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Preface

This book concerns the numerical simulation of dynamical systems whose trajecto-
ries may not be differentiable everywhere. They are named nonsmooth dynamical
systems. They make an important class of systems, first because of the many appli-
cations in which nonsmooth models are useful, secondly because they give rise to
new problems in various fields of science. Usually nonsmooth dynamical systems
are represented as differential inclusions, complementarity systems, evolution vari-
ational inequalities, each of these classes itself being split into several subclasses.
The book is divided into four parts, the first three parts being sketched in Fig. 0.1.
The aim of the first part is to present the main tools from mechanics and applied
mathematics which are necessary to understand how nonsmooth dynamical systems
may be numerically simulated in a reliable way. Many examples illustrate the theo-
retical results, and an emphasis is put on mechanical systems, as well as on electrical
circuits (the so-called Filippov’s systems are also examined in some detail, due to
their importance in control applications). The second and third parts are dedicated
to a detailed presentation of the numerical schemes. A fourth part is devoted to the
presentation of the software platform Siconos . This book is not a textbook on nu-
merical analysis of nonsmooth systems, in the sense that despite the main results of
numerical analysis (convergence, order of consistency, etc.) being presented, their
proofs are not provided. Our main concern is rather to present in detail how the al-
gorithms are constructed and what kind of advantages and drawbacks they possess.

Nonsmooth mechanics (resp. nonsmooth electrical circuits) is a topic that has
been pioneered and developed in parallel with convex analysis in the 1960s and the
1970s in western Europe by J.J. Moreau, M. Schatzman, and P.D. Panagiotopoulos
(resp. by the Dutch school of van Bockhoven and Leenaerts), then followed by sev-
eral groups of researchers in Montpellier, Munich, Eindhoven, Marseille, Stockholm,
Lausanne, Lisbon, Grenoble, Zurich, etc. More recently nonsmooth dynamical sys-
tems (especially complementarity systems) emerged in the USA, a country in which,
paradoxically, complementarity theory and convex analysis (which are central tools
for the study of nonsmooth mechanical and electrical systems) have been developed
since a long time. Though nonsmooth mechanics and more generally nonsmooth dy-
namical systems have long been studied by mechanical engineers (impact mechanics
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Preface IX

can be traced back to ancient Greeks!) and applied mathematicians, their study has
more recently attracted researchers of other scientific communities like systems and
control, robotics, physics of granular media, civil engineering, virtual reality, haptic
systems, image synthesis. We hope that this book will increase its dissemination.

We warmly thank Claude Lemaréchal (INRIA Bipop) for his many comments
and discussions on Chap. 12 and Mathieu Renouf (LAMCOS-CNRS, Lyon) whose
joint work with the first author contributed to Chap. 13. We also thank Professor
F. Pfeiffer (Munich), an ardent promoter of nonsmooth mechanical systems, for his
encouragements to us for writing this monograph, and Dr. Ditzinger (Springer Ver-
lag). This work originated from a set of draft notes for a CEA-EdF-INRIA spring
school that occurred in Rocquencourt from May 29 to June 02, 2006. The authors
thank M. Jean (LMA-CNRS, Marseille, France) for his collaboration to this school
and part of the preliminary draft. We would finally like to mention that part of this
work was made in the framework of the European project Siconos IST 2001-37172,
from which the software platform Siconos emerged. In particular the works of
F. Pérignon and P. Denoyelle, expert engineers in the INRIA team-project Bipop,
are here acknowledged.

Montbonnot, Vincent Acary
August 2007 Bernard Brogliato
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1

Nonsmooth Dynamical Systems: Motivating Examples
and Basic Concepts

The aim of this introductory material is to show how one may write the dynamical
equations of several physical systems like simple electrical circuits with nonsmooth
elements, and simple mechanical systems with unilateral constraints on the position
and impacts, Coulomb friction. We start with circuits with ideal diodes, then circuits
with ideal Zener diodes. Then a mechanical system with Coulomb friction is ana-
lyzed, and the bouncing ball system is presented. These physical examples illustrate
gradually how one may construct various mathematical equations, some of which
are equivalent (i.e., the same “initial” data produce the same solutions). In each case
we also derive the time-discretization of the continuous-time dynamics, and gradu-
ally highlight the discrepancy from one system to the next. All the presented tools
and algorithms that are briefly presented in this chapter will be more deeply studied
further in the book.

1.1 Electrical Circuits with Ideal Diodes

Though this book is mainly concerned with mechanical systems, electrical circuits
will also be considered. The reasons are that on one hand electrical circuits with non-
smooth elements are an important class of physical systems, on the other hand their
dynamics can nicely be recast in the family of evolution problems like differential
inclusions, variational inequalities, complementarity systems, and some piecewise
smooth systems. There is therefore a strong analogy between nonsmooth circuits
and nonsmooth mechanical systems. This similarity will naturally exist also at the
level of numerical simulation, which is the main object of this book.

The objective of this section is to show that electrical circuits containing so-
called ideal diodes possess a dynamics which can be interpreted in various ways. It
can be written as a complementarity system, a differential inclusion, an evolution
variational inequality, or a variable structure system. What these several formalisms
really mean will be made clear with simple examples.
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1.1.1 Mathematical Modeling Issues

Let us consider the four electrical circuits depicted in Fig. 1.3. The diodes are sup-
posed to be ideal, i.e., the characteristic between the current i(t) and the voltage v(t)
(see Fig. 1.1a for the notation) satisfies the complementarity conditions:

0 � i(t)⊥ v(t) � 0 . (1.1)

This set of conditions merely means that both the variables current i(t) and voltage
v(t) have to remain nonnegative at all times t and that they have to be orthogonal one
to each other. So i(t) can be positive only if v(t)= 0, and vice versa. The complemen-
tarity condition (1.1) between the current across the diode and its voltage certainly
represents the most natural way to define the diode characteristic. It is quite similar

i(t)

v(t)

Fig. 1.1a. The diode component

0

i(t)

v(t)

Fig. 1.1b. Characteristics of an ideal diode. A complementarity condition

i(t)

v(t)0

Fig. 1.1c. The graph of the Shockley’s law
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to the relations between the contact force and the distance between the system and
an obstacle, in unilateral mechanics,1 see Sect. 1.4.

Naturally, other models can be considered for the diode component. The well-
known Shockley’s law, which is one of the numerous models that can be found in
standard simulation software, can be defined as

i = is exp(− v
α
−1) , (1.2)

where the constant α depends mainly on the temperature. This law is depicted in
Fig. 1.1c. This model may be considered to be more physical than the ideal one,
because the residual saturation current, is is taken into account as a function of the
voltage across the diode. The same remark applies in mechanics for a compliant con-
tact model with respect to unilateral rigid contact model. Nevertheless, in the numer-
ical practice, the ideal model reveals to be better from the qualitative point of view
and also from the quantitative point of view. One of the reasons is that exchanging
the highly stiff nonlinear model as in (1.2) by a nonsmooth multivalued model (1.1)
leads to more robust numerical schemes. Moreover it is easy to introduce a residual
current in the complementarity formalism as follows:

0 � i(t)+ ε1 ⊥ v(t)+ ε2 � 0 (1.3)

for some ε1 � 0, ε2 � 0. This results in a shift of the characteristic of Fig. 1.1b.
The relation in (1.1) will necessarily enter the dynamics of a circuit contain-

ing ideal diodes. It is consequently crucial to clearly understand its meaning. Let us
notice that the relation in (1.1) defines the graph of a multivalued function (or mul-
tifunction, or set-valued function), as it is clear that it is satisfied for any i(t) � 0 if
v(t) = 0. This graph is depicted in Fig. 1.1b.

Using basic convex analysis (which in particular will allow us to accurately de-
fine what is meant by the gradient of a function that is not differentiable in the usual
way), a nice interpretation of the relation in (1.1) and of its graph in Fig. 1.1b can be
obtained with indicator functions of convex sets. The indicator of a set K is defined as

ψK(x) =
{

0 if x ∈ K
+∞ if x �∈ K

. (1.4)

This function is highly nonsmooth on the boundary ∂K of K, since it even possesses
an infinite jump at such points! It is therefore nondifferentiable at x ∈ ∂K. Neverthe-
less, if K is a convex set then ψK(·) is a convex function, and it is subdifferentiable in
the sense of convex analysis. Roughly speaking, one will consider subgradients in-
stead of the usual gradient of a differentiable function. The subgradients of a convex
function are vectors γ defining the directions “under” the graph of the function. More
precisely, γ is a subgradient of a convex function f (·) at x if and only if it satisfies

1 At this stage the similarity between both remains at a pure formal level. Indeed a more
physical analogy would lead us to consider that it is rather a relation between a velocity
and a force that corresponds to (1.1).
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f (y)− f (x) � γT(y− x) (1.5)

for all y. Normally the subdifferential is denoted as ∂ f (·), and ∂ f (x) can be a set
(containing the subgradients γ).

Let us now consider the particular case of the indicator function of K = IR+ =
{x ∈ IR | x � 0}. Though this might be at first sight surprising, this function is subd-
ifferentiable at x = 0. Its subdifferential is given by

∂ψIR+(x) =
{ {0} if x > 0

(−∞,0] if x = 0
. (1.6)

Indeed one checks that when x � 0, then ψIR+(y) � γ(y− x) for all y ∈ IR can be
satisfied if and only if γ = 0. Now if x = 0, ψIR+(y) � γy is satisfied for all y ∈ IR
if and only if γ � 0. One sees that at x = 0 the subdifferential is a set, since it is a
complete half space. In fact the set ∂ψIR+(x) is equal to the so-called normal cone
to IR+ at the point x (Fig. 1.2). This can be generalized to convex sets K ⊂ IRn, so
that the subdifferential ψK(x) is the normal cone to the set K, computed at the point
x ∈ K and denoted by NK(x). If the boundary of K is differentiable, this is simply a
half-line normal to the tangent plane to K at x, and in the direction outward K.

It becomes apparent that the graph of the subdifferential of the indicator of IR+

resembles a lot the corner law depicted in Fig. 1.1b. Actually, one can now deduce
from (1.6) and (1.1) that

i(t) ∈ −∂ψIR+(v(t)) ⇐⇒ v(t) ∈ −∂ψIR+(i(t)) . (1.7)

The symmetry between these two inclusions is clear from Fig. 1.1b: if one inverts the
multifunction (exchange i(t) and v(t) in Fig. 1.1b), then one obtains exactly the same
graph. Actually this is a very particular case of duality between two variables. In a
more general setting the graph inversion procedure does not yield the graph of the
same multifunction, but the graph of its conjugate. And inverting once again allows

NK(0) x
0

ψIR+(x)

+∞

Fig. 1.2. The indicator function of IR+ and the normal cone at x = 0, NK(0) = ∂ψIR+(0) = IR−
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one to recover the original graph under some convexity and properness assumption:
this is the very basic principle of duality (Luenberger, 1992).

Let us focus now on the inclusions in (1.7). As a matter of fact, one may check
that the first one is equivalent to: for any v(t) � 0,

〈i(t),u− v(t)〉� 0, ∀ u � 0 (1.8)

and to: for any i(t) � 0,

〈v(t),u− i(t)〉� 0, ∀ u � 0 . (1.9)

The objects in (1.8) and (1.9) are called a Variational Inequality (VI).
We therefore have three different ways of looking at the ideal diode character-

istic: the complementarity relations in (1.1), the inclusion in (1.7), and the varia-
tional inequality in (1.8). Our objective now is to show that when introduced into
the dynamics of an electrical circuit, these formalisms give rise to various types of
dynamical systems as enumerated at the beginning of this section.

Remark 1.1. Another variational inequality can also be written: for all i(t) � 0,
v(t) � 0,

〈 j− i(t),u− v(t)〉� 0 , ∀ j,u � 0 . (1.10)

Having attained this point, the reader might legitimately wonder what is the use-
fulness of doing such an operation, and what has been gained by rewriting (1.1) as
in (1.7) or as in (1.8). Let us answer a bit vaguely: several formalisms are likely
to be useful for different tasks which occur in the course of the study of a dynam-
ical system (mathematical analysis, time-discretization and numerical simulation,
analysis for control, feedback control design, and so on). In this introductory chap-
ter, we just ask the reader to trust us: all these formalisms are useful and are used.
We will see in the sequel that there exists a lot of other ways to write the comple-
mentary condition such as zeroes of special functions or extremal points of a func-
tional. All these formulations will lead to specific ways of studying and solving the
system.

1.1.2 Four Nonsmooth Electrical Circuits

In order to derive the dynamics of an electrical circuit we need to consider Kirchoff’s
laws as well as the constitutive relations of devices like resistors, inductors, and ca-
pacitors (Chua et al., 1991). The constitutive relation of the ideal diode is the com-
plementarity relation (1.1) while in the case of resistors, inductors, and capacitors
we have the classical linear relations between variables like voltages, currents, and
charges. Thus, taking into account those constitutive relations and using Kirchoff’s
laws it follows that the dynamical equations of the four circuits depicted in Fig. 1.3
are given by
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(a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t)− 1
RC

x1(t)− λ (t)
R

ẋ2(t) =− 1
LC

x1(t)− λ (t)
L

0 � λ (t)⊥ w(t) =
λ (t)

R
+

1
RC

x1(t)− x2(t) � 0

(1.11)

(b)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) =−x2(t)+λ (t)

ẋ2(t) =
1

LC
x1(t)

0 � λ (t)⊥ w(t) =
1
C

x1(t)+ Rλ (t) � 0

(1.12)

(c)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t)

ẋ2(t) =−R
L

x2(t)− 1
LC

x1(t)− λ (t)
L

0 � λ (t)⊥ w(t) =−x2(t) � 0

(1.13)

(d)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t)− 1
RC

x1(t)

ẋ2(t) =− 1
LC

x1(t)+
λ (t)

L

0 � λ (t)⊥ w(t) = x2(t) � 0

(1.14)

where we considered the current through the inductors for the variable x2(t), and for
the variable x1(t) the charge on the capacitors as state variables.

Let us now make use of the above equivalent formalisms to express the dynam-
ics in (1.11)–(1.14) in various ways. We will generically call the dynamics in (1.11)–
(1.14) a Linear Complementarity System (LCS), a terminology introduced in van der
Schaft & Schumacher (1996). An LCS therefore consists of a linear differential equa-
tion with state (x1,x2), an external signal λ (·) entering the differential equation, and
a set of complementarity conditions which relate a variable w(·) and λ (·). Since w(·)
is itself a function of the state and possibly of λ (·), the complementarity conditions
play a crucial role in the dynamics. The variable λ may be interpreted as a Lagrange
multiplier.
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(a)

CRL

x2

(b)

CL

x2

R

(c)

C

L

R

x2

(d)

CRL

x2

Fig. 1.3. RLC circuits with an ideal diode

1.1.3 Continuous System (Ordinary Differential Equation)

Let us consider for instance the circuit (a) whose dynamics is in (1.11). Its comple-
mentarity conditions are given by

⎧⎪⎪⎨
⎪⎪⎩

w(t) =
λ (t)

R
+

1
RC

x1(t)− x2(t)

0 � λ (t)⊥ w(t) � 0

. (1.15)

If we consider λ (t) as the unknown of this problem, then the question we have to
answer to is: does it possess a solution, and if yes is this solution unique? Here we
must introduce a basic tool that is ubiquitous in complementarity systems: the Linear
Complementarity Problem (LCP). An LCP is a problem which consists of solving a
set of complementarity relations as

⎧⎪⎨
⎪⎩

w = Mλ + q

0 � λ ⊥ w � 0

, (1.16)
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where M is a constant matrix and q a constant vector, both of appropriate dimen-
sions. The inequalities have to be understood component-wise and the relation w⊥ λ
means wTλ = 0. A fundamental result on LCP (see Sect. 12.4) guarantees that there
is a unique λ that solves the LCP in (1.16) for any q if and only if M is a so-called
P-matrix (i.e., all its principal minors are positive). In particular, positive definite
matrices are P-matrices.

Taking this into account, it is an easy task to see that there is a unique solution
λ (t) to the LCP in (1.15) given by

λ (t) = 0 if
1

RC
x1(t)− x2(t) � 0 , (1.17)

λ (t) = − 1
C

x1(t)+ Rx2(t) > 0 if
1

RC
x1(t)− x2(t) < 0 . (1.18)

Evidently we could have solved this LCP without resorting to any general re-
sult on existence and uniqueness of solutions. However, we will often encounter
LCPs with several tenth or even hundreds of variables (i.e., the dimension of M
in (1.16) can be very large in many applications). In such cases solving the LCP
“with the hands” rapidly becomes intractable. So λ (t) in (1.11) considered as the
solution at time t of the LCP in (1.15) can take two values, and only two, for all
t � 0.

Another way to arrive at the same result for circuit (a) is to use once again the
equivalence between (1.1) and (1.7). It is straightforward then to see that (1.15) is
equivalent to

λ (t)+
1
C

x1(t)−Rx2(t) ∈−∂ψIR+(λ (t)) (1.19)

(we have multiplied the left-hand side by R and since ∂ψIR+(λ (t)) is a cone R∂ψIR+

(λ (t)) = ∂ψIR+(λ (t))). It is well known in convex analysis (see Appendix A) that
(1.19) is equivalent to

λ (t) = ProjIR+

[
− 1

C
x1(t)+ Rx2(t)

]
, (1.20)

where ProjIR+ is the projection on IR+. Since IR+ is convex (1.20) possesses a unique
solution. Once again we arrive at the same conclusion. The surface that splits the
phase space (x1,x2) in two parts corresponding to the “switching” of the LCP is
the line − 1

C x1(t)+ Rx2(t) = 0. On one side of this line λ (t) = 0, and on the other
side λ (t) =− 1

C x1(t)+ Rx2(t) > 0. We may write (1.11) as
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

ẋ1(t) = x2(t)− 1
RC

x1(t)

ẋ2(t) =− 1
LC

x1(t)

if − 1
C

x1(t)+ Rx2(t) < 0 ,

⎡
⎢⎣

ẋ1(t) = 0

ẋ2(t) =−R
L

x2(t)
if − 1

C
x1(t)+ Rx2(t) � 0 ,

(1.21)

that is a piecewise linear system, or as

ẋ(t)−Ax(t) = B ProjIR+

[
− 1

C
x1(t)+ Rx2(t)

]
, (1.22)

where the matrices A and B can be easily identified.
The fact that the projection operator in (1.20) is a Lipschitz-continuous single-

valued function (Goeleven et al., 2003a) shows that the equation (1.22) is an Ordinary
Differential Equation (ODE) with a Lipschitz-continuous vector field.2 We therefore
conclude that this complementarity system possesses a global unique and differen-
tiable solution, as a standard result on ODEs (Coddington & Levinson, 1955).

Exactly the same analysis can be done for the circuit (b) which is also an ODE.

1.1.4 Hints on the Numerical Simulation of Circuits (a) and (b)

The circuit (a) can be simulated with any standard one-step and multistep methods
like explicit or implicit (backward) Euler, mid-point, or trapezoidal rules (Hairer
et al., 1993, Chap. II.7), which apply to ordinary differential equations with a
Lipschitz right-hand side. Nevertheless, all these methods behave globally as a
method of order one as the right-hand side is not differentiable everywhere (Hairer
et al., 1993; Calvo et al., 2003).

As an illustration, a simple trajectory of the circuit (a) is computed with an ex-
plicit Euler scheme and a standard Runge–Kutta of order 4 scheme. The results are
depicted in Fig. 1.4. With the initial conditions, x1(0) = 1, x2(0) = −1, we observe
only one event or switch from one mode to the other. Before the switch, the dynamics
is a linear oscillator in x1 and after the switch, it corresponds to a exponential decay
in x1.

We present in Fig. 1.5 a slightly more rich dynamics with the circuit (b), which
corresponds to a half-wave rectifier. When the diode blocks the current, λ = 0,w > 0,
the dynamics of the circuit is a pure linear LC oscillator in x2. When the constraint
is active λ > 0,w = 0 and the diode lets the positive current pass: the dynamics is
a damped linear oscillator in x1. The interest of the circuit (b) with respect to the
circuit (a) is that if R is small other switches are possible in circuit (b).

2 It is also known that the solutions of LCPs as in (1.16) with M a P-matrix are Lipschitz-
continuous functions of q (Cottle et al., 1992, Sect. 7.2). So we could have deduced this
result from (1.15) and the complementarity formalism of the circuit.
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Fig. 1.4. Simulation of the circuit (a) with the initial conditions x1(0) = 1, x2(0) = −1 and

R = 10, L = 1, C =
1

(2π)2 . Time step h = 5×10−3

The Question of the Order

It is noteworthy that even in this simple case, where the “degree” of nonsmoothness is
rather low (said otherwise, the system is a gentle nonsmooth system), applying higher
order “time-stepping” methods which preserve the order p � 2 is not straightforward.
By time-stepping method, we mean here a time-discretization method which does not
consider explicitly the possible times at which the solution is not differentiable in the
process of integration.

Let us now quote some ideas from Grüne & Kloeden (2006) which accurately
explain the problem of applying standard higher order schemes: In principle known
numerical schemes for ordinary differential equations such as Runge–Kutta schemes
can be applied to switching systems, changing the vector field after each switch
has occurred. However, in order to maintain the usual consistency order of these
schemes, the integration time steps need to be adjusted to the switching times in such
a way that switching always occurs at the end of an integration interval. This is
impractical in the case of fast switching, because in this case an adjustment of the
scheme’s integration step size to the switching times would lead to very small time
steps causing an undesirably high computational load. Such a method for the time
integration of nonsmooth systems, which consists in locating and adjusting the time
step to the events will be called an event-driven method. If the location of the events
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Fig. 1.5. Simulation of the circuit (b) with the initial conditions x1(0) = 1, x2(0) = 1 and

R = 10, L = 1, C =
1

(2π)2 . Time step h = 5×10−3

is sufficiently accurate, the global order of the integration method can be retrieved. If
one is not interested in maintaining the order of the scheme larger than one, however,
one may apply Runge–Kutta methods directly to an ODE as (1.22).

There are three main conclusions to be retained from this:

1. When the instants of nondifferentiability are not known in advance, or when there
are too many such times, then applying an “event-driven” method with order
larger than one may not be tractable.

2. We may add another drawback of event-driven methods that may not be present in
the system we have just studied, but will frequently occur in the systems studied
in this book. Suppose that the events (or times of nondifferentiability, or switching
times) possess a finite accumulation point. Then an event-driven scheme will not
be able to go further than the accumulation, except at the price of continuing the
integration with some ad hoc, physically and mathematically unjustified trick.

3. Finally, there exist higher order standard numerical schemes which continue to
perform well for some classes of nonsmooth systems, but at the price of decreas-
ing the global order to one (see Sect. 9.2). However, this global low-order behav-
ior can be compensated by an adaptive time-step strategy which takes benefits
from the high accuracy of the time-integration scheme on smooth phases.
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It is noteworthy that the events that will be encountered in the systems examined
throughout the book usually are not exogenous events but state dependent, hence not
known in advance. Therefore, the choice between the event-driven methods or the
time-stepping methods depends strongly on the type of systems under study. We will
come back later on the difference between time-stepping and event-driven numeri-
cal schemes and their respective ranges of applications (especially for mechanical
systems).

The Question of the Stability of Explicit Schemes

As we said earlier, the nonsmoothness of the right-hand side destroys the order of
convergence of the standard time-stepping integration scheme. Another aspect is the
stability, especially for explicit schemes. Most of the results on the stability of nu-
merical integration schemes are based on the assumption of sufficient regularity of
the right-hand side.

The question of the simulation of ODEs with discontinuities will be discussed
in Sects. 7.2 and 9.1. Some numerical illustrations of troubles in terms of the order
of convergence and the stability of the methods are given in Sect. 9.1 where the
dynamics of the circuits (a) and (b) are simulated.

1.1.5 Unilateral Differential Inclusion

Let us now turn our attention to circuit (c). This time the complementarity relations
are given by

0 � λ (t)⊥ w(t) =−x2(t) � 0 . (1.23)

Contrary to (1.15), it is not possible to calculate λ (t) directly from this set of rela-
tions. At first sight there is no LCP that can be constructed (indeed now we have a
zero matrix M).

Let us, however, imagine that there is a time interval [τ,τ + ε), ε > 0, on which
the solution x2(t) = 0 for all t ∈ [τ,τ + ε). Then on [τ,τ + ε) one has necessar-
ily −ẋ2(t) � 0, otherwise the unilateral constraint −x2(t) � 0 would be violated.
Actually all the derivatives of x2(·) are identically 0 on [τ,τ + ε). The interesting
question is: what happens on the right of t = τ + ε ? Is there one derivative of x2(·)
that becomes positive, so that the system starts to detach from the constraint x2 = 0 at
t = τ + ε? Such a question is important, think for instance of numerical simulation:
one will need to implement a correct test to determine whether or not the system
keeps evolving on the constraint, or quits it. In fact the test consists of considering
the further complementarity condition

0 � λ (t+)⊥−ẋ2(t) =
R
L

x2(t+)+
1

LC
x1(t)+

λ (t+)
L

� 0 (1.24)

which is an LCP to be solved only when x2(t) = 0. The fact that this LCP possesses
a solution λ (t)− ẋ2(t) > 0 is a sufficient condition for the system to change its mode
of evolution. We can solve for λ (t) in (1.24) exactly as we did for (1.15). Both are
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LCPs with a unique solution. However, this time the resulting dynamical system is
not quite the same, since we have been obliged to follow a different path to get the
LCP in (1.24).

In order to better realize this big discrepancy, let us use once again the equiva-
lence between (1.1) and (1.7). We obtain that λ (t) ∈ −∂ψIR+(−x2(t)). Inserting this
inclusion in the dynamics (1.13) yields

(c)

⎧⎪⎨
⎪⎩

ẋ1(t)− x2(t) = 0

ẋ2(t)+
R
L

x2(t)+
1

LC
x1(t) ∈ 1

L
∂ψIR+(−x2(t))

(1.25)

where it is implicitly assumed that x2(0) � 0 so that the inequality constraint
x2(t) � 0 will be satisfied for all t � 0.

Passing from the LCP (1.23) to the LCP (1.24) and then from (1.13) to (1.25)
can be viewed similarly as the index-reduction operation in a Differential Algebraic
Equation (DAE). Indeed, the LCP on x2 in (1.23) is replaced by the LCP on ẋ2 in
(1.24).

Unilateral Differential Inclusion

More compactly, (1.25) can be rewritten as

−ẋ(t)+ Ax(t) ∈ B∂ψIR+(w(t)) (1.26)

which we can call a Unilateral Differential Inclusion (UDI) where the matrices A and
B can be easily identified. The reason why we employ the word unilateral should be
obvious. It is noteworthy that the right-hand side of (1.26) is generally a set that is not
reduced to a single element, see (1.6). It is also noteworthy that the complementarity
conditions are included in the UDI in (1.26). Obviously, the dynamics in (1.26) is
not a variable structure or discontinuous vector field system. It is something else.

Evolution Variational Inequality

Using a suitable change of coordinate z = Rx, R = RT > 0, it is possible to show
(Goeleven & Brogliato, 2004; Brogliato, 2004) that (1.26) can also be seen as an
Evolution Variational Inequality (EVI). This time we make use of the equivalence
between (1.7) and (1.8) and of a property of electrical circuits composed of resis-
tors, capacitors, and inductances (they are dissipative). Then (1.26) is equivalent to
the EVI

⎧⎪⎪⎨
⎪⎪⎩

〈
dz
dt

(t)−RAR−1z(t),v− z(t)
〉

� 0,∀ v ∈ K, a.e. t � 0

z(t) ∈ K,t � 0 ,

(1.27)
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where K = {(z1,z2)| − (0 1) R−1z � 0} and a.e. means almost everywhere (the so-
lution not being a priori differentiable everywhere). As a consequence of how the
set K is constructed, having z(t) ∈ K is equivalent to having x2(t) � 0. In fact it can
be shown that the EVI in (1.27) possesses unique continuous solutions which are
right differentiable (Goeleven & Brogliato, 2004). It is remarkable at this stage to
notice that both (1.22) and (1.26) possess unique continuous solutions, however, the
solutions of the inclusion (1.26) are less regular.

1.1.6 Hints on the Numerical Simulation
of Circuits (c) and (d)

Let us now see how the differential inclusion (1.26) and the LCS in (1.13) may
be time-discretized for numerical simulation purpose. Let us start with the LCS in
(1.13).

A Direct Backward Euler Scheme

Mimicking the backward Euler discretization for ODEs, a time-discretization of
(1.13) is ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1,k+1− x1,k = hx2,k+1

x2,k+1− x2,k =−h
R
L

x2,k+1− h
LC

x1,k+1− h
L
λk+1

0 � λk+1 ⊥−x2,k+1 � 0

, (1.28)

where xk is the value, at time tk of a grid t0 < t1 < · · · < tN = T , N < +∞, h =
T − t0

N
= tk− tk−1, of a step function xN(·) that approximates the analytical solution

x(·).
Let us denote a(h) = 1 + h

R
L

+ h2 1
LC

. Then we can rewrite (1.28) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1,k+1− x1,k = hx2,k+1

x2,k+1 = (a(h))−1

{
x2,k− h

LC
x1,k− h

L
λk+1

}

0 � λk+1 ⊥−(a(h))−1

{
x2,k− h

LC
x1,k

}
+(a(h))−1 h

L
λk+1 � 0

. (1.29)

Remark 1.2. This time-stepping scheme is made of a discretization of the continuous
dynamics (the first two lines of (1.29)) and of a LCP whose unknown is λk+1. We
shall call later on the LCP resolution a one-step algorithm. Here the LCP is scalar
and can easily be solved by inspection. In higher dimensions specific solvers will be
necessary. This is the object of Part III of this book.
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Remark 1.3. The LCP matrix M (here a scalar) is equal to (a(h))−1 h
L

> 0 for all

h > 0, which tends to 0 as h→ 0. This is not very good in practice when very small
steps are chosen. To cope with this issue, let us choose as the unknown the variable
λ̄k+1 = hλk+1. We then solve the LCP

0 � λ̄k+1 ⊥−(a(h))−1
{

x2,k− h
LC

x1,k

}
+(a(h))−1 1

L
λ̄k+1 � 0 . (1.30)

It is noteworthy that this does not change the result of the algorithm, because the set
of nonnegative reals is a cone. This LCP is easily solved:

If x2,k− h
LC

x1,k < 0, then λ̄k+1 = 0 . (1.31)

If x2,k− h
LC

x1,k � 0 then λ̄k+1 = L

{
x2,k− h

LC
x1,k

}
� 0 . (1.32)

Inserting these values into (1.29) we get:

x2,k+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a(h))−1

{
x2,k− h

LC
x1,k

}
if x2,k− h

LC
x1,k < 0

0 if x2,k− h
LC

x1,k � 0

. (1.33)

A Discretization of the Differential Inclusion (1.26)

Let us now propose an implicit time-discretization of the differential inclusion in
(1.26), as follows:

⎧⎪⎨
⎪⎩

x1,k+1− x1,k = hx2,k+1

x2,k+1− x2,k +
hR
L

x2,k+1 +
h

LC
x1,k+1 ∈ 1

L
∂ψIR+(−x2,k+1)

(1.34)

Notice that we can rewrite the second line of (1.34) as

x2,k+1− (a(h))−1
{

x2,k− h
LC

x1,k

}
∈ ∂ψIR+(−x2,k+1) (1.35)

where we have dropped the factor 1
L because ∂ψIR+(−x2,k+1) is a cone.

Let us now use two properties from convex analysis. Let K ⊂ IRn be a convex set,
and let x and y be vectors of IRn. Then

x− y ∈ −∂ψK(x)⇐⇒ x = prox[K;y] , (1.36)

where “prox” means the closest element of K to y in the Euclidean metric, i.e.,
x =argminz∈K

1
2 ‖ z− y ‖2 (see (A.8) for a generalization in a metric M). Moreover

using the chain rule of Proposition A.3 one has
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∂ψIR+(−x) =−∂ψIR−(x) . (1.37)

Using (1.36) and (1.37) one deduces from (1.35) that

x2,k+1− (a(h))−1
{

x2,k− h
LC

x1,k

}
∈ −∂ψIR−(x2,k+1) , (1.38)

so that the algorithm becomes⎧⎪⎪⎨
⎪⎪⎩

x1,k+1− x1,k = hx2,k+1

x2,k+1 = prox

[
IR−;(a(h))−1

{
x2,k− h

LC
x1,k

}] . (1.39)

We therefore have proved the following:

Proposition 1.4. The algorithm (1.28) is equivalent to the algorithm (1.34). They
both allow one to advance from step k to step k+1, solving the proximation in (1.39).

In Figs. 1.6 and 1.7, simulation results of the presented algorithm are given.

1.1.6.1 Approximating the Measure of an Interval

It is worthy to come back on the trick presented in Remark 1.3 that has been used to
calculate the solution of the LCP in (1.29), i.e., to calculate λ̄k+1 = hλk+1 rather than
λk+1.
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Fig. 1.6. Simulation of the circuit (c) with the initial conditions x1(0) = 1, x2(0) = 0 and
R = 0.1, L = 1, C = 1

(2π)2 . Time step h = 1×10−3
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Fig. 1.7. Simulation of the circuit (d) with the initial conditions x1(0) = 1, x2(0) = −1 and
R = 10, L = 1, C = 1

(2π)2 . Time step h = 1×10−3

First of all, it follows from (1.34) and (1.28) that the element of the set
∂ψIR+(−x2,k+1) is not λk+1, but λ̄k+1. Retrospectively, our “trick” therefore appears
not to be a trick, but a natural thing to do. Second, this means that the primary vari-
ables which are used in the integration are not (x1,k,x2,k,λk+1), but (x1,k,x2,k, λ̄k+1).
Suppose that the initial value for the variable x2(·) is negative. Then its right limit
(supposed at this stage of the study to exist) has to satisfy x2(0+) � 0. Thus a jump
occurs initially in x2(·), so that the multiplier λ is at t = 0 a Dirac measure:3

λ =−L(x2(0+)− x2(0−))δ0 (1.40)

The numerical scheme has to be able to approximate this measure! It is not possible
numerically to achieve such a task, because this would mean approximating some
kind of infinitely large value over one integration interval. However, what is quite
possible is to calculate the value of

dλ ([tk,tk+1]) =
∫

[tk ,tk+1]
dλ , (1.41)

i.e., the measure of the interval [tk,tk+1].

3 Throughout the book, right and left limits of a function F(·) will be denoted as
F(t+) or F+(t), and F(t−) or F−(t), respectively.
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Outside atoms of λ this is easy as λ is simply the Lebesgue measure. At atoms
of λ this is again a bounded value. In fact, λ̄k+1 = hλk+1 is an approximation of the
measure of the interval by dλ i.e.,

λ̄k+1 = hλk+1 ≈
∫

[tk ,tk+1]
dλ (1.42)

for each time-step interval.
Such an algorithm is therefore guaranteed to compute only bounded values, even

if state jumps occur. Such a situation is common when we consider mechanical sys-
tems (see Sect. 1.4), dynamical complementarity systems (see Chap. 4), or higher
relative degree systems (see Chap. 5).

Remark 1.5. A noticeable discrepancy between the equations (1.11) of the circuit
(a) and the equations (1.13) of the circuit (c) is as follows. The complementarity
relations in (1.11) are such that for any initial value of x1(·) and x2(·), there always
exist a bounded value of the multiplier λ (which is a function of time and of the
states) such that the integration proceeds. Such is not the case for (1.13), as pointed
out just above. The relative degree r between w and λ plays a significant role in the
dynamics (the relative degree is the number of times one needs to differentiate w
in order to make λ appear explicitly: in (1.11) one has r = 0, but in (1.13) one has
r = 1). A comprehensible presentation of the notion of relative degree is given in
Chap. 4.

1.1.6.2 The Necessity of an Implicit Discretization

Another reason why considering the discretization of the inclusion in (1.25) is im-
portant is the following. Suppose one writes an explicit right-hand side ∂ψIR+(−x2,k)
in (1.34) instead of the implicit form ∂ψIR+(−x2,k+1). Then after few manipulations
and using (1.36) one obtains

a(h)x2,k+1 +
h

LC
x1,k− x2,k ∈ ∂ψIR+(−x2,k)

�
x2,k = prox

[
IR+;−a(h)x2,k+1− h

LC
x1,k

] (1.43)

which is absurd.
The implicit way of discretizing the inclusion is thus the only way that leads

to a sound algorithm. This will still be the case with more general inclusions with
right-hand sides of the form ∂ψK(x) for some domain K ⊂ IRn.

Let us now start from the complementarity formalism (1.28), with an explicit
form

0 � λk+1 ⊥−x2,k � 0 . (1.44)
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Then we get the complementarity problem

0 � λk+1 ⊥−
(

1 +
h
R

L

)
x2,k+1− h

LC
x1,k+1− h

L
λk+1 � 0 . (1.45)

Clearly this complementarity problem cannot be used to advance the algorithm from
step k to step k+1. This intrinsic implicit form of the discretization of the Differential
Inclusion (DI) we work with here is not present in other types of inclusions, where
explicit discretizations are possible, see Chap. 9.

1.1.7 Calculation of the Equilibrium Points

It is expected that studying the equilibrium points of complementarity systems as in
(1.13) and (1.11) will lead either to a Complementarity Problem (CP) (like LCPs), or
inclusions (see (1.7)), or variational inequalities (see (1.8)). Let us point out briefly
the usefulness of the tools that have been introduced above, for the characterization
of the equilibria of the class of nonsmooth systems we are dealing with.

In general one cannot expect that even simple complementarity systems possess
a unique equilibrium. Consider for instance circuit (c) in (1.13). It is not difficult to
see that the set of equilibria is given by {(x∗1,x∗2)| x∗1 � 0,x∗2 = 0}.

Let us consider now (1.26) and its equivalent (1.27). The fixed points z∗ of the
EVI in (1.27) have to satisfy

〈−RAR−1z∗,v− z∗〉� 0,∀ v ∈ K . (1.46)

This is a variational inequality, and the studies concerning existence and unique-
ness of solutions of a Variational Inequality (VI)are numerous. We may for instance
use results in Yao (1994) which relate the set of solutions of (1.46) to the monotonic-
ity of the operator x �→ −RAR−1x. In this case, monotonicity is equivalent to semi-
positive definiteness of −RAR−1 and strong monotonicity is equivalent to positive
definiteness of −RAR−1 (Facchinei & Pang, 2003, p. 155). If the matrix −RAR−1 is
semi-positive definite, then Yao (1994, theorem 3.3) guarantees that the set of equi-
libria is nonempty, compact, and convex. If −RAR−1 is positive definite, then from
Yao (1994, theorem 3.5) there is a unique solution to (1.46), consequently a unique
equilibrium for the system (1.26).

The monotonicity is of course a sufficient condition only. In order to see this, let
us consider a linear complementarity system

⎧⎨
⎩

ẋ(t) = Ax(t)+ Bλ (t)

0 � Cx(t)+ D⊥ λ (t) � 0
. (1.47)

The fixed points of this LCS are the solutions of the problem
⎧⎨
⎩

0 = Ax∗+ Bλ

0 � Cx∗+ D⊥ λ � 0
. (1.48)
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If we assume that A is invertible, then we can construct the following LCP

0 �−CA−1Bλ + D⊥ λ � 0 (1.49)

which is not to be confused with the LCP in (1.24). If the matrix −CA−1B is a P-
matrix then this LCP has a unique solution λ ∗ and we conclude that there is a unique
equilibrium state x∗ = −A−1Bλ ∗. Clearly there is no monotonicity argument in this
reasoning as the set of P-matrices contains that of positive definite matrices (i.e., a
P-matrix is not necessarily positive definite).

As an illustration we may consider once again the circuits and (c) and (d). In the
case of (1.13) we have

A =

⎛
⎜⎝

0 1

− 1
LC
−R

L

⎞
⎟⎠ ,−CA−1B = 0, and D = 0 . (1.50)

There is an infinity of solutions for the LCP in (1.49), as pointed out above. In the
case of (1.14) we have

A =

⎛
⎜⎜⎝
− 1

RC
1

− 1
LC

0

⎞
⎟⎟⎠ ,−CA−1B =

1
R

> 0, and D = 0 . (1.51)

There is a unique solution. We leave it to the reader to calculate explicitly the solu-
tions (or the set of solutions). It is easily checked that no one of the two matrices−A
is semi-positive definite and they therefore do not define monotone operators. The
sufficient criterion alluded to above is therefore not applicable.

In the case of circuit (a) with dynamics in (1.11), the fixed points are given as the
solutions of a complementarity problem of the form⎧⎨

⎩
0 = Ax∗+ Bλ

0 � Cx∗+ Dλ ⊥ λ � 0
, (1.52)

where

A =

⎛
⎜⎜⎝
− 1

RC
1

− 1
LC

0

⎞
⎟⎟⎠ ,B =−

⎛
⎜⎝

1
R
1
L

⎞
⎟⎠ ,C =

(
1

RC
−1

)
, and D =

1
R

(1.53)

Since A is invertible, with inverse

A−1 =

(
0 −1
1

LC
− 1

RC

)

one can express x∗ as x∗ = −A−1Bλ . Therefore Cx∗+ Dλ = (D−CA−1B)λ , and
the LCP is: 0 � λ ⊥ (D−CA−1B)λ � 0. The solution is λ = 0 independently of
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the sign of the scalar D−CA−1B. This can also be seen from the inclusion λ ∈
−∂ψIR+((D−CA−1B)λ ), taking into account (1.6).

It is noteworthy that computing the fixed points of our circuits may be done
by solving LCPs. In dimension 1 or 2, this may be done by checking the two or
four possible cases, respectively. In higher dimensions, such enumerative procedures
become impossible, and specific algorithms for solving LCPs (or other kinds of CPs)
have to be used. Such algorithms will be described later in Part III.

1.2 Electrical Circuits with Ideal Zener Diodes

1.2.1 The Zener Diode

Let us consider, now, a further electrical device: the ideal Zener diode whose
schematic symbol is depicted in Fig. 1.8a. A Zener diode is a type of diode that
permits current to flow in the forward direction like a normal diode, but also in the
reverse direction if the voltage is larger than the rated breakdown voltage known as
“Zener knee voltage” or “Zener voltage” denoted by Vz > 0. The ideal characteristic
between the current i(t) and the voltage v(t) can be seen in Fig. 1.8b.

Let us seek an analytical representation of the current–voltage characteristic of
the ideal Zener diode. For this we are going to use some convex analysis tools and
make some manipulations: subdifferentiate, conjugate, invert. Let us see how this
works, with Fig. 1.9 as a guide.

The inversion consists of expressing v(t) as a function of −i(t): this is done in
Fig. 1.9b. Computing the subderivative of the function f (·) of Fig. 1.9c, one gets the
multivalued mapping of Fig. 1.9b. Indeed we have

i(t)

v(t)

Fig. 1.8a. The Zener diode schematic symbol

Vz

0

i(t)

v(t)

Fig. 1.8b. The ideal characteristic of a Zener diode
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invert conjugate

subdifferentiate

subdifferentiate

Vz

v(t)

−i(t)0

(b)

0

v(t)

Vz

−i(t) f ∗(z)

0 Vz

z

+∞ +∞

x
0

Vzxy = f (x)

(a) (d)

(c)

Fig. 1.9. The Zener diode characteristic

f (x) =

⎧⎨
⎩

Vzx if x � 0

0 if x < 0
(1.54)

from which it follows that the subdifferential of f (·) is

∂ f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Vz if x > 0

[0,Vz] if x = 0

0 if x < 0

. (1.55)

Notice that the function f (·) is convex, proper, continuous, and that the graphs of
the multivalued mappings of Fig. 1.9a and b are maximal monotone. Monotonicity
means that if you pick any two points −i1 and −i2 on the abscissa of Fig. 1.9b, and
the corresponding v1 and v2, then it is always true that

〈−i1− (−i2),v1− v2〉� 0 (1.56)

Similarly for Fig. 1.9a maximality means that it is not possible to add any new branch
to the graphs of these mappings, without destroying the monotonicity. This is indeed
the case for the graphs of Fig. 1.9a and b.
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Let us now introduce the notion of the conjugate of a convex function f (·) that is
defined as

f ∗(z) = sup
x∈IR

(〈x,z〉− f (x)) . (1.57)

Let us calculate the conjugate of the function f (·) above:

f ∗(z) = supx∈IR

⎧⎨
⎩

xz−Vzx if x � 0

xz if x < 0
= supx∈IR

⎧⎨
⎩

x(z−Vz) if x � 0

xz if x < 0

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
+∞ if z > Vz

0 if z � Vz

{
0 if z � 0
+∞ if z < 0

=

⎧⎨
⎩

+∞ if z < 0 and z > Vz

0 if 0 � z � Vz

= ψ[0,Vz](z) ,

(1.58)

where we retrieve the indicator function that was already met when we considered
the ideal diode, see Sect. 1.1.1.

We therefore deduce from Fig. 1.9 that

−i(t) ∈ ∂ψ[0,Vz](v(t)), whereas v(t) ∈ ∂ f (−i(t)) . (1.59)

The function f (·) = ψ∗[0,Vz]
(·) is called in convex analysis the support function of the

set [0,Vz]. It is known that the support function and the indicator function of a convex
set are conjugate to one another.

We saw earlier that the subderivative of the indicator function of a convex set
is also the normal cone to this convex set. Here we obtain that ∂ψ[0,Vz](v(t)) is the
normal cone N[0,Vz](v(t)), that is IR− when v(t) = 0 and IR+ when v(t) = Vz. It is the
singleton {0} when 0 < v(t) < Vz.

1.2.2 The Dynamics of a Simple Circuit

Differential Inclusions and Filippov’s Systems

Now that these calculations have been led, let us consider the dynamics of the circuit
in Fig. 1.3c, where we replace the ideal diode by an ideal Zener diode. Choosing the
same state variables (x1 is the capacitor charge, x2 is the current through the circuit),
we obtain: ⎧⎪⎨

⎪⎩
ẋ1(t) = x2(t)

ẋ2(t)+
R
L

x2(t)+
1

LC
x1(t) =

1
L

v(t)
, (1.60)

where v(·) is the voltage of the Zener diode. We saw that v(t) ∈ ∂ f (−i(t)), thus
we get
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⎧⎪⎨
⎪⎩

ẋ1(t)− x2(t) = 0

ẋ2(t)+
R
L

x2(t)+
1

LC
x1(t) ∈ 1

L
∂ f (−x2(t))

, (1.61)

which is a differential inclusion.
Compare the inclusions in (1.25) and in (1.61). They look quite similar, how-

ever, the sets in their right-hand sides are quite different. Indeed the set in the right-
hand side of (1.25) is unbounded, whereas the set in the right-hand side of (1.61) is
bounded, as it is included in [0,Vz]. More precisely, the set-valued mapping ∂ f (·)
is nonempty, compact, convex, upper semi-continuous, and satisfies a linear growth
condition: for all v ∈ ∂ f (x) there exists constants k and a such that ‖ v ‖� k ‖ x ‖+a.

The differential inclusion (1.61) possesses an absolutely continuous solution, and
we may even assert here that this solution is unique for each initial condition, because
in addition the considered set-valued mapping is maximal monotone, see Lemma
2.13, Theorem 2.41. This is also sometimes called a Filippov’s system or a Filippov’s
DI, associated with the switching surface Σ = {x ∈ IR2 | x2 = 0}. See Sect. 2.1 for
a precise definition of Filippov’s systems. Simple calculations yield that the vector
field in the neighborhood of Σ is as depicted in Fig. 1.10. The surface Σ is crossed
transversally by the trajectories when x1(t) < 0 and x1(t) > CVz. It is an attracting
surface when x1(t) ∈ [0,Vz] (where t means the time when the trajectory attains Σ).
According to Filippov’s definition of the solution, Σ is a sliding surface in the latter
case, which means that x2(t) = 0 after the trajectory has reached this portion of Σ.
Notice that we may rewrite the second line in (1.61) as

ẋ2(t)+
R
L

x2(t)+
1

LC
x1(t) = λ (t), λ (t) ∈ 1

L
∂ f (−x2(t)) . (1.62)

Σ
x1

x2

0 CVz

sliding motion

Fig. 1.10. The vector field on the switching surface Σ
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Despite passing from (1.61) to (1.62) looks like wasted effort, it means that the in-
clusion in (1.61) is equivalent to integrate its left-hand side by looking for an element
of the set in its right-hand side, at each time instant. This is in fact the case for all the
differential inclusions that we shall deal with in this book. In other words the inte-
gration proceeds along Σ with an element λ ∈ ∂ f (0) such that λ (t) = x1(t)

C , where t
is the “entry” time of the trajectory in Σ (notice that as long as x2 = 0 then x1 remains
constant).

Remark 1.6. The fact that the switching surface Σ is attracting in x1(t) ∈ [0,Vz], is
intimately linked with the maximal monotonicity of the set-valued mapping ∂ f (·).
This mapping is sometimes called a relay function in the systems and control com-
munity (Fig. 1.11).

A First Complementarity System Formulation

Let us now seek a complementarity formulation of the multivalued mapping ∂ f (·) =
∂ψ∗[0,Vz]

(·) whose graph is in Fig. 1.9a. Let us introduce two slack variables (or mul-
tipliers) λ1 and λ2, and the set of conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 � λ1(t)⊥−i(t)+ |i(t)|� 0

0 � λ2(t)⊥ i(t)+ |i(t)|� 0

λ1(t)+λ2(t) = Vz

v(t) = λ2(t)

. (1.63)

1.0

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Fig. 1.11. Example of the vector field on the switching surface Σ for R = C = L = Vz = 1
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Let us check by inspection that indeed (1.63) represents the mapping of Fig. 1.9a.
If −i(t) > 0, then −i(t)+ |i(t)|> 0, so λ1(t) = 0 and λ2(t) = Vz = v(t) (and i(t)+
|i(t)| = 0). If −i(t) < 0 then i(t) + |i(t)| > 0, so λ2(t) = 0, and λ1(t) = Vz (and
−i(t)+ |i(t)|= 0) and v(t) = λ2(t) = 0. Now if i(t) = 0, then one easily calculates
that 0 � λ1(t) � Vz, 0 � λ2(t) � Vz. Thus 0 � v(t) � Vz.

Thanks to the complementary formulation (1.63), the inclusion (1.61) can be
formulated as a Dynamical (or Differential) Complementarity System (DCS)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t)

ẋ2(t)+
R
L

x2(t)+
1

LC
x1(t) =

1
L

v(t)

0 � λ1(t)⊥−x2(t)+ |x2(t)|� 0

0 � λ2(t)⊥ x2(t)+ |x2(t)|� 0

λ1(t)+λ2(t) = Vz

v(t) = λ2(t)

. (1.64)

This DCS is not an LCS due to the presence of the absolute value function in the
complementarity condition and the two last algebraic equations. We notice that the
variables λ1(t) and λ2(t) can be eliminated from (1.64) using the last two equalities,
leading to another formulation of the DCS:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t)

ẋ2(t)+
R
L

x2(t)+
1

LC
x1(t) =

1
L

v(t)

0 � Vz− v(t)⊥−x2(t)+ |x2(t)|� 0

0 � v(t)⊥ x2(t)+ |x2(t)|� 0

(1.65)

which is neither an LCS.

A Mixed Linear Complementarity Formulation

It is possible from (1.63) to obtain a so-called Mixed Linear Complementarity Sys-
tem (MLCS) which is a generalization of an LCS with an additional system of linear
equations. The goal is to obtain after discretization a so-called Mixed Linear Comple-
mentarity Problem (MLCP) which is a generalization of an LCP with an additional
system of linear equations, such that⎧⎪⎨

⎪⎩
Au +Cw+ a = 0

0 � w⊥ Du + Bw+ d � 0

. (1.66)
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To obtain an MLCS formulation, let us introduce the positive part and the negative
part of the current i(t) as

i+(t) =
1
2
(i(t)+ |i(t)|) = max(0, i(t)) � 0 , (1.67)

i−(t) =
1
2
(i(t)−|i(t)|) = min(0, i(t)) � 0 . (1.68)

The system (1.63) can be rewritten equivalently as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 � λ1(t)⊥ i+(t)− i(t) � 0

0 � λ2(t)⊥ i+(t) � 0

i(t) = i−(t)+ i+(t)

λ1(t)+λ2(t) = Vz

v(t) = λ2(t)

, (1.69)

where the absolute value has disappeared, but a linear equation has been added.
Substitution of two of the last three equations into the complementarity conditions
leads to an intermediate complementarity formulation of the relay function as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 � λ1(t)⊥ i+(t)− i(t) � 0

0 � v(t)⊥ i+(t) � 0

λ1(t)+ v(t) = Vz

(1.70)

or as ⎧⎨
⎩

0 � Vz− v(t)⊥ i+(t)− i(t) � 0

0 � v(t)⊥ i+(t) � 0
. (1.71)

The linear dynamical system (1.60) together with one of the reformulations (1.69),
(1.70), or (1.71) leads to an MLCS formulation. Nevertheless, the complete substi-
tution of the equation into the complementarity condition yields a DCS

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t)

ẋ2(t)+
R
L

x2(t)+
1

LC
x1(t) =

1
L

v(t)

0 � Vz− v(t)⊥ x+
2 (t)− x2(t) � 0

0 � v(t)⊥ x+
2 (t) � 0

, (1.72)

which is neither an LCS nor an MLCS.
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A Linear Complementarity Formulation

Due to the simplicity of the equations involved in the MLCS formulation (1.71), it is
possible to find an LCS formulation of the dynamics. Indeed, the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t)

ẋ2(t)+
R
L

x2(t)+
1

LC
x1(t) =

1
L
λ2(t)

x+
2 (t) = x2(t)− x−2 (t)

λ1(t) = Vz−λ2(t)

0 �
(

x+
2 (t)
λ1(t)

)
⊥

(
λ2(t)
−x−2 (t)

)
� 0

(1.73)

can be recast into the following LCS form⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = Ax(t)+ Bλ̃(t)

w(t) = Cx(t)+ Dλ̃(t)+ g

0 � w(t)⊥ λ̃ (t) � 0

(1.74)

with

A =

[
0 1

− 1
LC
−R

L

]
,B =

[
0 0
1 0

]
,C =

[
0 1
0 0

]
,D =

[
0 1
−1 0

]
,g =

[
0
Vz

]
. (1.75)

The reformulation appears to be a special case for more general reformulations of
relay systems or two-dimensional friction problems into LCS. For more details, we
refer to Pfeiffer & Glocker (1996) and to Sect. 9.3.3. In the more general framework
of ODE with discontinuous right-hand side, an LCS reformulation can be found in
Chap. 7.

1.2.3 Numerical Simulation by Means of Time-Stepping Schemes

In view of this preliminary material, we may consider now the time-discretization
of our system. Clearly our objective here is still to introduce the topic, and the
reader should not expect an exhaustive description of the numerical simulation of the
system.

1.2.3.1 Explicit Time-Stepping Schemes Based on ODE with Discontinuities
Formulations

A forward Euler scheme may be applied on an ODE with discontinuities of the form,
ẋ = f (x, t), where the right-hand side may possess discontinuities (see Sect. 2.8). For
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the right-hand side of the circuit with the Zener diode, a switched model may be
given by

f (x,t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
x2

−R
L

x2− 1
LC

x1

]
for−x2 < 0 (1.76a)

[
0
0

]
for−x2 = 0 (1.76b)

[
x2

−R
L

x2− 1
LC

x1−Vz

]
for−x2 > 0. (1.76c)

The simulation for this choice of the right-hand side is illustrated in Fig. 1.12. We
can observe that some “chattering” effects due to the fact that the sliding mode given
by (1.76b) cannot be reached due to the numerical approximation on x2. This artifact
results in spurious oscillations of the diode voltage v(t) = λ (t) and the diode current
x2(t) = ω(t) as we can observe on the zoom in Fig. 1.13.

One way to circumvent the spurious oscillations is to introduce a “sliding band”,
i.e., an interval where the variable x2 is small in order to approximate the sliding
mode. This interval can be for instance chosen as |x2| � η such that the new right-
hand side is given by
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Fig. 1.12. Simulation of the RLC circuit with a Zener diode with the initial conditions x1(0) =
1,x2(0) = 1 and R = 0.1,L = 1,C = 1

(2π)2 . Explicit Euler scheme with the right-hand side

defined by (1.76). Time step h = 5×10−3
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Fig. 1.13. Zoom on the “chattering” behavior simulation of the RLC circuit with a Zener diode
with the initial conditions x1(0) = 1,x2(0) = 1 and R = 0.1,L = 1,C = 1

(2π)2 . Explicit Euler

scheme with the right-hand side defined by (1.76). Time step h = 5×10−3

f (x,t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
x2

−R
L

x2− 1
LC

x1

]
for−x2 <−η (1.77a)

[
x2

−R
L

x2

]
for |x2|� η (1.77b)

[
x2

−R
L

x2− 1
LC

x1−Vz

]
for−x2 > η (1.77c)

Simulation results depicted in the Figs. 1.14 and 1.15 show that the spurious oscilla-
tions have been cancelled.

The switched models (1.76) and (1.77) are incomplete models. In more general
situations they may fail due the lack of conditions for the transition from the sliding
mode to the other modes. Clearly, the value of the dual variable λ (t) = v(t) has to be
checked to know if the system stays in the sliding mode. We will see in Sect. 9.3.3
that all these conditional statements can be in numerous cases replaced by an LCP
formulation.

It is noteworthy that the previous numerical trick is not an universal solution for
the problem of chattering. Indeed, the switched model given by the right-hand side
(1.77) allows the solution to stay near the boundary of the sliding band. The new
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Fig. 1.14. Simulation of the RLC circuit with a Zener diode with the initial conditions x1(0) =
1,x2(0) = 1 and R = 0.1,L = 1,C = 1

(2π)2 . Euler and four order Runge–Kutta explicit scheme

with the right-hand side defined by (1.77). Time step h = 5×10−3

model is still a discontinuous system and therefore some numerical instabilities of
the ODE solver can appear. More smart approaches for the choice of the right-hand
side in the sliding band can be found in Karnopp (1985), Leine et al. (1998), Leine &
Nijmeijer (2004) and will be described in Sect. 9.3.2.

The fact that we are able to express the Filippov’s DI as an equivalent model of
ODE with a switched right-hand side allows one to use any other explicit schemes
such as explicit Runge–Kutta methods. In Figs. 1.15 and 1.16, the results of the
simulation with the right-hand side (1.76) and (1.77) are depicted. The conclusions
are the same as above. One notices also that two different methods provide different
results (see Figs. 1.14 and 1.15). We will discuss in Sect. 9.2 the question of the order
and the stability of such a higher order method for Filippov’s DIs.

1.2.3.2 Explicit Discretization of the Differential Inclusion
and the Complementarity Systems

Explicit Discretization of the Differential Inclusion (1.61)

Consider the forward Euler method
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Fig. 1.15. Simulation of the RLC circuit with a Zener diode with the initial conditions x1(0) =
1,x2(0) = 1 and R = 0.1,L = 1,C = 1

(2π)2 . Euler and four order Runge–Kutta explicit scheme

with the right-hand side defined by (1.77). Time step h = 5×10−3

⎧⎪⎨
⎪⎩

x1,k+1− x1,k = hx2,k

x2,k+1− x2,k +
hR
L

x2,k +
h

LC
x1,k ∈ h

L
∂ f (−x2,k) ,

(1.78)

where xk is the value, at time tk of a grid t0 < t1 < · · · < tN = T , N < +∞, h =
T − t0

N
= tk− tk−1, of a step function xN(·) that approximates the analytical solution

x(·).
Compare with the time-discretization of the inclusion (1.25) that is proposed in

Sect. 1.1.5. This time considering an implicit scheme is not mandatory (this may
improve the overall quality of the numerical integration especially from the stability
point of view, but is not a consequence of the dynamics contrary to what happens
with (1.25)). One of the major discrepancies with the circuit (1.25) is that the values
of x2 are no longer constrained to stay in a set by the inclusion (1.78).

Explicit Discretization of the Complementarity Systems (1.65)

Let us investigate how the complementarity system (1.65) may be discretized. We get
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Fig. 1.16. Simulation of the RLC circuit with a Zener diode with the initial conditions x1(0) =
1,x2(0) = 1 and R = 0.1,L = 1,C = 1

(2π)2 . Four order Runge–Kutta explicit scheme with the

right-hand side defined by (1.76). Time step h = 5×10−3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1,k+1− x1,k = hx2,k

x2,k+1− x2,k +
hR
L

x2,k +
h

LC
x1,k =

h
L
λ2,k

0 � Vz−λ2,k ⊥−x2,k + |x2,k|� 0

0 � λ2,k ⊥ x2,k + |x2,k|� 0

. (1.79)

One computes that if x2,k > 0 then λ2,k = 0, while x2,k < 0 implies λ2,k = Vz. More-
over x2,k = 0 implies that λ2,k ∈ [0,Vz]. We conclude that the two schemes in (1.78)
and (1.79) are the same.

However, the complementarity formalism does not bring any advantage over
the inclusion formalism, as it does not yield neither an LCP nor an MLCP, even
with the reformulation proposed in the preceding section. The main reason for that
is not the presence of absolute values in the complementarity formalism which can
be avoided by adding an equality, but the fact that λ2,k has to be complementary to
the positive part of x2,k which is not an unknown at the beginning of the step.
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For instance, if we choose the MLCS formulation given by the dynamical
system (1.60) and the formulation (1.70), we get the following complementarity
problem ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1,k+1− x1,k = hx2,k

x2,k+1− x2,k +
hR
L

x2,k +
h

LC
x1,k =

h
L
λ2,k

0 � λ1,k ⊥ x+
2,k− x2,k � 0

0 � λ2,k ⊥ x+
2,k � 0

λ1,k +λ2,k = Vz

. (1.80)

In such a “fake” complementarity problem, one has to perform the procedure de-
scribed in the Remark 1.7, which implies to choose a threshold on the value of x2,k.

To conclude this part, whatever the mathematical formalism which is used to
formulate the dynamics, explicit discretizations lead to algorithms without any sense.

Remark 1.7. One has to choose a value for λ2,k in the interval [0,Vz] when x2,k =
0. More concretely when implementing the algorithm on a computer, one has to
choose a threshold η > 0 such that x2,k is considered to be null when |x2,k|� η . One
possibility is to choose the Filippov’s solution that makes the trajectory slide on the
surface Σ = {x ∈ IR2 | x2 = 0}. If x1,k �∈ [0,CVz] we have seen that the trajectories
cross transversally Σ. Thus the chosen value of λ2,k is not important. If x1,k ∈ [0,CVz]
one may simply choose λ2,k = x1,k

C or λ2,k = − L
h x2,k + Rx2,k + x1,k

C to keep x2,k+1 in
the required neighborhood of Σ. With the solution, we have also to check the value
of the dual variable v(t) = λ2(t) to know when the application of this rule has to be
stopped.

1.2.3.3 An Implicit Time-Stepping Scheme

Implicit Discretization of the Differential Inclusion (1.61)

Let us try the following implicit scheme4:⎧⎪⎨
⎪⎩

x1,k+1− x1,k = hx2,k+1

x2,k+1− x2,k +
hR
L

x2,k+1 +
h

LC
x1,k+1 ∈ h

L
∂ f (−x2,k+1) .

(1.81)

After some manipulations this may be rewritten as⎧⎪⎪⎨
⎪⎪⎩

x1,k+1− x1,k = hx2,k+1

x2,k+1 + a(h)
[

h
LC

x1,k− x2,k

]
∈ a(h)

h
L
∂ f (−x2,k+1) ,

(1.82)

4 The scheme chosen here is fully implicit for the sake of simplicity.
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where a(h) =

(
1 +

hR
L

+
h2

LC

)−1

.

Denoting

b = a(h)
[

h
LC

x1,k− x2,k

]

the second line of (1.82) may be rewritten as

x2,k+1 + b ∈ a(h)
h
L
∂ f (−x2,k+1) . (1.83)

It is this inclusion that we are going to examine now. This will allow us to illustrate
graphically why the monotonicity is a crucial property. In Fig. 1.17 the graph of the
linear function

Db =
{
(λ2,k+1,x2,k+1) ∈ IR2 | λ2,k+1 = x2,k+1 + b

}

is depicted for three values of b, together with the graph of the set-valued function,

G =
{

(λ2,k+1,x2,k+1) ∈ IR2 | λ2,k+1 ∈ a(h)
h
L
∂ f (−x2,k+1)

}
.

It is apparent that for any value of b, there is always a single intersection between
the two graphs. One concludes that the generalized equation (1.83) with unknown
x2,k+1 has a unique solution, which allows one to advance the algorithm from k
to k + 1.

If there is an exogenous input u(t) that acts on the system so that the dynamics is
changed to

Db

x2,k+10

sliding motion

λ2,k+1

DbDb

−b −b −b

h
L a(h)Vz

Fig. 1.17. Implicit scheme: the maximal monotone case
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ẋ2(t)+
R
L

x2(t)+
1

LC
x1(t)+

u(t)
L
∈ 1

L
∂ f (−x2(t)) (1.84)

then the variable b is changed to b+a(h)
uk

L
. Varying uk+1 corresponds to a horizontal

translations of the straight lines in Fig. 1.17.

Remark 1.8 (A nonmonotone example). Suppose now that the dynamics is

x2,k+1 + b ∈ −a(h)
h
L
∂ f (−x2,k+1) . (1.85)

We know this is not possible with the circuit we are studying. For the sake of the
reasoning we are leading let us imagine this is the case. Then we get the situation
depicted in Fig. 1.18. There exist values of b for which the generalized equation has
two or three solutions. Uniqueness is lost.

Remark 1.9 (Comparison with the procedure in Remark 1.7). Coming back to
Fig. 1.17, one sees that the values of b that yield a sliding motion along the surface
Σ, correspond to all the values such that the graph of the linear function intersects
the vertical segment of the graph of the multifunction. Contrarily to what happens
with the explicit scheme where a threshold has to be introduced, “detecting” the slid-
ing motion is now the result of a resolution of the intersection problem. No artificial
threshold is needed due to the fact that we have to verify the inclusion of a value into
a set of nonempty interior.

Implicit Discretization of the Complementarity Systems

Let us choose one of the LCS formulations described in the previous section given
by the dynamics (1.73). An implicit time-discretization is given by

λ2,k+1

x2,k+1

0−b −b

− h
L a(h)Vz

−b

DbDb Db

Fig. 1.18. Implicit scheme: the nonmonotone case
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1,k+1− x1,k = hx2,k+1

x2,k+1− x2,k +
hR
L

x2,k+1 +
h

LC
x1,k+1 =

h
L
λ2,k+1

x+
2,k+1 = x2,k+1− x−2,k+1

λ1,k+1 = Vz−λ2,k+1

0 �
(

x+
2,k+1
λ1,k+1

)
⊥

(
λ2,k+1

−x−2,k+1

)
� 0

. (1.86)

Using the previous notations for a(h) and b, we get the following system
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1,k+1− x1,k = hx2,k+1

x2,k+1 + b = a(h)
h
L
λ2,k+1

x+
2,k+1 = x2,k+1− x−2,k+1

λ1,k+1 = Vz−λ2,k+1

0 �
(

x+
2,k+1
λ1,k+1

)
⊥

(
λ2,k+1

−x−2,k+1

)
� 0

. (1.87)

The value of λ2,k+1 is obtained at each time step by the following LCP
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w =

⎡
⎣ a(h)h

L
1

−1 0

⎤
⎦z+

[
−b

Vz

]

0 � w⊥ z � 0

(1.88)

with w = [x+
2,k+1 ,λ1,k+1]T and z = [λ2,k+1 ,x−2,k+1]

T. We see in this case that the
interest of the LCS formulation is to open the door to LCP solvers instead of having
to check the modes.

Simulation Results

The simulation results are presented in Fig. 1.19. We can notice that the spurious
oscillations in Figs. 1.12, 1.13 and 1.16 have disappeared due to the fact that the
sliding is correctly modeled with the implicit approach.

1.2.3.4 Convergence Properties

Consider the explicit Euler scheme in (1.78). Then there exists a subsequence of the
sequence {xn(·)}n that converges uniformly as n→+∞ to some (the) solution of the
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Fig. 1.19. Simulation of the RLC circuit with a Zener diode with the initial conditions

x1(0) = 1,x2(0) = 1 and R = 0.1,L = 1,C =
1

(2π)2 . Implicit Euler scheme. Time step

h = 5×10−3

inclusion in (1.78). This is a consequence of Theorem 9.5. A similar result applies
to the implicit scheme in (1.81), considered as a particular case of a linear multistep
algorithm.

More details will be given in Chap. 9 on one-step and multistep time-stepping
methods for differential inclusion with absolutely continuous solutions such as
Filippov’s DI. When uniqueness of solutions holds, more can be said on the con-
vergence of the scheme, see Theorems 9.8, 9.9 and 9.11.

1.2.4 Numerical Simulation by Means of Event-Driven Schemes

The Filippov’s DI (1.61) may also be simulated by means of event-driven schemes.
We recall that the event-driven approach is based on a time integration of an ODE or
a DAE between two nonsmooth events. At events, if the evolution of the system is
nonsmooth, then a reinitialization is applied. From the numerical point of view, the
time integration on smooth phases is performed by any standard one-step or multi-
step ODE or DAE solvers. This approach needs an accurate location of the events in
time which is based on some root-finding procedure.
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In order to illustrate a little bit more what can be an event-driven approach for
a Filippov’s differential inclusion with an exogenous signal u(t), we introduce the
notion of modes, where the system evolves smoothly. Three modes can be defined as
follows,

mode− :

⎧⎪⎨
⎪⎩

ẋ1(t) = x2(t)

ẋ2(t)+
R
L

x2(t)+
1

LC
x1(t)+

u(t)
L

= 0
if x2 ∈I− ,

mode 0 :

⎧⎨
⎩

ẋ1(t) = 0

ẋ2(t) = 0
if x2 ∈I0 ,

mode + :

⎧⎪⎨
⎪⎩

ẋ1(t) = x2(t)

ẋ2(t)+
R
L

x2(t)+
1

LC
x1(t)+

u(t)
L

= Vz

if x2 ∈I+ ,

(1.89)

respectively associated with the three sets,

I−(t) = {i ∈ IR | i < 0}

I0(t) = {i ∈ IR | i = 0}

I+(t) = {i ∈ IR | i > 0}

. (1.90)

In each mode, the dynamical system is represented by an ODE that can be integrated
by any ODE solver. The transition between two modes is activated when the sign of
a guard function changes, i.e., when an event is detected.

For the modes, “−” and “+”, it suffices to check that the sign of i is changing
to detect an event. A naive approach is to check when the variable x2 is crossing a
threshold ε > 0 sufficiently small. This naive approach may lead to numerical trou-
bles, such as chattering due to the possible drift from the constraint x2 = 0 in the
mode when we integrate ẋ2(t) = 0. To avoid this artifact, it is better to check the
guard functions v(t) and Vz− v, which are dual to the current x+

2 and x−2 in the com-
plementarity formalism, see (1.71) with x2 = i. We will see in Chap. 7 that consider-
ing a complementarity formulation, or more generally, a formulation that exhibits a
duality leads to powerful event-driven schemes.

Once the event is detected, a mode transition has to be performed to provide the
time integrator with the new next mode. The operation is made by inspecting the
sign of ẋ2(t) at the event by solving for instance the inclusion. We will see also in
Chap. 7 that a good manner to perform this task is to relay the mode transition onto
a CP resolution.
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1.2.5 Conclusions

The message of Sects. 1.2.3 and 1.2.4 is the following: explicit schemes, when ap-
plied to Filippov’s systems like (1.60), yield poor results. One should prefer implicit
schemes. More details on the properties of various methods are provided in Chap.
9. The picture is similar for event-driven algorithms, where one has to be careful
with the choice of the variable to check mode transitions. Mode transitions should
preferably be steered by the multiplier λ rather than by the state x(·). In mechan-
ics with Coulomb friction, this is equivalent to decide between sticking and sliding,
watching whether or not the contact force lies strictly inside the friction cone or on
its boundary. For Filippov’s inclusion Stewart’s method is described in Sect. 7.1.2.

1.3 Mechanical Systems with Coulomb Friction

In this section we treat the case of a one-degree-of-freedom mechanical system sub-
ject to Coulomb friction with a bilateral constraint and a constant normal force, as
depicted in Fig. 1.20. Its dynamics is given by

mq̈(t)+ f (t) ∈−mgμ sgn(q̇(t)) , (1.91)

where q(·) is the position of the mass, f (·) is some force acting on the mass, g is the
gravity, μ > 0 is the friction coefficient. The sign multifunction is defined as

sgn(x) =

⎧⎨
⎩

1 if x > 0
[−1,1] if x = 0
−1 if x < 0

. (1.92)

In view of the foregoing developments one deduces that

sgn(x) = ∂ |x| , (1.93)

i.e., the subdifferential of the absolute value function. It is easy to see that this system
is quite similar to the circuit with an ideal Zener diode in (1.61). It can also be
expressed using a complementarity formalism as follows:

g

0

f (t)

q

m

Fig. 1.20. A one-degree-of-freedom mechanical system with Coulomb friction
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 � λ1 ⊥−x + |x|� 0

0 � λ2 ⊥ x + |x|� 0

λ1 +λ2 = 2

sgn(x) =
λ1−λ2

2

(1.94)

which is quite similar to the set of relations in (1.63). Consequently what has been
done for the Zener diode can be redone for such a simple system with Coulomb
friction, which is a Filippov’s DI.

Similarly to the Zener circuit, the one-degree-of-freedom mechanical system
with Coulomb friction can be formulated as an LCS, introducing the positive and
the negative parts of the velocity:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇(t) = v(t)

mv̇(t)+ f (t) =−λ (t) =
1
2
(λ2(t)+λ1(t))

v+(t) = v(t)− v−(t)

λ1(t) = 2mgμ−λ2(t)

0 �
(
λ1(t)
v+(t)

)
⊥

(−v−(t)
λ2(t)

)
� 0

. (1.95)

1.4 Mechanical Systems with Impacts: The Bouncing Ball
Paradigm

In this section some new notions are used, which are all defined later in the book.

1.4.1 The Dynamics

Let us write down the dynamics of a ball with mass m, subjected to gravity and to a
unilateral constraint on its position, depicted in Fig. 1.21:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

mq̈(t)+ f (t) =−mg +λ

0 � q(t)⊥ λ � 0

q̇(t+) =−eq̇(t−) if q(t) = 0 and q̇(t−) � 0

q(0) = q0 � 0, q̇(0−) = q̇0

. (1.96)
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f (t)

q

m

q

0

Fig. 1.21. The one-dimensional bouncing ball

The variable λ is a Lagrange multiplier that represents the contact force: it has to
remain nonnegative. The complementarity condition between q(t) and λ implies that
when q(t)> 0 then λ = 0, while λ > 0 is possible only if q(t)= 0. This is a particular
contact model which excludes effects like magnetism (nonzero contact force with
q(t) > 0) or gluing (negative contact force). This relationship between q and λ is a
set-valued function whose graph is as in Fig. 1.1b. The third ingredient in (1.96) is
an impact law, which reinitializes the velocity when the trajectory tends to violate
the inequality constraint.

Let us analyze the dynamics (1.96) on phases of smooth motion, i.e., either
q(t) > 0 or q(t) = 0 for all t ∈ [a,b], for some 0 � a < b. As seen above the comple-
mentarity condition implies that λ (t) = 0 in the first case. In the second case it allows
for λ (t) � 0. Let us investigate how the multiplier may be calculated, employing a
reasoning similar to the one in Sect. 1.1.5 to get the LCP in (1.24). On [a,b) one has
q(t) = 0 and q̇(t) = 0. So a necessary condition for the inequality constraint not to
be violated in a right neighborhood of b is that q̈(t+) � 0 on [a, b].

Actually as shown by Glocker (2001, Chap. 7) it is possible to reformulate the
contact force law in (1.96), i.e.,

−λ (t) ∈ ∂ψIR+(q(t)) ⇔ 0 � λ (t)⊥ q(t) � 0 (1.97)

(compare with (1.1), (1.6), (1.7)) at the acceleration level as follows:

−λ (t+) ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if q(t) > 0

0 if q(t) = 0 and q̇(t+) > 0

0 if q(t) = 0 if q̇(t+) = 0 and q̈(t+) > 0

[−∞,0] if q(t) = 0 if q̇(t+) = 0 and q̈(t+) = 0

. (1.98)
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All the functions are expressed as their right limits, since given the state of the system
at some instant of time, one is interested to know what happens in the very near future
of this time.

Let us now focus on the calculation of λ (t+) in the latter case. Using the dynam-
ics one has

mq̈(t+)+ f (t+) =−mg +λ (t+) . (1.99)

From the third and fourth lines of (1.98) we deduce that⎧⎨
⎩

0 � q̈(t+)⊥ λ (t+) � 0 if q(t) = 0 and q̇(t+) = 0

λ (t+) = 0 if (q(t), q̇(t+)) > 0
. (1.100)

where the lexicographical inequality means that the first non zero element has to be
positive. Inserting (1.99) into the first line of (1.100) yields

0 �− 1
m

f (t+)−g +
1
m
λ (t+)⊥ λ (t+) � 0 (1.101)

which is an LCP with unknownλ (t+). We therefore have derived an LCP allowing us
to compute the multiplier. However, this time two differentiations have been needed,
when only one differentiation was sufficient to get (1.24).

Remark 1.10. One can rewrite (1.100) as⎧⎨
⎩
−λ (t+) ∈ ∂ψIR+(q̈(t+)) if q(t) = 0 and q̇(t+) = 0

λ (t+) = 0 if (q(t), q̇(t+)) > 0
. (1.102)

Similarly a contact force law at the velocity level can be written as
⎧⎨
⎩
−λ (t+) ∈ ∂ψIR+(q̇(t+)) if q(t) = 0

λ (t+) = 0 if q(t) > 0
. (1.103)

Such various formulations of the contact law strongly rely on Glocker’s Proposition
C.8 in Appendix C. Notice that inserting (1.97) into (1.96) allows us to express the
first and second lines of (1.96) as an inclusion in the cone ∂ψIR+(q(t))

To complete this remark, the whole system (1.103) can be rewritten as a single
inclusion as

−λ (t+) ∈ ∂ψTIR+ (q(t))
(
q̇(t+)

)
, (1.104)

where TIR+(q(t)) is the tangent cone to IR+ at q(t): it is equal to IR if q(t) > 0, and
equal to IR+ if q(t) � 0. In the same way the whole system (1.102) can be rewritten as

−λ (t+) ∈ ∂ψTTIR+ (q(t))(q̇(t+))
(
q̈(t+)

)
, (1.105)

where TTIR+(q(t))(q̇(t+)) is the tangent cone at q̇(t+) to the tangent cone at q(t) to IR+.
We will see again such cones in Sect. 5.4.2, for higher order systems.
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1.4.2 A Measure Differential Inclusion

Suppose that the velocity is a function of local bounded variation (LBV). This im-
plies that the discontinuity instants are countable, and that for any t � 0 there exists
an ε > 0 such that on (t,t + ε) the velocity is smooth. This also implies that at jump
instants the acceleration is a Dirac measure. In fact, the acceleration is the Stieltjes
measure, or the differential measure of the velocity (see Definition C.4).

If we assume that the position q(·) is an Absolutely Continuous (AC) function,
we may say that the velocity is equal to some Lebesgue integrable and LBV function
v(·) such that

q(t) = q(0)+
∫ t

0
v(s)ds . (1.106)

We denote the acceleration as the differential measure dv associated with v(·).
With this material in mind, let us rewrite the system (1.96) as the following DI

involving measures:

−mdv− f (t)dt−mgdt ∈ ∂ψTIR+(q(t))

(
v(t+)+ ev(t−)

1 + e

)
. (1.107)

We recall that TIR+(q(t)) is the tangent cone to IR+ at q(t). Therefore the right-hand
side of the inclusion in (1.107) is the normal cone to the tangent cone TIR+(q(t)),

calculated at the “averaged” velocity
v(t+)+ ev(t−)

1 + e
, where v(t+) is the right limit

of v(·) at t, and v(t−) is the left limit.
Let us check that (1.96) and (1.107) represent the same dynamics. On an interval

(t, t + ε) on which the solution is smooth (infinitely differentiable) then

v(t) = q̇(t), dv = q̈(t)dt,
v(t+)+ ev(t−)

1 + e
= q̇(t) . (1.108)

Thus we obtain
−mq̈(t)− f (t)−mg∈ ∂ψTIR+(q(t))(q̇(t)) . (1.109)

We considered intervals of time on which no impact occur, i.e., either q(t) > 0 (free
motion) or q(t) = 0 (constrained motion). In the first case TIR+(q(t)) = IR so that
∂ψTIR+ (q(t))(q̇(t)) = {0}. In the second case TIR+(q(t)) = IR+. The right-hand side is
therefore equal to the normal cone ∂ψIR+(q̇(t)). So if q̇(t) = 0 we get ∂ψIR+(0) = IR−.
If q̇(t) > 0 we get ∂ψIR+(q̇(t)) = {0}. In other words either the velocity is tangential
to the constraint (in this simple case zero) and we get the inclusion−mq̈(t)− f (t)−
mg ∈ IR−, or the velocity points inside the admissible domain and −mq̈(t)− f (t)−
mg = 0. One may see the cone in the right-hand side of (1.107) as a way to represent
in one shot the contact force law both at the position and the velocity levels.

Let us now consider an impact time t. Then dv = (v(t+)− v(t−))δt . Since the
Lebesgue measure has no atoms, the terms − f (t)dt−mgdt disappear and we get

−m(v(t+)− v(t−)) ∈ ∂ψIR+

(
v(t+)+ ev(t−)

1 + e

)
. (1.110)
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The fact that the inclusion of the measure mdv into a cone can be written as in (1.110)
is proved rigorously in Monteiro Marques (1993) and Acary et al. (in press). Since
the right-hand side is a cone we can simplify the m and we finally obtain

−v(t+)+ ev(t−)
1 + e

+ v(t−) ∈ ∂ψIR+

(
v(t+)+ ev(t−)

1 + e

)
. (1.111)

Now using (1.36) and the fact that v(t−) � 0 it follows that v(t+)+ev(t−) = 0, which
is the impact rule in (1.96).

The measure differential inclusion in (1.107) therefore encompasses all the
phases of motion in one compact formulation. It is a particular case of the so-called
Moreau’s sweeping process.

1.4.3 Hints on the Numerical Simulation of the Bouncing Ball

Let us provide now some insights on the consequences of the dynamics in (1.96) and
in (1.107) in terms of numerical algorithms.

1.4.3.1 Event-Driven Schemes

One notices that (1.96) contains in its intrinsic formulation some kind of conditional
statements (“if...then” test procedure). Such a formalism is close to event-driven
schemes. Therefore, we may name it an event-driven-like formalism. Two smooth
dynamical modes can be defined from the dynamics in (1.96):
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mode 1 “free flight”:

⎧⎨
⎩

mq̈(t+)+ f (t) =−mg

λ = 0
if (q(t), q̇(t+)) > 0

Mode 2 “contact”:

⎧⎨
⎩

mq̈(t+)+ f (t) =−mg +λ

0 � q̈(t+)⊥ λ � 0
if q(t) = 0, q̇(t+) = 0

.

The sketch of the time integration is as follows:

0. Given the initial data, q0 q̇0, apply the impact rule if necessary (q0 = 0 and
q̇0 < 0).

1. Determine the next smooth dynamical mode.
2. Integrate the mode with a suitable ODE or a DAE solver until the constraint is

violated.
3. Make an accurate detection/localization of the impact so that the order is

preserved.
4. Apply the impact rule if necessary and go back to the step 1.
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In the implementation of this algorithm, three issues have to be solved:

• The time integration of the smooth dynamical modes. In our simple example, the
mode “free flight” is a simple ODE which can be solved by any ODE solver. The
mode “contact” needs the computation of the Lagrange multiplier. This can be
done by solving λ assuming q̈(t) = 0 and then integrating an ODE or integrating
the free flight under the constraints q̈(t) = 0 with a DAE solver.

• The localization of the event. The event detection in the mode “free flight” is
given by inspecting the sign of q(·). In the mode “contact”, this can be done
efficiently by inspecting the sign of the Lagrange multiplier λ . All these event
detection procedures are implemented with root-finding procedures.

• The mode transition procedure. After an event has been detected, the next smooth
dynamical mode has to be selected. For that, the sign of the right limit of the
acceleration and the Lagrange multiplier λ has to be inspected.

The problem one will face when implementing such an event-driven scheme is that
the algorithm stops if there is an accumulation of events (here the impacts). This
is the case for the bouncing ball in (1.96) when f (·) = 0 and 0 � e < 1. How to
go “through” the accumulation point? One needs to know what happens after the
accumulation, an information which usually is unavailable.

It may be concluded that event-driven algorithms are suitable if there are not too
many impacts, and that in such a case an accurate detection/localization of the events
may assure an order p � 2 and a good precision during the smooth phases of motion.
We had already reached such conclusions in Sect. 1.1.4.

1.4.3.2 Moreau’s Time-Stepping Scheme

Let us now turn our attention to the sweeping process in (1.107):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−mdv− f (t)dt−mgdt = dλ

dλ ∈ ∂ψTIR+ (q(t))

(
v(t+)+ ev(t−)

1 + e

)
.

(1.112)

The time integration on a time interval (tk,tk+1] of the first line of this dynamics can
be written as

∫
(tk ,tk+1]

mdv +
∫ tk+1

tk
f (t)+ mgdt =−dλ ((tk,tk+1]) . (1.113)

Using the definition of a differential measure, we get

m(v(t+k+1)− v(t+k ))+
∫ tk+1

tk
f (t)+ mgdt =−dλ ((tk, tk+1]) . (1.114)

Let us adopt the convention that

vk+1 ≈ v(t+k+1) (1.115)
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and
μk+1 ≈ dλ ((tk,tk+1]) , (1.116)

that is, the right limit of the velocity v(t+k+1) is approximated by vk+1, and the measure
of the interval (tk,tk+1] by dλ is approximated by μk+1. Let us propose the follow-
ing implicit scheme, which we may call the discrete-time Moreau’s second-order
sweeping process:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

qk+1−qk = hvk+1

m(vk+1− vk)+ h( fk+1 + mg) =−μk+1

μk+1 ∈ ∂ψTIR+(qk)

(
vk+1 + evk

1 + e

) . (1.117)

After some manipulations (1.117) is rewritten as
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

qk+1−qk = hvk+1

vk+1 =−evk +(1 + e)prox[TIR+(qk);−bk]

bk =−vk +
h

m(1 + e)
fk+1 +

hg
1 + e

. (1.118)

Though it looks like that, such a scheme is not an implicit Euler scheme. The reasons
why have already been detailed in the context of the electrical circuit (c) in Sect. 1.1.6
and are recalled here:

• First of all notice that the time step h > 0 does not appear in the right-hand side
of (1.117). Indeed the set

∂ψTIR+ (qk)

(
vk+1 + evk

1 + e

)

is a cone, whose value does not change when pre-multiplied by a positive
constant.

• Secondly, notice that the terms h fk+1 + hmg do not represent forces, but forces
times one integration interval h, i.e., an impulse. This is the copy of (1.107) in the
discrete-time setting. As alluded to above, the dynamics (1.107) is an inclusion of
measures. In other words, mg is a force, and it may be interpreted as the density
of the measure mg dt. The integral of mg dt over some time interval is in turn
an impulse. As a consequence, the element μk+1 inside the normal cone in the
right-hand side of (1.117) is the approximation of the impulse calculated over
an interval (tk,tk+1], as the equation (1.116) confirmed. It is always a bounded
quantity, even at an impact time.

From a numerical point of view, two major lessons can be learned from this work.
First, the various terms manipulated by the numerical algorithm are of finite values.
The use of differential measures of the time interval (tk,tk+1], i.e., dv((tk, tk+1]) =
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v(t+k+1)−v(t+k ) and μk+1 = dλ ((tk,tk+1]), is fundamental and allows a rigorous treat-
ment of the nonsmooth evolutions. When the time step h > 0 converges to zero, it
enables one to deal with finite jumps. When the evolution is smooth, the scheme is
equivalent to a backward Euler scheme. We can remark that nowhere an approxima-
tion of the acceleration is used. Secondly, the inclusion in terms of velocity allows
us to treat the displacement as a secondary variable. A viability lemma ensures that
the constraints on q(·) will be respected at convergence. We will see further that this
formulation gives more stability to the scheme.

These remarks might be viewed only as some numerical tricks. In fact, the math-
ematical study of the second-order MDI by Moreau provides a sound mathematical
ground to this numerical scheme.

1.4.3.3 Simulation of the Bouncing Ball

Let us now provide some numerical results when the time-stepping scheme is ap-
plied. They will illustrate some of its properties. In Fig. 1.22, the position, the veloc-
ity, and the impulse are depicted. We can observe that the accumulation of impact is
approximated without difficulties. The crucial fact that there is no detection of the
impact times allows one to pass over the accumulation time. The resulting impulse
after the accumulation corresponds to the time integration over a time step of the
weight of the ball.

In Fig. 1.23, the energy balance is drawn. We can observe that the total energy
is only dissipated at impact. This property is due to the fact that the external forces
are constant and therefore, the integration of the free flight is exact. We will see
later in the book that these property is retrieved in most general cases by the use of
energy-conserving schemes based on θ -methods.

1.4.3.4 Convergence Properties of Moreau’s Time-Stepping Algorithm

The convergence of Moreau’s time-stepping scheme has been shown in Monteiro
Marques (1993), Mabrouk (1998), Stewart (1998), and Dzonou & Monteiro Mar-
ques (2007) under various assumptions. Various other ways to discretize such mea-
sure differential inclusions with time-stepping algorithms exist together with conver-
gence results. They will be described later in the book.

1.4.3.5 Analogy with the Electrical Circuit

Let us consider again the electrical circuit discrete-time dynamics in (1.34), where
we change the notation as x1,k = qk and x2,k = vk:

⎧⎪⎨
⎪⎩

qk+1−qk = hvk+1

vk+1− vk +
hR
L

vk+1 +
h

LC
qk+1 ∈ −∂ψIR−(vk+1)

. (1.119)
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Fig. 1.22. Simulation of the bouncing Ball. Moreau’s time-stepping scheme. Time step h =
5×10−3
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Fig. 1.23. Simulation of the bouncing ball. Moreau’s time-stepping scheme. Time step h =
5×10−3. Energy vs. time

Let us now consider that the term f (t) = a1v(t)+a2q(t) for some positive constants
a1 and a2, and let us take e = 0. Then the discretization in (1.117) becomes

⎧⎪⎨
⎪⎩

qk+1−qk = hvk+1

vk+1− vk +
ha1

m
vk+1 +

ha2

m
qk+1 + hg∈ −∂ψTIR+(qk)(vk+1)

. (1.120)

One concludes that the only difference between both discretizations (1.119) and
(1.120) is that the tangent cone TIR+(qk) in mechanics is changed to the set IR− in elec-
tricity. This is a simplification, as the tangent cone “switches” between IR and IR+.

With this in mind we may rely on several results to prove the convergence prop-
erties of the schemes in (1.119) and (1.120). Convergence results for dissipative elec-
trical circuits may be found in Sect. 9.5.

1.5 Stiff ODEs, Explicit and Implicit Methods,
and the Sweeping Process

The bouncing ball dynamics in (1.96) may be considered as the limit when the stiff-
ness k→ +∞ of a compliant problem in which the unilateral constraint is replaced
by a spring (a penalization) with k > 0. It is known that the discretization of a pe-
nalized system may lead to stiff systems when k is too large, see e.g. Sect. VII.7 in
Hairer et al. (1993). Explicit schemes fail and implicit schemes have to be applied
to stiff problems, however, their efficiency may decrease significantly when the re-
quired tolerance is small because of possible oscillations with high frequency leading
to small step sizes (Hairer et al., 1993, p. 541). Clearly, the rigid body modeling that
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yields a complementarity formalism and a discretization of the sweeping process via
Moreau’s time-stepping algorithm may then be of great help.

Let us illustrate this on an even simpler example. A mass m = 1 colliding a
massless spring-dashpot, whose dynamics is

q̈(t) = u(t)+

⎧⎨
⎩
−kq(t)−dq̇(t) if q(t) � 0

0 if q(t) � 0
(1.121)

The limit as k→+∞ is the relative degree two complementarity system
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q̈(t) = u(t)+λ

0 � λ ⊥ q(t) � 0

q̇(t+) =−eq̇(t−) if q(t) = 0 and q̇(t−) < 0

(1.122)

1.5.1 Discretization of the Penalized System

An explicit discretization of (1.121) yields during the contact phases of motion5:
⎧⎪⎪⎨
⎪⎪⎩

q̇i+1− q̇i

h
=−kqi−dq̇i + ui+1

qi+1−qi

h
= q̇i

⇔
(

qi+1

q̇i+1

)
=

(
1 h
−hk 1−hd

)(
qi

q̇i

)
+

(
0
h

)
ui+1

(1.123)

The eigenvalues γ1 and γ2 of

(
1 h
−hk 1−hd

)
have a modulus equal to

1
2

√
(2−hd)2 + h2(4k−d2). The condition for the modulus to be < 1 is h < d

k .
Therefore, if k is too large then the explicit Euler method is unstable, the system
is stiff. Let us now try a fully implicit Euler method. In order to simplify the calcula-
tions, we consider d = 0, i.e. the system is conservative. One obtains

⎧⎪⎪⎨
⎪⎪⎩

q̇i+1− q̇i

h
=−kqi+1 + ui+1

qi+1−qi

h
= q̇i+1

⇔
(

qi+1

q̇i+1

)

=a(h,k)
(

1 h
−hk 1

)(
qi

q̇i

)
+ha(h,k)

(
h
1

)
ui+1

(1.124)

with a(h,k) = (1 + h2k)−1. This problem is no longer stiff since the modulus of the
eigenvalues in this time is equal to 1 (in case d > 0 we would obtain a modulus
smaller than 1 for any h > 0). However, the ratio of the imaginary and the real part
of the eignevalues is h

√
k, indicating indeed possible high-frequency oscillations.

5 The discretization is written with i instead of k to avoid confusion between the stiffness and
the number of steps.



52 1 Nonsmooth Dynamical Systems: Motivating Examples and Basic Concepts

1.5.2 The Switching Conditions

We have not discussed yet about the switching condition between the free and the
contact motions. Let us rewrite the system (1.121) with d = 0 as

q̈(t) = u(t)−max(kq(t),0) (1.125)

This is easily shown to be equivalent to the relative degree zero complementarity
system

⎧⎨
⎩

q̈(t) = u(t)−λ (t)

0 � λ (t)⊥ λ (t)− kq(t) � 0
(1.126)

whose implicit Euler discretization is
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q̇i+1− q̇i = hui+1−hλi+1

qi+1−qi = hq̇i+1

0 � λi+1 ⊥ λi+1− kqi+1 � 0

(1.127)

which after few manipulations becomes the LCP

0 � λi+1 ⊥ (1 + h2k)λi+1− khq̇i− kh2ui+1− kqi � 0 (1.128)

that is easily solved for λi+1 and permits to advance the method from step i to step
i + 1. With the switching condition qi+1 � 0 or qi+1 � 0, one retrieves the implicit
method (1.124). If the complementarity relation is taken as 0 � λi+1⊥ λi+1−kqi � 0
and qi+1−qi = hq̇i, one recovers the explicit method with a switching condition qi �
0 or qi � 0. We conclude that the complementarity formulation of (1.121) allows us
to clarify the choice of the switching variable and of the manner to compute the new
state via an LCP, but does not bring any novelty concerning the stiff/nonstiff issue.
One also notes that the explicit method for (1.125) yields again (1.123). Therefore,
applying an explicit Euler method to (1.121), (1.125), or (1.126) is equivalent. The
implicit discretization of (1.125), i.e. q̇i+1 = q̇i + hui+1− hmax(kqi + khq̇i+1,0), is
obviously also equivalent to (1.127). But its direct solving without resorting to the
LCP in (1.128) is not quite clear. One may say that the CP formalism is a way to
implicitly discretize the projection.

All these comments apply to the circuits (a) and (b) in (1.11) (1.12), and the
various formulations in (1.15) through (1.22).

Remark 1.11. Without the complementarity interpretation in (1.126) that yields the
LCP (1.128), one may encounter difficulties in implementing the switching with
qi+1 and qi+1− qi = hq̇i+1, because the system is a piecewise linear system with
an implicit switching condition. Consequently, one often chooses an implicit method
with an explicit switching variable qi+1− qi = hq̇i. This boils down to a semi ex-
plicit/implicit method which also yields a stiff system.
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1.5.3 Discretization of the Relative Degree Two Complementarity System

Moreau’s time stepping method for (1.122) is
⎧⎨
⎩

q̇i+1+eq̇i
1+e = prox[TIR+(qi+1); q̇i + h

1+eu(ti+1)]

qi+1 = qi + hq̇i

(1.129)

which is nothing else but solving a simple LCP (or a QP) at each step. It is noteworthy
that we could have written a fully implicit scheme with qi+1 = qi + hq̇i+1 without
modifying the conclusion: Moreau’s time stepping method is not stiff.

1.6 Summary of the Main Ideas

• Simple physical systems yield different types of dynamics:
– ODEs with Lipschitz-continuous vector field
– Differential inclusions with compact, convex right-hand sides (like Filippov’s

inclusions)
– Differential inclusions in normal cones (like Moreau’s sweeping process)
– Measure differential inclusions
– Evolution variational inequalities
– Linear complementarity systems

Some of these formalisms may be shown to be equivalent, see (Brogliato
et al. (2006)).

• The nonsmooth formalisms may be useful to avoid stiff problems. All these sys-
tems possess solutions which are not differentiable everywhere, and may even
jump (absolutely continuous, locally bounded variation solutions).

• There exist two types of numerical schemes for the integration of these nons-
mooth systems:

– The event-driven (or event-tracking) schemes. One supposes that between
events (instants of nondifferentiability), the solutions are differentiable
enough, so that any standard high-order scheme (Runge–Kutta methods, ex-
trapolation methods, multistep methods, . . . ) may be used until an event is
detected. The event detection/localization has to be accurate enough so that
the order is preserved. Once the event has been treated, continue the integra-
tion with your favorite scheme. This procedure may fail when there are too
many events (like for instance an accumulation).

– The time-stepping (or event-capturing) schemes. The whole dynamics (dif-
ferential and algebraic parts) is discretized in one shot. Habitually low-order
(Euler-like) schemes are used (other, higher order methods may in some
cases be applied, however, the nonsmoothness brings back the order to one).
Advancing the scheme from step k to step k + 1 requires to solve a comple-
mentarity problem, or a quadratic problem, or a projection algorithm. Con-
vergence results have been proved.
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• Though the time-stepping schemes look like Euler schemes, they are not. The
primary variables are chosen so that even in the presence of Dirac measures, all
the calculated quantities are bounded for all times. These schemes do not try to
approximate the Dirac measures at an impact. They approximate the measures
of the integration intervals, which indeed are always bounded. From a mathe-
matical point of view, this may be explained from the fact that the right-hand
sides are cones (hence pre-multiplication by the time step h > 0 is equivalent to
pre-multiplication by 1).

• There are strong analogies between nonsmooth electrical circuits and nonsmooth
mechanical systems. More may be found in Möller & Glocker (2007). The solu-
tions of nonsmooth electrical circuits may jump, so that they are rigorously repre-
sented by measure differential inclusions. The fact that switching networks may
contain Dirac measures has been noticed since a long time in the circuits litera-
ture (Bedrosian & Vlach, 1992). Proper simulation tools for nonsmooth systems
are necessary, because the integrators based on stiff, so-called “physical” models
may provide poor, unreliable results (Bedrosian & Vlach, 1992).
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Formulations of Nonsmooth Dynamical Systems
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Nonsmooth Dynamical Systems: A Short Zoology

The goal of this chapter is to present several examples of well-identified nonsmooth
dynamical systems (NSDS). The purpose is not to be exhaustive nor to provide all
the mathematical details, but rather to fix the notation and give an overview of the
variety of NSDS, so that the reader gets an idea of what the realm of NSDS looks like.
Equivalences exist between the formalisms that are presented and will be pointed out.

2.1 Differential Inclusions

In this section we review some “classical” notions and formalisms of differential
inclusions, with an emphasis on the so-called Filippov’s systems. In Sect. 2.2 another
type of inclusions will be examined, which usually do not satisfy the same set of
assumptions.

Definition 2.1 (Differential inclusion). A differential inclusion (DI) may be de-
fined by

ẋ(t) ∈ F(t,x(t)), t ∈ [0,T ], x(0) = x0 , (2.1)

where x : IR→ IRn is a function of time t, ẋ : IR→ IRn is its time derivative, F :
IR× IRn → IRn is a set-valued map which associates to any point x ∈ IRn and time
t ∈ IR a set F(t,x)⊂ IRn, and T > 0.

In general the inclusion will be satisfied almost everywhere on [0,T ], because
x(·) may not be differentiable for all t ∈ [0,T ]. If x(·) is absolutely continuous then
ẋ(·) is defined up to a set of Lebesgue measure zero on [0,T ]. In fact it happens that
there are several very different types of differential inclusions, depending on what the
sets F(x) look like. For instance when n = 1, some sets F(x) may contain bounded
vertical segments (the sign multivalued function) or unbounded vertical lines (see
Fig. 1.1b), some others may be such that their graph has positive measure in the
plane (F(x) = [−1,1] for all x), some others may have all of these features, etc. One
may expect that not only the modeling motivations that yield such DIs are not the
same, but that the subsequent mathematical and numerical analysis will differ a lot
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as well. A significant number of dynamical systems can be described by a differential
inclusion. First of them are the standard ODEs

ẋ(t) = f (x(t),t) (2.2)

taking for the set-valued map the singleton F(t,x) = { f (x,t)}. An implicit differen-
tial equation

f (ẋ(t),x(t)) = 0 (2.3)

can also be cast into a DI by defining the set-valued map as F(x) = {v | f (v,x) = 0}.
The definition, existence, and uniqueness of solutions for such types of dynam-

ical systems is not a trivial task and strongly depends on the boundary conditions
which are prescribed (initial or Cauchy conditions or two-point boundary conditions
for instance) and naturally on the regularity of the function x(·) together with the
set-valued map F(·, ·).

In standard books on DI (Aubin & Cellina, 1984; Deimling, 1992; Smirnov, 2002),
the trajectory x(·) is usually assumed to be absolutely continuous. This is the case for
instance with the Lipschitzian and upper semi-continuous set-valued right-hand sides
(see below). Most of such systems can be regarded as nonsmooth dynamical systems
due to two main reasons. The first one is the extensive use of nonsmooth analysis
and set-valued analysis to study their properties and the second one is related with
the possible nonsmoothness of the time derivative ẋ(·) due to the constraints imposed
by the inclusion.

We will give in the sequel some illustrative examples of such differential inclu-
sions where the nonsmoothness plays an important role. The cases of Lipschitzian
and upper semi-continuous right-hand sides are the most well known in the literature.
We will recall their definition quickly. For our purpose, we are more interested in the
unilateral differential inclusions which are more representative of our applications.
This type of DI is characterized by unbounded sets as set-valued right-hand sides,
while more usual DIs are based on compact sets.

2.1.1 Lipschitzian Differential Inclusions

Let us deal with the autonomous case, i.e., ẋ(t) ∈ F(x(t)).

Definition 2.2 (Lipschitzian DI). A DI is said to be Lipschitzian if the set-valued
map F : IR→ IRn satisfies the following conditions:

1. the sets F(x) are closed and convex for all x ∈ IRn;
2. the set-valued map F(·) is Lipschitzian with a bounded constant l, i.e.,

∃ l � 0, F(x1)⊂ F(x2)+ l‖x1− x2‖Bn (2.4)

for all x1 ∈ IRn, x2 ∈ IRn, where Bn is the unit ball of IRn, i.e., Bn = {y ∈ IRn |
‖y‖� 1}.
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The Lipschitz continuity is sometimes stated with a function l : IR+ → IR+, l(·)
Lebesgue integrable. Recall that given two sets A and B ⊂ IRn, one has A + B =
{a+b | a ∈ A,b ∈ B}. Thus for instance [−1,1]+ [−1,1] = [−2,2], and [−2,−1]+
[1,2] = [−1,1].

Example 2.3. Let F : IR→ IR,x �→
⎧⎨
⎩

[bx,ax] if x � 0

[ax,bx] if x � 0
, with a > b > 0. Let x1 < 0

and x2 > 0. Then F(x1) = [ax1,bx1], F(x2) = [bx2,ax2], and a|x1−x2|B1 = [−a(x2−
x1),a(x2− x1)]. Therefore F(x2)+ a|x1− x2|B1 = [(b−a)x2 + ax1,2ax2−ax1], and
one may check that F(x1) ⊂ [(b−a)x2 + ax1,2ax2−ax1]. A similar reasoning may
be done when x1 > 0 and x2 < 0. We conclude that F(·) is Lipschitz continuous with
l = a in (2.4).

The most common examples of Lipschitzian DI are issued from the control
and systems theory. Let us consider an ODE depending on a control parameter
u ∈U ⊂ IRm:

ẋ(t) = f (x(t),u) , (2.5)

where f : IRn×U→ IRn is assumed to be a continuous function satisfying a Lipschitz
condition in x and such that the set f (x,U) is closed and convex for all x∈ IRn. If u(t)
is an admissible control (for instance all bounded measurable functions satisfying
u(t) ∈U a.e.), the Cauchy problem

ẋ(t) = f (x(t),u(t)), t ∈ [0,T ], x(0) = x0 (2.6)

has a solution x(·). The connection between differential inclusions and such a control
system is given by the following DI:

ẋ(t) ∈ ∪u∈U f (x(t),u) . (2.7)

The solution of the Cauchy problem (2.6) is a solution of the DI (2.7) and thanks to
a result of Filippov, the converse statement is also true in the sense that there exists
a solution v(t) of the inclusion (2.7) which is also a solution of (2.6). More formally
we have the following result (Li, 2007; Nieuwenhuis, 1981).

Theorem 2.4. Let the set of admissible control inputs U be compact, and let f :
IRn×U→ IRn be continuous with F(x) = { f (x,u) | u∈U} convex for each x ∈ IRn.
The open-loop system (2.5) is equivalent to the DI ẋ(t) ∈ F(x(t)).

Under the stated assumptions, the set-valued mapping F(·) is continuous with
compact convex images. Equivalence means that any absolutely continuous function
x(·) that satisfies (2.5) with an admissible u(·) satisfies the DI, and there always exists
a solution of the DI that is also a solution of the ODE (2.5). As the next example
shows both formalisms are in fact not really equivalent to each other.

Example 2.5. Consider the scalar controlled system
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ẋ(t) = x(t)u(t), x(0) = x0 , (2.8)

where x(t) ∈ IR, u(·) is a measurable function that takes its values in [−1,1], that is
u(t) ∈ [−1,1] for all t ∈ IR. Given a control input u(·) one finds that the solution of
the ODE (2.8) is x(t) = x0 exp

(∫ t
0 u(s)ds

)
. In particular if x0 = 0 then x(t) = 0 for all

t � 0. We now associate to the ODE (2.8) the DI

ẋ(t) ∈ [−x(t),x(t)], x(0) = x0 . (2.9)

Let x0 = 0. Then x(t) = 0 for all t � 0 is a solution, but x(t) = 0 for 0 � t �
√

2
and x(t) = t2 for t �

√
2 are also solutions. Thus embedding the system into a DI

formalism adds more solutions. In a sense the DI is more loose than the ODE.

The next lemma is a tool for testing the Lipschitz continuity of a set-valued map.

Lemma 2.6. Let the graph of F(·), i.e., the set {(x,y) ∈ IRn× IRn | y ∈ F(x)}, be
closed and convex. If F(x0)⊂mBn, m > 0, x0 ∈Int(dom(F)), then F(·) is Lipschitzian
in a neighborhood of x.

Example 2.7. F(x) = [−1,1], F(x) = [−x,2x] are Lipschitz continuous. The relay
multifunction, or sign multifunction, does not satisfy the assumptions of the lemma.
The values of F(x) are convex, but not its graph. Actually it is not Lipschitz
continuous.

The following holds (Smirnov, 2002):

Lemma 2.8. Let the set F(x) satisfy the conditions of Definition 2.2. Then for any
x0 ∈ IRn there exists a solution to the DI (2.1) on IR+ with x(0) = x0.

Let us end this section on Lipschitz-ontinuous DIs with a theorem due to Filip-
pov. It is a result that is useful for the study of discrete approximations, like the Euler
method presented in Sect. 9.2. In fact it enables one to prove that every approximated
solution of the discretized DI contains in its neighborhood a solution of the DI, when
the time step is small enough.

Theorem 2.9. Let F(·, ·) be Hausdorff continuous and Lipschitz continuous with
constant L(·) in the region {(t,x) | t � 0, ||x− y(t)||� b}. Let y : IR+→ IRn be ab-
solutely continuous and dist(ẏ(t)),F(t,y(t)) � g(t) almost everywhere in IR+, where
g(·) is integrable. Let x0 be such that ||x0− y(0)||< b, and

m(t) =
∫ t

0
L(s)ds,

v(t) = exp(m(t))
(
||x0− y(0)||+

∫ t

0
exp(−m(s))g(s)ds

)
.

Then there exists a solution of the DI: ẋ(t) ∈ F(t,x(t)) on the interval Δ = {t ∈
IR+ | v(t) � b} that satisfies
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||x(t)− y(t)||� v(t) for all t ∈ Δ, x(0) = x0,

||ẋ(t)− ẏ(t)||� L(t)v(t)+ g(t) almost everywhere on Δ.

The distance between a point and a set is as in appendix A. Theorem 2.9 is a
technical result that is used in Theorems 9.1 and 9.2, which concern the properties of
discretized inclusions. In these theorems upper bounds on the distance between the
approximated solution and one solution of the continuous-time DI are obtained.

2.1.2 Upper Semi-continuous DIs and Discontinuous Differential Equations

Another class of DIs is the class of the upper semi-continuous DIs which plays a fun-
damental role in optimal control theory and in the study of ODE with discontinuous
right-hand side.

Definition 2.10 (Upper semi-continuous DI). A DI is said to be upper semi-
continuous if the set-valued map F : IR→ IRn satisfies the following conditions:

1. the sets F(x) are closed and convex for all x ∈ IRn;
2. the set-valued map F(·) is upper semi-continuous, i.e., for every open set M

containing F(x),x ∈ IR, there exists a neighborhoodΩ of x such that F(Ω)⊂M.

Upper semi-continuity for set-valued mappings is sometimes called outer semi-
continuity (Rockafellar & Wets, 1998).1 An equivalent formulation is that
limsupx→x0

F(x) ⊂ F(x0): then F(·) is outer semi-continuous at x0. It may be more
appropriate to use outer rather than upper semi-continuous. Indeed when specialized
to single-valued functions, Definition 2.10 implies the continuity. However, upper
semi-continuous single-valued functions may be discontinuous (when upper semi-
continuity in the sense of single-valued functions is considered). One concludes that
the upper semi-continuity for set-valued functions (Definition 2.10) and upper semi-
continuity for single-valued functions are two different notions with the same name.
A useful result taken from Smirnov (2002) is as follows (other characterizations of
upper semi-continuity can be found in Chap. 1, Sect. 1 of Deimling, 1992):

Proposition 2.11. Assume that the graph of the set-valued mapping F(·), i.e.,
{(x,y) ∈ IRn× IRn | y ∈ F(x)}, is closed and the closure of the set Nδ = {F(x) |
||x− x0||< δ}, δ > 0, is compact. Then F(·) is upper semi-continuous at x0. On the
other hand, if F(·) is upper semi-continuous, then its graph is closed.

Using this proposition one may immediately conclude that the sign set-valued func-
tion (also called the relay function in systems and control) is upper semi-continuous.
Indeed all the sets Nδ are equal either to {1} or to {−1} or to [−1,1]. Another useful
result is that all maximal monotone mappings are upper semi-continuous (exercise
12.8 in Rockafellar & Wets, 1998): indeed maximal monotonicity implies that the
graph is closed. Obviously not all upper semi-continuous set-valued mappings are
monotone.

1 After a suggestion made by J.B. Hiriart-Urruty.
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Example 2.12. Consider the set-valued mapping x �→ ∂ΨK(x) with K = IR+ and
ψK(·) is the indicator function of K, see (1.4). The graph of this mapping is simi-
lar to the graph depicted in Fig. 1.1b, with the vertical branch directed to the bottom.
This set-valued mapping is upper semi-continuous. Indeed F(0) = IR−. The open
sets containing F(0) are of the form (−∞,a) with a > 0. In any neighborhood of 0
one has F(x) = /0 or F(x) = 0, so F(x)⊂ (−∞,a).

Let us state an existence result for upper semi-continuous DIs, taken from
Deimling (1992).

Lemma 2.13. Let F(x) satisfy the conditions of Definition 2.10, and in addition
||F(x)|| � c(1 + ||x||) for some c > 0 and all x ∈ IRn. Then there is an absolutely
continuous solution to the DI (2.1) on IR+, for every x0 ∈ IRn.

This result extends to time-varying inclusions F(t,x) (theorem 5.1 in
Deimling, 1992). Examples in Sect. 5.2 of Deimling (1992) show that upper
semi-continuity alone is not sufficient to guarantee the existence. The convexi-
fication of the sets F(x) is needed. Notice that Lemma 2.13 does not apply to
the right-hand side in Example 2.12 which obviously does not satisfy the growth
condition.

Example 2.14. Let F : IR→ IR,x �→ [−1,1]. This set-valued function satisfies the
conditions of Lemma 2.13. Let x(0) = 0. Then x(t) = 0 for all t � 0 is a solution of
the DI, as well as x(t) = at for any a ∈ [−1,1]. There is an infinity of solutions.

Example 2.15. The scalar DI

ẋ(t) ∈
⎧⎨
⎩

[−8x(x + 1)2,2] if −1 � x � 0

−8x(x + 1)2 otherwise
(2.10)

is upper semi-continuous, and the sets F(x) are closed and convex for all x ∈ IRn.

Let us now consider the case of an ODE with a discontinuous right-hand side:

ẋ(t) = f (x(t)), t ∈ [0,T ], x(0) = x0 , (2.11)

where f : IRn→ IRn is a bounded function. If f (·) is not continuous, then the Cauchy
problem associated with this ODE may have no solution. A standard example is
given by the following right-hand side:

f (x,t) =

{
1 if x < 0

−1 if x � 0
(2.12)

with the initial condition x(0) = x0. It is clear that the problem has no solution in the
usual sense. Indeed, if x(t) < 0, then the solution is of the form x(t) = t + x0. On the
contrary, if x(t) � 0, then the solution is of the form x(t) = −t + x0. Each solution
reaches the point x = 0 and cannot leave it. Unfortunately, the function x(t)≡ 0 does
not satisfy the equation, since ẋ = 0 �= f (0) =−1.
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2.1.2.1 Filippov’s Inclusions

A way to circumvent the problem encountered with (2.12) is to define a new type
of solutions or more precisely to change slightly the model. This is the goal of the
Filippov solutions. The minimal requirement is to ensure the existence of solutions
in simple cases for any initial conditions and to coincide with the standard solution of
ODE with continuous right-hand side. Filippov (1988) introduced a method to fulfill
these requirements by considering the set-valued map F(·) with F(x) defined by

ẋ(t) ∈ F(x(t)) =
⋂
ε>0

⋂
μ(N)=0

conv f ((x(t)+ εBn)\N) , (2.13)

where Bn is the unit ball of IRn, and the sets N are all sets of zero Lebesgue measure.
conv (·) denotes the closure of the convex hall, and the set {x+εBn}= {y∈ IRn/y∈
{x}+ εBn}. The notation F((x + εBn) \N) means all the vector fields F(y) with y
in the set {x + εBn} minus sets N. Since the function f (·) is assumed to be bounded
and the graph of F(·) is closed, the set-valued map F(·) is upper semi-continuous
(see Proposition 2.11). It is noteworthy that F(x) = { f (x)} whenever f (·) is contin-
uous (see Theorem 2.22 for more properties of the right-hand side in (2.13)). Thanks
to Lemma 2.13, the Cauchy problem ẋ(t) ∈ F(x(t)),x(0) = x0, with F(·) in (2.13)
always has an absolutely continuous solution. Moreover, some mathematical prop-
erties like compactness, connectedness, and boundary property are retrieved as in
the case of standard ODE. Usually, an absolutely continuous function is said to be a
Filippov solution or a solution in the sense of Filippov of the Cauchy problem (2.11)
if it is a solution of the DI (2.13).

Remark 2.16. Results similar to Proposition 2.11 to characterize the right-hand side
of Filippov’s systems exist in the literature, see for instance theorem 2.3 in Kastner-
Maresch (1992) or proposition 1 in Aubin & Cellina (1984).

A geometrical interpretation of the definition (2.13) and of the Filippov solution
can be given for a function f : IRn→ IRn which is discontinuous on a smooth surface
S. Let us assume that the surface S separates IRn into two open domains Ω+ and Ω−.
The set F(x),x ∈ S, is the segment comprised between the two values:

f−(x) = lim
x′→x,x′∈Ω−

f (x′), f +(x) = lim
x′→x,x′∈Ω+

f (x′) . (2.14)

Two behaviors for the dynamical system can be envisaged:

• If the set F(x) lies on one side of the tangent plane T (x,S) of the surface S at
x, then the solution passes from one side to the other. This is called a crossing
solution.

• If the set F(x) intersects the tangent plane, T (x,S), the intersection point fS(x) =
F(x)∩T (x,S) defines the velocity along the surface. In this case, such a solution
is called a sliding solution. This is the case when the right-hand side is directed
towards the surface S on both sides (then S is said to be attractive).

• When the vector fields on the surface S are directed to the interior of the domains
Ω+ and Ω− for x ∈ Ω+ and x ∈ Ω−, respectively, S is said to be repulsive and
there may exist the so-called spontaneous switches.
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In general there may be portions of S which are attractive, portions which are cross-
ing, and others which are repulsive. It is noteworthy that the value of f (·) on S is
irrelevant in Filippov’s framework, as zero measure sets are excluded from the defi-
nition of the right-hand side F(x).

A similar idea has been developed in Utkin (1977). A typical case is depicted in
Fig. 2.1. It is noteworthy that in general the system may not be defined by a single
switching surface. There may exist several surfaces, with nonvoid intersections. See
Sect. 7.1 for more examples. Filippov’s inclusions were originally motivated by con-
trol applications. But they also find applications in the modeling of genetic networks
(Grognard et al., 2007).

2.1.2.2 Examples and Comments

Let us now provide some more examples and comments, which highlight the rela-
tionships that may exist between Filippov’s definition of a solution, and other defini-
tions. See also Sect. 7.1.

Example 2.17. Let us consider

ẋ(t) =

⎧⎨
⎩

1 if x(t) �= 0

0 if x(t) = 0
(2.15)

with x(t) ∈ IR. According to (2.13) it follows that Filippov’s inclusion for this dis-
continuous ODE is

ẋ(t) = 1 , (2.16)

which is not an inclusion but a (very) simple ODE.

(crossing trajectory)

Ω−

Ω+

f +(x)

f−(x)

fS(x)

F(x)

x

f +(x)

f−(x)

S

x
F(x)

(attractive surface)

Fig. 2.1. The switching surface S



2.1 Differential Inclusions 65

Example 2.18. Let us consider

ẋ(t) =

⎧⎨
⎩

1 if x ∈ Q

0 if x �∈ Q
(2.17)

with x(t) ∈ IR. Now from (2.13) and since the set of rational numbers Q is of zero
Lebesgue measure in IR, one finds that the Filippov’s inclusion is

ẋ(t) = 0 , (2.18)

which once again is a simple ODE.

Example 2.19. This example is taken from Stewart (1990). Let us consider

ẋ(t) = g(t)− sgn(x(t)) (2.19)

with x(t) ∈ IR, |g(t)| � 1 for all t, and we suppose first that sgn(·) is single valued.
Let x(0) = 0, t0 = 0. Suppose that x(t1) > 0 for some t1 > 0. Since we are looking
for an absolutely continuous solution, there must exist some t2 ∈ (0,t1) such that
x(t2) > 0 and thus ẋ(t2) = g(t2)− sgn(x(t2)) > 0. But since |g(t2)| � 1 and x(t2) >
0, one has ẋ(t2) � 0, a contradiction. Therefore x(t1) � 0 for all t1 > 0. A similar
reasoning may be done starting with x(t1) < 0, and one then concludes that x(t1) �
0 for all t1 > 0. Consequently x(t) = 0 for all t � 0. But this implies that ẋ(t) =
g(t)− sgn(0) = 0 almost everywhere on IR. Except if g(t) corresponds to the value
sgn(0) this is impossible. Now let us transform (2.19) into a Filippov’s inclusion. We
obtain

ẋ(t)−g(t)∈ sgn(x(t)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if x(t) > 0

[−1,1] if x(t) = 0

−1 if x(t) < 0 .

(2.20)

This is a time-varying inclusion. Measurability of g(·) assures the existence of at
least one absolutely continuous solution, for any initial data (from Proposition 2.11
it follows that F(t, ·) is upper semi-continuous, and theorem 5.2 in Deimling, 1992
then applies).

Example 2.20 (Carathéodory’s solutions vs. Filippov’s solutions). Consider once
again Example 2.17. If we initialize the system at x(0) = x0 < 0, then the solution
will be x(t) = t until it attains 0 at time −x0. Then ẋ(−x0) = 0 and the solution
stays at 0. If x0 = 0 the solution is x(t) = 0 for all t � 0. If x0 > 0 then x(t) = t for
all t � 0. It is apparent that such solutions drastically differ from Filippov’s solu-
tions. They are called Carathéodory’s solutions. As a further illustration consider the
following:
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ẋ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 if x(t) < 0

{−2,0,2} if x(t) = 0

1 if x(t) > 0 .

(2.21)

Filippov’s inclusion is

ẋ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 if x(t) < 0

[−1,1] if x(t) = 0

1 if x(t) > 0

(2.22)

because the sets of zero measure are eliminated from the definition of the right-hand
side in (2.13), so the values at x = 0 are not relevant. In other words, Filippov’s in-
clusion ignores what may happen on the switching surface S, here equal to x = 0.
One may consider the Carathéodory solutions of (2.21). When x0 = 0 then one may
have ẋ(0) = 2 (or ẋ(0) =−2). Then x(t) is positive (or negative) in a right neighbor-
hood of t = 0, and ẋ(t) jumps to 1 (or −1) so that x(t) = t (or x(t) = −t) for t > 0.
Carathéodory and Filippov’s solutions are the same, except that their derivatives may
differ on a set of zero measure (in IR). This is not important as absolutely continuous
functions have a derivative that is defined up to a set of zero measure. Consider now
the following definition of the right-hand side of the inclusion, which is sometimes
proposed (Smirnov, 2002):

ẋ(t) ∈ F(x(t)) =
⋂
ε>0

conv f (x(t)+ εBn) , (2.23)

where Bn is the unit ball of IRn. This definition does not exclude sets of measure zero.
At x = 0 we get F(εBn) = {−2,−1,0,1,2} for all ε > 0, and conv F(εBn) = [−2,2].
The system in (2.21) then becomes the inclusion

ẋ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 if x(t) < 0

[−2,2] if x(t) = 0

1 if x(t) > 0 .

(2.24)

Similar comments may be done concerning the solutions of (2.24) and the Filippov’s
solutions. In mechanics, the choice between (2.22) and (2.24) corresponds either to
neglecting the static coefficient of dry friction (that is usually larger than the dy-
namic coefficient of friction) or to modeling it. Existence of solutions is assured for
similar reasons as in (2.20). However, physical motivations may oblige one to add
extra information in the system. For instance in mechanics, a sliding system with a
nonzero initial velocity may have the velocity that converges to zero in finite time.
The coefficient of friction when the contact force enters the Coulomb’s friction cone
is equal to the dynamic coefficient (here it would be 1). This means that the trajectory
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“ignores” the portion (1,2] of the graph of the set-valued function in (2.24). When
the trajectory comes from velocity zero (sticking mode) and goes to a sliding mode,
the coefficient of friction reaches the value 2. This sort of effect may be properly
modeled with a hysteresis behavior, adding a memory to the dynamics.

Example 2.21. As a further illustration of the different notions of a solution that may
exist for a system, consider

x(3)(t) =−sgn(x(t)) . (2.25)

Then as shown in Pogromsky et al. (2003) there are infinitely many solutions to the
Filippov’s inclusion that start from x(0) = ẋ(0) = ẍ(0) = 0. In fact all these solutions
emerge from the origin of the state space with an accumulation of switches of the sign
function (i.e., of crossing points of x = 0), that is a right-accumulation at t = 0.2 On
the contrary there is a unique locally analytic solution (sometimes called a forward
solution in the computer science literature) on some interval of the form [0,ε).

The conclusion of this section is that the way one embeds discontinuous ODEs
into differential inclusions is not unique and may yield various results in terms of the
obtained solutions. Sometimes the choice may be guided by physical considerations.
We have insisted here more on Filippov’s inclusions as this concept seems to be the
more used, especially in control theory and applications with the so-called variable
structure systems. The question that comes next is: does there correspond a specific
way to numerically approximate each of these different notions? Specific algorithms
for simulating Filippov’s systems are described in Sect. 7.1 and in Sect. 9.3. Simu-
lating (2.24) may lead one to resort to other types of dynamics like hysteresis effects,
which will not be tackled in this book (see Hui & Zhu, 1995 for an event-driven al-
gorithm). Consider Example 2.17. There is little chance that Carathéodory solutions
may be computed correctly, to say nothing of Example 2.18. In both cases, however,
Filippov’s solutions are easily obtained.

2.1.2.3 Links with Subdifferentiation and Some Properties

One issue one faces when seeing (2.13) is: how may this set be computed in prac-
tice? In simple cases, several of the above examples have shown how this may be
done, in a rather automatic way. The results presented next show a close connection
between the right-hand side in (2.13) and generalized gradients of functions which
are not differentiable, but only subdifferentiable (in the sense of Clarke or of convex
analysis). For ease of exposition let us denote the right-hand side of (2.13) as

F [ f ](x),

where the F is for Filippov. The next theorem is taken from Paden & Sastry (1987)
and concerns the calculus for F [ f ](x). Let 2IRn

denote the set of subsets of IRn. Then
F maps { f Lebesgue integrable | f : IRn→ IRm} into {g | IRn→ 2IRm}.3

2 This is a right-accumulation because the accumulation is situated on the right of t = 0.
3 Usually m = n.
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Theorem 2.22. The map F has the following properties:

(i) Assume that f : IRn→ IRm is locally bounded. Then there exists a set Nf ⊂ IRn of
zero Lebesgue measure, such that for all sets N ⊂ IRn of zero Lebesgue measure,
one has

F [ f ](x) = conv{lim f (xi) | xi→ x, xi �∈ Nf ∪N} . (2.26)

(ii) Assume that f ,g : IRn→ IRm are locally bounded. Then

F [ f + g](x)⊂F [ f ](x)+F [g](x) . (2.27)

(iii) Assume that f j : IRn→ IRmj , j ∈ {1,2, ..,n} are locally bounded. Then

F [×n
j=1 f j](x)⊂×n

j=1F [ f j ](x) , (2.28)

where × denotes the Cartesian product.
(iv) Let g : IRn → IRm be continuously differentiable (i.e., g(·) ∈ C1(IRn; IRm)),

rank ∂g
∂x (x) = n, and f : IRm→ IRp be locally bounded. Then

F [ f ◦ g](x) = F [ f ](g(x)) . (2.29)

(v) Let the matrix-valued function g : IRn→ IRp×m be continuous, and f : IRn→ IRm

be locally bounded. Then

F [ f ◦ g f ](x) = g(x)F [ f ](x) , (2.30)

where g f (x) = g(x) f (x) ∈ IRp.
(vi) Let the function V : IRn→ IR be locally Lipschitz continuous. Then

F [∇V ](x) = ∂V (x) , (2.31)

where ∂V (x) denotes the Clarke’s generalized gradient of V (·) at x (see Defini-
tion A.2).

(vii) Let f : IRn→ IRm be continuous. Then

F [ f ](x) = { f (x)} . (2.32)

In Paden & Sastry (1987) the closed-loop dynamics of a mechanical system con-
trolled by a nonsmooth state feedback is computed thanks to the properties of The-
orem 2.22. The expression in (2.26) is also useful to compute Filippov’s solution of
piecewise continuous systems. See Sects. 2.8.3 and 2.9.

2.1.3 The One-Sided Lipschitz Condition

This property that is useful to show uniqueness of solutions of DIs was introduced
for stiff ODEs by Dekker & Verwer (1984) and Butcher (1987) and for DIs in
Kastner-Maresch (1990–91) and Dontchev & Lempio (1992). It was already used
by Filippov (1964) to prove the uniqueness of solutions for ODEs with discontin-
uous right-hand side. Let us provide a definition that may be found in Dontchev &
Farkhi (1998).
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Definition 2.23. The set-valued map F : IRn→ 2IRn \ /0 where F(t,x) is compact for
all x ∈ IRn and all t � 0 is called one-sided Lipschitz continuous (OSLC) if there
is an integrable function L : IR+ → IR such that for every x1,x2 ∈ IRn, for every
y1 ∈ F(t,x1), there exists y2 ∈ F(t,x2) such that

〈x1− x2,y1− y2〉� L(t)||x1− x2||2.
Let A be a nonempty compact set. If we introduce the support function σ(x,A) =
maxa∈A〈x,a〉, an equivalent definition is

σ(x− y,F(t,x))−σ(x− y,F(t,y)) � L(t)||x− y||2.

It is noteworthy that L(·) may be constant, time-varying, positive, negative, or
zero. We recall that here 〈·, ·〉 simply means the inner product in IRn, but the OSLC
condition may also be formulated for other inner products. The next examples are
taken from Dontchev & Farkhi (1998) and Lempio (1992).

Example 2.24. The set-valued map F : x �→
⎧⎨
⎩

[0,1] if x < 0

[−1,1] if x � 0
is OSLC with L � 0.

Indeed if x1 > 0 and x2 > 0 or if x1 < 0 and x2 < 0, one can always choose, whatever
y1 ∈ F(x1), a y2 that is equal to y1. Thus (x1−x2,y1−y2) = 0. Let x1 � 0 and x2 < 0.
If y1 � 0 it is always possible to choose y2 = y1 so that (x1− x2,y1− y2) = 0. If
y1 < 0, for instance y1 = −1, we get (x1− x2,y1− y2) = (x1− x2)(−1− y2) � 0. In
case x1 < 0 and x2 � 0, one has y1 ∈ [0,1] so it is always possible to choose y2 = y1.
However, this multifunction is not Lipschitz continuous. Indeed take x1 = −ε < 0,
x2 = ε , and let ε → 0. Since F(x1) = [0,1] and F(x2) = [−1,1], finding a bounded
constant l � 0 such that (2.4) holds is not possible as ε → 0.

Example 2.25. Let F(t,x) = L(h(t)− x)+ ḣ(t)+ L−L sgn(x), where L > 0, x ∈ IR,
t ∈ [0,2], and h(t) =− 4

π arctan(t−1). Then F(·, ·) is OSLC with constant −L.

In Kastner-Maresch (1990–91) and Dontchev & Lempio (1992) the OSLC is de-
fined by replacing “there exists y2 ∈ F(t,x2)” with “for all y2 ∈ F(t,x2)”. Both def-
initions are not equivalent.4 Let us call the OSLC where “there exists y2 ∈ F(t,x2)”
is replaced by “for all y2 ∈ F(t,x2)” the uniform OSLC condition (UOSLC). Clearly
UOSLC implies OSLC. But the converse is not true, so that the OSLC condition
of Definition 2.23 extends the notions of UOSLC, Lipschitz continuity, dissipativity
(monotonicity). Consider once again Example 2.24. Let x1 = ε > 0 and x2 =−ε < 0.
Thus (x1 − x2)(y1 − y2) = 2ε(y1 − y2). Let y1 = −1, then (x1 − x2)(y1 − y2) =
−2ε(1+y2) and since y2 � 0 we get (x1−x2)(y1−y2) � 0. Thus any constant L � 0
is suitable. Now take y1 = 1 so that (x1−x2)(y1−y2) = 2ε(1−y2). In the first defini-
tion we can choose y2 = 1 so that (x1−x2)(y1−y2) = 0. Now in the second definition

4 Note also that in Definition 2.23, the sets F(t,x) are required to be compact, which is not
the case for the second definition hereafter named UOSLC.
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this must hold for all y2 ∈ [0,1]. Let us try y2 = 0. We get (x1−x2)(y1−y2) = 2ε > 0.
Any negative L is impossible. Take L � 0. We get 2ε � 4Lε2. Thus L � 1

2ε that di-
verges as ε approaches 0. Thus this F(·) is not UOSLC, though it is OSLC.

Still another way to define OSLC is proposed in Dontchev (2002), for multival-
ued maps with F(x) convex and compact for each x, and uses the one-sided direc-

tional derivative of the function

(
x1

x2

)
�→ ||x1− x2||, with respect to y1− y2, as

lim
h→0,h>0

1
h

(||(x1− x2)+ h(y1− y2)||− ||x1− x2||) � L||x1− x2|| . (2.33)

The left-hand side is equal to supz∈∂ ||x1−x2||〈z,y1 − y2〉 (proposition 1.3.2 in
Goeleven et al., 2003a). When x1 �= x2 we get that ||y1− y2|| � L||x1− x2||. When
x1 = x2 the subdifferential ∂ ||x1− x2|| is the unit ball Bn. Therefore the supremum is
attained at y1−y2

||y1−y2|| and we get ||y1− y2|| � 0, i.e., y1 = y2. Using this inequality or
using the above inequality does not make much difference.

Remark 2.26. Here we chose to name uniform OSLC those set-valued mappings that
satisfy the OSLC inequality for every y1 ∈ F(t,x1) and for every y2 ∈ F(t,x2). In the
literature on the subject, one usually calls OSLC what we call UOSLC and OSLC
(hence a possible confusion), while UOSLC is reserved for time-varying OSLC maps
where the OSLC property holds uniformly in t (Kastner-Maresch, 1990–91).

Example 2.27. All set-valued mappings that may be written as F(t,x) = f (t,x)−
ϕ(x), where ϕ : IRn→ IRn is a multivalued monotone mapping and f (t,x) is Lipschitz
continuous, are UOSLC. The OSLC constant L is equal to max(0,λ ), where λ is the
Lipschitz constant of the function f (·, ·).
Example 2.28. Consider F(x) = sgn(x), the set-valued sign function. For all x1,x2,
and y1 ∈ F(x1), y2 ∈ F(x2), one has 〈x1− x2,y1− y2〉� 0. Therefore the multifunc-
tion −F(·) satisfies 〈x1− x2,−y1 + y2〉� 0 and is UOSLC with constant L = 0 (this
is consistent with Example 2.27 with ϕ(x) = ∂ |x|). However, F(·) is not OSLC,
hence not UOSLC. Indeed take x1 > 0, x2 < 0, so that y1 = 1, y2 = −1. We get
(x1− x2)(y1− y2) = 2(x1− x2) > 0. OSLC implies that 2(x1− x2) � L(x1− x2)2 for
some L. A negative L is impossible, and a nonnegative L yields L � 2

x1−x2
. As x1−x2

approaches 0, L diverges to infinity.

Example 2.29. Let F : IRn→ IRn,x �→ Ax + K, where A is a constant matrix and K is
a closed convex cone. Such a multifunction is called a convex process, as its graph is
a convex cone that contains the origin (Rockafellar, 1970). It is even a strict closed
convex process since dom(F) = IRn. From theorem 2.12 in Smirnov (2002) it follows
that F(·) is Lipschitzian, with Lipschitz constant equal to supx∈Bn

infv∈F(x) |v|. Hence
it is UOSLC.

Example 2.30. The mapping x �→ −x
1
3 + [−1,1] is OSLC, but it is not UOSLC

(Dontchev & Farkhi, 1998).
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We therefore have: Lipschitz continuity⇒ UOSLC⇒ OSLC. The next lemma
demonstrates the usefulness of the UOSLC condition (Kastner-Maresch, 1990–91).

Lemma 2.31. Let F(·, ·) be UOSLC with constant L, and let x1 : [t0,+∞)→ IRn,
x2 : [t0,+∞)→ IRn be two absolutely continuous solutions of the DI: ẋ(t)∈F(t,x(t)),
i.e., ẋ1(t) ∈ F(t,x1(t)) and ẋ2(t) ∈ F(t,x2(t)) almost everywhere on [t0,+∞). Then

||x1(t)− x2(t)||� exp(L(t− t0)) ||x1(t0)− x2(t0)|| (2.34)

for all t � t0. In particular, the DI: ẋ(t)∈ F(t,x(t)) enjoys the uniqueness of solutions
property.

As one may expect, uniqueness is also important from the numerical point of view.
If uniqueness fails, then one can only expect that the sequence of approximated so-
lutions (or a subsequence of it) converges towards some solution of the DI. Results
similar to Lemma 2.31 can be obtained with the OSLC condition of Definition 2.23,
see theorem 3.2 and corollary 3.3 in Dontchev & Farkhi (1998). From the numer-
ical point of view, error estimates for the Euler scheme for inclusions with OSLC
right-hand sides can be calculated. Moreover the set-valued Euler iterations approx-
imate invariant attracting sets when L < 0. Variants of Theorem 2.9 are proposed in
Dontchev & Farkhi (1998) for right-hand sides which satisfy an OSLC condition.

2.1.4 Recapitulation of the Main Properties of DIs

The results that have been presented in the foregoing sections are a rapid overview
of all the available results for differential inclusions with absolutely continuous so-
lutions (sometimes called ordinary DIs). Let us recapitulate some of the properties
of the set F(t,x) that are the most encountered in the mathematical literature on
existence and uniqueness of solutions:

• Convexity: see, e.g., Filippov’s convexification and Lemmas 2.13 and 2.8. See
also examples in Sect. 5.2 of Deimling (1992).

• Compactness.
• Upper (or outer) semi-continuity: see Lemma 2.13.
• Lower semi-continuity: see Chap. 6 in Deimling (1992) for existence of solutions.
• Boundedness: there exists a > 0 such that F(x) ⊂ aBn for all x ∈ IRn; see for

instance Sect. 4.3 in Smirnov (2002).
• Lipschitz continuous, see (2.4); another, equivalent formulation using the Haus-

dorff distance between sets (see Definition A.1) is as follows. The set-valued map
F : IRn→ 2IRn \ /0 is Lipschitz continuous if for all x1 and x2 there exists a con-
stant l � 0 such that dH(F(x1),F(x2)) � l||x1− x2||. This is used in Lemma 2.8.

• One-sided Lipschitz continuity: see Lemma 2.31.
• Maximal monotone: a multivalued set F(·) is said to be monotone if for all

x1,x2 ∈ dom(F) and all y1 ∈ F(x1), y2 ∈ F(x2), one has

〈x1− x2,y1− y2〉� 0.



72 2 Nonsmooth Dynamical Systems: A Short Zoology

One sees that if F(·) is one-sided Lipschitz continuous as in Definition 2.23, then
−F(·)+L(t) is monotone for each t. On the other hand, if F(·) is monotone, then
−F(·) is OSLC with constant L = 0. This is the case of the sign multifunction:
it is monotone and −sgn(·) is OSLC. But notice that sign(·) is not OSLC, see
Example 2.28.
Maximality means that the graph of the set-valued mapping contains the graphs
of all the possible monotone mappings obtained from F(·) by cutting some pieces
of its graph. Said differently, it is impossible to add new pieces to the graph
of F(·) without destroying the monotonicity. For all x,y ∈ IRn that satisfy 〈y−
F(z),x− z〉� 0 for all z ∈ dom(F), then y∈ F(x). Maximality therefore refers to
the inclusion of graphs. All the mappings defined as the subdifferential of some
convex function ϕ(·) are maximal monotone (including functions whose domain
is not the whole of IRn like the indicator function ψK(·) of a convex set K ⊂ IRn).
See Sect. 2.2 and Theorem 2.41.

• Hypomonotone: the map satisfies

〈x1− x2,y1− y2〉�−l||x1− x2||2

for some l � 0 and all x1,x2 ∈ dom(F). A one-sided Lipschitz-continuous map
with L(t) constant and nonnegative is such that −F(·) is hypomonotone. Clearly
hypomonotonicity with l = 0 is monotonicity.

• Closed: see for instance Filippov’s convexification.
• The linear growth condition: there exists an integrable function λ : IR+ → IR+

such that ||F(t,x)|| � λ (t)(1 + ||x||) for all x ∈ IRn and almost all t � 0. This is
used in many results to guarantee the global existence of solutions (on IR+).

• Nonemptiness: a basic requirement that avoids situations such as ẋ(t) ∈ /0 for all
x(0).

• Continuity: the mapping F(·) is called continuous if it is continuous with respect
to the Hausdorff distance. There are mappings with closed values which are con-
tinuous but not upper semi-continuous and mappings with closed values which
are lower and upper semi-continuous but not continuous (Deimling, 1992).

There are many more properties one may encounter in the literature on DIs (see
for instance the index of Deimling, 1992): α-condensing, almost continuous, almost
lower semi-continuous, almost upper semi-continuous, hyperaccretive, nonexpan-
sive, homogeneous, one-sided contractive, strengthened expansive, relaxed accretive,
and so on. Finding one’s way through this dense forest is not always an easy task for
the nonspecialist. 5

Let us notice an important point that is sometimes (most often) not clearly stated.
It is not because the uniform one-sided Lipschitz-continuous (UOSLC) condition
is by itself more general than the maximal monotone (MM) condition (because all
UOSLC maps F(·) are such that −F(·)+ L· is monotone) that all the results based

5 By nonspecialist, one usually means someone who has not spent at least 3 years of PhD
plus 1 year of post-doc, working 40 h per week on differential inclusions. This makes a lot
of people, indeed.
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on the OSLC contain the results based on the MM. For instance theorem 3.2 in
Dontchev & Farkhi (1998) assumes compactness of F(x) for all x and the linear
growth condition. Thus inclusions in normal cones are excluded.

Example 2.32 (The relay function). This is the multifunction sgn(x) as in (2.20). It
has convex, compact, closed, bounded values F(x), it is upper semi-continuous, max-
imal monotone, satisfies a linear growth condition, but it is not Lipschitz continuous.

Example 2.33 (A normal cone). Consider F(x) = −NC( f (x)) where C ⊂ IRn is a
convex nonempty set, and NC(·) is the normal cone of convex analysis. Take C = IR+

and f (x) = −|x| − 1. Then clearly NC( f (x)) = /0. Now let f (x) = x. Then F(x) is
not compact for x = 0, does not satisfy a linear growth condition, is not Lipschitz
continuous, but it is maximal monotone (the graph of −NC(·) is in Fig. 1.1b).

Remark 2.34. One should not confuse the convexity of the graph of the set-valued
function and the convexity of the values F(x) for each x. These are totally decoupled
notions. The graph of the set-valued sign function is not convex, but each set sgn(x)
is convex (either a singleton or the interval [−1,1]). The graph of F(x) = [−1,1] for
all x is convex, as well as that of F(x) = [−x,x] for x � 0 and F(x) = [x,−x] for
x � 0.

2.1.5 Some Hints About Uniqueness of Solutions

It has already been seen that the one-sided Lipschitz condition assures the uniqueness
of solutions. Suppose that the DI in (2.21) has two solutions x1(·) and x2(·) defined
on IR+, with initial data x1(0) and x2(0). Suppose that 〈x1−x2,y1−y2〉� 0 for all x1,
x2 ∈ IRn, and all y1 ∈ F(t,x1), y2 ∈ F(t,x2): this means that the set-valued mapping
−F(t, ·) is monotone for each t. Then we obtain

∫ t

0

d
dt

(
1
2
||x1(s)− x2(s)||2

)
ds = 1

2 ||x1(t)− x2(t)||2− 1
2 ||x1(0)− x2(0)||2

=
∫ t

0〈x1(s)− x2(s), ẋ1(s)− ẋ2(s)〉ds

=
∫ t

0〈x1(s)− x2(s),y1(s)− y2(s)〉ds

(2.35)

with y1(s) ∈ F(s,x1(s)) and y2(s) ∈ F(s,x2(s)). Thus we get

1
2
||x1(t)− x2(t)||2− 1

2
||x1(0)− x2(0)||2 � 0 , (2.36)

which implies that ||x1(t)−x2(t)||� ||x1(0)−x2(0)|| for all t � 0. Suppose now that
the mapping−F(t, ·) is hypomonotone for each t and some constant l � 0. Then the
mapping x �→ −F(t,x)+ lx is monotone for each t. We obtain
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1
2 ||x1(t)− x2(t)||2− 1

2 ||x1(0)− x2(0)||2 =
∫ t

0〈x1(s)− x2(s),y1(s)− y2(s)〉ds

=
∫ t

0 (〈x1(s)− x2(s),y1(s)− lx1(s)

−y2(s)+ lx2(s)〉+ l||x1(s)− x2(s)||2
)

ds

� l
∫ t

0 ||x1(s)− x2(s)||2ds .
(2.37)

Let us denote f (t) = 1
2 ||x1(t)− x2(t)||2. We can rewrite (2.37) as

f (t)− f (0) � 2l
∫ t

0
f (s)ds . (2.38)

Using Grownwall’s Lemma C.7, it follows that

f (t) � f (0)exp(2lt) . (2.39)

Therefore from (2.39) we deduce that in case x1(0) = x2(0), then x1(·) = x2(·). The
proof of Lemma 2.31 is similar (Kastner-Maresch, 1990–91).

Remark 2.35. It happens that some properties of the right-hand side are necessary to
prove the existence of solutions (Lipschitz continuity, convexity of F(x), upper or
lower semi-continuity, maximality, etc.), while others are sufficient to guarantee the
uniqueness of solutions (monotonicity, hypomonotonicity, OSLC).

2.2 Moreau’s Sweeping Process and Unilateral DIs

For our purpose on unilateral dynamics and the targeted applications, the following
particular classes of DI are of great interest: Moreau’s sweeping process and unilat-
eral DIs. Let us consider for instance a closed nonempty convex set K ⊂ IRn. The
normal cone to K may be defined as follows:

NK(x) Δ= {s ∈ IRn : 〈s,y− x〉� 0, for all y ∈ K}
while the tangent cone is the polar of the normal cone, which means

TK(x) Δ= [NK(x)]◦ Δ= {d ∈ IRn : 〈s,d〉� 0, for all s ∈ NK(x)}.
If x /∈ K, we set NK(x) = TK(x) = /0. It is also possible to start from the definition of
tangent cones and then define the normal cone (Hiriart-Urruty & Lemaréchal, 2001).

2.2.1 Moreau’s Sweeping Process

Let us start with a DI which is of particular interest for our applications, the so-called
first-order Moreau’s sweeping process (Fig. 2.2 Moreau, 1971, 1972, 1977).
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x(t3)

K(t1)

K(t2)

x(t1) = x(t2)

K(t3)

•

•

− NK(t3)(x(t3))

t1 < t2 < t3

NK(t1)(x(t1))={0}
NK(t2)(x(t1))={0}

Fig. 2.2. The first-order sweeping process

Definition 2.36 (First-order Moreau’s sweeping process). Moreau’s sweeping
process (of first order) is defined by the following DI:

⎧⎪⎨
⎪⎩
−ẋ(t) ∈ NK(t)(x(t)) t ∈ [0,T ]

x(0) = x0 ∈ K(0)
, (2.40)

where K(t) is a moving closed and nonempty convex set, T > 0.

This terminology is explained by the fact that x(t) can be viewed as a point which
is swept by a moving convex set. As shown in Moreau (1977), under some mild
conditions on the mapping t �→ K(t), a solution to (2.40) possesses right and left
limits, and x(t) = proj[K(t);x(t−)], x(t+) = proj[K(t+);x(t)], for all t ∈ (0,T ).

A solution x(·) for such a DI is assumed to be differentiable almost everywhere
satisfying (2.40) and the inclusion x(t) ∈ K(t),t ∈ [0,T ]. In simple cases, the set-
valued application t �→ K(t) is supposed to be Lipschitz continuous, i.e.,

∃ l � 0, dH(K(t),K(s)) � l|t− s| , (2.41)

where dH is the Hausdorff distance between two closed sets (see Definition A.1
and recall that (2.41) is equivalent to (2.4)). For instance, let g : [0,T ]→ IRn be a
Lipschitz-continuous function, the set-valued map K(t) = C + g(t) given by a trans-
lation of a constant convex set C satisfies (2.41). It is noteworthy that the convex set
can also change in shape. When the set K(t) satisfies (2.41), it is possible to prove
the existence of a solution which is Lipschitz continuous with the same constant l
and the uniqueness in the class of absolutely continuous functions. The following
theorem states the existence, the uniqueness, the dependence on initial data, and the
dependence on the moving set of solutions.
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Theorem 2.37. Suppose that the mapping t �→ K(t) is Lipschitz continuous in the
Hausdorff distance with constant l and K(t) is nonempty, closed, and convex for ev-
ery t ∈ [0,T ]. Let x0 ∈ K(0). Then there exists a solution x : [0,T ]→ IRn of the DI
in (2.40) which is Lipschitz continuous with constant l. In particular ||ẋ(t)|| � l for
almost every t ∈ (0,T ). Moreover the solution is unique in the class of absolutely
continuous functions. Next, if x1(·) and x2(·) are two solutions with x1(0) = x10

and x2(0) = x20, one has ||x1(t)− x2(t)|| � ||x10− x20||. Finally, let t �→ K(t) and
t �→C(t) be two moving nonempty, closed convex sets with Lipschitz constants l and
c, respectively. Let x(·) denote the solution of the sweeping process with K(t), and
z(·) the solution with C(t). Then

||x(t)− z(t)||2 � ||x0− z0||2 + 2(c + l)
∫ t

0
dH(C(s),K(s))ds . (2.42)

Remark 2.38. The Lipschitz sweeping process is the sweeping process with a
Lipschitz-continuous set-valued mapping t �→ K(t). This is not to be confused with
the DIs with Lipschitz-continuous right-hand sides in Sect. 2.1.1. Indeed let t be
fixed. Then Lipschitz continuity in x means that there exists a bounded constant l
such that for all x1,x2 ∈ IRn one has NK(t)(x1)⊂ NK(t)(x2)+ l||x1− x2||Bn. Consider
n = 1 and K(t) = K = IR+. When x1 = 0 one has NK(x1) = IR−, and when x2 �= 0 one
has NK(x2) = {0}. Letting x2 approach 0 one sees that the inclusion of sets cannot
be satisfied with a bounded l. The Lipschitz sweeping process is not a Lipschitzian
DI in the sense of Sect. 2.1.1.

Many extensions have been studied. To cite a few of them, we refer to Kunze
& Monteiro Marqués (2000), Castaing et al. (1993), Benabdellah et al. (1996),
Castaing & Monteiro-Marques (1996) and Thibault (2003). For instance, the state-
dependent sweeping process

⎧⎪⎨
⎪⎩
−ẋ(t) ∈ NK(t,x(t))(x(t)) t ∈ [0,T ]

x(0) = x0 ∈ K(0)
(2.43)

has been studied in Kunze & Monteiro Marques (1998). One of these extensions
which is of utmost importance is the RCBV (right-continuous and of bounded vari-
ation) sweeping process:

⎧⎪⎨
⎪⎩
−dx ∈ NK(t)(x(t)) (t � 0)

x(0) = x0

, (2.44)

where the solution x(·) is searched as a function of bounded variations (BV). The
measure dx associated with the BV function x is called a differential measure or a
Stieltjes measure, see Definition C.4. We will come back later on what is the meaning
of the inclusion of a measure into a cone.
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The Lipschitz assumption (2.41) is no longer made on the convex set K(t) but is
replaced by

dH(K(t),K(s)) � r(t)− r(s) (2.45)

for some right-continuous nondecreasing function r : [0,T ]→ IR. A moving set K(t)
that satisfies such a condition is called RCBV (see Sect. C.2).

Theorem 2.39. Let t �→ K(t) be RCBV, such that every K(t) ⊂ IRn is nonempty,
closed, and convex. Let x0 ∈ K(0). Then (2.44) has a unique RCBV solution.

Both Theorems 2.37 and 2.39 have been proved in Moreau (1977) and
Monteiro Marques (1993) (theorem 1.5 in this book). Intuitively, when the mov-
ing set K(t) is BV, then it may have discontinuities and may jump from one position
K(t−) to another position K(t+) such that K(t+) does not contain x(t−). Then the
state x(·) also has to jump so that x(t+) ∈ K(t+). We conclude that the set of instants
at which x(·) jumps is contained in (possibly equal to) the set of instants at which
K(·) jumps. Said differently, the atoms of the differential measure dx must be times
where K(·) is discontinuous. Obviously if K(·) jumps at t but x(t) stays inside K(t+)
then x(·) is continuous at t.

An important class of sweeping processes are the so-called perturbed sweeping
processes. They are inclusions of the form

⎧⎪⎨
⎪⎩
−dx+ f (x(t),t)dt ∈ NK(t)(x(t)) (t � 0)

x(0) = x0

(2.46)

for some vector field f (·, ·). The inclusion is written in (2.46) in terms of measures,
to allow the possibility for the solution to possess jumps. The well-posedness of
such inclusions has been studied, with various assumptions on f (·, ·) and K(t), in
Benabdellah et al. (1997), Edmond & Thibault (2005, 2006) and Brogliato &
Thibault (2006), to cite a few. In particular, some nonsmooth electrical circuits can
be written as perturbed sweeping processes Brogliato & Thibault, 2006, so that this
class of DIs has a particular importance in applications. We almost showed it on a
particular case in Sect. 1.1.5 (in the treated example of circuit (c), the set K is con-
stant, but it could be easily rendered time-varying by adding a current source in the
circuit).

2.2.2 Unilateral DIs and Maximal Monotone Operators

Definition 2.40 (Unilateral differential inclusion). A unilateral differential inclu-
sion (UDI) is defined as

−(ẋ(t)+ f (x(t))+ g(t)) ∈ NK(x(t)), x(0) = x0 ∈ K , (2.47)

where the closed convex nonempty set K ⊂ IRn is the feasible set and g : IR+→ IRn

and f : IRn→ IRn.
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A solution of such a DI is understood as an absolutely continuous function t �→
x(t). It is noteworthy that any solution of such a DI must by construction lie in the
convex set K. The link with maximal monotone operators is strong. Let us consider
the following inclusion:

ẋ(t)+ A(x(t))+ g(t)� 0, x(0) = x0 ∈ dom(A) , (2.48)

where A(·) is a maximal monotone operator and g(·) an absolutely continuous func-
tion of time. If we consider an operator f (·) which is monotone and Lipschitz con-
tinuous, then the operator

A(x(t)) = f (x(t))+ NK(x(t)) (2.49)

is maximal monotone. Results for such differential inclusions abound in the liter-
ature, see for instance Brezis (1973) and Goeleven et al. (2003a). Let us state the
following that is a generalized version of the Hille–Yosida theorem.

Theorem 2.41. Consider the differential inclusion (2.48), where A : IRn → 2IRn
is

maximal monotone and g : IR+→ IRn is absolutely continuous. Then there exists a
unique Lipschitz-continuous solution x(·) satisfying the inclusion almost everywhere.

There exist so many variations of Theorem 2.41 that writing all of them would bring
us much too far from the topic of this book, is numerical simulation. The inter-
ested reader may have a look at Brezis (1973), Goeleven et al. (2003a,b), Aubin &
Cellina (1984), Adly & Goeleven (2004) and references therein. Recall that maximal
monotonicity implies upper semi-continuity, as we stated in Sect. 2.1.2. This does
not mean at all that Theorem 2.41 can be deduced from Lemma 2.13. Indeed many
maximal monotone operators do not satisfy the conditions of Lemma 2.13.

2.2.3 Equivalence Between UDIs and other Formalisms

In Brogliato et al. (2006), a result of equivalence in terms of solutions has been given
between the implicit differential inclusion

−(ẋ(t)+ f (x(t))+ g(t)) ∈ NTK(x(t))(ẋ(t)) (2.50)

and (2.47), provided that the UDI (2.47) has the so-called slow solution, that is ẋ(t)
is of minimal norm in NK(x(t))+ f (x,t)+ g(t). We will see that an inclusion into a
tangent cone taken at ẋ(·) will also be introduced in second-order dynamics.

Special Case when K is Finitely Represented

Let the nonempty closed convex set K be finitely represented such that

K = {x ∈ IRn | h(x) � 0} (2.51)
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where the function h(x) = (h1(x), . . . ,hm(x))T and the functions hi(x) : IRn→ IR are
assumed to be continuously differentiable with gradients denoted by ∇hi(x). In this
case, two other definitions of the normal and the tangent cones can be written. For
x ∈ K, we denote by

I(x) = {i ∈ {i, . . . ,m} | hi(x) = 0} (2.52)

the set of active constraints at x. The tangent cone can be defined by

T h(x) = {s ∈ IRn | 〈∇hi(x),s〉 � 0, i ∈ I(x)} (2.53)

and the normal cone as its polar cone, i.e.,

Nh(x) := [T h(x)]◦ =
{
∑

i∈I(x)
λi∇hi(x),λi � 0, i ∈ I(x)

}
. (2.54)

It is always true that NK(x) ⊃ Nh(x) and TK(x) ⊂ T h(x). A key assumption to
guarantee that NK = Nh and equivalently TK = T h is commonly called a constraints
qualification condition in convex analysis and optimization theory. For instance, the
so-called Mangasarian-Fromowitz assumption

∑i∈I(x) λi∇hi(x) = 0

with λi � 0 , i ∈ I(x)

⎫⎬
⎭ =⇒ λi = 0 , i ∈ I(x) (QC.1)

is a kind of constraints qualification which ensures NK = Nh and TK = T h. Such
conditions hold in particular if the gradients of the active constraints at x are linearly
independent. When the hi(·), 1 � i � m, are convex, it can be seen that (QC.1) is
equivalent to the so-called Slater assumption:

∃ x̄ ∈ IRn : hi(x̄) < 0 , i = 1, . . . ,m . (QC.2)

Let us now introduce the following DI :

−(ẋ(t)+ f (x(t))+ g(t)) ∈ Nh(x(t)) . (2.55)

Obviously, this last UDI is equivalent to the DI (2.47) if and only if NK = Nh. It
is also equivalent to the following dynamical system which is a particular type of
dynamical complementarity systems, see Sect. 2.6,

⎧⎪⎨
⎪⎩
−ẋ(t) = f (x(t))+ g(t)+∇h(x(t))λ (t)

0 �−h(x(t))⊥ λ (t) � 0 ,

(2.56)

where λ (·) is assumed to be measurable.
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2.3 Evolution Variational Inequalities

Let us first recall what a variational inequality (VI) is. Given a nonempty closed
convex set K ⊂ IRn, a VI is defined as: find x ∈ K such that

〈F(x),y− x〉� 0, ∀y ∈ K , (2.57)

where F : IRn → IRn. From the definition of a normal cone, this definition can be
rewritten as the inclusion

−F(x) ∈ NK(x) . (2.58)

More details on this problem can be found in Sect. 12.6. The link between (2.58)
and subdifferentiation of convex analysis is clear, as (2.58) means that −F(x) is a
subgradient of the indicator function of the set K. This is generalized to any proper
convex function φ(·), see Appendix A.

Following the definition of a VI, the evolution variational inequalities are defined
as follows.

Definition 2.42 (Evolution variational inequalities). Given a nonempty closed con-
vex set K ⊂ IRn, an evolution variational inequality (EVI) is defined as: find x(·) ∈ K
such that

〈ẋ(t)+ f (x(t)),y− x(t)〉� 0, ∀ y ∈ K, x(0) = x0 ∈ K , (2.59)

which is equivalent to the following unilateral DI:

−(ẋ(t)+ f (x(t))) ∈ NK(x(t)), x(0) = x0 ∈ K . (2.60)

Again the equivalence holds because this is just a rewriting of the same ob-
ject, the normal cone to K. Seminal studies of such VI and EVI have been car-
ried in infinite-dimensional spaces, such as Hilbert spaces, see the work of Lions &
Stampacchia (1967) and Kinderlehrer & Stampacchia (1980). The book of Goeleven
et al. (2003a) gives a good overview of the various mathematical approaches for VIs
and EVIs. In Harker & Pang (1990) and Facchinei & Pang (2003), the presenta-
tion is focused on finite-dimensional VI and the associated algorithms to solve such
problems.

Some variants for the definition of the EVI can be found in the literature and the
terminology is still not very well fixed. For instance, an EVI sometimes referred to
as a parabolic VI is defined as follows: find x : [0,T ]→ IRn such that

〈ẋ(t),y− x(t)〉+ a(x(t),y− x(t))+φ(y)−φ(x(t))� 〈 f (t),y− x(t)〉 (2.61)

for all y ∈ K, where a : IRn× IRn → IRn is continuous, bilinear, and elliptic (i.e.,
a(x,x) � α‖x‖2,α > 0), f : [0,T ]→ IRn belongs to L 2, and φ : IRn → IR∪{+∞}
is convex, proper, and lower semi-continuous. The above EVI can be further gen-
eralized by replacing the bilinear form a(x,y) by 〈F(x),y〉 where F(x) is a maxi-
mal monotone operator. In order to obtain the previous definition of EVI given by
(2.59) it suffices to choose φ(·) as the indicatrix ψK(·) of the set K, f = 0, and
a(x,y− x) = 〈 f (x),y〉.
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Example 2.43. Let us consider the dynamics of a one degree-of-freedom system
subject to Coulomb and viscous friction. It may be written as the inclusion

mq̈(t)+ cq̇(t)+ kq(t) ∈−∂ϕ(q̇(t)) , (2.62)

where c > 0 is the damping coefficient, k > 0 is the stiffness of a spring acting on
the mass, and ϕ(q̇) = μ |q̇|, μ > 0 is the dry friction coefficient. As we have already
seen in the foregoing sections and chapter, one has ∂ϕ(q̇) = μ sgn(q̇), where sgn(·)
is the sign multifunction. The inclusion in (2.62) may be rewritten as the evolution
variational inequality (see Appendix A.3)

〈mq̈(t)+ cq̇(t)+ kq(t),v− q̇(t)〉+ϕ(v)−ϕ(q̇(t)) � 0 (2.63)

for all v ∈ IR and almost everywhere in IR+. Let us rewrite (2.62) as a first-order
system

ẋ(t)+ Ax(t) ∈−∂Φ(x(t)) (2.64)

with xT = (x1nx2) = (q, q̇) and A is easily calculable, the function Φ(x) = μ√
m |x2|.

Then (2.64) is equivalent to the variational inequality (see Appendix A)

〈ẋ(t)+ Ax(t),v− x(t)〉+Φ(v)−Φ(x(t)) � 0 (2.65)

for all v ∈ IR2 and almost everywhere in IR+.

The link between EVIs, unilateral DIs, and maximal monotone operators is also
strong. For instance, the existence and uniqueness theorem for maximal monotone
operators holds for

〈ẋ(t)+ f (x(t))+ g(t),v− x〉� 0 for all v ∈ K , (2.66)

where K is nonempty closed convex. In Brogliato et al. (2006), an existence re-
sult is given for this last EVI under the assumption that f (·) is continuous and
hypomonotone.

For g≡ 0 and f (x) = Ax, the EVI is called a linear evolution variational inequality
(LEVI) (Goeleven & Brogliato, 2004). To complete this description, let us define
what is the so-called quasi-variational inequality (QVI) and the associated evolution
quasi-variational inequality (EQVI). The QVI may be defined by finding the solution
x ∈ K(x) such that

〈F(x),y− x〉� 0, for all y ∈ K(x) . (2.67)

The major discrepancy with the standard VI is the dependence of K on the variable
x which leads to strong mathematical difficulties. In the same way, the EQVI may be
defined by finding x ∈ K(x) such that

〈ẋ(t)+ f (x(t)),y− x(t)〉� 0, for all y ∈ K(x(t)) . (2.68)

We will see in the sequel that the Coulomb’s friction model with unilateral contact
and the second-order Moreau’s sweeping process enter into such a class of prob-
lems. There also exist so-called hemi variational inequalities that were introduced
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by P.G. Panagiotopoulos. Roughly speaking, VIs are related to the subdifferentiation
of convex functions. Hemi VIs are related to subdifferentiation of locally Lipschitz
continuous functions and Clarke’s normal cone (see Definition A.2). We do not tackle
hemi VIs in this book, see Goeleven et al. (2003a).

To end this part on VIs, let us state a well-posedness result taken from Goeleven
& Brogliato (2004) that is inspired by corollary 2.2 of Goeleven et al. (2003b), which
is itself an extension of Kato’s theorem (Kato, 1970).

Theorem 2.44. Let K be a nonempty closed convex subset of IRn and let A ∈ IRn×n

be a real matrix of order n. Suppose that F : IRn→ IRn can be written as

F(·) = F1(·)+Φ ′(·),
where F1(·) is Lipschitz continuous and Φ(·) ∈C1(IRn; IR) is convex. Let t0 ∈ IR and
x0 ∈ K be given. Then there exists a unique x ∈C0([t0,+∞); IRn) such that

dx
dt

(·) ∈L ∞
loc([t0,+∞); IRn) , (2.69)

x(·) is right-differentiable on [t0,+∞) , (2.70)

x(t0) = x0 , (2.71)

x(t) ∈ K, t � t0 , (2.72)

〈dx
dt

(t)+ Ax(t)+ F(x(t)),v− x(t)〉� 0, ∀v ∈ K, a.e. t � t0 . (2.73)

The well-posedness results of Theorem 2.44 continue to hold for a controlled
LEVI(A,B,K) defined as 〈 dx

dt (t) + Ax(t) + Bu(t) + F(x(t)),v− x(t)〉 � 0, ∀v ∈ K,
with B ∈ IRm×n, u ∈ C0([t0,+∞); IRm) and du

dt ∈ L 1
loc([t0,+∞); IRm), see Goeleven

et al. (2003a).

2.4 Differential Variational Inequalities

In Pang & Stewart (in press), a framework that is more general than EVIs is settled
and the so-called differential variational inequalities are introduced.

Definition 2.45 (Differential variational inequalities). A differential variational
inequality (DVI) can be defined as follows:

ẋ(t) = f (t,x(t),λ (t)), (2.74)

λ (t) = SOL(K,F(t,x(t), ·)), (2.75)

0 = Γ (x(0),x(T )) , (2.76)

where

• x : [0,T ]→ IRn is the differential trajectory (state variable),
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• λ : [0,T ]→ IRm is the algebraic trajectory (or Lagrange multiplier),
• f : [0,T ]× IRn× IRn→ IRn is the ODE right-hand side,
• F : [0,T ]× IRn× IRm→ IRm is the VI function,
• K is nonempty closed convex subset of IRm,
• Γ : IRn× IRn → IRn is the boundary conditions function. For an initial value
problem (IVP), the function is equal toΓ (x,y) = x−x0 and for a linear boundary
value problem (BVP) equal to Γ (x,y) = Mx + Ny− b for some matrices M ∈
IRn×n and N ∈ IRn×n and a vector b ∈ IRn.

The notation λ (t) = SOL(K,Φ) means that λ (t) ∈ K is the solution of the fol-
lowing VI:

(v−λ )TΦ(λ ) � 0, ∀v ∈ K . (2.77)

A pair of functions (x,λ ) is the solution in the sense of Carathéodory of the DVI if
x(·) is absolutely continuous and λ (·) is (Lebesgue) integrable satisfying

x(t) = x(s)+
∫ t

s
f (τ,x(τ),λ (τ))dτ, ∀s � t (2.78)

and for any continuous λ̃ : [0,T ]→ K such that

∫ T

0
(λ̃ (t)−λ (t))TF(t,x(t),λ (t))dt � 0 . (2.79)

The latter condition implies that λ (t) a.e.= SOL(K,F(t,x(t), ·)).

Special Cases of DVI

The DVI framework includes the following:

• Differential algebraic equations
⎧⎨
⎩

ẋ(t) = f (t,x(t),λ (t))

λ (t) = F(t,x(t),λ (t)) .
(2.80)

• Differential complementarity systems
⎧⎨
⎩

ẋ(t) = f (t,x(t),λ (t))

K � λ (t)⊥ F(t,x(t),λ (t)) ∈ K∗ ,
(2.81)

where K and K∗ are a pair of dual closed convex cones (K∗ =−K◦, where K◦ is
the polar cone). The LCSs are also a special case of DVI (see Sect. 2.6).

• Evolution variational inequalities

−(ẋ(t)+ f (x(t))) ∈ NK(x(t)) . (2.82)



84 2 Nonsmooth Dynamical Systems: A Short Zoology

– When K is a cone, the preceding EVI is equivalent to a differential CS of the
type ⎧⎨

⎩
ẋ(t)+ f (x(t)) = λ (t)

K � x(t)⊥ λ (t) ∈ K∗ .
(2.83)

– When K is finitely represented, i.e., K = {x ∈ IRn | h(x) � 0}, then under
some appropriate constraints qualifications, we obtain another dynamical CS
which is often called a gradient complementarity system (see Sect. 4.1):

⎧⎨
⎩

ẋ(t)+ f (x(t)) =−∇h(x(t))λ (t)

0 �−h(x(t))⊥ λ (t) � 0 .
(2.84)

– Finally, if K is a closed convex and nonempty set then the EVI is equivalent
to the following DVI:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t)+ f (x(t)) = w(t)

0 = x(t)− y(t)

y(t) ∈ K, (v− y(t))Tw(t) � 0,∀v ∈ K .

(2.85)

Example 2.46. The circuit (c) in (1.13) is a gradient CS with g(x) = x2 (one may
replace λ (t) by λ ′(t) = 1

Lλ (t) in the complementarity condition without changing
the system). Other examples are given in Pang & Stewart (in press).

Remark 2.47. Consider (2.84). Suppose the system evolves in the subspace {x |
h(x) = 0} on some nonzero closed time interval I. Then as we saw in Sect. 1.4
the complementarity may be rewritten as 0 � −∇hT(x(t))ẋ(t) ⊥ u(t) � 0 for
t ∈Int(I). Replacing ẋ(t) by its value one then gets 0 � −∇hT(x(t))(− f (x(t))−
∇h(x(t))u(t))⊥ u(t) � 0, which is an LCP with matrix ∇hT(x(t))∇h(x(t)) � 0.

2.5 Projected Dynamical Systems

An other type of NSDS are the so-called projected dynamical systems (PDS) which
have been introduced in Dupuis & Nagurney (1993) and Nagurney & Zhang (1996),
see also Henry (1973). Various definitions for PDS exist and are fortunately equiv-
alent in most situations. To start with one of them, let us consider the following
definition:

Definition 2.48 (Projected dynamical systems). Let us consider a nonempty closed
and convex subset K of IRn. A projected dynamical system (PDS) is defined as

ẋ(t) =ΠK (x(t);−( f (x(t))+ g(t))) , (2.86)

where ΠK : K× IRn→ IRn is the operator
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ΠK(x;v) = lim
δ↓0

projK(x + δv)− x
δ

. (2.87)

Let us recall that the projection operator projK : IRn→ K is defined as

‖projK(z)− z‖= inf
y∈K
‖y− z‖ . (2.88)

The definition of the operator ΠK(·, ·) corresponds to the one-sided Gâteaux deriva-
tive of the projection operator for x ∈ K, i.e., when projK(x) = x. A classical result
of convex analysis (see for instance Hiriart-Urruty & Lemaréchal, 2001) states that

ΠK(x;v) = projTK (x)(v) , (2.89)

where TK(x) is the tangent cone to K at x. Therefore, the PDS can be equivalently
rewritten as

ẋ(t) = projTK(x(t)) (−( f (x(t))+ g(t))) . (2.90)

In Brogliato et al. (2006), the PDS (2.90) is proved to be equivalent to the im-
plicit UDI(2.50) and therefore to be equivalent to the UDI (2.47) if the slow solution
is selected (similar equivalences were shown by Henry, 1973; Cornet, 1983). For re-
sults and definitions in infinite-dimensional spaces (Hilbert spaces), we refer to the
works in Cojocaru (2002) and Cojocaru & Jonker (2003).

2.6 Dynamical Complementarity Systems

2.6.1 Generalities

In van der Schaft & Schumacher (2000), the class of dynamical complementarity
systems is defined as

⎧⎪⎨
⎪⎩

f (ẋ(t),x(t),t,y(t),λ (t))

K∗ � w(t)⊥ λ (t) ∈ K ,

(2.91)

where K ⊂ IRm is a closed nonempty convex cone and K∗ its dual cone (identify f (·),
w(·), C, and K∗ in the dynamical CS in (1.64) and (1.65)). In this formulation, the
dynamics is given in an implicit way as in a DAE. It is possible to provide a semi-
explicit formulation in assigning to y the role of an output and to λ the role of an
input of the dynamical system, i.e.,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = f (x(t),t,λ (t)) = 0

w(t) = h(x(t),λ (t))

K∗ � w(t)⊥ λ (t) ∈ K

. (2.92)
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In order to be able to give well-posedness results, one has to focus on subclasses of
(2.92), that is a much too large class of complementarity systems. We will see this in
Chap. 4. In Heemels & Brogliato (2003), some other extensions can be found which
include explicitly a control input u(·).
Example 2.49. Consider the following scalar system, with u(·) a measurable
function: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ(t) = u(t)+λ (t)

0 � w(t) = x(t)⊥ λ (t) � 0

x(0) � 0 .

(2.93)

It is seen that when x(t) > 0 then λ (t) = 0 and ẋ(t) = u(t). When x(t) = 0 things
have to be looked at more carefully. We do not state a well-posedness result here, the
next reasoning merely aims at showing “how this works”. Suppose that x(t) = 0 on
(t1,t1 + ε), ε > 0. Then from Glocker’s Proposition C.8 it follows that the comple-
mentarity can be expressed as 0 � ẋ(t) = u(t)+λ (t)⊥ λ (t) � 0, that is an LCP with
a unique solution whatever u(t). If u(t) > 0 then λ (t) = 0 and ẋ(t) = u(t) > 0 (the
state leaves the constraint). If u(t) � 0 then λ (t) = −u(t) � 0 and ẋ(t) = 0. Thus in
all cases there exists a λ (t) which allows one to integrate the system.

Example 2.50. Consider the following scalar system, with u(·) a measurable func-
tion: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ(t) =−x(t)+λ (t)

0 � w(t) = x(t)+λ (t)+ u(t)⊥ λ (t) � 0

x(0) = x0 ∈ IR .

(2.94)

The complementarity relations define an LCP with unknown λ (t) and a unique so-
lution. If x(t)+ u(t) > 0 then λ (t) = 0 and ẋ(t) =−x(t). When x(t)+ u(t) � 0 then
λ (t) =−x(t)−u(t) � 0 and ẋ(t) =−2x(t)−u(t).

Rather than listing an exhaustive set of dynamical CS, we will focus our attention
on two specifications of them. The first one is the class of linear complementarity
systems (LCS): ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t)+ Bλ (t)

w(t) = Cx(t)+ Dλ (t)

0 � w(t)⊥ λ (t) � 0

(2.95)

with the matrices A ∈ IRn×n,B ∈ IRn×m,C ∈ IRm×n,D ∈ IRm×m. In this case, the gen-
eral cone K is given by the nonnegative orthant of IRm, i.e., K = IRm

+. The well-
posedness, and even the very meaning of the dynamics in (2.95), is not trivial.
An extensive study of such systems can be found in Heemels et al. (2000) and
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Heemels (1999). In Acary et al. (in press) the LCS (2.95) is embedded into a dif-
ferential inclusion that is an extension of Moreau’s sweeping process. Solutions are
distributions, whose degree is related to the relative degree between y and λ . Con-
sider for instance the two electrical circuits of Chap. 1, in (1.13) and (1.11). It is
easily checked that the relative degree for (1.13) is r = 1 whereas for (1.11) it is
r = 0. Both possess continuous solutions. This is the same for Examples 2.49 (r = 1)
and 2.50 (r = 0). Consider now the bouncing ball in its complementarity formalism
in (1.96). This time r = 2 and the solutions may be discontinuous, so that the ac-
celeration is a measure. One realizes on these simple examples that there is a strong
correlation between the relative degree between the two complementary variables y
and λ and the smoothness of the solutions. More will be said on this in Chap. 5.

Remark 2.51. The term linear CS does not mean at all that the dynamical systems in
(2.95) are linear. In fact they are strongly nonlinear and nonsmooth.

Example 2.52. Let us consider the electrical circuit with ideal diodes in Fig. 2.3,
with R1,R2,R3 � 0, L2,L3 > 0, C4 > 0. One has 0 �−uD4 ⊥ x2 � 0 and 0 �−uD1 ⊥
−x3 + x2 � 0, where uD4 and uD1 are the voltages of the diodes. The dynamical
equations of this circuit are the following ones:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t)

ẋ2(t) =−
(

R1+R3
L3

)
x2(t)+ R1

L3
x3(t)− 1

L3C4
x1(t)+ 1

L3
ζ1(t)+ 1

L3
ζ2(t)+ u(t)

L3

ẋ3(t) =−
(

R1+R2
L2

)
x3(t)+ R1

L2
x2(t)− 1

L2
ζ1(t)+ u(t)

L2

0 �
(
ζ1(t)
ζ2(t)

)
⊥

(−x3(t)+ x2(t)
x2(t)

)
� 0 ,

(2.96)

R1

D1

L2

R2

L3

R3

D4
C4

uD1

uD4

x2

x3
u(t)

Fig. 2.3. A circuit with ideal diodes
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where x1(·) is the time integral of the current across the capacitor, x2(·) is the current
across the capacitor, and x3(·) is the current across the inductor L2 and resistor R2,
−ζ1 is the voltage of the diode D1 and−ζ2 is the voltage of the diode D4. The system
in (2.96) can be written compactly as ẋ(t) = Ax(t)+Bζ (t)+Eu(t), 0 � ζ (t)⊥ y(t) =
Cx(t) � 0, with

A =

⎛
⎜⎝

0 1 0
− 1

L3C4
−R1+R3

L3

R1
L3

0 R1
L2

−R1+R2
L2

⎞
⎟⎠ ,

B =

⎛
⎝0 0

1
L3

1
L3

− 1
L2

0

⎞
⎠ , C =

(
0 1 −1
0 1 0

)
,E =

⎛
⎝0

1
L3
1

L2

⎞
⎠ .

2.6.2 Nonlinear Complementarity Systems

Finally, let us introduce a nonlinear complementarity system where the input λ enters
into the dynamical system in an affine way:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = f (x(t),t)+ g(x(t))λ

w(t) = h(x(t),λ )

K∗ � w(t)⊥ λ ∈ K .

(2.97)

This nonlinear special case is interesting because we can recognize the structure
given by a Lagrange multiplier λ associated with a constraint, if the function g(x)
is equal to the gradients of the constraints, i.e., g(x) = ∇h(x). We will see further
the analogy with the Lagrangian systems. The well-posedness of such systems have
received attention in van der Schaft & Schumacher (1998) (in which it is a priori as-
sumed that solutions are right-continuous) and in Brogliato & Thibault (2006) when
the triple ( f (x),g(x),h(x)) satisfies a dissipation equality (in which case the NLCS
can be transformed into a perturbed Moreau’s sweeping process), see Sect. 4.2.4.

2.7 Second-Order Moreau’s Sweeping Process

This formalism has been developed in Moreau (1983), and aims at providing a
dynamical framework for Lagrangian systems with unilateral constraints and/or
Coulomb friction. Such systems will be examined in detail in Chap. 3. They are
measure differential inclusions (MDI), i.e., DIs that involve measures (this term was
coined by J.J. Moreau). An introduction through the bouncing ball can be found in
Chap. 1, see (1.107) and (1.109). We already saw MDIs in Sect. 2.2, see the BV first-
order sweeping process in (2.44). The discrepancy between the first-order sweeping
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process with a BV set K(·) and the second-order sweeping process is that in the for-
mer the state jumps are due to the variation of K(t). If K(t) varies smoothly, so will
the state. The source of state jumps in the second-order sweeping process is rather
due to the relative degree issue that has been briefly discussed at the end of Sect. 2.6
for the LCS in (2.95). Let us now introduce the second-order sweeping process. This
is an MDI into a normal cone:

−M(q(t))dv− f (q(t),v(t),t)dt ∈ NTΦ (q(t))(v(t
+)), q(0) ∈Φ , (2.98)

whereΦ = {q∈ IRn | h(q)� 0} for some h : IRn→ IRm, Φ is the admissible domain,
q(·) is a vector of generalized coordinates, and it is supposed that the time-function
q : IR+→ IRn is absolutely continuous, v(·) is the BV generalized velocity, i.e., q(t)=
q(0) +

∫ t
0 v(s)ds, M(q) = MT(q) > 0 is the n× n inertia matrix, f (·, ·, ·) contains

all inertial forces (Coriolis, centrifugal forces) and external actions like inputs or
disturbances and forces that derive from a potential (gravity, elastic forces, etc.).
The measure dv is the acceleration and the Stieltjes measure associated with the BV
velocity v(·). The cone TΦ(q(t)) is the tangent cone to the domain Φ , calculated at
the position q(t). Thus the right-hand side of (2.98) is the normal cone to TΦ(q(t)),
calculated at the velocity v(t+). The differential inclusion (2.98) looks weird. Three
questions arise:

• How does it work?
• Is it well-posed?
• What is it useful for?

The bouncing ball example in Chap. 1 already brought a partial answer to the first
question, but we will come back on this later. The second question received positive
answers in the works of Monteiro Marques (1993), Mabrouk (1998) and Dzonou &
Monteiro Marques (2007), which prove that given q(0) ∈Φ there exists a trajectory
with absolutely continuous position and RCLBV velocity (see these references for
the assumptions on the data, in particular on Φ). Uniqueness also holds under some
mild conditions (Ballard, 2000): the functions hi(·) and all other data (like external
forces) have to be piecewise analytic. However, it is well-known that solutions may
not depend continuously on the initial conditions when the boundary of Φ is not
smooth, see Chap. 6. The answer to the third point is contained in Chap. 11, where
the numerical simulation of (2.98) is described.

Remark 2.53. The discrepancy between the perturbed sweeping process in (2.46) and
(2.98) is that the moving set TΦ(q) is state dependent whereas K(t) in (2.46) is a func-
tion of time. Also TΦ(q) is always a polyhedral convex cone (provided some regular-
ity on Φ is imposed), whereas K(t) is just a convex set. In the same way (2.98) is not
equivalent to (2.50). Indeed from Theorem 2.41, the DI in (2.50), which is equivalent
to the DI in (2.47) when slow solutions are selected, possesses a Lipschitz-continuous
solution x(·). But the solutions of (2.98) with Φ ⊂ IRn, a closed domain, are such that
v(·) is BV. The source of the discrepancy is that the whole state vector x(·) is con-
strained to evolve in K(·) in (2.50) or (2.47), whereas only q(·) is constrained in Φ
in (2.98).
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Let us now bring new material that answers the first question above. Suppose first
that q(t) ∈ Int(Φ). Then the tangent cone TΦ(q) = IRn, and consequently the normal
cone to the tangent cone is the singleton {0}. This holds whatever v(t+). In this case
(2.98) reduces to the usual Lagrange equations. Suppose now that q(t) ∈ ∂Φ , the
boundary of Φ (since Φ is assumed to be a closed domain it has a boundary). Then
TΦ(q) is no longer the whole ambient space, but is a cone. Some cases are depicted in
Fig. 2.4. Now the value of the right-hand side of (2.98) depends on the right limit of
the velocity v(t+) (remember this is an implicit formulation of the dynamics). Clearly
v(t+) must belong to TΦ(q), otherwise the right-hand side of (2.98) is the empty set.
If v(t+) points inside TΦ(q), the normal cone is equal to the singleton {0}. Once
again we are back to the usual Lagrange dynamics. If v(t+) is on the boundary ∂Φ
then the right-hand side of (2.98) is a (nonempty) convex cone. This means that it is
allowed that a nonzero multiplier λ belongs to NTΦ (q(t))(v(t+)).

Let us analyze this from another point of view, which makes the implicit for-
mulation become explicit (and therefore certainly more telling). At the atoms of the
differential measure dv (these atoms correspond to the impact times), the measure DI
in (2.98) is equivalent to

M(q(t))[v(t+)− v(t−)] ∈ −NTΦ (q(t))(v(t
+)) . (2.99)

Now using the equivalences in (A.8), it follows that (2.99) is equivalent to

v(t+) = argmin
z∈TΦ (q(t))

1
2
(z− v(t−))TM(q(t))(z− v(t−)) (2.100)

(c)

q(0)

NΦ (q(t))

Φ
q(t) v(t−)

v(t+)

TΦ (q(t))

NΦ (q(t))

q(t)

q(0)

Φ

TΦ (q(t))

NΦ (q(t))

q(t)

q(0)

Φ

Φ

TΦ (q(t))

(a)

(b)

Fig. 2.4. Tangent and normal cones
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that is also often written by Moreau as follows:

v(t+) = proxM(q(t))[TΦ(q(t));v(t−)] . (2.101)

One concludes that at atoms of dv, the measure DI in (2.98) imposes a “plastic”
impact on the velocity: the post-impact velocity lies on the boundary of TΦ (q(t)).

Remark 2.54. The above framework easily admits other sorts of impacts. One can
introduce a coefficient of restitution e∈ [0,1] as follows: the right-hand side of (2.98)
is replaced by

NTΦ (q(t))

(
v(t+)+ ev(t−)

1 + e

)
. (2.102)

At an impact we obtain

M(q(t))[v(t+)− v(t−)] ∈ −NTΦ (q(t))

(
v(t+)+ ev(t−)

1 + e

)
, (2.103)

which we can rewrite equivalently as

v(t+)+ ev(t−)
1 + e

− v(t−) ∈ −(M(q(t)))−1NTΦ (q(t))

(
v(t+)+ ev(t−)

1 + e

)
(2.104)

from which we deduce (see (A.8))

v(t+)+ ev(t−)
1 + e

= proxM(q(t))[TΦ (q(t));v(t−)] , (2.105)

i.e.,
v(t+) =−ev(t−)+ (1 + e)proxM(q(t))[TΦ(q(t));v(t−)] . (2.106)

Other expressions may be found in Mabrouk (1998). The impact rule in (2.106)
assures that the kinetic energy decreases at impact times, provided e ∈ [0,1]. In prac-
tice the proximation has to be solved with an optimization algorithm. Multiple im-
pacts are complex phenomena and are still an on-going subject of research (Acary &
Brogliato, 2005; Glocker, 2004). Obviously Moreau’s rule in (2.106) often produces
a post-impact velocity that does not fit with observed experimental results. However,
it has to be considered as a fundamental step towards a geometrical description of
multiple impacts processes. This is the starting point for the framework developed in
Glocker (2004).

Remark 2.55. We have introduced normal and tangent cones to convex sets. Moreau
defines the tangent cone as

TΦ(q) = {v ∈ IRn | for all i ∈ I(q), vT∇hi(q) � 0},
where I(q) is the set of active constraints, i.e., I(q) = {i ∈ {1,m} | hi(q) � 0}.
Then the normal cone is defined as the polar cone to the tangent cone. The active set
embeds cases hi(q) > 0 so that it can be calculated numerically when the constraints
are slightly violated. Both cones hence defined are closed polyhedral sets. Notice
that Φ need not be convex.
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[b,c] = e[q(t),b]

Φ
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Φ
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q(t)
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NΦ (q(t))

NΦ (q(t))

(a)
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w =−ev(t−)
[q(t),b] = prox[TΦ (q(t));v(t−)]

Fig. 2.5. The impact process

The impact in Fig. 2.5 a has v(t−) ∈ NΦ (q(t)), and its projection on TΦ (q(t)) is
zero. From (2.106) one has v(t+) =−ev(t−). In Fig. 2.5b one has v(t−) �∈ NΦ (q(t))
and v(t−) �∈ Φ . The projection of the pre-impact velocity on the tangent cone is
the segment [q(t),b]. The vector w = −ev(t−). The segment [b,c] is equal to e
prox[TΦ(q(t));v(t−). From (2.106) one obtains the post-impact velocity. One notes
that the impact rule keeps the tangential component of the velocity: only the normal
component is changed. Also for the ease of exposition and drawing it is supposed
that the inertia matrix M(q(t)) is the identity. Notice that the angle between the two
faces of the domain Φ in Fig. 2.5 is larger than π

2 . If it is smaller than π
2 then the

pre-impact velocity is always inside NΦ (q(t)), and the scenario of Fig. 2.5a is the
generic one. In general all the quantities (angles, projections) have to be calculated
in the kinetic metric defined as 〈x,y〉q = xTM(q)y for two vectors x,y ∈ IRn.

2.8 ODE with Discontinuities

2.8.1 Order of Discontinuity

Let us introduce a definition of the order of discontinuity of a function.

Definition 2.56 (Order of discontinuity of a function). We will say that a discon-
tinuity of a function has order q � 0 if the function has a finite jump in at least one
of the partial derivative of order q and has continuous derivatives of order q− 1,
q−2,...,0.
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In this section, we will discuss some properties of dynamical systems with low
order of discontinuity, i.e., ODEs of the form

ẋ(t) = f (x(t),t) , (2.107)

where the right-hand side function f (·, ·) has a low order of discontinuity q � 0. The
notion of “low order of discontinuity” has no precise definition. It has to be under-
stood regarding the numerical methods that we want to use and the mathematical
analysis that we want to perform. Indeed, if the order q � 1 then the standard theory
of ODEs can be applied. But numerical solving methods and stability analysis have
to take care about the possible nonsmoothness of the gradients of f (·, ·). We will see
in Sects. 7.2 and 9.1 that higher order time-integration schemes for ODE have some
difficulties to deal with such dynamical systems.

2.8.2 Transversality Conditions

Let us consider dynamical systems of the form

ẋ(t) =

⎧⎨
⎩

f−(t,x(t)) if g(t,x(t)) � 0

f +(t,x(t)) if g(t,x(t)) > 0
, (2.108)

where f−(·) and f +(·) are locally Lipschitz in x and g : IR+× IRn→ IR is smooth (in-
finitely differentiable). The vector field f (·, ·) made of f−(·, ·) and f +(·, ·) may jump
at the switching surface or it may be continuous but with a discontinuous derivative
of order q � 1.

According to Definition 2.56, one may speak of a system with an order of dis-
continuity q. When q = 0 the jump is in f (·, ·) itself and one may resort to Filippov’s
formalism to study the system. When q = 1 then f (·, ·) is continuous when crossing
the switching surface; however, its derivative is discontinuous. In other words, the
right derivative of f−(·, ·) and the left derivative of f +(·, ·) at the switching surface
are not equal. A fundamental assumption is made:

Assumption 1 (Transversality). There exists δ > 0 such that for all t ∈ IR+ and all
x ∈ IRn

⎧⎨
⎩

∂g
∂ t + ∂g

∂x f−(t,x) � δ

∂g
∂ t + ∂g

∂x f +(t,x) � δ
. (2.109)

Thanks to Assumption 1, all the trajectories that attain the switching surface cross
it so that g(t,x) changes its sign. There is no sliding trajectory that remains on the
switching surface and no spontaneous jumps. Thus for any initial data there is a
unique AC solution with a finite number of switching states on any finite interval.
At each switching state, the derivative x(q+1)(·) has a finite jump. In the rest of this
section it will be supposed that Assumption 1 holds true.
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Example 2.57. The system
⎧⎨
⎩

ẋ(t) =−sgn(t)|1−|t||x2(t)

x(−2) = 2
3 , t ∈ [−2,2]

(2.110)

has two discontinuities of order q = 1 at t = 1 and t = −1 and a discontinuity of
order q = 0 at t = 0 (Hairer et al., 1993).

2.8.3 Piecewise Affine and Piecewise Continuous Systems

These two sorts of dynamical systems are popular in the systems and control com-
munity.

Definition 2.58 (Piecewise affine systems). A piecewise affine (PWA) system can be
defined as follows:

ẋ(t) = Aix(t)+ ai, x(t) ∈ Xi , (2.111)

where

• the set {Xi}i∈I with Xi ⊂ IRn, i ∈ I, is a partition of the state space into a number
of closed (possibly unbounded) polyhedral cells with disjoint interior; the index
set of the cells is denoted by I ⊂ IN;

• the matrix Ai ∈ IRn×n and the vector ai ∈ IRn define an affine system on each cell.

The sets Xi are defined by a finite representation of the type

Xi = {y(t) | Ciy(t) � Di} , (2.112)

where the inequality has to be understood component-wise, the matrix Ci ∈ IRm×n

and the vector Di ∈ IRm define the polyhedral cell i. By a partition of the state space
it is meant that ∪i∈IXi = IRn. The solution of PWA systems may be defined as a con-
tinuous piecewise C 1 function x(·) ∈ ∪i∈IXi on the time interval [0,T ]. The function
x(·) is a solution of the system (2.111) if for every t ∈ [0,T ] such that the derivative
ẋ(·) is defined, the equation ẋ(t) = Aix(t)+ai holds for all i with x(t) ∈ Xi. The PWA
possesses such piecewise C 1 solutions if at each switching point one has continuity
of the vector field (conditions like Aix(t)+ ai = A jx(t)+ a j have to be satisfied as
the state goes from Xi to Xj). Other sufficient conditions may be found in Imura &
van der Schaft (2000) and Imura (2003) yielding to well-posed switch-driven piece-
wise affine systems. Another way to avoid the DI formalism is to postulate an as-
sumption of transversality (see Assumption 1).

Remark 2.59. Definition 2.58 is relatively rough, but can suffice to understand what
types of solutions are sought. Indeed, if some discontinuity of the right-hand side
is allowed, the canonical problem with the sign function can be cast into such a
formalism. We know that the existence of solutions is not guaranteed for such a dis-
continuous ODE (see (2.12)) which has to be recast into a well-posed framework like
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Filippov’s inclusions. Johansson & Rantzer (1998) circumvent this problem exclud-
ing arbitrarily such cases.

A proper definition of the solution can be given with the DI:

ẋ(t) = conv j∈J{Aix(t)+ ai} with J = { j | x(t) ∈ Xj} . (2.113)

It is seen that a discontinuity in the vector field may occur only on the boundaries
∂Xi. Let us denote N = ∪i∈I∂Xi, a set which has zero measure in IRn. Then from
(2.26) Filippov’s right-hand side may be calculated with the formula

F [ f ](x) = conv{lim f (xn) | xn→ x, xn �∈ N}

so that (2.113) is recovered if the state x belongs to the cells Xj, j ∈ J.

Remark 2.60. Consider the LCS in (2.95). Suppose that D is an m×m P-matrix.
Then from Theorem B.3 it follows that λ (·) is a piecewise linear function of x, and
the LCS is consequently an ODE with a piecewise linear right-hand side. Using the
same notation as in Theorem B.3 the LCS can be rewritten as (Camlibel et al., 2006)

ẋ(t) = [A−B•α(Dαα)−1Cα•]x(t) if

( −(Dαα)−1 0
−Dᾱα(Dαα)−1 Iᾱᾱ

)(
Cα•
Cᾱ•

)
x(t) � 0 ,

(2.114)
where the notation B•α is the matrix constructed from B by taking all the rows, and
the columns indexed by integers in α ⊂ {1, ...,m}, and Cα• is constructed from C by
taking rows indexed in α and all columns. We have already seen a particular case of
an LCS that can be rewritten as a piecewise linear system in Chap. 1, see (1.11) and
(1.21).

The next two examples are inspired from Heemels & Brogliato (2003).

Example 2.61. Consider the system

ẋ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f11(x(t)) if h1(x(t)) > 0 and h2(x(t)) > 0

f10(x(t)) if h1(x(t)) > 0 and h2(x(t)) < 0

f01(x(t)) if h1(x(t)) < 0 and h2(x(t)) > 0

f00(x(t)) if h1(x(t)) < 0 and h2(x(t)) < 0

(2.115)

with x(t) ∈ IRn. It is assumed that the smooth functions h1(·) and h2(·) : IRn→ IR are
such that the ambient space IRn is divided into four parts, each part corresponds to the
activation of a vector field. The condition f11(x) = f10(x) = f00(x)= f01(x) for x such
that h1(x) = h2(x) = 0 guarantees that the vector field is continuous and therefore
(2.115) is an ODE. From property (vii) of Theorem 2.22, Filippov’s convexification
always yields F [ f ](x) = { f (x)} in such a case. Let us investigate what happens
when the vector field jumps occur on the codimension one surfaces Σi = {x ∈ IR2 |
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Fig. 2.6. Filippov’s convexification on Σ12

hi(x) = 0} and on the codimension two subspace Σ12 = {x ∈ IR2 | h1(x) = h2(x) =
0}= Σ1∩Σ2. We may use (2.26) for the calculation of F [ f ](x). For instance on Σ12

we get
F [ f ](x) = conv{lim f (xi) | xi→ x, xi �∈ Σ1∩Σ2} (2.116)

that is the convex hull of the four vector fields at x, i.e., f11(x), f10(x), f00(x), and
f01(x). This is depicted in Fig. 2.6, where we have denoted x0 the value of the state
on Σ12. The convex hull is in dashed line. Let us make two comments. First the vector
fields are not defined on Σ1 or Σ2 in (2.115). Therefore the dynamics in (2.115) is
not complete. It is completed either by imposing some continuity on the switching
surfaces or by embedding the system into Filippov’s framework. Second, and most
importantly, Filippov’s convexification allows us to construct a new model, which we
know is well-posed in the sense that there exists an absolutely continuous solution for
any x(0) = x0 ∈ IRn. However, uniqueness is not guaranteed (additional conditions
have to be imposed as we saw in Sects. 2.1.3 and 2.1.5), and even if it is, one should
know more to integrate the system through Σ1 ∩Σ2. Is this an attractive, repulsive,
crossing subspace? The reader is referred to Sects. 7.1.1 and 7.1.2 where a powerful
method invented by D. Stewart allows one to determine the future solutions when
the trajectory attains a switching surface. Notice that one may also rewrite (2.115)
quite similarly as (7.4) or (7.5), which once again shows the close link between the
piecewise smooth system (2.115) and differential inclusions, via the sign set-valued
function.

Example 2.62. We consider the LCS
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = Ax(t)+ bλ (t)+ eu(t)

0 � w(t) = cTx(t)+ dλ (t)⊥ λ (t) � 0

x(0) = x0 ∈ IRn

, (2.117)
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where A ∈ IRn×n, b ∈ IRn×1, c ∈ IRn×1, d ∈ IR, and e ∈ IRn×1. Suppose d > 0. Then
the complementarity relation is a LCP with unknown λ (t) and a unique solution
whatever cTx(t), that is Lipschitz continuous in x (as the solution of an LCP with
positive definite matrix, see Theorems B.2 and B.3). We may rewrite the system as

ẋ(t) =

⎧⎨
⎩

Ax(t)+ eu(t) if cTx(t) � 0

(A−bd−1cT)x(t)+ eu(t) if cTx(t) � 0
. (2.118)

This shows that some LCS (with relative degree r = 0) can be interpreted as piece-
wise linear systems (take u as a constant to recover the class of piecewise affine
systems of this section). We have already seen this in Chap. 1 with the electrical cir-
cuit (b). Let us now suppose that d = 0 and that cTb > 0 (and cTx0 � 0). Then we
can rewrite the system as

ẋ(t) =

⎧⎨
⎩

Ax(t)+ eu(t) if (cTx(t),cTAx(t)+ cTeu(t))� 0

P(Ax(t)+ eu(t)) if cTx(t) = 0 and cTAx(t)+ cTeu(t) � 0
(2.119)

with P = In−b(cTb)−1cT, and � is the lexicographical inequality (the first nonzero
element has to be nonnegative). The way to go from (2.117) to (2.119) is similar to
what has been done with the electrical circuit (c) in Chap. 1. The condition cTb > 0 is
a fundamental one, which means that the principal Markov parameter of the system
is positive. It guarantees that when the system evolves on the surface {x ∈ IRn |
cTx = 0}, then the LCP: 0 � λ (t)⊥ cT(Ax(t)+bλ (t)+eu(t))� 0 possesses a unique
solution λ (t) that is a Lipschitz-continuous function of x(t) and u(t). The positivity
of the leading Markov parameter is an essential condition for the well-posedness
that will be encountered in more general cases of LCS, see Chap. 5. Therefore in the
second case also we have been able to go from an LCS to a kind of piecewise linear
system. As we said in Chap. 1 concerning circuit (c), this is not really what is usually
called in the literature a PWL system, as the switching conditions show.6 This is a
differential inclusion in a normal cone as the complementarity relation 0 � cTx(t)⊥
λ (t) � 0 is equivalent to the inclusion−λ (t)∈NK(x(t)), where K = IR+ (see (A.9)).
This inclusion defines a set-valued mapping.

Remark 2.63. Recall that an LCP: 0 � λ ⊥ λ + b � 0 does not define a set-valued,
but a single-valued mapping (see Sect. A.3). This is why well-posed LCS with r = 0
are not inclusions but ODEs.

Let us now turn our attention to another class of piecewise systems often used in
the systems and control scientific community.

Definition 2.64 (Piecewise continuous systems). A piecewise continuous (PWC)
system can be defined by

6 To convince oneself of this, try to draw the cells defined by the lexicographical inequality,
when n = 2. They do not fit with Definition 2.58.
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ẋ(t) = fi(x(t),t), x(t) ∈ Xi, x(0) = x0 , (2.120)

where the continuous functions fi : IRn× [0,T ]→ IRn define a continuous system on
each cell Xi.

In a general way, it is difficult to understand PWA and PWC systems without refer-
ring to one of the following formalisms:

• ODE with Lipschitz right-hand side,
• Filippov differential inclusions,
• Higher relative degree systems.

PWA or PWC or PWL (linear) or PWS (smooth) systems have to be recast in
one of these classes, to be given a meaning in terms of existence and uniqueness of
solutions (in other words, what is a solution for a general PWA or PWC system?).
This is what is done properly in Orlov (2005) (see Definition 2.1 in this chapter).

2.9 Switched Systems

Switched systems can be defined as

ẋ(t) = fσ(t)(x(t)), t ∈ [0,T ] , (2.121)

where σ : [0,T ]→ IR is called a switching signal usually taking integer values i, and
the vector fields fi(·) are locally Lipschitz continuous. To assure the existence of so-
lutions to the time-varying system (2.121) one may simply resort to Carathéodory
Theorem. In particular it is sufficient that fσ(t)(x) be Lebesgue measurable in t
for each x. For instance Boscain (2002) considers controlled systems of the form
ẋ(t) = u(t)Ax(t) + (1− u(t))Bx(t) where u(·) : IR+ → [0,1] is measurable. By a
switching signal, one may also mean a signal that exhibits only a finite number of
discontinuities in any finite time interval and is right-continuous. Accumulations of
switches are consequently excluded from such a framework. A related definition is
the following (Hespanha, 2004; Vu & Liberzon, 2005):

ẋ(t) = fσ (x(t)), t ∈ [0,T ], σ(·) ∈S , (2.122)

where S is a set of piecewise constant signals, called the switching signals. The
difference between (2.121) and (2.122) is that solutions of (2.122) are parameter-
ized by x(0) and σ , whereas in (2.121) solutions are parameterized only by x(0).
For further stability study, the solutions of such switching systems may be sup-
posed to be continuous piecewise differentiable, i.e., they are continuous functions
of time whose derivative may exhibit a finite number of jumps in any finite interval
of time.

One may also define switched systems starting from a PWC of a PWA system.
However, in such a case the switching function σ(·) is no longer exogenous, but state
dependent, because the times at which the vector field changes depend on whether
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or not the state x(·) has reached some set boundary. As for PWA of PWC systems,
one has in such a case to be careful with the definition of switched systems, since
it may easily happen that Carathéodory solutions do not exist, and one has to resort
to Filippov’s modeling to give a meaning to (2.121). Again one way to guarantee
the well-posedness with continuous piecewise differentiable solutions and without
changing the model is to impose that fσ(t+k )(x) = fσ(t−k )(x), where tk is a switching

time (a time at which the function σ(·) jumps).

Example 2.65. Consider the following system (inspired from Hespanha, 2004). Let

ẋ(t) =−σ(x(t))x(t), σ ∈S , (2.123)

where S contains all the pairs (x,σ) with x(·) : IR+→ IR piecewise differentiable,
and σ(·) : IR+→ IR+ is piecewise constant, with

σ(x(t)) =

⎧⎨
⎩

0 if x(t) = 0

2n if |x(t)| ∈ [2−n−1,2−n), n ∈ ZZ .
(2.124)

Consider x = 1
2n , n < +∞. Let us call the vector field in (2.123) and (2.124) f (x),

which is depicted in Fig. 2.7. Then f (x+) =− 1
2 and f (x−) =−1. Similarly x =− 1

2n ,
with a jump between 1

2 and 1. Therefore the vector field jumps at each |x|= 1
2n , and

there is an accumulation of jumps as x approaches zero. At x = 0 one has f (0) =
0 since [2−n−1,2−n)→ {0} as n → +∞, and f (0+) = (−1,− 1

2 ], f (0−) = [ 1
2 ,1).

Filippov’s convexification for this system replaces the jumps by segments [−1,− 1
2 ]

for x > 0 and segments [ 1
2 ,1] for x < 0. At x = 0 it imposes f (0) = [−1,1]. One

may use (2.26) to compute these sets. Here we may highlight the importance of
defining the system with closed bracket [2−n−1,2−n) in (2.124), if one considers
Carathéodory solutions instead of Filippov’s solutions. Filippov’s solutions ignore
the value of the discontinuous vector field at points x =± 1

2n . Carathéodory solutions
do not ignore it. If one had defined σ(·) with open sets (2−n−1,2−n), assigning the
value 0 at x = ± 1

2n , then Carathéodory solutions would simply stop at x = ± 1
2n for

some n. Filippov’s solutions would not.
The system is designed in such a way that all the switching surfaces Σn = {x ∈

IR | x = 1
2n } and Σ−n = {x ∈ IR | x = − 1

2n } are crossed transversally. Therefore
the spontaneous jumps (see Sect. 7.1.2) which are typical in Filippov’s systems with
repulsive switching surfaces are ruled out, and the uniqueness of solutions holds. In
order to study the stability of the origin x = 0, one may choose a Lyapunov function
V (x) = x2. However, one has to resort to the specific tools of convex analysis to
study the variations of V (·) along the (absolutely continuous) solutions. The set-
valued right-hand side hence constructed is not Lipschitz continuous nor uniformly
one-sided Lipschitz continuous nor monotone.

Systems with switching set-valued mappings are analyzed in Mancilla-Aguilar,
Garcia, Sontag, & Wang (2005) (i.e., the locally Lipschitz vector fields fi(·) are
replaced by locally Lipschitz set-valued mappings Fi(·)).
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Fig. 2.7. A switched vector field

2.10 Impulsive Differential Equations

2.10.1 Generalities and Well-Posedness

Roughly speaking, impulsive ODEs are ODEs with inputs that may be Dirac mea-
sures. Hence the state may jump. One way to write down the dynamics of impulsive
ODEs is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = f (x(t),t) for all t �= tk

x(t+k )− x(t−k ) = I(x(t−k )) for all t = tk(x)

x(0) = x0,t � 0

, (2.125)

where the sequence of times {tk}k�0 may be purely exogenous or state depen-
dent, i.e., tk = tk(x). The dynamics in (2.125) may represent physical systems like
a predator–prey system in which some quantity of one of the species (pikes, trouts)
is added or subtracted. It is implicitly supposed in (2.125) that the solutions pos-
sess right and left limits everywhere. This imposes some restrictions on the set
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{tk}k�0 as for instance one cannot have {tk}k�0 = Q. Usually one imposes that
0 < t1 < t2 · · ·< tk < · · · , and even more: tk+1− tk > γ for some γ > 0 and all k � 0.
Therefore solutions of (2.125), if any, are piecewise differentiable.

The dynamics of impulsive ODEs is sometimes written as

ẋ(t) = f (x(t),t)+ g(x(t),t)u̇, x(0) = x0, t � 0 , (2.126)

where u(·) is a function of bounded variation (see Sect. C.1) or a Lebesgue mea-
surable function. As g(·, ·) may be state dependent and u̇ is a measure (that should
preferably be written as the Stieltjes measure du), the well-posedness issues associ-
ated with (2.126) require much care. Actually (2.126) should rather be seen as an
equality of distributions, under the condition that the right-hand side is itself well
defined as a distribution. Well-posedness results have been published (Bressan &
Rampazzo, 1993; Orlov, 1985, 2000) that concerns impulsive ODEs as

ẋ(t) = f (x(t))+ g(x(t))u̇, x(0) = x0, t � 0 , (2.127)

where f (·), g(·) are C1[IRn; IRn], the vector field g(·) is such that for every x the map
t �→ exp(tg)(x) is defined for all t ∈ IR, and u(·) is a bounded, measurable function of
time. Let us now summarize the results of Bressan & Rampazzo (1993), which are
very close in spirit to Orlov (1985). In what follows the notation (exp(th)(x) means
the value at time t of the solution of the ODE ẏ(t) = h(y(t)), y(0) = x

Definition 2.66. A function x : [0,T ]→ IRn is a generalized solution of (2.127) if
x(t) = exp(u(t)g)(y(t)), where y(·) is a Carathéodory solution of the ODE:

ẏ(t) = f u(t,y(t)), y(0) = exp(−u(0)g)(x0) , (2.128)

where f u(t,y) = (exp(−u(t)h))∗ f (exp(u(t)h)(y)), and

(expth)∗ f (x) = lim
ε→0

(exp(th)(x + ε f (x))− (exp(th)(x)
ε

.

When u(·) is a smooth function, this definition is the classical definition of a
solution for an ODE.

Theorem 2.67. Under the stated assumptions, there exists T > 0 such that the
Cauchy problem (2.127) has a unique generalized solution on [0,T ]. If in addition
the linear growth conditions || f (x)||� c(1+ ||x||), ‖ ∂g

∂x (x) ‖� c hold for some c and
all x ∈ IRn, then the solution exists globally on [0,T ] and is uniquely defined.

Example 2.68. As an example consider the scalar impulsive ODE

ẋ(t) = x(t)u̇, x(0) = x0 (2.129)

so that f (·) = 0, g(x) = x, and we choose u(t) = 0 if t < 0, u(t) = 1 if t � 0.
This u(·) is right continuous, BV, and u̇ = δ0, the Dirac measure at t = 0, and
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u̇ = 0 almost everywhere. One has f u(·) = 0, so that (2.128) is the ODE ẏ(t) = 0,
y(0) = exp(−g)(x0) is the solution at t = −1 of the ODE ż(t) = z(t), z(0) =
x0, that is y(0) = x0

e = y(t).7 The generalized solution is then given by x(t) =
exp(u(t)x)(y(t)) = exp(u(t)x)(y(0)), that is the solution at time u(t) of the ODE
ż(t) = z(t), z(0) = y(0). For t < 0 we have u(t) = 0 so x(t) = y(0) = x0

e . For t � 0
we have u(t) = 1 so x(t) = y(0)e = x0. Since we are interested by solutions on IR+

we conclude that the generalized solution of (2.129) is the constant x0.
Let us now choose u(t) = 0 if t < 1, u(t) = 1 if t � 1. The ODE (2.128) is

ẏ(t) = 0, y(0) = exp(0)(x0), i.e., y(0) = x0, so that y(t) = x0. Thus the generalized
solution is x(t) = exp(u(t)g)(y(t)), that is the value at time u(t) of the solution of the
ODE ż(τ) = z(τ), z(0) = y(t) = x0, that is z(t) = x0 exp(τ) for all τ � 0. For t < 1
we have u(t) = 0 so x(t) = x0, for t � 1 we have u(t) = 1 so that x(t) = x0e. We
therefore obtain a solution of (2.129) that jumps from x0 to ex0 at time t = 1.

We realize on this simple example that the generalized solution contains the in-
tuitive jump that should occur in the solution when the input is a Dirac. This is,
however, not so obvious because at the instant of jump t = 1, the right-hand side of
(2.129) multiplies a function (discontinuous at t = 1) and a Dirac measure. Accord-
ing to the theory of distributions this is a mathematical object that does not exist!
The notion of generalized solution proposed in Bressan & Rampazzo (1993) and
Orlov (1985) overcomes this obstacle.

On such a simple example the dynamics can be integrated directly. Indeed we
can write (2.129) as

ẋ(t)
x(t)

= u̇, x(0) = x0 . (2.130)

provided x(t) �= 0. Integrating both sides (supposing u̇ is integrable) we get

ln(x(t)) = ln(x0)+ u(t)−u(0) ⇒ x(t) = x0 exp(u(t)−u(0)) (2.131)

The above results with the two values for u(·) are recovered with the direct inte-
gration method. In a sense, the notion of generalized solution proposed in Bres-
san & Rampazzo (1993) means that we are looking for the solution of a system
that is not exactly the system in (2.127), but another ODE whose solutions satisfy
(2.127) almost everywhere. In other words, one may say that the right and sound
definition of the system is in (2.131), and that writing it as in (2.129) requires much
care when u(·) is not differentiable. The procedure that we employed to transform
and integrate the impulsive ODE (2.129) is generalized to a broader class of sys-
tems in Orlov (1985) when some commutativity conditions are fulfilled (see also
Brogliato (1999), Sect. 1.4).

Another class of impulsive ODEs that is encountered in the literature is as
follows:

7 e is the Neperian logarithm constant, i.e., ln(e) = 1 and exp(1) = e.
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⎩

ẋ(t) = f (x(t),t) if x(t) �∈Z

x(t+)− x(t−) = fd(x(t),t) if x(t) ∈Z
(2.132)

where Z is a so-called resetting set, and it is assumed that

(i) If x ∈Z then x + fd(x,t) �∈Z ,.
(ii) If at time t one has x(t) ∈ Z̄ \Z , then there exists an ε > 0 such that for all

0 < δ < ε , one has x(t + δ ) �∈Z .
(iii) The vector field f (x,t) is such that between state jumps, the system is well-

posed.

The first assumption means that a trajectory cannot enter the resetting set through a
point that belongs to its closure but not to Z itself. The second assumption implies
that any trajectory that enters Z is instantaneously directed outside Z . Thus no
trajectory can reach the interior of the resetting set, and the state discontinuities are
separated, i.e., they satisfy 0 < t1 < t2 · · ·< tk < · · · . However, the framework admits
accumulations of resetting times.

Remark 2.69. The assumptions (i) and (ii) therefore introduce a notion of unilater-
ality in (2.132), since one may define a set in which trajectories cannot penetrate.
However, one must not confuse these systems with complementarity systems, and
in particular mechanical systems with unilateral constraints, from which they dif-
fer a lot. Indeed complementarity systems may live on lower dimensional subspaces,
which is not the case of (2.132) (and of none of the other presented impulsive ODEs).
Moreover complementarity systems possess very specific features due to the comple-
mentarity conditions, which are absent in (2.132). Let us illustrate this on a simple
example.

ẋ(t) = sin

(
x(t)+

5π
4

)
+ cos

(
x(t)+

3π
4

)
u̇(t), x(0−) = x0, x(t) ∈ IR , (2.133)

where u(·) is of bounded variation. Applying Theorem 2.67, this impulsive ODE has
a unique global generalized solution. Consider now a complementarity system that
looks like (2.133):

⎧⎨
⎩

ẋ(t) = sin
(
x(t)+ 5π

4

)
+ cos

(
x(t)+ 3π

4

)
λ (t), x(0−) = x0, x(t) ∈ IR

0 � x(t)⊥ λ (t) � 0 .
(2.134)

Suppose that x0 = 0. Then if λ (0) = 0 one gets ẋ(0) = sin( 5π
4 ) < 0. It is necessary

that there exists a λ (0) > 0 such that ẋ(0) � 0. However, since cos( 3π
4 ) < 0, this is

not possible and necessarily ẋ(0) < 0. If x0 < 0, then an initial jump must occur and
x(0+) � 0. If x(0+) = 0 the previous analysis applies. One sees that defining gener-
alized solutions as in Theorem 2.67 is not sufficient. Therefore the complementarity
system in (2.134) is not well-posed, despite its resemblance with the impulsive ODE
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in (2.133). Example 2.7 of the bouncing ball in Haddad et al. (2006), which is in-
ept from the mechanical point of view, clearly shows that the formalism (2.132) is
not a suitable framework for complementarity dynamical systems, as it cannot even
describe what happens on the constraint surface during persistent contact (it simply
does not allow for persistent contact).

Further information on impulsive ODEs may be found in Bainov & Sime-
onov (1989). There also exist models which somewhat mix unilaterality and impul-
sive terms, see for instance neural networks models (Tonnelier & Gerstner, 2003).
Let us again insist on the fact that the impulsive ODEs presented in this section and
measure DIs or complementarity systems, are quite distinct formalisms.

2.10.2 An Aside to Time-Discretization and Approximation

Normally this chapter is not dedicated to numerical schemes. The time-discretization
of most of the NSDS presented in this chapter will be studied in Part II of the book.
However, we will not see again impulsive ODEs in Chaps. 7–11, so their time-
discretization is briefly presented now. Let us consider (2.127). It is assumed that
the same assumptions as in Theorem 2.67 hold. The impulsive ODE is studied on a
time interval [0,T ], T > 0.

Theorem 2.70. Let the control input u(·) ∈ L 1([0,T ]; IR)×L ∞([0,T ]; IR) and be
pointwise defined at a given τ ∈ [0,T ] and a t = 0. Let {un(·)}n∈IN be a sequence in
W 1,2([0,T ]; IR), such that the variation of un(·) on [0,T ] satisfies var[0,T ](un) � L for
some constant L, and un(·)→ u(·) in L 1([0,T ]; IR). Moreover suppose that un(0)→
u(0) and un(τ)→ u(τ). Then the Carathéodory solutions of the ODE (2.127) with the
control input un(·) satisfy xn(·)→ x(·) in L 1([0,T ]; IRn) and xn(τ)→ x(τ), where
x(·) is the generalized solution of (2.127) with the control input u(·) pointwise defined
at t = 0 and t = τ .

We recall that un(·)→ u(·) in L 1([0,T ]; IR) means that
∫ T

0 ||un(t)−u(t)||dt→ 0
as n→ +∞. Also W 1,2([0,T ]; IR) is a Sobolev space, i.e., functions which are in
L 2([0,T ]; IR) and whose first-order derivative is also in L 2([0,T ]; IR). This theo-
rem signifies that the generalized solutions in Definition 2.66 can be approximated
when the control input is replaced by some approximation. This is not strictly speak-
ing a time-discretization of the impulsive ODE. One may think of Theorem 2.70
as a first step towards the definition of a nonimpulsive ODE that approximates
(2.127), and this nonimpulsive ODE can be discretized with a usual scheme (Euler,
Runge–Kutta).

2.11 Summary

In this chapter we have presented a number of systems that may be classified under
the general umbrella “nonsmooth dynamical systems”. The nonsmoothness comes
from the fact that their solutions are not differentiable everywhere or, worse, they
may be discontinuous. Differential inclusions occupy a large place in the NSDS
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class. There are various types of differential inclusions, with very different proper-
ties of their right-hand sides: Lipschitz continuous, upper semi-continuous, maximal
monotone, one-sided Lipschitz continuous, normal cones to convex sets, etc. Vari-
ational inequalities with dynamics (also named evolution variational inequalities),
projected dynamical systems, complementarity systems are other kinds of NSDS
which are sometimes closely linked with some kinds of differential inclusions, even
equivalent. As a consequence the mathematical tools which are used to study NSDS
come from convex analysis, nonsmooth analysis, complementarity theory, the the-
ory of variational inequalities (there are many sorts of these as well). Some more
NSDS exist, like various sorts of impulsive ordinary differential equations, piece-
wise schtroumpf systems (where schtroumpf may mean linear, affine, continuous,
smooth). There are more than those presented in this chapter. Our aim is not at being
exhaustive, but only at presenting the most encountered ones in the literature, with
their properties and features and with examples that illustrate the theory. This is a
necessary step before tackling time-discretization.

The reader may have the feeling that the large number of NSDS that exist and are
presented in this chapter is an obstacle to get a clear picture of their main properties.
However, this is unavoidable. When one wants to obtain accurate results then one
necessarily has to narrow the class of systems under study. Introducing larger classes
which embed several other subclasses (as for instance the DVIs of Sect. 2.4) gener-
ally has a limited usefulness. Of much greater interest is the study of the relationships
between the existing formalisms, like possible equivalences (Brogliato et al., 2006).



3

Mechanical Systems with Unilateral
Constraints and Friction

This chapter aims at providing a rapid overview on modeling aspects of nonsmooth
mechanical systems. Some of the material has already been presented on particu-
lar examples in Chaps. 1 and 2. We start with the Lagrange and the Newton–Euler
formalisms when there are no nonsmooth effects. The local kinematics between
two bodies that make contact are detailed. Then nonsmoothness is introduced and
Moreau’s sweeping process is derived. The chapter ends with a short presentation of
the various contact models for impact and friction one may encounter.

3.1 Multibody Dynamics: The Lagrangian Formalism

Let us consider a system of nb rigid bodies parameterized by a set of generalized
coordinates q(t) ∈ IRn, whose motion is defined on a time interval [0,T ], T > 0. The
generalized velocities v(t) ∈ IRn are usually defined as the derivative with respect to

time of these generalized coordinates: v(t) =
dq
dt

(t). In the classical Lagrangian set-

ting, the equations of motion are derived from the Lagrange’s equations as follows:

d
dt

(
∂L(q(t),v(t))

∂vi

)
− ∂L(q(t),v(t))

∂qi
= Qi(q(t), t), i ∈ {1 . . .n} , (3.1)

where the Lagrangian of the system

L(q,v) = T (q,v)−V(q)

is composed of the kinetic energy

T (q,v) =
1
2

vTM(q)v

and the potential energy of the system, V (q). The vector Q(q, t) ∈ IRn denotes the
set of generalized forces corresponding to the parameterization q and is determined
using the principle of virtual work (see the example of the pendulum in a section
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below). The matrix M(q), called the mass matrix contains all the masses and the
moments of inertia. In most applications one has M(q) = MT(q) > 0, however, this
is not always the case, see Remark 3.8.

With some standard algebraic manipulations, the Lagrange equations (3.1) can
be put in a more usual way

M(q(t))
dv
dt

(t)+ N(q(t),v(t)) = Q(q(t), t)−∇V(q(t)) , (3.2)

where the vector

N(q,v) =

[
1
2∑k,l

∂Mik

∂ql
+
∂Mil

∂qk
− ∂Mkl

∂qi
, i = 1 . . .n

]
(3.3)

collects the nonlinear inertial terms, i.e., the gyroscopic accelerations.
If we allow one to introduce nonlinear interactions between bodies of the systems

and external applied forces which do not derive from a potential, we will use the
following more general form for the equation of motion:

M(q(t))
dv
dt

(t)+ N(q(t),v(t))+ Fint(t,q(t),v(t)) = Fext(t) , (3.4)

where

• Fint : IRn × IRn × IR → IRn collects the nonlinear interactions between bodies,
called also the internal forces which are not necessarily derived from a poten-
tial.

• Fext : IR→ IRn collects all the external applied loads.

It is noteworthy that the dynamics of deformable continuum media, discretized in
space, for instance by a finite element method, can be cast into such a formulation,
see Sect. 3.4. In the sequel, the nonlinear inertial terms will be integrated to Fint to
lighten the notation.

A Particular Case: Linear Time-Invariant Systems

In this case, the operators defined above are linear time invariant (LTI):

• M(q) = M ∈ IRn×n is the mass matrix.
• Fint(t,q,v) = Cv + Kq where C ∈ IRn×n is the viscosity matrix and K ∈ IRn×n is

the stiffness matrix.

When the mass matrix is a constant, then the nonlinear inertial torques are zero, see
the expression of N(q,v) above. The geometrical meaning is that the configuration
manifold of the system has curvature zero. For instance a double pendulum in the
plane has its configuration manifold that is a torus. Necessarily its mass matrix is
configuration dependent. In a kinematic chain where all the joints are prismatic, the
mass matrix is constant: the configuration space is IRn.
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Time Boundary Conditions

The boundary conditions are given for an initial value problem (IVP) as

t0 ∈ IR, q(t0) = q0 ∈ IRn, v(t0) = v0 ∈ IRn , (3.5)

and for a boundary value problem (BVP):

(t0,T ) ∈ IR× IR, Γ(q(t0),v(t0),q(T ),v(T )) = 0 . (3.6)

3.1.1 Perfect Bilateral Constraints

When a multibody system is considered, some relationships (like mechanical con-
straints) between the variables are usually imposed between bodies which constrain
the dynamics of the system. These relationships can be of various types: boundary
conditions or joints are one of them. There are two ways of considering such re-
lationships. The first one is to take them into account through the parameterization,
reducing in this way the number of degrees of freedom (this is a procedure often used
for the design of feedback control of mechanical systems). This is particularly well
suited for boundary conditions of linear constraints. The other way is to consider
bilateral constraints and an associated set of Lagrange multipliers.

Let us consider a set of m bilateral constraints on the generalized coordinates:

h j(q,t) = 0, j ∈ {1 . . .m} , (3.7)

where the functions h j(·) are sufficiently smooth with regular gradients, ∇qh j(·, ·).
The function h : [0,T ]× IRn→ IRm is defined as the vector collecting the functions
h j(·),

h(q,t) = [h1(q,t), . . . ,hm(q,t)]T . (3.8)

The bilateral constraints define the configuration manifold M (t), in which the sys-
tem must evolve:

M (t) =
{

q(t) ∈ IRn | h j(q,t) = 0, j ∈ {1 . . .m}} . (3.9)

These bilateral constraints are usually enforced by a set of Lagrange multipliers,
μ ∈ IRm. Therefore, the equations of motion are given by

M(q(t))
dv
dt

(t)+ N(q(t),v(t))+ Fint(t,q(t),v(t)) = Fext(t)+∇qh(q(t),t)μ , (3.10)

where the terms ∇qh(q,t)μ represent the generalized forces or generalized reactions
due to the constraints.

This description of holonomic bilateral constraints can be a little generalized by
introducing the tangent space to the manifold M at q

TM (q) = {ξ ∈ IRn | ∇qhT(q,t)ξ = 0} (3.11)
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and the normal space as the orthogonal to the tangent space1

NM (q) = {η ∈ IRn | ηTξ = 0,∀ξ ∈ TM } . (3.12)

It is noteworthy that the linearly independent rows of the gradient ∇qh(q, t) form
a basis of NM (q). The bilateral holonomic constraints are said to be perfect if the
multipliers μ satisfy the following inclusion:

r = ∇qh(q,t)μ ∈ NM (q) . (3.13)

We will see in the sequel that this formulation in terms of an inclusion is very useful
in practice. We will also omit the term ∇qh(q,t)μ that corresponds to the bilateral
constraints for the sake of simplicity and because the main concern of this book is
about unilateral constraints.

Remark 3.1. One usually writes r = −∇qh(q,t)μ so that all the gradients that enter
the dynamics have the same sign. In the bilateral case since the multiplier μ is not
signed this is not important.

3.1.2 Perfect Unilateral Constraints

In the Lagrangian setting, the unilateral constraints are usually described by a set of
ν inequalities

gα(q,t) � 0, α ∈ {1 . . .ν} , (3.14)

where the functions gα(·) are assumed to be sufficiently smooth with regular gra-
dients. The function g : IRn× [0,T ]→ IRν is defined as the vector collecting the
functions gα(·),

g(q,t) =
[
g1(q,t), . . . ,gν(q, t)

]T
. (3.15)

These unilateral constraints define the subset C (t) of the configuration space
where the system is constrained to evolve

C (t) = {q ∈M (t) | gα(q,t) � 0,α ∈ {1 . . .ν}} (3.16)

As for the bilateral constraints, the unilateral constraints are enforced in the equa-
tions of motion by a set of Lagrange multipliers λ ∈ IRν such that the equation of
motion is given by

M(q(t))
dv
dt

(t)+ N(q(t),v(t))+ Fint(t,q(t),v(t)) = Fext(t)+∇qg(q(t), t)λ (3.17)

where the vector λ ∈ IRν collects the components λα ,

λ = [λ1,λ2, ...,λν ]T . (3.18)

1 A metric based on the mass matrix is also habitually used.
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The vector nα(q,t) = ∇qgα(q,t) is a normal vector (not necessarily unit) to the sur-
face ∂C (t) directed toward the admissible region C (t).

In a perfect unilateral constraint setting, it is assumed that the reaction force lies
along the normal vectors. Finally, when the function gα(·, ·), is positive, the corre-
sponding reaction force must be zero, which leads to the following complementarity
condition (the so-called Signorini condition):

gα(q,t) � 0, λα � 0, λα gα(q,t) = 0, α ∈ {1 . . .ν} (3.19)

which will be denoted in the sequel as

0 � g(q,t)⊥ λ � 0 . (3.20)

The vector inequalities in (3.20) have to be understood component-wise.
In a more general way, the outward normal cone to the set C (t) is defined as

NC (t)(q(t)) = {y ∈ IRn | y =−∑α λα∇gα(q,t), λα � 0, for all α such that

gα(q,t) = 0} .
(3.21)

Defining the generalized force r ∈ IRn corresponding to the unilateral constraints as

r =∑
α
∇qgα(q,t)λα (3.22)

or more compactly as
r = ∇qg(q,t)λ (3.23)

the complementarity condition can be formulated as an inclusion into the normal
cone:

−r ∈ NC (t)(q(t)) (3.24)

Remark 3.2. Under the constraint qualification: for all x ∈ C (t), there exists d ∈ IRn

such that ∇gα ,T(q,t)d > 0 for all α such that gα(q,t) = 0, then the normal cone in
(3.21) and the normal cone of convex analysis NC (t)(q(t)) = {s∈ IRn | sT(y−q(t))�
0 for all y ∈ C (t)} are equal.

Remark 3.3. It is sometimes discussed whether or not it is preferable to eliminate
the constraints by reducing the number of coordinates, or to keep the coordinates
but add Lagrange multipliers (Baraff, 1996). This is a sound question when bilateral
constraints are considered. When unilateral constraints come into play, however, one
has no choice. The Lagrange multipliers are mandatory, otherwise one would spend
one’s time switching the coordinates. Indeed it is noteworthy that complementarity
systems may live on lower-dimensional subspaces.

Notice that we have not yet introduced any nonsmoothness in the dynamics. This
will be done later.
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3.1.3 Smooth Dynamics as an Inclusion

Combining the equation of motion (3.17) and the inclusion (3.24), the smooth dy-
namics of a unilaterally constrained Lagrangian dynamical system can be written as
the following differential inclusion:

−M(q(t))
dv
dt

(t)+ N(q(t),v(t))+ Fint(t,q(t),v(t))−Fext(t) ∈ NC (t)(q(t)) . (3.25)

As we said in Chap. 2, a huge amount of work has been published in the literature
on DIs, but this kind of inclusion is very particular for two main reasons:

• The right-hand side is neither bounded and then nor compact. This yields a UDI.
• The inclusion and the constraints concern the second-order time derivative of q,

i.e., the acceleration. This fact leads to strong difficulties, and consequently tools
for UDI based on monotone set-valued operator and first-order sweeping process
cannot be used.

Such kind of inclusions yields in most of the cases a nonsmooth evolution where
the velocity may have jumps, and therefore the acceleration cannot be defined in the
usual sense. In Sects. 3.5 and 3.6, we will describe briefly some works that tackle the
nonsmooth problem in its integrality, i.e., a UDI on the second-order derivative with a
nonsmooth evolution as it has been developed in Schatzman (1978), Moreau (1988b,
1983), Monteiro Marques (1993), and Kunze & Monteiro Marqués (2000).

3.2 The Newton–Euler Formalism

This section is dedicated to present another way to derive the dynamical equations
of a mechanical system, sometimes called the vectorial dynamics. The screw for-
malism is chosen. We recall basic definitions and results from kinematics, kinet-
ics, and dynamics of a rigid body, or a system of rigid bodies (including particles).
The presentation is a little bit sketchy, but a complete exposition of the Newton–
Euler mechanics is outside the scope of this book. More details may be found in
McCarthy (1990), Glocker (2001), and Arnold (1989). In this section only the
smooth dynamics is considered. Contact problems are tackled in Sect. 3.9.

3.2.1 Kinematics

We denote as (ξ ) a 3-dimensional Euclidean space of points ((ξ )≡ IR3), and (E) the
associated linear space of vectors ((E)≡ IR3). Let O be a point of (ξ ) and (i, j,k) a
basis of (E). Then R = (O, i, j,k) is a coordinate system (in short, a c.s.). To each
point M ∈ (ξ ) we associate three reals a,b,c such that OM = ai + bj + ck. In short
OM = (a,b,c)T. Usually R is an orthonormal and direct 2 c.s., i.e., ||i||= 1, ||j||= 1,
||k||= 1, iTj = iTk = jTk = 0, i× j = k, k× i = j, j×k = i. For a rigid body evolving

2 i.e., right handed.
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in a 3-dimensional space, one usually considers two c.s.: R0 a Galilean c.s. and R
a c.s. attached to the body, fixed to the body, and moving in R0. But, this is not an
obligation.

Position, Velocity, Acceleration

The position of a point M ∈ (ξ ) in R, parameterized with time, is the vector OM(t).
The trajectory of M in a c.s. R is the set of points fixed in R, with which M coincides
along its motion in R. The velocity of M in R at t is

V (M/R,t) =
[

d
dt

OM(t)
]

R

. (3.26)

The vector V (M/R,t) is a vector tangent to the trajectory of M in R. The accelera-
tion of M in R is

Γ(M/R,t) =
[

d2

dt2 OM(t)
]

R

=
[

d
dt

V (M/R,t)
]

R

. (3.27)

Angular Velocity

Let R0 = (O0, i0, j0,k0) and R1 = (O1, i1, j1,k1) be two c.s. Then
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
di1
dt

)
R0

= Ω(R1/R0)× i1

(
dj1

dt

)
R0

= Ω(R1/R0)× j1

(
dk1

dt

)
R0

= Ω(R1/R0)×k1 (3.28)

and Ω(R1/R0) = pi1 + qj1 + rk1 =

⎛
⎝ p

q
r

⎞
⎠

R1

is the rotational vector (or angular

velocity) of R1 with respect to R0. It is unique.
Let a vector u = α(t)i1 +β (t)j1 + γ(t)k1. Then

(
du
dt

)
R0

=
(

du
dt

)
R1

+Ω(R1/R0)×u (3.29)

where
(

du
dt

)
R1

= α̇(t)i1 + β̇ (t)j1 + γ̇(t)k1,
(

du
dt

)
R0

= α̇0(t)i1 + β̇0(t)j1 + γ̇0(t)k1

for some α0(·), β0(·), γ0(·), and Ω(R1/R0)× u = α(t)
(

di1
dt

)
R0

+ β (t)
(

dj1
dt

)
R0

+

γ(t)
(

dk1
dt

)
R0

. The term
( du

dt

)
R0

represents the time derivative as observed from R0,

while the term
(

du
dt

)
R1

represents the time derivative as observed from R1.
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Example 3.4. Let k1 = k2 = k, O0 = O1 = O, and let R1 have a rotational velocity
θ̇ (t)k w.r.t. R0 that is fixed. Let a point M be fixed in R1, i.e., u = OM = αi1 +β j1.
Obviously

(
du
dt

)
R1

= 0. Then
(

du
dt

)
R0

= θ̇ (t)[k× (αi1 +β j1) = θ̇ (t)[αj1−β i1].

Let R0, R1, and R2 be three c.s. Then Ω(R2/R0) = Ω(R2/R1)+Ω(R1/R0).
More generally the relation of Chasles states that Ω(Rn/R0) = ∑n

i=1Ω(Ri/Ri−1).

Composition of Velocities

Let M have a motion in R1 and let R1 be moving with respect to R0. Then

V (M/R0) = V (M/R1)+V(O1/R0)+Ω(R1/R0)×O1M . (3.30)

This is known as the absolute velocity equal to the relative velocity plus the trans-
ferred velocity.

Composition of Accelerations

Let M have a motion in R1 and let R1 be moving with respect to R0. Then

Γ(M/R0) = Γ(M/R1)+
{
Γ(O1/R0)+

[
d
dtΩ(R1/R0)

]
R0
×O1M

+Ω(R1/R0)× [Ω(R1/R0)×O1M]
}

+ 2Ω(R1/R0)×V(M/R1). (3.31)

This is known as the absolute acceleration equal to the relative acceleration plus
the transferred acceleration plus the Coriolis acceleration. This may be obtained by
applying twice (3.29).

Remark 3.5. From the form of the Coriolis acceleration, one deduces that the rota-
tional motion of anticyclones is clockwise in the Northern Hemisphere, and counter
clockwise in the Southern Hemisphere. This is due to the fact that the angular veloc-
ity of the earth in the Copernic c.s. points outside the ground in the north, and inside
the ground in the south. A falling stone always accelerates towards the ground. Thus
the angle between the two vectors of the Coriolis acceleration is < π

2 in the south,
and > π

2 in the north. So the vector product changes its sign from one hemisphere to
the other.

Velocity Composition in a Solid

Let (S) be a rigid body (a solid), and let M and N be two points of (S). Let R0 be a

c.s., and R be a c.s. associated to (S). Thus V (M,S/R0)
Δ= V (M,R/R0). One has

V (M,S/R0) = V (N,S/R0)+ MN×Ω(S/R0) . (3.32)

The formula (3.32) is called Varignon’s formula, after the French mathematician
Pierre Varignon (1654–1722).
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The Kinematic Screw (or Twist)

Varignon’s formula leads us to the introduction of the following screw:

VM,S/R0
=

⎡
⎣ Ω(S/R0)

V (M,S/R0)

⎤
⎦

M,R

(3.33)

that is usually called the twist of the body (S) or the kinematic screw. A screw is
computed at a point M, and in a coordinate system R. Varignon’s formula (3.32)
allows one to compute the twist at another point than M. The angular velocity is
the resultant of the twist, and it does not vary with the point M at which the twist is
calculated. The linear velocity is the moment of the twist that varies along Varignon’s
formula (3.32).

Rotational Parameterization and Euler Angles

Introducing the twist of a solid leads us to introduce the coordinates of a solid in (ξ ).
The Euler angles are three angles which allow one to determine the angular position
of a rigid body in the 3-dimensional space (ξ ). We denote them as ψ , θ , and ϕ . They
correspond to successive rotations of the body (S) (or of a c.s. attached to (S)) around
three axis of three successive intermediate c.s.. Let (S) have a rotational motion w.r.t.
the c.s. R0. Then

(i0, j0,k0)
(ψ,k0)−→ (u,v,k0)

(θ ,u)−→ (u,w,z)
(ϕ,z)−→ (x,y,z) .

There are other sets of angles that correspond to other rotations. Of much interest
to us is the Olinde–Rodrigues formula:

Ω(S/R0) =

⎛
⎝ p

q
r

⎞
⎠ =

⎛
⎝ sinϕ sinθ cosϕ 0

sinθ cosϕ −sinϕ 0
cosθ 0 1

⎞
⎠

⎛
⎝ ψ̇
θ̇
ϕ̇

⎞
⎠ (3.34)

which relates the derivative of the Euler angles to the angular velocity (also called
the instantaneous velocity vector) expressed in the c.s. R attached to (S). Notice that
det(M (ϕ ,θ )) =−sinθ so that the Olinde–Rodrigues formula is singular at θ = kπ ,
k ∈ IN. Moreover M (ϕ ,θ ) is not a Jacobian matrix (because it is not symmetric, see
Theorem 12.61), which means that the Olinde–Rodrigues formula is not integrable.
This is important when we consider the Lagrange equations of a rigid body. One
cannot choose the angular velocity as the derivative of the generalized coordinates.

3.2.2 Kinetics

Kinetics is concerned with inertia operators. The gravity center (or center of mass)
of a mechanical system (E) (i.e., a set of particles, rigid bodies moving in (ξ )) with
a mass mE > 0 is the unique point G ∈ (ξ ) such that
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mEAG =
∫

(E)
AP dm (3.35)

for an arbitrary point A. Let (S) be a rigid body. If A is fixed in (S) and R is fixed
w.r.t. (S), then

mSAG =
∫

(S)
AP dm (3.36)

is a fixed vector in R. The sums are understood along all points P∈ (S) and infinites-
imal mass elements dm.

Inertia Matrix of a Mechanical System (E)

Let R = (O, i, j,k) be an orthonormal c.s., the coordinates of points M ∈ (E) in R
being (x,y,z)T. Then the inertia matrix of (E) in R is

I(O,E) =

⎛
⎜⎜⎜⎜⎝

∫
(E)(y

2 + z2)dm −∫
(E) xy dm −∫

(E) xz dm

−∫
(E) yx dm

∫
(E)(x

2 + z2)dm −∫
(E) yz dm

−∫
(E) xz dm −∫

(E) yz dm
∫
(E)(y

2 + x2)dm

⎞
⎟⎟⎟⎟⎠ . (3.37)

The diagonal terms are the moments of inertia w.r.t. the axis (O, i), (O, j), (O,k),
respectively. Clearly if (E) is a solid and the c.s. R is attached to this body (fixed
w.r.t. it), then I(O,S) is a constant matrix. Let G be the center of mass of the system
(E). Then

I(O,E)u = I(G,E)u + mEOG× (u×OG) (3.38)

for all vectors u ∈ IR3. The moment of inertia of (E) w.r.t. a straight line Δ crossing
O (that we may name the axis (O,δ ) where δ ∈ IR3 is a unit vector of Δ ) is

IΔ = δTI(O,E)δ (=
∫

(E)
||δ ×OM||2dm) (3.39)

Let Δa pass through G, and Δ be another line parallel to Δa passing through O. The
distance between Δa and Δ is d � 0. Then

IΔ(E) = IΔa(E)+ Md2 , (3.40)

which is Huygens’ theorem. The moment of inertia w.r.t. a point O is

IO(E) = IG(E)+ m||OG||2 (=
∫

(E)
||OM||2dm) . (3.41)

The Kinetic Screw

This is the screw of linear and angular momenta:

KA,R =

⎡
⎣ mEV (G/R) =

∫
(E)V (M/R)dm

σ(A,E/R) =
∫
(E) AM×V(M/R)dm

⎤
⎦

A,R

. (3.42)
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If the system is a rigid body in 3 dimensions, the integrals have to be computed over
the body, so that

∫
(E) is understood as

∫ ∫ ∫
(E). For a rigid body (S), let O ∈ (S) and

be fixed in the c.s. R. Then

σ(O,S/R) = I(O,S)Ω(S/R) . (3.43)

By Varignon’s formula for screws, we obtain

σ(A,S/R) = I(O,S)Ω(S/R)+ mSAO×Ω(S/R) (3.44)

for any point A ∈ (S). From a general point of view, the angular momentum at the
gravity center G is given by

σ(G,S/R) = I(G,S)Ω(S/R) . (3.45)

The Kinetic Energy of a Solid (S)

Let O ∈ (S) be fixed in the c.s. R. The kinetic energy of (S) in R is:

T (S/R) = 1
2

∫
(S) ||V (M/R)||2dm

=
1
2
ΩT(S/R)I(O,S)Ω(S/R) .

(3.46)

In general we have

T (S/R) =
1
2

mS||V (G/R)||2 +
1
2
ΩT(S/R)I(G,S)Ω(S/R) , (3.47)

where all the quantities have to be expressed in the same c.s. One sees that T (S/R)=
1
2K T

G,RVG,S/R .

3.2.3 Dynamics

Since dynamics concerns the relationship between acceleration and forces, let us first
introduce the screw of external actions exerted on a system (E), called the wrench:

WA,R =
[

F
T (A)

]
A,R

, (3.48)

where F ∈ IR3 is the vector of external forces acting on (E), T (A) is the external
torque at A ∈ (E) acting on (E). By Varignon’s formula we get

T (B) = T (A)+ BA×F (3.49)

as F is the resultant of the screw and is not changed if the point at which the wrench is
calculated changes. If the system (E) is at equilibrium, the fundamental principle of
statics says that WA,R = 0. The wrench includes all types of external actions on (E),
like forces created by contact and Coulomb friction, or gravity, or any other effect.
In case of contact between two bodies, special care has to be taken concerning the
way the actions are written. We shall come back on this later.
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The Dynamic Screw

The screw of acceleration, or dynamic screw of a system (E), is defined as

DA,R =

⎡
⎣ mEΓ(G/R)

δ (A,E/R) =
∫
(E) AM×Γ(M/R)dm

⎤
⎦

A,R

. (3.50)

Let A be an arbitrary point in (E). Then the dynamic moment and the angular mo-
mentum are related as:

δ (A,E/R) =
d
dt

[σ(A,E/R)]R + mEV (A/R)×V(G/R) , (3.51)

where the second term of the right-hand side vanishes if A is fixed in R or if A = G.
The dynamic moment of a solid (S) is computed at the gravity center G and using
(3.45) as:

δ (G,S/R) =
d
dt

[I(G,S)Ω(S/R)]R . (3.52)

One deduces that when R is attached to (S) so that I(G,S) is a constant 3×3 matrix,
then

δ (G,S/R) = I(G,S)
d
dt

[Ω(S/R)]R . (3.53)

Change of Coordinates in Screws

Suppose that the system under investigation is studied in a base Galilean c.s. R0,
and that a c.s. R is attached to the system. Let A be the 3×3 rotation matrix and
d ∈ IR3 the translation vector, which define the transformation of coordinates from
R to R0: X = Ax+d, where X denote the coordinates in R0 and x the coordinates in
R. Such a transformation is sometimes called a spatial displacement or a motion. Let

S =
(

r
m

)
∈ IR6 be a screw expressed at a point and in R. Then when expressed

in R0 the screw S becomes the screw S ′ =
(

R
M

)
=

⎛
⎝ A 03×3

DA A

⎞
⎠

(
r
m

)
, with

D =

⎛
⎝ 0 −d3 d2

d3 0 −d1

−d2 d1 0

⎞
⎠, the skew-symmetric matrix of the vector product. So we

get R = Ar and M = d×Ar + Am.
The motion of a body is represented by trajectories of R in R0. When the body

moves, equivalently R moves. Suppose that a spatial displacement (A,d) is applied
to both R and R0, which are transformed into R ′ and R ′0. The screws associated to
the body under study are transformed as indicated above. If the spatial displacement
is just a rotation (d = 0), then the new components of the screws generically are
R = Ar and M = Am. If it is just a translation (A = 0) then R = r and M = d× r +m.
We recover here Varignon’s formula which is at the base of coordinate change for
screws, and indicates that the resultant does not depend on the point at which the
screw is calculated, whereas the moment does depend on it.
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The Fundamental Principle of Dynamics

DA,R = WA,R . (3.54)

It is clear that this dynamical equilibrium may be written at any point A and in any
c.s. R. Let the system under study be a rigid body (S), and let the c.s. R be fixed
with respect to the body and A = G (the center of mass). One obtains the so-called
Newton–Euler equations for the motion in a Galilean c.s. R0. Newton’s dynamics is
in R0:

mSΓ(G/R0) = F . (3.55)

The dynamic equilibrium when applied in a moving c.s. R with the same origin
O0 as the one of R0 and for a constant rotational velocity Ω(R/R0) has to incorpo-
rate the inertial forces which take into account the fact that R is not a Galilean c.s.
One obtains instead of (3.55):

mSΓ(G/R) = F−2mSΩ(R/R0)×
(

du
dt

)
R

−mSΩ(R/R0)× (Ω(R/R0)×u)

(3.56)

with u = O0G. The two inertial forces that appear in the right-hand side of (3.56) are
the Coriolis and centrifugal forces. These are the inertial forces that someone moving
on the body would experience.

Example 3.6. Let us consider a particle M with mass m > 0, mounted at the edge
of a massless rod of length l > 0 that rotates in the plane (O0, i0, j0). The c.s.
(O0, i1, j1,k) is attached to the particle–rod system, and the angle of rotation is
θ (·). Then Γ(M/R1) = 0, Ω(R1/R0) = θ̇ (t)k, u = li1. Thus one gets from (3.56):
0 = mlθ̇ 2 + T , where T is the tension in the rod, along (O0, i1). We retrieve the
well-known fact that the centrifugal force is balanced by the tension in the rod.

From (3.53) and (3.29) we obtain Euler’s equations

I(G,S)
d
dt

[Ω(S/R0)]+Ω(S/R0)× I(G,S)Ω(S/R0) = T (G) (3.57)

where we have dropped the subscript R but it is understood that all the vectors are
expressed and computed in R. The vector product reflects the rotation of R w.r.t.
R0.

Remark 3.7. Despite the inertia matrix in (3.57) is a constant, nonlinear inertial
torques act on the system, represented in Ω(S/R0)× I(G,S)Ω(S/R0). This is in
contrast with the Lagrange equations (3.2), in which a constant mass matrix im-
plies no nonlinear inertial forces (see (3.3)). However, Euler equations (3.57) are not
Lagrange equations, because the instantaneous rotation Ω(S/R0) usually is not the
derivative of the body’s coordinates with the Euler angles (see (3.34)).

Relationships Between Newton–Euler Mechanics and Lagrange Equations

Let us consider a solid (S) moving in (ξ ). One choice for its generalized coordi-
nates is a 6-dimensional vector (x,y,z,ψ ,θ ,ϕ)T where (x,y,z) are the coordinates
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of the mass center in some Galilean c.s. R0, and (ψ ,θ ,ϕ) are the Euler angles.
This is a minimal parameterization. Let us denote χ = (ψ ,θ ,ϕ)T. Using (3.34), i.e.,
Ω(S/R0) = M (φ ,θ )χ̇ , and (3.57) one obtains

M TI(G,S)M χ̈ +M TI(G,S)Ṁ χ̇ +M TM χ̇×M TI(G,S)M χ̇ = M TT (G) ,
(3.58)

where all the arguments are dropped for convenience. The Euler dynamics is now
under a Lagrangian formalism. One sees that the mass matrix is no longer constant,
as expected. However, it has singularities, since the Olinde–Rodrigues matrix is sin-
gular. Concatenating (3.58) with (3.55) one gets the Lagrange dynamics for the body
moving in the Galilean c.s. R0. It is noteworthy that one may perform any other dif-
feomorphic (generalized) coordinate transformation z = Z(x,y,z,χ) to rewrite the
obtained Lagrangian dynamics, mixing translational and rotational coordinates if
needed. Doing so one realizes that the Lagrange equations and the Newton–Euler
equations really pertain to different worlds.

Some Comments on Newton, Euler and Lagrange Dynamics

It is a common thought that one may derive the dynamics of a system using any of
these three approaches. As shown in Antman (1998) things are more subtle. Follow-
ing Antman (1998) let us study a simple pendulum (Fig. 3.1), which will also provide
us with the opportunity to illustrate some of the above developments of classical me-
chanics.

We suppose that the coordinates systems R0 = (O; i, j,k) and R1 = (O;e1,e2,k)
are right-handed. We have e1 = cosθ i + sinθ j, e2 = −sinθ i + cosθ j, from which

i = cosθe1−sinθe2 and j = sinθe1 +cosθe2. Applying (3.29) to
(

de1
dt

)
R0

we obtain

(
de1
dt

)
R0

=
(

de1
dt

)
R1

+

⎛
⎝ 0

0
θ̇

⎞
⎠×

⎛
⎝ cosθ

sinθ
0

⎞
⎠

= 0− θ̇ sinθ i+ θ̇ cosθ j .

(3.59)

θ(t)

G

mg

O

i

j

e1(t)

e2(t)

Fig. 3.1. A simple pendulum
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Indeed the derivative of e1 as observed from R1, i.e., the trivial equality e1 = e1, is
zero. Reusing (3.29) for the second-order derivative and noting that de1

dt = θ̇e2 we
obtain (

d2e1
dt2

)
R0

=
(

d2e1
dt2

)
R1

+

⎛
⎝ 0

0
θ̇

⎞
⎠×

⎛
⎝−θ̇ sinθ

θ̇ cosθ
0

⎞
⎠

= θ̈e2(t)+ θ̇ 2e1(t) .

(3.60)

Therefore the acceleration of the pendulum tip with respect to R0 is lθ̈e2 +
lθ̇ 2e1, which can also be expressed in R0 as (−lθ̈ sinθ + lθ̇ 2 cosθ )i +(lθ̈ cosθ +
lθ̇ 2 sinθ )j. Let us assume that a reaction force h(t) = h1(t)e1(t)+ h2(t)e2(t) acts at
the joint O, and another force f (t) = f1(t)e1(t)+ f2(t)e2(t) acts at the gravity center
G. The wrench at O is therefore equal to

WO,R1 =

⎡
⎣ (h1(t)+ f1(t)+ mgcosθ (t))e1(t)+ (h2(t)+ f2(t)−mgsinθ (t))e2(t)

T (O)

⎤
⎦ ,

(3.61)

where the torque T (O) = h(t) × OO + f (t) × GO + mgi× GO = (l f2(t) −
mgl sinθ (t))k. From the fundamental principle of the dynamics we obtain

⎡
⎣mΓ(G) = mlθ̈ (t)e2(t)+ lθ̇ 2(t)e1(t)

ml2θ̈ (t)

⎤
⎦ = WO,R1 . (3.62)

So we obtain (since IG = 0)
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

mlθ̇ 2(t) = h1(t)+ f1(t)+ mgcosθ (t)

mlθ̈ (t) = h2(t)+ f2(t)−mgsinθ (t)

ml2θ̈ (t) = l f2(t)−mgl sinθ (t). (3.63)

The first two equations of (3.63) are the Newton’s dynamics of the pendulum. The
third equation is the Euler’s dynamics. It is sometimes said that Euler dynamics
is a consequence of Newton dynamics. Clearly this holds only if h2(t) = 0. The
question raised by Antman (1998) is: why should this be so? It seems that there
exist no fundamental reason that sustains this claim. By further studying a compound
pendulum subject to couples at G and O, it is concluded in Antman (1998) that the
Euler dynamics is the right way to write the dynamics of such a pendulum, because
Newton’s dynamics yields mechanically unexplainable equations.

Let us now turn our attention to Lagrange’s equations. Let the coordinates of G
be x and y in R0, and those of O be xo and yo. From (3.47) the kinetic energy of the
free pendulum is T (θ̇ , ẋ, ẏ) = 1

2 m(ẋ2 + ẏ2), as indeed the moment of inertia at G is
zero, all the mass being concentrated at G. The potential energy is U(q) = mgx. The



122 3 Mechanical Systems with Unilateral Constraints and Friction

Lagrangian function is L(θ , θ̇ ,x,y, ẋ, ẏ) = T (θ̇ , ẋ, ẏ)−U(x). Since O is fixed, there
are two bilateral constraints xO = x− l cosθ = 0, yO = y− l sinθ = 0, with which
two Lagrange multipliers λ1 and λ2 are associated, respectively. Let us choose the
generalized coordinates of the free system as (x,y,θ )T. From (3.10) we can write
the Lagrange equations for the pendulum evolving in the plane and subject to the
bilateral constraints as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

mẍ(t) = λ1(t)+ mg + f ′1(t)

mÿ(t) = λ2(t)+ f ′2(t)

0.θ̈(t) = l sinθ λ1− l cosθ λ2

x = l cosθ , y = l sinθ , (3.64)

where f ′ = ( f ′1, f ′2)
T is the force applied at G, expressed in R0. More generally the

vector Q(·) in (3.1) is determined from the principle of virtual work. The work of
the external force f (·) acting at G, when G varies its position of δx and δy, is
δW = f ′1δx + f ′2δy. Thus the vector Q(·) has to satisfy δW = QTδq for an arbitrary
variation δq of the generalized coordinates. Equaling both expressions of δW yields
(since this is true for arbitrary variations) that Q = ( f ′1, f ′2,0)T. Differentiating the
constraints twice, we obtain ẍ =−θ̈ l sinθ − θ̇ 2l cosθ and ÿ = lθ̈ cosθ − lθ̇ 2 sinθ .
One may then calculate the Lagrange multipliers from the first two equations of
(3.64) as (dropping the time argument)⎧⎨

⎩
λ1 =−mlθ̈ sinθ −mlθ̇ 2 cosθ −mg− f ′1

λ2 = mlθ̈ cosθ −mlθ̇ 2 sinθ − f ′2 .
(3.65)

Inserting these values into the third equality of (3.64) and using f ′1 = f1 cosθ −
f2 sinθ and f ′2 = f1 sinθ + f2 cosθ gives

−ml2θ̈ (t)−mgl sinθ (t)+ l f2(t) = 0 (3.66)

which is nothing else but the Euler’s dynamics in (3.63). It is noteworthy that the
only physical assumption that has been done here is that the generalized force cor-
responding to the constraints is orthogonal to the constrained manifold {q ∈ IR3 |
x = l cosθ , and y = l sinθ}. We conclude that Lagrange’s dynamics and Newton’s
dynamics are not quite equivalent one an other, since one cannot derive the first ones
from the second ones without further assumption.

Remark 3.8. Notice that due to the choice of generalized coordinates we made and
the fact that the mass is concentrated at G, the obtained mass matrix in (3.64) is sin-
gular. The singularity does not come from the constraints. Is this an artifact? There
are five unknown functions (x(·), y(·), θ (·), λ1(·), λ2(·)). There are five equations
(three in (3.64) plus the two constraints) if the θ -dynamics is in (3.64), only four
equations if it is not. So it seems that choosing θ as one of the generalized coordi-
nates, is mandatory if one wants to integrate the system.
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3.3 Local Kinematics at the Contact Points

Let us provide some explanations on how the unilateral constraints, and more gen-
erally nonsmooth contact laws, may be introduced into the Newton–Euler dynamics
and the Lagrange dynamics, starting from what happens locally at the contact points
between the bodies that compose the system.

3.3.1 Local Variables at Contact Points

The main issue is to get an expression of the distance between a rigid body (S) and
an obstacle, that may compactly be written as g(x,y,z,ψ ,θ ,ϕ) � 0 for some function
g(·) or between two bodies. To study this point, let us examine the so-called local
kinematics at a contacting point (a contacting point is a point of the system that is
likely to become a contact point in the near future). By local variables it is meant
any variables introduced to describe the physical behavior of the system. In usual
mechanical situations these variables go by pairs (velocities, forces). Let O and O′
be two contacting bodies, and P, P′ the proximal points belonging to the bodies O
and O′, respectively (Fig. 3.2).

The relative velocity is defined as usual, though being extended to noncontacting
bodies. Consider the particles M and M′, lying respectively on the bodies O and
O′, coinciding with the geometrical points P and P′. Let V (M) and V (M′) be the
velocity vectors of the particles M and M′, belonging to the bodies O and O′. The
relative velocity of O with respect to O′ is defined as,

U = V (M)−V (M′) .

The indices N and T, are used to define normal and tangential components, the index
N standing for components on n, the index T standing for the pair of components on
t, s, in the 3 dimensional case, on t in the 2 dimensional case.

• n is the normal vector directed along P′P, where P and P′ are the proximal points.

• U =
(

UT

UN

)
∈ IR3 are the components of the relative velocity, U− and U+ are

the left and right velocities, respectively.

• R =
(

RT

RN

)
∈ IR3 are the components of the reaction from O′ onto O.

• g(·) is the gap function, i.e., the signed distance P′P.

In order to obtain the gap function as a function of the bodies’ coordinates (center
of gravity coordinates and Euler angles), one needs to perform an analysis of the
bodies’ geometries. Usually the bodies’ boundaries have to be parameterized with
the coordinates, so that the signed distance P′P can be written as a function of these
coordinates, i.e., P′P = g(x,y,z,x′,y′,z′,χ ,χ ′). In general this is not an easy task.
See Sect. 3.3.3 for insights on the practical calculation in a software package. Some
calculations for the nontrivial example of a wheelset on a track are presented in
Soellner & Führer (1998, example 5.5.1). The complementarity conditions at the
contacting points P and P′ are, in the frictionless case where RT = 0,
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Fig. 3.2. Definition of the local frame

0 � P′P⊥ R � 0 (3.67)

or equivalently 0 � P′PT
n⊥ RN � 0. Note that UT is the sliding velocity vector which

will be used in frictional laws. Usual kinematics yields relations connecting local
variables to generalized variables. For instance consider the example of two disks O
and O′, with radius r and r′, velocities at the center of O given by q̇1, q̇2, rotation q̇3,
velocities at the center of O′ given by q̇ ′1, q̇ ′2, rotation q̇ ′3. The relative velocity is⎧⎨

⎩
UT = (q̇1− q̇ ′1)t1 +(q̇2− q̇ ′2)t2 + r q̇3 + r′ q̇ ′3 ,

UN = (q̇1− q̇ ′1)n1 +(q̇2− q̇ ′2)n2 .
(3.68)

Similar relations between the local reaction R and the total momentum exerted on the
two bodies may be written. The relations (3.68) appear as linear relations connecting
the components U of the relative velocities to the generalized variables q̇. In general
situations, dealing with a collection of contactors, and a collection of contacts3 la-
beled by superscripts α , there exists a linear relation relating the relative velocity at

3 By contact it is meant, either a pair of bodies, the “contactors”, a pair of proximal points,
or the geometrical point where proximal points coincide when the gap is null. Contacts
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the contact α and the generalized variable,

Uα = Hα ,T(q) v , (v(·) = q̇(·) almost everywhere) . (3.69)

There exists also a dual relation relating the representative rα of the local reaction
Rα for the parameterization q:

rα = Hα(q)Rα . (3.70)

The matrices Hα(q) and Hα T(q) are transposed linear mappings (in the sense that
v→ Hα T(q) v, R→ Hα(q)Rα are linear, but q→ Hα ,T(q) v, q→ Hα(q)Rα are not
necessarily linear). A last relation, whose writing is often omitted or misunderstood,4

is
The derivative with respect to time of the gap function t → gα(t) is the normal

relative velocity UN ,
ġα(·) = Uα

N (·) =∇gα ,T(q)v(·) (3.71)

and the second-order derivative of gα(·) is the normal relative acceleration

g̈α(·) = U̇α
N (·) (3.72)

that is equal to ∇gα ,T(q)v̇+ d
dt (∇gα ,T(q))v.

This last relation means that the relative acceleration is not equal to ∇gα ,T(q)q̈
as it is sometimes wrongly written.

Finally, the vectors collecting the components for each contact are defined by

U =

⎡
⎢⎣

U1

...
Uν

⎤
⎥⎦ , UN =

[
U1

N , ...,Uν
N

]T
, UT =

⎡
⎢⎣

U1
T

...
Uν

T

⎤
⎥⎦ , (3.73)

R =

⎡
⎢⎣

R1

...
Rν

⎤
⎥⎦ , RN =

[
R1

N, ...,R
ν
N

]T
, RT =

⎡
⎢⎣

R1
T

...
Rν

T

⎤
⎥⎦ , (3.74)

g = [g1, ...,gν ]T, H(q) = [H1(q), ...,Hν(q)], (3.75)

r = ∑
α

rα =∑
α

Hα(q)Rα = H(q)R. (3.76)

are labeled with Greek letters and an index is a pair of indices labeling the two contacting
bodies. This is clear from the picture where bodies are convex and there exists only a pair
of contacting points. When “flat” bodies are near each other, there may be a multiplicity
of proximal points: the system of labeling must then be more sophisticated. For instance,
one may choose some parts of the bodies playing the role of bodies in the system of la-
beling. Discussing these questions, one encounters into numerical computation and sorting
algorithms techniques.

4 or whose definition derives from considerations on “relative displacements”, themselves
badly defined, in some incremental approach of kinematics.
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The vector r ∈ IRn is the vector of reaction forces that enters the Lagrange equa-
tions written in the generalized coordinates q. Each Hα(q) has dimensions n× 3,
so that H(q) has dimensions n× 3ν . If the system under study is the body O one
obtains:

M(q(t))
dv
dt

(t)+ N(q(t),v(t)) = Q(q(t),t)−∇V(q(t))+ H(q(t))R , (3.77)

where q is a 6-dimensional vector of generalized coordinates for the body, being
comprised of the gravity center coordinates and the Euler angles. If there is only one
contact point P at which the body O touches another body, then R ∈ IR3. In general
there may be several such contact points so that R ∈ IR3ν . The dynamics (3.77) is
composed of Newton’s equation (3.55) and Euler’s equation (3.58), so that

M(q) =

⎛
⎝mOI3 03

03 M TI(G,O)M

⎞
⎠ .

Starting from (3.70) it is easy to write the following expression

rα = Hα
T (q)Rα

T + Hα
N (q)Rα

N (3.78)

for some Hα
T (q) and Hα

N (q) with appropriate dimensions (as Rα
T ∈ IR2 and Rα

N ∈ IR).
Collecting all contacts this allows one to deduce that

r = HT(q)RT + HN(q)RN (3.79)

for some matrices HT(q) and HN(q). Inserting this into the Lagrange equations
(3.77) one obtains a formulation extensively used in Pfeiffer & Glocker (1996) and
Glocker (2001) and popularized by these authors. We have developed the equations
for one body (q(t) ∈ IR6), but the Lagrange dynamics (3.77) may be written for nb

bodies so that q(t)∈ IR6nb . Then when there are ν contacting points between the bod-
ies, one forms a matrix H(q) that is 6nb× 3ν . The Lagrange dynamics (3.77) may
also be written for a kinematic chain (like a robot manipulator) which undergoes
some unilateral contacts. In this case it is supposed that the vector q(·) is a suitable
generalized coordinates vector obtained after a possible elimination of redundant
variables due to bilateral constraints (joints).

3.3.2 Back to Newton–Euler’s Equations

Consider the dynamic equilibrium of the body O, on which the body O′ applies the
contact force R at the point P. From (3.55) and (3.58) (the Lagrange equation for the
body O), we can choose q = (x,y,z,χT)T as the vector of generalized coordinates.
We obtain⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m0Γ(G/R0) = FR0 +[I3 O3]H(q)R

I(G,0) d
dt [Ω(0/R0)]+Ω(0/R0)× I(G,0)Ω(0/R0) = T (G)+

+M−T[03 I3]H(q)R.
(3.80)
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Now if the local reaction R at the contact point P is expressed in the c.s. R fixed
in the body 0 as the vector R0, we obtain from the principle of dynamics (see also
(3.56))⎧⎨
⎩

m0Γ(G/R) = FR + R0

I(G,0) d
dt [Ω(0/R0)]+Ω(0/R0)× I(G,0)Ω(0/R0) = T (G)+ GP×R0

(3.81)

which can also be expressed at the contact point P using the same c.s. R translated
with d = GP. We may also start from (3.77) and use (3.69) to get for each contact α:

U̇α(t) = Hα ,T(q)M−1(q)H(q)R(t)+

+Ḣα ,T(q)v + Hα ,T(q)M−1(q)[−N(q,v)+ Q(q, t)−∇V(q)] ,
(3.82)

where q = q(t) and v = v(t). Now applying (3.82) to the body O in IR3 and supposing
that there is a single contact point P (labeled α) gives in short

U̇α(t) = Wα(q)Rα(t)+ Fα(q,v,t) , (3.83)

where Wα(q) = Hα ,T(q)M−1(q)Hα(q) is a Delassus’ operator. By Varignon’s for-
mula and (3.34) we have

Hα ,T (q) = [I3 MPGM−1(ϕ ,θ )] (3.84)

with MPGu = PG×u for any u ∈ IR3. Note that

M−1(q) =

⎛
⎝

1
mS

I3 03

03 [M T(ϕ ,θ )I(G,S)M (ϕ ,θ )]−1

⎞
⎠ .

so that Wα(q) can be computed from ϕ and θ , the Euler angles.
Suppose now that there are ν � 2 contacts, nb bodies, and consider (3.82). Col-

lecting all the equations (3.83) for the contacts 1, ...,ν , one obtains a compact for-
mulation

U̇(t) = W (q)R(t)+ F(q,v, t) , (3.85)

where W (q) = HT(q)M−1(q)H(q) is a Delassus’ operator of dimension 3ν×3ν . It
will be seen in Chaps. 8 and 10 that depending on the type of algorithm that is im-
plemented (event-driven or time-stepping), the Delassus’ operator may be modified
for numerical integration purposes.

Remark 3.9 (Solvability at impacts). At an impact time t, one gets ν equations
Uα

N (t+) =−eαUα
N (t−), 3ν equations U(t+)−U(t−) =W (q(t))P, and 4ν unknowns:

the 3ν-dimensional post-impact velocity U(t+) and the ν components Pα
N of the per-

cussion vector. It is noteworthy that the reactions are supposed to be normal to the
α tangent planes at each contact point, but the tangential velocities are not necessar-
ily continuous at impacts! Inertial couplings may induce tangential velocity jumps
despite there no friction.
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Notice that we have obtained (3.85) starting with the arrangement for U in (3.73).
If instead one forms U and R as UT = (UT

T ,UT
N )T, and RT = (RT

T ,RT
N )T, then a simi-

lar formulation as (3.85) is obtained. However, we may then decompose the matrix
W (q) as

W (q) =

⎛
⎝WTT(q) WTN(q)

WNT(q) WNN(q)

⎞
⎠ . (3.86)

Therefore one can write U̇N(t) = WNN(q)RN(t)+FN(q,v,t) as long as RT = 0 (the fric-
tionless case). In order to construct a LCP whose solution is the normal contact force
RN, one needs to know which contacts are activated, i.e., which indices α ∈ {1, ...,ν}
satisfy gα(q) � 0. Numerically one will have to forecast the contacts and construct a
set of forecasted indexes.

3.3.3 Collision Detection and the Gap Function Calculation

This section is a short summary of an important module of any software package: the
management of contacts status. Approximation of the shapes and approximate cal-
culation of impact times are generally CPU-time-intensive tasks (Eberhard, 1999).
Many works have been dedicated to collision detection, e.g., von Herzen
et al. (1990), Mirtich (1997), Hubbard (1996), and Ponamgi et al. (1995) to cite a
few. Roughly this module requires to calculate, explicitly or implicitly, the expres-
sions for gα(q) and solve gα(q) = 0 (the signed distance P′P), i.e., determinate the
points that are going to touch, which are not necessarily the ones which are the closest
at the instant of the computation, so several pairs of points have to be watched simul-
taneously. Even in very simple cases such as one degree-of-freedom systems, various
numerical methods may be used to calculate the times tk such that gα(q(tk)) = 0, see
Sect. 8.6.5. Their influence on the algorithm properties (consistency, order) may be
significant.

The main problem is that an exact analytical description of the objects shapes,
even when this is possible, is quite time consuming. Secondly one has to calculate
with a suitable numerical routine the times tk. In case of accumulation of impacts
and for multiple contacts, the problem is harder because the influence of deciding the
end of the series tk, k > 0, according to the machine accuracy, is not easy to quantify.
Micro-collisions phenomenon (Hurmuzlu, 1998) prove that it is possible in some
cases that there is a large quantity of rebounds, but finite number of collisions, and
an escape out of the constraint surface after a finite time. Things even complicate for
multiple impacts. What is the influence on the long-run motion if one decides instead
that one constraint becomes active?

Another issue is that it may not be possible to define all the constraints gα(q) � 0:
in many practical situations there would be too many! Hence one usually employs
procedures that eliminate useless constraints, i.e., those bodies which are too far
to one another to be likely to collide in the next future steps of integration. Conse-
quently one implements rough tests that select the bodies which may collide, and fine
tests to compute the collision times (Eberhard, 1999). Rough tests usually consist of
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surrounding the bodies by simple volumes (spheres, boxes) and watching whether
they overlap or not. Concerning the finest tests, the main approaches are (see Hub-
bard, 1996, for a review):

• Classification of typical contacts and geometries (Wang et al., 1997, 1999; Conti
et al., 1992; Goyal et al., 1994; Han et al., 1993. In other words, process the real
surface of the objects and the type of contact (circle–circle, circle–line, angle–
line, etc.). These methods are essentially studied in the mechanical engineer-
ing literature. They are restricted to certain types of geometries contained in
the available library developed for the software. If the body surfaces are sim-
ple enough to be described by analytical curves, one gets an explicit function
gα(q(t)). The next step is to solve numerically gα(q(t)) = 0—which can be done
with a Newton–Raphson method or a polynomial root-finding routine, since in
case of several roots Newton–Raphson may compute the wrong zero and there
is penetration before the algorithm decides that contact has occurred. Other au-
thors (Wu et al. 1986; Wang et al., 1999) use a time step halving process until
gα(q(t − k)) = 0 is satisfied within a specified tolerance. For instance, for two
bodies with parametric surfaces one faces a nonlinear 5-dimensional root-finding
problem (von Herzen et al., 1990). These methods are, however, less fast and
more complex to implement than the 2-dimensional ones (Baraff, 1993).

• For 2-dimensional systems, one can approximate the bodies Bi, i ∈ {1, ...,N},
by polygons made of edges and nodes Ni. Two main methods are used
(Eberhard, 1999): the node-in-polygon test (NIPT) and the ray-crossing approach
(RCA), see Fig. 3.3a and b, respectively. Let ni be the number of nodes Ni in poly-
gon i, and αii the angle (NjNi,NjNi11). Then if ∑nodes of Biαii = 0, the node
Nj �∈ Bi; if ∑nodes of Bi

αii = 2π , then Nj ∈ Bi: the bodies intersect. The RCA
consists of looking at the number ñ of intersections of a straight half-line (a ray)
emanating from Nj, with the polygon ∂Bi. If ñ is odd then Nj ∈ Bi , if ñ is even
then Nj �∈ Bi. The RCA is more robust than the NIPT. Both methods are O(nin j)
for two bodies Bi and B j. However, their generalization to 3-dimensional systems
is not easy (Eberhard, 1999).

• Approximation of the object surfaces and of the impact times by bounding boxes
methods (Hubbard, 1996) are more efficient for 3-dimensional systems. These
methods are essentially studied in the computer science literature. If the bodies
are convex and subject to gravity (or more generally to any vector field that is in-
tegrable), it is possible to approximate the distance gα(q) and to calculate a lower
bound on the impact time (Mirtich, 1997). The approximation can be refined as
much as the constraints (desired accuracy, speed of computation) permit to do it.
In von Herzen et al. (1990), it is pointed out that just watching positions to deter-
mine collision times cannot work since contact may occur between two sampling
instants ti and ti+1 while gα(q(ti)) > 0 and gα(q(ti+1)) > 0. So including the ve-
locity information in the algorithm is mandatory. Adaptive subdivision of the
bodies into simple volumes (polygons or polyhedra; Eberhard, 1999), spheres
(Mirtich, 1997; Hubbard, 1996), rectangular prisms (von Herzen et al., 1990),
and incorporation of a Lipschtiz boundedness condition on gα(·) allows one to
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Fig. 3.3. Collision detection methods

approximate the collision times (von Herzen et al., 1990; Filip et al., 1986). This
method is called bounding box schemes: each object is surrounded by bounding
boxes. When these boxes overlap, the objects must be close to one another. Then
a more accurate collision test is made once more. Bounding box schemes allow
one to avoid testing all possible contacts (= O(N2) for N bodies), but to focus on
objects in close proximity only. Roughly speaking, the Lipschitz bounds permit
to approximate the next step motion of each simple volume (or surface) and to
determine if a collision has occurred. A refinement of the mesh can be used to in-
crease the accuracy of the collision time computation, in an adaptive way. These
methods apply well to convex bodies. Nonconvex bodies can be decomposed into
convex parts to be treated. Voronoi regions for polytopes (Ponamgi et al., 1995;
Lin & Canny, 1991) are used to maintain a list of closest distances during the
simulation.5 The change in Voronoi cells from one step to the next one is usu-
ally small, facilitating the calculations. An implementation of the Lin–Canny
algorithm with a running time linear in N can be found in Cohen et al. (1995).
Baraff (1990) proposes a coherence-based bounding box test that is O(N).

The interested reader may also have a look at the survey (Agarwal et al., 2002)
and at Muth et al. (2007), where the ray-crossing and the fast multipole methods are
compared. We shall not come back on these issues in this book.

5 A Voronoi cell associated to an object consists of the set of points whose distance to this
object is the smallest. The object can be a node, an edge, a face.
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3.4 The Smooth Dynamics of Continuum Media

This section intends to briefly recall how one may derive the Lagrange equations for
continuum media. It happens that once this step is achieved, the resulting dynamics
is equivalent to the dynamics of any other mechanical system made of rigid bodies.
Therefore the subsequent numerical analysis and simulation is the same as the ones
for a rigid body. This is why there is no specific chapter on deformable bodies in this
book.

3.4.1 The Smooth Equations of Motion

In this section, the smooth equations of motion of a collection of N continuum media
are introduced in a quite usual setting. The continuum medium is identified at time
t ∈ [0,T ] by its volume in IRd . The integer d = 1,2,3 denotes the space dimension,
of interior

Ωα (t)⊂ IRd , i ∈ {1, . . . ,N}
and boundary ∂Ωα (t). If Ωα is a deformable continuum medium, the equations
of motion are introduced through the principle of virtual powers in a finite strain
Lagrangian setting permitting a space-discretization based on a conventional finite
element method. If Ωα is assumed to be a rigid body, the equations of motion will
be described by a finite set of coordinates. In both cases, possibly after a space-
discretization, the equations of motion will be formulated and treated in a single
finite-dimensional framework.

A material particle is described by its position X in a reference frame at t = 0
and by its current position x = ϕ(X ,t) at time t. For a Lagrangian description, we
also assume we know at least formally the function X = ψ(x,t). The displacement
is defined by u(x, t) = x−X = x−ψ(x,t) and the velocity and the acceleration are
denoted by u̇ and ü. Most of the Lagrangian variables expressed in terms of X are
denoted by capital letters, for instance, U(X ,t) for the displacement, and denoted by
lower case for the associated Eulerian variables, in this case u(x, t). This convention
can be summarized by u(x,t) = u(ϕ(X ,t),t) = U(X , t).

Principle of Virtual Powers in Continuum Mechanics

Starting from the equation of motion in Eulerian coordinates,

divσ(x,t)+ρ(x,t)b(x,t) = ρ(x,t)ü(x,t), ∀x ∈Ωα(t) , (3.87)

where σ(x,t) is the Cauchy stress tensor and b(x,t) is the density of body forces, the
principle of virtual power states that

∫
Ωα (t)

(ü(x,t)−b(x,t))v̂(x,t)dm(x,t) =
∫
Ωα (t)

divσ(x,t)v̂(x, t)dω(x, t) (3.88)

for all virtual velocities denoted by v̂(x,t). The measure dω(x, t) denotes the
Lebesgue measure in IRd at x and the measure dm(x, t) = ρ(x,t)dω(x,t) is the mass
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measure. With the help of the Green formulas, the principle of virtual power is usu-
ally reformulated as

∫
Ωα (t)

(ü(x, t)−b(x,t))v̂(x,t)dm(x,t) =−
∫
Ωα (t)

σ(x,t) :∇v̂(x, t)dω(x, t)

+
∫
∂Ωα

F (t)
t(x,t)v̂(x,t)ds(x,t)+

∫
Γ i

c (t)
r(x, t)v̂(x, t)ds(x, t)

(3.89)

where A :B = Ai jBi j is the double contracted tensor product, and t(x,t) =
σ(x,t).n(x,t) is the applied forces on the boundary of outward normal n and r(x, t)
the reaction forces due to the unilateral contact and friction. The measure ds(x, t)
is the Lebesgue measure at x ∈ ∂Ωα . The symmetry of the Cauchy stress tensor in
absence of density of momentum allows one to introduce the symmetric deformation
rate tensor,

D(x,t) =
1
2
(∇Tv(x,t)+∇v(x, t)) (3.90)

leading to the standard expression of the virtual power of the internal forces of cohe-
sion

P̂int =−
∫
Ωα (t)

σ(x,t) :∇v̂(x,t)dω(x,t) =−
∫
Ωα (t)

σ(x,t) : D̂(x,t)dω(x,t) . (3.91)

In order to formulate the principle of virtual power in a total Lagrangian frame-
work, the second Piola–Kirchhoff tensor,

S(X ,t) = F−1 det(F)σTF−T

is introduced, where F =
∂x
∂X

=
∂ϕ(X ,t)
∂X

is the deformation gradient. The virtual

power of the internal forces is then rewritten as

P̂int =−
∫
Ωα (t)

σ(x,t) :∇v̂(x,t)dω(x,t) =−
∫
Ωα (0)

S(X ,t) : L̂(X , t)dΩ(X ,0)

(3.92)

where L = Ḟ , and the notation ·̂ denotes the virtual quantities. Finally, the principle of
virtual power in a total finite strain Lagrangian framework in terms of the convected
Lagrangian variable X , is
∫
Ωα (0)

(Ü(X ,t)−B(X ,t))V̂(X ,t)dM(X ,0) =−
∫
Ωα (0)

S(X ,t) : L̂(X , t)dΩ(X ,0)

+
∫
∂Ωα (0)

T (X ,t)V̂ (X ,t)dS(X ,t)+
∫
Γ i

c (0)
R(X , t)V̂ (X , t)dS(X ,t)

(3.93)
where the applied forces laws on the boundary satisfy

T (X ,t) = S(X ,t)FT(X ,t)N(X , t)
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and
R(X ,t) = S(X ,t)FT(X ,t)N(X , t).

It is noteworthy that the interactions between bodies that are taken into account in
this model are only given by the forces through the interface with unilateral contact
and friction.

For the constitutive material laws, a large panel of models can be taken into
account in this framework and in the numerical applications. The formulation of the
constitutive laws is based on the standard thermodynamics of irreversible processes
(Germain et al., 1983) or based on a variational formulation of incremental stress–
strain relation deriving from a pseudo-elastic potential (Ortiz & Stainier, 1999). If
the bulk response of the material is supposed to be linear elastic, that is,

S(X ,t) = K(X ,T ) :E(X , t) , (3.94)

where E is the Green–Lagrange strain tensor,

E(X ,t) =
1
2
(FT(X ,t)F(X ,t)− I(X , t)) , (3.95)

where the tensor I is the identity tensor and K(X ,T ) is the fourth-order tensor of
elastic properties.

The finite element discretization is conventional and is based on this principle
of virtual power in this total Lagrangian framework. Choosing some isoparametric
element leads to the following approximation

U(X ,t) = ∑h Nh(X ,t)Uh(t), u̇(X ,t) = ∑h Nh(X , t)U̇h(t)

Ü(X ,t) = ∑h Nh(X ,t)Üh(t) ,
(3.96)

where Nh are the shape functions and Uh the finite set of displacement at nodes.
Substituting this approximation into the principle of virtual power and simplifying
with respect to the virtual field yields a space-discretized equation of motion of the
form

M(Uh)Üh + F(t,Uh,U̇h) = R , (3.97)

where M(Uh) is the consistent or lumped mass matrix, the vector F(t,Uh,U̇h) collects
the internal and external discretized forces, and R are the discretized forces, due to
the contact model.

Principle of Virtual Powers in Rigid Body Mechanics

In rigid body mechanics, it is assumed that the power of the cohesion internal forces
vanishes for a rigid motion given by the following set of virtual velocity field,

V = {v̂(x,t) = v̂O(t)+ ω̂(t)× (x− xO), ∀x ∈Ωα(t)} , (3.98)

where O is a geometrical point fixed with respect to the body, xO is the position of
this point vO(t) is its velocity, and ω(t) the angular velocity of the body at O. This
assumption yields
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∫
Ωα (t)

(ü(x, t)−b(x,t))v̂(x,t)dm(x,t) =
∫
∂Ωα (t)

t(x, t)v̂(x, t)ds(x,t) (3.99)

for all v̂(x, t) ∈ V . The equation of motion can be derived choosing a particular
virtual velocity as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

∫
Ωα (t)

u̇(x, t)dm(x,t) =
∫
Ωα (t)

b(x,t)dm(x,t)+
∫
∂Ωα (t)

t(x,t)ds(x, t)

d
dt

∫
Ωα (t)

(x− xO)× u̇(x,t)dm(x,t) =
∫
Ωα (t)

(x− xO)×g(x,t)dm(x, t)

+
∫
∂Ωα (t)

(x− xO)× t(x, t)ds(x, t) .

(3.100)

Various descriptions of the equations of motion of a rigid body can be deduced
from the principle of virtual power choosing particular kinematics. Without going
into further details, the Newton–Euler formulation can be chosen to write the kine-
matics with respect to the center of mass Gi of the body Ωα in Eulerian coordinates:

⎧⎪⎨
⎪⎩

u̇(x,t) = vGi(t)+ωi(t)× (x− xGi)

ü(x, t) = v̇Gi(t)+ ω̇i(t)× (x− xGi)+ωi(t)× (ωi(t)× (x− xGi)) .

(3.101)

Substituting (3.101) into the equations of motion (3.100) yields the Newton–Euler
equations,

[
M 0
0 I

]
d
dt

[
vGi(t)
ωi(t)

]
+

[
0

ωi(t)× Iωi(t)

]
=

[
fext(t)

mext(t)

]
, (3.102)

where

M =
∫
Ωα (t)

dm(x,t) =
∫
Ωα (0)

dM(X ,0)

I =
∫
Ωα (t)

(x− xGi)
T(x− xGi)dm(x,t)

=
∫
Ωα (0)

(X−XGi)
T(X −XGi)dM(X ,0)

fext(t) =
∫
Ωα (t)

b(x,t)dm(x,t)+
∫
∂Ωα (t)

t(x,t)ds(x, t)

mext(t) =
∫
Ωα (t)

(x− xGi)×b(x,t)dm(x,t)+
∫
∂Ωα (t)

(x− xGi)× t(x, t)ds(x, t).

(3.103)

Usually, a second-order form of the dynamics is obtained with the help of the
following parameterization of the vector ωi:

ωi(t) = Di(Ψ,t)Ψ̇i(t) , (3.104)
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where D(Ψ,t) is supposed to be a diffeomorphism. For a collection of N rigid bodies,
a usual way is to introduce a set a generalized coordinates z such that

z =
[
[xGi , Ψi ]i∈{1...N}

]T
(3.105)

assuming that the positions and the orientations of the bodies are uniquely deter-
mined by z. With this variable, after some algebraic manipulations, the equations of
motion can be written as:

M(z(t))z̈(t)+ F(t,z(t), ż(t)) = r(t) . (3.106)

It is noteworthy that this formulation allows us to add some internal forces between
bodies expressed in terms of the generalized coordinates z(·).

3.4.2 Summary of the Equations of Motion

In the sequel, the equations of motion of space-discretized continuum media and
rigid bodies will be treated in the same setting. In order to summarize the equations
(3.97), (3.106), and (3.4), we introduce the finite vector of variables q which can
represent the discretized displacement Uh or any generalized coordinates of the rigid
motion z. Hence, the equations of motion will be written as

M(q(t))q̈(t)+ F(t,q(t), q̇(t)) = r(t) , (3.107)

where q collects the variables Uh and z.

3.5 Nonsmooth Dynamics and Schatzman’s Formulation

In Schatzman (1978), a mathematical formulation of the nonsmooth dynamics in the
scalar case q(t) ∈ IR is proposed. Let us consider a nonempty closed convex set K,
not reduced to a singleton, i.e., K = [a,b] for some reals a and b, possibly infinite,
a < b. The second-order nonsmooth dynamics is written as follows for a continuous
function q(·), from [0,T ] to IR, which takes its value in K, i.e., q∈ C 0([0,T ],K), and

⎧⎪⎨
⎪⎩

q̈(t) = f (·,q(t), q̇(t))+ μ ,

〈μ ,v−q(t)〉� 0, ∀v ∈ C 0([0,T ],K) ,

(3.108)

where

• The function q̇(·) is chosen to be a BV function, which must have discontinuities
at the boundary ∂K of K.

• The first equation has to be understood in the sense of distributions. The term μ
is a real measure on [0,T ].



136 3 Mechanical Systems with Unilateral Constraints and Friction

• The function f : [0,T ]× IR× IR→ IR is assumed to be a Lipschitz-continuous
function with respect to its last two arguments.

Let us give some insights on this formulation, that is a variational inequality for-
malism. Indeed the second line of (3.108) may be written as 〈q̈(t)− f (t,q(t), q̇(t)),
v− q(t)〉 � 0, for all v ∈ C 0([0,T ],K). If q(t0) ∈ minK with a strictly negative left
velocity q̇−(t0) < 0, the velocity after a jump must be nonnegative, i.e., q̇+(t0) � 0
and the second-order derivative must have a Dirac mass at t0. The second condition
in (3.108) is equivalent to

supp(μ) ∈ {t | q(t) ∈ ∂K}, μ � 0 on {t | q(t) = minK}

μ � 0 on {t | q(t) = maxK} .
(3.109)

In the language of convex analysis and differential inclusions, the system (3.108)
is equivalent to

q̈(t)+ ∂ψK(q(t)) ∈ f (t,q(t), q̇(t)) , (3.110)

where ψK(·) is the indicator function of K. For an initial value problem, Schatzman
(1978) also defines consistent initial condition for the Cauchy problem. Let us recall
what is the tangent cone to K in this simple case

TK(x) =

⎧⎪⎨
⎪⎩

IR if x ∈ Int(K)
IR− if x = maxK

IR+ if x = minK .

(3.111)

The set of consistent Cauchy data is defined by {(q, q̇) ∈ IR2 | q ∈ K, q̇ ∈ TK(q)}.
To complete the model, a constitutive law has to be given for the impact rule.

In Schatzman (1978), a purely elastic impact law is chosen, i.e., q̇+(t) = −q̇−(t).
With this model, a nonuniqueness example is given even with C ∞ data. In Paoli &
Schatzman (1993), a Newton impact law is chosen

q̇+(t) =−eq̇−(t), e ∈ [0,1] . (3.112)

Finally, in Paoli & Schatzman (1999), the finite-freedom dynamics is introduced in
the form

M(q(t))q̈(t)+ μ = f (·,q(t), p(t)) , (3.113)

where p = M(q)q̇ is the generalized momentum of Hamiltonian mechanics. The ma-
jor interest of the formulation is that it is proved to be equal to the limit of a smooth
penalized model in the rigid limit. This formulation gave rise to a time-stepping
scheme presented in Chap. 10.

Remark 3.10. This Schatzman–Paoli formulation is very similar to the following
Moreau’s sweeping process. The major difference is that the Moreau’s sweeping pro-
cess proposes a unified framework for the dynamics in terms of velocity and direct
inclusions of measures into a cone which depends on the velocity. This has important
consequences on the numerical implementation, because the cones which appear in
Moreau’s formulation (the second-order sweeping process) are polyhedral cones.
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3.6 Nonsmooth Dynamics and Moreau’s Sweeping Process

3.6.1 Measure Differential Inclusions

With the presence of the unilateral constraints, the evolution of the systems is usually
no longer smooth. Especially, the velocity v(·) = q̇(·) may encounter jumps and must
be considered as a function of bounded variations (BV) in time. With this assump-
tion, the equation of motion is rewritten in terms of right-continuous BV (RCBV)
function, denoted as v+(·) = q̇+(·).6

The generalized coordinates, assumed to be absolutely continuous, are deduced
from the velocity by the standard integration of a function of bounded variations:

q(t) = q(t0)+
∫ t

t0
v+(t)dt , (3.114)

where dt is the Lebesgue measure.
If the velocity is a BV function, the acceleration is no longer defined everywhere

as the derivative in the classical sense of the velocity. The notion of differential mea-
sure, or a special Stieltjes measure provides the right substitute to this notion as a
derivative of the velocity in the sense of the distributions. In the same way, the gen-
eralized force r is to be considered as a real measure, denoted dr.

The equation of motion (3.17) is formulated in terms of a measure differential
equation:
⎧⎪⎨
⎪⎩

M(q(t))dv+ N(q(t),v+(t))dt + Fint(t,q(t),v+(t))dt = Fext(t)dt + dr

v+(t) = q̇+(t)
(3.115)

on [0,T ], and with admissible initial data.

Remark 3.11. Notice that the dynamics is written in terms of the RCBV function
v+(·). It may also be possible to write the dynamics in terms of left-continuous BV
function v−(·), as
⎧⎪⎨
⎪⎩

M(q(t))dv+ N(q(t),v−(t))dt + Fint(t,q(t),v−(t))dt = Fext(t)dt + dr

v−(t) = q̇−(t)
(3.116)

on [0,T ]. Since we are interested only in forward integration of the dynamics, we
keep only the form (3.115).

3.6.2 Decomposition of the Nonsmooth Dynamics

Thanks to the Lebesgue decomposition theorem and its variants, the differential mea-
sure dv is decomposed as

6 Functions of bounded variations always possess right and left limits.
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dv = γ dt +(v+− v−)dν + dvs (3.117)

where

• γ(·) = q̈(·) is the acceleration defined in the usual sense.
• v+− v− is the difference between the right-continuous and the left-continuous

functions associated with the BV function v(·) = q̇(·), and dν is a purely atomic
measure with atoms at the time ti of discontinuities of v(·), i.e.,

dν =∑
i
δti . (3.118)

• dvs is a singular measure with respect to dt +dν which we will neglect for prac-
tical reasons.

In the same way, the measure dr can be decomposed as follows:

dr = f dt + p dν+ drs , (3.119)

where:

• f (·) is the Lebesgue measurable force.
• p is the purely atomic impact impulsion such that

p dν =∑
i

piδti . (3.120)

• drs is a singular force measure with respect to dt +dν which we will also neglect.

3.6.3 The Impact Equations and the Smooth Dynamics

Inserting (3.117) and (3.119) in (3.115), the dynamics is written as an equality of
measures

M(q(t))γ(t)dt + M(q(t))(v+(t)− v−(t))dν + N(q(t),v+(t))dt+

+ Fint(t,q(t),v(t))dt = Fext(t)dt + f (t)dt + p dν
(3.121)

and can be split into the atomic part and the Lebesgue part in terms of v+(·):
⎧⎨
⎩

M(q(t))(v+(t)− v−(t))dν = p dν

M(q(t))γ(t)dt + N(q(t),v+(t))dt + Fint(t,q(t),v(t))dt = Fext(t)dt + f (t)dt .
(3.122)

It is supposed that the unilateral constraints are g(q) � 0, see (3.14) and (3.15).
Due to the definition (3.118) of the measure dν , the impact equations can be written
at the time ti of discontinuities:

M(q(ti))(v+(ti)− v−(ti)) = pi . (3.123)
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This is an algebraic equation. The smooth dynamics which is valid almost every-
where for the Lebesgue measure dt (dt a.e.) is governed by the following equation:

M(q(t))γ+(t)+ N(q(t),v+(t))+ Fint(t,q(t),v+(t)) = Fext(t)+ f +(t) (3.124)

dt−a.e., where we assume that f +(·) = f−(·) = f (·)(dt−a.e.). Obviously the same
type of separation between smooth and nonsmooth motions can be performed with
the Newton–Euler’s equations. The impact dynamics then links the jump in the cen-
ter of mass velocity and the impulsive contact force, and the instantaneous angular
velocity jump with the impulsive contact reaction moment.

3.6.4 Moreau’s Sweeping Process

Moreau’s sweeping process is a mathematical setting which combines a dynamics
described in terms of measure as in (3.115) together with a description of the unilat-
eral constraint including an impact law. We already described quickly the sweeping
process in Sects. 1.4 and 2.7. A key stone of this formulation is the inclusion in terms
of velocity. Indeed, the inclusion (3.24) is “replaced” by7

−dr ∈ NTC (q(t))(v
+(t)) , (3.125)

where C is the admissible domain of the configuration space. We do not make any
assumption on C here, but one should keep in mind that the right-hand side of (3.125)
may be meaningless for some too general sets C . In most of the cases with practical
interest, C is finitely represented, i.e., it is represented as in (3.16). In such a case
one just has to take care that Int(TC (q)) �= /0, which is equivalent to the existence
of a hyperplane in IRn, not containing the origin, which intersects all the half-lines
generated by the gradients ∇gα(q) of the active constraints (Moreau, 1985b). This
inclusion will be called the inclusion in terms of velocity. Two features of (3.125)
have to be mentioned:

• The inclusion concerns measures. Therefore, it is necessary to define what is the
inclusion of a measure into a cone.

• The inclusion is written in terms of velocity v+(·) rather than of the coordinates
q(·).

As we can define an inequality constraint on a measure, it is possible to define a
relevant meaning for the inclusion (3.125). Roughly speaking, when the measure
possesses a density with respect to the Lebesgue measure,

dr = r′dt = f (t)dt . (3.126)

Then the inclusion is equivalent to the inclusion of f (·) which is a real function of
time, into the cone at time t. When the measure possesses an atom

dr = pδ , (3.127)

7 Actually it is proved by J.J. Moreau, from convex analysis, that the inclusion (3.125) is
satisfied.
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where δ is the Dirac measure and p the amplitude of the atom usually called the per-
cussion, the inclusion is equivalent to say that p is included into the cone. Naturally,
the same illustration can be made for inequality constraints on measures. For more
details, we refer to Monteiro Marques (1993), Kunze & Monteiro Marqués (2000),
Stewart (2001), and Acary et al. (in press).

A viability lemma due to Moreau (1999) ensures that the inclusion in terms of
velocity (3.125) together with admissible initial conditions on the position implies
that the constraints on the coordinates are always satisfied. In fact, we always have
(see, e.g., Brogliato, 2004 for a proof)

NTC(q)(v
+)⊂ NC (q).

The reverse is not true. A key assumption has to be added which is related to
the notion of impact laws. Indeed, if the constraint is active, i.e., dr > 0, then the
post-impact velocity v+(·) is equal to zero. For instance if an impact occurs, the
post-impact velocity vanishes. The model is an inelastic (plastic) impact rule.

As done in Moreau (1988b) and Mabrouk (1998), the impact rule can be en-
hanced with normal and tangential coefficients as follows

−dr ∈ NTC (q(t))

(
v+(t)+ ev−(t)

1 + e

)
. (3.128)

Inserting (3.128) in (3.123) and using (A.8) one obtains

v+(t) =−ev−(t)+ (1 + e)proxM(q(t))[TC (q(t));v−(t)] (3.129)

with proxM(q(t))[TC (q(t));v−(t)] = argminz∈TC (q(t))
1
2 (z− v−(t))TM(q(t))(z− v−(t))

that is numerically tractable since TC (q) is a polyhedral set. Letν = 1, i.e., there is only
one constraint. This may also be written after some calculations as (q stands for q(t))

v+(t) = v−(t)− (1 + e)M−1(q)∇g(q)[∇gT(q)M−1(q)∇g(q)]−1∇gT(q)v−(t) ,
(3.130)

where the multiplier is given by

λ =−(1 + e)[∇gT(q)M−1(q)∇g(q)]−1∇gT(q)v−(t)

and pi =∇g(q)λ in (3.123). One may also obtain (3.130) directly from (3.129) from
the expression of the projection on the tangent cone. If the local relative velocity sat-
isfies U+

N (t) = −eU−N (t) and U+
T (t) = U−T (t) (the case of a frictionless surface), and

if UN(·) = ġ(·) = ∇gT(q)v(·), then (3.130) is a consequence of the impact dynam-
ics. Moreau’s rule is equivalent to Newton’s impact rule, however, it is formulated
in generalized coordinates and supplies the whole velocity in one shot. When ν � 2,
multiple impacts may occur when the trajectory hits several constraint boundaries
at the same time. Moreau’s rule also provides a result for the post-impact velocity
in this case (notice that (3.129) is written without assuming that ν = 1). Whether
or not the obtained solution is physically sound is another problem. The modeling
of multiple impacts is a topic still under investigation at the time of writing of this
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book. We just mention the fact that Moreau’s sweeping process furnishes a geometri-
cal framework that may be used for further research in the field of multiple impacts,
and refer to Glocker (2004) and Acary & Brogliato (2003) for more information.
Moreau’s rule in (3.129) generalizes Newton’s law. In Pfeiffer & Glocker (1996) it
is proposed to extend Poisson’s model, sometimes called the kinetic model. This is
done by solving two LCPs, one corresponding to the compression phase, the other
one to the expansion phase (despite in rigid body theory there are no deformations,
so this is to be understood as some kind of approximation of the compliant case).

3.6.5 Finitely Represented C and the Complementarity Formulation

Let C be finitely represented, i.e.,

C = {q ∈M (t) | gα(q) � 0,α ∈ {1 . . .ν}} . (3.131)

In this case the tangent cone is a convex polyhedral set defined by Moreau as

TC (q) = {z ∈ IRn | zT∇gα(q) � 0, for all α ∈ I(q)} , (3.132)

where I(q) is the set of indices of the active constraints, i.e., I(q) = {α ∈ {1, ..,ν} |
gα(q) � 0}.8 Then we can decompose the measure dr and the velocity V+(·) =
∇gT(q)v+(·) as follows:

dr = ∑
α
∇gα(q)dλα (3.133)

U+ =
[
Uα ,+ = ∇gα ,T(q)v+,α ∈ {1 . . .ν}] . (3.134)

If some constraints qualification condition holds, then the inclusion (3.125) can be
written equivalently as

−dλα ∈ NTIR+(gα (q))(U
α ,+) , (3.135)

or ⎧⎨
⎩

If gα(q) � 0, then 0 � Uα ,+ ⊥ dλα � 0

If gα(q) > 0, then dλα = 0 .
(3.136)

This corresponds to a plastic impact (e = 0). Replacing V+
α by V+

α + eV−α in (3.135)
and (3.136) allows one to take into account other restitutions with e ∈ [0,1]. From
Claim 6.1 in Brogliato (1999) this is equivalent to formulate the impact at the gener-
alized velocity level as in (3.130).

Remark 3.12. We have not written Uα for the velocity because the term ∇gα ,T(q)v+

does not necessarily represent the local kinematics variable as in Sect. 3.3. It does
for a particular choice of the functions gα(·) as the gap functions.

8 This definition permits to compute the tangent cone even when the constraints are violated,
which is needed numerically.
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Fig. 3.4. Two-dimensional bouncing ball on a rigid plane

Example 3.13 (The set C equal to IR+). To illustrate the last point on a very simple
example, let us take for example an admissible set C equal to IR+. The complemen-
tarity relation

−dr ∈ NC (q)⇔ 0 � q⊥ dr � 0 (3.137)

is replaced by

−dr ∈ NTC (q)(v
+)⇔

⎧⎨
⎩

if q � 0, then 0 � v+ ⊥ dr � 0

if q > 0, then dr = 0 .
(3.138)

Example 3.14 (The example of the bouncing ball). Let us consider a ball of mass
m and radius R, described by three generalized coordinates q = [z,x,θ ]T. The ball
is subjected to the gravity g and a vertical external force f (t). The system is also
constituted by a rigid plane, defined by its position h with respect to the axis Oz. We
assume that the position of the plane is fixed. The physical problem is depicted in
Fig. 3.4. The ball bounces on the rigid plane, introducing a constraint on its position.
We consider also that the behavior of the system at impacts is governed by a Newton
impact law with a coefficient of restitution e ∈ [0,1].
Lagrangian Dynamics: We construct all the terms which define a Lagrangian NSDS
as in (3.115). In our special case, the model is completely linear:
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q =

⎡
⎣ z

x
θ

⎤
⎦ , M(q) =

⎡
⎣m 0 0

0 m 0
0 0 I

⎤
⎦ where I =

3
5

mR2

N(q, q̇) =

⎡
⎣ 0

0
0

⎤
⎦ , Fint(q, q̇,t) =

⎡
⎣ 0

0
0

⎤
⎦ , Fext(t) =

⎡
⎣−mg

0
0

⎤
⎦+

⎡
⎣ f (t)

0
0

⎤
⎦ .

(3.139)

Kinematics Relations: The unilateral constraint requires that

C = {q | g1(q) = z−R−h � 0}, (3.140)

so we identify the terms of the equation (3.133)

−dr = [1,0,0]Tdλ1 (3.141)

(3.142)

U+
1 = [1,0,0]

⎡
⎣ ż

ẋ
θ̇

⎤
⎦ = ż. (3.143)

Nonsmooth Laws: The following contact laws can be written:
⎧⎪⎨
⎪⎩

if g1(q) � 0, then 0 � U+
1 + eU−1 ⊥ dλ1 � 0

if g1(q) � 0, then dλ1 = 0 .

(3.144)

3.7 Well-Posedness Results

There have been numerous studies concerning the existence, uniqueness, and contin-
uous dependence of solutions. For this last point see Sect. 6.1. We may cite Dzonou &
Monteiro Marques (2007) for the sweeping process, and Ballard (2000). Under some
mild assumptions like piecewise analycity of the data and functional independence of
the constraint functions gα(·), then the position q(·) is absolutely continuous, and the
velocity v(·) is RCLBV. The interest of many well-posedness proofs (like the one in
Dzonou & Monteiro Marques, 2007) is that they are led with time-discretizations of
the dynamics (the catching-up algorithm) whose convergence properties are studied,
therefore proving the consistency of the algorithm.

3.8 Lagrangian Systems with Perfect Unilateral
Constraints: Summary

In the Lagrangian setting, the equation of motion with the perfect unilateral con-
straints are given by
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

M(q(t))dv+ N(q(t),v+(t))dt + Fint(t,q(t),v+(t))dt = Fext(t)dt + dr

q(t) = q(t0)+
∫ t

t0
v+(t)dt

−dr ∈ NTC (q(t))(v
+(t)) .

(3.145)

If C = {q ∈M (t) | gα(q) � 0,α ∈ {1 . . .ν}} is finitely represented, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(q(t))dv+ N(q(t),v+(t))dt + Fint(t,q(t),v+(t))dt = Fext(t)dt + dr

q(t) = q(t0)+
∫ t

t0
v+(t)dt

dr =∑
α
∇gα(q)dλα

Uα ,+ =
[
Uα ,+,α ∈ {1 . . .ν}] with Uα ,+ = ∇gα ,T(q)v+

−dλα ∈ NTIR+(gα )(U
α ,+), or 0 � Uα ,+ ⊥ dλα � 0 if gα(q) � 0 .

(3.146)

These systems can be enhanced with friction and impacts rules, see Sect. 3.9.
Recall that if gα(q) represents the signed distance between two bodies of a system,
then V+

α (·) is the normal relative velocity Uα
N (·) between the two bodies (called the

contactors).

3.9 Contact Models

There are two basic, fundamental contact models: Newton’s law for frictionless im-
pacts that states that U+

N (t) =−eU−N (t) and U+
T (t) = U−T (t), and Coulomb model of

friction. In this section the basic models are presented, and some extensions which
allow one to take into account more mechanical effects are also examined. Within
the framework of multibody systems simulation that is the topic of this book, any
contact/impact models should satisfy the following properties:

(i) Dissipativity or, more generally, thermodynamical consistency (see
Sect. 3.9.4.1)

(ii) Multivalued property at zero tangential relative velocity
(iii) Keep the number of parameters as low as possible
(iv) Parameters with mechanical meaning and identifiable from experiments in a re-

liable way
(v) Numerical tractability
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3.9.1 Coulomb’s Friction

We already presented some models of friction in Chap. 1, in the 2-dimensional case.
We now focus on the 3-dimensional Coulomb friction. Only the fundamental ba-
sic model is presented here, see Chap. 13 for more details linked to the numerical
implementation.

3.9.1.1 Three-Dimensional Coulomb’s Friction

The notations are those of Sect. 3.3. We assume that the gap is closed, i.e., P = P′
and the two bodies touch at P, with a tangent plane of contact spanned by t and s.
Coulomb’s model links the reaction force R ∈ IR3 to the tangential relative velocity9

UT(·) ∈ IR2, through the friction cone C. The cone C is a second-order convex cone
with its apex at the contact point P, whose sections by planes parallel to the tangent
plane are discs, and the angle between the normal n and any vector PM with M on the
boundary of C is equal to arctanμ . The coefficient μ � 0 is the friction coefficient.
The Coulomb friction cone is depicted in Fig. 3.5.

Coulomb’s friction says the following. If g(q) = 0 then
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

If UT(t) = 0 then R ∈ C

If UT(t) �= 0 then ||RT(t)||= μ |RN| and there exists a scalar a � 0

such that RT(t) =−aUT(t)

(3.147)

where we recall that in the above notation RT ∈ IR2, RN ∈ IR. Thus Coulomb’s model
says that if the sliding velocity is not zero, then the reaction R lies on the boundary
of C, and its projection on the tangent plane has the same direction as but opposite
sense to the sliding velocity. When the sliding velocity is zero, R is in C, possibly on
its boundary. The fact that UT = 0 and R be on ∂C is therefore a necessary condition
to have a transition from sticking to sliding. It is noteworthy that the dynamics of a
system together with (3.147) defines an implicit dynamics (this is more visible with
(3.150) below). A sliding case is depicted in Fig. 3.6.

The Coulomb model is also often written as follows:

||RT(t)||� μ |RN| and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

||RT(t)||< μ |RN| ⇒UT(t) = 0

||RT(t)||= μ |RN| ⇒ and there exists a scalar b � 0

such that UT(t) =−bRT(t) .
(3.148)

9 That one may also call the sliding velocity.
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Fig. 3.5. Three-dimensional Coulomb’s friction cone
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Fig. 3.6. Coulomb’s friction. The sliding case
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Coulomb’s Friction as an Inclusion

Let D1 be a given closed convex subset of the common tangent plane between
the two contacting bodies. Let D = μD1. Let us introduce the following inclusion
(Moreau, 1988b) using the indicator function ψD(·):

−UT ∈ ∂ψD(RT) . (3.149)

The meaning of (3.149) is as follows. If RT ∈ Int(D), then the normal cone to D is
the singleton {0}, so the tangential relative velocity is null. If RT ∈ ∂D, the boundary
of D, then −UT is in the normal cone to D computed at RT. Let D1 be a disc with
radius |RN|, so that when RT is on the boundary of D one has ||Rt ||= μ |Rn|. Then the
normal cone to D at RT is nothing else but the ray passing through the center of the
disc (the apex of the cone C) and whose direction is that of RT. If we denote d = RT

||RT||
the sliding direction, then −UT = bd for some real b � 0. One sees that in this case
(3.149) does represent the model in (3.148). When D1 is not a disc the model may
incorporate anisotropic effects (the friction coefficient may vary with the direction
of sliding).

Since D is nonempty closed convex, one may use convex analysis to rewrite
(3.149) in its dual form that can be inserted in the dynamics:

RT ∈ ∂ψ∗D(−UT) . (3.150)

More rigorously one should write (3.150) with the right velocity U+
T , since there

may exist velocity jumps. When the friction is isotropic, one has ψ∗D(·) = μ || · ||.
This function is called a dissipation function. Starting from (3.150) one may recover
(3.147). One deduces that both ways of writing the Coulomb model as in (3.147) or
(3.148) are equivalent.

It is also possible to formulate the friction model at the acceleration level
(Glocker, 2001). In the 3-dimensional case, formulating the Coulomb friction with
complementarity relations is less easy than in the 2-dimensional case. See Chap. 13
where various solutions for the numerical implementation are described.

Coulomb’s Friction as a VI

Let us end this section with some other formulations of Coulomb’s friction, using
some equivalences in Sect. A.3. Then (3.149) appears to be equivalent to

⎧⎨
⎩

RT ∈ D

〈UT,z−RT〉� 0 for all z ∈D
(3.151)

and to
RT = projD[RT−ρUT], for all ρ > 0 . (3.152)

Remark 3.15. The friction model may also be written in the configuration space
of the generalized coordinates (Erdmann, 1994; Moreau, 1988b; Génot &
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Brogliato, 1998 and Sect. 6.6 in Brogliato, 1999). Though this has little usefulness
for the numerical implementation, it may be used to explain apparently paradoxical
behaviors of mechanical systems with Coulomb friction and unilateral constraints,
which are then interpreted as the generalized friction cone dipping in the constraints.

Remark 3.16. Another way to represent the 3-dimensional Coulomb friction has been
proposed in Klarbring (1986a), Klarbring & Björkman (1988), and Stewart (2000).
It will be described in detail in Chap. 13.

3.9.1.2 The Maximum Dissipation Principle

Let us consider (3.151). The inequality may be rewritten as

〈UT,−RT〉� 〈UT,z〉 (3.153)

for all z ∈D, and where RT ∈D. This means that the power dissipated by the tangen-
tial component of the reaction is maximal w.r.t. all the powers that may be dissipated
by other forces within the friction disk D. Moreau named this the principle of maxi-
mal dissipation. It is crucial to remind that the maximization is done w.r.t. all forces
in the disk D, not w.r.t. all forces in the friction cone. Another interpretation is that the
maximum dissipation principle is only valid when the normal reaction RN is assumed
to be given.

3.9.2 De Saxcé’s Bipotential Function

Moreau’s Superpotential

Let us make a brief summary of the different behavior laws one encounters in me-
chanics. Basically, there are primal variables (deformations, displacements, veloci-
ties, etc.), dual variables (stress, forces), and a scalar product (work, power, etc.). A
fundamental function is the potential function. A potential function may be a differ-
entiable function. For instance the potential of elasticity takes the general form

V (q) =−1
2

qTKq =−〈F,q〉=−FTq

so that

F =−∂V
∂q

= Kq,

with K = KT > 0 and q a displacement vector.
The potential function may also not be differentiable, but only subdifferentiable

in the sense of convex analysis. For instance let

V (q) = ψK(q),

then
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−F ∈ ∂ψK(q)

expresses, when K is a convex set, the complementarity between F and q: if q is in
the interior of K, then F = 0. If q is on the boundary of K, then −F belongs to the
normal cone to K at q.

Such a potential function has been named a superpotential by Moreau (1974).
More generally a superpotential is a lower semi-continuous proper convex function
φ(·) such that the inclusion x ∈ ∂φ(y) holds between two dual variables x and y and
expresses some physical law.

By elementary convex analysis one has also y ∈ ∂φ∗(x), where φ∗(·) is the con-
jugate function of φ(·) (Hiriart-Urruty & Lemaréchal, 2001). The second inclusion
expresses the so-called inverse law. It holds that

y ∈ ∂φ∗(x) ⇔ x ∈ ∂φ(y) ⇔ φ(y)+φ∗(x) = xTy . (3.154)

The last equality is Fenchel’s equality. It states that the couple (x,y) is extremal for
the superpotential φ(·). In the first example of the elasticity, the Fenchel’s equality
reads with V (q) =− 1

2 qTKq and V ∗(−F) =− 1
2 FTK−1F :

V (q)+V ∗(−F) = (−F)Tq,

where the two dual variables are q and −F . The second example gives

ψK(q)+ψ∗K(−F) =−FT q.

De Saxcé’s Bipotential

Let us consider now the Coulomb model in (3.147). Does there exist a superpotential
for such a law? The answer is negative. The inclusion in (3.149) might let one think it
is, but recall that D in (3.149) depends on RN. One cannot find a proper convex func-
tion φ(·) such that−R∈ ∂φ(U) and U ∈ ∂φ∗(−R), and such that (3.154) is satisfied.
But, an extension exists where one replaces the superpotential by a bipotential.

The bipotential was introduced in De Saxcé (1992). Let us make a rough intro-
duction to bipotentials.

Definition 3.17. A bipotential is a function b : IRn× IRn→ IR∪{+∞,−∞}, (x,y) �→
b(x,y), such that

• b(·, ·) is convex w.r.t. x for fixed y, and convex w.r.t. y when x is fixed.
• For all couples (x,y) ∈ IRn× IRn one has b(x,y) � xT y.

A pair of dual variables (x,y) is said extremal if the equality holds, i.e., b(x,y) = xT y.

By definition, any extremal pair satisfies
⎧⎨
⎩

For all x′ : b(x′,y)−b(x,y) � yT(x′ − x)

For all y′ : b(x,y′)−b(x,y) � xT(y′ − y).
(3.155)
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One recognizes that (3.155) can be formulated in terms of subdifferentials (see (1.5))
as: ⎧⎨

⎩
x ∈ ∂yb(x,y)

y ∈ ∂xb(x,y)
(3.156)

The bipotential has been introduced in De Saxcé (1992, 1995) and De Saxcé &
Feng (1991) for x = v a velocity, and y = r a force or for nonassociated behavior
law of materials with x = ε̇ a strain rate tensor and y = σ the Cauchy stress tensor.

Bipotential Formulation of Coulomb’s Friction

Let us now show that the Coulomb friction may be expressed with a bipotential
function. The notation in the following theorem is as in Sect. 3.3, where the contact
between two bodies O and O′ is considered.

Theorem 3.18. (De Saxcé, 1992) The function

b(−U,R) = ψIR−(−UN)+ψC(R)+ μRN||UT|| (3.157)

is a bipotential. Moreover the extremal pairs (−U,R) of this bipotential satisfy the
Coulomb friction model equations, i.e.,

⎧⎨
⎩
−U ∈ ∂Rb(−U,R)

R ∈ ∂−U b(−U,R) .
(3.158)

It may be checked that the bipotential function in (3.157) can also be written as:

b(−U,R) =

⎧⎨
⎩
μ RN||UT|| if R ∈C and UN � 0

+∞ otherwise .
(3.159)

The proof of Theorem 3.18 uses the fact that an equivalent expression of Coulomb’s
friction is

−(UN + μ ||UT||,UT)T ∈ ∂ψC(R) . (3.160)

Indeed let R be inside C. Then the right-hand side of (3.160) is reduced to {0} so
that UT = 0 and UN = 0. When R ∈ ∂C and R �= 0, then there exists γ � 0 such that
UN + μ ||UT|| = γμ and −UT = γ RT

||RT|| . The second equality comes from the last two
components of the inclusion (3.160) that is an inclusion quite the same as (3.149).
Thus ||UT|| = γ so that from the first equality UN = 0: there is sliding between both
bodies at the contact point P = P′.
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Coulomb’s Friction as a Second-Order Cone Complementarity Problem

Introducing the polar cone of C, denoted by C◦

C◦ = {v ∈ IRn | rTv � 0,∀r ∈C} , (3.161)

the last inclusion (3.160) can be written as a second-order cone complementarity
problem ,

C◦ � −[UN + μ ||UT||,UT]T ⊥ R ∈ C . (3.162)

Finally, the second-order cone complementarity problem will be described with the
help of the dual cone (opposite of the polar cone),

C∗ = {v ∈ IRn | rTv � 0,∀r ∈C} , (3.163)

as
C∗ � [UN + μ ||UT||,UT]T ⊥ R ∈C . (3.164)

In Chaps. 10 and 13, the following notation will be introduced for the modified
velocity Û defined by

Û = [UN + μ ||UT||,UT]T . (3.165)

This notation provides us with a synthetic form of the Coulomb friction as

−Û ∈ ∂ψC(R) , (3.166)

or
C∗ � Û ⊥ R ∈ C . (3.167)

These relations are depicted in Fig. 3.7 in the sliding case 3.7.
De Saxcé’s bipotential function yields specific numerical algorithms that will be

described in Sect. 13.7.

3.9.3 Impact with Friction

The case of impact with friction is of great interest and the mixing of both mod-
els is not obvious. Such models have been proposed in Moreau (1988b, 1994b),
Pfeiffer & Glocker (1996), and Payr & Glocker (2005). It is for instance proposed in
Moreau (1988b) to extend (3.149) and (3.150) to densities, i.e., to impulses.

In Moreau (1988b, 1994b), tangential coefficients of restitution are introduced.
We denote PN the normal impulse of the force RN, and PT the tangential impulse of
the force RT, at the contact point P. Let D = {−PT | ||PT||� μ PN}. 10 Then at time t
of the impact

10 The absolute value on the normal component is not useful here as this is always nonnega-
tive, see the first inclusion in (3.170).
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Fig. 3.7. Coulomb’s friction and the modified velocity Û . The sliding case.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−PN ∈ ∂ψ∗IR−
(

1
1 +ρ

U+
N (t)+

ρ
1 +ρ

U−N (t)
)

−PT ∈ ∂ψ∗D
(

1
1 + τ

U+
T (t)+

τ
1 + τ

U−T (t)
)

.

(3.168)

Here ρ and τ are constants with values in the interval [0,1]. These laws can be refor-
mulated equivalently in a more common form as⎧⎨

⎩
−PN ∈ ∂ψ∗IR−(U+

N (t)+ eNU−N (t))

−PT ∈ ∂ψ∗D(U+
T (t)+ eTU−T (t)) ,

(3.169)

where eN ∈ [0,1) and eT ∈ (−1,1) are the normal and tangential restitution coeffi-
cients.

When the motion is continuous similar inclusions are proposed replacing the
impulses by the forces. Notice that we can equivalently write (3.168) in its conjugate
form as ⎧⎨

⎩
U+

N (t)+ eNU−N (t) ∈ ∂ψIR−(−PN)

U+
T (t)+ eTU−T (t) ∈ ∂ψD(−PT)

(3.170)
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thanks to the convexity of the sets IR− and D. It follows immediately from the first
inclusion in (3.170) that PN > 0 ⇒ U+

N (t)+ eNU−N (t) = 0. In fact, the first inclusion
is equivalent to

0 � U+
N (t)+ eNU

−
N (t)⊥ PN � 0 . (3.171)

Let μ = 0, then D = {0} so that PT = 0 as well. The inclusions (3.168) can be inserted
in the right-hand side of (3.81) to deduce the jump of the velocity of the center of
mass G and in the instantaneous angular velocity Ω.

This model involves three parameters per contact point: eN, eT, μ . The tangential
restitution eT is introduced as an additional parameter that permits to handle special
problems such as the super ball rebound, which otherwise cannot be simulated. Obvi-
ously eT and μ are linked in the sense that μ = 0 ⇒ eT =−1, so that U+

T (t) =U−T (t).
Consequently the triple (eN,−1,0) yields a frictionless impact with Newton’s kine-
matic law.

Energy Balance Considerations

It is well known that Newton’s impact law and Coulomb’s friction yields the violation
of the dissipation principle. Various authors (Brach, 1990; Wang & Mason, 1992;
Stronge, 2000) stress that the system energy may increase in collisions with friction.
Indeed, if a single coefficient ρ = τ is used, Moreau (1994b) derived the energy
balance of a collision for a multi-contact system in the form

E −−E + =
1
2
(v+− v−)TM(q,t)(v+− v−)Tδ −∑

α
Uα ,TPα (3.172)

with δ = (1− ρ)/(1 + ρ) ∈ [0,1] called the dissipation index. If the mass matrix
M(q,t) is Positive Semi–Definite (PSD), the quadratic term is positive. The term
−∑

α
Uα ,T Pα is always positive respecting the principle of dissipation. Chosing δ ∈

[0,1], ensures that the energy decreases.
This is why one has to impose some conditions to guarantee that (3.168) de-

fines a dissipative mapping, see, e.g., Sect. 4.2 in Brogliato (1999) for an extended
overview of impact models that mix normal laws with Coulomb friction at the im-
pulse level and more details on 3-parameter impact laws. Let us say that (3.168) pro-
vides a framework for impacts with friction that extends the sweeping process rule.
In Leine & van de Wouw (2007) conditions are given that assure the dissipativity of
(3.168).

3.9.4 Enhanced Contact Models

Let us now provide some few examples of contact/impact models that fit within the
framework of nonsmooth systems. The challenge is to derive contact laws that lend
themselves to a reliable numerical treatment, i.e., which can be solved with CP or
QP solvers.



154 3 Mechanical Systems with Unilateral Constraints and Friction

3.9.4.1 A Thermo-mechanical Framework

As for the behavior law of materials, a very useful and rigorous framework for
writing enhanced contact laws is provided by the thermodynamics or precisely,
the thermodynamics of continuum media (see standards references in Germain
et al., 1983). This framework can be extended to surface behavior laws by postu-
lating the existence of free energy and (pseudo- or super-) potentials of dissipation
of surfaces. Without entering into deep details, we give here the basic recipes to write
consistent contact laws. A very complete exposition of a coherent thermodynamical
approach for the modeling of contact problems may be found in Frémond (2002).

Let us consider that the surface is described by the following variables:

• A set of state (external) variables g,gT and its derivatives UN,UT. The variable
g corresponds usually to the gap function, i.e., g = g(q) and ġ = UN. It can be
enhanced to take into account an initial thickness of the interface. Note that the
definition of the so-called tangential displacement gT is not a straightforward
task. The definition of a reference point gT(t0) to define the gT from ġT = U T

needs usually the contact to be initially closed.
• Together with these external variables, a set of internal variables β ∈ IRη is added

to describe internal physical phenomena at the surface (wear, damage, etc.).

The dual variables to the external and internal variables are, respectively, the
contact forces RN,RT and the thermodynamical forces associated to β denoted by Xβ .
Usually, the forces are decomposed in reversible parts denoted by the superscript R

and irreversible parts denoted by the superscript IR such that
⎧⎨
⎩

RN = RR
N + RIR

N

RT = RR
T + RIR

T .
(3.173)

The state laws can be written by postulating the existence of a surface free energy
density WS(g,gT,β ) and the derivation rule

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−RR
N ∈ ∂gWS(g,gT,β )

−RR
T ∈ ∂gTWS(g,gT,β )

−Xβ ∈ ∂βWS(g,gT,β ) .

(3.174)

From the second principle of thermodynamics, the local Clausius–Duhem in-
equality postulates that the intrinsic mechanical dissipation (ignoring for a moment
the thermal dissipation) should be positive, that is

−ẆS + RTU � 0 . (3.175)

We assume that the total derivative with respect to time of WS denoted by ẆS can be
written as
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ẆS = ġT∂gWS + ġT
T ∂gTWS + β̇T∂βWS

= UT
N ∂gWS +UT

T ∂gTWS + β̇T∂βWS .

(3.176)

Due to the choice of the state laws (3.174), the time derivative of WS can be
written

ẆS =−(RR
NUN + RR,T

T UT + XT
β β̇) . (3.177)

The local form of Clausius–Duhem inequality is therefore

−(RIR
N UN + RIR,T

T UT)+ XT
β β̇ � 0 . (3.178)

A more simple way to ensure that the mechanical dissipation is positive and sat-
isfy (3.178) is to postulate the existence of a surface pseudo-potential of dissipation
ΦS(g,gT,β ,UN,UT, β̇ ) which is a lower semi-continuous proper convex function. The
constitutive laws are written as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−RIR
N ∈ ∂UNΦS(g,gT,β ,UN,UT, β̇ )

−RIR
T ∈ ∂UTΦS(g,gT,β ,UN,UT, β̇ )

−Xβ ∈ ∂β̇ΦS(g,gT,β ,UN,UT, β̇ ) .

(3.179)

Remark 3.19. The standard frictional and unilateral contact law correspond to the
choice

WS(g) = ψIR+(g)

ΦS(UT) = μRN‖UT‖.
(3.180)

As we said before, the formulation in terms of pseudo-potentials of the Coulomb’s
law is not adequate because the normal reaction appears in the right-hand side of the
second equation.

3.9.4.2 Enhanced Coulomb’s friction with Elasticity and Damping

Clearly Coulomb friction, despite being a complex contact law, is sometimes not rich
enough to represent some phenomena. Let us illustrate briefly how one may enrich
it without losing its nice property of being tractable with complementarity tools.

In the simplest case of Coulomb friction, one has

RR
T = 0 and RIR

T ∈ ∂ψ∗D(−UT) . (3.181)

We say that RIR
T derives from the nonsmooth potential function (the superpotential)

ψ∗D(−UT).
Let us consider now RR

T = −kgT, where ġT = UT and qT is a “tangential” dis-
placement. Then the reversible force derives from the smooth potential WS(gT) =
− 1

2 gT
T KgT. The enhanced Coulomb’s law with elasticity may be written as follows:
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⎩

RT(t) ∈ −μ |RN(t)|∂ |UT(t)|−KgT(t)

ġT(t) = UT(t) .
(3.182)

Doing so, one has added to the velocity/force multivalued characteristic a displace-
ment/force characteristic, which may physically model some micro-displacements
which occur during the sticking phase. Let us now consider that RIR

T derives from the
superpotential

ΨS(Ut) = ψ∗D(−UT)− 1
2

UT
T CUt ,

where C is a matrix of viscous friction (damping). One obtains:
⎧⎨
⎩

RT(t) ∈ −μ |RN(t)|∂ |UT(t)|−CUT(t)−KgT(t)

ġT(t) = UT(t) .
(3.183)

Comments

It is noteworthy that the multivalued property of the characteristic (UT,RIR
T ) is kept,

but the force varies linearly with the velocity outside zero. Obviously one may add
other smooth potentials to ψ∗D(−UT) in order to take into account other force/velocity
behaviors during the sliding phases.

One sees that neither (3.182) nor (3.183) are regularizations of the multivalued
sector of the Coulomb’s law: the fundamental multivalued property is kept and it
assures that the sticking modes exist. In particular there is no spurious drift behavior
such as sliding from zero initial velocity and with very small external actions, or
contact force oscillations while in a sticking mode that may occur with other types
of models, see, e.g., some comments in Dupont et al. (2002).

It is possible to choose a more complex potential for RIR
T in order to model

Stribeck effects in sliding modes. Obviously one may also approximate the curves
for the sliding modes with piecewise linear characteristic, and introduce supplemen-
tary Lagrange multipliers so that the whole model is treated in a complementarity
framework.

Other types of friction models mixing dry friction and linear springs, known
as the Persoz’ gephyroidal models, are analyzed in Bastien & Lamarque (2007).
They fit within the nonsmooth framework and are numerically tractable. Interestingly
enough, quite similar models exist in electronics (Addi et al., 2007).

3.9.4.3 Notes and Comments on Friction Models

There are many different ways to model friction. Depending on the task and on the
objective, the most appropriate model may vary a lot (see, e.g., the survey of Bona
& Indri, 2005, in the field of robotics and Bliman & Sorine, 1995, in systems and
control).

In multibody mechanics, it is often preferable to have a model with as less pa-
rameters as possible, and to keep the multivalued feature of Coulomb’s model that
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is a fundamental physical feature. There are many reasons for this, some of which
have been already pointed out in the book (problems of identification of the parame-
ters, property of the model to lend itself to a reliable numerical treatment as a com-
plementarity problem, avoiding stiff equations and regularization at zero velocity,
reaching the sticking mode in finite time, avoiding contact force oscillations during
the sticking phases, etc.). This is why macroscopic models such as Dahl, LuGre,
Bliman-Sorine, Leuven etc. (see Bona & Indri, 2005) are rarely used in multibody
mechanics, because they would not bring much to the field as they fail to respect
all or some of the items (i)–(v) above. It is noteworthy that the efficiency of such
tribological models has rarely (if never) been shown on systems with several contact
points. Even for control and feedback stabilization issues, the Coulomb model may
prove to be quite efficient and may yield robust stabilization solutions (Doris, 2007).

An interesting contribution is in Kikuuwe et al. (2005) where the implicit dis-
cretization of Coulomb friction is rediscovered and extended to more sophisticated
multivalued nonsmooth models (equations (14a)–(14c) in Kikuuwe et al., 2005 ex-
actly correspond to the procedure described in Fig. 1.17). The so-called Masing
model (that consists of an interconnection of springs, dampers, and dry friction el-
ements) and a modified Dahl’s model are examined in Bastien et al. (2007). The
viscous Masing model consists of a damper c > 0, a spring k0, and a spring k in se-
ries with a dry friction element with coefficient μ , mounted in parallel. Its dynamics
is given by an inclusion of the form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−ẇ(t)+UT(t) ∈ N[−1,1]

(
kw(t)
μ

)

RT(t) = kw(t)+ k0gT(t)+ cUT− k0l0

ġT(t) = UT(t) ,

(3.184)

where l0 is a spring-free length, gT = gT,e + gT, f , gT, f is the displacement of the dry
friction element, gT,e is the displacement of the spring k, and w = zT,e − l, l is a
spring-free length.

As shown in Bastien et al. (2007), the inclusion (3.184) is of the type (2.48) with
g(t,x) being Lipschitz in x and with L 2-bounded time derivatives. So it is wellposed.
Analysis, simulations, and experiments are carried out on a belt tensioner system.
The chosen numerical scheme is an implicit Euler method for the Masing model
that is nonsmooth, and a multistep solver for the Dahl’s model. It is concluded that
the Masing model is better to reproduce stick–slip transitions. The modified Dahl’s
model is efficient for modeling the intermediate stick–slip state. Other models made
of springs and dry friction elements exist, like the Prandtl’s model, which also gives
rise to a maximal monotone inclusion as (2.48).

A good account on rheological models (i.e., models made of springs, dampers,
and Coulomb friction elements mounted in series and parallel interconnections) is
given in Bastien et al. (2000). A friction model that extends Coulomb friction is pre-
sented in Leine & Glocker (2003), within the framework of multivalued mappings.
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3.9.4.4 Cohesion Laws

We present in this section an example of complex contact laws written in the frame-
work of the thermodynamics of continuum media. This is an adhesive contact model
coupling closely unilateral contact, Coulomb’s friction, and surface damage. It has
been proposed by Cangémi (1997) (see also Cangémi et al., 1996; Raous et al., 1999)
as an extension of Frémond’s model of adherence with unilateral contact (Frémond,
1982, 1987, 1988) in the context of fiber/matrix interface in composite materials.
This model has been further developed and studied by Monerie (2000) (see also
Monerie & Raous, 1999; Chaboche et al., 2001) which demonstrates the usefulness
and the ability of the model to predict complex fracture process and the very cor-
relation with experimental data. In Acary (2001), Monerie & Acary (2001), Jean
et al. (2001), and Acary & Monerie (2006), the cohesive zone model has been
formulated in a nonsmooth dynamics context, and a numerical solving method is
proposed.

We propose here to summarize the main equations of the model. Besides the
standard state variable of the contact surface g and gT, an adhesion variable β ∈ [0,1]
is introduced to model the rate of adherence of the surface. This variable plays the
same role as the standard damage variable in continuum media. If β = 1, the interface
is adhesive and sound. If β = 0, the interface is broken and there is no more adhesion.
Furthermore, a nonlocal formulation can be proposed introducing the gradient of the
adhesion variable ∇β . In this section the time variable is dropped for convenience.

The state laws are stated as follows,
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− RR
N ∈ ∂gWS(g,gT,β ,∇β ),

− RR
T ∈ ∂gTWS(g,gT,β ,∇β ),

− Xβ ∈ ∂βWS(g,gT,β ,∇β ),

− X∇β ∈ ∂∇βWS(g,gT,β ,∇β ) .

(3.185)

with the following free energy density

WS(g,gT,β ,∇β )=
1
2
β 2cNg2+

1
2
β 2cT‖gT‖2−wh(β )+

1
2

k‖∇β‖2+ΨIR+(g)+Ψ[0,1](β ) .

(3.186)
The parameters of the free energy are

1. The initial stiffnesses cN and cT, homogeneous to elasticity modulus per unit of
length

2. An energy w dissipated by the decohesion without the energy dissipated by the
viscosity

3. A smooth function h which allows one to model the dissipated energy with re-
spect to β

4. The energy associated with the gradient of adhesion, ∇β chosen as a quadratic
function with parameter k
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The constitutive laws are written as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

RIR
N = 0

−RIR
T ∈ ∂UTΦS(UT, β̇ )

(Xβ −X∇β ) ∈ ∂β̇ΦS(UT, β̇ ) ,

(3.187)

where the pseudo-potential of dissipation is given by

ΦS(UT, β̇ ) = μ(β )(RR
N +β 2cNg)‖UT‖+ b

p + 1
‖β̇‖p+1

+ΦIR−(β̇ ) , (3.188)

where b is a viscosity parameter, p ∈ IN, and μ(β ) is coefficient of friction which
may depend on β . It allows especially to introduce the friction only when the inter-
face is damaged.

Without entering into deeper details, the cohesive zone model leads to the fol-
lowing sets of equations:

1. Unilateral contact with elasticity and adhesion

(RR
N +β 2cNg) � 0, g � 0, (RR

N +β 2cNg)g = 0 . (3.189)

2. Coulomb’s friction with elasticity and adhesion⎧⎪⎪⎨
⎪⎪⎩

RR
T =−β 2cTgT, RR

N = RN,

• ‖UT‖> 0, ‖RIR
T ‖= μ(β )(RR

N +β 2cNg),
RIR

T

‖RIR
T ‖

=− UT

‖UT‖ ,
• ‖UT‖= 0, ‖RIR

T ‖< μ(β )(RR
N +β 2cNg) .

(3.190)

3. Dynamics of the adhesive behavior⎧⎪⎨
⎪⎩

bβ̇ = −
[(

wh′(β )−β (cNg2 + cT‖gT‖2)− k∇β
)−](1/p)

, si β ∈ [0,1]

bβ̇ � −
[(

wh′(β )−β (cNg2 + cT‖gT‖2)− k∇β
)−](1/p)

, si β = 1 .

(3.191)

Introducing the following change of variables

R̃N = RN +β 2cNg, R̃T = RT +β 2cTgT , (3.192)

the cohesive zone model can be recast into the synthetic form of the unilateral contact
with Coulomb’s friction, {

−g ∈ ∂ψIR+(R̃N)
−UT ∈ ∂ψD(μ(β )R̃N)(R̃T)

(3.193)

with the evolution of the adhesion variable

β̇ = f (β ,g,gT). (3.194)

This reformulation is a keystone of the numerical method for solving such a model.
In Figs. 3.8 and 3.9, some responses of the model to periodic loading are depicted

in order to give a flavor of the modeled behavior.
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Fig. 3.8. Uniaxial traction/compression test in the normal direction
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Fig. 3.9. Periodic shear test

3.10 Lagrangian Systems with Frictional Unilateral Constraints
and Newton’s Impact Laws: Summary

To summarize, we give the equation of motion in the standard framework of the
unilateral constraints with Newton’s impact law and Coulomb’s friction:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(q(t))dv + N(q(t),v+(t))dt + Fint(t,q(t),v+(t))dt = Fext(t)dt + dr

q(t) = q(t0)+
∫ t

t0
v+(t)dt

dr =∑
α

drα =∑
α

Hα(q)dRα = H(q)dR

U+ = [Uα ,+,α ∈ {1 . . .v}] with Uα ,+ = Hα ,T (q)v+

Cα ,∗ � [Uα ,+
N + eαUα ,−

N + μα || Uα ,+
T ||, Uα ,+

T ]T ⊥ dRα ∈ Cα , α ∈ {1 . . .v}
Cα =

{
X ∈ lR3, ||XT ||� μα |XN |

}
α ∈ {1 . . .v}

(3.195)
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This model can be enhanced with the nonsmooth contact models, especially with
Poisson and Moreau’s impact laws, that have been presented all along the Sect. 3.9.
Note that we have assumed that Coulomb’s friction is still valid for the impulses in
case of impacts.

3.11 A Mechanical Filippov’s System

Let us consider the system in Fig. 3.10, where the two friction cones are represented
with dashed lines. Its dynamics is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q̈1(t)+ k(q1(t)−q2(t)) ∈−μ sgn(q̇1(t))

q̈2(t)+ k(q2(t)−q1(t)) ∈−μ sgn(q̇2(t))

q1(0) = q10,q2(0) = q20, q̇1(0) = q̇10, q̇2(0) = q̇20 ,

(3.196)

where μ � 0 is the coefficient of friction. It is assumed that both masses are m = 1.
It can be verified that this inclusion satisfies the conditions of Theorem 2.41, so that
there exists a unique global Lipschitz solution for any initial data. Let us perform the
variable change q = q1−q2, z = q1 + q2. One obtains:

⎧⎨
⎩

z̈(t) ∈ −μ (sgn(q̇(t)+ ż(t))+ sgn(−q̇(t)+ ż(t))

q̈(t)+ 2kq(t)∈ −μ (sgn(q̇(t)+ ż(t))− sgn(−q̇(t)+ ż(t)) .
(3.197)

As long as μ > 0 this system is dissipative. In fact considering the Lyapunov function
candidate V (q1,q2, q̇1, q̇2) = 1

2 q2
1 + 1

2 q2
2 + 1

2 k(q1−q2)2, one finds along the trajecto-
ries of (3.196)

V̇ (t) ∈ −μ |q̇1(t)|− μ |q̇2(t)| . (3.198)

Then from theorems 3.1 and 3.2 in Shevitz & Paden (1994), the fixed point q̇∗1 = 0,
q̇∗2 = 0, q∗1 = q∗2 is uniformly stable, and all trajectories converge asymptotically in
the set M = {q1,q2, q̇1, q̇2 | q̇1 = q̇2 = 0, q1−q2 ∈ [− μ

k , μk ]}.
The two switching surfaces are Σ1 = {(q̇, ż) | q̇ = ż} and Σ2 = {(q̇, ż) | q̇ =−ż},

as depicted in Fig. 3.11. The vector fields and the Filippov’s convex set are also
depicted in Fig. 3.11 for the value k = 0. When k > 0 the Filippov’s inclusion is

q2

k

q1

Fig. 3.10. Mechanical system with Coulomb friction
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Fig. 3.11. Vector fields and inclusion at the origin (k = 0)

case q(0) < 0

q̇

ż0

case q(0) > 0

Fig. 3.12. Inclusion at the origin (k > 0)

depicted for different initial displacement conditions in Fig. 3.12. The origin in the
figures correspond to a surface of codimension 2 in the state space IR4. When q(0) �=
0 the vertical component of the vector field has to be corrected by a value −2kq(0),
and the horizontal component remains unchanged. Notice that since uniqueness of
solutions holds, repulsive switching surfaces with spontaneous switches cannot exist.
Surfaces are crossed transversally, or are attractive.

This system has been analyzed in detail in Pratt et al. (2007), when one of the
masses is acted upon by an external force. It is shown analytically that the trajectory
undergoes an infinity of events (sticking–sliding transitions) for some critical values
of the external load and particular initial data. This system is therefore presented as
a possible benchmark to test the validity of numerical schemes.
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Complementarity Systems

Complementarity systems have been introduced in Sect. 2.6, where some examples
have been given. In this chapter they are examined in more details.

4.1 Definitions

Let us provide several formal definitions of complementarity systems. In view of the
preceding chapters (Chap. 3 on Lagrangian systems, but see also Chap. 2), it should
be clear that the dynamics which are written below may not be complete, in the
sense that starting from x(0), the ingredients that are proposed may not be sufficient
to integrate the trajectories: it may even happen that one cannot start the system, i.e.,
the right limit of the state x(0+) cannot be calculated!1 Anyway, instead of adding
what is missing (a state jump rule), we first give a partial description of the dynamics.
Then the state jump rules will be examined in particular cases, in this chapter and in
Chap. 5. In what follows x(t) ∈ IRn and w(t) ∈ IRm. In all the definitions, an initial
data is given as x(0) = x0, without further constraint on it.

Definition 4.1 (Generalized dynamical complementarity systems). A generalized
dynamical complementarity system in a semi-explicit form is defined by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = f (x(t),t,λ (t))

w(t) = h(x(t),λ (t))

K∗ � w(t)⊥ λ (t) ∈ K ,

(4.1)

where the nonempty cone K ⊂ IRn and K∗ = {x ∈ IRn | xTy � 0 for all y ∈ K} is its
dual cone.

1 Consider the bouncing ball with a constraint q � 0, with initial data q(0) = 0 and q̇(0−) < 0:
without the velocity jump, time integration cannot proceed.
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The term generalized is used when the set K is a general cone of IRn. If this cone is
a nonnegative orthant like IRN

+, we speak of DCS or shortly CS.

Definition 4.2 (Dynamical complementarity systems). A dynamical complemen-
tarity system (DCS) in an explicit form is defined by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = f (x(t),t,λ (t))

w(t) = h(x(t),λ (t))

0 � w(t)⊥ λ (t) � 0 .

(4.2)

If the smooth dynamics and the input/output function are linear, we speak of
linear complementarity systems.

Definition 4.3 (Linear complementarity systems). A linear complementarity sys-
tem (LCS) is defined by ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t)+ Bλ (t)

w(t) = Cx(t)+ Dλ (t)

0 � w(t)⊥ λ (t) � 0 .

(4.3)

One may be led to work with more complex forms of linear complementarity systems
such as

Definition 4.4 (Mixed linear complementarity systems). A mixed linear comple-
mentarity system (MLCS) is defined by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Eẋ(t) = Ax(t)+ Bλ (t)

Mw(t) = Cx(t)+ Dλ (t)

0 � w(t)⊥ λ (t) � 0 .

(4.4)

It is noteworthy that such formalisms naturally arise in the modeling of electrical
circuits and are therefore not artificial. If both the matrices E and M are square full
rank, we are back to an LCS as in Definition 4.3. See for instance example 7 in
Brogliato (2003) for a system that fits within MLCS.

Finally, specific nonlinear complementarity systems are usually defined as
follows:

Definition 4.5 (Nonlinear complementarity systems). A nonlinear complementar-
ity system (NLCS) is defined by
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⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = f (x(t),t)+ g(x(t))λ (t)

w(t) = h(x(t),λ (t))

0 � w(t)⊥ λ (t) � 0 .

(4.5)

If g(x) =−∇h(x), one obtains the so-called gradient-type complementarity systems
which are defined as follows:

Definition 4.6 (Gradient complementarity system). A gradient complementarity
system (GCS) is defined by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ(t)+ f (x(t)) = ∇g(x(t))λ (t)

w(t) = g(x(t))

0 � w(t)⊥ λ (t) � 0 .

(4.6)

More details on the definitions and the mathematical properties of CS can be
found in Heemels (1999), Camlibel (2001), Heemels et al. (2000), van der Schaft
& Schumacher (2000), Heemels & Brogliato (2003), and Brogliato (2003). The CSs
presented in this section are autonomous. Obviously one may define non autonomous
CS, with exogenous inputs. For instance the nonautonomous LCS dynamics is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t)+ Bλ (t)+ Eu(t)

w(t) = Cx(t)+ Dλ (t)+ Fu(t)

0 � w(t)⊥ λ (t) � 0 ,

(4.7)

where the exogenous term u(·) should satisfy some regularity conditions, so that the
well-posedness can be proved. Such LCS with inputs frequently occur in electrical
circuits with current or voltage sources, see, e.g., Example 2.52.

4.2 Existence and Uniqueness of Solutions

The class of complementarity systems is too vast to allow one to state a general well-
posedness result for all systems of Definitions 4.1–4.6 in one shot. Therefore one
has to focus on subclasses of the above classes (notice that frictionless Lagrangian
complementarity systems are one subclass of NLCS). The results given in this section
concern only a subclass of LCS (passive LCS). Few words on passive NLCS are also
written. This may appear quite narrow. The reader should, however, keep in mind
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that CSs are complex dynamical systems, and that the quantity of results one may
obtain is inversely proportional to the degree of generality of the considered class
of systems. Imposing linearity and passivity seriously narrows down the class, but
permits to obtain precise results.

4.2.1 Passive LCS

We consider here the systems as in (4.3), where the quadruple (A,B,C,D) satisfies a
passivity constraint, i.e., the LMI

⎛
⎝ATP+ PA PB−CT

BTP−C −D−DT

⎞
⎠ � 0 (4.8)

has a solution P = PT � 0. The next theorem is taken from Heemels et al. (2002)
and Camlibel et al. (2002b). The solutions are understood as Bohl distributions, see
Appendix C.5.

Theorem 4.7. Assume that (A,B,C,D) is passive, the pair (A,B) is controllable, the

pair (C,A) is observable, and the matrix

(
B

D+ DT

)
has full column rank. Then the

LCS (4.3) has a unique solution on IR+ such that λ is a Bohl distribution of degree
2 (i.e., a measure), and x(·) is a Bohl function that is in L 2(IR+, IRn). Moreover let
λimp = λ0δ0. Then the state initial jump is given by x(0+) = x(0−)+ Bλ0.

Similar well-posedness results hold in the nonautonomous case (4.7). However, in
this case, there may exist state jumps at times t > 0. This depends a lot on the regu-
larity of the signal u(·). Roughly speaking the state may jump when the signal u(·)
has a discontinuity. Let us provide some details on the state reinitializing mapping. A
general jump rule is provided in Camlibel et al. (2002b), i.e., a rule that works for any
matrix D � 0. For this we need to define the set QD of solutions of the LCP(0,D), i.e.,
the LCP: 0 � λ ⊥Dλ � 0. Its dual cone is Q∗D = {x∈ IRm | xTy � 0, for all y∈QD}.
For the sake of generality, the jump rules are presented for the nonautonomous LCS
in (4.7). They concern possible state jumps at t = 0, but can easily be generalized to
any time t > 0 at which a jump is needed:

(i) The jump multiplier λ0 is uniquely determined as the solution of the comple-
mentarity problem

QD � λ0 ⊥Cx(0−)+ Fu(0)+CBλ0 ∈ Q∗D . (4.9)

(ii) The post-initialization state x(0+) is the unique minimizer of

min 1
2(z− x(0−))TP(z− x(0−))

subject to: Cz+ Fu(0) ∈ Q∗D ,
(4.10)

where P is any positive definite solution of the Kalman–Yakubovic–Popov Lemma
LMI in (4.8).
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(iii) The jump multiplier is the unique minimizer of

min 1
2 (x(0−)+ Bz)TP(x(0−)+ Bz)+ zTFu(0)

subject to: z ∈ QD ,
(4.11)

where P is any positive definite solution of the Kalman–Yakubovic–Popov Lemma
LMI in (4.8).

Remark 4.8. The authors (Heemels et al., 2000, 2002; Camlibel et al., 2002b) were
originally motivated by the jump rule of Moreau’s second-order sweeping process,
which has been adapted to passive LCS. It is therefore not surprising that the above
jump rule and the sweeping process restitution law with a restitution coefficient equal
to zero (see (2.99), (2.100), or (2.101)) are quite similar. Such rules can therefore be
used in an event-driven scheme, when an event is detected. They are well approxi-
mated by backward Euler methods, see Sect. 9.5.

Theorem 4.7 extends to nonautonomous LCS as in (4.7) provided the input u(·)
is a piecewise Bohl function, i.e., it is right-continuous and there exists a partition of
IR+ into intervals [tk,tk+1) (i.e., IR+ =∪k�0[tk,tk+1)) such that u(·) is a Bohl function
on each interval [tk,tk+1).

Remark 4.9. When B = CT it is possible to use some results for evolution varia-
tional inequalities to study the well-posedness and the stability of LCSs (Goeleven
& Brogliato, 2004). Indeed, in such a case the LCS can be recast into EVIs, and more
precisely into linear EVIs:

〈ẋ(t)+ f (x(t)),y− x(t)〉� 0, ∀y ∈ K, with

{
K = {x ∈ IRn,Cx � 0}
f (x) =−Ax .

(4.12)

The existence and uniqueness of solutions of (4.12) in the relevant class of function
is given in Theorem 2.44.

4.2.2 Examples of LCS

Several examples (physical or nonphysical) of LCS have been presented in Chap. 1
and Sect. 2.6. To complete this section, an example of nonexistence and nonunique-
ness of solutions is provided for a LCS of relative degree 0. This example is taken
from Heemels & Brogliato (2003).

Example 4.10. Let us consider the following LCS:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =−x(t)+λ (t)

w(t) = x(t)−λ (t)

0 � w(t)⊥ λ (t) � 0

x(0) = x0 .

(4.13)



170 4 Complementarity Systems

The LCP that allows one to calculate λ (t) in (4.13) is: 0 � λ (t) ⊥ x(t)−λ (t) � 0
which has no solution at t for x(t) < 0. If x(t) � 0 then one can take either λ (t) = 0
or λ (t) = x(t). This system is therefore equivalent to

ẋ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−x(t) if x(t) � 0

0 if x(t) � 0

/0 if x(t) < 0 ,

(4.14)

which leads to nonexistence of solutions for x(0) < 0 and to nonuniqueness for
x(0) > 0.

As one may guess, it is not too difficult to invent other examples of LCS which do
not possess solutions of any kind or which do not enjoy the uniqueness of solutions
property. In general strong conditions have to be imposed so that CSs are well-posed.

4.2.3 Complementarity Systems and the Sweeping Process

A link exists between LCS and Moreau’s perturbed sweeping process in (2.46), when
the triple (A,B,C) is positive real and D = 0. Indeed in such a case a suitable variable
change allows one to rewrite the LCS as an inclusion into a normal cone (Brogliato &
Thibault, 2006). Positive realness of (A,B,C) implies that a linear matrix inequality
ATP+PA � 0, PB =CT is satisfied for some P, with P = PT > 0 when the pair (C,A)
is observable and the pair (A,B) is controllable or stabilizable (see theorem 3.29 in
Brogliato et al., 2007). The variable change is defined as z = Rx with RR = P, i.e., R
is a symmetric square root of P. This is the case of the circuit in Fig. 2.3 for which

the above linear matrix inequality has the solution P =

⎛
⎝

1
C4

0 0
0 L3 0
0 0 L2

⎞
⎠ Brogliato &

Goeleven, (2005). The time-variation of the set K(t) is then due to the input u(t).
Depending on the smoothness of u(·) the solutions may be absolutely continuous or
of bounded variation. Let us show this on simple examples.

Example 4.11. Consider first the autonomous case, as treated in Brogliato (2004):
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = Ax(t)+ Bλ (t)

0 � Cx(t)⊥ λ (t) � 0

x(0) � 0 ,

(4.15)

where x(t) ∈ IRn, C ∈ IRm×n, (A,B,C) is positive real, B has full column rank, and
(A,B,C) is a minimal realization. Using the equivalence (A.9) in the appendix, the
complementarity relation is rewritten as
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−λ (t) ∈ ∂ψK(Cx(t)) (4.16)

with K = (IR+)m. Thus we obtain that (4.15) is equivalent to

ẋ(t) ∈ Ax(t)−B∂ψK(Cx(t)) . (4.17)

Using that PB = CT and RR = P we get

Rẋ(t) ∈ RAR−1Rx(t)−R−1CT∂ψK(CR−1Rx(t)) (4.18)

and with z = Rx

ż(t) ∈ RAR−1z(t)−R−1CT∂ψK(CR−1z(t)) . (4.19)

Let us define f (·) = CR−1 · ◦ψK(·), so that ∂ f (·) = (CR−1)T∂ψK(·), from the chain
rule for compositions of convex lower semi-continuous functions and linear continu-
ous mappings (see Proposition A.3). Therefore (4.15) is finally transformed into the
DI

ż(t) ∈ RAR−1z(t)− ∂ f (z(t)), z(0) = Rx(0) . (4.20)

The function f (·) is convex and lower semi-continuous, since K is convex. Its sub-
derivative may also be written as NK̄(z), where K̄ = {z ∈ IRn | CR−1z ∈ K}. Thus
we finally get

ż(t) ∈ RAR−1z(t)−NK̄(z(t)), z(0) = Rx(0) . (4.21)

The inclusion in (4.21) can easily be cast into the perturbed sweeping process in
(2.46). Actually as shown in Brogliato (2004) its well-posedness can also be analyzed
with Theorem 2.41, because it is an autonomous system.

In Brogliato & Thibault (2006) the nonautonomous case is analyzed, i.e., systems of
the form ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ(t) = Ax(t)+ Bλ (t)+ Eu(t)

0 � Cx(t)+ Fu(t)⊥ λ (t) � 0

x(0) � 0 ,

(4.22)

where u(·) is supposed to be either absolutely continuous or BV. The presence of
the function of time u(·) in the complementarity relations implies that the set K
in (4.21) becomes a time-varying set K(t). Thus nonautonomous LCSs with positive
real (A,B,C) naturally lend themselves to an interpretation through Moreau’s sweep-
ing process. In case u(·) is BV, then the state x(·) may jump and is itself BV. Thus the
inclusion is a measure differential inclusion as (2.46). In such a case, one may say
that the right formulation of these systems is the measure DI (2.46), and that in case
u(·) is absolutely continuous and K(t) can be described as in (4.22), the measure DI
becomes a DI which in turn is equivalent to a LCS.

Remark 4.12. From (4.19) at an atom of dz (when z(·) is BV) one obtains

z(t+)− z(t−) ∈ −R−1CT ∂ψK(CR−1z(t+)) ⇔ z(t+) = prox[K̄;z(t−)] (4.23)

with K̄ defined above. In the autonomous case (4.19) dz may have an atom at t = 0
only. In the nonautonomous case atoms may exist for any t � 0, depending on the
exogenous signal regularity.
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4.2.4 Nonlinear Complementarity Systems

The case of nonlinear CS is more tricky, as expected. Works in this area may be
found in van der Schaft & Schumacher (1998a) and Brogliato & Thibault (2006).
Let us briefly describe the results of Brogliato & Thibault (2006), which are based
on previous well-posedness results for the perturbed sweeping process obtained in
Edmond & Thibault (2005, 2006) and on the variable change described in Sect. 4.2.3.
The dissipativity properties of an uncontrolled, unconstrained system extracted from
the controlled nonsmooth system are central in the well-posedness proof.

Let us focus on the following class of complementarity systems:
⎧⎨
⎩

ẋ(t) = f (x(t))+ Bλ (t)+ e(x(t),u(t))

0 � λ (t)⊥ w(t) = c(x(t))+ g(u(t)) � 0 ,
(4.24)

where x(t) ∈ IRn, u(t) ∈ IRp, w(t) ∈ IRm.

Assumption 2. The mappings f (·) and e(·) are continuous, g(·) is supposed to be
locally Lipschitz continuous, a(0) = 0, g(0) = 0, e(·,0) = 0.

Assumption 3. The uncontrolled system
⎧⎨
⎩

ẋ(t) = a(x(t))+ Bλ (t)

w(t) = c(x(t))
(4.25)

is dissipative with respect to the supply rate w = wTλ , and there exists a positive
function V (·) such that V (0) = 0 and

cT(x) =
∂V
∂x

T

(x)B . (4.26)

Assumption 4. The function V (·) is of class C3(IRn; IR+) and the Hessian ∂ 2V
∂x2 (x) is

positive definite and symmetric for all x ∈ IRn. Moreover
(
∂ 2V
∂x2 (x)

) 1
2

is integrable as

a function of x, and

∂h
∂x

(x) =
(
∂ 2V
∂x2 (x)

) 1
2 Δ= Λ(x).

for some diffeomorphism h : IRn → IRn. Finally there exists a constant ρ > 0 such
that for all x ∈ IRn

ρBm ⊂ BTΛ(x)(Bn)+ (IR+)m . (4.27)
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The next lemma and the next theorem are proved in Brogliato & Thibault (2006).
It is noteworthy that in the right-hand side of (4.28) below the set S(t) may not be
convex. Consequently the normal cone is not the normal cone of convex analysis,
but a generalization of it, known as the limiting normal cone of S(t) (Rockafellar &
Wets, 1998). This generalization is needed in the framework of nonlinear systems,
for which it is too restrictive to assume convexity of all the ingredients.

Lemma 4.13. Suppose that Assumptions 2, 3, and 4 hold. Then the state space trans-
formation z = h(x) allows one to transform the NLCS in (4.24) into the perturbed
sweeping process

−ż(t)+
∂h
∂x

T

(x) f (h−1(z(t)))+
∂h
∂x

T

(x)e(h−1(z(t)),u(t)) ∈ ∂ψS(t)(z(t)) , (4.28)

where S(t) Δ= {z | c(h−1(z))+ g(u(t)) � 0}.
The proof of Lemma 4.13 roughly follows the same steps as that done in Sect. 4.2.3.
The existence and uniqueness of solutions comes now.

Theorem 4.14. Consider the system in (4.24) and suppose that assumptions 2, 3,
and 4 hold. Let u(·) be locally absolutely continuous, and z0 ∈ S(0). Then there
exists some T > 0 such that the perturbed differential inclusion (4.28) with z0 as
initial condition has at least one locally absolutely continuous solution on [0,T ) and

the solution is unique whenever ∂ 2V
∂x2 (·) is bounded on the convex hull co(RgeS) of

Rge(S).
If, in addition, f (·) and e(·,u) are locally Lipschitz continuous and the map-

ping (t,z) �→ ∂h
∂x

T
(x) f (h−1(z(t)))+ ∂h

∂x

T
(x)e(h−1(z(t)),u(t)) in (4.28) satisfies a lin-

ear growth condition, then T may be taken equal to +∞.

Theorem 4.14 can be extended to u(·) RCBV, so that the inclusion in (4.28) becomes
a measure differential inclusion. However, in this case uniqueness of solutions is not
proved. The interest of such a result, in, this book, is mainly to show that nonlin-
ear complementarity systems may be well-posed, at the price of imposing stringent
conditions.

Remark 4.15. As long as the well-posedness is concerned, the positiveness of V (·) is
not necessary. The essential tool is relation (4.26).

4.3 Relative Degree and the Completeness of the Formulation

A fundamental notion to study such systems is the notion of relative degree. The
name is taken from the usual terminology in systems and control and can be defined
independently of the complementarity relation. Let us consider a linear system in
state representation given by the quadruple (A,B,C,D):
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⎧⎪⎨
⎪⎩

ẋ(t) = Ax(t)+ Bλ (t)

w(t) = Cx(t)+ Dλ (t)
(4.29)

with x(t) ∈ IRn, w(t) ∈ IRm, and λ (t) ∈ IRm, and x(0) = x0.

4.3.1 The Single Input/Single Output (SISO) Case

In the SISO case (m = 1), the relative degree is defined by the first nonzero Markov
parameter. The sequence of Markov parameters is defined by the sequence of scalars

D,CB,CAB,CA2B, . . . ,CAr−1B, . . . . (4.30)

In fact, these parameters arise naturally when we derive the output w(·) with respect
to time:

w(t) = Cx(t)+ Dλ (t)

ẇ(t) = CAx(t)+CBλ (t), if D = 0

ẅ(t) = CA2x(t)+CABλ (t), if D = 0 and CB = 0

...

w(r)(t) = CArx(t)+CAr−1Bλ (t), if D = 0

(4.31)

and CA jB = 0, for all j = 0, ...,r−2.

...

The first nonzero Markov parameter allows us to define the “output” w(·) as an
explicit function of the “input” λ (·). The existence of a finite relative degree is
guaranteed by the existence of a nonzero transfer function or a nonzero input/output
operator u(·) �→ w(·). The relation with the transfer function is as follows. The
transfer function H : C→ C of the system (4.29) is given by

H(s) = D+C(sIn−A)−1B . (4.32)

We may write

H(s) =
N(s)
D(s)

,

where D(s) is a polynomial of degree n and N(s) is a polynomial of degree l � n. The
relative degree r of the system (A,B,C,D) is defined equivalently as the difference
between the degrees of the denominator and numerator polynomials of H(s), i.e.,
r = n− l. Note that 0 � r � n.
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4.3.2 The Multiple Input/Multiple Output (MIMO) Case

When m > 1, a notion of uniform vector relative degree r can be defined as follows
(Sannuti, 1983). The parameters in (4.30) are m×m matrices. If D is nonsingular, the
relative degree is equal to 0. Otherwise, it is assumed to be the first positive integer r
such that

CAiB = 0, i = 0, . . . ,q−2 (4.33)

while
CAr−1B is nonsingular . (4.34)

We may then denote r̄ = (r,r, ...,r)T ∈ IRm, the vector relative degree, or simply
r. It is also possible to define nonuniform relative degree vector, for some classes
of nonlinear systems, see for instance Isidori (1995). In systems and control, the
relative degree is a very useful notion to derive various sorts of canonical state space
realizations, for control analysis and design.

Example 4.16. Consider a gradient CS as in (4.6), but with linear dynamics:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ(t)+ Ax(t) = GTλ (t)

w(t) = Gx(t)

0 � w(t)⊥ λ (t) � 0 .

(4.35)

Then ẇ(t)=−GAx(t)+GGTλ (t). Provided the m×m matrix GGT is square full rank
(equivalently G has rank m), the vector relative degree is equal to r̄ = (1, ...,1)T ∈
IRm. One says that the system has a uniform relative degree r = 1.

4.3.3 The Solutions and the Relative Degree

A general discussion is done in Acary et al. (in press), whose work is summarized in
Chap. 5. We will consider here a very simple example to illustrate our purpose.

Example 4.17. Let us consider the following LCS:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

...
x (t) = λ , x(0) = x0 � 0

w(t) = x(t)

0 � w(t)⊥ λ � 0 .

(4.36)

Obviously it has r = 3. When the constraint w = x � 0 becomes active at t, i.e.,
x(t) = 0, the sign of the derivatives of w(t) (i.e., of x(t)) will govern the future behav-
ior of the system. If ẋ(t−) > 0, one can keep this value and work with a continuous
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velocity. The system will instantaneously leave the constraints. If ẋ(t−) < 0, the ve-
locity needs to jump so that the trajectory respects the unilateral constraint in a right
neighborhood of t. Therefore it is necessary in such a case that the velocity be nons-
mooth and jumps to some positive value ẋ(t+) > 0. The velocity has to be considered
as a function of bounded variations and it remains to define how it jumps. The second
derivative ẍ(·) is a measure with an atom at t, and the third derivative is a derivative
(in the sense of distributions) of a measure (something like δ̇t ). Consequently, the
term λ is expected to be also a derivative of measure, i.e., a distribution of degree 3.

Consequently, a constraint of the type λ � 0 has no mathematical meaning for
(4.36). The LCS formalism is not adapted when r � 3 and has to be replaced by a
more general formalism that makes sense with distributional solutions. We will come
back on the problem of higher relative degree in Chap. 5.



5

Higher Order Constrained Dynamical Systems

The material presented in this chapter is taken from Acary et al. (in press) and Acary
& Brogliato (2006, 2005). It follows from the arguments in Sect. 4.3 that the frame-
work of linear complementarity systems is well suited for systems with a relative
degree between the complementarity variables λ (·) and w(·) less or equal to one.
When the relative degree r � 2, such a formalism is no longer appropriate. In other
words, suppose one is looking for a sound mathematical formalism, such that a uni-
laterally constrained system of the general form

⎧⎨
⎩

ẋ(t) = Ax(t)+ Bλ

w(t) = Cx(t) � 0, x(0) = x0

(5.1)

with A∈ IRn×n, B∈ IRn×m, C ∈ IRm×n, possesses unique solutions on IR+, for all x0 ∈
IRn. From Sect. 4.3.3, the solutions of such a system are likely to be distributions,
so that the mere writing of the differential equation in (5.1) may not be suitable. The
following sections aim at briefly introducing the so-called higher order sweeping
process (HOSP), which is a differential inclusion whose solutions are distributions.
The HOSP is an extension of the second-order sweeping process that is a measure
DI. The HOSP may be named a distribution DI.

5.1 Motivations

Roughly speaking, the primary interest for studying such a DI is to provide one with
a time-stepping method allowing to integrate a system like (4.36) with r � 3. Indeed
the backward Euler method presented in Sect. 9.5 does not work in such a case.
This is due to the fact that an algorithm as (9.72) is able to approximate measures
(at the price of slightly modifying it), but it cannot approximate derivatives of Dirac
measures. Examples are treated in Sect. 11.1 which demonstrate this.

Apart from the pleasure of being able to integrate systems with r � 3, there ex-
ist other motivations. The necessary first-order optimality conditions that stem from
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Pontryagin’s principle with inequality state constraints have the form of a LCS with
r � 2 (van der Schaft & Schumacher, 2000). The viability problem may also in-
volve systems with distributions (Kinzebulatov, 2007). The viability problem may be
thought of as finding distributional controls such that the domain {x ∈ IRn | Cx � 0}
remains invariant. The problem that is solved by the HOSP is to find the right re-
lationships between the multiplier and the state so that the same goal is attained.

5.2 A Canonical State Space Representation

Let us introduce a state space representation for (5.1) which will later on allow us to
design the HOSP. This representation is based on the relative degree r between w(·)
and λ (·), considered for the time being as smooth functions. Let us first deal with the
SISO case of Sect. 4.3.1, i.e., m = 1. We therefore suppose that the transfer function
H(s) = C(sIn−A)−1B �= 0, so that 1 � r � n. Then there exists a full-rank matrix
W ∈ IRn×n such that (see, e.g., Sannuti (1983)):

WB =

⎛
⎝ 0r−1

CAr−1B
0n−r

⎞
⎠

CW−1 =
(

1 0n−1
)

and

WAW−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0n−r

0 0 1
. . .

...
...

...
. . .

. . . 0
...

0 . . . . . . 0 1 0n−r

d1 d2 d3 . . . dr dT
ξ

Bξ 0n−r 0n−r . . . 0n−r Aξ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.2)

where Aξ ∈ IR(n−r)×(n−r),Bξ ∈ IR(n−r)×1, and (dT,dT
ξ ) = (CArW−1)T with dT =

(d1, . . . ,dr). The notation 0n = (0,0, ...,0) ∈ IR1×n, and 0n = (0n)T ∈ IRn.
Actually, the framework that is presented next is essentially linked to systems

with r � 1. The existence of a relative degree allows one to perform a state space
transformation with new state vector z = Wx,

zT = (z1,z2, ...,zr,ξT) = (z̄T,ξT), ξ ∈ IRn−r (5.3)

such that the new state space representation is (see Sannuti (1983))⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ż(t) = WAW−1z(t)+WBλ (t)

z(0) = Wx0

w(t) = CW−1z(t) � 0

, (5.4)
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that is, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1(t) = z2(t)
ż2(t) = z3(t)
ż3(t) = z4(t)

...

żr−1(t) = zr(t)
żr(t) = CArW−1z(t)+CAr−1Bλ (t)

ξ̇ (t) = Aξ ξ (t)+ Bξ z1(t)

w(t) = z1(t) � 0

z(0) = z0

. (5.5)

Moreover

CArW−1z = dTz̄+ dT
ξ ξ . (5.6)

In systems and control theory, the dynamics ξ̇ = Aξ ξ + Bξ z1 is called the zero dy-
namics, so we shall denote the state space form in (5.5) the ZD representation.

Example 5.1. Let us consider the state representation in (5.5) with

A =

⎛
⎜⎜⎝

2 7 3−2α −2β + 2
−1 −3 −1 +α β −1
0 0 0 1
1 2 1 0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝
−2
1
0
0

⎞
⎟⎟⎠ , C =

(
1 2 0 0

)

where α,β ∈ IR. The transfer function of this system is given by

H(s) =
s2−1

s4 + s3− (1 +α)s−1−β .

Then the transformation matrix

W =

⎛
⎜⎜⎝

1 2 0 0
0 1 1 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

allows one to transform the system (A,B,C) into the ZD canonical state space repre-
sentation (WAW−1,WB,CW−1) where

WAW−1 =

⎛
⎜⎜⎝

0 1 0 0
−1 −1 α β
0 0 0 1
1 0 1 0

⎞
⎟⎟⎠ , WB =

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ , CW−1 =

(
1 0 0 0

)
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so that the dynamics in (5.5) is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ż1(t) = z2(t)
ż2(t) = λ (t)− z1(t)− z2(t)+αξ1(t)+βξ2(t)
ξ̇1(t) = ξ2(t)
ξ̇2(t) = ξ1(t)+ z1(t)
w(t) = z1(t)

. (5.7)

5.3 The Space of Solutions

The reader is referred to B Section C.3, for details on how the solutions are con-
structed and the employed notation. Roughly speaking, the space of solutions for the
HOSP generalizes that of complementarity Lagrangian systems with absolutely con-
tinuous positions and BV velocities, so that the acceleration is a differential measure.
However, due to the relative degree � 1, the number of state variables that may have
jumps is not restricted to the velocity. The higher derivatives may also be discon-
tinuous, up to the order r (see the canonical form in (5.5)), while the zero dynamics
vector ξ (·) is a continuous function of time in the HOSP framework. This is reflected
in (C.6).

5.4 The Distribution DI and Its Properties

The HOSP formalism has some fundamental properties. In particular it is of great
interest to understand how the inequality λ � 0, which is meaningless when λ is a
distribution of degree > 2 (the derivatives of the Dirac measure), may be formulated
in a rigorous way.

5.4.1 Introduction

As the example of Sect. 4.3.3 shows, in general the possible solutions of (5.5) cannot
be defined in a class of smooth functions. Consider for instance the initial data z0,i �
−δ for some δ > 0 and all 1 � i � r. Then, since the unilateral constraint z1 � 0
must be satisfied, it is necessary that z1(0+) � 0, i.e., z1 needs to “jump” to some
nonnegative value. It results that z1 cannot be continuous and the derivatives in (5.5)
must be considered in the sense of distributions. At this stage we can just say that a
jump mapping is needed. Its form will depend on the type of system one handles (in
mechanics, this is the realm of impact mechanics (Brogliato, 1999)). If one considers
(5.5) as an equality of distributions of class T∞(I) (see Definition C.2), then we can
rewrite it as
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dz1 = z2

Dz2 = z3

Dz3 = z4

...

Dzr−1 = zr

Dzr = CArW−1z+CAr−1Bλ

Dξ = Aξ ξ + Bξ z1.

, (5.8)

where D. stands for the derivation in the sense of distributions. Consider the above
initial conditions on {zi} (1 � i � r). Then Dz1 is a distribution of degree 2 and we get
Dz1 = {ż1}+σz1(0)δ0 = z2. Consequently Dz2 is a distribution of degree 3 and Dz2 =
D2z1 = D{ż1}+σz1(0)Dδ0 = {ż2}+σ{ż1}(0)δ0 +σz1(0)Dδ0 = z3, and {ż1}= {z2}.
Then Dz3 is a distribution of degree 4, and we get Dz3 = D{ż2}+σ{dotz1}(0)Dδ0 +
σz1(0)D2δ0 = {ż3}+σ{ż2}(0)δ0 +σ{ż1}(0)Dδ0 +σz1(0)D2δ0 = z4, and {ż2}= {z3},
and so on. Thus σ{ż1}(0) = {z2}(0+)−{z2}(0−), σ{ż2}(0) = {z3}(0+)−{z3}(0−),
and so on. Until now we have decomposed only the left-hand side of the dynamics
as distributions of some degrees. Now let us get back to the distributional dynamics
in (5.8). Starting from Dz1 = z2, one deduces that the right-hand side has to be of
the same degree has the left-hand side. This means that the right-hand side is equal
to {z2}+ ν1, where ν1 is a distribution of degree 2, i.e., a measure. Similarly from
Dz2 = z3 one deduces that z3 = {z3}+ ν̃2, where ν̃2 has degree 3 and can there-
fore further be decomposed as ν2 + ν̃1, with deg(ν2) = 2 and deg(ν̃1) = 3. It is
not difficult to see that ν̃1 = Dν1. Therefore Dz2 = {z3}+ ν2 + Dν1. The variables
ν1 and ν2 are slack variables (or Lagrange multipliers), and are measures of the
form νi =

∫
I dνi, where dνi is a Stieltjes measure generated by a F∞(I; IR)-function.

Continuing the reasoning until Dzr, we obtain Dzr = CArW−1{z}+CAr−1Bλ where
deg(λ ) =deg(Dzr) = r + 1. Consequently from (5.8) one gets⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dz1 = {z2}+ν1

Dz2 = {z3}+ Dν1 +ν2

Dz3 = {z4}+ D2ν1 + Dν2 +ν3

...
Dzi = {zi+1}+ D(i−1)ν1 + D(i−2)ν2 + . . .+ Dνi−1 +νi
...
Dzr−1 = {zr}+ D(r−2)ν1 + . . .+ Dνr−2 +νr−1

Dzr = CArW−1{z}+CAr−1Bλ .

(5.9)

We keep the notation λ for the multiplier which appears in the last line. One sees
that λ in (5.9) can be given a meaning as

λ = (CAr−1B)−1[D(r−1)ν1 + . . .+ Dνr−1]+νr (5.10)
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provided CAr−1B �= 0 (invertible in the multivariable case m � 2 with relative degree
r̄ = (r,r, ...,r)T ∈ IRm). Then λ is uniquely defined as in (5.10). It is important at this
stage to realize that λ is the unique source of higher degree distributions in the system
which will allow the state to jump. Therefore the measures νi have themselves to be
considered as sub-multipliers. The expression in (5.10) is important, as it will enable
us to generalize the positivity of λ when λ is a measure, to the case when it is not a
measure.

Remark 5.2. In view of the nature of the solutions as explained in Sects. 5.3 and C.3,
we may write dνi as

dνi = χi(t)dt + dJi, (5.11)

where χi ∈ F∞(I; IR) and dJi is an atomic measure with countable set of atoms
generated by a right-continuous jump function Ji. Let 1 � i � r− 1 be given. We
know that Dzi = zi+1 and thus {Dzi}= {zi+1}. Thus νi =�Dzi−Dzi�. It results
that dνi is an atomic measure and thus

χi(t) = 0, a.e. t ∈ I, (1 � i � r−1). (5.12)

This means that except for νr, the other measures νi are purely atomic (they act only
at the state jump instants). The nonatomic part of νr allows the state to move on the
constraint boundary {z1 = 0}. This is the equivalent of the contact force multiplier
in complementarity Lagrangian systems.

Remark 5.3. The fundamental difference between (2.125) and (5.9) is pointed out in
remark 1.9 in Brogliato (1999).

5.4.2 The Inclusions for the Measures νi

Let K be a nonempty closed convex subset of IR. We denote by TK(x) the tangent
cone of K at x ∈ IR defined by

TK(x) = cone(K−{x}), (5.13)

where cone(K −{x}) denotes the cone generated by K −{x} and cone(K −{x})
denotes the closure of cone(K − {x}), i.e., cone(K − {x}) = cone(K−{x}). The
definition in (5.13) allows us to take into account constraints violations. Note that

TIR+(x) =
{

IR if x > 0
IR+ if x � 0

and
TIR(x) = IR

Let us now set
Φ Δ= IR+. (5.14)

For z ∈ IRr, we set
Zi = (z1,z2, ...,zi), (1 � i � r). (5.15)

By convention, we set Z0 = 0 and

T 0
Φ(Z0) = Φ
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and we define ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T 1
Φ(Z1) = TΦ(z1),

T 2
Φ(Z2) = TT 1

Φ(Z1)(z2),
...

T r
Φ(Zr) = TT 1

Φ(Zr−1)(zr),

that is,
T i
Φ(Zi) = TT i−1

Φ (Zi−1)
(zi), 1 � i � r.

Remark 5.4. In the multivariable case m � 2 with vector relative degree r̄, we have
Φ = (IR+)m, Zl

0 = 0,Zl
i = (zl

1,z
l
2, ...,z

l
i), 1 � i � r,1 � l � m, and

T i
Φ(Zi) =×m

l=1T i
Φ(Zl

i ), 1 � i � r.

Starting from (5.8), (5.9) the HOSP is written as follows:

dνi ∈−∂ψT i−1
Φ ({Zi−1}(t−))({zi}(t+)) (1 � i � r) (5.16)

with νi in (5.9). Here {zi}(0−) (1 � i � r) will be given (by convention) so as to
define some initial conditions for the process. The sets

∂ψT i−1
Φ ({Zi−1}(t−))({zi}(t+)) (1 � i � r)

are nonempty closed convex cones. The positivity of λ is now understood as the
positivity of νr as

dνr ∈ − ∂ψT r−1
Φ ({Zr−1}(t−))({zr}(t+)).

5.4.3 Two Formalisms for the HOSP

We are now going to introduce two ways to formalize the HOSP. The first one,
called the distributional formalism, has solutions in the space T∞(I) of distributions
(see Definitions C.1 and C.2). The second one, called the measure differential
formalism, has solutions in the space of functions F∞(I; IR) (see (C.6)). Both are
linked in a one-to-one way. The measure differential formalism is important because
the time-stepping scheme presented in Chap. 11 is built to approximate its solutions
(and not the solutions of the distributional formalism). It happens that the numerical
way to approximate distributions of degree � 3 has not yet been discovered. Hence
the passage through the measure differential formalism is mandatory for numerical
purposes.

Let T > 0, T ∈ IR∪{+∞} be given and set I = [0,T ). Let

zT
0 = (z̄T

0 ,ξ T
0 )

be given in IRn with z̄0 ∈ IRr and ξ0 ∈ IRn−r.
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Distributional Formalism: Problem SP(z0; I) Find z1, ...,zr ∈ T∞(I) and ξi ∈
T∞(I) (1 � i � n− r) satisfying the distributional equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dz1− z2 = 0
Dz2− z3 = 0
Dz3− z4 = 0

... ,

Dzr−1− zr = 0
Dzr−CArW−1{z}= CAr−1Bλ

Dξ = Aξ ξ + Bξ z1

(5.17)

λ =(CAr−1B)−1

[
r−1

∑
i=1

D(r−i)�Dzi−{zi+1}�
]

+�Dzr−CArW−1{z}� (5.18)

the measure differential inclusions on (0,T ):
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d{z1}−{z2}(t)dt ∈ −∂ψΦ({z1}(t+))

d{z2}−{z3}(t)dt ∈−∂ψT 1
Φ({Z1}(t−))({z2}(t+))

...
d{zi}−{zi+1}(t)dt ∈ −∂ψTi−1

Φ ({Zi−1}(t−))({zi}(t+))
...
d{zr−1}−{zr}(t)dt ∈ −∂ψT r−2

Φ ({Zr−2}(t−))({zr−1}(t+))

(CAr−1B)−1[d{zr}−CArW−1{z}(t)dt] ∈ −∂ψTr−1
Φ ({Zr−1}(t−))({zr}(t+))

(5.19)

and the initial conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{z1}(0+)− z0,1 ∈−∂ψΦ({z1}(0+))

{z2}(0+)− z0,2 ∈ −∂ψT 1
Φ(Z0,1)({z2}(0+)

...
{zi}(0+)− z0,i ∈ −∂ψTi−1

Φ (Z0,i−1)
({zi}(0+))

...
{zr−1}(0+)− z0,r−1 ∈ −∂ψT r−2

Φ (Zr−2)({zr−1}(0+))

(CAr−1B)−1[{zr}(0+)− z0,r] ∈ −∂ψTr−1
Φ (Z0,r−1)({zr}(0+))

(5.20)
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and
{ξ}(0+) = ξ0. (5.21)

Measure Differential Formalism: Problem MP(z0; I) Find zi ∈ F∞(I; IR) (1 �
i � r) and ξi ∈F∞(I; IR) (1 � i � n− r) such that

dzi− zi+1(t)dt ∈ −∂ψT i−1
Φ (Zi−1(t−))(zi(t+)) on I (1 � i � r−1), (5.22)

(CAr−1B)−1[dzr−CArW−1z(t)dt] ∈ −∂ψTr−1
Φ (Zr−1(t−))(zr(t+)) on I, (5.23)

and
dξ − (Aξ ξ (t)+ Bξ z1(t))dt = 0 on I. (5.24)

The system in (5.22) and (5.23) has to be interpreted in the following sense: Find
nonnegative real-valued Radon measure dμi relative to which the Lebesgue measure
dt and the Stieltjes measure dzi possess densities dt

dμi
and dzi

dμi
, respectively, such that

dzi

dμi
(t)− zi+1(t)

dt
dμi

(t) ∈ −∂ψTi−1
Φ (Zi−1(t−))(zi(t+)), dμi− a.e. t ∈ I (5.25)

with (1 � i � r−1), and

(CAr−1B)−1
[

dzr

dμr
(t)−CArW−1z(t)

dt
dμr

(t)
]
∈ −∂ψT r−1

Φ (Zr−1(t−))(zr(t+)),

dμr− a.e. t ∈ I. (5.26)

The two formalisms are related as explained in the next proposition.

Proposition 5.5. (i) Let (z1, ...,zr,ξ ) ∈ (T∞(I))n be a solution of problem SP(z0; I).
Then

deg(zi) � i (1 � i � r),

z1 = {z1} ∈F∞(I; IR), ξ = {ξ} ∈ (F∞(I; IR))n−r ∩ (C0(I; IR))n−r

and ({z1}, ...,{zr},ξ ) is a solution of problem MP(z0; I).

(ii) Let (w1, ...,wr ,ξ )∈ (F∞(I; IR))n be a solution of problem MP(z0; I) such that
for each 1 � i � r− 1, the measure dwi−wi+1dt is atomic. Let z1, ...,zr be defined
by

z1
Δ= w1

and

zi
Δ= wi +

i−1

∑
j=1

(
∑

tk∈E0(w j)
(wj(t+k )−wj(t−k ))δ (i− j−1)

tk

)
(2 � i � r).

Then (z1, ...,zr,ξ ) ∈ (T∞(I))n and is a solution of problem SP(z0; I).
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Proposition 5.5 is crucial since it implies that once the solutions of the problem MP
have been calculated, it is a simple matter to deduce the solutions of the problem
SP. This relies a lot on the properties of the distributions generated by RCSLBV
functions, like the fact that the set of jumps of the state is countable, and that all the
state variables possess right and left limits everywhere.

Let us rewrite the inclusion (5.19) in a more compact form. Let us define the
matrices G ∈ IRr×r,Ḡ ∈ IRn×r and H ∈ IRr×n as follows:

Ḡ =
(

G
0(n−r)×r

)
(5.27)

with

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0

0 1
. . .

...
...

...
. . .

. . . 0
...

0 . . . 0 1 0

0 . . . . . . 0 CAr−1B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.28)

and
H = (Ir 0r×(n−r)). (5.29)

Let us now set
dν Δ= (dν1, ...,dνr,01×(n−r))

T.

We have
d{z}= WAW−1{z}dt + Ḡ dν = WAW−1{z}+dt + Ḡ dν. (5.30)

The upper script + in {z}+ means that since the functions {z}(·) is right-continuous,
taking the function or its right limit is equivalent for the integration.

5.4.4 Some Qualitative Properties

The HOSP being an extension of the sweeping process, one may expect that the jump
rules for the variables {zi}(·) will look like the velocity jumps of the second-order
sweeping process. This is confirmed by the next proposition.

Proposition 5.6. Let m = 1, and z be a solution of problem SP(z0; I). Then, for each
t ∈ I and for all 1 � i � r−1, we have

{zi}(t+)−{zi}(t−) ∈−∂ψT i−1
Φ ({Zi−1}(t−))({zi}(t+))

if and only if
{zi}(t+) = prox

[
T i−1
Φ ({Zi−1}(t−));{zi}(t−)

]
.

If CAr−1B > 0 then

{zr}(t+)−{zr}(t−) ∈−CAr−1B ∂ψT r−1
Φ ({Zr−1}(t−))({zr}(t+))
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if and only if
{zr}(t+) = prox

[
T r−1
Φ ({Zr−1}(t−));{zr}(t−)

]

These results continue to hold in the MIMO case m � 2, provided the Markov pa-
rameter CAr−1B = (CAr−1B)T > 0. One ingredient of LCS in (4.3) is the comple-
mentarity relation between the multiplier λ and a linear function of the state w(·).
This is generalized as follows in the HOSP.

Theorem 5.7. Let z be a solution of problem SP(z0; I). Then, for each t ∈ I, we have

0 � z1(t+)⊥ dνr({t}) � 0 (5.31)

and
0 � z1(t+)⊥ χr(t) � 0, a.e. t ∈ I. (5.32)

From the complementarity conditions (5.32) and from (5.12), and from the trans-
formed dynamics (5.5), one easily deduces the LCP that χr(t) satisfies on time inter-
vals on which the solution is smooth and evolves on the boundary {z1 = 0}. Due to
(5.31) and (5.32) one may consider that the HOSP is also an extension of the LCSs,
with relative degree � 1.

5.5 Well-Posedness of the HOSP

Let us first recall that for z ∈ IRn, we use the notation zT = (z̄T,ξT) as in (5.3) with
z̄ ∈ IRr and ξ ∈ IRn−r. Let zT

0 = (z̄0
T,ξT

0 ) be given.

Definition 5.8. Let 0 � a < b � T � +∞ be given. We say that a solution z ∈
(T∞([0,T )))n of problem SP(z0; [0,T )) is regular on [a,b) if for each t ∈ [a,b),
there exists a right neighborhood [t,t +σ) (σ > 0) such that the restriction of {z}
to [t, t +σ) is analytic.

This definition does not preclude the existence of accumulations of state jumps, as the
size of the right neighborhoods is not lower bounded. If t∗ is such an accumulation,
then a σ > 0 exists for all t < t∗, for t∗, and for all t > t∗.

Theorem 5.9. (Global existence and uniqueness) Let m = 1, and Λ =
supx∈IRn,x�=0

‖WAW−1x‖
‖x‖ (see (5.2)). Suppose that CAr−1B > 0. For each z0 ∈ IRn, prob-

lem SP(z0; [0,+∞)) has at least one regular solution z such that:

• (i) z1 ≡ {z1}� 0 on IR+;
• (ii) ‖{z}(t)‖� eΛt‖z0‖, ∀ t ∈ IR+.
• (iii) (Uniqueness in the class of regular solutions) If z∗ denotes a regular so-

lution of problem SP(z0; [0,T ∗)) (0 < T ∗ � +∞) then 〈z∗,ϕ〉 = 〈z,ϕ〉, ∀ϕ ∈
C∞

0 ([0,T ); IRn).
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It is stressed that uniqueness holds in the class of regular solutions only (as we saw in
Example 2.21, various solutions may exist at the same time for nonsmooth systems).
In the MIMO case, Theorem 5.9 continues to hold, provided the matrix CAr−1B is
a Stieltjes matrix, i.e., a nonsingular symmetric M-matrix. This assumption secures
that the matrix CAr−1B is positive definite and (CAr−1B)−1 is nonnegative in the
sense that (CAr−1B)−1

i j � 0 for all i, j ∈ {1, ...,n}.

5.6 Summary of the Main Ideas of Chapters 4 and 5

The class of dynamical systems subject to state inequality constraints may be em-
bedded into complementarity dynamical systems. In turn, complementarity systems
are much too general to be studied without restricting oneself to subclasses, like lin-
ear CS with dissipative properties, gradient CS, etc. The relative degree between the
two complementary variables is a fundamental parameter. CSs form an important
class of dynamical systems due to a wide range of applications. The relationships
between CSs and other nonsmooth dynamical systems are numerous, and one may
take advantage of them to study their well-posedness and their simulation.



6

Specific Features of Nonsmooth Dynamical Systems

The material in the foregoing chapters shows that some nonsmooth dynamical sys-
tems are rather “gentle”: for instance linear complementarity systems with a direct
feedthrough matrix D that is a P-matrix are ordinary differential equations with a
Lipschitz-continuous right-hand side. The class of “gentle” NSDS is, however, a
small subclass. Most of the NSDS may have either jumping solutions or nonunique
solutions or solutions that do not depend continuously on the initial data. This is
the case of complementarity Lagrangian systems: when multiple impacts occur, so-
lutions may be discontinuous with respect to the initial conditions. When Coulomb
friction is present, the contact force may diverge to infinity and produce unexpected
subsequent motion: this is the well-known Painlevé paradoxes, better called fric-
tional paroxysms.1 We give a brief account of these two phenomena in this chapter.

6.1 Discontinuity with Respect to Initial Conditions

Let us consider here a complementarity Lagrangian system, with several unilateral
constraints (i.e., ν � 2 in (3.14)). This phenomenon is closely linked to the kinetic
angle between the codimension one surfaces Σα = {q∈ IRn | gα(q) = 0}, 1 � α � ν .
The kinetic angle between Σα and Σβ is defined as

cosθαβ =
∇gα ,T(q)M−1(q)∇gβ (q)

(∇gα ,T(q)M−1(q)∇gα(q))
1
2 (∇gβ ,T(q)M−1(q)∇gβ (q))

1
2

. (6.1)

6.1.1 Impact in a Corner

The simplest case of a multiple impact is depicted in Fig. 6.1, where we consider a
particle with mass m > 0. The left figure depicts the case of a kinetic angle (equal
here to the Euclidean angle since we deal with a particle) larger than π

2 . Moreau’s

1 After a suggestion of Jean Jacques Moreau.
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(q′0, q̇0)

case θ > π
2 case θ = π

2

0 0

(q0, q̇0)

(restitution coefficient e = 0) (restitution coefficient e = 1)

Fig. 6.1. Impact at a corner

rule in (2.101) is chosen for the impact. The dashed line is the bisector of the angle. A
trajectory initialized on the bisector with its velocity oriented along the bisector, will
hit at the corner O and stick there. Trajectories initialized with the same velocity,
but on each side of the bisector, will remain close to each other until they hit the
boundary. Then due to the impacts and the constraint boundaries orientations, they
will diverge from each other and from the corner O. Solutions are discontinuous with
respect to the initial data.

The figure on the right is for an angle equal to π
2 . The impact being elastic, there

is no kinetic energy loss, and trajectories remain in a neighborhood of the bisector
line. Solutions are continuous with respect to the initial data.

These two cases graphically illustrate that depending on the geometry of the
singularity, solutions may be discontinuous with respect to the initial data. In the next
two sections a more general result due to Paoli (2005a) and a detailed mechanical
example due to Heemels et al. (2000) are presented. We also refer to Kozlov &
Treshchev (1991) for more details on the conditions that guarantee the continuity
property. Notice that from the numerical point of view, the discontinuity with respect
to the initial data means that there is a certain degree of uncertainty (or randomness)
in the result. Indeed depending on the numerical uncertainty, the time-step value,
and various thresholds to be implemented, the solution will “choose” different paths.
This simply reflects the reality of mechanics: systems that possess such a property
will behave in a random way or will be very sensitive to initializations.

6.1.2 A Theoretical Result

The next result is taken from Paoli (2005a). We consider a Lagrangian system as in
(3.4), with perfect time-invariant unilateral constraints (3.14) and Moreau’s impact
law (2.103)–(2.106). The following assumptions are supposed to hold:

(a) M(q) = MT(q) > 0 and is continuously differentiable.
(b) All data expressing generalized forces are continuous functions.
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(c) The constraints functions gα(·) are continuously differentiable, with locally Lip-
schitz gradient that does not vanish in a neighborhood of gα(q) = 0.

(d) The active constraints are functionally independent, i.e., their gradients are inde-
pendent vectors of IRn.

(e) The initial data satisfy gα(q0) � 0 for all α ∈ {1, ...,ν}, and ∇gα ,T(q0)q̇0 � 0
when gα(q0) = 0.

These are constraints qualification conditions and admissibility of the initial data. Let
F(q, q̇, t) generically denote the generalized forces in (3.4). In the next theorem, we
shall consider a sequence of data {q0,k, q̇0,k,Mk,Fk,gα ,k,1 � α � ν}k�0. The set of
admissible positions is Φk = {z ∈ IRn | gα(z) � 0, ∀ 1 � α � ν}, and for all z ∈ IRn

we define the set of active constraints indices Ik(z) = {i ∈ {1, ..,ν} | gα ,k(z) � 0}.
Theorem 6.1. Let the following hold:

• The sequence {q0,k, q̇0,k}k�0 converges to a limit {q0, q̇0}.
• The sequences {Mk(·)}k�0, {dMk(·)}k�0, {gα ,k(·)}k�0, and {∇gα ,k(·)}k�0, 1 �

α � ν , converge uniformly on the compact subsets of IRn to limits M(·), dM(·),
gα(·), and ∇gα(·), respectively.

• The sequence {Fk(·)}k�0 converges uniformly on the compact subsets of [0,T ]×
IRn× IRn to a limit F(·, ·, ·).

• The set of data D = (q0, q̇0,M(·),F(·),gα (·)), 1 � α � ν , satisfies the above
assumptions (a)–(e).

• There exists δ ∈ [0,T ] such that for all k � 0, the Cauchy problem associated
with the initial data Dk admits a solution qk(·) defined on [0,T ].

Then there exists δ ′ ∈ (0,δ ] and a subsequence of {qk(·)}k�0 which converges
uniformly on [0,δ ′] to a limit q(·) ∈ C0([0,δ ′];Φ) such that d

dt q(·) = q̇(·) is a BV
function. There exist also measures λ such that the dynamical equations (3.17) and
(3.20) are satisfied by the limits. Moreover, let the kinetic angle conditions for the
limit functions

〈∇gα(q),M−1(q)∇gβ (q)〉� 0 if e = 0, (6.2)

〈∇gα(q),M−1(q)∇gβ (q)〉= 0 if e ∈ (0,1] (6.3)

hold for all indices α,β ∈ I(q), α �= β , and for all t ∈ (0,δ ). Then the limit velocity
q̇(·) also satisfies Moreau’s impact rule in (2.103)–(2.106).

The solutions are therefore continuous with respect to the initial data (q0, q̇0). In-
deed if we denote the solution starting at (q1, q̇1) at time t = 0 as ϕ(t;q1, q̇1), we
have that limk→+∞ϕ(t;q0,k, q̇0,k) = ϕ(t;q0, q̇0) for any sequence {q0,k, q̇0,k}k�0, and
ϕ(t;q0, q̇0) is a solution of the complementarity Lagrangian system.

6.1.3 A Physical Example

The discontinuity with respect to initial data may be seen as a sensitivity of the
solutions to the order in which the constraints are activated. This is visible in the



192 6 Specific Features of Nonsmooth Dynamical Systems

q2q1

Fig. 6.2. A two-cart system with a hook

above corner example. In Heemels et al. (2000) calculations have been made for the
system of Fig. 6.2, using Moreau’s impact rule in (2.100).

With an obvious definition of the state variables and q1 = x1, q2 = x2, the dynam-
ics of the two-cart system is:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x3(t)
ẋ2(t) = x4(t)
ẋ3(t) =−2x1(t) = x2(t)+λ1 +λ2

ẋ4(t) = x1(t)− x2(t)−λ2

0 � x1(t)⊥ λ1(t) � 0
0 � x1(t)− x2(t)⊥ λ2(t) � 0

. (6.4)

Consider the initial data x0(ε) = (ε,ε,−2,1)T, with ε � 0. For ε = 0 the solution
initially jumps to the origin (0,0,0,0)T. This is a plastic impact. After this collision
the system stays at rest at its equilibrium position. For ε > 0, the constraint of the
hook x1(t)− x2(t) � 0 becomes active, and there is a jump to (ε,ε,− 1

2 ,− 1
2 )T. After

this event the system evolves on the hook constraint, until it hits the stop x1(t) � 0.
The pre-impact state is (0,0,− 1

2 + g(ε),− 1
2 + g(ε))T where g(·) is a continuous

function with g(0) = 0. The post-impact state is (0,0,0,− 1
2 + g(ε))T, which con-

verges to (0,0,0,− 1
2)T when ε → 0. Further calculations show that the initial state

(0,−ε,−2,1)T, ε � 0, yields after two jumps to the state (0,0, 1
2 , 1

2 )T. This is a trajec-
tory that first hits the stop and then hits the hook constraint. So the solution starting
at (0,0,−2,1)T is discontinuous with respect to the initial conditions. Looking at
Theorem 6.1, we deduce that the kinetic angle between the two constraints bound-
aries is larger than π

2 .

6.2 Frictional Paroxysms (the Painlevé Paradoxes)

It has been known since a long time that the introduction of Coulomb friction in
mechanical systems with bilateral or unilateral constraints may yield to apparently
strange and paradoxical situations. Roughly speaking, there may exist states for
which the system possesses several (possibly an infinity of) solutions (indetermi-
nate states) or no solutions (inconsistent states), and the contact force may diverge to
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infinity. Such problems exist not only in dynamical situations, but also in equilibrium
statics positions. In the statics case, the typical examples of a rod or a disc inserted
between convergent walls are treated for instance in Moreau (2006) and Sect. 5.1 in
Brogliato (1999). In the dynamical case, the problem is that the coupling between
the unilaterality and Coulomb friction complicates the system’s behavior a lot. There
may exist subsets of the state space in which no solution exists or several solutions
may exist at each instant. There may also exist configurations at which the contact
force takes unbounded values. The classical planar problem of a rigid rod sliding
on a rough plane is analyzed in detail in Génot & Brogliato (1999). It is shown that
while in sliding motion, the dynamics reduces to a scalar singular ODE of the form
ẋ(t) = f (x(t))

g(x(t)) , where f (·) and g(·) may be simultaneously singular. When reaching
the neighborhood of such singular states, the trajectories either detach from the con-
straint or go through the singularity. What happens is that though the contact force
diverges, the impulse (i.e., the integral of the force) remains bounded. Such a phe-
nomenon has therefore no link with an impact. A second important behavior occurs
when a trajectory tends to enter a subset of the state space, in which the contact
force LCP has no solution at all (a subset of inconsistent states). Then a principle of
maximal dissipation (i.e., a supplementary modeling assumption) says that the ve-
locity jumps to some value at which the LCP is solvable. This is sometimes called a
tangential impact.

We do not investigate this topic further as this would lead us too far away from
our main purpose. We simply mention that Moreau’s catching-up algorithm is able
to reproduce frictional paroxysms. See Liu et al. (2007) for applications in robotics
and Zhao et al. (2007) for experimental validations.

6.3 Infinity of Events in a Finite Time

The occurrence of an infinity of events (impacts, stick-slip transitions with Coulomb
friction) within a finite time interval is an important and common phenomenon in
many nonsmooth systems. From a numerical point of view this may create big prob-
lems. Let us briefly recall two typical cases.

6.3.1 Accumulations of Impacts

It is well known that the bouncing ball in (1.96) with e ∈ (0,1) and q(0) > 0 has
a trajectory that stabilizes in finite time on q = 0 after an infinity of rebounds, see
for instance Brogliato (1999, Sect. 7.1.4). More complex cases have been analyzed
which share the same property, see Cabot & Paoli (2007) and Wang (1993). Except
in particular cases, it is expected that most complementarity mechanical systems
possess trajectories with accumulations of events. An important property that is se-
cured by the well-posedness results that may be found in Ballard (2000), Dzonou
& Monteiro Marques (2007), Paoli & Schatzman (2002a,b), Mabrouk (1998) and
Monteiro Marques (1993) is that since the velocity is LBV, then the set of impact
times is countable. Consequently solutions are smooth in the right neighborhood of
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any t � 0. This is a property that is also encountered in higher order systems of
Chap. 5, see Theorem 5.9.

6.3.2 Infinitely Many Switchings in Filippov’s Inclusions

Let us consider the planar example:
{

ẋ1(t) ∈ −sgn(x1(t))+ 2sgn(x2(t))
ẋ1(t) ∈ −2sgn(x1(t))− sgn(x2(t))

, (6.5)

where sgn(·) is the set-valued sign function. The trajectories initialized outside the
origin reach the origin in finite time and with an infinite number of crossings of
the switching surfaces x1 = 0 and x2 = 0. The finite time convergence is easy to
establish as the time intervals between two switches satisfy a geometric series and
consequently have a finite sum. For instance starting at (0,1) yields a convergence
time equal to ∑+∞

n=1
1
3n = 1

2 .
Let us now reverse the time in the system (6.5):

{
ẋ1(t) ∈ sgn(x1(t))−2sgn(x2(t))
ẋ1(t) ∈ 2sgn(x1(t))+ sgn(x2(t))

. (6.6)

There is an infinity of trajectories which start with the initial data (0,0), and except
for the trivial solution that stays at the origin, they all cross the switching surfaces
an infinity of times. This system has an infinity of spontaneous switches from the
origin.

6.3.3 Limit of the Saw-Tooth Function in Filippov’s Systems

Suppose one integrates the differential inclusion ẋ(t) ∈ −sgn(x(t)), x(0) = x0 > 0,
with some delay in the switch between +1 and −1 because some kind of hysteresis
function is implemented around the switching surface x = 0. Such a procedure is of-
ten used in systems and control, in order to avoid too many switches in practice when
the system attains the sliding surface. The solution xε(·) is then a saw-toothed, or zig-
zag function, i.e., a function that oscillates around x = 0, with peaks at −ε < 0 and
+ε > 0 occurring at times tk with tk+1− tk = 2ε . On intervals (tk,tk+1) the solution
is linear with slope +1 or −1, alternatively. The derivative ẋε(·) thus exists almost
everywhere and is equal either to +1 or to −1 on the intervals (tk, tk+1). Therefore
the second-order derivative is equal almost everywhere to 0 and is a Dirac measure
at times tk. Let the hysteresis size go to zero, i.e., let ε → 0. Then xε(·) converges
uniformly towards the zero function. Clearly the number of “events” (the instants tk)
goes to infinity on any interval of time with positive measure. Though the deriva-
tive seems to converge to the zero function, it does not because |ẋε(t)| = 1 almost
everywhere. The limit of the second-order derivative deserves attention. Indeed ẍ(·)
is no longer a function but consists of an accumulation of Dirac measures at each
time t! One mathematical interpretation is that the infinitesimal zig-zag curve can be
assigned the slopes +1 and −1 with probability 1

2 at each t.
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The crucial conclusion to be drawn from this example is that the type of “infinity
of events” that occurs is quite different from the above ones. A commonly used ter-
minology coming from computer science is to name Zeno all phenomena involving
some way or another an infinity of events within a finite time interval. As these exam-
ples show, this is a very vague notion lacking serious mathematical foundations. One
should better speak of solutions as being piecewise something (meaning that they are
something on intervals of the form [tk,tk+1) with tk+1− tk > δ > 0 for all k) or BV or
absolutely continuous or continuous with a piecewise something derivative, etc.



Part II

Time Integration of Nonsmooth Dynamical Systems



Introduction

The following notation is used throughout this part. We denote by 0 = t0 < t1 <
· · · < tk < · · · < tN = T a finite partition (or a subdivision) of the time interval
[0,T ] (T > 0). The integer N stands for the number of time intervals in the subdi-
vision. The length of a time step is denoted by hk = tk+1− tk. For simplicity sake,
we consider only in the sequel a constant time length h = hk (0 � k � N−1). Then
N = T

h . The approximation of f (tk), the value of a real function f (·) at the time tk, is
denoted by fk .

In this part we shall concentrate on two types of algorithms for nonsmooth sys-
tems: event-driven and time-stepping. Let us first provide a brief description of such
schemes.

Event-driven algorithms: The principle of the event-driven schemes is based on the
time decomposition of the dynamics in modes, time intervals in which the dynamics
is smooth, and discrete events, i.e., times where the dynamics is nonsmooth. It is
based on the following assumptions guaranteeing the existence and the consistency
of such a decomposition:

• The definition and the localization of the discrete events. The events may be
defined as the instants when the dynamics is nonsmooth or not sufficiently reg-
ular, and we suppose that the set of such events is negligible with respect to the
Lebesgue measure.

• The definition of time intervals of nonzero length based on the fact that the events
are of finite number and “well separated” in time. Clearly, for a dynamics based
on BV functions, this assumption is not satisfied. If we assume that finite ac-
cumulations of impacts or Zeno-state will not occur, the decomposition can be
obtained. A way to avoid such situations is to change the model slightly.

From the numerical point of view, the event-driven schemes use the decomposition
in time of the dynamics in order to solve the following steps:

• detect and solve the nonsmooth dynamics at events with a reinitialization rule of
the state,

• integrate the smooth dynamics between two events with any ODE or DAE solvers
with root findings.
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The event-driven methods may also be called nonsmooth event-tracking methods,
borrowing from the partial differential equations terminology (LeVeque, 1990). Con-
sider complementarity systems. Then the calculation of the reinitializations and the
detection of the events of the “constraint deactivation” type are monitored by comple-
mentarity problems. This is a fundamental point that implies event-driven methods
for LCS are not enumerative methods. See below for more details.

Time-stepping algorithms: The principle of time-stepping schemes is to write down
a time-discretization of the whole dynamical system (the smooth dynamics, the com-
plementarity conditions) and to form a nonsmooth one-step problem which, once
solved, allows the scheme to advance from step k to step k + 1. Contrary to event-
driven schemes, the detection of the events is considered on the same footing as the
rest of the integration process, i.e., there is no accurate event detection algorithms and
reinitialization at the event. These schemes may be called nonsmooth event-capturing
methods (LeVeque, 1990).

These two methods have been examined on particular cases in Chap. 1 (see Sects.
1.1.6, 1.2.3, and 1.2.4). Event-driven strategies have the following drawbacks. First,
if the number of events is too large, the algorithm cannot efficiently advance in time.
Secondly, the method is very sensitive to the numerical tolerances used for the detec-
tion of the events (the choice of the espilons). Thirdly, it needs a reformulation of the
generalized equations at different kinematic levels. They are well suited for systems
with well-separated events. The advantage is that during periods with no events, the
integration is accurate. The main advantages of time-stepping methods are that they
accommodate with large numbers of events (even accumulations) and are able to
work without accurate detections of the events. A drawback is their low order.

Remark 6.2. To shed more light on the last point raised about event-driven schemes,
let us consider once again the case of an ideal diode. Instead of relying on the tools
described in Sect. 1.1.1, one may simply consider the diode as a pure logical compo-
nent thanks to conditional “if” and “then” statements. The curve of Fig. 1.1b can be
parameterized by a parameter s, and the following script may be defined (Elmqvist
et al., 2001; Mattsson et al., 1999):

off = s < 0

λ = if off then −s else 0

y = if off then 0 else s

Similar representations can be performed with ideal switches, piecewise linear model
of MOS transistors. The main difficulty to view systems with ideal components this
way is that for each new boolean variable like off, two modes of the hybrid dynam-
ical system are possible. If we introduce n-boolean variables, in the worst case, 2n

modes have to be checked. Therefore the problem complexity is exponential and the
problem quickly becomes intractable in practice. The mere writing of the dynamics
becomes so cumbersome that it is not possible. This is directly related to the issue
discussed in Sect. 8.6.1 and switching diagrams: it seems difficult to draw such a
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diagram with 2n nodes when n is larger than say 6. It is then no surprise that the
examples which are usually presented with such an approach are of (very) low di-
mensions. In practice n can be very large (about 100 for relatively simple electrical
circuits like buck converters, to several thousands for mechanical systems with fric-
tional unilateral constraints), rendering the use of CP solvers mandatory.

On the contrary, in the nonsmooth approach the discretized problem at each step
can be reformulated as an LCP of the form{

w = Mz+ q

0 � w⊥ z � 0.
(6.7)

Under some assumptions on the matrix M and on the vector q, numerical algorithms
can be used with polynomial complexity, avoiding an exhaustive enumerative verifi-
cation of each mode at exponential time.

To conclude this comment, from the mathematical point of view, the nons-
mooth framework yields precise definitions of solutions together with uniqueness
and existence results under appropriate assumptions. It is also quite useful for sta-
bility and control analysis (Goeleven & Brogliato, 2004, 2005; Brogliato, 2004;
Camlibel et al., 2002b; Brogliato & Goeleven, 2005; Brogliato et al., 2007). The
point is that it allows one to study some properties by looking at the properties of the
CP, and not by analyzing conditional statements. From the numerical point of view,
the use of specific algorithms (time-stepping schemes, LCP solvers with polynomial
complexity) leads to an efficient simulation environment which takes advantage of
the research works led in mathematical programming, see Chaps. 12 and 13. This is
the object of this part, Part III, and Part IV.
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Event-Driven Schemes for Inclusions
with AC Solutions

In this chapter we deal with differential inclusions which possess absolutely contin-
uous (AC) solutions. Consequently only the derivative of the solutions may possibly
jump. This class of inclusions contains some of the examples examined in the fore-
going chapters.

7.1 Filippov’s Inclusions

7.1.1 Introduction

As we saw in Sect. 2.1, Filippov’s systems are a specific type of differential inclusion
in which the right-hand side is made of (smooth) vector fields that switch when the
trajectory attains some surface S ⊂ IRn. The codimension of the switching surface
and the existence of so-called sliding motions play an important role in the way
the system may be simulated. There are different ways to define a Filippov’s inclu-
sion. One may suppose that S = {x ∈ IRn | c(x) = 0} for some smooth function
c: IRn→ IR. The codimension of S is then 1, and the surface S divides the ambient
space IRn into two parts. Let us define m smooth functions ci : IRn→ IR. A more gen-
eral case is when IRn is divided into several subsets, whose boundaries are surfaces
SA = {x ∈ IRn | ca1(x) = ca2(x) = ... = ca j(x) = 0}, where A = {a1,a2, ..,a j) is a
subset of (1,2, ...,m). Then the codimension of SA is equal to j, the cardinal of A. In
most applications one starts with codimension one switching surfaces, and the inter-
section of these surfaces define codimension � 2 switching submanifolds. One may
also start directly from the definition of disjoint open sets Ri, i = 1, ...,m, which cover
the ambient space with piecewise smooth boundary ∂Ri, and such that f (x) = fi(x)
whenever x ∈ Ri. Then one may suppose that each set Ri = {x | gi(x) < 0} for some
function gi : IRn → IR. The relationship between both descriptions will be clarified
in Sect. 7.1.2.

When the switching surface S = {x ∈ IRn | c(x) = 0} is of codimension one,
Filippov’s notion of a solution says that

ẋ(t) ∈ α f +(x(t))+ (1−α) f−(x(t)) (7.1)
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with α ∈ [0,1], and where the two vector fields are as in (2.14). On one side of S one
has α = 1, and on the other side α = 0. On an attractive surface S the vector field is
a convex combination of both vector fields, tangent to S. Notice that we can rewrite
(7.1) equivalently as

ẋ(t) ∈ 1 + sgn(c(x(t))
2

f +(x(t))+
1− sgn(c(x(t))

2
f−(x(t))

=
1
2

f +(x(t))+
1
2

f−(x(t))+
1
2

sgn(c(x(t)){ f +(x(t))− f−(x(t))}
(7.2)

where we recall that the sign set-valued function is defined as sgn(x) = 1 if x > 0,
sgn(x) = −1 if x < 0, and sgn(x) ∈ [−1,1] if x = 0. Suppose now we are given
two smooth functions c1 : IRn → IR and c2 : IRn → IR that separate the ambient
space into four disjoint open subsets R1 = {x | c1(x) > 0 and c2(x) < 0}, R2 = {x |
c1(x) < 0 and c2(x) < 0}, R3 = {x | c1(x) < 0 and c2(x) > 0}, and R4 = {x | c1(x) >
0 and c2(x) > 0}, with ∪4

i=1Ri ∪4
i=1 ∂Ri = IRn. We denote S = {x ∈ IRn | c1(x) =

c2(x) = 0}. Filippov’s solution satisfies

ẋ(t) ∈
4

∑
i=1

αi fi(x(t)) (7.3)

with ∑4
i=1αi = 1 and αi � 0, i = 1, ..,4. In the interior of Ri one has αi = 1 and

α j = 0, j �= i. Notice that when n = 2 then S has dimension zero, so that the sliding
motion reduces to ẋ(t) = 0 in S. One can rewrite (7.3) as

ẋ(t) ∈ 1 + sgn(c1(x(t))
2

1− sgn(c2(x(t))
2

f1(x(t))

+
1− sgn(c1(x(t))

2
1− sgn(c2(x(t))

2
f2(x(t))

+
1− sgn(c1(x(t))

2
1 + sgn(c2(x(t))

2
f3(x(t))

+
1 + sgn(c1(x(t))

2
1 + sgn(c2(x(t))

2
f4(x(t)) (7.4)

that is

ẋ(t) ∈ 1
4
{ f1(x(t))+ f2(x(t))+ f3(x(t))+ f4(x(t))}

+
1
4

sgn(c1(x(t)){ f1(x(t))− f2(x(t))− f3(x(t))+ f4(x(t))}

+
1
4

sgn(c2(x(t)){− f1(x(t))− f2(x(t))+ f3(x(t))+ f4(x(t))}

+
1
4

sgn(c1(x(t)c2(x(t)){− f1(x(t))+ f2(x(t))− f3(x(t))+ f4(x(t))}.

(7.5)

The passage from (7.4) to (7.5) is done by assuming that the meaning of
sgn(ci(x)) when ci(x) = 0 is that sgn(ci(x)) = λi for some λi ∈ [−1,1]. This permits
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the factorizations in (7.5). One also checks that the sum of the four coefficients in
(7.4) is always equal to 1, and that each coefficient lives in [0,1]. Thus the right-hand
side of (7.4) is the convex hull of the set of vectors { f1(x), f2(x), f3(x), f4(x)}. Notice
that the extension of (7.4) toward more complex cases with more functions ci(·) and
more subsets Ri may not be straightforward.

7.1.2 Stewart’s Method

In this section Stewart’s event-driven algorithm for solving discontinuous ODEs with
high accuracy (Stewart, 1990) is presented. This algorithm relies on a specific way
to describe the switching conditions, and on the construction of an LCP whose so-
lution(s) allows one to compute the set of active switching surfaces. Doing so, the
switching conditions look like the conditions encountered in complementarity sys-
tems. Most importantly, when several solutions exist (if for instance the switching
surface is not attractive like in the inclusion ẋ(t) ∈ sgn(x(t)) and x(0) = 0), then the
LCP gives all the possible solutions. No “guess procedure” is needed to advance the
integration.

7.1.2.1 Basic Assumptions

The starting point of Stewart’s method is that there exists a family of disjoint open
sets Ri, i = 1, ...,m, with IRn = ∪m

i=1Ri, and

f (x) = fi(x) whenever x ∈ Ri

where fi(·), i = 1, ...,m, is a family of smooth functions. It is assumed that the bound-
aries ∂Ri are piecewise smooth. The initial value problem (2.11) is therefore a dis-
continuous ODE that can be embedded into Filippov’s inclusions. Let us define the
active set as

I(x) = {i | x ∈ ∂Ri} ⊂ {1, ...,m}. (7.6)

The inclusion is therefore

ẋ(t) ∈ conv{ fi(x(t)) | i ∈ I(x(t))}. (7.7)

Several basic assumptions are in order.

Assumption 5. The sets Ri are given in terms of discriminant functions hi(·),
i = 1, ...,m, by

Ri = {x ∈ IRn | hi(x) < h j(x) for all j �= i}. (7.8)

Assumption 6. The active-set function t �→ I(x(t)) changes value for only finitely
many t ∈ [t0,t f ], where [t0,t f ] is the interval of integration.

Assumption 7. The functions fi(·), hi(·), ∇hi(·) are Lipschitz continuous for all
i = 1, ..,m.
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Assumption 6 means that trajectories which undergo an infinity of switchings (as for
instance when the trajectories spiral down to asymptotically stable equilibrium point)
are not permitted. One may also understand it as integrating such motions on a finite
time interval only. The interval [t0,t f ] can therefore be divided into a finite number
of subintervals (tr,tr+1) on which the active set I(x(t)) is constant, denoted as Ir.
A solution x(·) that evolves along such a finite partition is called piecewise active.
Let us provide some insight on Assumption 5, that is a very specific way to describe
the sets Ri. Let us consider the two examples in Sect. 7.1.1. In the codimension one
case (7.1) and (7.2) there are two sets R1 and R2 which can be described as

R1 = {x ∈ IRn | −c(x) < c(x)}

R2 = {x ∈ IRn | c(x) <−c(x)}
. (7.9)

One may check that R1 = {x∈ IRn | c(x) > 0} and R2 = {x∈ IRn | c(x) < 0}, and
that h1(x) = −c(x) and h2(x) = c(x). These two sets correspond to what is denoted
Ω+ and Ω− in Sect. 2.1.2. In the case of the system in (7.3) and (7.4), the following
description is possible: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1(x) =−c1(x)− c2(x)

h2(x) = c1(x)− c2(x)

h3(x) = c1(x)+ c2(x)

h4(x) =−c1(x)+ c2(x).

(7.10)

Then one has

R1 = {x | h1(x) < h j(x), j = 2,3,4}= {x | c1(x) > 0 and c2(x) < 0}
R2 = {x | h2(x) < h j(x), j = 1,3,4}= {x | c1(x) < 0 and c2(x) < 0}
R3 = {x | h3(x) < h j(x), j = 1,2,4}= {x | c1(x) < 0 and c2(x) > 0}
R4 = {x | h4(x) < h j(x), j = 1,2,3}= {x | c1(x) > 0 and c2(x) > 0}.

Suppose there are three functions c1(·), c2(·), and c3(·) that divide the ambi-
ent space IRn into three subsets R1 = {x | c1(x) > 0 and c3(x) < 0}, R2 = {x |
c1(x) < 0 and c2(x) > 0}, and R3 = {x | c2(x) < 0 and c3(x) > 0}. Then one may
add five other subsets with nonswitching conditions at their boundaries, and define
eight functions hi(·) and eight subsets Ri in a way similar to (7.10).

Example 7.1. As an example let us consider

ẋ(t)−g(t) ∈ sgn(x(t)), x(0) = 0,t0 = 0 (7.11)

with |g(t)|� 1 for all t. Then R1 = {x∈ IR | x > 0}, f1(x,t) = [g(t)−1,1]T, h1(x,t)=
−x, and R2 = {x | x < 0}, f2(x,t) = [g(t)+ 1,1]T, h2(x,t) = x. This system is not
autonomous, however, considering a new state variable ẏ(t) = 1, y(0) = 0 brings it
into the class of autonomous systems.
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The next result shows that under some hypotheses on the functions hi(·), the
active set I(x) can be computed from equalities, and furthermore some properties of
the sets Ri are in order.

Assumption 8. The functions hi(·), i = 1, ...,m, are such that for each x ∈ IRn the set
{∇hi(x) | i ∈ I(x)} is geometrically independent.

A set of vectors Vk = {v1, ....,vk} is said to be geometrically independent if the
affine plane generated by Vk (that is the set of all linear combinations ∑k

i=1 aivi, with
∑k

i=1 ai = 0) is not generated by any strict subset of Vk.

Lemma 7.2. Suppose Assumptions 5–8 hold. Let J ⊂ {1, ...,m}. The set RJ = {x |
I(x) = J} is a manifold of dimension n + 1− card(J). If J ranges over all subsets of
{1, ...,m} with card(J) � 2, then ∪JRJ has measure zero in IRn.

It will be seen later that Lemma 7.2 imposes in fact some qualification constraints on
the sets Ri, so that a certain LCP will be well-posed.

7.1.2.2 Calculation of the Solution with a Constant Active Set

Let us assume that on the interval (tr,tr+1) the active set Ir(x) is known and constant.
The solution x(·) is absolutely continuous and satisfies

ẋ(t) ∈ conv{ fi(x(t)) | i ∈ Ir} (7.12)

almost everywhere on (tr,tr+1). As we saw above, the existence of ẋ(t) implies that
one can find zl(t) such that

ẋ(t) = ∑
l∈Ir

zl(t) fi(x(t)), ∑
l∈Ir

zl(t) = 1, zl(t) � 0 for all l ∈ Ir. (7.13)

The zl(t) correspond to the αi in (7.3), where the time dependency indicates that
they refer to the derivative at time t. From Assumption 5 one has hi(x(t)) = h j(x(t))
for all i, j ∈ Ir, and all t ∈ (tr,tr+1).

Lemma 7.3. Let μ(t) = ∑l∈Ir ∇hi(x(t)) fl(x(t))zl(t) for all i ∈ Ir. Let mi j(x) =
∇hi(x) f j(x), MIr (x) = [mi j(x) | i, j ∈ Ir], zIr = [z j(t) | j ∈ Ir]. Then the system

⎧⎨
⎩

MIr (x(t))zIr (t) = μ(t)e

zIr (t) � 0, eTzIr(t) = 1
(7.14)

where e = (1 1 1....1)T, either has no solution or its solution is unique for each t.

The proof uses (7.13) and the fact that hi(x(t)) = h j(x(t)) for all i, j ∈ Ir. The next
problem is how to guarantee that the system (7.14) has a unique solution, and how to
calculate it.
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Example 7.4. Let us continue with Example 7.1. For x = 0 and Ir = {1,2} one has

MIr =

⎛
⎝ 1−g(t) −1−g(t)

−1−g(t) 1 + g(t)

⎞
⎠ . (7.15)

Let us add to Assumption 8 the following:

Assumption 9. The set { fi(x) | i ∈ Ir} is geometrically independent. Let V be the
vector space parallel to the affine plane generated by { fi(x) | i ∈ Ir}, and W be
the vector space parallel to the affine plane generated by {∇hi(x) | i ∈ Ir}. Then
V ∩W⊥ = {0}.
Lemma 7.5. Let Assumptions 8 and 9 hold, and MIr (x) be of dimension k× k. Then
the matrix M̃Ir of dimension (k− 1)× (k− 1) whose entries are m̃i j = mi j −mik−
mk j + mkk for i, j < k, is nonsingular.

Example 7.6. In Example 7.4 we get that M̃Ir = (1− g(t))− (−1− g(t))− (−1 +
g(t))+ (1 + g(t)) = 4.

We are now stating a result which shows how to calculate the terms zl(t) for l ∈ Ir,
when the matrix M̃Ir is nonsingular. The notation MIr ,α = MIr +αeeT = [mi j +α |
i, j ∈ Ir] will be used. Also the inequality MIr ,α > 0 means that (MIr ,α)i j > 0 for all
i, j ∈ Ir.

Theorem 7.7. Let Assumptions 5–9 hold, and consider a solution x(·) of the
Filippov’s inclusion, with I(x(t)) = Ir for all t ∈ (tr, tr+1). Then there are unique
functions zl(·) for l ∈ Ir, such that for t ∈ (tr,tr+1):⎧⎨

⎩
ẋ(t) = ∑l∈Ir zl(t) fl(x(t))

∑l∈Ir zl(t) = 1, zl(t) � 0, for all l ∈ Ir

. (7.16)

The functions zIr(·) can be computed as

zIr (t) =
ẑIr (t)

eTẑIr (t)
, where ẑIr (t) = (MIr ,α(x(t)))−1e (7.17)

and α is chosen so that MIr ,α(x(t)) > 0.

We notice that under the stated assumptions (7.16) and (7.17) is a smooth ODE.

Example 7.8. Let us continue Example 7.6. For the calculation of zIr we may take
α = 3, so that

MIr ,α(x,t) = MIr (x,t)+ 3eeT =

⎛
⎝4−g(t) 2−g(t)

2 + g(t) 4 + g(t)

⎞
⎠
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and

ẑIr = (MIr ,α(x,t))−1e =
1
6

(
1 + g(t)
1−g(t)

)

so that

zIr(x,t) =
1
2

(
1 + g(t)
1−g(t)

)
.

One may then compute that

ẋ(t) = z1(x,t)( f1(x,t))1 + z2(x,t)( f2(x,t))1 =−1
2
(1−g2(t))+

1
2
(1−g2(t)) = 0.

Consequently ẋ(t) = x(t) = 0 for t � 0. This shows that the system is in a sliding
mode on the “surface” x = 0.

7.1.2.3 Calculation of the Active Set

In the previous section, it has been shown that given x(tr) and Ir, one can expect to
be able to calculate the solution x(·) on an interval (tr, tr+1). The next problem is to
find Ir+1, given x(tr+1). If this can be done, then the solution can be constructed on
the whole of [t0,t f ] by concatenation, since the solution is assumed to be piecewise
active. The basic assumption now is that both tr+1 and x(tr+1) are known. The active
set Ir+1 will be computed thanks to a suitable LCP.

Theorem 7.9. Let x(·) be a solution of the Filippov’s inclusion on a time interval
[t ′,t ′′] with I(x(t ′)) = I0 and I(x(t)) = I for all t ∈ (t ′, t ′′). Assume that Assumptions
8 and 9 hold for all t ∈ (t ′,t ′′), and that α is chosen so that MI0,α(x(t ′)) > 0. Then
the LCP

0 � w = MI0,α(x(t ′))z− e⊥ z � 0 (7.18)

has a solution (ẑ, ŵ) such that

{i | ẑi > 0} ⊆ I ⊆ {i | ŵi = 0}. (7.19)

Now, let an initial condition x0 ∈ IRn and t ′ be given, and set I0 = I(x0). Choose α
so that MI0,α(x0) > 0. Then if (ẑ, ŵ) is a solution of the LCP in (7.18) such that

{i | ẑi > 0}= I = {i | ŵi = 0} (7.20)

and MI,x0 satisfies the conditions of Lemma 7.5, there is a t ′′> t ′ and a solution of the
Filippov’s inclusion on [t ′,t ′′] such that x(t ′) = x0 and I(x(t)) = I for all t ∈ (t ′, t ′′).

Therefore the central tool of Theorem 7.9 is the LCP in (7.18) that is constructed
from the data of the system at time t ′: x(t ′) and the active set at t ′. Theorem 7.9 says
that provided some conditions on MI0,α are satisfied, there is a solution to the LCP:
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the reason is that the imposed condition implies that the matrix is strictly copositive,
which is a sufficient condition for a LCP to possess a solution (see Theorem B.2). No
uniqueness result is shown, however. The lack of uniqueness reflects that there may
not be a unique evolution for the inclusion, as ẋ(t) ∈ sgn(x(t)), x(0) = 0, shows. The
second part of Theorem 7.9 proves that the active set in the right neighborhood of t ′
can be deduced from an LCP, and if the LCP has several solutions, there may exist
several future active sets. The solution that is assumed to be piecewise active, can
consequently be continued, perhaps in a nonunique way, in the right neighborhood
of t ′. The first part of the theorem shows that the future active set can always be upper
and lower bounded using the active set of a particular solution of the LCP.

Example 7.10. Consider ẋ(t) = sgn(x(t)), and suppose that x(t ′) = 0. Thus I0 =
I(x(t ′)) = {1,2} (the initial state is on the boundaries of both R1 = {x | x > 0}
and R2 = {x | x < 0}) and

MI0(x(t
′)) =

⎛
⎝−1 1

1 −1

⎞
⎠ . (7.21)

Let us set α = 3. The LCP 0 � MI0(x(t
′))z− e⊥ z � 0 has three solutions:

• (i) ẑ = 1
6 [1,1]T, ŵ = [0,0]T, I = {1,2},

• (ii) ẑ = 1
2 [1,0]T, ŵ = [0,1]T , I = {1},

• (iii) ẑ = 1
2 [0,1]T, ŵ = [1,0]T, I = {2}.

These three solutions show that the system may evolve along three different tra-
jectories: stay on the switching surface, enter R1, or enter R2.

7.1.2.4 Determination of the Switching Points and Times

The solution of the inclusion is supposed to be piecewise active, and on an interval
(tr,tr+1) with constant active set Ir, the inclusion is in fact a smooth ODE

ẋ(t) = ∑
i∈Ir

zi(t) fi(x(t)), zIr (x) =
ẑIr (x)

eTẑIr (x)
, ẑIr (x) = (MIr ,α(x))−1e. (7.22)

As an example we may choose once again the inclusion ẋ(t) ∈−sgn(x(t)), x(0) = 3.
On [0,3) one has x(t) = −t and on [3,+∞) one has x(t) = 0. There are events that
indicate a switching point:

• One of the functions zl(t), l ∈ I, crosses 0.
• The function h j(x)−mini∈I hi(x) crosses 0 for some j �= I.
• Spontaneous switching points t∗ like in Example 7.10.

The spontaneous switchings occur only when the LCP(MI,α (x(t ′)),−e) has mul-
tiple solutions. A switching function is introduced:
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ψ(I,x,t) = min[min
i∈I

zi(t),min
j �∈I

h j(x)−min
i∈I

hi(x), t∗ − t]. (7.23)

When ψ(I,x,t) = 0, one has either one zi(t) which crosses 0, or min j �∈I h j(x)−
mini∈I hi(x) which means that the boundary ∂R j of a set R j has been attained (and
this ∂R j was not in the active set I), or there is a spontaneous switching t∗ at t. Fi-
nally since it is not possible to determine exactly 0 on a computer, one introduces an
ε-active set as

Iε(x) = {i | hi(x) < min
j

h j(x)+ ε}. (7.24)

Defining an ε-active set corresponds to the usual boundary layer one is obliged to
define around the switching surface to make the algorithm implementable on a com-
puter. When Iε is used in the algorithm, it is possible that the switching function
ψ(Iε ,x(t), t) takes negative values �−ε . Thus the algorithm may detect a switching
point immediately because of this “uncertainty” that is introduced in the switching
determination. A possible way to deal with this issue is to detect a switching point
only if in addition ψ(Iε ,x(t),t) is decreasing at the zero crossing. This is similar to
detecting an impact in mechanics, not only when the position has attained a certain
value, but also when the normal velocity is negative.

Remark 7.11. It is noteworthy that Iε(x) is used only to detect the event, and not
to integrate the system along the switching surface. This is therefore completely
different from the Sε band of the smoothing method of Sect. 9.3.2. See Sect. 7.1.3
for more explanations.

7.1.2.5 The Algorithm

Roughly speaking the event-driven algorithm uses any ODE solver to integrate dur-
ing the smooth parts of the motion, and any LCP solver when time comes to compute
the solutions of an LCP. Stewart’s method comes into play when a switching point
has to be determined.

Remark 7.12. The difference with some other integration methods is that Stewart’s
algorithm steers the integration process with the active set I(x), and the active set is
reinitialized using the solution(s) of a suitable LCP. This is clearly where its supe-
riority is. It does not regularize the system, it does not try to maintain the solution
on the switching surface by some trick like forcing the discrete solution to lie on S
solving a Newton algorithm at each step.

7.1.2.6 Convergence Results

Let us make two assumptions that will be used in the next theorem.

Assumption 10. The matrix MI(x) = [∇hi(x) f j(x) | i, j ∈ I] satisfies the conditions
of Lemma 7.5 for all x ∈ IRn and I ⊆ I(x) where I �= /0.
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Assumption 11. The matrix MI(x)(x) = [∇hi(x) f j(x) | i, j ∈ I(x)] of dimension k×k
is such that the vector e = (1,1, ..,1)T cannot be expressed as a linear combination of
k−1 columns of the matrix [I−M], where I is here the identity matrix of appropriate
size.

The order of accuracy of the smooth ODE ẋ(t) = g(t,x(t)) solver is denoted as ω(h).
If xh(·) is the numerical solution and x(·) the analytical solution of the ODE then⎧⎨

⎩
||xh(t)− x(t)||∞ � K1(t,g)ω(h)

||ẋh(t)− ẋ(t)||∞ � K2(t,g)ω(h)
(7.25)

for all t if h > 0 is small enough. The next theorem characterizes the convergence
and accuracy of Stewart’s event-driven scheme.

Theorem 7.13. Let Assumptions 10 and 11 hold, and the solution of the Filip-
pov’s inclusion be piecewise active. Suppose also that ε = ε(h), η = η(h), and
ε(h),η(h)→ 0 as h→ 0. Let Stewart’s algorithm generate a sequence of approx-
imations xh(·) on [t0,t f ]. Then a limit exists as h→ 0 and all the limits are solutions
of the Filippov’s inclusion. For h > 0 sufficiently small, there exists suitable choices
of I and t∗ in step 5 of the algorithm, independent of h, such that Stewart’s algorithm
generates numerical approximations xh(·) where

||xh(t)− x(t)||∞ = O(ω(h)) (7.26)

Algorithm 1 Stewart’s event-driven method
Require: t0,T interval of integration
Require: x0 initial data
Require: h > 0 time–step

======== Initialization phase ========
k← 0 index of the time step
t�← ∞
======== loop in time ========
while tk < T do

sk+1← tk+1 +h
yk+1← odesolver(tk ,sk+1,xk, , rhs) with rhs given by ODE (7.16) (7.17)
ψk+1← ψ(I,yk+1,sk+1)

if ψk+1 < 0 and ψk+1 < ψk then
Switching event. Call the switching point location Algorithm 2

else
Accepted step. Update the state.
xk+1← yk+1

tk+1← sk+1

k← k+1
end if

end while
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Algorithm 2 Stewart’s switching point location method
Require: η > 0 tolerance for locating zeros
Require: ε > 0 tolerance for determining Iε
Ensure: t ′ switching time
Ensure: New state tk1

,xk+1, I,ψk+1

Root finding of ψ. Locate an interval

[a,b]⊂ (tk,sk+1), |b−a|� η

such that
∃τ ∈ [a,b] | ψ(I,x(τ),τ) = 0

t′ ← b
tk+1← b
xk+1← x(tk+1) = x(t′)
I0← Iε (xk+1)
Update the index set I thanks to Algorithm 3
ψk+1← ψ(I,yk+1,sk+1)

Algorithm 3 Stewart’s active-set updating procedure
Require: I0
Ensure: I new index set
Ensure: t�

Compute MI0,α (x(t′))
Compute all the solutions (ẑp, ŵp) of LCP(MI0 ,α(x(t′)),−e) in (7.18)
Ip←{i, | ẑp, i > 0} for all p = 1,2. . . .
if p == 1 then

I← Ip
else

I← Ip for a chosen p
end if
if LCP(MI,α (x(t′)),−e) does not have a unique solution then

Choose t� > t′
end if

on [t0, t f ] provided ω(h) = o(ε(h)) and η(h) = O(ω(h)).

Recall that for two functions f (·) and g(·), f = O(g) at x0 means that there exists
β > 0 such that | f (x)| � β |g(x)| in a neighborhood of a point x0. One says that
f = O(g) at x0 if for all δ > 0 there is a neighborhood of x0 such that | f (x)|� δ |g(x)|.

7.1.3 Why Is Stewart’s Method Superior to Trivial Event-Driven Schemes?

Stewart’s method may not be the most intuitive way to simulate Filippov’s sys-
tems. In order to better understand it, let us work on the simple classical example
ẋ(t) ∈−sgn(x(t)), where sgn(·) is the set-valued sign function. Suppose x(0) = 1. A
“naive” event-driven scheme works as follows:
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(1) Choose your favorite method, and integrate until the first step k where xk < 0.
(2) Stop the integration, and refine the event detection (i.e., go backwards, recalcu-

late with a shorter time step, and stop this process when the accuracy is consid-
ered acceptable by yourself).

(3) Take the new value x̄k as a starting value and continue to integrate with your
favorite method.

(4) Redo step (2) when needed.
With such a method, usually the solution of the discrete inclusion will oscil-
late around the sliding surface, because the state will go from one side to the
other side of the switching surface (here x = 0). It is possible to design a wiser
procedure at step (2) to minimize these oscillations. But the method intrinsically
contains the “oscillating process” around the sliding attractive surface. Moreover
the treatment of switching surfaces with high codimension is not easy.

Let us now take a drastically different approach. Instead of driving the switches
with the values of x(·), we are going to drive them with the values of a multiplier. As
long as the algorithm detects that the switching surface is an attractive sliding sur-
face, then the multiplier is kept to a certain value that corresponds to a given mode
(the sliding mode). In such a mode the system is an ODE with an equality constraint,
that is a differential algebraic equation (DAE). The reduced-order system is inte-
grated, either by integrating the reduced dynamics explicitly or with the addition of a
multiplier associated with the constraint. Even if there is some drift from the switch-
ing surface, the system remains in the constrained mode. If the surface becomes a
crossing surface at some point, then the multiplier switches to a new value and the
trajectory leaves the neighborhood of the switching surface.

A beginning of answer has also been given in Sect. 1.2.3. Consider a mechanical
system subject to Coulomb friction. The right way to monitor the switches between
the modes (stick and slip motions) is to look at the contact force orientation: is it
inside the friction cone, or on the boundary of the friction cone? Remind that the
contact force is a Lagrange multiplier. This is quite different from switching the vec-
tor field each time a function of the velocity passes through zero. See also Sect. 9.7
for further arguments.

Numerical results are provided in Stewart (1990). Two time-stepping schemes (a
multistep algorithm and a θ -method which we will describe later in Chap. 9, with
time step h = 0.005) are compared to the event-driven scheme. Simple second-order
examples with sign functions are tested. The solver used on periods of smooth mo-
tion (between the events) is a variable order/variable stepsize multistep method, with
added interpolation between previous and current time, and a zero location algo-
rithm. The LCP solver is based on a method described in Al-Khayyal (1987). The
main conclusions reported in Stewart (1990) are: a much better accuracy (about 104

to 105 smaller errors, i.e., about 4 or 5 orders better), about half to third the number
of functions evaluations. Moreover decreasing the error tolerance slightly affects the
number of functions evaluations, indicating that higher accuracy may be obtained
with little additional effort.
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7.2 ODEs with Discontinuities with a Transversality Condition

7.2.1 Position of the Problem

Let us consider dynamical systems given by the following ODE with one disconti-
nuity on the hyper-surface {x ∈ IRn | g(x,t) = 0},

ẋ(t) = f (t,x(t)) =

⎧⎨
⎩

f−(t,x(t)) if g(t,x(t)) � 0

f +(t,x(t)) if g(t,x(t)) > 0
(7.27)

where f−(·) and f +(·) are locally Lipschitz in x, and g : IR+× IRn→ IR is smooth
(infinitely differentiable). We assume that the right-hand side f has a discontinuity
of order q (see Definition 2.56). If q = 0, the vector field f (·, ·) made of f−(·, ·) and
f +(·, ·) jump at the switching surface and the transversality Assumption 1 has to be
satisfied. If q � 1, it may be continuous but with a discontinuous derivative of order
q � 1.

When q � 1, the standard ODE theory for existence and uniqueness of solutions
applies. Nevertheless, higher order schemes which assume sufficient regularity in the
right-hand side f can have some hard troubles. For instance, the order of accuracy
of the method is not reached or the condition of stability of the method is called
into question. In the case of a discontinuity in f , i.e., an order of discontinuity q = 0,
standard time-integration scheme can be applied only if the transversality assumption
is made. Naturally, the problems that have been evoked for smoother systems are
more topical.

Two strategies are implemented to remedy these problems. In Chap. 9 we will
review time-stepping schemes that apply to such discontinuous systems even with
order q = 0 and without the transversality condition. Here, we will give some insight
on the event-driven that have developed to integrate ODEs with discontinuities.

7.2.2 Event-Driven Schemes

Outline of the Strategy

Without entering into deep details, event-driven strategies for ODEs with disconti-
nuities are based on the standard three-stage method:

1. Perform a time integration of the smooth vector field up to the next nonsmooth
event with any standard ODE solver.

2. Locate with a prescribed accuracy the time of the next nonsmooth event.
3. Reinitialize the system at the time of the event if necessary.

Note that as for general event-driven schemes, the nonsmooth events are supposed to
be well-separated and finitely countable.

Roughly speaking, the only additional difficulty with respect to the time inte-
gration of smooth ODEs is the detection and location of nonsmooth events, if the
discontinuities are described by some g(t,x(t)) functions as in (7.27). The detection
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of a nonsmooth event amounts to checking changes of signs of the function g and
the accurate location of the event amounts to finding zeroes of the function g(x(t), t).
Finding roots of such a function implies that the trajectory is known with a good
accuracy. Otherwise a very accurate root detection is a loss of computational time.
The nonsmooth event is usually detected by a change of sign of g within a time step.
An event is detected if

g(xk+1,tk+1)g(xk,tk) � 0. (7.28)

A second test is performed to be sure that a short-lived change of sign has not been
omitted by checking if

g′(xk+1,tk+1)g′(xk,tk) � 0. (7.29)

If the second test (7.29) is true, the time step is arbitrarily reduced. We will review
in the next paragraph methods to find nonsmooth events.

Accurate Locations of Nonsmooth Events

The following family of methods to accurately locate the nonsmooth events can be
enumerated:

1. Brute-force bisection and Newton’s method. Pritsker & Hunt (1973) used a bi-
section method to accurately locate the event. The integration is repeated with
the step size halved. Cellier & Rufer (1975) avoided the bisection by using New-
ton’s method. When this is either not applicable or failed to converge they use
a secant method. These two approaches are reliable. Although the latter method
is quicker, brute-forces approaches are expensive and many costly evaluations
are still required. In Mannshardt (1978), a simplified Newton procedure is used
where the Jacobian matrix of g is only evaluated on time. Other techniques such
as linear interpolation, “regula falsi”, and “Illinois” method are described in
Moler (1997). As always, the numerical techniques from the discrete/continuous
combined simulation are well suited only for small systems.

2. Inverse interpolation. The idea of the inverse interpolation is to use the pre-
computed values of the approximate solution xk at time tk and to interpolate
them by a polynomial expression of given order in time in function of x. This
method is quite efficient when the root of this polynomial is found inside the
interval of study and the order of the interpolation is consistent with the or-
der of consistency of the time-integration scheme. In Ellison (1981), a third-
order inverse Hermite interpolation is used in conjunction with a third-order
Runge–Kutta method. Usually, the use of external interpolation of the results
has to be avoided in favor of local interpolants (see Item 4.).

3. Augmented ODE systems. Carver (1978) proposed to augment the initial ODE
system (7.27) with the following additional ODE:

⎧⎨
⎩

z′(t) = (g(x(t),t))′ =∇T
x g(x(t),t) f (x(t), t)+

∂g
∂ t

(x(t), t),

z(t0) = g(x(t0),t0).
(7.30)
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The integration of the whole system is performed with any ODE solver with
automatic time-step adjustment. The accurate location of the nonsmooth event
is performed by using the inherent polynomial interpolation given by the
backward differentiation formula (BDF) time-integration method. Originally,
Carver (1978) used the standard Hindmarsh–Gear ODE solver (Gear, 1970;
Hindmarsh, 1974) with the Nordsieck step size control (Nordsieck, 1962). The
polynomial expansion obtained from the approximate gradient of the solution is
solved for finding roots.

4. Local interpolants and error-based detecting. In Gear & Østerby (1984) the lo-
cation is based on monitoring the local error of integration in a multi step method
(implicit Adams with predictor–corrector (PECE)). If the error is very large
within a step, a nonsmooth event is suspected. Assuming a priori that the order
of discontinuity is 0 or 1, the event is located in a smaller interval by reducing the
step size up to a prescribed tolerance. In Enright et al. (1988), local interpolants
of Runge–Kutta methods (Enright et al., 1986) are used to locate the event up
to a prescribed tolerance. Indeed, the local interpolants and their associated de-
fects are sampled, and by means of bisection, the event is located. Note that this
approach does not require the knowledge of g. In Shampine et al. (1991), the
idea of Carver (1978) to add an “event dynamics”as in (7.30) when g is known
is used with Runge–Kutta interpolants as in Enright et al. (1988).

Remark 7.14. The first aim of the methods developed in Mannshardt (1978) (simpli-
fied Newton’s method), in Gear & Østerby (1984) (error monitoring), and in Enright
et al. (1988) (defect and local interpolants) is not really to locate accurately the time
events. They can be used for this purpose but their first goal is to locate some events
inside a time step of a prescribed length. Assuming that the error made by the time
integration is at least of order 0 inside this time step and the number of events is
finite, the authors chose a time-step size, and therefore the accuracy of event location
with respect to the order of consistency of the method. This strategy allows them to
keep the global order of accuracy of the methods. For all these reasons, we have pre-
ferred to detail these methods in Sect. 9.1 that is devoted to time-stepping methods
for ODE with discontinuities.
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Event-Driven Schemes for Lagrangian Systems

The dynamics of nonsmooth Lagrangian systems has been presented in Chap. 3, to
which the reader is referred for details (see also Sect. 2.7). In this chapter, we assume
that the well-posedness assumptions of Sect. 3.7 hold whenever the corresponding
systems are examined. Obviously the specific features described in Chap. 6 may
occur. In this chapter, we will present an event-driven scheme for Lagrangian dy-
namical systems in a very simplified way. Indeed, in full generality, the equations
that govern such systems are quite complicated. Especially, we will assume that the
considered Lagrangian system is only subjected to perfect unilateral constraints with
the Newton impact rules. More details on the frictional case with Poisson impact law
can be found in Pfeiffer & Glocker (1996), Glocker (2001), Abadie (1998, 2000).

8.1 Introduction

Let us briefly recall a fundamental feature of mechanical systems subjected to com-
plementarity conditions that make them clearly depart from the switched and im-
pulsive systems of Sects. 2.9 and 2.10. We suppose that there is a single unilateral
constraint g(q) � 0, and we disregard the impacts. The system is⎧⎨

⎩
M(q(t))q̈(t)+ F(q(t), q̇(t),t) = ∇g(q)λ

0 � λ ⊥ g(q) � 0 .
(8.1)

One may consider that there are two modes: either the system is not in contact
(g(q) > 0) or it is in contact (g(q) = 0). Denoting the time intervals for each mode
as I nc

i and I c
i , respectively, and assuming that the system is well-posed with

IR+ = ∪i�0(I nc
i ∪I c

i ), one obtains (we drop the time argument)

M(q)q̈ + F(q, q̇, t)+∇g(q)(∇gT(q)M−1(q)∇g(q))−1G(q, q̇, t) = 0 for all t ∈I c
i

(8.2)
and

M(q)q̈ + F(q, q̇,t) = 0 for all t ∈I nc
i . (8.3)
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The dynamics in (8.2) comes from solving the LCP: 0� λ ⊥∇gT(q)M−1(q)∇g(q)λ+
G(q, q̇,t) � 0, where G(q, q̇,t) � 0 collects nonlinear terms that come from differ-
entiating twice g(q(t)). From (8.2) and (8.3) one may be tempted to consider that
the Lagrangian system (8.1) is a piecewise smooth or a switched system as those of
Sect. 2.9. Notice, however, that (8.2) and (8.3) have been written under the assumption
that the solutions possess a certain form: this is an a priori assumption on the dynam-
ics, which has to be proved to hold true. Secondly, the problem of determining the
conditions that make the dynamics switch from (8.2) to (8.3) and vice versa no longer
appears in the formalism (8.2) and (8.3). Something is missing. Obviously the inter-
vals I nc

i and I c
i are not exogenous but state dependent. This “something” is nothing

else but the complementarity relations, which monitor the detachment and persistent
contact conditions. One cannot get rid of the multiplier λ when treating mechanical
systems, even if the velocities are assumed to be continuous. Finally the ODE (8.2)
hides the fact that on the intervals I c

i , the constraint is active, i.e., g(q) = 0. The dy-
namics is therefore that of a DAE, and it can be rewritten after a suitable change of
coordinate as a reduced-order ODE with additional algebraic conditions linking the
multiplier to q, q̇, and q̈, see for instance McClamroch & Wang (1988). Complemen-
tarity systems live on lower-dimensional subspaces, that is not the case of switched,
piecewise something, or impulsive systems. Once again ignoring the complementarity
conditions is impossible. This is true for mechanical systems and for LCS. See more
information on this point in Heemels & Brogliato (2003) and Brogliato (2003) and in
Sect. 8.6.1.

Let us end this introduction by embedding (8.1) into an inclusion as in (3.25).
One may rewrite (8.2) and (8.3) as

M(q)q̈ + F(q, q̇,t)+∇g(q)(∇gT(q)M−1(q)∇g(q))−1G(q, q̇, t) = 0

if g(q) = 0 and ∇gT(q)q̇ � 0

or if g(q) = ∇gT(q)q̇ = 0 and ∇gT(q)q̈+ d
dt (∇gT(q))q̇ � 0

(8.4)

and

M(q)q̈+ F(q, q̇,t) = 0 if (g(q),∇gT(q)q̇,∇gT(q)q̈+
d
dt

(∇gT(q))q̇)! 0, (8.5)

where d2

dt2 (g(q(t))) =∇gT(q)q̈+ d
dt (∇gT(q))q̇. Rigorously the quantities in (8.4) and

(8.5) are estimated at their right limits. Doing this assumption, it is possible to use the
results in van der Schaft & Schumacher (1998) to assert that the trajectories of (3.25)
and of (8.4) and (8.5) are the same on intervals with no velocity jumps. The system
then looks like a switched system, though the domain appearing in (8.4) and defined
with a lexicographical inequality, is neither closed nor open. The disadvantage of
(8.4) and (8.5) is that: (1) there is no contact force; (2) if the number of constraints
m is large, the formalism becomes quite cumbersome to write down since there are
2m modes. As a consequence further studies may be rendered extremely difficult
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because the compactness of the inclusion or of the complementarity formalisms is
lost. In particular, we will see in this chapter that solving LCPs is a very convenient
way to integrate the motion with event-driven algorithms.

In conclusion, complementarity conditions cannot be dispensed with, even in
event-driven methods.

8.2 The Smooth Dynamics and the Impact Equations

The Impact Equations

The impact equations (3.123) can be written at the time ti of velocity discontinuities
in the following algebraic way:

M(q(ti))(v+(ti)− v−(ti)) = pi . (8.6)

This equation will be solved at the time of impact together with an impact law. For a
Newton impact law one obtains

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(q(ti))(v+(ti)− v−(ti)) = pi

U+
N (ti) = ∇gT(q(ti))v+(ti)

U−N (ti) = ∇gT(q(ti))v−(ti)

pi = ∇g(q(ti))PN,i

0 � U+
N (ti)+ eU−N (ti)⊥ PN,i � 0 ,

(8.7)

where UN is defined in Sect. 3.3 and g(·) is the gap function. This problem can be
reduced to the local unknowns U+

N (ti) and PN,i if the matrix M(q(ti)) is assumed to
be invertible. One obtains the following LCP at time ti of discontinuities of v(·):

⎧⎪⎨
⎪⎩

U+
N (ti) = ∇gT(q(ti))(M(q(ti)))−1∇g(q(ti))PN,i +U−N (ti)

0 � U+
N (ti)+ eU−N (ti)⊥ PN,i � 0

(8.8)

from which PN,i may be computed.

The Smooth Dynamics

The smooth dynamics which is valid almost everywhere for the Lebesgue measure
dt (dt – a.e.) is governed by (3.124):
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M(q(t))γ+ + Fint(t,q(t),v+(t)) = Fext(t)+ f +(t) (dt− a.e.) , (8.9)

where we assume that f +(·) = f−(·) = f (·)(dt−a.e.). The following smooth system
is then to be solved (dt− a.e.):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M(q(t))γ+(t)+ Fint(t,q(t),v+(t)) = Fext(t)+ f +(t)

f +(t) = ∇g(q(t))F+(t)

0 � g(q(t))⊥ F+(t) � 0 .

(8.10)

In order to solve this system at each time t, i.e., to know the configuration after each
event and to integrate it numerically, it is useful to express the complementarity laws
at different kinematics levels. This is done in the following section.

8.3 Reformulations of the Unilateral Constraints at Different
Kinematics Levels

8.3.1 At the Position Level

Let us consider the complementarity conditions 0 � g(q(t))⊥ F+(t) � 0. From (A.9)
this is equivalently rewritten as the inclusion (dropping the time argument)

−F+ ∈ NK(g(q)) (8.11)

with K = IR+.

8.3.2 At the Velocity Level

The gap function t �→ g(q(t)) can be differentiated with respect to time as follows in
the Lagrangian setting:
⎧⎪⎨
⎪⎩

ġ(q(t+)) = U+
N (t) = ∇gT(q(t))v+(t)

g̈(q(t+)) = U̇+
N (t) = ΓN(t+) = ∇gT(q(t))γ+(t)+ d

dt (∇gT(q(t)))v+(t) .

(8.12)

The complementarity condition 0 � g(q(t)) ⊥ F+(t) � 0 must be written now at
different kinematic levels, i.e., in terms of the right velocity U+

N (·) and in terms of
the right accelerations Γ+

N (·).
Assuming that U+

N (·) is right-continuous by definition of the right limit of a BV
function, the complementarity condition implies, in terms of the velocity, the follow-
ing relation:
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−F+ ∈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if g(q) > 0

0 if g(q) = 0, U+
N > 0

(−∞,0] if g(q) = 0, U+
N = 0 .

(8.13)

A rigorous proof of this assertion can be found in Glocker (2001). This relation is
the representation of the complementarity condition at the velocity level, which can
be written more compactly as

−F+ ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if g(q) > 0

NIR+(U+
N ) if g(q) = 0

(8.14)

and using the notation of the tangent cone, we can write (8.14) as

−F+ ∈ NTIR+(g(q))(U
+
N ) . (8.15)

In a complementarity formalism, this relation can be written as⎧⎨
⎩

If g(q) = 0 then 0 � U+
N ⊥ F+ � 0

If g(q) > 0 then F+ = 0 .
(8.16)

8.3.3 At the Acceleration Level

In the same way, the complementarity condition can be written at the acceleration
level as follows:

−F+ ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if g(q) > 0

0 if g(q) = 0,U+
N > 0

0 if g(q) = 0,U+
N = 0,Γ+

N > 0

(−∞,0] if g(q) = 0,U+
N = 0,Γ+

N = 0 .

(8.17)

A rigorous proof of this assertion can be found in Glocker (2001). As before, the
equation can be written more compactly as

−F+ ∈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if g(q) > 0

0 if g(q) = 0,U+
N > 0

NIR+(Γ+
N ) if g(q) = 0,U+

N = 0 ,

(8.18)
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which is to be compared to (8.14), or with the tangent cone notation, we obtain
Glocker’s inclusion, where time dependency is dropped:

−F+ ∈ NTTIR+(g(q))(U
+
N )(Γ

+
n ) , (8.19)

which is to be compared to (8.15). Finally, in the complementarity formalism we can
write ⎧⎨

⎩
0 � Γ+

N ⊥ F+ � 0 if g(q) = 0 and U+
N = 0

F+ = 0 otherwise .
(8.20)

We can see that the right measurable force F+ is nonnull if the contact is active
(g(q) = 0) and the right velocity vanishes (U+

N = 0). This result seems to be very
reasonable from the mechanical point of view.

Remark 8.1. It is apparent from the foregoing developments that (K = IR+)

NK(g(q))⊃ NTIR+(g(q))(U
+
N )⊃ NTTIR+(g(q))(U

+
N )(Γ

+
n ) . (8.21)

Also one may define further normal cones by continuing the differentiation. This is
what has been done for the higher order sweeping process in Chap. 5. In fact, for a
system with relative degree r, it suffices to consider the cones up to the derivative of
order r−1. For Lagrangian systems, r = 2 and Moreau’s sweeping process considers
the velocity level. This is sufficient to get a complete formulation of the dynamics,
which allows one to integrate the system. This is also sufficient to design a sound
time-stepping scheme.

8.3.4 The Smooth Dynamics

The system (3.124) that we have to solve for the smooth dynamics can be written at
the acceleration level as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(q(t))γ+(t)+ Fint(t,q,v+) = Fext(t)+ f +(t)

ΓN(t+) = ∇gT(q(t))γ+(t)+ d
dt (∇gT(q(t)))v+(t)

f +(t) = ∇g(q(t))F+(t)

−F+(t) ∈ NTTIR+(g(q(t)))(U
+
N (t))(Γn(t+)) .

(8.22)

When the condition, g(q) = 0 and U+
N = 0 is satisfied, we obtain the following LCP:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M(q(t))γ+(t)+ Fint(t,q,v+) = Fext(t)+∇g(q(t))F+(t)

Γ+
N (t) = ∇gT(q)γ+(t)+ d

dt (∇gT(q))v+(t)

0 � Γ+
N (t)⊥ F+(t) � 0 ,

(8.23)
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which can be reduced on variable Γ+
N and F+, if M(q(t)) is invertible, as

Γ+
N = ∇gT(q)M−1(q(t))(−Fint(t,q,v+)+ Fext(t))+ d

dt (∇gT(q))v+

+∇gT(q)M−1(q)∇g(q(t))F+(t)

0 � Γ+
N (t)⊥ F+(t) � 0 .

(8.24)

The LCP in (8.24) has F+(t) as its unknown. When the system evolves in a mode
without any modification of the set of active constraints, then the dynamics possesses
the same degree of smoothness as the external forces (if those forces are smooth,
the solutions are smooth as well). The LCP in (8.24) is then used to determine the
right limit of the contact force. If this right limit is positive, contact is kept (i.e., the
active set does not change on the right of t). If it is zero, the active set may change.
Detachment is checked with the sign of the right acceleration whose expression is
in (8.24). Obviously it is supposed in (8.24) that the constraints g(q) are active, i.e.,
g(q) = 0, and in addition that U+

N = 0.

8.4 The Case of a Single Contact

Let us suppose that an approximation of the right state and of the associated local
variables are known at tk, i.e.,

(qk,vk,γk)≈ (q(tk),v+(tk),γ+(tk)) (8.25)

(gk,UN,k,ΓN,k)≈ (g(tk),U+
N (tk),Γ+

N (tk)) (8.26)

Two smooth dynamics may be integrated between tk and tk+1:

1. The constraint is not active. If the constraint is not active, the following system
is integrated with F+ = 0:

M(q(t))γ+(t)+ Fint(t,q,v) = Fext(t) . (8.27)

In this case, we associate to this step an integer, statusk = 0.
2. The constraint is active. The smooth system (8.23) is numerically integrated with

the bilateral constraint Γ+
N = 0, i.e.,⎡

⎣ M(q(t)) −∇g(q(t))

∇g(q(t)) 0

⎤
⎦
⎡
⎣ γ+(t)

F+(t)

⎤
⎦ =

⎡
⎣−Fint(t,q(t),v(t+))+ Fext(t)

d
dt (∇gT(q(t)))v+(t)

⎤
⎦ .

(8.28)
In this case, we associate to this step an integer, statusk = 1.

At the end of the time step, the following procedure with the decision tree may be
applied:

• Case 1: statusk = 0. Integrate the system (8.27) on the time interval [tk,tk+1]:
– Case 1.1: gk+1 > 0

The constraint is still not active. We set statusk+1 = 0.
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– Case 1.2: gk+1 = 0,UN,k+1 < 0
In this case an impact occurs. The value UN,k+1 < 0 is considered as the pre-
impact velocity U−N and the impact equation (8.8) is solved. After, we set
UN,k+1 = U+

N . Two cases are then possible:
· Case 1.2.1: U+

N > 0
Just after the impact, the relative velocity is positive. The constraint
ceases to be active and we set statusk+1 = 0.

· Case 1.2.2: U+
N = 0

The relative post-impact velocity vanishes. In this case, in order to de-
termine the new status, we solve the LCP (8.24). Three cases are then
possible:
· Case 1.2.2.1: ΓN,k+1 > 0,Fk+1 = 0

The constraint is still not active. We set statusk+1 = 0.
· Case 1.2.2.2: ΓN,k+1 = 0,Fk+1 > 0

The constraint has to be activated. We set statusk+1 = 1.
· Case 1.2.2.3: ΓN,k+1 = 0,Fk+1 = 0

This case is undetermined. We need to know the value of Γ̇+
N =

limε→0,ε>0
Γ+

N (t+ε)−Γ+
N (t)

ε .
– Case 1.3: gk+1 = 0,UN,k+1 = 0

In this case, we have a grazing constraint. To know what the status should
be for the future time, we compute the value of ΓN,k+1,Fk+1 thanks to the
LCP (8.24) assuming that U+

N = U−N = UN,k+1. Three cases are then possible:
· Case 1.3.1: ΓN,k+1 > 0,Fk+1 = 0

The constraint is still not active. We set statusk+1 = 0.
· Case 1.3.2: ΓN,k+1 = 0,Fk+1 > 0

The constraint has to be activated. We set statusk+1 = 1.
· Case 1.3.3: ΓN,k+1 = 0,Fk+1 = 0

This case is undetermined. We need to know the value of Γ̇+
N in solving

an LCP of higher order.
– Case 1.4: gk+1 = 0,UN,k+1 > 0

The activation of the constraint has not been detected. We seek for the first
time t∗ such that g = 0. We set tk+1 = t∗. Then we perform all of this procedure
keeping statusk = 0.

– Case 1.5: gk+1 < 0
The activation of the constraint has not been detected. We seek for the first
time t∗ such that g = 0. We set tk+1 = t∗. Then we perform all of this procedure
keeping statusk = 0.

• Case 2: statusk = 1 Integrate the system (8.28) on the time interval [tk, tk+1]
– Case 2.1: gk+1 �= 0 or UN,k+1 = 0

Something is wrong in the time integration or the drift from the constraints is
too large.

– Case 2.2: gk+1 = 0,UN,k+1 = 0
In this case, we assume that U+

N = U−N = UN,k+1 and we compute ΓN,k+1,Fk+1

thanks to the LCP (8.24). Three cases are then possible:
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· Case 2.2.1: ΓN,k+1 = 0,Fk+1 > 0
The constraint is still active. We set statusk+1 = 1.

· Case 2.2.2: ΓN,k+1 > 0,Fk+1 = 0
The bilateral constraint is no longer valid. We seek for the time t∗ such
that F+ = 0. We set tk+1 = t∗ and we perform the integration up to this
instant. We perform all of this procedure at this new time tk+1.

· Case 2.2.3: ΓN,k+1 = 0,Fk+1 = 0
This case is undetermined. We need to know the value of Γ̇+

N .

The complementarity conditions of Case 1.3.3 are constructed as follows:

−Ḟ+ ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if g(q) > 0

0 if g(q) = 0,U+
N > 0

0 if g(q) = 0,U+
N = 0,Γ+

N > 0

0 if g(q) = 0,U+
N = 0,Γ+

N = 0, Γ̇+
N > 0

(−∞,0] if g(q) = 0,U+
N = 0,Γ+

N = 0, Γ̇+
N = 0 ,

(8.29)

which may be written more compactly as the inclusion

−Ḟ+ ∈ NT
TTIR+(g(q))(U

+
N )(Γ

+
N )(Γ̇

+
N ).

One may then differentiate the dynamics so as to get an equality similar to (8.24),
for Γ̇+

N . The LCP is obtained from 0 � Γ̇+
N ⊥ Ḟ+ � 0. It is clear that this relies on

the assumption that the data are sufficiently regular, so that the differentiation can
be performed. Both inclusions are written under the assumption of Case 1.3.3 that
says F+ = 0 at the considered instant. They are consequently closely related to the
lexicographical complementarity conditions as introduced in (8.5).

8.4.1 Comments

In practical situations, all the tests are made up to an accuracy threshold. All state-
ments of the type g(q) = 0 are replaced by |g(q)| < ε . The role played by these
epsilons can be very important and they are quite difficult to size.

If the ODE solver is able to perform the root finding of the function g(q) = 0 for
statusk = 0 and F+ = 0 for statusk = 1 within the integration algorithm, the cases 1.4,
1.5 and 2.2.2 can be suppressed in the decision tree. If the drift from the constraints
is controlled into the ODE solver by an error computation, the case 2.1 can also be
suppressed. With these assumptions, it is possible to rearrange the decision tree in
Algorithm 4 below.
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Algorithm 4 Event -driven procedure on a single time-step with one contact

Require: tk,gk,UN,k,statusk, values at the beginning of the time step
Ensure: tk+1,gk+1,UN,k+1,statusk+1, values at the end of the time step

//======= Computation of the provisional values of (gk+1,UN,k+1)
if statusk = 0 then

(gk+1,UN,k+1)← time–integration of (8.27) up to an event
end if
if statusk = 1 then

(gk+1,UN,k+1)← time–integration of (8.28) up to an event
end if

//======= Reinitialization and update of the index sets
// The constraint is still not active. (case 1.1)
if gk+1 > 0 then

statusk+1← 0
end if
// The constraint is active gk+1 = 0 and an impact occur UN,k+1 < 0 (case 1.2)
if gk+1 = 0,UN,k+1 < 0 then

U−N ← UN,k+1

Solve the LCP (8.8)
UN,k+1← U+

N

if UN,k+1 > 0 then
statusk+1← 0

end if
end if
// The constraint is active gk+1 = 0 without impact (case 1.2.2, case 1.3, case 2.2)
if gk+1 = 0,UN,k+1 = 0 then

solve the LCP (8.24)
if ΓN,k+1 = 0,Fk+1 > 0 then

statusk+1← 1
else if ΓN,k+1 > 0,Fk+1 = 0 then

statusk+1← 0
else if ΓN,k+1 = 0,Fk+1 = 0 then

//Undetermined case.
end if

end if

Remark 8.2. When gk+1 = 0 and UN,k+1 = 0, the LCP at the acceleration level (8.24)
is solved. In the one-contact case, it is possible through a naive approach to choose to
deactivate the constraint just by analyzing the result of the integration of the smooth
system with a bilateral constraint after the event. If Fk+1 < 0, the constraint may be
suppressed and the contact ceases to be active. The procedure, which is simpler than
the LCP solving, is no longer valid in the multi-contact case. Indeed, some famous
examples such as the Delassus example (Pérès, 1953) or the two blocks example
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(Pfeiffer & Glocker, 1996) show that the contacts that have to be suppressed are
not necessarily the contacts for which the force is negative after a bilateral integra-
tion. We will come later on another interest of the LCP when the constraints are not
linearly dependent and when we want to simplify the algorithm 4.

8.5 The Multi-contact Case and the Index Sets

8.5.1 Index Sets

Index sets have already been introduced in Sect. 7.1.2 when we dealt with Stewart’s
event-driven method for Filippov’s systems. Here the goal is the same: determine
which constraints are active in order to construct the LCP in (8.24). In the multi-
contact case, i.e., the case with ν > 1 constraints, Algorithm 4 is extended by the
introduction of the following index sets. The index set I is the set of all unilateral
constraints in the system:

I = {1, . . . ,ν} ⊂ IN . (8.30)

The index set Ic is the set of all active constraints of the system,

Ic = {α ∈ I | gα = 0} ⊆ I , (8.31)

and the index set Is is the set of all active constraints of the system with a relative
velocity equal to zero,

Is = {α ∈ Ic | Uα
N = 0} ⊆ Ic . (8.32)

We can notice that thanks to these index sets the conditional statements in Algo-
rithm 4 can be generalized to the multi-contact case. In the same manner we can
make the impact equation (8.8) and the smooth dynamics (8.23) precise by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(q(ti))(v+(ti)− v−(ti)) = pi

U+
N (ti) = ∇gT(q(ti))v+(ti)

U−N (ti) = ∇gT(q(ti))v−(ti)

pi = ∇g(q(ti))PN,i

Pα
N,i = 0;Uα ,+

N (ti) = Uα ,−
N (ti), ∀α ∈ I \ Ic

0 � U+,α
N (ti)+ eU−,α

N (ti)⊥ Pα
N,i � 0, ∀α ∈ Ic .

(8.33)

Using the fact that Pα
N,i = 0 for all α ∈ I \ Ic, this problem can be reduced on the local

unknowns U+
N (ti),PN,i for all α ∈ Ic. For the smooth dynamics (8.23), we suppose

that Ic \ Is = /0. We obtain
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(q(t))γ+(t)+ Fint(t,q(t),v(t+)) = Fext(t)+∇g(q(t))F+(t)

Γ+
N (t) = ∇gT(q(t))γ+(t)+ d

dt (∇gT (q(t)))v+(t)

F+,α(t) = 0, ∀α ∈ I \ Is

0 � Γ+,α
N (t)⊥ F+,α(t) � 0, ∀α ∈ Is .

(8.34)

Finally, we rewrite the bilateral smooth dynamics as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(q(t))γ+(t)+ Fint(t,q(t),v(t+)) = Fext(t)+∇g(q(t))F+(t)

Γ+
N (t) = ∇gT(q(t))γ+(t)+ d

dt (∇gT(q(t)))v+(t)

F+,α(t) = 0, ∀α ∈ I \ Is

Γ+,α
N (t) = 0, ∀α ∈ Is .

(8.35)

This bilateral dynamics is integrated up to an event given by the root finding of the
following function: ⎧⎪⎨

⎪⎩
gα(t) = 0, ∀α ∈ I \ Is

F+,α(t) = 0, ∀α ∈ Is .

(8.36)

Algorithm 5 is then an extension of the single-contact case.

8.6 Comments and Extensions

8.6.1 Event-Driven Algorithms and Switching Diagrams

A switching diagram consists of nodes that represent various modes of the dynam-
ics and arrows linking the nodes that represent the conditions of switching between
the nodes. Strictly speaking it is possible to rewrite Algorithms 4 and 5 with such
diagrams. The main issue is that the number of nodes may quickly become quite
large: a mechanical system with 30 frictionless unilateral contacts has 230 modes. It
is impossible to draw a diagram with such a number of nodes! However, the LCP
that corresponds to this mechanical system has 30 unknowns and is therefore of size
30: it is easy to solve numerically. In other words, the switching diagram is the enu-
merative way of solving the LCP. Usually, switching diagrams are used when the
trajectory that is to be simulated is a priori known, so that the number of nodes and
arrows becomes low (see, e.g., the simulation of the woodpecker toy in Soellner &
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Algorithm 5 Event -driven procedure on a single time-step with several contacts
Require: tk,gk,UN,k, Ic,k, Is,k values at the beginning of the time step
Ensure: tk+1,gk+1,UN,k+1, Ic,k+1, Is,k+1 values at the end of the time step

//======= Computation of the provisional values of
// (gk+1,UN,k+1) and Ic,k+1, Is,k+1

(gk+1,UN,k+1)← time–integration of (8.35) according to Ic,k and Is,k up to an event
Update the index sets Ic,k+1 and Is,k+1

//======= Reinitialization and update of the index sets
// Impacts occur.
if Ic,k+1 � Is,k+1 �= /0 then

Solve the LCP (8.33).
Update the index-set Ic,k+1 and provisional Is,k+1

Check that Ic,k+1 � Is,k+1 = /0
end if
if Is,k+1 �= /0 then

Solve the LCP (8.34)
for α ∈ Is,k+1 do

if ΓN,α ,k+1 > 0,Fα ,k+1 = 0 then
remove α from Is,k+1 and Ic,k+1

else if ΓN,α ,k+1 = 0,Fα ,k+1 = 0 then
Undetermined case.

end if
end for

end if
// Go to the next time step

Führer 1998, Sect. 6.3.5). Clearly such an assumption is not reasonable in most situ-
ations and one may say that switching diagrams are of little use for the simulation of
nonsmooth multibody systems, and more generally for complementarity dynamical
systems.

8.6.2 Coulomb’s Friction and Enhanced Set-Valued Force Laws

The case of the Coulomb’s friction can theoretically be treated in the same way. Two
index sets Ir and It are added. The set Ir is the set of sticking or rolling contacts:

Ir = {α ∈ Is | Uα
N = 0,‖UT‖= 0} ⊆ Is , (8.37)

and
It = {α ∈ Is | Uα

N = 0,‖UT‖> 0} ⊆ Is (8.38)

is the set of slipping or sliding contact. Together with these new index sets, new
events have to be checked corresponding to transitions from sticking to slipping
and vice versa. Checking the transitions is not an easy task especially in the
three-dimensional case. For more enhanced set-valued forces laws, we refer to
Glocker (2001).



232 8 Event-Driven Schemes for Lagrangian Systems

8.6.3 Bilateral or Unilateral Dynamics?

Between two events, the smooth dynamics with bilateral constraints (8.28) is solved.
The main reason for this choice is that we assumed that the problem with bilateral
constraints is easier and cheaper to integrate. This is not always the case. Another
way is to continue to integrate the unilateral dynamics (8.34) assuming that this
dynamics is smooth between two events and smooth if the event at the end of the
interval is a constraint deactivation.

There are two main reasons to do like this:

1. The first reason is the detection of the events of the type: F+,α = 0 or “F+,α

vanishing”. This type of events necessitates to stop the integration, solve the
LCP (8.34) to see if a detachment will occur. If the integration is done directly
with this LCP, an event of the type: Γ+,α

N > 0 guarantees that the detachment
occurs. If we assume that the dynamics is smooth after a detachment, an event
of the type: gα(q(t + ε)) > 0, ε > 0 can be triggered. In the other case, we can
continue to integrate the system without any modifications in the index sets.

2. The second reason is that the forces F+ = 0 are in usual cases not uniquely
defined. On the contrary, the accelerations are defined in a unique way (see the
theorem due to J.J. Moreau in Brogliato, 1999, theorem 5.4). The main reason
is that the constraints are not linearly independent in most practical situations.
If we integrate the dynamics with bilateral constraints, we need to use pseudo-
inverses to obtain the acceleration or to compress the bilateral constraints. These
operations are expensive from the numerical point of view. The LCP solvers
that are used to solve (8.34) are in most cases able to find the acceleration in a
unique way even if the constraints are not linearly independent. This point will
be detailed in the following chapter.
Finally, in the bilateral case, it is possible to detect F+,α = 0 while there is no
detachment due the indeterminacy of the contact forces. This fact is related to
the Delassus example. If the unilateral dynamics is solved, we seek for an event
Γ+,α

N > 0 or gα > 0. This problem is suppressed.

8.6.4 Event-Driven Schemes: Lötstedt’s Algorithm

Event-driven algorithms have been proposed in Tzitzouris & Pang (2002), Fetecau
et al. (2003), and Lötstedt (1984). Though they are sometimes presented as time-
stepping schemes, they may in fact be classified as event-driven schemes, because
they involve some impact time and state detection procedures. As a consequence the
order may be strictly larger than 1 (for instance an order 2 is reported in Fetecau
et al., 2003), which is impossible in time-stepping methods where no specific algo-
rithm is implemented to accurately detect the impact times and states. Increasing the
order when detection procedures are implemented is not surprising in view of the re-
sults of Sect. 8.6.5. One may also find interesting applications in Pfeiffer et al. (2006)
like roller coasters and drop tower hydraulics, where comparisons between experi-
mental results and numerical results are shown.
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Let us describe the scheme of Lötstedt (1984), which may historically be the
first attempt to construct a dedicated event-driven scheme for complementarity
Lagrangian systems with and without friction. Though Lötstdedt’s algorithm may
be of little interest now due to the many works and improvements that have been
performed since its publication, it keeps an historical value and deserves some place
in such a monograph.

The Frictionless Case

Let us consider first the frictionless case. The following numerical scheme is pro-
posed to compute the state at step k:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qk = 1
α1

0
b1

k

vk = 1
α2

0
[hβ 2

0 M−1(Qk +∇gkλk)+ b2
k]

0 � ∇gT
k vk ⊥ λk � 0 ,

(8.39)

where ⎧⎨
⎩

b1
k = h∑r

i=0β 1
i vk−i−∑r

i=1α1
i qk−i

b2
k = h∑r

i=1β 2
i M−1(Qk−i +∇gk−iλk−i)−∑r

i=1α2
i vk−i .

(8.40)

The complementarity relations in (8.39) correspond to the active constraints at step
k. They encompass the persistent contact as well as plastic impacts phases. The
formulas in (8.39) and (8.40) correspond to two linear r-step methods. The no-
tation fk stands for f (qk). The coefficients α1

i and β 1
i are determined from an

Adams–Bashforth family of explicit formulas, see, e.g., page 250 in Garcia de
Jalon & Bayo (1994), denoted as AB-r. The coefficients β 2

0 = 1 and β 2
i = 0 for

all i = 1,2, ...,r. The second equation in (8.39) is a backward difference formula,
denoted BDF-r. Notice that the mass matrix M is assumed to be constant (hence the
Coriolis and centrifugal torques are zero), which restricts the application to simple
mechanical systems with Euclidean configuration space (like collections of parti-
cles). It is, however, argued that this is just a matter of convenience to allow for an
easy factorization of M, and that the extension towards M(q) is possible. The torque
Qk = Q(qk,vk, tk) therefore contains gravity, viscous friction, and external actions
(like control inputs). The integration step is chosen constant, equal to h > 0. When
Q = Q(t,q), it is shown in Lötstedt (1984) that an LCP whose unknown is λk can be
formulated from (8.39). This LCP can be rephrased as a quadratic program:

min
λk�0

1
2
λT

k ∇gT
k M−1∇gkλk + h−1∇gT

k [b2
k + hM−1Qk] . (8.41)

Consequently, the set of equations in (8.39) allows one to advance the solution in
time from k− 1 to k. The methods AB-1 (forward Euler)-BDF-1 and AB-2-BDF-2
are chosen, where it is recalled that it is useless to use methods of order > 3 (linear
multistep A-stable methods have an accuracy of order < 2, i.e., at most O(h2), see
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Garcia de Jalon & Bayo, 1994, pp. 250–251). After discontinuities in vk or v̇k (which
are detected from the value of the impulse on one step with a threshold under which
it is considered to be zero), the AB-1-BDF-1 algorithm is used during two steps to
restart the simulation (it is known that multistep methods are not self-starting and
require the help of a single-step algorithm initially).

When Q = Q(q,v,t), then the LCP formulation is lost. However, Lötstedt proves
that provided the matrix

A(v) = M− h

α2
0

∂Q
∂v

(q,v, t) (8.42)

is full rank and ∇gT
k A−1∇gk is positive definite,1 then (8.39) still possesses a unique

solution so that the algorithm can be used to safely advance the solution in time.
However, this time λk is generally the solution of a NCP (a quick look at the second
equation in (8.39) allows one to realize this). The condition in (8.42) can be used
with the implicit function theorem to express vk = fk(λk) for some function fk(·).
The second condition is used to prove the existence of a solution to the NCP. A way
to solve the NCP is proposed, based on functional iteration. In summary, Lötstedt
algorithm is given as follows:

• Compute qk using AB-1 or AB-2, with h such that the local error in qk is smaller
than hε for a prescribed tolerance ε (ways to estimate such a h are provided).

• Calculate ∇gk to a prescribed accuracy and calculate v̇k = M−1(Qk +∇gk) and
vk by BDF-1 or BDF-2.

• Test whether velocities and accelerations are discontinuous between tk−1 and tk,
due to either an impact (detected from a nonzero value of the impulse) or the
activation of a new constraint (gα(tk−1) > 0 and gα(tk) � 0 for some α) or the
deactivation of a constraint. The time of such jumps is calculated by inverse linear
interpolation. After a shock a new velocity vk+1 is computed by a collision rule.
Then restart the algorithm at the first step with AB-1 and the new set of active
constraints.

• Test the detachment conditions by checking whether one entry of the vector λk

passes through zero, and whether the corresponding entry in the normal velocity
∇gT

k vk is positive. Then refresh the set of inactive constraints if needed.
• End.

Remark 8.3. Lötstedt also shows that the LCP(λk) can be reformulated as the mini-
mization problem

min ||
r

∑
i=0

α2
i vk−i−hM−1Qk||M, ∇gT

k vk � 0 . (8.43)

Dissipativity of (8.39)–(8.41) plus the impact rule and convergence of the algorithm
are not proved.

1 This is a kind of iteration matrix.
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Constraints with 2D Friction

The same algorithms AB-1-BDF-1 or AB-2-BDF-2 are used as in the frictionless
case. When 2D friction is incorporated in the algorithm, one has to add the tangen-
tial contribution of the contact force in the right-hand side of the second equation
in (8.39). The contact force is split into two parts as: [G(q) + H(q,v)]λ . Roughly
G(q)λ contains the normal generalized force and the contribution of the sticking
contacts, whereas H(q,v)λ accounts for the sliding contacts. The vector λ contains
the normal multipliers λn, j and the tangential ones λt, j for the jth contact. There are
two features in the algorithm. The first one is the approximation of λk, the second
one is the calculation of the impulses at the shock instants. Let us denote the jth
component of λ by λ j and its kth iteration by λ j

k . Then the approximated value is

λ̄ j
k = λ j

k−1 + hk
λ j

k−1−λ
j

k−2
hk−1

, for a variable step of integration hk. A QP is constructed

that allows the computation of the term G(q)λ . It possesses the advantage of assuring
that the tangential force is opposite the tangential acceleration. But it has the strong
drawback that sliding generally implies the QP matrix to be nonsymmetric, rendering
the problem harder to solve. It is clear that the introduction of λ̄ j

k in the dynamical
equations modifies the subsequent calculations in a nonphysical manner right after
the first step and should be avoided. Special procedures are also used after a shock
and a discontinuity in the acceleration. The error introduced in vk by the use of λ̄ j

k in
a permanent contact phase are shown to be O(h3) when hk = h > 0, a constant. They
are O(h) after a reinitialization of the velocity or of the acceleration.

The second point (calculation of the impulse at a shock instant) is formulated
as follows. Taking frictional effects at impacts into account, let us denote the right-
hand side of the impact algebraic equation as Pj = G(q(t j)Λ j, where Λ j is a vector of
normal and tangential percussions and t j is an impact time. Then Lötstedt proposes
to calculate the impulse from the QP:

min 1
2 [v(t+j )− v(t−j )]TM[v(t+j )− v(t−j )]

W Tv = GTv(t+j ), v � 0, vTWΛ j = ΛT
j GTv(t+j ) = 0

W =

⎛
⎝ I 0

fimpI −I
fimpI I

⎞
⎠

, (8.44)

where I is the identity matrix with dimension equal to the number of active con-
straints and fimp can be considered as an impulse ratio (Brach, 1990). The main
problem with the calculation in (8.44) is that although it looks like a plastic impact
rule, it is not: there may be rebounds. In addition, if there is a tangential velocity
reversal during the shock (i.e., the post and pre-impact tangential velocities have
opposite signs), then there may be a kinetic energy gain at the shock instant.

Remark 8.4. The algorithm in Tzitzouris & Pang (2002) is close in spirit to Lötstedt
scheme (time-stepping with accurate detection of contacting times). It uses a trape-
zoidal discretization of the continuous frictionless dynamics (implicit one-step
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scheme, solved by a Newton method with an initial guess from a Euler discretiza-
tion) and an adaptive step size procedure. Several simple examples show that h may
decrease to very small values as 10−12 s during the simulation. Lemke algorithm is
used to solve the contact force LCP and the impact percussion LCP.

8.6.5 Consistency and Order of Event-Driven Algorithms

8.6.5.1 Some Classical Definitions and Results

Let us first recall several basic definitions that apply to a numerical method of the
form

xk+1 = xk + hkφ(tk,xk,hk) for all k � 0, t0 = 0, tk+1 = tk + hk . (8.45)

Definition 8.5. The numerical method in (8.45) is said to be consistent for the ODE
ẋ(t) = f (x(t),t), x(0) = x0, if for any solution of this ODE the consistency error

N−1

∑
k=0

||x(tk+1)− x(tk)−hkφ(tk,x(tk),hk)|| (8.46)

tends to 0 when h = max0�k�N hk tends to 0.

Definition 8.6. The numerical method in (8.45) is said to be stable if there exists a
constant M, not depending on hk, such that for all sequences {xk}0�k�N, {zk}0�k�N,
and {εk}0�k�N verifying⎧⎨

⎩
xk+1 = xk + hkφ(tk,xk,hk)

zk+1 = zk + hkφ(tk,zk,hk)+ εk ,
(8.47)

one has

max
0�k�N

||zk− xk||� M

(
||x0− z0||+ ∑

k<N

||εk||
)

. (8.48)

Definition 8.7. The numerical method in (8.45) is said to be convergent if

lim
h→0

max
0�k�N

||x(tk)− xk||= 0 . (8.49)

Theorem 8.8. If the numerical method in (8.45) is consistent and stable, then it is
convergent.

The next result concerns one-step methods.

Definition 8.9. The numerical method in (8.45) is said to be of order p > 0 if there
exists a constant K, depending only on x(·) and φ(·), such that

N−1

∑
k=0

||x(tk+1)− x(tk)−hkφ(tk,x(tk),hk)||� K hp (8.50)

for any solution x(·) of the ODE ẋ(t) = f (x(t),t), x(0) = x0 such that x(·) ∈
Cp+1([0,T ], IRn).
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Then the following result holds:

Theorem 8.10. If the numerical method in (8.45) is stable and of order p, and of
f (·, ·) ∈Cp([0,T ]× IR, IRn), one has

||x(tk)− xk||� MK hp, ∀ k � N . (8.51)

8.6.5.2 Application to the Event-Driven Methods

The next results are taken from Janin & Lamarque (2001). They concern a one
degree-of-freedom mechanical system of the form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẍ(t)+ 2aẋ(t)+ω2
1 x(t) = f (t)+λ

0 � λ ⊥−x(t)+ xmax � 0

ẋ(t+) =−eẋ(t−) if x(t) = xmax and ẋ(t−) < 0

(8.52)

with f (·) ∈L 1
loc(IR

+), e ∈ [0,1]. Notice that Definition 8.9 and Theorem 8.10 ap-
ply to systems with a certain degree of smoothness. However, as shown in Janin &
Lamarque (2001) they can be adapted to the case of piecewise Cp+1([0,T ], IRn) solu-
tions and piecewise Cp([0,T ]× IR, IRn) vector fields. Before stating the consistency
and order results of the event-driven methods, it is necessary to say few words on
the way the impact times are approximated, because this is going to have a strong
influence on the overall scheme order.

Definition 8.11. Let an impact be detected at step k + 1, i.e., xk < xmax and xk+1 >
xmax. Let us apply a linear interpolation of the solution that maps tk to xk and tk+1 to
xk+1 and infer which time is mapped to xmax. This is called the (IM1) approximation.

Assume that the scheme provides an estimate vk of the derivative (the velocity) at
step k.

Definition 8.12. Let us apply a second-order interpolation of the solution that maps
tk to xk and tk+1 to xk+1 and whose derivative at tk is vk and infer which time is
mapped to xmax. This is called the (IM2) approximation.

Definition 8.13. Let us apply a dichotomy procedure between tk and tk+1 to the ap-
proximation xs(t) of the displacement provided by the scheme applied on [tk, t], until
reaching a time t∗ ∈ (tk,tk+1) such that xs(t∗) is close to xmax. The iterative procedure
is stopped when the difference between two consecutive times falls under a chosen
precision, that is set to h4 for the Runge–Kutta RK24 method. This is called the (IM3)
approximation.



238 8 Event-Driven Schemes for Lagrangian Systems

One drawback of the (IM3) method is that the computer precision may rapidly be
reached when h is decreased. We then have the next results that couple the order
of the method between events and the precision of the approximation of the impact
times, for the system (8.52).

Once an approximation t∗ of the impact time has been calculated, one proceeds
as follows:

• Integrate the trajectory on [tk,t∗) with the chosen method,2 to get an approxima-
tion of the pre-impact velocity v−∗ .

• Calculate the post-impact velocity v+∗ =−ev−∗ .
• Integrate the trajectory from (xmax,v+∗ ) on (t∗,tk+1] with the chosen method, to

obtain (xk+1,vk+1).

It is possible that another impact has occurred on (t∗,tk+1]. Then one may choose to
apply another detection procedure on this interval. We shall then make a difference
between event-driven methods with at most one impact detection per time step and
those with multiple impact detection per time step.

In such event-driven schemes it is mandatory to also implement a sticking mode
detection (which we called a bilateral constraint in the foregoing sections). One tests
whether xk+1 > xmax. If it does, then it is considered that the system is in a sticking
mode at tk+1 and one sets xk+1 to xmax and vk+1 to 0. If sticking is occurring at tk, then
one only checks the sign of the acceleration to determine the subsequent motion. If
the acceleration is negative, it is apparent from (8.52) that sticking persists. If the
acceleration is positive, then two cases have to be considered. If there is one impact
detection per step, then the above procedure on impact detection may be applied to
compute the value (xk+1,vk+1). If one uses a multiple impact detection procedure per
step, then the algorithm approximates impact times between tk and tk+1 in order to
approximate the time t̄ when sticking ends. This time satisfies f (t̄) = ω2

1 xmax. Then
integrate on [t̄, tk+1] with the chosen method.

Remark 8.14. It becomes clear that an event-driven method is not simple to imple-
ment. Several different procedures have to be implemented together. The sticking
mode detection that is described here seems to work because the considered system
is simple. In more complex cases this may become impossible. Other event detec-
tion procedures exist, see, e.g., Turner (2001) for a noniterative procedure based on a
time-scale of the continuous dynamics, where the new time-variable is the inequality
constraint entering the model. The woodpecker problem is tested with a Runge–Kutta
fixed-step method. It is shown that N = 2000 integration steps are needed to detect
all the events on a period of 1 s (i.e., when N > 2000, the number of detected events
no longer increases).

The Case of Finite Number of Impacts

Let us consider that there is at most one impact detection at each time step. The
next theorem concerns trajectories with a finite number of impacts on the interval of
integration [0,T ].

2 Adapting the time step.



8.6 Comments and Extensions 239

Theorem 8.15. (Event-driven with finite number of impacts)

(i) [Order 2] Let us consider a one-step convergent numerical method, at least of
order 2 for any sufficiently smooth ODE, to which we associate the approxima-
tion method (IM1), in order to obtain an approximation of the solution of the
oscillator in (8.52), with f (·) differentiable and with a bounded derivative on
IR+. Then the resulting event-driven scheme is consistent and of order 2.

(ii) [Order 3] Let us consider a one-step convergent numerical method, at least of
order 3 for any sufficiently smooth ODE, to which we associate the approxima-
tion method (IM2), in order to obtain an approximation of the solution of the
oscillator in (8.52), with f (·) twice differentiable and with a bounded second
derivative on IR+. Then the resulting event-driven scheme is consistent and of
order 3.

(iii) [Order 4] Let us consider a one-step convergent numerical method, at least of
order 4 for any sufficiently smooth ODE, to which we associate the approxi-
mation method (IM3), in order to obtain an approximation of the solution of the
oscillator in (8.52), with f (·) three-times differentiable and with a bounded third
derivative on IR+. Then the resulting event-driven scheme is consistent and of
order 4.

Since it is a common feature of mechanical systems to possess accumulations of
impacts (and possibly also of stick-slip transitions when Coulomb friction is present),
Theorem 8.15 is restricted to so-called vibro-impact systems, whose solutions are
piecewise continuous with separated velocity jumps. In Janin & Lamarque (2001) an
extension is proposed that is presented next.

The Case with One Accumulation of Impacts

Now we consider systems which may have an accumulation of impacts on [0,T ],
followed by a sticking mode. Still only methods with at most one impact detection
at each time step are considered.

Proposition 8.16. Let us consider a convergent one-step method of order p � 2 for
any smooth ODE, to which we associate (IM1). Suppose that f (·) is differentiable
with locally Lipschitz derivative. Let us also assume that the trajectory of the sys-
tem in (8.52) has one accumulation of impacts on [0,T ]. Let h = T

N , (xN
k ,vN

k ) be the
approximation of the solution (x(·), ẋ(·)) given by the numerical method at tk, and
εk = (ε1

k ,ε2
k ) the consistency error between tk and tk+1 defined by ε1

k = |x(tk)− xk|
and ε2

k = |ẋ(tk)− vk|. Then we have

(i) If there is no impact on (tk,tk+1), then ε1
k � c1h3 and ε2

k � c2h3,
(ii) if there is at least one impact on (tk,tk+1), then ε1

k � c3h2 and ε2
k � c4h,

(iii) if tk lies in a sticking phase, then ε1
k � c5h3 and ε2

k � c6h2,
where ci, 1 � i � 6 are constants.

Remark 8.17. The foregoing order and consistency results can be extended to event-
driven schemes with a multiple impact localization per step. This, however, does not
increase the orders.
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Numerical Experiments

The theoretical results have been confirmed by numerical tests in Janin &
Lamarque (2001). Three methods are used in the tests: a Newmark, a Runge–Kutta
RK24, and a Dormand–Price Runge–Kutta DOPRI5. The system is excited by a pe-
riodic function f (·) and two sets of parameters are chosen so that one system has
periodic trajectories with separated impacts and the other one has trajectories with
one accumulation of impacts.

• When the Newmark method is used, the order of the event-driven scheme is
insensitive to the localization method (IM1), (IM2), or (IM3). For relatively high
values of h, the velocity is no longer accurately approximated. For trajectories
with finite number of impacts, the order is 2. For systems with one accumulation
of impacts, the order is 1 for the velocity and 2 for the displacement.

• For the RK24 method, the estimated order of the event-driven scheme is 1 with
(IM1), 2 with (IM2), and 3 with (IM3), as predicted by the theoretical results.
For trajectories with one impact accumulation, the impact approximation method
does not affect the order of the event-driven scheme. An accurate impact time
approximation is not useful as the order is always 2 for the displacement and
1 for the velocity. It is also noticed that the accurate detection of times when
sticking ends is interesting only when RK24 is used with (IM2) or (IM3).

• Applying a multiple impact localization procedure with Newmark’s method does
not improve the performance of the event-driven scheme. It is thus useless to try
to detect as many impacts as possible in this case.

• On the contrary, multiple impact localizations improve the event-driven schemes
with the RK24 method. Applying iteratively (IM2) yields an order 3 for velocity
and displacement. Applying iteratively (IM3) yields an order 4 for velocity and
displacement.

• The DOPRI5 method has order 5 when applied to smooth systems. When coupled
with an iterative (IM3) multiple impact localization procedure at each step, it
provides an event-driven scheme of order 4 in displacement and velocity.

The computational times are reported in Janin & Lamarque (2001). It follows that
the RK24 method with (IM2), iterative (IM2), and (IM3), and the DOPRI5 method
with the iterative (IM3) are the fastest numerical schemes for the considered system.

8.7 Linear Complementarity Systems

Though this chapter is dedicated to mechanical systems, let us make an aside to
LCSs. Let us consider an LCS as in (2.95) or (4.3). It follows from the material
of Chap. 5 that without any restriction on the relative degree between λ and y, the
solutions may be distributions. Nevertheless, let one assume that

• The solutions are regular in the sense of Definition 5.8, with σ � σmin > 0 for
some σmin. In other words the solutions are piecewise analytic.
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• If needed, a jump rule has been defined so that the system is well-posed (the
HOSP formalism of Chap. 5 provides such a rule, see also (4.9)–(4.11) and
Heemels et al., 2000 for other jump rules).

Then an event-driven algorithm can be implemented in a way similar to the above
event-driven schemes for mechanical systems. In particular it is necessary to monitor
the index sets for active and inactive constraints.

8.8 Some Results

Event-driven strategies have been applied successfully in various application cases.
They usually concern systems with few degrees of freedom, but several unilateral
contacts with friction. The simulation of circuit breakers for virtual prototyp-
ing is described in Abadie (2000). Many applications may be found in Pfeiffer
& Glocker (1996) and Leine et al. (2003): hammering in gears, gear rattling in
gearboxes, ship-turning gear, turbine blade damper, friction clutch vibrations, the
woodpecker toy, drilling machines, landing gear dynamics, assembly processes, a
tumbling toy. The influence of Painlevé paradoxes on the dynamics and the bifurca-
tions is analyzed in Leine et al. (2002).
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Time-Stepping Schemes for Systems with AC Solutions

9.1 ODEs with Discontinuities

In this section, some specific features of the numerical time integration of ODEs with
discontinuities introduced in Sect. 2.8 are reviewed. If the order of discontinuity
q is equal to 0, i.e., the right-hand side of the ODE f possesses a jump, then the
transversality Assumption 1 has to be made to guarantee the existence of standard
solution to the ODE. If q � 1, standard assumptions such as Lipschitz continuity of
the right-hand side ensures the application of the standard theory of ODEs.

As we saw in Chap. 1 and in the discussion in Sect. 7.2, any standard one-step
and multistep methods can be applied to approximate such ODE systems with dis-
continuities. Nevertheless, some care has to be taken about the efficiency, the local
order of consistency, the global order of accuracy, and stability results. In this section,
we will first illustrate these points on some numerical experiments on the nonsmooth
circuits introduced in Chap. 1. In a second stage, we will give some of the remedies
that can be applied to retrieve the order of accuracy of higher order Runge–Kutta
method.

For a thorough description of one-step and multi-step ODE solvers which are
termed by their acronyms (RK32, DOPR154, ...), we refer to the following mono-
graphs (Hairer et al., 1993; Hairer & Wanner, 1996). Precise definitions of standard
notions for ODE solvers such as convergence, order of convergence, order of consis-
tency can also be found in the above cited references. They will not be recalled.

9.1.1 Numerical Illustrations of Expected Troubles

Order of Convergence

In Calvo et al. (2003), the authors observe that when the differential equation is
sufficiently smooth the local error estimate for a Runge–Kutta method behaves as a
certain positive power O(hp) while in the presence of a discontinuity of order q < p,
the local error estimates behave as O(h(q+1)). Similar remarks can be found in Hairer
et al. (1993). In Gear & Østerby (1984), the authors remark that the control of the
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step size usually based on the a priori knowledge of the order of consistency of the
method can fail and lead to a large amount of unsuccessful steps.

To the best of the authors’ knowledge, there is neither a proof of such results nor
a proof of the order of a Runge–Kutta method of order p for a differential equation
with discontinuities of order q < p. A proof of convergence of one-step and multi-
step methods exists for a class of differential inclusions with absolutely continuous
solutions whose derivatives may jump (see Sect. 9.2). They can be applied to this
case for a discontinuity of order 0. The order result of Theorem 9.16 is also given
and states that the methods are of global order 1, but a crucial point is that the set of
instants when the derivative of the absolutely continuous solution has jumps has to
be a finite set.

Mannshardt (1978) proposed the first serious work on the global order of accu-
racy of one-step methods for ODEs with discontinuous right-hand side and transver-
sality conditions. He notes that “Almost every Runge–Kutta method remains con-
vergent after a transition but only with order 1 (the order of consistency decreases
to 0 during a transition)”. We will present in the next section how he succeeded to
overcome this difficulty.

To complete this paragraph, we present some numerical illustrations of the de-
fects in the order of convergence when some discontinuities are present in the right-
hand side. Let us consider the circuits (a) and (b) depicted in Fig. 1.3. The ODE
systems satisfied by the circuit equations are, respectively,

(a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t)− 1
RC

x1(t)− λ (t)
R

ẋ2(t) =− 1
LC

x1(t)− λ (t)
L

0 � λ (t)⊥ w(t) =
λ (t)

R
+

1
RC

x1(t)− x2(t) � 0,

(9.1)

(b)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) =−x2(t)+λ (t)

ẋ2(t) =
1

LC
x1(t)

0 � λ (t)⊥ w(t) =
1
C

x1(t)+ Rλ (t) � 0.

(9.2)

Let us recall that the equations of the circuit (a) and (b) yield ODEs with a continu-
ous right-hand side, i.e., the order of discontinuity is at least q � 1.

In Fig. 9.1, the global error is plotted with respect to the time step. The simulation
which is performed is the time integration on t ∈ [0,5] of the circuit (a) with the
initial conditions x1(0) = 1,x2(0) =−1, and the data R = 10,L = 1,C = 1

(2π)2 . In this
case, the diode is assumed to be always on. The results are given for four methods:
explicit Euler, embedded pairs of Runge–Kutta RK32, RKF45, and DOPRI54 (see
Hairer et al., 1993, for details). We can observe that the order of each method is easily
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Fig. 9.1. Order of convergence without discontinuities of standard ODE solvers

identified. Thanks to the accuracy of the DOPRI54 method, the machine precision
attained is double for a time step equal to 0.0005. In Fig. 9.2, the same numerical
experiments are carried out but with the ideal diode model. We can easily see that
the orders of convergence of the methods are destroyed.

The main conclusion that we can draw is that it is not suitable for higher order
integration schemes for ODE with discontinuities.

Stability Results

From the stability point of view, the standard results on the stability domain for the
explicit Runge–Kutta schemes are also put into question when some discontinuities
are present in the right-hand side. We propose a numerical illustration of this trou-
ble on the simulation of the circuit (a) with R = 10,000. The exact solution with
x1(0) = 1,x2(0) =−1, and L = 1,C = 1

(2π)2 is depicted in Fig. 9.3. In Fig. 9.4, some

simulation results with a time step h = 1×10−4 are plotted for three schemes: explicit
Euler, RK32, DOPRI54. Clearly in Fig. 9.4a and b, some instabilities appear just af-
ter the switch and never disappear. In Fig. 9.4c, the instability disappears quickly for
this time step h = 1×10−4. In Fig. 9.5, the integration with the Runge–Kutta scheme
DOPRI54 and h = 5×10−3 yields serious instability troubles. Note that each mode
can be simulated with coarser time-steps inside the stability domain. The switch and
the nonsmoothness of the solution destroys the stability property of the schemes.
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Fig. 9.2. Order of convergence with discontinuities of standard ODE solvers
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Fig. 9.3. Exact solution for the circuit (a) with the initial conditions x1(0) = 1,x2(0) = −1,
and R = 10,00,L = 1,C = 1

(2π)2 . Time step h = 5×10−3

9.1.2 Consistent Time-Stepping Methods

In general, discontinuities of order q have the effect of decreasing the order of the
method, even when higher order methods are used (see Sect. 9.1.1, see also Sect.
9.2.3 where time-stepping multistep and Runge–Kutta schemes are presented).

It is consequently of interest to study higher order time-stepping schemes. This
may be realized with specific time-stepping strategies in which a discontinuity de-
tection process with low computational cost is used to control the time step and
therefore the error of convergence. As we said at the end of Chap. 7, the use of a
detection procedure has not to be misunderstood. The goal of the procedure is not
to accurately locate the event but to ensure that the integration error on a time step
where events are located is sufficiently small. This is the reason why we choose to
present these methods as time-stepping strategies. One of the other discrepancies
with standard event-driven approaches presented in Sect. 7.2 is as follows: the time-
stepping methods presented in this section are proved to be convergent and the order
of convergence is theoretically shown.

This type of time-stepping methods originated with the work of
Mannshardt (1978) in the context of one-step methods and has been extended
and improved in Gear & Østerby (1984) and Enright et al. (1988) and finally in
Calvo et al. (2003). Let us start with the pioneering work of Mannshardt (1978).

Sketch of Mannshardt’s Method

Let us start with the pioneering work of Mannshardt (1978). As in Sect. 7.2, let us
consider dynamical systems given by the following ODE with one discontinuity on
the hyper-surface {x,t | g(x,t) = 0},

ẋ(t) = f (x,t) =
{

f−(t,x(t)) if g(t,x(t)) � 0 (9.3a)

f +(t,x(t)) if g(t,x(t)) > 0, (9.3b)
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(a) Explicit Euler scheme

-7

-6

-5

-4

-3

-2

-1

 0

 1

 0  1  2  3  4  5

x1(t)x2(t)

Time t

St
at

e
x(

t)

(b) RK32 scheme
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(c) DOPRI54 scheme

Fig. 9.4. Stability and instability of explicit Runge–Kutta schemes. Simulation of the circuit
(a) time step h = 1×10−4
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Fig. 9.5. Instability of explicit Runge–Kutta scheme DOPRI54. Simulation of the circuit (a)
time step h = 5×10−3

where f−(·) and f +(·) are locally Lipschitz in x and g : IR+× IRn → IR is smooth
(infinitely differentiable). We assume that the right-hand side f has a discontinuity
of order q (see Definition 2.56) and that the transversality Assumption 1 holds.

Let us recall some definitions and notations for the one-step time-integration
methods already introduced in Sect. 8.6.5.1. A one-step method with an increment
function φ(·) can be defined as follows on the time-step [tk,tk+1]:{

xk+1 = xk + hkφ(tk,xk,hk)
tk+1 = tk + hk

(9.4)

or more generally {
χ(t) = xk +(t− tk)φ(tk,xk,t− tk)
tk+1 = tk + hk, xk+1 = χ(tk+1).

(9.5)

The principle of the method developed in Mannshardt (1978) is as follows:

1. Let φ− be the increment function which integrates (9.3a) with an order p (of
consistency and convergence). The provisional value x−k+1 at tk+1 = tk + hk is
given by

x−k+1 = χ−(tk+1) (9.6)

with
χ−(t) = xk +(t− tk)φ−(tk,xk,t− tk). (9.7)

2. If an event is located in [tk,tk+1], compute an approximation t̃ of the time of event
t� such that

t̃ = t� + O(hp+1). (9.8)

This step is performed by a simplified Newton method.
3. Use the following approximation of the part of the time step:

x̃ = χ−(t̃). (9.9)
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4. Let φ+ be the increment function (which may be identical with φ− ) which
integrates (9.3b) with an order p (of consistency and convergence). The value
x(tk+1) can be given at the end of the time step by

xk+1 = ψ+(tk+1) (9.10)

with
ψ+(t) = x̃+(t− t̃)φ+(t̃, x̃,t− t̃). (9.11)

The total increment function for the time step reads as

φ(tk,xk,hk) = σφ−(tk,xk,σhk)+ (1−σ)φ+(t̃, x̃,(1−σ)hk) (9.12)

with σ =
t̃− tk

hk
. The key result is that the order of consistency of this total increment

function is p if the increment functions φ− and φ+ are of order p and the condi-
tion 9.8 holds. Furthermore, asymptotic developments of the local truncation error
are given which allow one to control the time-step size.

Some remarks can be made on this method:

• It is implicitly assumed that there is only one event in the time step. Indeed with
the transversality condition (Assumption 1), the number of events is assumed to
be finite in a finite time interval. So we can choose a sufficiently small time step
such that there is only one event per step.

• We argue that the result on the order of convergence should continue to hold if
there is an arbitrarily large number of events inside a time step provided that they
are contained in an interval [t̃1, t̃1] such that t̃2− t̃1 = O(hp+1). This is one of the
reasons why we class such a method as a time-stepping method. Furthermore,
the method could be improved by using a first-order method on this time step.

Improvements and Extensions

Gear & Østerby (1984) proposed a similar approach but without the knowledge of the
switching function g(·) in the context of multistep Adams methods with predictor–
corrector steps (PECE). In a first stage, the discontinuity is detected by examining the
behavior of the step size control procedure. This detection is based on the following
ad hoc test:

• The new step h′k that is predicted by the code after a rejected step hk implies a

reduction factor less than 1
2 , i.e., h′k � hk

2 ,
• or in the last three steps the code had at least two rejections.

Once the discontinuity is detected, it is located and the order of discontinuity is
determined by sampling (bisection) the right-hand side and performing time inte-
gration on halved time steps. This reduction of the time step is made up to obtain a
sufficiently small time step to pass through the discontinuity with the method with
the right order of convergence and an acceptable local error estimate.
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Similar to the Mannshardt method, the event is not necessarily located accurately
and we can expect that multiple events can be taken into account in a single time step.

In Enright et al. (1988), the thorough study of the interpolants for the Runge–
Kutta formulas (Enright et al., 1986) is used to locate the discontinuity and to evalu-
ate its order. As in Gear & Østerby (1984), the knowledge of the switching function
is not required. The interpolants can be used through a switching function to find
events. They are directly studied together with the defects of interpolation to deter-
mine the amplitude, the order of the discontinuity. The time-step size and the order of
consistency of the Runge–Kutta method is then adapted to pass in a suitable manner
the discontinuity.

In Calvo et al. (2003), the aim is to construct a low-cost technique that uses the
function evaluations computed on [tk−1,tk] and [tk−2,tk−1], which allows one to either
confirm or disregard the suspected discontinuity. The presence of a discontinuity is
detected thanks to a simple test. A suitable function q(hk) is constructed such that
either q(hk) is small if the switching surface has not been crossed or q(hk) is very
large if the switching surface has been crossed. The function q(hk) is the quotient of
two linear functions of the Runge–Kutta scheme DOPRI54 evaluations f1, f2,..., f7

(computed on the last successful step), and f8, f9 computed at the current failed step.
An accurate description on how these linear functions are computed would bring us
too far. Let us insist on the fact that the procedure automatically detects the presence
of a discontinuity within the integration interval, using only quantities computed by
the Runge–Kutta code.

The vector field f (t,x) is evaluated at a particular point (t,u) with t ∈ (tk, tk +chk)
and u ≈ x(t; tk−1,xk−1). It is assumed that a discontinuity has been detected within
(tk,tk + chk). The algorithm is constructed with a pair of linear forms that use only
the vector field at the stages f (tk−1 +cihk,Yi), i = 1, ...,s of the accepted step and the
evaluation f (t,u). The quotient ν(hk) of these forms behaves differently depending
on the discontinuity being to the left or to the right of t. It is 1+O(hk) on the left and
O(h− j

k ), j � 1, on the right. The discontinuity test consists of checking ν(hk) � K for
some K (to be suitably determined). If yes, then the discontinuity is considered to be
to the right of t. If the user wants a precise location of the discontinuity, a bisection
technique (advancing the step to tk +c hk

2 ) is applied that consists of taking n iterations

such that chk
2n+1 is smaller than the tolerated error. Similar to the previous process, this

process uses only quantities that are computed by the Runge–Kutta adaptive scheme.
It is not an interpolation procedure as the ones in Definitions 8.11–8.13.

The final step of this scheme is a procedure for crossing the discontinuity and
restarting the algorithm. Numerical experiments show that the new adaptive Runge–
Kutta scheme supersedes the classical one, with much smaller errors (factors 10−1

to 10−5 are obtained) and less calculations.

9.2 DIs with Absolutely Continuous Solutions

In this section, time-stepping algorithms for the differential inclusions of Sect. 2.1 are
presented. These DIs all possess solutions (possibly nonunique) which are absolutely
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continuous. Therefore their derivatives may possess discontinuities. The explicit Eu-
ler scheme, the θ -method, multistep, and Runge–Kutta algorithms are examined.
Roughly speaking, the results which are reported for DIs which possess several so-
lutions state that the discretization process provides one with the approximation of
some solution of the continuous-time DI. On the other hand any solution of the DI
may be approximated by a solution of the discrete-time inclusion (but it may not be
obvious to find it in practice).

9.2.1 Explicit Euler Algorithm

The first approach which is reviewed here is the explicit Euler algorithm that takes
the form

xk+1− xk ∈ h F(tk,xk) (9.13)

in which h = T
N > 0 is the time step, 0 = t0 < t1 < t2 < · · ·< tN = T is the interval of

integration, N ∈ IN, and the solution is approximated by a piecewise linear function
xN : [0,T ]→ IRn, xN(t)= xk + 1

h (t−tk)(xk+1−xk), for tk � t < tk+1, k = 0,1, ...,N−1.
Notice that the inclusion in (9.13) may be rewritten as

{
xk+1− xk = h ζk

ζk ∈ F(tk,xk).
(9.14)

One has to choose at each step an element ζk inside the set F(tk,xk). This is called
a selection procedure. The type of result that one may obtain is closely linked to the
properties of the right-hand side, from which upperbounds may be calculated. Notice
that if the set F(tk,xk) is a cone, then the Euler scheme is simply xk+1−xk ∈F(tk,xk):
the value of the time step is irrelevant in such a case.

9.2.1.1 Lipschitzian Right-Hand Sides

The first result concerns Lipschitzian DIs with bounded values and is taken from
Smirnov (1991).

Theorem 9.1. Let F : IRn→ IRn be a set-valued map with closed convex values sat-
isfying F(x) ⊂ bBn, where b > 0. Suppose that F(·) is Lipschitz continuous with a
constant l > 0. Then

(i) For any solution x(·) of the DI: ẋ(t) ∈ F(x(t)), x(0) = x0, there exists so-
lutions of (9.13), with the initial data xN

0 = x(0), such that the functions wN(t) =
1
h (xN(tk+1)− xN(tk)), t ∈ [kh,(k + 1)h), 0 � k � N − 1, converge to ẋ(·) in the
L 2([0,T ]; IRn) norm.

(ii) For any solution xN(·) of the discrete-time inclusion (9.13) with the initial
data xN

0 = x(0), there exists a solution x(·) of the DI: ẋ(t) ∈ F(x(t)), x(0) = x0,
that satisfies ||x(t)− y(t)|| � hb exp(lT ) and ||ẋ(t)−w(t)|| � hlb (exp(lT ) + 1),
t ∈ [0,T ], where w(t) = 1

h(xk+1− xk), t ∈ [kh,(k + 1)h), 0 � k � N− 1, and y(t) =
x0 +

∫ t
0 w(s)ds.
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One sees that y(·) = xN(·) in (ii). There is no uniqueness of solutions in Lemma 2.8.
It is therefore expected that the approximated solutions do not converge or are not
close to the solution of the continuous-time DI, but only to one existing (absolutely
continuous) solution. The first part of Theorem 9.1 shows that whatever the solution
of the DI may be, the discrete-time inclusion may always produce an approximation
of this solution. The second part shows that given an approximated solution, one can
always find a corresponding function of time that is close to it, and that is a solution
of the DI. Result (ii) shows that the scheme has order 1. The proof of Theorem 9.1
(ii) strongly relies on Theorem 2.9. A similar result, also based on Theorem 2.9, is
as follows:

Theorem 9.2. Let F(·, ·) be continuous, Lipschitz continuous in x on bounded sets
of IRn, with compact and convex values F(t,x) for all x ∈ IRn and each t ∈ [0,T ].
Let also a linear growth condition ||ζ || � c(1 + ||x||) for all ζ ∈ F(t,x), x ∈ IRn,
t ∈ [0,T ]. Then for every ε > 0, there exists N∗ such that for every N > N∗ and for
every solution xN(·) of the discrete inclusion with initial data xN(0) = x0, there exists
a solution x(·) of the DI: ẋ(t) ∈ F(t,x(t)), x(0) = x0, such that

max
t∈[0,T ]

||xN(t)− x(t)||� ε. (9.15)

If in addition F(·) has IRn as its domain of definition and is Lipschitz continuous in
the set {z ∈ IRn | ||z− x(t)||� ε, for some t ∈ [0,T ]}, then there exists N∗ such that
for every N > N∗

max
0�k�N

||xN(tk)− x(tk)||� ch (9.16)

for some constant c.

This was proved in Pshenichny (1980).

Example 9.3. Consider ẋ(t) ∈ [−2+ sin(x(t)),2+ sin(x(t))]. The set-valued function
F(·) is Lipschitz continuous with constant l = 1. Indeed [−2 + sin(x),2 + sin(x)] ⊂
[−2 + sin(y)− |x− y],2 + sin(y) + |x− y|], since sin(x)− sin(y) > −|x− y| and
sin(x)− sin(y) < |x− y|. It is also bounded as F(x) ⊂ [−4,4] for all x ∈ IR. The
sets F(x) are closed and convex (but the graph of the multifunction is not convex).
Therefore one may apply Theorem 9.1 to the discrete inclusion xk+1 ∈ xk + h[−2 +
sin(xk),2 + sin(xk)].

Let us now state a result that concerns specific DIs of the class (2.5):

ẋ(t) ∈ A(t)x(t)+ B(t)U, x(0) = x0 ∈ X0, (9.17)

where A(·) and B(·) are n× n and n× p matrices, differentiable functions with
Lipschitz-continuous derivatives, and both U ∈ IRp and X0 ∈ IRn are convex com-
pact sets. Such DIs may arise in some optimal control problems. The proposed time-
discretization of (9.17) is
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xk+1 ∈ Ah,kxk + Bh,kU, X0,h = X0

Ah,k = In + h
2 (A(tk)+ A(tk+1))+ h2

2 A2(tk+1)

Bh,k = h
2 (B(tk)+ B(tk+1))+ h2

2 A(tk+1)B(tk+1)

(9.18)

for 0 � k � N − 1, and a piecewise linear function xN(·) is constructed from this
discretization. Let us define the reachable set of the DI in (9.17), starting from the
set X0, as

R(X0;T ) = {x(T ) | x : [0,T ]→ IRn, absolutely continuous, x(·) satisfies

(9.17) almost everywhere on [0,T ], x(0) ∈ X0}.
(9.19)

The next result is taken from Veliov (1992).

Theorem 9.4. Under the stated assumptions, the approximated solution xN(·) of the
inclusion in (9.18) satisfies

dH(xN(tN),R(X0;T )) � c h2 (9.20)

for some constant c.

There is therefore an order 2 of convergence; however, the convergence does not
concern the solutions of the DI, but the reachable set.

These results that apply to DIs with a Lipschitz right-hand side, say that if the
time-step h > is taken sufficiently small, then every solution of the discrete inclusion
has in its neighborhood a solution of the continuous-time DI. One may conclude that
Euler schemes approximate such DIs correctly. This, however, does not mean that
one will always be content with such an algorithm.

9.2.1.2 Upper Semi-continuous Right-Hand Sides

The next theorem may be found in many works under various forms and can be traced
back to Filippov (1988). Let Xh denote the set of solutions of the discrete inclusion
(9.13), with xN(0) = x(0) = x0.

Theorem 9.5. Let the set-valued map F(·, ·) take nonempty, convex, compact values
and satisfy a linear growth condition ||ζ ||� c(1+ ||x||) for all ζ ∈ F(t,x) and some
constant c, x ∈ IRn, t ∈ [0,T ]. Then every sequence {xN(·)}N∈IN with xN(·) ∈ Xh for
N ∈ IN has a subsequence which converges uniformly in [0,T ] to some solution of
the DI: ẋ(t) ∈ F(t,x(t)), x(0) = x0, as N→+∞.

Let X denote the set of solutions of the continuous-time DI. The convergence of
Theorem 9.5 means that the set { f (·) ∈C0([0,T ]; IRn) | liminfh→0 dH( f ,Xh) = 0} is
a subset of X . Obviously if the DI has a unique solution, the subsequence converges
to it. Recall from Proposition 2.11 that the conditions of Theorem 9.5 guarantee the
outer semi-continuity. In practice Theorem 9.5 may not provide sufficient results;
see, e.g., Sect. 9.7 for comments on explicit schemes.
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9.2.1.3 One-Sided Lipschitz-Continuous Right-Hand Sides

As we have seen in Sect. 2.1.3, the OSLC of the right-hand side guarantees nice prop-
erties of the solutions. For instance the UOSLC condition guarantees the uniqueness
of solutions (Lemma 2.1.3). The next result, taken from Lempio (1992), is about the
order of the Euler method. Let us consider the perturbed Euler method

⎧⎨
⎩

xk+1− xk = h ζk + hεk

ζk ∈ F(tk,xk)
xN(0) = x(0)+ ε0,

(9.21)

where ε0 is the error on the initial approximation and εk reflects all the errors made
when selecting an element ζk in F(tk,xk).

Theorem 9.6. Let F : IR× IR→ IR be a set-valued mapping with closed graph, satis-
fying a uniform one-sided Lipschitz condition (UOSLC), and with domain IR. Let the
solution of the DI: ẋ(t) ∈ F(t,x(t)), x(0) = x0, exist and be piecewise Lipschitz con-
tinuously differentiable on IR. Let the initial error |ε0| and the mean error 1

h ∑
N
i=1 |εi|

be of order 1 as functions of the step size h > 0. Then the order of convergence of the
Euler method in (9.21) is equal to 1.

This theorem is interesting as it is similar to the results of Janin & Lamarque (2001)
that apply to event-driven schemes of Lagrangian systems. Provided the “errors”
respect some order condition, the whole scheme possesses a minimum order. In La-
grangian systems, the errors come from the velocity jumps. In Theorem 9.6 they are
a consequence of the numerical uncertainty.

Let now the interval of integration be [0,1], i.e., we take T = 1. Let A ⊂ IRn

be compact and F : [0,1]× A→ IRn with F(t,x) convex and compact, uniformly
bounded, measurable in t, continuous in x. We define the averaged L 1−moduli as

Ξ(F,A,h) =
∫ 1

0
Ξ(F,A,t,h)dt, τ(F,A,h) =

∫ 1

0
τ(F,A,t,h)dt,

where Ξ(F,A,t,h) = sup{dH(F(t,x),F(t,y)) | ||x− y|| � h, x ∈ A,y ∈ A}, and
τ(F,A, t,h) = sup{sup(dH(F(s,x),F(r,x)) | s,r ∈ [t − h

2 , t + h
2 ] ∩ IR) | x ∈ A}.

Ξ(F,A, t,h) and τ(F,A,t,h) are called the local moduli of continuity of F(·, ·) with
respect to each argument t and x. The next lemma is taken from Dontchev &
Farkhi (1998).

Lemma 9.7. Suppose that there exists an integrable function λ : [0,1]→ IR+ such
that ||F(t,x)|| � λ (t)(1 + ||x||) for all x ∈ IRn and almost all t ∈ [0,1]. Then every
trajectory of the discrete inclusion (9.14) with initial data xN(0) ∈ K0 is bounded by

max
t∈[0,1]

||xN(t)||� exp(Λ)(|K0|+Λ), Λ = sup
N∈IN

1
N

N

∑
i=0

λ (ti), (9.22)
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where |K0| = sup{||x|| | x ∈ K0}. Suppose in addition that F(·, ·) defined on
[0,1]× IRn has nonempty, compact, and convex values and is OSLC with an inte-
grable function L(·). Suppose also that the linear growth function λ (·) is a constant
λ , so that all trajectories of the continuous time and of the discrete inclusions are
contained in a bounded set A and all the derivatives in a bounded set B. Then for
every solution x(·) of the DI: ẋ(t)∈F(t,x(t)) for almost all t ∈ [0,1], x(0)∈K0, there
exists a trajectory xN(·) of the discrete inclusion (9.14) with initial data xN(0) ∈ K0

such that
max

t∈[0,1]
||x(t)− xN(t)||� c[τ(F,A,h)+Ξ(F,A,h)], (9.23)

where c = exp(m(1))max(2, |B|), m(t) =
∫ t

0 L(r)dr, m(t) =
∫ t

0 L(s)ds.

We recall the notation ||F(t,x)||= sup{||z|| | z ∈ F(t,x)}. This lemma states re-
sults of the same nature as Theorems 9.1 and 9.2: an explicit Euler algorithm yields
a “good” approximation of the continuous-time DI, in the sense that to every solu-
tion of the DI one may associate a trajectory of the discrete inclusion. Suppose for
instance that the OSLC function L(·) is a constant L < 0 with |L| large enough. Then
m(t) = Lt, and c = exp(L)max(2, |B|). The set B is the set within which the derivative
of the trajectories lies. If the right-hand side is gentle enough with a linear growth
constant λ > 0 that is very small, then |B| is small also and c is small. The upper
bound in (9.23) therefore reflects the “agitation” of the DI.

9.2.2 Implicit θ -Method

The θ -method for the discretization of the DI: ẋ(t) ∈ F(t,x(t)), x(0) = x0, on the
interval [0,T ], yields the discrete inclusion:⎧⎨

⎩
xk+1 ∈ xk + hF(tk,xk+θ )

xk+θ = θxk+1 +(1−θ )xk, θ ∈ [0,1].
(9.24)

The explicit Euler method is for θ = 0, the mid-point rule is for θ = 1
2 , the

fully implicit Euler method is for θ = 1. In the next theorem it is assumed that
F(t,x) = f (t,x)−A(x), where f : [0,T ]× IRn→ IRn is Lipschitz continuous in both
arguments, i.e., || f (t,x)− f (s,y)|| � k(|t − s|+ ||x− y||) for all t,s ∈ [0,T ] and all
x,y ∈ IRn and some constant k. The set-valued mapping A(·) is maximal mono-
tone, with closed domain. The intervals on which the solution stays in the subspaces
ΣJ = {x ∈ IRn | x j = 0, j ∈J }, where J is a subset of {1,2, ...,n}, are called
the stiction intervals. We call the junction times the times such that x(t) ∈ ΣJ , and
x j(t + ε) �= 0, x j(t− ε) �= 0 for ε > 0 arbitrarily small, j ∈J . The next theorem is
taken from Elliot (1985).

Theorem 9.8. Let x(·) be the (unique) solution of the DI: ẋ(t) ∈ f (t,x(t))−A(x(t))
on [0,T ], x(0) = x0. Let the discrete inclusion (9.24) be initialized with xN(0) = x0.
Assume that there are at most a finite number of stiction intervals, and there are at
most a finite number of junction times in [0,T ]. Then for h > 0 sufficiently small one
has
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||xN(tk)− x(tk)||� ch (9.25)

for some constant c independent of h and N.

One reminds here that the switching instants must be of finite number in the integra-
tion interval. This is also the case of Stewart’s event-driven method in Sect. 7.1.2.
Theorem 9.8 guarantees convergence as h→ 0 for all θ ∈ [0,1]. However, this does
not mean that the algorithms will all behave in the same way when θ varies from 0 to
1. See Sects. 9.2.4.2 and 9.7 for details on this aspect. Other results for similar maxi-
mal monotone inclusions (UDIs) have been obtained in Bastien & Schatzman (2002)
in the fully implicit case, following the work in Lippold (1990). An order 1

2 is proved
without relying on any sort of assumption on the solution. The order is shown to be
1 when the maximal monotone multifunction is ∂ψK(·), the indicator of a nonempty
closed convex set K.

Let us now describe a result that holds for Filippov’s DIs constructed from a
switching codimension one surface S ⊂ IRn and two vector fields as in (2.14). The
next theorem is taken from Kastner-Maresch (1992) and concerns an implicit mid-
point algorithm.

Theorem 9.9. Let us consider θ = 1
2 in the θ -method (9.24). Let the set-valued map-

ping F(·, ·) be a Filippov’s right-hand side, satisfying a linear growth condition, and
a uniform one-sided Lipschitz-continuous (UOSLC) condition with constant L. As-
sume further that

• The solutions of the DI: ẋ(t) ∈ F(t,x(t)), x(0) = x0, are piecewise twice contin-
uously one-sided differentiable.

• The initial approximation satisfies ||x0− xN(0)||= O(N−1).
• h � K

N for some K > 0.

Then there exists constants c and N∗ (possibly depending on L) such that for all
N > N∗ and all solutions of the DI,

||xk− x(tk)||� c
N

(9.26)

for all 0 � k � N.

Recall that Filippov’s convexification procedure implies that the set-valued map
is upper semi-continuous. Also the assumptions assure that the solutions of the DI
are unique (see Lemma 2.31). In its original formulation the theorem holds with
a varying step hi and with perturbations included in the analysis. Once again the
result holds provided the trajectories do not cross the switching surface too often.
The notation f = O(g) for two functions f (·) and g(·) means that there exists a real
β � 0 such that || f (x)|| � β ||g(x)||. A function is one-sided differentiable at x if the

quantities limh→0,h>0
f (x+h)− f (x)

h or limh→0,h<0
f (x+h)− f (x)

h exist and are right and left
continuous, respectively.
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Remark 9.10. Possibly these time-stepping methods accommodate for accumula-
tions of switching instants, in the sense that the algorithm will not produce diverging
solutions. But the order of the scheme then cannot be guaranteed (or at least it can-
not be proved analytically). Such accumulations often occur in stabilization problems
with discontinuous feedback controllers.

9.2.3 Multistep and Runge–Kutta Algorithms

The Euler explicit method is not the only numerical scheme one may use to discretize
Lipschitz or upper semi-continuous DIs. Multistep and Runge–Kutta methods pos-
sess the advantage over Euler methods that they are more accurate on intervals where
the trajectories are differentiable. This does not mean that their order is larger than 1.

9.2.3.1 The Linear Multistep Algorithm

Let reals ai, bi, 0 � i � r,1 be given, with ar �= 0, |a0|+ |b0|> 0. The starting values
are xk, k = 0,1, ...,r−1, and the corresponding starting selections are ζk ∈ F(tk,xk),
k = 0,1, ...,r− 1. As for the Euler method, a procedure has to be chosen to select
the ζk, see Sect. 9.2.4.1. Moreover the first r−1 steps must be initialized by another
method (a multistep method with r̄ < r steps or a one-step method like the Euler
scheme). The algorithm is advanced from step k−1 to step k as follows:

For k = 1,2, ...N, compute xk from
⎧⎨
⎩
∑r

i=0 aixk−r+i = h ∑r
i=0 biζk−r+i

ζk ∈ F(tk,xk).
(9.27)

The case r = 1, b1 = 0, b0 = a0 = 1, a1 = −1, is the explicit Euler scheme.
When br �= 0 the multistep method is implicit. The next theorem is due to Taubert
(1981).

Theorem 9.11. We consider the DI: ẋ(t)∈F(t,x(t)), x(0)= x0. Let F : [0,T ]×IRn→
IRn be a set-valued mapping with nonempty, closed, convex values F(t,x) that is
bounded (there exists a constant c such that for all (t,x) ∈ IR× IRn and any z ∈
F(t,x), one has ||z||� c) and upper semi-continuous. Assume further that

• (Strong stability) The roots of the characteristic polynomial∑r
i=0 aiλ i are, except

the simple root λ = 1, of absolute value |λ |< 1.
• (Consistency) ∑r

i=0 ai = 0, ∑r
i=0 iai = ∑r

i=0 bi, bi � 0, 0 � i � r.
• (Starting field) There exists a constant M, independent of h > 0, such that ||xN

i −
x0||= o(h) for 0 � i � r−1.

1 This r has nothing to do with the relative degree introduced elsewhere in the book, obvi-
ously.
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Assume finally that the DI enjoys the uniqueness of solutions property. Then on any
compact interval of [0,T ] � t, T > 0, the solutions of the discretized inclusion (9.27)
are such that

lim
h→0,tn→t

||xN(tn)− x(t)||= 0, (9.28)

where tn = nh.

Recall that for two functions f (·) and g(·), f = o(g) means that for all ε > 0 one has
|| f (x)|| � ε||g(x)||. The starting field condition thus means that ||xN

i − x0||� hM for
some constant M depending on T and F(·, ·). A variant of Theorem 9.11 is as follows
(Dontchev & Lempio, 1992):

Theorem 9.12. Let all the assumptions of Theorem 9.11 hold, with the starting field
condition ||xN

k+1− xN
k || � hM, k = 0,1, ...,r− 2, for all N ∈ IN, and a constant M

independent of h > 0. Let also the approximations of the initial value x0 = x(0) sat-
isfy limh→0 xN(0) = x0. Then the sequence of continuous piecewise linear functions
{xN(·)}N∈IN contains a subsequence which converges uniformly to a solution of the
DI.

In the implicit case br �= 0, the existence of xk in (9.27) is assured if the generalized
equation

0 ∈
r−1

∑
i=0

aixk−r+i−h
r−1

∑
i=0

biζk−r+i−hbrF(xk)+ arxk

has a solution. This may be proved with a fixed-point theorem, see Taubert (1981).

9.2.3.2 The Runge–Kutta Method

Runge–Kutta algorithms of order p are2 meant to approximate the solution and its
first p derivatives, in the sense that the Taylor series of the exact solution x(h) and
the Taylor series of the approximated solution xN(t1) coincide up to the term hp−1,
including it. The solutions of the DIs we are studying usually are absolutely con-
tinuous, and therefore have a derivative that may jump (consequently higher order
derivatives are distributions). The first question one may ask to one’s self is: how will
a Runge–Kutta algorithm of order p > 1 behave with such nonsmooth solutions? A
reassuring point is that the multistep methods described above behave correctly in
the sense that they lose their order, but are still convergent. Similarly the implicit
mid-point rule has order 1.

Assumption 12. It is assumed that the set-valued mapping is upper semi-continuous,
satisfies a growth condition, and is UOSLC. Moreover its domain is IRn, i.e., for each
t, the set {x ∈ IRn | F(t,x) �= /0}= IRn.

2 The order in Hairer et al. (1993) is our definition of the order minus 1, see definition 1.2,
Chap. II.1 in that book.
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From the results of Chap. 2, the DI: ẋ(t) ∈ F(t,x(t)), x(0) = x0, has a unique
absolutely continuous solution on IR+ for each x0.

To simplify the presentation it is assumed that a constant time step h > 0 is cho-
sen. However, varying steps hk are implementable. The algorithm is advanced from
step k to step k + 1 as follows:

For k = 0,2, ...,N−1, compute xk from
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Xj = xk + h ∑r
i=1 a jiζk+1, j

ζk+1, j ∈ F(tk + cih,Xi), i, j ∈ (1,2, ...,r)

xk+1 = xk + h ∑r
i=1 biζk+1,i

, (9.29)

where the coefficients ci, bi, 1 � i � r, and a ji, 1 � j � r, 1 � i � r, are computed
so as to satisfy some constraints. It is supposed that 0 � ci � 1 for all 1 � i � r.
A perturbed version of the algorithm (9.29) is as follows, where δi, 1 � i � r = 1,
represents the disturbance due to nonperfect initialization.

For k = 0,2, ...,N−1, compute xk from
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Xj = x j + h ∑r
i=1 a jiζk+1, j + δ j

ζk+1, j ∈ F(tk + cih,Xi), i, j ∈ (1,2, ...,r)

xk+1,p = xk,p + h ∑r
i=1 biζk+1,i + δr+1

, (9.30)

where the subscript p is for perturbed. Since such schemes may be implicit, it is
important to test their practicability, i.e., are the discrete inclusions solvable? If yes
the step k→ k + 1 is said to be (uniquely) practicable. The next two notions will be
used for convergence of the scheme.

Definition 9.13. (Convergence stability) Let xk+1 and xk+1,p be two arbitrary
uniquely practicable parallel steps of the schemes (9.29) and (9.30), respectively.
The Runge–Kutta method is said C-stable if there exists constants c0 � 0 and h0 > 0
with

||xk+1− xk+1,p||� (1 + c0h) ||xk− xk,p|| (9.31)

for all h ∈ (0,h0].

Definition 9.14. (B-stage stability) Let xk+1 and xk+1,p be two uniquely solvable
steps of the schemes (9.29) and (9.30), respectively. The Runge–Kutta method is said
BS-stable if there exists constants c1 > 0, h1 > 0, such that

||xk+1,p− xk+1||� c1 max(||δ1||, ..., ||δr+1||) (9.32)

for h ∈ (0,h1], and all (tk,xk) ∈ [0,T ]× IRn, all δ1, δ2,..., δr+1.
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Finally the order of consistency of the scheme is equal to p � 0 if there exist constants
d � 0, h1 > 0, such that

||xN
k+1− x(tk+1)||� d hp+1 (9.33)

for all h∈ (0,h1], tk+1 ∈ [0,T ], and for all solutions to the continuous-time DI.3 In or-
der to state the next lemma, we need some more definitions. A function f (·) is right-

sided continuously differentiable at t if the quantity ḟ +(t) = limε→0,ε>0
f (t+ε)− f (t)

ε
exists and is right-continuous. Then we define

M+ = max
t∈[0,T ]

||ẋ+(t)||. (9.34)

Let us finally define the following perturbations:
{
δ j

Δ= x(t + c jh)− x(tk)−h ∑r
i=1 a jiẋ+(t + c jh), j = 1, ...,r

δr+1
Δ= x(tk+1)− x(tk)−h ∑r

i=1 biẋ+(t + c jh).
(9.35)

We are now ready to state the first result.

Lemma 9.15. Let the set-valued mapping F(·, ·) satisfy Assumption 12, and the so-
lution to the DI be right-sided continuously differentiable, with M+ < +∞. Then the
step k → k + 1 is practicable with the perturbations in (9.35). Furthermore there
exists a constant d̂ > 0 such that

||δ j||� d̂h, j = 1, ...,r + 1. (9.36)

The constant d̂ depends only on M+ and on the parameters of the method.

In addition to the order of consistency, one defines the order of convergence. It is
assumed that the three steps:

1. the unperturbed step starting at (tk,xk): xk �→ xk+1,
2. the unperturbed step starting at (tk,x(tk)): x(tk) �→ xk+1,
3. the perturbed step starting at (tk,x(tk)) and ending on the solution x(tk+1):

x(tk) �→ x(tk+1),

are uniquely practicable for N � N0. The Runge–Kutta method has order of conver-
gence p > 0 if there exist constants c > 0 and N̄ > 0 such that

||xN(tN)− x(tN)||� c

(
1
N

)p

(9.37)

for all N � N̄ � N0 and all solutions of the DI. The constants c and N̄ may depend on
the OSLC constant L, on M+ and on the parameters of the method. The main result
from Kastner-Maresch (1990–91) is as follows:

3 We recall that the approximated piecewise continuous solution is xN: [0,T ]→ IRn, with
xN(t) = xk + 1

h (t− tk)(xk+1− xk), for t ∈ [tk,tk+1), and that x(tk) denotes the value at time
tk of the solution of the DI.
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Theorem 9.16. Let for a fixed p ∈ IN the following assumptions hold:

• Assumption 12 on the set-valued mapping holds.
• There exists a partition of [0,T ] into finitely many subintervals such that the

solution of the DI is right-sided continuously differentiable on [0,T ], and (p+1)-
times continuously differentiable on each subinterval.

• The simplifying assumptions
⎧⎨
⎩

k ∑r
i=1 bic

k−1
i = 1, (k = 1, ..., p)

k ∑r
i=1 a jicik−1 = ck

j (k = 1, ..., pand j = 1, ...,r).
(9.38)

• The Runge–Kutta method is BS-stable and C-stable.
• The initial approximation xN

0 = xN(t0) of x0 = x(0) satisfies

||xN
0 − x0||= O

(
1
N

)
. (9.39)

Then the order of convergence is at least equal to 1.

The theorem does not say that the order of convergence is equal to 1, it may
possibly be larger. However, it seems that if the derivative of the solution has a (finite)
number of jumps, as allowed by the assumptions, then the order cannot be larger
than 1.

Remark 9.17. We have seen that the class of set-valued maps for which Theorem 9.16
applies contains maps of the form f (t,x)−β (x) where f (·, ·) is Lipschitz continu-
ous and β (·) is a maximal monotone mapping. However, this class does not include
normal cones, i.e., right-hand sides of the form ∂ψK(·), whose domain is not the
whole of IRn, but K. Let us examine the case of such right-hand sides, with r = 1.
The Runge–Kutta method reads

⎧⎨
⎩

xk+1xk ∈ hb1 F(xk + ha11ζk1)

ζk1 ∈ F(xk + ha11ζk1),
(9.40)

which is the mid-point scheme (the θ -method with θ = 1
2 ). Suppose that F(x) =

−NK(x) for some closed nonempty convex set K ⊂ IRn. Then we obtain
⎧⎨
⎩

xk+1xk ∈ −hb1 NK(xk + ha11ζk1)

ζk1 ∈ −NK(xk + ha11ζk1).
(9.41)

We may rewrite (9.41) as

xk + ha11ζk1 + ζk1− xk−ha11ζk1 ∈ −NK(xk + ha11ζk1) (9.42)

that is equivalent to (see Sect. A.3)



9.2 DIs with Absolutely Continuous Solutions 263

xk + ha11ζk1 = prox[K;(ha11−1)ζk1 + xk]. (9.43)

It is not clear how to use (9.43) to advance from step k to step k +1 with the method
in (9.41). Let K be a nonempty closed convex cone. Notice that we may rewrite
(9.41) as

xk + ha11ζk1 ∈ ∂ψ∗K(−ζk1) = NKo(−ζk1), (9.44)

where ψ∗K(·) is the conjugate function of the indicator of K, and Ko is the polar cone
to K (which is another nonempty convex cone). We deduce that

−ζk1 = prox

[
Ko;

1
ha11

xk

]
(9.45)

so that

xk+1− xk ∈ −NK

(
xk + ha11 prox

[
Ko;− 1

ha11
xk

])
. (9.46)

Once again the meaning of such an inclusion is not clear. It seems that the Runge–
Kutta method with normal cones to convex sets is not practicable in the above sense.

We end this section on Runge–Kutta methods with the following result:

Lemma 9.18. Let all the assumptions and conditions of Theorem 9.16 be satisfied.
Suppose that the solution of the DI is (p + 1)-times continuously differentiable on
[0,T ], and that the initial approximation satisfies ||xN

0 −x0||= O(hp). Then the order
of convergence of the scheme is equal to p.

One may wonder what Lemma 9.18 is useful to, since the solutions we are dealing
with usually are absolutely continuous. In fact it shows that if there are portions of
the trajectory on which the trajectory is smooth enough, then the order is preserved.
Therefore the accuracy is good for systems that have solutions with separated times
of nondifferentiability. This may also be useful in the context of event-driven meth-
ods, provided an accurate enough event detection is coupled to the Runge–Kutta
algorithm, see Sect. 7.2.

9.2.4 Computational Results and Comments

Let us consider the two DIs: ẋ(t) ∈ [−1,1], t � 0, and ẋ(t) ∈ −sgn(x(t)), t � 0,
where sgn(·) is the multivalued sign function. Obviously they are quite different.
The first DI satisfies the conditions of Lemma 2.8 and has an infinity of solu-
tions for any x(0) ∈ IR. The second DI satisfies the conditions of Theorem 2.41
and has a unique solution for all x(0) ∈ IR. What is the best algorithm to simu-
late these DIs? It seems that the first DI is not well suited for event-driven schemes
(there are no events!). The above results (Theorems 9.1, 9.2, 9.4) seem appropri-
ate to characterize its approximated solutions. For the second DI, should one prefer
an event-driven scheme using for instance Stewart’s method or some kind of time-
stepping scheme (Euler or θ -method as in Theorem 9.8 or a multistep method as in
Theorem 9.11)?
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9.2.4.1 The Selection Procedure

Consider ẋ(t) ∈ [−1,1], t � 0, which clearly has an infinite number of solutions.
Its discretization is xk+1 = xk + hζk, ζk ∈ [−1,1]. According to Theorem 9.1, one
may choose at each step any ζk inside [−1,1], and there always exists a solution
of the DI that is in a neighborhood of the obtained discrete trajectory (the piecewise
linear function xN(·)). In practice, however, one may want to approximate a particular
solution inside the bundle of solutions of the DI. For instance the minimum norm
selection may be a choice. For the multistep method this boils down to the algorithm:

min 1
2ζ

T
k ζk

subject to 1
h ∑

r
i=0 aix j−r+i = ∑r

i=0 biζ j−r+i

ζk ∈ F(tk,xk)
(9.47)

at each step k. The explicit Euler method corresponds to the choice r = 1, b0 = 1,
b1 = 0, a0 = 1, and a1 =−1. Thus the algorithm in (9.47) becomes

min 1
2ζ

T
k ζk

subject to xk+1− xk = hζk

ζk ∈ F(tk,xk)
, (9.48)

which we may rewrite with yk = xk+1−xk
h as

min h
2 yT

k yk

subject to yk ∈ F(tk,xk).
(9.49)

If F(tk,xk) contains {0} then yk = 0, so xk+1 = xk. We see that yk is nothing else
but the projection of the vector x = 0 onto the set F(tk,xk). We therefore arrive at
the discrete inclusion xk+1−xk

h =projF(tk ,xk)(0). Thus looking for the minimal norm
solution is equivalent to solving ẋ(t) =projF(t,x(t))(0). If F(t,x) is convex for each
t and x, then the right-hand side is Lipschitz continuous, so that the DI boils down
to an ODE with Lipschitz right-hand side (this is the case for Filippov’s inclusions,
which by construction always have a convex right-hand side). For instance the DI:
ẋ(t) ∈ [−1,1] with its minimal norm solution is simply the scalar ODE: ẋ(t) = 0.
Consider now the DI: ẋ(t) ∈ −sgn(x(t)). Then algorithm (9.47) boils down to find-
ing yk ∈ −sgn(xk) at each step. If xk �= 0 then yk = 1 or −1. If xk = 0 then yk = 0.4

The minimum norm solution seems to be the solution of the DI, which has a unique
solution for each initial condition. Such solutions are sometimes called the slow so-
lutions (Brezis, 1973).

Remark 9.19. Starting from ẋ(t) ∈ [−1,1] we arrive at ẋ(t) = 0 simply by adding a
constraint on the norm of the solutions’ variation. This may pose a philosophical
issue concerning differential inclusions which possess infinitely many solutions (and
thus are far from enjoying the uniqueness of solutions property). An apparently tiny

4 In practice ε-layers have to be implemented to test the value zero.
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constraint brings such a loose system into the simplest and most structured ODE one
may imagine. This questions the usefulness of a DI like ẋ(t) ∈ [−1,1]. It is possible
that in most of the practical situations, one may work a little more and find physical
arguments that eliminate a lot (here an infinity, as +∞− 1 = +∞) of solutions. We
may classify DIs into two main classes: loose DIs with (too) many solutions and
structured DIs with unique solutions.

The next theorem continues Theorem 9.12 for the multistep method (9.27) and is
taken from Dontchev & Lempio (1992) and Filippov (1967).

Theorem 9.20. Let all the assumptions of Theorem 9.12 hold, and in addition let
br = 0 and F(·, ·) be Hausdorff continuous. Then the sequence of continuous piece-
wise linear functions {xN(·)}N∈IN, corresponding to minimal norm selections, con-
tains a subsequence which converges uniformly to a continuously differentiable so-
lution of the DI.

It is interesting to see that selecting the minimal norm leads to selecting a particular
solution that is continuously differentiable. The above example ẋ(t) ∈ [−1,1] is an
illustration. If one chooses any ζk at each step, then the solution of the discrete inclu-
sion approximates some solution of the DI. When selecting the minimum norm ζk at
each step, one finds ẋ(t) = 0 whose solutions are smooth. Other selections exist. The
minimal variation selection is

min ||vk− vk−1||
subject to 1

h ∑
r
i=0 aix j−r+i = vk

vk ∈ ∑r
i=0 biF(t j−r+i,x j−r+i)

. (9.50)

Then the following holds (Dontchev & Lempio, 1992) and still concerns the multi-
step method (9.27).

Theorem 9.21. Let the set-valued mapping F(·, ·) be bounded, upper semi-
continuous, with nonempty, closed, convex values F(t,x) for all t and x, and be
Lipschitz-continuous on [0,T ]× IRn. Let br = 0, and the starting selections satisfy

||vk+1− vk||� hM, 0 � k � r−2

for some constant M independent of h. Then the sequence of piecewise linear contin-
uous functions (xN(·),vN(·))N∈IN contains a subsequence which converges uniformly
to a pair (y(·),v(·)), where y(·) is a solution of the DI, with Lipschitz-continuous
derivative v(·).

9.2.4.2 Numerical Results

The above results are of a theoretical and general nature. This is not sufficient in prac-
tice. For instance it is well known that the explicit (θ = 0) and implicit (θ = 1) Euler
methods may yield numerical results that differ significantly (Elliot, 1985; Stewart &
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Anitescu, 2006). Explicit Euler methods, when applied to Filippov’s systems, may
yield very poor results with strong oscillations around the switching surface, see,
e.g., Lempio (1992) and Figs. 1.12 and 1.13. Such numerically induced oscillations
may be reduced with Runge–Kutta methods, see example 3.3 in Dontchev & Lem-
pio (1992); however, they still are present. Finding a good selection procedure may
improve a lot, which is not surprising in view of the above comments. Let us inves-
tigate on the classical scalar example ẋ(t) ∈−sgn(x(t)) discretized with a θ -method
as xk+1− xk ∈ h sgn(xk + θ (xk+1− xk)) of how oscillations appear. When |xk| � h,
the scheme yields xk +θ (xk+1−xk) = 0. Thus xk+1 = 1−θ

θ xk is the approximation of
the system in the neighborhood of x = 0. If 0 < θ < 1

2 , an oscillation occurs since
1−θ
θ > 1: the discrete trajectory will quit the layer |xk| � h, come back into it, and

so on. For 1
2 < θ < 1 one gets 1−θ

θ < 1, so there will still be oscillations; however,
they exponentially decay inside the boundary layer. Now the case θ = 1 is the im-
plicit method (or backward Euler) and no oscillations occur (see Fig. 1.19 for an
illustration). We refer the reader to Sect. 9.7 for a study of the implicit case and some
comments. Such conclusions about the discrepancy between the implicit and explicit
cases were found for instance in (Elliot, 1985) and also in Stewart (1990). The simu-
lation results in Stewart (1990) indicate that the multistep method may also produce
oscillations around the switching surface.

Stewart’s event-driven method or an implicit time-stepping method seems to be
mandatory if one desires high accuracy and acceptable approximations of the deriva-
tive of the state trajectory seen as a Filippov’s solution, even in cases where non-
smooth events are rare. In fact the oscillations around the switching surface corre-
spond to having a multiplier that switches very rapidly between two discrete values
(see Fig. 1.12), despite in theory the multiplier should keep a constant value. In the
applications where one needs the value of the multiplier (e.g., for feedback design)
this may be extremely problematic.

9.3 The Special Case of the Filippov’s Inclusions

Though most of the foregoing results apply to a larger class of differential inclusions
than Filippov’s inclusions, the particular case of Filippov’s inclusions deserves at-
tention because on one hand they find many applications and on the other hand their
specific structure allows one to derive specific schemes.

9.3.1 Smoothing Methods

In this section, let us consider a Filippov system with a switching surface S = {x ∈
IRn | c(x) = 0} of codimension one. The notation is the same as introduced in
Sect. 7.1.1. The Filippov’s notion of a solution says that

ẋ(t) ∈ α f +(x(t))+ (1−α) f−(x(t)) (9.51)

with α ∈ [0,1] and where the two vector fields are as in (2.14). On one side of S
one has α = 1, and on the other side α = 0. On an attractive surface S the vector
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field is a convex combination of both vector fields, tangent to S. As we saw in Sect.
7.1.1, such a system can be expressed with sign multifunctions, see (7.2). The idea
behind smoothing is to replace the sign multifunction by an approximation, i.e., a
single-valued function like a sigmoid. The advantage is that one obtains an ODE
with a continuous right-hand side. The drawback is that this ODE may not be easily
tractable numerically, because a good approximation around the switching surface
implies a function with a large slope: the ODE may be stiff, and the gain is not
clear. On the other hand avoiding the stiffness drawback is possible, however, at the
price of a bad approximation. We may say that such smoothing methods should be
avoided.

9.3.2 Switched Model and Explicit Schemes

Consider the case when S is of codimension one, i.e., (9.51). The switching surface S
is thickened to a band Sε with a thickness ε > 0. In practice the thickness parameter
should be chosen small enough, to preserve the accuracy of the scheme. Let us denote
n(x) = ∇c(x) the normal to S at x. We may then define the following subspaces:

U = {x ∈ IRn | nT(x) f +(x) < 0 and nT(x) f−(x) > 0}
Q = {x ∈ IRn | nT(x) f +(x) > 0 and nT(x) f−(x) < 0}
T+ = {x ∈ IRn | nT(x) f +(x) > 0 and nT(x) f−(x) > 0}
T− = {x ∈ IRn | nT(x) f +(x) < 0 and nT(x) f−(x) < 0}.

One has Sε = U ∪Q ∪T+ ∪T−. The subspace U is the attractive subspace,
Q is the repulsive subspace, and T+ and T− correspond to the part of the switch-
ing surface where trajectories cross the surface (transversal intersection between the
trajectories and S). Following Leine & Nijmeijer (2004) we may choose α in (7.1) as

α =
nT(x) f−(x)+ τ−1c(x)
nT(x) f−(x)+ f +(x)

(9.52)

for some τ > 0, so that

ċ(x(t)) =−τ1c(x(t)). (9.53)

It is noteworthy that this choice is equivalent to smoothing the sign function at 0.
To see this consider the case when c(x) = x. Then (9.53) becomes ẋ(t) = −τ−1x(t)
when x(t) lies in U ⊂ Sε = [−ε,ε]. Thus the multivalued sign function is replaced
by a single-valued linear function with slope τ−1 and τ = ε (hence the notation τ−1

in (9.52) and (9.53)). The algorithm, called the switch model in Leine & Nijmeijer
(2004), is described in Algorithm 6.

Certainly the strongest drawback of this method is that when the number of
switching surfaces that define the Filippov’s inclusion increases, the complexity of
the procedure becomes an obstacle for the implementation. We may say that this
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Algorithm 6 Leine’s switch model
Require: t time instant
Require: x state at time t
Require: f +(·, ·), f−(·, ·),c(·),n = ∇c(·)
Require: ε thickness parameter
Ensure: y value of the ode r.h.s. i.e. y = rhs(x,t)

h← c(x)
n← ∇c(x)
f+← f+(t,x)
f− ← f−(t,x)
if |c|� η then

// Smooth motion
if h > ε then

y← f+

else
y← f−

end if
else

if nTf+ > 0 and nTf− > 0 then
// transition
y← f+

x ∈ T+
end if
if nTf+ < 0 and nTf− < 0 then

// transition
y← f−
x ∈ T−

end if
if nTf+ < 0 and nTf− > 0 then

// attractive sliding mode

α ← nTf−+ τ−1h

nT(f−+ f+

y← αf+ +(1−α)f−
x ∈U

end if
if nTf+ > 0 and nTf− < 0 then

// repulsive sliding mode
y← f+ or y = f−
x ∈Q

end if
end if
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method works when there are no more than two switching surfaces. Otherwise, Stew-
art’s event-driven method in Sect. 7.1.2 or some time-stepping method of Sect. 9.2
should be chosen. We will see in the next section that in the case of mechanical
systems with Coulomb friction, a method that solves the selection problem of the
multiplier and of the mode with a suitable LCP can also be advantageously chosen.

9.3.3 Implicit Schemes and Complementarity Formulation

Let us consider a particular case of Filippov’s inclusions, known in the systems and
control literature as linear relay systems (Camlibel, 2001). Their dynamics takes the
form ⎧⎨

⎩
ẋ(t) = Ax(t)+ Bu(t)
y(t) = Cx(t)+ Du(t)
ui(t) ∈ sgn(−yi(t)), 1 � i � m

(9.54)

with u(t) ∈ IRm, x(t) ∈ IRn, y(t) ∈ IRm. It should be clear from the material and the
manipulations done for instance in Sect. 1.2 that (9.54) can be rewritten as a comple-
mentarity system. The most immediate way to discretize (9.54) is with a backward
Euler scheme, i.e.,

⎧⎨
⎩

xk+1 = xk + hAxk+1 + hBuk+1
yk+1 = Cxk+1 + Duk+1

ui,k+1 ∈ sgn(−yi,k+1), 1 � i � m
. (9.55)

Therefore the advance from step k to step k + 1 requires to solve
{

uk+1 = [C(In−hA)−1hB + D]−1[yk+1−C(In−hA)−1xk]
ui,k+1 ∈ sgn(−yi,k+1), 1 � i � m

, (9.56)

that is to find the intersection(s) between the graph of a single-valued and of a mul-
tivalued function. One convenient way to do this is to rewrite the sign multifunction
as a complementarity problem, then inject this into the dynamics, and end up with
an LCP to be solved numerically. Actually, the inclusions ui(t) ∈ sgn(−yi(t)) for
1 � i � m are equivalent to the complementarity problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ 1 = 1
2(e−u)

y2 = 1
2 (e + u)

−y = y1−λ 2

0 � λ 1 ⊥ y1 � 0

0 � λ 2 ⊥ y2 � 0

, (9.57)

where e = (1,1, ...,1)T is of appropriate dimension. One has u = e− 2λ 1 and
y2 = e− λ 1. Inserting (9.57) into (9.54) and after some manipulations we obtain
the following:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = Ax(t)+ Be−2Bλ 1(t)(
y1

y2

)
=

(−Cx(t)−De
e

)
+

(
2D Im

−Im 0m

)(
λ 1

λ 2

)

0 � λ 1 ⊥ y1 � 0
0 � λ 2 ⊥ y2 � 0

, (9.58)

which may be named an affine complementarity system (Brogliato, 2003). After some
manipulations one obtains the LCP

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y1
k+1 = −(D+C(In−hA)−1hB)e−C(In−hA)−1xk

+2(D+C(In−ha)−1hB)λ 1
k+1 +λ 2

k+1
y2

k+1 = e−λ 1
k+1

0 �
(

y1
k+1

y2
k+1

)
⊥

(
λ 1

k+1
λ 2

k+1

)
� 0

. (9.59)

Provided this LCP can be solved for some (λ 1
k+1,λ

2
k+1), the algorithm may be ad-

vanced as xk+1 = (In−hA)−1xk +(In−hA)−1hBe−2h(In−hA)−1Bλ 1
k+1. It should be

obvious that a necessary and sufficient condition for solvability of this LCP for any
xk is that its matrix be a P-matrix. A convergence result is given (Camlibel, 2001),
showing the consistency of the method.

Theorem 9.22. Consider the system in (9.54) and suppose that the rational transfer
function C(sIn−A)−1B+D is a P-matrix for all sufficiently large s∈ IR, and that D �
0. Let the sequence of time steps {hk}k�0 converge to zero. Consider the piecewise
functions (xN(·),λN(·),yN(·)) that approximate (x(·),λ (·),y(·)) on the interval of
integration [0,T ]. The following holds for any sequence {hk}k�0 that converges to
zero:

(a) There exists a subsequence {hki}ki�0 of {hk}k�0 such that {λN
ki

(·),yN
ki
(·)} con-

verges weakly in L2 to some limit functions (λ (·),y(·)) and {xN
ki
(·)} converges

in L2 to some limit function x(·).
(b) The limit triple (x(·),λ (·),y(·)) is a solution of the dynamical system (9.54).
(c) In case of uniqueness of the solutions of (9.54), the results of item (a) hold for

the complete sequence {hk}k�0.

Uniqueness of solutions depends on the quadruple (A,B,C,D).

Remark 9.23. the very big difference between such a backward Euler scheme, and an
explicit discretization as in (9.14) is to be noticed. The implicit way may be named
a dual way to discretize, as it is equivalent to look for Lagrange multipliers λk+1 at
each step. The mode switches are monitored by the LCP, i.e., by the multiplier value.
They are not monitored by the state xk. The convergence results are of the same
nature; however, the practical implementations and results differ a lot. Theorem 9.8
and the θ -method apply to such relay systems when D = 0. However, one notes that
the order of convergence result of Theorem 9.8 is obtained under the assumption that
the trajectories are piecewise differentiable. This is not needed in Theorem 9.22.
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9.3.4 Comments

Consider the Filippov system in (7.5). Using the complementarity formulation of the
multivalued sign function, one may rewrite this system as a complementarity system.
One may then proceed to discretizing this CS as done in the foregoing subsection for
the relay systems. Similar to Stewart’s event-driven method, all relies on a suitable
way to rewrite the inclusion.

9.4 Moreau’s Catching-Up Algorithm for the First-Order
Sweeping Process

In this section, we give some details about the seminal work of Jean Jacques Moreau
on the numerical time integration of the sweeping process. Let us consider the first-
order sweeping process with a BV solution:

{
−dx ∈ NK(t)(x(t+)) (t � 0)

x(0) = x0
. (9.60)

When the solution is absolutely continuous, then dx = ẋ(t)dt, and since the right-
hand side is a cone, the left-hand side may be simplified to −ẋ(t). Under suitable
hypothesis on the multivalued function t �→ K(t), numerous convergence and con-
sistency results (Monteiro Marques, 1993, Kunze & Monteiro Marqués, 2000) have
been given together with well-posedness results, using the so-called “catching-up
algorithm” defined in Moreau (1977):

−(xk+1− xk) ∈ ∂ψK(tk+1)(xk+1), (9.61)

where xk stands for the approximation of the right limit of x(·). It is noteworthy that
the case with a Lipschitz-continuous moving set is also discretized in the same way.

By elementary convex analysis (see Sect. A.3), the inclusion (9.61) is
equivalent to

xk+1 = prox[K(tk+1);xk]. (9.62)

Contrary to the standard backward Euler scheme with which it might be con-
fused, the catching-up algorithm is based on the evaluation of the measure dx on the
interval (tk,tk+1], i.e., dx((tk,tk+1]) = x+(tk+1)− x+(tk). Indeed, the backward Eu-
ler scheme is based on the approximation of ẋ(t) which is not defined in a classical
sense for our case. When the time step vanishes, the approximation of the measure
dx tends to a finite value corresponding to the jump of x(·). This remark is crucial
for the consistency of the scheme. Particularly, this fact ensures that we handle only
finite values.

Figure 9.6 depicts the evolution of the discretized sweeping process. The name
catching-up is clear from the figure: the algorithm makes xk catch up with the moving
set K(tk), so that it stays inside the moving set.
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xk+2 = xk+3

K(tk)

K(tk−1)

K(tk+1)

K(tk+2)

K(tk+3)

•
xk = xk−1

xk+1

Fig. 9.6. The catching-up algorithm

9.4.1 Mathematical Properties

It is noteworthy that the catching-up algorithm is a central tool to prove Theorems
2.37 and 2.39. As a consequence, some properties of the catching-up algorithm, that
is a discretized version of the first-order sweeping process, can be deduced directly
from these well-posedness proofs. We give below a brief account of the properties of
the discretized sweeping process. More may be found in Monteiro Marques (1993)
and Kunze & Monteiro Marqués (2000). Let us first deal with the Lipschitz sweeping
process.

Theorem 9.24. Suppose that the conditions of Theorem 2.37 are satisfied. Consider
the algorithm in (9.61), with a fixed time step h = T

N > 0. Let m ∈ IN be such that
mT < N. Then

(a) var[0,T ](xN) � ||xN(0)||+ lT , for all t ∈ [tk,tk+1] and all N ∈ IN,

(b) ||xN(t)− xN(s)|| � l
(|t− s|+ 2

m

)
, for all t,s ∈ [tk,tk+1],

(c) from which it follows that ||x(t)− x(s)|| � l|t − s| for all t,s ∈ [0,T ], where
(x(t)− x(s)) is the limit in the weak sense of {xN(t)− xN(s)}N∈IN,

(d) ||ẋN(t)||� l for all t �= tk, where ẋN(t) = 1
h (xk+1− xk) for t ∈ [tk, tk+1),

(e) the “velocity” ẋN(·) converges weakly to ẋ∗(·), i.e., for all ϕ(·) ∈
L 1([0,T ]; IRn) one has

∫ T

0
〈ẋN(t),ϕ(t)〉dt →

∫ T

0
〈ẋ∗(t),ϕ(t)〉dt,

(f) xN(·)→ x(·) uniformly and ẋ(·) = ẋ∗(·) almost everywhere in [0,T ],
(g) the limit satisfies ẋ(t) ∈ NK(t)(x(t)) almost everywhere in [0,T ].

Theorem 2.37 is proved thanks to the discrete inclusion analysis. This explains why
the upper bounds in Theorem 9.24 are rather rough and do not allow to conclude on
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the order of the method. These upper bounds are sufficient for step (g) to be achieved.
One may say that the works using the discrete-time sweeping process are oriented
toward mathematical analysis rather than numerical analysis. In the RCBV case, the
catching-up algorithm may be used also to prove Theorem 2.39, with similar steps
as in Theorem 9.24.

Remark 9.25. Using higher order numerical schemes is at best useless, more often
it is dangerous when solutions possess discontinuities (hence a measure differential
inclusion). Basically, a general way to obtain a finite difference-type scheme of order
n is to write a Taylor expansion of order n or higher. Such a scheme is meant to ap-
proximate the nth derivative of the discretized function. If the solution we are dealing
with is obviously not differentiable, what is the meaning of using a scheme with or-
der n � 2 ? Such a scheme will try to approximate derivatives which do not exist. At
the times of nondifferentiability, it may introduce in the solution artificial unbounded
terms creating oscillations, etc., see Vola et al. (1998). In summary, higher order nu-
merical schemes are inadequate for time-stepping discretization of NSDS with state
jumps, i.e., in particular measure differential inclusions as (9.60). To say nothing of
DIs whose solutions are distributions of higher degree, see Chaps. 5 and 11.

Remark 9.26. Many of the results which are stated in this chapter, say that one may
extract a subsequence from the sequence {xN(·)}N∈IN, that converges towards a limit
that is a solution of the continuous time DI. Roughly speaking, the proofs are made
of three main steps: (i) derive various upper bounds on the solution of the discrete
inclusion and its derivative and their variations (steps (a)–(d) in Theorem 9.24), (ii)
use various forms of the Arzela–Ascoli, Banach–Alaoglu theorems, which allow one
to extract convergent subsequences (steps (e) and (f) in Theorem 9.24), (iii) prove
that the limit of the subsequence is a solution of the continuous-time DI (step (g) in
Theorem 9.24). Step (iii) is not the most easy one.

9.4.2 Practical Implementation of the Catching-up Algorithm

The catching-up algorithm as stated in (9.62) cannot be directly implemented. In
order to achieve this, one needs to perform further steps. Suppose that K(t) = {x ∈
IRn | Cx + D(t) � 0} for some constant matrix C ∈ IRm×n and a time-varying vector
D(t) ∈ IRm. Using Proposition A.3 we may rewrite the sweeping process as the LCS

⎧⎨
⎩
−ẋ(t) = CTλ (t)

0 � λ (t)⊥Cx(t)+ D(t) � 0
(9.63)

where the multiplier λ (t) is the equivalent of a selection as in ordinary differential in-
clusions. The time-discretization of this gradient LCS with a backward Euler scheme
gives ⎧⎨

⎩
xk+1− xk = hCTλk+1

0 � λk+1 ⊥Cxk+1 + Dk+1 � 0
(9.64)
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After few manipulations one obtains the following LCP

0 � λk+1 ⊥ hCCTλk+1 +Cxk + Dk+1 � 0 (9.65)

whose unknown is λk+1 and whose matrix is the symmetric semi-positive definite
matrix hCCT . It is noteworthy that usually one may have m much larger than n, so
that CCT is not full rank. Some care has to be taken in order to solve (9.65). One
may have a look at Sect. 12.4 for an overview of complementarity problems and
their solvers. In particular QP solvers may be quite useful in this symmetric PSD
context, see Sect. 12.4.5.

Remark 9.27. Recall from Sect. 4.2.3 that in case a positive real constraint is im-
posed, close relationships exist between the sweeping process and LCS. In such a
case the LCS may be recast after a suitable state vector change, into gradient com-
plementarity systems, which in turn may be rewritten as an inclusion into a normal
cone. We therefore conclude that the first-order sweeping process discretization, and
the material that follows in Sect. 9.5, are very similar. The discrepancies are that the
catching-up algorithm does not consider nonzero vector fields; however, it does not
need Assumptions 13 and 14, and the complementarity function w(·) may depend
explicitly on time.

9.4.3 Time-Independent Convex Set K

In the case of a time-independent convex set K, the sweeping process (9.60) is of poor
interest. The solution can only have a jump at the initial time if the initial condition
does not satisfy the inclusion into K, i.e., x0 �∈ K. In this case, the problem can be
viewed as a sweeping with a convex set which moves at the initial time from a convex
set containing x0, to K.

The case of a time-independent convex set is more interesting if nontrivial terms
are added. Let us recall now the UDI (2.47), i.e.,

−(ẋ(t)+ f (x(t))+ g(t))∈ NK(x(t)), x(0) = x0. (9.66)

Mimicking (9.61), the inclusion can be discretized as

−(xk+1− xk)+ h( f (xk+1)+ g(tk+1)) = μk+1 ∈ NK(xk+1). (9.67)

In this discretization, we have chosen to evaluate the measure dx by the approximated
value μk+1. If the initial condition does not satisfy the inclusion at the initial time,
the jump in the state can be treated in a consistent way.

If the constant set is equal to K = IRn
+, the previous problem can be written as a

nonlinear complementarity problem:
⎧⎪⎨
⎪⎩

(xk+1− xk)−h( f (xk+1)+ g(tk+1)) = μk+1

0 � xk+1 ⊥ μk+1 � 0

(9.68)
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and if the term f (x) is linear, i.e., f (x) = Ax, we obtain the following LCP(q,M):⎧⎪⎨
⎪⎩

(In−hA)xk+1− (xk + hg(tk+1)) = μk+1

0 � xk+1 ⊥ μk+1 � 0

(9.69)

with M = (In− hA) and q = −(xk + hg(tk+1)). It is noteworthy that the value μk+1
approximates the measure dλ on the time interval [tk, tk+1) rather than directly the
value of λ , where λ is the multiplier of the LCS, see Sect. 2.6.

Remark 9.28. We will see later in Sect. 9.5 that the discretization proposed in
Camlibel et al. (2002a) for LCS is very similar to this discretization, in particular,
if the set K is polyhedral described by

K = {x ∈ IRn | Cx � 0}. (9.70)

If a constraint qualification holds, the DI (9.66) in the linear case f (x) = −Ax is
equivalent to the following LCS:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t)+CTλ (t)

w(t) = Cx(t)

0 � w(t)⊥ λ (t) � 0.

(9.71)

In this case, the catching-up algorithm yields⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xk+1− xk = hAxk+1 +CTμk+1

wk+1 = Cxk+1

0 � wk+1 ⊥ μk+1 � 0.

(9.72)

9.5 Linear Complementarity Systems with r � 1

What is presented in this section is very close to what has been presented for re-
lay systems in Sect. 9.3.3. In Camlibel et al. (2002a), Heemels (1999), and Camli-
bel (2001), a backward Euler time-stepping method is designed for LCS of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t)+ Bλ (t)

w(t) = Cx(t)+ Dλ (t)

0 � w(t)⊥ λ (t) � 0

x(0) = x0

(9.73)
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with x(t) ∈ IRn, w(t) ∈ IRm. The following fundamental assumption is made: the
quadruple (A,B,C,D) is passive (see, e.g., Brogliato et al., 2007), i.e., there exists
P = PT � 0 such that (

ATP+ PA PB−CT

BTP−C −D−DT

)
� 0. (9.74)

In case the pair (C,A) is observable and the pair (A,B) is controllable, then there
exists P > 0 that solves (9.74). It can be deduced from this linear matrix inequal-
ity that D � 0 and ATP + PA � 0. If D = 0 then it follows that PB = CT, so that
CB = BTPB � 0. The condition that B has full column rank implies that CB > 0.
In other words, the leading Markov parameter of the system (A,B,C,D) is under a
dissipativity assumption either D of CB. Let m = 1: the relative degree r between y
and λ is equal to 0 (if D > 0) or 1 (D = 0 and CB > 0). When m > 1 things become
more complex; however, under some additional assumptions the case m = 1 can be
generalized with a so-called vector relative degree r ∈ IRm (see Sect. 4.3). The fact
that the relative degree satisfies r = 0 or r = 1 is extremely important to understand
the dynamics of the LCS (9.73). This means that apart possibly at the initial time,
solutions will be continuous, see Chaps. 4 and 5 for details.

A backward Euler scheme is applied to evaluate the time derivative ẋ(·) leading
to the following scheme:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xk+1− xk

h
= Axk+1 + Bλk+1

wk+1 = Cxk+1 + Dλk+1

0 � λk+1 ⊥ wk+1 � 0

, (9.75)

which can be reduced to an LCP by a straightforward substitution:

0 � λk+1 ⊥C(In−hA)−1xk +(hC(In−hA)−1B + D)λk+1 � 0. (9.76)

In the sequel, such an LCP will be denoted as (wk+1,λk+1) =LCP(M,bk+1) where

M = hC(In−hA)−1B + D, (9.77)

bk+1 = C(In−hA)−1xk. (9.78)

The scheme to compute the approximating piecewise continuous solutions is devel-
oped in Algorithm 7.

The next result is taken from Camlibel et al. (2002a). The solutions of the
continuous-time LCS are as in Chap. 5, see Theorem 4.7. Therefore they are smooth
everywhere on IR+, except possibly at the initial time (when D > 0 there is no initial
jump). If there is an initial jump, then the multiplier λ is a Dirac measure at time
t = 0. Let us make the following assumptions:



9.5 Linear Complementarity Systems with r � 1 277

Algorithm 7 Time-stepping for passive LCS
Require: t0,T
Require: x0 initial data
Require: h time–step
Ensure: xk,wk,λk solution of (9.75)

k← 0
W← (In−hA)−1

M← hCWB+D
while tk < T do

bk+1← CWxk

wk+1,λk+1← solution of LCP(M,bk+1)
xk+1←W(xk +hBλk+1)
tk+1← tk +h
k← k+1

end while

Assumption 13. There exists h∗ > 0 such that for all h ∈ (0,h∗) the LCP(M,bk+1)
has a unique solution for all bk+1.

Assumption 14. The system (A,B,C,D) is minimal (the pair (A,B) is controllable,
the pair (C,A) is observable) and B is of full column rank.

In particular the approximation of the Dirac measure at t = 0 is given by hλ0δ0.
Assumption 13 secures that Algorithm 7 generates a unique output at each step, for
h > 0 small enough. Let us examine the algorithm in a particular case.

Example 9.29. Let us choose a scalar system, with A = B = C = 1, D = 0, and
the initial data x(−1) = −1. Then we get xk+1 = −(1 + h)−1[hλk+1 + xk], and the
LCP(M,bk+1) is 0 � λk+1 ⊥ (1 + h)−1xk + h(1 + h)−1λk+1 � 0. The algorithm is
initialized at step k =−1 with xN(−1) = x(0) =−1. Simple calculations yield

• k =−1: λ0 = 1
h and x0 = 0,

• k = 0: λ1 = 0 and x1 = 0,
• k � 1: λk = 0 and xk = 0.

Therefore the algorithm produces an initial jump from xN(−1) = −1 to xN(0) = 0,
and after this the solution remains stuck at xk = 0. We notice that λ0 → +∞ as
h→ 0; however, the value hλ0 = 1 is bounded. The obtained solution is quite consis-
tent with the jump rule in (4.9), (4.10), or (4.11). We have QD = Q0 = IR+ and
Q∗D = IR+. Thus (4.9) is the LCP: 0 � λ0 ⊥ x(0−) + λ0 � 0, whose solution is
λ0 = 1 with the above choice of the initial data. From Theorem 4.7 the initial jump is
such that x(0+) = x(0−)+λ0 = 0. The numerical method produces the right initial
jump.

Let us now state a convergence result (Camlibel et al., 2002a). The interval
of integration is [0,T ], T > 0. The convergence is understood as limh→0〈xN(t)−
x(t),ϕ(t)〉 = 0 for all ϕ ∈L 2([0,T ]; IRn) and all t ∈ [0,T ], which is the weak con-
vergence in L 2([0,T ]; IRn).



278 9 Time-Stepping Schemes for Systems with AC Solutions

Theorem 9.30. Consider the LCS in (9.73) with D � 0 and let Assumption 13 hold.
Let (λN

k ,xN
k ,wN

k ) be the output of Algorithm 7, with the initial impulsive term being
approximated by (hλ0,hx0,hw0). Assume that there exists a constant α > 0 such that
for h > 0 small enough,one has ||hλ0|| � α and ||λN

k || � α for all k � 0. Then for
any sequence {hk}k�0 that converges to zero, one has the following:

(i) There exists a subsequence {hkl} ⊆ {hk}k�0 such that ({λN}kl ,{wN}kl ) con-
verges weakly to some (λ ,w) and {xN}kl converges to some x(·).

(ii) The triple (λ ,x(·),w) is a solution of the LCS in (9.73) on [0,T ] with initial
data x(0) = x0.

(iii) If the LCS has a unique solution for x(0) = x0, the whole sequence
({λN}k,{wN}k) converges weakly to (λ ,w) and the whole sequence {xN}k converges
to x(·).

If the quadruple (A,B,C,D) is such that Assumption 14 holds and is passive, then
(iii) holds.

We emphasize the notation x(·) since the solutions are functions of time, whereas the
notation λ and w means that these have to be considered as measures. To be quite
rigorous we should have chosen such a notation in (9.73).

Remark 9.31. As seen on the simple example, the initial value of the multiplier λ
may be unbounded. If λ has a unique atom at t = 0, this is not very bothering for
the implementation. However, if the system undergoes repeated state jumps (when
for instance an external excitation is present as in (4.7)), this becomes untractable in
practice. Then, as we already said in Chap. 1, a better way to implement the algorithm
is to calculate hλk, and not λk. This is what is done in the time-discretization of the
first-order sweeping process.

In the case D > 0 (relative degree 0), the LCS is equivalent to a standard system
of ODEs with a Lipschitz-continuous vector field (see Goeleven & Brogliato, 2004,
remark 10).5 The result of convergence is then the standard result of convergence
for the Euler backward scheme. In the case D � 0 (if m = 1 this is a relative degree
equal to 1), the initial condition must satisfy the unilateral constraints w0 = Cx0 �
0. Otherwise, the approximation

xk+1− xk

h
has no chance to converge if the state

possesses a jump.

Remark 9.32. Following Remark 9.28, we can note some similarities with the
catching-up algorithm. Two main differences have, however, to be noted:

• The first one is that the sweeping process can be equivalent to an LCS under the
condition C = BT. In this way, the previous time-stepping scheme extends the
catching-up algorithm to more general systems.

• The second major discrepancy is as follows. The catching-up algorithm does not
approximate the time derivative ẋ(·) as

ẋ(t)≈ x(t + h)− x(t)
h

, (9.79)

5 As a simple consequence of (A.8) or of Theorem B.3.
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but it approximates the measure of the time interval by

dx((t,t + h]) = x+(t + h)− x+(t). (9.80)

This difference leads to a consistent time-stepping scheme if the state pos-
sesses an initial jump. A direct consequence is that the primary variable
μk+1 in the catching-up algorithm is homogeneous to a measure of the time
interval.

We will see in Chap. 11 some examples of systems with relative degree r � 3 where
the scheme (9.75)–(9.76) does not work at all due to the fact that the solutions are
strongly nonsmooth (they are distributions of degree � 2, see Chap. 5).

Remark 9.33. In the case of a relative degree 0, the following scheme based on a
θ -method (θ ∈ [0,1]) should also work:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xk+1− xk

h
= A(θxk+1 +(1−θ )xk)+ B(θλk+1 +(1−θ )λk)

wk+1 = Cxk+1 + Dλk+1

0 � λk+1 ⊥ wk+1 � 0

(9.81)

because a continuously differentiable trajectory is expected. It has been successfully
tested on nonsmooth electrical circuits of relative degree 0, in the semi-implicit case
θ ∈ [1/2,1] (Denoyelle & Acary, 2006). An interesting feature of such θ -methods is
the energy-conserving property that they exhibit for θ = 1/2. We will see in the fol-
lowing section that the scheme can be viewed as a special case of the time-stepping
scheme proposed in Pang & Stewart (in press).

9.6 Differential Variational Inequalities

In Pang & Stewart (in press), several time-stepping schemes are designed for DVI
which are separable in λ :

ẋ(t) = f (t,x(t))+ B(x(t),t)λ (t), (9.82)

λ (t) = SOL(K,G(t,x(t))+ F(·)). (9.83)

We recall that the second equation means that λ (t) ∈ K is the solution of the follow-
ing VI:

(v−λ (t))T(G(t,x(t))+ F(λ (t))) � 0,∀v ∈ K. (9.84)

Two cases are treated with a time-stepping scheme: the initial value problem
(IVP) and the boundary value problem (BVP).
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9.6.1 The Initial Value Problem (IVP)

Let us start with the initial value problem:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = f (t,x(t))+ B(x(t), t)λ (t)

λ (t) = SOL(K,G(t,x(t))+ F(·))

x(0) = x0

. (9.85)

The proposed time-stepping method is given as follows:

xk+1− xk = h [ f (tk,θxk+1 +(1−θ )xk)+ B(xk,tk)λk+1] , (9.86)

λk+1 = SOL(K,G(tk+1,xk+1)+ F(·)). (9.87)

If θ = 0, an explicit discretization of ẋ(·) is realized leading to the one-step nons-
mooth problem

xk+1 = xk + h [ f (tk,xk)+ B(xk,tk)λk+1] , (9.88)

where λk+1 solves the VI(K,Fk+1) with

Fk+1(λ ) = G(tk+1,h [ f (tk,xk)+ B(xk,tk)λ ])+ F(λ ). (9.89)

In the last VI, the value λk+1 can be evaluated in an explicit way with respect to xk+1.
It is noteworthy that even in the explicit case, the VI is always solved in an implicit
way, i.e., for xk+1 and λk+1.

If θ ∈ (0,1], we obtain a semi-implicit method where the pair (uk+1,xk+1) solves
the VI(IRn×K,Fk+1) with

Fk+1(x,λ ) =

⎡
⎣ x− xk−h [ f (tk,θx +(1−θ )xk)+ B(xk, tk)λ ]

G(tk+1,x)+ F(λ )

⎤
⎦ . (9.90)

In Pang & Stewart (in press), the convergence of the semi-implicit case is proved.
For this, a continuous piecewise linear function xN(·) is built by interpolation of the
approximate values xk,

xN(t) = xk +
t− tk

h
(xk+1− xk),∀t ∈ (tk, tk+1], (9.91)

and a piecewise constant function λN is built such that

λN(t) = λk+1,∀t ∈ (tk,tk+1]. (9.92)

It is noteworthy that the approximation xN(·) is constructed as a continuous function
but that λN(·) may be discontinuous.
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The existence of a subsequence of λN ,xN denoted by λNν ,xNν such that

• xNν converges uniformly to x̂ on [0,T ],
• λNν converges weakly to λ̂ in L 2((0,T ); IRn)

is proved under the following assumptions:

1. f (·) and G(·) are Lipschitz continuous on Ω= [0,T ]× IRn.
2. B(·) is a continuous bounded matrix-valued function on Ω.
3. K is closed and convex (not necessarily bounded).
4. F(·) is continuous.
5. SOL(K,q + F) �= /0 and convex such that ∀q ∈ G(Ω), the following growth con-

dition holds:

∃ρ > 0,sup{‖λ‖ | λ ∈ SOL(K,q + F)}� ρ(1 +‖q‖). (9.93)

This assumption is used to prove that a pair (λk+1,xk+1) exists for the VI (9.90).
This assumption of the type “growth condition” is quite usual to prove the
existence of solutions of VIs with a fixed-point theorem (see Facchinei &
Pang, 2003).

Furthermore, under either one of the following two conditions:

• F(λ ) = Dλ (i.e., linear VI) for some positive semi-definite matrix, D,
• F(λ ) = Ψ(Eλ ), where Ψ is Lipschitz continuous, and there exists c > 0 such

that
‖Eλk+1−Eλk‖� ch, (9.94)

all limits (x̂, λ̂ ) are weak solutions of the initial value DVI.
This proof of convergence provides us with an existence result for such DVIs

separable in λ .

Remark 9.34. The linear growth condition which is a strong assumption in most of
the practical cases can be dropped. In this case, some monotonicity assumption
has to be made on F(·) and a strong monotonicity assumption on the map λ �→
G(t,x)◦(r+B(t,x)λ ) for all t ∈ [0,T ],x∈ IRn,r ∈ IRn. We refer to Pang & Stewart (in
press) for more details. If G(x,t) = Cx, the last assumption means that CB is positive
definite.

9.6.2 The Boundary Value Problem

Let us consider now the boundary value problem with linear boundary function
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = f (t,x(t))+ B(x(t), t)λ (t)

λ (t) = SOL(K,G(t,x(t))+ F(·))

b = Mx(0)+ Nx(T )

.
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The time-stepping proposed by Pang & Stewart (in press) is as follows:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xk+1− xk = h [ f (tk,θxk+1 +(1−θ )xk)+ B(xk,tk)λk+1] ,

k ∈ {0, . . . ,N−1}

λk+1 = SOL(K,G(tk+1,xk+1)+ F(·)), k ∈ {0, . . . ,N−1}

(9.95)

plus the boundary condition

b = Mx0 + NxN . (9.96)

The system is a coupled and large size VI for which the numerical solution is not
trivial. The existence of the discrete-time trajectory is ensured under the following
assumption:

1. F(·) monotone and VI solutions have linear growth.
2. The map λ �→ G(t,x)◦ (r + B(t,x)λ ) is strongly monotone.
3. M + N is nonsingular and satisfies

exp(Tψx) < 1 +
1

‖(M + N)−1N‖ ,

where ψx > 0 is a constant derived from problem data.

The convergence of the discrete-time trajectory is proved if F(·) is linear.

9.6.2.1 Generalized LCS with D = 0 and B = CT

In the case of a generalized LCS with the condition D = 0 and B = CT, one obtains
the following discretized LEVI:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xk+1− xk = h
[
p + Aθxk+1 + A(1−θ )xk +CTλk+1

]
,

k ∈ {0, . . . ,N−1}

K � λk+1 ⊥ q +Cxk+1 ∈ K∗
b = Mx0 + NxN

. (9.97)

The convergence theorem is obtained under the following assumptions:

• q ∈C.IRn + K◦.
• M + N is nonsingular.
• C(M + N)−1(b + N.IRn)⊂ K◦.

• exp(Tψx) < 1 +
1

‖(M + N)−1N‖ , ψx > 0,

It is noteworthy that these results are among the first on the BVP for a special
case of nonsmooth dynamical systems.
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9.7 Summary of the Main Ideas

Both in this chapter and in Chap. 7, we have reviewed most of the methods which
allow one to simulate nonsmooth dynamical systems with AC solutions. Let us try to
provide a general picture of these methods, with the simplest example of a Filippov’s
inclusion, i.e.,

ẋ(t) ∈−sgn(x(t)). (9.98)

As we already pointed out, this is an interesting example since it belongs to sev-
eral subclasses of differential inclusions (Filippov’s, maximal monotone, convex and
compact sets F(x), etc.). We briefly examined the θ -method for this inclusion in
Sect. 9.2.4.2. Let us re-examine two ways to discretize (9.98):

xk+1− xk =−h sgn(xk+1) (the implicit method) (9.99)

and
xk+1− xk =−h sgn(xk) (the explicit method). (9.100)

The implicit method in (9.99) consists in determining the intersection of two graphs:
the graph of the single-valued mapping z(xk+1) = xk+1− xk that is a straight line and
the graph of the multivalued mapping xk+1 �→ −h sgn(xk+1). One easily obtains⎧⎨

⎩
|xk|� h =⇒ xk+1 = xk

xk > h =⇒ xk+1 = xk−h
xk <−h =⇒ xk+1 = xk + h

. (9.101)

Actually (see Sect. 9.3.3, see also Sect. 1.2) discretizing this way is equivalent to
working in a complementarity formalism, i.e., to look for a multiplier λk+1 at each
step. Convergence results have been proved. We may therefore consider the implicit
method as a “dual” method, in which mode switches are triggered from the value
of a suitable Lagrange multiplier. It is noteworthy here that this general feature is
also shared by Stewart’s event-driven method of Sect. 7.1.2. As an example we may
consider x0 = 2h > 0. Then xk = h for all k � 1. If x0 =−2h then xk = h for all k � 1.
Filippov’s solution is well approximated. The implicit way of discretizing Coulomb
model has been rediscovered in Kikuuwe et al. (2005, (14)), where several compar-
isons with other models prove its superiority (sticking in finite time, no oscillations
of the contact force). It is often pointed out that extension towards multiple fric-
tional contacts is hard, because the events detection becomes cumbersome. However,
the use of the complementarity formalism and of LCPs permits to overcome such
difficulties.

Let us now deal with (9.100). In a sense, one may see the explicit method as a
method that uses the value of a multiplier at the foregoing step. Consider x0 = 2h.
Then x1 = h and x2 = h− h = 0. At this stage we encounter a problem that was
absent in the implicit method: 0 does not exist on a computer, so that x2 has to be
approximated by some ε . One solution is to define a layer around 0 within which
some kind of stabilization is performed, see Leine’s method in Sect. 9.3. This, how-
ever, does not extend easily to higher codimension switching surfaces. Basic time-
stepping schemes work as follow: at step k test whether |xk| � ε . If yes, then pick
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any ξk ∈ [−h,h] and compute xk+1 = xk +ξk. If no, advance xk+1 = xk±1. Then redo
the test. According to the theoretical results (see Theorem 9.5), this defines a conver-
gent scheme. However, in practice and for h > 0 this results in oscillations around
zero and untimely switches of the multiplier, see Fig. 1.12 (see also Fig. 1 in Galias
& Yu (2007), where an explicit Euler time-stepping scheme is applied to a sliding-
mode controlled feedback system: the discretized trajectories oscillate around the
switching surface during the sliding motion). Event-driven strategies, with accurate
zero detections, will suffer the same drawback. We conclude that mode switch driven
explicitly by the state does not represent a good solution. This is certainly the most
important fact to be retained from Chaps. 7 and 9.

Higher order methods (Runge–Kutta, multistep) may improve the quality of the
results when the instants of nondifferentiability are rare. Then indeed there are long
enough periods during which the algorithm behaves as for a smooth system. The
same type of behavior is observed with event-driven schemes, which should then be
preferred if high accuracy is needed between the nonsmooth events.
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Time-Stepping Schemes for Mechanical Systems

This chapter is dedicated to the presentation of time-stepping schemes for
mechanical systems with unilateral constraints and/or friction. Roughly speaking,
these methods consist in a time-discretization of the dynamics which can be ad-
vanced from step k to step k + 1 by solving specific one-step nonsmooth problems
(complementarity problems). The one-step nonsmooth problems may be thought
of as the equivalent of any Newton method one needs to update an implicit Euler
method for ODEs. Since solving one-step nonsmooth problems is a major issue, a
whole part of the book is dedicated to it: Part III. In this chapter we first present
the discretized version of Moreau’s sweeping process (of second order), without and
with friction. Then some other time-stepping algorithms are examined. Summaries
of some numerical experiments that have been published in the related literature are
presented in order to provide the reader with a rough idea on the capabilities of such
time-stepping schemes.

10.1 The Nonsmooth Contact Dynamics (NSCD) Method

In this section, a time-discretization method of the Lagrange dynamical equation
(3.115), consistent with the nonsmooth character of the solution, is presented. It
is assumed in this section, as in the other sections, that v+(·) = q̇+(·) is a locally
bounded variation function. The equation of motion reads as,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M(q(t))dv + N(q(t),v+(t))dt + Fint(t,q(t),v+(t))dt = Fext(t)dt + dr

v+(t) = q̇+(t)

q(0) = q0 ∈ C (0), q̇(0−) = q̇0.

(10.1)

where C (t) is defined in (3.16)
We also assume that Fint(·) and Fext(·) are continuous with respect to time. This

assumption is made for the sake of simplicity to avoid the notation F+
int(·) and F+

ext(·).
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Finally, we will condense the nonlinear inertia terms and the internal forces to lighten
the notation. We obtain⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M(q(t))dv+ F(t,q(t),v+(t))dt = Fext(t)dt + dr

v+(t) = q̇+(t)

q(0) = q0 ∈ C (0), q̇(0−) = q̇0.

(10.2)

The NSCD method, also known as the contact dynamics (CD), is due to the sem-
inal works of J.J. Moreau (1983, 1985a, 1988b, 1994b, 1999) and M. Jean (1988,
1999) (see also Jean & Pratt 1985; Jean & Moreau 1991, 1992). A lot of improve-
ments and variants have been proposed over the years. In this section, we take lib-
erties with these original works, but we choose to present a version of the NSCD
method which preserves the essential of the original work. Some extra developments
and interpretations are added which are only under our responsibility. To come back
to the source of the NSCD method, we encourage to read the above references.

10.1.1 The Linear Time-Invariant Nonsmooth Lagrangian Dynamics

For the sake of simplicity of the presentation, the linear time-invariant case is con-
sidered first. The nonlinear case will be examined later in this chapter:⎧⎪⎨

⎪⎩
M dv +(Kq(t)+Cv+(t))dt = Fext(t)dt + dr

v+(t) = q̇+(t).
(10.3)

10.1.1.1 Time-Discretization of the Dynamics

Integrating both sides of this equation over a time step (tk, tk+1] of length h > 0, one
obtains⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫
(tk,tk+1]

M dv +
∫ tk+1

tk
(Cv+(t)+ Kq(t))dt =

∫ tk+1

tk
Fext dt +

∫
(tk,tk+1]

dr ,

q(tk+1) = q(tk)+
∫ tk+1

tk
v+(t)dt.

(10.4)

By definition of the differential measure dv, we obtain
∫

(tk ,tk+1]
M dv = M

∫
(tk ,tk+1]

dv = M (v+(tk+1)− v+(tk)). (10.5)

Note that the right velocities are involved in this formulation. The impulse
∫

(tk,tk+1]
dr

of the reaction on the time interval (tk,tk+1] emerges as a natural unknown. The
equation of the nonsmooth motion can be written under an integral form as:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M (v(tk+1)− v(tk)) =
∫ tk+1

tk
(−Cv+(t)−Kq(t)+ Fext(t))dt +

∫
(tk,tk+1]

dr ,

q(tk+1) = q(tk)+
∫ tk+1

tk
v+(t)dt.

(10.6)

Choosing a numerical method boils down to choosing a method of approximation
for the remaining integral terms. Since discontinuities of the derivative v(·) are to be
expected if some shocks are occurring, i.e., dr has some atoms within the interval
(tk,tk+1], it is not relevant to use high-order approximations integration schemes for
dr (this was pointed out in Remark 9.25). It may be shown on some examples that,
on the contrary, such high-order schemes may generate artifact numerical oscillations
(see Vola et al., 1998).

The following notation will be used:

• qk is an approximation of q(tk) and qk+1 is an approximation of q(tk+1).
• vk is an approximation of v+(tk) and vk+1 is an approximation of v+(tk+1).

• pk+1 is an approximation of
∫

(tk,tk+1]
dr.

A popular first-order numerical scheme, the so-called θ -method, is used for the term
supposed to be sufficiently smooth:

∫ tk+1

tk
Cv + Kqdt ≈ h [θ (Cvk+1 + Kqk+1)+ (1−θ )(Cvk + Kqk)]

∫ tk+1

tk
Fext(t)dt ≈ h [θ (Fext)k+1 +(1−θ )(Fext)k] .

The displacement, assumed to be absolutely continuous, is approximated by

qk+1 = qk + h [θvk+1 +(1−θ )vk] .

Taking into account all these discretizations, the following time-discretized equation
of motion is obtained:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M(vk+1− vk)+ h [θ (Cvk+1 + Kqk+1)+ (1−θ )(Cvk + Kqk)] =

= h [θ (Fext)k+1 +(1−θ )(Fext)k]+ pk+1

qk+1 = qk + h [θvk+1 +(1−θ )vk] .

(10.7)

Finally, introducing the expression of qk+1 in the first equation of (10.7), one obtains:
[
M + hθC+ h2θ 2K

]
(vk+1− vk) =−hCvk−hKqk−h2θKvk

+h [θ (Fext)k+1)+ (1−θ )(Fext)k]+ pk+1 , (10.8)
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which can be written as:

vk+1 = vfree + M̂−1 pk+1 , (10.9)

where

• the matrix
M̂ =

[
M + hθC+ h2θ 2K

]
(10.10)

is usually called the iteration matrix.
• The vector

vfree = vk + M̂−1
[−hCvk−hKqk−h2θKvk

+h [θ (Fext)k+1)+ (1−θ )(Fext)k]]
(10.11)

is the so-called “free” velocity, i.e., the velocity of the system when reaction
forces are null.

10.1.1.2 Comments

Let us make some comments on the above developments:

• The iteration matrix M̂ =
[
M + hθC+ h2θ 2K

]
is supposed to be invertible, since

the mass matrix M is usually positive definite and h is supposed to be small
enough. The matrices C and K are usually semi-definite positive since rigid mo-
tions are allowed to bodies.

• When θ = 0, the θ -scheme is the explicit Euler scheme. When θ = 1, the θ -
scheme is the fully implicit Euler scheme. When dealing with a plain Ordinary
Differential Equation (ODE)

Mq̈(t)+Cq̇(t)+ Kq(t) = F(t) (10.12)

the θ -scheme is unconditionally stable for 0.5 < θ � 1. It is conditionally stable
otherwise.

• Equation (10.9) is a linear form of the dynamical equation. It appears as an affine
relation between the two unknowns, vk+1 that is an approximation of the right
derivative of the Lagrange variable at time tk+1 and the impulse pk+1. Notice
that this scheme is fully implicit. Nonsmooth laws have to be treated by implicit
methods.

• From a numerical point of view, two major features appear. First, the different
terms in the numerical algorithm will keep finite values. When the time step h
vanishes, the scheme copes with finite jumps. Secondly, the use of differential
measures of the time interval (tk,tk+1], i.e., dv((tk,tk+1]) = v+(tk+1)− v+(tk) and
dr((tk,tk+1]), offers a rigorous treatment of the nonsmooth evolutions. It is to be
noticed that approximations of the acceleration are ignored.

These remarks on the contact dynamics method might be viewed only as some
numerical tricks. In fact, the mathematical study of the second-order MDI by Moreau
provides a sound mathematical ground to this numerical scheme. It is noteworthy that
convergence results have been proved for such time-stepping schemes in Monteiro
Marques (1993), Stewart (1998), Mabrouk (1998), and Dzonou & Monteiro Mar-
ques (2007), see below.
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10.1.2 The Nonlinear Nonsmooth Lagrangian Dynamics

10.1.2.1 Time-Discretization of the Dynamics

Starting from the nonlinear dynamics (10.2), the integration of both sides of this
equation over a time step (tk,tk+1] of length h > 0 yields
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
(tk ,tk+1]

M(q)dv +
∫ tk+1

tk
F(t,q(t),v+(t))dt =

∫ tk+1

tk
Fext(t)dt +

∫
(tk,tk+1]

dr ,

q(tk+1) = q(tk)+
∫ tk+1

tk
v+(t)dt.

(10.13)

The first term is generally approximated by
∫

(tk,tk+1]
M(q)dv≈M(qk+γ )(vk+1− vk), (10.14)

where qk+γ generalizes the standard notation for γ ∈ [0,1] such that

qk+γ = (1− γ)qk + γ qk+1. (10.15)

The a priori smooth terms are evaluated with a θ -method, chosen in this context for
its energy conservation ability,

∫ tk+1

tk
F(t,q,v)dt ≈ hF̃k+θ , (10.16)

where F̃k+θ is an approximation with the following dependencies

F̃(tk,qk,vk,tk+1,qk+1,vk+1,tk+θ ,qk+θ ,vk+θ ).

The mid-values tk+θ ,qk+θ ,vk+θ are defined by
⎧⎨
⎩

tk+θ = θ tk+1 +(1−θ )tk
qk+θ = θqk+1 +(1−θ )qk

vk+θ = θvk+1 +(1−θ )vk

, θ ∈ [0,1]. (10.17)

Remark 10.1. The choice of the approximated function F̃(·) strongly depends on
the nature of the internal forces that are modeled. For the linear elastic behavior of
homogeneous continuum media, this approximation can be made by

F̃k+θ =
1
2

K : [E(qk)+ E(qk+1)] :F(qk+1/2), (10.18)

where E(·) is the Green–Lagrange strain tensor, which leads to an energy conserving
algorithm as in Simo & Tarnow (1992). For nonlinear elastic other smooth nonlinear
behaviors, we refer to the work of Gonzalez (2000), Laursen & Meng (2001) and
references therein for the choice of the discretization and the value of θ .
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The displacement, assumed to be absolutely continuous, is approximated by

qk+1 = qk + hvk+θ .

The following nonlinear time-discretized equation of motion is obtained:⎧⎪⎨
⎪⎩

M(qk+γ)(vk+1− vk)+ hF̃k+θ = pk+1

qk+1 = qk + hvk+θ

. (10.19)

In its full generality and at least formally, substituting the expression of qk+γ ,qk+1,
and qk+θ , the first line of the problem can be written under the form of a residue R
depending only on vk+1 such that

R(vk+1) = pk+1. (10.20)

In the last expression, we have omitted the dependence to the known values at the
beginning of the time step, i.e., qk and vk.

10.1.2.2 Linearizing the Dynamics

The system of equations (10.20) for vk+1 and pk+1 can be linearized yielding a
Newton’s procedure for solving it. This linearization needs the knowledge of the
Jacobian matrix ∇R(·) with respect to its argument to construct the tangent linear
model.

Let us consider that we have to solve the following equations:

R(u) = 0 (10.21)

by a Newton’s method where

R(u) = M(qk+γ)(u− vk)+ hF̃k+θ . (10.22)

The solution of this system of nonlinear equations is sought as a limit of the sequence
{uτk+1}τ∈IN such that

⎧⎪⎨
⎪⎩

u0
k+1 = vk

RL(uτ+1
k+1) = R(uτk+1)+∇R(uτk+1)(u

τ+1
k+1−uτk+1) = 0.

(10.23)

In practice, all the nonlinearities are not treated in the same manner and the Jacobian
matrices for the nonlinear terms involved in the Newton’s algorithm are only com-
puted in their natural variables. In the following, we consider some of the most
widely used approaches.

The Nonlinear Mass Matrix

The derivation of the Jacobian of the first term of R(·) implies to compute

∇u
(
M(qk+γ (u))(u− vk)

)
with qk+γ(u) = qk + γh[(1−θ )vk +θu]. (10.24)
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One gets

∇u
(
M(qk+γ (u))(u− vk)

)
= M(qk+γ (u))+

[
∇uM(qk+γ (u))

]
(u− vk)

= M(qk+γ (u))+
[
hγθ∇qM(qk+γ (u))

]
(u− vk).

(10.25)

Remark 10.2. The notation ∇uM(qk+γ (u))(u− vk) is to be understood as follows:

∇uM(qk+γ (u))(u− vk) =
∂
∂u

[M(qk+γ (u))(u− vk)]

which is denoted as
∂Mi j

∂ql (qk+γ(u))(ul− vl
k) in tensorial notation. "#

A very common approximation consists in considering that the mass matrix
evolves slowly with the configuration in a single time step, that is, the term
∇qM(qk+γ ) is neglected and one gets,

∇u(M(qk+γ (u))(u− vk))≈M(qk+γ(u)). (10.26)

The Jacobian matrix ∇R(·) is evaluated in uτk+1 which yields for the equation (10.26)

∇u(M(qk+γ )(uτk+1− vk))≈M(qk + γh[(1−θ )vk +θuτk+1]). (10.27)

The prediction of the position which plays an important role will be denoted by

q̃τk+1 = qk + γh[(1−θ )vk +θuτk+1]. (10.28)

Very often, the matrix M(qk+γ) is only evaluated at the first Newton’s iteration
with u0

k+1 = vk leading the approximation for the whole step:

M(qk + γh[(1−θ )vk +θuτk+1])≈M(qk + hγvk). (10.29)

Another way to interpret the approximation (10.29) is to remark that this evaluation
is just an explicit evaluation of the predictive position (10.28) given by θ = 0:

q̃k+1 = qk + hγvk. (10.30)

Using this prediction, the problem (10.19) is written as follows:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M(q̃k+1)(vk+1− vk)+ hF̃k+θ = pk+1

qk+1 = qk + hvk+θ

q̃k+1 = qk + hγvk.

(10.31)
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The Nonlinear Term F(t,q,v)

The remaining nonlinear term is linearized providing the Jacobian matrices of
F(t,q,v) with respect to q and v. This expression depends strongly on the choice
of the approximation F̃k+θ . Let us consider a pedagogical example, which is not
necessarily the best as the Remark 10.1 suggests but which is one of the simplest,

F̃k+θ = (1−θ )F(tk,qk,vk)+θF(tk+1,qk+1,vk+1). (10.32)

The computation of the Jacobian of F̃k+θ (t,q(u),u) for

q(u) = qk + h[(1−θ )vk +θu]

is given for this example by

∇uF̃k+θ (t,q,u) = θ∇uF(t,q(u),u)

= θ∇qF(tk+1,q(u),u)∇uq(u)+θ∇uF(t,q(u),u)

= hθ 2∇qF(t,q(u),u)+θ∇uF(t,q(u),u).

(10.33)

The standard tangent stiffness and damping matrices Kt and Ct are defined by

Kt (t,q,u) = ∇qF(t,q,u)

Ct(t,q,u) = ∇uF(t,q,u).
(10.34)

In this case, the Jacobian of F̃k+θ (t,q(u),u) may be written as

∇uF̃k+θ (t,q,u) = hθ 2Kt(t,q,u)+θCt(t,q,u). (10.35)

The complete Newton’s iteration can then be written as

M̂τ+1
k+1 (uτ+1

k+1−uτk+1) = R(uτk+1)+ pτ+1
k+1, (10.36)

where the iteration matrix is evaluated as

M̂τ+1
k+1 = (M(q̃τk+1)+ h2θ 2Kt(tk+1,q

τ
k+1,u

τ
k+1)+θhCt(t,qτk+1,u

τ
k+1)) (10.37)

(compare with (10.10)).

Remark 10.3. The choice of θ = 0 leads to an explicit evaluation of the position and
the nonlinear forces terms. This choice can be interesting if the time step has to be
chosen relatively small due to the presence a very rapid dynamical process. This
can be the case in crashes applications or in fracture dynamics (Acary & Monerie
(2006)). In this case, the iteration matrix reduces to M̂τ+1

k+1 = M(q̃τk+1) avoiding the
expensive evaluation of the tangent operator at each time step.

This choice must not be misunderstood. The treatment of the nonsmooth dynam-
ics continues to be implicit.
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10.1.3 Discretization of Moreau’s Inclusion

In Generalized Coordinates

Let us propose the following:
⎧⎪⎪⎨
⎪⎪⎩

pk+1 ∈ −NTC (q̃k+1)

(
vk+1 + evk

1 + e

)

q̃k+1 = qk + hγvk,

(10.38)

where the second equality is just a rewriting of (10.9).
The first equality is a discretization of (3.128). Using (A.8) and the linear

dynamics (10.9), it follows that
⎧⎨
⎩

vk+1 =−evk +(1 + e)proxM̂[TC (q̃k+1);vfree]

q̃k+1 = qk + hvk.
(10.39)

The choice for q̃k is not unique. For instance Moreau takes q̃k+1 = qk + h
2 vk, i.e.,

γ = 1/2 (Moreau, 1999).
When C is finitely represented, the inclusion in a normal cone in the first line

of (10.38) can be rewritten as a complementarity problem. Under some qualifica-
tion constraints (like nonemptiness of the interior of TC (q)), the tangent cone is a
polyhedral cone, since it is either the intersection of half-spaces or the whole ambi-
ent space. Thus the normal cone in the right-hand side of (10.38) is also a convex
polyhedral cone as in (3.132)—in general different from the normal cone to the ad-
missible domain defined in (3.21). When one or several constraints are activated, i.e.,
gα(q̃k+1) < 0 for some values of α ∈ {1, ...,ν}, one may use the representation in
(3.146) to derive the complementarity conditions of this problem (written for eN = 0
in (3.146)).

In Local Coordinates

Recall from Sect. 3.3 that one may also work with the local coordinates that describe
the kinematics at the contacting points between bodies. When the contact reactions
Rα ∈ IR3 are included in Lagrange equations, one obtains (3.77). Then the contact
law is written in terms of the local reactions Rα and the local velocities Uα ∈ IR3.
In such a case, one directly works with complementarity relations. Let us consider
the material of Sect. 3.6.5. The notation used here is the same as in Sect. 3.3. The
following notation is used1 for the local variables setting, where ≈ means “is an
approximation of”:

Uk+1 ≈U+(tk+1),Uk ≈U+(tk),

1 In this paragraph, for simplicity sake, the upper indices α ,β labeling the contacts are some-
times omitted.
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gk+1 ≈ g(tk+1),gk ≈ g(tk),Pk+1 ≈
∫

(tk ,tk+1]
dR.

Following the implicit way of discretizing, the discretization of the kinematic
laws is proposed as follows:

Uα
k+1 = Hα ,T(qk+1) vk+1 , (10.40)

pαk+1 = Hα(qk+1)Pα
k+1 , pk+1 =∑

α
pαk+1

and by analogy with the following formula,

qk+1 = qk + h [θvk+1 +(1−θ )vk] (10.41)

it follows that one has to discretize the gap function as

gαk+1 = gαk + h
[
θUα

Nk+1 +(1−θ )Uα
Nk

]
The local Newton’s law of impact is time-discretized in a fully implicit way

through the complementarity conditions⎧⎨
⎩

If gα(q̃k+1) � 0 then 0 � Pα
N,k+1 ⊥Uα

N,k+1 + eαUα
N,k � 0

If gα(q̃k+1) > 0 then Pα
N,k+1 = 0

(10.42)

where we indicated eα since there is no reason that all restitution coefficients be the
same.

Notice that the evaluation of the gap function at q̃k+1 exactly corresponds to the
evaluation of the tangent cone at q̃k+1.

Remark 10.4. The choice of implicit discretizations is not made randomly. As
demonstrated in Sect. 1.1.6.2, implicit discretizations are the only sound way to dis-
cretize such nonsmooth systems.

Remark 10.5. [Coping with penetration] All the treatments of the unilateral con-
straints are written at the velocity level. We cannot expect the original constraints
at the position to be satisfied exactly. This is the price to pay to be able to integrate
with a time-stepping scheme an evolution on which some impacts are expected. This
question is closely related to the notion of index or relative degree in DAE (Brenan
et al., 1989). As in the DAE theory, several patches can be applied to circumvent the
problem. The Baumgarte stabilization of constraints (Baumgarte, 1972) can be ex-
tended to unilateral constraints. We can also add fictitious multipliers on the position
level to project the local violation of constraints on the constraints. Jean (1999) pro-
posed a clever way to discretize the gap function in order to satisfy the constraints at
the position and the velocity levels at the end of the time step. The consistency of the
gap approximation with unilateral condition means that the discretized gap function

ḡk
Δ= ḡ(q̃k+1) should satisfy the implication2

2 The superscript α is dropped.
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ḡk+1 = 0 and ḡk = 0 ⇒ UN,k+1 = 0. (10.43)

Possible choices are ḡk+1 = g(q̃k+1)+(1−θ )hUN,k+1 and ḡk = g(q̃k)+(1−θ )hUN,k.
Then ḡk+1 is approximately the gap corresponding to the configuration qk+1 +(1−θ )
hvk+1, whereas ḡk is approximately the gap corresponding to the configuration
qk +(1−θ )hvk. By discretizing the “true” gap as above as gk+1 = gk +θhUN,k+1 +
(1− θ )hUN,k it follows that the consistency property is satisfied for ḡ. Clearly the
consistency cannot hold for gk+1 and gk.

Obviously, another solution consists of choosing h > 0 small enough while still
working at the velocity level, so that the penetration is negligible. One may also
project the trajectory on the constraint, from time to time.

10.1.4 Sweeping Process with Friction

The natural framework when friction acts at the contact points is that of local
kinematics, presented in Sect. 10.1.3 in (10.40)–(10.42). The time-discretization of
Coulomb’s model in (3.147) is done as follows

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

If Uα
T,k+1 = 0 then Pα

k+1 ∈ Cα

If Uα
T,k+1 �= 0 then ||Pα

T,k+1||= μα |Pα
N,k+1| and there exists a scalar a � 0

such that Pα
T,k+1 =−aUα

T,k+1
(10.44)

where Cα = {P | ‖PT‖� μαPN}. We note that the time-discretized friction may equiv-
alently be written as

−Uα
T,k+1 ∈ NDα

k+1
(Pα

k+1) (10.45)

with Dα
k+1 = {z ∈ IR2 | ||z|| � μαPα

N,k+1}. The other formulation of the Coulomb’s
model such as (3.152) follows straightforwardly,

Pα
T,k+1 = projDα

k+1
[Pα

T,k+1−ρUα
T,k+1], ρ > 0. (10.46)

A Second-Order Cone Complementarity Problem

The formulation based on the De Saxcé’s bipotential (3.160) takes into account the
unilateral contact and the friction model. The discretization follows the implicit rule
in which we include the restitution law

−(Uα
N,k+1 + eαUα

N,k + μα ||Uα
T,k+1||,Uα

T,k+1)
T ∈ ∂ψC(Pα

k+1). (10.47)

The second-order cone complementarity problem (see (3.164))

Cα ,∗ � [
Uα

N,k+1 + eUα
N,k + μα ||Uα

T,k+1||,Uα
T,k+1

]T ⊥ Pα
k+1 ∈ Cα (10.48)

summarizes the time-discretized unilateral contact with Coulomb’s friction model.
Introducing the modified local velocity as
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Ûα
k+1 =

[
Uα

N,k+1 + eUα
N,k + μα ||Uα

T,k+1||,Uα
T,k+1

]T
(10.49)

the second-order cone complementarity problem may be written as

Cα ,∗ � Ûα
k+1 ⊥ Pα

k+1 ∈ Cα . (10.50)

10.1.5 The One-Step Time-Discretized Nonsmooth Problem

Once the nonsmooth Lagrangian dynamics (Sects. 10.1.1 and 10.1.2) and the
Moreau’s inclusion (Sect. 10.1.3) have been time-discretized, a time-discretized On-
estep Nonsmooth Problem (OSNSP) can be written under various forms depending
mainly on the kind of nonlinearities in the problem and the choices in keeping local
and/or generalized variables.

Two main types of nonlinearities have to be addressed:

• The nonlinearities in the dynamics in the term F(t,q,v) and the mass matrix
M(q). We will call these nonlinearities, global nonlinearities. They usually are
treated differently. The nonlinear inertia terms N(q,v) and the mass matrix M(q)
are often discretized in an explicit way assuming that the configuration does not
evolve too much in a time step. On the contrary, the nonlinear internal forces
Fint(t,q,v) are fully implicitly discretized and subsequently treated by a Newton-
like method.

• The nonlinearities in the constraints, g(q). We will call the nonlinearities the
local nonlinearities. These nonlinearities only depend on the configuration. They
are often treated explicitly assuming once again that the configuration evolves
slowly in a time step.

Three choices in the variables to state the one-step time-discretized can be listed:

• Reduction to the local variables. Using the kinematics law and if the time-
discretized dynamics is either linear or linearized, it is possible to reduce all
the problems in terms of local variables.

• Reduction to the generalized variables. If the Moreau’s differential inclusion or
more generally the frictional contact law is written in terms of generalized co-
ordinates, it is possible to formulate the problems only in terms of generalized
variables.

• The mixed problem with local and generalized variables. In the nonlinear case,
the problem appears naturally as a mixed problem.

We will try in this section to summarize the main kinds of one-step time-discretized
problems mainly depending on the choice of the numerical treatments of the global
and local nonlinearities and the possible reduction to local coordinates.

10.1.5.1 The Linear Time-Invariant Case

In this case, the nonsmooth Lagrangian dynamics and the constraints are assumed to
be linear. We have seen that the linear time-invariant dynamics can be discretized to
obtain
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M̂(vk+1− vfree) = pk+1, (10.51)

where vfree and M̂ are defined in (10.10) and (10.11).
In local coordinates, the discretization of the kinematics law is given by (10.40)

which yields in the linear time-invariant framework

Uα
k+1 = Hα ,T vk+1 , (10.52)

pαk+1 = Hα Pα
k+1 , pk+1 =∑

α
pαk+1 .

Adding the time-discretized contact law with Coulomb’s friction (10.50), the
time-discretized mixed linear Onestep NonSmooth Problem (OSNSP), denoted as
(PML) is obtained

(PML)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M̂(vk+1− vfree) = pk+1 =∑
α

pαk+1

Uα
k+1 = Hα ,T vk+1; pαk+1 = Hα Pα

k+1

If gα(q̃k+1) � 0 then

Ûα
k+1 =

[
Uα

N,k+1 + eUα
N,k + μα ||Uα

T,k+1||,Uα
T,k+1

]T

Cα ,∗ � Ûα
k+1 ⊥ Pα

k+1 ∈ Cα

If gα(q̃k+1) > 0 then Pα
k+1 = 0

Reduction to Local Coordinates

Rewriting the time-discretized dynamics in local coordinates for each α ∈ {1 . . .ν}
leads to

Uα
k+1 = Hα ,TM̂−1∑

β
Hβ Pβ

k+1 + Hα ,Tvfree. (10.53)

More compactly, these equations can be written as

Uα
k+1 = ŴααPk+1 +Uα

locfree, α ∈ {1 . . .ν}, (10.54)

where the so-called Delassus’ operator for the constraints α is equal to

Ŵαα = Hα ,TM̂−1Hα . (10.55)

The local free velocity Uα
locfree represents the velocity that the system would have at

step k + 1 if Pα
k+1 = 0, i.e.,



298 10 Time-Stepping Schemes for Mechanical Systems

Uα
locfree = Hα ,Tvfree + ∑

β �=α
Hα ,TM̂−1Hβ Pβ

k+1

= Hα ,Tvfree + ∑
β �=α

Ŵαβ Pβ
k+1.

(10.56)

The previous equations (10.54) are gathered in the following form for all con-
straints α ∈ {1 . . .ν} thanks to (3.73):

Uk+1 = ŴPk+1 +Ufree. (10.57)

With this notation, the complete Delassus’ operator can be written as

Ŵ = HTM̂−1H. (10.58)

Adding the time-discretized contact law with Coulomb’s friction (10.50), the
time-discretized linear OSNSP, denoted by (PL) is obtained:

(PL)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uk+1 = ŴPk+1 +Ufree

If gα(q̃k+1) � 0 then

Ûα
k+1 =

[
Uα

N,k+1 + eUα
N,k + μα ||Uα

T,k+1||,Uα
T,k+1

]T

Cα ,∗ � Ûα
k+1 ⊥ Pα

k+1 ∈ Cα

If gα(q̃k+1) > 0 then Pα
k+1 = 0

The NSCD method for the linear case is summarized in Algorithm 8.

The Frictionless Case

In the frictionless case, i.e., Pα
T,k+1 = [0,0]T, the problem (PL1) can be further re-

duced. To do this, we decompose Ŵα as:

Ŵα =

⎛
⎝Ŵα

TT Ŵα
TN

Ŵα
NT Ŵα

NN

⎞
⎠ . (10.59)

Let us now construct the Linear Complementarity Problem (LCP) with unknown
Pα

N,k+1. We assume first that there is a single contact α . We denote e3 = (0 0 1)T, so

that Uα
N,k+1 = eT

3Uα
k+1, whereas Pα

k+1 = Pα
N,k+1e3 since the reaction is normal to the

common tangent plane between the bodies.
Consequently we may rewrite (10.54) as

Uα
N,k+1 = eT

3 Ŵαe3Pα
N,k+1 + eT

3 Uα
free = Ŵα

NNPα
N,k+1 +Uα

N,free. (10.60)
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Algorithm 8 NSCD method. Linear case.
Require: M,K,C,Fext linear dynamics (10.3)
Require: Hα ,gα (·), for all α ∈ I = {1 . . .ν} ⊂ IN, kinematic relations (10.52)
Require: e,μ frictional contact law.
Require: t0,T time–integration interval
Require: q0,v0 initial data
Require: h,θ ,γ time-step and integration parameters
Ensure: ({qk},{vk},{pk},{Uk}{Pk}),k ∈ {1,2, . . .}

k← 0
U0← HTv0

// Computation of time independent matrices
M̂← [

M+hθC+h2θ2K
]

// iteration matrix (10.10)

Ŵαβ ←Hα ,TM̂−1Hβ ,(α,β ) ∈ {1 . . .ν}2 // Delassus operator (10.55)

// Time integration
while tk < T do

vfree← vk +M̂−1
[−hCvk−hKqk−h2θKvk +h [θ (Fext)k+1)+(1−θ )(Fext)k]]

// Update of the index set of forecast active constraints
q̃k+1← qk +hγvk

Ia(q̃k+1)← {α ∈ I | gα (q̃k+1) � 0} ⊆ I
//One-step nonsmooth problem update
for α ∈ Ia do

Ufree←HTvfree

Assemble (if necessary) Ŵ with Ŵα ,β ,(α,β ) ∈ I2a
end for
//Resolution of the one-step nonsmooth problem
if Ia �= /0 then

[Uk+1,Pk+1]← solution of OSNSP (PL) (see Chap. 13)
end if
// State update
pk+1← ∑α∈Ia HαPα

k+1

vk+1← vfree +M̂−1pk+1

qk+1← qk +h [θvk+1 +(1−θ )vk]
tk← tk+1

k← k+1
end while

Inserting this into the first line of (10.42) yields the scalar LCP with unknown Pα
N,k+1:

0 � Pα
N,k+1 ⊥ Ŵα

NNPα
N,k+1 +Uα

N,free + eUα
N,k � 0 (10.61)

assuming that gα(q̃k+1) � 0. Let us now deal with the general case of a system with
ν � 2 contacts. The decomposition of Ŵ may be written
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Ŵ =

⎛
⎝ŴTT ŴTN

ŴNT ŴNN

⎞
⎠ . (10.62)

When dealing with frictionless contacts, PT,k+1 = 0 so that inserting (10.62) into
(10.57) we get:

UN,k+1 = ŴNNPN,k+1 +UN,free (10.63)

leading to the time-discretized linear OSNSP without friction, denoted by (PLWF):

(PLWF)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

UN,k+1 = ŴNNPN,k+1 +UN,free

If gα(q̃k+1) � 0 then 0 � Pα
N,k+1 ⊥Uα

N,k+1 + eαUα
N,k � 0

If gα(q̃k+1) > 0 then PN,α
k+1 = 0

10.1.5.2 The Fully Nonlinear Case

In the fully nonlinear case, the time-discretized dynamics yields:

R(vk+1) = pk+1, (10.64)

where R is the nonlinear residue

R(u) = M(qk+γ)(u− vk)+ hF̃k+θ . (10.65)

Adding the time-discretized contact law with Coulomb’s friction (10.50), the
time-discretized mixed nonlinear OSNSP denoted by (PMNL), is obtained:

(PMNL)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(vk+1) = pk+1 =∑
α

pαk+1

Uα
k+1 = Hα ,T(qk + 1) vk+1; pαk+1 = Hα(qk + 1)Pα

k+1

If gα(q̃k+1) � 0 then

Ûα
k+1 =

[
Uα

N,k+1 + eUα
N,k + μα ||Uα

T,k+1||,Uα
T,k+1

]T

Cα ,∗ � Ûα
k+1 ⊥ Pα

k+1 ∈Cα

If gα(q̃k+1) > 0 then Pα ,
k+1 = 0



10.1 The Nonsmooth Contact Dynamics (NSCD) Method 301

10.1.5.3 Linearizing the Dynamics and the Constraints

The linearization of the dynamics by a Newton’s procedure yields the following time-
discretized linearized dynamics in the form

M̂τ+1
k+1 (uτ+1

k+1−uτk+1) = R(uτk+1)+ pτ+1
k+1. (10.66)

The nonlinearity in the kinematics relations is processed in the same manner as
in the mass matrix. Let us consider the function

U(v) = HT(qk+γ (v))v with qk+γ(v) = qk + γh[(1−θ )vk +θv]. (10.67)

The linearization necessitates to compute the Jacobian, ∇U(v), that is3

∇vU(v) = ∇v(HT(qk+γ(v))v)

= ∇v(HT(qk+γ(v)))v + HT(qk+γ(v))

= hθγ∇q(HT(q))v + HT(qk+γ(v)).

(10.68)

As for the mass matrix, the second-order term hθγ∇q(HT(qk+γ(v)))vv is often ne-
glected. One gets for the approximation of the Jacobian

∇vU(v) = HT(qk+γ(v)). (10.69)

The tangent linear model around the point uτk+1 is given by

UL(uτ+1
k+1) = HT(qk+γ(uτk+1))u

τ
k+1 +∇vU(vτk+1)(u

τ+1
k+1 −uτk+1)

= HT(qk+γ(uτk+1))u
τ
k+1 +

[
HT(qk+γ (uτk+1))

]
(uτ+1

k+1−uτk+1)

=
[
HT(qk+γ (uτk+1))

]
uτ+1

k+1 .

(10.70)

As for the mass matrix, the prediction of the position is given by

q̃τk+1 = qk + hγ[(1−θ )vk +θuτk+1] (10.71)

which is often evaluated explicitly as the first iteration of the Newton’s loop for
u0

k+1 = vk. One gets
q̃k+1 = qk + hγvk. (10.72)

The adjoint relation on pk+1 is similarly treated.
To summarize, one gets the following linearized kinematics relations for each

contact α as
Uα ,τ+1

k+1 =
[
Hα ,T(q̃τk+1)

]
uτ+1

k+1

pα ,τ+1
k+1 =

[
Hα(q̃τk+1)

]
Pα ,τ+1

k+1 .
(10.73)

3 We adopt the same convention for the differentiation as in Remark 10.2.
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Adding the time-discretized contact law with Coulomb’s friction (10.50), the
time-discretized mixed linearized OSNSP denoted by (PMLτ), is obtained

(PMLτ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M̂τ+1
k+1 (uτ+1

k+1−uτk+1) = R(uτk+1)+ pτ+1
k+1 = R(uτk+1)+∑

α
pα ,τ+1

k+1

Uα ,τ+1
k+1 =

[
Hα ,T(q̃τk+1)

]
uτ+1

k+1

pα ,τ+1
k+1 =

[
Hα(q̃τk+1)

]
Pα ,τ+1

k+1

If gα(q̃τk+1) � 0 then

Ûα ,τ+1
k+1 =

[
Uα ,τ+1

N,k+1 + eUα
N,k + μα ||Uα ,τ+1

T,k+1 ||,Uα ,τ+1
T,k+1

]T

Cα ,∗ � Ûα ,τ+1
k+1 ⊥ Pα ,τ+1

k+1 ∈ Cα

If gα(q̃τk+1) > 0 then Pα ,τ+1
k+1 = 0

Reduction to the Local Variables

The same reduction as in the linear case can be performed. Without entering into
deeper details, we define the so-called Delassus’ operator for the constraints α as

Ŵαα ,τ+1
k+1 = Hα ,T(q̃τk+1)M̂τ+1,−1

k+1 Hα(q̃τk+1)

and the free velocity as

Uτ+1
k+1,free = Hα ,T(q̃τk+1)v

τ+1
k+1,free (10.74)

with
vτ+1

k+1,free = M̂τ+1,−1
k+1

[
R(uτk+1)

]
+ uτk+1. (10.75)

Adding the time-discretized contact law with Coulomb’s friction (10.50), the
time-discretized linearized OSNSP denoted by (PLτ), is obtained

(PLτ )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uτ+1
k+1 = Ŵ τ+1

k+1 Pτ+1
k+1 +Uτ+1

k+1,free

If gα(q̃τk+1) � 0 then

Ûα ,τ+1
k+1 =

[
Uα ,τ+1

N,k+1 + eUα
N,k + μα ||Uα ,τ+1

T,k+1 ||,Uα ,τ+1
T,k+1

]T

Cα ,∗ � Ûα ,τ+1
k+1 ⊥ Pα ,τ+1

k+1 ∈Cα

If gα(q̃k+1) > 0 then Pα ,τ+1
k+1 = 0
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The NSCD method for the linear case is summarized in Algorithm 9.

Remark 10.6. The Delassus’ operator that is used in event-driven schemes is pre-
cisely the matrix W (q), not the matrix Ŵ (q), see (8.8). The major discrepancy be-
tween event-driven and time-stepping methods is that the nonlinear terms are not
considered at the impact times in an event-driven scheme. Therefore the above is-
sues on the two Delassus’ operators are irrelevant. These problems are specific to
time-stepping algorithms.

10.1.6 Convergence Properties

The convergence properties of time-discretizations of Moreau’s sweeping process
have been pioneered in Monteiro Marques (1985, 1993). Let us now describe
the results in Dzonou et al. (2006), which extend previous convergence studies
in Mabrouk (1998) and Monteiro Marques (1993). It is assumed that the forces
Fint(t,q,v) and Fext(·) define continuous mappings, and that they are locally Lips-
chitz continuous with respect to q and v. It is also assumed that M(q) = MT(q) > 0

and that the unilateral constraint g(·) is a C1, 1
2 function with nonzero gradient in the

neighborhood of its zero level set. Let the interval of integration be [0,T ], T > 0, and
the time step be h = T

N , 1 � N ∈ IN, so that tk = kh. The two sequences {qN,k}0�k�N

and {vN,k}0�k�N are defined as
⎧⎨
⎩

qN,0 = q0

vN,0 =−eq̇0 +(1 + e)projq0
[TC (q0); q̇0]

(10.76)

and for all 0 � k � N−1
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qN,k+1 = qN,k + hvN,k

vN,k+1 = −evN,k+

+(1 + e)projqN,k+1
[TC (qN,k+1);vN,k + h

1+e M−1(qN,k+1)FN,k+1)
(10.77)

where the initial data are those of (10.1), and FN,k+1 is an approximate value
of Fint(t,q,v) − Fext(t) that may be chosen as an implicit function FN,k+1 =
F(tk+1,qN,k+1,M(qN,k+1)vN,k+1). The projection operator is defined as

projq[TC (q);x] =

⎧⎪⎨
⎪⎩

x− (xT∇g(q))+ M−1(q)∇g(q)
∇gT(q)M−1(q)∇g(q) if g(q) � 0

x otherwise

(10.78)

with a+ = max(0,a) for all reals a. One recognizes the projection in the kinetic
metric that was already used in (3.130). It is noteworthy that the presence of the
matrix M(q)q̇ in the right-hand side of (10.77) is odd from a mechanics point of
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Algorithm 9 NSCD method. Nonlinear case with Newton’s method
Require: M(·),F(·),Fext(·) nonlinear Dynamics (10.2)
Require: Kt(t,q,u) = ∇qF(t,q,u),Ct(t,q,u) = ∇uF(t,q,u) tangent operators
Require: Hα(·),gα (·), for all α ∈ I = {1 . . .ν} ⊂ IN, kinematic relations (10.67)
Require: e,μ frictional contact law.
Require: t0,T time–integration interval
Require: q0,v0 initial data
Require: h,θ ,γ ,ε, time–step and integration and Newton parameters
Ensure: ({qk},{vk},{pk},{Uk}{Pk}),k ∈ {1,2, . . .}

k← 0
U0← HTv0

// Time integration
while tk < T do

// Newton loop
τ← 0, error← ∞
qτk+1← qk, uτk+1← vk

R(uτk+1)← hF̃k+θ
while error > ε do

// Evaluate tangent operators
M̂τ+1

k+1← (M(q̃τk+1)+h2θ2Kt(tk+1,q
τ
k+1,u

τ
k+1)+θhCt(t,qτk+1,u

τ
k+1)) (10.37)

uτ+1
free ← uτk+1 +

[
M̂τ+1

k+1

]−1
R(uτk+1) (10.75)

// Update of the index set of forecast active constraints
q̃τk+1← qk +hγ [(1−θ )vk +θuτk+1]
Ia(q̃τk+1)←{α ∈ I | gα (q̃τk+1) � 0} ⊆ I
//One-step non smooth problem update
for α ∈ Ia do

Uτ+1
free ←HT(q̃τk+1)u

τ+1
free

Ŵ
αβ ,τ+1
k+1 ← Hα ,T(q̃τk+1)

[
M̂τ+1

k+1

]−1
Hβ (q̃τk+1) for all (α,β ) ∈ I2a

Assemble (if necessary) Ŵτ+1
k+1 with Ŵ

αβ ,τ+1
k+1 ,(α,β ) ∈ I2a

end for
//Resolution of the one-step non smooth problem
if Ia �= /0 then

[Uτ+1
k+1,P

τ+1
k+1]← solution of OSNSP (PLτ ) (see Chap. 13)

end if
pτ+1
k+1← ∑α∈Ia HαPα ,τ+1

k+1

qτ+1
k+1← qk +h

[
θuτ+1

k+1 +(1−θ )vk

]
R(uτ+1

k+1)←M(q̃τk+1)(u
τ+1
k+1 −vk)+hF̃k+θ

error←‖R(uτk+1)+pτ+1
k+1‖

τ ← τ +1
end while
// State update
pk+1← pτ+1

k+1, qk+1← qτ+1
k+1

vk+1← uτ+1
free +

[
M̂τ+1

k+1

]−1
pτ+1
k+1

tk← tk+1, k← k+1
end while
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view, as this term is nothing else but the generalized momentum that is a variable
usually associated with Hamiltonian mechanics.

One finally defines the approximate solutions as the piecewise linear functions
qN(t) = q0 +

∫ t
0 vN(s)ds and

vN(t) =

⎧⎨
⎩

vN,k if t ∈ [tk,tk+1), 0 � k � N−1

vN,N, if t = T.

Theorem 10.7. Let R > q̇T
0 M(q0)q̇0. Then there exists T (R) > 0 such that for any

solution (q(·),v(·)) of the sweeping process (3.115) and (3.128) defined on [0, T̃ ]
(0 < T̃ � T ) the following estimates hold for all t ∈ [0,min(T̃ ,T (R))]:

||q(t)−q0||� R, vT(t)M(q(t))v(t) � R2

Moreover there exists a subsequence of {qN(·),vN(·)}N�1, still denoted as
{qN(·),vN(·)}N�1, such that qN(·)→ q(·) in C0([0,min(T,T (R))], IRn), vN(·)→ v(·)
pointwise in [0,min(T,T (R))], and (q(·),v(·)) is a solution of the sweeping process
(3.115) (3.128) on [0,min(T,T (R))].

The same type of proof is derived in Dzonou & Monteiro Marques (2007), how-
ever, only a local result with e = 0 is treated.

Remark 10.8. The way the discretized sweeping process is written in (10.76) and
(10.77) has a pure mathematical interest. Indeed in the numerical practice, imple-
menting a projection on a convex set is far from trivial. One has to perform subse-
quent steps to put the inclusion under a suitable form so that numerical simulation
can be performed (in other words, the only things one is able to solve efficiently
are CPs or NonLinear Programming (NLP)s). Thanks to the polyhedrality of TC (q),
those steps can be done.

10.1.7 Bilateral and Unilateral Constraints

Bilateral constraints may be treated either by

• (i) reducing the system’s dimension by eliminating some coordinates
• or (ii) introducing Lagrange multipliers.

If solution (i) is chosen, nothing has to be added to the above developments once
the new generalized coordinates have been obtained. Let solution (ii) be chosen,
where the bilateral constraints are given by f (q) = 0 with f (q) ∈ IRm. The unilateral
constraints are still gα(q) � 0, 1 � α � ν .

We may generically write the Lagrange equations in (10.1) as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M(q)dv + F(q,v+,t)dt = rμdt + drλ

rμ = ∇F(q)μ , drλ = ∇g(q)dλ

F(q) = 0, 0 � g(q)⊥ λ � 0

(10.79)
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where μ(·) = [μ1, ...,μm]T is a function of time, whereas dλ = [dλ 1, ...,dλν ]T is a
measure.

The Mixed Linear OSNSP with Bilateral Constraints

Let us consider the problem (PML) in which we add m perfect linear bilateral con-
straints

F(q) = Gq + b = 0, (10.80)

where the Jacobian matrix of these constraints ∇FT(q) is given by GT(q) ∈ IRn×m.
We will denote this OSNSP by (PMLb)

(PMLb)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M̂(vk+1− vfree) = pk+1 + GPμ,k+1

GTvk+1 = 0

Uα
k+1 = Hα ,T vk+1

pαk+1 = Hα Pα
k+1

If gα(q̃k+1) � 0 then

Cα ,∗ �
[
Uα

N,k+1 + eUα
N,k + μα ||Uα

T,k+1||,Uα
T,k+1

]T ⊥ Pα
k+1 ∈ Cα

If gα(q̃k+1) > 0 then Pα
k+1 = 0

The treatment of the bilateral constraints is made in a natural way at the velocity
level. Clearly, the bilateral constraints at the position level are satisfied at the end of
the time step if they are satisfied at the initial time. Indeed, we have

F(qk+1) = Gqk+1 + b
= G(qk + h[(1−θ )vk +θvk+1])+ b
= G(qk)+ b
= F(qk).

(10.81)

This property is no longer true with nonlinear bilateral constraints. This problem is
related to the index of the underlying Differential Algebraic Equation (DAE).

Nonlinear Bilateral Constraints

Let us for the sake of simplicity consider the linear time-invariant case, and let us
perform the same steps as in Sect. 10.1.1. We obtain
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vk+1 = vfree + M̂(pμ,k+1 + pλ ,k+1) (10.82)

where pμ and pλ are the impulses corresponding to rμ(·) and drλ , respectively. No-
tice that ∇FT(q(t))v+(t) = 0. Introducing Moreau’s inclusion and the expression for
qk+1 in (10.7) the discretized problem may be written as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pλ ,k+1 ∈ −NTC (q̃k+1)

(
vk+1+evk

1+e

)

∇FT (qk+1)vk+1 = 0

vk+1 = vfree + M̂(pμ,k+1 + pλ ,k+1).

(10.83)

It will be seen in Sect. 13.3.2 how the set of equations in (10.83) may be solved.

10.2 Some Numerical Illustrations of the NSCD Method

This section is devoted to summarize the numerous results that have been obtained
with the Moreau–Jean’s NSCD method, in various application domains.

10.2.1 Granular Material

Let us report some simulation results which concern granular material. The NSCD
method has been tested on various granular matter systems and has been shown to
enable one to reproduce well-known important macroscopic phenomena.

A vertically shaken cylindrical vessel with 3999 beads with diameter 0.2 cm,
and one bead with diameter 0.5 cm is simulated in Moreau (1994a). The vessel has
a diameter 3.5 cm. A 3-parameter contact law as in (3.168) is chosen. The friction
coefficient is μ = 0.8, the normal restitution is eN = 0.95, the tangential restitution is
eT = 0.4. These values hold at all contacts, i.e., between the beads and between the
beads and the vessel boundaries. The vessel is shaked vertically with frequency 25
Hz, and peak-to-peak amplitude 0.2 cm, a motion with maximal acceleration equal
to 2.51g. This represents a large acceleration that makes the pack of 4000 beads lose
contact with the vessel bottom for a part of each period. The propagation of collisions
when the lowest beads hit the vessel bottom therefore induces a strong agitation
in the whole pack. The set of numerical simulations presented in Moreau (1994a)
demonstrates that bulk segregation, or size segregation, that is the tendency of large
objects to migrate upward with respect to the surrounding smaller ones, is reproduced
by the simulation. The importance of boundary effects between the beads and the
vessel is pointed out: peripheral beads experience large downward forces. This size
segregation, known as the Brazil nuts effect, is shown to occur also with different
parameters: zero friction at the vessel boundary, and eN = 0.9. Between the beads one
takes eT = 0.4, eN = 0.9, and μ = 0.5. The vessel with diameter 3 cm is filled with
2000 beads with diameter between 0.2 and 0.1 cm, and 200 beads with diameter 0.02
cm. The vertical motion of the vessel is sinusoidal, frequency 20 Hz, peak-to-peak
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amplitude 0.25 cm. The 200 smaller beads are initially placed on top. They undergo
large ballistic flights and are progressively captured in the bigger beads layer. After
about 100 shakes, all the smaller beads are trapped at bottom. Other numerical results
may be found in Radjai & Wolf (1998) and Moreau (1994b).

Simulation results for a Couette granular flow are presented in Jean (1999) and
Zervos et al. (2000). Samples of 1200, 2400, 4000 and 16,000 polydisperse disks or
rolls are kept within two drums. The outer drum is a membrane subject to a constant
pressure 75 kPa. The inner drum rotates with a constant speed 0.1 tr/min. The friction
coefficient between the grains is μ = 0.5 and it is μ = 0.75 between the grains and
the drums. It is observed that the sample behaves quasi-rigidly, except close to the
boundary of the inner drum. An interface layer forms near the internal rotating disk,
with thickness five times the mean diameter of the grains. Inside this layer, tangential
displacements localize and present a steep gradient that fades out almost exponen-
tially with the radial position. The numerical results are compared to experimental
results (Daudon et al., 1997; Lerat et al., 1995) and are shown to provide a good
qualitative prediction of the process outcome.

Several sets of numerical experiments are reported in Renouf & Alart (2004a):
a depositing process of particles in a 1 m × 1 m-size box under gravity, with 1000–
33,000 disks, and 7200 disks with mean diameter 3 mm in a rotating drum with
diameter 450 mm, with angular velocity 3 rpm. The friction parameter is μ = 0.4 and
eN = 0.92. It is noteworthy that the number of unilateral contacts with friction that is
treated in such examples is of several tenth of thousands and corresponds to the size
of the complementarity problems to be solved by the one-step nonsmooth problem
solver. Various test configurations are reported in Renouf & Alart (2004a): biaxial
test (a constant pressure is applied on the right boundary and a constant velocity is
applied to the upper side of the sample), shear tests (an angular velocity is imposed
to the lateral sides of the square and a constant pressure is maintained on the upper
side), free surface compaction (the sample of disks is compacted by moving one of
the lateral walls of the box with a nonmonotone speed). The objective of Renouf &
Alart (2004a) is to compare different one-step nonsmooth problem solvers, using the
NSCD method. This specific comparison is outside the scope of this chapter and is
examined in Chap. 13. Further results may be found in Renouf et al. (2005b,c).

Let us finish this short overview on numerical experiments for granular media
with an application concerning ballast modeling (Saussine et al., 2004a,b 2006).The
grains are supposed to be pentagonal (Saussine et al., 2006) in the 2-dimensional
case or convex polyhedrons (Saussine et al., 2004b) in the 3-dimensional case. An
algorithm dedicated to the determination of geometrical intersections between con-
vex polyhedrons has been developed (Saussine, 2004) and is used in these numerical
experiments. Ballast settlement is the result of several millions of loading cycles.
Each cycle corresponds to the passing of an axle on the rails. The numerical exper-
iments in Saussine et al. (2006) are made of 361 grains with diameter 1 cm, 242
grains with diameter 1.5 cm and 121 grains with diameter 2 cm. The contact param-
eters are eN = 0 and μ = 0.5. The grains are let to fall under gravity on a sublayer
with a stiffness of 411 N/m and a viscosity of 80 N/m s−2. The loadings are sinu-
soidal forces F(t) = −1000− 500 cos(40πt +π), and several thousands of loading
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cycles are applied to the sample (up to 20,000 cycles). Quite interestingly the nu-
merical results are compared to experimental results, and show good agreement. The
3-dimensional test in Saussine et al. (2004b) are made with samples composed of
25,000 grains prepared by deposition under gravity.

Remark 10.9. Such numerical experiments that involve a very large number of con-
tacts usually are very long. For instance it is reported in Saussine et al. (2006) a
computation time of 3 weeks on a Pentium 4 (2.5 GHz) Unix station. This is what
motivates works on parallelization (Renouf & Alart, 2004b; Renouf et al., 2004;
Alart et al., 2003). This does not mean that such time-stepping schemes are imprac-
tical for real-time applications, see below.

It is noteworthy that the NSCD method has had a significant impact in the Physics
community for the study of granular media (see, e.g., Radjai et al., 1996, 1997,
1998, 1999; Bratberg et al., 2002; Nouguier et al., 2000; Radjai, 1999; Radjai &
Roux, 2002).

10.2.2 Deep Drawing

Applications concerning deep drawing are also presented in Jean (1999) and Jourdan
et al. (1998a,b). The NSCD method is tested in SIMEM3, a deep drawing simula-
tion software of the car company Renault. The Numisheet’93 congress benchmark
example (a U bending example) is used. Spring-back effects are taken into account.
Results are better than those obtained with other software packages (implicit meth-
ods with quasi-static model and Newton–Raphson iteration, for which convergence
problems appear due to ill-conditioned stiffness matrix, or explicit methods with
dynamic model for which very small time steps are needed). Comparisons with ex-
periments show good agreement with the numerics. Convergence results are proved
in Jourdan et al. (1998a) with a nonlinear block Gauss–Seidel one-step nonsmooth
problem solver.

10.2.3 Tensegrity Structures

Tensegrity structures are made of cables and beams, with “unilateral” cables: the ca-
bles are either infinitely rigid in the compression sense and flexible in the extension
sense or the contrary. In Motro (2006) the next definition is given: systems in a sta-
ble selfstress state including a discontinuous set of compressed components inside a
continuum of tensioned components. Depending on the cables being elastic extend-
able or not, some complementarity relations between the total stress in the cable and
the deformation may be written. This gives rise to mechanical systems with com-
plementarity conditions that lend themselves to a treatment with the NSCD method.
Results may be found in Nineb et al. (2005, 2006).

10.2.4 Masonry Structures

The NSCD method is applied to the simulation of masonry structures in
Acary & Jean (1998, 2000), Acary et al. (1999), Acary (2001), Jean et al. (2001).
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A numerical test dome with diameter 10 m, 300 granite blocks set on four pillars,
subjected to gravity is depicted in Fig. 10.1. The blocks are composed of eight H8
finite elements, and the structure is composed of 2400 H8 elements, 8100 nodes, and
has twenty four 300 degrees of freedom. Each block face has 16 candidate points to
contact, and the total number of candidates is 9176. Enhanced contact laws are used
(cohesive frictional laws).

Other numerical examples illustrate the ability of the NSCD method to simulate
fracture processes in divided materials. See Figs. 10.2 and 10.3.
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Fig. 10.1. Dome on four pillars under gravity load
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(a) Principal Cauchy stress and velocities while the shear wave occurs

(b) Principal Cauchy stress after the shear wave solicitation

Fig. 10.2. Earthquake simulations. An arch-bridge subjected to a shear wave (×200)

10.2.5 Real-Time and Virtual Reality Simulations

The NSCD method may also adapt itself to real-time simulations (Renouf
et al., 2005a) and virtual reality (Kaufman et al., 2005). A simulation of 2016 chess
pieces falling through a hopper and stacking is presented in Kaufman et al. (2005).
The number of colliding bodies and the number of detected contacts are presented, as
well as the wall-time as a function of the total number of contacts in a step. The im-
plementation is linear in the total number of bodies being simulated and in the total
number of contact points detected at each step (about 105). The frictional model is
altered to accelerate the simulation process.
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Fig. 10.3. Stress after a ground settlement −4cm(×10)

The real-time capabilities of the NSCD method are demonstrated in Renouf
et al. (2005a) on two samples of dense assemblies: sphere settling and a ball hit-
ting a masonry structure, as depicted in Fig. 10.4.

Spheres Settling

The following numerical parameters are chosen: the time step value h, and gmax as the
maximal interpenetration between contactors in the sample. The physical parameters
are eN = 0.4, μ = 0.4, and eT = 0. The rule is to find h such in order to preserve a
value of gmax as small as possible, to ensure the quality of the simulation and the
real-time constraint. The ratio between the simulated time and the elapsed CPU time
is denoted as Sp. The real-time constraint will be preserved if Sp � 1. We performed
settling in a box with a frictional contact interaction law and using different numbers
of spheres: 80, 160, and 320. Simulation results are shown in the Table 10.1. The

Final state

(a) (b)

Fig. 10.4. Sphere settling and ball hitting a brick wall
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Table 10.1. Results of simulation of spheres settlings

nb nc h Sp gmax(%)

80 271 0.02 1.24 0.3
80 267 0.04 2.28 1.2

160 587 0.02 0.95 0.5
160 584 0.04 1.50 1.8
320 1218 0.02 0.50 0.6
320 1275 0.04 0.75 2.2

calculations have been led on an Opteron 242 with a 2 GHz processor. nb is the
number of spheres and nc is the number of contacts.

The simulations of samples composed of 80 and 160 spheres respect the real-time
constraint and keep a good simulation quality (less than 2% of constraint violation).
For the bigger samples (320 spheres), it is difficult to preserve both the time con-
straint and the quality of the solution. Nevertheless the value of the speed-up (0.75) is
not so small and some numerical optimization should allow one to obtain the respect
of the time constraint. Note that for the frictionless packing, the real-time constraint
is reached for a larger sample of 800 spheres: the time needed by the solver is smaller
due to the smaller number of unknowns.

The difficulty in this kind of simulation is the large variation in the number of
contacts. It increases quickly to reach a stabilized value (e.g., Fig. 10.5b)). The large
number of status modifications does not help the frictional contact solver to reach a
solution. During the settling, the number of iterations Nit reaches the maximal value
(t ∈ [0,15]) and during a stabilization phase (t ∈ [15,35]) Nit has erratic variations
from the minimal to the maximal value to keep a stabilized evolution below. The
fact that iterative methods can benefit from the solution of the previous time step to
initialize the algorithm is one of the reasons of the quasi-smooth evolution. Moreover
with an iterative method a good approximation of the solution is obtained quickly

Fig. 10.5. (a) Evolution of the convergence criterion during the iterative process. (b) Parallel
between the evolution of iterations and the number of contacts during a whole simulation
process
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as shown in Fig. 10.5(a). For a sample with 600 contacts, an approximation of the
solution with an error of 10% is obtained in 10 iterations only.

Virtual Masonry

Some difficulties are related to the numerical simulation of masonry structures. The
first one is linked to the location of the contact points and their number. When we
consider two blocks in a face/face contact, four dependent contacts at least are con-
sidered. This strategy, which preserves the time taken by the detection algorithm,
handicaps direct methods as Lemke’s algorithm. The second difficulty concerns the
introduction of friction. When the problem is formulated as an LCP, the matrix of
the LCP is no longer symmetric. This appears as a problem for Lemke as well as
the PATH solvers. It may be related to the observation of Klarbring on the class of
matrices unsolvable by LCP solvers (Klarbring, 1986a).

10.2.6 More Applications

In Le Saux et al. (2005) Moreau’s time-stepping scheme is implemented to simulate
the dynamics of a rolling disk on a flat support, with various kinds of friction models
(resistance against sliding, pivoting, and rolling). Comparisons of the energy de-
cay calculated analytically and the numerical energy profiles show good agreement.
Comparisons with available experimental results are also done, which allow the au-
thors to determine the dominant mechanism of dissipation in this process: the contour
friction, which models resistance against the movement of the contact point along the
contour of the disk. In Transeth et al. (2006b) a snake robot with 11 links is studied
when dropped on the floor, and in Transeth et al. (2006a) when it undulates between
obstacles. The dynamics of fracture has been studied numerically in Dubois (2005)
and Acary & Monerie (2006). Mechanical systems with Coulomb friction and time-
delayed terms are considered in Lamarque et al. (2003). The NSCD method is tested
in Pratt et al. (2007) on systems with bilateral constraints and Coulomb friction as in
Sect. 3.11. Thorough numerical tests and comparisons with analytical results show
that the time-stepping NSCD scheme may approximate correctly trajectories with
a large number of sticking–sliding transitions. However, when the number of tran-
sitions is too large, the time-stepping scheme no longer provides correct results in
terms of the time trest when the system comes to rest. This is explained in Pratt
et al. (2007) by the fact that the number of events is growing exponentially with the
choice of the parameters and initial data that are made therein, but the NSCD time-
stepping scheme is unable to calculate such an exponential increase. In such a case,
since the dynamics between the events is easily calculable analytically, it is possible
that an event-driven method would supersede the time-stepping scheme. This con-
clusion seems to be in contrast with the usual statement that time-stepping schemes
behave better than event-driven ones when the number of events is too large. Notice,
however, that in general this may still be the case because implementing an event-
driven scheme when the trajectories between the events are not analytically calcu-
lable necessitates an accurate numerical detection of the events which may rapidly
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prevent the use of an event-driven procedure. The results of Pratt et al. (2007) rather
point out one possible deficiency of the NSCD time-stepping method.4 Results on
the woodpecker toy may be found in Glocker & Studer (2005).

10.2.7 Moreau’s Time-Stepping Method and Painlevé Paradoxes

The coupling of unilaterality and Coulomb friction may result in so-called frictional
paroxysms or Painlevé paradoxes, see Sect. 6.2. As demonstrated in the seminal
paper (Moreau, 1988b) on an example, the discretized sweeping process is able to
handle such behaviors since it is a true discretization of the maximum dissipation
principle. This strong property of impulse–velocity time-stepping schemes is also
pointed out in Anistescu (2006).

10.3 Variants and Other Time-Stepping Schemes

10.3.1 The Paoli–Schatzman Scheme

This time-stepping method originates from the dynamics presented in Sect. 3.5,
especially (3.113). It is supposed that the admissible domain C of the configu-
ration space is either of class C3 (i.e., one can find a C3 function g(·) such that
C = {q∈ IRn | g(q) � 0}) or finitely represented as in (3.16) with C1 time-invariant
functions gα(·) (in this latter case one has eN = 0). The initial data in (3.113) are
q(0) = q0 and p(0) = M(q0)q̇(0) = p0. The initial conditions for the discretized al-
gorithm is q0 at step 0, and q1 = q0 +hM−1(q0)p0 +hz(h), where z(h)→ 0 as h→ 0.
Given qk−1 and qk, qk+1 is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qk+1 =−eqk +(1 + e)proj

[
C ;

2qk− (1− e)qk−1 + h2Fk

1 + e

]

Fk = F

(
tk,qk,qk−1,

qk+1−qk−1

2h
,h

)
.

(10.84)

Fk is the approximate of F(t,q,q,v,0) = M−1(q) f (t,q(t), p) with p = M(q)v in
(3.113). Defining the discrete velocity as vk = qk+1−qk

h one may rewrite it as

vk− vk−1−hFk =
(1 + e)(zk−wk)

h
(10.85)

with wk = 2qk−(1−e)qk−1+h2Fk
1+e , zk = qk+1+eqk−1

1+e = proj[C ;wk]. As we already pointed
out above, such formulations are quite impractical when implementation is to be

4 Surprisingly enough, no mention of the values of the time step h > 0 is made in Pratt
et al. (2007). It would have been extremely interesting to present the variation of trest as a
function of h: since the solutions converge, trest necessarily decreases as h→ 0.
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envisaged. This is why none of the above experimental numerical results are imple-
mented this way. Indeed calculating a projection onto a convex set is not an easy
task. It is therefore of some interest to rewrite the algorithm in (10.84) under a more
tractable form. Using (A.8) one obtains

M(qk)[qk+1−2qk + qk−1]−h2M(qk)Fk
Δ= pk+1 ∈ −NC

(
qk+1 + eqk−1

1 + e

)
. (10.86)

The interest for performing this step is that provided C is finitely represented, the
inclusion into the normal cone can be, under some constraint qualification, recast
into a nonlinear complementarity problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

wk+1 = g

(
qk+1 + eqk−1

1 + e

)

pk+1 = ∇g

(
qk+1 + eqk−1

1 + e

)
μk+1

0 � wk+1 ⊥ μk+1 � 0.

(10.87)

If g(q) = Aq + B, i.e., the admissible domain is a polyhedral set, then one obtains⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wk+1 = A

(
qk+1 + eqk−1

1 + e

)
+ B

pk+1 = ATμk+1

0 � wk+1 ⊥ μk+1 � 0.

(10.88)

This can be in turn rewritten as

0 � μk+1 ⊥ AM−1(qk)ATμk+1 + 2qk−qk−1 + h2M−1(qk)Fk � 0 (10.89)

that is an LCP with unknown μk+1.

Remark 10.10. The multiplier that belongs to the normal cone in Moreau’s time-
stepping scheme in (10.38) has a natural and physical interpretation as the approxi-
mation of an impulse, because the argument in the normal cone is the velocity. Such
is not the case for the Paoli–Schatzman scheme in which the multiplier μk+1 has no
clear mechanical meaning, the argument in the normal cone in (10.86) being some
combination of positions. Another advantage of Moreau’s sweeping process (of or-
der 2) is that the sets TC (q) and NTC (q)(v) are polyhedral sets, independently of C .
This is not the case in the Schatzman–Paoli formulation, where the projection is done
directly on C , not on TC (q).

When a contact is detected with the boundary of C , the scheme in (10.84) re-
verses the normal velocity in two steps. This may be an issue, so modifications have
been proposed so that the normal velocity is reversed in one step only Nqi, 1997.

Convergence results have been shown in Paoli & Schatzman (2002a,b) and
Paoli (2005b).
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10.3.2 The Stewart–Trinkle–Anitescu–Potra Scheme

These authors have presented several variants and extensions of the fundamental
velocity–impulse algorithm of the sweeping process (Stewart & Trinkle, 1996;
Stewart, 2000; Anitescu et al., 1999; Anitescu & Potra, 1997; Potra et al., 2006).
The main contributions are the introduction (following Klarbring, 1986b; Klarbring
& Björkman, 1988) of a special way to represent the 3-dimensional Coulomb fric-
tion (see Chap. 13) and proofs of existence and convergence. We may classify these
results in two main parts:

• Convergence of the solutions of the time-stepping algorithm with facetized
Coulomb friction, and one contact (Stewart 1998). This seems to be the only
proof of convergence for time-stepping schemes when friction is present, and is
an important extension of the results in Monteiro Marques (1993). It includes the
Painlevé issues.

• Existence of solutions to LCPs or NCPs for the one-step nonsmooth problem,
see e.g., Anitescu & Potra (1997), and reformulation of the one-step nonsmooth
problem (Anistescu, 2006; Anitescu & Hart, 2004). This will be tackled in
Chap. 13.

Simulation results are presented in Anistescu (2006); Anistescu & Hart, 2004;
Anitescu & Hart, 2004). They essentially aim at illustrating some properties of the
presented methods on low-dimensional systems. Size segregation is demonstrated
in Anitescu & Hart (2004) and Anistescu (2006) with 210 disks in a 2-dimensional
vessel with μ = 0.5 and eN = 0.5. Other numerical results can be found in Stewart &
Trinkle (1996), Trinkle et al. (2001) and Son et al. (2004). A falling rod and a chain
of four balls are presented in Stewart & Trinkle (1996), a robotic application may
be found in Son et al. (2004), and a 3-dimensional sphere on a rough plan or on a
spherical surface is presented in Trinkle et al. (2001).

Remark 10.11. It is noteworthy that most of the numerical experiments that are pre-
sented in this chapter mainly focus on the choice of the one-step nonsmooth problem
solver.

Remark 10.12. In Stewart & Trinkle (1996), the treatment is similar to the NSCD
method of Moreau (1998) and Jean & Moreau (1992) except that the numerical for-
mulation ensures that there is no interpenetration of rigid bodies. Indeed, as discussed
in Jean (1999), it is possible to directly impose a constraint on the position and to
associate the impulse as complementary variable when we use a purely backward
Euler scheme and an inelastic impact law. This is mainly due to the fact that the
gap is positively homogeneous to the relative velocity. Unfortunately, this trick is no
longer possible when one wants an elastic impact law and when we use a θ -method.
Other tricks can be found in Jean (1999) to attempt to satisfy both the impact law
and the constraint on the position with a θ -method.
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Time-Stepping Scheme for the HOSP

This chapter is dedicated to present a time-stepping method for the higher order
Moreau’s sweeping process (the HOSP) described in Chap. 5. We start by presenting
some simple examples which prove that the backward Euler method for LCS (see
(9.75)) does not work for the HOSP systems (5.1) where the relative degree r � 2.
The material of this chapter is taken from Acary et al. (in press). The time-stepping
scheme that is presented in the following sections is constructed to approximate the
solutions of the measure differential formalism in (5.22)–(5.24). Using Proposition
5.5 one can recover the solutions of the distributional formalism in (5.17)–(5.20).
This is because the time-stepping schemes we are using are able to approximate the
measure of an interval. But they are not able to approximate distributions of any
degree.

11.1 Insufficiency of the Backward Euler Method

In Sect. 9.5, it has been seen that a simple backward Euler method may provide good
results (convergence) when it is applied to some linear complementarity systems with
relative degree r = 0 or r = 1. In particular, passive LCS lend themselves well to such
discretization, see Theorem 9.30. When the relative degree is larger, the scheme in
(9.75) no longer works. This is illustrated by few examples.

Example 11.1. Let us consider an LCS with the following matrix definition:

A =

⎛
⎝0 1 0

0 0 1
0 0 0

⎞
⎠ , B =

⎛
⎝0

1
0

⎞
⎠ , C =

(
1 0 0

)
, D = 0 . (11.1)

The relative degree r of this LCS is equal to 2 (D = 0,CB = 0,CAB �= 0). If we
consider the initial data x0 = (0,−1,0)T, we obtain by a straightforward application
of the scheme (9.75) the following solution:

xk =

⎛
⎝0

0
0

⎞
⎠ , ∀k � 1, (11.2)

λ1 =
1
h
, λk = 0, ∀k � 2. (11.3)
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We can remark that the multiplier λ1 which is the solution of the LCP at the first step,
tends toward +∞ when h vanishes. In this example, the state x(·) seems to be well
approximated but both the LCP matrix and the multiplier tend to inconsistent values
when h vanishes. This inconsistency is just the result of an attempt to approximate
the point value of a distribution, which is nonsense.

If we consider now the initial data x0 = (−1,−1,0)T, we obtain the following
numerical solution from (9.75) :

xk =

⎛
⎜⎜⎜⎜⎜⎝

k

1
h

0

⎞
⎟⎟⎟⎟⎟⎠

,∀k � 1, (11.4)

λ1 =
1

h2 , λk = 0, ∀k � 2. (11.5)

With such an initial data, the exact solution should be xk = 0,∀k � 1. We can see that
there is an inconsistency in the result because the first component of the approximate
state does not depend on the time step. We cannot expect that this approximation
converges to the exact solution.

Example 11.2. Let us consider another simple example:

A =

⎛
⎝0 1 0

0 0 1
0 0 0

⎞
⎠ , B =

⎛
⎝0

0
1

⎞
⎠ , C =

(
1 0 0

)
, D = 0. (11.6)

In this case, the relative degree r is equal to 3. The direct discretization of the system
leads to the same problem as in the previous example even in the case where the
initial data satisfies the constraints. Let us consider x0 = (0,−1,0)T. From (9.75),
we obtain the following numerical solution:

xk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

k(k + 1)
2h

k

1
h

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, ∀k � 1, (11.7)

λ1 =
1

h2 , λk = 0, ∀k � 2. (11.8)

This solution cannot converge to an analytical solution.



11.2 Time-Discretization of the HOSP 321

11.2 Time-Discretization of the HOSP

11.2.1 Principle of the Discretization

Let us start with a generic equation of the measure differential formalism for the
extended sweeping process (5.22) for 1 � i � r−1,

⎧⎨
⎩

dzi− zi+1(t)dt = dνi,

dνi ∈ −∂ψT i−1
Φ (Zi−1(t−))(zi(t+))

. (11.9)

It results that an evaluation of this MDI on the time interval (tk, tk+1] yields

⎧⎪⎪⎨
⎪⎪⎩

dzi((tk,tk+1])−
∫

(tk,tk+1]
zi+1(τ)dτ = dνi((tk,tk+1])

dνi((tk,tk+1]) ∈ conv
(∪τ∈(tk ,tk+1]−∂ψT i−1

Φ (Zi−1(τ−))(zi(τ+))
)
.

(11.10)

The values of the measures dzi((tk,tk+1]) and μi,k+1
Δ= dνi((tk, tk+1]) are kept as

primary variables and this fact is crucial for the consistency of the method for the
nonsmooth evolutions, as we already saw in Chaps. 1 and 10. The integral term is
approximated thanks to

∫
(tk ,tk+1]

zi+1(τ)dτ ≈ hzi+1(t+k+1) = hzi+1,k+1 (11.11)

and then we obtain
zi,k+1− zi,k−hzi+1,k+1 = μi,k+1. (11.12)

For the approximation of the inclusion, the union of convex cones is approximated
in the following way:

conv
(∪τ∈(tk ,tk+1]−∂ψTi−1

Φ (Zi−1(τ−))(zi(τ+))
)≈−∂ψTi−1

Φ (Zi−1(t−k ))(zi(t+k+1)). (11.13)

Assuming, as in (11.11), that the approximation of zi is constant on each interval
(tk,tk+1], we get

μi,k+1 ∈ −∂ψTi−1
Φ (Zi−1,k)

(zi,k+1). (11.14)

Finally, the time integration of a generic equation of the MDI in (5.22) is given by

zi,k+1− zi,k−hzi+1,k+1 = μi,k+1 ∈ −∂ψTi−1
Φ (Zi−1,k)

(zi,k+1) (1 � i � r−1). (11.15)

The last equation (5.23) is discretized in the same way as

⎧⎨
⎩

zr,k+1− zr,k−hCArW−1zk+1 = CAr−1B μr,k+1,

μr,k+1 ∈ −∂ψTr−1
Φ (Zr−1,k)

(zr,k+1).
(11.16)
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For the zero dynamics defined in (5.24), we use for the sake of simplicity1 an Euler
backward scheme,

ξk+1− ξk−hAξ ξk+1−hBξ z1,k+1 = 0. (11.17)

The following notation is used for the discretized variables. Let us denote the dis-
cretized state vector by

zk+1 = [z1,k+1, . . . ,zr,k+1,ξT
k+1]

T = [z̄T
k+1,ξ

T
k+1]

T,

the vector of discretized multipliers by μk+1, i.e.,

μk+1 = [μ1,k+1, . . . ,μr,k+1]T.

Then the discrete-time system in (11.15), (11.16), and (11.17) can be rewritten com-
pactly as (see (5.27) and (5.28))

zk+1− zk = hWAW−1zk+1 + Ḡμk+1 (11.18)

which is the discrete-time counterpart to (5.30).

Definition 11.3 (Extended Moreau’s time-stepping scheme). The inclusions in
(11.15), (11.16), and (11.17) define a numerical time integration of the higher order
sweeping process SP(z0; [0,T ]) that we call the extended Moreau’s time-stepping
(EMTS) scheme.

11.2.2 Properties of the Discrete-Time Extended Sweeping Process

Let us make the following:

Assumption 15. The triple (WAW−1,Ḡ,H) is observable, controllable, and positive
real.

where the matrices are defined in (5.27)–(5.29).

11.2.2.1 Dissipativity

Let us consider (11.15), (11.16), and (11.17), and the matrix

J =

⎛
⎝ G−1 0r×(n−r)

0(n−r)×r Jξ

⎞
⎠

with Jξ symmetric and positive definite (n− r)× (n− r) real matrix. We have the
following Proposition.

Proposition 11.4. Suppose that Assumption 15 holds. Then:

1
2

zT
k+1Jzk+1− 1

2
zT

k Jzk �−1
2
(zk+1− zk)TJ(zk+1− zk)+hzT

k+1JWAW−1zk+1 (11.19)

for all 0 � k � N−1.

1 Depending on the regularity of z1, a higher order scheme may be used for the time-
integration of the zero dynamics.
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11.2.2.2 Boundedness

Proposition 11.5. Suppose that Assumption 15 holds. There exists a constant α > 0
such that for all h > 0 and all 0 � k � N − 1, ||zk|| � α . Moreover, for any given
h∗ > 0, there exists a constant M ≡M(h∗) > 0 such that ||Ḡμk||� M,∀h ∈ (0,h∗).

11.2.2.3 Local Bounded Variation

What follows is strongly inspired from Monteiro Marques’ work in Monteiro
Marques (1993, lemma 2.5). We first notice that since all the cones T i

Φ(·) in Sect.
5.4.2 are either IR or IR+, it follows that the closed ball B̄(a,R) = {z∈ IR | ||z−a||�
R} ⊂ T i

Φ(·) for any a > 0 and R < a
2 . We define zN

i : [0,T )→ IR; t �→ zN
i (t) as the step

function given by zN
i (t) = zi,k for all t ∈ [tk,tk+1), 0 � k � N− 1 and zN

i (tN) = zi,N ,
1 � i � r.

Proposition 11.6. Suppose that Assumption 15 holds. The total variation of zN
i , 1 �

n, in [0,T ] is bounded above according to:

var(zN
i , [0,T ]) � 1

2R |zi,0−a|2 + α2

2R T 2 +αT (1 + 1
R |zi,0−a|) (1 � i � r−1)

var(zN
r , [0,T ]) � 1

2R |zr,0−a|2 + β 2α2

2R T 2 +βαT (1 + 1
R |z1,0−a|)

var(ξN , [0,T ]) � (γ + δ )αT
(11.20)

where ‖|CArW−1|‖� β , ‖|Aξ |‖� γ and ‖|Bξ |‖� δ , whereas α is as in Proposition
11.5. Moreover there exists a constant K > 0 such that for all N ∈ IN,N � 1:

var(zN , [0,T ]) � K. (11.21)

Consider the step function μN : [0,T ]→ IRr;t �→ μN(t) such that μN(t) = μk+1 for
all t ∈ [tk,tk+1) (0 � k � N−1) and μN(tN) = μN .

Proposition 11.7. Suppose that Assumption 15 holds. For any given h∗ > 0, there
exists a constant K′ ≡ K′(h∗) > 0 such that

var(μN , [0,T ]) � K′,∀h ∈ (0,h∗). (11.22)

11.2.2.4 Convergence

We now denote {zN} the sequence of functions constructed from the functions
zN(·), and similarly for μN .

Proposition 11.8. Suppose that Assumption 15 holds. There exists a subsequence
{zNk} of {zN} which converges pointwise to some function z : [0,T ]→ IRn, such that
var(z, [0,T ]) � K, and a subsequence {μNk} of {μN} which converges pointwise
to some function μ(·) : [0,T ]→ IRr such that var(μ , [0,T ]) � K′.



324 11 Time-Stepping Scheme for the HOSP

Remark 11.9. The convergence of μN towards a LBV function reflects the fact that

the primary variables are μi,k+1
Δ= dνi((tk,tk+1]). Hence the Dirac measures do not

appear in the limit μ(·) which is by construction a (bounded) function.

Proposition 11.10. Suppose that Assumption 15 holds. If z(·) is right-continuous,
then for every continuous function of bounded variation ϕ : [0,T ]→ IR we have

∫
(s,t]

ϕ dzNk
i →

∫
(s,t]

ϕ dzi (s < t) as Nk→+∞ (1 � i � r). (11.23)

Remark 11.11. It has not yet been proved that the limits are solutions of the
continuous-time HOSP. However, the examples treated in the next section suggest
that this is indeed the case.

11.2.3 Numerical Examples

Let us consider again Examples 11.1 and 11.2, to which we apply the EMTS of
Definition 11.3.

Example 11.12. (Example 11.1 continued) If we apply the EMTS scheme, we obtain
the following solution:

xk =

⎛
⎝0

0
0

⎞
⎠ ,∀k � 1, (11.24)

μ1,1 = 1, μ2,1 = 1, (11.25)

μ1,k = 0, μ2,k = 0, ∀k � 2, (11.26)

which converges to the time-continuous solution of the higher order Moreau’s sweep-
ing process, i.e., x(0) = x0,x(t) = (0,0,0)T,∀t > 0.

Example 11.13. (Example 11.2 continued) The solution given by the EMTS
scheme is

xk =

⎛
⎝0

0
0

⎞
⎠ ,∀k � 1, (11.27)

μ1,1 = 1, μ2,1 = 1, μ3,1 = 0, (11.28)

μi,k = 0, ∀k � 2, i = 1, . . . ,3, (11.29)

which is the time-continuous solution of the higher order Moreau’s sweeping pro-
cess, i.e., x(0) = x0,x(t) = (0,0,0)T,∀t > 0.

Obviously these examples are not a general proof that the EMTS solutions converge
to limits which are solutions of the HOSP. We expect, however, that this is the case.
In Acary et al. (in press) it is further shown that the zero dynamics may have a strong
influence on the dynamics of the system.
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EMTS (higher order sweeping process)
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higher order methods (RK, multistep)
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Fig. 11.1. Orders and degrees of discontinuities

11.3 Synoptic Outline of the Algorithms

Figure 11.1 provides a rapid overview of the orders of the various schemes that are
presented in Part II, in correspondence with the vector field degree of discontinuity
q (Definition 2.56) and the solution regularity. The degree of a function is in (C.10).
Also the degree of discontinuity is taken as −i + 1 if the degree of the distribution
in the right-hand side is i (recall that from a general perspective, the systems we are
dealing with are to be seen as equalities of distributions, see for instance (5.8), (5.9),
and (5.10)). If the right-hand side contains a Dirac measure (degree 2), then q = −1
and the solution is a function with a jump, i.e., with a degree 1. If the right-hand side
is a discontinuous function (degree 1), then q = 0 and the solution is a continuous
function C0. The cases q � −1 concern the higher order sweeping process, whose
time-stepping discretization is named the EMTS.



Part III

Numerical Methods for the One-Step Nonsmooth
Problems



Introduction

When computing the solution of a smooth ODE with an implicit Euler scheme, one
needs to solve at each step a nonlinear equation using some root-finding algorithm
(like a Newton’s algorithm). Then the scheme can be advanced from step k to step
k + 1. This is the same for the algorithms that have been described in Part II of
this book. The schemes can be advanced if at each step some nonsmooth problem
is solved (like a linear complementarity problem). We call these problems the one-
step discretized problems. In this chapter various such one-step problems and their
numerical solvers are reviewed. Properly choosing a one-step problem solver is an
important feature of the obtained algorithm (event-driven or time-stepping).



12

Basics on Mathematical Programming Theory

12.1 Introduction

As we have seen along the previous chapters, the time-discretization of nonsmooth
dynamical systems leads to systems of equalities and inequalities that have to be
solved at each time step. Most of these systems are often well-known problems in
the mathematical programming theory and a lot of theoretical analysis and solving
methods have been proposed over the years.

The goal of this chapter is to give some basic elements on these problems issued
by the mathematical programming community without claiming to substitute the
reference textbooks. The aim is at helping the reader, who is not familiar with the
optimization theory, (a) to identify what the kind of problem yielded from the time-
discretization is, (b) to know what the main solving algorithms and their principles
are and finally (c) to help the reader to choose a solving method for a specific class
of problems. We do not claim that the presentation is rigorous or exhaustive, but
we hope that it will help the reader to find a path in the jungle of the optimization
methods.

12.2 The Quadratic Program (QP)

12.2.1 Definition and Basic Properties

Let us start with a well-known problem in the mathematical programming theory:
the Quadratic Program, which can be defined as follows.

Definition 12.1 (Quadratic Program (QP)). Let Q ∈ IRn×n be a symmetric matrix.
Given the matrices A ∈ IRmi×n, C ∈ IRme×n, and the vectors p ∈ IRn, b ∈ IRmi , d ∈
IRme , the Quadratic Program (QP) denoted by QP(Q, p,A,b,C,d) is to find a vector
z ∈ IRn such that
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minimize q(z) =
1
2

zTQz+ pTz

subject to Az−b � 0
Cz−d = 0

(12.1)

The set D = {z ∈ IRn | Az− b � 0, Cz− d = 0} is called the feasible set of
the Quadratic Program (QP).

Associated Lagrangian Function

The following Lagrangian function is usually associated with this constrained opti-
mization problem:

L (z,λ ,μ) =
1
2

zTQz+ pTz−λT(Az−b)− μT(Cz−d) , (12.2)

where (λ ,μ) ∈ IRmi × IRme are the Lagrange multipliers.

First-Order Optimality Conditions

The following theorem defines the so-called first-order optimality conditions which
are necessary conditions for a point to be an optimal point of the Quadratic Program
(QP) (12.1).

Theorem 12.2 (First-order necessary optimality conditions or Karush–Kuhn–
Tucker (KKT) conditions). The first-order optimality conditions or Karush–Kuhn–
Tucker (KKT) conditions of the QP can be stated as follows: suppose that z̄ is a
local optimum of the QP (12.1). Then there exist two vectors of Lagrange multipliers
(λ ,μ) ∈ IRmi × IRme such that⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇zL (z̄,λ ,μ) = Qz̄+ p−ATλ −CTμ = 0

Cz̄−d = 0

0 � λ ⊥ Az̄−b � 0 .

(12.3)

Any solution of the first-order optimality conditions is called a stationary point of
the QP.

The Karush–Kuhn–Tucker (KKT) conditions are necessary conditions, i.e. any solu-
tion z̄ of the KKT condition is a solution of the QP in (12.1). We will see later that
this set of equations gives rise to variants of LCP, especially the MLCP and the hor-
izontal LCP according to the type of constraints. If there is no inequality constraint,
the KKT system is a linear system.

Remark 12.3. For the more general NonLinear Programming (see Sect. 12.3), a Con-
straint Qualification (CQ) condition is added to guarantee that KKT conditions are
necessary conditions to the optimization problem. The existence and uniqueness of
the Lagrange multipliers is not ensured for a particular solution z̄ for instance, if the
constraints are not linearly independent.
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Second-Order Optimality Conditions

The second-order optimality conditions can be separated into necessary and suffi-
cient conditions for optimality. We refer the reader to Bonnans et al. (2003) for a
complete description in the framework of the nonlinear programming.

The Dual Problem and Lagrangian Relaxation

The problem (12.1) is usually referred to as the primal problem. A dual problem can
be introduced considering the Lagrangian function (12.2). Due to the particular form
of the Lagrangian function, the QP problem is equivalent to solving

min
z

max
λ�0,μ

L (z,λ ,μ) . (12.4)

The idea of Lagrangian relaxation is to invert the min and max, introducing the
dual function

θ (λ ,μ) = min
z

L (z,λ ,μ) (12.5)

and the dual problem
max
λ�0,μ

θ (λ ,μ) . (12.6)

In the particular case of a QP where the matrix Q is Positive Definite (PD), the
dual function is equal to

θ (λ ,μ) = minz L (z,λ ,μ) = L (Q−1(ATλ +CTμ− p),λ ,μ)

=− 1
2(ATλ +CTμ− p)TQ−1(ATλ +CTμ− p)

+bTλ + dTμ

(12.7)

and we obtain the following dual problem:

max
λ�0,μ

−1
2
(ATλ +CTμ− p)TQ−1(ATλ +CTμ− p)+ bTλ + dTμ , (12.8)

which is a QP with only inequality constraints of positivity. The strong duality theo-
rem asserts that if the matrices Q and AQ−1AT are symmetric semi-definite positive,
if the primal problem (12.1) has an optimal solution, then the dual has also an optimal
solution. We will see later the interest of the dual formulation (12.8).

Basic Properties

Quadratic problems can always be solved or shown to be infeasible in a finite
number of iterations. However, the problem can be more or less hard to solve
depending on the properties of the matrix Q and on the number of inequality
constraints. For instance, the QP with an indefinite matrix is a NP-hard problem
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(Murty & Kabadi, 1987)1 and the QP is said to be nonconvex. The nonconvex QP
can have several stationary points and local minima.

If Q is PSD, the QP is said to be convex. In this case, polynomial time and robust
algorithms can be found. If the matrix Q is a Positive Definite (PD) matrix, we say
that the QP is strictly convex. With the positive definiteness assumption, the existence
and uniqueness of an optimal point z̄ are ensured (unless the feasible domain D is
empty). The existence is due to the fact that the function is coercive and the feasible
set D is closed and convex (possibly unbounded).

If the matrix is indefinite, the existence of a solution is not ensured. As an exam-
ple consider the QP:

min(x,y) x + y2

subject to x � 0 .
(12.9)

The “minimum” occurs at x =−∞ for all y and is −∞. We will see further that more
precise conditions can be given on the existence and uniqueness of solutions.

Before discussing the numerical methods for convex programs, the following
generalized QP can be introduced:

minimize q(z) =
1
2

zTQz+ pTz

subject to z ∈D

(12.10)

for discussing the existence and uniqueness of solutions. If the matrix Q is a PD
matrix, the strict convexity ensures the existence of an optimum for all D �= /0 and
the uniqueness of the optimum if D is convex. The question of the existence of the
multipliers and the dual problem is more subtle. If D is defined by a finite number
of inequalities, say

D = {z | gi(z) � 0, i = 1, . . . ,m} , (12.11)

the existence of the multipliers is subjected to some qualification constraints. One of
the consequences of convexity is that the KKT multipliers coincide with the solutions
of the dual problem (12.6).

Degenerate QP

A QP is said to be degenerate when at least one of the following situations is met:

(a) the columns of the matrices C and A corresponding to the active constraints at
the solution z̄ are not linearly independent,

(b) the strict complementarity condition in (12.3) fails to hold at the solution z̄, that
is, the optimal Lagrange multiplier λ has a vanishing component for an inequality
constraint which is active, λi = (Az̄−b)i = 0.

The degeneracy of the QP can cause many numerical troubles. We will try to express
them while exposing the numerical methods for solving QP. The nonconvex QP with
an indefinite matrix Q is also sometimes called a degenerate QP. In the sequel we
prefer to call it a nonconvex QP.

1 The proof is based on a copositive matrix Q which is not PSD.
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12.2.2 Equality-Constrained QP

The motivation for this section is that a large class of numerical methods are based
on the iterative solutions of equality-constrained QPs.

12.2.2.1 Existence and Uniqueness

In this section, we will give some insights on QPs with only equality constraints:

minimize q(z) =
1
2

zTQz+ pTz

subject to Cz−d = 0 .

(12.12)

The KKT conditions (12.3) can be written in the form of a linear system:⎡
⎣Q −CT

C 0

⎤
⎦
⎡
⎣ z̄

μ

⎤
⎦ =

⎡
⎣−p

d

⎤
⎦ . (12.13)

From now on, the matrix C is assumed to be full row rank, i.e., the constraints
are linearly independent.

For numerical purposes, the KKT system (12.13) is usually rewritten as⎡
⎣Q CT

C 0

⎤
⎦
⎡
⎣−r

μ

⎤
⎦ =

⎡
⎣g

h

⎤
⎦ , (12.14)

where z̄ = z0 +r, z0 is any estimate of the solution, r is the desired step to the solution,
and

h = Cz0−d, g = p + Qz0, r = z̄− z0 . (12.15)

In order to give some results on this linear system, a matrix Z ∈ IRn×(me) is intro-
duced whose columns form a basis of the null space of the matrix CT, i.e., KerCT.
The matrix Z has full rank, i.e., it has rank me and

CTZ = 0 . (12.16)

The following result is well known in the mathematical programming theory.

Lemma 12.4. Let CT have full row rank, and assume that the reduced Hessian ma-
trix, ZT QZ, is PD. Then the KKT matrix

K =

⎡
⎣Q CT

C 0

⎤
⎦ (12.17)

is nonsingular, and there exists a unique vector pair (z̄,μ) satisfying (12.13).

We refer to Fletcher (1987) for a proof of this lemma. In fact, using second-order
optimality conditions yields the following result:

Lemma 12.5. Suppose that the assumptions of Lemma 12.4 are satisfied. Then
(12.12) has a unique (global) solution, which is the unique solution of (12.13).
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12.2.2.2 Numerical Methods for Solving the KKT System
of Equality-Constrained QPs

Although the KKT system (12.14) is a linear system, the fact that the KKT ma-
trix is always indefinite for me � 1 leads to some numerical difficulties to solve it.
Three major classes of numerical methods can be listed for solving the KKT system
of equality-constrained QP: (i) direct methods, on the whole KKT system, (ii) the
range-space methods, and (iii) the null-space methods.

Direct Methods of the Whole KKT Matrix

The first way to solve the whole KKT system (12.14) is to perform a factorization
of the matrix K. The fact that the KKT matrix is indefinite prevents the use of the
standard Cholesky method for the triangular factorization of symmetric matrices.
Although the Gaussian elimination with partial pivoting can be used to perform a LU
factorization, the most effective solution is to use a dedicated symmetric indefinite
factorization for taking into account symmetry (Bunch & Parlett, 1971; Bunch &
Kaufman, 1977; Bunch et al., 1976; Higham, 1997). For a general symmetric matrix
K, the form of the factorization is as follows:

PT KP = LDLT , (12.18)

where P is permutation matrix, D is block-diagonal matrix containing only 1× 1
or 2× 2 blocks. The permutation matrix is only introduced to maintain numerical
stability and sparsity. This approach can be quite effective on some problems if the
heuristics in choosing the permutation matrix for the numerical stability do not de-
stroy the sparsity. Another way to solve the whole KKT system is to apply an iterative
method. The indefiniteness precludes the use of the conjugate gradient method, but
the QMR methods (Freund & Nachtigal, 1991) and least-squares approaches such as
LSQR method (Paige & Saunders, 1982) can be efficient.

Range-Space Method

The range-space method is based on the assumption that the QP matrix Q is positive
definite. In this case, an elimination of the block equation on −r in (12.14) can be
performed by multiplying by C Q−1 and subtracting the second equation. One obtains
a symmetric PD linear system on the Lagrange multiplier μ :

(CQ−1CT)μ = CQ−1g−h . (12.19)

Once we have solved the system (12.19) for μ by standard methods (Cholesky,
etc.), the vector r and the optimal point z are retrieved by solving the first block
equation:

Qr = CTμ−g . (12.20)

Note that this approach just amounts to solving the dual problem (12.7–12.8),
which is written here as
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max
μ
−1

2
(CTμ− p)TQ−1(CTμ− p)+ dTμ . (12.21)

The range-space method is useful when the cost of obtaining the inverse of Q or
the factorization of CQ−1CT is reasonable. This is the case when Q is diagonal or
block diagonal or when the number of equality constraints is small with respect to
the number of unknowns.

Remark 12.6. A case of a number of equality constraints small with respect to the
number of unknowns is for instance the large finite element applications with perfect
unilateral contacts when the number of nodes involved in the contact area is small
with respect to the global number of nodes in the mesh.

Null-Space Method

On the contrary, the null-space method does not require the positive definiteness of
Q. Hereafter we only assume that the conditions for existence and uniqueness of
Lemma 12.4 are satisfied (CT is full row rank and ZT QZ is PD). The null space
method requires the computation of the matrix Z whose columns span the null-space
of C. This matrix can be computed with orthogonal factorizations or, in the case of
sparse problems, by factorization of a submatrix of C. Given a feasible vector z0

(which is just a particular solution of the system Cz = d), any feasible vector can be
expressed as

z = z0 + Zw, w ∈ IRme . (12.22)

The equality-constrained QP (12.12) is then equivalent to the following uncon-
strained QP:

minimize
1
2

wTZTQZw+(Qz0 + p)TZw . (12.23)

If the reduced Hessian ZTQZ is PD, then the unique solution w̄ is given by the solu-
tion of the following linear system:

ZTQZw =−ZT(Qz0 + p) . (12.24)

The optimal solution of the original problem (12.12) is then retrieved by us-
ing (12.22). The Lagrange multipliers are computed using the first-order optimality
conditions,

Qz̄+ p +CTμ = 0 , (12.25)

which are uniquely solvable if C has full rank by

μ =−(CCT)−1C(Qz̄+ p) . (12.26)

Details on the numerical computation of the null-space matrix Z and the computation
of the particular solution together with an efficient evaluation of (12.22) can be found
in Fletcher & Johnson (1995). In contrast to the range-space method, the null-space
method is efficient if the number n−me of degrees of freedom is small. The main
drawback is the computation of the matrix Z which can be a hard task in large-scale
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applications. The choice of the matrix Z, which is not uniquely defined, can also
have an important impact on the conditioning of the system. For small and medium
applications, an orthonormal Z is chosen in order to keep the conditioning of Q.

The symmetric PD linear system (12.24) can be solved by any standard solvers.
Factorization methods can be used also by iterative methods such as the conjugate
gradient method. As always, the main difficulty is to find good pre-conditioners.

Comments

It is difficult to give some a priori rules on the use and the effectiveness of the direct,
range-space, and null-space methods. These rules depend strongly on the structure of
the QP. However, the range-space methods are recommended if the matrix Q is PD
and if CQ−1CT can be computed cheaply. All of these methods imply to solve linear
systems. According to their size and their properties, direct or iterative solvers have
to be chosen. The efficiency of the QP solvers depends strongly on the efficiency of
the underlying linear solver.

The case of the degenerate QP can cause numerical troubles. Indeed, the linear
dependence of the columns of the matrix C can cause difficulty in the computation
of the null-space matrix Z in null-space methods, and in the range-space methods
the matrix CQ−1CT can become singular. Some regularization can be nevertheless
introduced to overcome this problem.

12.2.3 Inequality-Constrained QP

In order to simplify the notation for the presentation of the active-set methods for
QP, we introduce the following notation for the inequality-constrained QP (12.1):

minimize q(z) =
1
2

zTQz+ pTz

subject to hT
i z−gi � 0, i ∈I

hT
i z−gi = 0, i ∈ E ,

(12.27)

where E and I are finite sets of indices. The relation with (12.1) is obvious in the
sense that the matrix H = [hi]T and the vector g are given by

H =

⎡
⎣A

C

⎤
⎦ , g =

⎡
⎣ b

d

⎤
⎦ . (12.28)

This formulation allows one to define easily what the active set, A (z̄), is at an opti-
mal point z̄ in the following way:

A (z̄) = {i ∈ E ∪I | hT
i z−gi = 0} . (12.29)

The active set contains the index sets of equality constraints E and the subset of the
inequality constraints I , such that equality is satisfied.
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Using the active-set notation, the first-order optimality conditions can be simpli-
fied to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇zL (z̄,λ ,μ) = Qz̄+ p−HTλ = 0

hT
i z̄−gi = 0, ∀i ∈A (z̄)

hT
i z̄−gi � 0, ∀i ∈I \A (z̄)

λ � 0, ∀i ∈I ∩A (z̄)

. (12.30)

12.2.3.1 Active-Set Methods

An active-set method starts by using a guess of the active set of constraints A (z̄) and
solves the corresponding equality-constrained QP

minimize q(z) =
1
2

zTQz+ pTz

subject to hT
i z−gi = 0, i ∈A (z̄)

(12.31)

by one of the methods previously exposed in Sect. 12.2.2. The active set is then
updated using the information of the nonactive constraints and the Lagrange multi-
pliers. One index is added or dropped up until convergence is obtained.

In practice, the notion of working set Wk is introduced for each iteration. It is a
subset of the active set A and it consists of all the equality constraints, i ∈ E , plus
some active inequality constraints. Not necessarily all active inequality constraints
are included in the working set. Especially, an important requirement is to impose
that the active constraints are linearly independent.

Given zk and Wk at the iteration k, we compute the step rk = z− zk from the
following QP:

minimize
1
2

rTQr + sT
k r

subject to hT
i r = 0, i ∈Wk

(12.32)

with sk = Qzk + p. The solution of (12.32) can be computed by any method presented
in Sect. 12.2.2.

If rk �= 0, we have to choose a step length αk as large as possible to maintain the
feasibility with respect to all the constraints. It is noteworthy that all the equalities in
the working set Wk continue to hold in the direction rk. Indeed, we have the following
property:

hT
i (zk +αkrk) = hT

i zk = gi (12.33)

so the constraint value hT
i z is constant along the direction rk. An explicit formula can

be derived for αk (see Fletcher, 1987):
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αk = min

{
1, min

i∈Wk ,h
T
i rk<0

{
gi−hT

i zk

hT
i rk

}}
. (12.34)

The new iterate zk+1 is set to zk +αkrk. If αk < 1 the constraints for which the mini-
mum in (12.34) is achieved are called the blocking constraints. The new working set
Wk+1 is updated by adding one of the blocking constraints to Wk. We continue in this
way until an optimal point ẑ = zk is obtained over the working set Ŵ = Wk. In this
situation, which corresponds to αk−1 = 1, the step r̂ = rk is going to be equal to zero.

If the step rk = 0, the Lagrange multiplier λ̂ = λk from (12.31) satisfies

∑
i∈Ŵ

hiλ̂i = g = Qẑ+ p . (12.35)

If all of the multipliers λ̂i for i ∈ Ŵ ∩I are nonnegative, we have found a stationary
point which respects the first-order optimality conditions. Otherwise the objective
function q may be decreased by dropping the inequality constraint corresponding to
some negative λ̂i.

The algorithm of the active-set method for convex QP is described in Algo-
rithm 10.

Algorithm 10 Sketch of the active-set method for convex QP

Require: Q,p,H,g
Ensure: z̄,λ

Compute a feasible initial point z0.
Compute the working set W0 at z0.
IsTheSolutionNotFound← true
while IsTheSolutionNotFound do

Solve the equality constrained QP (12.32) for rk and λ̂ = λk satisfying (12.35).
if rk = 0 then

if λ̂i � 0,∀i ∈Wk∩I then
z̄← zk

IsTheSolutionNotFound← false
else

j← argminj∈Wk∩I {λ̂j}
zk+1← zk

Wk+1←Wk \{j}
end if

else
Compute αk according to (12.34).
zk+1← zk +αkrk.
Update Wk+1 by adding one of the blocking constraints if any.

end if
end while
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Comments and References

The above presentation of the active-set method is not complete and is only concep-
tual. For more details on how to compute the feasible initial point z0, how to construct
a working set with only linear independent constraints, and how to efficiently update
the factorization of the KKT system for each resolution of the subproblem, we re-
fer to the following textbooks: Gill et al. (1981), Fletcher (1987), and Nocedal &
Wright (1999).

If the QP is strictly convex, the convergence, i.e., the finite termination of the
algorithm, can be shown under the assumption that the step length αk does not van-
ish whenever the step rk is nonzero. This assumption prevents the phenomenon of
cycling. Cycling occurs when a constraint is added and dropped iteratively in the
working set without any change in the iteration zk.

The Nonconvex Case

Most of the serious implementations of QP solvers have suitable heuristics to adapt
the search direction and the step length in the case that rk does not point toward a
minimizer of (12.32). In this case, in the context of null-space method, the inertia
controlling method is used in which the reduced Hessian ZTQZ is not permitted to
have more than one negative eigenvalue. Pseudo-constraints are maintained in the
working set to keep the positive definiteness of the reduced Hessian ZTQZ, and the
negative curvature is detected and used as search directions by means of Cholesky.
More details can be found in Fletcher (1971) and Gill et al. (1991).

12.2.3.2 Gradient Method with Projections

The major drawback of the active-set methods is the slow evolution of the identifica-
tion of the constraints that are active at the solution. Indeed, at most one constraint
can be added or dropped in the working set at each iteration. For large-scale prob-
lems, the lower bound on the number of iterations can be a severe drawback. Among
the methods that try to identify quickly the active set of constraints, we can cite the
gradient method with projection. If the standard gradient method has the drawback
of a slow convergence rate, it has the advantage to allow large changes in the active
set and then helps to quickly identify a suitable active set.

The gradient projection method is interesting if the computational cost of the
projection PD(·) onto the feasible set D is cheap. This is especially the case for a
bound constrained QP such as

minimize q(z) =
1
2

zTQz+ pTz

subject to l � z � u ,

(12.36)

where l ∈ IRm and u ∈ IRm stand for the lower and upper bounds.
The GPCG method proposed in Moré & Toraldo (1991) is based on a two-step

procedure at each iteration: the gradient projection stage and the conjugate gradient
projection stage. The following sections will give the basic principles of these stages.



342 12 Basics on Mathematical Programming Theory

Gradient Projection Stage

Given zk at iteration k, a first step consists in generating a sequence of iterates y0 =
zk,y1, . . ., by a gradient projection algorithm such that

y j+1 = PD(y j−α j∇q(y j)) , (12.37)

where α j > 0 is chosen by a projected search so that the objective function is de-
creased, i.e., q(y j + 1) < q(y j). We will discuss later how a projected search can be
implemented. The gradient projection stage is used to select a new face correspond-
ing to a new active set. The gradient projection stage is stopped if it fails to make
reasonable progress or when a suitable active set is found, that is when the index jk
is the first to satisfy the two following tests for j:

A (y j) = A (y j−1)

q(y j−1)−q(y j) � ν1 max{q(yl−1)−q(yl),1 � l < j}, ν1 > 0 .
(12.38)

At the end of this step, we set z� = y jk .

Conjugate Gradient Stage

The second step is to compute an approximation of the solution of the QP (12.36)
on the face defined by the active given by the first step. This means to solve the
following equality-constrained QP:

minimize q(z� + d) =
1
2

dTQd + pT(z�TQ+ d)

subject to di = 0, ∀i ∈A (z�) .

(12.39)

The equality-constrained QP (12.39) can be easily solved recognizing that the null-
space matrix Z is easily computable. Null-space methods lead to an unconstrained
QP in the variable w:

minimize q̃(w) =
1
2

wTAw+ rTw , (12.40)

where A = ZTQZ is the reduced Hessian on the “free” variables with respect to
A (z�). The QP (12.40) can be solved by conjugate gradient solvers which gener-
ate a sequence of wi. The solver is stopped when the following test is satisfied for
jk:

q̃(wj−1)− q̃(wj) � ν2 max{q̃(wl−1)− q̃(wl),1 � l < j}, ν2 > 0 . (12.41)

We set dk = Zwjk as the new search direction for a new projected search defining the
next iterate as

zk+1 = PD(z� +αkdk) . (12.42)
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In case the solution is in the face defined by A (z�), the conjugate gradient
method must be continued until it reaches an accurate solution. For detecting such
a situation, a necessary condition is verified based on the notion of the so-called
binding set:

B(z) = {i | zi = li and (∇q(x))i � 0, or zi = ui and (∇q(x))i � 0} . (12.43)

If A (zk+1) = B(zk+1), the conjugate gradient method is continued.

Projection Searches

As we said before, the evaluation of α j in (12.37) and αk in (12.42) is based on a
projected search. It consists in finding a value for α > 0 such that the function

φk(α) = q(PD(zk +αdk)) (12.44)

is sufficiently decreased. The sufficient decrease condition requires that α > 0
satisfies

φk(α) � φk(0)+ μ∇Tq(zk)(PD (zk +αdk)− zk), μ ∈
(

0,
1
2

)
. (12.45)

This is done by testing the values of αl generated by the decreasing sequence

α0 > 0, αl+1 ∈ [γ1αl ,γ2αl ], 0 < γ1 < γ2 < 1 . (12.46)

Note that PD(zk +αdk) is a piecewise linear function. Its breakpoints are given by
changes in the active set. In the case of a simple feasible set given by the bound
constraints, these breakpoints can be computed explicitly. The function φk(α) is a
piecewise quadratic function.

Comments and Variants

In Conn et al. (1988), Wright (1989) and Nocedal & Wright (1999), some variants
of the previous algorithms can be found. Especially, the first step can be defined
by only one iterate of the gradient projection method but with a exact computation
of a local minimizer of the piecewise quadratic function. This can be done by test-
ing each linear interval of the piecewise linear path PD(zk +αdk). In Friedlander
& Leyffer (2006), the idea of the gradient projection method is also used to iden-
tify quickly the active set, but together with an augmented Lagrangian approach
(see Sect. 12.3) and filter methods. In Bertsekas (1982), a second-order acceleration
mechanism is inserted in the spirit of the active-set approach.

12.2.3.3 Interior Point Methods

Recent trends seem to favor the so-called interior point methods for solving large
QPs. As the name indicates, the key idea is to approach the solution of the problem
by a sequence of iterates which stay, as long as possible, far away from constraints,
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i.e., in the strict interior of the feasible domain. The primal methods also known as
barrier methods use the logarithmic function as barrier functions to enforce the it-
erates to stay far away from the constraints. Such methods have been extensively
studied as the book of Fiacco & McCormick (1968) witnesses. In the context of
nonlinear programming, these methods have been forgotten due to the poor numer-
ical efficiency and the lack of robust methods to drive the penalty parameter (see
Sect. 12.3).

The interior point methods have known a new interest in the optimization com-
munity for their ability to provide tools for the complexity theory (see the book of
Nesterov & Nemirovskii, 1993, for a general theory). Indeed, from the seminal work
of Karmarkar (1984), the efficiency of interior point methods for linear programming
has been extensively studied. Such studies have been improved and extended many
times to other problems such as QP and LCP (see the survey papers of Freund &
Mizuno 1996; Potra & Wright, 2000).

From the numerical point of view, the numerical efficiency is more debatable.
Clearly, the best algorithms from the complexity point of view are not necessarily
the best from the practical efficiency point of view. However, some interior point
methods seem to enjoy a good practical efficiency, even if their complexity proper-
ties are worse. Mainly the primal–dual interior point methods seem to provide the
basic framework to efficient algorithms. They are based on solving the first-order
optimality conditions for both primal and dual variables. As we said earlier in the
beginning of Sect. 12.2, the first optimality conditions for a QP are a MLCP. There-
fore, without going into further details in this section, we will present some aspects
of the interior point methods for LCPs in Sect. 12.4.8.1.

For more details on interior point methods, we refer to the monographs: den
Hertog (1994), Wright (1996b), Ye (1997), and Bonnans et al. (2003)

12.2.4 Comments on Numerical Methods for QP

12.2.4.1 How to Choose the Right Method?

It is quite difficult to give hard and simple rules for choosing a method with respect
to the others. Nevertheless, we will give some advices which are relatively widely
admitted in the mathematical programming community:

1. Active-set methods are the best suited
• for small to medium system sizes (n < 5000),
• when a good initial point is known especially for the active-set identification

point of view, for instance, in sequential quadratic programming or at each
step of a dynamical process,

• when an exact solution is searched. Active-set methods can be used as
“purification” techniques of interior point methods.

Recall that several methods are available to solve the equality-constrained sub-
problem depending on the structure of the original QP.

2. Gradient projection methods are well suited for large QP with simple constraints
(simple inequality, bound constrained, etc.).



12.3 Constrained Nonlinear Programming (NLP) 345

3. Interior point methods are well suited
• for large systems without the knowledge of a good starting point,
• when the problem has a special structure that can be exploited directly in

solving the Newton iteration.

12.2.4.2 Special Interest of the QP Method for the One-Step
Discretized Problem

Anticipating on the discussion in Sect. 12.4, it can be convenient to recast some com-
plementarity problems into the QP formulation if it is possible. One of the reasons
is that there is now a huge collection of very robust and efficient QP solvers (freely
available or commercially distributed) which are able to deal with difficult problems
such as

• convex QPs with PSD matrices,
• redundant and linearly dependent constraints,
• nonconvex QPs.

For all of these methods, the fact that the problem is an optimization problem and
not only a direct system to solve such as the KKT conditions helps us to stabilize the
problem and to ensure by globalization the convergence of the algorithm to a local
optimum. This fact is crucial from the practical point of view. For a presentation
of such methods which are more or less variants of the methods presented in this
section, we refer to the work of Gould & Toint (2002).

We will see in Chap. 13 that such types of problems can arise in solving some
frictional contact problems, where some constraints are often redundant leading to
hyperstaticity and where the friction and its approximation induce nonconvexity.

12.3 Constrained Nonlinear Programming (NLP)

12.3.1 Definition and Basic Properties

The NonLinear Programming (NLP) problem is somehow a generalization of the QP
problem. It consists in finding the minimum of a nonlinear function under nonlinear
equality and inequality constraints. This very general problem in optimization can
be defined as

Definition 12.7 (Nonlinear programming (NLP) problem). Given a differentiable
function f : IRn→ IR and two differentiable mappings g: IRn→ IRmi , h: IRn→ IRme ,
the nonlinear programming problem is to find a vector z ∈ IRn such that

minimize f (z)

subject to g(z) � 0

h(z) = 0 .

(12.47)
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As usual, the Lagrangian of this NLP problem is associated as follows:

L (z,λ ,μ) = f (z)−λTg(z)− μTh(z) , (12.48)

where (λ ,μ) ∈ IRmi × IRme are the Lagrange multipliers.

First-Order Optimality Conditions

In contrast with the QP case, existence of Lagrange multipliers (μ ,λ ) is not straight-
forward. Some Constraint Qualification (CQ) conditions must hold at least at the
optimal point. Numerous types of (CQ) exist. Let us give the definition of the most
popular (CQ), the so-called Linar Independence Constraint Qualification (LICQ).
For that we introduce for convenience purposes for the equivalent NLP

minimize f (z)

subject to ci(z) = 0, i ∈ E
ci(z) � 0, i ∈I

, (12.49)

where E and I are finite sets of indices. The relation between (12.47) and (12.49)
is obvious. The active-set A (z̄) at a point z̄ is defined by

A (z̄) = {i ∈ E ∪I | ci(z̄) = 0} . (12.50)

Definition 12.8 (Linar Independence Constraint Qualification (LICQ)). Given
the point z̄ and the active set (z̄) we say that the Linar Independence Constraint Qual-
ification (LICQ) holds if the set of active constraint gradients {∇ci(z̄) | i ∈A (z̄)} is
linearly independent.

For more general (CQ) conditions, we refer to Mangasarian (1969), Fletcher, (1987),
Hiriart-Urruty & Lemaréchal (1993), and Bonnans et al. (2003). With the previous
definition of the Linar Independence Constraint Qualification (LICQ), the first-order
optimality conditions can be stated as follows:

Theorem 12.9 (First-order necessary optimality conditions or KKT conditions).
Suppose that z̄ is a local optimum of the NLP problem (12.47) and the LICQ holds at
z̄, then there exists two vectors of Lagrange multiplier (λ ,μ) ∈ IRmi× IRme such that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇zL (z̄,λ ,μ) = ∇ f (z̄)−∇gT(z̄)λ −∇hT(z̄)μ = 0

h(z̄) = 0

0 � λ ⊥ g(z̄) � 0 .

(12.51)

Any solution of the first-order optimality conditions is called a stationary point of the
NLP.
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Second-Order Optimality Conditions

As for the QP, the second-order optimality conditions can be separated into necessary
and sufficient conditions for optimality. We refer the reader to Bonnans et al. (2003).
One basic ingredient of the sufficient conditions is the definite positiveness of the
projected Hessian of the Lagrangian.

The Dual Problem

As for the QP problem, an analog dual problem to (12.6) can be defined based on the
dual function (12.48) by introducing the dual function

θ (λ ,μ) = min
z

L (z,λ ,μ) (12.52)

and the dual problem
max
λ�0,μ

θ (λ ,μ) . (12.53)

Basic Properties

Generally, the existence of a minimizer is not ensured. Several assumptions can lead
to the existence of (possibly several) minimizers. Boundedness from below or coer-
civity of f can be invoked for the existence of minimizers. Uniqueness of a global
minimizer is ensured in the convex case, that is when the function f is strictly convex
and the set feasible set D is also convex. For more details, we refer to the famous
textbook: Hiriart-Urruty & Lemaréchal (1993).

12.3.2 Main Methods to Solve NLPs

We will not enter into the details of the implementation of the numerical methods for
solving NLPs. One of the reason is that the subject is very wide and the algorithms
are generally quite complex. As we did at the beginning of this chapter, we will just
list the main methods and their advantages, giving some pointers to useful references.

12.3.2.1 Penalty, Barrier, and Augmented Lagrangian Approaches

Exterior Penalty Approach

The most natural idea to solve the NLP (12.47) is to transform the original problem
into an unconstrained NLP with the help of a penalty function. The most well-known
penalty function is quadratic penalty function. In this case, we end up with the fol-
lowing unconstrained NLP:

minimize f (z)+
1

2ε
‖h(z)‖2 +

1
2ε
‖max(0,−g(x))‖2, (12.54)

where ε is the penalty parameter. Most of the algorithms based on the penalty ap-
proach consist in solving a sequence of problems (12.54) for a sequence of penalty
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parameters {εk} which tends to 0. At any stage of the algorithm, the constraints are
not fulfilled exactly. They are exactly satisfied only in the limit ε→ 0. By vanishing
the penalty parameter, we penalize the constraints more severely, and the optimal
point is found in the exterior of the feasible set. We call sometimes this method
the exterior penalty method. From the computational point of view, these methods
behave poorly. As the penalty parameter tends to 0, the problem becomes stiff and
ill-conditioned. Nevertheless, its very easy implementation can attract users for small
simple problems.

Barrier Methods

In contrast to the exterior penalty approach, the barrier method penalizes the se-
quence of iterates in the interior of the feasible set. For an inequality-constrained
NLP, the log barrier function is the most well-known function and yields the follow-
ing unconstrained NLP,

minimize f (z)− ε ∑mi
i=1 log gi(x) . (12.55)

As with the penalty approach, the algorithm attempts to generate a sequence of solu-
tions of the problem (12.55) for a sequence of parameters {εk} which tends to 0. The
monitoring of the parameter ε and the difficulty to solve the problem for small pa-
rameters may have dramatic consequences on the practical behavior of the method.
This method which was extensively studied in Fiacco & McCormick (1968) has been
abandoned in this primal form but gives rise to the primal–dual interior point meth-
ods for NLP. As for the interior point methods for LCP which can be applied to
the optimality conditions of a QP, the analog can be implemented for the couple
NonLinear Complementarity Problem (NCP)/NLP. More details can be found in the
references cited in Sect. 12.2.3.3.

Augmented Lagrangian Approach

We complete this section with the augmented Lagrangian approach, which is some-
times called the exact penalty approach. The key idea is to introduce new terms in
the Lagrangian function (“to augment the Lagrangian”) to penalize the constraints in
an exact way, that is, when the constraints are satisfied these added terms vanish in
the objective function. One example of augmented Lagrangian function can be given
for an inequality-constrained NLP,

Lσ (z,λ ,μ) = L (z,λ ,μ)+λT max

(−λ
σ

,g(x)
)

+
σ
2

∥∥∥∥max

(−λ
σ

,g(x)
)∥∥∥∥

2

,

(12.56)

where the max function has to be taken component-wise. Many other augmented La-
grangian functions have been defined with various theoretical properties and com-
putational efficiencies. For a review and a discussion, we refer to the papers of
Rockafellar (1973, 1974, 1976a, 1979, 1993) and the book Bonnans et al. (2003).
The principle of the algorithms based on the augmented Lagrangian is to generate a
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sequence of iterates, zk, which minimizes the augmented Lagrangian for a sequence
of Lagrange multipliers (λ k,μk). The efficiency of the augmented Lagrangian ap-
proach has been shown on very large class of problems. For a practical implementa-
tion, we refer to the code LANCELOT (Conn et al., 1992).

12.3.2.2 Successive Quadratic Program (SQP)

For the sake of simplicity, we expose only the principle of the Successive Quadratic
Program (SQP) method for the following equality-constrained NLP,

minimize f (z)
subject to h(z) = 0 .

(12.57)

We assume that the LICQ for all z holds, that is the matrix ∇h(z) has full row rank.
From the KKT conditions, for any solution, z̄ of (12.57) there exists a unique La-
grange multiplier μ ∈ IRme such that

{
∇ f (z̄)+∇h(z̄)Tμ = 0

h(z̄) = 0 .
(12.58)

The Successive Quadratic Program (SQP) method for solving (12.57) is a Newton-
like method on the system (12.58). Starting at the current point (zk,μk), the step
(Δzk,Δμk) such that [

zk+1

μk+1

]
=

[
zk

μk

]
+

[
Δzk

Δμk

]
(12.59)

solves the following linear system:
[

Wk −AT
k

AT
k 0

][
Δzk

Δμk

]
=

[−∇ f (zk)+ AT
k μk

−h(zk)

]
, (12.60)

where AT
k = ∇Th(zk) and the matrix Wk is either the Hessian of L at zk, i.e., Wk =

∇2
zzL (z,μ) in Newton’s method or an approximation of the Hessian in the quasi-

Newton method such as BFGS, which is updated at each iteration.
An alternative view of the system (12.60) is to define the following QP:

minimize q(z) =
1
2
ΔzWkΔz+∇ f (zk)TΔz

subject to AkΔz−h(zk) = 0 ,

(12.61)

which is well defined if Wk is PD on the null space of the constraints and the matrix
Ak has full row rank. In this case, the unique solution of the QP is the solution of the
linear system (12.60). The two alternative ways to view the SQP method are very
interesting. From the theoretical point of view, the analysis is based on Newton’s
approach. From the practical point of view, the approach uses the QP solvers tools
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exposed in Sect. 12.2.3. The SQP method is easily extended to the general NLP
problem with inequality-constrained NLP by introducing the following QP:

minimize q(z) =
1
2
ΔzWkΔz+∇ f (zk)TΔz

subject to AkΔz−h(zk) = 0,
BkΔz−g(zk) � 0 ,

(12.62)

where Bk = ∇g(zk).
The practical implementation of SQP relies on the choice and the monitoring

of the underlying QP solvers. Two choices are available: (a) to solve only equality
constrained QPs with an active set updated in the outer algorithm or (b) to solve
the complete QP (12.62) directly with an update of the active inside the QP solver.
The second choice is preferable if a good QP solver is at hand. The SQP are always
globalized by line-search or trust-region methods as for the standard Newton’s and
quasi-Newton’s methods for the unconstrained NLP. We will not enter in more de-
tails of the SQP which would necessitate a whole chapter. We refer to Nocedal &
Wright (1999, Chap. 18) and Bonnans et al. (2003, Part III).

12.3.2.3 Gradient Projection Methods

As explained in Sect. 12.2.3.2, the gradient projection method is interesting for large-
scale problems if the computational cost of the projection PD onto the feasible set
D is cheap. This is especially the case for bound constraints, sphere constraints,
Cartesian products of simple constraints.

The Goldstein–Levitin–Polyak gradient projection method (Goldstein, 1964;
Levitin & Polyak, 1966) consists of the iteration

y j+1 = PD(y j−α j∇ f (y j)) , (12.63)

where α j � 0 denotes the step size. Levitin & Polyak (1966) proved the convergence
of the method under the assumption that f is Lipschitz with constant L and the fea-
sible set is convex. The proof is given for step sizes that satisfy

0 < ε � α j � 2(1− ε)
L

, for all j , (12.64)

where ε is any scalar with 0 < ε � 2/(2 + L).
In Bertsekas (1976), a generalized Armijo line-search procedure is given. This

rule extends the previous convergence results and provides us with an efficient com-
putational procedure for choosing the step. Furthermore, the approach allows one to
combine the gradient direction with some modified Newton directions improving by
the way the rate of convergence. As we said earlier in Sect. 12.2.3.2, Bertsekas (1982)
completes his analysis of his second-order acceleration mechanism.
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Remark 12.10. The gradient-projection methods must not be confused with the pro-
jected gradient method and the Rosen gradient projection method (Rosen,1960, 1961).
It is well known that the projected gradient method which consists of the iterate

y j+1 = y j +α jPD(−∇ f (y j)) (12.65)

does not converge. Rosen’s gradient projection method (Rosen, 1960, 1961) is based
on projecting the search direction into the subspace tangent to the active constraints.
Unfortunately, the computation of the Rosen projected gradient is based on the up-
date of the active set of constraints that does not allow large changes at each step.
Acceleration procedures using active-set strategies have also been proposed for the
Rosen method to obtain super-linear convergence (Gill & Murray, 1975). How-
ever, active-set strategies preclude the application of such methods onto large-scale
problems.

12.4 The Linear Complementarity Problem (LCP)

12.4.1 Definition of the Standard Form

The LCP is a widespread problem in mathematical programming theory. A usual
definition of this problem can be formulated as follows:

Definition 12.11 (Linear complementarity problem, LCP). Given M ∈ IRn×n and
q ∈ IRn, the linear complementarity problem is to find a vector z ∈ IRn, denoted by
LCP(M,q) such that ⎧⎪⎨

⎪⎩
w = Mz+ q

0 � z⊥ w � 0.

(12.66)

The solution set of LCP(M,q) is denoted by SOL(M,q).

The inequalities have to be understood component-wise and the relation x⊥ y means
xTy = 0. A vector z such that the inequalities z � 0 and Mz+q � 0 are satisfied is said
to be feasible. A LCP is said to be feasible if a feasible vector exists. The following
standard index sets are defined, for any vector z:

α(z) = {i | zi > 0 = wi = (Mz+ q)i}

β (z) = {i | zi = 0 = wi = (Mz+ q)i}

γ(z) = {i | zi = 0 < wi = (Mz+ q)i}.

(12.67)

A solution z̄ of LCP(M,q) is said to be degenerate if the index set β (z̄) is a
nonempty set.
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12.4.2 Some Mathematical Properties

For an exhaustive presentation of the LCP and its mathematical properties, we refer
to Cottle et al. (1992) and Murty (1988). We recall in this section only the main
mathematical properties. The proofs can be found in the standard monographs cited
above.

The P-Matrix Property

Mathematical results concerning the LCP are associated with a large number of ma-
trix classes, see Cottle et al. (1992, Chap. 3) for an almost exhaustive presentation).
Among these classes, one is fundamental since it yields existence and uniqueness of
the solution: the class of P-matrices defined below.

Definition 12.12 (P-matrix). A matrix, M ∈ IRn×n, is said to be a P-matrix if all its
principal minors are positive.

Recall that for a matrix A ∈ IRn×n and an index set α ⊂ {1, . . . ,n}, the submatrix
Aαα , which is the matrix whose entries lie in the rows and columns of A indexed by
α , is called a principal submatrix of A. The determinant det(Aαα) is called a principal
minor of A.

The following theorem gives a first characterization of a P-matrix:

Theorem 12.13. Let M ∈ IRn×n. The following statements are equivalent:

(a) M is a P-matrix
(b) M reverses the sign of no nonzero vector,2 i.e.,

x ◦Mx � 0 =⇒ x = 0. (12.68)

This property can be written equivalently,

∀x �= 0,∃i such that xi(Mx)i > 0. (12.69)

(c) All real eigenvalues of M and its principal submatrices are positive.

The Existence and Uniqueness Theorem

The existence and uniqueness of solutions to LCP(M,q) can be characterized by the
following theorem:

Theorem 12.14. A matrix M ∈ IRn×n is a P-matrix if and only if LCP(M,q) has a
unique solution for all vectors q ∈ IRn.

2 A matrix A ∈ IRn×n reverses the sign of a vector x ∈ IRn if xi(Ax)i � 0, ∀i∈ {1, . . . ,n}. The
Hadamard product x◦y is the vector with coordinates xiyi.
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The Case of the PD Matrix

It is noteworthy that if M is a symmetric P-matrix, then M is PD due to the state-
ment (c) of Theorem 12.13 or directly Definition 12.12. It is clear also that (not
necessarily symmetric) PD matrices belong to the class of the P-matrices. Therefore,
Theorem 12.14 holds directly for a PD matrix.

Remark 12.15. In most monographs, the notion of PD matrix usually implies the
notion of symmetry of the matrix. This is mainly due to the fact that positiveness
is related to the positiveness of the bilinear mapping xTMx which is always equal
to 1

2 xT(MT + M)x. This also due to the extension for Hermitian matrices in Cn×n.
Indeed, 1

2 x∗(M∗+M)x is in IR but not x∗Mx. In contrast to the QP context, the sym-
metry of a PD matrix is not assumed in the LCP framework.

In practice, this “P-matrix” assumption is difficult to check via numerical computa-
tion. Especially it is not possible in polynomial time. But a PD matrix (not necessar-
ily symmetric), which is a P-matrix, is often encountered in applications.

The P0-Matrix Property

Let us start with the definition of a P0-matrix.

Definition 12.16 (P0-matrix). A matrix M ∈ IRn×n is said to be a P0-matrix if all its
principal minors are nonnegative.

The following theorem gives a first characterization of a P0-matrix.

Theorem 12.17. Let M ∈ IRn×n. The following statements are equivalent:

(a) M is a P0-matrix.
(b) For any x �= 0, there exists i such that xi �= 0 and xi(Mx)i � 0.
(c) All the real eigenvalues of M and of its principal submatrices are nonnegative.
(d) For each ε > 0, M + εI is a P-matrix.

It is noteworthy that if M is a symmetric P0-matrix, then M is PSD. Con-
versely, the class of PSD matrices (not necessarily symmetric) belongs to the class of
P0-matrices.

As for the linear system with a PSD matrix, the existence and uniqueness of
solutions of the LCP are not guaranteed with a P0-matrix. The following theorem
gives some results on the uniqueness of w if the matrix is a so-called column adequate
matrix.

Theorem 12.18. Let M ∈ IRn×n. The following statements are equivalent:

(a) For all q ∈ K(M) = {q | SOL(M,q) �= /0}, if z and z̄ are any two solutions of
LCP(M,q) then

w = Mz+ q = Mz̄+ q = w̄, (12.70)

that is w is uniquely defined.



354 12 Basics on Mathematical Programming Theory

(b) Every vector whose sign is reversed by M belongs to the null space of M,

x ◦Mx � 0 =⇒Mx = 0. (12.71)

(c) M is a P0-matrix and is column adequate, that is, for each index set α ⊂
{1, . . . ,n}, one has

det Mαα = 0 =⇒M•α has linearly dependent columns, (12.72)

where M•α is the submatrix of M composed of the columns indexed by α .

In order to make precise the notion of existence and uniqueness of solutions,
new matrix classes have been introduced. We will not enter the details, refering to
the book of Cottle et al. (1992); but we list some of the properties that can be useful
when discussing numerical algorithms.

Definition 12.19 (Q-and Q0-matrices). The class of matrices M for which
LCP(M,q) has a solution for all q is denoted by Q and its elements are called
Q-matrices. The class of matrices M for which LCP(M,q) has a solution whenever
it is feasible is denoted by Q0 and its elements are called Q0-matrices.

Definition 12.20 (Sufficient matrix). A matrix M ∈ IRn×n is called a column suffi-
cient matrix if it satisfies

x ◦ Mx � 0 =⇒ xi(Mxi) = 0,∀i ∈ {1, . . . ,n}. (12.73)

The matrix M is called row sufficient if MT is column sufficient. If M is both column
and row sufficient, M is a sufficient matrix.

For a recent work on necessary and sufficient conditions on the solvability of
feasible LCPs, we refer to Kostreva & Yang (2004).

Other Mathematical Properties and Matrix Classes

The P� property was introduced by Kojima et al. (1991) in the context of the interior
point method for LCP.

Definition 12.21. A matrix M ∈ IRn×n is said to be a P�(κ)-matrix for κ � 0 if for
all x ∈ IRn

(1 + 4κ) ∑
i∈I+(x)

xi(Mx)i + ∑
i∈I−(x)

xi(Mx)i � 0, (12.74)

where the index sets are defined by

I+(x) = {i | xi(Mx)i > 0}, I−(x) = {i | xi(Mx)i < 0}. (12.75)

A matrix M ∈ IRn×n is said to a P�-matrix if it is a P�(κ)-matrix for some κ � 0, i.e.,

P� = ∪κ�0P�(κ). (12.76)

A surprising result of Väliaho (1996) shows that the P�-matrices are the sufficient
matrices. The P�-property (12.74) can be reformulated as

z = Mx =⇒ xTz �−4κ ∑
i∈I+(x)

xizi. (12.77)
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Numerical Checking of the Matrix Property

Unfortunately, the P property cannot be checked in polynomial time. This remark is
true for most of the matrix classes reviewed here. However, the classes of PD and
PSD matrices can be checked in polynomial time. This is also the case for a P�(κ)-
matrix for a given fixed κ , which is so far the largest class of matrices relevant for
numerics and which can be checked in polynomial time.

12.4.3 Variants of the LCP

We present here some variants of the standard form of the LCP which are convenient
for our applications.

12.4.3.1 The Mixed Linear Complementarity Problem (MLCP)

Definition 12.22. Given the matrices A ∈ IRn×n, B ∈ IRm×m, C ∈ IRn×m, D ∈ IRm×n,
and the vectors a ∈ IRn,b ∈ IRm, the Mixed Linear Complementarity Problem
(MLCP) denoted by MLCP(A,B,C,D,a,b) consists in finding two vectors u ∈ IRn

and v ∈ IRm such that ⎧⎪⎨
⎪⎩

Au +Cv + a = 0

0 � v⊥ Du + Bv + b � 0

. (12.78)

The Mixed Linear Complementarity Problem (MLCP) can be defined equivalently in
the following form denoted by MLCP(M,q,E ,I ):⎧⎪⎨

⎪⎩
w = Mz+ q

wi = 0,∀i ∈ E

0 � zi ⊥ wi � 0,∀i ∈I ,

(12.79)

where E and I are finite sets of indices such that card(E ∪I ) = n and E ∩I = /0.

The Mixed Linear Complementarity Problem (MLCP) is a mixture between an LCP
and a system of linear equations.

12.4.3.2 The Horizontal and the Vertical LCP

The horizontal LCP has emerged as an important variant of the standard LCP, espe-
cially in the framework of interior point methods.

Definition 12.23. Given the matrices Q ∈ IRn×n and R ∈ IRn×n and a vector q ∈ IRn,
the horizontal LCP denoted by hLCP(Q,R,q) consists in finding two vectors x ∈ IRn

and s ∈ IRn such that ⎧⎪⎨
⎪⎩

Qx + Rs = q

0 � x⊥ s � 0

. (12.80)
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The vertical LCP appears naturally in optimization theory and control theory.

Definition 12.24. Given the matrices A ∈ IRn×n and B ∈ IRn×n and two vectors a ∈
IRn and b ∈ IRn, the vertical Linear Complementarity Problem (LCP) denoted by
vLCP(A,B,a,b) consists in finding a vector x ∈ IRn such that

0 � Ax + a⊥ Bx + b � 0. (12.81)

12.4.3.3 The Geometric LCP

Another way to look at LCPs is to define the so-called geometric LCP.

Definition 12.25. Let us consider an affine subspace M ⊂ IR2n. The geometric LCP,
denoted by gLCP(s̄,Φ), consists in finding two vectors w ∈ IRn and z ∈ IRn such that

⎧⎪⎨
⎪⎩

s = (w,z) ∈M

0 � w⊥ z � 0.

(12.82)

An affine subspace is usually specified by a vector s̄ and a vector subspace Φ such
that

M = s̄+Φ = {s ∈ IR2n | s− s̄ ∈Φ}. (12.83)

The geometric LCP has been first studied by Güler (1995), who called it a general-
ized LCP.

12.4.3.4 The Extended and the Generalized LCP

In Mangasarian & Pang (1995), a notion of extended LCP is introduced to gener-
alize all of the preceding definitions. We will see that some good properties can be
factorized on the extended form.

Definition 12.26. Given the matrices M ∈ IRm×n and N ∈ IRm×n and a nonempty
polyhedral set K , the extended LCP denoted by xLCP(M,N,K ) consists in finding
two vectors w ∈ IRn and z ∈ IRn such that{

Mz+ Nw ∈K

0 � w⊥ z � 0.
(12.84)

The above definition of the extended LCP is equivalent to the generalized LCP in-
troduced by Ye (1993) in the context of interior point methods.

Definition 12.27. Given the matrices M ∈ IRm×n, N ∈ IRm×n, Q∈ IRm×k and a vector
q ∈ IRm, the generalized LCP consists in finding three vectors w ∈ IRn, z ∈ IRn, and
y ∈ IRk such that ⎧⎪⎨

⎪⎩
Mz+ Nw+ Qy = q

0 � w⊥ z � 0

y � 0

. (12.85)
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12.4.4 Relation Between the Variants of LCPs

The Generalization Way

The horizontal LCP, the vertical LCP, the Mixed Linear Complementarity Problem
(MLCP), and the standard LCP can be written explicitly as an extended LCP. This
relation can be written formally as

hLCP⊂ xLCP, vLCP⊂ xLCP, MLCP⊂ xLCP, LCP⊂ xLCP, (12.86)

and the equivalence between extended LCP and generalized LCP can also be writ-
ten formally as xLCP = gLCP. In the same way, the following relations are easily
obtained:

LCP⊂ hLCP, LCP⊂ vLCP, LCP⊂MLCP. (12.87)

The Specialization Way

In order to obtain the equivalence between nontrivial forms of LCPs we need to add
some assumptions.

Clearly, if the matrix A is nonsingular in the MLCP (12.78), we may solve the
embedded linear system to obtain u and then reduce the MLCP to a LCP with q =
b−DA−1a,M = b−DA−1C. If n = m and the matrix C is nonsingular, the MLCP
reduces to a vertical LCP. If n = m and the matrix D is nonsingular, the MLCP
reduces to a horizontal LCP. In the same way, if R (or Q) is nonsingular in the
horizontal LCP (12.80), it can be formulated as a standard LCP.

Under weaker assumptions on the monotonicity of matrices, equivalence can also
be proved. Let us define a monotonicity property of a couple of matrices.

Definition 12.28. The couple of matrices (Q,R) satisfies the monotonicity property if

Qz+ Rw = 0 =⇒ zT w � 0. (12.88)

The horizontal LCP is said to be monotone if the couple of matrices (R,S) satisfies
the monotonicity property.

Theorem 12.29. Any monotone horizontal LCP (12.80) can be reformulated as an
LCP in the standard form (12.66),

monotone hLCP⊂ LCP. (12.89)

A proof can be found in Güler (1995) based on maximal monotone operator prop-
erties. A simpler proof can be found in Bonnans & Gonzaga (1996) and Bonnans
et al. (2003) which is based on a QR decomposition of the matrix R.

Theorem 12.30. Let us consider a MLCP in the form (12.79). If the matrix M is
PSD, then the MLCP can be reformulated as an LCP in the standard form (12.66),

monotone MLCP⊂ LCP. (12.90)
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A proof of this theorem can be found in Wright (1996a).
The work of Anitescu et al. (1995) generalizes the equivalence results for the

more general class of matrices that satisfy the P� property. This property can be
extended to matrix pairs for the horizontal LCP.

Definition 12.31. A matrix pair (M,N) ∈ IRn×n× IRn×n is said to be a P�(κ)-matrix
pair for κ � 0 if

Mz+ Nx = 0 =⇒ xTz �−4κ ∑
i∈I+(x)

xizi. (12.91)

In the same way, the P� property can be extended to the geometric LCP by

dimΦ = n and xTz �−4κ ∑
i∈I+(x)

xizi,∀(x,z) ∈Φ. (12.92)

Theorem 12.32. Let (Q,R) be a P�(κ)-matrix pair. The horizontal LCP (12.80),
hLCP(Q,R,q), can be reformulated as an LCP in the standard form (12.66). Let M
be a P�(κ)-matrix. The MLCP (12.78), MLCP(M,q,E ,I ), can be reformulated as
an LCP in the standard form (12.66). Let Φ be a vector subspace satisfying (12.92).
The geometric LCP (12.82), gLCP(s̄,Φ), can be reformulated as an LCP in the stan-
dard form (12.66).

12.4.4.1 Mathematical Properties of the Variants

Other references on the variants of the LCP and their mathematical properties can
be found in Gowda & Sznajder (1994), Sznajder & Gowda (1995), Gowda (1996),
Güler (1995), and Anitescu et al. (1995). Especially, the P property, the P0 prop-
erty, the Q property, and the P� property have been extended with the corresponding
theorems.

12.4.4.2 Own Interest of the Variants from a Numerical Point of View

Even in the case where the equivalence has been shown, the own interest of the
variants of the standard LCPs lies in the following points:

(a) Most problems are formulated naturally in terms of these variants. A reformu-
lation, when it is possible, possibly destroys the physical meaning of the un-
knowns, leading to some difficulties in the interpretation of the results.

(b) Most importantly, the transformations from a variant to another can destroy the
special structure of the problem (sparsity, conditioning) leading to numerical
troubles.

Following these remarks, we see that we have interest to implement and design nu-
merical solvers able to take advantage of the special structure of the variants of the
LCP. One way should be to design an LCP solver for the most general class of LCPs.
However, the approach could lead to inefficient algorithms due to the imposed gen-
eralization. We will see in Sect. 12.4.8.2 that interior point methods seem to have
succeeded in combining generality with efficiency in the solvers.
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12.4.5 Links Between the LCP and the QP

12.4.5.1 The KKT Conditions of a QP as a Variant of LCPs

The first-order optimality conditions of QPs (12.3) lead to various forms of LCPs
depending on the type of constraints. We reformulate in this section the KKT con-
ditions as LCPs and we attempt, when possible, to quickly give some equivalence
results.

In fact, solutions of a QP satisfy the KKT conditions which can be formulated as
an LCP. Conversely, it cannot be said that the solutions of an LCP are solutions of a
QP; this requires additional assumptions on the matrix of the LCP.

Standard Form of the LCP with a Symmetric Matrix

Let us start with the simplest case.

Theorem 12.33. Let Q = QT , a PSD matrix. Consider the following QP:

minimize q(z) =
1
2

zT Qz+ pT z

subject to z � 0.

(12.93)

Its solutions (if any) are the solutions of the KKT system, which is the LCP
⎧⎪⎨
⎪⎩
∇L (z,w) = Qz+ p−w = 0

0 � z⊥ w � 0.

(12.94)

MLCP

The following more complicated example is taken from Wright (1996a). Let us con-
sider the following QP:

minimize q(z) =
1
2

zTQz+ pTz

subject to Az−b � 0
Cz−d = 0
zi � li, i ∈L ⊂ {1, . . . ,n}
zi � ui, i ∈U ⊂ {1, . . . ,n}

. (12.95)

By defining
EL = [eT

i ]i∈L , l = [li]i∈L ,

EU = [eT
i ]i∈U , u = [ui]i∈U ,

(12.96)

where ei is the ith unit vector from the standard basis, the first-order optimality con-
ditions can be stated in the form of MCLP(Ã, B̃,C̃,D̃, ã, b̃) with
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Ã =
[

Q −CT

C 0

]
, B̃ =

⎡
⎣ 0 0 0

0 0 0
0 0 0

⎤
⎦ , C̃ =

[−ET
L ET

U −AT

0 0 0

]
, D̃ =

⎡
⎣ EL 0
−EU 0

A 0

⎤
⎦

(12.97)
and

ã =
[

p
−d

]
, b̃ =

⎡
⎣−l

u
−b

⎤
⎦ . (12.98)

If the QP is convex, the matrix Q is PSD. The matrix Ã is PSD as the sum of a PSD
matrix containing Q and a skew-symmetric matrix.

Monotone Horizontal LCP

The first-order optimality conditions for the following QP

minimize q(z) =
1
2

zTQz+ pTz

subject to z � 0
Cz−d = 0

(12.99)

give rise to a horizontal LCP (12.80) of the form:
⎧⎪⎨
⎪⎩

Rz+ Sw = q

0 � w⊥ z � 0.

(12.100)

Indeed, the KKT conditions (12.3) are here
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Qz̄+ p−λ−CTμ = 0

Cz̄−d = 0

0 � λ ⊥ z̄ � 0,

(12.101)

which can be directly put into an MLCP form. A horizontal LCP can be obtained
if the matrix C has full row rank via an elimination of the multiplier μ . Introduce a
matrix Z, whose columns span the null space of C, then (12.101) can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ZT(Qz̄+ p−λ ) = 0

Cz̄−d = 0

0 � λ ⊥ z̄ � 0,

(12.102)



12.4 The Linear Complementarity Problem (LCP) 361

which can be put into the form (12.100) with

R =

⎡
⎣ZTQ

C

⎤
⎦ , S =

⎡
⎣−ZT

0

⎤
⎦ , q =

⎡
⎣−ZT p

d

⎤
⎦ . (12.103)

If the QP (12.99) is convex, the KKT conditions are a particular case of a mono-
tone horizontal LCP. Indeed, the relation Rz+ Sλ = 0 is here

ZT(Qz−λ ) = 0, Cz̄ = 0, (12.104)

which implies that
zT(Qz−λ ) = 0. (12.105)

The monotonicity property follows from the fact that Q is PSD matrix.

12.4.5.2 QP Reformulations of LCPs

Standard Form of the LCP with an Asymmetric Matrix

If the LCP matrix M in (12.66) is asymmetric, we can consider the following QP:

minimize q(z) = zT(Mz+ p) =
1
2

zT(M + MT)z+ zT p

subject to Mz+ p � 0
z � 0

. (12.106)

The KKT conditions for this QP can be written as
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(M + MT)z̄+ p−MTλ1−λ2 = 0

0 � Mz̄+ p⊥ λ1 � 0

0 � z̄⊥ λ2 � 0

. (12.107)

Clearly, if (12.106) has an optimal value z∗ such that q(z∗) = 0, then z∗ solves the
LCP(M, p) in (12.66). The following lemma is valid for any matrix M ∈ IRn×n. The
proof can be found in Cottle et al. (1992).

Lemma 12.34. If the LCP(M, p) in (12.66) is feasible, then

(a) the QP (12.106) has an optimal solution,
(b) there exist z̄, λ1, λ2 such that the KKT (12.107) conditions are satisfied,
(c) the vectors z̄ and λ1 satisfy

(z̄−λ1)i(MT (z̄−λ1))i � 0, ∀i ∈ {1, . . . ,n}. (12.108)
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If some additional assumption is made on the matrix M, then (z̄,λ2) solves (12.66).
This holds for example when M is PSD (but not necessarily symmetric) or a P-matrix
or a row-sufficient matrix. The key property is to have λ1 = z̄ in (b) of Lemma 12.34
and this property is usually obtained via (c).

Unfortunately, the QP (12.106) is nonconvex in general. Therefore robust al-
gorithms, essentially for convex QP, cannot be applied. Nevertheless, as we noted
in Sect. 12.2, some methods are able to behave correctly with nonconvex QPs. Al-
though there is no clear numerical comparisons, as far as we know, dedicated solvers
for LCPs might perform better – and be more favored by users.

Example 12.35. Let us consider the LCP(M,q) with the following data:

M =
[

1 −3
0 1

]
, q =

[−1
−1

]
. (12.109)

Clearly, the matrix M is a P-matrix, but not a PD matrix. The associated QP (12.106)
is given by

minimize q(z) =
1
2

zT
[

2 −3
−3 2

]
z+ zT

[−1
−1

]

subject to

[
1 −3
0 1

]
z+

[−1
−1

]
� 0

z � 0

, (12.110)

which is a nonconvex QP.

Standard Form of the LCP with a Symmetric Matrix

Theorem 12.36. Let Q = QT a PD matrix. Consider the following three QPs:

⎧⎪⎨
⎪⎩

minimize q(z) =
1
2

zT Qz+ pT z

subject to z � 0

, (12.111)

⎧⎪⎨
⎪⎩

minimize q(z) =
1
2

zT Qz+ pT z

subject to Az−b � 0

, (12.112)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

minimize q(z) =
1
2

zT Qz−bT w

subject to AT w−Qz = p
w � 0

. (12.113)
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Then the next statements hold:

(a) The KKT conditions formulated by the LCP 0 � z⊥ p+Qz � 0 are necessary and
sufficient for the vector z to be a globally optimal solution of the QP in (12.111).

(b) (Dorn’s duality) If z̄ solves the QP in (12.112) then there exists w̄ such that (x̄, w̄)
solves the QP in (12.113). Moreover the two extrema are equal.

(c) (Dorn’s converse duality) If (x̄, w̄) solves the QP in (12.113), then there exists ẑ
with Qẑ = Qz̄ such that ẑ solves the QP in (12.112).

We devote the rest of this section to the numerical solvers.

12.4.6 Splitting-Based Methods

The principle of the splitting-based methods for solving LCPs is to decompose the
matrix M as the sum of two matrices B and C,

M = B +C, (12.114)

which define the splitting. Then LCP(M,q) is solved via a fixed-point iteration.
For an arbitrary vector zν we consider LCP(B,qν) with

qν = q +Czν (12.115)

A vector z = zν solves LCP(M,q) if and only if zν is itself a solution of LCP(B,qν).
All of the variants of splitting methods are based on various choices for the split-

ting (B,C). The subproblem, LCP(B,q +Czν), needs to have at least one solution,
i.e., B has to be a Q-matrix. From a practical point of view, the splitting must also lead
to a subproblem which is relatively easy to solve. A clear analogy can be drawn with
iterative splitting techniques for linear systems. A general scheme for the splitting
method is presented in Algorithm 11.

Algorithm 11 Sketch of the general splitting scheme for the LCP

Require: M,q,tol
Require: (B,C) a splitting of M
Ensure: z,w solution of LCP(M,q).

Compute a feasible initial point z0 � 0.
ν ← 0
while error > tol do

Solve the LCP(B,q+Czν ).
Set zν+1 as an arbitrary solution.
Evaluate error.

end while
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Projected Jacobi Method

The most trivial choice for the matrix B is to choose the identity matrix or any
positive diagonal matrix D. The subproblem LCP(B,q +Czν) is then reduced to a
component-wise maximum, i.e.,

zν+1 = max{0,zν −D−1(q + Mzν)}. (12.116)

In particular, if the matrix D is chosen as the diagonal part of the matrix M, i.e.,
D = diag(mii), we obtain the projected Jacobi method. The word Projected refers to
the projection onto the nonnegative orthant related to the unilateral constraint.

Projected Gauss–Seidel and Projected Successive Overrelaxation (PSOR) Methods

Based on the Gauss–Seidel method for linear systems, the following splitting of M
can be used:

M = B +C, with B = L+ω−1D, C = U, (12.117)

where the matrices L and U are, respectively, the strictly lower part and upper part
of the matrix M and ω ∈ (0,2) is an arbitrary relaxation parameter. In this case we
obtain a projected successive overrelaxation (PSOR) scheme where the iterate zk+1

is given by

zk+1
i = max

(
0,zk

i −ωM−1
ii

(
qi +∑

j<i

Mi jz
k+1
i +∑

j�i

Mi jz
k
i

))
, i = 1, ...,n.

(12.118)

When ω = 1 the PSOR method is called the projected Gauss–Seidel (PGS)
algorithm.

Other types of splitting can also be used. Especially, we can also take advan-
tage of the possible block structure of the matrix M. If a similar decomposition is
made with respect to the block-diagonal matrix and strictly upper and lower block
matrices, each smaller subproblem can be solved by any standard method for LCPs,
even possibly by an iterative splitting. We will see in Chap. 13 that this approach can
improve the rate of convergence of the method.

Convergence Results

Chapter 5 in Cottle et al. (1992) and Chap. 9 in Murty (1988) give many results
on the convergence of the splitting method. The basic ingredients are on one hand
the symmetry and the positive definiteness of the matrix and on the other hand the
contraction of the mapping defined in the fixed-point algorithm. For suitable choices
of the splitting, the results provide us with the convergence to the solution of the
LCP(M,q) for a symmetric PSD matrix M. Nevertheless, some strong conditions
have to be satisfied for the splitting and then for the matrix M. In particular, the cases
of an asymmetric PSD matrix and of a P-matrix are not covered by the assumptions.



12.4 The Linear Complementarity Problem (LCP) 365

To the best of our knowledge, few results concern the rate of convergence. Prac-
tical experience shows that the convergence is rather slow. In fact, the set of active
constraints is quickly identified but the convergence to an accurate solution is there-
after slow. In Murty (1988, p. 380), a standard example of an LCP with a symmetric
PD matrix for which the convergence is extremely slow is given. Another example
of this type will given in Chap. 13.

The advantage of such methods is their easy implementation, the low cost in
terms of memory, and the fact that they preserve special structures of the matrix M,
especially sparsity. Another advantage of iterative splitting schemes is their ability
to be parallelized.

Regularized PSOR Methods

In some applications, the diagonal matrix of M, D = diag(mii), is not invertible. This
can be the case for some PSD matrix, in which some diagonal entries vanish. The
example of the diode bridge rectifier in Chap. 14 exhibits for instance an LCP matrix
which is PSD, see (14.5) and (14.6). It is then possible to adapt the previous PSOR
scheme by considering the following successive LCPs:

⎧⎪⎨
⎪⎩

w = Mz+ q +ρ(z− z̃) = (M +ρI)z+ q−ρ z̃

0 � w⊥ z � 0

. (12.119)

If (12.119) is solved by z̃ = z then z̃ solves LCP(M,q). The key idea is to adapt
the PSOR algorithm to include the condition z̃ = z in the fixed-point iterates. The
regularized projected successive overrelaxation (RPSOR) scheme is given by

zk+1
i = max(0,zk

i −ω(Mii +ρ)−1

(
qi +∑

j<i

Mi jz
k+1
i +∑

j�i

Mi jz
k
i −ρzk

i

)
(12.120)

for i = 1, ...,n. When ω = 1 the RPSOR method is called the regularized projected
Gauss–Seidel (RPGS) algorithm.

In a more general setting, the regularization process is interesting because of the
following reason. Even when they converge, the iterative methods are more stable
with PD matrices. One goal of the regularization is to transform a problem with a
PSD matrix into a sequence of subproblems with a PD matrix.

Line Search in the Symmetric Case

In order to globalize the convergence of the splitting algorithms a line-search pro-
cedure can enhance the basic scheme presented in Algorithm 11. Algorithm 12 de-
scribes the main steps of the algorithm. If z� is a solution of LCP(B,q +Czν), the
line search determines the step size in the direction dν defined by dν = z�− zν . If
dνTMdν � 0, then αν = 1; otherwise αν must be a nonnegative number satisfying

f (zν +ανdν) = min{ f (zν +ανdν),zν +ανdν � 0,α � 0}, (12.121)
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Algorithm 12 Sketch of the general splitting scheme with line search for the
LCP(M,q) with M symmetric

Require: M,q,tol and (B,C) a splitting of a symmetric matrix M
Ensure: z,w solution of LCP(M,q).

Compute a feasible initial point z0 � 0.
ν ← 0
while error > tol do

Solve the LCP(B,q+Czν ).
Set z� as an arbitrary solution.
Set dν ← z�−zν as the search direction.
Determine the step size αν by a line-search procedure.
Set zν+1← zν +ανdν .
Evaluate error.

end while

where f (·) is the objective function defined by

f (z) = zT(Mz+ q). (12.122)

In the symmetric case, a clear analogy can be drawn with the following QP:

minimize q(z) =
1
2

zTMz+ qTz

subject to z � 0

(12.123)

and dν is a descent direction of the objective function. Indeed, we have

f (zν )− f (zν+1) =−ανdνT(q + Mzν)− αν2

2
dνTMdν . (12.124)

If dνTMdν � 0, the choice of αν = 1 ensures a decrease of the function f (·),

f (zν )− f (zν+1) �−dνT(q + Mzν), (12.125)

and a new iterate zν+1 is nonnegative by construction. If dνTMdν > 0, the function
f (zν +αdν) defines a strictly convex QP in α whose optimal solution is attained for

ᾱ =−α
νdνT(q + Mzν)

dνTMdν
> 0. (12.126)

If zν + ᾱdν � 0 then we can choose αν = ᾱ , otherwise we can find an αnu [1, ᾱ]
such that the new iterate zν+1 is nonnegative.

Convergence for this algorithm is given for a symmetric matrix M and a PD
matrix B.
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Link with the Gradient Projection Method of QP

The gradient projection method (see Sect. 12.2.3.2) for the QP (12.123) is defined by

zk+1 = PD(zk−αk(Mzk + q)). (12.127)

In other terms,
zk+1 = max(0,(I−αkM)zk−q). (12.128)

In this case, the gradient projection method with line search is the simplest PSOR
method with a splitting based on the matrix B = I. We can then consider that all the
presented methods for symmetric LCP are better than the pure gradient projection
methods. On the other hand, the specific gradient projection for QP presented in
Sect. 12.2.3.2 may be a good alternative to obviate the slow convergence of QP
solvers. This approach has been developed in Kocvara & Zowe (1994) for LCPs with
a symmetric PD matrix. Other well-known techniques to improve greatly the rate of
convergence of gradient projection methods are the multi-grid techniques. We refer
to Hackbusch & Mittelmann (1983), Mandel (1984), Brandt & Cryer (1983), and
Oosterlee (2003) for the study and the development of such methods.

Line-Search in the Asymmetric Case

The line-search can also be used to extend the results of convergence of the standard
PSOR method in the particular case of asymmetric PSD matrices and P-matrices.
In this case, the analogy with a QP (12.106) is used. The splitting is made on the
symmetric matrix M +MT and B is chosen as a PD matrix. In this case, the direction
produced by LCP(B,q +Czν) or equivalently QP(B,q +Czν) provides a descent di-
rection for f (z) = zT(Mz+q). The same line-search procedure can be used as before.

The convergence result for this algorithm is given for a row-sufficient matrix M
and a PD matrix B. The choice of B as a PD matrix is not so restrictive. Choosing for
instance the lower triangular part of a P-matrix is sufficient. We have then a general
iterative algorithm with provable convergence for a P-matrix.

Another possibility to solve the LCP with an asymmetric row-sufficient matrix
would be to directly apply the gradient projection method of Sect. 12.2.3.2. Unfortu-
nately, the cost of the projection on the feasible set D = {z | z � 0,Mz+q � 0} may
be prohibitive.

12.4.7 Pivoting-Based Methods

Principle

Let us consider a LCP(M,q). If q � 0, then z = 0 solves the problem. If there exists
an index r such that

qr < 0 and mr j � 0, ∀ j ∈ {1, . . . ,n} (12.129)

then there is no vector z � 0 such that qr +∑ j mr jzi � 0. Therefore the LCP is in-
feasible, thus unsolvable. The LCP rarely possesses these properties in its standard
form. The goal of pivoting methods is to derive, by performing pivots, an equivalent
system that has one of the previous properties.
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Pivotal Algebra

The pivotal algebra is at the heart of pivoting methods. This procedure for LCPs is a
simple extension of the pivoting operations in Gauss elimination schemes for linear
systems. Let us consider the following linear system:

w = q + Mz, (12.130)

which is represented in a tableau as

1 z1 . . . zn

w1 q1 m11 . . . m1n

...
...

...
...

wn q1 mn1 . . . mnn

In the above tableau, the dependent variables wi are called the basic variables and the
independent variables zi are called the nonbasic variables. A simple pivot consists in
exchanging a basic variable wr with a nonbasic variable zs. This operation is possible
if and only if mrs �= 0 and yields a new definition of the tableau with (w′,z′,q′,M′)
such that

w′r = zs, w′i = wi, i �= r
z′s = wr, z′j = z j, j �= s

q′r = −qr/mrs, q′i = qi− (mis/mrs)qr, i �= r

m′rs = 1/mrs, m′is = mis/mrs, i �= r
m′r j = −mr j/mrs, j �= s, m′i j = mi j− (mis/mrs)mr j, i �= r, j �= s

. (12.131)

This pivot operation will be denoted by

(w′,z′,M′,q′) = Πrs(w,z,M,q). (12.132)

The representation as a tableau is interesting because the operations on the vector q
are identical to those on one column of the matrix M, except for the pivot column.

The simple pivot operation can be extended to a block pivot operation exchanging
the same number of basic and nonbasic variables, provided that the pivot block is
nonsingular. We will only detail here a principal block pivoting. A block pivoting is
said to be a principal block pivoting if the pivot block is a principal submatrix of M.
In this case, let us consider an index set α and its complement ᾱ . If the principal
submatrix Mαα is nonsingular, the principal block pivoting operation consists in
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w′α = zα , w′̄α = wᾱ
z′α = wα , z′̄α = zᾱ

q′α = −M−1
ααqα , q′̄α = qᾱ −MᾱαM−1

ααqα

M′αα = M−1
αα , M′αᾱ = −M−1

ααMαᾱ
M ′̄αα = MᾱαM−1

αα , M ′̄αᾱ = Mᾱᾱ −MᾱαM−1
ααMαᾱ

. (12.133)

This principal block pivoting operation will be denoted by

(w′,z′,M′,q′) = Πα(w,z,M,q). (12.134)

The above matrix M ′̄αᾱ is just an instance of the Schur complement with respect to
the square matrix Mαα .

The success of the pivoting method is based on the conservation of the fundamen-
tal properties of the matrix M under principal pivoting and principal rearrangement.
Among them, the PD and PSD matrices are invariant under pivoting operations. Fur-
thermore, the P-matrix property and the sufficiency are also conserved. The case of
the P0 property is more tricky and needs some additional care, see Cottle et al. (1992,
Sect. 4.1).

Murty’s Least Index Method

Among the simple principal pivoting methods, also called “Bard-type” algorithms,
we have chosen to present Murty’s least index method (Murty, 1974) because it
has the interest to be one of the simplest pivoting methods to solve an LCP with a
P-matrix. It can be described by Algorithm 13.

Algorithm 13 Murty’s least index pivoting method

Require: M,q
Ensure: z,w solution of LCP(M,q) with M a P–matrix.
ν ← 0
qν ← q, Mν ←M
while qν �� 0 do

Choose the pivot row of index r such that

r = min{i,qνi < 0} (12.135)

Pivoting wν
r and zνr .

(wν+1,zν+1,Mν+1,qν+1)←Πrr(wν ,zν ,Mν ,qν ) (12.136)

ν← ν+1
end while
(zν = 0,wν = qν ) solves LCP(Mν ,qν ).
Recover the solution of LCP(M,q).
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Originally, the standard Bard-type methods were designed for LCP(M,q) such
that q = Pb and M = PPT, and quickly extended to the case q = Pb and M = PAPT

with a PD matrix A.3 The only difference with respect to the original Bard-Type
scheme is the method for choosing the pivot. In Bard-Type methods, the selection
method is

r = argi min{qνi } (12.137)

but in Murty’s least index method the selection is made thanks to

r = min{i,qνi < 0}. (12.138)

It has been observed that the selection rule (12.137) leads to cycling in the degenerate
cases. Cycling occurs when the same set of basic variables is found after a certain
number of pivoting operations. The method for choosing the pivot in (12.138) which
gives the name to the Murty’s least index method is crucial for the finite termination
of the algorithm. We will see at the end of this section that there exist other methods
to prevent cycling, such as the lexicographic degeneracy resolution. For a theoretical
analysis of Murty’s least index method, we refer to Murty (1988, pp. 258–259).

Minimum Ratio Test

Before presenting a complementary pivot algorithm, we expose the so-called min-
imum ratio test, well known in the linear programming theory. Let us consider a
system of linear equations and inequalities of the form{

yi + aisxs = bi

bi � 0
, i = 1, . . . ,m. (12.139)

The nonbasic variable xs is called a driving variable, as it “drives” the values of the
basic variables yi. The largest value of xs for which yi � 0 for all i = 1, . . . ,m is
defined by

x̂s = sup{xs | bi−aisxs � 0, i = 1, . . . ,m.}. (12.140)

We set x̂s = +∞ when ais � 0 for all i = 1, . . . .m. If ais > 0 for at least one i, then

x̂s = min

{
bi

ais
| ais > 0

}
. (12.141)

The minimum ratio test consists in finding an index r such that ars > 0 and x̂s = br/ars

i.e.,

r = argi min

{
bi

ais
| ais > 0

}
. (12.142)

The variable yr is called the blocking variable as it blocks the increase of the variable
xs under the nonnegativity constraints yi � 0 for all i = 1, . . . ,m. If x̂s =∞, the variable
xs is said to be unblocked.

The interest of the minimum ratio test is that exchanging the (basic) blocking yr

with the (nonbasic) driving variable, xs, preserves the nonnegativity of the constant
in the right-hand side of (12.139).

3 Although this form seems to be very restrictive, the case of mechanical systems with perfect
unilateral constraints can be cast into this LCP form. See Chap. 13 for more details.



12.4 The Linear Complementarity Problem (LCP) 371

Lemke’s Algorithm

Lemke’s algorithm (Lemke & Howson, 1964; Lemke, 1965) belongs to the larger
class of the complementary pivot algorithms. The name of this class of algorithms is
derived from the selection rule of the entering variable in each step, which is always
the complementary variable of the dropping variable in the previous step.

For the sake of simplicity, the theoretical justifications and the class of matrices
for which the algorithm works will not be treated here in detail. Nevertheless, we
attempt to give the basic lines of Lemke’s method, in order to justify its choice for
specific applications.

A particularity of Lemke’s method, and more generally the complementary pivot
algorithm, is to consider the following augmented LCP:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w = Mz+ q + dz0

w0 = q0−dTz

0 � w⊥ z � 0

0 � w0 ⊥ z0 � 0

(12.143)

for a sufficiently large scalar q0 � 0 and vector d > 0. This augmented LCP will be
denoted by LCP(M̃, q̃) with

z̃ =
[

z0 zT
]T

w̃ =
[

w0 wT
]T

q̃ =
[

q0 qT
]T

, M̃ =
[

0 −dT

d M

]
. (12.144)

In contrast to w and z, we assume that the index starts at zero for the components of
w̃ and z̃ such that

z̃0 = z0, z̃i = zi, i = 0, . . . ,n, w̃0 = w0, w̃i = wi, i = 0, . . . ,n. (12.145)

The LCP(M̃, q̃) is known to always possess a solution. Its solution solves LCP(M,q)
if z0 = 0. Lemke’s method seeks for such a solution. The vector d, which is user-
supplied, is often called the covering vector. The augmented LCP allows one to ob-
tain a first feasible basic solution. Indeed, there exists a value z̄0 � 0 such that

w = q + dz0 � 0, ∀ z0 � z̄0. (12.146)

This value is given by

z̄0 = max
i

−qi

di
. (12.147)

If for some i, qi < 0, then z̄0 > 0. The way to obtain a first feasible basic solution is to
pivot z0 with a basic variable. The first pivot row index α is chosen by the minimum
ratio such that

α = argi min

{
−qi

di
| qi < 0

}
. (12.148)

It is unique under some nondegeneracy assumptions. This pivot index is chosen such
that the basic variable component w = wα equals zero for z0 = z̄0. Lemke’s method
starts by pivoting z0 and wα . The remaining part of Lemke’s method is described in
Algorithm 14.
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Algorithm 14 Lemke’s method

Require: M,q LCP data and c the covering vector
Ensure: z,w solution of LCP(M,q)

if q � 0 then z = 0,w = q solves the LCP(M,q) end if.

ν ← 0, z̃ν ← [
z0 z

]T, w̃ν ← [
w0 w

]T, q̃ν ← [
q0 q

]T
, M̃ν ←

[
0 −cT

c M

]

Find an index α > 1 by using the minimum ratio test,

α ← argi min

{
−qi

ci
| qi < 0

}
(12.149)

Pivot z̃ν0 = z0 and w̃ν
α = wα .

(w̃ν+1, z̃ν+1,M̃ν+1, q̃ν+1)← Πα ,0(w̃ν , z̃ν ,M̃ν , q̃ν ) (12.150)

Set the index of the driving variable d← α. The driving variable is zνα .
IsFound← false, IsNotFound← false

while IsFound = false and IsNotFound = false do
Step 1. Determination of the blocking variable w̃ν

b
if ∃i,mν

id < 0 then
Use the minimum ratio test,

b← argi min

{
− qνi

mν
id

| mν
id < 0

}
(12.151)

else
The blocking variable is w0. IsNotFound = true

end if
Step 2. Pivoting. The driving variable is blocked.
if b = α then

The blocking variable is z0. Pivoting w̃ν
b = z0 and zνd .

(w̃ν+1, z̃ν+1,M̃ν+1, q̃ν+1)←Πb+1d(w̃
ν , z̃ν ,M̃ν , q̃ν ) (12.152)

The solution is found. z̃ν+1 solves LCP(Mν+1,qν+1) with z0 = 0.
IsFound← true

else
Pivoting the blocking variable w̃ν

b and the driving variable zνd = z0.

(w̃ν+1, z̃ν+1,M̃ν+1, q̃ν+1)←Πbd(w̃
ν , z̃ν ,M̃ν , q̃ν ) (12.153)

end if
Set the index of the driving variable d← b.
ν← ν+1

end while
if IsNotFound = true then

Interpret the output in terms of infeasibility or unsolvability.
end if
if IsFound = true then Recover the solution of LCP(M,q) end if.
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Lexicographic Degeneracy Resolution

Some adaptation in pivoting algorithms such as Lemke’s method avoid cycling dur-
ing the pivoting process and are of crucial importance in practical situations. The
solution is to base the choice of the pivot and the minimum ratio test on a lexico-
graphic ordering (Cottle et al., 1992; Murty, 1988). This is called the lexicographic
degeneracy resolution. The notion of lexicographic ordering of vectors has been in-
troduced to obtain a specific ordering relation between vectors defined as follows.

Definition 12.37. A vector z = (z1, ...,zn)T ∈ IRn is said to be lexicographically pos-
itive (resp. negative) and denoted z ! 0 (resp. z ≺ 0 ), if z �= 0 and its first nonzero
component (i.e., lowest indexed) is strictly positive (resp. negative).

Using this definition, a vector of IRn is either lexicographically positive, negative, or
zero. This classification cannot be obtained by the usual ordering relations � and �
of IR.

Definition 12.38. Let two arbitrary vectors z1 and z2 ∈ IRn. Then z1 is lexicographi-
cally greater than (resp. less than) z2 if and only if z1− z2 ! 0 (resp. z1− z2 ≺ 0). In
this case we note z1 ! z2 (resp. z1 ≺ z2).

Thus for a set of vectors {z1, ...,zk}, zm is a lexico minimum (resp. maximum) if for
each i = 1, ...,k, zm ≺ zi (resp. zm ! zi).

Proposition 12.39. Every nonempty finite subset of IRn has a unique lexicographic
minimum and a unique lexicographic maximum.

The standard LCP(M,q) tableau is introduced to start the algorithm with a fea-
sible basis, where the variable z0 is associated with the covering vector d and Q
is chosen to be a nonsingular matrix with lexicographic positive rows. The identity
matrix is often chosen. The following notation, which is used as standard matrix
formulation, is also introduced:

Q = [ q | Q ] and M = [ d | M ].

The pivoting operations are generalized to Table 12.1 and are also applied to Q,
providing Qν+1 from Qν .

Using lexicographic ordering and Proposition 12.39, the choice of the pivot vari-
able is unique and allows one to obtain a solution when the problem is degenerate.

Table 12.1. Classical augmented LCP tableau

1 w z0 z

q Q d M

w � 0, z � 0, z0 � 0
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The first minimum ratio test (12.149) for computing b in Algorithm 14 is replaced
by the analog with the lexicographic ordering:

b = argi lexicomin
Qν

i0<0

{
− 1

di
Qν

i•

}
for ν = 0. (12.154)

The second minimum ratio test (12.151) is also replaced by its analog with the lexi-
cographic ordering:

b = argi lexicomin
mν

id<0

{
− 1

mν
id

Qν
i•

}
. (12.155)

The success of the lexicographic degeneracy resolution is based on the fact that the
pivot selection rule implies a strict decrease of a vector-valued function at each piv-
oting. This strict decrease ensures that every basic solution is used only one time.

What Are the LCPs for Which the Pivoting Method Works?

This question is rather complicated and is difficult to answer in few lines. We prefer
to refer to the monographs of Cottle et al. (1992) and Murty (1988) for a rigorous
treatment of this subject. A result ensures that for a feasible LCP with a matrix M
which is copositive plus,4 the complementarity pivot algorithm terminates at a so-
lution of the LCP. If it does not, the LCP is feasible. Other results can be found
for other classes of matrices (semi-monotone, P0-matrices, etc.) in the above cited
books.

12.4.8 Interior Point Methods

As said at the end of Sect. 12.2.3.3, the literature on this subject and the number
of published algorithms is large. We restrict this section to practical considerations
rather than theoretical complexity properties.

12.4.8.1 The Horizontal Monotone LCP

Let us start with the horizontal monotone LCP defined by{
Qx + Rs = q

0 � x⊥ s � 0
(12.156)

together with the monotonicity property

Qx + Rs = 0 =⇒ sTx � 0. (12.157)

We assume the monotonicity property because most of the interior point methods
have been designed and have been proved to converge under these assumptions. One
fundamental property of the horizontal monotone LCP is that the set of solutions
(x,s) is convex. We will see in Sect. 12.4.8.2 that this property can be extended to
larger class of LCPs.

4 This means: xTMx � 0 for all x � 0 and [xTMx = 0,x � 0]⇒ (M +MT)x = 0.
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Basic Principle of the Primal–Dual Interior Point Methods

Recalling that the horizontal monotone LCP (12.156) can be viewed as the KKT
conditions of a convex QP, the designation “primal–dual method” is derived from the
fact that we solve the problem for both x and s which are primal and dual variables
of a QP. One fundamental notion in primal–dual interior point methods is the notion
of central path defined below.

Definition 12.40 (Central path). The central path for the horizontal monotone
LCP (12.156) is the set of points (x,s) defined by

⎧⎪⎨
⎪⎩

x◦ s = μ1l

Qx + Rs = q

x � 0, s � 0

(12.158)

for μ describing the half-line, IR+. Here, 1l is the vector whose components are all
equal to 1.

Obviously, for μ = 0, the central path equation (12.158) is equivalent to the horizon-
tal monotone LCP (12.156). We can remark that for μ > 0, any point of the central
path lies in the strictly primal–dual feasible domain defined by

F ◦ = {x,s ∈ IRn |Qx + Rs = q,x > 0,s > 0}. (12.159)

The central path can also be interpreted as the locus of minima in F ◦ of a par-
ticular mixed potential

Φ(x,s) = xT s− μ
n

∑
i=1

log xi si = xT s+ μφ(x)+ μφ(s), (12.160)

where the logarithmic potential

φ(x) =−
n

∑
i=1

log xi (12.161)

is strictly convex. More precisely, every point (xμ ,sμ ,μ) of the central path is the
unique solution of the following optimization problem:

minx,s Φ(x,s)
subject to Qx + Rs = q

x > 0
s > 0

. (12.162)

Recalling that solving the horizontal monotone LCP (12.156) amounts to solving the
quadratic problem

minx,s xT s
subject to Qx + Rs = q

x � 0
s � 0,

(12.163)
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the potential Φ(x,s) can be interpreted as the logarithmic penalty associated
with (12.163). As with primal interior points and barrier methods, we see the link
between the primal–dual interior point methods and the logarithmic penalty.

Driving the iterates toward a solution of the horizontal LCP can be seen from
two points of view. The first one is an approximate minimization of the mixed po-
tential (12.160) (or some other variants) for a sequence of μ that converges to 0.
Then one speaks of potential reduction methods. Alternatively, one may say that the
central path is approximated for a sequence of μ that converges to 0.

In any case, the direction between two iterates is the Newton direction associated
with {

x◦ s = σμ1l

Qx + Rs = q.
(12.164)

The strict feasibility assumption is made, i.e., (x,s) ∈F ◦ and σ ∈ [0,1] is the reduc-
tion parameter of μ . Linearizing the problem (12.164) around the current point (x,s)
results in the following linear system for the direction (u,v):{

s◦ u + x◦ v = σμ1l− x◦ s

Qu + Rv = 0
. (12.165)

We introduce a matrix notation of the previous system:[
S X
Q R

][
u
v

]
=

[
σμ1l− x◦ s

0

]
, (12.166)

where the matrix S ∈ IRn×n and X ∈ IRn×n are defined by S = diag(s) and X =
diag(x). Two extreme choices of σ are often encountered in practice:

(a) The value σ = 1 defines the so–called centering direction (or a centralization
displacement). Indeed a Newton step points toward (xμ ,sμ) on the central path:
xμi sμi = μ , i = 1, . . . ,n. A displacement along a centering direction makes little
progress, if any, toward reducing the value of μ .

(b) The value σ = 0 defines the so-called affine-scaling direction, which the standard
Newton step for the system {

x◦ s = 0

Qx + Rs = q.
(12.167)

This step therefore should ensure a decrease of μ .

Most of the algorithms choose an intermediate value for σ to have a good trade-off
between reducing μ and improving centrality. Finally, once the direction is chosen
through a value of σ , a step length α has to be chosen in the direction (u,v) to
respect the strict feasibility. Algorithm 15 describes a general scheme for primal–
dual interior point methods.

The literature on this subject is vast and a huge amount of algorithms have been
proved to converge for various selection strategies of αk and σk. All of these algo-
rithms may differ slightly in their formulation and it is always difficult to compare
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Algorithm 15 General scheme of the primal–dual interior point methods

Require: Q,R,q,tol
Require: (x0,s0) ∈F ◦
Ensure: x,s solution of hLCP(Q,R,q)

μ0← xT
0 s0
n

k← 0
while μk > tol do

Solve [
Sk Xk

Q R

][
uk

vk

]
=

[
σkμk1l−xk ◦ sk

0

]
(12.168)

for some σk ∈ (0,1).
Choose αk such that

(xk+1,sk+1)← (xk,sk)+αk(uk,vk) (12.169)

is strictly feasible i.e., xk+1 > 0,sk+1 > 0

μk←
xT
k sk
n

end while

their practical efficiencies. In what follows we present formally only standard algo-
rithms which are representative of a class of interior point methods.

Path-Following or Central Path Following Methods

The path-following primal–dual interior point methods generate a sequence of
strictly feasible points satisfying approximately the central path equation (12.158)
for a sequence of μ that converges to 0. The approximation may be measured by the
centrality measure

δ (s,x,μ) =
∥∥∥∥x◦ s

μ
−1l

∥∥∥∥
2
. (12.170)

In most methods, the sequence of points is constrained to lie in one of the following
two neighborhoods of the central path: the small neighborhood parametrized by θ

N2(θ ) = {(x,s) ∈F ◦ | ‖x◦ s− μ1l‖2 � μθ} for some θ ∈ (0,1) (12.171)

and the large neighborhood parametrized by ε

N−∞(ε) = {(x,s) ∈F ◦ | xisi � με} for some ε ∈ (0,1). (12.172)

Path-following methods follow the general scheme Algorithm 15 and differ in
the selection of the neighborhood type. Once a neighborhood type and size has been
selected, the method chooses a relation between the parameters σk,αk, and the size
of the neighborhood, θ or ε . Most well-known instances of path-following meth-
ods are (i) the short-step path-following method, (ii) the long-step path-following
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method, and (iii) the standard predictor–corrector path-following algorithm. We will
only sketch these algorithms; indeed they have only a theoretical interest. Only the
long-step path-following methods have proved to be efficient in several situations.

The short-step path-following algorithm starts with a feasible point in a relatively
small neighborhood N2(θ ) of the central path and generates a sequence of point with
stays in N2(θ ). This choice induces a relation between θ and the value σk, typically,
θ = 0.4 and σk = 1−0.4/

√
n. The step length is chosen equal to 1. If the short-step

methods are interesting from the complexity point of view, the value of σk implies
very low convergence rate, especially for large systems. Such interior point methods
have therefore almost only a theoretical interest.

The standard predictor–corrector as it has been published by Mizuno et al. (1993)
is based on a two-step procedure and a pair of two neighborhoods, N2(θ1) and
N2(θ2) with θ1 < θ2. The predictor step, which is an affine-scaling step with σk = 0,
reduces the value μ starting from N2(θ1) and choosing the step length such that the
iterate ends in N2(θ2). On the contrary, the corrector step, which is a centralization
step with σk = 1, improves the centralization starting from N2(θ2) and choosing the
step-length equal to 1 such that the iterate ends in N2(θ1). The standard predictor–
corrector scheme improves the short-step path-following scheme from the practical
point of view; and both schemes have the same theoretical complexity. Nevertheless,
the use of a small neighborhood such as N2 restricts fast convergence during the
early iterations of the algorithm.

The long-step path-following method uses a large neighborhood of the central
path, N−∞(ε) with small value of ε , let us say, 10−3. The centering parameter σ is
chosen between the values σmin and σmax. The step length is chosen such that the
iterates stay in the large neighborhood, N−∞(ε). In practice, this algorithm seems to
be better than the two previous algorithms.

Practical Implementations

Most of the practical implementations of interior point methods are based on Mehro-
tra’s predictor–corrector algorithm (Mehrotra, 1992) which is an infeasible interior
point method. The term “infeasible” refers to the fact that the equality constraint
Qx + Rx = q is relaxed into Qx + Rx = q + r and the algorithm tries to minimize
both μ and r. The infeasible strategy allows one to start with primal–dual initial
points which are just strictly positive. Furthermore, the Mehrotra predictor–corrector
scheme uses some tricks to correct the Newton directions and to evaluate adaptively
the centering parameter. Fore more details, we refer to Wright (1996b) and Bonnans
et al. (2003).

Finally, a crucial point in the efficiency of interior point methods is the linear
solvers to compute Newton’s directions. More details can be found on this important
aspect in Wright (1996b, Chap. 11) and Andersen et al. (1996, Sect. 4). Another
question is the purification stage which can be useful if we want to know accurately
what are the active constraints; this is also discussed in Bonnans et al. (2003).
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12.4.8.2 The General Case

A lot of theoretical results have been extended to more general LCPs, particularly,
the P�(κ) class of matrices. We refer to the following works for precise statements of
the algorithm: Anitescu et al. (1997), Potra & Liu (2005), Potra & Sheng (1997), and
Illés et al. (2007) and references therein. The question of practical efficiency with
respect to convergence and complexity results is largely open.

12.4.9 How to Choose an LCP Solver?

As with the QP, it is also difficult to give firm and easy rules to choose the right LCP
solver. Nevertheless, we can attempt to give the following advices:

1. The splitting methods are well suited
• for very large and well-conditioned LCP. Typically, the LCPs with symmet-

ric PD matrix are solved very easily by a splitting method,
• when a good initial solution is known in advance.

2. The pivoting techniques are well suited
• for small to medium system sizes (n < 5000 ),
• for “difficult problems” when the LCP has only a P-matrix, sufficient matrix,

or copositive plus matrix,
• when one wants to test the solvability of the system.

3. Finally, interior point methods can be used
• for large-scale problems without the knowledge of a good starting point,
• when the problem has a special structure that can be exploited directly in

solving the Newton direction with an adequate linear solver.

We also mention the existence of “generalized or semi-smooth Newton’s meth-
ods” which we postpone to Sect. 12.5.4. The algorithms, their implementation, and
the convergence results are similar for Nonlinear Complementarity Problem (NCP)s
and LCPs. Only in the linear case can some part of the algorithm be optimized using
the linearity.

12.5 The Nonlinear Complementarity Problem (NCP)

12.5.1 Definition and Basic Properties

The NCP is somehow a nonlinear version of a LCP defined as follows :

Definition 12.41 (Nonlinear Complementarity Problem (NCP)). Given a map-
ping F : IRn → IRn, the Nonlinear Complementarity Problem (NCP) denoted by
NCP(F) is to find a vector z ∈ IRn such that

0 � z⊥ F(z) � 0. (12.173)

A vector z is called feasible (respectively, strictly feasible) for the NCP(F) if z � 0
and F(z) � 0 (respectively, z > 0 and F(z) > 0).
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The following standard index sets are defined, for any vector z:

α(z) = {i | zi > 0 = Fi(z)}

β (z) = {i | zi = 0 = Fi(z)}

γ(z) = {i | zi = 0 < Fi(z)}

. (12.174)

A solution z̄ of NCP(F) is said to be degenerate if the index set β (z̄) is a nonempty
set.

Basic Existence and Uniqueness Properties

The analog property of (semi)-positive definiteness of M in LCP(M,q) is the mono-
tonicity property of the function F(·), for which we recall some definitions.

Definition 12.42. A given mapping F : X ⊂ IRn −→ IRn is said to be

(a) monotone on X if

(x− y)T (F(x)−F(y)) � 0, for all x,y ∈ X ; (12.175)

(b) strictly monotone on X if

(x− y)T (F(x)−F(y)) > 0, for all x,y ∈ X ,x �= y; (12.176)

(c) strongly monotone on X if there exists μ > 0 such that

(x− y)T (F(x)−F(y)) � μ‖x− y‖2, for all x,y ∈ X ; (12.177)

(d) pseudo-monotone on X if

(x− y)T F(y) � 0⇒ (x− y)T F(x) � 0, for all x,y ∈ X . (12.178)

For an affine mapping F(x) = Mx+q, (a) (respectively (b)) means that M is PSD (re-
spectively PD). Furthermore, if F(·) is continuously differentiable on a open convex
set D , the following results hold:

Theorem 12.43. Given a continuously differentiable mapping F : D ⊂ IRn −→ IRn

on the open convex set D , the following statements are valid:

(a) F(·) is monotone on D if and only if ∇T F(x) is PSD for all x ∈D .
(b) F(·) is strictly monotone on D if ∇T F(x) is PD for all x ∈D .
(c) F(·) is strongly monotone on D if and only if ∇T F(x) is uniformly PD for all

x ∈D , i.e.,

∃μ > 0, zT∇T F(x)zT � μ‖z‖2, ∀x ∈D . (12.179)

Theorem 12.44. Given a continuous mapping F : X ⊂ IRn −→ IRn, the following
statements hold:
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(a) If F(·) is monotone on X = IRn
+, the NCP(F) has a convex (possibly empty) so-

lution set. Furthermore, if there exists a strictly feasible point, the NCP(F) has a
nonempty and compact solution set.

(b) If F(·) is strictly monotone on X = IRn
+, the NCP(F) has at most one solution.

(c) If F(·) is strongly monotone on X = IRn
+, the NCP(F) has a unique solution.

The proof of this result can be found in Moré & Rheinbolt (1973). The above results
are standard results related to the equivalent reformulation of NCPs as VIs. In fact,
numerous results can be stated directly in the context of VIs and then can be applied
to NCPs as a specification of VIs. Some of these results that can be found in Harker
& Pang (1990) and Facchinei & Pang (2003) will be given in Sect. 12.6. Some results
which are derived from the study of LCPs concern only certain classes of VIs which
contain the NCP. This is the case for a VI on a box, i.e., a Cartesian product of
n-dimensional closed intervals, for which the notion of P-function generalizes that
of P-matrix.

Definition 12.45. A given mapping F : X ⊂ IRn −→ IRn is said to be

(a) a P-function on X if

max
i=1,...,n

(xi− yi)(Fi(x)−Fi(y)) > 0, ∀x,y ∈ X ,x �= y; (12.180)

(b) a uniform P-function if

∃μ > 0, max
i=1,...,n

(xi− yi)(Fi(x)−Fi(y)) � μ‖x− y‖2, ∀x,y ∈ X ,x �= y.

(12.181)

Obviously, if F(·) is strictly monotone on X , then it is a P-function on X . If F(·)
is strongly monotone on X , then it is a uniform P-function on X . With the above
definitions we have the following result which is valid for VIs over boxes. We state
here this result in the particular case of NCP.

Theorem 12.46. Given a continuous mapping F : X ⊂ IRn −→ IRn, the following
statements hold:

(a) If F(·) is a P-function on X, then the NCP(F) has at most one solution.
(b) If F(·) is a uniform P-function on X, then the NCP(F) has a unique solution.

The proof can be found in Moré (1974).

Reformulations of the NCP in Terms of NLP

An NCP can be reformulated as several forms of well-known problems of mathe-
matical programming (see Sect. 12.6 for VI and inclusion into a normal cone.). We
focus our interest in this section on the reformulation in terms of NLP. This refor-
mulation is the analog of the reformulation of an LCP as a QP. The following result
generalizes the linear/quadratic case.
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Theorem 12.47. Given a mapping F : X ⊂ IRn−→ IRn. A vector z̄ solves the NCP(F)
if and only if z̄ solves the following NLP:

minimize zT F(z)
subject to F(z) � 0

z � 0
(12.182)

and the value of the objective function is equal to zero, i.e.,

z̄T F(z̄) = 0. (12.183)

Note that in the previous theorem, nothing has been said about feasibility. As with
LCPs, the complete equivalence with a NLP can also be considered. This discussion
will be pursued in the more general setting of VIs in Sect. 12.6.

General minimization problems can also be written, based on the notion of merit
function.

Definition 12.48. A function Ψ : IRn −→ IR+ is called a merit function for the
NCP(F) if it has both the properties

(a) Ψ(z) � 0 for all x ∈ IRn,
(b) Ψ(z) = 0 if and only if z solves NCP(F).

If Ψ(·) is a merit function, the following unconstrained minimization problem is
relevant:

min
x
Ψ(x). (12.184)

There are many merit functions in the literature. To cite a few of them, the following
implicit Lagrangian suggested in Mangasarian & Solodov (1993)

Ψ(x) =
n

∑
i=1

[
xi Fi(x)+

1
2α

(max2(0,xi−αFi(x))− x2
i

+max2(0,Fi(x)−αxi)−F2
i (x))

]
(12.185)

is an example of merit function. The Fischer–Burmeister merit function (Facchinei
& Soares, 1997) can also be mentioned:

Ψ(x) =
1
2

n

∑
i=1

(√
x2

i + F2
i (x)− xi−Fi(x)

)2

. (12.186)

We will see that for most of the equation-based formulations (see Sect. 12.5.4) of
an NCP it is possible to define a merit function. One could think to solve directly
the minimization problem (12.184) with one of these merit functions. The difficulty
lies in the fact that to have efficient minimization solvers, the merit must be at least
twice differentiable. This is not the case for most merit functions. These functions
are preferably used to monitor the global convergence of the numerical methods by
line-search procedures.
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Other Reformulations

Many other reformulations of NCPs are also widely used for numerical purposes,
such as VI reformulation and equation-based reformulation. They are closely related
to numerical methods, therefore we will present them in the subsequent sections,
which are inspired by the excellent review paper of Ferris & Kanzow (2002).

12.5.2 The Mixed Complementarity Problem (MCP)

Similar to the LCP with respect to the MLCP, the Mixed Complementarity Problem
(MCP) is a special case of the NCP where the system is defined by a set of non-
linear equations, while the complementarity is only applied to some variables and
functions. This leads to the following problem definition:

Problem 12.49 ( Mixed Complementarity Problem (MCP)). Given two mappings
G: IRn1× IRn2

+ �→ IRn1 and H: IRn1× IRn2
+ → IRn2 , the Mixed Complementarity Prob-

lem (MCP) mixed complementarity problem (MCP) denoted by MCP(G,H) is to
find a pair of a vectors u,v ∈ IRn1× IRn2 such that

⎧⎨
⎩

G(u,v) = 0

0 � v⊥ H(u,v) � 0.
(12.187)

The following problem is equivalent to Problem 12.49:

Problem 12.50. Given two index sets C (for constrained) and F (for free) forming
a partition of the set {1,2,. . . ,n} and two mappings FC : IRn → IRc, FF : IRn → IR f ,
such that f + c = n, find a vector z ∈ IRn such that

⎧⎨
⎩

FF (z) = 0

0 � zC ⊥ FC (z) � 0.
(12.188)

When only box constraints are encountered, we obtain the so-called box-
constrained Mixed Complementarity Problem (MCP) given by

Definition 12.51 (Box-constrained MCP). Given a mapping F : IRn → IRn and
bounds bl,bu ∈ Rn∪{−∞,+∞}, the box-constrained MCP is to find a vector z ∈ IRn

and vectors v,w ∈ IRn such that
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F(z) = w− v

0 � (z−bl)⊥ w � 0

0 � v⊥ (bu− z) � 0.

(12.189)

The relation with the NLP problem (12.47) is given by the KKT necessary con-
ditions which can be written as
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⎪⎪⎪⎪⎪⎪⎩

L (z,u,v) = ∇ f (z)+ u∇g(z)+ v∇h(z) = 0

h(z) = 0

0 � g(z)⊥ u � 0

, (12.190)

which is a MCP.

12.5.3 Newton–Josephy’s and Linearization Methods

Newton–Josephy’s Method

Assuming that F(·) is continuously differentiable, a natural idea for solving a NCP
is to linearize F(·) at a current iterate zk in order to retrieve a LCP at each step. If the
standard Newton method to linearize F(·) is used, the following LCP

0 � z⊥ F(zk)+∇F(zk)(z− zk) � 0 (12.191)

has to be solved to obtain zk+1. This method is known as the Newton–Josephy’s
method or Successive Linear Complementarity Problem (SLCP). Convergence,
which has been studied in Josephy (1979), shows that the iterates are locally well
defined and fastly convergent under the fundamental property of strong regularity.
This property introduced by Robinson (1980) in the context of generalized equations
is defined below.

Definition 12.52. Let z̄ be a solution of NCP(F) and the associated standard index
sets α = α(z̄) and β = β (z̄) defined in (12.174). The vector z̄ is called a strongly
regular solution if the submatrix

[∇F(z̄)]αα (12.192)

is nonsingular and the Schur complement

[∇F(z̄)]ββ − [∇F(z̄)]βα [∇F(z̄)]−1
αα [∇F(z̄)]αβ (12.193)

is a P-matrix.

Just as the standard Newton method, the Newton–Josephy method works extremely
well with a good starting point, i.e., locally. Many difficulties arise to monitor the
global convergence. As with the SQP method 12.3, the two major problems are: an
unsolvable one-step LCP far from the solution and a choice of a merit function that
does not destroy the fast local convergence. The theoretical study of this method is
analog to the study of successive QP (SQP) approach. A short treatment can be found
in Cottle et al. (1992, Sect. 7.4).
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The Newton–Robinson Method and the PATH Solver

For theoretical considerations, Robinson (1988,1992) proposed to use a linearization
of the so-called normal map (see Sect. 12.6 for a general definition for VIs)

Fnor(y) = F(y+)+(y− y+), (12.194)

where y+ = max(0,y) stands for the positive part of y. Equivalence with the NCP(F)
is as follows: y is a zero of the normal map if and only if y+ solves NCP(F). The
Newton–Robinson method uses a piecewise linear approximation of the normal map,
namely

Lk(y) = F(y+
k )+∇F(y+

k )(y+− y+
k )+ y− y+. (12.195)

The Newton iterate yk+1 is a zero of Lk(·). The same yk+1 would be obtained by
Newton–Josephy’s method if zk were set to y+

k in (12.191).
The great advantage of Newton–Robinson’s method from the numerical point

of view is its ability to be efficiently globalized. Indeed, Ralph (1994) extended the
damped Newton method for smooth equations to the normal map via a path pk(t)
from yk to yk+1 defined by

Lk(pk(t)) = (1− t)F+(yk). (12.196)

A “path-search” (as opposed to line search) is then performed using the merit func-
tion ‖F+(y)‖. Standard theory of damped Newton’s method can be extended to prove
standard local and global convergence results (Ralph, 1994; Dirkse & Ferris, 1995).
The construction of the piecewise linear path pk is based on the use of pivoting
methods. Each pivot corresponds to a kink in the path. In Dirkse & Ferris (1995), a
modification of Lemke’s algorithm is proposed to construct the path. Once the path
is constructed, a path-search procedure is performed, that is to find a point on the
path that satisfies some descent properties. Several path-search strategies are also
proposed.

The PATH solver (Dirkse & Ferris, 1995) is an efficient implementation of
Newton–Robinson’s method together with the path-search scheme. It has proved
to be very efficient on a large variety of problems (Billups et al., 1997). We will
not discuss in detail the implementation of the PATH solver. Many improvements
and evolutions have been proposed over the years, we refer especially to Ferris &
Munson (1999) and Munson (2000) where a merit function based on the Fischer–
Burmeister merit function (12.186) is used. In practice, the implementation of the
PATH solver addresses the MCP stated in Sect. 12.5.2.

12.5.4 Generalized or Semismooth Newton’s Methods

The principle of the generalized or semismooth Newton’s method for LCPs is based
on a reformulation in terms of possibly nonsmooth equations using the so-called
C-function also called NCP-function.
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Definition 12.53. A function φ : IR2→ IR is called a C-function (for complementar-
ity) if

0 � w⊥ z � 0⇐⇒ φ(w,z) = 0. (12.197)

Well-known examples of C-function are

φ(w,z) = min(w,z), (12.198a)

φ(w,z) = max(0,w−ρz)−w, ρ > 0, (12.198b)

φ(w,z) = max(0,z−ρw)− z, ρ > 0, (12.198c)

φ(w,z) =
√

w2 + z2− z−w, (12.198d)

φ(w,z) = λ (
√

w2 + z2− z−w)− (1−λ )w+z+), λ ∈ (0,1), (12.198e)

φ(w,z) = −wz+
1
2

min2(0,w+ z). (12.198f)

The function (12.198d) is called the Fischer–Burmeister function (Fischer, 1992)
and (12.198e) the penalized Fischer–Burmeister function (Chen et al., 2000). The
particularity of the function (12.198f) is that it is differentiable on the whole space
IR2 Evtushenko & Purtov, 1984). Many other C-functions can be found in the litera-
ture (Mangasarian, 1976; Sun & Qi, 1999; Qi & Yang, 2002, to mention a few).

Then defining the following function associated with NCP(F):

Φ(z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

φ(F1(z),z1)
...

φ(Fi(z),zi)
...

φ(Fn(z),zn)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (12.199)

we obtain as an immediate consequence of the definitions of ϕ(·) and Φ(·) the fol-
lowing equivalence.

Proposition 12.54. Let φ(·) be a C-function and the corresponding operator Φ(·)
defined by (12.199). A vector z̄ is a solution of NCP(F) if and only if z̄ solves the
nonlinear system of equations Φ(z) = 0.

The generalized or semismooth Newton’s method consists in applying a Newton-
type algorithm for searching a zero of Φ(·). If the operator Φ(·) is chosen to
be at least locally Lipschitzian, it is therefore almost everywhere differentiable
(Rademacher’s theorem). Then the generalized Clarke Jacobian, ∂Φ(z), can be de-
fined using the limiting Jacobian by

∂Φ(z) = conv{H ∈ IRn×n |H = lim
k→+∞

∇Φ(zk), for z = lim
k→+∞

zk,zk �∈NΦ} (12.200)

where NΦ is the set (of zero Lebesgue measure) on which the function Φ(·) is not
differentiable.
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The standard Newton method is generalized to the nonsmooth case by the fol-
lowing scheme:

zk+1 = zk−Hk
−1Φ(zk), Hk ∈ ∂Φ(zk). (12.201)

Because the set ∂Φ(zk) may not be a singleton (if zk is a point of discontinuity of
Φ(·)), we have to select an arbitrary element for Hk.

Remark 12.55. If the C-function (12.198f) and F(·) are continuously differentiable
on the whole space, the mapping Φ(·) also satisfies this property. In this case, the
standard Newton method can be applied directly. Unfortunately, an interesting result
of Kanzow & Kleinmichel (1995) shows that the Jacobian of Φ(·) is singular at any
degenerate solution of (12.173), thus preventing fast local convergence.

Choices of the C-Function and the Semismoothness Property

First of all, the choice of the C-function relies on the four major properties:

(a) Suitability of the generalized Jacobian, ∂Φ. Intuitively, it is natural to preferΦ(·)
with “small” generalized Jacobians. In fact, if Hk in (12.201) is allowed to take
very different values, the resulting sequence zk will likely behave unwieldily.
Incidentally, we mention that computing a limiting Jacobian is not a difficult
operation: in practice, one just formal differentiation pretending that ∂Φ(zk) is a
singleton.

(b) Invertibility of the elements of ∂Φ. Clearly from (12.201), Hk must be invertible
for each k, and in fact convergence is unlikely if Hk tends to a degenerate matrix.
From this point of view, we recall the conclusion of negative Remark 12.55.

(c) Semismoothness of Φ(·). It is a key property for the convergence of the general-
ized Newton’s method. This is the main reason why the method is often termed
in the literature a semismooth Newton’s method. Primary results on convergence
of semismooth methods can be found in Qi & Sun (1993).

(d) Existence of a differentiable merit function associated with Φ(·). Eventually, in
order to monitor the global convergence of Newton’s method, some line search
has to be performed along the Newton direction

dk =−Hk
−1Φ(xk) (12.202)

to get a sufficient decrease of the associated merit function

Ψ(z) =
1
2
Φ(z)TΦ(z). (12.203)

Differentiability of Ψ(·) increases the ability of this procedure to drive zk toward
a zero of Φ(·).
The Fischer–Burmeister (12.198d) and the penalized Fischer–Burmeister

(12.198e) functions enjoy all of these properties if the solution of the NCP is strongly
regular (Chen et al., 2000). As far as we know, the choice of the Fischer–Burmeister
functions is the best compromise for the numerical efficiency, even on nonmonotone
complementarity problems.
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Remark 12.56. Pang (1990, 1991) and co-workers (Gabriel & Pang, 1992; Pang &
Gabriel, 1993) proposed a generalized Newton method based on the min function
in (12.198a). Following the comments in Ferris & Kanzow (2002), a Newton method
based on this function is more difficult to globalize.

We will discuss in Sect. 12.5.6 the relative efficiency of various forms of general-
ized Newton’s methods. In particular, most of the variants of the standard Newton’s
method such as inexact Newton’s method, Levenberg–Marquardt method have also
been implemented in the semismooth framework (De Luca et al., 2000).

Remark 12.57. The standard LCP and its variants can also be treated by generalized
Newton’s methods. The computation of the gradients is in this case even simpler.

12.5.5 Interior Point Methods

Interior point methods have also been extended from NLP to NCP. The monotone
case is treated in Potra & Ye (1996) by a potential reduction method. The principle
is the same as for the LCP. The only difference lies in the fact that, at each iteration,
a nonlinear problem has to be solved up to a prescribed tolerance. The way how the
tolerance is monitored together with the various intrinsic parameter of the standard
interior point method generates a long list of algorithms, in which it is rather difficult
to find a way. As we said, the interior point methods have also been extended to
nonlinear programs.

12.5.6 Effective Implementations and Comparison of the Numerical
Methods for NCPs

In contrast to the interior point methods, it is not difficult to find comparisons of
numerical methods based on Newton’s method for solving NCPs. In the context of
MCP, we refer to the paper of Billups et al. (1997) for an impressive comparison of
the following implementation of solvers:

• MILES (Rutherford, 1993) which is an implementation of the classical Newton–
Josephy method (see Sect. 12.5.3),

• PATH which has been described at the end of Sect. 12.5.3,
• NE/SQP (Gabriel & Pang, 1992; Pang & Gabriel, 1993) which is a generalized

Newton’s method based on the minimum function (12.198a); the search direction
is computed by solving a convex QP at each iteration,

• QPCOMP (Billups & Ferris, 1995) which is an enhancement of the NE/SQP
algorithm to allow iterates to escape from local minima,

• SMOOTH (Chen & Mangasarian, 1996) which is based on solving a sequence of
smooth approximations of the NCP,

• PROXI (Billups, 1995) which is a variant of the QPCOMP algorithm using a
nonsmooth Newton solver rather than a QP solver,
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• SEMISMOOTH (DeLuca et al., 1996) which is an implementation of a semis-
mooth Newton method using the Fischer–Burmeister function,

• SEMICOMP (Billups, 1995) which is an enhancement of SEMISMOOTH based
on the same strategy as QPCOMP.

All of these comparisons, which have been made in the framework of the
MCP (12.189), show that the PROXI, PATH, and SMOOTH are superior on a large
sample of test problems.

For a comparison of the variants of the SEMISMOOTH algorithm, we refer to
De Luca et al. (2000).

12.6 Variational and Quasi-Variational Inequalities

12.6.1 Definition and Basic Properties

The VI problem may be defined as follows:

Definition 12.58 (Variational inequality (VI) problem). Let X be a nonempty sub-
set of IRn and let F be a mapping from IRn into itself. The variational inequality
problem, denoted by VI(X ,F), is to find a vector z ∈ IRn such that

FT (z)(y− z) � 0, ∀ y ∈ X . (12.204)

We denote the solution set of (12.204) by Ω .

Usually, the set X is assumed to be closed and convex. The function F is also
assumed to be continuous; nevertheless some generalized VI are also defined for set-
valued mappings (Harker & Pang, 1990). If X is a closed set and F continuous, the
solution set of VI(X ,F) denoted by SOL(X ,F) is always a closed set.

A geometrical interpretation of the VI(X ,F) leads to the equivalent formulation
in terms of inclusion into a normal cone of X , i.e.,

−F(x) ∈ NX(x) (12.205)

or equivalently
0 ∈ F(x)+ NX(x). (12.206)

This may be deduced directly from the variational definition of a normal cone. It
is noteworthy that the VI(X ,F) extends the problem of solving nonlinear equa-
tions of the form F(x) = 0, taking X = IRn in (12.206). If F(z) = Mz + q is
affine, the VI(X ,F) is called Affine Variational Inequality (AVI) and is denoted by
AVI(X ,q,M).

If X is polyhedral, we say that the VI(X ,F) is linearly constrained or is a linearly
constrained VI. An important case is the box-constrained VI where the set X is a
closed box (possibly unbounded) of IRn, i.e.,

K = {x ∈ IRn | −∞ � ai � x � bi � +∞}. (12.207)
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Basic Existence and Uniqueness Properties

The basic ingredients for the existence and possibly the uniqueness of solutions of
VIs are (a) the degree theory and the fixed-point approaches and (b) the monotonic-
ity property. The degree theory and the fixed-point approaches for VI are well pre-
sented in Goeleven et al. (2003a). The monotonicity property is used just as in The-
orem 12.44 for NCP. The P-property and its variants cannot be applied to general
VI but some notions of F-uniqueness can be introduced. The notion of copositivity
can also be a good substitute in the more general framework of VI (see Facchinei &
Pang, 2003, for more details).

Quasi-variational Inequalities

We end this section with the definition of a quasi-variational inequality.

Definition 12.59 (Quasi-variational inequality (QVI) problem). Let X be a multi-
valued mapping IRn � IRn and let F be a mapping from IRn into itself. The quasi-
variational inequality problem, denoted by QVI(X ,F), is to find a vector z ∈ IRn

such that
FT (z)(y− z) � 0, ∀y ∈ X(z). (12.208)

This problem is a very hard problem from the existence and uniqueness point of
view. Unfortunately, the frictional contact problem studied in the following chapter
belongs to this class of problems.

For the reader interested in the theory of VI we refer to Goeleven et al. (2003a)
and Facchinei & Pang (2003) and the survey paper, Harker & Pang (1990). In these
works, some extensions of VIs can also be found where F is multivalued.

12.6.2 Links with the Complementarity Problems

The following complementarity problem over cones can be defined:

Definition 12.60 (Complementarity Problem (CP)). Given a closed convex cone
K ⊂ IRn and a mapping F : IRn → IRn, the complementarity problem, denoted by
CP(K,F), is to find a vector z ∈ IRn such that

K � z⊥ F(z) ∈ K∗, (12.209)

where K∗ is the dual (negative polar) cone of K defined by

K∗ = {d ∈ IRn | vT d � 0,∀v ∈ K}. (12.210)

We say that a vector x is feasible to the CP(K,F) if

z ∈ K and F(z) ∈ K�. (12.211)

When K is the nonnegative orthant IRn
+, the CP is a NCP. Furthermore, if F(z) =

Mx + q is affine, CP(IRn
+,F) is LCP(M,q).
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Let X = K ⊂ IRn be a cone. A vector x solves the VI(X ,F) if and only if x solves
the CP(K,F). If K is equal to the nonnegative orthant of IRn

+, a vector x solves the
VI(X ,F) if and only if x solves the NCP(F).

A box-constrained VI is equivalent to a NCP or a MCP choosing the bounds ai

and bi in the right way. If, in CP(K,F), K is polyhedral and F(·) is affine, we get an
LCP.

An interesting nonpolyhedral example is when

K = {z ∈ IRn+1 | z0 � ‖(z1, . . . ,zn)‖}, (12.212)

which is the so-called second-order cone or ice-cream cone.

12.6.3 Links with the Constrained Minimization Problem

Let us consider for instance the following NLP:

minimize G(z)
subject to z ∈ K,

(12.213)

where G(·) is supposed to be continuously differentiable. If the set K is convex,
any local minimizer z̄ of (12.213) must satisfy the following first-order optimality
conditions:

(y− z̄)T∇G(z̄) � 0,∀y ∈ K. (12.214)

The latter problem defines clearly VI(K,∇G). If the function G(·) is convex, the
stationary point which solves VI(K,∇G) does solve (12.213) (and is unique if G(·)
is strictly convex). Therefore, under the convexity assumptions on G(·) and K, the
NLP (12.213) is equivalent to VI(K,∇G).

The converse relation between a general VI(K,F) and the NLP can be obtained
if the mapping F(·) is a gradient map, that is if a mapping G exists such that F =
∇G. The question relies on the integrability of F(·) which is closely related to the
symmetry of the Jacobian matrix ∇FT as the following theorem shows.

Theorem 12.61. Let F: Ω ⊂ IRn→ IRn be a continuously differentiable mapping on
a convex set Ω ; then the following statements are equivalent:

(a) There exists a real-valued function G(·) such that F(x) = ∇GT (x) on Ω .
(b) The Jacobian matrix, ∇FT (x), is symmetric on Ω .
(c) The integral of F(·) along any closed curve in Ω is zero.

Thanks to this condition, we see how the VI, and therefore its specializations,
CP, NCP, LCP, may be related to an optimization problem. We see also in the pre-
ceding sections that if the problem is more structured, as can be the case with the
specializations of the VIs, it is possible to have deeper equivalences.
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12.6.4 Merit and Gap Functions for VI

Merit Function

In the spirit of merit functions for NCP presented in Sect. 12.5.6, the following defi-
nition can be stated.

Definition 12.62. A functionΨ : X → IR+ is called a merit function for the VI(X ,F)
if it has both the properties:

(a) Ψ(z) � 0 for all z ∈ X.
(b) Ψ(z) = 0 and z ∈ X if and only if z solves VI(X ,F).

If Ψ(·) is a merit function, the following constrained minimization problem can be
considered:

minimize Ψ(z)
subject to z ∈ X .

(12.215)

The set solutions of the VI(X ,F) coincides with the global solution of (12.215) and
the optimal value of this problem is zero.

Gap Function

Definition 12.63. The (primal) gap function, G: IRn→ IR+∪{+∞}, for the VI(X ,F)
is given by

G(x) = sup
y∈X

FT (z)(x− y). (12.216)

This is a nonnegative extended value function which can be possibly infinite. Note
that (12.216) is a convex program. We can observe that z̄ is a solution of the VI(X ,F)
if and only if z̄ is the global solution of the so-called gap-constrained minimization
problem

minimize G(z)
subject to z ∈ X

(12.217)

and G(z̄) = 0.
The following theorem summarizes the properties of the gap function.

Theorem 12.64. For any x ∈ X, let Y (x) denote the (possible empty) set of optimal
solutions to (12.216). The function G(·) in (12.216) satisfies the following properties:

1. G(·) is a merit function for the VI(X ,F).
2. G(·) is lower semi-continuous.
3. If X is bounded and F ∈ C 1(X), then G(·) is Lipschitz continuous on X.
4. If F ∈ C 1(X), then G(·) is differentiable at z ∈ X if Y (z) = y(z) (Y (z) is a sin-

gleton). We then have

∇G(z) = F(z)+∇F(z)T (z− y(z)). (12.218)
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5. If F ∈ C 1(X) and monotone then if z /∈ Ω and Y (z) = y(z), the direction d =
y(z)−z is a feasible direction of descent with respect to G(·) at x. The directional
derivative satisfies

G′(z;d) = ∇G(z)T d �−G(z). (12.219)

6. G(·) is convex on X if F(z)T z is convex and each component of F(·) is concave
on X.

7. Any solution z of VI(X ,F) satisfies the fixed-point problem

z ∈Ω ↔ z = Y (z). (12.220)

8. Any solution z of VI(X ,F) satisfies the stationary point condition under the con-
ditions on F(·) in item 5

z ∈Ω ↔G′(z;y− z) � 0, for all y ∈ X . (12.221)

References for the proofs of these properties can be found in Larsson &
Patriksson (1994). The properties in items 5 and 7 are the keystones of the descent
methods and the projection methods for monotone VIs (see Sect. 12.6.6).

Let X = K ⊂ IRn be a cone. The gap function is

G(z) =

{
F(z)Tz if F(z) ∈ K∗

+∞ otherwise.
(12.222)

In this case, the gap-constrained minimization problem attains a very simple form
summarized in the following theorem:

Theorem 12.65. Let X = K ⊂ IRn be a cone. A vector z̄ solves the VI(X ,F) or equiv-
alently the CP(K,F) if and only if z̄ solves the following constrained minimization
problem

minimize F(z)T z
subject to z ∈ K

F(z) ∈ K∗
(12.223)

and the value of the objective function is equal to zero, i.e.,

F(z̄)T z̄ = 0. (12.224)

Note that for K = IRn
+, the problem (12.223) is exactly (12.182).

Remark 12.66. As noted by Facchinei & Pang (2003, p. 89), merit functions can be
used in the design of numerical algorithms based on the minimization of the merit
function with the hope to obtain one of its global minimum. However, merit functions
are typically not convex. Therefore we cannot guarantee to attain their global min-
ima. The stationary point obtained by the minimization of (12.223) is not necessarily
a solution of the VI(X ,F). In contrast to the LCP/QP reformulation where sufficient
matrices ensure the equivalence (see Sect. 12.4.5), conditions for equivalences are
an open issue for VI/CP.
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The Generalized and Regularized Gap Function

Auchmuty (1989) develops a class of merit functions for VIs based on the following
function, L̃(z,y): X×X → IR, with

L̃(z,y) = f (z)− f (y)+ [F(z)−∇ f (y)]T(x− y), (12.225)

where f : IRn→ IR∪{+∞} is convex, lower semi-continuous, and in C 1 on X . This
function is related to the VI(X ,F) thanks to the following saddle-point problem.

Theorem 12.67. If (z̄, ȳ) ∈ X×X satisfies the saddle-point problem

L̃(z̄,y) � L̃(z̄, ȳ) � L̃(z, ȳ), for all (z,y) ∈ X×X , (12.226)

then z̄ solves VI(X ,F).

This theorem states that saddle points of L̃ are in the set of solution of VI(X ,F). The
saddle–point formulation for the VI(X ,F) allows one to consider two types of opti-
mization problems. The first one is based on the definition of the primal generalized
gap function

G̃(z) = sup
y∈X

L̃(z,y), z ∈ X , (12.227)

and the corresponding optimization formulation is

inf
z∈X

G̃(z). (12.228)

Note that (12.227) is a convex program. Solving VI(X ,F) is equivalent to minimiz-
ing G̃(·) over X , so that G̃(·) is a merit function. The general properties of the primal
generalized gap function (12.227) can be found in Larsson & Patriksson (1994). The
second optimization is the dual optimization problem that we will not develop here.

We will focus in the remaining part of this section on a special case of the gener-
alized gap function, the so-called regularized gap function due to Fukushima (1992).
The function f (·) is specified as follows:

f (z) =
1
2

zT Qz, (12.229)

where Q is a given symmetric and PD matrix in IRn×n. In this case, the prob-
lem (12.227) reduces to find the unique point y(z) such that

minimize ‖y− (z−Q−1F(z))‖Q

subject to y ∈ X
, (12.230)

that is

y(x) = proxQ[X ;z−Q−1F(z)]. (12.231)
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The regularized gap function will be denoted by

G1(z) = supy∈X F(z)T(z− y)− 1
2
(z− y)TQ(z− y)

= F(z)T(z− y(z))− 1
2
(z− y(z))TQ(z− y(z))

(12.232)

or more generally by

Gα(z) = supy∈X F(z)T(z− y)− α
2

(z− y)TQ(z− y), α > 0

= F(z)T(z− yα(z))− α
2

(z− yα(z))TQ(z− yα(z)),
(12.233)

where yα(z) = proxQ[X ;z− 1
α

Q−1F(z)].
The following theorem summarizes several properties of the regularized gap

function G1.

Theorem 12.68. For any x ∈ X, let y(x) denote the optimal solution to (12.230). The
function G1(·) satisfies the following properties:

1. G1(·) is a merit function for the VI(X ,F).
2. If F(·) is continuous, then G1(·) is also continuous.
3. If F(·) is C 1, then G1(·) is also C 1; moreover,

∇G1(z) = F(z)+ (∇F(z)−Q)T (z− y(z)). (12.234)

4. Any solution z of VI(X ,F) satisfies the fixed-point problem

z ∈Ω ⇐⇒ z = y(z). (12.235)

5. If F ∈ C 1 with a positive definite Jacobian ∇F, then

∇G1(z)T (y− z) � 0, for all y ∈ X ⇒ z ∈Ω . (12.236)

6. If F ∈ C 1 with a positive definite Jacobian ∇F, then

z /∈Ω ⇒ ∇G1(z)T (y(z)− z) < 0. (12.237)

7. If F ∈ C 1 with a positive definite Jacobian ∇F and also strongly monotone on
X, then

∇G1(z)T (y(z)− z) �−mF‖y(x)− x‖2, mF > 0. (12.238)

Remark 12.69. We reproduce here a very interesting interpretation due to Larsson
& Patriksson (1994) on a possible choice of the function f (·). Since (12.227) is
a convex program, evaluating G̃(z) is equivalent to finding a solution y(z) to the
following VI:

∇yL̃(z,y(z))T(y− y(z)) � 0, for all y ∈ X . (12.239)

If we assume that F(·) is approximated by the gradient of a convex function f (·),
the error made is F−∇ f . For some fixed z, this error may be taken into account by
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adding to ∇ f the error term given by F(z)−∇ f (z). We obtain then the following
approximate symmetric VI:

[∇ f (y(z))+ F(z)−∇ f (z)]T (y− y(z)) � 0, for all y ∈ X . (12.240)

But from (12.225), it follows that (12.239) and (12.240) are equivalent.
Let us assume for a moment that ∇F is symmetric. One may choose f (·) such

that F = ∇ f and (12.240) reduces to VI(X ,F). This possibility to approximate F(·)
exactly for symmetric VI suggests an analog symmetrization strategy for the asym-
metric case. We then define

f (z) =
∫
Γ

F(s)Ts ds =
∫ 1

0
Θ(t)dt, (12.241)

where Γ is a curve from 0 to z, and Θ(t) = F(tz)Tz. This approximation is exact if
F(·) is the gradient of f (·) and could be a good approximation for modest asymmet-
ric case.

With this interpretation, it seems that the symmetric approximation∇ f of F(·) is
a more natural choice than a constant matrix Q as in (12.232).

Finally, we introduce a last version of regularized gap function, the so-called
D-gap function. In the spirit of Mangasarian & Solodov (1993), who introduced the
notion of implicit Lagrangian for NCPs, Peng (1997) and Yamashita et al. (1997)
proposed the D-gap function defined by

Gα ,β (z) = Gα(z)−Gβ (z), with α > β > 0. (12.242)

The main advantage of the D-gap function lies in the fact that it is an unconstrained
merit function in the sense that

1. Gα ,β (z) � 0 for all z ∈ IRn,
2. Gα ,β (z) = 0 if and only if z solves VI(X ,F),

leading to the following unconstrained minimization problem reformulation of
the VI(X ,F):

minimize Gα ,β . (12.243)

It was shown that any stationary point z̄ of (12.243) with ∇F(z̄) positive definite is a
solution of the VI(X ,F). If X is a box, then ∇F(z̄) needs only to be a P-matrix. Based
on these properties, we will see in Sect. 12.6.6 that unconstrained descent methods
were developed to solve the VI(X ,F) and convergence to a solution was shown when
is F(·) strongly monotone or, if X is a box, when is F(·) a uniform P-function.

12.6.5 Nonsmooth and Generalized equations

In this section, we define nonsmooth equations or generalized equations. Let us
start with the definition of a generalized equation given in the pioneering work of
Robinson (1979).
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Problem 12.70 (Generalized equation (GE) problem). Let Ω ⊂ IRn be an open
set. Given a continuously Fréchet differentiable mapping F : Ω ⊂ IRn → IRn and a
maximal monotone operator T : IRn � IRn, find a vector z ∈ IRn such that

0 ∈ F(z)+ T (z). (12.244)

We recall that a set-valued operator T (·) is monotone if for each couple (z,y),(z�,y�)
in the graph of T (·), one has

(z− z�)T(y− y�) � 0 (12.245)

and maximal monotone if its graph is not strictly contained in the graph of any other
monotone operator.

The GE problem is closely related to CP problems and to the NLP. For instance,
the NCP (12.173) can represented into a GE by

0 ∈ F(z)+ NIRn
+
(z) (12.246)

and the MCP (12.51), which provides the KKT conditions for the NLP, can be recast
into a GE of the form

0 ∈ F(z)+ NK(z), z ∈ IRn+me+mi (12.247)

with ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F(z) =

⎡
⎢⎣

L (z,u,v)
−g(z)
−h(z)

⎤
⎥⎦

K = IRn× IRmi
+ × IRme

. (12.248)

General Reformulation of a VI with the Normal and the Natural Map

The following two results extend the reformulation of MCP and NCP as generalized
equations.

Proposition 12.71. Let X ⊂ IRn be a closed convex set and a mapping F : X → IRn

and let PX denote the projection operator onto X. The following statement holds:

x solves VI(X ,F)⇐⇒ Fnat
X (x) = 0, (12.249)

where Fnat
X is the so-called natural map, defined by

Fnat
X (y) = y−PX(y−F(y)). (12.250)

Proposition 12.72. Let X ⊂ IRn be a closed convex set and a mapping F : X → IRn.
The following statement holds:

x solves VI(X ,F)⇐⇒ x = PX(z) for some z such that Fnor(z) = 0, (12.251)

where Fnor
X (·) is the so-called normal map, defined by

Fnor
X (y) = F(PX(y))+ y−PX(y). (12.252)
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The equations Fnat
X (x) = 0 and Fnor

X (z) = 0 allow one to state projection-type
algorithm and generalized Newton’s method in a very general framework. This is one
of the reasons why a lot of effort has been made to characterize these two operators.
Furthermore, such formulations lead themselves to a sensitivity analysis to data. For
more details, we refer to the recent treatment of Facchinei & Pang (2003).

12.6.6 Main Types of Algorithms for the VI and QVI

As said before, the equation-based reformulations of VIs and the merit function
equivalences pave the way to three main types of algorithms:

(a) projection-type and splitting methods,
(b) minimization of merit functions,
(b) generalized Newton Methods,
(c) interior and smoothing methods.

Other classes of methods can also be cited. For instance, the proximal point al-
gorithm (Martinet, 1970; Rockafellar, 1976b) for solving an inclusion of the form

T (x) � 0, (12.253)

where T (·) is a maximal monotone operator, can also be invoked to solve mono-
tone VIs. Interior and smoothing methods have also been developed for solving VIs
(Facchinei & Pang, 2003, Chap. 10). When the set X is polyhedral, some simplex-
like methods have been implemented for VIs. We will give some insights on these
methods in the next paragraphs. We refer to Harker & Pang (1990) and Ferris &
Kanzow (2002) for a survey of such methods.

12.6.7 Projection-Type and Splitting Methods

The projection-type methods provide one with a family of methods which are easy
to implement and robust if the projection onto the set X is cheap to compute. Such
methods do not need the knowledge of the Jacobian of F . Nevertheless, convergence
requires a monotonicity-like assumption and the rate of convergence one can expect
is linear in most cases

Basic Fixed-Point Scheme

The basic projection-type method performs a fixed-point iteration based on the nat-
ural map, namely

zk+1 = PX(zk−F(zk)), (12.254)

where z0 ∈ X is a given starting point. In order to improve the convergence of the
fixed-point iteration (Brezis & Sibony, 1967/1968; Sibony, 1970) a (small) parameter
γ > 0 is usually introduced as follows:

zk+1 = PX(zk− γF(zk)). (12.255)
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Using the Banach fixed-point theorem, this iterative scheme can be proved to be
globally convergent provided γ is sufficiently small, and with a linear convergence
rate for a strongly monotone and Lipschitz-continuous function F (Auslender, 1976;
Bertsekas & Tsitsiklis, 1989). This method has been extended by means of a variable
step size in Marcotte & Wu (1995) as follows:

zk+1 = PX(zk− γkF(zk)). (12.256)

The convergence is then improved to co-coercive functions on X , i.e.,

(F(z)−F(y))T(z− y) � c‖F(x)−F(y)‖2,c > 0, for all (z,y) ∈ X×X , (12.257)

together with the Lipschitz assumption.

The Extragradient Method

The extragradient method (Korpelevich, 1976) is also a well-known method for VI
which improves the previous projection method. It has been extensively studied in
Khobotov (1987), Marcotte (1991), and Nagurney (1993) and references therein. It
can formulated as

zk+1 = PX(zk− γ F(PX(zk− γF(zk)))). (12.258)

The convergence of this method requires that the function F is Lipschitz-continuous
and pseudo-monotone and that a solution exists. The convergence rate one can expect
is also linear. This method has been further extended in Solodov & Tseng (1996) by

zk+1 = zk− τP−1 [Tγ (zk)−Tγ(PX(zk− γF(zk)))
]
, τ > 0, (12.259)

where P∈ IRn×n is a PD matrix and either Tγ = I−γF , or if F is affine Tγ = I−γMT .
The parameter γ is chosen such that Tγ is strongly monotone. The convergence result
for such a method is equivalent to the extragradient method but it needs only one
projection per iteration.

The Hyperplane Projection Method

Besides the monotonicity-like assumption, the drawback of the three previous meth-
ods is the requirement of the Lipschitz constant of F to ensure convergence. In
Golshtein & Tretyakov (1996), subgradient-like methods have been studied to pro-
vide convergence with diminishing but nonsummable sequences of steps. To face this
problem, the hyperplane projection method has been introduced by Konnov (1993).
The convergence has been proved under the assumptions that F is a continuous
pseudo-monotone mapping. The method is described in Algorithm 12.6.7.

Splitting Methods

In the case of the AVI(X ,q,M), most of the previous projection methods have been
extended by splitting the matrix M as for the LCP case in Tseng (1990, 1995), Mar-
cotte & Wu (1995), and Eckstein & Ferris (1998). The convergence of the schemes
has been proved under monotonicity-like assumptions.
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Algorithm 16 Hyperplane projection method (Konnov, 1993)

Require: F,X
Require: z0 ∈ X,τ > 0,σ ∈ (0,1)
Ensure: z solution of VI(X,F) with F a continuous pseudo-monotone mapping

k← 0
while error > tol do

yk← PX(zk− τF(zk))
(Armijo line–search) Find the smallest integer, i ∈ IN such that

F(2−iyk +(1−2−i)zk)T(zk−yk) � σ
τ
‖zk−yk‖2 (12.260)

ik← i
xk← 2−ikyk +(1−2−i)zk

Hk←{z ∈ nbRn | F(xk)T(z−xk) = 0}
wk← PHk

(zk) = zk−
F(xk)

T(zk−xk)
‖F(xk)‖2

F(xk)

zk+1←← PX(wk)
k← k+1
Evaluate error.

end while

12.6.8 Minimization of Merit Functions

The key idea in this section is to substitute the VI problem by a minimization prob-
lem. As we saw in Sect. 12.6.3, a direct reformulation into a NLP is not possible if
the Jacobian of F is asymmetric. Nevertheless, based on the notion of gap and merit
functions presented in Sect. 12.6.4, minimization reformulations can be proposed.

Using the gap function (12.216), it is possible to design iterative descent methods
for solving the problem (12.217). At each iteration, a linear program has to be solved
for zk over the constraint zk ∈ X . This class of methods has been proved to con-
verge for a compact set X under the assumption that F is monotone (Marcotte, 1985;
Marcotte & Dussault, 1987).

There have been many descent methods based on the regularized gap func-
tion (12.233) proposed in the literature (Fukushima, 1992; Taji et al., 1993; Zhu
& Marcotte, 1993, 1994). All of these methods are proved to be convergent under
monotonicity assumption. Their study has been extended to a more general frame-
work in Facchinei & Pang (2003, Sect. 10.4.4). At the iteration k, the descent direc-
tion is given by

dk = yα(zk)− zk = proxQ

[
X ;zk− 1

α
Q−1F(zk)

]
− zk. (12.261)

At each step, either a line search is performed along this direction such that

zk+1 = zk + τkdk (12.262)

or the regularization parameter α is reduced. Due to the form of the descent direc-
tion, these methods can provide a framework for the study of the projection-type
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methods described previously. The main drawback of this method is that the iterates
must remain feasible in solving the constrained minimization problem (12.228). For
a complex set X , this minimization can be expensive. The descent methods based
on the D-gap function extend the methods based on the regularized gap function
providing us with an unconstrained minimization process.

12.6.9 Generalized Newton Methods

Newton’s methods for VIs are based on the normal map. As with the NCP, linearizing
of the normal map provides a general framework to develop Newton’s methods. We
will not enter into the details of Newton’s method for VI; for more details, we refer
to Facchinei & Pang (2003, Chaps. 7 and 8) and to Robinson (1982).

12.6.10 Interest from a Computational Point of View

The VI is a very general framework which encompasses all of the complementarity
problems. Therefore, it offers a very interesting basis for theoretical mathematical
developments. Unfortunately, the price of this generality is that a lot of the specific
structure of the problems is lost when we generalize to VI. From the numerical point
of view, the consequence is that the specific structure of problems cannot be exploited
and leads to poor qualitative properties of the algorithms or strong assumptions like
the monotonicity for convergence. Furthermore, most of the algorithms that are de-
signed for very general VIs with any assumption on the structure of the set X are
only conceptual. Indeed, without any structure of the set X , it is very hard to com-
pute efficiently the projection on this set and even more difficult to obtain linear
approximation of the normal map. Therefore, in most practical cases, the set X is
finitely represented by inequalities. As much as possible, it is more interesting to
recast the problem into a complementarity framework.

12.7 Summary of the Main Ideas

• Most of the problems expressed in terms of equalities and inequalities such as
LCP, MLCP, MCP, or NCP can be cast into an optimization problem involv-
ing a minimization process under various assumptions (symmetry, monotonicity,
etc.) through the first-order optimality conditions. Most of the formulations of
the time-discretized problems naturally give birth to systems of equalities and in-
equalities, but it can be interesting from a computational point of view to use the
analog optimization problem. Indeed, the minimization of an objective function
provides us with some stabilization and globalization results which are very use-
ful in practice. When this is possible we advocate to model the problem into the
natural optimization form which involves for instance energetic balances. Fur-
thermore, robust and efficient algorithms for minimization are more prevalent
than those for CP solvers.
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• Concerning the question of the choice of solvers for a specific problem, some
remarks have already been made at the end of several sections. A fundamental
specificity of the problems we address is that they are embedded in a dynamic
evolution via a time-discretization. Therefore, a good starting guess can be pro-
vided to the solver using the information of the preceding time step. Naturally,
the nonsmooth character of the evolution may go against this assumption; but
even when a nonsmooth event occurs, some information can be retrieved. In this
context, solvers that can take advantage of a good starting guess have to be pre-
ferred. The remark is closely related to the notion of warm start of an algorithm.

• Finally, the efficiency of most algorithms presented in this chapter relies for an
important part on the efficiency of the underlying linear algebra solvers. Algo-
rithms able to deeply exploit the structure of the problems have to be preferred.



13

Numerical Methods for the Frictional
Contact Problem

13.1 Introduction

The aim of this chapter is to provide some details on how the various Onestep
Nonsmooth Problem (OSNSP) which have to be solved at each step of the time-
stepping schemes may be solved with the tools presented in Chap. 12. It is notewor-
thy that even for event-driven algorithms, one has to solve similar problems.

13.2 Summary of the Time-Discretized Equations

In this section we recall the main OSNSPs that have been obtained in Chap. 10. For
the sake of readability, we present these problems only in the case of the unilateral
contact with Coulomb’s friction. The cases of the bilateral constraints and the en-
hanced nonsmooth laws are omitted. Most of the algorithms in this section can be
adapted to the latter cases.

13.2.1 The Index Set of Forecast Active Constraints

The index set I of all unilateral constraints in the system is denoted as in Chap. 8 by

I = {1 . . .ν} ⊂ IN . (13.1)

The index set Ia is the set of all forecast active constraints of the system and it is
denoted by

Ia(q̃k+1) = {α ∈ I | gα(q̃k+1) � 0} ⊆ I , (13.2)

where q̃k+1 is as in (10.39). For each index α ∈ Ia(q̃k+1), we specify the notation
introduced in (3.73). The reduced matrices Ha and Ŵ a corresponding to the local
unknowns Ua

k+1 and Pa
k+1 are such that
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Ua
k+1 =

[
Uα

k+1

]
α∈Ia(q̃k+1)

Ua
N,k+1 =

[
Uα

N,k+1

]
α∈Ia(q̃k+1)

Ua
T,k+1 =

[
Uα

T,k+1

]
α∈Ia(q̃k+1)

Pa
k+1 =

[
Pα

k+1

]
α∈Ia(q̃k+1)

Pa
N,k+1 =

[
Pα

N,k+1

]
α∈Ia(q̃k+1)

Pa
T,k+1 =

[
Pα

T,k+1

]
α∈Ia(q̃k+1)

Ha(q̃k+1) = [Hα(q̃k+1)]α∈Ia(q̃k+1)

Ha
N (q̃k+1) = [Hα

N (q̃k+1)]α∈Ia(q̃k+1)

Ha
T (q̃k+1) = [Hα

T (q̃k+1)]α∈Ia(q̃k+1)

p = ∑α pα = ∑α∈Ia(q̃k+1) Hα(q̃k+1)Pα = Ha(q̃k+1)P .

(13.3)

It is noteworthy that the last equation implies that Pα = 0 for all α ∈ I \ Ia(q̃k+1).
The time-discretized contact law with Coulomb’s friction, that is,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

If gα(q̃k+1) � 0 then

Ûα
k+1 =

[
Uα

N,k+1 + eUα
N,k + μα ||Uα

T,k+1||,Uα
T,k+1

]T

Cα ,∗ � Ûα
k+1 ⊥ Pα

k+1 ∈Cα

If gα(q̃k+1) > 0 then Pα ,
k+1 = 0

(13.4)

can therefore be written as

Cα ,∗ � Ûα ⊥ Pα
k+1 ∈ Cα , ∀ α ∈ Ia(q̃k+1) (13.5)

assuming implicitly that Pα = 0 for all α ∈ I \ Ia(q̃k+1) and introducing the modified
local velocity

Ûα
k+1 =

[
Uα

N,k+1 + eαUα
N,k + μα ||Uα

T,k+1||,Uα
T,k+1

]T
. (13.6)

The complementarity problems (13.5) can be gathered for all α ∈ Ia(q̃k+1) with the
following notation

∏
α∈Ia(q̃k+1)

Cα ,∗ � Ûa
k+1 ⊥ Pa

k+1 ∈ ∏
α∈Ia(q̃k+1)

Cα (13.7)

where the variable Ûa
k+1 gathers the value of Ûα

k+1 for all α ∈ Ia(q̃k+1).
In the same manner, when it is possible to construct a Delassus’ operator (in the

linear and linearized case), we reduce it on the set of forecast active constraints such
that for the linear case
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ŵ a = Ha,TM̂−1Ha

Ŵ a
NT = Ha,T

N M̂−1Ha
T

Ŵ a
NN = Ha,T

N M̂−1Ha
N

Ŵ a
TT = Ha,T

T M̂−1Ha
T

. (13.8)

Remark 13.1. From the computational point of view, the local Delassus’s operators⎧⎨
⎩

Ŵαα = Hα ,TM̂−1Hα

Ŵαβ = Hα ,TM̂−1Hβ
(13.9)

are computed in different ways:

• Linear time-invariant case. In the linear case, the local Delassus’ operators
are computed in the initialization phase of the algorithm and before the time-
integration loop.

• Linearized time-invariant case. The local Delassus’ operators α ∈ I are updated
in each Newton’s loop or at the beginning of the time step depending on the
choice of the prediction q̃k+1 (see (10.39) and below).

The inverse of M̂ is never computed explicitly and therefore never stored except in
very special cases (diagonal matrix, small matrix, etc.). In general, we perform a
Gaussian elimination with partial pivoting (LU, Cholesky, etc.). The local Delas-
sus’ operators are computed by means of a dedicated back substitution. If the solver
exploits the block structure of the matrix, the global Delassus’ matrix is never as-
sembled. One stores only the list of the local Delassus’ operators.

Remark 13.2. The superscript a will be omitted in the sequel to lighten the notation.
It will also be assumed that Pα = 0 for all α ∈ I \ Ia(q̃k+1).

13.2.2 Summary of the OSNSPs

The Time-Discretized Linear OSNSP (PL)

The time-discretized linear OSNSP, denoted by (PL) is given by

(PL)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Uk+1 = ŴPk+1 +Ufree

Ûα
k+1 =

[
Uα

N,k+1 + eαUα
N,k + μα ||Uα

T,k+1||,Uα
T,k+1

]T

Cα ,∗ � Ûα
k+1 ⊥ Pα

k+1 ∈ Cα

⎫⎪⎪⎬
⎪⎪⎭
∀α ∈ Ia(q̃k+1)
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Some further comments can be made from a numerical point of view:

• The Delassus’ matrix Ŵ is assumed to be at least a PSD matrix. This assumption
is reasonable if we assume that the iteration matrix M̂ is PD. The definiteness can
be lost if the matrix H has not full rank, which is common in practical large-scale
applications.

• The problem (PL) can take into account the bilateral constraints if these con-
straints are condensed when reducing the problem to local coordinates.

• The time-discretized linearized OSNSP, denoted by (PLτ) in Chap. 10, has ex-
actly the same structure than (PL). Therefore, all solvers for (PL) process also
the (PLτ). We will not make a particular presentation for the linearized case.

The Time-Discretized Mixed Linear OSNSP (PML)

The time-discretized mixed linear OSNSP (PML) is given by

(PML)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M̂(vk+1− vfree) = pk+1 = ∑
α∈Ia(q̃k+1)

pαk+1

Uα
k+1 = Hα ,T vk+1

pαk+1 = Hα Pα
k+1

Ûα
k+1 =

[
Uα

N,k+1 + eαUα
N,k + μα ||Uα

T,k+1||,Uα
T,k+1

]T

Cα ,∗ � Ûα
k+1 ⊥ Pα

k+1 ∈ Cα

⎫⎬
⎭∀α ∈ Ia(q̃k+1)

The Time-Discretized Mixed Nonlinear OSNSP (PMNL)

The time-discretized mixed nonlinear OSNSP denoted by (PMNL) is obtained

(PMNL)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(vk+1) = pk+1 = ∑
α∈Ia(q̃k+1)

pαk+1

Uα
k+1 = Hα ,T (qk + 1) vk+1

pαk+1 = Hα(qk + 1)Pα
k+1

Ûα
k+1 =

[
Uα

N,k+1 + eαUα
N,k + μα ||Uα

T,k+1||,Uα
T,k+1

]T

Cα ,∗ � Ûα
k+1 ⊥ Pα

k+1 ∈ Cα

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
∀α ∈ Ia(q̃k+1)
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13.3 Formulations and Resolutions in LCP Forms

13.3.1 The Frictionless Case with Newton’s Impact Law

LCP Formulation

Remind that the frictionless contact problem in the form (PL) can be written as
(PLWF):

(PLWF)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

UN,k+1 = ŴNNPN,k+1 +UN,free

Ûα
N,k+1 = Uα

N,k+1 + eαUα
N,k

0 � Ûα
N,k+1 ⊥ Pα

N,k+1 � 0

⎫⎪⎬
⎪⎭∀α ∈ Ia(q̃k+1)

The formulation in terms of LCP (12.66) is straightforward,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UN,k+1 = ŴNNPN,k+1 +UN,free

ÛN,k+1 = UN,k+1 + e◦UN,k

0 � PN,k+1 ⊥ ÛN,k+1 � 0

(13.10)

where the vector e collects the coefficients of restitution for α ∈ Ia(q̃k+1), and x ◦ y
is the Hadamard product of the vectors x and y.

To obtain a proper LCP formulation it suffices to write

⎧⎨
⎩

ÛN,k+1 = ŴNNPN,k+1 +UN,free− e◦UN,k

0 � ÛN,k+1 ⊥ PN,k+1 � 0
(13.11)

and we can conclude that (ÛN,k+1,PN,k+1) solves the following LCP

LCP(ŴNN,UN,free− e◦UN,k) . (13.12)

LCP Resolution

Almost all the methods exposed in the Sect. 12.4 can be applied to solve (13.12). The
main reason is that the matrix ŴNN is a symmetric PSD matrix, provided that M̂ is
PD. The fact that ŴNN is PSD and not necessarily PD can cause troubles in numerical
applications. This is due to the rank deficiency of H and can be interpreted in terms of
redundant constraints. In practice, it may happen that the splitting-based algorithms
have difficulties to converge.
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Fortunately, the local velocities are uniquely defined. Only the multiplier PN,k+1

is not unique if the matrix H is rank deficient. This point can easily be proved by con-
sidering the equivalent QP formulation (see Theorem 12.33). One way to circumvent
this problem is to use numerical algorithms that look at priority for the local veloci-
ties, UN,k+1 or the robust QP solvers presented in Sect. 12.2.

The question of the existence and uniqueness of solutions for the frictionless
problem and the ability to compute a solution by a numerical treatment are discussed
in Lötstedt (1982) and Baraff (1993). The context of these works is quite different in
the sense that Lötstedt (1982) only studied smooth motion with unilateral constraints
and Baraff (1993) studied the problem with an event-driven strategy. Nevertheless,
most of the conclusions on the existence and uniqueness of solutions may be applied
to the other frictionless problems.

13.3.2 The Frictionless Case with Newton’s Impact and Linear Perfect
Bilateral Constraints

Remind that the mixed linear OSNSP with linear perfect bilateral constraints GTq +
b = 0 is given by

(PMLb)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M̂(vk+1− vfree) = pk+1 + GPμ,k+1

GTvk+1 = 0

Uα
N,k+1 = Hα ,T

N vk+1

pαk+1 = Hα
N Pα

N,k+1

Ûα
N,k+1 = Uα

N,k+1 + eαUα
N,k

0 � Ûα
N,k+1 ⊥ Pα

N,k+1 � 0

⎫⎪⎬
⎪⎭∀α ∈ Ia(q̃k+1)

This problem (PMLb) can be cast directly into the form of an MLCP in (12.78), but
we prefer to substitute the generalized velocities q̇k+1 = vk+1 thanks to

vk+1 = vfree + M̂−1 (GPμ,k+1 + HNPN,k+1
)

= 0 (13.13)

in order to obtain the following MLCP in the form (12.79),
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

GTvfree + GTM̂−1GPμ,k+1 + GTM̂−1HN Pk+1 = 0

Ûα
N,k+1 =

[
HT

N vfree + e◦UN,k + GTM̂−1GPμ,k+1 + GTM̂−1HN Pk+1

]

0 � Ûα
N,k+1 ⊥ Pα

N,k+1 � 0 .

(13.14)

MLCP Resolution

As we said in Sect. 12.4, the multiplier μ may be statically solved provided that the
Schur complement matrix GTM̂−1G is nonsingular. In this case, we obtain an LCP in
a standard form. This operation is expensive from a computational point of view and
is usually not performed, except in the special case of “simple” bilateral constraints
such as bound constraints corresponding to the boundary conditions. Indeed, the
structure of the matrix GT for bound constraints is very simple and it is then possible
to work directly on the matrix M̂ before the Gaussian elimination to take into account
such constraints. Bound constraints arise naturally when we deal with prescribed
boundary conditions on a multibody system or continuum media discretized by a
finite element method.

The MLCP (13.14) can also solved by any of the MLCP solvers detailed in
Sect. 12.4. The class of iterative algorithms (projection/splitting, interior point meth-
ods) have to be favored because it is easier to exploit the block structure of the MLCP.
It should be possible to show that the MLCP is monotone under the assumption that
M̂ is a PD matrix, which is a usual assumption for the iteration matrix.

13.3.3 Two-Dimensional Frictional Case as an LCP

As Chap. 1 mentioned, it is possible to write the two-dimensional frictional unilateral
contact problem as an LCP in standard form. We refer to the works of Pfeiffer &
Glocker (1996) and Glocker (1999) for a detailed presentation of the method.

Unfortunately, the LCP matrix is no longer a symmetric PD matrix, not even
a P-matrix. Nevertheless, the pivoting methods such as the Lemke’s method can
process the LCP. This is a byproduct of the study of Stewart & Trinkle (1996) and
Anitescu & Potra (1997) in the more general case of the faceting of the second-
order Coulomb’s cone (see Sects. 13.3.4 and 13.3.5). The drawback of the pivoting
methods are that they are very expensive on large-scale applications. In “gentle”
cases of large applications, we can try to solve this LCP with an iterative scheme
normally well suited for symmetric PSD matrix. The projection/splitting methods
exposed at the end of Sect. 12.4.6 for asymmetric row-sufficient matrices would be
an issue.

The question of existence and uniqueness of solutions to the resulting LCP was
studied by Lötstedt (1981) and Baraff (1993) in the context of an event-driven ap-
proach or an analytical study at events. In this context, the existence of solutions is
not guaranteed (see for instance the Painlevé example in Sect. 6.2). Therefore, the
numerical solvers such as Lemke’s algorithm can undergo a lot of difficulties. The
question of finite termination of Lemke’s algorithm is addressed in Baraff (1993).
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One of the other important discrepancy between the event-driven algorithms and the
time-stepping methods lies in the existence of solutions of the OSNSP. This fact is
of utmost importance for the numerical robustness of the simulations.

More generally, the two-dimensional Coulomb’s law can be viewed as a scalar
piecewise linear multivalued function as the relay characteristics. With this insight,
we can use results on the equivalence between special kinds of piecewise linear
multi-valued functions and LCP (see Facchinei & Pang, 2003, p. 213). These works
would allow to express more complicated piecewise linear model of friction in terms
of LCPs.

13.3.4 Outer Faceting of the Coulomb’s Cone

In this section, we drop for a moment the subscripts k and k + 1 and the superscript
α to lighten the notation. We recall that α denotes the indexes of the contacts in the
set Ia(q̃k+1) in (13.2).

Contrary to the two-dimensional frictional contact problem, the three-
dimensional case cannot be directly cast into an LCP standard form. This is mainly
due to the second-order cone C which cannot be written as a polyhedral cone. The
nonlinear nature of the section of the friction cone, i.e., the disk D(μRN) defined by

D(μRN) = {RT | σ(RT) = μRN−‖RT‖� 0} (13.15)

adds new difficulties from the formulation point of view.
To overcome this difficulty, some approximations have been proposed which con-

sist in faceting C. The following presentation is partly inspired from Glocker (1999)
where a very clear and concise presentation can be found.

Following the work in Klarbring (1986a) and Klarbring & Björkman (1988), the
friction disk D can be approximated by an outer polygon:

Douter(μRN) =
ω⋂

i=1

Di(μRN) with Di(μRN) =
{

RT,σi(RT) = μRN− cT
i RT � 0

}
.

(13.16)

Where ω ∈ IN is the number of Facets. The functions σi(RT) are the friction satura-
tion with respect to the cone Di(μRN) generated by an outward unit vector ci ∈ IR2

(e.g., Fig. 13.1a)). We now assume that the contact law (3.149) is of the form

−UT ∈ NDouter(μRN)(RT) . (13.17)

From Rockafellar (1970), the normal cone to Douter(μRN) is given by

NDouter(μRN)(RT) = Σω
i=1NDi(μRN)(RT) (13.18)

and the inclusion can be stated as:

−UT = Σω
i=1κi∂σi(RT), 0 � σi(RT)⊥ κi � 0 . (13.19)
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Fig. 13.1. Approximation of the base of the Coulomb cone by an outer approximation (a) and
by an interior 2ω-gon (b)

Since σi(RT) is linear with respect to RT, we obtain the following MLCP:

−UT = Σω
i=1κici, 0 � σi(RT)⊥ κi � 0 . (13.20)

Assuming for the sake of simplicity that the vectors ci are chosen equal for all con-
tacts α , the time-discretized linear OSNSP, (PL), can be written as

(PL)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uk+1 = Ŵ Pk+1 +Ufree

−Uα
T,k+1 = Σω

i=1κ
α
i ci

σi(Pα
T,k+1) = μPα

N,k+1− cT
i Pα

T,k+1

0 � Uα
N,k+1 + eαUα

N,k ⊥ Pα
N,k+1 � 0

0 � σα
i (Pα

T,k+1)⊥ καi � 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀α ∈ Ia(q̃k+1) .

(13.21)

The fact that the friction saturation functions σi(PT,k+1) are linear shows that the
previous problem (13.21) is an MLCP.

Remark 13.3. The number of linear constraints should be at least chosen such that
ω > 1. Indeed forω � 1, the pyramidal friction cone is not pointed and some nonzero
values of RT are allowed for RN < 0.

The LCP in a Single-Contact Case

Generally, the MLCP (13.21) can be reduced into an LCP in standard form assuming
that at least one pair of vectors ci is linearly independent. This process is analogous
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to the process described in Chap. 1 for the Zener diode, where we have succeeded in
transforming the MLCS (1.71) in the LCS (1.73).

As we said earlier, the most simple way to transform an MLCP into an LCP is
to compute a Schur complement of the MLCP matrix, which necessitates to invert
a submatrix. To be able to invert a submatrix of the MLCP (13.21), we assume that
a pair of cαi vectors is linearly independent for i ∈Pα ⊂ {1 . . .ωα}, where it is
recalled that ωα is the number of facets of the approximation of the cone at the
contact α . Following Glocker (1999), we introduce the following notation,

R = {1 . . .ω} \Pα

IPα =
[

cαi
]
Pα

IRα =
[

cαi
]
Rα .

(13.22)

Thanks to this notation, we may write

σα
i (λα

T ) = μαRα
N − cα ,T

i λα
T , ∀i ∈ {1 . . .ω} (13.23)

as
σPα (λα

T ) = μPα Rα
N − IT

Pα λα
T

σRα (λα
T ) = μRα Rα

N − IT
Rα λα

T

(13.24)

where the vector μPα and μRα are defined by

μPα =
[
μα

μα

]
∈ IR2, μRα =

⎡
⎢⎣
μα

...
μα

⎤
⎥⎦ ∈ IRωα−2 . (13.25)

Since IPα is assumed to be invertible, one obtains

λα
T = I−T

Pα μPα RN− I−T
PασPα (13.26)

and then by substitution,

σRα (RT) = μRα Rα
N − IT

Rα I−T
Pα μPα rαN + IT

Rα I−T
Pα σPα . (13.27)

In the same manner, the equation

−uαT = Σωα
i=1κ

α
i cαi = IPα κPα + IRα κRα (13.28)

can be written as
κPα =−I−1

PαUT− I−1
Pα IRα κRα . (13.29)

We drop the superscript α to lighten the notation. Substituting the value of PT,k+1
given by the discrete analog to (13.26) into the first equation of (13.21) and substi-
tuting the velocity UT,k+1 into the discrete analog to (13.29) one obtains the following
LCP in standard form:
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⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣UN,k+1 + eUN,k

κP

σR

⎤
⎦ = M

⎡
⎣PN,k+1

σP

κR

⎤
⎦+ q

0 �

⎡
⎣UN,k+1 + eUN,k

κP

σR

⎤
⎦⊥

⎡
⎣PN,k+1
σP

κR

⎤
⎦ � 0

(13.30)

where

M =

⎡
⎢⎢⎢⎢⎣

ŴNN +ŴNTI−T
P μP −ŴNTI−T

P 0

−I−1
P [ŴTN +ŴTTI−T

P μP ] I−1
P ŴTTI−T

P −I−1
P IR

μR − I−T
R I−T

P μP I−T
R I−T

P 0

⎤
⎥⎥⎥⎥⎦ (13.31)

and

q =

⎡
⎢⎢⎢⎢⎣

UN,free + eUN,free

−I−1
P UT,free

0

⎤
⎥⎥⎥⎥⎦ . (13.32)

Example 13.4 (D(μRN) is approximated by a square). The example when D(μRN) is
approximated by a square with edges of length 2μ0 is given by Glocker (1999). The
directions ci can be taken as

c1 = [1 0]T, c2 = [0 1]T, c3 = [−1 0]T, c4 = [0 −1]T . (13.33)

Choosing P = {1,2} and then R = {3,4}, one gets

IP =−IR = I2 , (13.34)

where I2 is the identity matrix of IR2×2. The LCP matrix in (13.31) becomes

M =

⎡
⎢⎢⎢⎢⎣

ŴNN +ŴNTμP −ŴNT 0

−ŴTN−ŴTTμP ŴTT I2

2μP −I2 0

⎤
⎥⎥⎥⎥⎦ . (13.35)

The LCP in the Multi-contact Case

In the multi-contact case, the matrix notation must be enlarged to extend the formu-
lation (13.30) and (13.31). Let us first introduce the index sets

P = {Pα | α ∈ Ia(q̃k+1)}, R = {Rα | α ∈ Ia(q̃k+1)} . (13.36)
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In order to perform this extension, we introduce the following notation:

μP =

⎡
⎢⎢⎢⎢⎢⎢⎣

μP1

. . . (0)
μPα

(0)
. . .

μPν

⎤
⎥⎥⎥⎥⎥⎥⎦

, μR =

⎡
⎢⎢⎢⎢⎢⎢⎣

μR1

. . . (0)
μRα

(0)
. . .

μRν

⎤
⎥⎥⎥⎥⎥⎥⎦

(13.37)

for μP ∈ IR2a×a and μR ∈ IR(∑α (ωα−2)a)×2a where a � ν is the cardinal of Ia(q̃k+1).
Finally, we define

IP =

⎡
⎢⎢⎢⎢⎢⎢⎣

IP1

. . . (0)
IPα

(0)
. . .

IPν

⎤
⎥⎥⎥⎥⎥⎥⎦

, IR =

⎡
⎢⎢⎢⎢⎢⎢⎣

IR1

. . . (0)
IRα

(0)
. . .

IRν

⎤
⎥⎥⎥⎥⎥⎥⎦

(13.38)

for IP ∈ IR2a×2a and IR ∈ IR(∑α (ωα−2)a)×2a.
With the notation (13.36), (13.37), and (13.38), the LCP given by (13.30),

(13.31), and (13.32) is valid for the multicontact case. As we said earlier, if the
solver exploits the block structure of the matrix, the global Delassus’ matrix is never
assembled. We store only the list of the local Delassus’ operators.

Example 13.5 (D(μRN) is approximated by a square (continued)). The example
when D(μRN) is approximated by a square with edges of length 2μ0 can be ex-
tended to the multi-contact case. Choosing Pα = {1,2} and then Rα = {3,4} for
each contact α , one gets

IP =−IR = I2a , (13.39)

where I2a is the identity matrix of IR2a×2a. The LCP matrix in (13.31) becomes

M =

⎡
⎢⎢⎢⎢⎣

ŴNN +ŴNTμP −ŴNT 0

−ŴTN−ŴTTμP ŴTT I2a

2μP −I2a 0

⎤
⎥⎥⎥⎥⎦ . (13.40)

13.3.5 Inner Faceting of the Coulomb’s Cone

In this section, we drop for a moment the subscripts k and k + 1 and the superscript
α to lighten the notation.

Another approach is based on an inner approximation as exposed in Al-Fahed
et al. (1991) and Stewart & Trinkle (1996). The idea is to approach the friction disk
by an interior polygon with ω edges (e.g., Fig.13.1b)
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Dinner(μRN) =
{

RT = Dβ | β � 0,μRN � 1lTβ
}

(13.41)

where β ∈ IR2, 1l = [1, . . . ,1]T ∈ IRω , the columns of the matrix D ∈ IR2×ω are the
direction vectors d j which are the coordinates of the vertices of the polygon. For the
sake of simplicity, we assumed that for every i there is j such that di =−d j.

Following the same process as in the previous case and rearranging the equation,
we obtain the following MLCP:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

RT = Dβ

0 � β ⊥ λ1l+ DTUT � 0

0 � λ ⊥ μRN−1lTβ � 0

(13.42)

where λ ∈ IR.
The time-discretized linear OSNSP, (PL), can be written as the following

MLCP:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uk+1 = Ŵ Pk+1 +Ufree

Pα
T,k+1 = Dαβα

k+1

0 � Uα
N,k+1 + eαUα

N,k ⊥ Pα
N,k+1 � 0

0 � βα
k+1 ⊥ λα

k+11lα + Dα ,TUα
T,k+1 � 0

0 � λ ⊥ μPα
N,k+1−1lT,α βα

k+1 � 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
∀α ∈ Ia(q̃k+1) .

(13.43)

The LCP in a Single-Contact Case

We drop the superscript α to lighten the notation. Substituting the value of PT,k+1

given by the second equation in (13.43) in the first equation in (13.43), one gets the
LCP in standard form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣UN,k+1 + eUN,k

κk+1

σk+1

⎤
⎦ = M

⎡
⎣PN,k+1
βk+1

λk+1

⎤
⎦+ q

0 �

⎡
⎣UN,k+1 + eUα

N,k
κk+1

σk+1

⎤
⎦⊥

⎡
⎣PN,k+1

βk+1

λk+1

⎤
⎦ � 0

(13.44)

where

M =

⎡
⎢⎢⎢⎢⎣

ŴNN ŴNTD 0

DTŴTN DTŴTTD 1l

μ −1lT 0

⎤
⎥⎥⎥⎥⎦ (13.45)
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and

q =

⎡
⎢⎢⎢⎢⎣

UN,free + eUN,free

DT(UT,free)

0

⎤
⎥⎥⎥⎥⎦ . (13.46)

The variables κk+1 ∈ IRω and σk+1 ∈ IR are given by the following equations:

κk+1 = λk+1 + DTUT,k+1, σk+1 = μPN,k+1−1lTβk+1 . (13.47)

The LCP in the Multicontact Case

In the multicontact case, the matrix notation must be enlarged to extend the for-
mulation (13.45) and (13.46). In order to perform this extension, we introduce the
following notation for all α ∈ Ia(q̃k+1):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ = diag(μα) ∈ IRa×a

e = diag(μα) ∈ IRa×a

1l = diag(1lα) ∈ IR(∑α ωα )×a .

(13.48)

With the help of this notation, the LCP (13.44) is still valid is the multi-contact case.
Let us note a result on the existence of solutions and their numerical computa-

tions (Stewart & Trinkle, 1996).

Proposition 13.6. Let Ŵ be a PD matrix. The LCP defined by (13.44), (13.45),
and (13.46) possesses solutions, which can be computed by Lemke’s algorithm
(Algorithm 14) provided precautions are taken against cycling due to degeneracy.

Proof. Let us prove first that the matrix M in (13.45) is copositive. For that, we
choose a vector z = [PN,k+1βk+1λk+1]T � 0, and we compute

zT M z =
[

PN,k+1

Dβk+1

]T

Ŵ

[
PN,k+1

Dβk+1

]
+ μPN,k+1λk+1 . (13.49)

Since Ŵ is assumed to be a PD matrix and μ � 0, one obtains

zT M z � 0:, for all z � 0 , (13.50)

i.e., M is copositive on the nonnegative orthant. Note, however, that M is not coposi-
tive plus, since zT M z = 0 implies that PN,k+1 = 0 and Dβk+1 = 0, but not λ = 0, and
(M + MT)z �= 0 if λ > 0.

Nevertheless, theorem 3.8.6 in Cottle et al. (1992, p. 179) asserts that if M is
copositive and the implication

[z � 0, Mz � 0, zTMz = 0] =⇒ zT q � 0 (13.51)
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is valid, then LCP(M,q) has a solution. In our case, the right-hand side in (13.51)
implies that

z =

⎡
⎣ 0

0
λk+1

⎤
⎦ with λk+1 � 0 . (13.52)

Using the special form of q given by (13.46), we conclude easily that the above cited
theorem applies. We have then proved that the LCP(M,q) has a solution.

Theorems 4.4.12 and 4.4.13 in Cottle et al. (1992, p. 277) assert that Lemke’s
algorithm 14 will compute a solution provided precautions are taken against cycling
due to degeneracy. "#

13.3.6 Comments

The presentation of the outer cone faceting is adapted to the time-stepping method
where the constraint is treated at the velocity level. In the original works of Klar-
bring (1986a) and Klarbring & Björkman (1988), the method was presented in the
context of the quasi-static modeling of elastic continuum media with unilateral con-
tact and friction. In the context of nonsmooth dynamics, the book of Pfeiffer &
Glocker (1996) presents how the two-dimensional contact friction with the Poisson
impact law can be formulated as an LCP within an event-driven strategy. This latter
approach can be straightforwardly extended to the 3-dimensional case.

To the best our knowledge, the first inner approximation of the Coulomb cone is
due to Al-Fahed et al. (1991). In this latter work, fingered robot grippers are studied
under the quasi-static assumption. The solvability of the resulting LCP is proved
with the help the VI reformulation (see Sect. 12.6). These results are a special case
of the theoretical study of Fichera (1972) on boundary value problems in elasticity
with unilateral constraints.

The above cited result of Stewart & Trinkle (1996) has been originally formulated
with a constraint on the position (see Remark 10.12). It has been easily extended to
the case with bilateral constraints together with a Poisson impact law in Anitescu &
Potra (1997). This result is based on the formulation of the Poisson law as a two-stage
LCP as in Pfeiffer & Glocker (1996).

Other existence and uniqueness results can be found in Pang & Trinkle (1996)
and Trinkle et al. (1997) for the approximated model of friction with an outer pyra-
mid. These results are stated in the framework of finite-force models, i.e., without
tangential collisions and no discontinuities in the tangential velocities. Furthermore,
the solutions are known to exist only for small enough friction coefficients.

In Pang & Stewart (1999), general results of existence of solutions are given
in a more unified framework; in particular, most of the time-discretized or time-
incremental problems (quasi-static rigid and elastic body, dynamic of rigid bodies
with collisions, etc.) with unilateral contact and friction are considered. Friction
models are also unified comprising the standard Coulomb model, the faceted model,
and more general friction models.
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From the computational point of view, the faceted friction model is mainly solved
by Lemke’s algorithm 14 provided precautions are taken against cycling due to de-
generacy. In Trinkle et al. (1997), a feasible interior point method (see Sect. 15) is
compared to Lemke’s algorithm. It is quite difficult to conclude about the relative ef-
ficiency of this algorithm. The first reason is that Lemke’s algorithm fails to compute
a solution on all the problem data. The choice of the covering vector seems to be
problematic. There is also no mention of the use of a degeneracy resolution strategy.
The conditions of the convergence of the feasible interior point method also seems
to impose some constraints on the maximal value of the friction coefficient μ .

13.3.7 Weakness of the Faceting Process

Let us illustrate some weaknesses of the method that consists of faceting the
Coulomb cone. Let us consider a ball of mass m lying on a horizontal plane under
gravity g. A cycling external force defined by

F(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μmg(cos π
3 i+ sin π

3 j), t ∈ [15k,5 + 15k)

−μmg i, t ∈ [5 + 15k,10 + 15k)

μmg(cos π
3 i+−sin π

3 j), t ∈ [10 + 15k,15(k + 1))

, k ∈ IN (13.53)

is applied to the ball. The norm of F(t) is chosen such that the ball slides and the
trajectory of the ball must match with an equilateral triangle. In particular the initial
and the final points of a cycle must coincide.

Figure 13.2 a depicts the trajectories without approximation of the Coulomb
cone, labeled by (w.a.) and with the faceting approximation (13.16) for ω = 2
labeled by C2. Figure 13.2b depicts the trajectories obtained respectively with
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0 6 12 18
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0 6 12 18

0

6

12

18

C2
C3
C4
C6
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(a) (b)

a) b)

Fig. 13.2. Ball trajectory under cycling loading
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ω ∈ {2,3,4,6,8} and labeled respectively by C2,C3,C4,C6,C8. Note that the time
period has been simulated in each test.

Computations using faceting of the cone lead to unrealistic behaviors. The main
reason is that the computed friction force does generally not oppose the direction
of sliding. Indeed, the maximum dissipation principle together with a faceted cone
implies that the contact force always lies along one of the edges of the polyhedral
cone. To better approach the solution we must use a higher order approximation
introducing a higher number of unknowns.

13.4 Formulation and Resolution in a Standard NCP Form

13.4.1 The Frictionless Case

Let us start with the mixed nonlinear OSNSP (PMNL) in the frictionless case

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(vk+1) = ∑
α∈Ia(q̃k+1)

Hα
N (qk + 1)Pα

N,k+1

Uα
N,k+1 = Hα ,T

N (qk + 1) vk+1

Ûα
N,k+1 = Uα

N,k+1 + eαUα
N,k

0 � Ûα
N,k+1 ⊥ Pα

N,k+1 � 0

⎫⎪⎬
⎪⎭∀α ∈ Ia(q̃k+1) .

(13.54)

This problem can be stated in the following NCP for vk+1 and Pα
N,k+1, α ∈ Ia(q̃k+1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R(vk+1) = ∑
α∈Ia(q̃k+1)

Hα
N (qk + 1)Pα

N,k+1

0 � Hα ,T
N (qk + 1) vk+1 + eαUα

N,k ⊥ Pα
N,k+1 � 0, ∀α ∈ Ia(q̃k+1) .

(13.55)

13.4.2 A Direct MCP for the 3D Frictional Contact

The Coulomb friction model (3.147) can be easily reformulated into the following
CP:

⎧⎪⎨
⎪⎩

RT ‖UT‖+‖RT‖UT = 0

0 � ‖UT‖ ⊥ μRN−‖RT‖� 0 .

(13.56)

Let us denote κ = ‖UT‖, the norm of UT. The following CP can be stated
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⎪⎪⎪⎪⎪⎪⎩

κ = ‖UT‖

RTκ +‖RT‖UT = 0

0 � κ ⊥ μRN−‖RT‖� 0 .

(13.57)

To obtain a complete MCP formulation we need to add the complementarity relation
between UN and RN and the dynamics. For the sake of simplicity, let us consider the
linear OSNSP (PL). The following MCP can be then written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uk+1 = Ŵ Pk+1 +Ufree

καk+1 = ‖Uα
T,k+1‖

Ũα
N,k+1 = Uα

N,k+1 + eαUα
N,k

Pα
T,k+1 κ

α
k+1 +‖Pα

N,k+1‖Uα
T,k+1 = 0

0 � καk+1 ⊥ μαPα
N,k+1−‖Pα

T,k+1‖� 0

0 � Ũα
N,k+1 ⊥ Pα

N,k+1 � 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀α ∈ Ia(q̃k+1)
(13.58)

which can be casted into the MCP form (12.187) with u = [Uα
T,k+1,P

α
N,k+1,P

α
T,k+1]

T

and v = [καk+1,UN]T.
Besides the difficulty to directly deal with a MCP in general form, the main

drawback of this formulation is the lack of differentiability of the mappings involved
in the complementarity preventing the use of most of the nonsmooth Newton solvers
(see Sect. 12.5.4).

13.4.3 A Clever Formulation of the 3D Frictional Contact as an NCP

In Glocker (1999), the nondifferentiability of the previous formulation has been over-
come in a very elegant way. We will give here a short overview of such a formulation.
Starting from the inclusion (3.149) with the standard definition (13.15) of the friction
disk D(μrN), Glocker (1999) adds three inequalities

σi(RT) = μRN− eT
i RT � 0, i = 1,2,3 (13.59)

where e1,e2,e3 are three unit outward vector defined by

ei = [cosαi,sinαi], αi =
(4i−3)π

6
. (13.60)

We can remark that
D(μRN) = ∩3

i=1Di∩D(μrN) , (13.61)
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thus the Coulomb’s frictional law remains as in (3.149). This normal cone condition
leads to

−UT ∈ Σ3
i=1eiκi + ∂σD(RT)κD (13.62)

where σD(RT) = μ2R2
N−‖RT‖2 is a nonlinear friction saturation associated with the

second-order cone.
The trick introduced by Glocker lies in the reformulation of this inclusion into an

equation of the form

−UT = Σ3
i=1eiκi + 2RTκD, 0 � κ j ⊥ σ j � 0, j = 1,2,3,D . (13.63)

MCP Formulation

For the sake of simplicity, let us consider the linear OSNSP (PL). A more general
MCP can be easily written starting from (PMNL). The previous CP formulation
yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uk+1 = ŴPk+1 +Ufree

−Uα
T,k+1 =

3

∑
i=1

eiκαi,k+1 + 2Pα
T,k+1κ

α
C,k+1

σα
i (Pα

T,k+1) = μαPα
N,k+1− eT

i Pα
T,k+1, i = 1,2,3

σα
D (Pα

T,k+1) = (μαPα
N,k+1)

2−‖Pα
T,k+1‖2

0 � Uα
N,k+1 + eαUα

N,k ⊥ Pα
N,k+1 � 0

0 � καj,k+1 ⊥ σα
j,k+1 � 0, j = 1,2,3,D

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀α ∈ Ia(q̃k+1) .

(13.64)

From this formulation, the derivation of an NCP can be made following the path of
Sect. 13.3.4. We specify the notation of Sect. 13.3.4 by denoting

Pα = {1,2}

IPα =
[

e1 e2
]

.
(13.65)

One gets the following NCP of dimension 4⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

UN,k+1 + eUN,k

κP

σ3

σD

⎤
⎥⎥⎦ = M

⎡
⎢⎢⎣

PN,k+1

σP

κ3

κD

⎤
⎥⎥⎦+ g

⎛
⎜⎜⎝

⎡
⎢⎢⎣

PN,k+1

σP

κ3

κD

⎤
⎥⎥⎦

⎞
⎟⎟⎠+ q

0 �

⎡
⎢⎢⎣

UN,k+1 + eUN,k

κP

σ3

σD

⎤
⎥⎥⎦⊥

⎡
⎢⎢⎣

PN,k+1
σP

κ3

σD

⎤
⎥⎥⎦ � 0

(13.66)
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where

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŴNN +ŴNTI−T
P μP −ŴNTI−T

P 0 0

−I−1
P [ŴTN +ŴTTI−T

P μP ] I−1
P ŴTTI−T

P −I−1
P e3 0

μ− eT
3 I−T

P μP eT
3 I−T

P 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13.67)

g

⎛
⎜⎜⎝

⎡
⎢⎢⎣

PN,k+1

σP

κ3

κD

⎤
⎥⎥⎦

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

0
−2I(μPPN,k+1−σP)κD

0
(μPN,k+1)2−‖μPPN,k+1−σP‖2

I

⎤
⎥⎥⎦ , with I = I−1

P I−T
P (13.68)

and

q =

⎡
⎢⎢⎢⎢⎢⎢⎣

UN,free + eUN,free

−I−1
P UT,free

0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (13.69)

The form of the function F(z) = Mz+g(z)+q with z =
[
PN,k+1,σP ,κ3,κD,

]T shows
that the computation of the Jacobian ∇FT(z) = M +∇gT(z) only requires the com-
putation of ∇gT(z). This Jacobian is given by

∇gT(z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

−2IμPκD 2IκD 0 −2IPP,k+1

0 0 0 0

2μ2PN,k+1−2PT
P,k+1ITμP 2PT

P,k+1IT 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13.70)

with PP,k+1 = μPPN,k+1−σP .
Note that the function F(z) is continuously differentiable and the structure of the

matrix M in (13.67) is analogous to those in (13.31).

13.5 Formulation and Resolution in QP and NLP Forms

13.5.1 The Frictionless Case

QP and NLP Reformulations

Let us start with the linear frictionless contact problem in the form (PLWF) which
can be reformulated as the following LCP (see Sect. 13.3.1)
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⎧⎨
⎩

ÛN,k+1 = ŴNNPN,k+1 +UN,free− e◦UN,k

0 � ÛN,k+1 ⊥ PN,k+1 � 0.

(13.71)

The question of the reformulation of (13.71) into a QP amounts to checking the
assumptions for the equivalence between a QP and an LCP. This question has already
been developed in Sect. 12.4.5. Under the standard assumption that ŴNN is symmetric
PSD, the following equivalent QP can be solved:

minimize
1
2

PT
N,k+1ŴNN PN,k+1 + PT

N,k+1(UN,free− e◦UN,k)

subject to PN,k+1 � 0.

(13.72)

A NLP reformulation can be considered as in Sect. 12.5.1 for the NCP given
in (13.55). This reformulation is not straightforward due to the particular form of
the NCP (13.55). Nevertheless, it should be possible to state a NLP provided that the
function involved in the NCP is a gradient mapping.

Numerical Methods

The choice of the numerical methods to solve the previous minimization problems
depends strongly on the size and the structure of the problem and follows the recom-
mendations at the end of Sect. 12.2.4. Generally speaking, gradient projection and
interior point methods are well suited for large-scale systems. Active-set methods are
interesting for small scale, possibly ill-conditioned systems. Generally speaking, the
minimization formulation improves the robustness of the algorithm.

The idea of using splitting and block splitting to solve the frictionless contact
problem dates back to Glowinski et al. (1976) and Mittelmann (1978). In Mittel-
mann (1980, 1981a,b), an acceleration method is proposed in the spirit of the work
of Moré & Toraldo (1991) presented in Sect. 12.2.3.2. In a first phase a splitting
method is used. In a second phase, a preconditioned conjugate gradient with projec-
tion is used to improve the rate of convergence.

13.5.2 Minimization Principles and Coulomb’s Friction

When the Coulomb’s friction is involved, there is no direct associated minimization
formulation. This is mainly due to the fact that Coulomb’s friction is a nonassociated
friction law De Saxcé (1991), where the relative velocity is not in the normal cone
of the Coulomb’s cone. Nevertheless, it is possible to state generalized optimization
as saddle-point problems or minimization problems plus a condition on the value of
the objective function at the optimal point as in Theorem 12.65. The framework of
VIs and CPs is better suited to write these reformulations. This is the reason why we
postpone these developments in Sect. 13.7.
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13.6 Formulations and Resolution as Nonsmooth Equations

In the pioneering works of Curnier & Alart (1988), Alart & Curnier (1991) and
Alart (1993), a generalized Newton method is proposed for the resolution of the
three-dimensional frictional contact problem. It is based on a generalized equations
reformulation. The principle of this Newton method is analogous to those presented
in Sect. 12.5.4. The only discrepancy lies in the reformulation of the frictional con-
tact problem as a system of generalized equations, which does not rely on a NCP
formulation. The term “dedicated” refers to the fact that no intermediate NCP is writ-
ten; the equation-based reformulation is derived directly from the three-dimensional
frictional contact problem. The section ends with some alternative equation-based
formulations and a line-search procedure.

13.6.1 Alart and Curnier’s Formulation and Generalized Newton’s Method

13.6.1.1 At the Level of the Local Variables

For the sake of simplicity, let us start with the linear OSNSP (PL) defined by
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Uk+1 = ŴPk+1 +Ufree

Ûα
k+1 =

[
Uα

N,k+1 + eαUα
N,k + μα ||Uα

T,k+1||,Uα
T,k+1

]T

Cα ,∗ � Ûα
k+1 ⊥ Pα

k+1 ∈Cα

⎫⎪⎪⎬
⎪⎪⎭
∀α ∈ Ia(q̃k+1).

(13.73)

Using the equivalent formulation of the unilateral contact and friction in terms of
projection operators proj(·) (see (A.12), (A.13), and (3.152)), the previous linear
OSNSP (13.73) can be written as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Uk+1 = Ŵ Pk+1 +Ufree

Pα
N,k+1 = projIR+(Pα

N,k+1−ραN (Uα
N,k+1 + eαUα

N,k))

Pα
T,k+1 = projD̂α (PαN,k+1,Uα

N,k+1)(P
α
T,k+1−ραT ◦Uα

T,k+1)

⎫⎪⎪⎬
⎪⎪⎭
∀α ∈ Ia(q̃k+1)

(13.74)

where ραN > 0, ραT ∈ IR2
+ \ {0} for all α ∈ Ia(q̃k+1) and the modified friction disk is

D̂α(Pα
N,k+1,U

α
N,k+1) = D(μ(projIR+(Pα

N,k+1−ραN (Uα
N,k+1 + eαUα

N,k))) (13.75)

for all α ∈ Ia(q̃k+1). We recall that · ◦ · is the Hadamard product of vectors.
As we saw earlier in Sects. 12.5.4 and 12.6.5, the use of the projection operators

proj(·), or more generally the natural and normal map, allows one to restate a CP or
a VI into a system of nonlinear nonsmooth equations,
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Φ(Uk+1,Pk+1) =

⎡
⎢⎢⎢⎢⎢⎣

−Uk+1 +ŴPk+1 +Ufree

PN,k+1−projIRa
+
(PN,k+1−ρN ◦ (UN,k+1 + e◦UN,k))

PT,k+1−projD̂(PN,k+1,UN,k+1)
(PT,k+1−ρT ◦UT,k+1)

⎤
⎥⎥⎥⎥⎥⎦

= 0,

(13.76)
where the following notation has been introduced:

ρN = [ραN ]T, for all α ∈ Ia(q̃k+1)

ρT = [ραT ]T, for all α ∈ Ia(q̃k+1)

D̂(PN,k+1,UN,k+1) = ∏
α∈Ia(q̃k+1)

D̂α(Pα
N,k+1,U

α
N,k+1).

(13.77)

We recall that a is the cardinal of Ia(q̃k+1) and the symbol ∏ represents the Cartesian
product of sets.

The solution procedure is based on a nonsmooth Newton method as presented in
Sect. 12.5.4 on the system (13.76). One of the basic ingredients of the method is the
computation of an element of the Clarke generalized Jacobian ∂Φ(U,P). We propose
to derive here a possible solution. Let us denote the one element of the generalized
Jacobian by H(U,P) ∈ ∂Φ(U,P) which has the structure

H(U,P) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I 0 ŴNN ŴNT

0 −I ŴTN ŴTT

∂UNΦ2(U,P) 0 ∂PNΦ2(U,P) 0

0 ∂UTΦ3(U,P) ∂PNΦ3(U,P) ∂PTΦ3(U,P)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (13.78)

where the components of Φ are defined by

Φ1(U,P) =−Uk+1 +ŴPk+1 +Ufree

Φ2(U,P) = PN−projIRa
+
(PN−ρN ◦ (UN + e◦UN,k))

Φ3(U,P) = PT−projD̂(PN,UN)(PT,k+1−ρT ◦UT).

(13.79)

To explicitly compute the value of the Clarke generalized Jacobian of Φ2(U,P) and
Φ3(U,P), we restrict ourselves to the single-contact case. Remind that

∂ projIR+(x) =

⎧⎪⎨
⎪⎩

1 if x > 0

[0,1] if x = 0

0 if x < 0

, (13.80)
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projD(1)(x) =

⎧⎪⎨
⎪⎩

x if x ∈ D(1)

x
‖x‖ if x /∈ D(1)

, (13.81)

∂ projD(1)(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I2 if x ∈ D(1)\ ∂D(1)

I2

‖x‖ −
xxT

‖x‖3 if x �∈ D(1)

I2 +(s−1)xxT,s ∈ [0,1] if x ∈ ∂D(1).

(13.82)

An element of the generalized Jacobian can be chosen as

∂UNΦ2(U,P) =
{
ρN if PN−ρNUN > 0
0 otherwise

∂PNΦ2(U,P) =
{

0 if PN−ρNUN > 0
1 otherwise

∂UTΦ3(U,P) =
{
ρTI2×2 if PT−ρTUT ∈ D̂(PN,UN)
ρTμPN Γ(PT−ρTUT) otherwise

∂RNΦ3(U,P) =

⎧⎨
⎩

0 if PT−ρTUT ∈ D̂(PN,UN)

−μPN

PT−ρTUT

‖PT−ρTUT‖ otherwise

∂RTΦ3(U,P) =
{

0 if PT−ρTUT ∈ D̂(PN,UN)
I2−ρTμPN Γ(PT−ρTUT) otherwise

, (13.83)

where the function Γ(·) is defined by

Γ(x) =
I2×2

‖x‖ −
xxT

‖x‖3 . (13.84)

The multi-contact case is treated as well collecting the generalized Jacobians for each
contact.

We can take benefits from the structure of the element of the generalized Jacobian
in (13.78) which can be written as

H(U,P) =

⎡
⎣−I Ŵ

A B

⎤
⎦ , (13.85)
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where the matrices A and B can be easily identified. The Newton iteration amounts
to solving for Ui+1 and Pi+1 the linear system at the iteration i

H(Ui,Pi)
[

Ui+1−Ui

Pi+1−Pi

]
=−Φ(Ui,Pi). (13.86)

Due to the special structure of H in (13.85), it is interesting to substitute the value of
Ui+1−Ui in the second equation and to obtain the reduced linear system

(AŴ + B)(Pi+1−Pi) =−AΦ1(Ui,Pi)−
[
Φ2(Ui,Pi)
Φ3(Ui,Pi)

]
. (13.87)

Once we have obtained the new value of Pi+1, we compute Ui+1 with the first block
of equation in (13.85).

Remark 13.7. In Curnier & Alart (1988), Alart & Curnier (1991) and Alart (1993),
the reformulation of (13.73) in (13.74) is motivated by the introduction of an aug-
mented Lagrangian function. As said in Sect. 12.3, there are a lot of augmented
Lagrangian functions. The quadratic augmentation of the constraints is the most
usual one. It has been introduced in its basic form for equality constraints by
Hestenes (1969) and Powell (1969) and has been extended to inequality constraints
by Rockafellar (1973). The work of Rockafellar (1973, 1974, 1976a, 1979, 1993)
is very interesting in the sense that it bridges the gap between the augmented
Lagrangian method and the notion of the proximal operator and the Moreau–Yosida
regularization (Moreau, 1965). The proximal point algorithm, which derives from
this analysis, provides us with a numerical tool for solving a minimization problem
based on the augmented Lagrangian function.

We will not enter here into deeper details because the augmented Lagrangian is
more theoretical tool rather than a numerical method. It allows one to write some
“augmented” KKT conditions such as those obtained with the projection operator
in (13.74); but it does not provide us with a solution procedure. Indeed, the notion
of augmented Lagrangian functions have also been used in Simo & Laursen (1992)
and Laursen & Simo (1993a,b) and in De Saxcé & Feng (1991) but with completely
different solution procedures.

13.6.1.2 At the Level of the Generalized Variables

The use of a generalized Newton method for solving the contact friction problems
advocates to include the treatment of the global nonlinearities (see the discussion at
the beginning of Sect. 10.1.5) directly into the Newton method. In this section, we
will expose some ingredients of the formulation of the so-called global generalized
Newton method.

For the sake of simplicity, let us consider first the mixed linear OSNSP (PML)
defined by
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M̂(vk+1− vfree) = pk+1 = ∑
α∈Ia(q̃k+1)

pαk+1

Uα
k+1 = Hα ,T vk+1

pαk+1 = Hα Pα
k+1

Ûα
k+1 =

[
Uα

N,k+1 + eαUα
N,k + μα ||Uα

T,k+1||,Uα
T,k+1

]T

Cα ,∗ � Ûα
k+1 ⊥ Pα

k+1 ∈ Cα

⎫⎪⎪⎬
⎪⎪⎭
∀α ∈ Ia(q̃k+1).

(13.88)

Using the same development than in the previous section, the mixed linear OS-
NSP (13.88) can be written as a set of nonlinear nonsmooth equations as

Φ(vk+1,Pk+1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M̂(vk+1− vfree)
−HN projIRa

+
(PN,k+1−ρN ◦ (HNvk+1 + e◦HNvk))

−HT projD̂(PN,k+1,vk+1)(PT,k+1−ρT ◦ HTvk+1)

HN

[
PN,k+1−projIRa

+
(PN,k+1−ρN ◦ (HNvk+1 + e◦HNvk))

]

HT

[
PT,k+1−projD̂(PN,k+1,vk+1)(PT,k+1−ρT ◦ HTvk+1)

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

(13.89)

where the modified friction disk is expressed in terms of the generalized velocity
vk+1 as

D̂(PN,k+1,vk+1) = ∏
α∈Ia(q̃k+1)

D(μα(projIR+(Pα
N,k+1−ραN (Hα

N vk+1 + eαHα
N vk))).

(13.90)
In the same way, the mixed nonlinear OSNSP (PMNL) may be considered
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(vk+1) = pk+1 = ∑
α∈Ia(q̃k+1)

pαk+1

Uα
k+1 = Hα ,T(qk + 1) vk+1

pαk+1 = Hα(qk + 1)Pα
k+1

Ûα
k+1 =

[
Uα

N,k+1 + eαUα
N,k + μα ||Uα

T,k+1||,Uα
T,k+1

]T

Cα ,∗ � Ûα
k+1 ⊥ Pα

k+1 ∈ Cα

⎫⎪⎪⎬
⎪⎪⎭
∀α ∈ Ia(q̃k+1).

(13.91)
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This OSNSP can give rise to the following equation-based reformulation,

Φ(vk+1,Pk+1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

R(vk+1)−HN projIRa
+
(PN,k+1−ρN ◦ (HNvk+1 + e◦HNvk))

−HT projD̂(PN,k+1,vk+1)(PT,k+1−ρT ◦ HTvk+1)

HN

[
PN,k+1−projIRa

+
(PN,k+1−ρN ◦ (HNvk+1 + e◦HNvk))

]

HT

[
PT,k+1−projD̂(PN,k+1,vk+1)(PT,k+1−ρT ◦ HTvk+1)

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

(13.92)

Although very technical, the computation of an element of the Clarke generalized
gradient is similar to the linear case exposed at the beginning of Sect. 13.6.1. We
will not detail the algebraic manipulations. At each iteration of the Newton method,
a linear system of the form (13.87) has to be solved. The use of iterative solvers for
conjugate gradient solvers can be relevant if some good pre-conditioners are used.
This work is done and detailed in Alart & Lebon (1995) where some incomplete LU
(ILU) pre-conditioners are used.

13.6.2 Variants and Line-Search Procedure

In Christensen et al. (1998), Christensen & Pang (1998), and Christensen (2000),
the authors developed a very similar method to Alart–Curnier’s method using the
following simplified equation-based reformulation:

Φ(Uk+1,Pk+1) =

⎡
⎢⎢⎢⎢⎣

−Uk+1 +ŴPk+1 +Ufree

PN,k+1−projIRa
+
(PN,k+1−ρN ◦ (UN,k+1 + e◦UN,k))

PT,k+1−projD(PN,k+1)(PT,k+1−ρT ◦UT,k+1)

⎤
⎥⎥⎥⎥⎦ = 0.

(13.93)

The other discrepancies with Alart–Curnier’s method lie in (a) the use of the semi-
smoothness and the B-differentiability for the justification of the method; and (b) in
the introduction of a line-search procedure. The concept of B-differentiability seems
to have a poor interest in this context. Indeed, B-differentiable Newton’s method
(Pang, 1990) is more a conceptual method rather than an efficient numerical method,
essentially because the Newton’s direction is the solution of a nonlinear system,
which is very difficult to solve. Nevertheless, in Christensen & Pang (1998), the
semismoothness of the operator Φ is shown. We recall that the semismoothness is a
key property for convergence of generalized Newton’s method (see Sect. 12.5.4).

One of the original contributions of these works is the introduction of a line-
search procedure. As explained in Sect. 12.5.4, nonsmooth Newton’s method can be
globalized using a line-search procedure based on a merit function such as

Ψ(U,P) =
1
2
Φ(U,P)TΦ(U,P). (13.94)
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We denote by zi the current iterate

zi =
[

Ui

Pi

]
(13.95)

and by di = zi+1− zi the Newton’s direction computed by solving the linear sys-
tem (13.86). In Christensen et al. (1998), the proposed line search at the iteration k
can be described as follows. Let α i = ρmi

, where ρ ∈ (0,1) and mi is the smallest
nonnegative integer m for which the following decrease criterion holds:

Ψ(zi +ρmdi) � (1−2σρm)Ψ(zi), (13.96)

where σ ∈ (0, 1
2 ) is a given parameter. Once this criterion is satisfied, the next iterate

is set to zi+1 = zk +α idi.
Unfortunately, there is no clear analysis of the influence of the previous line-

search procedure on the global and local convergence of the methods. According to
Ferris & Kanzow (2002), a Newton method based on the min function is more dif-
ficult to globalize than semismooth Newton method based on other C-function (see
Remark 12.56). It would be interesting to confirm this point of view by a thorough
analysis.

13.6.3 Other Direct Equation-Based Reformulations

In Park & Kwak (1994) and Leung et al. (1998), another equation-based reformula-
tion of the three-dimensional frictional contact problems is proposed. The key idea
is to write a two-dimensional problem in the plane defined by the sliding direction
and the normal vector of the local frame at contact. Let us just recall how the two-
dimensional frictional problem given for UT ∈ IR and RT ∈ IR⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

If UT = 0 then |RT|� μRN

If UT < 0 then RT = μRN

If UT > 0 then RT =−μRN

(13.97)

can be reformulated in terms of equations. Using the fact that the unilateral contact1

If g(q) � 0 then 0 � UN ⊥ RN � 0 (13.98)

can be written equivalently as

If g(q) � 0, Ψ1(UN,RN) = min(UN,RN) = 0, (13.99)

Leung et al. (1998) proposed to write the two-dimensional frictional contact problem
together with (13.99) as

1 For the sake of simplicity, we assume here that the motion is smooth. The time-discretized
equation below will take care of this fact.
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Ψ2(UT,RT) = UT + min(0,μmax(0,RN−UN)+ RT−UT)
+max(0,−μmax(0,RN−UN)+ RT−UT) = 0 . (13.100)

In order to extend the equation-based reformulation of the two-dimensional frictional
contact problem (13.99) and (13.100) to the three-dimensional case, the sliding angle
θ is introduced as a variable. In the local contact frame, the tangential reaction RT is
written as

RT =
[

RT1

RT2

]
= RS

[
cosθ
sinθ

]
(13.101)

and the tangential velocity as

UT =
[

UT1

UT2

]
= US

[
cosθ
sinθ

]
. (13.102)

With this new variable, the two-dimensional model (13.100) can be used directly,
that is

Ψ2(US,RS) = 0. (13.103)

The solving procedure is based on a smoothing procedure of the min and the max
functions. This approach is very similar to the approach of Chen & Mangasarian
(1996) commented in Sect. 12.5.4.

Remark 13.8. Leung et al. (1998) used directly the equation (13.103) in their solving
procedure. However, if the sliding angle is defined on the tangential velocity, the
variable US has to be equal to ‖UT‖. Therefore the two-dimensional friction model
should be reduced to

⎧⎪⎨
⎪⎩

If US = 0 then |RS|� μRN

If US > 0 then RS =−μRN

(13.104)

This simplification does not seem to be taken into account in Leung et al. (1998).

In Xuewen et al. (2000), another direct equation-based reformulation is pre-
sented. The reformulation is written down as⎧⎪⎨

⎪⎩
Ψ1(U,R) = min(UN,RN) = 0

Ψ2(U,R) = min(‖UT‖,μRN−‖RT‖)
Ψ3(U,R) = |UT1RT2−UT2RT1|+ max(0,UT1RT1)

. (13.105)

This system of nonsmooth equations is solved by a generalized Newton method with
a line-search procedure similar to those presented in Sect. 13.6.2. Some comparisons
have been performed with the smoothing method of Leung et al. (1998). Unfortu-
nately, it is quite difficult to figure out some conclusions mainly due to the fact that
the conditions of the numerical experiments are not the same.
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13.7 Formulation and Resolution as VI/CP

13.7.1 VI/CP Reformulation

Reformulation of the Linear OSNSP (PL)

Let us start with the linear OSNSP (PL) defined by
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Uk+1 = ŴPk+1 +Ufree

Ûα
k+1 =

[
Uα

N,k+1 + eαUα
N,k + μα ||Uα

T,k+1||,Uα
T,k+1

]T

Cα ,∗ � Ûα
k+1 ⊥ Pα

k+1 ∈ Cα

⎫⎪⎪⎬
⎪⎪⎭
∀α ∈ Ia(q̃k+1).

(13.106)
With the following definitions for the Cartesian product of Coulomb cones,

C = ∏
α∈Ia(q̃k+1)

Cα , C∗ = ∏
α∈Ia(q̃k+1)

Cα ,∗, (13.107)

the following CP over cones can be written

⎧⎪⎪⎨
⎪⎪⎩

Ûk+1 = ŴPk+1 +Ufree−G(Pk+1)

C∗ � Ûk+1 ⊥ Pk+1 ∈C.
(13.108)

We assume that the vectors Uk+1 and Pk+1 are ordered in a suitable manner to satisfy
the cone inclusion. The function G : IR3a→ IR3a defined by

G(P) =
[[

μα‖[ŴP +Ufree]αT ‖+ eαUα
N,k,0

]
,α ∈ Ia(q̃k+1)

]T

(13.109)

is a nonlinear and nonsmooth function of P.
The formulation in terms of VI is straightforward due to the equivalence between

VIs and CPs. The linear OSNSP (PL) is equivalent to the following VI

(Ŵ Pk+1 +Ufree−G(Pk+1))T(P∗ −Pk+1) � 0, for all P∗ ∈ C. (13.110)

Reformulation of the Mixed Nonlinear OSNSP (PMNL)

Let us consider now the mixed nonlinear OSNSP (PMNL) given by
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(vk+1) = pk+1 = ∑
α∈Ia(q̃k+1)

pαk+1

Uα
k+1 = Hα ,T(qk + 1) vk+1

pαk+1 = Hα(qk + 1)Pα
k+1

Ûα
k+1 =

[
Uα

N,k+1 + eαUα
N,k + μα ||Uα

T,k+1||,Uα
T,k+1

]T

Cα ,∗ � Ûα
k+1 ⊥ Pα

k+1 ∈ Cα

⎫⎪⎪⎬
⎪⎪⎭
∀α ∈ Ia(q̃k+1).

(13.111)

Introducing the Cartesian products of the Coulomb cones, we obtain the follow-
ing CP ⎧⎪⎪⎨

⎪⎪⎩

R(vk+1) = ∑
α∈Ia(q̃k+1)

Hα(qk + 1)Pα
k+1

C∗ � g(vk+1)⊥ Pk+1 ∈ C.

(13.112)

The function g: IRn→ IRn defined by

g(vk+1) =
[
[Hα ,T

N (qk + 1) vk+1 + eαUα
N,k + μα ||Hα ,T

T (qk + 1) vk+1||,

Hα ,T
T (qk + 1) vk+1],α ∈ Ia(q̃k+1)

]T. (13.113)

The CP (13.112) is kind of mixed CP over cones and its reformulation in terms of VI
is not straightforward. For the sake of simplicity, this question is left open focusing
on the more linear standard case.

13.7.2 Projection-type Methods

The projection-type methods for VIs presented in Sect. 12.6.6 can be applied to the
VI (13.110). We recall that the most basic projection-type method for the VI

F(P)T(P∗ −P) � 0, for all P∗ ∈C (13.114)

is a fixed-point method such that

Pi+1 = projC(Pi−ρF(Pi)), ρ > 0. (13.115)

For the three-dimensional frictional contact, i.e., F(P) = Ŵ P +Ufree−G(P) , it
yields

Pi+1 = projC
[
(I−ρŴ)Pi−ρG(Pi)+ρUfree

]
, ρ > 0 . (13.116)
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This method has been initiated by De Saxcé & Feng (1991) and extensively tested
in Feng (1991, 1995) and De Saxcé & Feng (1998). The authors term this method
an Uzawa’s method for solving the variational inequality. Indeed, as we have seen in
Sect. 12.6.4, a VI can be viewed as a saddle-point problem. The standard Uzawa’s
method consists in alternative iterative in the primal and the dual formulations to find
the saddle-point of a Lagrangian function.

The extra-gradient method can also be directly applied, yielding the following
iterative scheme:

Pi+1 = projC

[
Pi−ρ F

(
projC(Pi−ρF(Pi))

)]
. (13.117)

More generally, it is also possible to apply the hyperplane projection method and the
splitting plus projection methods for VIs. All these methods show a good behavior on
practical large-scale problems in terms of robustness and computational cost. Indeed,
the cost of the projection onto the Cartesian product of second-order cone is cheap.
Nevertheless, the convergence rate is quite slow.

Unfortunately, most of the known convergence proofs for these algorithms are
based on monotonicity-like assumptions. A less restrictive assumption is the pseudo-
monotonicity for the hyperplane projection method. Therefore, standard convergence
proofs cannot be applied to the special case of the three-dimensional frictional con-
tact. It should be, however, possible to prove the convergence by fixed-point argu-
ments under suitable assumptions on the values of μ .

13.7.3 Fixed-Point Iterations on the Friction Threshold
and Ad Hoc Projection Methods

Numerous projection-type methods has already been developed in the literature.
Most of them are based on a fixed-point iteration method procedure on the friction
threshold and a projection onto the Tresca friction cylinder.

Tresca’s Friction

To be more precise, the so-called Tresca friction model can be invoked
⎧⎨
⎩

If UT = 0 then ||RT||� θ

If UT �= 0 then ||RT(t)||= θ , and ∃a � 0 such that RT(t) =−aUT(t)
(13.118)

where θ is the friction threshold. The Tresca model is equivalent to the following
inclusions

−UT ∈ ∂ψDθ (RT), RT ∈ ∂ψ∗Dθ
(−UT) (13.119)

where Dθ is a disk with radius θ . The fact that the radius of the friction disk does
not depend on RN allows one to state the whole three-dimensional contact friction
problem for the Tresca model as
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−U ∈ ∂ψTθ (R), or R ∈ ∂ψ∗Tθ
(−U) (13.120)

where Tθ = IR+×Dθ is the friction cylinder or the Tresca cylinder. Thus it is an
associated law of friction.

With the Tresca friction model and the Newton impact law, the linear OSNSP
(PL) can be written as

⎧⎪⎪⎨
⎪⎪⎩

Uk+1 = ŴPk+1 +Ufree

−
(

Uα
k+1 +

[
eα ◦Uα

N,k,0
]T

)
∈ ∂ψTα

θ
(Pα

k+1), ∀α ∈ Ia(q̃k+1).
(13.121)

Introducing the Cartesian product of the Tresca cylinders such that

T = ∏
α∈Ia(q̃k+1)

Tα
θ , T∗ = ∏

α∈Ia(q̃k+1)
Tα ,∗
θ , (13.122)

the following inclusion can be written for the linear OSNSP (PL) with Tresca’s
friction

−
(

Ŵ Pk+1 +Ue
free

)
∈ ∂ψT(Pk+1) (13.123)

where Ue
free = Ufree +

[[
eα ◦Uα

N,k,0
]
, α ∈ Ia(q̃k+1)

]T
. The relative velocity can be

deduced by
Uk+1 = ŴPk+1 +Ufree. (13.124)

The inclusion (13.123) can be reformulated as the following VI

(
ŴPk+1 +Ue

free

)T
(P∗ −Pk+1), for all P∗ ∈ T. (13.125)

The interest of such a formulation lies in the fact that the function ŴPk+1 +Ue
free is

a gradient mapping if the matrix Ŵ is symmetric. Under the assumption that Ŵ is a
symmetric PSD matrix, we may consider the following minimization problem

minimize
1
2

PT
k+1ŴPk+1 + PT

k+1Ue
free

subject to Pk+1 ∈ T

(13.126)

Indeed, the VI (13.125) or the inclusion (13.123) are the first-order optimality
conditions of the constrained minimization problem (13.126). Under the convex-
ity assumption of the objective function and the feasible set, i.e., in our case the
PSD property of Ŵ , these KKT conditions are equivalent to the minimization
problem.
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Fixed-Point Methods on the Friction Threshold

A key idea of numerous projection-type methods dedicated to the Coulomb’s friction
problem is to perform a fixed-point iteration on the friction threshold of a Tresca’s
friction problem. The general algorithm can be stated as in Algorithm 17.

The methods presented in the literature differ in the choice of the numerical
method for solving the Tresca minimization problem (13.126) and how this numeri-
cal method is driven. We will list in the next paragraphs some of the most widespread
choices.

Gradient Projection Methods

In Jean & Touzot (1988), Horkay et al. (1989) and Mehrez (1991), standard gra-
dient projection methods and Rosen’s method (see Sect. 12.2.3.2) are used to
solve (13.126). Several strategies are developed to perform this step into the fixed-
point procedure. Either the problem (13.126) is solved up to a given accuracy or very
roughly with one or a few iterations of the gradient projection solver.

Splitting Methods

As we said earlier in Sect. 13.5.1, the idea of using (block) splitting, i.e., PSOR
methods, to solve the frictionless contact problem date back to the pioneering works
of Glowinski et al. (1976). In Lebon & Raous (1992), this method is used to solve the
Tresca two-dimensional frictional contact problem similar to (13.126). We will see
further in Sect. 13.7.4 that another splitting method has been developed for the three-
dimensional frictional contact problem where the coupling between the fixed-point
algorithm and a PSOR method is deeper.

Algorithm 17 Fixed-point algorithm on the friction threshold

Require: W,Ue
free,Ufree,μ

Require: P0
k+1

Ensure: Uk+1,Pk+1 solution of the OSNSP (PL)
i← 0
while error > tol do
θ i← μ ◦Pi

N,k+1

Solve (possibly inexactly) the minimization problem (13.126) that is

Pi+1
k+1← argmin

P∈Tθ i

1

2
PTŴP+PTUe

free

i← i+1
Evaluate error.

end while
Uk+1← ŴPk+1 +Ufree
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Comments

The acceleration methods (Mittelmann, 1981a,b; Calamai & More, 1987; Moré &
Toraldo, 1991; Wright, 1990) used to improve the rate of convergence of the gradient
projection method should be very interesting to implement in the context of the two-
dimensional friction, in which the constraints are merely bound constraints. In the
three-dimensional context, the advantage of these methods is less obvious.

The methods are often justified using the term of gradient projection method of
gradient with splitting. As we said before, there is no straightforward minimization
principle associated with the three-dimensional frictional contact problem. The term
gradient-like methods is then ambiguous, because it refers to the minimization of an

objective function. In any case, the function F(x) =
1
2

PTŴP+ PTUfree is a function

that we have to minimize to find the right contact impulses P.

13.7.4 A Clever Block Splitting: the Nonsmooth Gauss–Seidel (NSGS)
Approach

In this section, we outline a specification of the general splitting method for Affine
Variational Inequality (AVI) or CP to the frictional contact problem. The so-called
nonsmooth Gauss–Seidel initiated by Jean & Moreau (1991, 1992) and further stud-
ied in Jourdan et al. (1998a) is based on the following two remarks:

1. The Delassus operator W is usually sparse block structured in multibody dy-
namics (see the formulation (13.8) and (13.9)). The splitting is chosen to take
advantage of this structure.

2. Each subproblem of frictionless/frictional contact for a single contact α can be
either analytically solved or easily approximated.

The splitting algorithm can be stated using (13.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Uα ,i+1
k+1 −ŴααPα ,i+1

k+1 = Uα
free + ∑

β<α
ŴαβPβ ,i+1

k+1 + ∑
β>α

ŴαβPβ ,i
k+1

Ûα ,i+1
k+1 =

[
Uα ,i+1

N + eαUα
N,k + μα ||Uα ,i+1

T,k+1 ||,Uα ,i+1
T,k+1

]T

Cα ,∗ � Ûα ,i+1
k+1 ⊥ Pα ,i+1

k+1 ∈ Cα

(13.127)

for all α,β ∈ Ia(q̃k+1). The index i corresponds to the iteration in the Gauss–Seidel
method. A parameter of relaxation ω can be introduced leading to the Non Smooth
Gauss–Seidel (NSGS) method with overrelaxation.

Let us now give some details on the resolution of the local problem which can be
defined by
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⎪⎪⎪⎪⎪⎪⎩

Uα ,i+1
k+1 = ŴααPα ,i+1

k+1 + qα ,i+1

Ûα ,i+1
k+1 =

[
Uα ,i+1

N + eαUα
N,k + μα ||Uα ,i+1

T,k+1 ||,Uα ,i+1
T,k+1

]T

Cα ,∗ � Ûα ,i+1
k+1 ⊥ Pα ,i+1

k+1 ∈ Cα

(13.128)

where

qα ,i+1 = Uα
free + ∑

β<α
ŴαβPβ ,i+1

k+1 + ∑
β>α

ŴαβPβ ,i
k+1

is a known value at the step α of the iteration i.

Analytical Solutions for the Frictionless and the Two-Dimensional Case

In the frictionless case and in the 2-dimensional case, the subproblem (13.128) can
be solved analytically. Indeed, for the frictionless case, the solution is given by

Pα ,i+1
N,k+1 = max

(
0,−qα ,i+1

N + eαUα
N,k

Ŵαα
NN

)
, Pα ,i+1

T,k+1 = 0 (13.129)

Algorithm 18 Analytical resolution of the two-dimensional frictional contact sub-
problem

Require: Ŵαα ,qα ,i+1,μα

Ensure: Uα ,i+1
k+1 ,Pα ,i+1

k+1 solution of (13.128) in 2D

if qα ,i+1
N +eαUα

N,k > 0 then

Pα ,i+1
k+1 ← 0

else
Pα ,i+1

k+1 ←−Ŵαα ,−1qα ,i+1

if Pα ,i+1
T,k+1 +μαPα ,i+1

N,k+1 > 0 then

Pα ,i+1
N,k+1←−

qα ,i+1
N +eαUα

N,k

Ŵαα
NN −μαŴαα

NT

Pα ,i+1
T,k+1←−μαPα ,i+1

N,k+1
end if
if Pα ,i+1

T,k+1−μαPα ,i+1
N,k+1 < 0 then

Pα ,i+1
N,k+1←−

qα ,i+1
N +eαUα

N,k

Ŵαα
NN +μαŴαα

NT

Pα ,i+1
T,k+1←+μαPα ,i+1

N,k+1
end if

end if
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and the relative velocity is found as

Uα ,i+1
k+1 = ŴααPα ,i+1

k+1 + qα ,i+1. (13.130)

In (13.129), the value qα ,i+1
N denotes as usual qα ,i+1T

eN with eN = [1 0 0 ]T.
In the 2-dimensional case, an analysis can be performed assuming that there

exists a unique solution to the problem given by the intersection of graphs
as in Sect. 1.2. The solution is given by Algorithm 18. In Mitsopoulou &
Doudoumis (1987, 1988), a similar resolution is used to solve the 2-dimensional
frictional case. It is assumed that the solution exists and is unique.

Approximate 3D Resolution Based on a Projection onto the Friction Disk

In the 3-dimensional case, the analytical solution of the local subproblem is not
known. Various strategies can be implemented. We start with several strategies based
on the projection onto the friction disk.

This approximate solution is found by mimicking Algorithm 18 for the
3-dimensional case. The procedure is given in Algorithm 19. The solution of this
algorithm is not an exact solution of the problem, at least when the projection step is
performed. Nevertheless, the overall algorithm is able to converge with this approxi-
mate solution.

Approximate 3D Resolution Based on a Projection onto the Friction Cone

A direct projection onto the friction cone can be implemented. It amounts to use the
projection-type methods for VI described in Sect. 13.7.2 that is

Pα ,i+1, j+1
k+1 = projC

[
(I−ρŴ)Pα ,i+1, j

k+1 −ρGα ,i+1(Pα ,i+1, j
k+1 )+ qα ,i+1

]
, ρ > 0

(13.131)
where j stands for the iteration index of the projection-type methods. The function
Gα ,i+1 (·) is the restriction of the function G(·) defined in (13.109) for a single con-
tact α assuming the other contact values are known, that is:

Gα ,i+1(P) =
[
μα‖[Ŵα αP+ qα ,i+1]T‖+ eαUα

N,k,0
]T

. (13.132)

Two strategies can be proposed:

1. Perform just one iteration of (13.131). One gets a dedicated splitting method for
the VI (13.110) improving therefore the method (13.116).

2. Perform iterations of (13.131) up to a given accuracy to obtain an exact solution
of the subproblem.

Approximate 3D Resolution Based on General Methods

Finally, we can invoke to solve the contact subproblem any general solver presented
in this chapter. We think especially of the nonsmooth Newton method of Alart &
Curnier (1991) and its variant. This strategy is used in Jourdan et al. (1998a) and
Jean (1999).
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Algorithm 19 Approximate solution of the three-dimensional frictional contact sub-
problem

Require: Ŵαα ,qα ,i+1,μα

Ensure: Uα ,i+1
k+1 ,Pα ,i+1

k+1 approximate solution of (13.128) in 3D

if qα ,i+1
N +eαUα

N,k > 0 then

Pα ,i+1
k+1 ← 0

else
Pα ,i+1

k+1 ←−Ŵαα ,−1qα ,i+1

if ‖Pα ,i+1
T,k+1‖> μ|Pα ,i+1

N,k+1| then

Pα ,i+1
T,k+1 ← projD(μαPα,i+1

N,k+1)
(Pα ,i+1

T,k+1 )

end if
end if

Comments

The NSGS solver has been proved to be very robust and efficient on a large collec-
tion of heterogeneous problems (see Acary & Jean, 2000; Acary, 2001; Jean, 1999;
Moreau, 1994b, 1999; Renouf et al., 2004; Saussine et al., 2004a, 2006). Although
it suffers from a slow convergence rate (usually linear), the algorithm has shown to
be robust and parsimonious with the memory. The solver has also been used in an
event-driven framework by Abadie (2000).

13.7.5 Newton’s Method for VI

We end up this section with the description of a nonsmooth Newton method for the
VI (13.110). As explained in Sect. 12.6.6, it is possible to design Newton’s method
for VI by reformulating the VI or CP as a set of nonsmooth equations by means of
the natural map. Let us start with such a formulation. A vector P solves (13.110) if
and only if the following nonsmooth equations holds

Fnat
C (P) = P−projC((I−Ŵ)P +Ufree−G(P)) = 0 (13.133)

or equivalently

Φ(P) = P−projC((I−ρŴ)P+ρUfree−ρG(P)) = 0, ρ > 0. (13.134)

The key idea of nonsmooth Newton method is to use a linear approximation of
the nonsmooth map Φ(P). This can be done by using the Clarke generalized subgra-
dient (see Sect. 13.6) to generate iterates such that

Pi+1 = Pi−Hi−1Φ(Pi), with Hi−1 ∈ ∂Φ(Pi). (13.135)
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The SICONOS Platform

14.1 Introduction

The Siconos Platform is a scientific computing software dedicated to the modeling,
simulation, control, and analysis of nonsmooth dynamical systems (NSDS), mainly
developed in the Bipop team-project at INRIA1 in Grenoble, France, and distributed
under GPL GNU license.

Siconos aims at providing a general and common tool for nonsmooth problems
in various scientific fields like applied mathematics, mechanics, robotics, electrical
circuits, and so on. However, the platform is not supposed to re-implement the exist-
ing dedicated tools already used for the modeling of specific systems, but to possibly
integrate them. For instance, strong collaborations exist with HuMAns (humanoid
motion modeling and control2) or LMGC90 (multibody contact mechanics3) soft-
ware packages.

14.2 An Insight into SICONOS

The present part is dedicated to a short presentation of the general writing process
for a problem treated with Siconos , through a simple example. The point is to
introduce the main functionalities, the main steps required to model and simulate the
systems behavior, before going more into details in Sect. 14.3, where the NSDS will
be described.

The chosen example is a four-diode bridge wave rectifier as shown in Fig. 14.1.
An LC oscillator, initialized with a given voltage across the capacitor and a null

current through the inductor, provides the energy to a load resistance through a full-
wave rectifier consisting of a four ideal diodes bridge. Both waves of the oscillating

1 The French National Institute for Research in Computer Science and Control (http://
bipop.inrialpes.fr).

2 http://bipop.inrialpes.fr/software/humans/index.html.
3 http://www.lmgc.univ-montp2.fr~/\~dubois/LMGC90/.
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Fig. 14.1. A four-diode bridge wave rectifier

voltage across the LC are provided to the resistor with current flowing always in the
same direction. The energy is dissipated into the resistor and results in a damped
oscillation.

One of the ways to define a problem with Siconos consists in writing a C++ file.
In the following, for the diode bridge example, only snippets of the C++ commands
will be given, just to enlighten the main steps. It is noteworthy that one can also use
an XML description as shown in the bouncing ball example in Sect. 14.4.1 or the
Python interface.

14.2.1 Step 1. Building a Nonsmooth Dynamical System

In the present case, the oscillator is a time-invariant linear dynamical system, and
using the Kirchhoff current and voltage laws and branch constitutive equations, its
dynamics is written as (see Fig. 14.1 for the notation)

[
v̇L

i̇L

]
=

⎡
⎢⎣ 0 − 1

C
1
L

0

⎤
⎥⎦ .

[
vL

iL

]
+

[
0 0 − 1

C
1
C

0 0 0 0

]
.

⎡
⎢⎢⎣
−vDR1

−vDF2

iDF1

iDR2

⎤
⎥⎥⎦ . (14.1)

If we denote

x =
[

v̇L

i̇L

]
, λ =

⎡
⎢⎢⎣
−vDR1

−vDF2

iDF1

iDR2

⎤
⎥⎥⎦ , A =

⎡
⎢⎣ 0

−1
C

1
L

0

⎤
⎥⎦ , r =

[
0 0
−1
C

1
C

0 0 0 0

]
.λ (14.2)

the dynamical system (14.1) results in

ẋ = Ax + r. (14.3)

The first step of any Siconos problem is to define and build some
DynamicalSystemobjects objects. The corresponding command lines to build
a FirstOrderLinearTIDS object are:



14.2 An Insight into SICONOS 445

// User-defined parameters
unsigned int ndof = 2; // number of degrees of freedom of
your system
double Lvalue = 1e-2; // inductance
double Cvalue = 1e-6; // capacitance
double Rvalue = 1e3; // resistance
double Vinit = 10.0; // initial voltage
// DynamicalSystem(s)
SimpleMatrix A(ndof,ndof); // All components of A are
automatically set to 0.
A(0,1) = -1.0/Cvalue;
A(1,0) = 1.0/Lvalue;
// initial conditions vector
SimpleVector x0(ndof);
x0(0) = Vinit;
// Build a First Order Linear and Time Invariant Dynamical
System
// using A matrix and x0 as initial state.
FirstOrderLinearTIDS * oscillator = new FirstOrderLinearTIDS
(1,x0,A);

The suffix DS to the name of a class such as the FirstOrderLinearTIDS
object means that this class inherits from the general class of DynamicalSystem.

Thereafter, it is necessary to define the way the previously defined dynamical sys-
tems will interact together. This is the role of the Interaction object composed
of a Relation object, a set of algebraic equations, and of a NonSmoothLaw ob-
ject.

The linear relations between voltage and current inside the circuit are given by

⎡
⎢⎢⎣

iDR1

iDF2

−vDF1

−vDR2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0
0 0
−1 0
1 0

⎤
⎥⎥⎦ ·

[
vL

iL

]
+

⎡
⎢⎢⎢⎢⎣

1
R

1
R
−1 0

1
R

1
R

0 −1

1 0 0 0
0 1 0 0

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎣
−vDR1

−vDF2

iDF1

iDR2

⎤
⎥⎥⎦ , (14.4)

which can be stated by the linear equation

y = Cx + Dλ (14.5)

with

y =

⎡
⎢⎢⎣

iDR1

iDF2

−vDF1

−vDR2

⎤
⎥⎥⎦ , D =

⎡
⎢⎢⎢⎢⎣

1
R

1
R
−1 0

1
R

1
R

0 −1

1 0 0 0
0 1 0 0

⎤
⎥⎥⎥⎥⎦ , λ =

⎡
⎢⎢⎣
−vDR1

−vDF2

iDF1

iDR2

⎤
⎥⎥⎦ . (14.6)

Completed with the relation between r and λ (see (14.2)) it results in a linear
equation as

r = Bλ . (14.7)

This corresponds to a Siconos FirstOrderLinearTIR object, i.e., a linear and
time-invariant coefficients relation. The corresponding code is as follows:
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// -- Interaction --
// - Relations -
unsigned int ninter = 4; // dimension of your Interaction
= size of y and lambda vectors
SimpleMatrix B(ndof,ninter);
B(0,2) =-1.0/Cvalue ;
B(0,3) = 1.0/Cvalue;
SimpleMatrix C(ninter,ndof);
C(2,0) = -1.0;
C(3,0) = 1.0;
// the Relation:
FirstOrderLinearTIR * myRelation = new FirstOrderLinearTIR
(C,B);

SimpleMatrix D(ninter,ninter); D(0,0) = 1.0/Rvalue;
D(0,1) = 1.0/Rvalue; D(0,2) = -1.0; D(1,0) = 1.0/Rvalue;
D(1,1) = 1.0/Rvalue; D(1,3) = -1.0; (2,0) = 1.0; D(3,1)=1.0;
myRelation->setD(D);

To complete the Interaction object, a nonsmooth law is needed to define
what the behavior will be when a nonsmooth event occurs.

Thus the behavior of each diode of the bridge, supposed to be ideal, can be de-
scribed with a complementarity condition between current and reverse voltage (vari-
ables (y,λ )). Depending on the diode position in the bridge, y stands for the reverse
voltage across the diode or for the diode current. Then, the complementarity condi-
tions, results of the ideal diodes characteristics, are given by

0 �−vDR1 ⊥ iDR1 � 0
0 �−vDF2 ⊥ iDF2 � 0
0 � iDF1 ⊥ −vDF1 � 0
0 � iDR2 ⊥ −vDR2 � 0

⇐⇒ 0 � y⊥ λ � 0, (14.8)

which corresponds to a ComplementarityConditionNSL object which is an
inherited class form of the NonSmoothLaw class. The Siconos code is as follows:

// NonSmoothLaw definition
unsigned int nslawSize = 4;
NonSmoothLaw * myNslaw = new ComplementarityConditionNSL
(nslawSize) ;

The Interaction is built using the concerned DynamicalSystem, the
Relation, and the NonSmoothLaw defined above:

// A name and a id-number for the Interaction
string nameInter = "InterDiodeBridge";
unsigned int numInter = 1;
unsigned int ninter = 4; // ninter is the size of y
Interaction* myInteraction = new Interaction(nameInter,
allDS, numInter,ninter, myNslaw, myRelation);

When the DynamicalSystem and Interaction have been clearly defined,
they are gathered into a NSDS:



14.2 An Insight into SICONOS 447

// NonSmoothDynamicalSystem construction
NonSmoothDynamicalSystem* myNSDS = new NonSmoothDynamical
System (oscillator,myInteraction);

Finally the NSDS is inserted into a Model, an object that will link the NSDS to
the strategy of simulation. It also defines the time boundaries of the simulation:

// Model construction
double t0 = 0; // Initial time
double T = 10; // Total simulation time
Model * DiodeBridge = new Model(t0,T);
// The pre-built NSDS is linked to the DiodeBridge Model.
DiodeBridge->setNonSmoothDynamicalSystemPtr(myNSDS);

From this point, the diodes bridge system is completely defined by the
NonSmoothDynamicalSystem object named myNSDS and handled by the
Model object DiodeBridge. In the next section, a strategy of simulation will
be defined and applied to this model.

14.2.2 Step 2. Simulation Strategy Definition

It is now necessary to define the way the dynamical behavior of the
NonSmoothDynamicalSystem will be computed. This is the role of
Simulation class. In Siconos , two different strategies of simulation are avail-
able: the time-stepping schemes or the event-driven algorithms. To be complete, a
Simulation object requires

• a discretization of the considered time interval of study,
• a time-integration method for the dynamics,
• a way to formalize and solve the possibly nonsmooth problems.

For the diode bridge example, the Moreau’s time-stepping scheme is used (Sect. 9.4),
where the integration of the equations over the time steps is based on a θ -method.
The nonsmooth problem is written as an LCP and solved thanks to a projected
Gauss–Seidel algorithm (Sect. 12.4.6). The resulting code in Siconos is

double h = 1.0e-6; // Time step
// The time discretisation, linked to the Model.
TimeDiscretisation * td = new TimeDiscretisation(h,
DiodeBridge);
Simulation * s = new TimeStepping(td);
// Moreau Integrator for the dynamics:
double theta = 0.5;
Moreau* myIntegrator = new Moreau(oscillator,theta,s);
// One Step nonsmooth problem:
string solverName = "PGS"; // nonsmooth problem solver
name.
OneStepNSProblem* myLCP = new LCP(s, "LCP", solverName,
101, 0.0001, "max", 0.6 );
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Note that the Simulation is connected to the Model thanks to the
TimeDiscretisation.

The last step is the simulation process with first the initialization and then the
time-loop:

// Simulation process
s->initialize();
s->run()

14.3 SICONOS Software

14.3.1 General Principles of Modeling and Simulation

The Siconos software is mostly written in C++ and thus integrally relies on the
object-oriented paradigm. In this first section we will not get into details on how to
build these objects,4 but rather on what they are and what they are used for.

As explained in Sect. 14.2, the central object is the Model. The model is the
overall object composed of a nonsmooth dynamical system and a simulation ob-
ject. The nonsmooth dynamical system object contains all of the informations to
describe the system and the simulation object contains all of the informations to
simulate it. The compulsory process to handle a problem with Siconos is first to
build a nonsmooth dynamical system and then to describe a simulation strategy, see
Sect. 14.3.1.2. Additionally, a control of the Model object can possibly be defined,
see Sect. 14.3.1.3.

The way the software is written relies also on this “cutting-out” with clearly
separated modeling and simulation components as explained in Sect. 14.3.4.

14.3.1.1 NSDS Modeling in SICONOS Software

An NSDS can be viewed as a set of dynamical systems that may interact in a non-
smooth way through interactions. The modeling approach in the Siconos platform
consists in considering the NSDS as a graph with dynamical systems as nodes
and nonsmooth interactions as branches. Thus, to describe each element of this
graph in Siconos , one needs to define a NonSmoothDynamicalSystem object
composed of a set of DynamicalSystem objects and a set of Interaction
objects.

A DynamicalSystem object is just a set of equations to describe the behavior
of a single dynamical system, with some specific operators, initial conditions, and so
on. A complete review of the dynamical systems available in Siconos is given in
Sect. 14.3.2.1.

4 This is the role of the tutorial, users, guide or others manuals that may be found at
http://siconos.gforge.inria.fr/



14.3 SICONOS Software 449

An Interaction object describes the way one or more dynamical
systems are linked or may interact. For instance, if one considers a set of rigid bod-
ies, the Interaction objects define and describe what happens at contact. The
Interaction object is characterized by some "local" variables, y (also called out-
put), and λ (input) and is composed of

• a NonSmoothLaw object that describes the mapping between y and λ ,
• a Relation object that describes the equations between the local variables

(y,λ ) and the global ones (those of the DynamicalSystem object).

One can find a review of the various possibilities for the Relation and the
NonSmoothLaw objects in Sects. 14.3.2.2 and 14.3.2.3. As summarized in
Fig. 14.2, building a problem in Siconos relies on the proper identification and
construction of some DynamicalSystems and of all the potential interactions.

14.3.1.2 Simulation Strategies for the NSDS Behavior

Once an NSDS has been fully designed and described thanks to the objects detailed
above, it is necessary to build a Simulation object, namely to define the way the
nonsmooth response of the NSDS will be computed.

First of all, let us introduce the Event object, which is characterized by a
type and a time of occurrence. Each event has also a process method which de-
fines a list of actions that are executed when this event occurs. These actions de-
pend on the object type. For the objects related to nonsmooth time events, namely
NonSmoothEvent, an action is performed only if an event-driven strategy is cho-
sen. For the SensorsEvents and ActuatorEvent related to control tools (see
Sect. 14.3.1.3), an action is performed for both time-stepping and event-driven strat-
egy at the times defined by the control law. Finally, thanks to a registration mecha-
nism, user-defined events can be added.

To build the Simulation object, we first define a discretization, using a
TimeDiscretisation object, to set the number of time steps and their respec-
tive size. Note that the initial and final time values are part of the Model. The time
instants of this discretization define TimeDiscretisationEvent objects used
to initialize an EventsManager object, which contains the list of Event objects
and their related methods. The EventsManager object belongs to the simulation
and will lead the simulation process: the system integration is always done between a
"current" and a "next" event. Then, during simulation, events of different types may
be added or removed, for example when the user creates a sensor or when an impact
is detected.
Thereafter, to complete the Simulation object, we need

• some instructions on how to integrate the smooth dynamics over a time step,
which is the role of the OneStepIntegrator objects,

• some details on how to formalize and solve the nonsmooth problems when they
occur, this is done with the OneStepNSProblem objects.
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(a) A simple NonSmoothDynamicalSystem with one Dynamical-
System object and one Interaction

Interaction

DS

DS

DS

DS

DS

NSDS

(b) The graph structure of a complex NSDS
with DynamicalSystem objects as nodes and
nonsmooth Interaction object as branches

Fig. 14.2. Siconos nonsmooth dynamical system modeling principle

To summarize, a Simulation object is composed of a TimeDiscretisation,
a set of OneStepIntegrator plus a set of OneStepNSProblem and belongs
to a Model object. The whole simulation process is led by the chosen type of
strategy, either time-stepping or event-driven. To proceed, one needs to instantiate
one of the classes that inherits from Simulation object: TimeStepping or
EventDriven.
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14.3.1.3 Control Tools

In Siconos , some control can be applied on a NSDS. The principle is to get infor-
mation from the systems thanks to some Sensor objects, used by some Actuator
objects to act on the NSDS components. Each Sensor or Actuator object has its
own TimeDiscretisation object, a list of time instants where data are to be
captured for sensors or where action occurs for actuators. Those instants are sched-
uled as events into the simulation’s EventsManager object and thus processed
when necessary.

The whole control process is handled thanks to a ControlManager object,
which is composed of a set of Sensor objects and another set of Actuator ob-
jects. The ControlManager object "knows" the Model object and thus all its
components.

Each DynamicalSystem object has a specific variable, named z, which is a
vector of discrete parameters (see Sect. 14.3.2.1). To control the systems with a sam-
pled control law, the Actuator object sets the values of z components according to
the user instructions.

14.3.2 NSDS-Related Components

In the following paragraphs, we turn our attention to the specific types of systems,
relations, and laws available in the platform.

14.3.2.1 Dynamical Systems

The most general way to write dynamical systems in Siconos is

g(ẋ,x,t,z) = 0,

which is a n-dimensional set of equations where

• t is the time,
• x ∈ IRn is the state,5

• the vector of algebraic variables z ∈ IRs is a set of discrete states, which evolves
only at user-specified events. The vector z may be used to set some perturbation
parameters or to stabilize the system with a sampled control law.

5 The typical dimension of the state vector can range between a few degrees of freedom and
more than several hundred thousands, for example for mechanical or electrical systems.
The implementation of the software has been done to deal either with small- or large-scale
problems.
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Under some specific conditions, we can rewrite this as

ẋ = rhs(x,t,z),

where “rhs” means right-hand side. Note that in that case ∇ẋg(·, ·, ·, ·) must be in-
vertible. From this generic interface, some specific dynamical systems are derived,
to fit with different application fields. They are separated into two categories: first-
and second-order (Lagrangian) systems, and then specialized according to the type
of their operators (linear or not, time invariant, etc.).

The following list reviews the dynamical system implemented in Siconos :

• FirstOrderNonLinearDS class, which describes the nonlinear dynamical
systems of first order in the form

⎧⎨
⎩

Mẋ(t) = f (t,x(t),z)+ r

x(t0) = x0

(14.9)

with M a n×n matrix, f (x,t,z) the vector field, and r the input due to the nons-
mooth behavior.

• FirstOrderLinearDS class, which describes the linear dynamical systems
of first order in the form (coefficients may be time invariant or not)

⎧⎨
⎩

ẋ(t) = A(t,z)x(t)+ b(t,z)+ r

x(t0) = x0.
(14.10)

Simple Electrical circuits for instance fit into this formalism, as shown in the
diode bridge example in Sect. 14.2.

• LagrangianDS class, which describes the Lagrangian nonlinear dynamical
systems in the form

⎧⎨
⎩

M(q,z)q̈ + NNL(q̇,q,z)+ Fint(t, q̇,q,z) = Fext(t,z)+ p

q(t0) = q0, q̇(t0) = v0

, (14.11)

where q denotes the generalized coordinates, NNL the nonlinear inertia operator,
Fint the internal, nonlinear, forces and Fext the external forces, depending only on
time. This formalism corresponds to mechanics and can be written in a simpler
manner as ⎧⎨

⎩
M(q,z)q̈ = fL(t, q̇,q,z)+ p

q(t0) = q0, q̇(t0) = v0

. (14.12)

The full-form (14.11) with several operators has been designed to fit different
users habits, depending on the application field (multibody mechanics, robotics,
solid and structures mechanics through Finite Element Method (FEM)).
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Fig. 14.3. DynamicalSystem-type classes

• LagrangianLinearTIDS class, which describes the Lagrangian linear and
time-invariant coefficients systems:

⎧⎨
⎩

Mq̈+Cq̇+ Kq = Fext(t,z)+ p

q(t0) = q0, q̇(t0) = v0

, (14.13)

where C and K are, respectively, the classical damping and stiffness matrices.

As illustrated in Fig. 14.3, all the classes inherit from the DynamicalSystem
class.

14.3.2.2 Relations

As explained above, some relations between local, (y,λ ), and global variables (x,r),
have to be set to describe the interactions between systems. The general form of these
algebraic equations is ⎧⎨

⎩
y = output(x,t,z, . . .)

r = input(λ ,t,z, . . .)
(14.14)

and is contained in the abstract Relation class. Any other Relation objects are
derived from this one.

As for DynamicalSystems they are separated in first- and second-order rela-
tions and specified according to the type and number of variables, the linearity of the
operators, etc. The possible cases are as follows:

• FirstOrderR class, which describes the nonlinear relations of first order as
⎧⎨
⎩

y = h(X ,t,Z)

R = g(λ ,t,Z).
(14.15)

Note that we use upper case for all variables related to DynamicalSystem ob-
jects. Remember that a Relation object applies through the Interaction
object to a set of dynamical systems, and thus, X , Z,. . . are concatenation of x,
z,. . . of the DynamicalSystem objects involved in the relation.
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• FirstOrderLinearTIR class, which describes the first-order linear and time-
invariant relations: ⎧⎨

⎩
y = CX + FZ + Dλ + e

R = Bλ .
(14.16)

Once again, see for instance the diode bridge example in Sect. 14.2.
• LagrangianScleronoumousR class: the scleronomic constraints case,

where the relation depends only on the global coordinates of the dynamical
systems, ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y = h(Q,Z)

ẏ = G0(Q,Z)Q̇

P = ∇hT(Q,Z)λ = G0(Q,Z)Tλ

(14.17)

with
G0(Q,Z) = ∇Qh(Q,Z). (14.18)

• LagrangianRheonomousR: in that case, the relation depends also on time.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y = h(Q,t,Z)

ẏ = G0(Q,t,Z)Q̇+
∂h
∂ t

(Q,t,Z)

P = G0(Q,t,Z)Tλ

(14.19)

with
G0(Q,t,Z) = ∇Qh(Q, t,Z). (14.20)

• LagrangianCompliantR class: there, the relation depends on λ . For in-
stance in the mechanical case, this may correspond to a spring, since it links
a force to a displacement.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y = h(Q,λ0,Z)

ẏ = G0(Q,λ0,Z)Q̇ + G1(Q,λ0,Z)λ1

P = G0(Q,λ0,Z)Tλ0

(14.21)

with ⎧⎨
⎩

G0(Q,λ0,Z) = ∇Qh(Q,λ0,Z)

G1(Q,λ0,Z) = ∇λ0
h(Q,λ0,Z)

(14.22)

and λ0 the multiplier corresponding to y, while λ1 corresponds to ẏ.
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Fig. 14.4. Relation-type classes

• LagrangianLinearR class: the simplest one, with linear and time-invariant
relations between local and global variables.

⎧⎨
⎩

y = HQ+ Dλ + FZ + b

P = HTλ .
(14.23)

As shown in Fig. 14.4, all the classes inherit from the Relation class.

14.3.2.3 Nonsmooth Laws

The NonSmoothLaw object is the last required object to complete the Inter-
action object. We present here a list of the existing laws in Siconos :

• ComplementarityConditionNSL class which models a complementarity
condition as

0 � y⊥ λ � 0. (14.24)

• NewtonImpactNSL class which models the unilateral contact with the New-
ton’s impact law, known also as the Moreau’s impacting rule:

if y(t) = 0, 0 � ẏ(t+)+ eẏ(t−)⊥ λ � 0. (14.25)

• RelayNSL class which models the simple relay mapping as⎧⎪⎨
⎪⎩

ẏ = 0: |λ |� 1

ẏ �= 0: λ = sign(y).
(14.26)

• NewtonImpactFrictionNSL class which models the unilateral contact with
Coulomb’s friction in 2D and 3D as: y = [yN,yT]T, λ = [λN,λT]T,

if yN = 0,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 � ẏN ⊥ λN � 0

ẏT = 0,‖λT‖� μλN

ẏT �= 0,λT =−μλN sign(ẏT).

(14.27)
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Fig. 14.5. Some multivalued piecewise linear laws: saturation, relay, relay with dead zone

• PiecewiseLinearNSL class which models 1D piecewise linear set-valued
mapping with fill-in graphs as depicted in Fig. 14.5 (see also Fig. 14.6).

14.3.3 Simulation-Related Components

14.3.3.1 Integration of the Dynamics

To integrate the dynamics over a time step or between two events,
OneStepIntegrator objects have to be defined. Two types of integra-
tors are available at the time in the platform, listed below and represented in
Fig. 14.7a:

• Moreau class for Moreau’s time-stepping scheme, based on a θ -method,
• Lsodar class for the event-driven strategy; this class is an interface for

LSODAR, odepack integrator (see http://www.netlib.org/alliant/
ode/doc).

14.3.3.2 Formalization and Solving of the Nonsmooth Problems

Depending on the encountered situation, various formalizations for the nonsmooth
problem are available:

Fig. 14.6. NonSmoothLaw-type classes
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(a) (b)

Fig. 14.7. (a) One-step integrators classes, (b) one-step nonsmooth problem classes

• LCP class which describes the linear complementarity problem (12.66)
⎧⎪⎨
⎪⎩

w = Mz+ q

0 � w⊥ z � 0

,

• FrictionContact2D(3D) class, for two(three)-dimensional contact and
friction problems, described in Sect. 3.9.1

• QP class for the quadratic programming problem (1.1)
• Relay class for the relay problem.

From a practical point of view, the solving of nonsmooth problems relies on low-
level algorithms (from the Siconos /Numerics package).

14.3.4 SICONOS Software Design

14.3.4.1 Overview

Siconos is composed of three main parts: Numerics, Kernel and Front-End, as rep-
resented in Fig. 14.8 below.

The Siconos /Kernel is the core of the software, providing high-level descrip-
tion of the studied systems and numerical solving strategies. It is fully written in
C++, using extensively the STL utilities. A complete description of the Kernel is
given in Sect. 14.3.4.2.

The Siconos /Numerics part holds all low-level algorithms, to compute basic
well-identified problems (ordinary differential equations, LCP, QP, etc).

The last component, Siconos /Front-End, provides interfaces with some spe-
cific command-languages such as Python or Scilab. This to supply more pleasant
and easy-access tools for users, during pre/post-treatment. Front-End is only an op-
tional pack, while the Kernel cannot work without Numerics.
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14.3.4.2 The SICONOS/Numerics library

The Siconos /Numerics library which is a stand-alone library, contains a collec-
tion of low-level numerical routines in C and F77 to solve linear algebra problems
and OSNSP. It is based on well−known netlib libraries such as BLAS/LAPACK,
ATLAS, Templates. Numerical integration of ODE is also provided thanks to
ODEPACK. (LSODE solver.) At the time, the following OSNSP solvers are
implemented:

• LCP solvers:

– Splitting based methods of Sect. 12.4.6 (PSOR, PGS, RPSOR, RPGS)
– Lemke’s algorithm of Sect. 12.4.7
– Newton’s method of Sect. 12.5.4

• MLCP solvers:

– Splitting based methods of Sect. 12.4.6 (PSOR, PGS, RPSOR, RPGS)

• NCP solvers.

– Newton’s method based on the Fischer–Burmeister function
– Interface to the PATH solver described in Sect. 13.5.3

• QP solver based on QLD due to Prof. K.Schittkowski of the University of
Bayreuth, Germany (modification of routines due to Prof. MJD Powell at the
University of Cambridge).

• Frictional contact solvers:

– Projection-type methods of Sect. 13.7.2
– NSGS splitting based method of Sect. 13.7.4
– Alart–Curnier’s method of Sect. 13.6.1
– NCP reformulation method of Sect. 13.4.3

SICONOS/Kernel

SICONOS/Front−End
Interface (Python, Scilab ...) 

program
C++

User
Plug−in

SICONOS/Numerics

Fig. 14.8. General design of Siconos software
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SICONOS KERNEL 

UTILS

MODEL

(XML)
INPUT−OUTPUT

PLUG−IN

NUMERICS

CONTROL

SIMULATIONMODELING

Fig. 14.9. Kernel components dependencies

14.3.4.3 SICONOS Kernel Components

As previously said, Kernel is the central and main part of the software. The whole
dependencies among Kernel parts are fully depicted in Fig. 14.9.

All the Kernel implementation is based on the principle we gave in Sect. 14.3.1.
It is mainly composed of two rather distinct parts, modeling and simulation, that
handle all the objects used, respectively, in the NSDS modeling (see Sect. 14.3.1.1)
and the Simulation description (see Sect. 14.3.1.2).

The Utils module contains tools, mainly to handle classical objects such as
matrices or vectors and is based on the Boost library,6 especially, uBLAS,7 a
C++ library that provides BLAS functionalities for vectors, dense and sparse
matrices.

The Input–Output module concerns objects for data management in XML format,
thanks to the libxml2 see footnote8 library. More precisely, all the description of the
Model, NSDS and Simulation, can be done thanks to an XML input file. An example
of such a file is given in Sect. 14.4.1.

Control package provides objects like Sensor and Actuator, to add
control of the dynamical systems through the Model object, as explained in
Sect. 14.3.1.3.

A plug-in system is available, mainly to allow the user to provide one’s own com-
putation methods for some specific functions (vector field of a dynamical system,

6 http://www.boost.org.
7 http://www.boost.org/libs/numeric/ublas/doc/index.htm.
8 http://xmlsoft.org/
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NonSmoothDynamicalSystem

UnitaryRelation

DynamicalSystem

NonSmoothLaw

(0,M)

Relation

(1,N)

Interaction

1

(1,P)

1 Topology

Fig. 14.10. Simplified class diagram for Kernel modeling part

mass, etc.), this without having to recompile the whole platform. Moreover, the plat-
form is designed in a way that allows user to add dedicated modules through object
registration and object factories mechanisms (for example to add a specific nons-
mooth law, a user-defined sensor, etc.).

To conclude, class diagrams for modeling and simulation components are given
in Figs. 14.10 and 14.11, which make clearer the various links between all the objects
presented before.

14.4 Examples

14.4.1 The Bouncing Ball(s)

We consider a ball of mass m and radius R, described by three generalized coordi-
nates q = (z,x,θ )T. The ball is subjected to the gravity g. The system is also con-
stituted by a rigid plane, defined by its position h with respect to the axis Oz. We
assume that the position of the plane is fixed.

The equation of motion of the ball is given by

Mq̈(t) = Fext(t)+ P (14.28)

Fig. 14.11. Simplified class diagram for Kernel simulation part
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with M the inertia matrix, P the force due to the nonsmooth law, i.e., the reaction at
the impact times, and Fext(t) : R �→Rn the given external force:

M =

⎡
⎣m 0 0

0 m 0
0 0 I

⎤
⎦ , I = 3/5mR2, Fext =

⎡
⎣−mg

0
0

⎤
⎦ . (14.29)

The ball bounces on the rigid plane, introducing a constraint on its vertical position,
given by

z−R−h � 0. (14.30)

We introduce y as the distance between the ball and the floor and λ as the multiplier
that corresponds to the reaction at contact. Then from (14.30), we get

y = Hq + b = [1 0 0]q−R−h (14.31)

completed by

P = HTλ . (14.32)

Finally we need to introduce a nonsmooth law to define the behavior of the ball at
impact. The unilateral constraint is such that

0 � y⊥ λ � 0 (14.33)

completed with a Newton impact law, for which we set the restitution coefficient e
to 0.9:

if y(t) = 0 and ẏ(t−) � 0, then ẏ(t+) =−eẏ(t−), (14.34)

t+ and t− being post and pre-impact times. Then, (14.28) fits with Lagrangian-
LinearTIDS (14.13) formalism, (14.31) and (14.32) withLagrangianLinearR
(14.23), and (14.33) and (14.34) with NewtonImpactNSL (14.25). If we use XML
for the Model description, the part corresponding to the NSDS will look like
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<NSDS bvp=’false’>
<DS_Definition>

<LagrangianLinearTIDS number=’1’>
<Id> Ball </Id>
<q0 vectorSize=’3’>1.0 0.0 0.0</q0>
<Velocity0 vectorSize=’3’>0.0 0.0 0.0</Velocity0>
<FExt vectorPlugin="BallPlugin:ballFExt"/>
<Mass matrixRowSize=’3’ matrixColSize=’3’>

<row>1.0 0.0 0.0</row>
<row>0.0 1.0 0.0</row>
<row>0.0 0.0 1.0</row>
</Mass>

</LagrangianLinearTIDS>
</DS_Definition>
<Interaction_Definition>

<Interaction number=’1’ Id=’Ball-Ground’>
<size> 1 </size>
<DS_Concerned all=’true’></DS_Concerned>
<Interaction_Content>

<LagrangianLinearRelation>
<H matrixRowSize=’1’ matrixColSize=’3’>

<row> 1.0 0.0 0.0</row>
</H>

</LagrangianLinearRelation>
<NewtonImpactLaw>

<e>0.9</e>
</NewtonImpactLaw>

</Interaction_Content>
</Interaction>

</Interaction_Definition>
</NSDS>

For the simulation, we use a Moreau’s time-stepping scheme and an LCP formal-
ization with a Lemke solver:

<Simulation type=’TimeStepping’>
<TimeDiscretisation>

<h>0.005</h>
</TimeDiscretisation>
<OneStepIntegrator_Definition>

<Moreau>
<DS_Concerned vectorSize=’1’>1</DS_Concerned>
<Theta all="0.5"></Theta>

</Moreau>
</OneStepIntegrator_Definition>
<OneStepNSProblem>

<LCP>
<Solver type="Lemke" maxIter="101" />

</LCP>
</OneStepNSProblem>

</Simulation>
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Fig. 14.12. Vertical displacement of the 10 lowest beads according to time

And then, in the C++ input file we have

// Loading of the XML input file that describes the model:
Model * bouncingBall = new Model("./BallTS.xml");
// Get the simulation object
Simulation* s = bouncingBall->getSimulationPtr();
// ...
// Initialize and run ...
s->initialize();
s->run();

We consider now a column of 1000 spherical beads, in contact or not, falling
down to the ground. The modeling is quite the same as for the single ball, one just has
to define one dynamical system for each bead and one interaction for each potential
contact between two beads. The interest of this example lies in the important number
of degrees of freedom (i.e., the size of the vector q) and of relations (the size of y
and λ ) that is equal to 1000. Figure 14.12 displays vertical displacements of the 10
lowest beads according to time.

14.4.2 The Woodpecker Toy

The woodpecker toy is presented in Fig. 14.13a and b and consists of a sleeve, a
spring, and the woodpecker. The hole in the sleeve is slightly larger than the diameter
of the pole, thus allowing a kind of pitching motion interrupted by impacts with
friction. Its dynamical behavior shows both impact and friction phenomena.

The woodpecker toy is a system which can only operate in the presence of friction
as it relies on combined impacts and jamming. Among other things, an animation of
the toy can be found at: http://www.zfm.ethz.ch/∼leine/toys.htm.
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(a) (b)

Fig. 14.13. The woodpecker toy. Courtesy of Christoph Glocker (1995) and Remco Leine,
ETH Zürich

Some results obtained with Siconos are presented in Fig. 14.14.9

14.4.3 MOS Transistors and Inverters

14.4.3.1 Piecewise Linear Model of a MOS Transistor

One can benefit from a simplification of devices models (e.g., MOS models) in the
form of a piecewise linear representation instead of the complicated formula imple-
mented in SPICE simulators. For instance, in Leenaerts & Van Bokhoven (1998), the
authors considered the Sah model of the NMOS static characteristic:

IDS =
K
2
· ( f (VG−VS−VT)− f (VG−VD−VT))

with

K =
μCOXW

L
μ mobility of majority carriers

(sample values of 750 cm2 V−1 s−1 for an NMOS, 250 cm2 V−1 s−1 for a PMOS)

COX =
εSiO2

tOX

9 This system has been implemented in Siconos by M. Moeller from the Mechanical Engi-
neering Department of ETH Zurich, following the examples proposed in Leine et al. (2003).
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Fig. 14.14. Simulation results for the woodpecker toy using the Siconos platform

εSiO2 = εr SiO2 · ε0 (εr SiO2 ≈ 3.9)
tOX oxide thickness ≈ 4nm in a recent 180nm technology

W channel width

L channel length≈ 130nm in a recent 180nm technology

VT threshold voltage depending on technology, VBS , temperature≈ 0.25–1V

The function f : R−→R is defined as

f (x) =

⎧⎨
⎩

0 if x < 0

x2 if x � 0.

The piecewise and quadratic nature of this function is approximated by the following
six segments piecewise linear function in Leenaerts & Van Bokhoven (1998) (see
Fig. 14.15):

fPWL(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x < 0
0.09x if 0 � x < 0.1
0.314055x−0.0224055 if 0.1 � x < 0.2487
0.780422x−0.138391 if 0.2487 � x < 0.6185
1.94107x−0.856254 if 0.6185 � x < 1.5383
4.82766x−5.29668 if 1.5383 � x .



466 14 The SICONOS Platform

The relative error between f (·) and fPWL(·) is kept below 0.1 for 0.1 � x < 3.82. The
absolute error is less than 2×10−3 for 0 � x < 0.1 and 0 for negative x. In practice,
the values of VG,VS,VD,VT in logic integrated circuits allow a good approximation
of f by fPWL.

Figure 14.16 displays the static characteristic IDS(VGS,VDS) of an NMOS ob-
tained with the SPICE level 1 model and the piecewise linear approximation of the
Sah model. The following parameter values were used: εr SiO2 = 3.9, tOX = 20nm,
μ = 750cm2 V−1 s−1, W = 1 μm, L = 1 μm, VT = 1 V. Bottom figures include
results of both models with two different viewpoints to display the regions where
differences appear.

14.4.3.2 Inverter Chain

This simple model of an NMOS transistor was adapted to the PMOS transistor and
both models were used to simulate an inverter chain (see Fig. 14.17). The output
of each inverter is loaded by the intrinsic capacitances of transistors (with values of
a few fF) and a load capacitor of 50fF representing the wiring between successive
inverters.

In these early simulations, the dynamical behavior of the MOS transistor was
simplified by keeping the intrinsic capacitances CGS and CGD independent from volt-
ages. Of course, this differs from the Meyer nonlinear capacitances implemented in
the SPICE level 1 model. Comparisons between simulation results with SPICE and
Siconos for a selection of inverters output voltage and MOS currents can be found
in Denoyelle & Acary (2006).

14.4.4 Control of Lagrangian systems

14.4.4.1 Control principle in SICONOS/Control

Two strategies are available to implement a control law in the Siconos platform:

Nonlinear Continuous Control with Switches

The control can be implemented in external functions Fint and Fext. For an accurate
simulation of the control law with Newton’s method, the Jacobian of the control with
respect to q and q̇ must be provided (finite–difference approximation can be also
used). For an explicit evaluation of the control law, the second strategy is preferable.

Sampled Discrete Control with Delay

Thanks to Actuator and Sensor objects, it is possible to schedule events of con-
trol type in the stack of the EventsManager object. The Sensor object is able to
store any data of the model whenever an event is reached. The Actuator object is
able to compute the control law with the stored values in the sensors. This strategy al-
lows one to implement “real” sampled control laws with delay and switches indepen-
dently of the time-step chosen for time-integration. It may be convenient for study-
ing robustness of the control in sampled cases with delay. For the SensorsEvents
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Fig. 14.15. Piecewise linear approximation of f (·)
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Fig. 14.16. Static characteristic of an NMOS transistor with a simple PWL model and SPICE
level 1 model
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and ActuatorEvent related to control tools, an action is performed for both time-
stepping and event-driven strategies at the times defined by the control law.

14.4.4.2 The Switching Nonlinear Control of a two-link Manipulator

In the sequel, let us introduce a model that allows us to test the Moreau’s time-
stepping algorithm of the Siconos platform presented in the previous sections. Pre-
cisely, we consider a simple planar two-link manipulator whose end effector must
track a desired circular trajectory that leaves the admissible domain. In order to ac-
complish its task the manipulator has to follow the constraint from the point where
the circle leaves the admissible domain to the point where the circle re-enters in it.

The time domain representation of the manipulator task can be described as (see
Brogliato et al. (1997)):

R
+ = Ω0∪ I0∪Ω1∪Ω2∪ I1∪ . . .∪Ω2k ∪ Ik∪Ω2k+1∪ . . . (14.35)

where Ω2k corresponds to free-motion phases, Ω2k+1 corresponds to constrained-
motion phases and Ik represents the transient between free and constrained phases.
It is worth to point out that during the phases Ik some impacts occur. The constraints
defining the admissible domain are supposed frictionless and unilateral.

Controller Design

In order to overcome some difficulties that can appear in the controller definition,
the dynamical system (14.11 ) will be expressed in the generalized coordinates intro-

duced in McClamroch & Wang (1988). The coordinates are q ∈ R
2, with q =

[
q1

q2

]
,

such that the admissible domain Φ = {q1(t) � 0} and then the set of complementary
relations can be rewritten as 0 � λ ⊥ Dq � 0 with D = (1,0) ∈ R

2. The controller
used here consists of different low-level control laws for each phase of the system.
More precisely, the controller can be expressed as

T (q)U =

⎧⎨
⎩

Unc for t ∈Ω2k

Ut for t ∈ Ik

Uc for t ∈Ω2k+1

(14.36)

where T (q) =
(

T1(q)
T2(q)

)
∈ R

2×2.

Roughly speaking, we deal with a passivity-based control law (see for instance
Brogliato et al. (2007)) but some of the nonlinear terms are compensated during
the constrained phases Ω2k+1. We note also that the transition between constrained
and free phases is monitored via a LCP. The closed-loop stability analysis can be
found in (Bourgeot & Brogliato, 2005). Some of the events(impacts, detachment
from the constraint) are state-dependent. Some others (switch between Unc and Ut )
are exogenous. The Siconos /Control toolbox is able to simulate all these events,
and to record them.
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Dynamics Equation based on Lagrangian Formulation

We consider the following notations (see Fig. 14.18): θi represents the joint angle of
the joint i, mi is the mass of link i, Ii denotes the moment of inertia of link i about
the axis that passes through the center of mass and is parallel to the Z axis, li is the
length of link i, and g denotes the gravitational acceleration.

Let us consider that the constraint is given by the ground (i.e. y = 0), thus the
associated admissible domain is Φ = {(x,y) | y � 0}. One introduces the generalized

coordinates q =
[

y
x

]
,y � 0 where (x,y) are the Cartesian coordinates of the end ef-

fector. However, we suppose that only a half of the circle is in the admissible domain.
Concluding the system has to track a half circle and then to follow the ground from
the point where the circle leaves the admissible domain to the point where the circle
re-enters in it. Using the Lagrangian formulation we derive the dynamical equations
of the system. Precisely, the inertia matrix is given by:

M11 =
m1l2

1

4
+ m2

(
l2
1 +

l2
2

4
l1l2 cosθ2

)
+ I1 + I2

M12 = M21 =
m2l2

2

4
+

m2l1l2
2

cosθ2 + I2

M22 =
m2l2

2

4
+ I2

O

OX

OYθ1

l1

l2
θ2

x

y

Fig. 14.18. Two-link planar manipulator
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The nonlinear term containing Coriolis and centripetal forces is:

C11 = −m2l1l2θ̇2 sinθ2, C12 = −m2l1l2
2

θ̇2 sinθ2

C21 =
m2l1l2

2
θ̇1 sinθ2, C22 = 0

and the term containing conservative forces is:

G1 =
g
2
[l1(2m1 + m2)cosθ1 + m2l2 cos(θ1 +θ2)]

G2 =
m2gl2

2
cos(θ1 +θ2)

Obviously the generalized coordinates are obtained using the following transforma-
tion:

y = l1 sinθ1 + l2 sin(θ1 +θ2)
x = l1 cosθ1 + l2 cos(θ1 +θ2)

Implementation Details

The simulations were done using a nonlinear continuous control strategy. Precisely
the term NNL(q̇,q,z) of equation (14.11) has been identified as C(q̇,q)q̇+ G(q) and
the switching control has been introduced using the function Fint. Therefore, the
Jacobian of N and Fint with respect to q and q̇ have been explicitly computed and
inserted in the algorithm. The Siconos /Control toolbox also allows one to introduce
a time-delay in the feedback loop.

14.4.4.3 Numerical Results

The stability analysis of the model and figures illustrating the behavior of the system
during each phase of the motion (particularly during transition phases where the
corresponding Lyapunov function is almost decreasing) can be found in (Morǎrescu
& Brogliato, 2008). In the sequel, we discuss only some numerical aspects related
to the time-stepping simulation strategy chosen in this work. The choice of a time-
stepping algorithm was mainly dictated by the presence of accumulations of impacts
which render the use of event-driven methods difficult10. The numerical values used
for the dynamical model are l1 = l2 = 0.5m, I1 = I2 = 1kg.m2, m1 = m2 = 1kg. It
is noteworthy that the simulation results do not depend essentially on the chosen
time-step for the scheme but, a smaller time-step allows to capture more precisely
the behavior of the system. As it can be seen in Fig. 14.19 the real trajectory and
the lengths of each transition phase are almost unchanged starting with a sufficiently
small time-step (h = 10−3).

We do not insist too much on the simulation results during the free-motion phases
since the smoothness of the system is guaranteed on these phases and the behavior

10 An event-driven algorithm is also available in Siconos . Its use in case of accumulations
needs some ad hoc numerical tricks to pass through the accumulation.
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of the system is clear. The most interesting phases from the numerical point of view
are the transition (accumulation of impacts) phases. It is worth to clarify that the

Fig. 14.19. Top: The variation of q1 during transition phase for h∈{10−3, 10−4, 10−5, 10−6};
Bottom: Zoom at the end of transition phase
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Table 14.1. Length of the transition phase I1 and CPU time with respect to the time-step h

h 10−3s 10−4s 10−5s 10−6s

λ (I1) 0.945 0.9536 0.9525 0.9523

CPU time 1.5s 11.2s 111.3s 1072.2s

number of impacts during the transition phases is not so important and the major
issue is the finiteness of these phases. To be more clear we present in Table 14.1
and 14.2 some numerical values. In Table 14.1 one can see that the length of the
transition phase I1 with respect to the time-step h does not vary significantly when
the time-step decreases. Let us also denote by CPU the computing time necessary
for the simulation (using an Intel(R) Core(TM)2 CPU 6300 1.86GHz) of one cycle
(5 seconds).

The evolution of the number of impacts ni with respect to the restitution co-
efficient eN and the time-step h is quite different (see Table 14.2). As expected, ni

becomes larger when the restitution coefficient increases. Also, one can see that the
accumulation of impacts can be captured with a higher precision when the time-step
becomes smaller. However, a higher number of captured impacts does not change
the global behavior of the system and the transition phase ends almost in the same
moment when h varies, see λ (I1) in Table 14.1. Other details on the dependence of
the trajectories on the control parameters can be found in (Acary et al., 2008).

14.5 Notes

The software can be downloaded at http://siconos.gforge.inria.fr/,
where one can also find an installation guide, a tutorial, the full doxygen documen-
tation of the code, support, mailing lists and all that sort of utilities.

Note that the above presentation is only an overall view which is moreover likely
to change. The implementation of the Siconos /Kernel and Siconos /Numerics
libraries is still in progress. Users are invited to check on http://siconos.
gforge.inria.fr for the contents of future releases. The technical report
(Acary & Pérignon, 2007) will be updated with the new functionalities and the new
examples.

Table 14.2. Number of impacts detected ni with respect to the time-step h and the coefficient
of restitution eN

eN\h 10−3s 10−4s 10−5s 10−6s
0.2 ni = 3 ni = 5 ni = 6 ni = 8
0.5 ni = 6 ni = 9 ni = 12 ni = 16
0.7 ni = 9 ni = 16 ni = 23 ni = 29
0.9 ni = 23 ni = 40 ni = 64 ni = 81

0.95 ni = 32 ni = 67 ni = 108 ni = 161
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Convex, Nonsmooth, and Set-Valued Analysis

A.1 Set-Valued Analysis

Definition A.1 (Hausdorff distance). Let A and B be two nonempty sets of IRn. We
define the distance between a point x and a set A as

ρ(x,A) = inf
a∈A
||x−a||

and

dH(A,B) = max

{
sup
x∈A

ρ(x,B),sup
x∈B

ρ(x,A)
}

(A.1)

which is the Hausdorff distance between A and B.

The Hausdorff continuity of a function means that the function is continuous with
the Hausdorff distance.

A.2 Subdifferentiation

Definition A.2 (Clarke’s generalized derivative). Let a function f : IRn → IR be
locally Lipschitz continuous. The generalized gradient of f (·) at x is defined as the
set

∂ f (x) = conv{lim∇ f (xi) | xi→ x,xi �∈Ω f ∪N} (A.2)

where Ω f is the set of Lebesgue measure zero where ∇ f does not exist, and N is an
arbitrary set of zero Lebesgue measure.

The next proposition is a generalization of the chain rule (Goeleven et al., 2003a),
when a convex function is composed with a linear mapping.
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Proposition A.3. Let f : IRn→ IR∪{+∞} be a convex lower semi-continuous func-
tion and A: IRm→ IRn be a linear continuous operator. Assume that a point y0 = Ax0

exists at which f (·) is finite and continuous. The subdifferential in the sense of convex
analysis of the composite functional f◦ A: IRn→ IR∪{+∞} is given by

∂ ( f ◦A)(x) = AT∂ f (Ax), ∀ x ∈ IRn. (A.3)

We remind that what is called the subdifferential in the sense of convex analysis, is
the set of subgradients as in (1.5).

A.3 Some Useful Equivalences

Let φ(·) be a proper, convex lower semi-continuous function IRn→ IR. Then for each

y ∈ IRn there exists a unique x
Δ= Pφ (y) ∈ IRn such that

〈x− y,v− x〉+φ(v)−φ(x) � 0, for all v ∈ IRn. (A.4)

The mapping Pφ : IRn → IRn is called the proximation operator. It is single-valued,
nonexpansive and continuous. The next equivalences hold:

u ∈ IRn: 〈Mu + q,v−u〉+φ(v)−φ(u)� 0, for all v ∈ IRn

�

u ∈ IRn: u = Pφ (u− (Mu + q))

�

u ∈ IRn: Mu + q∈ −∂φ(u).

(A.5)

The first formulation in (A.5) is called a VI of the second kind. Setting φ(·) = ψK(·)
with K ⊂ IRn nonempty closed convex, one obtains a VI of the first kind:

u ∈ K: 〈Mu + q,v−u〉� 0, for all v ∈ K. (A.6)

Setting φ(·) = ϕ(·)+ψK(·) with ϕ(·) a proper, convex lower semi-continuous func-
tion IRn→ IR, one gets a mixed VI:

u ∈ K: 〈Mu + q,v−u〉+ϕ(v)−ϕ(u)� 0, for all v ∈ K. (A.7)

Let M = MT > 0 be a n× n matrix and K ⊂ IRn be a closed convex nonempty set.
Then
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M(x− y) ∈−NK(x)

�

x = proxM[K;y]

�

x = argminz∈K
1
2(z− y)TM(z− y)

�

x = projM(K;y),

(A.8)

where projM indicates that the projection is done in the metric defined by M. In some
other parts of the book, when M = In we simply denote the projection as projK(·) or
as PK(·).

If K = (IRm)+ and M = In, we get

y ∈ −NK(x) ⇐⇒ 0 � y⊥ x � 0 (A.9)

for any x, y∈ IRm. Let K ⊂ IRn be a closed convex nonempty cone and Ko is its polar
cone, i.e.,

Ko = {x ∈ IRn | xTy � 0 for all y ∈ K}.
One has (Ko)o = K. Moreover the conjugate function of the indicator of K is the
indicator function of Ko, i.e.,

ψ∗K(·) = ψKo(·).

Thus ∂ψ∗K(·) = NKo(·), the normal cone to Ko. Finally

y ∈ ∂ψK(x)⇔ x ∈ NKo(y).

This is equivalent to x ∈ K, y ∈ Ko, and xTy = 0.
More generally when K is a nonempty closed convex cone, then (A.9) is

extended to

y ∈ −NK(x) ⇐⇒ −K0 � y⊥ x ∈ K (A.10)

which in turn is equivalent to the VI in (A.6) with −y = Mu + q and x = u.

Remark A.4. The normal cone is usually defined as the polar cone to the tangent
cone, in the Euclidean metric. It is also possible to define it as the polar cone in the
kinetic metric, as follows:

N∗K(q) = {w ∈ IRn | wTM(q)v � 0, ∀ v ∈ TK(q)}= M−1(q)NK(q). (A.11)
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This simply reflects the fact that the normal to a surface {x ∈ IRn | c(x) = 0} ⊂ IRn,
c: IRn→ IR a smooth function, equipped with a metric M = MT > 0 is equal to M−1n,
where n is the (usual) Euclidean gradient, i.e., ( ∂c

∂x1
, ∂c
∂x2

, ..., ∂c
∂xn

)T ∈ IRn. It is possible
to express Moreau’s impact rule with the kinetic normal cone.

The usefulness of such an operation for numerical purpose is, however, doubtful.
Continuing with some equivalences which are used in the formulation of Coulomb’s
friction, we have the following. Let K be a nonempty convex set:

y ∈ ∂ψK(x)⇐⇒ x ∈ K, 〈y,z− x〉� 0 for all z ∈ K

⇐⇒ x = projK(x +ρy), for all ρ > 0.
(A.12)

The last equivalence can be shown as follows. Since the right-hand side is a cone, we
have for any ρ > 0: y ∈ ρ−1∂ψK(x), equivalently ρy ∈ ∂ψK(x). Thus equivalently
−ρy∈−∂ψK(x) ⇐⇒ x− (x+ρy)∈−∂ψK(x), from which we deduce using (A.8)
that x = prox[K;x +ρy]. When K = IR+ we get using (A.9) and (A.12):

0 � x⊥ y � 0 ⇐⇒ y = projK(y−ρx) ⇐⇒ x = projK(x−ρy) (A.13)

for all ρ > 0.

Remark A.5 (Projection). Throughout the book the projection operator is used and
is denoted differently depending on the context, or for the sake of briefness of the
expressions. The projection on a set K may be denoted as PK(·), or as projK(·), or as
proj[K; ·]. When the projection is made with the metric defined by the kinetic energy,
we may write it as projM[K; ·] or as projq[K; ·].



B

Some Results of Complementarity Theory

Many results on complementarity problems and systems are provided throughout the
book. Here we recall some results that concern copositive matrices and the solution
of an LCP.

Definition B.1. A matrix A ∈ IRn×n is said to be strictly copositive if

x � 0 and x �= 0 ⇒ xT Ax > 0.

Theorem B.2. If A ∈ IRn×n is strictly copositive then the LCP(A,q)

0 � Ax + q⊥ x � 0

has a solution for every q ∈ IRn. The LCP(A,q) has a unique solution for every
q ∈ IRn if and only if A is a P-matrix.

Copositive matrices are also useful for studying the Lyapunov stability of some
dynamical systems’ fixed points like evolution variational inequalities, see Goeleven
& Brogliato (2004), and a class of complementarity systems (Camlibel et al., 2006).

Let α and β be subsets of {1,2, ...,n}. In the next theorem Aαβ denotes the sub-
matrix constructed from A by taking rows indexed in α and columns indexed by β .

Theorem B.3. Let us consider the LCP(A,q) and let A be a P-matrix. Then for each
q ∈ IRn there exists an index set α ⊂ {1,2, ...,n} with complement ᾱ such that

• (i) −(Aαα)−1qα � 0 and qᾱ −Aᾱα(Aαα)−1qα � 0,
• the unique solution x of the LCP(A,q) is given by xα =−(Aαα)−1qα and xᾱ = 0.

In particular the solution mapping q �→ x is a piecewise linear function on IRn.



C

Some Facts in Real Analysis

C.1 Functions of Bounded Variations in Time

Let I be an interval, and define a subdivision Sn of I as x0 < x1 < · · · < xn. The
variation of a function f : IR→ IRn on I with respect to the subdivision Sn is defined as

varI,Sn( f ) =
n

∑
i=0
|| f (xi+1)− f (xi)||.

The function f (·) is said to have a bounded variation on I if

sup
Sn

varI,Sn( f ) � C

for some bounded constant C. Then varI( f ) is called the total variation of f (·)
on I. A function that has a bounded variation on any compact subinterval of I is said
to be of local bounded variation (LBV). If it is right-continuous and LBV it will be
denoted RCLBV.

BV functions have the following fundamental properties:

• Let E f be the set of points x where f (·) has discontinuities. Then E f is countable.
• If f (·) is BV, then it is Riemann integrable.
• BV functions have left and right limits at all points (of their domain of

definition).1

• The derivative of a BV function can be decomposed into three parts: a Lebesgue
integrable part, a purely atomic measure, and a measure that is singular with
respect to the Lebesgue measure and is nonatomic (see below).

• Functions of special bounded variation (SBV) possess a derivative that is the sum
of a Lebesgue integrable function, and a purely atomic measure. The third part
vanishes for SBV functions.

1 Throughout the book the right (left) limits at t are denoted either as f +(t) ( f−(t)) or as
f (t+) ( f (t−)).
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In most engineering applications, it may be reasonably assumed that the deriva-
tive of a BV function is just the sum of an integrable function and a purely atomic
measure of the form ∑i δi for some set of i:

• We denote by LBV(I; IRn) the space of functions of locally bounded variation,
i.e., of bounded variation on every compact subinterval of I.

• We denote by RCLBV(I; IRn) the space of right-continuous functions of locally
bounded variation. It is known that if x ∈ RCLBV(I; IRn) and [a,b] denotes a
compact subinterval of I, then x can be represented in the form (see, e.g., Shilov
& Gurevich (1966))

x(t) = Jx(t)+ [x](t)+ ζx(t),∀t ∈ [a,b],

where Jx is a jump function, [x] is an absolutely continuous function, and ζx

is a singular function. Here Jx is a jump function in the sense that Jx is right
continuous and given any ε > 0, there exist finitely many points of discontinuity
t1, ...,tN of Jx such that ∑N

i=1 ‖Jx(ti)−Jx(t−i )‖+ ε > var(Jx, [a,b]), [x] is
an absolutely continuous function in the sense that for every ε > 0, there exists
δ > 0 such that ∑N

i=1 ‖[x](βi)− [x](αi)‖< ε , for any collection of disjoint subin-
tervals ]αi,βi]⊂ [a,b](1 � i � N) such that∑N

i=1(βi−αi) < δ , and ζx is a singular
function in the sense that ζx is a continuous and of bounded variation function on
[a,b] such that ζ̇x = 0 almost everywhere on [a,b].

• By u∈RCSLBV(I; IRn) it is meant that x is a right-continuous function of special
locally bounded variation, i.e., x is of bounded variation and can be written as the
sum of a jump function and an absolutely continuous function on every compact
subinterval of I. So, if x ∈ RCSLBV(I; IRn) then

x = [x]+Jx, (C.1)

where [x] is a locally absolutely continuous function called the absolutely con-
tinuous component of x and Jx is uniquely defined up to a constant by

Jx(t) = ∑
t�tn

x(t+n )− x(t−n ) = ∑
t�tn

x(tn)− x(t−n ), (C.2)

where t1,t2, ...,tn, ... denote the countably many points of discontinuity of x in I.

C.2 Multifunctions of Bounded Variation in Time

A moving set t �→ K(t) is said to be right-continuous bounded variation in time on
[0,T ], if there exists a right-continuous nondecreasing function r: [0,T ]→ IR such
that

dH(K(t),K(s)) � r(t)− r(s), for all 0 � s � t � T.

Let r(0) = 0. For any partition 0 = t0 < t1 < · · ·< tN = T of [0,T ], this yields
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N−1

∑
i=0

dH(K(ti+1),K(ti)) �
N−1

∑
i=0

[r(ti+1)− r(ti)] = r(T ).

Therefore the first inequality can be interpreted as requiring that t �→ K(t) is of
bounded variation. We conclude that the above definition of the variation of a func-
tion can be extended to set-valued functions where the Euclidean distance is replaced
by the Hausdorff distance.

C.3 Distributions Generated by RCLSBV Functions

The material in this section is entirely taken from Sect. 2 of Acary et al. (in press).
Let I be the real interval given by

I = [α,β ),

where α ∈ IR and β ∈ IR∪{+∞}. The support supp{ϕ} of a function ϕ : I→ IR is
defined by supp{ϕ} := {t ∈ I | ϕ(t) �= 0}. We denote by C∞

0 (I) the space of real-
valued C∞(I)-mappings with compact support contained in the open interval (α,β ),
and D ′(I) is the space of Schwartz distributions on I, i.e., the space of linear contin-
uous forms on C∞

0 (I). Recall that for T ∈ D ′(I), the (generalized) derivative of T is
defined by

〈DT,ϕ〉=−〈T, ϕ̇〉,∀ ϕ ∈C∞
0 (I).

The (generalized) derivative of order n is then given by

DnT = D(Dn−1T ) (n � 2)

that is
〈DnT,ϕ〉= (−1)n〈T,ϕ(n)〉,∀ ϕ ∈C∞

0 (I).

For a ∈ I, we denote by δa the Dirac distribution at a, defined by

〈δa,ϕ〉= ϕ(a),∀ ϕ ∈C∞
0 (I).

Note that δa = DH (.−a) where H is the Heaviside function:

H (t) =
{

1 if t � 0
0 if t < 0.

(C.3)

The support supp{T} of a distribution T ∈D ′(I) is defined by supp{T} δ= I\O where
O ⊂ I denotes the largest open set in I on which T vanishes in the sense that 〈T,ϕ〉=
0,∀ ϕ ∈C∞

0 (I) with support contained in O:

• Let h ∈ RCSLBV(I; IR) be given. We will denote by E0(h) the countable set of
points of discontinuity t1,t2, ....,tk, ... of h. As seen above, h can be written as the
sum of a locally absolutely continuous function [h] and the locally jump function
Jh given by
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Jh(t) = ∑
t�tk

σh(tk),

where for t ∈ I,

σh(t)
Δ= h(t+)−h(t−) = h(t)−h(t−)

denotes the jump of h at t. It is clear that if t ∈ I\E0(h) then σh(t) = 0.
• We will denote by ĥ(1)(t) the right derivative (if it exists) of the absolutely

continuous part [h] of h ∈ RCSLBV(I; IR) at t, i.e.,

ĥ(1)(t) Δ=
d+[h]

dt
(t) = lim

σ→0+

[h](t +σ)− [h](t)
σ

.

We have thus
h = [h]+Jh (C.4)

and
dh = ĥ(1)dt + dJh (C.5)

The measure dJh is atomic as a measure concentrated on the set E0(h) of count-
ably many points of discontinuity of h in I, i.e., dJh(A) = 0,∀A ∈B(IR),A ⊂
I\E0(h).

• Let us now set
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0(I; IR) = RCSLBV(I; IR)

F1(I; IR) = {h ∈F0(I; IR) : ĥ(1) ∈ RCSLBV(I; IR)}

F2(I; IR) = {h ∈F1(I; IR) : ĥ(2) Δ= d+

dt [ĥ(1)] ∈ RCSLBV(I; IR)}

...

Fk(I; IR) = {h ∈Fk−1(I; IR) : ĥ(k) Δ= d+

dt [ĥ(k−1)] ∈ RCSLBV(I; IR)}

(C.6)

and
F∞(I; IR) = ∩k∈INFk(I; IR).

We standardize the notation by setting ĥ(0) Δ= h. Note that ĥ(α) ∈
RCSLBV(I; IR) (α � 1) means that the absolutely continuous function [ĥ(α−1)]
admits a right derivative ĥ(α)(t) = d+

dt [ĥ(α−1)](t) at each t ∈ I and ĥ(α) is of spe-
cial local bounded variation over I.

Let n ∈ IN be given.

Definition C.1. We say that a Schwartz distribution T ∈ D ′(I) is of class Tn on I
provided that there exists a function F ∈F∞(I; IR) such that T = DnF.
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Let us now denote by Tn(I) the set of all distributions of class Tn on I, i.e.,

Tn(I) = {T ∈D ′(I) : ∃F ∈F∞(I; IR) such that T = DnF}.

It is clear that
T0(I) = F∞(I; IR).

If T ∈ T1(I) then there exists F ∈F∞(I; IR) such that

〈T,ϕ〉=
∫

I
ϕ dF̂(0) =

∫
I
ϕ dF,∀ϕ ∈C∞

0 (I).

More generally, if T ∈ Tn(I) for some n � 2, then there exists F ∈F∞(I; IR) such
that, for all ϕ ∈C∞

0 (I),

〈T,ϕ〉 =
∫

I
ϕ dF̂ (n−1) +

n

∑
i=2

(
∑

tk∈E0(F̂(n−i))∩supp{ϕ}
(F̂ (n−i)(t+k )− F̂(n−i)(t−k ))〈δ (i−1)

tk ,ϕ〉
)

=
∫

I
ϕ F̂(n)dt +

n

∑
i=1

(
∑

tk∈E0(F̂(n−i))∩supp{ϕ}
σF̂(n−i)(tk)〈δ (i−1)

tk ,ϕ〉
)

. (C.7)

For a distribution T ∈ Tn(I), as expressed in (C.7), we may clearly identify the
"function part" {T} and the "measure part"� T � respectively by

{T}= F̂ (n) (C.8)

and (if n � 1)

〈� T �,ϕ〉=
∫

I
ϕ dF̂ (n−1), ∀ ϕ ∈C∞

0 (I) . (C.9)

We will also use the notation d� T� to denote the Stieltjes measure dF̂ (n−1) gen-
erated by F̂ (n−1) ∈ RCSLBV(I; IR). Here {T} is a RCSLBV function and d� T�
is a Stieltjes measure. For pedagogical reasons, we use the two different notation
d� T� and � T� to denote, respectively, the Radon measure defined on the
Borel sets and the corresponding distribution, i.e.,

〈� T �,ϕ〉=
∫

I
ϕ d� T �, ∀ ϕ ∈C∞

0 (I) .

It will be also convenient to use the notation {T (k)} to denote the "function part" of
DkT , i.e.,

{T (k)}= {DkT}= F̂ (n+k) .

Definition C.2. We say that a Schwartz distribution T ∈ D ′(I) is of class T∞ on I
provided that there exist n ∈ IN and a function F ∈F∞(I; IR) such that T = DnF.
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Defining T∞ therefore allows one to encompass all distributions of class Tn, n ∈ IN.
The set of Schwartz distributions of class T∞ on I will be denoted by T∞(I). It is
clear that

T∞(I) = ∪n∈INTn(I).

For T ∈ T∞(I), we define the degree "deg(T )" of T in the following way: Let n be
the smallest integer such that T ∈Tn(I), we set

deg(T ) =

⎧⎨
⎩

n + 1 if n � 1
1 if n = 0 and E0({T}) �= /0
0 if n = 0 and E0({T}) = /0

. (C.10)

Remark C.3. The distributions of degree 0 are the continuous F∞-functions while the
distributions of degree 1 are the discontinuous F∞-functions. The right-continuous
Heaviside function is of degree 1, the Dirac distribution δa (a ∈ I) is of degree 2, the
distribution D(n)δa (a ∈ I) is of degree n + 1.

C.4 Differential Measures

Details on differential measures may be found in (Schwartz, 1993; Monteiro
Marques, 1993; Moreau, 1988a).

Definition C.4. Let x : I → IRn be a BV function, I �= /0, I ⊆ IR. Let ϕ(·) be a con-
tinuous real function on I, with compact support. Let P denote the set of finite
partitions of I, each partition PN with nodes t0 < t1 < ... < tN . Let θk ∈ [tk−1, tk]
for all intervals of the partition PN. The Riemann–Stieltjes sums S(ϕ ,PN,θ ;x) =
∑N

k=1ϕ(θk)(x(tk)− x(tk−1)) converge as N → +∞ to a limit independent of the θk.
This limit is denoted as ∫

ϕ dx (C.11)

where dx is the differential measure associated to x(·). The map x �→ dx is linear.

If x(·) is constant, dx = 0. If dx = 0 and x(·) is right-continuous in the interior of I,
then x(·) is constant. If x(·) is a step function, then dx is the sum of a finite collection
of Dirac measures with atoms at the discontinuity points of x(·). For a � b, a,b ∈ I,

dx([a,b]) = x(b+)− x(a−),

dx([a,b)) = x(b−)− x(a−),

dx((a,b]) = x(b+)− x(a+),

dx((a,b)) = x(b−)− x(a+).

In particular, we have
dx({a}) = x(a+)− x(a−)
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For x ∈ LBV(I; IRn), x+ and x− denote the functions defined by

x+(t) = x(t+) = lim
s→t,s>t

x(s), ∀t ∈ I,t < sup{I}

and
x−(t) = x(t−) = lim

s→t,s<t
x(s), ∀t ∈ I,t > inf{I}

(where sup{I} (resp. inf{I}) denotes the supremum (resp. infinum) of the set I). If
x,y ∈ LBV(I; IRn) then xTy ∈ LBV(I; IR) and

d(xTy) = (y−)Tdx +(x+)Tdy = (y+)Tdx +(x−)Tdy. (C.12)

Let us also recall that

2(x−)Tdx � d(xTx) = (x+ + x−)Tdx � 2(x+)Tdx. (C.13)

C.5 Bohl’s Distributions

Definition C.5. A Bohl function f (·) is a continuous function having rational
Laplace transforms, defined on IR+ into IRn. One has f (t) = Aexp(Bt)C for some
matrices A, B, C of suitable dimensions. The one-sided Laplace transform of a
Bohl function is given by f̂ (s) = A(sIn− B)−1C. It is rational and strictly proper
(i.e., its denominator has a degree strictly larger than the degree of the numera-
tor). The inverse Laplace transform of a rational, strictly proper function, is a Bohl
function.

Bohl functions appear as the solutions of linear differential equations with constant
coefficients. They are constants, exponentials, sines, and cosines.

Definition C.6. A Schwartz’ distribution T is a Bohl distribution, if it can be de-

composed as T = Timp + Treg, where Treg is a Bohl function, and Timp = ∑l
i=0 T iδ (i)

0 ,

where δ (i)
t is the ith derivative of the Dirac measure with atom at time t,

and some real numbers T i. The integer l + 2 may be called the degree of the
distribution.

Hence the Dirac measure has a degree 2. Notice that the Bohl’s distributions are
a particular case of the distributions generated by RCSLBV functions described in
Sect. C.3.

C.6 Some Useful Results

Lemma C.7 (Gronwall’s Lemma). Suppose f : IR+→ IR+ is a continuous function,
and constants b � 0 and c � 0 are given. Then if
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f (t) � b +
∫ t

0
f (s)ds, for all t � 0 (C.14)

it follows that
f (t) � b exp(ct) (C.15)

The next result is proposition 7.1.1 in Glocker (2001).

Proposition C.8. Let f : t �→ f (t) be a right-continuous function, and let F(t) =
F(0)+

∫ t
0 f (s)ds. If f (0) > 0, then there exists a time interval (0, t∗), t∗ > 0, such

that F(t) > F(0) for all t ∈ (0,t∗).

This proposition allows one to deduce some information on the evolution of the
position of a mechanical system, when the velocity is right-continuous and positive.
For instance, if a constraint h(q) is active on some time interval I (i.e., h(q(t))= 0 for
all t ∈ I), then d+

dt (h(q(t)) = ∇hT(q(t))q̇(t+) > 0 implies that h(q(·)) > 0 in a right
neighborhood of t. The same reasoning may be applied when both h(q(t)) = 0 and
∇hT(q(t))q̇(t+) = 0 on I, using this time the acceleration. And so on. Let us state a
similar result with more regularity assumptions.

Let f : IR → IR be n times right differentiable, i.e., for all t ∈ IR there ex-
ists η > 0 such that ḟ +(τ) = limh→0,h>0

f (τ+h)− f (τ)
h exists on [t, t + η), f̈ +(τ) =

limh→0,h>0
ḟ +(τ+h)− ḟ +(τ)

h exists on [t,t +η), and so on. For the ease of writing let us
drop the + upperscript. Denote D f j(t) = ( f ( j)(t), f ( j+1)(t), ..., f (n)(t)), 1 � j � n.
The lexicographical inequality x! 0, x ∈ IR1×n is a row, means that the first nonzero
element of x is positive, and x �= 0.

Proposition C.9. Under the stated assumptions, suppose that for some t ∈ IR one
has D f j(t)! 0 for some 1 � j � n. Then f ( j−1)(s) > f ( j−1)(τ) for all s ∈ (t,t∗) and
some t∗ > t.

Proof: There exists an i with j � i � n such that f (i)(t) > 0. We may then apply
iteratively Proposition C.8. "#
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P–matrix, 352
P0–matrix, 353
PK(·), 478
P�–matrix, 354
θ -method, 256, 287
θ -method

energy conservation, 279
f = O(g), 213
f = o(g), 213
AVI, 389
DI

Filippov, 24
EVI, 13
Evolution Variational Inequality, 13
LCP, 7
Linear Complementarity Problem, 7
LCP

feasible, 351
LCP existence and Uniqueness, 352
LCS, 6
Measure Differential Inclusion (MDI) , 44
NLP

Gradient-projection methods , 350
NSGS, 437
QP

Active-set methods, 339
dual problem, 333
Gradient–projection methods , 341
Interior point methods, 343
lagrangian relaxation, 333

Mixed Complementarity Problem (MCP),
383

VI

evolution, 13
3-parameter impact law, 153

B-differentiability, 429

Accumulation of events, 194
Active-set methods, 339
Affine complementarity system, 270
Augmented lagrangian function, 347

B-differentiable Newton’s method, 429
Backward Euler method, 269, 276
Ballast modelling, 308
Bilateral constraints, 109, 225
Bipotential function, 148
Bohl

distributions, 168, 487
functions, 168, 487

Bouncing ball, 41
Bounded variation

function, 481
multivalued function, 482

Brazil nuts effect, 307, 317
Bulk segregation, 307
BV, 481

C
function, 385

Carathéodory
solutions, 65

Catching-up algorithm, 271
Central path, 375
Chattering behaviour, 30
Collision detection, 128
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Complementarity, 2
Complementarity

function, 385
Complementarity problem

and VI, 390
extended, 356
general form, 390
generalized, 356
geometric, 356
horizontal, 355
linear, 7, 37, 274, 351
mixed, 383
mixed linear, 26, 355
nonlinear, 274, 379
vertical, 356

Complementarity systems
affine, 270
and impulsive ODEs, 103
differential, 83
dynamical, 26, 85, 170
equivalence to sweeping process, 170
fixed points, 19
gradient, 84
jump rule, 168
linear, 6, 19, 86, 95, 96, 275
linear non autonomous, 167
mixed linear, 26, 166
non linear, 88
nonlinear passive, 172
passive linear, 168
time-stepping scheme, 275

Cone
dual, 83, 165, 390
kinetic normal, 477
normal, 4, 23, 73, 74, 79
polar, 74
tangent, 74, 79, 85, 91, 182

Conjugate function, 23
Consistency, 236
Consistency of the gap, 294
Constraint qualification, 79
Continuum media, 131
Convergence, 236
Convex process, 70
Coordiante system, 112
Coordinates reduction, 111
Copositive

plus, 374
strictly, 479

Copositive matrix, 210, 374, 479
Coulomb friction, 40, 81, 155, 283, 314
Coulomb friction

cone faceting, 410, 417
enhanced, 155
Glocker’s formulation, 420
Masing’s model, 157
Prandtl’s model, 157
rheological models, 157
weakness of cone faceting, 418

Coulomb’s friction, 145

Dahl’s model (modified), 157
DCS, 166
De Saxcé’s bipotential, 148
Deep drawing, 309
Deformable bodies, 131
Delassus’ example, 229
Delassus’ operator, 297, 303
Differential inclusion

unilateral, 77
Differential inclusions, 13, 57, 252
Differential inclusions

hypomonotone, 73
implicit, 78, 89
in normal cones, 262
Lipschitzian, 59, 252
maximal monotone, 73, 78
one-sided Lipschitz, 69, 255
outer semi-continuous, 61, 254
unilateral, 13, 77, 274
upper semi-continuous, 61, 254
with infinitely many solutions, 264

Differential measure, 44
Differential variational inequalities, 82
Differential variational inequalities

boundary value problem, 281
initial value problem, 280

Diode, 2
Diode

ideal, 3
Shockley’s law, 3
Zener, 21

Dirac measures
in electrical circuits, 54

Discontinuity w.r.t.initial data, 189
Dissipation (maximal), 148
Distribution differential inclusion, 178
Distributional formalism, 183
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DOPRI5 method, 240
Dorn’s duality, 363
Duality, 39

Electrical circuits, 6, 87
Electrical circuits

with Dirac measures, 54
EMTS, 322
Equilibrium points, 19
Euler angles, 115
Euler method

implicit, 256
perturbed, 255

Event, 38
Event

nonsmooth, 38
Event detection

linear interpolation, 237
second-order interpolation, 237
third-order interpolation, 237

Event-driven methods, 10, 39
Event-driven methods

consistency, 236
order, 236

Evolution variational inequalities, 80, 169
Explicit Euler method, 252

Fenchel’s equality, 149
Filippov

DI, 24, 63
solutions, 65
system, 24

Filippov’s inclusion, 63, 95, 96, 194, 257
Filippov’s inclusion

and generalized derivatives, 67
Event-driven scheme, 203
event-driven scheme, 205
in mechanics, 162
LCP of the active set, 209
piecewise active solution, 206
smoothing method, 267
spontaneous switches, 210
Stewart’s method, 205

Fracture dynamics, 314
Frictional paroxysms, 192, 315
Function

conjugate, 23
Function

indicator, 3

one-sided differentiable, 257
relay, 25
right-sided continuously differentiable,

261
support, 23

Gap function, 125
Gap function

consistency of, 294
discretization, 294

Generalized equation, 396
Glocker’s inclusion, 224
Gradient

of convex analysis, 4
Gradient–projection methods

QP , 341
Gradient-projection methods

NLP , 350
Goldstein–Levitin–Polyak, 350
Rosen, 351

Granular material, 307
Granular material

parallelization of algorithms, 309
size segregation, 307

Gronwall’s Lemma, 487

Hausdorff continuity, 60
Hausdorff distance, 475
Higher order sweeping process, 177
Hille-Yosida theorem, 78
Horizontal monotone LCP, 374
HOSP, 177, 319
Huygens’ theorem, 116
Hypomonotone, 72

Impact time calculation
linear interpolation, 237
second-order interpolation, 237
third-order interpolation, 237

Impact with friction, 151
Implicit θ−method, 256
Implicit vs catching-up, 50
Impulsive ODEs, 100
Impulsive ODEs

and complementarity systems, 103
Inclusion, 5
Inconsistent states, 192
Indeterminate states, 192
Indicator function, 3, 23
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Inertia matrix, 116
Infinite-dimensional systems, 131
Interior point methods, 343
Inverters, 464
Iteration matrix, 288

Kalman-Yakubovic-Popov LMI, 168, 276
Karush–Kuhn–Tucker conditions, 332, 346
Kato’s theorem, 82
Kinetic energy of a solid, 117

Lagrange and Newton-Euler dynamics, 120
Lagrange multipliers, 332
LBV, 481
LCP, 7, 12, 15, 351

horizontal, 355
LCP

and QP, 359
definition, 351
extended, 356
generalized, 356
geometric, 356
horizontal, 360
monotone horizontal, 357
pivoting methods, 367
splitting–based methods, 363
vertical, 355

LCS
definition, 166
discretization, 14

Left-limit, 481
Lexicographic inequalities, 373
Line–search

Armijo, 350
Linear Complementarity System, 6
Linear matrix inequality, 276
Lipschitz continuity, 58, 71
Local kinematics, 123

Markov parameter, 97
Markov parameters, 174
Masing model, 157
Masonry structures, 309
Matrix

P, 352
P0, 353
P�, 354
P�, 354
column adequate, 354

copositive, 479
copositive plus, 374
Q, 354
strictly copositive, 479

matrix
sufficient, 354

Maximal dissipation, 148
Maximal monotone, 61, 72, 73, 77, 81, 256,

396
Maximality, 22
MCP, 420
Measure

differential, 44
differential inclusion, 44
Stieltjes, 44

Measure differential formalism, 183
Measure differential inclusion, 89
Mechanical systems

Lagrange equations, 107
linear time-invariant, 108
Newton-Euler equations, 112

Merit function, 382
Mid-point rule, 256
Minimum norm solution, 264, 265
Minimum ratio test, 370
MLCP, 27, 355, 415
MLCP

and QP, 359
MLCS, 27, 166
Modes, 39
Moment of inertia, 116
Monotone, 380
Monotonicity, 22, 357
Moreau’s superpotential, 149
Moreau’s sweeping process, 45, 74, 88, 137
MOS transistors, 464
Multifunction

Lipschitz, 58, 71, 75
one-sided Lipschitz, 68
sign, 40

Multiple impacts, 141
Multistep method, 258
Murty’s least index pivoting method, 369

Natural map, 397
NCP, 379
Newmark’s method, 240
Newton’s impact law, 144
Newton’s Method
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Alart & Curnier, 424
Newton-Euler and Lagrange dynamics, 120
Newton-Euler dynamics, 119
NLP, 345

KKT conditions, 346
NLP

augmented lagrangian function, 347
dual problem, 347

Nonlinear programming problem, 345
Normal cone, 4, 74, 79, 111
Normal cone in the kinetic metric, 477
Normal map, 397
NSCD method, 285
Numerical simulation

electrical circuits, 9, 14

Olinde-Rodrigues formula, 115
One-sided Lipschitz continuity, 68
One-sided Lipschitz DI, 255
Order, 236
Order of consistency, 261
Order of convergence, 261
Order of event-driven methods

with finite number of impacts, 239
with infinite number of impacts, 239

Ordinary DI, 71
OSNSP, 296
Outer semi-continuous, 61

P-function, 381
P-matrix, 7
Painlevé paradox, 192, 315
Parallelization of algorithms, 309
Passive systems, 276
PGS, 364
Piecewise affine systems, 94
Piecewise continuous systems, 97
Piecewise linear system, 9
Piecewise smooth systems, 95
Pontryagin’s maximum principle, 178
Positive real system, 322
Practicable schemes, 260
Prandtl’s model, 157
Principal minors, 352
Principle of maximal dissipation, 148
proj[K; ·], 478
projK(·), 478
projected

Gauss–Seidel method, 364

Jacobi method, 364
Successive Overrelaxation method, 364

Projected dynamical systems, 84
Projection, 8
Projection (notation for), 478
PSOR, 364

QP, 332
KKT conditions, 332

QP
and LCP, 359
lagrangian function, 332
nonconvex, 334
strictly convex, 334

Quadratic programming problem, 332
Quasi-variational inequality, 390

RCLBV, 481
RCSLBV, 482
Reachable sets, 254
Real-time simulations, 311
Reduced coordinates, 111
Relative degree, 18, 173
Relative local velocity, 123
Relay function, 25, 27, 61, 73
Relay system, 269
Rheological models, 157
Right-limit, 481
RK24 method, 240
Runge–Kutta

DI in normal cones, 262
Runge–Kutta method, 259

Saddle-point problem, 394
Sannuti’s canonical form, 179
SBV, 481
Screw

dynamic, 118
kinematic, 115
kinetic, 116
of acceleration, 118
the twist, 115

second–order cone complementarity
problem, 295

second-order cone, 391
second-order cone complementarity

problem, 151
Selection procedure, 252, 264, 273
Selection procedure
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minimal variation, 265
minimum norm, 264

Set-valued mappings
hypomonotonicity, 72, 73
linear growth, 72
Lipschitz continuity, 59
maximal monotonicity, 61, 72, 73, 78
one-sided Lipschitz, 69
outer semi-continuity, 61
upper semi-continuity, 61

Sign multifunction, 40
Simulation of

assembly process, 241
clutch vibrations, 241
deep drawing systems, 309
drop tower hydraulics, 232
gear rattling, 241
granular material, 307
hammering in gears, 241
inverters, 464
masonry, 314
MOS transistors, 464
roller coaster, 232
rolling disk, 314
snake robot, 314
tensegrity structures, 309
turbine blade damper, 241
woodpecker toy, 241, 463
circuit breakers, 241
ship turning gear, 241

Size segregation, 307
Sliding local velocity, 124
Slow solutions, 264
Software packages

Humans, 443
LMGC90, 443
SICONOS, 443

Spatial displacement, 118
Special bounded variation, 481
Spontaneous switches, 63, 194
Stability, 236
Stieltjes matrix, 188
Stieltjes measure, 44
Stiff systems, 50
Strictly monotone, 380
Strongly monotone, 380
Subdifferential, 4, 22, 40
Subgradients, 4
Superpotential, 149

Support function, 23
Sweeping process

catching-up algorithm, 271
discretization, 46, 271
equivalence to LCS, 170
first order, 74
first order RCBV, 77
higher order, 177, 319
Lispchitz, 76
perturbed, 77, 170, 173
second order, 88

Switch model, 267
Switched systems, 98
Switching diagrams, 230
Switching logic, 230
Switching surface, 63

Tableau, 368
Tangent cone

inclusion in, 223
Tangent cone, 74, 79
Tangential impact, 193
Tangential restitution, 153
Tensegrity structures, 309
Time-stepping algorithm
θ -method, 256
Explicit Euler, 252
extended, 322
for mechanical systems, 285
for the HOSP, 319
linear multistep, 258
Moreau’s catching-up, 271
Runge–Kutta, 259
selection procedure, 264

Time-stepping methods, 10, 28
Transversality conditions, 215
Tresca’s friction, 434
Twist of a rigid body, 115

UDI, 13
Unilateral constraints, 110
Unilateral differential inclusion, 13
Unilateral differential inclusion

discretization, 257, 274
Upper semi-continuous, 61

var( f )
variation of f , 481

Variable
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basic , 368
blocking, 370
driving, 370
nonbasic , 368

Variational inequalities
and CP, 390
differential, 82, 279
evolution, 80, 83, 169
hemi, 82
mixed, 476
of first kind, 476
of second kind, 476
quasi, 81, 390

Variational inequality, 5, 19, 389

Variational inequality
linearly constrained, 389

Viability problem, 178
Virtual work, 122

Woodpecker toy, 463
Wrench, 117

xLCP, 356

ZD state representation, 179
Zener diode, 21
Zeno phenomenon, 195
Zero dynamics, 179, 324
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