged to all panels.

The organization of the panels in trellis graphics is defined by a panel
function. Each "trellis" object, g say, has a component g$panel identifying
this function. A trellis plot is drawn by calling the panel function once for
each panel: There is only one panel function in each trellis object, but the
arguments with which it will be called will vary between panels. Actual
drawing is done by the function print.trellis(), the S3 print method for
"trellis" objects. It initiates the drawing by constructing and evaluating
a suitable call to the object’s panel function for each panel.

The necessary arguments for each call to the panel function are stored
in the trellis object: a list of argument lists, one element for each panel, and
another single argument list for the arguments whose values are common to
all calls. Other components of the trellis object control a variety of graphics
details, such as aspect ratio and coordinate limits.

Customizing trellis plots

The details of trellis graphics can be controlled at different levels, from
straightforward optional arguments, to function calls that set parameters,
to detailed modification of trellis objects or customizing the panel functions.
Straightforward control is mostly done through optional arguments to the
high-level lattice functions. These arguments are mostly described under
the corresponding detailed documentation, ?xyplot, for example. The next
more detailed level of control is via the package’s graphical parameters.
As in the grid and graphics packages, lattice has some specially named
parameters that can be set by users. In the case of lattice, graphical
parameters are stored in the current trellis device, rather than in a graphics
object as in grid or globally as in graphics. Trellis graphical parameters are
examined or set by calling trellis.par.get() or trellis.par.set() (with
named arguments for the latter).

It’s probably fair to say that dealing with lattice’s graphical parameters
requires some empirical study and some knowledge of how lattice uses the
grid package. The learning step beyond using optional arguments to high-
level functions is moderately steep.
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The valid names for setting parameters are the names of the components
returned by trellis.par.get(). As this book is written:

> names(trellis.par.get())
[1] "grid.pars" "fontsize" "background"
[4] "clip" "add.line" "add.text"
[7] "plot.polygon" "box.dot" "box.rectangle"
[10] "box.umbrella" "dot.line" "dot.symbol"
[13] "plot.line" "plot.symbol" "reference.line"
[16] "strip.background" "strip.shingle" "strip.border"
[19] "superpose.line" "superpose.symbol" "superpose.polygon"
[22] "regions" "shade.colors" "axis.line"
[25] "axis.text" "axis.components" "layout.heights"
[28] "layout.widths" "box.3d" "par.xlab.text"
[31] "par.ylab.text" "par.zlab.text" "par.main.text"
[34] "par.sub.text"

Modifying the details of a particular trellis plot requires two steps. First,
figure out what parameters are actually used to create the effect you want to
modify. Second, within that parameter, find the underlying grid parameter
that needs changing.

Unlike the graphics package, the parameters in lattice come at different
levels and may be specific to one or a few of the high-level functions. Chang-
ing a low-level parameter will not always affect the appearance of the plot.
For example, consider "box.rectangle". The components of this parameter
affect the box drawn in each panel of a box-and-whisker plot. You might
guess the correct parameter, but the safe way to proceed is to examine the
source for the appropriate panel function, panel.bwplot in this case. That
function calls trellis.par.get() to get "box.rectangle".

To see how to use a particular parameter, you need to examine its default
contents. Many of the trellis parameters are themselves named lists of grid

parameters; for example, in this case:

> br <- trellis.par.get("box.rectangle")
> br
$alpha
[1] 1

$col
[1] "#00FFFF"

$fill
[1] "transparent"
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$lty
[1] 1

$lwd
[1] 1

These five grid parameters will be used in drawing the rectangle in the box
symbols. You need to examine the grid documentation to be sure of their
meaning; for example, col is the color for drawing the rectangle and fill

the color for filling it in.
To modify the fill color to "white", set the fill component and call

trellis.par.set() before doing the plot.

> br$fill <- "white"
> trellis.par.set(box.rectangle = br)
> bwplot(∼Sepal.Length | u * Species)

Remember that you need to know which parameters are really used in the
particular plot. For example, setting component col of the box.rectangle

parameter would change the color of the lines drawn around the box but
changing the col component of the lower-level plot.line parameter would
not, because the code in panel.bwplot() drawing the rectangle ignores that
parameter.

A call to the show.settings() function will display the various parame-
ter sets graphically, which should suggest what parameters are likely to be
relevant. Beyond that, you may need to examine the code of the relevant
function in the lattice package to be sure. For example, if you are do-
ing box-and-whisker plots, you need to study the function panel.bwplot(),
which plots such panels. In the code, you will see:

box.dot <- trellis.par.get("box.dot")
box.rectangle <- trellis.par.get("box.rectangle")
box.umbrella <- trellis.par.get("box.umbrella")
plot.symbol <- trellis.par.get("plot.symbol")
fontsize.points <- trellis.par.get("fontsize")$points

These parameters, therefore, may affect the box-and-whisker panels.
Lattice also has a set of “options”, which differ from the parameters

mainly in that they do not relate directly to the specifically trellis-graphics
aspects of the computation. See ?lattice.options for details.

As the example shows, controlling lattice output takes more work than
just setting a low-level parameter in grid or graphics. The compensation
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is that the multi-level structure of lattice parameters allows more flexible
control, leaving the trellis graphics unchanged except for the specific aspects
modified.

For even more detailed control, one can modify the trellis object itself,
either by changing specific data values or by replacing the panel function by
a customized one. The panel functions are generally identified by name and
found in the lattice package. However, you can insert a function object into
the "panel" component. Defining your own panel function by modifying the
one in the lattice package for this plot is a plausible strategy to modify
some of the trellis graphics design. But be prepared to learn a substantial
amount about lattice and possibly about grid as well.





Chapter 8

Computing with Text

Although statistical computing, following the lead of statistical
theory, has tended to be defined mostly in terms of numerical
data, many applications arise from information in the form of
text. This chapter discusses some computational tools that have
proven useful in analyzing text data. Computations in both R

and a variety of other systems are useful, and can complement
each other. The first section sets out some basic concepts and
computations that cut across different systems. Section 8.2, page
294, gives techniques for importing text data into R. Section 8.3,
page 298, discusses regular expressions, a key technique for deal-
ing with text. The next two sections apply a variety of techniques
in R (8.4, 304) and in Perl (8.5, 309). Finally, Section 8.6, page
318, gives some fairly extended examples of text computations.

8.1 Text Computations for Data Analysis

The computations needed most often in dealing with text data can be built
up from a fairly small number of concepts and techniques. Implementations
for all these techniques exist in many systems, with variations in generality
and efficiency. Some of these systems are discussed in this section; later
sections concentrate mainly on R itself and on Perl to illustrate working with
other systems.

Text computations that aim to be used in the world at large must con-
sider how text from human languages is represented internally in files or in
systems; that is, on the encoding of characters. In practice, modern versions
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of R and other systems deal quite generally with essentially any language,
at least as far as carrying out typical text computations. One does need
to express the computations to take advantage of this generality. The main
points are considered on page 293.

The concepts for computing with text have much in common across a
number of systems, including R, Perl, Python, and UNIX-style tools. Many
of the techniques in fact evolved from UNIX and were then implemented in
other systems. As a result, programming with text can make use of different
systems without being totally redesigned, allowing users to implement tech-
niques in the most appropriate environment. A roughly accurate summary
is that quite similar computations on text will be applied to different data
structures. For example, most R functions will be designed to work on char-
acter vectors, whereas Perl computations often loop over lines of text that
are read from a data stream such as a file. The programming involved may
be quite similar, despite the difference in data structures, although some
computations will be more natural in one form or the other. For large com-
putations, major differences in computing time may result. We begin with
an R-style exposition and examples, and then illustrate the use of one alter-
native, the Perl system (without prejudice to other choices; see the comments
on page 291 about alternative systems).

Computational tasks

The basic computational tasks with text for data analysis divide roughly into
those that match whole strings and those that search or replace substrings.

String matching is simply the computation that determines whether
some candidate strings, x, are each identical to one of the strings in an-
other object, table. This is exactly what the R function match(x, table)

does, but some conceptual points need to be noted. First, there is an asym-
metry in the task, compared to the equality testing operation, `==`. The
table is thought of as containing unique strings, whereas x may be a large
collection of arbitrary strings. Second, and related, the internal computa-
tions involved are not done by comparing strings pairwise. The table object
is pre-processed, as a hash table, to greatly speed up the matching process.
However, the match() function was not written to take a pre-computed hash
table, and so has to prepare the table on each call. The extra computation
is usually irrelevant, unless the table is very large and/or the matching must
be done in many separate calls with the same table. Other techniques may
be needed in these circumstances. Within R, the class of "environment"
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objects prvide one mechanism. One may also choose to pass some of the
matching to another system.

The computational techniques needed change when the desire is to search
for substrings or patterns, that is, when multiple strings can satisfy a par-
ticular matching criterion. Word processors and editors, as well as general
systems such as R and Perl, have techniques to identify substrings in text
data. Typically, these come with corresponding techniques to replace the
identified substrings with specified text. In word processors, the technique is
often via a widget in which the user types the text for searching or replace-
ment, but we are interested in programming, so some explicit specification
is needed.

Substrings are identified in three main ways: by position (first character
position and length of the substring, for example); by matching specified
text; and by use of a language to match text patterns. The last is the most
general, and the classic grammar to specify the pattern in UNIX-derived sys-
tems is expressed by regular expressions, discussed in section 8.3. All three
ways of identifying substrings may be relevant. The first is the least ambigu-
ous, and will be used as the definition of a substring in this chapter. Two
helpful generalizations are to allow substrings of length zero, and to define
character positions corresponding to just before and just after all the actual
characters (positions 0 and nchar(x)+1 in R terms). Matching fixed strings
with a regular expression is clumsy, so the string matching software usually
allows turning regular expression matching off for an argument supplying a
pattern for matching. Most of the R functions for text matching have an
option such as fixed = TRUE for this purpose.

Alternative systems for text computations

Aside from those of us doing data analysis or “quantitative” computing gen-
erally, most computer users spend most of their time dealing with text data
in Web browsers, mail programs, document processing and other informa-
tion/communication activities. Not surprisingly, there are many pieces of
software with at least some hope of being useful tools in dealing with text
in data analysis as well. In addition to text computations in data analysis
software itself, there are four main classes of tools.

1. Interactive applications: These include editors such as emacs and sim-
pler tools such as search-and-replace inside document systems.

2. Shell tools: Tools such as grep and sed function mainly as one-line
commands that can be combined in a script using a command shell.
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3. Scripting languages: These range from fairly simple and/or old (awk)
to much more ambitious (Perl or Python).

4. Low-level languages: In practical terms, this means C and its succes-
sors, such as C++.

All of these can be useful and inter-system interfaces allow us to mix several
systems. If you are particularly familiar with any of the languages, that’s a
strong argument in its favor. Another strong argument is the availability of
software that appears to be a good fit for your particular application. For
example, there are many packages in Perl and Python and some may work
well as additions to statistical computing tools.

Modern scripting languages are attractive for many applications, offering
a relatively simple programming interface, very much tuned for computa-
tions with text, and competitive in efficiency of computer time to program-
ming in a low-level language, for many applications. The term scripting
language generally means a language and system that is powerful enough
for programming, but still simple enough for use in creating “shell scripts”,
when the programmer wants to spend a limited time in learning and writ-
ing. The same combination of power and simplicity makes such languages
suitable for use with R. In contrast, low-level languages tend to involve more
extended programming efforts, more learning, tougher debugging, and pos-
sibly technical problems with installation and portability.

To keep the discussion in this chapter simple and of reasonable length,
examples of computing with text are essentially all in R itself or in the Perl

language. This is not to assert Perl’s superiority over, say, Python, but mainly
reflects my own relative familiarity, along with some good practical features
of the language.

Perl is an open-source system that runs readily on all the major hardware
and software environments. Binary and source copies are readily available.
Like R, Perl has a central Web site, perl.org, with pointers to downloads,
packages, and other resources.

The implementation of Perl is remarkably efficient for a variety of text
processing and related computations. When dealing with large quantities of
text, this efficiency can be important, and it mitigates some of the advan-
tages of code written directly in C. Indeed, most of us would be hard pressed
to write C implementations of text-related tasks to compete in speed with
the existing Perl code.

Perl is, however, not a perfect or “best” system for text computations. An
equally good case could be made for the Python language, which covers many
of the same application areas as Perl. Broadly, Python has strengths over Perl
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in elegance and consistency of design, as against Perl’s strengths in a very
large selection of available software and, perhaps, in efficiency. Perl is used
in a number of the support tools for R, which may provide some additional
useful software. For this reason, also, you can usually count on Perl being
available on any system that can support programming with R. Finally, Perl

source code can have a fairly strong resemblance to R. Admittedly, this is
both good and bad, since one can trip over underlying differences. However,
on balance the similarities may help in writing code that uses both systems
together. Section 8.5, page 309, gives an overview of using and writing Perl

software.

Encoding text data

So far, we have talked about computing with text without specifying what
“text” means. R and the other systems being considered all have mechanisms
for representing text, or “character data”, as arguments to functions or as
data in the system. In R, the fundamental object type "character" fills this
role.

To be useful, however, these object types must correspond to the text
information that users can interpret and to the data that must be processed
by the systems. That data will be expressed in one or more of the hu-
man writing systems developed and used in the world. What concepts and
techniques are needed to accommodate such data?

The essential concept here is usually described as character encoding, a
mechanism for mapping the characters of a written language (as defined by
some model suited to the particular language) into a set of numeric codes,
and usually also into a way to write those codes to media such as files. A one-
sentence historical summary gives the essential message. Character encoding
was at first simple and crude, unable to handle languages in general; as
computers and systems tried to accommodate arbitrary languages, there was
a period of confusion and of inconsistent approaches; now, a few standards
are nearly universally accepted, with the result that programmers like us will
again be able to use some simple techniques, but now with an essentially
universal applicability for the results.

The historic arc has been from simple to complicated and back to simple.
As this book is written, we are not quite back to simplicity, but details
continue to change, so the discussion here uses what will very likely be the
eventual approach. If you don’t care about details, the summary is that by
using a locale of "UTF-8", you should be able to deal with text from nearly
any language and alphabet.
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When the S language began, and earlier, text came in 8-bit bytes in
the "ASCII" encoding (it actually used only 7 of the bytes). The alphabet
was upper- and lower-case Latin letters with no accents. Over the next two
decades, operating systems and other software needed to incorporate other
alphabets to communicate with users and to deal with text data. A variety
of solutions grew up, quite a few of which are still around. The divergent
approaches partly reflected concern over machine efficiency in space and
time, for storing multi-byte characters and computing with them.

With cheaper storage and faster machines, and with some well-chosen
techniques, one general model and one implementation of that model are
now nearly a standard: Unicode and UTF-8. For most purposes, the UTF-8

encoding allows essentially any written language to be used in text data,
while not greatly inflating either the space or time requirements.

The Unicode effort is quite strongly linked to the Posix standard for op-
erating systems. So too are R itself and a number of the other systems dis-
cussed in this book. As a result, Unicode-compliant implementations of the
support software for R are becoming the standard. As this is written, there
are some rough edges and platform restrictions, but the eventual approach
is clear. Software can deal with arbitrary alphabets by using Unicode-based
techniques, and with text data encoded by the UTF-8 standard.

R has facilities to specify the encoding, through what it terms the locale,
by calling the function Sys.setlocale(), as well as facilities to convert be-
tween encodings if necessary, by the function iconv(). The locale includes
more than just the encoding; for example, it includes the (human) language
expected. And indeed there are many more issues to confront than just
reading text data, but for the purposes of this chapter, ensuring that the
locale includes the character encoding you need will get us most of the way.

8.2 Importing Text Data

Text data nearly always starts on an external medium, either generated
directly (by typing or, more frequently now, from some external device),
or else exported from another software system (such as a spreadsheet or
database). The data may be on files or Web pages, or it may be generated
dynamically as data streams, sequences of characters being read from some
active source. To deal with the data, the first step must be to bring it into
whatever language we plan to use.

The term “importing” describes this in general. Non-programming sys-
tems, such as word processors or spreadsheets, typically have an open or
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import menu in their user interface, offering a choice of formats recognized
by the application. A format in the list will correspond to a known file format
used by that application (or one of its competitors) for exporting or saving
data to a file. The import works in a single step, giving the user a complete
document now in the application’s internal form. The user’s responsibility
only extends to selecting the format, and that is typically suggested by the
file suffix (for example, ".xls" is the usual suffix for files used to save Excel

spreadsheets).
Programming languages, including R, offer the user a much wider range

of choices, indeed in some sense an unlimited range. The user must decide
where the text should come from, by specifying the input file or other source;
what the imported data should be, in terms of an object or structure in the
language; and what format information the software should use in processing
the input to define the data. Most users would prefer to avoid making these
choices. Fortunately, a number of software tools in R, and in other systems,
do in fact allow us to get most of the way back to the simplicity of non-
programming applications, provided we do know that the imported data has
some appropriate structure.

A prime example is importing spreadsheet data into R. We do have a
suitable class of object for much spreadsheet data, namely the "data.frame".
Not everything in a spreadsheet maps naturally into a data frame, but the
sort of data most amenable to data analysis often does. A simple two-step
computation is possible for importing such data from many systems. First,
the data is exported from the spreadsheet program or similar application,
choosing an appropriate export format. Then, an R function also matched
to that format reads the data in a single call.

Spreadsheet programs and many other software systems can export ta-
bles in some standard formats, such as the “comma-separated-values” or
".csv" format. The R function read.csv() reads such data and returns a
data frame. For an example and details, see Section 6.5, page 173.

Importing spreadsheet data is the most common such whole-object im-
port example, but not the only one. If you have other external text data
that should map naturally into an R object, look for a direct import func-
tion in the usual sources, such as the Web-based search lists. The R Data
Import/Export manual on the R Web site covers a number of formats, not
all for text data.

The ".csv" files are a special case of files that correspond to data frames
in the general sense, that is to repeated records of the same set of vari-
ables. Likewise, the read.csv() function is a specialization of the function
read.table(). The more general version allows for different conventions
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about the delimiters between fields, the presence or not of a header line,
and other variants. The ".csv" files used for exporting and importing data
have adopted some conventions, such as for escaping quote characters in
strings, that are different from the traditional S-language and UNIX-based
conventions. The R functions to read files generally recognize the ".csv"

conventions, but you would be wise to check specifically in the relevant
detailed documentation.

If a data frame or similar table is not the right concept for the data you
need to import, you may need to work at a somewhat lower level. The two
workhorse R functions for input are scan(), which reads fields of specified
types, and readLines(), which simply reads lines of text as character strings.
The scan() function is the original basic input function in the language. If
the data being imported has little structure, then scan() is both fast and
flexible. To read numeric data, in fields separated by blanks, newlines,
or other white-space characters, for example, from a file "numData.txt", is
simply:

scan("numData.txt", numeric())

The second argument to scan() is an object that is taken to be the template
for the type of data. It’s either from one of the atomic basic object types,
"numeric" and "character" being the most likely, or else it’s a list. In the
former case, nothing matters about the object except its type, which tells
scan() to interpret each field as an elementary value of that type. The use
of a list as the second argument provided an early version of the table-style
later handled by read.table(). The elements of the list give the object
types for successive fields on each line, and scan() then returns a list with
corresponding elements for each field. Usually, read.csv() or read.table()

will be simpler to use, but scan() does have considerable flexibility, through
a large number of optional arguments.

Example: Importing data with variable line formats

A fairly common pattern for data is to have individual lines whose structure
varies, so that the data as a whole does not correspond to a simple table.
Suppose each observation includes a variable number of replicated values for
some variable. Then if the data is on a file with one line per observation,
the lines will have a variable number of fields.

Different approaches to such data may be preferred depending on how
complicated the structure is, on how much control you can exert over the
format of the external text file, and on how large the input data will likely
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be. Solutions within R can be programmed flexibly for moderate complexity
and moderate size by reading individual lines and then breaking them up
by per-line calculations. The function readLInes() does the first of these
tasks efficiently. A variety of tools may then help with the second task;
that is, breaking up character strings into fields. The function strsplit()

specializes in splitting strings, usually according to a regular expression (see
Section 8.3, page 298).

The programming details will depend heavily on the details of the text
format. If you can exert some influence, your job will be easier. For example,
suppose for the moment that the data consists of a number of ordinary,
single-valued variables plus one variable with repeated observations. If the
file can be organized to have the repeated observations on a separate line,
following each line of the regular variables for the same observation, one
can use readLines(), and then process the regular and the repeated values
separately. That reduces the latter problem to reading repeated values only,
and that in turn is done by a simple use of strsplit(). We begin then with
a function splitRepeated(), for the second step, given the lines of repeated
values:

splitRepeated <- function(lines,
separator = "[[:space:]]+",
numeric = NA) {

value <- strsplit(lines, separator)
if(!identical(numeric, FALSE)) {

warned <- FALSE
opt <- options(warn = -1); on.exit(options(opt))
nValue <- withCallingHandlers(lapply(value, as.numeric),

warning = function(cond) warned <<- TRUE)
if(!warned || identical(numeric, TRUE))

value <- nValue
options(opt)
if(warned && identical(numeric, TRUE))

warning("NAs introduced in coercing to numeric")
}
value

}

The function takes a regular expression to pass on to strsplit() as a sep-
arator. The default expression is interpreted as one or more white space
characters, and is an example of the use of character classes in regular ex-
pressions (see page 301). It’s the explicit equivalent of the default separator
for function scan().
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Because repeated observations are often of numeric data, the function
attempts to interpret the imported data as numeric, unless told explicitly
not to by the argument numeric = FALSE. The function as.numeric() will
try to convert character string data to numeric and will produce NA and a
warning message if one of the fields can’t be interpreted as a number. By
default, splitRepeated() treats the data as numeric if all the fields can be
interpreted as such; that is, if there was no warning from as.numeric().
The technique for detecting the warning is a call handler. See Section 3.7,
page 75, for this part of the example. The user can force numeric fields by
supplying numeric = TRUE.

Given both ordinary variables (one value per observation) and some re-
peated observations, the next simplest pattern is to have one line of ordinary
variables, followed by one line of repeated values. That can be reduced to
the previous situation by reading in all lines and giving the even-numbered
lines to splitRepeated():

allLines <- readlines(con)
allLines <- matrix(allLines, nrow = 2)
repeatedObs <- splitRepeated(allLines[2,], ...)
regularVariables <- textConnection(allLines[1,])

Two techniques are used here. The first uses the fact that matrices in R are
stored by column, meaning that a 2-row matrix has every odd element in
the first row and every even element in the second row, and therefore giving
a simple way to split the data. See page 326 for more on this technique. The
second technique turns the odd-numbered lines into a text connection that
allows us to apply any other input function to these lines (read.table() or
scan(), for example). For text connections as objects, see Section 5.5.

For another approach to mixtures of repeated and non-repeated values,
see Section 8.6, page 318. Arranging to put the repeated values on separate
lines may involve some non-R techniques if the data does not start out in
this form.

8.3 Regular Expressions

Regular expressions are a mechanism for encoding pattern-matching instruc-
tions into a character string, using certain printing characters not as literals
but to define matching rules. The use of regular expressions is extremely
widespread, particularly in any software influenced by the UNIX software
tradition. It’s likely that most readers of this book already have some ac-
quaintance with them. The description in this section should be adequate for
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many programming tasks, but more detail is available from many sources,
including the ?regex documentation in R. Because Perl relies heavily on reg-
ular expressions, books and on-line documentation related to Perl are other
good information sources.

Regular expressions essentially form a programming language for soft-
ware that matches patterns in text data. Like expressions in R, regular ex-
pressions have a set of rules that allows them to be parsed and interpreted.
The following description of regular expressions is intended to help you to
build up an expression to correspond to a pattern that you understand in-
formally. The description is not a formal or even semi-formal definition of
a regular expression, but in my experience it covers much of what is needed
in practice. Different languages may extend the definitions in incompatible
ways, but most modern treatments of regular expressions will include at
least what is shown here.

R doesn’t use a special class for regular expression objects, so they are
normally passed around as character strings, usually only a single string.
In other languages, Perl for example, regular expressions may be integrated
with the grammar of the language, not necessarily as an object. This section
takes an R-like view in which pattern is a string to be interpreted as a regular
expression.

In R, regular expressions will be applied by functions to text data, which
will be an object of type "character", x, or will be coerced to such an object.
Each element of x is then a character string, to which the regular expression
will be applied for either matching or substitution. In either case, applying
the pattern to each string in x identifies a substring that is the match of
pattern to the text, if the match was successful. Substitution operations
take in addition a second text data argument, replacement, and return the
result of substituting replacement for the matched substring, if any.

The Perl use of regular expressions is similar, in that operators take
regular expressions and (single) strings as arguments for matching or sub-
stitution. The similarity may be disguised because Perl allows the matching
and substitution to be written in a non-functional way, making the expres-
sion look like a command in one of the UNIX editors. The arguments in
Perl are not necessarily objects, and substitution usually takes place in the
string, rather than by returning a function value. But the major difference
is in the rest of the programming context, where Perl and other scripting
languages use less of a “whole object” view, so that operations with regular
expressions are often applied to lines read from a data stream.

Regular expressions are requests to the function or operator to find a
matching substring in a text string. The pattern is read from left to right,
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and each piece of the pattern (each subexpression of the expression) will be
matched to the text.

Subexpressions include the following atomic patterns.

• Single characters that match themselves. If the character is one of the
special characters (see below), it must be preceded by a backslash to
become non-special.

• Bracket expressions, enclosed in square brackets. They match any of
the characters defined by what’s between the brackets. The character
"∧" as the first character is special; if it is present, the bracket ex-
pression matches any character except those defined by the rest of the
bracket expression.

Otherwise, each element is a single character, a character class (see
page 301), or a range. Ranges are defined by two characters separated
by a hyphen, but because they depend on how text is encoded, avoid
them. You can nearly always use character classes instead.

• The character "." matches any character.

• Anchors. There are two, "∧", again, but this time outside a bracket
expression it matches the start of the string; and "$", which matches
the end of the string.

Subexpressions can be quantified by following the subexpression with a
quantifier. This says how many repeats of the subexpression will be matched.
Three single characters are quantifiers: "*", matching zero or more repeats;
"+", matching one or more repeats; and "?", matching zero or one repeats.
Quantifiers can also be braced expressions giving either the number of re-
peats or a range, such as {4} to match exactly four occurrences of the pre-
ceding subexpression or {1,4} to match from one to four occurrences.

Because many of the special characters in regular expressions are also
part of the S language grammar, it’s important to escape the character if
you need it to be interpreted literally. Special characters include:

{ } [ ] ( ) * + - | ? \ .

If any of these occurs literally as part of a pattern, you must precede it with
a backslash to make it non-special. One further character, "&", is a special
character in the replacement string and must be escaped to appear literally
there.

This is far from the full grammar of regular expressions, but in my ex-
perience it is enough for most matching requirements, so let’s stop here and
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go on to substitutions. For substitution only, one further special form is
important, using parentheses to label subexpressions in the pattern. Thus
"(subexpression )" matches the same text as "subexpression " but labels it.
The labels are successive integers, matching the first parenthesized subex-
pression, the second, and so on, working from left to right in the matched
substring.

The result of matching a pattern to a string is a substring, that is, a posi-
tion i and a length n in the string. When we defined substrings on page 291,
we allowed zero-length substrings, including the position at the beginning
and end of the string, which can be matched using anchors. In substitution,
the matched substring is removed and the replacement string provided is
inserted in its place. But first, the replacement string is processed, using
two special patterns in the replacement text. The single character "&" will
be replaced by the substring that matched pattern. Escaped digits, that is
the substrings "\1", "\2", . . ., will be replaced by the first labeled substring,
the second labeled substring, . . ..

Character classes

A character class in a regular expression is denoted by one of a number of
reserved names, enclosed between "[:" and ":]". A character class is equiv-
alent to writing out the corresponding sequence of characters. For example,
"[:blank:]" is defined to be the character class containing the space and
tab characters. In a bracket expression, it’s equivalent to typing those two
characters. Note that a character class is not itself a bracket expression: A
bracket expression to match space or tab would be "[[:blank:]]". Charac-
ter classes are important for making your regular expressions independent of
locale, and should be used instead of ranges in bracket expressions whenever
possible.

A number of computations in R depend on identifying alphabetic or al-
phanumeric characters (for example, the syntactic definition of a name in the
language). It’s important for good programming with R to remember that
the answer is not universal; instead, it depends on the locale. The current
locale defines names to include whatever characters are naturally alphanu-
meric in the language and script being used. In particular, letters need not
be restricted to the usual 52 characters in the R objects letters and LETTERS,
or the equivalent character range in a regular expression, "[a-zA-Z]". To
make sure your programming will adapt to the locale, always use predefined
character classes "[:alpha:]" and "[:alnum:]" for alphabetic and alphanu-
meric regular expressions. The definition of a letter depends on the text
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encoding of the locale, with the intention of allowing things that look like
names, in the intuitive sense, to act as names where possible. Thus, for
example, in a locale recognizing accented letters (such as UTF-8), tête is a
valid name:

> tête <- head # a French version of the function
> tête(letters)
[1] "a" "b" "c" "d" "e" "f"

The definition of a name in the R version of the S language is any string
consisting of letters, numbers, and the two characters "." and " ", with the
first character being a letter or ".". As a regular expression this is:

nameRegexp <- "∧[.[:alpha:]][. [:alnum:]]*$"

Another character class needed for regular expressions in R is "[:space:]",
which stands for all the characters that can be interpreted as “white space”,
such as a blank, a tab or a newline. See ?regex for the standard character
classes and Section 8.1, page 293, for locales and encoding.

Character classes are important for good programming with regular ex-
pressions, but unfortunately they make regular expressions even less read-
able, because of the double use of square brackets. For example, the regular
expression matching one or more consecutive white space characters is

"[[:space:]]+"

The dual role of square brackets allows bracket expressions to contain any
combination of character classes and individual characters, but the double-
square-bracket form is the most common. Perl uses a different notation for
character classes, preceding single letters by a back-slash; for example, \s is
a character class equivalent to [:space:]. And Perl documentation actually
uses the term “character class” for what is called a “range” above.

Example: Regular expressions to match object names

Suppose we want to find all the binary or unary operators available in R, in
the base package. The task is not trivial, and there are several approaches.
The rigorous approach is to study the formal grammar for the language,
which will list the specifically recognized operator forms, but a grammar in
the yacc form is not easy reading; understanding exactly what is included
will be a challenge. We could, of course, examine the documentation, but
that leads to several trails and we can’t be sure we have followed them all.
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A third, heuristic approach starts with the names of all the objects in
the base package and peels away names used for other purposes. Operators
have either special names, such as "+", or follow the convention of a name
that starts and ends with the character "%". None of these corresponds to
names that are syntactically legal for several other purposes, such as the
following.

1. Regular syntactic names, as defined in nameRegexp above.

2. Replacement operators, such as "dim<-", which have names consisting
of a syntactic name followed by "<-"

3. S3 methods, which end in a dot followed by the name of an S3 class.

We will construct regular expressions for each of these three cases, and
eliminate the corresponding object names. We could do all this in a single
regular expression but the result would be less readable and more prone
to error. The general pattern illustrated by this example is to combine
regular expressions with other features in the language, whether in R, Perl,
or elsewhere, to obtain as simple and trustworthy a computation as possible.
In this case we construct the regular expressions and apply them, using
grep(), to eliminate the different possibilities.

> maybeOps <- objects("package:base", all.names=TRUE)
> nameRegexp <- "∧[.[:alpha:]][. [:alnum:]]*$"
> maybeOps <- maybeOps[-grep(nameRegexp, maybeOps)]
> nameGetsRegexp <- "∧[.[:alpha:]][. [:alnum:]]*<-$"
> maybeOps <- maybeOps[-grep(nameGetsRegexp, maybeOps)]
> S3MethodRegexp <- "[.][[:alpha:]][. [:alnum:]]*$"
> maybeOps <- maybeOps[-grep(S3MethodRegexp, maybeOps)]
> maybeOps
[1] "!" "!=" "$" "$<-" "%%" "%*%" "%/%" "%in%"
[9] "%o%" "%x%" "&" "&&" "(" "*" "+" "-"
[17] "/" ":" "::" ":::" "<" "<-" "<<-" "<="
[25] "=" "==" ">" ">=" "@" "[" "[<-" "[["
[33] "[[<-" "∧" "{" "|" "||" "∼"

We ended up with a few extra names, but the output is now small enough to
sort through visually. In addition to the desired operators, we have various
functions related to `[` and `[[`, which are operators but not binary or
unary; and also some functions that implement parts of the language, `{`
and `(`.
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Some of the individual regular expressions, such as S3MethodRegexp for
S3 methods, may be useful in other contexts as well. Name matching for
S3 methods matches any string that ends in a "." followed by a name.
S3 methods have this form but so could an ordinary function. For example,
plot.Date() is a method for plot() but plot.xy() is not, and plot.function()

could be but in fact is used specially by the plot() function. There is, in
fact, no sure way to identify a function as an S3 method (one of the reasons
not to program with them, if you can avoid it, when trustworthy software
is important).

8.4 Text Computations in R

R has functions for the basic text computations outlined on page 289:

match(x, table) # matching strings
grep(pattern, x)
sub(pattern, replacement, x)

These respectively match character data x to the values in table, search for
regular expression pattern in x, and replace the substrings matching pattern

with replacement. The grep() and sub() functions will treat pattern as a
literal string if given the optional argument fixed = TRUE. There are many
other text-related functions in the various R packages. See ?strsplit and
?substr, for example. A good place to look for others is the search engine at
the R site: search.r-project.org or the more general search at rseek.org.

Using the functions above allows text computations in R similar to those
in other systems; Section 8.6 has some examples. The remainder of the
current section consists of two examples of text computations in a more
specifically R style. Most of the details needed relate to R programming,
rather than to elaborate text manipulation.

Example: Removing terms from a model formula

The first example arises when one wants to update a statistical model; in
particular, the task at hand is to remove from the current model all the
terms that involve a particular variable. We will then fit a new model and
compare the two to understand the role of the deleted variable. In our
very first programming example, Section 3.1, page 39, we worked on this
problem and ended with a nice little function, dropModel(), on page 42. We
left undefined a function it calls, dropFormula(), which works out a formula
for dropping all the terms involving the variable. Now we’ll fill in that gap.
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When individual variables are factors, their interactions with other vari-
ables may be included in the model as well. The formula language for R has
compact ways to express such interactions. For example, if the formula was
y ∼ x0 * (x1 + x2), then there are in fact two terms involving x1; namely,
x1 itself and its interaction with x0, a term that is labeled "x0:x1" in output
from the models software (in an analysis of variance table, for example).

To remove a variable, we must remove all the terms that include that
variable. The task is to find all the term labels that involve the variable,
and to construct a formula where each of these terms is preceded by a minus
sign. In this example we want the formula ∼ . -x1 - x0:x1.

To get at the term labels, we can use the terms() function. It returns an
object that describes all the terms implied by a formula. This object is used
by the statistical models software to set up numerical fitting, but as often
happens the object-based approach to programming pays off in different uses
of the object. Here’s the term object for the formula above.

> terms(∼ x0 * (x1 + x2))
∼x0 * (x1 + x2)
attr(,"variables")
list(x0, x1, x2)
attr(,"factors")

x0 x1 x2 x0:x1 x0:x2
x0 1 0 0 1 1
x1 0 1 0 1 0
x2 0 0 1 0 1
attr(,"term.labels")
[1] "x0" "x1" "x2" "x0:x1" "x0:x2"

etc.

Now we can see the two terms involving x1, giving us a way to construct the
drop formula.

In fact, two attributes of the terms object have the information we need:
"terms.label", containing string labels for each term; and "factors", a ma-
trix with rows and row labels corresponding to variables, and columns and
column labels corresponding to terms. The elements in the matrix are 1 if
and only if the variable for that row is found in the term for that column.
We can see those two attributes in the printout above. Check the documen-
tation ?terms (which points you to ?terms.object) to see the details.

These two attributes give rise to two alternative computations of about
the same complexity. One is to construct a regular expression that matches
those labels in which the relevant variable occurs. The other, which we will
use, does a more R-style computation, using the "factors" matrix, which
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actually has the desired information explicitly.
Each row of "factors" identifies the terms containing the corresponding

variable. So if we pick off the column labels corresponding to a 1 in the row
for the variable we want to drop, that’s the correct set of term labels:

> formula <- y ∼ x0 * (x1 + x2)
> fMatrix <- attr(terms(formula), "factors")
> whichTerms <- fMatrix["x1",] == 1
> colnames(fMatrix)[whichTerms]
[1] "x1" "x0:x1"

These are the terms we need to drop from the model in order to remove the
variable x1. The corresponding formula for update() is ∼ . - x1 - x0:x1.

The function paste() can generate this expression as a character string
given those labels. Evaluating that string as if it was typed to R then gives
us the formula we want. This is done in two steps, first calling parse() with
argument text=, and then eval to evaluate the parsed expression. If the
text could have been more than one expression or the evaluation could have
depended on the context, you have to be more careful. See the function
evalText() in the SoDA package.

We are now in a position to write the function dropFormula() taking a
formula (or a fitted model) and returning a formula suitable for a call to
update():

dropFormula <- function(original, drop) {
factors <- attr(terms(as.formula(original)),

"factors")
row <- match(drop, rownames(factors))
whichTerms <- factors[row,] == 1
labels <- colnames(factors)[whichTerms]
text <- paste("∼ . ",

paste("-", labels, collapse = " "))
eval(parse(text = text))

}

Notice the nested calls to paste(): The inner call pastes "-" in front of
each term label and then collapses the character vector (of length 2 in the
example) into a single string, so that we get only one "∼" pasted in front
in the outer call. This sort of manipulation is common when dealing with
text in R. If it gets too complicated, interpret that as a suggestion that some
other text-manipulation tools might be more convenient.
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Example: Merging documentation sections

Our second example illustrates text computations that fit well with R: the
data is naturally organized as R character vectors (lists of them in this case),
and the operations work with these objects relatively directly, rather than
iteratively modifying the text inside the strings.

The objective is to generate automatic documentation outlines for several
related functions. It’s often useful to document closely related functions
together. Users can be led to choose the function for their needs, and shared
information such as common arguments can be documented in one place. For
example, the functions get(), exists(), and assign() perform closely related
tasks and have many common arguments, but also some inconsistencies that
often confuse users. They are not documented together but doing so would
probably help users to avoid some common errors.

To get started with such documentation, we would like a function that
produces a documentation outline in one file for several function objects.
The existing function prompt() generates documentation outlines, but only
for a single function. The function promptAll() in the SoDA package associ-
ated with this book provides the same facility for several functions.

This example looks at a portion of the design for promptAll(), based
on merging the output of prompt() for each of the functions. Starting with
a function object, prompt() infers the formal arguments, and uses these to
create sections referred to as usage (the calling sequence) and arguments

(a list of items for each argument), along with other documentation sec-
tions. These are normally written as a file in the R documentation markup
language, which is roughly a dialect of LATEX. However, a useful option to
prompt() is filename = NA, which causes the documentation to be returned
as a named list instead of being printed. The "arguments" component of the
list is the arguments section of the documentation, as a character vector,
one element per line of the documentation.

The trick for promptAll() is to merge the lists from the individual calls
to prompt(), to create one documentation object with the same format. We
want to keep all the relevant information but not to repeat duplicated lines.
In particular, the arguments section should merge the unique information,
but only have repeated argument names appear once.

The example deals with the subproblem of merging corresponding sec-
tions for several functions, to be done by a function mergeSections(). Its
first argument, input, is a list, each element of the list being the same sec-
tion for a different function. To see how the computations might work, let’s
look at one section for one function, the arguments section of the prompt()
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output for get():

> prompt(get, filename = NA)$arguments
[1] "\\arguments{"
[2] " \\item{x}{ ∼∼Describe \\code{x} here∼∼ }"
[3] " \\item{pos}{ ∼∼Describe \\code{pos} here∼∼ }"
[4] " \\item{envir}{ ∼∼Describe \\code{envir} here∼∼ }"
[5] " \\item{mode}{ ∼∼Describe \\code{mode} here∼∼ }"
[6] " \\item{inherits}{ ∼∼Describe \\code{inherits} here∼∼ }"
[7] "}"

You might do the same computation for exists() and assign(), and compare
the results. There are two important points. First, the beginning and end
of the text is always the same; in fact it’s the required invocation of the
\arguments{ } command in the documentation markup language. Second,
each of the other lines differs only by the name of the argument. This
gives us a test for repeated argument names: If the same argument name
appears in two functions, the exact same string will be generated, meaning
that identical character strings will appear in the prompt() lists for the two
functions.

Our goal is to list all the arguments from all the functions, with no
duplicates, inside one invocation of \arguments. Here’s the specific idea:
split the section for the first function into the fixed start and end plus the
variable middle part, then for each later function insert the new argument
names at the end of the middle section.

How to do this in R? It’s pretty easy. The input is a list with one element
for the section in each function, the elements being character vectors having
one string per line, as usual. We’ll use the function match() to find any new
arguments not in previous elements, and we will concatenate these with the
middle part that has been built up so far.

One more point in making a useful function. Examining the documen-
tation outline shows that the same pattern applies to other sections, for
example usage. What differs is how many lines of fixed text at the begin-
ning and at the end need to be kept to wrap around the lines generated for
these functions (one at the beginning and one at the end for the arguments

section). By making these arguments to mergeSections(), we get a function
that can be called by promptAll() for several sections. Finally, an argu-
ment sep says what if anything should be inserted between the output for
successive functions; by default, it’s an empty line.

Here’s a version of the function.
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mergeSections <- function(input,
keepFirst = 1, keepLast = 1, sep = "") {

item <- input[[1]]
start <- item[seq(length=keepFirst)]
end <- item[seq(length=keepLast, to=length(item))]
middle <- character(); all <- c(start, end)
for(i in seq(along=input)) {

item <- input[[i]]
item <- item[is.na(match(item, all))]
middle <- c(middle, sep, item)
all <- c(all, item)

}
c(start, middle, end)

}

A few points of detail need mentioning. The match() function returns NA

for a non-match, so indexing with is.na(match(...)) gets unique lines. We
update an object, all, with all the unique lines so we don’t need to strip off
the first and last lines from each section; they just fall out with the test for
unique lines. And we iterated over all the sections after extracting the start
and end pieces, rather than doing some clumsy work outside the loop just
to save one step in the iteration.

We can reflect again on the aspects that make this example comfortable
for programming in R. The iteration involved is over objects, while the com-
putations for each object are expressed directly. The computation in this
sense would be called naturally vectorized (discussed in general in Section
6.4, page 158). In particular, we never need to iterate over lines of text. It’s
key that input is conveniently set up as a list of the relevant vectors. That
computation is done in the calling function, promptAll(), taking advantage
of the optional filename = NA for prompt().

Notice that nobody is writing files here: When possible, text computa-
tions in R should work from text objects and return text objects as their
results. It’s easy to convert these to files, but less easy at times to convert
the files back to usable objects.

8.5 Using and Writing Perl

This section covers briefly some of the main points in using existing Perl

software and in building on it. We begin with basic techniques, sufficient
for some simple and typical uses of Perl in computing with data. After
this is a short discussion of two convenient ways to interact with Perl in
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order to develop your own software: either through Perl’s own debugger or
through an inter-system interface from R . Next, we give some more extended
examples to demonstrate both techniques in Perl and a few more points about
organizing computations. If you’re new to Perl, you should be able to imitate
the examples, but do go to a good tutorial or manual to get a more extended
exposition. And if you’re not new to Perl, please scan this section anyway;
the brief explanations shouldn’t hold you up very long, and we do pick and
choose Perl computations that work well with the programming style in the
rest of the book.

After the examples, we will look at Perl slightly more formally, but still
quite selectively, emphasizing some aspects that differ from the style and
programming model of R, and that may therefore trap the exploring R pro-
grammer.

The basics: Reading, writing, and functions

Although Perl can be used in many ways, it began as an extension of other
tools that processed text files. The style of these tools was to read infor-
mation a line at a time from the input, process the line, and then write the
processed line to the output. Such basic UNIX tools as sed and awk work this
way. It remains a good model for using Perl as well, although that model can
be extended greatly, particularly by using Perl functions. Processing text in
this form is one of Perl’s strengths, and something it does more naturally
than R.

Perl has a syntax similar to that of R and other C-style languages. To
give the flavor of typical useful Perl computations, the next part of the sec-
tion presents a simple example, first as a stand-alone program, then in a
functional form.

Here is a Perl program that reads lines of input, removes simple HTML
commands ("tags"), and writes the modified lines to the output. The sub-
stitution is done by matching a regular expression to the form of an HTML
tag, that is, text enclosed in angle brackets.

while($line = <STDIN>) {
$line =∼ s/<[∧>]*>//g;
print $line;

}

If the program were stored in the file "htmlOut.prl", it could be run by the
shell command:

$ perl htmlOut.prl < dataWithHTML.txt > dataCleaned.txt
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The input data on file "dataWithHTML.txt" will be processed by the Perl

script and the output written to file "dataCleaned.txt".
Let’s examine how this little program works. If you are unfamiliar with

Perl, the details may be helpful. For more details, there is also a wealth of
Perl documentation available, including extensive online man pages.

Perl reads and writes by using filehandles, very special Perl types that are
analogous to connections in R. Like connections, filehandles are created by
opening a file, creating a pipe, or connecting to a socket or similar object.
Like connections, filehandles can be opened in different modes depending on
the sort of input and/or output desired. Some filehandles are predefined,
including STDIN, the standard input in the usual sense of UNIX or C. It’s no
coincidence that both connections and filehandles build on the behavior of
input/output in C. R and Perl are both providing some basic C-style facilities,
in a higher-level form.

Reading a line from a filehandle is a special operator, denoted by angle
brackets, as in <STDIN>. Each call to this operator reads the next line from
the filehandle and returns the line as a string. In our example, the line
of text is assigned to a Perl variable, $line. Ordinary Perl variable names
always appear with the preceding $, partly to distinguish them from function
names.

The style of assigning inside the condition of a loop is typical in Perl;
when the program reaches the end of the file, the read operation returns a
null, treated as FALSE. (Perl treats many things as FALSE, including empty
strings, the number zero, and null elements. Beware: nasty programming
bugs can result if you think only a boolean FALSE will cause a condition to
fail.)

The first line inside the loop modifies the string by using a special assign-
ment operator, "=∼". The right side of the call to the operator is a substitute
expression, similar to those used in UNIX-style editors (vi, sed, and others).
It substitutes an empty string for all instances of the regular expression
consisting of a left angle-bracket followed by anything up to and including
the first right angle-bracket. The effect is to remove any HTML commands
completely contained in the line of text. The program then prints the mod-
ified line of text, to standard output by default. The text already includes a
newline character (just which character depends on your operating system
and possibly your locale), so no explicit newline is added.

So here we have a very simple but complete Perl program to remove
most HTML commands from files. It’s not a seriously useful program; for
one thing, it does no checking for the proper structure of an HTML file, but
it does illustrate the fundamental Perl style. As soon as we want something
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more ambitious or want to reuse the computations in other applications, it’s
wise to structure the Perl code in terms of functions, just as in R. Which
raises the question: How alike or different are R and Perl in terms of func-
tions? After all, the little example above doesn’t seem all that functional
when examined in detail. We called s a function (and it is a Perl function)
to perform a substitution in a string, but it looks more like the correspond-
ing command in a text editor. And the call to print had a space, not a
parenthesis, before the argument. How deep are these differences, and how
important in practice? The answer, roughly, is that there are some im-
portant differences in the computational model for the two languages, but
fortunately you can avoid worrying much about the differences if you keep
things simple and follow examples of working Perl code as much as possible.

Meanwhile, on to writing functions. Perl functions are not created as
ordinary objects, but instead by the special sub expression. The syntax of
this expression is simply the sub keyword follolwed by the name of the new
function followed by the body of the function as a braced set of subexpres-
sions. The previous computations could be organized as a function, htmlOut
say, with the main program now a loop that modified each line of input via
a call to the htmlOut function.

sub htmlOut {
my($text) = @ ;
$text =∼ s/<[∧>]*>//g;
$text;

}

while($line = <STDIN>) {
$line = htmlOut($line);
print $line;

}

The expression my(...) creates local variables; the expression @ refers to
the arguments in the call to our function; see page 315 for more detail on
these mechanisms.

Testing and debugging Perl code

As noted in Chapter 1, R’s standard model for computation is interactive
exploration, a session with R in which the user supplies expressions, R evalu-
ates them and displays the results. Batch scripts—fixed programs to do the
same or very similar complete computations repeatedly—are special con-
structions, and relatively rare. Perl has the opposite situation. Standard
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computation is a Perl program, a file of source that Perl runs, typically when
invoked as a shell-level command:

$ perl htmlOut.prl

as we did in the example above.
How then, can one conveniently develop, test and debug new software

in Perl? Two convenient ways are to use Perl’s own debugger or to do most
of your computing in R, passing test data to Perl via some inter-system
interface. Which is more convenient depends on the application and on
your own tastes. If you’re primarily working in R and inserting a few, fairly
self-contained Perl computations, the interface will be straightforward. If
you need to work out a more extended set of Perl techniques, and these can
be tested pretty much on their own, the Perl debugger may allow quicker
changes in the Perl content.

Let’s begin with the Perl debugger, or more correctly with Perl used in
debug mode, initiated by invoking the perl command with the -d option.
The debugger is designed to debug a Perl program, and you have to give it
one to get into the interaction. To run the program htmlOut.prl above, but
in debug mode,

$ perl -d htmlOut.prl

However, if you have only a partial set of functions, or would like to start the
debugger from scratch, you can give a dummy program, as an expression on
the command line. The following, giving it the expression 1 as a complete
program, is about the minimal typing:

$ perl -de 1

Loading DB routines from perl5db.pl version 1.22
Editor support available.

Enter h or ‘h h’ for help, or ‘man perldebug’ for more help.

main::(-e:1): 1
DB<1>

At this point, you can type complete Perl expressions, which will be evalu-
ated when you enter a newline. It’s roughly like interacting with R, although
in some ways not as convenient. For example, expressions cannot be con-
tinued over multiple lines and there is no automatic printing. On the other
hand, you are in a debugger, whose commands provide you with many com-
pensating conveniences. To print an expression, make it the argument to
the debugger command p:
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DB<2> p 1..5
12345

The Perl debugger has many of the usual commands for a C-style debugger,
such as b to put a break point at the call to a function, and s to step a line
at a time through the code in the function.

Intersystem interfaces to Perl

So much for using Perl directly. What about using Perl from R? There are
several possibilities.

Given a stand-alone, executable file of Perl source code similar to our
"htmlOut.prl" example, the simplest interface uses the system() function to
run Perl on the relevant data. Given some text in the R character vector
htmlIn, the computation could be:

> noTags <- system("perl htmlOut.perl", intern = TRUE,
+ input = htmlIn)

The intern = TRUE option causes the output to be returned as a character
vector, one element per line.

Running a Perl program on each R function call will be unsatisfactory if
we need to test a variety of Perl functions or to keep data in Perlbetween calls
from R. The Perl program can have command-line arguments to get some
flexibility, but anything nontrivial will quickly become tedious to implement
and change. In addition, the per-call computational overhead of running the
Perl program may become significant if the computation being done is fairly
small, and has to be done repeatedly.

An alternative approach is to use the general inter-system interface,
RSPerl, available from the omegahat repository, at the Web site omegahat.
org/RSPerl. The simplest way to think of this interface is that it makes
essentially any Perl function available to be called from R. Typically, the in-
terface will be used by writing a corresponding R function that manages the
arguments and invokes the Perl function. There are a number of advantages
to this approach, which is discussed in general in Chapter 12. It submerges
most of the details of the inter-system interface, leaving us with functions
that behave essentially like any R functions. It also provides a level of gen-
erality in what we can do in Perl that is difficult to attain with any more
specialized interface.

The price of using the RSPerl interface is essentially that we now have
three pieces of software involved, not two. The interface needs to be installed
in the environment where you (or those using your software) are working.
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This is essentially a one-time overhead, but it has to be done for each com-
puting environment, and can involve problems at a lower level (for example,
C libraries) than simply running Perl itself.

Functions, variables, and data in Perl.

Perl has an essentially fixed set of “things” to which a named variable can
correspond. The important ones are: scalars (which include strings), arrays,
hash tables, and functions. Any variable can be used in any way at any time
(using a non-function as a function generates an error; most other invalid
uses produce undef). For each of the four types, preceding the variable name
with a corresponding special character tells the Perl evaluator how to use the
variable: "$" for scalar use, "@" for array, "%" for hash, and "&" for function.
It’s important to understand what “use” means here: it is the computation
in the expression—what Perl calls the context—that counts, not the implicit
“type” of the data currently contained by the variable. For example, to
create an array with a particular variable name is to use the name in an
array context, implying the "@" form:

@dmy = (7, 3, 4);

On the other hand, to extract a (scalar) element from the same variable is
a scalar use, implying the "$" prefix:

$dmy[0];

The most important array is @ , containing the flattened concatenation of
all the arguments to the current function call.

As in R, much of the programming in Perl consists of calls to functions.
The mechanism used determines much of the style of programming required
in the language, and also relates directly to how data is organized. Perl has
no formal arguments for functions. Instead, all the actual arguments are
concatenated into a flat list of scalars, assigned as the local Perl variable
named " ".

Perl has a general, low-level mechanism to create references. An expres-
sion consisting of a backslash preceding any form of a variable name creates
a scalar reference to that data. So, for example, \@dmy creates a scalar quan-
tity that contains a reference to the array dmy. By dereferencing the scalar,
one gets back to the array.

There are several ways to dereference in Perl. One general way is fairly
easy to remember: Following any of the four special characters by an expres-
sion in braces says to evaluate the braced expression and use the value as a
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reference to the type of data implied by the special character. For example,
consider the expression:

my(@fields) = @{$ [0]};

This expression says to assign as an array the quantity referenced by the
first element of the array named " ". Remember that this array contains all
the arguments in a function call.

Therefore, if function f had the above line in its code, and it was called
in the form:

f(\@dmy);

the array @fields would be assigned the array data computed by derefer-
encing the first argument. This creates a copy of the original array, so that
computations in the function can alter an array or hash without having side
effects outside the function itself.

Passing and using arguments with this semantic style maintains essen-
tially the “functional model”, in that changes made to the array in the
function are local. This is only one way to handle arguments. Other appli-
cations may not want to copy a hash or array, in which case the references
will be passed directly. If the object wisto be used as a proxy in R for an
object in Perl that needs to be maintained and updated, it’s the reference
itself that is needed. Let’s look at an example.

Example: Perl functions for counting chunks of text

As a small but typical example, let’s look at a technique for counting pat-
terns in text. This might be part of a toolkit for analyzing text data, using
Perl. The concept is that prior to calling the function we’re about to write,
the analysis has found a stream of instances of certain text patterns. The
patterns may be fixed strings or they may be regular expression patterns; ei-
ther way, by this point we just have a vector of character data, each element
of which represents one occurrence of the corresponding pattern. What we
want now is to update the distribution of the patterns, which we’ll represent
as a table of counts. The new data may be in the process of being added to
the current distribution, but if we’re keeping a running window of current
data, it might also be dropped. We’ll write functions for both.

Section 12.4, page 436, develops an interface function to use these tech-
niques from R.

A Perl hash is an object in which scalar values are assigned and extracted
corresponding to string-valued keys. A hash works well to represent a dis-
tribution if we arrange that the value corresponding to a pattern (that is,
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to the string representing the pattern) is the count of how many times the
pattern has occurred. Because we want to update the distribution, it makes
sense to keep the hash in Perl from one call to the next; therefore, we pass
in a reference, and return that reference as the value of the call.

The other argument is an array of the new data, chunks. We could
pass that in as a reference and dereference it, but it happens to be the
last argument, and a typical Perl trick is just to append the entire corre-
sponding object to the argument list. The last argument doesn’t need to
be a reference; the array elements will be flattened out in the call and then
re-assembled into an array. Here’s a version of the code:

sub chunks add {
my($tref, @chunks) = @ ;
my($chunk);

foreach $chunk (@chunks) {
$$tref{$chunk} = $$tref{$chunk} + 1;

}
return $tref;

}

sub chunks drop {
my($tref, @chunks) = @ ;
my( $chunk, $count);

foreach $chunk (@chunks) {
$count = $$tref{$chunk} - 1;

if($count > 0) { $$tref{$chunk} = $count;}
elsif ($count == 0) {delete $$tref{$chunk}; }
else {die

"Decrementing a chunk (\"$chunk\") not in the table";}
}
return $tref;

}

We would be justified in working fairly hard to make this computation effi-
cient; fortunately, Perl has done a very good job of implementing hash tables,
so the basic lookup implied by {$chunk} will do fine for most conceivable
applications.

Notice that there are no explicit hash objects in the two routines (hash
object names would start with "%"). That’s a bit startling and not ideal for
reading the code, but natural to the use of references in Perl. Whenever we
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access or set an element of the hash table, we refer to the scalar element
(a leading "$") of the reference to the table, which is itself a scalar, $tref;
hence, the prevalent idiom of $$tref$chunk.

These routines do some error checking, and use the standard Perl die

statement. If that sounds a bit drastic in code intended to be used from
R, not to worry. The RSPerl interface does a nice job of wrapping the
resulting error message and exiting the calling R expression cleanly, with no
permanent damage.

8.6 Examples of Text Computations

In this section we examine or re-examine some examples, looking both at
R and Perl. Choosing and designing computations for text data involves
many tradeoffs. Nearly any example can be treated in multiple ways, more
than one of which might be suitable depending on the experience of the
programmer and/or the size or detailed characteristics of the application.

The examples illustrate some of the choices and the tradeoffs they in-
volve.

Data with repeated values

A common departure from strictly “rectangular” or data-frame-like struc-
ture comes when some variables are observed repeatedly, so that the ob-
servation is not a single number or quantity, but several repetitions of the
same quantity. If the number of repetitions varies from one observation to
the next, the data has a list-like structure: in R terminology, each observa-
tion is an element in the list consisting of a vector of the values recorded for
that observation. Either R or Perl can deal with such data in a simple way.
The differences are useful to consider.

To import such data, there must be a way to distinguish the repeated
values from other variables. The simplest case diverts the repeated values to
a separate file, written one line per set of repeated observations. In Section
8.2, page 296, we showed a computation for this case, based on reading the
lines of repeated values as separate strings and then splitting them by calling
strplit(). Here’s an alternative, allowing a more flexible form of data. In
this version, successive lines may have different formats, provided each of
the lines is interpretable by the scan() function. The lines might come in
pairs, with the first line of each pair having non-repeated variables and the
second the repeated values.
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For example, the first line might be data for a state in the United States,
with the abbreviation, population, area, and center (as in the state data of
the R datasets package). The following line might list data for the largest
cities in the state, say the name, population, and area for a variable number
of cities. The first ten lines of such a file, using commas as separators, looks
something like this:

AL,4447100,50708,32.5901,-86.7509
Birmingham,242820,149.9,Montgomery,201568,155.4,Mobile,etc.
AK,626932,566432,49.25,-127.25
Anchorage,260283,1697.3
AZ,5130632,113417,34.2192,-111.625
Phoenix,1321045,474.9,Tucson,486699,194.7,Mesa,396375,etc.
AR,2673400,51945,34.7336,-92.2992
Little Rock,183133,116.2,Fort Smith,80268,50.4,North Little etc.

CA,33871648,156361,36.5341,-119.773
Los Angeles,3694820,469.1,San Diego,1223400,324.4,San Jose,etc.

How would we read in such data? The state data and the city data, sep-
arately, could each be read by a call to scan(). That function takes an
argument, what, which is a template for the fields (see Section 8.2, page
296). For the state data:

what = list(abb = "", population = 1, area = 1,
latitude = 1, longitude = 1)

and for the city data:

what = list(name = "", population = 1, area = 1)

Let’s assume some pre-processing has been done if necessary, so that the city
data for each state is on a single line. The technique for reading repeated
values in this approach is to apply scan() repeatedly, with a separate what

argument each time. Let’s show the function, scanRepeated(), and then
analyze how it works:

scanRepeated <- function (file, what, ...) {
lines <- readLines(file)
scanText <- function(text, what, quiet = TRUE, ...) {

con <- textConnection(text, "r")
value <- scan(con, what, quiet = quiet, ...)
close(con)
value

}
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mapply(scanText, lines, what, MoreArgs = list(...),
SIMPLIFY = FALSE)

}

The what argument in this case is a list whose elements are the individual
what arguments to scan(); in the state and city data:

what = list(
list(abb = "", population = 1, area = 1,

latitude = 1, longitude = 1),
list(name = "", population = 1, area = 1)

)

The workhorse is the function mapply() from the R base package. This
repeatedly calls the function supplied as its first argument, scantext() in
this case, with the first element of lines and the first element of what, then
with the second element of each, and so on. Arguments to mapply() will
be recycled, so that all the odd-numbered lines of the file will be scanned
with the first element of what and all the even-numbered lines with the
second element. Arguments supplied as MoreArgs=, however, are passed
down directly. The use of MoreArgs in scanRepeated() allows the call to
pass arbitrary arguments down to scan().

The rest of the scanRepeated() function sets up the data for mapply() in
two simple steps. First, all the lines of the file are read in. Second, a local
function scanText() is defined to treat each resulting character string as a
"connection" object in a call to scan(), which returns the vector of data
values in that line. Each call to scanText() from mapply() will open a line
of text as a separate connection. To be neat, we explicitly open and close
the text connection; this is not strictly required, but is a good practice. To
be very conscientious, we would have used on.exit() to close the connection
in case of an error.

It’s interesting to compare this computation with the approach in Sec-
tion 8.2, page 297, where we turned the vector corresponding to lines into a
matrix and then used a single text connection and a single call to scan() to
read in all the odd-numbered lines. That computation ought to be more effi-
cient for large files, because scanRepeated() will require more calls to scan(),
49 more in the state-data example. On the other hand, scanRepeated() is
more general, in that it can handle many different patterns of repeated and
non-repeated fields via different what arguments. As an exercise, consider
writing a fancier version of scanRepeated() that takes an argument to specify
that certain elements of what() have no repeated fields. This version could
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combine the best of both examples, but you may need to think carefully
about the best organization for the value returned.

A similar Perl computation can be written for either version of the ex-
ample. In fact, a computation analogous to splitRepeated() on page 297
often serves to illustrate the Perl notion of an “array of arrays”, somewhat
analogous to a list in R.

sub split repeated {
my($input, $output, $sep) = @ ;
my($line, @value, @fields);
while($line = <$input>) {

@fields = split($sep, $line);
push @value, [ @fields ];

}
return @value;

}

The concept is similar to the R implementation: take each line and pass it
to a function that splits the fields. Make the vector (array in Perl) the corre-
sponding element of the result. As usual, the Perl computation is iterative,
a line at a time. There are some touchy details for those not familiar with
Perl, such as putting square brackets around the @fields expression when
pushing it as the new last element of the @value array. A similar function
could be written analogous to scanRepeated(). Iteration being encouraged
in Perl, there is no need to involve an explicit apply-style function as we did
in R.

For large applications, the Perl computations will be more efficient. Both
R and Perl apply a function to each line of text, but such iteration has
less overhead in Perl, particularly for built-in functions. The catch with
the Perl version, for R users, is what to do with the generated data. For
some applications, a suitable technique uses the RSPerl interface to maintain
the object in Perl, with further computations applied as appropriate. (The
example in Section 12.4, page 436, uses a similar strategy.)

Parsing strings as dates

To illustrate both computations in Perl and their use in data analysis, let’s
consider interpreting some strings as calendar dates, when we do not know
in advance the style in which the dates are being written. The task may
seem trivial, but only if you have never needed to deal with such data in
any extensive application. Several features make the example interesting.
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There are many variants in formatting dates, both between and within
different geographic regions. The sixth day of the month of May in the year
1976 might be written in at least the following ways.

5/6/76
6/5/76
May 6, 1976
May 6, 76
6.v.1976
1976 May 6
1976-05-06

The second string, a valid British form for May 6, is also a valid form for June
5, 1976, in the United States. And May is an easy month because nobody
abbreviates the name. If the date had been in September, the month could
be written in full, or as “Sep”, or as “Sept”, with or without trailing “.”. To
keep the example simple, we are also ignoring the time portion of a typical
date-time string.

Both R and Perl have software for handling dates. In particular, Perl

has a variety of modules on its CPAN archive, including Date::Manip, an
extensive collection of functions for transforming and manipulating strings
representing dates.

Most of this software, however, makes some assumptions about the date
format, or expects the user to specify either the format or enough informa-
tion to disambiguate the format. Also, the Perl packages tend to work with
a single date at a time, whereas most computations in data analysis will en-
counter a vector of date strings (which is relevant in that the interpretation
of a single string in the form "5/2/76" is ambiguous, but a subsequent string
of the form "5/22/76" resolves the format to be the American version).

The SoDA package has a small collection of Perl software to, first, figure
out the format of an array of date strings, and then to convert them to
numeric dates. Let’s examine some of the basic computations used in that
software, illustrating some useful features of Perl in the process.

Here are a number of simple Perl functions and objects to recognize the
individual fields holding day, month, or year.

%roman = (
i => 1, ii=>2, iii=>3, iv=>4, v=>5,
vi=>6, vii=>7, viii=>8, ix=>9, x=>10,
xi=>11, xii=>12);

sub monthRoman {
$roman{$ [0]};
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}

sub monthText {
$Months{$ [0]};

}

sub monthNumber {
my $string = $ [0];
$string =∼ /∧([1-9]|1[12]|0[1-9])$/ ?
$string+0 : undef;

}

sub dayNumber {
my $string = $ [0];
$string =∼ /∧(0{0,1}[1-9]|[12]\d|3[01])$/ ?
$string+0 : undef;

}

sub year4Digit {
my $string = $ [0];
$string =∼ /∧\d{4}$/ ?
$string+0 : undef;

}

## will choose 20th or 21st century, whichever
## is nearer: this year + 50 is the boundary
$bdyYear = ((localtime)[5]) % 100 + 49;

sub year2Digit {
my $string = $ [0];
if($string !∼ /∧\d{2}$/) {
return ;
}
my $year = $string + 0;
($year < $bdyYear) ? 2000 + $year : 1900 + $year;

}

@dayFuns = (\&dayNumber);
@monthFuns = (\&monthText, \&monthNumber, \&monthRoman);
@yearFuns = (\&year4Digit, \&year2Digit);

The first definition, %roman, is a hash table (hash in Perl). It maps each of
the Roman numerals up to 12 into the corresponding number. The following
definition of function monthRoman takes its first argument and tries to select
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the corresponding month number from the hash table. Any argument that
is not one of the Roman numerals will fail to match in the hash. As often
in Perl, the result is a special value, undef. All the functions above follow a
common and useful Perl convention of returning undef to indicate failure.

To review some basics: Perl functions don’t have a formal argument list.
Instead, there is a special Perl array with the name " " that contains the
actual arguments. The expression $ [0] extracts the first element of this
array. As with R, functions in Perl return the last expression evaluated, with
the option of using an explicit return expression instead. For more basics,
see any good introduction to Perl. Here are some of the main points in the
computations for this example.

The function monthText looks up the month as a number, from a hash
table (not shown) containing both month names and their accepted abbre-
viations. This is the key data structure in our approach that would allow
dealing with non-English text. One could augment the hash table with as
many languages (or locales) as convenient, without changing the logic.1 Al-
ternatively, appropriate tables could be loaded on demand for the current
locale. Perl, like R, has facilities for dealing with general alphabets that allow
substantial international flexibility.

The remaining functions all recognize valid numeric codes for month,
day, and year. They return the corresponding numerical value, or undef if
the match fails. All of them use variations on regular expressions, including
extensions, such as the {4} modifier, in function year4Digit, that says to
match exactly 4 occurrences of the preceding pattern. The preceding \d is
Perl’s notation for the character class written as [:digit:] in other languages
(see page 301).

Notice that we used Perl for a variety of computations with text, in addi-
tion to its well-known facility with regular expressions. The two hash-table
functions are both more flexible and simpler than any equivalent regular ex-
pression. Think of a natural way to express your computation and then see
if Perl has an analogous mechanism: Perl’s famous motto is TMTOWTDI,
There’s M ore Than One W ay To Do I t.

Below all the function definitions on page 323 are three lines creating
three Perl arrays. Each array holds references to some of the functions. The
character "&" before each name identifies it as a function, and the character
"\" before that creates a reference to the function. The top level of the
Perl code for recognizing dates (not shown here) takes triples of fields and
determines whether each field could be any of a day, a month, or a year. It

1Well, assuming that no two languages used the same text for a different month.
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does this by calling each of the functions in the array; if any of them returns
anything other than undef, the field is still in the running. For testing day
format, there is only one function; for a month there are three, allowing
numbers, names, or Roman numerals; for a year, either two or four digits.

As the code proceeds through lines of date input, some possibilities will
fail. Eventually, we expect that just one of the patterns such as (day, month,
year) or (month, day, year) will remain valid. At that point testing is over
and the code can translate the dates in the desired standard form. See the
file "perl/dateForm.perl", in the installed SoDA package for the details.

As in this example, Perl is often adept at implementing relatively fuzzy
computations, although sometimes with code that the Prime Directive would
find dangerous; here too, our example illustrates the point. Arrays of ref-
erences that are asserted to point to compatible functions that return con-
sistent types of values are not a formally defined class. Perl does in fact
support a version of OOP that can be useful when more structured and ver-
ifiable programming is needed. Other scripting languages, such as Python,
might be more appropriate in such applications, however.

Example: Converting fields to lines

Let’s consider the task of converting fields of text input in free format into
text with a fixed number of fields per line. The conversion is required
to import data via utilities that enforce a line-oriented view, such as the
read.table() function in R or the data import mechanism in Excel (see the
discussion in Section 6.5 starting on page 166). The line-oriented view helps
to prevent user errors and is also easier to program for the import software.
However, it’s natural to generate the data in a free-format mode; for exam-
ple, if one wants to include fields of narrative text, multi-line fields are likely.
So our goal is some software to convert from free-form to line-oriented text,
preferably software that can be adapted easily to explore various forms of
input data (the Mission). First, a simple formulation in R, then a version in
Perl that may be more suited to large-scale applications.

For either version, we have to formulate the task more precisely. This is
actually a nontrivial step, because different formulations suit one or the other
system better. If the goal really is to provide input for an import procedure,
the natural formulation is to copy from one connection (R) or filehandle (Perl)
to another. We also have to decide the form of the solution, for example,
perhaps a function taking the input connection and other information as
arguments. A function is the natural form for R, because functions are the
basic unit of programming. Perl also deals well with functions, but we might
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prefer a solution as a free-standing Perl program. We’ll allow the details to
vary between the two systems, because that will turn out to be helpful.

The R function has four main arguments:

fieldsToLines(input, nfield, sep, outputSep)

where input is a connection for the free format input, nfield is the desired
number of fields per line, sep is the input separator character, and outputSep

is the field separator for the output. We will define the function to return
the desired output connection as the value of the call; a somewhat unusual
approach for most languages but natural for a functional language such as
R.

R can implement this function with a simple and elegant computation.
If we browse among R input functions, we quickly see that scan() can read
free-format input if we specify the field-separator character. There are a few
limitations to scan(), to be noted, but basically we can read in all the fields
as a character vector by:

text <- scan(input, what = "", sep = sep)

Now we want to group the elements of text, nfield items at a time, making
each group into a line. Here we need to think in “whole object” terms.
We would like to deal with the data in an object where we can talk about
groups of nfield items easily. A natural choice is a matrix where either
rows or columns correspond to the groups. Either would work, but we can
use the knowledge that R stores matrices by columns to make the actual
computation trivial:

text <- matrix(text, nrow = nfield)

The lines of text we want correspond to the columns of the matrix: The first
nfield fields are the first column, and so on. For the output connection, each
line is formed by pasting together the items in the column, separated by the
outputSep character. The R function paste() will do this, with argument
collapse=outputSep. We have to call paste() separately for each column,
which could be done in a loop but is just what function apply() is designed
for:

output <- apply(text, 2, paste, collapse = outputSep)

The call to apply() calls the function paste() for each column of text, and
passes along the extra argument collapse as well; see ?apply for details.

We defined the goal as creating a new connection from which other soft-
ware can read the data a line at a time. R can do this in one trivial way,
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because the single call textConnection(output) turns the character vector
into a text connection, from which other R computations can read just as
they would from a file. Now we can put the computations together into a
function definition.

fieldsToLines <- function(input, nfield, sep = "",
outputSep = if(nchar(sep)) sep else " ",

addQuotes = FALSE, ...)
{

text <- scan(input, what = "", sep = sep, ...)
if(addQuotes)

text <- shQuote(text)
text <- matrix(text, nrow = nfield)
output <- apply(text, 2, paste, collapse = outputSep)
textConnection(output)

}

The R solution is neat and uses the features of R in a natural way.
But it has two intrinsic weaknesses: The computations may be somewhat
inefficient for high-volume processing, and the flexibility is limited by the use
of scan(). With respect to the latter, one problem is that newlines can only
be included in fields by following the particular quoting rules of scan() and
generally white space in fields will be trouble if the default output separator
is used. The optional argument addQuotes = TRUE will cause all the fields
to be surrounded by quotation characters on output, using the function
shQuote(). Quotes are needed if you want to have white space inside fields
and the output separator is the default "" (which would treat any white
space as a separator). Quotes are also needed for any separator if any input
fields have embedded quote characters (single or double quotes) or newlines.

Notice the addition of a "..." argument, passed on to scan(), which
allows users the full flexibility of scan(). Even so, the option of treating
newlines as intrinsically not significant is not available.

With respect to efficiency, we can analyze the computations with re-
spect to vectorizing, the heuristic goal in R of expressing computations in
whole-object terms using efficient functions. The implementation is not
bad, with no explicit loops and, except for the apply() call, only functions
that deal with whole objects at the C level (scan(), shQuote(), matrix(), and
textConnection()). The use of apply() does cause a separate R call for every
record of the output connection; although paste() too is a C-based function,
there will be some moderate overhead. More fundamentally, returning the
value as a text connection limits the computations intrinsically to what can
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be held in memory. A larger-scale version could be written in R, by reading
a limited amount of input at a time and writing the transformed data to a
file instead of a text connection. But at this stage an implementation in Perl

may be more natural and may scale better to really large volumes of data.
So saying, let’s formulate the task for Perl. Where in R the natural

formulation is in whole-object terms, Perl has advantages for a line-by-line
treatment. We’ll formulate the problem in terms of writing to an output
filehandle one or more lines, formatted with nfield fields per line. Whereas
in R it was natural to read in all the data and restructure it as an object, in
Perl we would rather identify a smaller unit of computation that can be used
iteratively to do the whole job. A natural unit of input in this problem is
just enough to create at least one line of output. We don’t know how many
lines of input will be needed, and once we have enough, we may need to
generate more than one line of output. Furthermore, we have to expect that
some fields may be left over for the next unit of input. For all these reasons,
we need some place to keep data temporarily; in other words, a buffer. A
Perl array is a natural structure for a buffer. As we split input into fields, we
can store these in an array and output elements from the array when there
are enough.

One more detail: Text may be left over from the end of the last input
line after we do the output. This text is a part of the next field, and needs
to be pasted together with the first field on the next unit of input.

As with all the Perl examples in this section, the programming style
leans towards a functional form. All Perl calls will be written in functional
form, and we will define the solution as a function, &fields to lines, that
processes a unit of input. The arguments to the function are the input and
output filehandles, the number of fields per line, and the strings to use as
input separator, output separator, and in place of newlines.

Here’s an implementation. The basic idea is to build up an array of
fields by reading lines of input, using the usual Perl syntax of enclosing
the filehandle in angle brackets, namely, <$input> to read from a filehandle
passed in as an argument and kept in the local variable $input. Once enough
fields have been read, one or more lines of output can be written. In order
for our function to be used to copy a whole file, we need to detect the end
of an input file. The function is called for its side effect of writing onto the
output, so we can use a return value of 0 to indicate end-of-file and of 1

otherwise, making a call to the function natural in a while() loop.
The rest of the implementation is largely a matter of getting the details

right: allowing for an arbitrary number of input fields, and remembering to
join the end of one line to the beginning of the next. The buffer is an array,
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separate from the function. We give it a long name, @fields to lines buf to
avoid conflicting with other variables in the Perl module containing the code.
Including an argument $lineSepAs for translating the line ensures we get the
last partial field on each line. It’s not expected to be obvious, but you can
cause newlines to be interpreted as end-of-field by making this argument the
same as the field separator, $sep. And to retain newline characters in the
fields use the newline expression, "\n" for $lineSepAs. Here’s a complete
listing:

sub fields to lines {
my($input, $output, $nfield,

$sep, $outSep, $lineSepAs) = @ ;
my($line, @fields, $fieldNo, $lineNo);
## read input until there’s enough for a line of output
while (@fields to lines buf < $nfield) {

if(!($line = <$input>)) {
return(0); # end of input

}
chomp($line);
@fields = split($sep, "$line$lineSepAs");
if ($sep != $lineSepAs) {
## append first field of this line to last field in buffer
my($last) = pop(@fields to lines buf).shift(@fields);
push(@fields to lines buf, $last);

}
@fields to lines buf = (@fields to lines buf, @fields);

}
## now write out as many lines as there are
while (@fields to lines buf >= $nfield) {
for ($fieldNo = 1; $fieldNo < $nfield; $fieldNo++) {
print $output shift(@fields to lines buf),$outSep;

}
print $output shift(@fields to lines buf),"\n";

}
return(1); # not the end of the input

}

@fields to lines buf = ();

Two points of typical Perl style are worth noticing.

• Perl switches easily between strings and arrays, as we do here. The
function split takes a separator and a string (the line of input here)
and creates an array of the fields defined from the string.
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• Arrays in Perl are typically manipulated by iteratively removing ele-
ments from either the front or back of the array (functions shift and
pop respectively). To build up arrays, one can do the reverse by adding
elements to front or back (unshift or push), or concatenate arrays by
writing them as a list in parentheses separated by commas.



Chapter 9

New Classes

This chapter presents techniques for defining new classes of R

objects. It and the closely related Chapter 10 on methods repre-
sent a more serious level of programming than most of the earlier
discussion. Together, the techniques in the two chapters cope
with more complex applications while retaining the functional,
object-based concepts of programming with R.

Section 9.1 presents motivation and an example. Section 9.2
introduces the essential techniques: creating the class (page 334),
slots (336), inheritance (336), class unions (338), new objects
(339), documentation (341), and an example (342). The material
in this section should be sufficient to start programming with
classes.

Later sections review inheritance (9.3, 344) and virtual classes
(9.4, 351). Section 9.5, page 359, discusses methods for initial-
izing and validating objects. Section 9.6, page 362, provides
techniques for programming with S3 classes. Two additional ex-
amples complete the chapter (Section 9.7, page 369; 9.8, 375).

9.1 Introduction: Why Classes?

Defining formal classes and methods is an extra burden, compared to just
plunging in to analyze the data, or even compared to programming by writ-
ing functions to encapsulate the analysis. Why bother? Indeed, I’ve encour-
aged you to get started in a simple, convenient interaction with R functions
and with other software. As you become more involved with software for
data analysis, however, creating related classes and methods responds to

331
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both of our guiding principles: making the analysis more natural and con-
venient (the Mission) and making the results more trustworthy (the Prime
Directive).

The key challenge is dealing with complexity and growth: how to ex-
pand the computing capabilities in a way that is easy to use and leads to
trustworthy software.

Example: Global positioning system (GPS) data

As a motivating example, let’s consider a source of data that is widely
used, simple, but still challenging; in other words, typical of data that is
interesting but that might not at first appear to need formal treatment.
The data comes from tracking output produced by devices using the Global
Positioning System (GPS). GPS receivers are devices that provide locational
and navigational information either used by the receiver itself (for example,
for navigation) or as input to computers or other devices. Applications range
from the very practical to the scientific to the recreational:

• GPS data on position and motion assist navigation for planes, boats,
and motor vehicles, or for hikers on foot.

• GPS data provides tracking information recording the movements of
the receiver, for example to study the behavior of birds or animals.

The navigational applications undoubtedly sell the most GPS hardware, but
because we’re concerned with exploring data, we will emphasize the track-
ing applications. These have already produced some important scientific
advances, in several cases expanding our concept of the mobility of species
in the wild. While navigational applications usually hide the actual track
data under a user-friendly combination of maps and/or computer voices,
tracking applications do generally need to worry about the data, particu-
larly when tracking is being done under difficult circumstances.

Conceptually, GPS technology computes the co-ordinates of a device, the
GPS receiver, in space and time. The receiver uses radio signals to estimate
distance to orbiting satellites, along with accurate time information. The
data involved in this computation is itself fascinating, but not what the user
normally sees nor what we will consider here. We are concerned with the
output from the GPS receiver. The receiver is programmed to record its
position at a sequence of times, as that position is computed based on the
available satellite connections.

Position in GPS data is defined with respect to the surface of the earth,
usually computed and returned as latitude, longitude, and elevation. Notice
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that these are, geometrically, a system of spherical co-ordinates in space.
A standard convention is that the first two variables are in degrees, with
negatively signed values for south of the equator and west of the meridian
through Greenwich. Elevation is the distance above or below the surface of
the earth.

A reasonable starting point is with track files exported from a GPS
receiver. There are many formats, both public and proprietary. Here’s a
fragment from a tracking file:

T 05/27/2005 10:42:00 40.76637 -74.54335 185.7
T 05/27/2005 10:42:18 40.76658 -74.54337 191.4
T 05/27/2005 10:42:41 40.76685 -74.54344 197.7
T 05/27/2005 10:43:02 40.76710 -74.54358 198.6
T 05/27/2005 10:43:20 40.76730 -74.54370 199.6
T 05/27/2005 10:43:46 40.76752 -74.54388 204.4
T 05/27/2005 10:44:01 40.76776 -74.54385 207.3
T 05/27/2005 10:44:26 40.76805 -74.54384 208.7
T 05/27/2005 10:44:54 40.76836 -74.54382 213.1
T 05/27/2005 10:45:25 40.76866 -74.54365 216.0

In the example we’ll deal with, the output for location and time from a GPS
track appear as five columns, separated by white space, for the date, time,
latitude, longitude and elevation. The leading "T" field just identifies the
line as track data. We can infer, if we haven’t been told, that the date is
in the “mm/dd/yyyy” form. A little more investigation is required to know
that elevation in this case is in feet, not meters. There are a few extra issues
not shown here: blank lines indicate loss of signal, which may be important;
a few lines of header information and other lines (not starting with "T") are
also in the file.

Allowing for such details, we can imagine computations in R to read in
such data. The function scan() could create a list with components for each
field; function read.table() and its variants could create a data frame; in
Section 6.5, page 182, we read some similar data. With a little work we
can end up, say, with a data frame object gps1, having variables date, time,
latitude, longitude, and elevation.

So, is there any need to invent a new class for this application? Yes, be-
cause the existing classes fail to capture some essential properties of the data,
making computations less convenient and potentially error prone. Consider
the first summaries we’re likely to need: printed and plotted displays of the
data. GPS data is nearly always plotted on a map. Plenty of software in R
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and in other systems generates maps, but using that software requires some
programming, when all we really want is to say plot(gps1). The temptation
is just to use the position information as x-y information:

with(gps1, plot(longitude, latitude))

That may produce a reasonable plot, but it treats the two variables as a
scatter of rectangular coordinates, which they are not, ignoring their physical
relation and the sequential nature of the tracking. (A good, sensible and
fully general plotting method is not trivial. Section 7.2, page 248, explored
some possibilities.) A class and a corresponding method for plot() are the
best way to package the details of the data and of the computations, leaving
the user needing only to say plot(gps1).

Similarly, when we come to trustworthy analysis, a simple data frame
is not adequate. Data frames support many very general modifications of
the data. You can extract arbitrary subsets of both rows and columns.
Numeric variables can be transformed or combined in arbitrary ways. But
does that make sense for our gps1 object, if the result is still to be considered
a valid record of GPS track data? Definitely not. The three geographic
coordinates have physical reality; a cautious interpretation would prohibit
any transformation of the individual coordinates. Rearranging the rows is
less obviously pernicious, but also distorts the notion of the data as tracking
information. Date and time values are not arbitrary; they represent the
concept of a continuous track for the physical receiver, of which our data
show a constructed sample. A "GPSTrack" class can prevent destructive or
misleading modifications of the GPS data, either because the modifications
can’t be done or because they produce an object that no longer claims to
represent tracking data.

We’ll pursue the GPS example later in the chapter, starting on page 342,
to illustrate some techniques for dealing with new classes.

9.2 Programming with New Classes

A new class is created, and saved, by a call to the function setClass(), in
its simple form:

setClass(Class, representation)

where Class is the character string name of the class to be created, and
representation defines the information to be provided in objects from the
class.
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First, a brief aside about what setClass() actually does. Unlike most
computations in R, this function is called for its side effect: it assigns an ob-
ject containing the definition of the new class. The class-definition objects,
like objects containing method definitions and some other constructions, are
referred to as metadata. Metadata objects are ordinary objects, in that you
can manipulate them with expressions in R. But the implementation hides
metadata definitions, partly so that a class and a function can have the
same name, as has traditionally been done. For example, "matrix" is both
the name of an important class of objects and of a function that generates
objects from that class.

So you should be aware that setClass() is misbehaving by the standards
we’ve set for functional programming, by doing an assignment behind your
back. It’s not a major issue for what actually happens; one could define
all the same techniques and ask the programmer to carry out the assign-
ment, by making explicit the way metadata is hidden. The result would be
philosophically cleaner, but quite a bit more trouble for the user.

Because the assignment is the essential step, it matters where the call
to setClass() takes place. The usual and preferred situation is to call
setClass() from the top level; typically from a source file that is part of
a package’s R code or evaluated by a call to source(). In this case, the as-
signment takes place in the global environment, usually what you want. If
you need to call setClass() from inside another function, you should provide
a where= argument; see the documentation for ?setClass. But the essential
recommendation is to keep it simple; define classes at the top level, usually
in the source code for a package.

There is another message here as well. Defining a new class is in many
ways a more serious piece of programming than much of what we have
discussed in previous chapters. While the number of lines of code needed are
often not large, it all tends to count. The design of the new class will affect
the ease with which it can be used. You will benefit from more advance
contemplation than we have suggested, for example, when writing a new
function. You may want to try several different versions before committing
to one; different ways to define essentially the same structure will arise often
in this chapter.

The amount of programming involved in using a new class may be much
more than that involved in defining the class. You owe it to the users of your
new classes to make that programming as effective as possible (even if you
expect to be your own main user). So the fact that the programming style
in this chapter and in Chapter 10 is somewhat different is not a coincidence.
We’re doing some more serious programming here.
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Class representation

With these asides out of the way, let’s examine the basic things you will be
doing in the call to setClass(). The call specifies what information can be
found in an object from the new class. This information is organized into
slots. The call to setClass() determines the names of the slots in the new
class, and requires each slot to itself correspond to a specified class. As a
result, software working with a valid object from the class can extract or
replace a named slot, confident that the object will have the named slot
and that each slot when extracted, will be an object that contains all the
information implied by the slot’s class.

We will see that the slots in a new class can be defined both directly,
by naming them, and through inheritance, by asserting that the new class
contains all the slots in an existing class.

We call the information about names and classes for the slots the rep-
resentation information for the new class. The first two arguments to
setClass() are the name of the new class and the representation informa-
tion.

For a very simple example, let’s create a new class named "track" that
has two slots named "x" and "y", both of the slots being numeric vectors
(class "numeric").

setClass("track",
representation(x = "numeric", y = "numeric")

)

With this definition, new objects can be created from the class. If tr, say,
is any such object, then it’s guaranteed to have a slot tr@x and a slot tr@y,
and both are guaranteed to be numeric. Suppose the idea is that x and y

represent coordinates for some observed track being followed, perhaps by an
animal wearing a recording device. The class is too trivial to be useful on
its own, but just for that reason it helps illustrate some basic points in the
discussions of this chapter. A less trivial extension of the example is the
GPS data (which we will take up again on page 342).

Class inheritance

As a simple class is used and found useful, variations on it nearly always
suggest creating a class that extends the first class, that is, a new class
that contains all the information from an existing class. This is done just
by specifying one or more existing classes in the contains= argument to
setClass(). So, to define a new class that has the information in our previous
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"track" class, but in addition has a third numeric slot, z, for tracking with
three coordinates:

> setClass("track3",
+ representation(z = "numeric"),
+ contains = "track")
[1] "track3"
> getClass("track3")

Slots:

Name: z x y
Class: numeric numeric numeric

The new class has all the slots from the classes it contains, plus those speci-
fied directly. Most importantly, methods defined for the contained class can
be used for the new class as well.

An object, say tr3, from class "track3" will have three slots, the two
inherited and one specified directly. We can say of any such object that
it “is” also an object from class "track", by which we mean that tr3 can
be supplied to any method where an object of class "track" was expected.
It’s this assertion that makes inheritance such a powerful tool in extending
existing software.

The classes specified for slots in the representation argument can be any
class that has been defined. In contrast, there are some inherent restrictions
on classes in the contains= argument. Classes supplied here must be either:

1. Other S4 classes, defined and imported into the environment where
the new class is being created; or,

2. One of the basic R object types, but not those types that are references
or nonstandard; for example, not "environment" or "symbol" (the ob-
ject type for class "name"). Also, the new class can contain at most
one such basic object type, whether directly or indirectly.

The restrictions in the second item are required because the type of objects
from the new class is that of the basic data class. For example, if a new
class contains class "numeric", the type of objects from the class will be
"numeric", and the various built-in computations for that object type will
generally be inherited by the new class. Therefore, containing more than
one such class would make the object type undefined. Objects from a class
that does not contain any of the basic data classes have object type "S4".
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The contains= argument should not include an S3 class; these are fine
for slots, so long as they have been defined by setOldClass(), as discussed
in Section 9.6, page 366. However, they do not make sense as inherited
classes, for two reasons. First, there is no information available to specify
what contents objects from the class have, in terms of guaranteed slots. In
fact, a number of S3 classes either have inconsistent slots from object to
object, or use nonstandard mechanisms for defining the properties of the
objects. Second, S3 method selection will not be aware of the inheritance of
an S4 object, so all S3 methods will fail to be inherited.

It’s common to call the inherited class a “superclass” of the new class
and conversely to call the new class a “subclass” of the inherited class. We’ll
use that terminology because it is convenient and common.

The uses (and occasionally the dangers) of inheritance are an important
topic. Section 9.3 discusses the concepts and techniques in detail, and goes
on to some other techniques for relating class definitions.

With representation and inheritance we have the essential ingredients
for creating new classes. The rest of this section introduces some additional
techniques and variations.

Virtual classes and class unions

Not all useful classes correspond to actual objects. A virtual class often
represents some structure or concept about objects, without fully specifying
how those objects are represented. Methods can be written for virtual classes
and then shared by all the actual classes that contain the virtual class.
Virtual classes can also be slots in other class definitions, allowing the slot
to contain an object from any subclass of the virtual class.

A common special case of a virtual class is one that exists only to rep-
resent a conceptual property shared by other classes. This virtual class has
no slots defined and therefore makes no restrictions on which classes extend
it. In R, these are referred to as class unions, the term borrowed from a
similar construction in C. Class unions are created directly by the function
setClassUnion():

setClassUnion("OptionalFunction", c("function", "NULL"))

This creates a class called "OptionalFunction" and says that both classes in
the second argument implicitly extend the new class. The union can now
be used, either as a slot in further class definitions or in the signature of
a method definition. Objects from any of the classes in the union can be
supplied as slots or actual arguments for the method.
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In the "OptionalFunction" example, we might want to write some soft-
ware that optionally transformss x by a user-supplied function, say as an
argument named transform to our function. If the user doesn’t want to
supply a transform, how do we indicate this? We could have a second ar-
gument, set to TRUE if the transform was to be done, but this is an extra
burden on the user. We could do the transform anyway and have a “do
nothing” function, but this is slightly inefficient and ugly. If the argument
corresponds to "OptionalFunction" in a method signature, however, then we
can use a computation of the form:

if(!is.null(transform))
x <- transform(x)

A similar motivation applies to slots in a new class. Suppose we want the
optional function to be a slot in a descriptive object, for example, a model
definition. Just as with the argument, we would like a way to indicate in
the object itself whether the transformation should happen. Defining the
corresponding slot to be a class union allows the user to easily supply either
no transformation or a function when creating the model definition.

Class unions are virtual classes that only relate to behavior, with no
implications about the information in objects, in the sense of slots. However,
virtual classes can include a partial specification of the slots. Actual classes
extending such virtual classes will have these slots and, usually, additional
information as well.

Virtual classes with slots are often valuable in thinking about new direc-
tions for computing with data. Rather than prematurely deciding everything
that needs to be implemented for a new idea, we can begin with the most
important concepts, incorporating those into a virtual class. Experiments
with actual classes that contain the virtual class can then allow alternatives
to be explored, without confusing the original ideas. If some alternatives are
abandoned, the rewriting will be less difficult and (particularly important)
less error-prone if the original key concepts remain.

Any class can be declared to be virtual, either by having a completely
empty representation, or by explicitly including "VIRTUAL" in the contains=

argument to setClass().
For details on virtual classes and class unions, see Section 9.4, page 351.

Generating objects from classes

Once a non-virtual class has been created, objects from that class can be
generated by a call to the function new(), with the name of the class as
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the first argument. If that is the only argument, new() returns the proto-
type object from the class. If other arguments are supplied, new() passes
the prototype object and those arguments on to the function initialize().
Methods for initialize() are an important tool in designing classes, but
the default method is itself quite flexible. It can be given arguments that
are either;

1. named with one of the slot names, in which case this argument is
assigned as the corresponding slot; or,

2. unnamed arguments from one of the superclasses of this class.

In the second case, all the slots inherited are assigned from the corresponding
slot in the argument. (In fact, the initializing computations used by new()

try to interpret some other cases as well, but for most purposes you should
stick to either slots or objects from inherited classes.)

Slots not explicitly specified in either of these ways will have the values in
the default or prototype object from the class definition. The prototype ob-
ject can itself be specified by using the prototype= argument to setClass().
The notion of a prototype is usually that it specifies objects corresponding
to some of the slots that are different from the defaults for the slots’ own
classes. Once again, the implementation tries to interpret a number of differ-
ent objects as prototypes, but the safe approach is to use the corresponding
function prototype().

When you define a new class, you may also want to define a correspond-
ing method for initialize(). You can choose arguments for that method to
suit the way you want people to think about objects from your class. The
arguments need not be the same as the slot names. Using this flexibility
is a good idea, for example, if you have a number of classes that imple-
ment alternative versions of some basic ideas. Users should be thinking in
terms of the concepts, while the software underneath is responsible for the
alternative implementations of the concepts. There are a few points of style
in writing initialize() methods; in particular, you should remember that
initialize() may be called for a subclass of your class, having additional
slots you can’t anticipate. You should allow the flexibility for additional
slots to be specified. For the technique and examples, see the discussion of
methods for initialize() in Section 9.5, page 359.

Slots and slot classes

Formal classes provide guarantees about the contents of objects through the
class specification for slots in the class definition. A slot can be assigned
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either in the initial creation of an object, via the implied call to initialize(),
or later on by replacing the slot explicitly. Slots are accessed or replaced by
the "@" operator; for example, tr1@x returns the slot "x" from object tr1

and

tr1@x <- xx

replaces it with the object xx.
Specifying the class of the slot in the definition guarantees that the

assignment will only succeed if the replacement value is an object of the
specified class, whether the assignment takes place in initialize() or later
on. The meaning of the requirement is literally as stated; in the example,
the assignment will succeed only if

is(xx, "numeric")

would evaluate to TRUE. Notice that so long as the condition is satisfied, the
object is assigned to the slot. In particular, the object can come from a
class that extends the specified class. It will generally be unchanged, still
an object from the subclass. If xx came from an S4 class that contained
"numeric", but that had other slots as well, the new slot in tr1 will be that
object, with its class and its other slots unchanged. See Section 9.3, page
348 for the underlying concepts related to coercing an object to a class.

Documentation for classes

To see documentation for a class, as for most documentation, a Web browser
interface usually works best, either an actual browser or the similar interface
provided by a GUI. Starting from the documentation for the package con-
taining the class definition, look for the name of the class in the alphabetic
index. Class documentation is listed under the name of the class, followed
by "-class", for example:

track-class

Click on this to see documentation for class "track".
To request documentation for a class in an R expression, precede a call

to the operator `?` with the documentation type, "class":

class ? track

requests documentation for class "track". Browser interfaces to documen-
tation and the help() function have not yet learned about documentation
types. To use those, supply the class-type documentation topic shown above;
that is, "topic -class", and in this case:
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help("track-class")

See Section 10.4, page 389, for similar documentation for methods.
This chapter is about defining new classes, and at this point, about doc-

umenting them. To start the process, the function promptClass() will create
a documentation skeleton from the metadata defining the class, similarly to
the use of prompt() for functions. The call to promptClass() specifies the
name of the class; optionally, you can also supply a file or other connec-
tion to which the skeleton documentation should be written. However, the
function knows the convention for naming class documentation files, so my
suggestion is to let promptClass() name the file, and then move that file to
the "man" directory under your source package directory.

For example, to put a skeleton of documentation for our "track" class
into the source package "SoDA" (and following our pattern of putting pack-
ages into the "RPackages" subdirectory of the user’s login), we can call
promptClass() and then use the system() command interface to move the
file to its correct destination:

> promptClass("track")
A shell of class documentation has been written

to the file "track-class.Rd".

> system("mv track-class.Rd ∼/RPackages/SoDA/man/")

The documentation shell contains entries for slots and superclasses, plus
other general information. As usually with documentation shells from the
prompt family of functions, you need to replace the stubs in the documenta-
tion with actual information.

Example: GPS data (continued)

Here is an example of defining a class for the GPS tracking data introduced
on page 332. In the treatment without a specific class, such data is read as a
"data.frame" object. But general data frame operations are not meaningful
if the object is to continue to be a valid example of tracking data. Arbitrary
extraction of rows or variables contradicts the concept of the track as a
sample of continuous motion. The numeric variables representing position
should not be subject to arbitrary numerical transformations, as permitted
when treating a data frame as a two-way table. Defining a special class lets
us be more restrictive about the computations defined for such objects.

A natural way to think of this data as an R class is to take the three
position variables to be numeric. Time, in the sense of date-and-time as
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it occurs in GPS applications, is not a built-in R object type, and there
are some choices. We will use a class "DateTime", defined as a union that
includes the standard S3 classes for time (see ?DateTimeClasses).

At this point we can define a GPS class in a straightforward way:

setClass("GPSTrack",
representation(latitude = "numeric", longtitude = "numeric",

elevation = "numeric", time = "DateTime")
)

The class has four slots with the obvious names, containing numeric data
for the three position slots and with the standard time class for time data.

Time is always known accurately as part of the GPS technology. Some
GPS receivers infer continuous motion information, usually defined in terms
of direction (on the earth’s surface) and speed, and include such motion in-
formation in their track output. We have not included it here, and for many
scientific tracking purposes it would not be meaningful. But an extension to
the "GPSTrack" class having slots for motion data would be useful for some
applications.

Example: Binary representation of numeric data

In Section 6.4, page 161, some R functions are defined to produce the binary
representation of numeric data, as an exercise in vectorizing computations.
The computational exercise was to infer the pieces of an internal represen-
tation for numeric (floating-point) data. Each number is modeled as having
an integer exponent, a sign (±1), and a binary fraction, considered as a field
of bits. A class definition with corresponding slots might have the form:

setClass("binaryRep",
representation( original = "numeric",

sign = "integer",
exponent = "integer",
bits = "raw"))

This class is designed to record the results of computing the representation,
and to carry along the original numeric data as well. Although the compu-
tations generating the representation naturally generated considerable in-
termediate swell (because bits had to be computed as numeric values), the
end result uses the "raw" built-in object type for the bits, getting some effi-
ciency of storage and protecting the bits from being treated numerically by
storing them as "raw" values, that is, bytes. The R classes for "sign" and
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"bits" slots are more general than the valid values they can contain; for
these purposes, a validity method is useful. Section 9.5, page 361, discusses
such methods, including an example for this class.

Because the main goal of the class is to examine numerical data, a
method to show the results is key, printing the representation in a fairly
compact but complete form:

setMethod("show", "binaryRep",
function(object){

cat("Object of class \"", class(object), "\"\n")
sign <- ifelse(object@sign < 0, "-", " ")
pasteBits <- function(bits)

paste(ifelse(bits>0, "1","0"),collapse="")
bits <- matrix(object@bits, nrow = length(sign))
bits <- apply(bits, 1, pasteBits)
lines <- paste(format(1:length(sign)),": ",sign,".",

bits, " * 2∧", object@exponent,
" (", object@original, ")", sep="")

cat(lines, sep="\n")
})

Converting the bits to a printed form is made simpler by the common trick
of turning the vector into a matrix, with columns representing the bits for
successive numbers.

9.3 Inheritance and Inter-class Relations

New class definitions in a call to setClass() can specify that the new class
will contain all the information of an existing class, so that objects from
the new class will have each of the slots in the existing class, with the
same slot names and slot classes. Some simple examples were introduced
starting in Section 9.2, page 336. The concept of inheritance extends well
beyond such examples. It is arguably the single most important mechanism
in programming with classes and methods in R. It’s also perhaps the concept
that generates the most confusion when programmers start to exploit it.

In this section we look in more detail at inheritance and similar mech-
anisms for converting between classes, beginning with an attempt to nail
down the concept as clearly as possible and deal with the variety of termi-
nology used to talk about inheritance.
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The concept of inheritance

In the S language and in other languages and systems, a number of terms
are used to convey the concept of inheritance. In this book, we use sev-
eral, emphasizing different aspects of the one underlying mechanism. Let’s
consider the simple example, using the contains= argument to setClass(),
shown on page 336:

setClass("track3",
representation(z = "numeric"),
contains = "track")

The term inheritance itself is particularly concerned with behavior, that
is with methods. The "track3" class inherits all the methods for the "track"

class; that is, any method can (we assert) be applied to an object from the
new class, by using the object as if it were from the earlier class. Inheritance
in this sense is an automatic result of the rules for method selection in R: If
there is no method directly defined for the new class, an inherited method
will be used. The designer of the new class will need to decide which methods
should not be inherited, and define methods explicitly to prevent inheriting
the existing methods.

The term contains relates to the content of the objects. The slots in the
earlier class definition appear automatically in the new class. In the sense
of the term in mathematics, the set of slots in the new class contains the
set of slots in the previous class. When other techniques are used to specify
class inheritance, as discussed on page 347, the sense of contains may be less
literal, but it remains part of the concept that all the information implied
by the previous class can be retrieved from an object having the new class.

It’s useful to borrow some other terms in discussing inheritance. Ter-
minology dating back to the Smalltalk system states that, when a class, B,
extends an existing class, A, then an object from class B is an object of
class A (abbreviated to “is an A” in most discussions). In contrast, if one
of the slots in the definition of B is of class B1, say, then the Smalltalk term
is that an object from class B has an object of class B1.

The Smalltalk terminology remains helpful and useful even today, in em-
phasizing the conceptual differences. Notice how much more is implied by
the “is a” relationship than by the “has a” relationship. Bringing the discus-
sion back to R, we’re saying that any computation defined for an object of
class A can be applied to an object of class B. Not just applied to, but with
the value of the computation being valid. As some examples will illustrate
shortly, this assertion provides a very powerful tool, but also carries some
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risks. (If the computation can be applied, but the result is not valid, we’ve
violated the Prime Directive.)

Yet another common terminology calls the new class, B, a subclass of
class A, and A a superclass of B. This terminology is also useful as well as
unavoidable in many discussions of inheritance. For example, it’s convenient
to refer to “all the known classes that extend class A” as “the known sub-
classes of class A”. But the idea behind the subclass/superclass terminology
is somewhat the opposite of our discussion so far. The idea can be related
to the concept of subsets and supersets in mathematics.

One can think of a class A in terms of all the objects x that exist such
that is(x, A) is true. Whenever B extends A, then the set of objects
corresponding to B will in fact be a subset of the objects corresponding to
A. All the B objects are also in the set of A objects, but not the other way
around. In this sense it’s natural to refer to B as a subclass of A. Similarly
for the term superclass: the set of objects belonging to or inheriting from
class A is a superset of the objects corresponding to B.

Perhaps a more intuitive way to remember subclass and superclass, how-
ever, is to think of drawing a picture of class inheritance on a page, starting
at the top. The picture starts with the simplest classes in the relationships,
since only these can be defined from scratch. Now, below these, we draw the
classes that contain these classes, with lines connecting each class to its su-
perclasses. Then, next down the page the classes that depend on the classes
so far. The vertical position of a class directly reflects its inheritance rela-
tions: Those classes above a class and connected to it are its superclasses;
those classes below a class and connected to it are its subclasses.

However you manage to sort out the terms, do try to get comfortable
with the concepts. The networks of super- and subclasses provide essential
concepts for understanding how the objects in a project are modeled and
managed. Let’s state the general concepts one more time, from one more,
slightly different perspective. An object from a particular class should have
all the behavior implied for each of the superclasses of that class. Conversely,
a class shares all its behavior with its subclasses, but each of these will
typically have some additional behavior as well.

Simple inheritance

“Simple” inheritance, by naming inherited classes in the contains= argument
when defining a new class, is the preferred mechanism for specifying inheri-
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tance, and works for most applications.1 Simple contained superclasses are
the easiest to understand, so this should be the first concept to try out.

An advantage of simple inheritance arises in computations that select a
method for a function or assign a slot in an object, when the class specified
for the method or slot is a superclass of the actual object’s class. The actual
object must be interpreted as if it came from the superclass. When the
inheritance is simple, the actual object is used without change , making for
a more efficient computation but more importantly allowing objects from
the actual subclass to be returned from a method or extracted from a slot.

In the example on page 345, class "track" was made a superclass of a
new class, "track3". Whenever an object, x say, is generated from "track3",
one can use x as an object from class "track". All the slots of class "track"

are present with the same definition. When a method is called that expects
an actual argument from class "track", an object from class "track3" can
be supplied instead, without any change . A similar interpretation is placed
on an object inserted into a slot. The class definition specifies a class for the
slot. Only objects from that class or from a subclass are valid, but objects
from a class that contains the required class are inserted without change
into the slot.

An alternative mechanism for simple inheritance was shown on page 338:
a call to setClassUnion(). This creates a class that only exists as the union
of other classes. The class union is a superclass of all the members: The
assertion is that objects from any of the member classes behave correctly
for methods defined for the union. Calls to setIs() can add classes to the
union. Class unions are special in that they add a superclass to the definition
of existing classes, even potentially to basic object types and other classes
whose definition is “sealed”. It’s a subtle mechanism, but often useful.

As with the use of the contains= relationship, a class union defines a
simple inheritance: Members of the union are simple subclasses of the union.
If a method is defined for the class union or if a slot is specified to be of the
class union, an object from any of the member classes of the union can be
used, without change. The slot application is, in fact, one of the valuable
uses of class unions: to allow more than one kind of object in a slot, without
abandoning control altogether.

1Superclasses can also be specified in the call to setClass() as unnamed arguments
to representation(). There is no difference in the result. The use of contains=
makes the inheritance clearer when reading the code and is the preferred mechanism. The
alternative is allowed by the S language, and may be needed to define the representation
object on its own, outside the call to setClass().
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Coercing one class to another

A relationship can exist between two classes when both are actual, non-
virtual classes but with different representations. Neither class contains the
other, but the classes can be related in terms of all or part of what they
mean, in which case it might be useful to coerce an object from one class to
the other.

Coercion has two forms, direct and replacement:

as(x, "track")
as(x, "track") <- value

The first expression returns an object from class "track", The second re-
places the part of x corresponding to class "track". When x comes from a
class that contains "track", the method for both computations comes from
the class definitions: selecting the correct slots from x for direct coercion and
replacing the correct slots from value (implicitly, from as(value, "track")).
Notice that coercion really does change the object from the subclass, whereas
method selection and use in a slot left it unchanged. The latter behavior
can be obtained explicitly by using the strict = FALSE option to as().

If x does not come from a subclass, there will not be an automatically
defined method for either form of coercion, but a mechanism exists to specify
the methods, by calling

setAs(from, to, def, replace )

with from and to the names of the classes, and def and replace being the
methods for direct coercion and replacement. The first method has one
argument, being the object to be converted; the second is a replacement
method with arguments from and value. Supplying a replacement method
is optional.

Defining coerce methods for two classes by calling setAs() does not im-
ply that the first class is a subclass of the second, but R does allow that
extra assertion by a closely related mechanism, the setIs() function. This
takes optionally methods coerce and replace interpreted as direct coercion
and replacement. But it has the added effect of adding class to to the super-
classes of class from. Objects from the from class will now inherit behavior
automatically, for method selection and slot assignment for example. How-
ever, this is not simple inheritance in the sense discussed above. When an
object is selected for a method or used in a slot, it must be explicitly con-
verted to the to class, losing some of the advantages of simple inheritance.
For this and other reasons, the automatic conversion of a class to another
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by explicit coercion has proven to be less appropriate in most applications
than defining a common superclass for the two classes. An example will
illustrate.

A recurring theme in this book is the data frame concept, originally
implemented in the S language by the S3 "data.frame" class, but which arises
in many contexts with different implementations. In Section 9.8, page 376,
an S4 class "dataFrame1" is defined with the same information content as was
prescribed for the "data.frame" class in the book Statistical Models in S [6].
Having a formal definition of the same concept allows the use of more modern
tools with data frame data, but how should the old and the new classes be
related? A simple approach would be to define a conversion method from
old to new (and perhaps from new to old). The method(s) could be made
available for use by the as() functions, by supplying them in calls to setAs().
One could also define a method to initialize the "dataFrame1" class from a
"data.frame" object.

One could go further and assert that "data.frame" is a subclass of the
new class, by setIs("data.frame", "data.frame1", ....). The assertion
makes some sense, in that the informal S3 class can have other, unspecified
attributes (and sometimes does), so that it is in that sense more general
than the formally defined class. Remember that inheritance the other way
doesn’t work: an S4 class can not effectively contain an S3 class because,
among other problems, S3 methods will not recognize the inheritance.

Because the S3 class has no formal description, the inheritance must be
explicit, with a method for coercion and replacement. The same would be
true if both classes were formally defined, but used a different representation
for the information. Whenever explicit conversion is required, experience
suggests you should consider instead defining another class that is indepen-
dent of either explicit representation, and make that class a superclass of
both current classes. Methods can then be defined for the new superclass
that rely only on shared behavior. These methods will work for either of
the subclasses, and retain the advantages of simple inheritance. Defining a
common superclass makes particular sense for this example. As emphasized
throughout the book, data frames are a very general concept in software for
data analysis, from classic "data.frame" objects to spreadsheet and database
applications.

A more extensible approach is then to define a virtual class, probably
a class union, that has no assumed representation but is expected to have
methods based on general data-frame properties. We’ll pick up this discus-
sion and consider such a class in the example of Section 9.8, page 375.
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Multiple inheritance

Saying that the new class can extend more than one existing class is allowing
multiple inheritance. Not all class systems do allow multiple inheritance, but
for a functional language, I believe that the flexibility provided makes the
mechanism essential.

Objects in R exist to be used in functions. When the behavior of func-
tions is meaningfully related to the class, corresponding methods express
some aspect of the class, such as its numerical behavior, how subsets of data
are specified, and so on. Multiple inheritance says that objects naturally in-
herit different aspects of their behavior from different, essentially unrelated
sources. In a functional language, these aspects of behavior are expressed as
functions, such as arithmetic operators, subset operators and many others.
In a class system for such a language, methods for these functions need to
be shared by all classes that share the same behavior. And that sharing is
made possible when the methods are defined for a common superclass. Dif-
ferent aspects of behavior may require different superclasses, and so multiple
inheritance.

However, multiple inheritance does introduce potential ambiguities, if
the aspects inherited are not clearly distinguished. Specifically, the new
class may inherit more than one possible method for the same function call.
R has a rule for choosing one of the methods (see Section 10.6, page 405),
but it’s more important to avoid class definitions where such ambiguities are
a serious problem. Well-designed classes choose superclasses that contribute
distinct aspects of the new class’ behavior. It’s less likely that both super-
classes will make sense in the same method context. If they do, the preferred
meaning for the new class should be clear, or else the two inherited aspects
are not themselves clear. It’s a good practice if such ambiguities arise to
specify the behavior for the new class directly, via its own method for this
function.

Contained classes must have been defined when setClass() is called.
Some languages allow recursive class definitions; that is, a class can inherit
from itself, directly or indirectly, which the R restriction prevents. Direct
recursive use usually doesn’t make sense in R for ordinary classes; among
other problems, it prevents an automatic definition of the prototype object
for the new class. Even undefined classes for slots provoke a warning, since
again it’s not possible to define a valid prototype object if a slot specifies
an undefined class. See Section 9.7, page 369, however, for an approach to
recursive class definitions.
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9.4 Virtual Classes

In R, a virtual class is simply one for which you can’t use the function new()

to generate objects. The metadata for the class definition has an explicit
slot to indicate whether the class is virtual. There are three main kinds of
virtual classes and three corresponding ways to create them.

1. Class unions, created by setClassUnion() have no slots, but exist so
that other classes can be declared as members of the union, and so
share its methods.

2. Old-style,“S3”, classes have no formal definition, but are specified in
a call to setOldClass();

3. Arbitrary class definitions may contain the special class "VIRTUAL" ;
the term mix-in is often used to describe classes of this form.

All of these classes may appear as slots or in method signatures. The first
and last can be superclasses of ordinary classes, but S3 classes can not.

Class unions

Class unions were introduced in Section 9.2, page 338, with the example:

setClassUnion("OptionalFunction", c("function", "NULL"))

Specifying "OptionalFunction" for a slot in a class definition allows the slot
to define some computation, but also to indicate unambiguously that no
computation should be done. The “optional thing” motivation for a class
union is especially simple, but a similar idea works for a number of other
techniques as well. If a slot could either be a pre-computed numerical sum-
mary or a function to compute that summary, a class union of "numeric"

and "function" would work similarly:

setClassUnion("parameterSpecification",
c("numeric", "function"))

The idea this time is that a parameter can be specified either as fixed
numerical values or as a function that creates these values from the cur-
rent object’s contents. If a slot in another class is specified as having class
"parameterSpecification" then the actual slot contents will be either nu-
meric or function. To benefit from such flexibility without introducing
many tests of the actual object’s class, define a related generic function,
say updateParameter(), which has methods for each of the member classes
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of the union. Then calling updateParameter() will recompute the desired
parameter if it was specified as a function and simply return the value if it
was specified as a constant.

Class unions can also link classes that are related by the ability to do
certain calculations, but are not assumed to have any common slots. Our
continuing example of data frame objects illustrates the value, and also the
challenges, of this approach. A "dataFrame" class union would represent
classes that implement the essential two-way layout of variables by observa-
tions. Some further discussion is in the example in Section 9.8, page 375.

A class union is a special type of class definition, with a special privilege:
A class union can be defined as a superclass of another class, even if the
definition of the other class is sealed. Sealed classes cannot be changed; for
example, "data.frame" is such a class:

> isSealedClass("data.frame")
[1] TRUE

But the call to setClassUnion() is allowed an exception. If a class union is
created containing "data.frame", as in Section 9.8, page 375, "data.frame"
has a new superclass:

> extends("data.frame", "dataFrame")
[1] TRUE

This exception is essential to using class unions (if we couldn’t include basic
classes as members, unions would be largely useless). Also, because class
unions have no slots, the union cannot conflict with the representation of
any of its member classes.

A class union can itself be sealed, by calling sealClass(). If it is not
sealed, additional members can be included later on, by calling setIs():

> setIs("dataFrame2", "dataFrame")
> getClass("dataFrame")
Extended class definition ( ?ClassUnionRepresentation? )
Virtual Class

No Slots, prototype of class "NULL"

Known Subclasses:
Class "data.frame", directly
Class "dataFrame1", directly
Class "dataFrame2", directly
Class "anova", by class "data.frame", distance 2
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As the output of the example illustrates, class unions will also implicitly
include those classes that contain or otherwise extend the directly specified
members of the union.

S3 classes

The first, informal version of classes for the S language was introduced in
the book Statistical Models in S [6]. Objects were assigned a class attribute
consisting of one or more character strings; a method dispatch mechanism
looked for method names matching one of the strings. Although there are a
number of disadvantages to S3 classes (above all the absence of any definition
of a valid object), they are widely used and unlikely to disappear soon.

To make use of S3 classes with the techniques of this chapter, it is
necessary to construct corresponding S4 classes. These have the same name
as the S3 class and are always virtual classes. Because there is no definition
of the class, new() can’t generate a corresponding object. The virtual class
is created by a call to setOldClass(Classes), where Classes is the value that
the class attribute would have; for example,

setOldClass("data.frame")

to declare the S3 "data.frame" class. All classes declared in this way in-
herit from class "oldClass", identifying them as S3 classes. Such classes
can be used for slots in the definition of formal classes and can appear in
method signatures. They cannot be used in the contains= specification of
superclasses. For more details, see Section 9.6, page 362.

Mix-ins

Any ordinary class definition can create a virtual class, by including the
special class "VIRTUAL" in the contains= argument to setClass(). Such
virtual classes are useful in describing computational structure that is not
complete in itself, but must have additional class information “mixed in” in
order to fully define a class.

A class definition that is completely empty (no slots and no contained
classes) is also made virtual, but note that any class that contains a vir-
tual class is not made virtual automatically. You must explicitly include
"VIRTUAL" in the superclasses.
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Example: Traceable objects

As a fairly serious example of the use of virtual classes and inheritance, in-
cluding multiple inheritance, let’s consider the mechanism for tracing eval-
uation in R, which centers on the mix-in class "traceable", a virtual class
with a single slot:

setClass("traceable", representation(original = "function"),
contains = "VIRTUAL")

In any interactive environment for programming, one may want to in-
spect a computation as it occurs. Debugging systems and debugging modes
for programming languages have long provided mechanisms, usually involv-
ing “breaking” execution at certain points, such as specified lines in the
source code. A functional system provides an opportunity for building such
facilities directly in the language itself. R uses the trace() function to cre-
ate versions of functions or methods that include interactive browsing or
inspection, or for that matter any computation desired. The traced versions
are specified from the command line of the session and then untraced when
no longer needed. The result is a flexible and open-ended debugging mech-
anism. The use of trace() is discussed in Section 3.6, page 67. Here we’re
concerned with the mechanism, which illustrates the power of inheritance.

Suppose we want to trace the evaluation of a function, say f(). There
are many things we might want to do, such as to use an interactive browser
at some stage during the call to f(), whether on entry, before returning, or
at some intermediate point. In a programming language like C, you would
need to run your computations through a debug application and insert break
points in the appropriate places. In R, you continue to evaluate expressions
in the same way as always. Interactive debugging is enabled by creating a
new version of f(), a step that is done by a call to the trace() function.
For example,

trace(f, exit = quote(browser()))

says to redefine f() to evaluate the expression browser() just before exiting.
The trace() function in fact allows this expression to be abbreviated to
just exit = browser, but this is just a short form for the general idea of
specifying an unevaluated expression to be inserted. We might want to
print some information in addition to or instead of interacting:

trace(f, quote(cat("f:",narg(), "arguments")),
exit = quote(browser()))
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And we might want the action to be conditional on some test. Instead of
building up various special techniques for breaks and debugging, R uses the
one mechanism of redefining the function to be studied.

Because the function is an object, trace() operates by constructing a new
version of the object that is temporarily assigned in place of the original.
In essence the new version can be any modification of the function’s body
(you aren’t allowed to change the arguments). R constructs the new version
either automatically or in response to some editing by the user (if the call
to trace() included the option edit = TRUE).

To make the mechanism work, it must be possible to undo the tracing,
or to replace it with a different form of tracing. And the mechanism should
allow us to trace methods as well, because these are essentially function
definitions. Inheritance, and in particular multiple inheritance, provides a
clean solution.

The call to trace() replaces the function by a new object, from class
"functionWithTrace". This class extends class "function"; in particular, its
data part is the modified function definition. The evaluator treats it as
a function, so all calls to f() still work, but call the modified version. In
addition the new object has a slot that saves the original definition, allowing
a call to untrace() to undo the tracing.

So far, it sounds as if class "functionWithTrace" can just be defined by
adding a slot to the basic class "function". Virtual classes and mix-ins enter
the picture because ordinary functions are not the only objects that need
to be traced. To debug a method, for example, the tracing code must be
inserted in the method definition. The mechanism is the same: The function
trace() finds the method that would be selected, constructs a modified
method that includes the tracing behavior and re-assigns it, effectively by
calling setMethod(). Once again a slot original in the traced object contains
the original version.

But method definitions are not just functions. They too come from a
class that extends "function", in their case by having information about the
signature, the classes for which the method was defined and also the classes
for which the method is being used. (If you want details see Section 10.6,
page 405.) Specifically, the untraced method has class "MethodDefinition".
To retain all the method-related capabilities, the traced object must ex-
tend class "MethodDefinition", requiring another class for method defini-
tions with trace, say "MethodDefinitionWithTrace". Now virtual classes and
mix-ins become relevant. Rather than just define the trace mechanism sepa-
rately for functions and methods (and there are still more classes of extended
functions to be handled), the cleaner solution is to encapsulate the use of an
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"original" slot in a virtual class, "traceable" and have all the new objects
come from classes that contain class "traceable".

The definition of "traceable" is extremely simple:

setClass("traceable", representation(original = "function"),
contains = "VIRTUAL")

class "MethodDefinitionWithTrace" contains both "MethodDefinition" and
"traceable":

setClass("functionWithTrace", contains= "traceable"))
setClass("MethodDefinitionWithTrace",

contains= c("MethodDefinition", "traceable"))

Given an object to be traced, function trace() can construct a new object
from the corresponding original object and save the original for untracing:

objectT <- new(traceClass, object)
objectT @ original <- object

Here traceClass has been set to the suitable class, "functionWithTrace",
"MethodDefinitionWithTrace", or others. The discussion of new() on page
339 mentioned that an object from a superclass could be an argument, with
the result that all of the information from that object would be copied into
the new object. Because object comes from a superclass of traceClass, the
function or method definition information will automatically be copied into
objectT. Here the behavior of mix-ins becomes essential; otherwise trace()

would need to know all about all the possible object classes.
A few details: The actual code for trace() uses an initialization method

for "traceable" to insert the tracing computations, using the techniques
discussed in Section 9.5, page 359. And for compatibility with older R code,
the computations are not in trace() itself but in a function it calls. If you
want to see the real thing, look at methods:::.TraceWithMethods.

Example: Creating classes dynamically

The preceding example has yet another interesting point to raise. You may
have remarked that each new class extending "function" will have to have
a corresponding "...WithTrace" class defined in order for trace() to work
correctly with objects from the new class. This seems a nuisance, and re-
quires more knowledge of the inner workings than one would like to impose
on a programmer who just wants a slightly different class of function-like

Class "functionWithTrace" contains both classes "function" and "traceable";

c("function",
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objects. Is it possible to automate the construction of classes? And if so, is
it a good idea?

The answer to the first question is: Yes, it’s quite feasible to automate
such manufacture of classes. Because classes are created by a call to a
function, a programmer is perfectly at liberty to generate classes during a
session. We need to know what the new class definition should be and where
to save the definition.

Is it a good idea? Generally, no. For most purposes, stick to the standard
approach: Define classes explicitly by calls to setClass() done at the top
level of the code for your application or package. The class definition will
be permanently and unambiguously part of your software; for trustworthy
use of classes in R, this is as it should be.

Having said that, class definition is done by R functions, and therefore
can be used in many contexts. Some applications, such as this one, do invite
us to stray from standard practice. Trace computations are already using
some special trickery, all in the aid of flexible debugging and experimenting
as part of programming with R. Bending the principle here is in a good
cause, that of making other software more trustworthy.

As an example, dynamically creating classes for tracing is interesting in
that it points up some of the questions to ask, which reinforce the general
message to stick to the standard approach when possible. One question is
whether the mix-in class can really be defined solely from the components
of the mix, another is whether the process of creating the class in question
is a reasonable overhead. The question of where to save the class metadata
also needs to be considered. Let’s develop dynamic class software for the
tracing mechanism to illustrate the technique and the requirements.

Given a class that extends "function", we have a standard form for
the corresponding traceable class, simply a mix-in of this class and class
"traceable". This suggests a very simple computation to create a trace-
able class, given an object that we want to trace: paste "WithTrace" on to
the name of the object’s class to get the name of the traceable class, and
call setClass() to create this class with two superclasses, the object’s class
and class "traceable", just as the examples above do for "function" and
"MethodDefinition" objects.

You should always ask when creating classes automatically whether you
know enough from just the pieces to feel safe using the new class. In this
example, is there enough information just from the definition of the two
superclasses to be sure the constructed traceable class behaves correctly?
Probably yes, but a slight change in the context would pose a problem
worth considering. What happens when we untrace() the new object? The
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implementation for untrace() assumes it gets the same information used by
trace(), including the name of the function and in the case of a method
definition the signature. It does not use the class of the traced object to
determine how to do the untrace computation. Other extended versions of
functions may require some additional computation when tracing is done or
undone. If neither of the actions of untrace() for ordinary functions or for
methods suited some future extension of functions, then a different version
of untrace() might be needed.

When defining classes dynamically, another question is where to store the
definition. When a call to setClass() appears in the source for a package,
the class definition becomes one of the objects provided with that package.
Whenever the package is loaded or attached, the class definition is there. But
now the new class is created during a session. What environment should it
be stored in? There are several choices, none of them entirely satisfactory.
It might be stored in the same environment as the object’s class; often, the
environment of some package that defines the object’s class. There are two
problems. First, this environment lasts only through the current session, so
the same class will have to be defined for each session in which it is needed.
Second, packages with a namespace normally lock their environment, so that
assignments there are prohibited.

It’s always possible to assign the definition into the global environment
of the session. This can potentially be saved between sessions and it’s not
sealed, because top-level assignments would then be impossible! A disad-
vantage is that the association with the object’s class is now broken, so that
saving and running a new session can result in a class in the global environ-
ment that inherits from a class in a package not currently loaded. Also, the
saved session normally only applies when R is run from the same directory.
Copies of the traceable class are likely to be needed in many places. For
various reasons similar to this problem, it’s a general design recommenda-
tion that packages should not store package-specific objects in the global
environment.

The code for generating trace classes dynamically currently stores the
new class, for the session only, back where the original class was defined or,
if this environment is locked, in the base package environment, baseenv(),
which is not locked because it contains some objects that may be modified
in the session.
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9.5 Creating and Validating Objects

Once a class has been defined by a call to setClass(), objects can be created
from the class by calling the function new() unless the class is a virtual class.
For our first simple example,

setClass("track", representation(x="numeric", y="numeric"))

calls to new() could include:

new("track")
new("track", x=dd$days, y=dd$decl)
new("track", y = rnorm(1000))

Arguments named x and y are expected to be legal objects to use in the
slots of the same name. If any slots are unspecified, they remain as defined
in the class prototype, here the default objects of class "numeric", numeric
vectors of length zero.

It’s often the case that we would prefer to customize the user interface
for generating objects from a class, to make the arguments more natural
for users. Also, there may well be conditions for an object from the class
being valid, beyond those implied just by the call to setClass(). In our
simple "track" class, for example, it may likely be a requirement that the
two slots have the same length. Both object creation and validation can be
customized for new classes. It’s useful to discuss the topics together, because
they raise similar points for consideration, particularly about inheritance.

Customizing new object creation

A number of mechanisms exist for customizing objects created from a class.

• As noted in Section 9.2, page 339, the prototype object can be specified
by the corresponding argument to setClass().

• Methods can be written for the function initialize(), which cus-
tomize the call to new() itself.

• A class can also have a companion generating function, typically with
the same name as the class, although this is just for user convenience,
not a requirement.

The function new() creates an object from a class definition. The imple-
mentation of new() begins by constructing an object, value, which is a copy
of the prototype in the class definition. Then, it initializes the contents of
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this object according to the remaining arguments to new() by evaluating the
expression:

initialize(value, ...)

Notice that value is already an object from the class. Therefore, the com-
putations in initialize() can be customized by specifying methods for the
first argument corresponding to our defined class.

The default method for initialize allows either arguments with the same
names as the slots in the class, or unnamed arguments from one of the
superclasses of this class. In the latter case, all the inherited slots for that
class will be set. After any unnamed arguments are handled, explicitly
named slots will be set, meaning that explicit information always overrides
inherited information. See the detailed documentation, ?new.

You can generate a skeleton for an initialization method by:

> method.skeleton("initialize", "track")
Skeleton of method written to initialize track.R

The formal arguments are .Object and "...". Method definitions can have
named arguments in addition to "...". For our "track" class, we might
choose to make x and y explicit arguments. That would allow default values
to be inferred if only one set of data was supplied, for example, by setting y to
this data, and x to the standard sequence 1, 2, ..., length(y). (The logic
here is similar to that in the function plot().) Here is an implementation
of that method:

setMethod("initialize", "track",
function(.Object, x, y, ...) {

if(missing(y)) {
y <- x; x <- seq(along=y)

}
callNextMethod(.Object, x = x, y = y, ...)

})

Note that "..." is retained as an argument, and that the computed x and y

slots, along with any other arguments, are passed down to the next method
for initialize().

The style of the example provides two benefits that apply in most meth-
ods for initialize(). First, the use of callNextMethod() ensures that any
special initialization for superclasses of this class are not lost. (See Section
10.4, page 391, for callNextMethod().) Second, including the "..." argu-
ment provides for the opposite consideration. The class you are defining
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may at some point itself be contained by one or more subclasses, which you
or your users define. If the subclass does not itself have an initialize()

method defined, users may supply named slots from the subclass defini-
tion and these arguments will be passed on to your method. You need to
pass them along in turn, so that some method (probably the default) will
eventually deal with them.

Testing for Valid Objects

Class definitions have implications for the contents of objects generated from
the class. Some of these can be inferred from the setClass() definition it-
self; others are implicit constraints reflecting the meaning of the class to its
users. In the first category are the asserted classes for the object’s slots;
in the second the expectation that the slots are related in some way, as in
requiring x and y to have the same length, in our example. The default
method for initialize() and the replacement function for slots both check
slot classes against the class definition, but additional requirements have to
be programmed, as a validity method for the class. The existence of pro-
grammed validity methods also raises the question: When should an object
be tested for validity? Testing too often can create substantial overhead,
particularly in a system such as R which does nearly everything through a
single mechanism, the function call. In addition, intermediate computations
such as replacing a slot may have to create a temporarily invalid object,
pending further changes.

The approach taken in R is to have a function, validObject(), that per-
forms a general validity check. This function is only called automatically
in a few contexts, primarily when an object is generated from the class by
a nontrivial computation (specifically, when some optional arguments are
included in the call to new()). Otherwise, it’s left to users or to applica-
tion functions to call validObject() when an object’s validity might be in
question.

A validity method is a function supplied either as the validity= ar-
gument to setClass() or via a separate call to setValidity(). The two
mechanisms have the same effect, the difference being simply a question of
convenience in programming. The validity method gets as its single argu-
ment an object nominally from the asserted class.

It should return TRUE if the object satisfies the requirements and a char-
acter vector describing the nature of the failure(s) otherwise. In writing va-
lidity methods, you only need to check constraints specific to this particular
class. By the time your method is called, you can assume that all checking
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for both the validity of the object’s slots and for any constraints imposed
by superclass definitions has been carried out without finding problems.

The simple "track" class (Section 9.2, page 336) had two numeric slots
representing the two variables being observed. It’s at least plausible to re-
quire the same number of values in both slots, in which case a corresponding
validity method could have been included in the class definition:

validTrackObject <- function(object)
if(length(x) == length(y))

TRUE
else

paste("Lengths of x (", length(x),
") and y (", length(y),
") should have been equal", sep="")

setClass("track", representation(x="numeric", y="numeric"),
validity = validTrackObject)

Note that validity methods should not themselves generate errors or
warnings. Their purpose is to provide as much and as specific information
as possible about what seems to be wrong. They should continue, where
possible, even after finding one problem. If there are multiple failures, the
first detected may be a consequence of the real flaw, and not give the most
useful feedback to the user.

9.6 Programming with S3 Classes

The version of S that was developed around 1990 introduced a simple
class/method mechanism into the software for the first time. The mech-
anism has come to be known as “S3” classes and methods. This section
discusses using S3 classes in combination with formal methods and classes.

The class/method mechanism described elsewhere in this book, which
has grown up since about 1998, is recommended rather than the informal
S3 mechanism for any new computing. The S3 mechanism was simple to
implement and was added to the version of S at the time with relatively
little change to other code. It does not allow many of the techniques we
need to produce clear and reliable software. Most particularly, there is no
information about what structure can be expected in objects of a given class.
An S3 class is defined by the presence of the class name in the corresponding
class attribute of some objects. More than one string may be included in
the attribute, in which case the object “has” the class of the first string and
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inherits from the classes named by the remaining strings, in the order they
appear.

The S3 class/method mechanism was the basis for a large amount of
software, either implemented in R as that system developed or explicitly
programmed for R since then. The defects of the system would have to be
much greater than they are before a mass conversion of this large body of
software would be likely. (I would encourage those planning on a major
overhaul of S3-style software to consider re-design in terms of the current
mechanism. Future reliability and ease of maintenance can repay the con-
version costs.)

The older approach to classes had no setClass() and no constraint on
inheritance. Instead, each object could have a class attribute, a character
vector with one or more string elements. The object inherited from all these
classes, with the first string being thought of as “the” class of the object.

In order to make use of S3 classes in S4 computations, the first and
most essential step is to declare the S3 class structure explicitly, using the
function setOldClass(). Commonly used S3 classes in package stats and in
the base package should have been pre-declared.

The statistical models software in the stats package is a major source of
S3 classes. For example, linear regression models will have class "lm" if there
is one variable being fit, but will need special methods for some computations
if multiple variables are fit. To handle multivariate regression, the object
representing the fit has a class with two strings, c("mlm", "lm"). The idea
is that if a method for class "mlm" exists, this is chosen in preference to one
for class "lm", but otherwise the "lm" method applies.

To make use of these classes would require calling setOldClass():

setOldClass(c("mlm", "lm"))

(In fact this declaration is provided in the methods package.) Class "mlm"

maps into an S4 class that contains "lm", also mapped into an S4 class.

> extends("mlm")
[1] "mlm" "lm" "oldClass"

This unambiguously defines class "mlm", if every object x with "mlm" as
the first element in class(x) has "lm" as the second element, and nothing
else, and if all objects with "lm" as the first element of class(x) have only
that string in class(x). There is no mechanism to enforce these sanity
requirements. They usually hold, but exceptions exist, as noted on page
367.

The virtual S4 classes created in this way are usually safe as:
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1. classes in signatures for methods;

2. a slot in new class definitions.

If these cover your needs and if the S3 classes are unambiguous, you can
probably skip the rest of the section.

Further details need to be considered in some cases. First, you may want
to combine S3 and S4 classes and methods for a function; sometimes this
requires turning S3 methods into S4 methods, or at least considering which
methods will be chosen. You may want to turn an S3 class into an S4 class,
either for better programming or because you need to use it beyond the
two purposes above (for example, to create a new class that contains the
current one); see page 366. And occasionally, S3 inheritance is inconsistent,
requiring more extended modifications for any use at all (page 367). This
happens when the first string in the S3 class is followed in different objects
by different strings; in other words, the S3 class seems to have a variable
inheritance from one object to another. It really does happen.

Turning S3 methods into S4 methods

Defining “true”, S4 methods for a function that has S3 methods as well
usually works fine. To understand what’s happening, you should realize that
the S3 generic function containing the call to UseMethod() is just an ordinary
function object in S4, not a generic function object. When S4 methods are
first defined for the same function, a new generic function object is created
and the previous function becomes the default method, just as it would for
any ordinary function.

Suppose the function, f() say, is now called with an argument that would
match an S3 method. First, the list of S4 methods is examined to find a
match. Normally, none of the S4 methods will match (unless you intended
to override the S3 method), and the default S4 method will be dispatched.
Because the default method is the old version of the function, evaluating that
method will now call UseMethod(), and dispatch the appropriate S3 method.
A small amount of extra computation is needed to do two method dispatch
computations, but otherwise all should be as expected. (It’s unlikely that
you will detect the time for the extra dispatch if the method itself is doing
any serious amount of computation.)

To determine the available S3 methods look for function objects whose
names are the function’s name followed by "." followed by the class name.
For example, a method for plot() for class "lm" would have the name
plot.lm. However, nothing prevents the same name pattern from being
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used for other purposes (neither plot.new() nor plot.curve() are in fact S3
methods, for example). So be careful.

When you can, it’s generally best to leave the S3 methods alone; once
the S4 default (that is, the S3 generic function) is called, methods should
be selected using the standard S3 rules. One possible problem is that an S4
method might be chosen rather than the default, for an object destined for
an S3 method.

This is fairly unlikely, but can happen, usually because an S4 method
is defined for a superclass of the S3 method’s class. For example, suppose
x has S3 class "mlm" and you have an S3 method for function f(), namely
f.mlm().

The S3 "mlm" class inherits from class "lm" and the S3 inheritance has
been declared via setOldClass(). But if you define an S4 method for "lm"

for f(), that method will be selected over the default for an object of class
"mlm". Maybe in fact you wanted this to happen, but it’s at least as likely
that you meant to leave the direct, S3 method for class "mlm" in place. If
so, you need to convert the method to an S4 method.

If you want to convert an S3 method to an S4 method and get the same
result as before, there are a few details to consider. The temptation is to
simply use the existing function:

setMethod("f", "mlm", f.mlm) # Not recommended

However the preferred alternative is to call the S3 method:
setMethod("f", "mlm",

function(x, y, ...) f.mlm(x, ...))

(assuming that f() has arguments x, y, ...).
There are a few subtle reasons to prefer the second form, and just oc-

casionally you must use it. You must call the method if the arguments to
f.mlm() are not legal as an S4 method for f(). Such a situation is more
likely than you might expect. Because S3 methods can only dispatch on the
first argument to the function, there is a temptation to define S3 generics
with only one named argument and "...":

f <- function(x, ...) UseMethod("f")

But S4 methods can and do depend on more than one argument, and "..."

cannot be used to define methods. So converting f() to an S4 generic
function might well require adding more named arguments to get the full
benefit of methods:

f <- function(x, y, ...) standardGeneric("f")

In fact, exactly this happened, replacing "f" with "plot".
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Turning S3 classes into S4 classes

Declaring an S3 class with a call to setOldClass() creates a virtual S4 class
corresponding to the S3 class. An alternative is to design an explicit S4 class
to contain formally the same information as one finds informally in the S3
class. If the class in question is important enough that you want to write
some S4 methods for it, defining an analogous S4 class has the advantage,
compared to just using setOldClass(), of providing an explicit guarantee of
the objects’ contents, rather than the vague hopes that are the best you can
do with S3 classes. The price is that something explicit now needs to be
done for S3 methods to apply to the new class.

The S3 class "data.frame" relates to the fundamental data frame concept
considered throughout this book, of repeated observations on a defined set
of variables. Section 9.8, page 375, defines a class "dataFrame1" that is one
approach to bringing data frames into S4 classes. The "dataFrame1" class
has an explicit definition that replicates what is found in a "data.frame"

object:

setClass("dataFrame1",
contains = "list",
representation(row.names = "character", names = "character"))

Data frames represent a widely applicable concept and a thorough treatment
would need to deal with different requirements, most likely via a class union,
of which "dataFrame1" would only be one member. Nevertheless, we can use
it as an example.

Having created an S4 class related to the S3 class, and presumably de-
fined some methods involving it, how should you manage the relation be-
tween the two classes? Should there be inheritance, that is automatic con-
version between the two classes? The S4 class cannot contain the S3 class,
for several reasons. There is no formal definition from which to infer slots,
and indeed no guarantee that the S3 class has well-defined analogies to slots.
S3 method selection will not recognize the S4 class as a subclass, meaning
that S3 methods will not work.

It’s possible to define explicit inheritance the other way, which allows
objects from the S3 class to use methods for the S4 class. However, in
my opinion it’s better to define explicit coercion via setAs(), and then to
provide S4 methods that use the coercion. The reasoning comes largely
from the Prime Directive, the desire for trustworthy software. There are
no guarantees as to what the S3 class object contains nor what it is ex-
pected to contain. For example, the model-fitting software in R constructs
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"data.frame" objects with extra attributes to represent a model, but leaves
the class of these objects as "data.frame". Given such uncertainties, the
audit trail of the computation will be clearer if we can see the conversions.
One may want to install a check for extra structure in the S3 class and issue
a warning or an error if it is found.

Where possible, the setAs() definitions should make use of known meth-
ods for the S3 object, rather than to assume something about the contents.
For example, to coerce a "data.frame" object to class "dataFrame1":

setAs("data.frame", "dataFrame1",
function(from)

new("dataFrame1",
as.list(from),
row.names = rownames(from),
names = colnames(from))

)

Because the coercion uses new() to create the "dataFrame1" object, we know
that the result is valid; we know this literally, in that new() with arguments
specifying the contents of the object ends up by calling validObject(). The
rest of the information in the new object should come from computations
with known results for the S3 class. There’s no universal rule to apply,
given that S3 classes and methods have no meta data and no general validity
mechanism. Here we rely on the very basic use of a list for the data and on
the requirement, explicitly stated in Statistical Models in S, that every data
frame has row names and column names.

Inconsistent S3 inheritance

When a class is formally defined, the classes from which the new class in-
herits are unambiguously specified. The contains= argument to setClass()

specifies the classes from which this class inherits directly; if those classes
were in turn defined to contain other classes, more classes will be added to
the inheritance indirectly. Every object created from the new class will have
this same “tree” of superclasses.

A call to setOldClass() creates a similar superclass relationship for the
multiple strings that might appear in an S3 class attribute, such as c("mlm",
"lm"). So long as the inheritance implied by the multiple strings is consistent
over all objects using these S3 class names, no problem arises. Class "mlm"

maps into an S4 class that contains "lm", also mapped into an S4 class.
But the class strings are attributes on individual objects, not constrained
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by a single class definition. Nothing enforces consistency, and inevitably
inconsistency does happen occasionally.

A particularly striking example comes from the S3 classes used to rep-
resent date/time information. These have names starting with "POSIX"; not
exactly intuitive but referring to the standard, [16], defined in 1991 as an
extension to the POSIX definitions for an operating system interface. The
standard leads to representations for a particular time, either in seconds
from the beginning of 1970, or in text format with fields for year, month,
and day (for a particular time zone). There are two such classes, "POSIXct"
and "POSIXlt" corresponding to the two representations. These objects are
useful in many applications and vital for some, when precise and unambigu-
ous computations on actual times are required.

The function Sys.time() returns the current time in the "POSIXct" repre-
sentation. Other functions convert and operate on the two representations;
see ?POSIXt for details. Because the standard is widely used, interfaces to
other systems can also expect to produce times in formats compatible with
these classes.

So far, so good. But if you create one of these objects and examine its
class, a strange beast emerges, a two-tailed monster in fact.

> z <- Sys.time()
> class(z)
[1] "POSIXt" "POSIXct"
> class(as.POSIXlt(z))
[1] "POSIXt" "POSIXlt"

While documentation refers to objects of class "POSIXct" and "POSIXlt",
what is actually produced in the standard interpretation of classes are ob-
jects that all have class "POSIXt", except that in one case this class extends
"POSIXct" and in the other "POSIXlt".

The intent presumably was to define methods for "POSIXt" that applied
to either class. Unfortunately, any such method eliminates the chance to
refine that method for either of the more specialized classes. Without dis-
paraging useful software for such anomalies, they can not be incorporated
into the S4 class-and-method system; in particular, setOldClass() will be
stymied. What should one do, if the existing software is too entrenched to
change (quite likely the case with "POSIXt", part of the R base package)?
The best compromise may be to introduce additional classes matching the
anomalous classes but with correct hierarchical behavior. Valid objects in
the S4 sense must come from the new classes But the computations in the
S3 methods may still be inherited from any of the existing classes, provided
an S3 object is generated from one of the newly defined classes.
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Consider "POSIXt" as an example. In this case, we need two new classes.
To emphasize that they are meant to take over from the existing classes
shadowed by "POSIXt", let’s call them "POSIXCt" and "POSIXLt" , just cap-
italizing one more letter in each case. (Ordinarily, ambiguity of this sort
would be discouraged, but here it emphasizes that this is emergency repairs
on a weird situation.) To make minimal changes, the new classes could be
left as S3 classes, with setOldClass() now able to express the definitions:

setOldClass(c("POSIXCt", "POSIXt", "POSIXct"))
setOldClass(c("POSIXLt", "POSIXt", "POSIXlt"))

Objects created with the first of these three-string S3 class attributes will in-

but now legitimate hierarchy applies, so that "POSIXt" methods can be re-
placed by specialized methods for class "POSIXCt".

9.7 Example: Binary Trees: Recursive or Not?

A number of R packages deal with various forms of graph structures, objects
defined in terms of nodes and edges. The packages take many different
approaches, from interfaces to implementations in other languages such as
C++ to a variety of strategies in R itself. Examples include packages graph

in BioConductor and igraph in CRAN. This section looks at a simple special
case, the binary tree, to compare two approaches, a recursive view and a
“flattened” view more usual in S language structures.

If you have dealt with tree-like objects in some other languages, you may
be used to definitions that are essentially recursive. For example, a binary
tree can be defined recursively to consist of two subtrees, each of which can
be either a leaf (that is, some sort of atomic non-tree data) or another binary
tree. Usually, a single leaf is also valid, as a special case.

You can express the same notion in R as well, and a class union is an
elegant way to do it. Whether this sort of construction is a good idea takes
a bit more thinking. Tradition among users of the S language says that
recursion of this form is computationally slow. Let’s examine how it’s done
first, and then ask when you might want to use or to avoid the mechanism.
The question can be studied by comparing a recursive implementation with
a non-recursive one, as we will do on page 370.

We will make the main class a virtual class, specifically a class union,
which may be surprising. There are several reasons, but the essential one is
to create a recursive definition without violating the rule that a class must
be defined before being used.

herit all the methods that applied to the previous objects of “class” "POSIXct",
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For the moment, suppose we’re dealing with binary trees built on text
data, and only want to allow character vectors as leaf nodes. The main class
will be called "textTree". Here’s the definition. We begin by defining the
leaf class explicitly. It too will be a class union, initialized to allow ordinary
character vectors. Later applications can add other classes of leaf node.

setClassUnion("textLeaf" "character")

Now we proceed to define the "textTree" class and also a strict version:

setClassUnion("textTree", "textLeaf")

setClass("strictTextTree",
representation(left = "textTree", right = "textTree"))

setIs("strictTextTree", "textTree")

We proceed in three steps because R will not let us insert an undefined class
as one of the members of a class union, and will also warn if we define a slot
of a new class to be an undefined class. So we set up the class union, with
only the leaf class included, then use the union to define the strict non-leaf
version of the tree with a left and right subtree. Finally, the strict tree class
is added to the class union to complete the recursive definition.

Before we worry about efficiency, there is one feature of such definitions
that should be noted. The class that will be used most often in programming
with this set of classes is the virtual class, the class union "textTree". The
non-virtual class is a helper class, although an important one.

Method specifications can use the distinction between the general, virtual
class and specific subclasses. We can define a particular computation for
text trees by defining alternative methods for all or some of "textTree",
"strictTextTree", and "textLeaf". Methods would have "textTree" in the
signature if we wanted to allow an arbitrary tree, but "strictTextTree" if
we wanted only to deal with non-trivial trees.

Recursive versus non-recursive class definitions

Recursive-style class definitions such as the binary tree class above naturally
organize information in an implicit way. The very notion of the recursive
class is that the immediately visible slots are partly or entirely a few ob-
jects of a similar class. Computing with such objects tends to be a process
of navigation, doing something on the current object, then perhaps doing
the same thing or a related computation on one or more of the “children”
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objects. Languages such as Lisp make extensive use of such computations,
often without explicitly defining classes for the purpose.

A more traditional approach to such information in the S language is to
lay out all the relationships explicitly; instead of slots that contain children
of similar classes, the slots will define all the structure explicitly. Typically,
the recursive-style computation is then replaced by an iterative computation
over the data defining the structure.

To see this comparison, let’s define a binary tree class with no recursion.
Once again, we think of the tree as a collection of nodes. Each node can be
a leaf, or it can have two other nodes as its children. In the non-recursive
definition, the nodes are an index and the slots correspond to different kinds
of information for the nodes. We define one slot to contain all the leaf
information: the slot "leaves" is a vector with all the leaf data as elements.
The only other information we need is the tree structure itself. One of many
ways to define that is by a two-column matrix, nodes, whose rows correspond
to the non-leaf nodes in the tree. Each row has two numbers that identify the
two children of this node. Our example uses a traditional technique in the
S language to code this information. For example, the R function hclust(),
which performs hierarchical clustering on a set of observations, returns an
object using this form to encode the tree representing the clustering.

An element in the matrix nodes is negative if the child is a leaf node and
positive otherwise. A positive entry is another row in the matrix nodes. A
negative entry is the negative of the index in leaves. A corresponding class
definition might be:

setClass("treeB",
representation(leaves = "list", nodes = "matrix")

)

Many other choices are possible: it would be a little clearer to have two
numeric vector slots, say left and right for the sub-nodes, but a single
matrix is often convenient for computation. In fact, the specific choice above
happens to be a traditional one in the function hclust(), which returns an
object of S3 class "hclust". The merge component of the object corresponds
to what we are calling the nodes slot in our class definition. See ?hclust.
The object also has component label that corresponds to slot leaves.

If you run example(hclust), it will leave behind a cluster tree, assigned
as hc. Each node of hc corresponds to a cluster containing some subset of
the states of the United States. You can look at the nodes information as
hc$merge. Because the tree is created by successively merging clusters, the
first few nodes have only leaves as subtrees (in this case the leaves are states
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of the United States):

> hc$merge
[,1] [,2]

[1,] -15 -29
[2,] -17 -26
[3,] -14 -16
[4,] -13 -32
[5,] -35 -44
etc.

Node 5 contains leaves 35 and 44. Farther down,

[13,] -37 11
[14,] -27 2

Node 14 merges leaf 27 with node 2, which was defined above.
The recursive and non-recursive classes essentially hold the same infor-

mation. The non-recursive definition is simpler to state, but that is partly
deceptive. The recursive form is largely self-describing and it’s hard to con-
struct an object from the class that is structurally invalid, in the sense that
there is no binary tree of this form. With the non-recursive definition, the
explicit use of node and leaf indices is both a strength and a weakness: a
strength, in that a number of computations can be done fairly directly from
the object, without recursion; and a weakness, in that the validity of the
object is not at all obvious and not in fact trivial to check. Nothing in the
structure prevents a later row in the nodes for hc from containing, say:

[16,] 2 14

But subtree 2 was already a child of subtree 14; as a result, there are two
paths from node 16 to node 2, meaning that the object no longer represents
a tree, but a general network.

An essential tradeoff between the two definitions is therefore that the
recursive form gives a direct, logically straightforward, and trustworthy way
to navigate the tree structure, at the cost of having to do separate function
calls for each step of the navigation. That cost can be quite high if the
number of nodes is large. Each node corresponds to a separate R object
(all contained in the top-level tree object, but still each having the overhead
in space and computation of a separate object). In the non-recursive form,
each node just adds an element to a vector and a row to a matrix. The
complexity of the structure is independent of the size of the tree.

The non-recursive form often does not require navigation as such, par-
ticularly for summaries or visualization that take the structure as given. On
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the other hand, computations are likely to be less clear when we do need
to navigate the tree, and the danger of erroneous computations producing
an invalid object is likely to be higher. When the computations involve ex-
tracting or replacing a subtree, the recursive form shines. Such operations
are typically a single step, once one has navigated to the desired node.

To see the non-recursive form at its best, let’s consider computing some
additive summary for all nodes of a binary tree. An additive summary is
any measure such that the value for a particular node in the tree is the sum
of the values for all the leaf nodes under that node. (The logic we will derive
applies to any summary of a binary tree, additive or not, if the value for a
node can be computed from information about the two subnodes merged to
form that node. But the additive case is easier to describe.)

Let’s return to tree hc. Suppose we wanted some additive statistic for
each cluster, say the total population or area of the states in the cluster.

We’ll define a function that produces such a summary, starting from
the corresponding data for the leaves (the states in this case) and from the
information about the tree given by the nodes matrix.

The key to programming such functions is to iterate, starting with the
simplest set of nodes and at each iteration adding up the information for
nodes whose children were done at earlier iterations. Nodes made from
merging two leaves can be done on the first iteration, because we start with
the leaf data. Then all the nodes made from merging leaves or first-round
nodes can be done on the second iteration, and so on. The number of
iterations is what’s called the depth of the tree, the maximum number of
steps from the root node to a leaf. This number is usually much smaller
than the total number of nodes; in “balanced” trees, it’s of the order of the
logarithm of the number of nodes.

The mechanics of the computation turn out to be startlingly simple
when computing a vector of counts for some additive summary. Remember
that we chose to represent leaf nodes by their negative index, and non-leaf
subnodes by the corresponding (positive) row in the nodes matrix. Suppose
there are nL leaves and nN non-leaf nodes. For the summary computation,
we want a vector of nL +nN counts for both leaves and nodes. So we change
the coding, now using i, i = 1, . . . , nL for the leaves and nl + i, i = 1, . . . , nN

for the nodes. It’s easy to convert, just change the sign for the leaf nodes
and add nL for the others.

To start with, we know the first nL counts for the leaves, and we set the
remaining values to NA. Then all we need to do on each iteration is to add the
counts for left and right children of each node, whether those children are
leaves or other nodes of the tree. On the first iteration, only the leaf nodes
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will have a count that is not NA. But the addition will give us the correct
value for any node made by merging two leaves. On the next iteration, those
nodes will have non-NA counts, letting us compute the values for the next
set of nodes. Here is the corresponding function:

binaryCount <- function(nodes, leafValues) {
nL <- length(leafValues)
nN <- nrow(nodes)
left <- nodes[,1]; right <- nodes[, 2]

left <- ifelse(left<0, -left, left + nL)
right <- ifelse(right<0, -right , right + nL)

count <- c(leafValues, rep(NA, nN))

while(any(is.na(count)))
count <- c(leafValues, count[left] + count[right])

count[-seq(length=nL)]
}

It may seem magic that we just do the same computation each time in the
loop. The computation works simply because adding two values produces
NA if either of the individual values is NA, so all the counts that are not yet
known just stay NA. To see the mechanism in action, we use the trace()

mechanism to print the value of sum(is.na(count)) (which is the number of
remaining NA values) on each iteration.

> nodeArea <- binaryCount(usTree@nodes, Area)
1: 49
2: 32
3: 21
4: 15
5: 11
6: 7
7: 4
8: 2
9: 1

See Section 3.6, page 70 for the tracing technique.
The same mechanism works for any element-by-element computation

which treats NA values that way. For more general summaries, we’d need to
replace only the values for which both subnodes were currently non-NA, but
otherwise the same logic applies.
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One further detail of the example may seem wasteful. In each iteration,
we recomputed the sum of all the counts, even those that had been suc-
cessfully computed earlier, and were therefore no longer NA. The apparently
more economical computation would be to replace the while() loop with:

while(any(is.na(count)) {
remaining <- is.na(count)
count[remaining] <- count[left[remaining]] +

count[right[remaining]]
}

In fact, it is not obvious which of the two versions takes more processing time.
The second version trades off two extra subset operations and a replacement
against a call to c() and a simple assignment in the first version, in addition
to calling `+` with a smaller vector. A general point in thinking about
efficiency in R is that primitive functions such as arithmetic are very fast.
In this case, all the computations involved are either primitives or built in
to the evaluator. It’s not at all clear which version will be faster. What is
more important, here and in many examples, is that you should not worry
about such efficiency questions prematurely. If you start to apply much
more complicated summary calculations than the simple additions here, then
perhaps you should take care to compute only the values needed. However,
the original version was simpler, giving it an edge in being trustworthy and
error-free.

9.8 Example: Data Frames

The data frame concept permeates statistics, and science generally. Section
6.5, page 166, describes the concept and relates it to both statistical and
other software. The general idea is that of meaningful variables on each
of which corresponding observations are made, resulting in a conceptual
two-way layout of data values, by convention with variables as columns and
observations as rows. Software as diverse as spreadsheets and relational
database systems share versions of this concept.

This section explores some class definitions related to the concept, in-
cluding two approaches starting directly from the S3 class "data.frame",
used in software for statistical models and for trellis graphics. Many other
applications of the concept to programming with R arise, notably in the
interfaces to other systems with similar concepts, such as spreadsheets and
database systems (Section 6.5, page 173).
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Given its wide reach, the data frame concept fits naturally with an ab-
stract umbrella under which any specific implementation might fit. In R,
the natural umbrella is a class union, with the S3 class as a member:

setClassUnion("dataFrame", "data.frame")

S4 classes can then be designed and added to the class union. Methods
for the class union itself could use an agreed-upon set of functions (such as
the `[` operator with two indices, and its replacement version). Functions
dim() and dimnames() would require methods as well. Member classes of
the union would be required to have a consistent method for each function.
On the other hand, the goal is to avoid assumptions about how the actual
representation of variables and observations is carried out. For example,
computations for the class union would not rely on treating the object as
a list of variables; these work for "data.frame" objects, but converting an
arbitrary representation to such a list might be unwise or even impossible.

Once the class union has set out its requirements, then methods can
be written for the union making use of the corresponding functions. These
methods both extend the software for the member classes and also pro-
vide validation tests for those member classes. For example, a validity
method for "dataFrame" could be written, and would apply to any mem-
ber class that did not override it. See the validDataFrame() function in
the Examples/dataFrame.R file of package SoDA, which is one possible such
validity method.

Let’s look next at two approaches to specific S4 classes derived from the
"data.frame" class. The S3 "data.frame" class used a list to represent the
data itself; each element of the list corresponded to a variable. The variables
were implicitly required to represent the same set of observations. Both
the columns (variables) and the rows (observations) were required to have
character-string names, either specified or created by default. R now allows
row names optionally to be integer, largely to speed up some operations.
Our version could incorporate this by using a class union for row names,
but for simplicity we’ll omit that option.

As a first formal definition corresponding to "data.frame", here is an
implementation that follows the S3 class explicitly, with slots corresponding
to the attributes of a "data.frame" object:

setClass("dataFrame1",
representation(row.names = "character", names = "character"),
contains = "list")

The content of a "dataFrame1" object, in fact, appears to be exactly the same
as you would expect for the corresponding "data.frame" object, except of
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course for class(x) itself. Specifying the "names" slot explicitly is needed
because S4 classes that extend "list" interpret lists as simple vectors, with-
out a names attribute. It’s incorrect to interpret names as intrinsic to list
vectors, although understandable given the long use of named lists in the S

language and especially in the "pairlist" object type in early versions of R.
Because class "dataFrame1", like the S3 class, does extend class "list",

it inherits some computations that can be used in defining methods for the
matrix-like behavior expected from data frames. The method for dimnames(),
for example, could be essentially

list(x@row.names, names(x))

which relies on inheriting the "list" method for names(x). Similarly, the
method for dim() is

c(length(x@row.names), length(x))

These definitions provide much of the data frame behavior required of the
class. A method for operator `[` and its replacement version would also be
required; in fact, the S3 methods `[.data.frame` and `[<-.data.frame` do
essentially the right computation.

Extending the basic "list" class simplified some of the programming
when the "data.frame" class was introduced. The penalty for that was
that some low-level software might be inherited that produced incorrect or
at least questionable results. For example, consider the operator `$` to
extract or replace a named element of an object. The default method (a
primitive function in the base package) will apply automatically because
the class definition extends "list". But the code for replacing a named
element is inherited also—the default method for the replacement function
`$<-`—anything at all can be inserted as a variable, potentially destroying
the validity of the object.

Inheritance means that the new class inherits every method for its super-
class, except for explicitly defined new methods. If some inherited methods
do not behave correctly, we are in grave danger of producing untrustwor-
thy software. In the case of the S3 "data.frame" class, safety has required
defining many methods for the class, including all the obvious ways to in-
sert variables (at last count, the base package alone had 38 methods for
"data.frame"!). Among these is a method for `$<-` that ensures the re-
placement value has the correct number of observations.

An alternative class definition would avoid inheritance, requiring more
work to implement the basic computations but avoiding dangerous inher-
ited methods: a tradeoff between ease of programming (the Mission) and
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trustworthy software (the Prime Directive). A non-inheriting definition of
a class to represent data frames might look like:

setClass("dataFrame2",
representation(variables = "list",

colNames = "character", rowNames = "character"))

With this definition, none of the replacement operators for vectors or arrays
will be automatically available. Those that treat the object as conceptually
a two-way table will be needed, as in fact they were with the previous version
of the class. But the `$` operator is not naturally relevant, it just happened
to be inherited in the previous version. For the second version, we might
well omit any methods for `$`.

With the non-inheriting definition but with the internal structure essen-
tially the same, the methods we do write may not look very different. With
class "dataFrame2", most extraction and replacement operations, for exam-
ple, will begin by extracting the "variables" slot and then operate on that as
a list. The same computation for class "dataFrame1" could be implemented
in several ways. A clear version would start by turning the data into the list
of variables, with other information removed, so the reader could be assured
that the following computations used only the computations for basic lists.
In this case the inheriting and non-inheriting implementations only differ in
how they get to the underlying basic list:

variables <- x@variables

for class "dataFrame2" versus

variables <- as(x, "list")

for class "dataFrame1". For either class, the computation is likely to end by
constructing a new object from the recomputed variables. Aside from the
different slots in the two classes, the computation is essentially specifying
the same information.

Extensions to data frames

Extensions to the original data frame in S3 came from two directions: from
its role in the software for models; and from the use of the class more gen-
erally to represent statistical data. In model fitting, the "data.frame" class
was used in more than one version, sometimes with extra “slots” (attributes)
added but with the same class. This would be illegal with an S4 class, and
in fact caused some clumsiness in the original software.
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One example was the model.frame() function and objects. The software
in S for fitting models combined a data frame and a "formula" object in a call
to one of several model-fitting functions to produce an object describing the
fitted model. The different types of model generally shared a “model frame”
intermediate object combining the data and formula, the latter based on a
"formula" object usually supplied by the user. In Section 3.1, page 38, a
linear model was constructed from a formula and the clouds data frame. The
call to lm() used would have constructed a model frame as an intermediate
step:

> mf <- model.frame(formula, clouds)
> class(mf)
[1] "data.frame"
> names(attributes(mf))
[1] "names" "terms" "row.names" "class"

The model frame object still has class "data.frame", but a new attribute has
been added, an object of class "terms" (an S3 class that extends "formula").
This sort of ambiguity about object contents is one reason to prefer program-
ming with S4 classes when possible. The ambiguity contributes to some of
the clumsier details of the model software; for example, the model.matrix()

function expects a model frame, but also requires a formula as an argument.
In a rewriting of the model-fitting software to use formal classes, it would

be natural to provide model frames as a formal class that extends the data
frame class.

setClass("modelFrame",
representation(terms = "terms", contains = "dataFrame"))

One implementation question in such examples is whether to create another
class union for the extension . The choice above says that we will always
implement the model-frame aspect by a specific "terms" slot, regardless of
how the underlying data frame was represented. For model frames, that
choice seems appropriate, because the model frame is largely an internal
class of objects used in standard computations. In other applications one
might want to preserve the option to implement the added information in
different ways, which would argue for the analog to "modelFrame" to be a
virtual class.

Data frames outside models

The S3 "data.frame" class has been used heavily and successfully since its
introduction, and not only for fitting models. Many of the datasets made
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available with R are provided as "data.frame" objects: the majority of those
supplied with the “recommended packages” from CRAN, for example. Sec-
tion 6.5, page 168, gives some practical discussion of the use of "data.frame"
objects in R.

Other changes in the treatment of "data.frame" objects were motivated
by using the class to represent data following the general concept (variables
and observations) but arising in a wide variety of circumstances. Because
the concept is shared, roughly, by both spreadsheet software and relational
database systems, the "data.frame" class was a natural choice for importing
data from these systems. The original model-fitting applications restricted
variables to be numeric or factor, but more general use of data frames re-
quired lifting that restriction. The main technique for doing so was to add
options to the R function read.table() and its specializations, read.csv()
and read.delim(). The logical flag as.is would switch off the interpreta-
tion of text as factors, and the more general colClasses argument specifies
the desired class for variables (see the examples in Section 6.5, page 168).
The implementation of the general options allows essentially any class for a
variable, with the software implicitly requiring that the class have a method
for coercing from character vector.

For a formal treatment, a more general solution would be to provide a
formal mechanism for ensuring that the variable could be treated correctly.
A class, say "DataFrameVariable", would encapsulate requirements on classes
to be used for variables in a data frame. Methods would be required for
coercing from "character" and for selecting a subset of observations (just
the `[` operator for vectors, but other definitions could be used to allow,
for example, matrix variables). The "DataFrameVariable" class would be
another class union, defined to include constraints on valid member classes.



Chapter 10

Methods and Generic
Functions

This chapter describes the design and implementation of generic
functions and methods in R, including basic techniques for creat-
ing methods, the definition of generic functions, and a discussion
of method dispatch, the mechanism by which a method is chosen
to evaluate a call to a generic function. Section 10.2, page 384,
describes the fundamental mechanism for creating new methods.
Section 10.3, page 387, discusses important functions that are
frequently made generic; Section 10.5, page 396, provides more
detail on the generic functions themselves; Section 10.6, page
405, discusses method selection—the matching of arguments in
a call to the method signatures.

The chapter is closely related to Chapter 9, and cross-references
between the two will be important.

10.1 Introduction: Why Methods?

A fundamental goal in programming is to increase the capabilities of the
software without increasing the complexity for the user. With a functional
system like R, the danger is that just writing more and larger functions harms
both ease of exploration and trust in the software. Searching among many
similar functions leaves the user baffled to find and choose an appropriate
one. Multi-page R functions challenge even expert readers to understand
the computations. One technique to manage complexity is to emphasize the
generic behavior of a function: What is its purpose and what information

381
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does it use? The purpose can often be extended to new applications by
defining methods that implement the generic behavior for different inputs;
specifically, for different classes of objects appearing among the arguments
to the function.

The functional approach to object-oriented programming centers on two
basic concepts: the class of objects and the generic function—a function
along with a collection of methods. The methods specify what calculations
the function should do, when it is called with arguments from specified
classes.

New generic functions can be defined explicitly and older functions can
be turned into generics. In the latter case, the earlier function typically
becomes the default method, producing compatible results for objects not
covered by the new methods. As applications stimulate new classes to rep-
resent novel kinds of data, methods will often be created for the new classes.
These methods frequently define how to print, plot, or summarize the new
data. Where the classes are naturally interpreted as behaving like vectors,
matrices, or structures, methods can be created for extracting and replacing
subsets. Objects representing numeric information may have methods for
arithmetic and numerical computations.

The process can start from the function side too. Statistics research or
novel applications may suggest a fundamental computation for which a new
function is needed. This function may achieve some general goal, but the
details of how (the method) will often depend on the kind of data to which
it is applied.

Example: Methods for statistical models

The classic, original example of defining methods comes from the work on
statistical models in S, which inspired the first approach to classes and meth-
ods in the S language. The challenge of creating software to formulate, fit
and assess statistical models led naturally to both new classes of data and
new functions.

The S language approach to statistical models imagines a model as com-
posed of three pieces:

1. the data to be used, organized as a "data.frame" object;

2. the structural formula that expresses a relation among variables in the
data;

3. the statistical form of the model (e.g., linear model, additive model)
along with other specifications for fitting.
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The statistical model software in S and later in R organized the computations
around some choices for the third item. For each major form of model
handled, a corresponding function would generate a fitted model given a
formula to express the structure and a specification of the data. The function
lm() returned a fitted linear model in the form of an object of class "lm";
function gam() generated an additive model of class "gam"; and so on.

Given the fitted models,there are some key actions that naturally suggest
corresponding functions: printing and plotting; predictions for new data;
and updating the model for changes. For example, the stats package has
a function update() to modify an existing fitted model for changes in the
formula or the data. Its arguments are the current fit plus one or more of
changes to the formula, new data, or other modifications. Such a function
is naturally generic—its purpose and the arguments that it requires are
generally meaningful, but the methods to implement the function will vary
according to the class of the fitted model, and potentially according to other
arguments as well.

To implement update() without using methods would be more difficult
and less trustworthy. Either users would have to choose separate functions
for each class of models or the single function would incorporate all the com-
putations for all models. In the second case, as research or novel applications
introduced new kinds of models, these would not be easily added. Both con-
ceptual simplicity for the user and the discipline of a consistent interface for
the implementations would suffer. In terms of our two principles, both the
expressive power for data analysis (the Mission) and the trustworthiness of
the implementation (the Prime Directive) benefit from the organization into
generic functions and methods.

The stats package used S3 methods, whose signatures are only the first
argument of the function, but a modern implementation could usefully make
the methods for predict() depend on other arguments as well, such as the
newdata supplied.

To summarize, method definitions contribute in two ways to software for
data analysis:

1. To class definitions, by defining their behavior with relevant functions,
either existing or new;

2. To the definition of generic functions, by defining their behavior for
either new or existing classes.
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10.2 Method Definitions

A method is specified by a call to setMethod(), typically in the form:

setMethod(f, signature, definition)

The call includes three pieces of information:

• the generic function f for which this is a method;

• the method signature, that is the classes that arguments should match;

• the method definition, a suitable function to be called when the sig-
nature matches the classes of the actual arguments in a call.

You can use the utility function, method.skeleton(), to write a file with an
appropriate call to setMethod(), to create a new method. The utility will
create a skeleton definition with the correct arguments. Its use is recom-
mended, particularly when you’re just starting to program with methods.

Let’s look at an example: Arith() is a group generic function used to
define methods for arithmetic operators (Section 10.5, page 403 discusses
these). Suppose we want to write a method to evaluate calls when both ar-
guments to the arithmetic operator come from a new class, "trackNumeric".
To generate a skeleton of the appropriate definition:

> method.skeleton("Arith", c("trackNumeric", "trackNumeric"))
Skeleton of method written to Arith trackNumeric trackNumeric.R

The utility constructed a name for the file (we could have supplied one).
The file contains:

setMethod("Arith",
signature(e1 = "trackNumeric", e2 = "trackNumeric"),
function (e1, e2)
{

stop("Need a definition for the method here")
}

)

The file generated has filled in the signature by matching to the eligible for-
mal arguments, and created a dummy method definition. Now we can fill in
the body of the definition, replacing the call to stop() with the computations
we want.

Next, let’s consider each of the three main arguments to setMethod() to
get an overall understanding of how methods work.
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Generic function

All methods are associated with a particular generic function, sometimes
located in this environment or package and sometimes located in another
package. The generic function may have been defined originally as such, or
it may have been originally an ordinary function that was then set to be a
generic function to augment its behavior. In either case, the setMethod()

call in effect registers the new method as part of the generic function’s
definition. There’s plenty of detail to understand here, but for the moment
the key concept is that including setMethod() calls in your package means
that the corresponding methods will be part of that function when your
package is used. During any R computation, the generic function will have
a collection of methods, one of which will be selected to evaluate each call
to the function.

The argument f to setMethod() must identify which generic function in
which package is meant. Nearly always, it’s enough to give the name of the
function, meaning that a search from the environment where setMethod()

is called will find the correct function. But in principle more than one
generic function (in different packages) can have the same name. Because
R packages are not all required to use one global set of function names,
duplicate names are inevitable. Each of the corresponding functions has
its own set of methods. When you define a new method, it’s likely that
your package has arranged to use one particular generic function for each
name. Ensuring such consistency is one of the main advantages of using the
NAMESPACE mechanism, which allows your package to be explicit about where
a particular function definition comes from.

Method signature

The signature says when to use the method, by supplying instructions for
matching the class of arguments in a call to target classes for this method.
The method signature associates each of a subset of the function’s formal
arguments with a particular class. The intuitive meaning is that this method
can be selected if the corresponding actual arguments match those classes.
Section 10.6 discusses just what “match” means, but the idea is that the
class of the actual argument should be the same or the actual argument
should come from a subclass of that specified in the signature.

The subset of formal arguments eligible to appear in method signatures
is usually all the formal arguments except for "...". Argument "..." never
appears in a signature, because it’s treated specially, essentially by substi-
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tution, and therefore makes no sense as a single class. A generic function
can, however, have an explicit definition of the arguments allowed in method
signatures; see Section 10.5, page 399. Some arguments cannot be used in
method signatures because the function uses them symbolically, so that the
argument cannot be evaluated in the ordinary way to find its class.

For convenience, the classes in the signature can be supplied with or
without argument names in the call to method.skeleton() (or in fact, in the
call to setMethod() itself). The rule for associating elements of the signature
with formal arguments is the same as for a call to the function: Arguments
can be named or unnamed, with unnamed arguments matched by position.
If you are in any doubt about the arguments, it’s wise to check the output
from method.skeleton().

As with the name of the generic function, so with the names of the
classes: the same name could be used for different classes, in different pack-
ages. R will look for an appropriate class definition in the context of the
setMethod() call.

Method definition

The method definition is a function that will be used instead of the generic
function when the method signature is the best match to the objects in the
call. The method function is not “called” from the generic in the usual
sense. The arguments in the call start off already matched and evaluated,
as they were in the call to the generic when the method was dispatched.
To be precise, the actual arguments in the signature of the generic function
are all evaluated when the method is selected (see Section 10.6, page 405
for details). Missing arguments are not touched, just noted. In particular,
default expressions play no role in method selection, and are not evaluated
then. Formal arguments that are not eligible to appear in method signatures
are not evaluated at this point either.

The method definition must have all the formal arguments of the generic
function, in the same order. The call to setMethod() will verify that the
arguments are correct. Two techniques are available that appear to be
exceptions to this rule, one to omit irrelevant arguments and the other to
add arguments in addition to or instead of "...". In fact, both techniques
work by modifying the supplied definition to one with the correct set of
formal arguments, but with the definition of the method and the signature
modified to produce the desired result. See page 393.
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10.3 New Methods for Old Functions

When defining a new class of objects, you are likely to apply existing func-
tions to these objects. The new class may be an extension of a class of
objects provided by an existing R package. For example, you might be ex-
tending existing software that deals with sparse matrices (package Matrix) or
some classes dealing with microarray data (many of the BioConductor pack-
ages). Or the new class may be developed independently as part of your
own software work. As noted in Chapter 9, any new class will need some
methods to print or plot objects. In addition, classes that extend those in
existing packages will need some methods for functions from those packages,
to express how the new class differs. For matrix-based classes, for example,
methods to insert or extract data and for at least some of the numerical
matrix computations are likely. Your software will be calling setMethod() to
create new methods for functions that exist in other packages, both packages
included with R and packages from other sources.

The concept is that your method will become part of the function’s
collection of methods, just for the session usually. I think of this as a request
from your software that the generic function accept this new method. Being
a generic function implies a willingness to accept such requests, provided the
method is valid for this function. (In practice, software in the R evaluator
inserts the method in a table associated with the generic function, either
when setMethod() is called or, more often, when a package containing the
method is loaded.) The Matrix package has a generic function Cholesky(),
for example, that is intended to compute objects representing the matrix
decomposition of the same name. If you had a new class to represent special
matrices then you might want to add a new Cholesky() method for that
class:

setMethod(Cholesky, "myMatrix", etc. )

If the function is not currently generic, you may still legitimately want to
create a method for your new class. In nearly all situations you can and
should create such methods, but the process requires additional action from
the methods software.

Conceptually, adding a method to an “ordinary” function is a request
that the function use this method when the actual arguments match the
method’s signature, while behaving as before for all arguments that do not
match. The simple mechanism that approximately answers this request has
two steps: to create a generic function with the same arguments as the
original; and to make the original function the default method for the new
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generic. Then setMethod() can be used in the usual way to define one or
more methods. Most functions that are not already generic have a corre-
sponding implicit generic function either inferred automatically or specified
explicitly (see Section 10.5, page 401). Just calling setMethod() activates
the implicit generic. Alternatively, you can create a generic function with
an intentionally augmented argument list, but this is a different function
and must live in a different environment.

The function chol() and the Matrix package give an example. This is
another version of the Cholesky decomposition, differing from Cholesky() in
the way it represents the result. Function chol() is an older version, with S3
methods, found in the base package. The Matrix package defines a number of
methods for this function, after creating a generic version of it. The generic
function is actually somewhat more general in that it adds an argument
pivot, and explicitly calls the function from the base package in the default
method. As a result a new chol() function is created in the Matrix package.
Adding an argument is necessary if you want to define methods using it; in
this case, the original chol() had only x and "..." as arguments. However,
having two versions of the function is potentially confusing. Other things
being equal, try for a solution that retains the implicit generic version of the
function.

The creation of a generic function works fine in nearly all cases, but there
are some subtle differences in behavior from the earlier non-generic situa-
tion. The evaluator must examine the actual arguments, as noted on page
386, in order to select a method. The mechanism of “lazy evaluation” for
arguments—that arguments are evaluated when needed—no longer applies
as it would have for most non-generic functions. The arguments are needed
right away. See Section 13.3, page 462 for lazy evaluation, and Section 10.5,
page 396 to adjust the generic function for special cases.

Often the non-generic function will actually be an S3 generic function;
for example, the functions in the stats package for examining and updat-
ing statistical models are nearly all S3 generics. The S3 generic becomes
the default method in S4 terms, just as it would for any non-generic func-
tion. Therefore, an S3 method will be used only if no explicitly specified S4
method matches the actual call; in most practical cases, that is the natu-
ral behavior. Notice that you should not define S3 methods for S4 classes:
The danger of doing so is that S3 generic functions have no way to detect
inheritance in S4 classes.

You can promote the S3 method to an S4 method if you want, provided
that the S3 class, and any other S3 classes that inherit from it, have been
declared by calls to setOldClass(). See Section 9.6, page 362.
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Methods for basic operators and primitive functions

Special considerations apply when defining methods for operators and other
primitive functions. These do not exist as ordinary function objects; in
particular, they have no formal argument list, formalArgs() returns NULL for
them. That does not prevent writing methods for most of them, however.
Starting with method.skeleton() is still recommended.

> method.skeleton("[[", "dataFrame1", "elementDataFrame.R")
Skeleton of method written to elementDataFrame.R

(We supplied the file name in the call, because dealing with files that have
special characters in the name may be inconvenient on some systems.) A
few primitive functions do not permit methods (missing(), for example).
Also, for operators and numeric transformations, writing methods for the
group of functions may often be a good idea (Section 10.5, page 404).

Primitive functions are special also in the way that methods are dis-
patched, both modern methods and S3 methods. For the sake of machine
efficiency in using these functions, particularly with basic data types such
as vectors, the primitive implementation in C is always called, regardless
of whether methods have been defined. Code built in at the C level exam-
ines the actual arguments to detect possible methods; if there is a matching
method, a call to the appropriate method will be constructed and evalu-
ated. Otherwise, the evaluation drops through to the C implementation of
the primitive, that is, of the default method.

10.4 Programming Techniques for Methods

This section collects a variety of topics that arise in writing methods, particu-
larly as you progress towards software that others may use or that integrates
multiple methods.

Documentation for methods

To find documentation for existing methods, a Web browser usually provides
the best interface, either an actual browser or the similar interface provided
by a GUI. Special documentation topics are constructed for methods, as they
are for classes (see Section 9.2, page 341). Method documentation is listed
under the name of the generic function, followed by a comma-separated list
consisting of the class names in the signature and ending with "-method". So
if the generic function is plot() and the signature is c("track", "missing"),
then the documentation for the method would be listed under
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plot,track,missing-method

The same documentation topic (quoted) can be passed to the `?` operator
or the help() function.

Documentation for the method in question does have to be written in
order for users to look at it, unfortunately. As with functions and classes,
a utility function, in this case promptMethods(), will initialize a file of such
documentation for the programmer to fill in. For example, suppose we have
written some methods in our package for function plot(). To generate a
documentation file for these, we build and install the package, and then
attach it (in position 2 on the search list as will happen by default). Then:

> promptMethods("plot")
A shell of methods documentation has been written
to the file ’plot-methods.Rd’.

By default, promptMethods() picks up the methods from the first package on
the search list that has some. If our package was SoDA, for example and had
methods for x being either "track" or "track3", and y being "missing", the
file would contain these lines (among others):

\alias{plot-methods}
\alias{plot,track,missing-method}
\alias{plot,track3,missing-method}
\title{ ∼∼ Methods for Function plot in Package `SoDA’ ∼∼}

\section{Methods}{
\describe{
\item{x = "track", y = "missing"}{ ∼∼describe this method here }
\item{x = "track3", y = "missing"}{ ∼∼describe this method here }
}}

You could fill in the file as is, or move the relevant lines to another docu-
mentation file first.

Methods and default values

Arguments in generic function definitions can have default expressions, which
are passed down to the selected method. The following example illustrates
several points about such defaults.

> setGeneric("xplot", function(x, xlim= xlimit(x))
+ standardGeneric("xplot"))
> setMethod("xplot", "numeric",
+ function(x, xlim = range(x,na.rm = TRUE))
+ plot(x, xlim=xlim))
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Let’s imagine that xplot() is a generic function we want for a variant of
regular plotting, and xlimit() is some parallel function for computing limits
on the plot.

First point: the default expression has no effect on method selection. In
a call of the form xplot(x), method selection uses the special class "missing"
as the actual class for argument xlim. The class resulting from evaluating
the default expression, xlimit(x), is irrelevant.

Second, a method definition can include a default that overrides the de-
fault in the generic function, as we see in the method defined for signature
"numeric". The default expression in the generic function will not be eval-
uated in this case. Unfortunately, the R mechanism for handling defaults
currently prevents a method from introducing a default expression unless
the argument in question already had a default expression in the generic
function. In the example, the method could not introduce a default for ar-
gument x. (Future improvements to R may eliminate this defect—check the
online documentation ?Methods.)

Third, the default expression is evaluated according to the standard lazy
evaluation rules. Default expressions differ from actual arguments in this
respect; actual arguments have to be evaluated to select a method, but
missing arguments always match class "missing". Otherwise, both logical
consistency and efficiency would suffer. Given the definitions for xplot()

above, a call with a numeric x object and xlimit missing would result in a
call to range(), but not until needed, down in the call to plot().

Calling methods from methods

The functions callGeneric() and callNextMethod() will result in a call to
another method for the current generic function. In the first case, one sim-
ply calls the function, with different objects as the arguments, resulting in
a selection of a method, usually not the same as the current method. In the
second case, the generic function is called, often with the same arguments,
but with the currently defined method excluded. Both callGeneric() and
callNextMethod() can be called with any set of arguments, and both inter-
pret a call with no arguments by passing down the same arguments as in
the current method.

The two mechanisms are similar in form, but they shine in different
circumstances: callGeneric() is essential in many methods for group generic
functions (Section 10.5, page 404); callNextMethod() works well when we
want to build up the current method by changes to a method for one of the
superclasses.
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Let’s look again at the initialize() method in Section 9.5, page 360:

setMethod("initialize", "track",
function(.Object, x, y, ...) {

if(missing(y)) {
y <- x; x <- seq(along=y)

}
callNextMethod(.Object, x = x, y = y, ...)

})

The method definition uses the technique discussed on page 394 to add two
formal arguments, x and y, that are not in the generic function initialize().
The motivation is to allow users to supply these arguments without names,
and also to allow default values to be computed if only one of the two is
supplied. The method adjusts for missing y with the same idea used by
plot(), making a sequence of the same length as x and treating x as y. It
then passes explicit x and y slots to the next method.

The next method happens to be the default method in this case, but
using callNextMethod() is simpler to program than explicitly extracting the
default method. It’s also more more reliable, in that it remains valid even
if the class should later acquire a superclass with an initialize() method.
Both the Mission and the Prime Directive benefit.

When the functions callGeneric() and callNextMethod() are called with
no arguments, the current arguments are passed on in a constructed call to
the generic function or selected method. Specifically, the formal arguments
included in the current call will appear in the constructed call, and only
these. If the generic function f() had formal arguments x, y, z, ... and
the current call supplied just x and y, then the constructed call would have
the form:

f(x = x, y = y)

Argument-less calls to callGeneric() and callNextMethod() are convenient
when the current method does some adjustments and then proceeds to use
some other methods. Two warnings need to be kept in mind, though. First,
calls without arguments are ambiguous if the method in fact has different
arguments from the generic (as was the case in our example above). Because
the local formal arguments are different, there may be no unambiguous way
to pass on the "..." arguments. Best to give explicit arguments, as we did in
the example. Second, you need to be careful with callGeneric(), to be sure
that suitable changes have been made to some of the original arguments;
otherwise, an infinite loop will result.
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The common use of callGeneric() is with group methods, where the
actual generic function recalled will depend on which member of the group
was called originally. See Section 10.5, page 404 for group methods.

To conclude this section, we discuss two techniques that appear to be
exceptions to the key rule that the formal arguments of a method must agree
exactly with those of the generic function. The first allows irrelevant argu-
ments to be omitted from the method definition, forcing the corresponding
arguments to be missing in the call in order for the method to be selected.
The other modifies the "..." argument in the generic: adding arguments,
replacing "...", or omitting it.

and in allowing users flexibility in calling them. However, they only appear
to violate the rule; in fact, the method definition supplied is modified by
utilities called from setMethod() to behave as usual, while conforming to
the intent of the definition supplied. Both techniques are in a sense only
cosmetic, because the same computation produced by the modification could
be programmed directly. If you find the techniques convenient, use them.
But if you find the modified code confusing (for example, hard to debug),
it’s better to go back to the strictly standard method definition.

Omitting irrelevant arguments

Some of the arguments to the generic function may make no sense in a
particular method. For trustworthy programming, the method should force
those arguments to be missing in the actual call. Just omitting the argument
from the signature of the method does not accomplish this: The interpre-
tation is that the argument corresponds to class "ANY", so that the user can
supply any argument at all, but the argument will be ignored! Instead, sup-
ply the special class "missing" in the signature for the method. A call that
has an actual argument corresponding to this formal argument will never be
selected in this case.

Such arguments may be omitted from the definition of the method. The
omission is interpreted to imply class "missing" for the argument in the
signature. A classic case for irrelevant arguments is the operator `[`: in
addition to argument x for the object, it has two explicit index arguments,
i and j, includes "..." for additional index arguments, and then has an
argument drop= at the end of the argument list. Generally, none of the
index arguments except x and i are relevant for most methods other than
those for matrix- or array-like classes. It’s cluttered and confusing to include
all these arguments in methods for which they are irrelevant. They can,

These techniques can be helpful in making your method definitions clearer
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in fact, be omitted. For example, here is a method for this operator for
the"trackNumeric" class:

setMethod("[",
signature(x = "trackNumeric", i = "ANY", j = "missing"),
function(x, i) {

x@.Data[i]
})

The code is certainly much simpler and easier to read. It’s optional to omit
the "missing" elements from the signature in the second line as well, but
argument j has been included here to emphasize the meaning of the method.

Keep in mind, however, that it’s all essentially cosmetic. The actual
method definition stored has the full argument list, and the signature will
be modified if necessary to force the omitted arguments to be missing. In
fact, both the techniques mentioned above are being used here. Arguments
j and drop are in the signature for the generic function, and will be added to
the method signature with class "missing". But argument "..." is never in
the signature; it will be forced to be omitted by the technique for modifying
argument lists.

Modifying argument lists in methods

When a method has been selected for use in a call to a generic function, the
body of the method is evaluated without re-matching the arguments in the
call. Therefore, the formal arguments of the method must be identical to
the formal arguments of the generic function.

On the other hand, details of a particular method may suggest some
extra arguments that would not be meaningful for the function generally;
for example, parameters related to a particular numerical method or options
that only make sense for certain classes of objects. One might want to match
these arguments in the usual way, named or unnamed, as if they had been
formal arguments. You can, simply by calling a helper function written
with the special arguments included, and passing "..." to that function.
However, sometimes it is clearer to write the method itself with the modified
arguments.

Method definitions accommodate these modified arguments by a tech-
nique that does not really change method dispatch itself, but allows pro-
grammers to add extra arguments and/or to drop the "..." argument. The
mechanism simply turns the programmer’s method into a local function and
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constructs the actual method definition to call this function. Extra argu-
ments are matched from the "..." argument to the generic function, using
standard R argument matching. For this mechanism to work requires several
conditions.

1. The generic function must have "..." as a formal argument.

2. The formal arguments of the method definition must include all the
formal arguments of the generic function, in the same order, with the
possible exception of "..." itself.

3. Any extra arguments to the method definition must appear just before,
just after or instead of the "..." argument.

These requirements just state conditions needed for the argument matching
in the call to the local function to work correctly.

previously used to illustrate callNextMethod():

setMethod("initialize", "track",
function(.Object, x, y, ...) {

if(missing(y)) {
y <- x; x <- seq(along=y)

}
callNextMethod(.Object, x = x, y = y, ...)

})

The formal arguments to initialize() are ".Object" and "...". The default
method requires all the "..." arguments to be named with the names of
slots in the class definition. For class "track", the slots are "x" and "y",
interpreted as the coordinates.

The "track" method for initialize() allows one or two sets of coordi-
nates to be given in the usual positional form, and treats one set of coordi-
nates as a curve at equally spaced points (the same logic as used by function
plot()). The method definition will be treated as if it had been written:

function (.Object, ...)
{

.local <- function (.Object, x, y, ...)
{

if (missing(y)) {
y <- x
x <- seq(along = y)

For a simple example, consider the initialize() method for class "track",
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}
callNextMethod(.Object, x = x, y = y, ...)

}
.local(.Object, ...)

}

The call to the next method (which will be the default method, because
class "track" contains no superclasses) always names the coordinates. See
page 392 for the callNextMethod() aspect of the example.

The "..." argument is retained, allowing additional arguments, even
though none would be legal for class "track" itself. This is a good idea for all
initialize() methods, because it allows the method to be used with a sub-
class of "track". For example, a call to new() for class "track3" (page 336),
which contains "track", could continue to use the initialize() method for
"track", but only if other slots could be specified and passed down to the
default method. Remember that nearly any method you write could be
inherited, with objects coming from a subclass of the class you specified.
Various tactics allow for this possibility; for example, you should generally
use the object’s actual class in computations, not the class you specified to
setMethod().

In the example for operator `[` shown previously, the "..." argument
was deliberately omitted, in contrast to the initialize() example. With
the operator, additional arguments would not be passed down to another
method, so omitting "..." lets R catch invalid argument names, which would
otherwise be silently eaten up by "...".

All these details are just part of the continuing, essential process of
thinking about your software and how it might be used.

10.5 Generic Functions

A generic function inherits the behavior of an ordinary R function, partic-
ularly from the user’s view. When the function is called, actual arguments
are matched to the formal arguments, and the function returns a result or
does some other computation for the user. If the function is well designed,
it has a clear functionality in terms of the arguments and the results.

Generic functions differ in that the computations include dispatching a
method according to the classes of the actual arguments. The complete
generic function, then, consists of the function itself plus the collection of
methods for that function currently defined and active. The generic function
nearly always comes from a particular R package, but the methods for that
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function may be distributed over several packages, and the active methods
may depend on what packages are being used in the current session.

This section presents techniques for detailed control over generic func-
tions. The function is created either directly or by conversion of a non-
generic function. Options in direct creation include doing additional com-
putation before or after dispatching a method (page 399) and controlling
which arguments may appear in method signatures (page 399). This control
can also be specified implicitly, for a function that is not (yet) generic, to
ensure that all methods defined for this function will be consistent or to
restrict the arguments that may be used (page 401). Generic functions can
be organized as groups, with the option of defining methods for the group
generic that then apply to all functions in the group (page 403).

Creating a generic function

At this point, we need to clarify the distinction between a generic function
as an object, versus the key action that it takes, namely to dispatch a
method corresponding to a call to the function. When we are using methods
or even writing them, this distinction is usually unimportant, because the
computations we are responsible for begin when the method is evaluated.
In defining a generic function, we may need to be more precise.

Method dispatch—selecting a method and evaluating its body in the cur-
rent context—is done in R by a call to standardGeneric(), with an argument
that essentially always must be the name of the function. Also, you cannot
just insert a call to standardGeneric() in an arbitrary piece of R code. The
call must come from a generic function object. During an R session, this ob-
ject will contain the currently active methods for the corresponding function
in a suitable form for method dispatch (specifically, in a table that includes
both direct and inherited methods for various classes of arguments). The
generic function is created as a side effect of the call to setGeneric().

Generic functions are defined in two common ways, either by converting
an existing non-generic function or by defining a new function in terms of
its arguments and perhaps its default method. The first case is simpler, fre-
quently not requiring any information other than the name of the function.

In either case, the generic function is defined by three choices:

1. the formal arguments;

2. the signature, that is, the subset of the arguments that can be used in
defining methods; and,
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3. for nonstandard generic functions, the body of the function. A stan-
dard generic function does no computation other than dispatching a
method, but R generic functions can do other computations as well
before and/or after method dispatch.

In addition, the call to setGeneric() can provide the default method for the
function; that is, the method corresponding to class "ANY" for all arguments.

With an existing function, default choices are often used for all the above.
For example, the function plot() can be turned into a generic by:

setGeneric("plot")

The implicit generic will be used; in this case, the signature will have ar-
guments x and y and a standard generic will be created. The previous
non-generic version of the function becomes the default method. Calling
setMethod() for a function that is not currently generic, without explicitly
calling setGeneric(), has the same effect.

A signature can be specified in the call to setGeneric() as an ordered
subset of the eligible formal arguments. See page 399. Otherwise, the sig-
nature consists of all the formal arguments except "...", in the order they
appear in the function definition. Methods cannot be defined for "...",
which is substituted into a call rather than matching a single object.

The argument useAsDefault specifies a default method:

setGeneric("plot",
useAsDefault = function(x, y, ...)graphics::plot(x, y, ...))

In practice, useAsDefault is useful mainly when no non-generic version of
the function exists. In that case, the arguments for the default method also
define those for the generic function and, normally, the generic signature as
well.

There is a subtle difference between the default method above and the
previous version, where the existing function on package graphics was copied
over as the default method. The explicit version uses operator `::` to call
the current function named "plot" on package graphics, even if that has
changed since the generic function was created. It’s unlikely to make a
difference in this case, but one choice or the other might suit the overall
design with functions that are more likely to change than plot().

An explicit generic function form can be supplied, as the argument def

to setGeneric(). The body of the function definition supplied as this argu-
ment will contain only a call to standardGeneric() when a standard generic
function is desired. The generic function Schur() is defined in the Matrix

package:
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setGeneric("Schur",
def = function(x, vectors, ...) standardGeneric("Schur"))

Supplying def is often used to prevent a default method from being defined.
In this case, function Schur() returns a particular form of matrix decom-
position, and so is meaningful only when x is some form of matrix object
or something that can be similarly interpreted. Arbitrary objects should
produce an error, as they will in the absence of a default method:

> Schur("hello, world")
Error in function (classes, fdef, mtable) :

unable to find an inherited method for function "Schur",
for signature "character", "missing"

Users might benefit from a default method that stopped with a more specific
error message, but an error is the key requirement.

Nonstandard generic functions

By definition, a standard generic function consists only of the dispatching
call to standardGeneric(). For conceptual simplicity and to some extent
for efficiency, most generic functions should be standard generics. However,
there is no requirement about the body of a generic except that it evaluate
a call standardGeneric() somewhere. To create a nonstandard generic func-
tion, supply the definition as the argument def= in a call to setGeneric()

One reason for having a nonstandard generic is to apply some checks to
the value of the call to the method. In this case, standardGeneric() will
be called first, and its value then used in later computations. The function
initialize() is an example; it does some checking that the generated object
is valid.

The simplest such case, to require the value of the function to have a
particular class, can be handled automatically by including the argument
valueClass in the call to setGeneric().

Generic signature

The signature of the generic is the ordered set of formal arguments for which
methods can be specified. By default it is all the formal arguments in order,
except for "...". Suppose the generic function has formal arguments:

> args(f)
function (x, y, z, ...)
NULL
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Then the default signature would be equivalent to expression(x, y, z).
The setGeneric() call can include a signature argument to override the
default.

The main reason to do so is to remove from the signature any argu-
ment for which lazy evaluation is required. If an argument appears in a
method signature, the argument must be evaluated immediately in order to
select a method. For consistent behavior regardless of what methods have
been defined, all the arguments in the signature of the generic function are
evaluated when a method is selected.

When creating a generic function from an existing function, therefore,
one needs to identify arguments requiring lazy evaluation. These are fre-
quently treated specially depending on the unevaluated form of the argu-
ment, such as treating unevaluated names as strings. A good clue is a
call to substitute() involving the argument. The functions library() and
require(), for example, use the argument "package" literally, by examining
substitute(package). A generic version of these functions could not include
package in the signature without breaking current use. Similarly for the
function help(), a call such as

help(Startup)

shouldn’t normally work, because there is usually no object named Startup

and if there was, the call has nothing to do with it. The function uses lazy
evaluation to examine the first argument as an unevaluated expression. In
retrospect, these functions might have been better without the special fea-
tures, to behave more consistently with standard R evaluation, but they are
unlikely to change. Methods cannot be written for such functions without
ensuring that the corresponding arguments are excluded, because all argu-
ments in the generic function’s signature must be evaluated in order to select
a method.

Some uses of lazy evaluation are simply to test explicitly for missing
arguments rather than supplying a default expression. Since missing argu-
ments are not touched in method selection, the same code could still be used
in a method where this argument defaulted to class "ANY". Alternatively,
you could have methods for class "missing" corresponding to this argument
and implementing the same action, perhaps more clearly.

Technically, it’s possible to retain lazy evaluation for any argument, by
introducing code into the generic function to deal with the argument before
a method is selected. If one wanted to examine the argument by calling
substitute() for example, that examination needs to be done before calling
standardGeneric(). I would not recommend this approach unless you are
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really sure it makes sense. The combination of sometimes using an argument
unevaluated and sometimes dispatching a method on the same argument has
a strong potential for confusion and untrustworthy computations.

Note that the order of names in the generic signature is significant. The
signature of methods must correspond to that order; that is, if a method
signature is supplied as one or more unnamed strings (the usual case), the
classes match the names in the generic signature. For this reason, it’s prob-
ably not a good idea to reorder the arguments in the signature, even if a
later argument is more likely to appear in a method signature. The chance
of confusing your users about what method they are actually creating is
high. It’s usually better to leave the generic signature in the same order as
the formal arguments.

Implicit generic functions

It’s important that all methods defined for a particular function from a par-
ticular package deal with the same generic function. If you in your package
define some methods for plot() from the graphics package, and I do so also
in my package, our intention is usually that those methods apply to the same
generic plot() function. If so, they had better agree on its properties, such
as the generic signature and whether this is a standard generic function.

For this reason, all functions are considered to correspond to an implicit
generic function. The simple conversion of, say, the function with() on the
base package to be a generic function corresponds to:

setGeneric("with")

By definition, the result corresponds to the implicit generic version of with().
If nothing else is done, the implicit generic follows all the default rules

outlined in this section: a standard generic, whose signature is all the formal
arguments except "...". That’s nearly always fine, but for just the reasons
outlined in the section so far, there may be functions for which something
else is needed. R provides the implicit generic function mechanism for these
cases.

The function with() is a case in point. Its second argument is an ex-
pression that is used literally, and so must not be in the generic signature.
On the other hand, with() is not a generic function, so the signature must
be specified implicitly. If with() was in our personal package, we would
define what the generic version should be. This information is stored in an
internal table; when setGeneric("with") is evaluated, the desired generic is
retrieved and used. Notice that the table is conceptually associated with
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the package owning the original function. No matter what other package
defines methods for the function, it’s this version that is used.

If a call to setGeneric() defines a version of the generic that is not iden-
tical to the implicit generic, the new generic function will not reside in the
original package; instead, a new function will be created in the package that
had the setGeneric() call. Having a separate version is potentially confus-
ing, but sometimes necessary if the new package requires method selection
on an argument not in the original function (as in the chol() example on
page 388). Note that the new generic is created whether the implicit generic
has been specified directly or has been left as the default. Consistency is
the essential requirement.

Implicit generic functions are encountered most frequently for functions
in the core R packages (base, graphics, etc.), for traditional functions in
the S language. Call implicitGeneric() to see a particular implicit generic
function:

> implicitGeneric("with")
standardGeneric for "with" defined from package "base"

function (data, expr, ...)
standardGeneric("with")
<environment: 0x2a29f88>
Methods may be defined for arguments: data

Creating a new non-default implicit generic function corresponding to
a function in your own package can be done most easily by creating a
generic version of the function, in the source for the package, just as you
would normally, by calling setGeneric(). You can even define some meth-
ods for the function, so that when additional methods are defined these
are also available. Once you have defined the generic version, a call to
setGenericImplicit() will restore the non-generic version of the function
and also save the generic version to be used whenever another package or a
user’s source code defines a method for this function.

As an illustration, here is a function that constructs a formula to drop
terms from a model (for a related example, see Section 3.1, page 39):

> updFormula <- function(model, var) {
+ var <- as.character(substitute(var))
+ tnames <- colnames(attr(terms(model), "factors"))
+ hasVar <- grep(paste(":",var,":", sep = ""),
+ paste(":", tnames, ":", sep=""), fixed = TRUE)
+ fText <- paste("∼ .", paste("-", tnames[hasVar], collapse = " "))
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+ eval(parse(text = fText)[[1]])
+ }
>
> setGeneric("updFormula", signature = "model")
>
> setMethod(updFormula, "formula", function(model, var) {
+ eval(parse(text = paste("∼ . -", as.character(var))))
+ })
>
> setGenericImplicit("updFormula")

We chose to treat var in the argument list as a literal; not necessarily a
good idea, but common in R functions to save users from typing quotation
marks. As a result, we had to ensure that var was not in the signature for
the generic function. We added a method to this generic version, to treat the
case that model was a formula object. Finally, a call to setGenericImplicit()

reverts updFormula() to the non-generic version. The generic, including the
defined method, is saved as the implicit generic, to be restored when a call
to setGeneric() or setMethod() occurs.

Groups of generic functions

Generic functions can belong to a group, specified by the group= argument in
the call to setGeneric(). If specified, this identifies a group generic function;
the function created in the call is a member of that group. Methods defined
for the group generic are used for a call to the member function, if that
function has no directly specified method for that method signature.

A number of group generic functions are defined in the methods package
itself. For example, Arith() is a group generic function for all the arith-
metic operators (`+`, etc.), and Compare() is a group generic function for
the comparison operators (`==`, `>`, etc.). Group generic functions nest,
so that the function Ops() is a group generic that includes Arith() and
Compare() among its members. To see the known members, use the function
getGroupMembers():

> getGroupMembers(Compare)
[1] "==" ">" "<" "!=" "<=" ">="

New group generic functions can be created by calling setGroupGeneric().
The functions created are never called directly, and their body is just a call
to stop().
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Group generic functions in effect create an inheritance structure for func-
tions, for the purpose of method selection. The essential rule is that a group
generic method matches a specific signature less well than a method for the
member of the group with the same signature, but better than a method in-
herited from superclasses. And, naturally, the direct group generic matches
better than the group that the direct group belongs to. In a call to `>`, for
example, a method for Compare() would match before one for Ops(), for a
specific signature.

Methods for group generic functions

Methods written for group generic functions usually require recalling the
underlying generic function with some modified arguments. Group generic
methods are useful when we observe a computational pattern that applies
to all or many member functions, after substitution of the specific function
into the general pattern. In this respect, the methods are analogous to the
templates found in various programming languages.

The chief mechanism for inserting the individual generic into the gen-
eral pattern is callGeneric(). As an example, consider our simple "track"

class (Section 9.2, page 336). Suppose we decide to implement comparison
operations for these objects, comparing the two slots, x and y. There are
six functions in the Compare() group: equals, not equals, and four compar-
ison operators. Equality requires corresponding elements of both slots to
be equal, and similarly the value of `!=` is TRUE where either element is
unequal. For the other comparisons, we want a value of TRUE if TRUE for
both the x and y elements, FALSE if FALSE for both, and NA otherwise.

The first two methods can be defined as:

setMethod("==", c("track", "track"),
function(e1, e2) {

e1@x == e2@x &
e1@y == e2@y

})

setMethod("!=", c("track", "track"),
function(e1, e2) {

e1@x != e2@x |
e1@y != e2@y

})

We could go on to define the four remaining methods individually, but in



10.6. HOW METHOD SELECTION WORKS 405

fact they have the same pattern. That pattern can be expressed as a method
for the Compare() group generic:

setMethod("Compare", c("track", "track"),
function(e1, e2) {

cmpx <- callGeneric(e1@x, e2@x)
cmpy <- callGeneric(e1@y, e2@y)
ifelse(cmpx & cmpy, TRUE,

ifelse(cmpx | cmpy, NA, FALSE))
})

(Working out how these methods implement the verbal description is a good
exercise in understanding comparisons and logical operators in R. Try them
out on the data examples in he SoDA package.)

The group generic methods would apply to `==` and `!=` as well, but
the existence of explicit methods for these operators, for the same signature,
guarantees that the group methods will not be called.

10.6 How Method Selection Works

This section describes method selection in somewhat more detail than the
examples earlier in the chapter. The details may help to explain why certain
methods are selected, and also why at times warnings appear about ambigu-
ous choices of methods. The important conclusion, however, is that from
our principles of effective and trustworthy software, it’s usually a mistake to
depend on the details of method selection. Better in most cases to define a
few more methods to resolve any ambiguous situations.

The method selection mechanism maintains a table (an R environment)
in which the available methods for a particular generic function are stored,
indexed by strings formed by concatenating identifiers for classes. In fact,
there are two tables, one containing all the methods that can be called, and
another containing the methods explicitly defined. The latter all come from
a setMethod() call in some package, for this function or for a group generic
function that includes this function as a group member. The table of callable
methods contains all these, plus methods selected so far by inheritance, when
no explicitly defined method existed. Both tables are stored in the generic
function object during the R session. Methods are added to the table of
defined methods when packages that contain methods for this function are
loaded or attached, or when a setMethod() call occurs for this function.

Methods are indexed by the signature defined by the call to setMethod();
that is, by a class associated with each of the formal arguments in the
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signature of the generic function. For example, the function plot() has
an implicit signature of the formal arguments other than "..."; that is,
c("x", "y"). The classes are represented by character strings, usually just
the string name of the class, but possibly including the package name if
the same class name is defined in more than one package. (The further
possibility of having two packages of the same name is not handled, either
here or in other situations.) For the examples in this chapter, we make
things simpler by assuming that a particular class name only arises from
one package.

When a request to select a method for this function occurs, the target
signature corresponding to the actual arguments is computed, and matched
against the table of callable methods for the function. Notice that only the
actual arguments are used. If an argument is present, it is evaluated and the
class of the result goes into the target signature. If the argument is missing,
class "missing" goes into the target signature, not the class that an evaluated
default expression might have. The evaluation of actual arguments normally
takes place when standardGeneric() is called.

It’s an important consequence that lazy evaluation is not available for
arguments that are in the signature of the generic function. Arguments that
require lazy evaluation should be omitted from the generic signature (the
best solution) or examined before method selection (Section 10.5, page 399).

In the internal implementation of standardGeneric(), if the target signa-
ture is found in the table of callable methods for this generic, that method is
selected and used to evaluate the call to the generic. If the target signature
is not found, the computations proceed to look for an inherited method. If
one is selected, that method is then copied into the table of callable methods
and indexed by the target signature, where it will be found directly on the
next call with the same target signature.

Inherited methods

When no exact match of the target signature is found, all qualifying in-
herited methods are assembled and compared to find those that have the
least “distance” from the target signature. A candidate method qualifies
for inheritance if, for each argument in the signature, the class in the can-
didate is equal to or a superclass of the class in the target. In addition to
candidates directly defined for the generic function itself, candidates will be
added from the group generic functions for this function, taken in order if
there are several generations of group generic. The default method, if there
is one, always qualifies, but if there are any other qualifying candidates, the
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default method is not considered further.
The distance between a candidate signature and the target is computed

currently as the sum of the distances for each class inheritance. Class in-
heritance distance is essentially the number of generations of inheritance.
Classes contained directly in the target class have distance 1, those con-
tained in the directly inherited classes have distance 2, and so on. Class
"ANY" is considered to have a distance larger than any of the actual inher-
ited distances.

There can be more than one qualifying candidate with the same distance.
If some, but not all, of these are from group generic functions, those from
group generics are now discarded. If more than one candidate remains,
the selection is considered ambiguous. The current implementation issues
a warning, but picks one method arbitrarily (currently it’s just the first on
the list, which is in effect the result of lexically ordering the superclasses of
the target classes).

Once an inherited method is selected, it is saved in the table of all callable
methods—not in the table of explicitly defined methods, which is used for
inheritance computations. It would be an error to use inherited methods
to compute further inheritance, because the distances would not correspond
to those in the original table. But saving the selection means that future
selection for the same function and target signature will find the selected
method immediately.

Let’s look at an example. Suppose we have a class "trackNumeric" that
represents some numeric variable recorded at points on a track, with the
track represented by the simple class introduced in Section 9.2, page 336.
The "trackNumeric" class has a very simple definition, it just contains class
"numeric" (for its data) and class "track":

setClass("trackNumeric",
contains = c("numeric", "track"))

Now let’s write some methods for the arithmetic operators involving this
class. The group generic function Arith() has arguments e1 and e2. A simple
method where e1 was of class "trackNumeric" and e2 of class "numeric" might
just replace the data part with the result of calling the generic function on
that part and on e2. Let’s not worry yet about details, but just assume
there is some method for signature:

c("trackNumeric", "numeric")

A similar method would apply when e2 was "trackNumeric" and e1 was
"numeric", defining a method for signature:
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c("numeric", "trackNumeric")

Let’s assume these are only the two methods defined. Suppose now that z

is an object from class "trackNumeric", and consider the evaluation of two
expressions involving z:

zz <- z -mean(z); (1:length(z)) * z

The methods for the group generic will be used for both `-` and `*` because
there are no methods specifically for those operators, other than the default
method. Because mean(z) is of class "numeric", no inheritance is required
to select the c("trackNumeric", "numeric") method.

The class of 1:length(z) is "integer", so no method is defined. Two
methods could be inherited, c("numeric", "trackNumeric") and the default
method, corresponding to c("ANY", "ANY"), but as always the default is
discarded when there are other candidates. So selection is immediate.

On the other hand, let’s consider a computation where both arguments
are from "trackNumeric", such as:

zz / z

Because "trackNumeric" extends "numeric" at distance 1, both our defined
methods have distance 1 from the target signature. The choice is ambiguous,
a warning will be issued to that effect and the first of the two methods used.

In this specific computation, either method returns the same result.
However, the warning is justified if we look more closely. What should
happen when the two objects are from the class, but do not have identical
x and y slots? It’s hard to argue generally that one should throw away the
structure of the second argument, or that zz + z and z + zz should be dif-
ferent. The important message is that we really should have worked a little
harder and produced a third method, for signature:

c("trackNumeric", "trackNumeric")

Just what that method should do takes some thinking; one plausible strategy
would be to only allow the case that both x and y match between the two
arguments. More realistically, "trackNumeric" provides a handy example to
study method selection, but a better practical approach to data collected
over a track would likely be a vector structure class (Section 6.3, page 154).

Attaching packages

Each generic function contains a table of its methods. Usually, the generic
function is associated with a package. Methods may be defined for the
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generic, however, in other packages or by non-package calls (from the global
environment). The underlying concept is that the generic function accepts
and stores the method definition, in what is essentially a response to a
request implied by the setMethod() call. For example, class definitions will
often include methods for function show() to handle automatic printing of
objects. This generic function belongs to the methods package. The table
of methods for show() is maintained in the generic, in its package of origin,
regardless of where the setMethod() call originated.

When packages are attached the methods in that package are integrated
into the appropriate generic function. Similarly, for packages with a names-
pace, loading the namespace causes methods in the namespace to be installed
in generic functions. Therefore, the methods associated with a generic are
not fixed, but may change during the session as packages are loaded or
unloaded.

Methods for primitive functions

Primitive functions in the base package provide method dispatch by a sim-
ilar mechanism to regular functions, but directly from the C code in the
R application. Aside from a few primitives that do not support methods,
such as the function missing(), implicit generic function definitions exist
corresponding to primitive functions.

> getGeneric("[")
standardGeneric for "[" defined from package "base"

function (x, i, j, ..., drop = TRUE)
standardGeneric("[", .Primitive("["))
<environment: 0xf355a94>
Methods may be defined for arguments: x, i, j, drop

> get("[")
.Primitive("[")

Notice that, although the generic functions are available, they are not in-
serted into the base package’s namespace. Users’ calls still access the non-
generic primitive; from the underlying C implementation of the primitive,
code may be called to test for method dispatch.

The C code initiating method dispatch for primitives introduces some
restrictions on the signatures for valid methods. The object corresponding
to at least one of the arguments in the function’s signature must be an
S4 object before the method dispatch code will search for an applicable
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method. The effect is to prohibit S4 methods for primitive functions unless
the signature contains an S4 class (and not just an S3 class registered by
setOldClass()). The motivation was probably machine efficiency, but an
argument can be made from the Prime Directive as well. Certainly for basic
R object types, the behavior of primitive functions can reasonably be taken
as part of the system definition. Prohibiting changes to that behavior is
a reasonable precaution. The prohibition for S3 classes is perhaps more
debatable.

Most methods utilities recognize a primitive function object as a refer-
ence to the corresponding generic function. Functions such as showMethods()
and selectMethod() should work as usual. The design goal is that methods
for primitive functions can be used essentially as for normal functions, aside
from the restrictions noted above.



Chapter 11

Interfaces I:
Using C and Fortran

This chapter and the following one discuss techniques for mak-
ing use of software written in other languages and systems. This
chapter covers calling software in C, Fortran, and to some extent
C++. Given that R’s implementation is based on a program writ-
ten in C, it’s natural that techniques are available for incorpo-
rating additional C software not available for general interfaces.
This chapter describes several. The simplest interfaces are to
routines in C or Fortran that do not include R-dependent fea-
tures (Section 11.2, page 415). For greater control, at the cost of
more programming effort, C routines may manipulate R objects
directly (Section 11.3, page 420). Functional interfaces to C++

are discussed in Section 11.4, page 425, although the difference
in programming model in this case is discussed in Section 12.6,
page 440. For trustworthy software, the interfaces to C and For-

tran should be registered as part of initializing a package (Section
11.5, page 426).

11.1 Interfaces to C and Fortran

Since the core of R is in fact a program written in the C language, it’s not
surprising that the most direct interface to non-R software is for code written
in C, or directly callable from C. All the same, including additional C code
is a serious step, with some added dangers and often a substantial amount
of programming and debugging required. You should have a good reason.

411
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The two reasons usually cited for going to C are greater computational
efficiency and the need for computations that are unavailable in R, but avail-
able in C, C++, or Fortran. The second reason is more compelling, but the
efficiency advantages may be compelling as well.

Before getting started, it’s worth reviewing the pros and cons of import-
ing such code.

Against:

• It’s more work. Software using the C interface should be developed
as part of an R package, so that the package development tools in R

can take over some of the details in compiling and linking. Even then
there will be more work involved in making changes. And debugging
will require more effort as well.

• Bugs will bite. These are ancient and relatively low-level languages.
Programming problems are more likely. And, the consequences can be
much worse than bugs in R: It’s quite easy to kill the R session with a
memory fault, for example.

• Potential platform dependency. Writing software that works on the
various platforms that support R may be more difficult for arbitrary
C computations, particularly when input/output or interactions with
the operating system are involved.

• Less readable software. A subtler point, but in a sense the most insidi-
ous: Most sizable code in C and related languages is largely unreadable,
at least to the ordinary user of R. Does it work as advertised, or are we
introducing less trustworthy software, to the detriment of the Prime
Directive? This is an issue even with the base code supplied with R,
but in that case much effort has gone into finding reliable algorithms
and the scrutiny of hundreds or thousands of users may give us some
added security.

In Favor:

• New and trusted computations. There is a great deal of software writ-
ten in these languages. We can add some important computations,
provided the software can interface effectively to R. Interfacing to well-
chosen computations can help us explore, as is our Mission.
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And, countering the second item in the previous list, introducing a
well-tested algorithm, particularly in place of a less-validated com-
putation, can make software more trustworthy, enlisting the Prime
Directive in favor of the new code.

• Speed. The overhead of a call to an R function is many times that of
a call to a C function, so that if the computation done each time is
roughly similar, the C or Fortran implementation may be much faster.
Identifying “hot spots” where it’s actually worth the effort to replace
the R computation is a challenge, but the reward can sometimes be
large, making a computation feasible on realistic problems.

• Object references. Another efficiency issue, but mainly concerned with
memory. C and the other languages generally pass references to ob-
jects; if the computations iteratively modify those objects, the equiv-
alent R implementation will often make more copies of the objects,
potentially slowing or even preventing the computation for large ap-
plications.

Weigh the relevance of the pros and cons in any specific situation, natu-
rally including your own degree of familiarity with the languages involved
in general and with the actual software in particular.

As noted, incorporating an existing, trusted or well-tested set of code,
particularly if it has a straightforward set of arguments, may be a winning
strategy. I would be more hesitant about implementing from scratch a C

version of a computation on a general feeling that it should be a lot faster.

The different interfaces

In fact, there are four different types of C software to consider, and in
addition two other languages that get special attention, Fortran and C++,
giving us six topics to consider:

1. the .C() interface for C routines independent of R object structure;

2. the .Call() interface, an S-language interface for programming in C;

3. the .External() interface, a version of the internal R function call
mechanism;

4. special C-language code for registering routines to be called from R.

5. the .Fortran() interface for calling Fortran subroutines;
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6. a mechanism for using the C interface with C++ code.

The general interfaces in this are .Call() , .External(), .C(), and .Fortran().
The key question for programming is: How to communicate the needed

data between R and the compiled routines. All four of the general interface
functions have the same form of arguments.

.C(name, ...)

.Fortran(name, ...)

.Call(name, ...)

.External(name, ...)

Aside from some special control arguments discussed below, the call supplies
the character-string name of the routine to be called, followed by arguments
that correspond to the arguments of the routine. All the interface routines
also take an optional PACKAGE= argument that is not passed on to the routine
but that specifies the name of the package in which the routine was compiled.
Only the dynamically loaded code for that package will be searched. For
example:

.Call("det ge real", x, logarithm, PACKAGE = "base")

The .Call() interface will find the C routine "det ge real" by looking in the
package "base", and will generate a call to that routine with the two argu-
ments provided. The package base in this case stands for all the compiled
code included with the core R application itself.

Other than the special control arguments, the names of the arguments
are not used in preparing the call to the C or Fortran routine, and in particu-
lar are unrelated to the argument names of the routine itself. The number of
non-control arguments must equal the number of arguments in the subrou-
tine definition (special programming techniques in C do deal with variable
argument lists). The number of arguments, and in some cases the types, will
be checked before the call, if the routine has been registered, as discussed in
Section 11.5, page 426.

The essential distinction among the C interface functions is whether the
C code is written to manipulate R objects or in an R-independent form. Both
options have a long history in the S language, and both are available.

The R-independent approach restricts the classes of objects in R and
the corresponding argument types in C or Fortran, but otherwise the routine
called has no need to deal with the structure of R objects. The .C() and
.Fortran() interfaces use this approach. In the other approach, the .Call()

and .External() interfaces both expect the C routine to use R-dependent
code. The programmer then needs to manipulate the references to R objects,
using utilities provided as part of the R environment.
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11.2 Calling R-Independent Subroutines

The implementation of the .C() and .Fortran() interfaces passes each of
the arguments to the called routine as a simple array (Fortran) or pointer
(C) to data of a type that corresponds to one of the basic types in R. Table

R Object Type C Type Fortran Type
logical int * INTEGER
integer int * INTEGER
double double * DOUBLE PRECISION
complex Rcomplex * DOUBLE COMPLEX
character char ** CHARACTER*255
raw char * none

Table 11.1: Corresponding types for arguments to .C() and .Fortran().

11.1 (adapted from the Writing R Extensions manual) shows the correspon-
dences. Object type relates to how the basic vector is actually stored; for
example, data that is considered "numeric" is usually stored as "double" but
can also be forced to be "integer". It rarely makes a difference in R and in
any case one should usually let the software decide. However, it makes a def-
inite difference to C or Fortran. The actual argument to .C() or .Fortran()

must correspond to the declaration of the routine, or the computed results
will be nonsense.

At the time of writing, the programmer is responsible for matching types.
In principle, much of this could be automated using parsing tools, so we can
hope for extended tools in the future. Meanwhile, you usually need only
apply the corresponding as.Type () function.

Here is a .Fortran() example. The Fortran routine GEODISTV takes 4
arrays of type DOUBLE PRECISION representing two sets of latitude and lon-
gitude coordinates and returns the corresponding geodetic distances in array
DIST. It also takes an INTEGER argument N for the lengths of the arrays:

SUBROUTINE GEODISTV(LAT1,LON1,LAT2,LON2,DIST, N)
DOUBLE PRECISION LAT1(1), LON1(1), LAT2(1), LON2(1), DIST(1)
INTEGER N

etc.

This is a small subroutine in the SoDA package that in turn calls a subroutine
taken from Dan Kelley’s oce package.1 That subroutine goes back through

1myweb.dal.ca/kelley/pub/sof/oce/index.php
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several previous versions to a technique published in 1975 (see the com-
ments in the source code: Fortran algorithms often have a long history). The
computation produces the geodetic distance between points on the earth’s
surface. We use it in our computations for "GPSTrack" data.

The justification for including this code is convincing: The computations
are nontrivial (accurate modeling of the earth’s surface) and the Fortran

code has a long history of use and testing in the geographical sciences. The
GEODISTV routine simplifies the calling sequence (omitting 4 arguments) and
vectorizes the computations by computing distances for the whole array in
one call from R. It’s typical that some extra Fortran code is added to make
the interface more effective. Although the code is R-independent in terms
of the structure of R objects, only rarely in Fortran and virtually never in C

are the original routines set up conveniently for a call from R.
The routines must have arguments that are all pointers (C) or arrays

(Fortran) of one of the types in the table. This is usually more natural for
Fortran subroutines, which typically do deal with simple vectors, and where
single values are passed by the same mechanism, than for C. Existing C code
is likely to come in another form, and to need a wrapper routine before being
usable.

The interface to GEODISTV adds a computing capability to R that would
be difficult to implement directly and less trustworthy once implemented.
And it leads to a cute little function that plots data using geodetic coordi-
nates; see page 419.

Function geoDist() in the SoDA package calls the interface to GEODISTV:

res <- .Fortran("GEODISTV",
as.double(lat1), as.double(lon1),
as.double(lat2), as.double(lon2),
dist = double(n), as.integer(n),
PACKAGE = "SoDA")$dist

The value of the .Fortran() call is a list of all the arguments with values as
they were on exit from the routine. If arguments are named, those names
will be passed on to the list. So in the above example, $dist would extract
the output values of the corresponding argument.

Here’s a C example, adapted from the digest package on CRAN written
by Dirk Edelbeutel. The actual interface in that package uses .Call(), and
we will look at an interface of that form below. In fact, the underlying
computations are somewhat better suited to .C(), which makes the com-
parison interesting. Here’s the underlying code and the .C() interface; after
introducing the alternative on page 422, we’ll compare them.
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The underlying C computation here takes an R object and produces a
“hash” string based on the contents of the object. The digest package
does this by first serializing the object into a string (potentially a very
long one). Then one of several hashing algorithms is used to produce a
fixed-length string. The technique could be useful for an application that
wanted to compare a number of objects by their content, as opposed to R

environments, which hash the name for the object. Any application that
wants to keep track of unique objects could build on this tool to create a table
indexed by object content. The fixed-length strings are hash codes, and the
application will need to convert these into a complete mechanism by dealing
with non-identical objects that hash to the same value (a very common
programming exercise). The hashing algorithms are individually available
as C routines. It’s a neat technique, because the digest computations get
complete generality for free. The built-in serialization code deals with any
R object, and converts it into a character string. By using the serialization
step in R as a preliminary, the digest computations also work for any object.

To build up a C interface from R, we start with a C definition of the
overall task,2 parameterized naturally for C:

static char * digest string(
char *txt,
int algo,
int length) {

.......
}

The routine digest_string takes a character string txt, an integer code
for the algorithm to use, and an optional length for the string. It returns a
(fixed-length) output hash string.

This is a natural way to code the computation, but not what .C()

can handle directly. A wrapper routine in C is needed, in this case say
R_digest_C:

void R digest C(
char ** Txt,
int * Algo,
int * Length,
char ** Output) {

static char *output;

2The formulation in this chapter extracts essentially all the underlying computation
into an R-independent routine, to illustrate the alternatives, whereas the original digest
package uses more extensive R-dependent C code.
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output = digest string(*Txt, *Algo, *Length, output);
*Output = output;

}

The R code that invokes this routine takes responsibility for ensuring that
each of the arguments matches the assumed type, as in Table 11.1. Here is
the relevant part of the function:

val <- .C("R digest C",
as.character(object),
as.integer(algoint),
as.integer(length),
output = character(1),
PACKAGE="digest")

return(val$output)

As in the preceding .Fortran() example, this uses a match between the R

object type in the table and either the corresponding as.Type () function or
the generating function for this type.

The pattern shown in these two examples is recommended for most uses
of these interfaces.

1. Find or write a routine that does the computation (digest_string in
the example).

2. Write a routine (R_digest_C in the example), callable through .C() or
.Fortran(), that translates the input arguments for the first routine
and, if necessary, arranges for output arguments to receive the value
of the underlying routine. Each of the arguments to the interfacing
routine must have one of the declarations in the appropriate column
of Table 11.1.

3. Write an R function that calls the second routine. Each of the argu-
ments in the call must be guaranteed to have the correct object type,
either by coercing or generating an object. The same function will
then extract the output to return as a value, from the list of argu-
ments (possibly modified) returned by .C() or .Fortran().

For this pattern to work requires that the value make sense as one or more
basic vectors. C code that returns a more complex C structure as its value
may require some R-dependent code to transfer the information to an R

object. Alternatively, consider leaving the object in C, returning a proxy
object to R, and providing R-callable tools in C to deal with the proxy (see
Section 12.4, page 435 for the general idea).
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There are two special named arguments to .C() and .Fortran(), both
logical flags. Passing NAOK=TRUE allows missing values to be passed on to the
routine. By default, any missing values will generate an error. In Fortran

numeric data, NA satisfies the test for “not-a-number”, ISNAN() (Section 6.7,
page 191). Otherwise, C and Fortran do not themselves understand R’s NA,
so some special code must be applied to deal with them.

The other flag controls duplication of the arguments by the interface.
By default, copies of the data are made and passed down to the routines,
to protect the validity of any R objects. If you are certain—really certain—
that no computation will change any of these values, you can save some
memory by supplying DUP=FALSE. However, it’s generally a bad idea. The
Prime Directive says that trustworthy software is essential; saving memory
allocation is secondary, and often not that significant in typical situations.

Even with the .C() interface, there is one topic that probably should be
done in an R-dependent way: error handling. The simplest approach is to
use the R support routine error. See page 423 for an example. Note that
to use this routine, you should #include the file "R.h".

Addendum: The geoXY() function

Here is a little function included in the book mainly because I think it’s cute,
but also because we use it in several examples involving G lobal Positioning
System (GPS) data. In turn, this function uses the geoDist() function’s
interface to Fortran, and illustrates the value of access to a somewhat ancient
computational algorithm. The function takes latitude and longitude coor-
dinates for n points and returns a matrix whose rows are x and y geodetic
coordinates. The computational issue is how to work with data in the form
of latitude, longitude and elevation—the standard form for GPS data. Such
data are quite well-defined but cannot be used directly for most computa-
tions; for one reason, the variables are not in commensurate units, the first
two being in degrees and the third in, say, meters. You can’t just plot lat-
itude and longitude, though people do. Particularly in polar regions, the
meridians of longitude are not parallel. The usual approach is to transform
the data by one of many classic projections (see the package mapproj on the
CRAN archive, for example). But this means choosing a projection, and the
appropriate choice depends on where the data are on the globe.

Instead, we use a system of coordinates on the surface of the earth,
relative to a chosen, but arbitrary, origin (by default we will use the lower-
left (southwest) corner of the latitude-longitude box enclosing the data).
This is not a flat projection, but a well-defined transformation, independent
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of the actual data. If the data points themselves only span a small fraction
of the globe, then the error of plotting the x, y values as if they were flat will
be small, regardless of where the data points are located. This is the reason
we use geoXY() in the plotting methods for class "GPSTrack" (see Section 7.2,
page 248, for example).

The definition of the computation for a given latitude and longitude is
as follows. The x coordinate is the distance from the origin to a point with
the latitude of the origin and the longitude of the data. The y coordinate,
similarly, is the distance from the origin to a point with the longitude of
the origin and the latitude of the data. In both cases, “distance” means the
geodetic distance (the distance along the surface of the earth), just what
geoDist() (on page 416) computes; in addition, the distance will get the
same sign as the difference of the latitude and longitude values and will be
scaled to whatever units are desired, meters by default. All this is directly
analogous to the pencil-and-ruler way of finding ordinary coordinates from
a flat map, but done on the surface of the earth (well, to be precise, on the
geographer’s abstract version of that surface). Here is the code.

"geoXY" <-
function(latitude, longitude,

lat0 = min(latitude, na.rm=TRUE),
lon0 = min(longitude, na.rm=TRUE),
unit = 1.) {

lat0 <- rep(lat0, length(latitude))
lon0 <- rep(lon0, length(longitude))
yDist <- geoDist(lat0, lon0, latitude, lon0)
xDist <- geoDist(lat0, lon0, lat0, longitude)
cbind(X= xDist * sign(longitude - lon0)/unit,

Y = yDist * sign(latitude - lat0)/unit)
}

The function is included in the SoDA package, with more details in the online
documentation ?geoXY.

11.3 Calling R-Dependent Subroutines

In the R-independent interfaces, the routine being called defines the types
for the arguments by declarations in C or Fortran, the usual approach in these
languages. The routine does no checking dynamically; all such coordination
falls to the R code and the implementation of the interface.
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In contrast, the .Call() and .External() interfaces expect all arguments
to have just one type in C; namely, a reference (pointer) to a general R object.
In the C code pointers to all R objects are declared SEXP; all the arguments
to the interface are of this type and the routine must return a valid pointer
of the same type, which the routine will usually have constructed. Checks
on the actual objects during execution will be done by the called routine.

The advantage of these interfaces is generality: Essentially any compu-
tation can be carried out with any objects as arguments. A disadvantage
is the added complexity of the C code, which now takes on argument pro-
cessing, structure manipulation, and various tasks usually left to R code or
done automatically. Such computations present even more opportunities for
errors than general computations in C. They do, however, allow you to ma-
nipulate R objects and to deal with variable-length argument lists, so if you
are keen to use these techniques at the C level, one of these interfaces will
be required.

Next, the choice between the two interfaces. The main difference is in
the mechanism for passing the arguments from R to the C routine. In the
.Call() interface, all the "..." arguments are passed to the routine, as
with .C(). The .External() interface passes a single pointer to the list of
arguments to the routine. It is the responsibility of the called routine to
work through the argument list to get at individual arguments. There are
some C macros for the purpose, basically plucking off the first element of
the list and the list minus the first element. If you have programmed in Lisp,
the style will be familiar, even the names of the macros are taken from Lisp.

The .External() form is more work, so it is unlikely to be preferred,
except for one important advantage: its list-style treatment of arguments
can handle a variable number of arguments. The .External() interface is
suited to computations that naturally treat their arguments iteratively, for
the same reason. We will use .Call() in the examples here; for instructions
on using .External() see the Writing R Extensions manual or the code that
implements base package functions with variable argument lists (such as the
routine do bind).

Finally, any application of these interfaces will need some special C code,
which in practice means some macros that mimic R expressions to manipu-
late objects, and that provide a few additional operations. Here also there
is a choice. The .Call() interface and C macros for managing objects were
originally described for the S language in Appendix A of Programming with
Data [5], in the form now used in S-Plus. The C programming support avail-
able with R includes an extended version of the same macros. To use them
you must #include the file "Rdefines.h" in your C source files in directory
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"src" of a source package.
A different set of macros and routines grew up in the implementation

of R itself. They are described in the Writing R Extensions manual, with
examples scattered through the core code for R. The file "Rinternals.h" has
these definitions, and must be included to use any R-structure computations
(but "Rdefines.h" includes it automatically). The two sets of macros are
likely to be used with the corresponding interface functions, although they
can be combined.

The macros replicate some basic computations in R: allocating objects of
the basic object types, coercing to those types, or testing inheritance. For
example, for "numeric" vectors there are macros:

NEW NUMERIC(n)
AS NUMERIC(x)
IS NUMERIC(x)

Macros also give a pointer to the data values in the object, following the
correspondence in the second column of Table 11.1. For example:

NUMERIC POINTER(x)

returns a "double *" pointer to the data in the vector x. Single data val-
ues can also be accessed, as NUMERIC VALUE(x), for example. Analogous
macros exist for the other types, substituting LOGICAL, INTEGER, CHARACTER,
COMPLEX, LIST, or RAW for NUMERIC. Individual elements of the various types
can be obtained by indexing the various pointers. However, to set an ele-
ment of a vector safely, use the macro SET_ELEMENT(x, i, value), as in
the example code below.

Most importantly, however, note that these interfaces do not duplicate
arguments, unlike the .C() interface. Using any of the SET macros can
do very bad damage if you do not either duplicate the object x or ensure
carefully that modifying it is allowed.

In writing such C code one point is most important in avoiding errors,
and is not found in the S reference since it applies to R only. Whenever any
computation could possibly allocate R storage dynamically and the result is
not assigned at the R level, the use of the corresponding C reference must
be protected by the PROTECT and UNPROTECT macros. The reason is that the
storage would otherwise be released if R happened to do a garbage collection
of dynamic storage during the computation. The error is particularly nasty
because it will occur unpredictably, not every time. The use of the macros
is best illustrated by an example.

We return to the example on page 416, this time using the .Call()

interface to call a C routine digest:
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SEXP digest(SEXP Txt, SEXP Algo, SEXP Length) {
FILE *fp=0;
char *txt = CHARACTER VALUE(Txt);
int algo = INTEGER VALUE(Algo);
int length = INTEGER VALUE(Length);
SEXP result = NULL;
char output[41];

digest string(txt, algo, length, output);
PROTECT(result=NEW CHARACTER(1));
SET ELEMENT(result, 0, mkChar(output));
UNPROTECT(1);

return result;
}

Let’s deal with PROTECT first, then some other points brought out by the
example. The call to NEW_CHARACTER(1) allocates an R object. A pointer is
assigned in the C code, but nothing has told the R evaluator that this object
must be protected; if the system happened to do a “garbage collection” to
compact storage, it would throw the object away, leaving us with an invalid
pointer and disaster looming.

The rule is that any such value must be passed to the PROTECT macro
before doing any other computation that might involve R storage allocation.
Once the object has been assigned in R or returned to the evaluator, protec-
tion is not needed. The programmer must UNPROTECT the number of objects
currently protected before returning from this routine.

One further point is worth noting. This particular operation is made
slightly more complicated because the object is a character vector. R does
not in fact store character strings as character buffers, as Table 11.1 would
suggest, but as a special structure. To turn character data into an element
of an R vector, you must call mkChar().

Having now implemented the example with .C() (on page 416) and
.Call(), let’s compare the two. Although .Call() was the interface in the
digest package, once the underlying C algorithm has been isolated as the
routine digest_string, there is almost no remaining need for R-dependent
interface code. Using .C(), the arguments are coerced in R, any efficiency
loss being minor. Allocation is also done in R, without the complexity and
potential errors of protection in C. Even the special requirements of charac-
ter data are handled automatically.

An important programming step that does need some R-dependent code
hasn’t been shown yet: error handling. The routine digest_string detects
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some invalid input situations, such as an invalid integer code for the algo-
rithm to use. General C and Fortran code don’t manage error handling suit-
ably for R (never use the Fortran STOP statement, for example). Once could
develop some special procedures for communicating errors, but the simplest
approach is to call the C-level error handler for R, as digest_string does:

error("Unsupported algorithm code");

Where error handling is desirable with the .C() interface, I would suggest
using this routine, even in code that is otherwise R-independent. You should
avoid in any case a C computation that would terminate the process, such
as a call to the routine exit. To use error, you should #include the file
"R.h". The routine takes a string as its first argument, which can contain C

format items and corresponding additional (scalar) arguments to match, in
the style of utilities such as sprintf. For other versions and Fortran use, see
the Writing R Extensions manual.

Object structures in C

In addition to the macros dealing with basic vectors, Rdefines.h has macros
to GET and SET various properties, such as:

Get Set
Slot GET SLOT(x, what) SET SLOT(x, what, value)
Attribute GET ATTR(x, what) SET ATTR(x, what, value)
Length GET LENGTH(x) SET LENGTH(x, value)
Names GET NAMES(x) SET NAMES(x, value)

There are similar macros for specialized classes of objects (matrices, time-
series and factors): GET_DIM(x), etc., substituting DIM, DIMNAMES, TSP, or
LEVELS.

Each of the arguments must be type SEXP, including what for names
(which can be either a character vector of length 1 or a name, called a
“symbol” in C code for R). To be safe, always coerce the object to which the
argument refers to the correct type or class in advance.

Calling R from C

Computations in C may receive or construct an R expression that needs to
be evaluated. Optimization and related model-fitting techniques are natural
examples. The mechanism for such an evaluation is, basically, the evaluator
used in ordinary R computations, namely the eval utility, which is a C



11.4. COMPUTATIONS IN C++ 425

routine taking an expression and an evaluation context as arguments. If the
expression has to be modified or constructed in C, note that the C form for
the expression uses the original R version of a list structure, directly inspired
by Lisp. In order to construct the expression, or even to insert a reference
to an object into an existing expression, you need to know about the Lisp-
style convention for navigating such objects. The basic notion is that one
navigates a list one element at a time, accessing the first element (the head
of the list) by macro CAR and the rest of the list (the tail) by macro CDR.
For details, look in the “Calling R from C” section of the the Writing R
Extensions manual manual, and study some of the examples in the main
source code for R itself (such as do_slot and its neighbors in file attrib.c).
Clearly, this is an advanced topic.

To actually carry out the evaluation, consider the C routine R_tryEval.
Like the try() function in R, this will trap any errors in the evaluation, and
signal the calling C code, without actually interrupting your C computation.
The extra protection may be important if you need to do some cleanup
before exiting.

11.4 Computations in C++

Formally, an interface to computations in C++ is a minor extension of the
interfaces to C. However, C++ has a very different programming model, so
that more ambitious interfaces may need to use an object-based approach,
as discussed in Section 12.6, page 440.

Suppose we start with some code written in C++. To create an interface
to this code via either .C() or .Call(), we write the C interface routine as
usual, but compile it in a C++ source file (usually stored with suffix ".cpp"),
enclosing the C code in the extern "C" declaration, which tells the C++

compiler to treat subroutine names as C names (among other things). The
C++ files go into the src directory of the source package, as would ordinary
C or Fortran.

For example, suppose we have some C++ model-fitting software and want
to run it from R, through:

.Call("my fit", formula, data, start)

The corresponding code in the C++ file would be of the form:

extern "C" {

#include <R.h>
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#include <Rinternals.h>

SEXP my fit(
SEXP formula,
SEXP data,
SEXP start) {

......

return result;
}

} // end extern "C"

Aside from using the C++ compiler, the procedure is essentially identical to
that for ordinary C interfaces.

More interesting questions arise when we consider what the interface
computation does. Since C++ was used to implement the code, it’s likely
that the programming model of that language was considered appropriate for
the computation. For example, in the context of model fitting, C++ would
be particularly suited to an iterative process of refining a model. One would
create an object from the appropriate C++ class, and then invoke a variety of
methods to advance the model estimate, as well as other methods that might
plot, summarize, or produce other derived results from the model object. In
the terminology of Chapter 12, these are object-based computations and
assume a reference to the object.

As we will discuss in Chapter 12, interfacing to such software presents
a choice between a functional interface, as we have discussed so far, and an
interface that treats the foreign object directly, usually via a proxy in R for
the C++ object (in this case). Both approaches have advantages, but as the
computations become larger and more seriously iterative the object view
becomes more appealing.

For a detailed example of interfacing to C++, see Section 12.6, page 440,
using Greg Ridgeway’s gbm package for generalized boosting models.

11.5 Loading and Registering Compiled Routines

When compiled code in C or the other related languages is to be used in a
package, it must be dynamically loaded into the R program at the time the
package is loaded or attached. In the case of a package with a NAMESPACE

(the recommended choice), the directive to dynamically load one or more
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shared libraries is added to the NAMESPACE file. For package SoDA:

useDynLib(SoDA)

This loads the file, for example "Soda.so", compiled from the package’s
own "src" directory. You can also load other library files by supplying
the name of the file as the argument to other "useDynLib" directives. If the
package has no NAMESPACE, shared libraries are loaded by calling the function
library.dynam(); in this example,

library.dynam("SoDA")

Either way the library file’s suffix (".so") is left off, for portability.
The package mechanism also allows and encourages packages to regis-

ter entry points in C and Fortran that will be called from R. Registration,
which is in addition to loading the shared library that contains the compiled
routines, stores information about entry points to be called via the various
interfaces. There are several reasons why you should do so, including some-
what increased efficiency, but the most compelling is to get at least some
protection against errors in the call from R. It’s an advantage to have an
interface to compiled code but there is no doubt that the interface is error
prone. Worse yet, errors in passing arguments to C can easily cause ad-
dressing errors in the R evaluator that will terminate your session, losing all
previously computed results.

The registration mechanism can catch some of these errors; for example,
you can register the number of arguments to the subroutine, allowing the
evaluator to catch calls with the wrong number of arguments. For the .C()

interface, you can supply the intended types of the arguments, as is done in
the example below for the routine R_digest_C.

Registration of routines currently itself requires writing some raw C code.
For current details see the Writing R Extensions manual under “Registering
native routines” in the concept index. The requirements are quite picky
and known to give serious problems if not strictly followed. However, once
it works, you have substantially increased the trustworthy nature of your
interface to C and Fortran.

The following code implements the initialization file for package SoDA,
including registration for the three example routines discussed in this chap-
ter:

#include <R.h>
#include <Rinternals.h>
#include <R ext/Rdynload.h>
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void F77 SUB(geodistv)();
void R digest C(char **, int *, int *, char **);
SEXP R digest(SEXP, SEXP, SEXP);

static R FortranMethodDef FortEntries[] = {
{"geodistv", (DL FUNC) &F77 SUB(geodistv), 6},
{NULL, NULL, 0}

};

static R NativePrimitiveArgType
digest type[4] = {STRSXP, INTSXP, INTSXP, STRSXP};

static R CMethodDef cEntries[] = {
{"R digest C", (DL FUNC) &R digest C, 4, digest type},
{NULL, NULL, 0, NULL}

};

static R CallMethodDef callEntries[] = {
{"R digest", (DL FUNC) &R digest, 3},
{NULL, NULL, 0}

};

void
R init SoDA(DllInfo *info)
{

/* Register routines, allocate resources. */
R registerRoutines(info, cEntries /* Centries*/,

callEntries /*CallEntries*/,
FortEntries, NULL /*ExternEntries*/);

}

void
R unload SoDA(DllInfo *info)
{

/* Release resources. */
}



Chapter 12

Interfaces II: Between R
and Other Systems

This chapter discusses general inter-system interfaces between
computations in R and those done in other languages and sys-
tems. “Other” generally has two senses here: The implementa-
tion usually involves communicating with another application;
and more fundamentally, the computational model for the other
system may be different from that in R.

The chapter discusses several approaches, the best choice de-
pending on the other system and on the nature of the particular
task: file or text-based (Section 12.2, page 432), functional (12.3,
433), or object-based (12.4, 435). Moving down the list generally
provides greater flexibility and efficiency, paid for by more effort
in installing the interface and programming the application. The
programming model of some systems needs to be considered ex-
plicitly, as with OOP systems (Section 12.5, page 437), and C++

in particular (12.6, 440), and with database or spreadsheet sys-
tems (12.7, 446).

With our emphasis on programming with R, most of the examples
invoke computations in another system from R, but a number of
the packages implementing the interface support communication
to R as well. In addition, some applications benefit from inter-
faces that avoid R altogether (Section 12.8, page 450).

429
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12.1 Choosing an Interface

Chapter 11 discussed computations in R that called routines written in C or
related languages. These routines could be called directly in the R session,
so long as the routine was loaded with a package or from a library, thanks
to the fact that R itself is implemented in C.

Once we think of software in other languages and systems, the picture
changes. Now we are communicating in a more equal sense: The other
system will typically have its own ideas of how programming is expressed
(its “programming model”) and quite likely its own ideas of objects and
data. We have a number of choices to make in communicating between the
systems.

Many such systems are of potential value for data analysis. Interfaces to
some important systems are summarized in Table 12.1. Unless noted, the

System Applications Package Source
Perl Text, WWW, coding,

interfaces, . . .
RSPerl omegahat

Python (similar to Perl) RSPython omegahat

rpy (to R) Sourceforge

Java User interfaces, events,
graphics, . . .

rJava (from R) CRAN

JRI (to R) RForge

RSJava omegahat

C++ Algorithms, processes .C(), .Call() (built in)
Oracle, Relational databases ROracle CRAN
MySQL, . . . RmySQL CRAN
Tcl/Tk User interface tcltk (built in)

Table 12.1: Some inter-system interfaces. (Web pages for the sources:
cran.r-project.org, omegahat.org, sourceforge.net, rforge.net)

interfaces provide for communication both from R and to R. Communication
from R generally means that the user calls an R function that then invokes
the other system as an application, communicates with a running evaluator
for that system, or invokes some built-in or compiled code. Communication
in the other direction usually involves embedding or dynamically linking R

to a process or application running the other system. Installing an interface
in this form does require some extra steps beyond a minimal installation of
R, so that the embedding or linking of the R software is possible. Interfaces
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that are built-in run as code in the R process itself; for these interfaces, com-
munication to R is usually through the mechanisms for evaluating function
calls in R from C.

This chapter concentrates on obtaining computations in R from other
systems, given our focus on building software for data analysis, and on
programming with R.

Forms of interface

There are many variations in how the computations are done and commu-
nicated. We can usefully group these into three types.

1. Text based : In this form, text is communicated including a command
that the other system executes. Text output from the command is
communicated back. In effect, this is the model provided by the func-
tion system() in R, also sometimes referred to as the “Unix pipe” model
for computation.

2. Function based : One or more functions in R communicate requests to
the other system and return a resulting value. Usually, the arguments
to the R functions identify a function or something similar in the other
system and then provide arguments to that function. The interface
functions to C, such as .C(), are the paradigm for this approach.

3. Object based : At least some of the computations may create and refer
to objects in the other system. In particular, there may be what we
call proxy objects in R that stand for objects in the other system.

The three models for communication are listed in order of increasing gen-
erality, in terms of what can be done, and also of an increasing level of
organization required. Setup requirements also tend to increase as we go
down the list, although these also depend on which system is involved.

Text- or file-based interfaces can often avoid installing an explicit in-
terface package, in two ways. If it’s sufficient to occasionally export data
from one system and import it into the other, one can use the techniques
of Section 8.2, page 294, on importing text or those of Section 6.5, page
173, on exporting and importing in spreadsheets and database systems. If
the other system can be invoked as a “shell” command, one can use the
system() function as described in section 12.2. Otherwise, and generally
for both function-based and object-based interfaces, there must be an inter-
system interface package, such as those in Table 12.1. The interface package
needs to be installed on your computer, if it isn’t already. Installation may
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not be quite as simple as with other packages, since both R and the other
system must be available in a compatible form. If you encounter problems,
check the hints and instructions on the package’s Web site and also search
for relevant discussions on the R mailing lists. Unfortunately, there are no
definitive techniques for all situations.

The distinctions among the levels are not rigid; each level is capable of
implementing the next level down, at least partially. We could also have
added a fourth level, Component based. In this model, the interfaces are
made up of components that advertise services or methods. Interfaces of
this form have much promise for future work, but at the time of writing the
activity is either restricted to the Windows operating system (DCOM) or to
specialized communication systems that are not much used with statistical
computing.

12.2 Text- and File-Based Interfaces

Interfaces can be established from R to any system that can be invoked
as a shell-style command. The function system() is the general tool to
invoke a command. How well an interface of this form works in practice,
however, depends on the other system and somewhat on the platform. Shell
commands are at the heart of the UNIX operating system’s programming
model, and are fully compatible with Linux or Mac OS X; on Windows some
extra software may need to intervene to provide UNIX-style commands, but
the system() function itself has been designed to be platform-independent.
The function provides for specifying standard input as a character vector in
R, or any class of objects that can be interpreted as a character vector. The
catch, particularly on Windows, is that the commands invoked via system()

must be available. If you plan to do any significant programming with
non-R software on Windows, see the Appendix on the Windows toolset in the
Installing and Administering R manual at the R Web site.

Interfaces to scripting languages such as Perl or Python often fit easily into
a command-style interface. In Section 8.5, page 310, a simple Perl program
was shown that removed HTML tags. In the form shown, the program used
the UNIX style of reading data from its input and writing to its output,
which fits naturally with the system() function, using its input= argument
to specify the standard input.

A command-style interface for Perl and similar languages must start the
interpreter for the language each time and open files or other connections for
input and output. If the application involves many evaluations of small text



12.3. FUNCTIONAL INTERFACES 433

processing jobs, a more efficient mechanism is to start the interpreter and
give it successive tasks directly—the approach of the functional interface. A
functional interface may be more natural as well, if there are several related
tasks to be requested, since those may naturally map into corresponding
functions or methods in the other system.

The balance shifts in favor of text-based interfaces when the text comes
from an external source and is either extensive or structured in a non-trivial
way by another language. Both conditions often apply. If the text arises
as a document or data stream in some markup or display language (XML

or HTML, for example), extracting the relevant text for R may need some
flexible programming in Perl.

12.3 Functional Interfaces

Functional interfaces, such as .Perl() in the RSPerl package, allow the R

programmer to execute a function or similar programming construction in
another system, and retrieve the result in R. At a basic level, the arguments
and result may be treated as R objects, provided there are unambiguous
analogs in the two systems. This level is functional, in the sense we use
the term frequently in the book: the effect of the computation can be en-
tirely described functionally, in terms of the arguments and value with no
discussion of side effects.

In a simple functional interface, all arguments will be converted to the
foreign system and all results converted back. This is the model for the
.C() interface to C. If we examine the way that interface works a little more
closely, it will illustrate the essential points to understand in other interfaces
with a similar model.

Each of the arguments to be passed through .C() is required to be an
array of one of the basic vector datatypes (those listed in Table 11.1 on page
415). Furthermore, all results are returned by the C routine by modifying the
contents of these arrays. So only a very special set of routines will qualify.
The strategy may not be perfect, but it is one approach to managing the
different programming models of C and R.

Interfaces to other systems will also impose some restrictions in order
to make a simple functional interface possible. For a particular interface,
see what the documentation says about converting arguments and results.
Some experimentation may be needed, and perhaps some extra techniques
to convert objects you need to work with. For example, tables of objects
indexed by strings are important in many systems (hashes in Perl and dic-
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tionaries in Python, for example). If you are supplying such data as an
argument or getting it back as the value of a call, you need to know whether
there is an automatic conversion and, if so, what the corresponding object
in R will be. If there are no practical conversions for objects appearing as
arguments or as the value returned, then you may need to use the notion
of proxy objects in the other system as discussed in the next section. Even
if a conversion is possible, there may be computational advantages to the
object-based approach.

For a specific example of a functional interface, consider .Perl(). This
function in package RSPerl constructs and evaluates a call to a Perl function.
For a simple functional interface to work in this case, it’s important to
understand how arguments are passed to a function in Perl. Basically, the
argument list is a single array of scalars, either basic types such as numbers
or strings, or else references to other Perl objects. The .Perl() interface
applies some heuristics to interpret arbitrary R objects, but these inevitably
are imperfect; for trustworthy software, don’t rely on them. Supply the
argument as a list, each element of which is a single basic value or a reference
to a proxy object, and ensure that each value has been coerced in R to a
type that corresponds to what the Perl function expects as that element of
the argument array.

Consider the Perl function &quotewords in the Text::ParseWords module.
Given an array of strings representing lines of text, it returns the separate
words in all the text, based on specified delimiters and taking account of
quotes to group words together. This function appears to take three argu-
ments, with Perl types as follows:

&quotewords($delim, $keep, @lines);

where $delim is a string with the delimiter as a regular expression, $keep is
a flag saying whether to keep quotes, and @lines is an array of the text to
process. Watch out, however: The third argument is an array, and not a
reference to an array, and Perl flattens all the arrays in argument lists. So if
the third argument is a vector of n strings, Perl in effect expects n+2 scalar
values as arguments. Don’t give .Perl() three arguments, the third being a
character vector of arbitrary length; that might generate an array reference.
Instead, we need to pass a list with n + 2 “scalar” elements, as is done by
the simple interface function in R:

quotewords <- function(x, delim = "\\s+") {
.PerlPackage("Text::ParseWords")
.Perl("quotewords", .args = c(list(delim, 1), x))

}
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The .args argument to .Perl() is interpreted as a list, each element of which
will be one element in the argument to the Perl function. The call to c()

concatenates a list of 2 elements with the character vector, which has the
desired effect of converting the latter to a list of length-1 vectors.

12.4 Object-Based Interfaces

Objects are certainly involved in the functional interface described above,
but there is no need for the user to consider objects in the other system
that are not convertible to local classes of data. In the interface defined
for C by .C(), there is no attempt to consider C types that have no analog
as R objects. The interface to Perl provided by .Perl() is more general, in
that objects can be returned that do not correspond to R objects and Perl

functions can expect such objects or references to them as arguments.
The ability to refer in R to an object in another system, even when it

does not correspond exactly to any R object, opens up many valuable tech-
niques; after all, it’s often precisely the ability to do computations outside
the current system’s tools that makes an inter-system interface valuable. We
call the R reference a proxy object, standing in for an object reference in the
other system. And the proxy object is indeed a reference; that is, it refers
to some object in the other system that can be modified, in most cases, and
such that the reference will then be to the modified object. In contrast, the
functional model applying to most R computations deals with objects, not
references, so that modifications are local to the function involved.

The form of the proxy object reference—how its contents are extracted
or modified—depends on the other system. Section 12.6, page 440, discusses
proxy objects for “object-oriented” systems and Section 12.7, page 446, for
relational database management systems, two important special cases. In
the rest of this section, we will look at object references for Perl, which is a
simpler case in some respects and so can usefully introduce general points
that will apply to the other systems as well.

The most basic issue with proxy objects is to arrange for them to be
created and to persist for as long as they are needed. (And then, in some
cases, to arrange that they will not persist after they are needed.) When
you are computing in R, such questions don’t usually require your attention
in any detail. If you need some object, you assign it a name in the current
context, inside a function that you are writing or interactively at the top
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level. Assignments inside a function persist until the call to that function
returns, then R will clean up at some point without your intervention.

Proxy object references, in contrast, are generated first in the interface.
An object will be created in the other system and a reference to that object
will be passed back as the proxy in R. Something will likely have happened
in the other system so that the reference persists there, otherwise your proxy
object would not be of much use. Then what? On the R side, you would
assign the proxy like any object. However, can you count on the foreign
object it refers to persisting and disappearing along with the proxy? In
computing terminology, what is the scope of the object referred to? Many of
the inter-system interface packages will maintain a table of such references
(RSPerl and rJava, for example). In addition, packages may to varying
degrees arrange to delete the referenced object and/or to modify the proxy
when the reference is no longer valid. The RSPerl package arranges to zero-
out a reference when the proxy object is saved, so that using the reference in
a new session will just warn you about a zero reference, rather than giving
an addressing error because the pointer referred to the old process.

In general, you should read the documentation for the particular inter-
face package carefully and/or do some experiments to see when objects in
the foreign system are saved and whether the user is expected to explicitly
delete them. Fortunately, the really serious danger is that the object will be
prematurely deleted, and this is less likely. Most interfaces use a mechanism
such as a hash table or global environment to assign the object when passing
back a reference. The reference should then persist through the life of the
current session. Users of the interface may need to arrange for explicitly
deleting objects no longer needed. The issue here is one of wasting memory,
potentially serious for efficiency but at least not likely to destroy valuable
information.

As an example, let’s write an interface to some Perl routines for text
data.

Example: Perlfunctions for counting chunks of text

In Section 8.5, page 316, we showed two Perl functions that took a reference
to a Perl hash object and an array of strings. The hash contains counts of
strings. The functions either added or subtracted to the appropriate count
for each of the new strings. The intent is to maintain counts of patterns in
text.

R functions chunksAdd() and chunksDrop() in package SoDA are interfaces
to the Perl functions. A slightly simplified version of chunksAdd() is:
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chunksAdd <- function(
table = .PerlExpr("\\%{0};", .convert = FALSE),
data = character(),
convert = length(data) == 0) {
if(!is(table, "PerlHashReference"))

stop(
"Argument table must be reference to a Perl hash object;",
" got an object of class ", class(table))

args <- c(list(table), as.list(as.character(data)))
.Perl("chunks add", .args = args, convert = convert)

}

The function takes three arguments: table is the proxy for the hash; data
is the new data; convert is a flag saying whether to return the reference or
convert the hash (which RSPerl does by making a named vector of, in this
case, the numeric counts). If table is omitted the function initializes it to
an empty hash. Omitting the data argument, on the other hand, is the easy
way to get the converted counts back, without modifying the hash—that’s
why the default for convert is TRUE when no data is being added.

The function assembles the proxy reference and the new data as a list,
which when transmitted to Perl will give the suitable argument array for
routine chunks add. Initialization (of the table) and most error checking
are done in R. That reflects our general preference for programming with
R, including its facilities for interactive debugging. The Perl code can do
error checking as well, and does, validating the individual data items. But
as a general rule, giving the other system as clean and well-checked a set of
arguments as possible is likely to save you time learning about debugging
other systems.

See the code in package SoDA for more details.

12.5 Interfaces to OOP Languages

Throughout this book, the term “object-oriented programming” and its
acronym OOP are reserved for the languages or systems with a program-
ming model having the following features.

1. Objects are generated from class definitions. The data content of the
objects is usually defined in terms of named slots which have a specified
class or type. The terms property or attribute may be used instead of
slot depending on the system.
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2. Programming with these objects is exclusively, or at least largely, done
by invoking methods on the objects.

3. The definitions of the methods come from the definition of the object’s
class, directly or through inheritance.

4. Although it’s not a requirement, nearly all OOP objects are passed by
reference, so that methods can alter the object.

The OOP programming model differs from the S language in all but the first
point, even though S and some other functional languages support classes
and methods. Method definitions in an OOP system are local to the class;
there is no requirement that the same name for a method means the same
thing for an unrelated class. In contrast, method definitions in R do not
reside in a class definition; conceptually, they are associated with the generic
function. Class definitions enter in determining method selection, directly
or through inheritance. Programmers used to the OOP model are sometimes
frustrated or confused that their programming does not transfer to R directly,
but it cannot. The functional use of methods is more complicated but also
more attuned to having meaningful functions, and can’t be reduced to the
OOP version.

Languages such as Java use the OOP model as essentially their only pro-
gramming style. Other languages such as Perl, Python and C++ have added
OOP programming to a functional or procedural language. Interfaces from
R to these languages open up many new computations.

Method invocation usually has a different appearance from a function
call, emphasizing that the method definition comes from the class defini-
tion. Usually, the expression for the object comes first, then some operator
symbol, then the name of the method followed by a parenthesized list of
additional arguments. The dot, ".", is a common choice for the opera-
tor symbol, used by Java and Python, among others. In these languages, a
method named print defined for an object x might be called in the form:

x.print()

C++ and Perl (version 5) use the operator "->" instead of "." (but the
proposed Perl6 uses ".").

Invoking methods in the OOP system

Interfaces from R to systems that support the OOP programming model must
provide a mechanism to invoke methods. The requirements vary from one
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system to another but are basically that one starts with a proxy reference in
R to an object in the other system, along with the name of the method, and
any additional arguments the method requires. For systems supporting both
functions and OOP methods, some indication may be needed as to which is
wanted. It is quite feasible to mimic the syntax of method invocation in R,
but as this book is written most interfaces don’t do so, but instead use their
functional interface.

For example, in the rJava interface package, the function .jcall() in-
vokes Java methods. The equivalent to the example above would be:

.jcall(x, method = "print")

Similarly, in the RSPerl package, the function .Perl() handles methods if
given a proxy object via the ref= argument:

.Perl("print", ref = x)

In either case, the interface code will arrange to dispatch the appropriate
method in the OOP system applied to the OOP object for which x is the
proxy.

Finding the “appropriate” method is the job of the foreign system. In
some systems (Java, for example) there will be metadata which determines
the method corresponding to the method name and the class of the object.
In other systems (current Perl, for example) an interpreter for the language
will evaluate the equivalent method invocation. In any case, the R software
does not select the method, as it would for an R generic function.

Constructors and class methods

The notation for invoking a method in an OOP language suggests that the
method belongs to the object. In fact, nearly all OOP systems associate the
methods with the class of the object, not with the instance (the individual
object itself). Method dispatch uses the known class of x to select a method
with a given name; the selection will be identical for all objects with the same
class. The object for which the method is invoked plays two roles: it defines
the method, but only through its class; and it is passed as an argument to
that method. (For example, the discussion of “method invocation” in the
Programming Perl book [25] describes the mechanism.)

If programming is only by invoking methods on objects, how are new
objects from a class generated in the first place? Methods whose purpose is
to generate new objects are usually called constructors in OOP languages.
Some languages have a separate syntax for constructors (Java, for example),
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but a more revealing version has constructors invoked as a method, but on
the class itself, with no instance involved. Such methods are called class
methods to emphasize that they are invoked by providing the name of the
class in place of an object. So if Chunks is a class in Perl and new() is a class
method that generates a new object from the class, that method is invoked
on the class name, whereas an ordinary method, say add() is invoked on an
object from the class (to be precise, in Perl, a reference to such an object).
The following piece of Perl code creates an object and invokes one of its
methods.

my $counter = Chunks->new();
$counter->add(data);

The class method is invoked on the literal "Chunks" whereas the instance
method is invoked on the variable "$counter". Class methods in Java are
distinguished in a similar way, but by the use of declarations rather than
through syntax. Constructors are the obvious example of a class method,
and no ordinary class can get along without them. Other class methods can
exist in most systems as well, and would be invoked in a similar way.

Functional interfaces from R, such as .jcall() or .Perl(), will expect
a class method if the argument referring to an object is a character string
(the name of a class), rather than a proxy object. Constructors are often
supplied as a special case, with their own interface function (.jnew() and
.PerlNew(), for example).

12.6 Interfaces to C++

The C++ language started as a preprocessor to C, and is still compiled into
object code compatible with C. The close relation between the languages
and the fact that R is itself based on an implementation in C simplify some
aspects of interfacing to C++. Instead of calling a general interpreter for
the other system or communicating with another process, the computations
will use one of the C interface functions, .C() or .Call(). The interface
code in C++ can be included in the standard src directory where C code
would be kept, but in a file with a suffix such as "cpp" that identifies it
as C++. We began the discussion of interfacing to C++, therefore, in the
previous chapter, in Section 11.4, page 425. We continue it here because the
computational model for C++ is similar to other OOP languages and because
some extra steps are needed to write the interfacing C code.

As shown in section 11.4, the usual approach is to write some special code
in your package that contains one C-callable routine for each computation
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needed from C++. The mechanism is simple: Write the new C code in a
C++ source file and enclose the definitions of the C routines in a declaration
that says the external names should be interpreted as C, not C++:

extern "C" {

}

While using this mechanism, there is a range of possible strategies as to how
much of the C++ structure to make available to the R user, from “None” to
a mirror image of the C++ methods, and corresponding questions about the
R objects that should be returned to the user.

As an example, and to make the general approach clearer, let’s look at
the CRAN package gbm written by Greg Ridgeway. This package provides
an interface to some C++ code, mostly by Jerome Friedman, for “gradi-
ent boosting”, a technique for fitting statistical models. For the statistical
techniques, see Chapter 10 of Elements of Statistical Learning [15] and the
overview documentation for the gbm package. All we need to keep in mind
is that the techniques iteratively refine a statistical model using the gen-
eral structure we’ve discussed in Section 6.9, page 218, including a formula
and optionally an associated data frame. The user can fit a model with an
expression of the form

gbm1 <- gbm(formula, data, ...)

The formula and data arguments are similar to linear regression models
and the like; in addition, there are a number of arguments special to the
boosting techniques. After fitting, the user has access to plotting and other
general summaries, as well as specialized performance analysis for boosting.
The function gbm.more() continues the iterative fitting of an existing model.
The gbm package is valuable as a bridge between the specialized computations
of the C++ software and the familiar ideas provided in R for dealing with
statistical models.

Functions gbm() and gbm.more() both call a C routine that creates and
manipulates a CGBM object from a C++ class, CGBM, representing the models.
C++ methods exist to construct and initialize the objects, to iterate fitting
and to provide utilities such as prediction. The interface to the C++ com-
putations in the R function gbm.fit() uses the .Call() interface to call the
C subroutine gbm:

gbm.obj <- .Call("gbm",
Y = as.double(y),
# ... and many more arguments ...

PACKAGE = "gbm")
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Here is a sketch of some important steps in the C routine gbm. Arguments,
allocation of R objects and error checking have all been omitted, but what’s
left gives an idea of the essential steps, and helps illustrate alternative strate-
gies.

extern "C" {

SEXP gbm (
// The corresponding arguments

) {
CGBM *pGBM,

// initialize R’s random number generator
GetRNGstate();

// initialize some things
gbm setup( .... );

pGBM = new CGBM();
pGBM->Initialize( .... );
pGBM->iterate( .... );
gbm transfer to R( .... );

// dump random number generator seed
PutRNGstate();

delete pGBM;
return rAns;

}

} // end extern "C"

The call to GetRNGState is a core R routine that initializes the random num-
ber generator in C to its current state (see Section 6.10, page 234); the
gbm setup call does other initialization. As with any estimation procedure
using simulated random values, some extra steps would be needed to make
the results reproducible; see Section 6.10, page 229.

The next lines of C++ code create and work with the object represent-
ing the model: the new expression creates the object, and the methods
Initialize() and Iterate() do what their names imply. As usual in OOP

computations, the object referred to by pGBM is modified to reflect the it-
erative fitting that has been applied. The routine gbm transfer to R copies
information from that C++ object into various components of the R ver-
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sion of the model. The C++ directive delete removes the object now that
information has been copied.

One point to note is that the single C routine gbm takes the key C++

object, pGBM, through its entire lifetime: initializing, iterating, extracting
information to return to R, and finally deleting it. The R object representing
the model does not contain any proxy to a C++ object.

Hiding the C++ structure from the user has the effect, in this package,
of emphasizing the similarity to other software for models in R. Users new
to the package will find much of the functionality familiar, with no need to
adjust to a different programming model. Their ability to explore data with
these techniques will be enhanced, and that is indeed the Mission.

For applications in which the user needs to control computations at the
level of individual C++ methods, a different organization is needed.

C++ objects in R

Once we decide not to insulate R users from the C++ objects and methods,
we need a way to represent such objects. The C++ object is handled by a
pointer (a reference, to sound more elegant), which will not be manipulated
at all in R. In the example sketched above, pGBM was a pointer to an object
of C++ class CGBM. To handle such objects in R, data of the "externalptr"

type is the natural choice. Objects of this basic type have a single pointer
as their value, only set and used in C. A value is inserted in such an object
by C code and left untouched in R functions. To create explicit access to the
objects and methods requires only two basic programming techniques.

• An initializing routine returns the pointer to the object, in the value
field of an "externalptr" object;

• To each C++ method to be called from R there corresponds a C-callable
routine of a known name, designed to be invoked via a .Call() inter-
face and taking as its arguments the "externalptr" object plus what-
ever other arguments the method requires.

There are other ways to do it, but these choices are simple and natural.
The R package will usually have one function for each of the routines

implied by these steps, each function using the .Call() interface to call
the corresponding routine. A minimal rearrangement of the gbm example
above to expose the C++ structure in R would have four new routines, each
wrapping a corresponding C++ method:
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1. gbm new, a constructor to create and initialize an object of the C++

"CGBM" class;

2. gbm iterate, a routine to invoke the Iterate method on the object;

3. gbm results, a routine to return in R form the information in the cur-
rent object;

4. gbm delete, a destructor to delete the object.

The invocation of methods in the gbm routine is now broken up into separate
user-callable pieces. Each of the four routines has its value and all arguments
declared as pointers to R objects, conforming to the requirements for any C

software to be called from the .Call() interface (see Section 11.3, page 422,
for an example).

extern "C" {

SEXP gbm new ( SEXP ext, ....
) {
GetRNGstate();

// initialize some things
gbm setup( .... );

CGBM *pGBM = new CGBM();
pGBM->Initialize( .... );

R SetExternalPtrAddr(ext, (void *)pGBM);
return ext;

}

SEXP gbm iterate ( SEXP ext)
{

CGBM *pGBM = (CGBM *) R ExternalPtrAddr(ext);
pGBM->iterate( .... );
return ext;

}

SEXP gbm results(SEXP ext)
{

CGBM *pGBM = (CGBM *) R ExternalPtrAddr(ext);
gbm transfer to R( .... );

// construct list as in routine gbm
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return(rAns);
}

SEXP gbm delete(SEXP ext)
{

CGBM *pGBM = (CGBM *) R ExternalPtrAddr(ext);
delete pGBM;
return ext;

}

} // end extern "C"

Each of the four C routines takes as an argument a pointer to an R object of
class "externalptr" and returns the same object. The constructor, gbm new

fills in the pointer value with the newly allocated and initialized object; all
the other routines extract the corresponding pointer and operate on the C++

object. (The two routines R ExternalPtrAddr and R SetExternalPtrAddr are
R utilities that extract and set the pointer contained in an "externalptr"

object.) Everything else in the example, including the code we haven’t
shown in this sketch, essentially rearranges the same computations done
before, but now the programming model is that computations in R will
control the sequence of creating, iterating, extracting and deleting.

The R software to complete the interface can be as simple as one function
for each C routine, doing little more than using .Call() for the correspond-
ing routine. If there are additional arguments to the C++ method, however,
these need to be coerced to the correct datatype, either in the R function
(usually the best place) or in the C routine. The construction and initializa-
tion of the CGBM object, for example, takes a number of inputs that would be
arguments to gbm new and to the corresponding R function. Here’s a sketch
of a fairly minimal version.

gbmNew <- function( x, y,
.... (Many more arguments) ) {
.Call("gbm new",

new("externalptr"),
as.double(x), as.double(y),
.... )

}

The arguments all need to be carefully coerced to a specific basic datatype
since the C routine gbm_new just passes the arguments on without checking
them. The first argument is the "externalptr" object into which the C++
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pointer will be inserted, and the object then returned, to be supplied in
future calls to the other routines in the interface to the C++ class.

We now have a working interface to the C++ software, but usually one
more layer is desirable: an R class for the objects. C++ proxy objects don’t go
through a single interface function, in contrast to the case for Java or other
external systems; because the interface can use the standard C interface
functions, no metadata is provided automatically to identify the C++ class
corresponding to the object. The responsibility falls to the programmer,
and for many reasons the extra effort is worth taking. In this example, a
class corresponding to the C++ class would have a slot for the "externalptr"

proxy, plus whatever additional slots are needed to complete the definition
of the model (including states for the random number generator, in order to
make the computations reproducible, as discussed in Section 6.10, page 229).
Note that "externalptr" objects do not follow the standard R model to be
duplicated when needed, so that the new class can not extend "externalptr".

For extensive C++ software it would be better to create the mappings to
C and to R automatically. Why take a chance on human error in reading the
C++ definitions? As this book is written, we aren’t quite able to hand over
the job, but some promising work has been done, based on data available
from the gcc compiler; see, for example, the RGCCTranslationUnit package
by Duncan Temple Lang at the omegahat Web site. Check out the current
status if such automation would be helpful in your application.

12.7 Interfaces to Relational Database Systems
and to Spreadsheets

Database and spreadsheet programs share typical roles and data models in
their relation to data analysis, even though they differ from each other in
form. The typical role is as a data repository: These are the systems where
the data often resides, where the underlying process keeps information. We
need to interface to these repositories to have direct access to the data.

The data model suitable for both kinds of programs is the general data
frame model discussed many times in the book; that is, the notion of some
defined observable variables, for each of which values will be recorded for
a range of observations. Spreadsheets and relational databases essentially
visualize data frames as tables, with columns for variables and rows for
observations (not that either the creators or the users of these systems would
necessarily think of their data in terms of variables and observations). It’s
natural then that interfaces to these systems should relate tables to data
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frames, both in the general sense of this book and in the narrower sense of
the "data.frame" class of objects.

The simplest interface from database and spreadsheet programs to R is
to create files from the other system that can be read as data frames in
R, in other words a text-based interface. There are a number of possible
file formats, but the most widely available and convenient to use are the
comma-separated-values files and the tab-delimited files. These are both
standard file formats, which can be read into and exported from nearly any
spreadsheet program and many database systems. Section 6.5, page 169,
showed how to read such files into R, how to import and export the files in
spreadsheet programs (page 173), and how to create tables from database
systems (page 178).

For spreadsheet programs, this form of interface is the way to start, so
long as a text-based interface is suitable for your application (mainly, that
you can live with getting a copy of the non-R data and that rapid, dynamic
change in the data is unlikely). Follow the discussion in Chapter 6. For
database programs, such files may still be a reasonable option. Importing
data from a ".csv" file is usually straightforward, but exporting a table to
one may not be as simple, depending on the particular program. If your
database setup does support easy export, you can follow the same route.
(For example, MySQL supports ".csv" files as one of its engines; if that option
is suitable to your application, it could provide an excellent interface.)

For spreadsheet programs, and in particular for Excel, some more special-
ized options may be available. On the Windows platform, the R-DCOM interface
provides a very flexible and potentially very sophisticated communication
mechanism based on the notion of components and services. On a non-
Windows platform, the practical interface is to use the data export/import
features in Excel.

Interfaces to database systems

For most database systems, interface packages allow flexible access with
less human intervention than required to export tables explicitly. These
interfaces support a functional or object-based view. Whole tables can be
accessed straightforwardly. Portions of tables can be accessed using the
standard query language, SQL, as supported by all major database systems.
SQL was introduced briefly in Section 6.5, page 178. If you are willing to
program in SQL, a functional interface is available for very general queries.
Access can be functional (returning the result as a data frame) or object-
based, using proxy objects as the basis for further queries or incremental
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access. An additional advantage is that the related R packages provide a
uniform programming interface from R to the major database systems.

The packages use a standardization provided by the DBI package of David
James. This package defines a uniform interface for the R programmer, via
generic functions and virtual classes. Functions in the DBI package define
access to databases, tables, SQL queries, and other computations, expressed
in an essentially identical form regardless of the actual database system.
The specific database interface package implements methods and defines
subclasses to realize the programming interface for a particular database
system. If the specific interface is “DBI-compliant”, software can be written
once and used on any of the database systems. Compliant interfaces exist
for Oracle (ROracle), MySQL (RMySQL), and SQLite (RSQLite).

The key concept is the mapping between a table in the database system
and a data frame in R. Related tables are organized into a database, as files
are organized in directories (in some database systems this is actually the
implementation). The DBI package reflects this organization, top-down from
choosing a database system, to specifying a database, to techniques that
manipulate individual tables.

The database system corresponds to a driver, created and kept through
a session. If we’re using the SQLite system:

drv <- dbDriver("SQLite")

The driver is now used to open a connection to a particular database in
this system. Depending on the system, you may need to supply user and
password information, as well as the name of the database. SQLite just needs
the name of the database:

conn <- dbConnect(drv, "myDatabase")

It’s relevant that we call these database connections; they do act much like
the R connections in Section 5.5, page 131. The difference is that data
transfer uses the facilities of the database system here rather than low-level
input and output. The units of data are tables. So, if "MarsData" has
been established as a table in "myDatabase" to hold our example of the Mars
declination data, then reading the whole table is just a call to dbReadTable():

> mars <- dbReadTable(conn, "MarsData")
> dim(mars)
[1] 923 21

Similarly, functions dbWriteTable(), dbExistsTable(), and dbRemoveTable()

perform the operations their names suggest. The concepts here are again
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closely tied to the ideas of the S language, and in particular to the basic
computations on environments as databases in Section 5.3, page 124.

Database tables may be very large, so that suitable access must be to a
selected portion of the table. Also, a database may contain related tables
and a selection may combine information from more than one of them. This
is the stuff of classical relational database computation and the SQL lan-
guage. Queries more complex than transferring whole tables will need to be
expressed in SQL, but can be transmitted via the dbSendQuery() function.
This takes as arguments a connection and a string containing the SQL query.
If myQuery is an object containing such a query, the result of the query is
obtained as:

res <- dbSendQuery(conn, myQuery)

We introduced SQL in Section 6.5, page 178, but for learning how to write
queries, I’m afraid you will have to look up some books or other references
on SQL itself. Whatever the actual query, the result is conceptually another
table-like data object made up from information in one or more tables in the
database. Query results are not data frames, however. In the terminology of
this chapter they are proxy objects, standing in for an object in the database.

The only thing you can do in general with the result is to call function
fetch() to fetch a specified number of “records” from the result. A record
is a row of the implied table and the result of the call is a data frame with
that many rows and with whatever columns were defined by the query.

The fetched results can be processed anyway you like. The paradigm is
to check for the end of data by calling dbHasCompleted(), and then to fetch
as much data as you want to handle at one time. If you wanted to just
create the entire data frame:

> out <- NULL
> while(!dbHasCompleted(res))
+ out <- rbind(out, fetch(res, n))

However, if you really wanted to do this, just call dbGetQuery() instead of
dbSendQuery(). The direct use of fetch() is usually to do some computations
that don’t require the entire data frame.

The concepts and terminology derive from the old days when records
really were records, perhaps on a magnetic tape. As a consequence, bare
SQL in this form does not support general manipulations of results, although
database systems often do support various extensions. The simple version is
adequate for many applications, and does scale well to very large datasets.
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Once you have mastered enough SQL for your applications, the DBI-based
interface should be straightforward to use.

As with regular connections, but sometimes even more, it may be es-
sential to close down your connection to the database when computation is
finished:

> dbClearResult(res)
> dbDisconnect(conn)
> dbUnloadDriver(drv)

12.8 Interfaces without R

Other users, not just those of us doing data analysis, can benefit from inter-
system interfaces; as a result, many systems offer convenient access to other
software. Keep these in mind for applications where there is no need to
bring data into R from another system just to pass it on to a third. Using
an interface between the other two systems can simplify programming and
save computing time.

For example, many systems will have interfaces to both spreadsheet soft-
ware and relational databases, for the same reasons such interfaces are useful
in R: that’s often where data resides. This gives us some more choices when-
ever data in a database or spreadsheet is to be used eventually in some
other non-R computations: Either access the data indirectly through R or
write some code in Perl to access the data directly, in addition to the text
manipulation software.

As an example consider applying some text manipulation in Perl to data
residing in a relational database. What are some tradeoffs to guide the
choices?

• If the original data from the database is not needed in R for other
purposes, there will be some computational efficiency to direct access,
particularly if the programming style of access is made more natural
for the other system (see the example below). My usual caution about
“efficiency” applies: Does it matter in this case?

• The additional programming effort required for direct access will vary.
If R creates a data frame from the database and then presents part of
it in a different form, such as a single variable, the existing Perl code
will not likely be directly usable given Perl’s approach to a database
interface.
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The best solution in different applications can vary from ignoring R for
database access (when only the results of the Perl-processed data are needed)
to using only R for database access (when the data needed for Perl is more
naturally supplied as columns of the data frame formed in R).

To see the different styles of database access, we can compare typical use
of the DBI package in R and the DBI module in Perl. The two share a name
and a basic design: to act as an interface to relational database software,
including the SQL query language, with programming that is independent of
the specific database system. They also take a similar approach to the initial
programming required. The user establishes a connection to a particular
database. In the OOP form of Perl, one invokes the connect() method of
the module:

my $dbcon = DBI->connect(’DBI:MySQL:myData’);

As with the function dbConnect() in the DBI package, this returns a connec-
tion that can then be used for all queries on this database in this session.

The next step in both systems is to obtain a result set, the database’s
version of the result of executing a query. Using the DBI package in R, we
call dbSendQuery(). The actual SQL is essentially the same for access from
Perl, but the standard approach includes an intermediate step to prepare the
query. The prepared but unexecuted query is returned as an object.

my $query = $dbcon->prepare($someQueryString);

Preparing is essentially compiling the SQL query; one can leave parameters
(typically to be filled in by names) unspecified. The execute() method of
the query then creates the result set; if there are parameters in the prepared
query, these are supplied as arguments to execute(), as in:

$query->execute($thisName);

We are now at the same state that the interface from R would be after evalu-
ating a call to dbSendQuery(), with two minor differences. The standard DBI

interface in R does not include preparing queries, although specific database
interface packages may do so; also, the Perl execution of the query does not
return a result set as an object, but instead modifies the $query object to
be ready for fetching data.

In both interfaces, the actual data transfer takes place by fetching rows
from the result set. As usual, the Perl method is oriented to iteration: The
method fetchrow array() always fetches a single row, which is returned as a
Perl array. The elements of the array are the (scalar) values for each variable
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in the result set, for the next available row. The R function fetch() fetches
an arbitrary number of rows, as a data frame.

It’s the one-row-at-a-time nature of the Perl fetch that suggests organiz-
ing the Perl computation differently when accessing data from a database
rather than from R. In the first case, typical Perl style would do all the im-
mediately relevant computations on all the variables, incrementally one row
at a time, rather than collecting one or more variables as separate arrays.
The second approach is feasible, but then it may be simpler just to collect
the data in R.



Chapter 13

How R Works

This chapter takes a modest look under the hood at the R en-
gine, that is, the program that runs R. As with an automobile,
you can use R without worrying very much about how it works.
But computing with data is more complicated than driving a
car (fortunately for highway safety), and at some point you may
need to make some basic choices between different approaches
to your computation. Understanding something about what ac-
tually happens will often show that some approaches suit the
system better than others.

The essential part of the R program is the evaluator (Section 13.2,
page 454). As throughout the book, two interacting concepts are
key, functions and objects: on the one hand, the function calls
that provide the actions, distinguished between functions writ-
ten in R (Section 13.3, page 460) and primitive functions (13.4,
463); and on the other hand, the objects, referenced through
assignment, that are the arguments and results of the actions
(Section 13.5, page 465).

Beyond the evaluator, two additional concepts are important:
the language (Section 13.6, page 468); and the management of
memory for objects (Section 13.7, page 471).

13.1 The R Program

To use R, you will start up a corresponding “program”. In the early days,
and still often in UNIX/Linux operating systems, this meant invoking an R

program from an interactive shell. The user then typed R expressions or
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“commands” to that program. More typically now, you will start up R in
a window, by clicking on the corresponding program or its icon in a tool
bar. The resulting graphical user interface (GUI) may provide a variety of
features including documentation windows or perhaps menu-driven compu-
tations. But the heart of the GUI will still likely be a window in which
you can compose expressions for R to evaluate. The process of evaluating
expressions is in turn the heart of how R works, and we will spend most of
the chapter exploring aspects of that process.

When the program is reading user-typed expressions, its outer layer is
responsible for somewhat more than just evaluating the expressions. The
traditional computing description is a “read-parse-evaluate” loop. That just
means that the program reads user input, tries to parse the corresponding
text as an expression, and then tries to evaluate that expression. This three-
step operation continues, until the R session ends, when the user decides to
quit or (rarely, one hopes) because the program is terminated.

The reading and parsing are important, but for understanding how R

works, they are only an outer layer around the object-based computations
at the heart of the system. Part of the R software consists of code to interpret
text in terms of R’s version of the S language and to generate corresponding
expressions (see Section 13.6, page 468).

The key concept is that expressions for evaluation are themselves objects;
in the traditional motto of the S language, everything is an object. Evalua-
tion consists of taking the object representing an expression and returning
the object that is the value of that expression. Once you have that concept
in mind, many useful and elegant computations become easier to imagine.
For example, computations in R can generate or modify expressions and
then ask for the evaluation of the expression objects.

As another example, a variety of tools to help study and debug programs
in R are themselves R functions that use the objects representing functions
and expressions to give users interactive views of what’s being computed—
all done within the language itself and as a result, available for further
specialization and enhancement.

13.2 The R Evaluator

The evaluation part of the R program consists of passing the object result-
ing from parsing the current expression to the R evaluator. The evaluator
is part of the internal program, but it also exists as the eval() function.
In either case the evaluator takes an object, usually from one of the classes
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that represent expressions in the language, and returns the result of evalu-
ating that object. This section outlines the properties and behavior of such
objects, in terms of the evaluator. For the story on objects in general, start
with Chapter 5.

If how R works comes down to evaluating objects, then evaluating objects
largely comes down to evaluating function calls. The reason is that nearly all
expressions look like function call objects when they come to be evaluated.
Before moving on to function calls, we need to discuss the main exceptions:
constants, names, and promises.

Constants

These are the expressions that evaluate into themselves. For the most part,
their behavior is obvious, but R has a few peculiarities that need to be noted.
Numerical and string constants occur most frequently. Neither of them is
anything special as an object, they are simply vectors that happen to have
length 1. The distinction is in the range of expressions that parse directly
into these objects.

Numerical constants are written in decimal fraction or scientific notation,
but not with a leading sign. Thus, 3.14 is a constant, but the expressions
-3.14 and +3.14 are calls to the functions `-` and `+`. Complex numbers
are also understood by the language, in the form x± yi, where x and y are
numerical constants. Technically, these are not constants, but once again
calls to the `+` or `-`; the only complex constants that can be written in
the language are of the form yi.

You rarely need to know if an expression is a constant, except when
writing your own tools to deal with language objects. To test a particular
expression, use class(quote(...)).

> class(quote(3.14))
[1] "numeric"
> class(quote(-3.14))
[1] "call"

String constants as objects are just character vectors of length 1. The
expressions recognized by the parser as strings are quoted text, enclosed by
one of the quotation characters, “"” and “´” The characters between the
enclosing quotes are interpreted according to the locale, that is, the text
encoding set for your local installation of R (see Section 8.1, page 293).
In addition, strings can contain escaped characters, using the UNIX-style
backslash escape sequences. For the grubby details, see ?Quotes.
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R has also added to the S language a third kind of quote, “`”, called the
“backtick” in R documentation. The parsed expression enclosed in backticks
is not a string but an object of class "name", and obeys the evaluation rules
for names.

> class(quote(`[`))
[1] "name"

Backticks are useful when supplying names as arguments, avoiding problems
if the object names are not syntactically legal names, as defined below.

The evaluator can encounter all sorts of other constants; by definition,
anything guaranteed to be equal to itself after evaluation is a constant. The
evaluator has an explicit list of the internal object types known to be con-
stants; when it encounters such an object it does nothing with the contents
but marks the object to prevent it being overwritten by a replacement com-
putation. (See the discussion of replacement functions on page 465.) In
typical computations, the evaluator knows what has been evaluated and
tends not to re-evaluate objects. However, any special mechanisms, such as
calling eval() directly, can indeed result in re-evaluation. For this reason,
you need to be careful if a function returns a name, function call or other
language object that you do not want evaluated. The safe approach hides
such objects in a component, slot, or element of another object.

Names

These are expressions that identify objects. They can appear literally in
input to the parser either as a syntactic name or as any string enclosed in
backticks. A syntactic name in R may contain letters, digits and the two
characters "." and " ", but must start with a letter or ".". For fans of
regular expressions, this can be translated as:

"∧[.[:alpha:]][. [:alnum:]]*$"

The character classes "[:alpha:]" and "[:alnum:]" stand for alphabetic and
alphanumeric characters, and should be used when dealing with letters in
regular expressions. See Section 8.3, page 301. The backtick quote mech-
anism allows arbitrary non-empty character strings to act as names in the
language, a useful extension since special operators (e.g., `+` or `%%`) and
replacement functions (e.g., `diag<-`) are assigned as function objects even
though the corresponding strings are not syntactically names.

Names are evaluated by looking for an object assigned with the corre-
sponding string value. The precise definition of “looking for” is a key aspect
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of how R works, and a full understanding will involve several aspects; how-
ever, the essential concept is that the evaluator looks in the environment of
the current evaluation (sometimes called either a frame or a context), first
for the objects contained in that environment itself, and then step by step
back through the enclosing environments. Inside a call to an R function
the local environment contains the arguments and any local assignments.
The enclosing environment is the environment of the function, typically the
namespace (if any) of the package containing the function or the global envi-
ronment otherwise. For more details on environments, see Section 5.3, page
119.

Some names are associated with the special object "...": The "..."

name itself is only legal in another function call, in which case it is expanded
to the list of corresponding arguments. In addition, there is a special nota-
tion allowed to refer to the first argument that matched "...", to the second,
and so on: The name ..1 refers to the first matching argument, ..2 to the
second, etc. You should probably avoid this obscure convention, which can
usually be done by writing a function with some ordinary argument names,
and calling it with "..." .

Also special are a variety of constants, which appear to be names but
which are parsed directly into the actual objects:

TRUE FALSE NA # logical constants
Inf NaN # numeric constants
NULL # NULL constant

Notice that NA is a logical constant, but NaN is a numeric constant. The
former is used to indicate missing elements in vectors of several object types,
and its "logical" type avoids accidentally promoting a vector to a numeric
type. The constant NaN is an R version of the standard representation for an
undefined numerical result (see Section 6.6, page 188).

Promises

You should never literally see these objects in R, but they play an important
role in evaluation. The semantics of the S language says that the arguments
in a function call are not evaluated until they are needed, a mechanism
known as lazy evaluation. The two main instances of “needed” are the
evaluation of arguments in a call to a primitive function and the selection
of a method in a call to a generic function. When arguments are evaluated,
they should then not be re-evaluated.

R implements the semantic requirements by assigning each formal ar-
gument name a special object of type "promise". The object includes the
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expression whose value will be computed and the value itself, once it has
been computed. The essential property is to delay computation until a re-
quest for the value is received, and then to do the computation, but only
once. The ability to work with promises directly is deliberately limited (oth-
erwise very bizarre behavior in the evaluator could result). For how promises
affect the evaluation of function calls see Section 13.3, page 462.

The mechanism of promise objects was created to implement the lazy
evaluation model of the S language, but it has been used for other purposes as
well. The "LazyLoad" directive in the "DESCRIPTION" file causes a database
of the R objects in a package to be created at INSTALL time. The actual
objects loaded when the package is attached during a session are promises
that, when evaluated, access the object from the database. The mechanism
has the combined advantages of computing the objects during installation,
not during attach, while initially loading only the small promise objects
into the session, reducing the memory requirements of large packages. The
"LazyData" directive works similarly for objects installed from the "data"

directory in the source package. Promises are loaded for the data objects
when the package is attached, again minimizing initial memory requirements
while relieving users of the need to call the data() function to get the object.

Programmers can use the promise mechanism by calling delayedAssign().
When the motivation is saving memory or computing time, the technique is
something to consider, if only rather late in the development process. For
explicitly delaying evaluation, a clearer and more trustworthy approach is to
store unevaluated expressions explicitly and then to call eval() or a similar
function for the evaluation.

Everything else

Everything else looks like a function call to the evaluator, providing a nice
uniformity for computations. The uniformity probably reflects a historical
connection of early work on R with Lisp, where syntax as well as semantics
makes expressions look uniformly like function calls. The S language uses
the more common C-style notation, but this is merely syntactic convention.
Thus assignments are calls to the corresponding function, such as `<-`:

> `<-`(xx, 1.5)
> xx
[1] 1.5
> `=`(y, 1+1)
> y
[1] 2
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Similarly, control structures such as if(....)...else.... and for(....)....

are equivalent to function calls with the relevant subexpressions as the ar-
guments:

> `if`(xx < 1, "Small", "Big")
[1] "Big"

The key concept is that, although the function-call expressions above go
through a different parsing route than would the more normal way of writing
the same computation, the evaluation stage of the read-parse-evaluate cycle
is identical.

You can use the function-call organization for tools that construct R

language objects in R itself. The objects have a class corresponding to the
specific purpose ("if", etc.), but their internal type is always "language".
For manipulation purposes you can create the object by giving quote() a
corresponding expression or by calling new() with the class string (the latter
is more convenient if you need to create objects of various language classes).

> ff <- new("if")
> class(ff)
[1] "if"
> typeof(ff)
[1] "language"

The function-call objects can be indexed like vectors, even though tech-
nically "language" is not a vector type. The first element of the object is
the function, which can either be a function object or, much more often, a
name. A name here means the class, not the syntactic name. The parser
converts any style of quoted name for the function being called into a name
object.

The evaluation of the function call begins by looking for a function cor-
responding to the name. The rules for “looking for” are the same as the
general rules for evaluating names mentioned above, except that the evalu-
ator silently ignores any object found that is not a function, allowing local
non-function objects with the same name as non-local functions, a conces-
sion motivated by people’s tendency to assign objects names such as "c".

Now the evaluation depends on what sort of function object was found.
The fundamental distinction is between functions defined in R itself versus
certain types of primitive functions. If you work with language objects in
any detail, whether in debugging or in developing new tools, you will usually
need to deal separately with the two cases, so in the next two sections we
branch the discussion accordingly.
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13.3 Calls to R Functions

As noted in the previous section, the evaluation of every function call in
R and of most other nontrivial expressions generates a function call object,
passing along zero or more arguments as expressions. The evaluation of calls
to ordinary functions, including all those that R programmers will write,
follows the same essential mechanism, described in this section. There are
also special primitive functions built into the core of R itself that behave
differently; Section 13.4 describes how these work, but such functions exist
only in the core, and cannot be created in users’ packages.

The term closure is used in R to describe both the object type of the
function object and also a programming technique using those objects in a
special way. The class of an R function object is "function", but the internal
type of a non-primitive function, as returned by typeof(), is "closure". To
avoid confusion, this book usually reserves the term closure for the program-
ming technique, which is described in Section 5.4, page 125. When we talk
about function objects, we mean a function defined in R; to talk about the
primitives we specifically refer to primitive functions. These, by the way,
also have class "function", but different internal types, as discussed on page
464. They are objects, also, but with much less structure.

A call to an R function is evaluated in three steps. Understand these,
and you understand the most important aspect of how R works.

1.
to the formal arguments in the function definition.

2. A new environment is created and an assignment is made there for
each of the formal arguments, containing the actual argument if any,
and also any default expression if the argument was missing and there
was a default. The enclosing environment of the new environment is
the environment of the function object (a crucial point that we will
discuss below).

3. The body of the function is evaluated in the new environment, and
the result is returned as the value of the function call.

As a historical note (and to help understand compatibility between R and
S-Plus), note that the steps correspond to a model for evaluation of function
calls in the S language, presented in the form of some pseudo-S computations,
in the book The New S Language [1, Section 11.2]. Leaving out a few details,
the essentials were:

The argument expressions in the call (the actual arguments) are matched
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New.frame(amatch(definition, expr), expr)
value <- Eval(body)
Pop.frame()
value

Here expr is the actual call, definition is the function object, and body is
the function body of that object. The first line of the example corresponds
to steps 1 and 2 above, with amatch() carrying out the argument matching in
step 1. In the S model, the evaluator has a list of the ongoing evaluations (the
list returned by sys.frames()); New.frame() puts the matched arguments
into a new frame, and makes that the current frame, in which Eval() will
evaluate the body of the function, after which Pop.frame() gets rid of the
frame.

R adopts this model, but with the crucial addition of the function envi-
ronment in step 2, which affects the way names are looked up. The function’s
environment is the environment in which it’s created, for regular functions.
Generic functions each get their own environment (for method selection pur-
poses) but the parent of that environment is the function environment, just
as with non-generic functions. It’s this function environment that is crucial
for evaluation in R.

In the S model, names are searched for first in the current frame (as in
R), but then essentially in the global “environment” of the current session. R

searches in the function environment instead. For functions that are sourced
into the R session the function environment is the global environment, and
so name lookup basically follows the S model. The same is true for functions
from packages, unless the package has a NAMESPACE.

However, R uses function environments in two important techniques that
differ from the S approach. If a package uses the NAMESPACE mechanism, func-
tions have an environment specific to the package, and unconnected to the
dynamic global environment of a session. Namespaces are valuable in clari-
fying the meaning of functions in a package. The namespace only includes
explicitly imported objects and the base package. Therefore, the result of
a call will not be altered accidentally by conflicting functions attached dur-
ing the session. Section 4.6, page 103, discusses how to use the namespace
mechanism in a package. You can test whether a package has a namespace
by trying to get it:

> getNamespace("methods")
<environment: namespace:methods>
> getNamespace("gam")
Error: package ’gam’ does not have a name space
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The other common use of enclosing environments is what is called the
closure programming technique. In the usual version, an object is set up
that contains some functions as components. These functions were created
during a function call, not at the top level of the session, so the function
environment is that of the call, now preserved in the object. This gives a
mechanism for sharing and modifying objects in that environment. Section
5.4, page 125, discusses how it can be used.

Step 3, the evaluation of the function body, proceeds as a standard
evaluation. It is specialized to the current function call via the objects
assigned with the names of the formal arguments. These are the "promise"

objects mentioned on page 457. They implement the lazy evaluation concept
that the expression for the actual argument or default is not evaluated until
needed, and then not re-evaluated.

A promise object has: an expression; an environment in which the ex-
pression will be evaluated; a value (initially an internal reference interpreted
as "undefined"); and a "seen" flag (initially off). In processing a request
to evaluate a promise, the evaluator simply returns the value, if it is not
undefined. On the first encounter (the first time the argument is needed
in evaluating the body of the function), the evaluator proceeds to evaluate
the object’s expression in its environment. For arguments supplied in the
call these are the actual argument and the caller’s environment. For miss-
ing arguments the environment is that of the call itself and the expression
is the default if there is one; otherwise an error results. Before starting
the evaluation of the expression, the "seen" flag is turned on. This flag is
checked if another request for the value is encountered while the value is still
undefined; if it is on, an error for "recursive default argument reference"

results.
When is a promise evaluated? There are two main cases.

1. A primitive function call, including parsed versions of special language
expressions, evaluates an argument that includes the name, directly or
indirectly;

2. In method selection, an actual argument in the signature of the generic
is evaluated that includes the name. Default expressions for missing
arguments are not evaluated at this time; method selection uses class
"missing" for these.

Note that in both cases, it’s the occurrence of the name assigned to the
promise that triggers the request to evaluate it. For the first case, the
argument may have been given to a primitive function directly or included
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in a call to another function resulting in that argument eventually needing
evaluation. Therefore, to be cautious, you should assume that an argument
may be evaluated as soon as it’s included in any function call, unless you
explicitly know otherwise. On the question of which arguments to primitives
are evaluated, see the comments on primitives of type "special", on page
464. To resolve the second case just print the generic function. Its show()

method says which arguments can be included in methods.
Whether an argument is considered missing is normally determined from

the promise object associated with that argument. If the argument name
does not correspond to a promise, it is usually not considered missing. Thus,
if you assign explicitly to the formal argument x, then missing(x) will be
FALSE from then on, regardless of what the function call said. Consider:

f <- function(x = 1) {
missing(x)

}

g <- function(x) {
if(missing(x))

x <- 2
missing(x)

}

The call f() returns TRUE, the call g() returns FALSE.

13.4 Calls to Primitive Functions

R contains a fixed set of objects that can be called as functions but that do
not correspond to an object with formal arguments and a body. These are
referred to as the “primitive” functions; if you print one, it looks like a call
to the function .Primitive(). Some tools in R, such as automatic printing,
tend to hide the special nature of primitive functions, making them appear
like ordinary functions. The test function is.primitive() will identify them.
To find out what the primitive objects are, let’s apply is.primitive() to
each of the objects in the base package.

> allObjects <- objects("package:base", all=TRUE)
> primitives <- sapply(allObjects,
+ function(x)is.primitive(get(x)))
> primFuns <- allObjects[primitives]; primFuns

[1] "!" "!=" "$"
[4] "$<-" "%%" "%*%"
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[7] "%/%" "&" "&&"
[10] "(" "*" "+"
[13] "-" ".C" ".Call"
etc. ...

The primitives include a variety of operators, mathematical functions and
other, well, primitive computations. These include some language construc-
tions that are treated as function calls (the uniformity helps provide consis-
tent behavior in the evaluator). Examples include if() and `{`.

Evaluation of a call to one of these functions starts off in the usual way,
but when the evaluator discovers that the function object is a primitive
rather than a function defined in R, it branches to an entirely different
computation. The object only appears to be a function object with formal
arguments and a call to the function .Primitive() with a string argument.
In reality, it essentially contains only an index into a table that is part of
the C code implementing the core of R. The entry of the table identifies a
C routine in the core that is responsible for evaluating calls to this specific
primitive. The evaluator will transfer control to that routine, and expects
the routine to return a C-language pointer to the R object representing the
value of the call. Exactly how this works depends on the internal type of the
primitive. There are two: "builtin" and "special". To find them, we can
split the primitive functions in the base package using the function typeof():

> functionTypes <- split(primFuns,
+ sapply(primFuns, function(x)typeof(get(x))))
> names(functionTypes)
[1] "builtin" "special"
> sapply(functionTypes, length)
builtin special

149 39
> functionTypes$special
[1] "$" "$<-" "&&" ".Internal"
[5] "<-" "<<-" "=" "@"
[9] "UseMethod" "[" "[<-" "[["
[13] "[[<-" "break" "browser" "c"
[17] "call" "expression" "for" "function"
[21] "if" "interactive" "log" "missing"
[25] "nargs" "next" "on.exit" "quote"
[29] "rep" "repeat" "return" "round"
[33] "seq.int" "signif" "substitute" "while"
[37] "{" "||" "∼"
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The difference between the evaluation of "builtin" and "special" primi-
tives is that the arguments to a primitive of type "builtin" are evaluated
and passed to the routine as a list of objects, whereas the arguments to a
primitive of type "special" are passed directly from the call as a list of un-
evaluated expressions. The primitive object for `+` is a "builtin" and that
for `if` is a "special", as you might expect since only one of the branches
of an if expression will be evaluated. A special primitive can choose to
evaluate its arguments if and when it chooses. A general rule is impossible,
but most cases are intuitively reasonable, like `if`. Less obvious is that
all assignments are evaluated by a "special" primitive that evaluates the
right-hand side immediately, including the case that the assignment is being
handled by a replacement function written in R. See Section 13.5.

And, if you then would like to know just what one of the functions does,
that can also be answered, by looking in the source for R itself.

Admittedly, the computations are written in a form of C that is not
exactly for the faint of heart. The implementations use the internal struc-
ture of R objects and also tend to be very detailed, as we would hope for
functions near the center of the system. All the same, I would encourage
the exploration for anyone with a general understanding of programming in
C or similar languages, and with an interest in how computations are done
in R. Start with a source copy of R, stored in directory $RHOME, say. In a
text editor, look in the file "names.c" in directory $RHOME/src/main. This
contains the table mentioned before. There will be a C structure element
shown for each primitive function. The first member of the structure is the
quoted name of the primitive; the second is the C entry point to evaluate
the call. The entries for the `+` and `if` primitives, for example, are:

{"+", do arith, PLUSOP, 1, 2, {PP BINARY, PREC SUM, 0}},
{"if", do if, 0, 0, -1, {PP IF, PREC FN, 1}},

The remaining elements in the structure are perhaps somewhat too far down
in the internals, even for this chapter. But if, for example, you want to
understand some really detailed issue about how R deals with arithmetic
operations, look for the routine do_arith in the source files.

13.5 Assignments and Replacements

Assignment expressions are calls to the assignment operators: `<-`, `=`,
and `<<-`. The first two are synonyms, just there to make those familiar
with one or the other symbol feel more comfortable. (The parser accepts
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mirror-image versions, `->` and `->>`, but just translates them to point
left. These are historic leftovers from the days before inline editing.)

The operator `<<-` is a non-local assignment operator. It behaves dif-
ferently from regular assignment and breaks the functional style, in that
you cannot figure out what is happening to the object on the left of the
assignment by looking only at the function in which the assignment takes
place. Therefore, non-local assignments are frowned on from the functional
programming perspective, and can be considered dangerous to the Prime Di-
rective. However, they are used in programming techniques such as closures
(Section 5.4), so one should at least be aware of how they work.

All these assignments translate into calls to the function of the same
name as the operator, and of type "special", with the left- and right-side
operand expressions being the first and second argument. So any assignment
using `<-` calls the function `<-`(), and always with two arguments. The
effect of the evaluating the call may be an assignment that associates a value
with a name, or a replacement that takes the current object assigned the
same name and returns a new object to replace that one. In the assignment
case, the first argument is a name; all three operators assign the value of
the second argument to that name, the only difference being where the
assignment is done.

Replacement expressions

If the first argument (i.e., the left side of the assignment) is a call, evalua-
tion results in a call to the corresponding replacement function. However,
the right side of the assignment (the value to be assigned) is always eval-
uated first, before examining the left side. (The reason is the rule in the
language’s grammar that nested assignments associate to the right. The
right side is evaluated first, in case it is also an assignment.) The practical
relevance is that lazy evaluation never applies to the final argument, value,
in replacement functions.

The replacement function mechanism means that any assignment of the
form f (...) <- rhs is translated into an ordinary assignment: specifically,

tmp <- `f <-`(tmp , ..., value=rhs )

So an arbitrary replacement can be defined by simply creating a function
with the special name and suitable argument list, as described in Section 5.2,
page 117. If the first argument to f, in turn, is a name, then tmp is effectively
just that name. However, replacement expressions can nest function calls
on the left side, for example,
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diag(z$a) <- NA

In this case, the evaluator arranges to extract the object z$a, pass it to the
replacement function `diag<-`(), and then replace the value returned by
that call, using the replacement function `$<-`().

Any function can appear in this nested form of replacement operation,
but only if it exists both as a regular function and the corresponding re-
placement version. If we wanted to evaluate

diag(foo(z)) <- NA

we need both foo() and `foo<-`().

Non-local assignments

A local assignment always takes place in the environment where the call is
evaluated. Non-local assignment takes place in the enclosing environment of
the call if there is currently an object of the same name in that environment.
If not, the enclosing environment of that environment is examined, and so
on until an environment is found that has an assignment for this name,
which is then the environment used for the new assignment as well. If
there is no current assignment, the assignment takes place in the global
environment. The logic here guarantees that a non-local replacement will
occur in the environment containing the object, but the effect is rather odd
when a simple assignment is intended. If you know where you want the
new object, a clearer style uses the assign() function directly. Even better,
avoid non-local assignments without a good motivation.

The point of the R behavior becomes clearer from looking at an exam-
ple. A function definition may create some new functions locally, during the
call. If so, these functions have as their environment the environment of
the call to the parent function. The children functions can then communi-
cate with the parent and with each other by doing non-local assignments to
variables with known names, provided those variables have already been cre-
ated. Here’s a very simple example: The splitRepeated() function (shown
on page 297) wants to know whether any warnings took place in multiple
calls to as.numeric(). By using calling handlers (see Section 3.7, page 75)
it arranges for a function to be called when a warning takes place. The
function is created in the call to splitRepeated(), with the definition:

function(e) warned <<- TRUE

Before the call involving this function, splitRepeated() intializes a local
version of the variable warned:
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warned <- FALSE

Now the R rule for non-local assignment guarantees that any call to the han-
dler function will set warned in the environment of the call to splitRepeated().
It’s a simple and convenient mechanism, and in this example the entire pro-
gramming is done and used in splitRepeated(), so the intent is fairly clear,
once the underlying R rule is understood. Both the Mission and the Prime
Directive are reasonably satisfied.

Much more extensive examples of using the mechanism are possible,
however, and some of these bother me more. One technique is to return a list
of functions that all manipulate some variables in a common environment,
not local to any of the individual functions. The classic example simulates
deposits and withdrawals from a bank account. The account is returned as
the value of an initial function call, say:

a <- makeAccount(....)

The object a is a list with functions called as a$deposit(), a$withdraw(), etc.
These functions manipulate non-local objects created in the environment of
the call to makeAccount. The mechanism here is similar to what a language
such as Java would do via a class definition for the object a and methods
invoked on that object. Fields in the Java object correspond to variables in
the R environment. But unlike Java, the R mechanism has no formal defini-
tion of the fields and no “metadata”, in our terminology, to let us examine
the programming. The mechanism is convenient in some applications, but
mistakes may not be caught quickly or clearly, so the Prime Directive should
give us pause.

13.6 The Language

R implements the grammar of the S language, with a few extensions. This is
a traditional grammar of the flavor of C and the many languages that have
more or less followed in the style of C. In a typical interactive R session, the
user supplies input text according to that grammar (aside from mistakes),
and the R application then parses and evaluates accordingly. Why learn
about the grammar? It defines what information can be included in the
parsed expression, and therefore what range of expressions the R evaluator
needs to treat. Often, you can provide more general expressions than you
might expect, but when trying out something odd, keep in mind that parsing
is just the first step. Expressions that follow the rules of the grammar but
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make no sense will generate errors when one tries to evaluate them; at least,
we very much hope so. See the warning on page 471 for an example.

Expression Rule Class
Call expr ( sublist ) "call"

Binary expr op expr "call"

expr $ nameString
expr @ nameString
nameString :: nameString
nameString ::: nameString

Unary unaryOp expr "call"

Subset expr [ sublist ] "call"

expr [[ sublist ]]

Conditional if( expr ) "if"

if( expr ) else expr
Iteration for( Name in expr ) expr "for"

while( expr ) expr "while"

repeat expr "repeat"

Grouping ( expr ) "("

{ exprlist } "{"
Function function( formlist ) expr "function"

Flow break "break"

next "next"

Token constNameString

Table 13.1: The Language. The rows summarize the syntactic rules for
syntactic type expr—an expression according to the R parser. See the text
for the meaning of the other syntactic types in the second column.

The essential computation of the R parser is to read sufficient input to
find a complete expression in the grammar, to interpret that expression,
and to return an R object representing it. The expression objects from the
parse are usually called unevaluated expressions elsewhere in the book, to
emphasize that they are produced and handled independently of evaluation,
which happens when the expression object is passed to the R evaluator.

Understanding the grammar of the language then boils down to under-
standing what syntactic patterns are legal expressions. Table 13.1 describes
the main rules for expressions. Each row of the table defines one of the
alternative rules for a valid expression. The table is a definition of the
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grammatical alternatives, one per row, for expressing the form of the gen-
eral expression, denoted by expr. In the usual style of such grammatical
descriptions, the valid syntactic constructions are defined recursively. Thus,
one form of legal expr, in the first row, is composed of any other legal expres-
sion, followed by a left parenthesis, a sublist and a right parenthesis. Then
sublist is another grammatical form, in this case not shown in the table—see
the descriptions below—that corresponds to the rule for an argument list
in the call to a function. In other words, the first rule defines a standard
function call in the S language, including the option of naming arguments.

The table follows both the actual grammar rules as written in the yacc

software for R and also the corresponding table for the S language in Pro-
gramming with Data, [5, section 3.2], indicating the closeness of the gram-
matical forms in S and R. The names used in the table for syntactic patterns
follow those in the actual grammar.

The remaining syntactic types in the table are defined informally as
follows.

sublist : A comma-separated list, each element being either an expression or
a name followed by "=" followed by an expression. Notice that the
arguments to the single- and double-square bracket operators have
this syntactic definition also. Therefore named arguments are legal
to the `[` and `[[` operators. They even work sometimes (but not
in the primitive function as the example below shows), becaue the
interpretation is being done by methods interpreting multiple index
arguments.

constNameString , nameString : One of the terminal token types. In classical
parsers such as R uses, a separate preliminary stage of the parse breaks
the input text into tokens, sequences of characters forming one of the
predefined low-level constructs in the language. The constNameString
group of tokens are those that can stand alone as an expression, essen-
tially numerical and logical constants, "NULL", syntactic names, and
strings. Syntactic names include arbitrary strings enclosed in back-
ticks. The nameString group of tokens includes only syntactic names
and string constants.

op, unaryOp: More groups of token types. The op group includes the usual
operators for arithmetic, comparisons and logical expressions, plus op-
erators `%`, `∼`, `?` and user-defined binary operators specified as a
pair of "%" characters enclosing an arbitrary sequence of characters.
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Warning: parsing is only the first step.

For example, the rule for assignments allows an arbitrary expression on the
left of the assignment. In practice, although assignment expressions in the S

language are probably more general than in nearly any other language, not
everything makes sense. Reading the grammar points out that checks for
meaningless assignment expressions must be done during evaluation. The
expression

f("yy")<-3

will generate an error because the form of the left-side is not interpretable
as a replacement expression, but the error is not from the parser—try
quote(f("yy")<-3) to convince yourself. Expressions that are syntactically
valid but computationally meaningless are to be expected in any language
that uses classical scientific notation. Good code will report them at evalu-
ation time, preferably with a meaningful error.

More insidious problems arise when an expression that may appear
meaningful is silently misinterpreted. Primitive functions present partic-
ular dangers here. Although the general grammar implies that all functions
and some operators interpret a general argument list, primitive functions
have no formal arguments. Apparent argument names provided in docu-
mentation are not honored if used; worse, the standard behavior is to ignore
argument names rather than generating an error. For example, the `[` op-
erator might appear from its documentation (and from the generic function
corresponding to it) to have arguments "i" and "j" for the first and second
subscript. In its primitive form, it does not and will happily ignore such
names. Thus if x is a matrix, you might believe that

x[ j=1, i=2]

would extract the first column, second row. But in fact the primitive ignores
the argument names and returns the first row, second column. Methods for
these functions do have legitimate argument lists and can be used in the
usual way, but be very careful when using callNextMethod() with explicit
arguments.

13.7 Memory Management for R Objects

Memory management in R is automatic, in contrast to C or C++. Program-
mers do not need to allocate or delete storage explicitly (and are actively
discouraged from doing so for most purposes); instead, evaluating function



472 CHAPTER 13. HOW R WORKS

calls and assigning objects triggers allocation and occasional deallocation
(via garbage collection). Once again, the dual themes of function calls on
the one hand and, on the other, objects and object references are central to
understanding what happens.

R’s memory management has proven successful for a wide range of appli-
cations. Occasionally, particularly with very large objects, hard limitations
or noticeable slowdown may obstruct programming. Understanding how it
works can help anticipate or work around such problems. In this section we
look briefly at some of the important techniques used, with emphasis on the
aspects with implications for programming.

R objects come from three essential sources:

1. constants in the language (numbers, strings and a few specially named
objects such as TRUE and Inf);

2. references, that is, objects obtained by name from an environment;

3. new objects produced by evaluating function calls.

All objects in fact are dynamically allocated at some time during the R ses-
sion. Constants are allocated essentially in the parser. Objects assigned in
an environment were either constructed from some computation or restored
from previously saved objects (equivalent to a call to unserialize() as far
as memory allocation is concerned). As a result, all the memory for objects
eventually comes from the same mechanism, that by which a vector or other
basic R object is created. This uniformity is important in practice because
it allows the mechanism to be tuned and studied.

Programmers do not explicitly manage memory for R objects, which
occasionally frustrates those who would like more control. In particular,
objects cannot be deleted; the function rm() removes the assignment of an
object in an environment, but does not delete the memory for the object.
Unused dynamic storage is recovered by garbage collection, which usually
takes place automatically and, from the user’s view, unpredictably. It’s
possible to force garbage collection by calling the function gc(), but a sub-
stantial computation is required, so it’s unlikely to be a good idea just for
the sake of recovering storage for a few objects.

Garbage collection recovers storage from objects that do not have a cur-
rent reference. Primarily, a reference is an assignment in an environment,
the essential mechanism we have studied throughout the book. Essentially,
the computation works through all the places that references can reside and
arranges that the objects so referenced will survive deallocation. References
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reside in active environments and in a few special lists of objects such as
those protected in evaluating a C routine (Section 11.3, page 422).

References in environments are created by assignments. The technique
of replacement functions makes all these conceptually equivalent, by turn-
ing each replacement expression into an ordinary assignment of the value
returned by the replacement function, as shown on page 466. So each as-
signment or replacement computes a new object and assigns that with the
given name. The previously assigned object, if there was one, is not deleted
but if nobody else refers to it, it’s a candidate for recycling on the next
garbage collection.

When replacement occurs in a loop, this simple model seems to lead to
potentially large memory growth, in principle and sometimes in practice.
For example, a new R programmer, totally innocent of vectorizing, might
write a computation such as:

for(i in 2:length(x))
x[[i]] <- (1 - eps) * x[[i]] + eps * x[[i-1]]

Aside from the large number of function calls involved, the description in the
previous paragraph suggests we’re about to allocate storage of the square of
length(x). Each pass through the loop reassigns x:

x <- `[[<-`(x, i, value = ....)

It seems that each such call will allocate a new object of the same length as x
and leave the previously allocated version stranded until garbage collection.

Indeed, that situation is possible when the replacement function is an
ordinary R function, but in this example the function `[[<-`() is a primitive
that uses an extra field of information to keep allocations limited. Aside from
saving a reference to the object in the environment, an assignment marks the
object itself, using an internal C field NAMED(x). This field has three values,
defining the state of assignment of the object: 0 means that the object has
not been assigned; 1 that there is one assignment of the object; 2 that there
are multiple assignments of the object. Consider the computation on page
463:

> allObjects <- objects("package:base", all=TRUE)
> primitives <- sapply(allObjects, ....

The assignment to allObjects takes the return value of the function call
(which presumably has 0 in its NAMED() field) and assigns it, marking the
object with 1 in the field. The same object will then be assigned in the
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environment of the call to sapply() as X, the first formal argument. To
indicate the multiple references, the NAMED() field will be set to 2.

The distinction between single and multiple references allows C-level re-
placement functions to avoid extra copies. The typical code is:

if (NAMED(x) == 2)
x = duplicate(x);

If the object is multiply assigned, it must be duplicated to protect the other
references. If the local assignment is the only one, duplication is not needed,
because this reference will now be to the modified object. In our hypothetical
loop, it’s likely that x will have multiple references on the first pass through
the loop, causing a copy to be made. But the copy, after being assigned, will
only have 1 in its NAMED() field. As a result, all subsequent replacements will
take place without further duplication, allocating only 2n elements rather
than O(n2).

Logic based on the NAMED() field is only available in C, and only use-
ful if the object in question has not been automatically duplicated; there-
fore, the .Call() and .External() interfaces could use the mechanism, but
not replacement functions written in R nor those (unlikely) using .C() or
.Fortran(). This is a suitable thought on which to conclude. Such highly
tuned replacement functions are attractive in making certain computations
feasible in iterations on large objects (and so perhaps opening new compu-
tations for exploring such objects). Improving R for computations on large
objects is an attractive extension of the system. But such computations need
to be implemented very cautiously. The flexibility provided by not dupli-
cating arguments can lead to really nasty bugs and untrustworthy software.
The Mission and the Prime Directive both remain relevant.



Appendix A

Some Notes on the History
of S

Why history? Mostly, because it’s interesting, and puts a human
face on the misleadingly abstract descriptions we all generate for
our projects. These notes may suggest a little of the context and
answer a few questions, such as “Why isn’t "." an operator, as
it is in other languages?”

The history of S has a definite starting date and place: May 5, 1976 at Bell
Labs, Murray Hill, New Jersey. A group of five people began a series of
informal meetings to consider designing a system for statistical computing,
or possibly adopting an existing system. The system was to serve the needs
of the statistics research group at Bell Labs (roughly twenty people). For the
previous decade or more, the group had been using a largely Fortran-based
collection of software that had evolved into an extensive library, including
a graphics system called GR-Z and a variety of subroutines for numerical
computations, simulation, and miscellaneous computations with data.

Figure A.1 on page 476 is a copy of what I believe was the first “graphic”
at that first meeting. Coincidentally or otherwise, it also has two clues to the
later evolution of S. The upper portion depicts the concept of an interface
between a proposed user-level language and an “algorithm”, which meant
a Fortran-callable subroutine. Our research-oriented motivation mandated
that the system incorporate extensibility at a fundamental level—not by
any means standard for statistical systems of the time. The concept and
the term “interface” have been with us ever since. The lower portion of the
figure shows diagrammatically a hierarchical, list-like structure for data, the
direct forerunner of lists with named components, structures with attributes
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Figure A.1: First designs for a statistical system (May 5, 1976).

and eventually classes with slots.1 The two portions of the sketch in fact
lead to the themes of function calls and objects, in retrospect.

At the end of a month of meetings, the decision was to go ahead with
the implementation of a system, at least experimentally. Of the five discus-
sants, Rick Becker and John Chambers were the main implementers, with
contributions at various times from a number of colleagues, and using the

1Interestingly, the Fortran code corresponding to such structures arose in a collabo-
ration with a Bell Labs organization that later evolved into the AT&T area responsible
for design and manufacture of computer chips and similar devices. It provides a good
example of the Bell Labs philosophy that collaborations could actually enhance research
rather than take time away from it.
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existing Fortran library as an essential base. By the end of 1976, a prelimi-
nary version was available for local use. After being called “the system” for
some months, and after a request for suggested names turned up none that
the authors found acceptable, someone noted that all the suggestions con-
tained the letter “S”. So, partly with the precedent of the recently designed
C language, we settled on that. (It took a few years to wean people from
including the quotes around the name, perhaps a sign of embarrassment.)

The first version of S was implemented in a computer system that was
very local, not to say weird. The withdrawal of Bell Labs from the Multics

project at the end of the 1960s had left research with a main computer
running a Honeywell operating system (originally from General Electric)
quite different from the then-dominant IBM systems. As interest in S grew,
portability was an increasing concern; specifically, the lack of portability
and the huge implementation headache it presented. As it happened, early
work on the UNIX operating system was going on in parallel, and facing
similar issues of portability. Our rescue came with the development of a
portable version of UNIX. We soon decided to make a UNIX version of S, which
would then be defined to be portable, wherever UNIX was. (Numerical issues
made it a little more complicated than that, but numerical analysts were
concurrently developing modern models for floating-point computations, as
discussed in Section 6.7, page 191.)

The initial UNIX implementation was Version 2 of S, but largely consis-
tent with the first version. At this time, too, AT&T began licensing UNIX

and S, with both university groups and third-party resellers in mind. The
implications of licensing for S were crucial; now, we could begin to involve
a wide group of participants including statistics groups at universities and
research laboratories worldwide. These eventually included two statisticians
at the University of Auckland who designed a system “not unlike S”—more
on that shortly.

About ten years after the initial meetings, an essentially complete re-
vision of S took place, incorporating ideas that at one point threatened to
spawn a different, perhaps competing system. The experiences of users and
ideas circulating around UNIX were additional influences. The new version,
eventually labeled S3, featured dynamically generated, self-describing ob-
jects and a strong (though not strict) adherence to the ideas of “functional
programming”. Building on UNIX was reflected in saving objects as files, in
the system() interface, and in the use of a number of tools. So the answer
to why "." is not an operator is that, like UNIX, S allowed "." in names, and
used an initial dot to partially hide system objects, such as .Options.
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After the release of S3 and publication of The New S Language [1], the
language remained largely backward compatible. A large-scale, ten-author
effort on statistical models, accompanied by the first effort at merging the
functional style of S with concepts of classes and methods, was released
around 1992 and documented in Statistical Models in S [6]. The S3 classes
and methods did not intrude deeply into the system, with the result that
an implementation was grafted fairly easily on the existing software. By
the same token, there was little formal support for classes and methods,
and no metadata to define classes. From a technical view, the system used
“instance-based methods”, in that each object could have its own class at-
tribute and therefore its own method dispatch pattern.

The next, and so far the last major design change in the language came
with the S4 version, released around 1998 and documented in Programming
with Data [5]. This introduced a new class and method system, the basis
for the description in Chapters 9 and 10, although without removing the
existing S3 software. By this time, use of S was sufficiently widespread that
major removal of existing features was becoming difficult. The S4 version
introduced as well some more specific new techniques, including connections,
a C interface that could manipulate S objects (the .Call() interface), and
some new object types and structures.

The other major event of the 1990s and beyond was, of course, R. In
Auckland, New Zealand, Ross Ihaka and Robert Gentleman designed a sys-
tem using a language largely compatible with S, but with a different evalua-
tion model, including some features deriving from the Lisp/Scheme family of
languages. The system was described in a 1996 paper [17], and soon drew
wider interest. An important feature was that the new system joined the
growing cadre of free or open-source software systems. As interest grew,
the authors invited a new, self-managing group of volunteers to take over
effective control of the system. R-core and the current approach to R were
on the way.

Subsequently, R has grown and spread beyond anything the original au-
thors of S are likely to have imagined. But that’s another story. The AT&T,
and subsequently Lucent, S software was purchased in 2004 by the Insight-
ful corporation, and continues to evolve in the S-Plus system. Overall, data
analysts now have a wealth of software available to them at least an order
of magnitude more extensive and varied than was the case before, say, 1996.
Equally gratifying to me is that the software facilities and their continued
orientation towards research and towards implementing new techniques have
provided researchers in many fields with a direct way to implement and share
their ideas, to the benefit of the whole community.
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gam, 26, 27, 104, 122, 220, 221, 383
gbm, 441
gbm.fit, 441
gbm.more, 441
gc, 472
geoDist, 416, 419, 420
geoXY, 248, 420
get, 125, 307, 308
get.gpar, 279
getGroupMembers, 403
getOption, 18
glm, 220
gpar, 257, 279
grep, 303, 304
grey, 257
grid, 272
grid.circles, 272
grid.lines, 255, 272
grid.newpage, 273
grid.points, 255
grid.rect, 274
grid.text, 274

hclust, 371
help, 32, 98, 341, 390, 400
help.search, 32, 263
help.start, 17, 263
hist, 265

iconv, 294
identical, 78, 103, 189, 190, 194
identify, 39
`if`, 459, 465
if, 60, 144, 464
ifelse, 159, 195, 268
image, 265
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implicitGeneric, 402
initialize, 340, 341, 359–361, 392,

395, 396, 399
install.packages, 27, 28
is.na, 160, 194, 195
is.nan, 194
is.primitive, 463

lapply, 44, 75, 212
lattice.options, 286
legend, 260, 269, 271
length, 118
library, 25, 80, 81, 92, 400
library.dynam, 108, 427
license, 91
lines, 264
linesGrob, 255, 272
lm, 45, 65, 102, 219, 221, 379, 383
lm.fit, 65, 217, 218, 220
load, 136
local, 61
locales, 18
log, 195
Logic, 186
logical, 144

mad, 53–56
mammals, 243
mapply, 212, 320
match, 119, 160, 232, 233, 290, 308,

309
match.call, 56
Math, 155
matplot, 265, 266
matrix, 50, 327
mean, 44
mergeSections, 307, 308
method.skeleton, 384, 386, 389
Methods, 391
min, 153

missing, 55, 56, 389, 409
model.frame, 216, 220, 379
model.matrix, 220, 379
mosaicplot, 265
mtext, 270
muststop, 77

new, 339, 340, 351, 353, 356, 359–
361, 367, 396, 459

new.env, 120, 124
newIQ, 128
numeric, 144

on.exit, 320
open, 132, 134, 135
Ops, 156, 403, 404
options

options

options, 16, 18, 19, 47, 48, 50, 63,
66, 71, 76

outer, 159, 210–212

package.skeleton, 82, 85–87, 90,
96

packageAdd, 89, 100
panel.bwplot, 286
par, 23, 257, 258, 266, 267
parent.env, 119, 121
parse, 306
paste, 150, 306, 326, 327
pdf, 241, 254, 267, 273
persp, 265
pie, 265

264, 266, 270, 304,

398, 401, 406
plot.curve, 365
plot.Date, 304

considered dangerous,19, 48

245, 248–250, 252, 256, 263,
plot, 23, 39, 40, 48, 49, 219, 221,

334, 360, 364, 390–392, 395,
268,
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plot.function, 304
plot.new, 365
plot.xy, 304
plotGPSArrows, 251, 253
plotGPSTrack, 252
points, 264, 270, 271
pointsGrob, 255
POSIXt, 368
postscript, 254
predict, 383
print, 49, 132, 219, 221, 281
print.trellis, 284
prompt, 96, 97, 100, 107, 307–309,

342
promptAll, 98, 100, 307–309
promptClass, 97, 342
promptMethods, 97, 99, 390
promptPackage, 96, 97
prototype, 340
punif, 223
pushBack, 133

qr, 218
quantile, 14, 247
quartz, 15, 254, 267
qunif, 223
quote, 74, 459
Quotes, 455

rainbow, 241, 257, 258
randomSlippage, 231, 233, 234
range, 391
rapply, 212
rawToChar, 151
read.csv, 89, 169, 177, 295, 296,

380
read.delim, 169, 380
read.table, 137, 138, 168–171, 183,

197, 295, 296, 298, 325,
333, 380

readBin, 138
readLInes, 297
readLines, 296, 297
Recall, 61
recover, 62–67, 74, 75, 107
regex, 299, 302
representation, 347
require, 25, 76, 81, 90, 121, 122,

400
residuals, 219, 221
return, 60
rm, 472
RNGkind, 227
row, 205
runif, 223, 224

sapply, 23, 177, 212, 474
save, 16, 88, 136
savehistory, 40
scan, 137, 151, 296–298, 318–320,

326, 327, 333
scanRepeated, 319–321
scanText, 320
Schur, 398, 399
sealClass, 352
search, 25, 26, 52, 104, 121
seek, 132
selectMethod, 72, 410
seq, 145, 147, 160, 192, 193, 205
serialize, 136, 137
set.seed, 228
setAs, 348, 349, 366, 367
setClass, 50, 125, 156, 334–336,

339, 340, 344, 345, 347,

367
setClassUnion, 338, 347, 351, 352
setGeneric, 397–400, 402, 403
setGenericImplicit, 402, 403
setGroupGeneric, 403

350, 353, 357–359, 361, 363,
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setIs, 347, 348, 352
setMethod, 50, 72, 355, 384–388,

393, 396, 398, 403, 405,
409

setOldClass, 338, 351, 363, 365–
369, 388, 410

setReplaceMethod, 119
setValidity, 361
show, 49, 72, 157, 409, 463
show.settings, 257, 286
showMethods, 157, 410
shQuote, 327
sign, 165
signalCondition, 74
simulationResult, 230
solve, 217, 218
source, 40, 41, 94, 122, 335
spineplot, 265
splitRepeated, 75, 76, 297, 298,

321, 467, 468
splom, 282
sqrt, 44, 195
standardGeneric, 397–400, 406
stars, 265, 266
Startup, 19, 32, 63
stop, 403
stopifnot, 77, 103
str, 97
stripchart, 265
strplit, 318
strsplit, 297, 304
sub, 304
substitute, 400
substr, 304
sum, 160, 270
summary, 49, 132, 219, 221
svd, 218
sys.frames, 461
Sys.setlocale, 294
Sys.time, 368

system, 109, 314, 342, 431, 432,
477

system.file, 109

tempfile, 133
terms, 38, 305
terms.object, 305
text, 271
textConnection, 327
trace, 56, 62, 64–68, 70–74, 95,

105, 354–356, 358, 374
trackArrows, 250, 251, 253
trackSpeed, 253
trellis.par.get, 284, 285
trellis.par.set, 257, 284, 286
triDiag, 205, 207–209, 211
tridiag, 208
try, 76, 77, 153, 154, 425
tryCatch, 75, 76
ts, 48
typeof, 140, 141, 145, 460, 464

undefined, 118
`undefined<-`, 117, 118
unique, 204
unit, 274, 276, 278
unserialize, 136, 472
untrace, 64, 70, 73, 355, 357, 358
update, 38, 40, 45, 219, 221, 306,

383
url, 134
UseMethod, 364

validDataFrame, 376
validObject, 361, 367
viewport, 273

warning, 67
what, 320
which.max, 203, 212
while, 60
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windows, 254
wireframe, 282
with, 171–173, 401
withCallingHandlers, 75, 76
withStrictOps, 187, 189
write.table, 137
writeBin, 138
writeLines, 135

x11, 241, 254
X11Font, 262
xyplot, 171, 244, 247, 260, 282,

284

zapsmall, 68–70
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