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Preface to the Series

Medicinal chemistryisbothscienceandart. Thescienceof medicinal chemistry
offers mankind one of its best hopes for improving the quality of life. The art
of medicinal chemistry continues to challenge its practitioners with the need
for both intuition and experience to discover new drugs. Hence sharing the
experience of drug discovery is uniquely beneficial to the field of medicinal
chemistry.

The series Topics in Medicinal Chemistry is designed to help both novice
and experienced medicinal chemists share insights from the drug discovery
process. For the novice, the introductory chapter to each volume provides
background and valuable perspective on a field of medicinal chemistry not
available elsewhere. Succeeding chapters then provide examples of successful
drug discovery efforts that describe the most up-to-date work from this field.

The editors have chosen topics from both important therapeutic areas and
from work that advances the discipline of medicinal chemistry. For example,
cancer, metabolic syndrome and Alzheimer’s disease are fields in which
academia and industry are heavily invested to discover new drugs because
of their considerable unmet medical need. The editors have therefore prior-
itized covering new developments in medicinal chemistry in these fields. In
addition, important advances in the discipline, such as fragment-based drug
design and other aspects of new lead-seeking approaches, are also planned for
early volumes in this series. Each volume thus offers a unique opportunity to
capture the most up-to-date perspective in an area of medicinal chemistry.

Dr. Peter R. Bernstein
Prof. Dr. Armin Buschauer
Prof. Dr. Gunda J. Georg

Dr. John Lowe
Dr. Hans Ulrich Stilz
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Preface to Volume 5

The journey of a drug from conception to launch is a long road, fraught
with many detours and dead ends. Compound attrition is caused by a myriad
of sources, including suboptimal safety, potency and/or PK/PD. In the last
decade, the industry has started focusing more on the identification of quality
lead matter that possesses a multidimensional package of attractive proper-
ties rather than advancing hits solely on potency. Hits with lead quality
attributes and devoid of potential toxic pharmacophores advance faster
through the discovery pipeline and stand a better overall chance of success.

In this volume we examine how hits are typically identified and validated
in the pharmaceutical field and how this chemical matter is advanced to lead
stage. The introductory chapter by Chris Lipinski is a commentary on the
role of medicinal chemists in this process, based on his long and successful
career in the industry. The following three chapters speak of hit identifica-
tion using traditional high throughput screening techniques (Paslay, Morin
and Harrison), virtual screening (Narasimhan and Bikker) and NMR screen-
ing techniques (Pellecchia). The final two chapters describe the hit triage
(Freeman-Cook and Kung) and the follow-up processes (Ellingboe and
Gilbert) for advancing hits into leads.

The objective of this volume is to provide an overview of the hit-to-lead
process; it is not intended to be all inclusive. Furthermore, much of the
methodology described here is influenced by the culture of the authors’ res-
pective institutions. In general, however, lead seeking approaches across
industry (and academia) are more similar than they are different and are,
for the most part, captured in this volume.

I am indebted to the authors for their contributions to this volume. From
each of their respective chapters I have learned something new, unexpected
and pertinent to my own career in drug discovery. I am also indebted to the
many readers here at Pfizer who contributed a commentary on the chapters
and helped to influence the final version presented here.

July 2009 Matthew M. Hayward
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Overview of Hit to Lead: The Medicinal

Chemist’s Role from HTS Retest to Lead

Optimization Hand Off

Christopher A. Lipinski

Abstract Amedicinal chemist combines organic synthesis expertise and the ability

to optimize chemistry structure–activity relationships (SAR) based on relevant

biomedical information so as to achieve project goals. The ability to optimize

chemistry SAR consists of both the easier to explain logical stepwise structural

modification that is often described by quantitative structure–activity relationships

(QSAR) and the more difficult to explain exercise of high-order pattern recognition.

Optimizing SAR is full of traps for the unwary.What are the pros and cons of various

types of screens? Should one believe the screening data? How does one optimize

against multiple sometimes conflicting properties? What types of compounds are

worth screening? How does one judge the quality of a screening hit? Very impor-

tantly, drug discovery is a team exercise in which the medicinal chemist plays a key

facilitating role. Given good interpersonal skills, the medicinal chemist’s training is

broad enough to enable cooperative interactions across the whole discovery team.

Chemistry pattern recognition is the unique skill that the medicinal chemist con-

tributes to drug discovery. The ability to relate chemistry structure to biological

activity and to change chemistry structure so as to change a variety of biomedical

parameters in a desired direction leads to the successful ‘‘drug hunter.’’

Keywords HTS, Hit to lead, Medicinal chemistry, Pattern recognition, Screening
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< Less than

> Greater than

ADMET Absorbance distribution metabolism excretion toxicity

Apo
structure

Structure of a protein without a bound ligand

ATP Adenosine triphosphate

Cherry
pick

Individually selecting a screening sample from a larger set

CLND Chemi luminescent nitrogen detector

CNS Central nervous system

DMSO Dimethylsulfoxide

DNA Deoxy ribonucleic acid

DOS Diversity-oriented synthesis

GPCR G-protein coupled receptor

H-bond Hydrogen bond

HERG Human ether-a-go–go related gene

HIV Human immunodifficiency virus

HPLC High performance liquid chromatography

HTS High throughput screening

IC50 Inhibitory concentration (at) 50% inhibition
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IP Intellectual property

kg Kilogram

L Liter

Log P Logarithm (base 10) of P (Partition coefficient)

MDR1 Multidrug resistant (Gene) 1

mg Milligram

mL Milliliter

mM Millimolar

MS Mass spectrum

MWT Molecular weight

NDA New drug application

NIH National institutes of health

nM Nanomolar

NMR Nuclear magnetic resonance

NSAI Non steroidal anti inflammatory

P Partition coefficient (of drug) between normal octanol and water

PCR Polymerase chain reaction

PDE Phospho diesterase

pK/pD Pharmacokinetics/pharmacodynamics

QSAR Quantitative structure – activity relationship

RO5 Rule of 5

SAR Structure – activity relationship

sdf Structure data file

SiRNA Short intervening ribonucleic acid

SPR Surface plasmon resonance

mM Micromolar

z0 HTS quality criterion based on positive and negative compound

controls

1 Introduction: What is a Medicinal Chemist?

The author has spent many years as a medicinal chemist in the pharmaceutical

industry and is taking this opportunity to share a broad range of advice and

opinions. First of all; what is a medicinal chemist? A medicinal chemist is not the

same as a synthetic organic chemist. Consistent with the years of experience cited

for expert witnesses in litigation an expert medicinal chemist might be expected to

have at least 10–15 years of relevant biomedical pattern recognition superimposed

on a solid synthetic organic synthesis background. The pattern recognition is the

linking of biomedical information to chemistry structure. Chemical structures

associated with emotionally significant events (compound activity success or fail-

ure) are stored in the medicinal chemist’s amygdala and are instantly available for

retrieval. This is an example of a very high order of pattern recognition found in

Overview of Hit to Lead 3



humans (and other mammals) that is evolutionarily selected for because of its

survival value. Most highly skilled professions exhibit some sort of very high order

of pattern recognition as exemplified in the book ‘‘Blink’’ by Malcolm Gladwell [1].

This pattern recognition is mostly a blessing but occasionally a problem. The

blessing is that this skill is at the core of medicinal chemistry competency. The

problem is that this skill is very difficult for non-chemistry professionals to under-

stand. In particular, biologists may not understand how a skilled medicinal chemist

can make a ‘‘snap’’ and accurate judgment about a compounds quality simply by

viewing the compounds chemical structure.

Two distinct patterns are evident in the US-based hiring of medicinal chemists.

The major pharmaceutical companies hire the best synthetic chemists they can find

and then teach them the medicinal chemistry part on the job. A second medicinal

chemistry hiring pattern is for a smaller organization to hire a person with an

academic medicinal chemistry background. For the very best people after about

15 years the overall skills profile from both hiring patterns may be very similar.

1.1 The Medicinal Chemist’s Role

The medicinal chemist’s role is to optimize all the aspects of the properties of a drug

so that the compound succeeds in the clinic. Most often discussions focus on the

technical aspects of ‘‘hit to lead.’’ However, it is important to consider the follow-

ing. What is the most troublesome; technical issues or people issues? Always

people issues are more troublesome and more difficult to solve than technical

issues. Although this chapter is mostly about technical issues the reader would be

advised to remember the trouble priority order. The medicinal chemist to

be effective functions as part of a team. The team aspect always exists but

intensifies along the progression ‘‘hit to lead’’ towards ‘‘lead optimization.’’ Coop-

erative interactions with genomics, biology, drug metabolism and pharmaceutical

sciences are essential. The medicinal chemist needs to be aware that the single most

important factor in success is the chemistry starting point since the structures of

many drugs (but not the properties) may not differ greatly from that of the original

hit [2]. People related factors come in to the choice of a hit. Is the biological assay

valid? Was there some assay problem related to poor compound properties that

colored the choice of hit? Is there some complexity in the biology that early on

should have been a chemistry warning flag about pursuing a hit? Dealing with

questions like these requires both some relevant biology background as well as

interpersonal skills in dealing with the biology discipline. The opportunities for

miscommunication operate in both directions. The medicinal chemist may have

problems with understanding the biology. Equally important, the facility with

which the nonchemistry disciplines understand chemistry varies greatly and will

generally be poorest in the genomics/biology disciplines and better in pharmaceu-

tical sciences and drug metabolism. In communicating with drug discovery sister

disciplines it is well to remember that it is not good enough to give the correct
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message. The message has to be formatted so that it is understand by the audience.

This may well mean that the chemistry issues that are so clear to the medicinal

chemist will need to be very clearly explained to genomics/biology colleagues

without using chemistry jargon.

Specifically what can a medicinal chemist do to enhance cross discipline commu-

nication? In dealing with biologists always ask to see the chemistry structure. Do not

wait. Eventually you will ask for the structure and so asking earlier rather than later

will save you a lot of aggravation. In dealing with biologists try to convey the point

that when you make a compound it will have a definite rather than an indeterminate

structure. The biologist is quite happy to talk about error limits but you the medicinal

chemist really need to get some idea as to which structure is more active because this

is so important for your next synthesis. In dealing with pharmaceutical scientists try to

get the information in graphical format. Most medicinal chemists get limited infor-

mation from the equations so loved by pharmaceutical scientists. Almost any phar-

maceutical science equation can be converted into an easily understandable graphic.

2 Drug Discovery, Druggability and Developability

Let us assume the goal in medicinal chemistry is to work on a drug discovery target.

Do we know the structural and physicochemical characteristics of successful drugs?

The answer is a resounding YES. As potential drugs progress from preclinical to

phase 1, phase 2a and 2b, phase 3, NDA and final market approval there is a very

consistent change in properties. Parameters such as MWT and Log P decline

throughout the process such that the mean approved drug MWT is less than 350

and less than 15% of launched drugs have log P>5. Multiple literature reports

come to this conclusion. Remarkably, the profile of clinically approved drugs has

remained very stable for 40 years despite the increased MWT and Log P of

compounds entering phase 1 [3–5]. This very time stable trend strongly suggests

that in some way relatively simple properties track with development success (i.e.,

developability). The developability stands in contrast with druggability, the ability

of a ligand to bind to target with properties consistent with oral activity and

adequate pharmacokinetics and pharmacodynamics. The physicochemical profiles

of ligands as a function of target are now well known. For example, against

aminergic GPCR’s, kinases, PDE’s, most ion channels the vast majority of ligands

will be RO5 compliant. However against targets like aspartyl proteases and

GPCR’s having peptides or lipids as natural substrates the vast majority of ligands

will be non-RO5 compliant. With a great deal of effort, skill and access to the

appropriate resources well resourced companies have pushed against the fringes of

RO5 space and successfully entered compounds into the clinic with adequate oral

absorption and pk/pd (e.g., HIV protease inhibitors). This then leads to a conun-

drum. The industry has been initially successful in entering compounds into the

clinic against the challenging (and very interesting targets). With enough resources

and effort ligands can be found that have the credentials to enter the clinic, i.e., they

Overview of Hit to Lead 5



are druggable. But so far there is no evidence that the historical pattern of approval

success in relatively small and nonexcessively lipophilic compounds has changed.

In other words the newly developed ligands are outside of the historical norms of

approved drugs. While they may be druggable they are only poorly developable.

2.1 High Throughput Screening

The predominant method in the current era of finding hits against a target is HTS.

As defined by Wikipedia this is ‘‘Using robotics, data processing and control

software, liquid handling devices, and sensitive detectors, HTS allows a researcher

to quickly conduct millions of biochemical, genetic or pharmacological tests.’’ The

‘‘millions’’ may be a bit of an exaggeration since the most common format today is

to test compounds in plates containing either 384 or 1,536 wells. The vast majority

of current HTS consist of the search for a selective ligand against a single mecha-

nistically defined target. Recently this paradigm has come under increasing criti-

cism and there is an increasing diversity in how one can discover leads [6]. The

reader should be aware that there are valid alternatives (with associated pros and

cons) to HTS and that many drugs were discovered without resorting to HTS.

Currently there is a slow gradual growth in the pursuit of poly-pharmacology [7, 8].

This can be done by mixing of multiple compounds each with a mechanism that is

synergistic to the desired biology outcome or by seeking a single compound having

multiple synergistic mechanisms of action. This latter approach has existed for

decades (whether known or not) in the search for CNS drugs. In this therapeutic

area it is the rule that clinically approved compounds typically exhibit a dozen

activities at receptors/transporters in the ten nanomolar affinity range. The skilled

medicinal chemist’s pattern recognition has certain inevitable consequences when

using HTS to discover leads. Most importantly, a skilled medicinal chemist can

never design a truly diverse screening library. This is a good thing because the

literature overwhelmingly indicates that biologically active compounds are not

uniformly distributed in chemistry space [9–11]. A logical follow up to this

observation is that screening a truly diverse library is the worst way to discover a

drug. A skilled medicinal chemist often in collaboration with a computational

chemist is essential in screening library design because the medicinal chemist’s

prejudices and biases will always be productively incorporated into the library

design.

2.2 Phenotypic Screening

Screening for phenotype rather than mechanism was the norm in the 1970s, an era

at least as productive as the current in terms of drug approvals [12]. Screening for

mechanism predominated by the 1990s and still does today. Most drugs entering

6 C.A. Lipinski



into the clinic in the 1970s arose from phenotypic (observational) in vivo screens,

for example blood pressure lowering, lipid effects, glucose lowering, rodent behav-

ioral assays. The common pattern was that there was no mechanistic bias behind the

phenotypic end point. This resulted in a huge advantage in terms of target opportu-

nity space. For example, as a minimum there are at least 100 possible mechanisms

that might be responsible for a hypoglycemic phenotype. In the 1970s the mecha-

nism was not known for most compounds entering the clinic. Knowing mechanism

is still today not a regulatory requirement to enter clinical trials. However, not

knowing mechanism does considerably complicate clinical development, for

example especially on backup strategy. If something untoward happens in late

stage discovery or in development the first question asked is whether the untoward

effect is on target or off target. If the undesired effect is off target, then changing

chemical structure usually solves the problem. Recently at least two major drug

companies have reinstituted phenotypic drug screening as a complement to mecha-

nism based drug screening, at least in part because of the increased target opportu-

nity space of the phenotypic screen.

Medicinal chemists often raise objections to phenotypic screening. They do

not believe that it is possible to optimize activity significantly against a multi

parameter end point or a mechanistically undefined end point. This viewpoint

comes from the experience with activity optimization against a single mechanis-

tically defined end point. In this process it is common to improve in vitro activity

by three orders of magnitude, e.g., moving IC50 from 1 mM to 1 nM. This

medicinal chemistry argument is in some ways correct. It is indeed very rare to

improve in vivo activity by three orders of magnitude. This happens because in

vitro and in vivo activity do not scale in a linear fashion [13]. The reasonable

expectation might be three orders of magnitude improvement in vitro and perhaps

10- to 20-fold improvement in vivo. The more modest in vivo activity improvement

was in fact the norm in the 1970s for phenotypic screening in vivo in animal

models. So the current medicinal chemists are not incorrect in their opinions but

they are biased by their emphasis on in vitro activity. One has to ask, after all. What

is the key optimization metric? Is it in vitro activity improvement or in vivo activity

improvement?

Phenotypic screening is particularly common in academia where a natural

product collection or diversity-oriented synthesis (DOS) compounds are screened.

These types of compounds are narrow in ligand opportunity space in that they are

unlikely to bind in multiple modes. Hence, they are a very good fit with the broad

target opportunity space of a phenotypic screen. A phenotypically active compound

is a wonderful starting point for the often difficult and time consuming mechanism

deciphering and an excellent opportunity for publishable research by a graduate

student or post doctoral fellow. In the current era, high content cell-based screens

can be configured to be either mechanistically oriented or phenotypic in nature.

With modern dyes and single cell level optical resolution it is possible to monitor

cell phenotypic behavior, for example, movement of a cell surface feature or to see

something translocating from cytoplasm to nucleus.
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2.3 Fragment Screening

Screening low molecular weight fragments often in the range 175–300 is now a

well validated method of discovering starting points for chemistry optimization.

The rule of three for fragment screening suggests fragment libraries of compounds

with MWT <300, log P <3, rotatable bonds and less than three H-bond acceptors

[14]. It is common for a smaller drug structure to be embedded in another larger

drug structure and experience teaches that small drugs are wonderful sources of

fragments. The prejudice of a decade ago that low MWT compounds could not be

optimized to a lead and to a clinical candidate status has now been proven incorrect.

Fragments typically bind with affinities in the low hundreds of mM to low mM

range. As a result the screening technique must be able to accommodate high

concentration (and high aqueous solubility) to measure these types of weak

affinities. Most commonly, various types of NMR assay have been used as well

as X-ray methods with soaking in or crystallization of a ligand. The extra structural

information from X-ray and often NMR greatly facilitates the optimization process.

NMR and X-ray are specialist technologies that to some extent have limited the

uptake of fragment screening. Additional technologies used either to complement

NMR or X-ray or as replacements for these two techniques include: high dose

biochemical assays, isothermal calorimetry, affinity-based MS, surface plasmon

resonance (SPR) with immobilized protein target or SPR on immobilized tethered

fragments. These technologies all have the commonality that the screening experi-

ment provides less structural information than X-ray or NMR and hence the

chemistry optimization becomes more difficult. Computational advances in the

fragment arena include software to shred biologically active compounds into

chemically sensible fragments; to recombine fragments into lead-like compounds

and software to mutate fragment lists into new fragments having similar structural

or pharmacophoric features. Fragment screening advantages are; better coverage of

chemistry space with lower MWT ligands; steeper SAR for the optimization

process and utility for probing the druggability of marginal targets. Disadvantages

are; the need for specialist type assays such as NMR or X-ray capable of detecting

weak fragment affinities in the 100 mM to low millimolar range and no real

advantage for a clearly undruggable target.

The steeper SAR for fragment optimization derives from the role of enthalpic

and entropic contributions to fragment binding. As a rough rule, the entropic energy

penalty for binding of a fragment to a target is independent of size. Roughly half the

potential binding energy of a small fragment might be lost due to unfavorable loss

of translational and rotational entropy. As the fragment size is increased the

entropic penalty stays roughly the same and the increased enthalpic binding energy

component shows up as a steep activity optimization SAR. So it is not at all

impossible to start with a 1 mM fragment binder and end up with optimization to

a 1 nM binder in a relatively small number of steps. Fragment screening (to date)

has shown no real advantage for the classic undruggable target (e.g., a protein–

protein interaction). However, there are targets in the gray zone for which druggability
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is unclear. For these targets fragment screening offers an attractive exploratory

technique.

2.4 Structure-Based Drug Design

Having an X-ray structure of a target is a tremendous advantage in chemistry optimi-

zation. As a rough rule, about 25% of the advantage resides in the apo structure

(without a ligand). The full value resides when ligand is bound to target. Unfortunate-

ly, if the target is membrane bound as in GPCRs there is almost never structural

information because of the universal difficulty in crystallizing membrane bound

proteins. In predicting ligand binding to protein structures there are at least two

important unsolved problems: those of protein flexibility and those of solvation.

Currently it is very difficult to predict movements of large protein motifs from apo

structure alone. Large protein motif movements in a target often uncover ligand

binding sites, hence the value of target plus ligand information. Solvation changes

in both ligand and target as a consequence of binding are very important to affinity but

are currently rather poorly dealt with in computational chemistry. The computational

prediction of docking (does the ligand bind to target?) and scoring (what is the relative

affinity of ligand to target?) are currently evolving. Docking done properly is useful.

Scoring is rather less precise with affinity rankings just a few years ago roughly

paralleling MWT (higher MWT leads to higher affinity). Docking algorithms are

steadily improving and their utility is enhanced by advances in liquid cherry picking

robotics. Just a few years ago the ability to cherry pick samples from HTS plates or

tube arrays was in the low 1,000s per day. Now in the best resourced companies it is

possible to cherry pick samples in the tens of thousands per day.Moreover, advances

in nanoliter dispensing offer the promise of high volume cherry picking moving into

the affordable category for the smaller pharmaceutical companies and biotech

companies. So rather than running docking and scoring to identify low hundreds

of compounds for experimental screening, organizations of disparate size may soon

be able to perform the same process on tens of thousands of compounds.

2.5 Homology Modeling

If the exact structure of a target of interest is not known it may be possible to

construct computationally a model of the desired target from the known structure of

a structurally related protein. As might be expected, the accuracy of a homology

model declines as the sequence similarity of a known protein declines relative to the

desired target. For some targets overall sequence similarity is much less relevant

than the sequence similarity in the suspected ligand binding domain. Homology

modeling is widely used and its accuracy is controversial. However, this author

believes that the process can be useful even if the homology model is badly wrong.

The interaction of a medicinal chemist with a homology model frequently leads to
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ways of thinking about structure that would not otherwise have happened and some

of these insights do indeed lead to SAR breakthroughs. So my advice is not to be

overly critical in advance of the accuracy of a homology model and I would advise

being open to idea generation even if the homology is fairly low (e.g., 25–30%).

2.6 Chemoinformatics

In the HTS retest to lead optimization process it is essential that the medicinal

chemist has access to chemoinformatics skills. Scoping out the intellectual property

landscape is an essential part of synthesis planning. After all, it might not be a good

idea to begin work on an area riddled with IP problems. All medicinal chemists

need expertise in conducting exact structure, similarity, and substructure searches

on specifically enumerated compounds in the patent literature and in peer reviewed

journals. A Tanimoto similarity of 85% using a typical bit string structure descrip-

tion translates to something that a medicinal chemist would roughly characterize as

structurally (but often not biologically) similar. The medicinal chemist should also

be aware of recent US Supreme Court rulings that raise the bar to a compound being

non-obvious. Older assumptions as to what constitutes non-obvious should be

checked with internal experts. Competently run, patent Markush searches are not

easy and are efforts best left to internal search experts. The trick in IP background

searches is to narrow the search down to at most a few hundred references. Looking

at abstracts alone, as well as specific compounds, will generally give a rough

overview of the IP situation. Prediction of biological activity such as desired

activity or toxicity from structure alone is in theory possible but practically

speaking is still in its infancy. Some well resourced organizations have particular

expertise in this area and consultation with internal experts is advised.

Some expertise in elementary virtual library generation is a plus. When deciding

what to make next it is often advantageous to think about a group of compounds that

might be made rather than a single compound. An easy method to generate a

machine readable sdf file of virtual structures is a good starting point. This file

can be run through whatever computational prediction programs are available and

the output can then be mapped against whatever is known experimentally. The

principle is that it is better to have more choices for synthesis than a single choice.

3 High-Order Pattern Recognition

There is a tendency to think of medicinal chemistry as primarily a logical exercise.

A specific and trivial example would be the much maligned QSAR exploration of

methyl, ethyl, butyl, futile. This author believes that equating medicinal chemistry

with QSAR is incorrect. There is a definite place for what might for want of a better

term be called high-order pattern recognition. A specific example is the time tested
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management strategy of dealing with a project stuck at an SAR impasse. In this

situation experiencedmedicinal chemists from totally different projects are brought in.

They look at the SAR with new, unbiased eyes. Maybe they see something in the

chemistry that reminds them of something theyworked on years ago. They see that the

old chemistry can be applied to the new series and they make a compound that is an

SAR breakthrough that the former project team would never have made and a

compound that very possibly is not any kind of logical progression based on the

preexisting chemistry. Amazingly enough this unexpected outcome process works

well enough so that its use is repeated over and over again in knowledgeable drug

discovery organizations.

3.1 HTS and the Defined Mechanism Screen

Screening compounds against a mechanistically defined biochemical or cell-based

target is currently the predominant method of generating positives (actives) in drug

discovery. The classic biochemical approach would be to try to discover a small

molecule ligand that is a potent and selective antagonist of receptor ‘‘Z.’’ This

method has the advantage that by definition the mechanism of a true positive is

known. The disadvantage is that the target opportunity space is low. For example,

successful screening for a potent and selective antagonist ‘‘Z’’ gives just that: a

potent and selective antagonist ‘‘Z.’’ All the other mechanisms that might also give

the desired biological effect are not explored.

3.2 HTS, Library Design and the Medicinal Chemist

Medicinal chemists ideally should be involved in screening library design. Often

this might involve collaboration with a computational chemist. The goal is to take

advantage of the skilled medicinal chemist’s pattern recognition. The worst way to

design a screening library is based on a ‘‘maximum chemical diversity’’ approach

by a computational chemist who knows nothing about medicinal chemistry. In this

author’s opinion the best screening libraries incorporate prior biomedical knowl-

edge. Since biological activity is so tightly clustered in chemistry space it makes

sense to use this knowledge. For example, one approach might be to accumulate

collections of biologically active compounds and then to shred them apart compu-

tationally in a chemically sensible manner. The fragments can then be computa-

tionally reassembled in new ways. This so called ‘‘recap’’ technology [15] is now

available in commercially available software and sophisticated methods exist to

depict fragments in ‘‘fuzzy’’ chemistry space so that new fragments can be gener-

ated from a preexisting fragment list. Experimentally, the biggest problem with this

approach is that large regions of biologically active fragment space are not popu-

lated by commercially available compounds.
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3.3 HTS True Positive Hit Rates

The percentage of true positives in an HTS varies widely depending on assay

quality and on target type [16]. In a high quality HTS with z0 greater than 0.5 (an

accepted criterion of quality) the hit rate might vary between 0.1 and 2%. HTS hit

rates are very subjective in that usually assay conditions are set so that the total

number of alleged actives does not overwhelm the resources available for post HTS

triage. Targets vary tremendously in druggability [17] from good; kinases, aminer-

gic GPCRs to difficult but tractable; proteases, peptidergic GPCRs to near hopeless:

phosphatases, protein–protein interactions. The target druggability is exactly

mirrored by the ligand profile. Druggable targets yield RO5 compliant ligands

which minimizes any difficulties in achieving oral absorption. Difficult targets

yield ligand profiles mostly lying outside of RO5 space. Targets like protein–

protein interactions are undruggable from an HTS perspective. The dozen or so

examples of small molecule ligands for protein–protein interactions are exceptions

to the undruggable generalization. There is something special about the target, for

example a cavity or hot spot at the interaction surface that moves the target towards

druggable (but likely with difficulty). Not surprisingly the more undruggable the

target the higher the false positive hit rate. The number of compounds screened in

an HTS can depend as much on budget as on science. The cost of an HTS is

typically expressed in two ways; what it costs the screeners budget and what it costs

the corporation. Expressed in screener budget terms the low end for a 384-well

format HTS might be 5 cents per well. Expressed in terms of cost to the corporation,

which includes a fair share of all costs, the price per well might be more like 50

cents. Clearly HTS costs mount quickly for multiple screens against million

compound size libraries.

3.4 False Positives in HTS

The number of false positives always rises as a function of number of compounds

screened. On a probabilistic basis there will always be a distribution of false

positive actives at a certain number of standard deviations above the assay baseline

of inactives. When people talk about false positives in this sense they are talking

about data points that appear active because of the ‘‘noise’’ in the assay. In an HTS it

is not uncommon for the ratio of false positives to true positives to be 5:1 or greater.

The more undruggable the target, the greater the ratio and the more difficult is the

post HTS triage – the process to figure what is a true positive from a false positive.

The medicinal chemist has a major and critical role in this process. Generalizing,

the role of computational chemistry is to reduce the number of apparent ‘‘positives’’

to a tractable number that the medicinal chemist can inspect. A single medicinal

chemist manually examining the structures of several hundred compounds is
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doable. Most medicinal chemists would balk at manually looking at the structures

of thousands of compounds.

Do medicinal chemists agree on compound quality? It depends on what is asked.

If the desired input is binary: yes or no, good or bad then the agreement is not great.

But this I think is the incorrect question. The question should be posed in two steps.

Do you see a potential problem and how optimistic are you that you can fix the

problem in chemistry? A specific example is illustrative. There would be pretty good

agreement among medicinal chemists that a nitro aromatic moiety is a potential

problem. With just a few exceptions nitro aromatics are mutagenic (more so in

prokaryotes than in eukaryotes). The nitro group is reduced to very reactive species

capable of undergoing covalent chemistry with nasty toxicity consequences. How-

ever, sometimes a nitro group is just a very electron-withdrawing group and the

target biological activity is not related to any nitro group derived covalent chemistry.

There are known bioisosteres for nitro groups that obviate the chemical reactivity

and mutagenicity problems of the nitro group. So if the nitro group is functioning

simply as electron-withdrawing it might be possible to replace it with a bioisostere

such as an N-linked tetrazole. I think that most medicinal chemists would agree on

the first step, identifying a potential problem but based on experience might differ

on their degree of optimism on executing a chemistry fix. The bottom line here is

that using a panel of experienced medicinal chemists to review HTS hits is better

than relying on a single person.

3.5 Stochastic False Positives: Mostly in Biology

HTS false positives that are stochastic (random) are almost always related to the

biology screen. One can construct a whole laundry list of causes: problems with

reagents, problems with readers, problems with liquid handling, temperature con-

trol issues, mislabeling and translocation errors, HTS plate edge evaporation, etc.

Because these errors are random they will not replicate. The general rates of

concordance across HTS is known. For triplicate assays where the target, the

compounds, and the assay format are allegedly the same the triplicate concordance

is 50%, i.e., only 50% of the true positives will show up as active in all three of a

triplicate assay. The concordance in a triplicate assay gets worse if the target and

compounds are the same but the assay format changes. In theory, assay format

should not matter but it does. If the assay readout changes in one of the triplicates

the concordance declines to about 30–35%. What all this means is that reproduc-

ibility of replicates is an uncertain measure of even the true positives.

3.6 Nonstochastic False Positives: Mostly in Chemistry

HTS false positives that are nonstochastic (nonrandom) are mostly chemistry related.

There is something about the chemical structure that leads to an HTS assay readout
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that is interpreted as an active. But this something is not related to activity at the

biology target and the active is worthless as a chemistry SAR starting point.

Another whole laundry list of causes can be identified: excessively lipophilic

compounds that stick to plastics; detergents; cytotoxic compounds; compounds

with optical properties that interfere with the assay; compounds interfering with a

biology reporter readout; compounds acting at targets by way of colloidal aggre-

gates [18] rather than as discrete compounds and redox compounds. The serious-

ness of the promiscuous nature of colloidal aggregates is significant with the

incidence rising as screening concentration rises. At compound concentration of

30 mM the incidence could be as high as 20%. Compounds with redox activity are

problems because it is common for a target protein to contain one or more disulfide

linkages. Reducing such a linkage (or forming disulfide bonds from thiol function-

ality) can alter protein conformation and this might be interpreted as an assay

positive [19].

The false positive compounds due to chemistry are insidious. Because the

problem is related to the chemistry structure per se the worthless activity will

reproduce. Such compounds are to be avoided in chemistry at all costs. If misfor-

tune occurs and such a lead gets into chemistry optimization, the hallmark is a flat

muddy SAR. Structural changes do not make much difference in activity. Com-

pounds worth pursuing in chemistry show real SAR. Activity changes when

chemistry structure changes. It is a good sign if all activity is lost when a methyl

group is put in a wrong position. Biological activity should be sensitive to structural

change. Virtually all drug discovery organizations have compiled rules and filters

for removal of worthless compounds from HTS. The reason why compounds are

worthless in HTS is not always known. Based empirically on experiment, organiza-

tions compile lists of worthless frequent hitter structural types. A specific example

would be the condensation product of a benzaldehyde with an oxindole or anything

structurally similar to the highly acidic heterocycles related to the NSAI Tenidap.

Care must be exercised in identifying frequent hitters. There are the worthless

structures, but there are also the worthwhile frequent hitters. These are structural

motifs capable of chemistry SAR optimization recurring in compounds active at

targets that have nothing in common in a biological sense. These are ‘‘privileged

structures,’’ and the benzodiazepine motif is such an example.

3.7 False Negatives

In general the rate of false negatives are by definition difficult to ascertain. There

are two general approaches to get a handle on false negatives. The first approach

is based on what is known about the aqueous solubility of screening compounds

since truly active compounds out of solution are the most common cause of

false negatives. One can infer that perhaps 15% of true positives will be missed in

an HTS. This inference comes from an analysis of the concordance or lack

of concordance between nominal concentrations in DMSO stocks and nominal
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concentrations on dilution into aqueous HTS assay buffers compared to actual

measured concentration in DMSO stocks and actual concentration in aqueous

HTS assay buffers. Generalizing, for about 85% of samples in HTS, the discrepancy

between nominal and actual concentration is relatively small, i.e., the two values

differ by a factor of 3. However for about 15% of samples the actual concentration

will be markedly lower than the nominal concentration, an order of magnitude or

more and frequently at the lower limit of quantitation. What has happened is that the

compound has precipitated either from the DMSO stock solution or upon dilution

into the aqueous HTS buffer. Compound insolubility is the single major cause of

false negatives in HTS and it is a serious problem when IC50 rankings are based on

nominal concentrations or when selectivity panel information is based on nominal

concentration. Determining concentration experimentally without running standard

curves is necessary with medium throughput or true HTS. Technically this is an

analytical chemistry challenge. The best detector technology is that of CLND

which has a reputation as a specialist detector technology. Success has been

reported but so far only in expert hands. Adding experimental compound concen-

tration to HTS assay data corrects for IC50 ranking errors and selectivity panel

errors. It is this author’s opinion that analytical chemistry monitoring of true

compound concentration is the single most important technical advance that

could improve HTS quality. This topic is the subject of current intense pharmaceu-

tical industry exploration.

A second approach to handling false negatives relies on a computational analysis

of actives in the primary HTS. Were there analogs or similar compounds to actives

that appeared inactive in the original HTS? These inactives are retested perhaps in a

more careful screen and some of the original inactives will now be found to be

active. Most commonly these were truly active compounds that appeared inactive

in the original screen because they were not in solution under the initial HTS assay

conditions.

4 Screening: What is the Goal?

It is very important to understand the goal in an HTS screen because the screening

goal has a very large impact on what types of compounds should be screened, on

howmany compounds should be screened, and howmuch the screening compounds

might be expected to cost.

4.1 Chemical Biology/Chemical Genetics Screening

Chemical biology/chemical genetics is the use of a chemical compound as a tool

or probe to learn something about a biology pathway [20]. The chemical com-

pound is used in the same sense as a mouse knockout experiment or an SiRNA
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experiment, i.e., compound is used in a target validation sense. If a biological

pathway is perturbed does something happen in biology? This is important because

it is so frequent that perturbing a biology pathway causes nothing observable to

happen (or nothing perceived to be useful to happen). Biological pathways are

robust and designed by evolution not to be perturbed. In general, parallel pathways

are least likely to be perturbed while pathways passing through a node are most

likely to be perturbed. The traffic accident analogy is appropriate. Traffic is most

likely to be disrupted if the accident occurs at a major intersection. Conversely, if an

accident can be easily bypassed as by a parallel route, traffic will choose the bypass

route.

In a chemical biology/chemical genetic sense the most important attribute is

selectivity. Whatever the compound structure it must be selective enough so

that something useful is learned in the experiment. The compound can contain

chemistry flaws that would be unacceptable in a drug discovery setting. It just has to

be selective and has to be compatible with assay conditions. This means that

functionality with covalent chemistry possibilities may be acceptable. Specific

examples might be the presence of warhead groups such as aldehydes and alpha

halo ketones frequently used in exploration of protease pathways. As in any area,

ambiguities exist. Is a boronic acid moiety acceptable only in a probe/tool com-

pound or could it be permissible in a real drug (as in the proteasome inhibitor

Velcade). Allowing the acceptability of screening compounds with covalent chem-

istry potential decreases the size of screening libraries. For a chemical biology/

chemical genetics purpose a library of 50,000 compounds might be adequate for

many target validation studies. A library of this size would be too small for real drug

discovery against most targets. An exception would be directed libraries as one

might use in the search for an ATP competitive kinase inhibitor where the likeli-

hood of success would be expected to be high with a library of this size. In

screening compounds price is in general an indicator of quality. Tool probe

compounds which are frequently not desirable in real drug discovery tend to be

lower priced. The pilot phase of the NIH Roadmap Molecular Libraries Screening

Center Network effort searched for tools and probes. Many of the compounds in the

screening libraries are poorly suited for drug discovery (but still quite adequate as

tool compounds) hence the cost is low – $16 per 10 mg. By way of contrast, high

drug discovery chemical quality translates into higher price. In 2005, Pfizer

completed a major effort in screening library expansion, obtaining high drug

discovery quality compounds. Designed overwhelmingly by medicinal chemists,

these compounds were far more expensive reaching costs of $200–300 per 15 mg

for some chemical series.

4.2 Drug Discovery Screening

Screens intended for real drug discovery require very high quality compounds. The

universal rule is to filter out compounds with chemical flaws prior to screening rather
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than after screening [21]. Companies have learned by experience that prescreening

is much the more efficient process. Presentations and publications from the major

pharmaceutical companies on the culling of their legacy libraries all have the same

theme. Typically one-third to half the legacy libraries are removed from screening

because of a combination of functional groups to avoid, poor physicochemical

properties and concerns about purity/identity. Drug discovery organizations have

colorful acronyms to describe these drug discovery chemistry quality filters that

illustrate how they view flawed compounds. The Vertex company’s filters are

termed REOS, Rapid Elimination Of Swill. Pfizer’s comparable filters are called

LINT, the worthless stuff collecting in the bottom of pockets or pant cuffs.

Library screening size has evolved over the last decade. With few exceptions the

pattern has been to prepare smaller size libraries. In the early 1990s solid phase

synthesis predominated over solution phase synthesis. The driver was the greater

efficiency of solid phase synthesis if very large libraries were desired. The driver for

the very large library was the misguided enthusiasm of senior pharmaceutical

company executives (this authors opinion) for libraries in the thousands or tens of

thousands in size. Screening experience gradually taught that a larger number of

smaller libraries gave better screening results than a single very large library

containing an equal number of compounds. As a result, solution phase synthesis

with its advantages of speedier development time began to predominate. We now

can understand this trend to smaller libraries as relating to ligand efficiency [22]. It

turns out that the ligand efficiency of heavy atoms in a library core is usually higher

than that of the heavy atoms in the appendages. Hence, other things being equal, 10

libraries of 100 compounds each (with 10 different cores) performs better than a

single library (with 1 core) of 1,000 compounds. Very large screening libraries have

not completely disappeared but now they are more commonly found associated

with some specialist technology, e.g., assay signal amplification by PCR in DNA

encoded libraries.

4.3 Compound Quality Filters Aka Functional Groups to Avoid

The drug discovery compound quality filters from about the year 2000 are in the

public domain from Pfizer and Glaxo Wellcome (just before the merger with SKB).

These filters have been recently summarized [23]. Organizations regularly update

their filters but the changes mostly consist of addition of filters for infrequently

occurring functionality. Hence the public domain filters serve as a useful guide. The

reader is also referred to the excellent compilations of functional groups to avoid by

Gilbert Rishton. For drug discovery quality, two types of filters are usually merged:

namely those for unacceptable physicochemical properties (e.g., RO5 violation,

excessive rotatable bonds) and filters for undesirable chemical functionality. Com-

parison of tool-like compounds with lead-like or drug-like compounds shows that

as many or more compounds are filtered out by the presence of undesired chemical

functionality as by the presence of undesirable physicochemical properties.
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Rules and filters: do exceptions exist? Off course they do. Common sense is

required. There is a natural priority order in drug discovery decision making.

Clinical information trumps all. Next in importance is high quality experimental

evidence, e.g., in vivo animal experiments. Rules and filters come into play when

clinical and experimental data is lacking.

4.4 Structure Verification on the Original Sample

When a compound is reproducibly active in an HTS, confirmation of the structure is

one of the very first activities. Is the identity of the original sample correct and what

is the purity? Assurance as to chemistry identity is an evolving process. In the early

1990s, compound structures purchased from eastern European sources were some-

times fraudulently mislabeled. Today the situation is much improved but the

purchase of screening compounds is still very much a ‘‘buyer beware’’ situation.

It is common for organizations purchasing screening compounds to run their own

analytical quality checks until they reach sufficient experience and confidence to

trust the vendor’s analytical quality checks. Assuming that the original sample of an

HTS hit is the correct structure and is of satisfactory purity, more still needs to be

done. History teaches that a presumed active sample needs to be freshly resynthe-

sized and retested (often in a more careful screen than the primary HTS or HTS

retest). Why? The sad fact is that somewhere between 10% and 50% of resynthe-

sized samples prove inactive on retest. Often the reason for why it is a chemistry or

biology issue is not known. In this authors opinion the retest issue is likely not

uniformly distributed among targets. Simply put, certain targets are more sensitive

to small quantities of electrophilic impurities. The ligands for these targets are more

likely to not retest active on resynthesis because the original sample contained a

small quantity of reactive impurity. How could one identify these types of targets?

The mostly academic medicinal chemistry literature is a clue. If there are reports of

ligands with reactive ‘‘warhead’’ groups active against one’s target or a related

target one should be exceptionally cautious about the retest issue.

4.5 Activity Verification in a Resynthesized Sample

The need to resynthesize compounds poses a dilemma for the chemist. Will he/she

pursue and resynthesize a singleton active? The probability of resynthesis wasted

effort on a singleton alleged active is higher than when nascent SAR is seen on a

cluster of structurally related compounds. An SAR pattern even on as few as five or

six structurally related compounds increases the chance that the activity is real.

There is a tension between library design chemistry space coverage which is better

with singleton compounds on the one hand and with library design with small

clusters which is less efficient in chemistry space coverage but more efficient in
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terms of defining the true positives including the step of compound resynthesis. The

advantages of small clusters in the HTS triage stage are sufficiently large that small

clusters have been adopted as the preferred chemistry space coverage mode at

AstraZeneca (AZ) and in the NIH Roadmap compound library acquisition effort.

4.6 Hit to Lead also Known as Closed Loop

Chemistry optimization is no longer a monolithic process in many drug discovery

organizations. Traditional single stage SAR optimization has been replaced by two

steps: an early ‘‘hit to lead’’ aka ‘‘closed loop’’ stage followed by a later ‘‘lead

optimization’’ stage that in many respects is not that much different from the

traditional medicinal chemistry optimization. The goal in the early stage is to

learn as efficiently as possible about the liabilities and attributes of a chemical

series. Is the chemistry quality high enough for the series to be pursued in the more

labor intensive, slower and more difficult lead optimization process?

The type of chemistry very much dictates whether chemistry efficient ‘‘hit to

lead’’ is a viable option. A hit derived from a chemical series that was originally

prepared by some type of automated synthesis is a good candidate for ‘‘hit to lead.’’

By way of contrast, a hit from a legacy hand crafted compound or a natural products

semi synthetic modification may very well not be candidates for early stage

efficient chemistry synthesis. The errors in the early 1990s in combinatorial chem-

istry have left a bad taste in many organizations for the term ‘‘combinatorial’’

chemistry.’’ So other terms like ‘‘parallel synthesis’’ or ‘‘automated synthesis’’ or

‘‘chemical technology’’ are used. Today’s libraries of automated compounds in ‘‘hit

to lead’’ are typically fairly small, perhaps 20–50 compounds. The quality is very

high in terms of assurance as to compound identity and purity. The idea is to

maximize the information content on each compound. Rapid iterations of com-

pound synthesis and testing with feedback to the next cycle of synthesis is termed

‘‘closed loop’’ chemistry and is a goal in many organizations. Assuming appropriate

chemistry, the synthesis cycle time per se may be very short. Just in time starting

material orders; the multitude of work station like equipment available to facilitate

efficient chemistry and the routine ability to separate and purify compounds by

reverse phase HPLC all increase the synthesis speed. As chemistry cycle times

shorten, data cycle times may become rate limiting. Project in vitro biology is

seldom rate limiting but ADMET data can easily be rate limiting. It does no good to

plan the next round of synthesis based on in vitro project biology data if critical

ADMET data on drug-like properties is missing. Delays in ADMET data can easily

be exacerbated because it is so common for all testing to be performed on compounds

in DMSO stock solutions. Centralized compound management organizations pre-

paring and dispensing compounds in DMSO stock solutions were originally

designed for HTS type operations. For the normal HTS, compound cycle supply

times were not critical. It is only in recent years that the compound management
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groups have had to deal with the very fast compound cycle times required to support

fast data cycle times in ‘‘hit to lead.’’

4.7 Multiple vs Single Chemical Series in ‘‘Hit to Lead’’

Havingmultiple chemical series for the same biology approach is always an advantage

in ‘‘hit to lead.’’ There is the obvious advantage of multiple series giving more

opportunity for success. However, there is another less obvious advantage having to

do with people behavior. When things go wrong, as they frequently do, working on a

single series is very dangerous. Unwilling to accept failure, medicinal chemists

continue on a single series far longer than a more rational (less emotional) analysis

would justify. Having a choice on switching to another series makes a change in

chemistry much easier from a personal (and organizational) perspective. This is an

important enough factor that some organizations will not enter ‘‘hit to lead’’ if there is

only one chemical series. Furthermore, multiple chemical series set the stage for

important input from computational chemists which can lead to opportunities such

as ‘‘scaffold hopping’’ in order to unlock additional chemical space.

4.8 Profiling is Critical in ‘‘Hit to Lead’’

Profiling of compounds is critical in ‘‘hit to lead.’’ Every chemical series has

problems. The goal in ‘‘hit to lead’’ is to find out what the problems are, to find

out how many problems there are, and to assess how much progress can be made

against those problems. If the process is successful the chemical series can be

handed off to ‘‘lead optimization.’’ Depending on the organization this next stage of

chemistry may or may not be carried out by the same chemistry group or by a

different chemistry group. Universally, organizations have set up exit criteria for

leaving ‘‘hit to lead’’ or entry criteria for starting ‘‘lead optimization.’’ The progres-

sion between the two stages entails a substantial increase in time and cost and so is a

natural point for project planning and the application of go/no go decision criteria.

The profiling in ‘‘hit to lead’’ should ideally cover all the major global issues in

project biology and ADMET. The listing below is only a generalization:

1. Potency against primary project biology target

2. Selectivity against undesired targets

3. Aqueous solubility

4. Intestinal permeability

5. Metabolic stability

6. Drug-drug interaction potential

7. Transporter screen (e.g., MDR1 for a CNS approach)

8. Toxicity screen (e.g., HERG or equivalent especially for CNS approaches)

9. Some type of input on systemic drug levels
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Some types of screens used in ‘‘hit to lead’’ are controversial and are used in some

organizations but not in others. Examples of these are:

1. Serum protein binding

2. Cellular cytotoxicity

The challenge for the drug discovery organization is how to handle the resource

issues for multiple screening data feedback. Often a combination of experimental

screens and computational prediction approaches will be used. Rapid data feedback

to the medicinal chemist is essential, whether the data is experimental or computa-

tional. Data delayed is data with greatly reduced value.

4.9 How Many Problems Can Be Handled in Chemistry?

Realistically there is a limit as to how many serious problems in a chemistry series

can be solved with a reasonable effort. In this author’s opinion, optimism as to

success declines markedly if there are more than three serious problems. What

might a typical three problem profile look like:

1. Not potent enough (not selective enough) problem since potency and selectivity

are often linked

2. Aqueous solubility

3. Metabolic stability

So the goal with this type of profile would be to see if progress could be made

toward fixing these problems while monitoring those areas where no problem

exists. This is important because while trying to fix one problem it is possible to

inadvertently introduce a new problem.

4.10 Preformulation: Pharmaceutical Sciences
in Early Discovery

Pharmaceutical sciences formulation technology in a technical sense can be used in

early discovery including ‘‘hit to lead’’ to allow testing of compounds with poor

physicochemical properties. Whether this intervention often called ‘‘preformulation

technology’’ is a good idea is highly controversial. The propreformulation view-

point is that without formulation assistance promising chemical series might be

excluded from testing based solely on poor properties. Most of the time the issue is

very poor aqueous solubility. The counter argument is that maybe another chemis-

try series should be looked at or the chemistry series should be dropped if the series

has such poor properties that preformulation work is critical to get testing done.

Regardless of a person’s position on preformulation, nothing should be done in a
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pharmaceutical sciences sense in early discovery that would detract from the

medicinal chemist’s mission. The much preferred method of solving poor physico-

chemical property problems is in chemistry. Change the structure and fix the

problem. Unfortunately this is easier said than done. Solubility SAR tends to be

blunt and the success rate at Pfizer at fixing solubility problems in chemistry was

around 50%. Nevertheless the chemistry fix is the preferred choice. The formula-

tion fix is the backup choice if chemistry efforts fail. Amorphous compounds

predominate in early discovery and amorphous compound aqueous solubility can

easily be 100 times higher than when the compound is crystallized. All parties need

to be educated and informed so that, for example, seemingly acceptable solubility

levels on amorphous materials are not misinterpreted by chemistry as indicating

acceptable solubility. The bottom line is that involvement of pharmaceutical

sciences in early discovery should be very carefully studied and debated in the

context of organizational and people issues peculiar to the company.

4.11 Activity SAR Patterns

Progressing through ‘‘hit to lead’’ should provide evidence of true SAR. To be

avoided are the extremes of flatmuddy SAR (previously discussed) and the singleton

active. Promising ‘‘hit to lead’’ series show good ligand efficiency. Across all targets

this would be about 0.3 kcal mol�1 binding energy per heavy atom. Roughly this

translates at a 10 nm target affinity to a MWT below 500 increasing the probability

of oral absorption. Ligand efficiency varies by target class. For details the reader is

referred to the specialist literature. A high ligand efficiency in a compound scaffold

or core is a very promising sign. Experience at Abbott in a decade of fragment

screening by NMR indicates that high ligand efficiency in a scaffold or core is a

good harbinger of eventual success in series optimization. Rigorous use of ligand

efficiency prevents a chemistry series from falling into the ‘‘hydrophobic trap,’’ i.e.,

potency improvements entirely due to lipophilic functionality. By the time the in

vitro activity is acceptable, e.g., 10 nm the lipophilicity log P is so far above the

RO5 limit of five that solubility is terrible and oral absorption is near impossible.

5 Hit to Lead, Exit Criteria to Lead Optimization

Virtually every competent drug discovery organization has criteria for the transition

between ‘‘hit to lead’’ and ‘‘lead optimization.’’ Virtually nobody publishes these

criteria because the organizations consider them proprietary. By virtue of very fast

note taking and a combined effort, a Pfizer colleague and I were able to capture the

‘‘hit to lead’’ exit criteria from an oral presentation by a medicinal chemist from the

AZ organization. The criteria are as they stood in about year 2000. I do not know if
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these represent current criteria from AZ. My sense is that the AZ organizations

criteria lies towards the upper end of strictness range.

AstraZeneca (year 2000) ‘‘Generic lead target profile’’ for progressing HTS hits

to leads:

6 Conclusion

This chapter is the first chapter in this book and serves as an introduction The first

section of this chapter starts with a discussion of ‘‘what is a medicinal chemist?’’ In

this chapter the reader will notice far more attention to the ‘‘people’’ aspect of the

discipline of medicinal chemistry than will be found in later chapters. This is by

design. When expert practitioners in the field discuss success in medicinal chemis-

try the focus is usually very much on the person rather than on the technology. We

admire the persistent ‘‘drug hunters.’’ We remember the individuals who do not give

up easily. We appreciate those individuals with the interpersonal skills that facili-

tate an effective therapeutic project team. We admire those medicinal chemists who

think out of the box and come up with the insights that transform a program. In this

introduction I have tried to give some credit to this ‘‘people’’ factor.

This introductory chapter is in some sense forward looking. Some discovery

approaches such as phenotypic screening receive more attention in this chapter than

they do across the discovery approaches of pharmaceutical and biotech companies.

Drug discovery approaches are becoming increasingly fragmented. To cover the

entire range of approaches is beyond the scope of an introductory chapter. The

coverage on phenotypic screening reflects my own personal interest as well as my

belief that this approach will grow rapidly in the next 5 years.

Potency 100 nM

Rat hepatocyte intrinsic clearance <14 mL min�1106 cells

Human microsome intrinsic clearance <23 mL min�1 mg�1

Rat IV clearance <35 mL min�1 kg�1

Volume >0.5 L kg�1

T1/2 >0.5 h

Rat PO bioavailability >10%

Plasma protein binding <99.5%

Solubility >10 mg mL�1

CLogP <3

LogD <3

Mol Wt <450

P450 inhibition IC50 >10 mM for five major isozymes

HERG screening Early toxicity in vitro screens

Clear SAR around potential lead

Selectivity – use PanLabs/Cerep batteries

Structure must provide patent opportunities

Need in vivo biological validation
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High Throughput Screening in the

Twenty-First Century
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Abstract High throughput screening (HTS) has become the cornerstone of lead

identification for small molecules in drug discovery during the last quarter century.

The evolution of the sciences and technologies that have evolved as the foundation

of modern HTS campaigns are complex and require multidisciplinary interactions.

Innovations in integrated automated systems, reagent systems enabled by molecular

biology, computational capabilities, and visualization tools have converged to

provide sophisticated tools to HTS practitioners. The success of HTS in an organi-

zation does not rest solely with those performing HTS but is critically dependent on

the interactions of biology and chemistry members of the multidisciplinary teams

throughout the early discovery process. Thus a basic knowledge and understanding

of the components and processes of HTS is a necessary requirement for effective

communication in planning, executing, and analyzing an HTS campaign. This

chapter addresses the key components of HTS campaigns, common approaches,

and related issues that should be understood by those engaged in small molecule

drug discovery.
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1 Introduction

Discovering a drug and completing the subsequent phases of clinical development

is hard. The long R&D process is complex and highly regulated with ultimate

success dependent upon the interaction of multidisciplinary teams of biologists,

pharmacologists, medicinal chemists, toxicologists, and clinicians. Today’s process

resulting in the launch of new small molecule therapeutic entities encompasses

numerous steps from the initial idea of how to intervene in a particular disease

through large scale clinical trials and each step has an attrition rate. Continually

faced with pressures from consumers, stock holders, and management to improve

efficiency and reduce costs associated with R&D, pharmaceutical companies have

constantly evolved their approaches utilizing new drug discovery technologies.

In the late 1980s, many pharmaceutical companies began to adopt the concepts

and technologies for high throughput screening (HTS) early in the discovery

process to increase identification of molecules that would enable chemists eventu-

ally to develop drugs for entry into the clinical pipeline. During the early 1990s

with an increasingly competitive market coupled to a highly charged political

environment, meeting the challenge of maintaining double digit revenue growth

became a number one priority of the entire pharmaceutical industry. One study

commissioned by ten pharmaceutical companies evaluated all aspects of the discovery

process to determine how to restructure programs to develop the high performance

required for future success. The results focused on broad strategies, processes, tech-

nologies, and organizational and informatics capabilities. The implementation of
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a strong infrastructure to support HTS for lead identification was one of the six

critical process-related best practices recommended for success [1].

Driven by developments in computational capacity, laboratory scale automation,

combinatorial chemistry, and evolving targets from knowledge of the human ge-

nome, HTS has become an integral element in most lead identification strategies for

small molecules, natural products, and protein therapeutics. Investment in the last

10–15 years has built upon early HTS capabilities and now provides an industrial

scale approach implemented in most pharmaceutical and biotechnology companies.

Instrumentation and automation development has continuously increased the speed

and capacity to allow modern systems to screen hundreds of thousands of com-

pounds per day. The size of sample libraries has grown from tens of thousands to

millions as parallel synthesis technologies evolved and the capacity of HTS systems

grew. Data management applications and storage capacity have enabled the HTS

practitioner to review, analyze, and annotate millions of data records. Most impor-

tantly, a community of HTS scientists has evolved with the necessary perspective,

skills and knowledge to utilize effectively the technology at hand to impact early

drug discovery. The evolution of HTS has provided a process leading to marketed

products and populated pipelines at most companies. The scientific disciplines and

technologies involved in HTS have begun to migrate upstream in target identifica-

tion and downstream in support of lead optimization and ADMET evaluations.

Recently companies have begun to discuss and present their efforts and successes

in HTS over the last 20–25 years [2], and it is evident that HTS has become and will

remain a cornerstone of drug discovery for the foreseeable future.

In this chapter, our goal is to provide a working knowledge of HTS with enough

detail to enable and enrich the communication between chemists or biologists and

their HTS colleagues. The discussions of concepts, processes, and technical details

are interspersed with some of our approaches at Wyeth used only as examples.

2 Useful Definitions

As with most scientific disciplines, HTS is understood and discussed only with a

thorough comprehension of the descriptive terms used by HTS practitioners.

A brief list of relevant terms and definitions which will aid the newcomer to the

field is provided in the Appendix. For a more comprehensive list of terms and

definitions, which is constantly being expanded, the reader may find the Society of

Biomolecular Sciences website helpful [3].

3 Conducting an HTS

3.1 Automation

HTS is most simply defined in terms of throughput. The use of automation to

achieve high throughput is a natural, but not inevitable, consequence in the quest for
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speed. Several additional factors have contributed to the adoption of large, com-

plex, automated assay systems by most pharmaceutical companies engaged in drug

discovery. Automation provides increased robustness based on repeatable processes,

reduced staff involvement in performing the screen to allow monitoring of perfor-

mance and data analysis, and increased quality due to similar handling of each

assay plate with sophisticated scheduling software. Even though automation does

offer significant opportunities to improve the HTS process, it can be seductive and

should not be pursued as an end in itself. In the words of a past President of the

Society for Biomolecular Sciences, ‘‘It is irrelevant if the plate density is lower or

higher, the process is fully automated or purely conducted by hand . . .;’’ the most

important criteria for successful HTS are robust and predictive biological assays,

rich and diverse screening libraries properly maintained, and standard operating

procedures with adequate quality control [4].

3.1.1 Structural Organization

The historical evolution of HTS groups from small groups of assay specialists

serving therapeutically focused departments and from engineering support groups

charged with evaluation of new technologies naturally favored decentralized HTS

operations in many companies. The advantages of decentralized HTS operations

largely derive from close proximity to their client groups and responsibility to

support only a limited number of key assay technologies that enable specialization

of procedures and equipment and development of world class expertise. Reliance

on decentralized HTS operations can encourage failure to communicate and coor-

dinate activities across groups within a company, in extreme cases leading to

creation of competing ‘‘centers of excellence.’’ Another disadvantage of decentra-

lized organizations can be vulnerability to the abrupt shifts in focus that are

sometimes necessitated by strategic considerations. If personnel and equipment

are ideally specialized to serve the HTS needs of a particular client group, they may

not be readily redeployed.

As companies strove to achieve cost effective policies across discovery research

organizations, centralization became an attractive alternative to decentralized HTS

operations. Centralized HTS operations afford tight management control of resource

allocation and project prioritization. Central HTS groups generally command

larger budgets that can be strategically managed to exert maximum leverage

with vendor companies supplying automation, reagents, and consumable supplies.

The most important advantage of centralized HTS organizations is arguably the

ease with which uniform standard operating procedures and quality controls can

be developed and maintained across all platforms and HTS campaigns. In addition,

the compound management function is most often a centralized core function and

it can be extremely convenient to co-localize the compound management and

HTS functions. The major disadvantage of a centralized HTS organization is the

need to transfer knowledge and trust from the client groups responsible for target

identification and assay validation to the screening group, often across distances
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that discourage personal interaction. The desire to avoid the necessity to communi-

cate across several time zones is still a cogent argument for co-localization of

decentralized HTS groups with the client groups that they serve.

3.1.2 Platforms

A comprehensive listing of all the vendors that offer HTS instrumentation and

platforms is beyond the scope of this chapter, but most vendors maintain informa-

tive websites and there are three professional organizations that disseminate useful

information about automation platforms for HTS on the world wide web, the

Society for Biomolecular Sciences (www.sbsonline.com), the Association for Lab-

oratory Automation (www.labautomation.org), and the Laboratory Robotics Inter-

est Group (www.lab-robotics.org). The latter maintains an online forum where

vendors and experienced users often provide immediate and useful guidance.

HTS fundamentally requires only four component instrument: precision pipet-

tors that can quickly dispense many different test compounds from the screening

library in parallel to separate wells on a plate, precision bulk dispensers that can

quickly dispense the same reagent solution to all the wells on a plate, incubators to

maintain reaction conditions and optical plate readers that can quickly determine

the readout from the assay. In extreme situations, highly motivated scientists can

maintain sufficient control of the sequence and timing of complex assays to process

40–50 assay plates a day using manual instruments that require the operator to place

the plate, activate the instrument, and remove the plate, moving the plates from one

instrument to the other, in sequence, while manually tracking the flow of data from

the plate reader and annotating the data stream with the samples tested. While

barely qualifying as HTS, a manual operation can complete hundreds of plates over

a period of months and process a substantial corporate screening library. It is

generally agreed, however, that the productivity of the exceptional scientist capable

of sustaining a manual screening campaign can be greatly enhanced by implementing

some automation.

Most instrument vendors offer optional plate stackers that will accept 50–100 plates

from an input stack and process them sequentially through the instrument and collect

the processed plates in an output stack. These instruments generally perform one

function on a moderate number of plates, commonly either liquid handling or plate

reading. Some semi-automated work stations combine liquid handing and plate reading

functions in one stand-alone device. These more elaborate stack fed combination

instruments are often referred to as semi-automated workstations and they generally

include a robotic control application with a graphics user interface and data man-

agement capabilities for visualizing and exporting output files from the plate reader.

The next step in complexity and functionality in HTS automation can be defined

as the workcell concept, in which several different instruments serving the four

main functions are integrated into a relatively dense array on a fixed framework that

includes some robotic mechanism for transporting plates from one instrument to
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another. Workcells may use stacker fed instruments or robot accessible instruments,

but in either case a key distinction is that the robotic control application is now

responsible for maintaining and tracking the movement of assay plates through all

the steps of the assay according to a well-defined schedule. This use of the term

workcell, while common usage, is not well defined, and the scale of these auto-

mated systems varies, but they most commonly consist of one pipettor, several

dispensers, one incubator, one plate reader and one robotic arm in a containment

cabinet that places everything within reach of the one arm. Typically, the workcell

vendor is responsible for subcontracting all other components and assembling and

servicing the system. The functional capacity of a workcell may not exceed what

can be achieved with semiautomated workstations, but they afford more freedom to

the operator for other tasks such as reagent preparation, data management and

development of protocols for upcoming projects. The compact size, modular design

and potential for vendor supported standardization across sites would seem to make

workcells particularly apt for de-centralized HTS operations.

The most complex automated systems are used almost exclusively by centra-

lized HTS operations in large pharmaceutical companies and are referred to as ultra

HTS (uHTS) platforms. They typically consist of the same four functional instru-

ments, but have the capacity to process several hundred plates per extended

workday. They often incorporate a modular design philosophy with multiple

duplicate instruments for enhanced capacity that offer some functional redundancy.

The mechanism for moving plates from one instrument module to another is often,

but not always, a continuous track-way that resembles an industrial assembly line

rather than the robotic arm typically used in a workcell system [5–8].

3.1.3 Art of the Possible

Use of uHTS devices incurs significant capital and operating expense plus requires

extended operator training and some form of resident engineering and facilities

support. The assay protocols required to achieve these throughputs impose some

limits on the flexibility of the systems. The cycle time for each individual operation

on each of the pipettors, dispensers, or plate readers must usually be limited to

no more than 1 min per plate in order to sustain the desired throughputs. This

effectively limits most assays to end-product determinations and imposes limits on

the number of reagent addition and incubation steps and on the intermediate incuba-

tion intervals so as to maintain the largest possible continuous batch size of plates for

the most cost effective operation. The extended run times for large plate batches

impose more stringent requirements for stability of reagents and most uHTS devices

include some accommodation for onboard refrigerated reagent storage. In order to

maintain flexibility to utilize different assay readouts, most uHTS platforms include

multiple, multimode plate readers capable of reading absorbance, luminescence,

chemiluminescence, time resolved and prompt fluorescence. There are some read-

outs, however, such as fast response prompt fluorescence, that can only be detected

by specialized readers such as the FLIPR, and require a specialized uHTS platform.

30 J.W. Paslay et al.



Other readouts, such as high content imaging or enzyme kinetic rate determina-

tions, require extended detection intervals in the plate reader and are best automated

on a dedicated workcell or semiautomated workstation platform.

Despite the costs associated with implementation of automation, nearly all drug

discovery programs utilize some form of automation. Even organizations that favor

hit identification methods other than HTS use automation for target validation

assays, reagent preparation, protein crystallization, and NMR spectroscopy.

The most compelling reason for implementing automated HTS systems (workcells

and uHTS platforms) may be the conclusion reached by the pioneering scientist

who commissioned one of the first uHTS systems in 1997. The precise control of

variation in environmental conditions, reagent storage, dispensing, and timing that

was achieved with the first uHTS system significantly enhanced the overall quality

of the assay results compared to the semiautomated workstations then in widespread

use. He concluded that enhanced standardization of process and quality control

might be more important benefits in the long run than enhanced capacity [5].

3.2 HTS Process

Successful management of a central HTS operation requires a discipline of process

control that extends beyond the automation systems. The progression of HTS

projects must be carefully guided and tracked through several milestones designed

to ensure that a steady and predictable stream of robust assays are available for

transfer to the automation platforms and that sufficient bulk reagents and consum-

able supplies will arrive in time to support the HTS campaigns.

3.2.1 Phases of HTS

It would be very rare to find a target that was conceived of, biologically validated,

and pharmacologically confirmed that originated in an HTS laboratory. Generally,

target identification and validation are the responsibility of a therapeutically

focused research area or department. Each pharmaceutical company has their

own unique process to cover the transition of a target from validation through to

the confirmed hits delivered by an HTS campaign. Despite these variations, one can

identify five common functions:

l Transfer of an assay from therapeutically focused area to HTS
l HTS assay development and validation
l Robotic assay adaptation and validation
l HTS campaign
l Hit confirmation

We will examine each of these phases in greater detail, outlining the deliverables

associated with each phase.
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3.2.1.1 Transfer of an Assay from Therapeutically Focused Area to HTS

Assays which originate on a bench top in a research lab are generally not suitable

for HTS. They are developed to help with biological validation or characterization

of tool compounds. Thoughts about the number of reagent additions, length of

incubations, number of transfers, miniaturization, signal to background, and cost of

reagents are not the primary driver at this point. Yet these are precisely the details

which are important to run a successful HTS campaign. Therefore, most organiza-

tions have a group of scientists who are responsible for shepherding a target from

the research group to the HTS group. The most successful organizations will adopt

a formal process that requires projects likely to benefit from an HTS campaign to

consult early and often with the HTS group on the choice of assay format to be used

for the HTS campaign. The best use of the HTS resource is usually a balance

between the cost and logistics of HTS and the fidelity of the biological response in

the automated assay to the ‘‘gold standard’’ laboratory assay.

The first step in the process involves the development of a suitable HTS assay

format. A more detailed discussion of the formats available for HTS by target class

are outlined later in this chapter. This section will focus on some of the practical

considerations to determine the proper assay technology for an HTS campaign.

The first question to be answered is can the assay technology output be detected

and properly quantitated on the HTS platforms? While this is a straightforward and

seemingly obvious point, it is quite often overlooked. In an extreme case, a radio-

labeled ligand binding assay was initially developed by a research laboratory for an

HTS platform that could only read fluorescence. Most HTS platforms only read

fluorescence or luminescence, and this will determine the range of options for assay

format. There are numerous choices for format, but there are some general guide-

lines to follow. Simple mix and read, or homogeneous formats, are generally better

than heterogeneous formats that require washing or some other separation of

product from reactant for detection. Cost of reagents is always a factor. This

includes biological reagents, consumable labware (plates, pipette tips, etc.), etc.

At present, an acceptable average cost per well for these components would be 5–10

cents per well.

The range of possible assay formats varies between organizations, but a list of

the parameters which should be addressed include:

1. Optimizations of S/B, EC50/IC50, Z
0

2. DMSO tolerance

3. Optimization of buffer components

4. pH optimization

5. Reducing agents

6. Monovalent/divalent cations

7. Metal chelators

8. Enzyme ‘‘stabilizers’’

9. Base buffer

10. Detergents
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11. Cell density

12. Reagent concentrations and volumes

13. Liquid handling steps

14. Incubation steps

15. Substrate/ligand/inhibitor specificity at optimized conditions

16. Stability up to 5 h

17. Indication of the potential hit rate using a standard set of compounds

18. Reproducibility of S/B, EC50/IC50, %CV:

(a) Within three experiments

(b) Within >three plates

In most cases, in consultation with the HTS group, the research area laboratory will

develop a benchtop assay that is at least compatible with the HTS format of choice

for their target. This tends to facilitate project transitions and provides a tool that the

research area laboratory will use later to follow up hits and develop SAR. In other

cases, the HTS assay development group will assume all responsibility for assay

development. The formality of the transfer of the project from the research area to

the HTS group varies between organizations, but the outcomes are quite similar. All

of the details of the prototype assay are reviewed by both teams, and, where

applicable, reagents, protocols, and even plates or pipette tips are exchanged.

HTS assay transfers often occur across separate sites and require excellent

communication and close collaboration. This milestone is often marked with a

meeting and documentation generated that records the protocol and the status of the

assay results in the hands of the research laboratory.

3.2.1.2 HTS Assay Development and Validation

Assay development by the HTS assay development group begins with a reconfir-

mation of the research laboratory assay in the HTS assay development laboratory.

This is usually accomplished by reproducing time courses for the reaction, repro-

duction of standard assay conditions, and validation using the empirically derived

IC50 or EC50 of a known target modulator where applicable. The HTS assay

development group then further develops their assay protocol using semiautomated

workstations and plate readers similar to those on the uHTS systems and validates

any modifications to the protocol or materials that may be necessary to achieve

robust, large-scale, batch operations. Wherever possible, materials and methods

must be standardized from project to project to shorten timelines, build expertise,

and afford economies of scale in purchasing reagents, labware, and cell culture

supplies. Nevertheless, new assay formats are continually introduced to the market,

so a balance must be achieved between the familiar and the novel. The final assay

development exercise is a test of the small, diagnostic compound library, like

LOPAC (Library of Pharmacologically Active Compounds), commercially avail-

able from Sigma. This test ensures that the hit rate in the assay as configured will
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not overwhelm the compound sample management group’s ability to pick hits for

confirmation analysis and also may be used to identify a suitable reference com-

pound for quality control testing, if a well characterized reference standard with a

known mechanism of action is not available. Following validation of the assay and

reagents by the core assay development group, the assay is finally transferred once

more into the hands of the HTS group who will further adapt the protocol as

necessary to achieve acceptable performance on a fully automated HTS platform.

3.2.1.3 Robotic Assay Adaptation and Validation

The remaining HTS process is divided into four phases: HTS adaptation, HTS

validation, HTS online, and HTS confirmation. Altogether the four phases require

1–4 months to complete, depending on the assay format. The average screen is

completed in 2.5 months. The first phase of the process is the development of an

automation protocol that emulates the semiautomated procedure developed by the

assay development group and delivers similar results from controls and/or reference

compounds. This HTS adaptation phase will be more or less successful and take

more or less time depending on the assay format and statistical robustness. Well-

behaved, homogeneous format assays can often be adapted to automation in a

couple of weeks while cell-based assays with extremely sensitive cell types some-

times require months of effort to develop a robust protocol. As soon as the fully

automated assay protocol yields results similar to those achieved with semiauto-

mated instruments in the assay development group, the HTS group will begin assay

validation, i.e., scaling up the batch size to achieve at least 40, 384-well plates per

batch. As the methods are adapted to high throughput technology, any changes in

the protocol are noted and reviewed by the therapeutic area. As soon as large batch

operations yield reproducible results, the validation process is expanded to include

replicate tests with LOPAC plates. The LOPAC tests at this point serve a different

purpose than those in assay development. Multiple replicate plates are tested over

several days to evaluate correlation of results from plate to plate and from batch to

batch. An uninterrupted supply of validated bulk reagents and/or cells is crucial

from this point forward. Statistical analyses of the results obtained from controls

and/or reference compounds are more robust when many replicates from several

separate test events are processed. The results must demonstrate low variability

from well to well and plate to plate from day to day or it will be impossible to

distinguish biologically active samples from statistical fluctuations. If results from

available reference standard compounds are acceptable and variability is acceptably

low and replicate sets of LOPAC results show strong correlation, the screen is said

to pass HTS validation and goes online. This milestone is also marked with a

meeting that includes the therapeutic area project team, the core assay development

group and the core HTS group and is documented with presentation slides including

the results of the LOPAC library and the final HTS protocol as well as the first

uploads of results data to the corporate repository.
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3.2.1.4 HTS Campaign

While online, most HTS campaigns will test more than half a million compounds

once at a single concentration of 10 mM in either 384- or 1,536-well plates. In

collaboration with Wyeth biometrics specialists, an activity threshold of three

interquartile range standard deviations (IQR SD) from the population median of

the entire HTS screening library has been adopted for hit selection. Results are

first normalized on a per plate basis, often using results from control wells located

on each plate. This practice typically generates hit rates between 0.5% and 3% of

the library. The hits are ‘‘cherry-picked’’ from the automated compound store

and replated for confirmation testing. Other successful HTS operations use other

methods to select hits for follow-up. Often an arbitrary limit is set on the number of

hits that will be retested based on resources available for ‘‘cherry-picking’’ and

confirmation testing and the selections is then based on apparent potency and/

or chemical structure criteria such as scaffold diversity, cluster analysis, pharma-

cophore modeling, etcetera. The statistical analysis approach casts the widest net

and does not discriminate against novel singletons. It often rescues compounds of

modest initial potency that are ultimately selected as better starting points for lead

development than more potent compounds and compounds that resemble known

pharmacophores.

3.2.1.5 Hit Confirmation

The confirmation phase includes a titration analysis at multiple concentrations in

triplicate as well as an interference screen, designed to identify compounds that

show apparent activity through nonspecific interference with the assay reagents.

The interference screen is an additional control and is performed under conditions

that are nearly identical to those used in the primary screen to help insure that

interfering compounds behave in a similar fashion in both the target and interfer-

ence assay. The simplest interference screens simply add a carefully matched

amount of previously prepared product to the standard assay in the presence of a

candidate hit to rule out the possibility that the compound alters the readout to

appear active through some trivial, non-mechanistically relevant effect. Screening

hits identified in the online phase must demonstrate at least as much activity against

the target and not show activity in the interference screen in order to be designated

as confirmed hits [9].

At this point, a campaign review can be presented to the therapeutic area project

team, including a list of hits with confirmed biological activity and a thorough

documentation of all the quality control results across the entire campaign. All the

biological data generated by HTS is released to the corporate database. SpotFire

visualization of dose titration curves is presented to help group the confirmed hits

into several different classes according to potency. The project team is urged to

select their best hits for chemical purity and integrity testing by an analytical
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chemistry group. The compound management group reformats these samples for

purity and integrity testing and also provides additional sample for secondary

testing by the therapeutic area.

These milestones and the meetings and documentation generated for them are a

necessary aspect of project management and quality control for uHTS campaigns.

While the details of the process vary widely across the industry, the use of

automation to test a large collection of compounds and then subjecting the hits to

increasingly rigorous follow-up testing is general.

3.2.1.6 Logistics

The scale of operations of uHTS facilities demands special attention to logistics

in the design of the facility. Some uHTS facilities prosecute between 20 and 50

campaigns a year and routinely have several different campaigns ongoing con-

currently. Ideally, the facility will incorporate its own freight delivery and waste

pickup access points as well as adequate storage either within the facility or nearby

to maintain stocks of bulk reagents, consumable labware and a spare parts inventory

for the automation systems.

The demands for protein reagents and cells for HTS have already prompted

several companies to adopt automated systems for protein purification [10, 11].

Traditionally, in order to achieve a specific cellular response with sufficient

signal to background and reproducibility from day to day, HTS required the

selection and continuous culture of stable, genetically transformed, cell lines. It

could take months to create the stable transformed cell line for a particular target.

The continuous culture and daily harvest of successive batches of these cells with

different passage histories over the course of the HTS campaign often led to

variability of the cellular response in the HTS assay. Over the past several years,

it has become common practice to culture cells using automated bioreactors in

advance of an HTS campaign to create a large stock of cryo-preserved cells stored

in individual aliquots that are thawed as needed to provide enough cells for a batch

of screening plates. The freshly thawed cells can be dispensed into plates and

used immediately or after overnight incubation for some assays, while for others

the cells must be dispensed initially into tissue culture flasks and incubated for

several days before they can be plated and used for assay. Even when cryo-preserved

cells must be transiently cultured in flasks to recover from cryo-preservation before

use, when all the cells that enter screening have identical passage histories, the

assay results from batch to batch tend to be more uniform. Many companies

routinely use automated systems for cell culture and preparation of cells in plates.

In addition to the expected benefit in quality control due to uniform procedure,

automated cell culture systems are often reliable enough to enable off-shift and

weekend activities that are often necessary to support full utilization of the HTS

platforms [12, 13].

A recent strategy that builds on the widespread success with bulk cryo-preserved

cells in HTS is the use of transiently transformed mammalian cell lines so that the
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time and effort associated with creation of stable transformed cell lines can be

avoided. This technique has been demonstrated using conventional lipofection

transfection technology [14]. An alternate transfection technology has been intro-

duced that utilizes Baculovirus vectors that were originally developed for insect

cells. Because Baculovirus vectors can carry mammalian genetic expression cas-

settes into mammalian cells but cannot replicate in them, the transduced cells retain

the level of biohazard risk associated with the parent cell type. Because the cells are

prepared in large batches and stored frozen until use, they provide a uniform

response. An added benefit is that transient expression may enable the study of

recombinant gene products that cannot be isolated in stable cell lines because they

have a toxic effect or interfere with the cell cycle [15]. These practices tend to

uncouple HTS from cell culture and simplify the logistics of screening.

3.3 Assay Development

Most drug discovery targets fit into one of the target families shown in Fig. 1.

Included in the figure is the distribution of the market share by target family.

Each of the target families have been reviewed in great detail elsewhere, and the

reader will be guided to the appropriate references. This review will quickly survey

the assay technologies most often employed in HTS facilities. First, a brief review

of the common assay techniques used across the target families will be presented.

Next, specific assay formats for the major target families will be presented. Each

family has its own special assay needs and therefore specific requirements for

effective HTS assay formats. However, a few generalizations concerning format

can be found throughout the families. For all of the assays reviewed here the, format

Fig. 1 The distribution of current drugs by target class. Included in the figure is the current

percent of market share
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must be homogeneous. HTS assays which involve separation steps or washing

severely decrease throughput and efficiency. They must all be able to run in higher

density formats, 384- or 1,536-well plates. Each must be able to be run in small

volumes, preferably 10mL or less, to both decrease reagent use and waste, and keep

costs low. Endpoint assays are preferred to kinetic assays, but it must be shown that

the reaction is linear over the time course being investigated.

Prior to a detailed analysis of target specific assays, it would be prudent to review

some of the homogeneous technologies that have recently become commercially

available. The last 10 years have seen a substantial increase in the variety of

techniques available for measuring biochemical activity. A few of the more popular

techniques will be reviewed here.

3.3.1 Assay Formats

3.3.1.1 Fluorescence Polarization

Fluorescence polarization (FP) is a powerful fluorescence-based technique for the

study of biomolecular interactions in aqueous solution. Small molecules rotate

quickly, large molecules rotate slowly. By using a fluorescent dye to label a small

molecule, its binding to another molecule of equal or greater size can be monitored

through its decreased speed of rotation. This is the basis of FP. Assays are designed

to change the size of a fluorescently tagged molecule, hence changing its rotation

speed.

First described in 1926 by Perrin [16], the theory was greatly expanded by

Weber [17], who developed the first instrumentation for the measurement of FP.

Dandliker [18] expanded FP into biological systems such as antigen-antibody

reactions and hormone–receptor interactions. Jolley [19] developed FP into a

commercial system for monitoring of therapeutic drug levels and the detection of

drugs of abuse in human body fluids.

In order to understand what we measure in FP it is important to understand first

the nature of light absorption and emission. If we represent the molecules as

dipoles, the excitation dipole is the direction in which the molecule prefers to

absorb light. The emission dipole is the direction in which a molecule prefers to

emit light. We assume (for the sake of simplicity) that these directions are parallel.

If all the molecules are aligned with their excitation dipoles aligned in the vertical

plane and we shine vertical plane polarized light onto them, and we do not allow

the molecules to move, then the observed polarization is 1 (commonly referred to

as 1,000 mP). If all the emission dipoles are perpendicular to the polarized light

the observed polarization will be 0. In reality molecules are not static, but are

tumbling in solution. This leads to polarization values much lower than the theoretical

limits.

FP assays can be developed for most of the target families. Examples of these

assays are presented in the next section.
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3.3.1.2 Homogeneous Time Resolved Fluorescence

Homogeneous Time Resolved Fluorescence (HTRF) (Cisbio International) is an

assay based on the proximity of a lanthanide cryptate donor and a fluorescent accep-

tor molecule whose excitation wavelength overlaps that of the cryptate’s emission.

The utility of this technique is based on the time resolved fluorescence properties of

lanthanides. Lanthanides are unique in the increased lifetime of their fluorescence

decay relative to other atoms, so a delay in collection of the emission intensity

removes the background from other fluorescent molecules. An example of the

HTRF assay is a generic protein-protein interaction assay shown in Fig. 2.

When the proteins are in close proximity the Europium-cryptate emission can be

absorbed by the acceptor (such as allophycocyanin [APC], or XL) which emits at a

higher wavelength. When the two proteins are far apart, no fluorescence resonance

energy transfer (FRET) occurs.

Europium cryptates are ideal detection chemistries due to their inherent stability

and low background fluorescence. Variations on the HTRF scheme include the

LANCE and Lanthascreen assay formats. Recently, a number of different lantha-

nides have been employed in HTS assays, among then Tb and Sm, each with its own

corresponding acceptor. This has allowed for a broad number of assays formats.

The use of time gating minimizes the emission signal from the free acceptor

coupled with wavelength filters to remove the emission signal from the donor.

The readout on these assays is based on the signal ratio of the donor and FRET

emissions thus removing the impact of colored compounds which may decrease both

signals, but the ratio will remain constant.

3.3.1.3 Bead-Based Assays

In the last decade a number of assays based on binding of substrates or products to

beads have been launched. The beads are used as a means of separating or isolating

one of the components in the assay mixture which is then able to give a report on the

status of the substrates and or products. An example is the AlphaScreen (amplified

luminescent proximity homogeneous assay) technique. In this assay, binding of

molecules captured on the beads leads to an energy transfer from one bead to the

other, ultimately producing a luminescent/fluorescent signal.

AlphaScreen assays utilize two types of bead, donor beads and acceptor beads.

Donor beads contain a photosensitizer, phthalocyanine, which converts ambient

oxygen to an excited form of O2, singlet oxygen, upon illumination at 680 nm. Like

other excited molecules, singlet oxygen has a limited lifetime prior to falling back

to ground state. Within its 4-ms half-life, singlet oxygen can diffuse approximately

200 nm in solution. If an acceptor bead is within that proximity, energy is trans-

ferred from the singlet oxygen to thioxene derivatives within the acceptor bead,

subsequently culminating in light production at 520–620 nm. In the absence of an

acceptor bead, singlet oxygen falls to ground state and no signal is produced.
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Fig. 2 A schematic representation of an HTRF assay for a protein–protein interaction. One protein

is tagged with a fluorescent molecule whose emission spectra overlaps with the excitation of another

fluorescent molecule. When they are in close proximity (above) the energy is transferred. When

they diffuse apart (below) or are inhibited from coming together by a small molecule no FRET

occurs
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3.3.1.4 Scintillation Proximity Assays

Radioactive assays have fallen out of favor over the last decade, and few HTS

assays are run using radioactive tracers. Safety, cost, and the need to dispose of

large amounts of waste, along with the availability of nonradioactive formats have

hastened their decrease. However, scintillation proximity assays (SPA) are still run in

some HTS laboratories.

SPA is based on bringing a radioactive species in close proximity to a bead of

solid scintillant. The technique relies on the specific capture of the substrate or

product onto the bead so that the radioactivity can be measured without the need for

separation.

3.3.2 Assay Formats by Target Class

3.3.2.1 Kinases

Several excellent reviews have been written over the last decade highlighting the

many different kinase assay formats available and their application to specific

enzymes [20–22]. This section will only briefly review the current formats used

within the HTS environment. The reader section consult the above-mentioned

references for greater detail of each of the formats.

Kinases are enzymes that place a phosphate group on a serine/threonine or a

tyrosine residue of a protein or peptide. All kinase reactions use ATP as the phos-

phate source. Therefore there have been assays developed that monitor the loss or

gain of the peptide/protein substrate (LANCE, ULight) [23], the loss of ATP

(easylite luminescence kinaseGlo, Perkin Elmer) [20], or the gain of ADP (Tran-

screener TR-FRET) [24]. Many of these formats are applicable to cell based assays.

The format most widely used in the HTS environment is the FRET assay to

measure the production of phosphorylated peptide product. The two most popular

assays using this format are the LANCE and ULight assays (Perkin Elmer). Both

assays employ an Eu-labeled antibody which binds to the phosphorylated product.

The difference between the two formats is in the acceptor molecule (Fig. 3).

Traditional LANCE used APC, which cannot be directly added to the substrate.

In most cases the APC is bound via a biotin tagged on the N-terminal of the

substrate and coupled through a streptavidin conjugated to the APC. In the Ulight

assay, the Ulight acceptor is directly labeled to the substrate. The advantage of

direct labeling this small acceptor is the elimination of the steric hindrance caused

by the bulky biotin–streptavidin conjugate in the LANCE.

Another popular assay format for kinase assays is the Lanthascreen. This format

is a variation on the LANCE assay, but employs Tb as the cryptate. In this format

N-terminally fluorescently tagged peptide substrate (acceptor) is phosphorylated by

the kinase. Next, a phophospecific antibody which is labeled with terbium binds

specifically to the phosphorylated product, placing the donor and acceptor in close

proximity, generating a signal [25].
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Amore recently introduced format is the AlphaScreen assay. The assay principal

behind this technology has previously been described above. In the kinase format a

biotinylated peptide is bound to a streptavidin donor bead, and a phopshospecific

antibody is bound to the acceptor bead. When the substrate is phosphorylated, the

beads come in close proximity and a signal is generated. An example using the

assay for the detection of inhibitors of serine kinases is presented by Von Leo-

prechting [26].

3.3.2.2 Proteases

Proteases are enzymes that break peptide bonds in proteins. As such they lend

themselves to a variety of homogeneous assay techniques. Most employ labeling

both ends of the substrate with a different tag, and looking for the appearance

(disappearance) of the signal generated in the intact substrate (product). As an

example, for a fluorescence quench assay, the N-terminal of a peptide is labeled

with DNP and the C-terminal with MCA. As such, the peptide is fluorescently silent

since the fluorescence from DNP is quenched by absorption by the MCA. Another

very popular donor/acceptor pair is EDANS: 5-[(2-aminoethyl)amino] naphtha-

lene-1-sulfonic acid and DABCYL: 4-(4-dimethylaminophenylazo)benzoic acid)

(a sulfonyl derivative (DABSYL) [27]. Upon peptide cleavage, the two products

diffuse, and due to a lack of proximity, the fluorescence increases.

Fig. 3 A schematic representation of a LANCE ulight assay (left) and a traditional LANCE

(right). See text for details
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Numerous variations on this theme exist [28, 29]. Assays utilizing FRET pairs

are found throughout the literature [30], including homogeneous time resolved

quenching [31]. One of the disadvantages of this technique is the inner-filter effect.

At high substrate concentrations the fluorescence form a product can be absorbed

by an intact substrate causing a decrease in fluorescence. Good assay protocols keep

substrate concentrations below the concentration that causes this effect.

Another interesting protease assay technique involves FP [32]. A peptide is

labeled with a fluorescent group at one end (usually near the C-terminal). The

N-terminal is labeled with a biotin group. When the peptide is bound to the bead the

FP signal is large. Protease catalyzed cleavage of the peptide releases the fluores-

cent tag, and the FP signal decreases. Variations on this theme include a FRET

based FP assay. In this format a peptide is labeled on the N-terminal biotin and on

the C-terminal with a FRET acceptor. When bound to an anti-biotin antibody the

intact peptide produces a high FRET signal, and upon cleavage of the peptide, the

fluorescent group is lost and the FRET decreases. Numerous other examples of

protease assays exist in the literature.

3.3.2.3 Nuclear Receptors

Nuclear receptors (NRs) are ligand activated transcription factors. This class of

targets includes the steroid and hormone receptors, glucose, lipid, and xenobiotic

sensors. Most NRs exist in the cytoplasm of the cell, and when ligand binds, they

translocate to the nucleus where they recruit transcriptional machinery and turn on

gene transcription. Of the 50 NRs identified in the human genome, 5 of these are

targets of current therapies. Examples include the oral insulin sensitizers Rozagli-

tazone, which are PPAR agonists.

Current assay technologies to measure agonists and antagonists of NRs range

from simple fluorescent binding assays to FP assays. An example is the binding of

fluorescently labeled dexamethasone to the glucocorticoid receptor [33]. In the

absence of binding the ligand has a low polarization, but in the presence of receptor

exhibits a high polarization. A more detailed assay involves the recruitment of a

coactivator peptide via a FRET interaction. Such a pair is shown in Fig. 4. Cryptate-

labeled anti-GST antibody indirectly labels the NR by binding to the GST tag.

Binding of the agonist to the NR causes a conformational change that result in an

increase in the affinity of the NR for a coactivator peptide. The close proximity of

the fluorescently labeled coactivator peptide to the cryptate-labeled antibody causes

an increase in the TR-FRET signal [34].

Cell based assays for NRs range from reporter gene assays to in vivo recruitment

assays. The most reported of these is the GAL4 reporter assay. This assay takes

advantage of the fact that the GAL4 response element of yeast does not exist in

mammalian systems.

This assay has been thoroughly reviewed [34] and is outlined in Fig. 5. In brief,

a cell is transfected with a reporter plasmid consisting of a GAL4 response element

upstream from luciferase. NRs are produced as chimeras consisting of the GAL4
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DNA binding domain (DBD). When ligand binds to the NR, it translocates into the

nucleus, the DBD binds to the GAL4 response element (GAL4RE) driving lucifer-

ease transcription. The produced luciferase provides a subsequent detectable fluo-

rescent signal.

3.3.2.4 G Protein Coupled Receptors

GPCRs constitute the largest family of drug targets. Current estimates suggest

greater then 80 drugs that have a GPCR as their target, generating over $100 MM

in annual sales. With the sequencing of the human genome, there have been over

5,000 GPCRs identified. They account for the majority of best-selling drugs and

Fig. 4 In vitro nuclear receptor assays. a FP assay for compounds compete against a fluorescently

labeled steroid for binding to the nuclear receptor. b FRET assay for inhibition of coactivator

recruitment

Fig. 5 Gal4 cell-based assays. Cells are transfected with a construct containing the DNA binding

domain of Gal4 (Gal4 DBD) fused to the ligand binding domain (LBD) of a receptor on interest.

A second plasmid containing the Gal4 response element upstream of a reporter gene (LUC) is
cotransfected. Ligand association with the LBD recruits transcriptional coactivators (Coact)
resulting in increased transcription of the luciferase reporter gene (LUC)
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about 40% of all prescription pharmaceuticals on the market. Notable examples

include Eli Lilly’s Zyprexa, Schering-Plough’s Clarinex, GlaxoSmithKline’s Zantac,

and Novartis’s Zelnorm.

Most HTS labs are performing cell based functional assays for GPCR targets.

After ligand binding which stimulates the receptor, intracellular signaling pathways

are activated and this leads to a decrease (coupling to a Gi protein) or increase (via Gs)

of cyclic AMP (cAMP), or an increase in intracellular Ca, or changes in levels of

inositol phosphate (IP). These secondary messengers can easily been monitored in

several assay formats.

There are cAMP assays that can be measured using a variety of techniques [35],

including HTRF (CisBio) [36], bioluminescence (cAMP-Glo, Promega) [37],

TR-FRET (CisBio) [38], LANCE [39], Alphascreen (Perkin Elmer) [40] and

Enzyme Fragment Complementation (EFC) [41] (Hithunter, DiscoverX). This

review will focus on the LANCE, the TR-FRET and ECF assays as they are the

most used in our laboratories.

The LANCE cAMP assay is a competitive assay in which cAMP produced by

the cells competes with fluorescent-labeled acceptor cAMP for a cryptate tagged

donor antibody. The principal of the assay is shown in Fig. 6. On the left strepta-

vidin conjugated Europium binds to biotinylated cAMP. An antibody labeled with

the fluorescent dye Alexa binds to the cAMP, bringing the donor and acceptor into

close proximity, and energy transfer occurs. When the cell releases cAMP, it

competes with the biotin-labeled cAMP for the antibody, and a signal decrease is

observed. In the TR-FRET assay the antibody is directly labeled with either Eu or

Tb. In this format an increase in cAMP also causes a decrease in signal.

The third format is the Hithunter assay and is based on the ability of two enzyme

fragments to recombine into active enzyme. The principle behind the assay is

shown in Fig. 7.

In this assay, free cAMP molecules from the cell compete for antibody binding

with a labeled enzyme donor (ED)–cAMP conjugate, which contains a small

peptide fragment of b-galactosidase. In the absence of free cAMP, the ED–cAMP

conjugates are captured by the cAMP-specific antibody and are unavailable for

complementation with the enzyme acceptor (EA), resulting in a low signal. In the

presence of free cAMP, antibody sites are occupied, allowing the ED–cAMP

conjugate to complement with EA, forming an active b-galactosidase enzyme;

substrate hydrolysis by this enzyme produces a chemiluminescent signal. The

signal generated is in direct proportion to the amount of free cAMP bound by the

antibody. The assay format can be miniaturized to 2mL volumes [42].

A direct comparison of all three assays generated similar statistical data for a

variety of receptors (http://las.perkinelmer.com) but the ECF was less sensitive by

an order of magnitude. The LANCE was reported to be the platform of choice for

assays lasting more then 24 h.

Another popular assay for GPCR activation is to measure the increase in

intracellular Ca2+ that occurs upon activation. GPCRs on the cell surface produce

inositol triphosphate (IP3) via the action of Phospholipase C (PLC). IP3 stimulates

calcium channels called IP3 receptors on the endoplasmic reticulum, which raise
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Fig. 6 Assay formats for LANCE (left) and TR-FRET (right) for the detection of cAMP

Fig. 7 Hithunter (CisBio) enzyme fragment complementation assay for the detection of cAMP.

See text for detailed explanation of the assay components
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the concentration of Ca2+ ions in the cytoplasm dramatically. GPCR targets that

couple via Gq naturally produce an increase in intracellular Ca2+ that can be

measured using calcium-sensitive dyes and a FLIPR™ instrument. GPCR targets

that naturally couple via GI/o can be adapted to respond to agonist with a ligand-

dependent increase in intracellular calcium by the use of chimeric G-protein or by

the introduction of an over-expressing promiscuous G-protein (Ga15 or Ga16).
These assays are easy to perform. Cells are plated 24h before the assay,

preloaded with the dye, and allowed to incubate for a period of time, generally 1 h.

Agonist and/or antagonist is added to the cells, the cells are incubated, and then read

on the FLIPR.

The assay format works because the dyes are sensitive to the concentration of

Ca. In 1985 Roger Tsien’s group at Berkley were looking for molecules whose

excitation spectrum changes in the presence or absence of Ca2+ ions. They discov-

ered a molecule called fura-2, and regardless of whether fura-2 binds Ca2+, it emits

light at �510 nm. However, the wavelength at which it absorbs light is dependent

on whether Ca2+ is bound. In the absence of Ca2+, fura-2 is excited by 360 nm light;

when saturated with Ca2+ ions, fura-2 is excited by 330 nm light. Therefore, if you

compare the intensity of 510 nm light that is emitted when you shine 360 nm light

on your biological sample to the intensity of 510 nm light that is emitted when you

shine 330 nm light on your sample, you can calculate the concentration of Ca2+

ions. Ca-sensitive dyes have evolved from the original fura-2 to be brighter, better

able to penetrate cells, and more stable. The source of dye which works best for a

particular assay is most often empirically determined.

One additional technique for measuring GPCR activation is the measurement of

IP1 [43]. GPCR Gq stimulation is known to induce PLC activation and trigger the

IP cascade. Several metabolites in this pathway, including IP3, have extremely

short half lives, making them difficult to accurately quantify. IP1, a downstream

metabolite of IP3, accumulates in cells following Gq receptor activation and is

stable in the presence of LiCl making it an ideal read out of receptor activation. The

IP1 assay from Cisbio is based on competition between released IP1 and fluores-

cently tagged IP1 for a cryptate-labeled antibody.

Additional methods for measuring GPCR activation are reviewed in Sect. 6.3.3

on High Content Screening.

3.3.2.5 Ion Channels

Ion channels exist to control the concentration of ions inside and outside the cell.

They are specialized channels, usually specific for a particular ion. A famous

example is the hERG channel, which is responsible for cardiac output. Ion channels

exist as either voltage gated or ligand gated, defined by the stimulus that gives rise

to the change in potential. Most assays for ion channel activity involve the mea-

surement of changes in membrane potential or ion flux by using a dye that is

sensitive to changes in pH or ion concentration [44].
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Fluorescence-based methods do not directly measure ionic current but, rather,

measure either membrane-potential-dependent or ion-concentration-dependent

changes of fluorescence signals (from fluorescent dyes loaded into the cytosol or

cell membrane) as a result of ionic flux. Because fluorescence-based methods give

robust and homogeneous cell population measurement, these assays are relatively

easy to set up and achieve high throughput.

Fluorescent voltage-sensor dyes are used to measure voltage changes across

the cellular membrane through either the potential-dependent accumulation and

redistribution [45, 46] or the FRET mechanism [47]. The lipophilic, negatively

charged oxonol dyes, such as bis-(1,3-dibutylbarbituric acid) trimethine oxonol

[DiBAC4(3)] are examples of redistribution dyes. DiBAC-based voltage-sensitive

dyes have low fluorescence in an aqueous environment, but show increased quantum

yield upon binding to hydrophobic intracellular molecules.

In FRET-based voltage sensors, different negatively charged, membrane-soluble

oxonol dyes are used as voltage-sensing FRET acceptors – bis-(1,3-dialkyl-
2-thiobarbituric acid) trimethine oxonol [DiSBACn(3)]. The FRET donors are

coumarin-tagged phospholipids that are integrated into the outer leaflet of the

membrane when loaded into the cells. An increase or decrease of FRET in response

to membrane hyperpolarization or depolarization produces fast, ratiometric changes.

The ratiometric nature of the assay helps to eliminate many of the artifacts associated

with DiBAC assays. Unlike DiBAC assays, the use of phospholipid-anchored FRET

donor restricts the location of FRET in the plasma membrane, which ensures the

measurement of potential changes that occur at the cell membrane, rather than in

other subcellular compartments such as the mitochondria.

3.3.2.6 Protein–Protein Interactions

As targets become increasing more complex, the assays used to measure them

become complex as well. This is most evident in the current assays which measure

protein–protein interactions. Most involve tagging the interacting partners with a

variety of either FRET partners or F–Q pairs, or measuring via FP changes [48].

Several more interesting assays involve tagging one of the proteins with either

biotin or GST, binding it to a bead, and monitoring the FP signal generated from

aggregation of a fluorescently tagged partner. Another assay technique involves

the use of AlphaScreen beads to tag each of the partners with either an acceptor

or donor bead. Research into neurodegenerative diseases such as Parkinson’s

and Alzheimer’s Disease employ a variety of these techniques to measure protein

aggregation.

3.3.2.7 Phenotypic Assays

Phenotypic screens seek compounds with a specific effect on cell physiology, by

adding compounds to living cells, and scoring for an effect. The measurable
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parameters that can indicate these effects can include changes in morphology,

staining intensity, spatial attributes of the cellular nuclei, and microtubule forma-

tion. Screening small molecules against a target in vitro does not provide infor-

mation about the effects of test compounds on cellular functions. Phenotypic

screening, although much slower to carry out than biochemical screens, provides

information about effects on cell or tissue structure or function and therefore can be

used to eliminate at an early stage compounds that are toxic or do not produce the

desired cellular response.

With complex phenotypic assays, a main challenge is managing and integrating

biological information – such assays are designed to probe networks of interactions

that give rise to complex processes [49]. Small molecules are not simply exposed to

one target, but rather a broad array of networking targets, increasing the complexity

of data interpretation. Large target spaces, such as signaling pathways, metabolic

networks, or entire expressed proteomes, demand increasing complex roles for

information science in interpreting HTS results.

Despite the complexity of the experiments and the enormous data manipulation

necessary, complex biological pathways, as well as new drug targets are being

identified by this method. Examples include screens for compounds that arrest cells

in mitosis, that block cell migration, and that block the secretory pathway [50], or

assays with primary T cells from PLP TCR transgenic mice for their inhibitory

activity on the proliferation and secretion of proinflammatory cytokines in PLP-

reactive T cells [51], and identification of small-molecule inhibitors of histone

acetyltransferase activity [52].

3.4 Screening Sample Management

Despite 20 years of practice the proper content and conservation of screening libraries

is still the subject of vigorous debate at conferences and to a lesser extent, in the

literature. While there is growing consensus that the physical properties of candi-

date screening samples should be restricted, the details vary from library to library

[53]. While there is growing consensus that cool, dry storage conditions tend to best

preserve the value of screening samples, the stringency with which these conditions

are maintained differs widely. While there is consensus that automated systems add

value, the extent of integration of the automation varies from facility to facility.

3.4.1 Solvent

Screening groups have experimented with several different solvent systems for

manipulating and storing compounds. Solubilization of compounds in an organic

solvent converts dry powders, oils and gums into liquids with more uniform proper-

ties that can be more readily and quantitatively transferred from container to

container in massively parallel fashion with automated precision pipettors. Once
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transferred into the penultimate container, usually a 96- or 384-well sample source

plate that will be used as the source of test samples for a matching format 96- or

384-well assay plate, it might be more convenient to store the samples in a dry state

until use. This led to early experiments with volatile solvents such as acetone that

could be easily removed after the compound solutions were arrayed into plates. The

mechanics of mixing in miniature containers can be limiting, however, and concern

about the recovery of dry compounds from plates led to the development of

complex humectants to aid resolubilization of the dried compound films. Despite

reports of success with these formats, almost all screening facilities dissolve their

screening libraries in the ‘‘pseudouniversal solvent,’’ dimethyl sulfoxide (DMSO)

and store the solutions until use. Given that the potency of most HTS hits is low to

mid micromolar and that most cell-based assays will not tolerate a final DMSO

concentration of much more than 0.3% and that the smallest volume transfers

routinely achievable with standard pipettors are around 1mL, most compound

collections are dissolved at a stock concentration of 10–30 mM. This is a compro-

mise that exceeds solubility limits in DMSO for many compounds, but is the most

dilute stock concentration that can still be successfully transferred to a cell-based

assay at 10mM with 0.3% residual DMSO, using conventional pipettors.

3.4.2 Storage Conditions

DMSO is a relatively weak oxidizing agent, but there generally seems to be little

concern over the potential for chemical modification of compounds stored in

DMSO solution. Rather, the major concern with storage in DMSO solution is the

hygroscopic uptake of water and the resulting degradation of compound solubility

in ‘‘wet’’ DMSO solutions [54]. In the rush to HTS during the early 1990s, many

compound libraries were dissolved and handled under ambient conditions of tem-

perature and humidity that inevitably led to substantial water uptake with signifi-

cant effects on solubility that were only exacerbated by the frequent uncontrolled

freeze/thaw cycles that these solutions endured over succeeding years of multiple

reuse. It is scant wonder that LC/MS analysis of samples from several traditional

HTS libraries indicated loss or degradation of 20–50% of the samples [55]. However,

experiments with traditional libraries are de facto observations of ‘‘wet’’ DMSO

solutions. Some studies have shown that ‘‘dry’’ DMSO can better preserve test sets

of compounds prepared and observed under controlled conditions and that multiple

freeze/thaw cycles have little effect under these conditions [56]. In response to the

somewhat sparse literature and unpublished internal studies, several pharmaceuti-

cal companies have adopted procedures and automation devices designed to dis-

solve their collections in ‘‘dry’’ DMSO and to maintain the DMSO solutions in a

cold, dry state until use. Given the evidence of the deleterious effects on compound

solubility resulting from even low level water uptake, this seems like a prudent

precaution, although the cost-effectiveness is difficult to quantify. The choice of a

storage temperature below the freezing point of the DMSO solutions would

also seem prudent, given that rapid freezing should arrest the crystallization that
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presumably precedes precipitation. One factor in the current uncertainty about

storage conditions is the significant cost associated with maintaining an effective

quality control program to monitor the purity and integrity of screening libraries

ranging from half a million to a million and a half compounds. Despite reports of

automated analytical systems, the time and expense it takes to determine the status

of every compound on a rotating schedule is more than most organizations are

willing to spend [57–59]. Ultimately, as low volume liquid handling instrumenta-

tion has improved and the miniaturization of precision labware has evolved, the

preparation of multiple replicate copies of small aliquots of the screening library in

plates and microtubes designed for one-time use may obviate some concerns

surrounding storage conditions and freeze/thaw cycles.

3.4.3 Plate Format

The choice of storage format for compounds was traditionally driven by the assay

format, which was limited to those formats compatible with the liquid handling and

plate reading formats supported by the instruments used for HTS. When 96-well

plates were the rule for HTS, ample volumes of stock compound solutions could be

maintained in deep well 96-well format plates to supply screening samples for

multiple campaigns using simple one-step liquid transfer processes. These stock

deep well plates were often stored under poorly controlled conditions such as

ambient humidity at 4�C, which is above the freezing point for ‘‘wet’’ DMSO

solutions. Much of the concern about compound degradation and precipitation

arose from observations made on plates like these. As 384-well formats were

widely adopted by HTS groups and supported by automated liquid handling work-

stations capable of reformatting 96-well plates to 384-well plates, the volume

limitations of 384 well, deep well storage plates and nascent concerns about the

effects of multiple freeze thaw cycles led to the development of individual micro-

tubes that contained over 1 mL of solution and could be arrayed in tube racks that

mimicked the standard 96-well plate format. The microtubes could be stored in

automated systems under environmental conditions designed to preserve the com-

pounds and they could be accessed individually so that HTS hits could be refor-

matted for confirmation testing without thawing an entire 384-well plate of

samples. Two-dimensional matrix codes on the bottom of each tube enabled each

tube and the compound it carried to be tracked through every process. Eventually,

picotubes were developed that afforded the same benefits in 384-well format. The

use of 1,536-well plates has not been widely accepted for HTS, despite the

availability of pipettors, dispensers, and plate readers that are compatible with

this format. Although most studies indicate that most assays can be reconfigured

for typical 1,536-well volumes, it seems that low volume 384-well plates will also

function well at these volumes and afford much of the cost savings associated with

miniaturization. A more significant barrier to widespread implementation is the

extravagant expense of retooling not only the HTS groups, but the assay develop-

ment groups that would need access to 1,536-well technology to develop HTS
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compatible assays and the compound management groups that would need to

supply compound source plates or assay ready plates containing compounds in

1,536-well format for HTS as well as continuing to supply 384- and 96-well format

plates for the rest of their clients. Most screening sample management groups

currently dispense compound solutions in both 96- and 384-well plates and main-

tain cold, dry compound solution stores in individual two-dimensional bar-coded

tubes compatible with 96- and 384-well plate formats.

3.4.4 Logistic Strategy

Screening sample management is obviously on the critical path for all screening

operations. It is usually much more efficient to centralize this function, even when

HTS is decentralized, and when HTS is a central operation, it is usually most

effective to colocate the two functions. This minimizes communication and sample

transfer delays. Because the two groups use much of the same liquid handling and

information technology (IT) infrastructure, they can help support each other’s

training and method development, ensuring cooperative behavior. At Wyeth, the

main dry compound repository and automation for dissolving compounds in DMSO

under dry conditions is located 75 miles away from the central screening sample

management and HTS facility. This requires routine shipment of new screening

samples dissolved in dry DMSO and stored frozen under dry nitrogen in 1.4-mL

microtubes from one facility to another. Once the samples are received and stored

frozen in a random access automated freezer system maintained under nitrogen, all

subsequent screening sample management operations from creation of screening

sample source plates through HTS hit confirmation and provision of samples to

client labs for hit to lead activities are performed in this central facility, co-located

with the HTS facility.

Every year or two, the screening sample management group creates a new

edition of the screening library by individually accessing the more than a million

1.4-mL tubes containing the main stock of each compound solution in DMSO. The

outputs of this process are replicate copies of 384-well plates containing small

aliquots of high concentration compound stock in DMSO that will be diluted

immediately before use to provide samples for screening and replicate copies of

100-mL tubes containing just enough high concentration compound stock in DMSO

(about 15 mL) to provide material for confirmation assays for HTS. These plates and

tubes are stored frozen and sealed under dry nitrogen. Individual sets of the

replicate plates comprising the screening library are sealed under dry nitrogen in

stacks of 26 ready to use plates in automation friendly metal canisters and manually

stored in a walk in freezer with rolling shelves and a bar-code inventory system.

The appropriate canisters are removed from the freezer just in time before use and

staged next to the appropriate screening platform on specially fabricated carts.

Sample source plates are used and discarded and the empty canisters returned for

reuse. The screening sample management group must maintain an adequate stock of

single use sample source plates to feed 8 concurrent screening campaigns which
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each consume from 50 to 300 sample source plates 5 days a week. The sealed tubes

are stored in an automated system maintained under cold, low humidity conditions

where they can be rapidly individually accessed and reformatted in a variety of

plate configurations for follow up dose response testing of HTS hits by the HTS

group. Each HTS campaign generates hundreds to thousands of hits that require at

least two stages of follow up assays in HTS, each stage of follow up testing requires

a new round of tube picking and reformatting. The steady state process required to

support 30–50 campaigns a year can be estimated, but in the real world, with

8 concurrent campaigns, several times a year there will be a peak demand to

serve multiple campaigns that arrive at the end stage simultaneously. Coping with

this variable load while maintaining uniform levels of service for all the various

activities requires close coordination of resources and strategic logistic planning,

including reliable supplies of consumables and adequate reserve stocks as well as the

same level of automation engineering and facilities support that are required for the

HTS operations.

3.4.5 Automation Systems

It should probably not be surprising that the first large scale automated systems

designed for screening facilities in the early 1990s were not designed to perform

biological assays, but rather screening sample management activities. In essence,

the explanation is simple; every screening campaign makes the same demands on

the screening sample management group. In comparison with the diversity of

different assay formats that HTS systems must support, the well-defined mission

of screening sample management simplifies the design of automated systems that

support it. Given the maturity of this effort, the state of the art in automation for

screening sample management has not changed much since the last comprehensive

review [60]. The market for large integrated systems that can adequately serve a

central HTS facility is still dominated by a few large vendors, but smaller, modular

systems that can be expanded to rival the capacity of the large integrated automated

systems are also available. The need for speed and accurate inventory control while

stamping out replicate HTS sample source plates or while picking and reformatting

samples from tubes to plates is still the real driving force for the application of

automation, but most vendors have added environmental control to the list of

features available on their systems. Any system that maintains samples in a frozen

state needs to control and minimize humidity in order to prevent ice deposits from

interfering with the automation. From that perspective, maintaining a dry nitrogen

environment in the cold box is simply a more effective way of excluding moisture.

The real challenge for vendors of automated systems for screening sample

management is not the hardware or automation control software needed to move

plates, tubes and liquids through their complex, highly sophisticated storage and

liquid handling systems, but rather building an information highway between their

own proprietary IT systems and the often highly idiosyncratic and sometimes

homegrown IT systems used to register samples and track inventory by their
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corporate clients. There are no universal conventions for terminology and sample

tracking and genealogy, and the business rules that define these conventions vary

widely from corporate client to corporate client. Factor in the possibility that the

client corporation may still be attempting to reconcile multiple legacy systems and

it is easy to see why the automation is often the easier deliverable.

4 Deliverables

4.1 Output

In the simplest of terms, an HTS campaign is a process to evaluate thousands to

millions of chemical compounds in an assay to identify and quantify activity

against a drugable target. This process delivers a compiled list of the active

compounds with the associated data on potency, selectivity, specificity, and func-

tionality. This informational data package is assimilated by project team biologists

and chemists to enable their decision process on where to deploy chemistry and

biology resources over the course of a multiyear lead optimization program. Yet,

this process of generating raw data and transforming it into meaningful information

useful to others is anything but simple.

HTS campaigns usually consist of several phases – HTS assay development,

adaptation of the HTS assay onto robotic platforms, validation of the automated

assay, and then sequential evaluation of a sample collection in different assays. The

evaluation assays often consist of the primary screen retests to confirm activity,

counter screens to eliminate nonspecific interference with the assay format or

reagents, selectivity and potency IC50 determinations, and often some cell-based

functional assay. Many HTS laboratories now include toxicity determination on the

most active samples, cross screening against panels of related members of the target

class, plus purity and integrity testing of the chemical samples to ensure correct

structure. At each step in the process the activity of the unknown sample is

compared to internal standards and the performance of each assay assessed by

inclusion of internal QC samples and plates. As discussed in the following section,

sophisticated statistics are used at each step to monitor assay reliability during the

entire campaign and allow identification of all significant active samples.

This complex data set is analyzed to identify and group samples into categories

based on initial activity in the primary assay, confirmed activity indicating a true

active, selective compounds based on the IC50 determinations, and activity in a cell-

based assay. Applying cheminformatics tools, each grouping of compounds can be

clustered based on chemical structure suggesting preliminary SAR around a che-

motype. This analysis is also useful in identifying structural classes possessing

known activity that should be avoided, appears less tractable, or may present

intellectual property challenges. The final deliverable is a rich data package most

often delivered using sophisticated visualization tools allowing combination of
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quality control aspects, performance of standards, statistical analysis of the results

from each assay in the campaign, and clustering of compounds by potency,

selectivity and structural class. Additional value is added by annotating the com-

pounds possessing the desired activity with historical data from previous HTS

campaigns against both members of the same target class and members of target

classes.

4.2 Statistics

A basic understanding and appreciation of the value of statistics is an essential skill

for HTS. A recent review written from an engineering perspective provides an

excellent introduction to the basic concepts, especially as applied to assay design

and quality control, the two areas in screening where the application of statistics is

both necessary and relatively straightforward [61]. Another recent review, written

from a more academic point of view, invests more effort in an attempt to answer the

important but thorny question of how to apply statistics to HTS hit selection,

whereas in most HTS facilities, every compound is tested only once, at one

concentration, for an ‘‘n’’ of 1. The obvious answer is to test every compound in

the screening library at least twice, if not thrice, but given the magnitude and

expense of testing every compound even once, multiple, replicate tests of the entire

library will probably not be considered cost-effective in most HTS facilities [62].

4.2.1 The Zhang Factor

Nearly a decade has passed since the venerable Zhang factor was introduced to

screening [63]. It is a straightforward method to calculate an easily interpreted,

dimensionless number that reflects both the variability of the high and low signals

and the separation between the means of the high and low signals of an assay. In

other words, it evaluates both the noise and the bandwidth of an assay. When

applied to multiple replicate tests using a well characterized reference standard

control compound or biological reagent, the resulting Zhang prime factor can be

used as a measure of assay quality. When applied retrospectively to the aggregate

results from a large set of screening library samples, the Zhang factor can help

describe how well the assay performed with real samples under production condi-

tions. Comparison of the Zhang factor to the Zhang prime factor for a given assay

can aid understanding of how the composition of a given screening library yielded

results that deviated from the ideal behavior of the reference standard. Because the

Zhang prime factor is a dimensionless number, it can be used to assess the relative

quality of different assays independently of the quality of the screening libraries to

which they are applied. Zhang reported that screening assays with Zhang factors in

the range of 0.2–0.6, where a factor of 1.0 represents perfection, were commonly

encountered in their HTS operation. At Wyeth, screening assays that have Zhang
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prime factors of 0.4 and higher usually have good outcomes. The Zhang factor is a

versatile tool that can be applied to reference standards at each separate concentra-

tion across the full range of dose response. It is important to remember that the

Zhang factor was devised as an aid to assay development and prediction of the

probability of success in HTS and that, like any tool based on statistics, it derives its

power from multiple independent observations that are free of systematic error.

Indeed, one of the most thorough retrospective analyses of HTS data suggested

that in most HTS operations, systematic effects far outweigh stochastic probability

distribution as the leading cause of uncertainty in hit identification [64]. The use of

standard statistical tools, including the Zhang prime factor, to assess assay quality

depends on replicate tests and the elimination of systematic error. These conditions

are difficult to meet. Careful analysis of HTS data from 20 campaigns that screened

libraries of 0.5–1.6 million compounds per campaign showed that systematic

artifacts were typically observable in most campaigns even after egregiously

unacceptable results were identified and rejected by human inspection of visual

representations of the data from each plate. The artifacts in question are known to

all screeners and included edge effects commonly caused by uneven heating and/or

evaporation of the edge wells on a plate, column and row artifacts that can be

attributed to the characteristic dispense patterns of reagent and cell dispensers and/

or plate washers when they are slightly out of adjustment, plate location specific

artifacts that result from failure of individual pipette tips to deliver reagent to

individual wells in successive plates due to damage or blockage during the assay,

repetitive patterns of high or low signal in areas of successive plates caused by plate

reader bias or even manufacturer defects in labware. While assay developers and

HTS groups strive to remove as many root sources of systematic error as possible

before beginning an HTS campaign, there is a point of diminishing returns at which

an informed decision to proceed despite less than perfect statistical performance

will deliver an adequate return on investment and clear the platform for use on the

next project. And while most HTS facilities perform extensive preventative main-

tenance on their HTS platforms between campaigns, there is ample opportunity for

slight equipment malfunctions to emerge over the course of a campaign.

It might be expected that the use of Zhang prime factors throughout the cam-

paign would provide the first alert of these artifacts, but the application of Zhang

prime factors to quality control analysis in many HTS operations is flawed by the

fact that, at Wyeth, the only cost effective mechanisms for loading the replicate

control wells on every plate that are necessary to calculate individual Zhang prime

factors is to place them on the outer edges of the plates, using different liquid

dispensers than are used to dispense the screening library samples. The two sets of

dispensers have different intrinsic precision and accuracy and, because they operate

independently during the assay, the behavior of the reference controls dispensed to

the edge wells cannot truly represent the behavior of the samples that are separately

dispensed to the interior wells of the plate. One remedy to this situation that is

standard practice at Wyeth is to supplement the edge well controls on each plate

with separate quality control plates that are interspersed throughout the batch run

and that carry multiple replicate wells dispersed over the entire plate that represent
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the high and low controls as well as dose responses to reference standard com-

pounds. Because these controls are applied to the plates with the same pipettors that

are used to dispense the screening library samples, they usually present a more

accurate representation of the quality of the sample results, but they only give a

snapshot of assay performance at intervals throughout the batch run and inspection

of the results of each plate individually is still necessary to catch rogue artifacts so

that those plates can be retested. Needless to say, this obsessive quality control

requires robust IT support.

Another major limitation in the use of the Zhang prime factor is that, for many

targets of interest in HTS, there are no available small molecule control compounds

that have solubility and stability properties suitable for use as reference standards

for HTS. In some cases, the biological reagents or control compounds used for

assay development are unsuitable for HTS. For some novel targets, there are no

known ligands. This often leads to the use of artificial assay conditions to generate a

high or low signal during HTS, such as absence of enzyme in an enzyme assay, or

the use of a nonspecific agonist in a cell-based assay. While practical, the variability

associated with these signals may be a poor model for the variability of signals

generated by the biology of interest.

4.2.2 Statistics and Hit Identification

The Zhang factor describes population behavior and assesses assay quality as long

as systematic artifacts are eliminated, but it does not identify hits. The use of

statistical tools to identify hits based on a single test of each compound requires a

few additional assumptions. The key assumption is that most compounds in a

screening library will be inactive in most assays, so that the distribution pattern

of biological activities observed from the entire population of compounds in the

screening library will resemble a normal or Gaussian distribution, the bell-shaped

distribution of test results that would arise simply by chance from a sufficient

number of control tests in the absence of test compounds, with very few compounds

showing significant activity more than three standard deviations from the mean.

This assumption that the intrinsic variability in the measurements of the activities of

all the samples in the library is essentially the same justifies the use of standard

statistical calculations of variability to define outliers showing activity in excess of

three standard deviations as hits, requiring further testing. Because, in fact, HTS

also assumes that there will be some compounds with real biological activity in the

screening library, the first assumption of random distribution is modified by the use

of the IQR SD rather than the population standard deviation. The use of the IQR SD

proceeds from the assumption that, even though there are likely to be some real

outliers at the tail ends of the distribution, the behavior of samples that show

activity values within the middle 50% of the distribution (on either side of the

mean) will more closely conform to a normal or Gaussian distribution and they can

be used to calculate an IQR SD that will more correctly identify outliers lying

beyond the three IQR SD threshold as hits. One reason for testing multiple
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replicates of the LOPAC library during HTS validation is to model the population

distribution of activity of a sample set of compounds that is artificially enriched

with bioactive molecules. Many of these compounds are drugs at nanomolar

concentrations, but show nonspecific activity at micromolar concentrations.

As practiced at Wyeth, this statistics-based mechanism for hit selection results in

hit selection thresholds that vary considerably from assay to assay and generate

correspondingly varying hit rates of 0.5% to over 5%, averaging around 2%. Hit

rates in excess of 5% only occur when the shape of the population activity distribution

challenges the operating assumption of normality, and typically require some modifi-

cation of standard operating procedure because they also challenge the hit picking and

reformatting capacity and are usually too expensive to support. As information about

the confirmed nonspecific activities and/or relevant cross-activities of each compound

in the screening library accumulates in the database, excess hits can often be elimi-

nated as nonspecific for a particular target without further testing. On occasion, an

extra confirmation step is added to the process wherein all hits are retested in triplicate

at the original screening concentration to eliminate those that fail to confirm their

activity before proceeding with the normal dose titration confirmation/interference

screen protocol with a reduced number of confirmed actives.

In general, the attempt to retest every compound that passes a statistically defined

threshold of activity for each assay and to implement a concomitant assay interfer-

ence test has been rewarded by recovery of a full spectrum of biological activities

and diverse chemotypes in the confirmed hit set. In many cases, the compounds that

the medicinal chemists ultimately judge to be the best starting points for lead

development exhibited only modest activity (e.g., IC50 values of 0.5–5 mM) in HTS.

There are always some assays submitted for HTS that defy attempts to achieve

statistical validity. Currently, target validation is usually tasked to specially trained

and equipped groups separate from the HTS groups, but the widespread use of RNA

interference (RNAi) assays has led to adoption of many HTS and high content

screening (HCS) techniques for target validation. The extreme variability of cellu-

lar response observed in RNAi assays from well to well and plate to plate in the

same batch run would confound standard HTS hit selection techniques, but new

data analysis tools have been developed for this specialty application that enable

decisions for hit selection, despite the high degree of noise in the results [65]. The

technique is called Strictly Standardized Mean Difference and requires multiple

replicate samples and multiple replicate controls on each plate to enable sophisti-

cated statistical distinction between subtle hits and noisy negative controls, but

offers an alternative statistically based hit selection tool that seems to work even

with assays that would fail in standard HTS practice.

4.2.3 Hit Selection by Other Means

Traditionally, HTS groups first determined their resource limited capacity for

confirmation assays of HTS hits and then used either high potency or chemical

structure considerations to pick that number of compounds for retest. The correlation
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of activity seen in primary HTS with activity seen in confirmation tests is often poor

and the most potent compounds from the primary HTS frequently either failed to

confirm their activity or proved to be intractable as starting points for lead devel-

opment. Hit selection by chemical structure was risky in the days when few library

compounds underwent purity and integrity testing before they were selected as hits

and often overlooked novel singleton structures in favor of well known clusters

with limited potential as intellectual property. As compound management and

screening infrastructures increased in capacity, it became more common to set an

arbitrary activity threshold and to attempt to retest all compounds that passed that

threshold. Arbitrary activity thresholds are sometimes stringently set based on the

potency of existing chemical equity, but the desire to identify hits that can compete

with existing leads should be tempered by realistic expectations and an appreciation

of the opportunity to discover alternate chemotypes with the potential to produce

novel leads. In practice, arbitrary thresholds are often adjusted on a project by

project basis after consideration of the priority of the target, assay hit rate, capacity

for retest and results of whatever in silico analyses are available.

5 Has HTS Been Successful?

5.1 A Pessimistic View

The answer depends on who you ask. The Wall Street Journal, quoting leading

scientists, called HTS part of ‘‘an expensive fiasco’’ [66]. They suggest that high

throughput sciences, such as combinatorial chemistry and HTS, have slowed drug

discovery. They point to the decrease in the number of new chemical entities that

have been approved since the advent of these new technologies. One author even

compared HTS to ‘‘that room full of monkeys pounding on typewriters and eventu-

ally producing Shakespeare’s Hamlet.’’ On the other side of the debate, most

pharmaceuticals companies claim to have discovered several clinical candidates

that began from hits in a HTS campaign. Bristol-Myers Squibb, Princeton, N.J., can

point to one drug that they have on the market that emerged from an HTS program.

Sprycel (dasatinib), an oral inhibitor of multiple tyrosine kinases, was approved for

the treatment of adults in all phases of chronic myeloid leukemia with resistance or

intolerance to prior therapy, including Gleevec (imatinib mesylate).

The truth most likely lies somewhere in between. Bender [67] published the

most quantitative study to date on the success of HTS at Novartis. Several conclu-

sions could be drawn. Particular target types and assay technologies have a great

impact on screening success, and this was not always correlated to the number of

identifying hits in the HTS runs. For assay formats used a minimum of five times,

LC/MS readouts succeed 83% of the time, followed by FP assays, which succeed

in 72% of the cases. TR-FRET showed a success rate of 70%, with FLIPR assays

(61%), fluorescence intensity readouts (59%), and AlphaScreen (60%) performing
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averagely, compared against a mean of 57% of all HTS campaigns succeeding. Less

successful methods are FlashPlate/SPA (50% success rate) and, in particular,

receptor binding assays (25% success rate). Thus, a significant difference between

assay types arises. Also, significant mutual dependencies of screening success and

target type/assay technology can be observed; while one assay format works well

with one target type, this might be completely the opposite for a combination of the

same readout technology with a different target type.

Perhaps success is based on picking the right assay format. Kashem [68]

compared an HTS for a kinase using three different formats. They observed that

57% of the compounds appeared as positives in all three assays. One can only

wonder about the 43% that got away.

5.2 An Optimistic View

The answer depends on how you define success. HTS does not identify ‘‘drugs’’ but

identifies the starting chemical structure that enables lead optimization through

SAR to develop a lead compound. Thus, critics of HTS are accurate in claiming that

it has been unsuccessful in finding ‘‘drugs.’’ But the truth is that HTS has been very

successful in providing the starting points for 50% or more of the small molecule

programs currently in the preclinical pipelines of most of the pharmaceutical

companies. Additionally, the number of clinical programs that started years before

based on HTS continues to grow.

Recognizing that HTS as a true discipline based on the convergent development

of laboratory automation, computational power, larger chemical libraries, and

disease target knowledge has been practiced in its current form since the early

1990s, it might be unfair to use marketed drugs as the success metric. Yet,

considering that the drug discovery and development cycle takes 12–15 years

prior to product launch, HTS has made a significant impact. In a study published

by Fox [69] in 2005, the directors of 26 HTS laboratories reported that 104 clinical

candidates or marketed drugs were based on original HTS campaigns. This number

had increased from 74 in 2004 which leads one to extrapolate that there would be

a higher number if a similar survey was undertaken today. Clearly, even using

the metric of clinical candidates or marketed drugs, HTS would be considered a

success.

Taking a more realistic perspective, the real measure of success is determined by

the transition of HTS hits into exploratory (hit-to-lead) chemistry, lead optimization

and late stage preclinical activities. The frequency of this progression reflects on the

quality of the entire HTS process and the resulting data around active chemical

compounds. Many of the well-established pharmaceutical company HTS labora-

tories have discussed their successes. Burns [70] described the impact of Abbott’s

HTS over the last decade tracking specific examples of compounds moving through

the discovery and development process. He describes the use of NMR, affinity,

fragment-based, and more traditional approaches in HTS campaigns leading to
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several clinical candidates. Bender et al. [67] presented the experience of Novartis’

HTS group from the perspective of which target classes, assay technologies, and

sample library formats generated the highest success with ‘‘success’’ defined as

‘‘project progression beyond the HTS campaign to significant downstream activi-

ties.’’ Their data indicates numerous successful campaigns. In their historical

review of the evolution of HTS at Pfizer, Pereira and Williams [2] provided several

examples of early successes leading to clinical candidates and marketed drugs.

These citations plus personal communications from HTS laboratory directors make

it clear that in those organizations that have invested in developing infrastructure,

processes and technical staff to properly conduct and analyze the output of HTS

campaigns, that success is easily measured – and obvious.

An additional success metric often overlooked is the impact of HTS on techno-

logy development and the transition of enabling ‘‘HTS technology’’ to upstream or

downstream discovery and development processes. The interaction of HTS practi-

tioners with the developers and manufactures of instruments, labware, and reagents

over the last 20 years has driven rapid technological advances in all three cate-

gories. The practical insight and budgets to support early development coupled to

an appetite for cutting edge technology has benefited both the users and the

providers. Not only have these technologies had a direct impact on the operational

efficiency of HTS groups but laboratories involved in target discovery and valida-

tion, disease biology and pharmacology, ADME, toxicology, pharmaceutical

profiling, and analytical chemistry have all shared in the benefit of these automated

screening technologies and sophisticated data management tools ‘‘funded’’ initially

by those focused on HTS.

6 Impact, Challenges, and Future Directions

6.1 Data Management

By the mid 1990s, the several screening groups that eventually coalesced into the

Wyeth Screening Sciences department had been running automated workstation

screens for about 5 years and the central IT group had provided a homegrown HTS

data management application mounted on the corporate VAX cluster that included

well-designed, easy to use GUIs in the screening laboratories that enabled online

protocol management, barcode tracking, real-time plate-based data reduction and

data visualizations with streaming statistics, all loaded onto an ORACLE database

with a custom query interface that enabled users to generate SQL statements

without understanding SQL and that included some sophisticated cross-assay

comparative analysis and report tools similar to those used by the National Cancer

Institute at that time. This system was maintained for approximately 3 years and

abandoned when key personnel left the company and priorities in the IT group

changed and commercial software appeared that promised to perform the same
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functions with less reliance on local IT support for maintenance and upgrades. The

in-house system was not perfect. Introduction of new assay procedures usually

required expert IT assistance and insufficient data buffering at the plate readers

often resulted in lost data during the then frequent network failures, but given the

slow pace of screening at that time, it was adequate. It took over a year of painful

effort and close support from the Wyeth IT group before the commercial HTS data

management application that was purchased to replace the adequate homegrown

system was able to function with reduced capacity. Fortunately, over the past 15

years, many sophisticated options have been introduced to the marketplace.

6.1.1 User Requirements

One reason why HTS data management options are seldom judged to be more than

adequate by their users is because these users have continually demanded more

functionality and higher peak capacities while retaining creative flexibility and ease

of use. The range of activities necessary to develop assays, prosecute HTS cam-

paigns, analyze, communicate and curate the results is much the same as it always

was, but expectations have risen such that all the features enabled by relational

databases should be available for every conceivable HTS support function. For

example, all assay protocols should be securely shared with version control and be

fully searchable. Not only must the results from every assay plate be correctly

matched to every sample source plate, but quality control data generated from

reference samples on each assay plate as well as from QC assay plates interspersed

between the library plates must be captured, analyzed, and readily associated with

the appropriate sequence of assay plates from that batch process. Ideally, the user

should also be able to merge the assay and QC results with meta-data about the

batch process including details from the log files of the automation platform that

track instrument maintenance and QC records and deviations from the expected

schedule to help explain anomalies in the assay results. The conversion of data to

calculated results needs to be fully automated to keep pace with the machinery, but

provision must also be made for interactive manipulations such as curve fitting, as

HTS is increasingly applied to complex kinetic and dose response data. These

functions are sometimes available in stand-alone laboratory information manage-

ment systems that are built and maintained by a team of IT professionals who are

dedicated to the support of an individual screening facility, but these are often

highly customized one-off creations and are usually isolated from the remaining

corporate enterprise network.

All data must, of course, be searchable, retrievable, and subject to acceptance or

rejection based on both automated and retrospective QC analysis. Reports must be

flexible in content yet easily assembled, intuitively understandable, and easily

shared with appropriate security and yes, it would be nice if the reports themselves

could become, like the assay protocols, version controlled, searchable documents

residing in an appropriately indexed relational database. These are just the basic

requirements.
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The ultimate goal of all scientists is to analyze their data thoroughly until they

are sure that it is valid and to then analyze it in a more global context and discuss it

with their colleagues. This workflow requires enterprise level IT tools that can

effectively compare and correlate multiple HTS campaigns that generated millions

of results from hundreds of thousands of compounds, recognize and chart trends

and hierarchies of association and help the scientist visualize them, annotate them,

and render the visualizations in media that can be used to share that vision with

other members of the team.

And yes, all the other functions that support HTS need access to much the

same types of tools for data entry, review, validation, query, retrieval, and report.

These include assay development groups, compound registration and sample man-

agement groups, automated cell culture groups, engineering support groups, logis-

tics and procurement support groups, and especially those responsible for project

management. Obviously no single software application currently serves all of

these different data types, but all of these data types need to be managed and they

all serve HTS.

6.1.2 Data Management Options

Several commercially available software applications are available that provide

the basic functionality for HTS [71]. IDBS offers ActivityBase (www.idbs.com),

Symyx (formerly MDL) offers Assay Explorer (www.mdli.com), CambridgeSoft

offers BioAssay Enterprise (www.cambridgesoft.com), ChemInnovation Software

Inc offer CBIS (www.cheminnovation.com), and Accelrys Inc. offers a collection

of data processing and integration modules built around SciTegic Pipline Pilot for

plate based data (www.accelrys.com). Genedata has entered this field relatively

recently with Genedata Screener (www.genedata.com). In common with many

other large pharmaceutical companies, Wyeth uses Activity Base to manage HTS

assays and to capture and retrieve HTS data, but supplements Activity Base

reporting and visualization tools with customized Spotfire modules (www.tibco.

com). Wyeth still largely relies on applications written and maintained in-house for

the compound management and inventory functions that serve and protect Wyeth’s

most precious asset, the corporate compound library.

Many of these products are suites or components of suites that attempt to serve

the broader needs of drug discovery, including modules for compound registration

and inventory control as well as specialized modules for document management

and in silico analyses. A common initiative among large pharmaceutical companies

is the development of truly global integrated data repositories that assemble all data

types into one vast data-mart with an extremely versatile front end query and

reporting tool that can also apply powerful analytic tools to the data and that

includes tools for facilitating communication and collaboration. These projects

are vast, costly, and extended, but by integrating commercially available modules

wherever possible they can be completed and they appear to offer the best chance to
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realize finally the potential benefits of comprehensive IT support for discovery

research within a sustainable IT infrastructure.

6.2 Staff Development

In the late 1980s and early 1990s as HTS evolved throughout the pharmaceutical

and biotechnology industries, early practitioners came from diverse backgrounds in

pharmacology, natural product discovery, and even medicinal chemistry. They

were drawn to HTS for many reasons ranging from a desire to improve the drug

identification process to the love of advanced technology development. These

adventuresome individuals usually performed all the functions required to complete

an HTS from assay development, primary and selectivity screening, sample man-

agement, data capture and analysis, culminating in information exchange with a

project team. This was achievable when sample collections numbered in the

hundreds of thousands and a scientist with a rudimentary workstation could process

thousands per week. This increased ability in compound evaluation and data output

far surpassed the expectations of most organizations and it was acceptable for an

HTS to take up to a year to complete. But as the impact of HTS on the early drug

discovery process became evident, the size of sample collections increased, and the

technologies related to HTS advanced, organizations raised the expectations of

HTS groups and began to dramatically change the role of those scientists involved.

Instead of generalists capable of understanding the minimum basics of all

aspects of HTS it became necessary to bring the expertise of specialists to the

process to enhance capabilities, to understand rapidly emerging technologies, and

to focus on specific phases of the process for efficiency and quality. Pharmacolo-

gists, biochemists, cell biologists, molecular biologists, and geneticists became

necessary for assay development and proper screen performance. Automation

experts with backgrounds in engineering, robotics, fluidics and material sciences

were needed to understand and maintain increasingly complex workstations and

integrated systems to address issues of surface interactions, labware incompatibility,

and subcomponent functionality. Chemists with knowledge of cheminformatics,

computational techniques, sample library generation, and proper sample storage

and QC techniques joined HTS groups as sample libraries near a million became a

common target in many companies. With the increase in both the number of HTS

campaigns being performed and in the size of sample collections evaluated, infor-

mation technologies became a critical expertise for every HTS group to provide

effective data capture, storage, and analysis. IT experts to implement and maintain

sophisticated computer systems and data bases, biostatisticians to support the

complicated analysis of data sets, and bioinformatics specialists capable of data

mining to generate knowledge became integral members of HTS groups.

HTS matured from an art to a science and with this evolution the need to attract,

train, and retain a diverse scientific staff became a critical success factor for leaders

of every HTS organization. The modern HTS organizations present a unique
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challenge to managers and supervisors attempting to provide career growth and

recognition to their staffs while achieving the goal of developing, adapting,

performing, and analyzing HTS campaigns in an environment demanding increased

output to enable quality decisions which projects advance but with static or

decreasing investment of personnel or funding. Several key challenges such as

recognition and training are important to overcome in HTS staff development.

Many HTS groups exist either as fully integrated departments or as separate

groups within a therapeutic area. This autonomy, though enhancing performance and

output, often encourages the perception that the HTS group is a ‘‘service provider’’ not

a ‘‘collaborator.’’ As the chasm widens, therapeutic area scientists who focus on

advancing the understanding of a disease and moving projects through the discovery

process towards the clinic can often think of their HTS counterparts as less skilled,

less knowledgeable, and of lower importance in the organizational structure. This

perception leads to diminished opportunities for authorship on publications or podium

presentations at scientific meetings when the HTS contributions to the scientific

results are considered routine work from a service group. To overcome this, leaders

of HTS groups must foster collaboration across the discovery organization and

promote the efforts of their staff as worthy of scientific recognition. Several journals

and societies have evolved that are focused on assay development, screening tech-

nologies, automation, and data management, offering HTS practitioners an outlet for

their scientific endeavors. Though it is often difficult to allocate time to prepare and

submit articles or presentations, members of HTS groups need encouragement and

support to do so in building their own reputation and career, the respect of the group,

and advancing their science.

Equally challenging is providing training for a multidisciplinary team existing as

an autonomous entity. Continued training for each HTS scientist in their specialty is

required to remain up to date on scientific and technology advances plus refresher

courses on core expertise. In addition, a unique challenge in HTS groups is

providing the opportunity to cross train in the other key disciplines involved in

the total process which not only provides development for each individual but also

builds awareness of the complexities and challenges that coworkers encounter and

solve during an HTS campaign. Training in each specialty can usually be accom-

plished by encouraging each scientist to maintain roots in their core scientific

discipline within the broader organization and through membership in scientific

organizations. This networking and exposure to training opportunities in their

discipline focused on application to the HTS process extends capabilities in the

HTS group while building the individual’s career. The bigger challenge is develop-

ing and maintaining a program of cross training within the HTS to build awareness,

provide redundancy and offer career development activities. The uniqueness of

each discipline as applied to HTS in an organization places the responsibility

of establishing and maintaining this ongoing training on the leaders. Job training

conducted by staff with knowledge of one discipline to other members of the group,

rotation of staff from function to function, seminar series, and mentorship are

methods often employed. Again, the challenge is conducting this intensive ongoing
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training in a pressurized environment focused on short term deliverables versus

long term career and staff development.

6.3 New Technologies

The technologies described in this section are new only in the sense that some of

them are not yet in widespread use in HTS. In fact, the enormous cost and resources

at risk in any HTS campaign and the very significant capital expense required to

modify HTS platforms encourage a certain conservatism in many screeners that is

completely at odds with their usual fascination with new technology. Fortunately,

the users and vendors of HTS equipment and reagents have consistently demon-

strated a great capacity for cooperative behavior, forming user groups, online

forums, and technology consortia, as well as participating in and publishing the

results from advance placement beta programs. These activities have helped to

move useful technologies that satisfy unmet needs into the marketplace at an

accelerated rate.

6.3.1 Miniaturization and Fluidics

Several pioneering HTS groups have demonstrated that most common lumino-

metric and fluorometric assays can be adapted to 1,536-well volumes of 4–8 mL per

well using pin tools and the latest generation of high performance plate readers [72, 73].

Nevertheless, most HTS groups still use predominantly 384-well formats and seem

to be moving to 384-well low volume formats in lieu of adopting 1,536-well

formats. This conservatism may be due as much to the anticipated cost in time

and money to upgrade to new equipment and revise SOPs as it is to the ripple effect

that such a change in HTS practice would require of assay development and

compound management groups, together with the possibility that because they

often serve clients besides HTS, support groups would not be able to make a

clean break to 1,536, but would be required to maintain 3 supply streams, 96,

384, and 1,536, rather than the 2 streams they currently must provide. This hesita-

tion to embrace the novelty of 1,536-well formats was already obvious several

years ago [74]. Although most 1,536-well HTS is currently accomplished using pin

tools, vendors have developed a variety of other dispensers that seem to be adequate

for low volume 384- and 1,536-well format assays, including capillary pipettors and

acoustic dispensers [75, 76]. Acoustic dispensers can enable picoliter dispensing,

but current devices differ from pin tools in that they transfer fluid from only one

well at a time. They can also serve as analytical devices to monitor volume and

water uptake in plate-based compound collections dissolved in DMSO [77].

Despite much excitement in the 1990s over the potential for microfluidics and

nanoengineering to revolutionize HTS, there have been few commercially viable

systems that embody the concept. Most notable is the Caliper capillary electrophoresis
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device (www.caliperls.com), which has proven over many years to be an extremely

effective medium throughput screening platform [78]. Despite the excellent quality

of the data generated on these instruments, they tend to be more useful as detection

devices than in their original mission as laboratories on a chip. There is a common

difficulty in realizing the original intention of microfluidic devices to complete an

entire assay and detect the result in a single cycle of operation on a chip. Unless the

chips are far more massively parallel than the Caliper devices, the biological event

of interest and detection of the outcome must occur very quickly, so that the dwell

time for each sample on the chip is quite short. This may force the use of reaction

conditions that vary significantly from physiological norms and/or standard enzy-

mology practice. The Nanostream microparallel liquid chromatography device

processed a 384-well plate in 24-well sections and is no longer on the market

[79]. The SpinX device was recently introduced and may offer enough robust,

parallel, sample capacity, and programmable complexity to survive (www.spinx-

technologies.com). The system is composed of a novel disposable microfluidic

cassette that has 32 ports molded into the top edge in the same dimensions as a

double row of 16 wells from a standard 384-well microtiter plate. When 12

cassettes are bundled together into a rack, the tops of the bundled stacks present the

same dimensions as a standard 384-well plate, facilitating liquid dispensing of

reagents and test samples to the ports. Each cassette has a complicated system of

microfluidic passages and cavities leading down from the ports to the bottom edge

and when the individual cassettes are spun in a special centrifuge, centripetal forces

move the reagents and samples through the labyrinth, mixing substrates and

enzymes and detection reagents in careful sequence with exquisite timing. The

key innovation is that all the connections between the ports and the many channels

and cavities that honeycomb the interior of the cassette are created on the fly by

shining a laser integrated into the centrifuge through the side wall of the spinning

cassette. Lasers are also used to detect the reactions that occur when reagents and

samples are mixed, while the cassette is still spinning. The variety of different paths

and branch points and mixings that can be programmed into each cassette is large

enough to enable a wide variety of different assays. It will be interesting over the

next few years to see if the market is clever enough to find a critical use for this

clever assay instrument that puts no exotic demands on the current liquid handling

capability of most laboratories, minimizes reagent use and wastage and offers an

enormous flexibility of assay design.

6.3.2 Label-Free Screening

When asked what is the most exciting new change to come to the HTS lab, the

scientists surveyed picked label-free assays. These systems alleviate the need for

fluorescent or optical tagging of molecules. Platforms based on acoustic resonance,

electrical impedance, microcantilevers, nanowires, and differential calorimetry

are beginning to appear in the literature. The current greatest utility is for post-

high-throughput screening hit confirmation and mode-of-action studies. Label-free
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technologies are allowing novel assay formats for the analysis of previously

intractable targets.

The most popular label-free systems involve measuring the change in reflectance

of a light source after interaction with the sample. Two examples are Surface

Plasmon Resonance (SPR, Biacore) and the EPIC system (GE Healthcare). Both

involve immobilizing one of the components on a solid support. The surface is then

illuminated with light, and the reflected light will have a direction and wavelength

consistent with the size of the immobilized target. If a binding partner is captured to

the surface, the reflected light will change both its angle of diffraction and its

wavelength. This change is proportional to the change in molecular weight of the

complex. This is a powerful technique for measuring the on and off rates of binding

partners.

6.3.3 High Content Screening and Short Interfering RNA

One of the most exciting new technologies to come to the HTS lab is High Content

Screening (HCS). HCS uses a confocal microplate imaging system and living cells

to monitor spatially or temporally resolved cellular processes within a single cell.

The technology allows for the evaluation of multiple biochemical and morphologi-

cal parameters in cellular systems. Through combining the imaging of cells in

microtiter plates with powerful image analysis algorithms, one can acquire deeper

knowledge on multiple biochemical or morphological pathways at the single-cell

level at an early stage in the development new drugs.

Almost any process that involves trafficking from one compartment of a cell to

another can be monitored by HCS. Assays in the literature are as innovative as the

technique, and include monitoring the movement of b-arrestin in GPCR signaling

(DiscoverX Path Hunter, Transflour, Molecular Devices), ER to Golgi membrane

trafficking, and using FRET to monitor mitotic spindle orientation (http://stke.

sciencemag.org).

One technology that has generated a lot of excitement is RNAi. RNAi is a

conserved pathway in which short interfering RNA (siRNA) molecules target

a complementary mRNA. The siRNA guides the multiprotein complex RISC

(RNA induced silencing complex) to the mRNA, whereupon the mRNA is cleaved

and degraded, resulting in loss of protein function [80]. This natural process can be

enlisted to enable selective silencing of any target gene of interest in human cells,

finally empowering mammalian cell researchers with a simple genetic tool. RNAi

has the potential to affect every aspect of target identification and validation,

making drug development better, smarter, and faster.

siRNA screening represents a paradigm shift in the HTS lab. Small molecules

are not screened for their ability to modulate a specific target. Instead, using this

technique, scientists can screen for and validate the targets themselves. Coupling

siRNA with HCS will give researchers a powerful tool for understanding how gene

silencing can effect a variety of cell lines. The reader is encouraged to consult the

appropriate references for more detailed descriptions.
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6.3.4 Primary Cells

Cell lines used for HTS are usually derived from immortalized human cell lines (e.g.,

HEK293) or rodent cell lines (e.g., Chinese hamster ovary), that have been manipu-

lated by recombinant DNA techniques to express the target of interest. HTS

campaigns using engineered cells may miss some naturally occurring protein

partners needed for signal generation. Cultured primary cells, blood platelets, or

neurons all possess characteristics that often represent in vivo physiology better

than immortalized cell lines. Assays in these cell types could give a more accurate

prediction of the activity of compounds in an in vivo model and in the clinic, and

thus could contribute to a decrease in attrition in the whole process of small-

molecule drug discovery. Primary cells provide a physiologically relevant secondary

system for drug screening.

One of the major drawbacks from using primary cells in HTS is the difficulty in

obtaining the number of cells needed for a campaign. New technologies have

emerged that facilitate cell-based screening with lower numbers of cells than are

normally needed, among them the LabChip™ microfluidics systems manufactured

by Caliper (http://www.caliperls.com) and the CellCard™ system developed by

Vitra Bioscience (http://www.vitrabio.com). Examples of the use of primary cells

in HTS have recently been reported. For a more comprehensive review of primary

cells lines for HTS, including ways to immortalize primary cells, the reader is

forwarded to [81]. Lowering the cell requirements should help allow primary

culture cells to be used for cell based assay in drug discovery.

6.4 Smarter Approaches to Screening

6.4.1 Focused Libraries

The majority of HTS sample collections are assembled so as to maximize the

chemical diversity of the members of the library. In contrast to diversity-oriented

libraries, target-oriented libraries are designed to create libraries that are focused

around specific chemotypes, molecular species, or classes of compounds. Target-

oriented design results in focused libraries with a limited number of well-defined

compounds. For example, scaffold compounds can be used as ‘‘seed’’ elements with

various functional groups systemically added to the seed scaffolds to create sets of

analogue compounds. Target-oriented design methods use 3D shape, 3D electro-

statics, pharmacophore models, molecular descriptors, and other methods to gener-

ate focused libraries. In addition, if compounds of known 3D structure bind to

active sites, they can also be used as seeds for libraries [82].

When building targeted libraries, a common design method is to take existing

drug leads and generate neighbors (analogs) of the leads in chemistry space using

combinatorial methods and conformational expansions of the lead compounds.
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The resulting compound libraries thus include many analogs of the lead com-

pounds, which can be used in additional screens for novel leads.

Focused libraries have been applied primarily to kinases and GPCRs, and less

frequently, ion channels. Screening sublibraries where the members are selected

computationally, empirically, or both, to interact with a particular class of targets is

an extremely effective and cost-efficient way of identifying bioactive chemical

matter. It is the moral equivalent to fishing where you know there are fish. However,

focused libraries have been shown to be quite promiscuous, having activity against

multiple targets. In addition, the chemical diversity is lower in a focused library.

This usually means finding what you already know.

6.4.2 Fragment Based Screening

Fragment based screening (FBS) is a technique in which small molecules (up to

200 Da) are screened against a target at in the hopes of finding compounds that can

bind to different parts of a protein. It differs from traditional HTS in several ways.

Traditional HTS screens molecules of �500 Da at low micromolar concentrations.

FBS looks at smaller fragments at millimolar concentrations in the hope of finding

simpler compounds with limited chemical functionalities. This usually comes at the

cost of lower affinities (IC50s in the millimolar range) for a target. Figure 8 demon-

strates the how the two types of compounds may bind in a hypothetical target.

In Fig. 8 (left) a small molecule will fill several potential binding sites within

a target, though not necessarily with good potency. FBS, depicted in Fig. 8 (right),

has a greater chance of binding more efficiently because of the reduced steric

requirements of the smaller fragments.

A variety of detection techniques are used to measure the binding of the frag-

ments to the targets. Among the more popular are NMR, ITC and DSC, X-ray

crystallography, and SPR. The success rate for finding viable leads has been

reported as high as 70–80% of targets screened. Card, et al. [83] used FBS for the

detection of specific inhibitors of PDE4. Starting with an 80-mM fragment, the

authors were able to decrease potency 4,000-fold.

Fig. 8 Schematic representation of the binding of a small molecule (left) or a fragment (right) to a
hypothetical protein active site
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6.4.3 Virtual Screening

Virtual screening involves the screening of millions of compounds in silico to find

those with the best chance of binding to the target. Its greatest utility is programs

where the structure of the target has been solved by X-ray or NMR techniques. The

success of this approach depends heavily on the algorithms used to calculate

binding energies. Two major approaches are the quantum mechanical approach

and the knowledge based approach.

Quantum mechanical approaches, such as those applied by Merz [84], use

traditional quantum mechanics to calculate free energies of binding. Though

relatively successful, the computational time required to calculate the energies

make this approach impractical to large data sets.

Knowledge based approaches, such as those pioneered by Shakhnovich [85],

utilize a more empirical approach. They deconstruct current drug compounds into

one- to three-atom segments, and calculate the probabilities that these small pieces

exist in these drugs. They then construct new molecules in the binding site of the

protein, score them as potential binders, and rank order compounds. The great

advantage of this approach is the speed as which compounds can be grown and

scored.

Both approaches have their advantages and disadvantages. Each has been

successful enough to form the basis of startup companies trying to apply these

algorithms to solve complex drug targets. The utility of these approaches will

become evident in time.

6.5 HTS in Academics

Over the last 10 years there has been a major initiative to bring HTS into the

academic community. The NIH roadmap has a mission to build a better ‘‘toolbox’’

for medical research in the twenty-first century and to empower the research

community to use small molecule compounds in their research, whether as tools

to perturb genes and pathways, as imaging probes in basic or clinical applications,

or as starting points to the development of new therapeutics for human disease.

Part of this initiative is the Molecular Libraries Screenings Centers Network,

a collection of screening centers at universities. Additional information on this

screening service can be found at http://nihroadmap.nih.gov/molecularlibraries.

A significant number of universities are building HTS facilities. The first was the

Institute of Chemistry and Cell Biology, established at Harvard Medical School in

1998. Its purpose was to facilitate the pursuit of Chemical Genetics as an academic

discipline. Another interesting example is the screening center at the Neurodegen-

erative Diseases at Harvard University. It is one of the first examples of a teaching

center for drug discovery where not only are screening services provided, but

students are taught the sciences of assay development and screening.
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What has been the effect of this initiative on the discovery of drugs to fight disease?

According to Nature Chemical Biology [86], HTS in industry is focused largely

on assaying drugable targets for lead compounds with drug-like properties. In

academic research, on the other hand, investigators may be interested in identifying

small molecule modulators of biological targets that are not considered drugable or

that have no connection to disease. With the broader range of biology under

investigation, and without the requirement for optimal pharmacology, it is not

necessary, and often not desirable, to limit screening libraries to drug-like mole-

cules. This broad chemical biology purview pushes the boundaries for HTS assays

[73] and changes the demands for the composition of chemical libraries [87]. Thus,

HTS in academic research is expanding our ability to probe chemical and biological

space.

7 Summary

In this chapter we have provided descriptions of the key components of HTS with

examples of how this lead identification approach is generally practiced. We have

also commented on peripheral issues such as staff development, success metrics,

emerging technological trends, plus operational and organizational challenges.

Understanding the complexity of the HTS campaign and the multidisciplinary teams

necessary in this interactive process is essential for chemists and biologists to harness

the potential of this scientific discipline that has evolved over the last 25 years.

Technologies and industries undergo continual change and the next 10 years will

no doubt see further change. Advances in technologies, evolution of processes and

increases in understanding diseases will enhance the role of HTS in the drug

discovery process. We hope that this chapter provides the underpinning to facilitate

communications across scientific disciplines involved in HTS to recognize the

needed changes and implement necessary solutions for continued success.

Appendix

Accuracy

Closeness of the agreement between the result of a measurement and a true value of

the property being measured.

Active

A sample that produces a response or signal above a defined threshold at the tested

concentration in a single assay or screen and that has not yet been confirmed by
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subsequent experiment. Note: when the properties and identity of an ACTIVE

sample are confirmed by subsequent experiment it becomes a HIT. Use of ACTIVE

and HIT as synonyms is inaccurate.

Activity

The response to a test sample measured in an assay.

Activity distribution

A plot or graphical representation of the number of samples present in each activity

range. Often shown as a population bar chart, it is used to provide an overview of

the screening results and typically allows the determination of the overall BACK-

GROUND signal and threshold for selection of ACTIVE samples.

Artifact

An experimental result which is not a manifestation of the phenomenon under

investigation, but is brought about erroneously by the particular arrangement of

instrument and method.

Assay

(1) An experimentally controlled biochemical or biological system used for the

quantitative analysis of perturbations imposed by a test sample; (2) a set of opera-

tions having the object of determining the value of a quantity. In analytical

chemistry, this term is synonymous with measurement.

Assay control, negative

Experimental conditions designed to produce the minimum signal in an assay. It is

typically the signal measured in the absence of a test compound and is relevant to

the determination of the BACKGROUND signal. Note: synonymous with ‘‘low’’

control.
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Assay control, positive

Experimental conditions designed to produce the maximum signal in an assay.

Typically determined with a reference test compound. Note: synonymous with

‘‘high’’ control.

Assay format

Description of an assay in which the plate type (96-well, 384-well, etc.) and assay

type (fluorescence, luminescence, etc.) are defined.

Assay validation

Experiments conducted to verify that the output measurement of the assay is

reflective of the target activity. Results are compared (where possible) to existing

literature parameters such as Kd, Ki, Km, or EC50.

Automation

Mechanization with process control, where process means a sequence of manipula-

tions. One or several functions in an instrument may be automated.

Background

(1) The amount of a signal produced in an assay or screen in the absence of a test

substance; (2) the signal detected from an assay in the absence of TARGET

activity; often equivalent to negative control.

Batch

A homogeneous preparation of a reagent/reactant (small molecule, enzyme,

CLONE, etc.) produced (synthesized, purified, or otherwise) at one time.
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Compound collection/library

A set of chemicals that has been labeled or annotated for easy storage and retrieval

and that is available for screening. Consists of compounds synthesized by combi-

natorial or standard synthetic methods, purchased from commercial or academic

sources, or samples of natural products either as pure samples or as mixtures.

Concentration response

Whenever a figure quantifying the affinity or efficacy of a compound in an assay is

required, the compound is evaluated at increasing concentrations in order to

determine its concentration-dependent effect. The classical thermodynamics usual-

ly result in a hyperbolic increase of the assay signal upon linear increase in

compound concentration. Thus, compound concentration responses are usually

determined using logarithmic serial dilutions, e.g., 10 mM–1nM (See also Ki, KD,

IC50, EC50).

Counter-screen

A screen in which test samples are assessed against a TARGET for unwanted

activity. This target may or may not be structurally or functionally related to the

intended target.

Effective concentration 50 (EC50)

The concentration of an effector that produces one-half of the maximal response for

that system. Usually refers to an agonist in a receptor system, compared to a

reference agonist that produces a maximal response in the system.

Efficacy

The extent to which a compound produces a response in an assay, relative to the

high and low assay controls. When the compound increases the signal up to 100%

or decreases the signal down to 0%, it has a 100% efficacy. When the plateau

reaches another intermediary efficacy value, the compound is said to have a partial

effect.
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False negative

An assay result in which a sample known to be active does not produce either the

expected signal or a signal above the activity threshold. FALSE NEGATIVES can

occur when an assay lacks appropriate discriminatory power, when the threshold is

inappropriately set, or as a result of mistaken identity of the test sample.

False positive

An assay result in which a sample known to be inactive produces a signal or

response above the activity threshold. FALSE POSITIVES can occur when an

assay lacks appropriate discriminatory power, when the threshold is inappropriately

set, as a result of certain physical properties of the substance (e.g., a fluorescent

compound in a fluorescence intensity assay, aggregation), or as a result of mistaken

identity of the substance.

High content screening (HCS) assay

An assay that produces multiple biological readouts. Most commonly used in

relation to the mathematical analysis of an image acquired using an automated

microscope whereby analysis algorithms quantify cellular parameters (e.g., num-

ber, motility, neurite outgrowth, size, shape) and subcellular events (e.g., receptor

internalization, protein translocation, protein expression nuclei shape).

High throughput

A relative term, applied to the generation of a large number of results (e.g.,

100,000) in a short timeframe (week or month). Usually achieved by employing a

substantial degree of automation.

Hit

A sample that produces confirmed activity above the hit threshold in an assay and

whose structural identity has been confirmed. A substance becomes a HIT when the

properties of an ACTIVE are confirmed by elimination of FALSE POSITIVE
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results and ARTIFACTS. Note: in the past, the terms confirmed hit, true hit, and

confirmed active were used with this meaning.

Hit rate

The portion of hits that displays confirmed activity in a screen beyond a minimum

defined level, the hit threshold. Expressed as a percentage.

Hit threshold

The minimum activity that defines ACTIVES in a PRIMARY SCREEN. It is

usually expressed as percentage of inhibition or stimulation. For example, a widely

used hit threshold is 50%.

HTS

A method in which a large number of assays (from thousands to millions) are

performed and assessed in a relatively short time period. Typically, these assays are

carried out in microplates of at least 96 wells using automated or robotic technol-

ogies. Note: the rate of at least 100,000 assays per day has been termed ‘‘Ultra

HTS’’ (UHTS).

Inactive

A substance that does not produce a response above the hit threshold in an assay at

the tested concentration. Note: a substance may also be designated as inactive when

attempts to confirm an ACTIVE fail.

Lead

A compound (or compound series) that satisfies predefined minimum criteria for

further structure and activity optimization. Typically, a lead will demonstrate

appropriate activity, selectivity, tractable SAR, and the potential to be patentable.

High Throughput Screening in the Twenty-First Century 77



Library

(1) A collection of samples (e.g., chemical compounds, natural products, over-

expression library of a microbe) available for screening; (2) a set of compounds

produced through combinatorial chemistry.

Liquid handler or liquid handling machine

A programmable device that accurately and precisely delivers predefined quantities

of liquid to a MICROPLATE. It may be free-standing; incorporated into a WORK-

STATION, or part of a fully automated system.

Microplate

Any of a number of plates containing a series of wells in which to store reagents,

clones, etc., or perform individual assays. Typically, these plates are constructed of

a variety of clear and opaque plastics, and contain 96, 384, or 1,536 individual

wells, although 24-well and 3,456-well plates are also available.

Microplate standards

Standards that define the footprint, the height, the flanges and the well positions of

96-, 384-, and 1,536-well microplates.

Module

An individual automated device within a fully automated assay system that usually

performs a complete single assay step or procedure. A fully enclosed MODULE

may allow for the control of temperature, humidity, and the gaseous environment.

Noise

The random fluctuations occurring in a signal that are inherent in the combination

of instrument and method.
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Plate format

The number and configuration of wells on a microplate. The most widely used

formats are arrays of 96 wells (8�12), or 384 wells (16�24), or 1,536 wells

(32�48).

Plate map

The layout of samples and controls configured on a plate during an assay. For

example, for a primary screen in 384-well plates, columns 1, 2, 23, and 24 are

controls, and columns 3–22 are for individual test compounds, whereas for second-

ary screening, each row will contain a single compound at varying concentrations.

Precision

The closeness of agreement between independent test results obtained by applying

the experimental procedure under stipulated conditions. The smaller the random

part of the experimental errors which affect the results, the more precise the

procedure. A measure of precision (or imprecision) is the standard deviation.

Primary screen

The initial screen applied to assess the activity of a collection of compounds against

a biological target of interest. This SCREEN identifies ACTIVES from a LIBRARY.

Quality control

An operation or series of operations that contributes to the validation of screening

results. Such operations include validation of liquid handling devices and plate

readers, experiment controls, such as determination of the Z0 factor and use of assay
controls, and postexperiment controls, such as data analysis validation and database

administration. Results of a screen are validated only after a set of quality controls

have been performed.
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Reproducibility

The closeness of agreement between independent results obtained with the same

method on identical test material but under different conditions (different operators,

different apparatus, different laboratories, and/or after different intervals of time).

The measure of reproducibility is the standard deviation qualified with the term

‘‘reproducibility’’ as reproducibility standard deviation. In some contexts reproduc-

ibility may be defined as the value below which the absolute difference between

two single test results on identical material obtained under the above conditions

may be expected to lie with a specified probability. Note that a complete statement

of reproducibility requires specification of the experimental conditions which

differ.

Robustness

An assay or screen is said to exhibit ROBUSTNESS when it has a high discrimina-

tory power and produces a low number of FALSE NEGATIVE and FALSE

POSITIVE results.

Sample

A portion of material selected from a larger quantity of material. Typically a

chemical compound or mixture of compounds submitted to an assay or a screen.

Screen

The execution, analysis, and interpretation of a large number of assays to evaluate

the activity of a collection of samples against a target. A screen will often employ

automation.

Screen validation

Assay conditions as determined by ASSAY VALIDATION are performed in the

chosen PLATE FORMAT with an acceptable signal to background ratio as

described by the Z0 factor.
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Secondary screen

A screen applied to confirm independently actives from the primary screen.

A secondary screen may employ an assay that differs in type from the primary

screen, e.g., biochemical assay vs cell based assay, or it may be of the same type

with different readout.

Selectivity assay

An assay used to determine the relative potency of active or lead compounds

towards an alternative target. A selectivity assay (or panel of assays) may include

targets of the same family or unrelated targets.

Target

A biological molecule, such as an enzyme or receptor, whose activity and function

is the focus of a screen.

Targeted library

Library designed, on the basis of preexisting information, to generate enhanced

activity or hit rate against a particular biological target or target class.
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(2004) J Biomol Screen 9:719

27. Fields B (2001) Meth Mol Biol 151:495

28. Lombard C, Saulnier J, Wallach J (2005) Biochimie 87:265

29. Livingston DC, Brocklehurst JR, Canon JF, Leytus SP, Werly JA, Peltz SW, Peltz GA,

Mangel WF (1981) Biochemistry 20:4298

30. George J, Teear ML, Norey CG, Burns DD (2003) J Biomol Screen 8:72

31. Karvinen J, Elomaa A, Makinen M, Hakala H, Mukkala V, Peuralahti J, Hurskainen P,

Hovinen J, Hemmila I (2004) Anal Biochem 325:317

32. Levine LM, Michener ML, Toth M, Holwerda BC (1997) Anal Biochem 247:83

33. Lin S, Bock CL, Gardner DB, Webster JC, Favata MF, Trzaskos JM, Oldenburg KR (2002)

Anal Biochem 300:15

34. Harrison RK, Lin S, Seidel HM, Zhang J, Zhang L, McGeehan GM (2002) Curr Med Chem

Immunol Endocr Metab Agents 2:23

35. Eglan R (2005) Front Drug Des Disc 1:97

36. Ito S, Yoshimoto R, Miyamoto Y, Mitobe Y, Nakamura T, Ishihara A, MacNeill DJ,

Kanatani A, Tokita S (2006) Eur J Pharmacol 529:40

37. Kumar M, Hsiao K, Vidugiriene J, Goueli SA (2007) Assay Drug Dev Technol 5:237

38. Persani L, Calebiro C, Bonomi M (2008) Nat Clin Pract Endocrinol Metab 3:180

39. Evans L, Romeo DP (1977) Am J Bot 64:1170

40. DowlessMS, Barbee JL, Borchert KM, BocchinfusoWP, Houck KA (2005) J Pharmacol 512:9

41. Golla R, Seethala R (2002) J Biomol Screen 6:515

42. Weber M,Muthusubramaniam L,Murray J, Hudak E, Kornienko O, Johnson EN, Strulovici B,

Kunapuli P (2004) Assay Drug Dev Tech 5:39

43. Trinquet E, Fink M, Bazin H, Grillet F, Maurin F, Bourrier E, Ansanay H, Leroy C, Michaud A,

Durroux T, Maurel D, Malhaire F, Goudet C, Pin JP, Naval M, Hernout O, Chrétien F, Chapleur

Y, Mathis G (2006) Anal Biochem 385:126

44. Xu J, Wang X, Ensign B, Li M, Wu L, Guia A, Xu J (2001) Drug Disc Today 6:24

45. Waggoner A (1976) J Membr Biol 27:317

46. Loew LM (1988) Spectroscopic membrane probes. CRC Press, FL

47. Gonzalez J, Tsien R (1997) Chem Biol 4:269

48. Luk KC, Hyde EG, Trojanowski JQ, Lee VM (2007) Biochemistry 46:12522

49. Clemons PA (2004) Curr Opin Chem Biol 8:334

50. Yarrow JC, Feng Y, Perlman ZE, Kirchhausen T, Mitchison TJ (2003) Comb Chem High

Throughput Screen 6:279

51. Rossi C, Padmanaban D, Ni J, Yeh LA, Glicksman MA, Waldner H (2007) J Biomol Screen

12:481

82 J.W. Paslay et al.



52. Hardcastle A, Tomlin P, Norris C, Richards J, Cordwell M, Boxall K, Rowlands M, Jones K,

Collins I, McDonald E, Workman P, Aherne W (2007) Mol Cancer Ther 3:1112

53. Shelat AA, Guy RK (2007) Curr Opin Chem Biol 11:244

54. Di L, Kerns EH (2006) Drug Disc Today 11:446

55. Bowes S, Sun D, Kaffashan A, Zeng C, Chuaqui C, Hronowski X, Buko A, Zhang X, Josiah S

(2006) J Biomol Screen 11:828

56. Cheng X, Hochlowski J, Tang H, Hepp D, Beckner C, Kantor S, Schmitt R (2003) J Biomol

Screen 8:292

57. Popa-Burke IG, Issakova O, Arroway JD, Bernasconi P, Chen M, Coudurier L, Galasinski S,

Jadhav AP, Janzen WP, Lagaska D, Liu D, Lewis RS, Mohney RP, Sepetov N, Sparkman

DA, Hodge CN (2004) Anal Chem 76:7278

58. Di L, Kerns EH, Chen H, Petusky SL (2006) J Biomol Screen 11:40
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Lead Discovery Using Virtual Screening

Jack Andrew Bikker and Lakshmi S. Narasimhan

Abstract The practice of virtual screening (VS) to identify chemical leads to

known or novel targets is becoming a core function of the computational chemist

within industry. By employing a range of techniques, when attempting to identify

compounds with activity against a biological target, a small focused subset of a

larger collection of compounds can be identified and tested, often with results much

better than selecting a similar number of compounds at random. We will review the

key methods available, their relative success, and provide practical insights into

best practices and key gaps. We will also argue that the capability of VS methods

has grown to a point where fuller integration with experimental methods, including

HTS, could increase the effectiveness of both.

Keywords VS, Virtual Screening, Lead discovery, lead, HTS, Pharmacophore-

Based, Structure-Based, Fragment-based, Ligand-based, Docking, Scoring, hybrid

workflows, VS strategy, Benchmarking VS
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1 Introduction

Over the last decade, improvements in algorithms for molecular comparison and in

docking and scoring, in conjunction with the advent of affordable yet fast comput-

ing through clusters of relatively inexpensive processors have made VS a promising

strategy to identify novel leads to known and new targets. It is a highly cost-

efficient and relatively fast way to leverage limited information on a biological

target, namely a small number of compounds that are active against it, or its

structure determined to atomic resolution or both, to find additional leads. When

successful, this method can often identify leads that are of interest, as defined by the

key characteristics of potency, novelty, exploitability, selectivity, and ADME. As a
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strategy, the software and methods available can be used alone, or in combination

with more common high throughput screening (HTS) or fragment screening tech-

nologies. As this review will demonstrate, there is ample evidence to show that this

technology has been applied to targets in gene families for which inhibitors are

known, and to recently identified targets. Success, dependent on a variety of factors

and defined in as many ways, is variable, and controlled by what we have termed

the zeroth law of screening: If the compound is not in the screening collection, it
can’t be found. However, experience and the literature suggest that, if there are

inhibitors of modest potency or better present in the screening collection, a subset

may well be found by applied VS methods (Fig. 1).

VS refers to any computational filtering or statistical prediction applied to

cherry-pick compounds from a large database. The logical next step is to acquire

these compounds for experimental testing. An operational definition of VS, that it

is the exercise of ranking molecules by descending order of likelihood of relevant

biological activity, regardless of how that ranking is performed, captures the

essence of VS ([1], quoting [2]). The choice of ranking algorithm generally

depends on the information known on the target, knowledge of compounds active

in the relevant biological assay, how dissimilar the desired ligands need to be from

known bioactive molecules, and what percentage of the ranked database would be

selected for experimental testing. The smaller the percentage of compounds to be

tested, the more efficient the ranking algorithm needs to be to result in successful

hits from VS.

The most common VS method is a similarity-based (almost always executed

through the use of a fingerprint) or substructure-based search. These are so

integrated into medicinal chemistry practice that they are often overlooked as

being amongst the most common and effective VS methods. However, given one

or more active compounds, chemists invariably attempt to identify similar mole-

cules using substructure and similarity queries. Substructure and similarity searching

Novelty

Exploitability

ADME

Selectivity

Potency

Fig. 1 The desired attributes

of a lead molecule. Often,

molecules identified by any

screening strategy might

satisfy optimal criteria for

only a subset of these

attributes and most

laboratories would proceed

with a medicinal chemistry

campaign banking on

improving the rest in a

subsequent lead optimization

phase
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is often the unexciting but highly effective follow-up of a more complex virtual

screen that attempts to find new lead matter. Even when only a few analogs turn up

as initial hits, substantial structure–activity relationships of an entire series can

sometimes be gathered without requiring new synthesis. The continuing interest in

fingerprint-based methods is covered in more depth in the LBVS section of this

review and in several reviews in the literature [3–7].

The more challenging scenario arises when the need to identify new scaffolds or

series becomes the driver of the VS experiment. Often, the ratio of the number of

compounds selected for testing to the size of the database of compounds screened,

SSR (selection to superset ratio), is in the range of a thousandth or less. Success

(which could be 1% or more of selected compounds having relevant biological

activity) while selecting in such low SSR situations (small number of molecules

selected from a very large collection) has won VS the recognition as a distinct

function of computational chemistry that can deliver new leads to a drug discovery

effort complementing experimental methods like high-throughput screening (HTS).

Mostly such VS is done to select compounds from databases typically present in

medium to large pharmaceutical companies or compendia of commercially avail-

able compounds or combinatorially synthesized collections provided by vendors or

combinations thereof. A characteristic of such databases is the variable extent to

which different segments of chemical space are over or under represented.

VS methods to identify new chemical series can be broadly classified into three

classes:

1. Methods that rank compounds based on some measure of similarity to known

actives, based on 2D or 3D structure of the molecule (LBVS).

2. Methods that deduce a pharmacophore, an arrangement in 3D space of features

that contribute or detract from binding and look for its presence in the database

that is searched. This method places emphasis on features like hydrogen bond

donors, hydrogen bond acceptors, acidic or basic units and hydrophobic frag-

ments and opens the possibility of identifying unexpected scaffolds with

required features (pharmacophore-based VS or PHBVS).

3. Methods that utilize structural data of the target, generally identified by protein

crystallography, to look for molecules that complement the ‘‘binding site’’ through

favorable protein–ligand interactions (protein structure-based VS or SBVS).

The choice of method used is often facilitated or constrained by the information

available. In the absence of structural information on target, if one or more active

small molecules are known, LBVS or PHBVS are feasible. If no active compounds

are known, but an experimental or computational model of the protein structure is

available, SBVS can be considered. If both active compounds and target structure

are available, one or more appropriate methods can be applied, or multiple methods

combined.

There have been a number of very helpful reviews of aspects of VS in the

past few years. These have focused on either specific methods, or on the field as

a whole. Cramer has provided an interesting review of methods of lead-hopping,

concentrating on technologies applicable to find scaffolds very different from
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the initial scaffold known to be active [8]. This is especially useful if there is some

doubt as to whether a molecule from the current series can be developed with

sufficient chemical novelty to allow it to be patented. Jalaie and Shanmugasun-

daram have reviewed the state of the art prior to 2005 [9] as have Reddy et al. [10].

A review focused on LBVS has been published by Hert et al. [11]. Finally, a broad

and characteristically trenchant review has been provided by Klebe [12]. In this

review we will focus on advances and successes reported in the past 2 years, with

the perspective of practitioners of the art in two large pharmaceutical companies.

1.1 Benchmarking Virtual Screening Methods

Numerous researchers in academia and industry have worked to advance the

performance of VS methods. Many sets containing molecules active at a given

target mixed in with known or presumed inactives (better referenced as decoys)

have been created and have been used to demonstrate the performance of individual

methods, or compare the performance of multiple methods. Table 1 provides a

summary of many of these data sets, most of which are publicly available. A key

consideration is the choice of inactives/decoys present in these datasets. Ideally, the

physicochemical profile of the inactives/decoys should be matched to those of the

actives, thereby preventing the observed enrichment from being a surrogate for

property differences between active and inactive members. This is a consideration

because many scoring functions are somewhat correlated with the molecular weight

and lipophilicity of the ligands docked and scored.

Generally, performance of a method is often judged in one of two ways. The first

is the enrichment factor, enrichment for short, which is the ratio of the cumulative

number of actives in the top N% of the total number in the dataset to random

retrieval rate. Many early studies focused on the enrichment obtained when the top

10% of the dataset was screened. However, this is operationally unrealistic if

compound collections exceed 100,000 compounds, which is common in mid- to

large-sized companies. A more realistic test is the enrichment obtained in the top

Table 1 Reference data sets, and location as of 2008

Data set(s) Actives Link

Cox2 128 http://www.ncbi.nlm.nih.gov

Estrogen receptor 55

Gyrase B 55

Neuramidase 83

P38 kinase 55

Thrombin 67

DHFR 100

Factor Xa 100

ZINC Variable http://zinc.docking.org/

DUD 2,539 actives against

40 different targets

http://dud.docking.org/
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0.1–1% of the compounds ranked. Many papers now include 10%, 5%, and 1%.

This method unfortunately depends on the ratio of actives to decoys present in the

dataset and makes comparisons across datasets difficult.

Another measure, that is independent of the ratio of actives to decoys, is the

more comprehensive receiver operating curve and an enhanced version [13, 14] and

reduces the dependence of the success measure on the number of decoys in the set.

This also graphically demonstrates the enrichment as a continuum, plotting the

fraction of the actives retrieved (true positive retrieval) against the fraction of the

inactives retrieved (false positive retrieval) [15]. The first ratio is the sensitivity of

the method (fraction of compounds that are predicted to be active out of the total

true actives present in the sample) and the second is the specificity of the method

(the fraction obtained by subtracting from 1 the ratio of the true negatives to total

negatives which would be the ratio of compounds falsely predicted to be positive

out of all the inactives). The area under the curve, AUROC, is a measure of the

efficiency of the method. As the VS method gets better the area under the ROC

curve will approach 1. The method is better than random if the area is>0.5 and this

method allows comparison across datasets since the curve shape and area are

independent of the size of the dataset. Figure 2 shows a ROC curve reproduced

from a PubMedCentral Article, which also has a lucid account of this widely used

statistical method [16, 17].

The variety of test data sets has helped to broaden our understanding of how

different methods perform under a variety of circumstances. Notably, the enrichment

Fig. 2 A receiver operator characteristic curve reproduced from PubMedCentral http://www.

pubmedcentral.nih.gov/articlerender.fcgi?artid=1065080 and [16]
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in structure-based methods that utilize docking and scoring can be highly dependent

on the quality of the scoring function employed and how sensitive it is to small

errors which creep in at the docking step [18, 19]. Therefore, by testing perfor-

mance against a variety of targets, a more realistic assessment of a given technique

can be produced. This information allows the experienced drug hunter to better

tailor their VS experiment to the protein class. In recent years, there has been a

significant advance in the ease of availability of curated datasets publicly available

ZINC and DUD being notable examples [19, 20] that allow comparison of the

performance of different methods using active/decoy combinations available to all

practitioners of the art.

A key issue that arises in practice, is whether the experiment is biased toward

enrichment (most actives for the number of compounds screened) or novelty

(compounds identified are drawn from different chemical classes). Generally, any

protocol leading to a small number of compounds tested is biased toward enrich-

ment. In this case, the strategy can often involve multiple serial VS methods with

aggressive property filtering. With fewer experimental constraints, the computa-

tional chemist is afforded the luxury of fewer assumptions. For example, by

performing a pharmacophore-based VS, but not refining the data set by docking

into a known protein complex, compounds that might otherwise be excluded due to

a change in the active site might be found. Furthermore, the practice of inspection

generally aids in eliminating unrealistic binding modes or undesirable chemical

functionality [21]. This is done with the risk that the unexpected turns out to be true.

1.2 Database Creation

One big advantage of the VS experiment is that the compound screened need not be

available physically and possibly not exist at all. Generally, the enrichment avail-

able through VS is thought to be insufficient alone to justify de novo synthesis. An

exception to this rule is the practice of computationally screening a large combina-

torial virtual library, identifying potential actives and following up with combina-

torial synthesis of a smaller subset of the library [22–24]. As the enrichment offered

by VS methods improves and with sufficient synthetic capacity, this is an assump-

tion that could be challenged.

There are a number of commercial vendors who have made their compound

collections available in formats amenable to translation into databases that can be

screened with relevant software. Generally, starting from any standard format

(MDL Mol or SDF, SMILES), compounds can be converted into a format required

for database searching. For docking or 3D database searching, this also requires the

creation of one or more 3D conformations of the molecule, which are stored for

using by the screening software. Software such as CORINA [25], CONCORD [26],

OMEGA [27] and Catalyst [28] have procedures to convert 2D to 3D coordinates

and to generate a family of minimized conformers.
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One element of database generation that is a key consideration is whether to

expand the representative compounds to include alternative tautomers, protonated

and deprotonated forms of the molecule, and also to enumerate stereochemistry

fully if not specified in the input. Depending on the molecules in question and the

options considered, these can lead to a 10-fold increase in the size of the database to

be explored. However, such an expansion is necessary if methods are used that are

sensitive to such chemical precision (e.g., docking). For 3D similarity searching, it

is sometimes more efficient to consider various modifications to the query, leading

to multiple searches against a smaller database.

A further consideration when combining databases from multiple suppliers is

how to identify and deal with redundant compounds. Here, some method of

mapping multiple supplier information onto a single compound is needed for

efficiency. Generally, all information can be mapped, although some consideration

of cost and supplier reliability may allow a hierarchy of supplier information to be

applied.

1.3 Database Filtering

Formanypractical reasons, some element of filtering is often applied either at the point

of creating a subset of ‘‘chosen’’ compounds for VS, or to a VS hit list before ordering

compounds for testing. A number of property-based filtering criteria are available. By

far the most famous are the Lipinski rule of five criteria [29–31]. By reviewing the

computed properties of known oral drugs, a pattern emerged that suggested that an

orally absorbed drug had a molecular weight less than 500, fewer than five

hydrogen bond donating groups, fewer than 10 hydrogen bond accepting groups,

and a clogP less than five. Veber et al. [32] further proposed that intestinal

permeability decreased as the polar surface area (PSA) exceeded 140 Å2. Inspired

by these studies, a number of researchers demonstrated that the impetus of most

lead optimization efforts tended to add size and lipophilicity to the molecule, and

that the desired lead should be smaller and less hydrophobic than the eventual drug

[33, 34]. This work has caused a number of researchers to limit the size of the

ligands that are introduced into the ‘‘collections’’ of potential leads. From a practi-

cal perspective, these rules have considerable operational benefit, because they

limit the size and conformational complexity of the molecules assessed. This leads

to smaller databases, and less search time per molecule. Another filter which

addresses size complexity from an operational perspective is the number of rota-

tional bonds present in the molecule [35]. Prefiltering the collection to remove

molecules with more than 10 rotatable bonds is a common practice except in

specialized situations where there is prior knowledge that a long linear chain is a

necessity for biological activity.

Another assessment of drug-likeness is afforded by Jorgensen’s Qikprop family

of ADME models [36]. In addition to the individual predictions, Jorgensen has

proposed a rule-of-three. This proposes that a successful drug will have predicted
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solubility (log S) >�5.7, predicted pCaCO >22nm s�1, and less than seven

predicted primary metabolites. Qikprop will also provide an assessment of whether

the compound is considered similar to molecules in the training set for these

models. Given the uncertainties about applying any general model to a diverse set

of molecules, this might be a consideration later in the assessment phase of the VS.

It might also be used to prioritize the eventual experimental hits for experimental

ADME assessment.

Additional filtering options arise from considerations of potential toxicity. Davis

et al. [37] published an extensive list of chemical fragments that were proposed by

medicinal chemists to be either reactive or that might be linked to toxicity. Such

filters can remove unwanted or suspect functionality prior to testing to increase the

likelihood of a hit being attractive as a chemical lead. Hit lists can also be filtered by

any number of general QSAR models of ADME properties. While effective at

further reducing the numbers of compounds in a database or list of virtual hits, the

applicability of a general model on a compound from a series on which the model

was not trained is suspect, at best. Such models are best applied late in the process,

when some critical assessment of their validity might be attempted based on known

data or by comparison of the compounds in the hitlist to the training set of the

model.

2 Ligand-Based Methods

2.1 Introduction

Probably themost efficient ligand-based searchmethoddevised to date is the similarity

search based on chemical fingerprints. There is a wide range of ways of defining

‘‘features’’ that can be mapped as part of a fingerprint: atoms, atom pairs, chemical

functional group fragments and connected bond fragments [5, 38, 39]. These can then

be further generalized, either by atomic properties, atom type, interactions afforded

by the chemical features (e.g., hydrogen bond donor/acceptor/both), or various

topological and graph theory indices [40, 41]. The choice of information encoded

and the degree of generalization or abstraction can be tuned in an attempt to bias the

‘‘similarity’’ to match molecules with desired common attributes.

Clearly, within the conceptual framework described above, there is extensive

room for exploration in creating fingerprints and similarity measures to retrieve

molecules based on varying conceptions of ‘‘similarity’’ [42–44]. The simplest types

of fingerprint consist simply of features indices that map the presence or absence of

a small library of functional groups. The most well known and effective are the

MACCS keys. These were initially chemical feature indices, that we later used

successfully as a similarity metric.

A richer fingerprint description is provided by the Daylight [45, 46] or UNITY

(Tripos Inc., St. Louis) fingerprints. These incorporate a much broader range of

features, notably including connected bond path fragments up to seven bonds long.
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Additional commonly-used fingerprints offer alternative ways to encode path

lengths. The ECFP [47, 48] series of fingerprints used in Pipeline Pilot use a

different algorithm to code path lengths of four bonds (ECFP4) or six bonds

(ECFP6) or higher in length. If the atoms are genericized to a small number of

roles (e.g., hydrogen bond donors and acceptors), the topologically related family

of FCFP fingerprints [49] can be generated. These fingerprints have proven useful

in multiple roles including similarity searching, complexity analysis, and QSAR

model generation using Bayesian learning machines [50].

Another family of fingerprints available are the MOE pharmacophore finger-

prints accessible through software from the Chemical Computing group [51]. In this

system, the atoms are generalized into a smaller vocabulary of pharmacophore

features, after which the fingerprint is constructed based on connected paths.

Feature-based fingerprints should be noted for their inclusion of pharmacophore

feature types, and counts along with structural and property data into a single

fingerprint for VS [52–56]. One of these arises from the Leadscope hierarchical

classification of 64,000 scaffolds which has been converted into a fingerprint and

used in similarity analysis [57]. Another more customizable set is one put together

by Digital Chemistry software [58]. Here, a wide number of feature, path, and

generalized features can be created as a huge dictionary, and then a subset of bits

with the best characteristics for a given task can be chosen. Unlike many folded

fingerprints, this approach has the dual advantages of being able to tailor the

fingerprint to the task, and to map back the features set to the molecule.

The pragmatic beauty of the chemical fingerprint is that the more common

features of two molecules that there are, the more common bits are set. The mathe-

matic approach used to translate the fingerprint comparison data into a measure of

similarity tunes themolecular comparison [5]. The Tanimoto similarity index works

well when a relatively sparse fingerprint is used and when the molecules to be

compared are broadly comparable in size and complexity [5]. If the nature of the

molecules or the comparison desired is not adequately met by the Tanimoto index,

multiple other indices are available to the researcher. For example, the Daylight

software offers the user over ten similarity metrics, and the Pipeline Pilot as

distributed offers at least three. Some of these metrics (e.g., Tversky, Cosine)

offer better behavior if the query molecule is significantly smaller than the molecule

compared to it.

When used in the VS context, the fingerprints of both query molecules and the

database of molecules probed must all be computed. Generally, the fingerprints of

the database compounds are often precomputed and held as additional attributes for

each molecule. For each type of fingerprint and similarity metric, some similarity

threshold is often applied to limit the number of hits achieved. Because of a fair

amount of work early in the 1990s, the 85% similarity threshold is often applied

(Tc ¼ 0.85). However, this was first done in the context of Daylight fingerprints and

Tanimoto indices, and should not be extended to other systems without further

validation. For example, our own work suggests that similar molecules will still be

retrieved using a 70% similarity threshold with UNITY fingerprints. Researchers at

Leadscope [59] applied a 45% similarity threshold to comparisons using their
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proprietary fingerprints. Some validation is generally needed when considering a

new fingerprint and similarity metric combination.

A different approach to molecular similarity is offered by various descriptor sets

generated either from calculated physical properties (e.g., molecular weight, cLogP)

or more complex metrics derived from graph theory. An example of the latter are

BCUT descriptors developed by Dr. Robert Pearlman [60, 61]. This is currently

available as part of DiverseSolutions (Tripos Inc., St. Louis). These descriptors are

generally understood to encode the molecular hydrogen bond donating or accepting

nature, charge, or polarizability. Operationally, this metric has the advantage of

scaffold hopping in practice [62–64]. A variant of this approach is available from

the CCG MOE software as QSAR descriptors [51].

2.2 Case Studies

Given the relative simplicity of ligand-based methods, it is interesting to note that in

only comparatively few published reports of VS successes do the authors rely

primarily on ligand-based methods. Of these studies, most appear to combine an

interest in a given target with an interest in providing proof-of-concept for some

extension of chemoinformatic theory.

In Table 2 we highlight pertinent information from a number of studies. We did

not aim to be exhaustive, but rather to provide enough examples to provide a flavor

for the type of studies performed. Of the studies in Table 2, one element to note is

the small number of compounds tested in five cases. Despite starting with databases

that range from 37 K to 2.5 million compounds, most researchers end up actually

testing less than 100 in most cases and several hundreds at most.

An example of the value of VS based on descriptors alone is that of the

identification of inhibitors of 5-lipoxygenase by Franke et al. [73]. 5-Lipoxygenase

catalyzes the first transformation of arachidonic acid to leukotrienes that mediates

many inflammatory responses. It has also been proposed as a contributor to

atherosclerosis, cancer and osteoporosis. To seed their study, 43 known 5-lipoxy-

genase pathway inhibitors were used. The investigators chose the AnalytiConMegx

library of purified natural products as their database, which contained 1,298 com-

pounds at the time of testing and the Nat-X library containing 7,839 compounds

[74]. The CATS-2D topological pharmacophore-pair descriptors [75, 76] were

used, and 430 hits (10/query) were assessed visually for the novelty of their

scaffolds. Just 18 were tested, of which two showed activity in a cell-based assay.

Both hits were from a library of natural products derived from a-santonin. For each
hit, several close neighbors were selected for screening from the NAT-5 library.

Additional hits were obtained for both series. Since cell-based screening was

performed first, followed by receptor-based screens, some ambiguity remains as

to whether the hits – especially related to series 2, are genuine 5-lipoxygenase

inhibitors or act elsewhere in the pathway probed by the cellular assay.
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A second example of a VS exercise that was largely fingerprint-based was that of

Boecker et al., in search of novel series for dopamine D2 and dopamine D3 blockers

[65]. A set of known actives consisting of 472 dopamine D2 and D3 ligands was

assembled from the literature. The SPECS database of 230,000 compounds was

chosen from which to identify compounds. Two descriptor sets were calculated:

MOE2D [51] and CATS3D [77] for both query and database molecules. Neighbors

Table 2 Examples of ligand-based VS workflows

Target Notes Outcome Reference

Dopamine D2, D3 SPECS db (230 K),

NN, clustering,

SOM

9 D3 antagonists,

6 D2 antagonists

of 190 tested

[65]

Kir6.2/SUR1 K ATP

channels

ZINC db (65 K),

FLAP screening

to 1,913

compounds

3 hits of 32 tested [66, 67]

L-type calcium channels

(voltage-gated calcium

channels L-subtype)

Similarity to Diltiazem

and a second ligand.

ZINC db (�50 K

commercially

available subset

screened but most

filtered to achieve

desired PK profile

using VolSurf ). SHOP

similarity, and

feature-presence

filtering down to

36 compounds

7 hits 18 tested.

active in a

vasorelaxant assay

and some had

novel structures.

[67]

5-Lipoxygenase AnalytiCon Discovery

db, Similarity

based on 2D

CATS descriptors

18 hits/430 tested [68]

ICAM-1/LFA-1 Database of 2,500 K,

custom minifingerprints

based on pharmacophore

pairs

1 hit/25 tested [69]

Na/K ATPase ICB natural product

database (37 K),

QSAR, Chemfinder

similarity search

based on ouabain

4 hits/10 tested [70]

PDE1, PDE5 SPECS (88 K),

CART regression

trees based on 2-point

pharmacophores

7 hits/19 tested [71]

Mycobacterium

tuberculosis

Recursive partitioning,

similarity

to conceptual

virtual libraries

1 hit/4 tested [72]
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of the known actives were then identified using NIPALSTREE hierarchical cluster-

ing, hierarchical k-Nearest Neighbor analysis, and a self-organizing map analysis.

These analyses yielded 37, 144, and 52 neighbors respectively. These hitlists were

culled by considering druglike properties, the presence of an ionizable nitrogen

(a key pharmacophoric element) and novelty. Of 17 compounds eventually pur-

chased and tested, nine had potent (Ki <1 mM) D2 binding and six had potent D2

binding. The most interesting had dopamine D3 binding of 65 nM and was 13-fold

selective over D2. As a follow-on study, a pharmacophore model was built using

the MOE [51] software and the dataset of literature and recently identified mole-

cules. This was applied to the SPECS database, and four additional compounds

were ordered. The best had dopamine D3 binding of 65 nM and was mildly

selective over D2. All four had binding of<10 mM at either the D2 or D3 receptors.

An interesting example of the use of novel fingerprints developed by the

cheminformatics group at the University of Perugia and marketed by Molecular

Discovery Inc. is afforded by a paper describing the search for novel potassium

channel openers reported by Carosati et al. [66]. Compounds that open pancreatic

ATP-dependent potassium channels may help regulate insulin secretion in diabetes.

The ZINC database [16, 19] of 65,208 compounds (in 2005) was reduced to 1,913

compounds by applying pharmacokinetic filters. Molecular weight was restricted to

between 200 and 600 amu, and clogP to between 1 and 5. In addition, three Volsurf

[78] ligand-based models were applied to select compounds predicted to have good

absorption, limited blood-brain barrier penetration, and adequate cell permeation.

From this smaller pool of compounds, molecules were chosen that were similar to

six known potassium channel openers. This was accomplished by principal com-

ponents analysis of the GRIND [79] (grid-independent pharmacophore descrip-

tors), multivariate similarity of TOPP [80] (three-point pharmacophore-based

fingerprints) and pairwise superposition and scoring of FLAP [80] (four point

pharmacophore-based descriptors) were calculated for query and target molecules

and similar compounds identified. After inspection and selection, 3 compounds of

32 eventually purchased demonstrated Emax >100% when tested in channel pre-

parations. The paper highlights that each different type of descriptor used identified

different compounds, which were combined into the final set that was ordered.

A fourth example highlights the value of generating a predictive model of

activity from known SAR and then applying this model to a database of com-

pounds. Yamazaki and coworkers undertook this analysis to identify new classes of

PDE1 and PDE5 inhibitors for development as potential cardiovascular therapeu-

tics. Existing SAR for 130 compounds was initially used to train a CART recursive

partitioning model, with 10,000 diverse compounds selected from 88,000 SPECS

compounds used as an inactive background. One hundred and sixty eight descrip-

tors were calculated based on binned distances between pharmacophore pairs, and

an additional 12 physical property descriptors were added. The SPECS database of

compounds was searched using the derived model, although filtered to ca. 50,000

compounds by comparing the latest version of the catalogue with a 1998 version

and removing common (older) compounds. This was done to bias the compounds to

those likely to be available. One thousand eight hundred and twenty one putative
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inhibitors were identified using the CART model, of which 100 were selected by

diversity analysis. From these, 19 compounds were tested, of which 11 showed

>50% at 10 mM and 7 were of interest as dual PDE1 and PDE5 inhibitors.

3 Pharmacophore-Based Methods

3.1 Introduction to Methods

The notion of the ‘‘pharmacophore’’ has a long and successful tradition within

medicinal chemistry. Before the visualization of protein–ligand interaction brought

on by crystal structures, chemists working within a given series would – by trial and

error – identify those parts of the molecule most associated with a desired biological

activity [81-83]. Provided the pharmacophore remained constant, changes else-

where in the molecule might modulate activity but often ensured that potency was

retained with exceptions arising only when additional molecular fragments caused

serious disruption. This idea can be further generalized; if a pharmacophore is

satisfied by other functional groups, or by comparable groups or atoms arranged in a

spatially comparable way on another scaffold, then the two classes of molecules

might share similar biological activity. This precept – that even when 2D topology

might not suggest a common pattern of features, the presence of required pharma-

cophoric elements in desired spatial geometry is sufficient to provide relevant

biological activity – has powered and continues to power the contributions of

computational modeling and VS to drug discovery and design, and is well reviewed

in the literature and a few are included [84–89]. These ideas were then extended to

searching a database of 3D structures for ligands that matched a 3D pharmacophore

[90, 91]. These are the methods that are generally referred to by the ‘‘pharmaco-

phore-based VS’’ shorthand. Implicit in some of the discussion about pharmaco-

phore-based fingerprints above is that another use of the term ‘‘pharmacophore’’ is

for any scheme that refers to a collection several atoms or functional groups to

pharmacophore features without the 3D geometry being included. However, in this

section, we will tend to focus on methods and case studies in which a 3D pharma-

cophore method was applied.

The 3D pharmacophore, in its simplest form, is the presence and geometric

arrangement of a combination key elements, usually selected from hydrogen bond

donor/s, hydrogen bond acceptor/s, aromatic ring/s, and hydrophobic group/s. In the

absence of 3D structures of receptors complexed to ligands, the pharmacophore was

considered the major biologically relevant metric [88] that related molecular

structure to biological activity. However, as one could easily perceive, a collection

of descriptors, which capture the characteristic elements, the charges, hydrophobic

character and shape, can readily describe a 3D pharmacophore in finer detail. Such

descriptors were deployed in modeling and design under the general umbrella of 3D

QSAR and VS experiments were accomplished with a spectrum of variations

that ranged from a simple collection of pharmacophoric binding elements to
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multidimensional QSAR. These have been covered in many recent and almost

recent reviews and we include a large selection of them for the benefit of the reader

who wishes to explore applying those methods [7, 8, 92–103].

A number of very useful tools have emerged using methods that rely on shape

matching or surface similarity matching. These include the ROCS method from

Open Eye (www.eyesopen.com, [1]) and the Surflex-Sim [104] surface-matching

method developed by Jain and currently marketed through Tripos. The shape-based

method from Open Eye, called ROCS [105] has emerged as a frequently used tool

in the hands of industrial chemists [1]. ROCS relies on the conversion of a single

molecule in a putative bioactive conformation into a series of Gaussian grid

functions representing shape or atomic character. This probe is compared to similar

information coming from a precomputed database of stored conformations, and a

scaled similarity function is generated from either shape overlap or similarity of

atomic character. Recent publications highlight the need to employ both types of

information to ensure enriched screening lists [106]. This method is distinguished

by its speed, reasonably simple command-line interface, parallelization, and robust

behavior across multiple ligand classes.

The Surflex-Sim method operates significantly differently [104]. Each of the

molecules is surrounded by a set of ‘‘observer’’ points that characterizes the local

character of the surface and potential interactions. Two similar molecules will have

a common subset of comparable observer points. A optimal alignment occurs when

the differences in pharmacophore character and molecular surface inferred from the

observer points are minimized between two molecules. To speed up the algorithm,

large molecules can be fragmented into parts which are then compared, and then

tested for consistency. This feature also makes the method capable of identifying

alignments when one molecule is much smaller than the other.

An older but effective and widely used method is the Catalyst program from

Accelrys. Like ROCS, it operates as a VS tool against a database that contains a

precomputed conformational expansion for all ligands. Multiple conformations of

every compound are stored. It is distinguished by the ability to generate a 3D

pharmacophore based on hydrogen bond donating and accepting elements, hydro-

phobes, and optionally positively and negatively ionizable functional groups. If

trained on known ligands with three or more orders of magnitude of biological data,

a robust activity prediction equation can often be generated. This function can be

used as a scoring function in the subsequent VS experiment. Unlike a similarity

function, this type of function can penalize for features that are already known to

detract from biological activity. However, in the absence of such a scoring function,

Catalyst can operate in a similarity scoring mode. Effective variations of Catalyst

like functionality are also available from Computational Chemistry software from

Chemical Computing Group and Schrodinger.

A third and slightly older method available is the UNITY package from Tripos

Inc. This also relies on the user to identify pharmacophore features and spatial

arrangement. When multiple compounds and biological activity is known, this can

be used to focus on a limited number of features or to exclude specific volume from

the molecule. The compounds in the database are then compared to the query
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pharmacophore using a flexible directed tweak algorithm. In practice, some tuning

of tolerances and features are often necessary to achieve reasonable recall of

actives. Validation with known actives against a small, diverse background of

inactives is often recommended prior to a large-scale database search.

A complementary method that derives pharmacophores from a protein crystal-

lographic complex is Ligand Scout from Inte:Ligand, [107] (www.inteligand.com).

This method has a limited vocabulary of pharmacophore features that includes

hydrogen bond donors and acceptors (and extension points), normals to aromatic

rings, and hydrophobes. In practice, it has been used to convert the putative or

known binding sites into pharmacophore search queries, after which the pharma-

cophore information is transferred to software such as Catalyst or MOE. In valida-

tion studies, it is effective at reproducing relevant binding modes.

Most of the pharmacophore methods employ a set of features that include

hydrogen bond donors and acceptors, hydrophobic volume, sometimes excluded

volume, and also positive and negative ionizable groups. An alternative pharma-

cophore description is that of the Cresset software [108, 109] [www.cressetbmd.

com]. This software relies on using the extrema of the electrostatic potential, as well

as a description of hydrophobic regions, to create a database query. To improve the

quality of the electrostatic potential around the molecule, additional charge-bearing

features are included in the force field representation to reproduce delocalized pi

electrons better. The field pattern is then compared to a database of precomputed

field representations based on multiple conformations for each molecule. The

software offers options to generate a consensus pharmacophore from multiple

ligands and to align the molecules retrieve for visual inspection.

3.2 Case Studies

A number of recent examples of the use of pharmacophores as a primary VS

method have appeared in the literature. Table 3 provides a selection of these studies,

with outcomes listed. The databases searched range in size from 630 molecules to

1.7 million molecules. Of the studies shown in Table 3, the Catalyst software is the

method most often used, followed by UNITY and the FlexS superposition tool.

An excellent example of the ability of pharmacophore methods to search a large

database rapidly is afforded by the VS done by Schuster [110] and coworkers to find

antagonists of 11-b HSD. This enzyme catalyzes the conversion of 11 ketosteroids

to 11-b hydroxysteroids. Inhibition of glucocorticoid overexpression may be effec-

tive in treating metabolic syndrome, and inhibition may also have a role in treating

diabetes and muscle atrophy. Known selective 11-b HSD1 inhibitors were used to

train a model in Catalyst that contained a donor location, an acceptor location, and

four hydrophobes. The ability to retrieve inhibitors was tested both using the known

inhibitors against a random set of molecules (presumed inactive) and from the WDI

database of approximately 63,000 compounds. A second model was generated from

inhibitors that bound to both 11-bHSD1 and 11-bHSD2 andwas tested in a similar way.
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The 2 pharmacophore models were used to search a database of about 1.8 million

compounds assembled from 12 commercial databases. Hypothesis 1 returned

approximately 20,000 hits, which were aggressively filtered using the Catalyst

scoring function, lack of hit to a hERG pharmacophore, clogP <5, fewer than

five donors and ten acceptors. Fifteen compounds remained and were available for

Table 3 Examples of VS using primarily pharmacophore methods

Target Notes Outcomes Reference

11-b HSD Database of

1,700 K,

Catalyst –>31 hits

7 hits/30

tested

[110]

AR downregulating

agents (ARDA)

Maybridge (60 K)

and NCI (239 K)

6 hits of 17

tested

[111]

Catalyst –>41 hits

Alzheimer’s

tau protein

Maybridge database,

136 identified

2 hits of 19

tested

[112]

CoX-2 Maybridge

database (12.5 K)

5 hits of 8

tested

[113]

Catalyst search

followed by

GOLD docking

Chloroquine-

resistance

reversal agents

3D QSAR [114]

Fetal Hb

transcription

inducers

TFIT pseudoreceptor,

Similarity search of

630 candidate molecules

2 of 26 active [115]

Ginkgolides as

GABA modulators

Pharmacophore search

of 300 K structures

No hits of 31

tested

[116]

GR-Glucocorticoid

receptor

Commercial db (718 K)

filtered to 862,

searched by FlexS

One series [117]

Chalcones Chemical library probed

with pharmacophore

Ligands active in

vitro and in vivo

[118]

Mycobacterium

tuberculosis H37Rv

Pharmacophore selection

of 95 compounds from

a database of 15 K,

docking to further

reduce candidates

4 potent hits [119]

PPARg Maybridge db (62 K),

Catalyst

Novel series [120]

Pfmrk: plasmodium

falciparum

3D QSAR [121]

SIRT-2 Maybridge,

Leadquest dbs,

UNITY search

4 of 11 tested [122]

T-type calcium channel Maybridge (55 K)

and ion channel

inhibitor db (8 K),

Catalyst search

3 hits of 25 tested [123]
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purchase after filtering. The second hypothesis returned 107 hits, of which 15 were

chosen for testing. Seven of the 30 compounds eventually purchased inhibited the

activity of cell lysates by at least 70% at 10 mM.

A second study points out the need to develop a strategy consistent with the

computational tools being used. Ray et al. [117] performed VS based on 3D

similarity to three glucocorticoid receptor blockers. High glucocorticoid levels

may be linked to the psychotic symptoms of psychotic major depression.

A commercial database of 718,000 compounds was aggressively clustered and

filtered to 862 compounds. FlexS [124], a 3D similarity program, was then used

to assess the similarity of these molecules to three known glucocorticoid receptor

blockers. The filtering was needed as FlexS performs a flexible superposition and is

comparatively slow. Because one of the query compounds was racemic, both

enantiomers were built and used as query molecules. Conformational searches of

the query molecules identified low energy conformations for each. From these

searches, 123 compounds were identified, which were further narrowed to 18 by

inspection and supplier considerations. Of these, one compound was reported to

block the glucocorticoid receptor with a Ki of 4.5 mM. Two rounds of similarity

searching identified more potent analogues, the best of which had a Ki of 16 nM in

in vitro screening. This demonstrates the need to match the database to the

computational capacity availability, the implicit value of inspection, and the

value of follow-up similarity searching to rapidly fill out SAR.

A third study demonstrates the value of using a pharmacophore obtained from the

binding site of a protein complex. Tervo and coworkers [122] used the UNITY

software to create two pharmacophore hypotheses based on the docking of three

known sirtuin-2 histone deacetylase inhibitors. Sirtuin-2 is believed to be essential

to the mitosis of some cells and may play a role in fat storage, some cancers, and

possibly Alzheimer’s disease. Based on the docked poses, a pharmacophore con-

taining two hydrophobic locations, a donor atom, and one of two possible acceptor

atom sites was defined, as well as regions of excluded volume. Lipinski filtering

was applied, with the donor atom limit reduced to three and the acceptor atom limit

reduced to seven. Flexible searches of the Maybridge and LeadQuest libraries were

performed, which resulted in 34 compounds. These were reduced to 32 compounds

by applying the Volsurf [125] permeability model. Further inspection led to the

purchase of 11 molecules. Of these, four showed IC50 inhibition of <200 mM in in

vitro testing.

4 Receptor Structure-Based Methods (SBVS)

4.1 Introduction to Methods

The genomic era continues to transform itself into the proteomic era [126].

A number of entities ranging from pharmaceutical companies to publicly funded
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academic research groups have been solving the crystal structures of many genes,

and tackling ever more complex crystallographic challenges [127, 128]. For many

families of drug targets there is now one or more crystal structures available of the

target itself or a close homolog or ortholog.

The elegance and promise of the availability of structure for ligand discovery –

that once we have an apo site in atomic resolution, we can find molecules that bind

tightly to it by generating a very large number of virtual complexes, followed by

scoring, ranking and selecting the very best – has been a holy grail of structure-

based discovery ever since Irwin (Tack) Kuntz and colleagues came up with a

program called Dock roughly two decades ago [129] that could identify molecules

from the Cambridge Crystallographic Database that could fill a given protein site.

Much has happened in the last two decades and a recent review, interestingly with

the same researcher being the first author, gives a picture of the state of the art

[130]. In the intervening 20 or so years, at least 50 docking programs and their

variants have been developed. Docking has come of age and docking software

available can in most cases reliably and quickly reproduce observed crystallographic

binding modes of protein–ligand complexes with RMS variations approaching the

experimental error in the crystallographic experiment that characterized them. With

robust docking tools and fast, cheap and plentiful computing power, it is a surprise

that SBVS has not replaced experimental screening. In practice, however, several

published and unpublished success stories notwithstanding, this still stays a chal-

lenge, to the point that successful SBVS is not as routine as one could have expected

it to be per our outlook from a decade ago [131]. This is despite vigorous develop-

ment of docking methods and scoring functions by the computational chemistry

community for well over a decade chronicled in the representative set of citations

here [21, 36, 132–142].

Part of this disconnect between expectations and performance in SBVS origi-

nates from the way protein–ligand interactions are quantitated to arrive at selecting

the best pose of the small molecule in the receptor site rapidly, or the way the

‘‘docking problem is solved.’’ These make approximations in correctly describing

the entropy change upon binding, and free energy components such as free energy

of solvation, in order to sample and evaluate rapidly a substantial number of

conformations including multiple poses for each conformation of the small mole-

cule in the receptor, assuming the receptor is held rigid, which is common in SBVS

applications. When applied to the problem of choosing the correct docking pose for

the same molecule, the changes in solvation and entropy tend to become negligible

from pose to pose, leading to substantial success in selecting the best pose from

amongst a set likely of the docked poses. This is only a generalization and can be

influenced by the nature of the binding site, in terms of whether it is a site that

deviates to the extremes of hydrophobic or hydrophilic character, whether there is

potential for less or more protein movement, and whether the ligand in question has

more or less rotatable bonds [135] resulting in one or more docking programs being

better than another for a particular combination of receptor and ligand. In addition,

most docking programs generate a series of poses that are relatively closely spaced

in their ‘‘docking score’’, the pseudoenergy function used by the docking software
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to differentiate between poses of the same molecule in a given receptor site. The top

ranked pose, the pose with the best ‘‘docking score’’ might often actually be less

similar to a crystallographically observed binding pose compared to a lower ranked

pose and could be seen to be one with less binding energy when evaluated with a

more accurate scoring function. This seemingly small error in choice of the best

pose of a single molecule gets magnified and becomes substantial when the best

docked poses of different molecules are compared, partly due to the breakdown in

the comparability of the approximations in solvation and entropic terms across

different ligands which can lead to incorrect rankings [171–174]. One could venture

to say that a consensus SBVS view today would be that the inability to rank a

database of ligands in order of their potential for binding to a given receptor site has

more to do with our inability to score the binding affinity of a series of ligands in

their predicted pose reliably than our ability to predict a reasonably accurate

binding pose [175]. To that extent, one of the strategies proposed for effective

SBVS is to generate a set of poses for a large collection of molecules rapidly using a

well approximated but fast ‘‘docking function’’ and then rank with a more thorough

but slower energy evaluation to rank molecules [176]. Extensive and continuing

effort has focused on generating better scoring functions that better capture free

energy differences between molecules, but can still operate fast enough to be of use

to a high throughput docking experiment [175–178]. Results of head to head

comparisons of docking and scoring using multiple docking scoring software

frequently suggested that different scoring functions could be more effective for

different receptors and this led to the drive towards consensus scoring functions

[179–182].

Given that the focus of this chapter is SBVS and not a treatise on docking

protocols, we give here a very brief and less than comprehensive coverage of

docking algorithms and some of the commonly used docking software. For SBVS

applications, the two most relevant pieces of information on the docking software

would be the speed of the docking software and quality of pose(s) obtained.

A number of packages are available, many of which have been applied to

structure-based VS experiments and with success. Among the earliest attempted

were incremental construction approaches, wherein the program attempts to

exhaustively position the largest fragment in as many locations as possible with

the active site, followed by adding subsequent fragments with suitable torsions.

DOCK, FlexX, Hammerhead, and eHits are amongst the software that use this

approach. Monte Carlo approaches to sampling the pose and conformation of the

ligand are used by QXP, ICM, and PRODOCK and these tend to be slower.

Evolutionary algorithms that improvise on preferred poses are used by docking

software like GOLD, EP Dock and FITTER. GLIDE software uses a rough

sampling initially and follows with a refined search using a more sophisticated

scoring scheme. Surflex-Dock also performs a rough docking simulation to obtain

seed poses which are refined further with a more rigorous scoring scheme. By

using sequential docking simulations of varying rigor, the sampling approximately

mimics the outcome of a more intensive search. Most of the docking software

mentioned could be used to dock anywhere from a few hundred to 10,000 mole-
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cules in reasonable time and depending upon availability of processing power and

parallelizability of the application, could screen up to 100,000 molecules within

days. If the task is to dock millions of molecules, then it becomes faster to

precompute a set of conformations for each molecule and limit docking to posi-

tioning the rigid ligand in the active site of the receptor. The FRED software from

OpenEye used in conjunction with Omega, the conformer generator also available

from OpenEye, takes this approach. Flexibase/FLOG also share the precomputed

database approach.

With so much docking software to choose from, the SBVS practitioner is left

with limited guidance in choice of docking and scoring options not to mention the

critical postprocessing that has to bring the followed up hitlist to less than a hundred

if the ligands or to be acquired through purchase for testing, and possibly a few

thousand in a pharma setting. To that end, several studies have been published over

the years that compare a subset, usually the most commonly available, docking and

scoring applications, in a head-to-head comparison using datasets containing

known hits and decoys for receptors where structural information is available and

the enrichment could be studied carefully [106, 135, 173, 174, 176, 183–185]. If

nothing else, these highlight the significant variation in performance of any package

based on subtle variations in decisions about database construction, choice of data

sets (both of active molecules and inactive decoys), program settings, and protein

systems. In practice, most users rely on docking and scoring packages readily

available to them, rather than try to find/use THAT ONE package that always

works. The enrichment or the efficiency of the VS effort becomes more and more

stringent as the proportion of compounds screened approaches 1% or less of the

database of compounds screened. In these instances, for increasing the chances of

success, one needs more than a protein structure, computing power, and software.

Additional knowledge of the binding preferences of the active site in question can

easily outstrip incremental advantages provided by one software over another and

visual inspection and/or consensus approaches can aid in weeding out false posi-

tives effectively [21, 134].

The convenient shorthand in the community is that SBVS approaches are limited

by ‘‘inadequate scoring functions’’. This is partly true, because in an SBVS experi-

ment, due to the need for speed, the scoring functions do not perform a rigorous free

energy calculation, and they will remain limited. Sampling, especially in situations

where the ligand in question is increasingly complex with multiple rotatable bonds,

can also be an issue. A significant other limitation is that generally only one protein

structure is used, and held rigid. Movements of side chains or entire domains will

not be modeled correctly and the extent an active site moves in response to a given

ligand can be largely dependent on receptor mobility and ligand-dependent in

addition to that. The resulting scores, whether fortuitously good or bad, will not

be of the correct docked mode. In the latter case, even if appearing highly ranked in

a hit list, this may be filtered out when inspected. Fortunately, there have been

several attempts at addressing limited side chain mobility at least for situations of

medium throughput and SBVS is becoming practical with inclusion of protein

mobility [176, 186–190].
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4.2 Case Studies

The study by Agrawal and coworkers [191] demonstrates key features in

performing a structure-based VS. They searched for inhibitors of DNA primase

from E. coli, an essential enzyme for bacterial reproduction with distant human

homologs. Although a crystal structure of the DNA primase catalytic domain is

available (1DDE) [192], this alone provides little insight into the most productive

binding site. The GRID [193] software was used to identify three putative binding

sites. The database to be searched was constructed from the catalogues of

20 vendors, and filtered to remove reactive functional groups, compounds with

more than eight rotatable bonds, cLogP less than 5, and MW between 275 and 500.

This resulted in a database of approximately 500,000 molecules. Representative 3D

conformations were generated, protonated, and minimized. For each of the three

sites identified, grids were generated with a 16-Å bounding box and a 20-Å

enclosing box. Glide docking was performed, and the top 2,500 compounds as

defined by the Glide SP score were inspected individually for feature complemen-

tarity, and correct ionization. A short list of 79 inhibitors was created, of which 68

were available for purchase. Of these, four inhibitors inhibited primase with an

IC50 less than 100 mM.

A study by Alvesalo [194] and coworkers provides an interesting contrast in

terms of methods and highlights some subtle considerations. In this case, they

attempted to develop antimicrobial agents against Chlamydia pneumoniae. They
chose to target dimethyladenosine transferase, but, because no crystal structure was

available, chose to screen the structure of Bacillus subtilis RNA methyltransferase

(1QAO) [195] as a surrogate. A database was constructed of molecules available

from Specs and Maybridge, and contained 300,000 compounds after filtering for

undesirable chemical groups. The database was docked into the protein binding site

using FlexX [196], after which the top 2,000 molecules were inspected. From this

set, 33 molecules were purchased. Of these, eight demonstrated >50% inhibition at

50 mM in a cell assay and represented two series of interest. This demonstrates that

the use of a surrogate protein is viable if no exact crystal structure to the target of

interest is available.

A VS study by Furci [197] and coworkers highlights the use of a third docking

program, DOCK, against heme oxygenase from Neisseria meningitides, a Gram-

negative pathogen. Heme oxygenase is an essential enzyme for heme utilization by

the bacteria and blocking its function should arrest bacterial growth. The protein

complex including heme (1P3T) [198] was subjected to molecular dynamics

simulations with the heme removed to identify four suitable apo structures into

which to dock the ligands. A database of 800,000 molecules was assembled from

the supplier catalogues of Chembridge, Chemdiv, Maybridge, and SPECS. Com-

pounds were docked into a single protein conformation to identify 50,000 mole-

cules using the DOCK software. A second round of docking into all four
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representative protein conformations obtained from the molecular dynamics simu-

lation allowed narrowing to the top 1,000 compounds (based on best docking score

to any of the 4 protein conformations). This list was further narrowed by clustering

and inspection, with 153 compounds being purchased for testing. Of the 153

compounds obtained, only 37 were soluble in DMSO or buffer, and of these, 10

interfered with the fluorescence polarization-based assay. Of the 27 tested, 8 exhib-

ited inhibition of heme oxygenase with Kd values ranging from 12 to 240 mM. This

study demonstrates the value of a sequential VS strategy, and also the way in which

experimental considerations (i.e., compound solubility) can limit the overall impact

of a VS study.

An example of a sequential docking strategy using different software is provided

by a VS for CDC25 phosphatase inhibitors by Montes and coworkers [199]. CDC25

phosphatases play an important role in initiating cell cycle events; blockade may

lead to useful anticancer effects. The structure of CDC25B (pdb code 1CWT) [200]

was prepared for VS by adjusting the protonation states of various residues in the

putative binding region. The 2005 release of the Chembridge database was filtered

to remove compounds with undesirable reactive groups, leaving approximately

313,000 compounds. Up to 50 conformations per molecule were generated and

the FRED software was used to dock the database into CDC25. The top 50,000

compounds were then redocked with full ligand flexibility using Surflex. The

docked poses were then scored using either a receptor-specific Surflex function or

with a receptor-specific function generated by LigScout. The top 450 molecules

from each list, and the molecules that appeared in the top 3,000 molecules of both

lists (total 1,500) were tested for enzyme inhibition. Of these, 99 showed at least

20% IC50 at 100 mM, with the most potent having an IC50 of 13 mM and showing

inhibition in a HeLa cell assay. Overall, a number of interesting series were

obtained, and the authors note the importance of consensus scoring in choosing

their most active molecule.

5 Hybrid Workflows

As seen from the case studies described in the previous sections, many investigators

use multiple complementary methods to reduce and refine their hit lists to manage-

able numbers. Often, an inspection step is included, which places a de facto upper

bound to the size of the hitlists that are reviewed.

In this section, a number of case studies (Table 5) in which different types of VS

methods are combined into a hybrid workflow. Often these combine a fast, ligand or

pharmacophore-based method with a later docking method. The latter is useful at

the inspection stage as it allows the molecule to be reviewed within the context of

the protein binding site. A poor binding pose can be an indicator of a poor fit.

Furthermore, possible interactions outside the scope of the molecules used to train

the ligand-based method can be identified.
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5.1 Case Studies

An informative example of a hybrid workflow applied to HIV reverse transcriptase

is provided by Barreca and coworkers [212]. Nonnucleoside reverse transcriptase

inhibitors (NNRTI) bind to HIV reverse transcriptase and block viral replication. In

this study, the Ligand Scout software was used to create a Catalyst pharmacophore

from the protein complex of reverse transcriptase and Janssen R185545 [213]

(1SUQ). This pharmacophore was used to search the World Drug Index (WDI,

67,000 molecules) and the Chemicals Available for Purchase (CAP, 1.7 million

compounds). The molecules retrieved by the Catalyst pharmacophore with a fitness

score greater than 3.0 included 521 from the WDI and 11,273 from the CAP.

After filtering using Lipinski conditions, 9,345 remained. These were docked

using Glide with SP scoring, and the best 1,000 hits were inspected individually.

Interesting, novel compounds were evaluated for availability using the substructure

capabilities in the Scifinder software, and six compounds were ordered and tested.

Of these, five showed significant activity, with potency ranging from 0.2 to 4 mM.

A second study by Hartzoulakis et al. [204] also provides an example where the

use of multiple methods facilitates an efficient search strategy. The target in this

case was dimethylarginine dimethylaminohydrolase, an enzyme that modulates the

nitric acid pathway in endothelial function, and may also control a cardiac risk

factor. A bacterial ortholog from Pseudomonas aeruginosa may also contribute to

pathogenicity in cystic fibrosis. A database of 308,000 commercial compounds was

filtered to keep compounds with cLogP between �2 and 5, molecular weight less

than 650, five or fewer hydrogen bond donors, ten or fewer acceptors, and ten or

fewer rotatable bonds. This removed about 43,000 compounds. A reciprocal Near

Neighbor clustering was used to select 35,000 compounds. These were docked into

the active site of the DDAH enzyme from Pseudomonas aeruginosa [214] (1H70)

using the FlexX software. The top 1,000 compounds were rescored using a combi-

nation of scoring methods, and the top 200 were inspected. Of the 109 selected, 90

were available and tested, of which three were interesting molecules, the most

potent of which had an IC50 of 17 mM. This is an example in which clustering was

used to reduce the number of compounds that were docked to a number consistent

with the capacity of the FlexX program and their computing resources.

As an example of the utility of combining pharmacophore models and docking

to select ligands from very large databases, the VS of Liao and coworkers [207] of

HIV integrase offers an excellent example. In this case, the ChemNavigator data-

base containing approximately 13.5 million compounds was searched. Thirty

Catalyst pharmacophores were generated from known HIV integrase inhibitors,

and all were used to search the database, resulting in about 235,000 hits. After

filtering using Lipinski conditions and deduplication, the resulting 167,000 com-

pounds were docked into a model of HIV integrase. The docked poses of the 1,500

top scoring compounds were inspected visually. After additional ADME models

were applied and availability assessed, 88 compounds were obtained for testing.
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Of these, eight compounds were assessed as active, with IC50 in their primary assay

ranging from 37 to 780 mM.

6 Fragment-Based Virtual Screening

Many a pharmaceutical scientist would have at one time or another looked at a

competitor’s patent compound and looked for ways to find a lead that retains the

activity of the competitor’s compound but looks different enough not to infringe on

the competitor’s patent. A common strategy in such situations is to replace fragments

in the molecule with isosteric fragments. These fragments could be small amounting

to a few atoms or pieces that are over 100 Da or more in molecular weight. The FBVS

discussion here is of fragments/substructures and does not pertain to fragments that

are composed of five atoms or less. With increasing need in pharmaceutical research

to have leads derived frommore than one chemical class for a given target, to serve as

a backup in case of unexpected failure of the lead candidate in the clinic which is

attributable to compound class, researchers are sometimes looking to imitate their

own compounds with a sufficiently different scaffold. FBVS is very similar to this

strategy with a small twist.

FBVS presumes that all fragments of a tight binding ligand do not bind with the

same ligand efficiency. While this is nothing new, in that computing properties of

molecules using properties of their components is a very common occurrence in

computational chemistry, fragment-based design successes in the recent literature

[215–217] have given strong support to the notion that tight binding ligands can be

obtained by starting from very ligand efficient albeit weak binding fragments and

growing to larger ligands with high affinity when the added fragments are chosen

with care so as not to compromise ligand efficiency significantly. When two

fragments with affinity for a receptor are linked without restraining the ability of

the fragments to bind to their respective preferred site on the receptor, the combined

affinity is the sum of their binding affinities [218, 219].

For this to work, one has to have one or more seed ligands with at least moderate

to high potency against the receptor. The more potent the seed ligand, the better.

The molecule is then logically broken to fragments, typically at retrosynthetic

bonds or if synthetic issues are not a key criteria, at rotatable bonds. Automated

methods that take advantage of such fragmentation followed by piecewise similarity

based retrieval followed by assembly have been reported [42, 220]. In cases where

structural information is available for how the ligand binds to the target receptor,

one could run energy computations to find the receptor affinity of the various

fragments and weight the substructures and get better retrievals [221]. The rest of

the VS is very straightforward. Two-dimensional similarity, pharmacophoric simi-

larity or shape and electrostatic similarity could be used to find new fragments. The

new fragments are linked together in an n � n matrix and tested for relevance by

passing through a 2D similarity filter (to the seed molecule) or pharmacophore or

protein–ligand interaction energy scoring filter (where structure is available, using
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docking and scoring) and other relevant filters. The resulting hits that look attractive

enough could be synthesized or ordered for testing based on availability and

synthesizability considerations and could also be used as idea generators.

The applicability of such VS in combination with tools available include situa-

tions where portions of any molecule need replacement with bioisosteric fragments.

In this regard, BROOD software [105] and MOE [222] provide automated tools for

fragment removal, replacement, and minimization to relieve any strain in the

molecular assembly step and provide a database of fragments(isosteres) that

could be enhanced in custom fashion by an enterprise as well. These software

allow facile FBVS in 3D. Since this software has become available within the last

2 years, there seem to be a dearth of use cases in the published literature. However,

anecdotal reports indicate that these are being used regularly in industry and the

Websites of these two vendors provide adequate information for the inquisitive

reader.

6.1 Case Study

Rummey et al. [223] searched replacements for the pyrrolidine present in their

DPP-IV inhibitor searching a 10,000-molecule subset of small primary aliphatic

amines extracted from the available chemical directory and visually inspected the

top 500 of them. Four were selected for testing and two of them were novel hits.

Considering the power of these methods to retrieve novel molecules, it is only a

matter of time before more successful reports are available.

7 Text-Mining as a Novel Virtual Screening Tool

‘‘Can I use Google to find other molecules that have similar properties as my

molecule?’’ could be an innocent question posed by someone new to computational

chemistry. The irony of it is that all information about molecules are present in

publications that are predominantly text, yet, the most powerful text-mining tool

cannot retrieve it for us, at least at the present time, unless the molecular query is a

simple name like glucose or pyrrolidine. To the present-day scientist, this might

look something of an impossibility only if the person does not stop to think for a

moment that the question would have hardly been comprehended by the average

person only a decade ago. Text mining and natural language processing (NLP) a

decade ago was not what it is today [224].

To a computer scientist, VS is nothing but another text mining, only the bits and

bytes stored that contain molecular information adopt a format quite different from

natural language and without adequate warning cannot be quickly interpreted. It is

not that modern day text does not contain text that is not natural language, but that

they are adequately flagged and do not stop the NLP software. For example,
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hyperlinks do not read like natural language but they are adequately flagged and are

properly processed. In the case of chemical structures, the material to be searched,

the algorithms, used and retrieval techniques are geared towards structure percep-

tion and manipulation although the information is still stored and operated on as bits

and bytes. This limitation exists because molecular information is not expressed in

natural language in an easily perceptible form, and where we do express them, in

patents for example, it is so convoluted that very few people attempt to read and

decipher the chemical structure or composition by reading the IUPAC name

detailed in a patent. Everyone reaches for a translator, nowadays inevitably the

appropriate software, that could translate the name into the familiar chemical

structure form. Unfortunately the one line smiles representation of a molecule did

not come into vogue soon enough and computing facilities did not exist to encour-

age the broad range of scientists to represent every structure to be associated with its

smiles in written documents with appropriate flags to enable software to interpret it

correctly.

7.1 Current Limitations

One of the greatest limitations of searching for molecules is the fact that the

database is finite. Several forms of text similarity are a part of the strategies used

by people not trained in science and those easy similarity search strategies are not

available to the scientist searching through molecules. Unless the database is

prepared in a specific format and made available, searching cannot proceed. Search

results are curation dependent and associations are limited by curation capabilities

and subject to errors and biases introduced at the point of curation [224]. To give a

simple example, if the curator errs and associates a wrong number with a molecule

structure in the main database, regardless of how many other documents carry the

correct information, people will repeatedly extract the wrong information because

the association cannot be deciphered using NLP from other corporate documents.

The rate of publishing is exploding, and curation is limiting. Imagine entering the

smiles string for a molecular fragment in Google and get 300 references all discussing

various pieces of information about it! Imagine replacing one of the carbon with an

asterisk and seeing many analogs and information about them as well.

7.2 The Rewards of Storing Molecular Structures in NLP
Searchable Form

Screening brings back a rich variety of information, not just what the curator put in

the database. Suddenly a chemist can read everything about a molecule ever

printed, not just what someone decided to associate it with. Distant associations –

A related to B and B related to C might mean A related to C– will become apparent.
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Chemical structural information is one of the missing pieces in the great effort to

bring biomedical research into the realm of twenty-first century information extrac-

tion and knowledge discovery paradigms. Proteins, genes, diseases, and chemical

compounds constitute the major entities extracted in the biomedical domain. The

ability to read structure information and substructure information and their associ-

ation to other entities could have a major impact on toxicity information in

particular and ADMET data in general.

7.3 Potential Long Term Solutions

How do we do it? Every 2D structure reference created in the future should have a

hyperlink to a canonical smiles string. Smiles readers should be freeware so when

mousing over the molecule reference, the structure pops up. Start representing

structures today and 15 years from now, our 2D VS efforts will look very different.

Themain added advantage will be that the data associated with every structure will be

available for natural language processing software from which to process and extract

information. Structures themselves can be searched in unforeseen ways. This will

bring information about molecules in an unprecedented fashion to the average reader.

7.4 Potential Short Term Solutions

There are few short term solutions that we can think of. The technology for

accessing publications underwent a dramatic makeover in the last decade, moving

from predominantly paper to predominantly electronic through a coordinated set of

efforts from publishers and consumers (in this case scientific research users) alike.

A study of how such a transition was successfully handled could provide clues on

how to make it happen.

8 Summary

VS continues to be a growing area, fueled by the dramatic increase in affordably

priced computing capability, and the development of better algorithms and soft-

ware. Its position as a cost-effective alternative to high-throughput screening, the

traditional engine for lead identification for pharmaceutical discovery, is bound to

rise, despite the technology advancements in screening through ultrahigh through-

put methods, miniaturization, and automation. This is partly due to the high cost of

personnel and reagents, both of which are needed in larger supply for HTS

compared to VS. However, as the field stands today, one would be very justified

in stating that VS is nowhere near replacing experimental screening methods and

this is mostly due to the inconsistency of success in finding leads using VS. Many
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factors, the target itself and the information available to prime the VS effort being

the major ones, the technique, the software and the expertise of the screener being

the minor ones, influence the success rate. This continues to be a fast growing field,

and the recent trends and progress in identifying the major challenges and addres-

sing them effectively both at the scientific and algorithmic levels bodes well for the

future of this method.

8.1 Virtual Screening Strategy

There has been considerable debate within the community and in the literature

about the relative merits of ligand-based vs protein structure-based screening. In

principle, the protein-based screen should provide the broadest access to novel

chemotypes that could interact with the relevant binding site. The 2D ligand-based

methods are often best at retrieving hits chemically similar (same or highly related

scaffold, comparable pendant groups) to the query molecules. There have been

efforts to develop measures of chemical similarity based on 2D graphs alone that

better generalize the hits retrieved to compounds that include dissimilar but accept-

able alternative scaffolds. However, these approaches tend to retrieve a large

number of false positives; setting a similarity threshold to include these more

dissimilar-but-acceptable hits often leads to the inclusion of far more dissimilar-

but-unacceptable hits, leading to less enrichment. A third option has been the

emergence of 3D similarity methods. These appear to provide a compromise

leading to a balanced retrieval of both analogues and compounds containing

alternative chemical scaffolds [1, 106].

Optimal strategy rests in balancing a mix of techniques and shaping the workflow

for a given VS based on the information available, the perceived strengths and

limitations of various techniques, and the time and effort needed. Clearly, in the

absence of a protein crystal structure or acceptable homology model, ligand-based

screening is the obvious option. At the other extreme, in the absence of known

ligands, a protein-based screen could be contemplated. When one or more protein

crystal structures are available, as well as a number of ligands that have been

identified either from the literature or by some previous experimental effort, a priori,

the all-out approach would be to bring to bear all available techniques to the

problem. However, ligand-based screening often requires less preparation and less

analysis of results, thus being sparing of the computational chemist’s time and first

one to get results out. Protein-based screening generally requires more time to

prepare and validate the simulation, and to analyze the results, often including visual

inspection to ensure that docked modes are acceptable. The choice of strategy then

requires a balance between the enrichment that is expected, the anticipated novelty

of the hits, and the time and effort available to invest in the effort.

As general guidance, we would suggest the following guidelines:

1.
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Include VS in a lead discovery strategy whenever possible. Computational VS is

low cost. It is typically performed by a single scientist who employs multiple

processors, typically LINUX clusters now available at commodity prices. Of the

many resources needed in the drug discovery process, processor time belongs in

the inexpensive category. VS also brings considerable benefit. Many of the

methods available offer some enrichment over purely random screening, and

often offer significant enrichment.

2. Test a substantial number of compounds. VS methods generally offer enrich-

ment, but most ranked hit lists contain a significant proportion of false positives.

Hitlists should be scaled to 1–5% of the compounds in the virtual library

screened. In many real world situations, the computational chemist is being

asked to choose lists of compounds representing 0.1% or less of the compounds

screened (e.g., the ‘‘best 100’’ of 100,000 compounds). Typically, VS methods

have been validated considering 1%, 5%, or 10% of the total number of

compounds in the VS collection. By following up on more compounds, one

increases the probability of impact from VS.

3. Include a 3D ligand-based method. In our internal efforts across two companies,

we arrived at the same conclusion as the Merck researchers [106] that a 3D

similarity method appears to offer a good balance between effort expended and

the number and novelty of hits generated.

4. Automate. Much of the human effort in VS arises at the point of combining

various hit lists, followed by scoring and selection. The more this can be

automated, the more efficient the VS experiment becomes.

5. Integrate. An effective strategy is to view VS as an approach to identifying

chemical matter that is complementary to wet methods. This opens up potential

symbiosis between the VS benefiting from the HTS, or alternatively, HTS

benefiting from early hits identified by VS. Such a complementary view cannot

be overemphasized given that the role of VS in drug discovery is often looked

upon as competitive with high throughput screening or focused subset screening.

However, the lower cost and faster completion times should make VS acceptable

even with lower enrichment numbers. The savings in cost and time to obtain a

hitlist of active compounds can be significant if additional factors like the cost

and time of adaptation of an assay for HTS purposes, compound depletion in the

collection due to HTS, level of false positives from HTS created by mechanical

and measurement errors are considered.

6. Whenever possible, inspect the hitlist. Within the literature, there is a surprising

number of instances in which small numbers of compounds were ultimately

ordered. This inevitably requires individual inspection of compounds. In this

situation, applying all relevant simulations and any hypotheses based on prior

knowledge about key features are key contributors to higher enrichment. Where

it is possible to order a larger VS hitlist for testing, some additional tolerance in

favor of serendipity is beneficial. (For example, lowering the VDW radius of

ligands or proteins to allow for possible protein motion or just ignoring small

steric clashes.)
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NMR Spectroscopy in Fragment

Based Drug Design

Maurizio Pellecchia

Abstract In this chapter we will briefly reiterate critical aspects of solution nuclear

magnetic resonance (NMR) spectroscopy approaches and their applications in drug

discovery. These approaches are essentially based on a number of NMR techniques

that have been developed to monitor and characterize intermolecular interactions.

By way of examples, we will illustrate the unique advantages that these techniques

offer when employed in conjunction with fragment-based ligand design, especially

when tackling challenging drug targets.

Keywords NMR, drug discovery, fragment based drug discovery, SAR by NMR,

SAR by ILOEs, hit to lead
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In the past decade a number of nuclear magnetic resonance (NMR) approaches have

been proposed for such purposes [1–3]. These techniques generally exploit the fact

that measurable NMR parameters of either a drug target (a protein or a nucleic acid)

or a ligand differ depending on whether the molecules are isolated in solution or

form a complex. Such techniques can be divided into two main categories, includ-

ing a ‘‘direct’’ approach, where the target NMR observables are directly monitored

in presence of a saturating concentration of a small molecule binder, and a second,

indirect approach, in which the changes in nuclear spin relaxation of a small

molecule are measured in presence of a substoichiometric amount of target. A

third category of NMR experiments deals with the detection of enzyme kinetics and

inhibition, in which the consumption or formation of a substrate or a cofactor is

directly monitored [4, 5].

The major advantages of these strategies in the drug discovery process is that the

intervening techniques are less prone to false positives and false negatives than any

other type of assay and that there is no need to develop a specific assay for each

target to monitor ligand binding. A major drawback of these approaches is their

relatively low throughput and the relatively high amounts of target needed per

assay, compared to spectrophotometric assays. These considerations make NMR

spectroscopy the method of choice for hit validation, in which compounds that are

identified in other assays, usually from high-throughput screening (HTS) cam-

paigns, are verified for their binding to the target [3, 6]. However, because NMR

techniques are exquisitely sensitive and enable the unambiguous detection of even

weak binding events (with dissociation constants in the millimolar range), these

methods also found wide applications in fragment-based drug discovery approaches

(FBDD) [1, 2, 7, 8], in which high affinity binders for a given target are built

stepwise from initial weakly interacting low molecular weight (MW) compounds

(fragments). Because these approaches are independent from the nature of the target

(protein or nucleic acids), it is obvious that the NMR techniques reiterated in this

chapter will play an increasingly important role in chemical biology and in several

aspects drug discovery from hit validation, to identification and optimization,

particularly when tackling less characterized targets or those for which HTS

techniques have failed to produce viable leads. The next paragraphs will reiterate

the basic concepts of fragment based drug design, featuring the unique capabilities

that NMR spectroscopy has to offer in these endeavors.

2 Fragment-Based Ligand Design: Puzzling Approaches

to Drug Discovery

In a HTS campaign, typically hit compounds are ranked as a function of the number

of initial positives (varying from 0.1 to 0.001% of the screened compounds),

followed by those for which dose responses could be obtained (generally only

10% or less of the original hits). Of the few remaining compounds (if any),
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follow-up experiments and secondary assays are performed that serve to validate

further the hits suitable for further medicinal chemistry efforts in the hit-to-lead

optimization process. Considering that it has been estimated that the number of

theoretically possible drug molecules is of the order of 1010–1050 [9], it is obvious

that while screening hundreds of thousands – or even millions – of compounds

increases the chances of discovering valuable hits that can be optimized into leads,
the process of validating hundreds or even thousands of hit compounds from an

HTS campaign may be at odds with the initial intent of exploring a larger chemical

space. The main issue with screening larger and larger libraries in HTS is the quite

common risk that eventual valuable compounds may be ‘‘buried’’ in the inevitable

large ensemble of false positives. In fact, from a recent survey summarizing a 900-

page HTS industry account, representing data from 58 laboratories and 34 suppliers

reports some interesting trends about the integration and rate of success of HTS

campaigns [10], laboratories equipped for performing ultra HTS (uHTS; screening

>100,000 compounds per week) were not proportionally more successful in gen-

erating lead compounds than laboratories with medium-throughput capabilities or

even academic and noncommercial laboratories (testing only 3,000–7,000 com-

pounds per week). Furthermore, when dealing with larger libraries it is not practi-

cally attainable to prefilter compounds for considerations related to ADME-T

(absorption, distribution, metabolism, excretion and toxicity) liabilities for the use

of the mature leads (and later drugs) in vivo, which is a common flaw in the HTS

derived leads for drug development. One school of thought in recent years has been

to filter the databases to be screened such that criteria largely comply with Chris

Lipinski’s ‘‘Rule of Five,’’ an empirical list based on clinically successful drugs

with good bioavailability [11, 12]. In essence, ligands with MW much larger than

about 500 Da, flexible in nature (more than five rotatable binds), with a number of

hydrogen bond donors and acceptors larger than ten, and with poor solubility, tend

to become problematic at the developmental stages, especially for drugs intended

for oral administration [13].

These problems tend to worsen when dealing with targets involving protein–

protein interaction sites, for which to date HTS campaigns have generally failed to

provide viable leads. Nevertheless, it is not completely clear if the screening

campaigns are not producing valuable leads against protein–protein interactions

because of the supposedly ‘‘undrugable’’ nature of the larger binding surfaces

involved or simply because the compound libraries employed are highly populated

by compounds that were not originally derived to mimic or complement a protein

surface. With these considerations in mind, it should be intuitive that a more

rational chemical design approach, in which a molecule is iteratively ‘‘built’’

stepwise within the binding cavity of a given target, would likely represent a

more successful strategy, especially when dealing with drug targets presenting

larger surfaces and/or that have resulted very challenging for HTS.

These simple considerations form the basis for FBDD [7, 8] that, in essence,

have the intrinsic advantage of exploring in principle a much larger accessible

chemical space than conventional HTS campaigns, by rationally designing high

affinity binders from a small but diverse set of building blocks (fragments).
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In essence, the strategy consists of building up a lead compound (with a typical

MW of less than 500 Da) from screening small libraries (typically 1,000–15,000

compounds) composed of smaller molecules (fragments) with MW <300 Da and

good aqueous solubility. The most common FBDD approaches include tethering

[7, 8, 14–27], X-ray diffraction [22, 28–33], or NMR spectroscopy (reiterated here)

[1, 7, 8, 26, 34–40] as methods for fragment screening and to guide iterative

optimizations. More recently, applications involving surface plasmon resonance

have also been proposed [41].

Fundamentally, FBDD is a general approach aimed at deriving high affinity

ligands for macromolecular targets starting from low MW binders, which are us-

ually identified by the use of the aforementioned biophysical techniques [1, 2, 7, 8].

Following the identification of initial weak binders, two general approaches are

adopted to increase the affinity of the ligands for the given target, the most

straightforward being testing analogs with increased MW and hence chemical

complexity (Fig. 1). This approach is usually straightforward as several compound

analogs are usually commercially available. Subsequently, the evolution of the

resulting hit can follow structure-based refinements of the initial chemical structure

based on either a computational model or, as is most often the case, by an

experimentally derived (by using X-ray or NMR spectroscopy) structure of the

complex. Obviously, an intermediate approach consists of designing a new com-

pound that has chemical substructures from two fragments, that occupy partially

overlapping subsites, ‘‘merged’’ into a new molecule. These compounds can subse-

quently serve as the starting point for more traditional medicinal chemistry and

structure–activity relationships based studies aimed at the optimization of binding

affinity and selectivity of the compounds. One important consideration is that these

approaches enable a better control of the nature of the interactions, hence avoiding

false positives, and also provides the opportunity for keeping drug-likeness criteria

of the compounds in check. Because the compounds constituting the fragment

libraries are ‘‘building blocks’’ of the final hits, rather than the traditional Lipinski

rule-of-five [11, 12], a more stringent rule-of-three has been proposed [15]. Hence,

the fragment libraries are made out of scaffolds or fragments that per se do not in

principle contain chemical substructures or possess physical characteristics that

cause undesired properties and may lead to adverse effects in vivo. Careful selec-

tion of the fragment libraries is therefore pivotal for the success of these app-

roaches. Of note is that the small size of these libraries renders them more

practically and economically amenable to such careful selection, a task that is not

as easily attainable when dealing with the very large libraries used for HTS or

uHTS, that will inevitably be populated by undesirable compounds, from a

subsequent lead optimization and even drug development points of view. Finally,

one should also note that most approved drugs tend to contain a small variety of

common chemical substructures, as if there are certain scaffolds that have a better

chance to interfere with biological targets and to be safe and effective for use in

humans. Hence, fragment libraries populated in these chemical scaffolds could lead

to more drug-like mature lead compounds [42].
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A more sophisticated FBDD approach consists of designing bidentate com-

pounds chemically linking two weakly interacting scaffolds that occupy adjacent

subpockets on the target’s surface (Fig. 1b). In this case, the free energy of binding

of the resulting bidentate compound with respect to those of the individual frag-

ments can be expressed as

Fig. 1 Schematic representations of the two general FBDD approaches. (a) Evolution of the

fragment in the binding site of a generic target. (b) Fragment-linking approach
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DGAB ¼ DHA þ DHB ��TDSAB ¼ �RT ln KA
D KB

D E
� �

;

where R represents the Boltzman constant, T is the temperature of the system, DHA

and DHB are the enthalpy of binding of fragments A and B respectively, DSAB

represents the entropy loss upon binding of the bidentate compound, KA
D and KB

D are

the dissociation constants of the individual initial binders, and E is the linking

coefficient [26]. Hence, linking even weak binders occupying adjacent pockets on

the surface of the macromolecular target can result in high affinity bidentate

compounds. In fact, in an ideal case, the DSAB value would be approximately

equal to the loss of entropy of binding of the isolated compounds (A or B).

Therefore, the binding affinity of the bidentate compound would be, in principle,

higher than that of the individual compounds not only because of the larger number

of interactions (enthalpy factor), but also due to a reduced loss in entropy upon

binding (factor E). The approach has been demonstrated to yield bidentate com-

pounds with affinities dramatically improved with respect to those of the individual

fragments [26].

The choice of the fragment evolution approach vs the fragment-linking approach

depends on the nature of the target. For large surfaces, such as those involved in

protein–protein interactions, for example, it is expected that the latter approach may

be more appropriate. However, for smaller binding pockets, such as those for

enzymes, for example, the fragment evolution could be more successful as there

may not be sufficient space to accommodate two fragments simultaneously and/or

to accommodate a linker region.

When choosing the fragments to be optimized in an FBDD campaign, a key

parameter to rank order hits is the ligand efficiency (or binding efficiency index)

[43–45], which is defined as the free energy of binding per nonhydrogen atom. The

ligand efficiency allows normalizing MW and potency of a given molecule, hence it

provides a more rational and intuitive rank ordering of hit compounds [44, 45]. In

successful fragment optimizations, the potency increases linearly with MW at an

average rate of about 0.3 kcal mol�1 per atom. Hence, it is obvious that selecting

initial hit fragments with the most optimal ligand efficiency is a prerequisite for the

development of a potent lead molecule with acceptable MW [46].

The following paragraphs will report on basic NMR techniques that are highly

relevant for hit validation and for FBDD applications.

3 Chemical Shift Perturbation and Related Methods

A simple NMR technique, and arguably the most widely used and effective for hit

validation, is the chemical shift perturbation method. In this approach, a reference

spectrum of isotopically labeled target is recorded in absence and presence of a

given test ligand (or a mixture of test ligands). Commonly, differences in chemical

shift between free and bound protein target are observed in 2D [15N, 1H] and/or 2D

[13C, 1H] correlation spectra of a protein (or nucleic acid) upon titration of a ligand
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or a mixture of ligands, providing proof of binding and a value for the dissociation

constant of the complex [26, 47]. Chemical shift perturbation studies can also

provide crude structural information on the site of binding, when the resonance

assignments are known [26, 47] (Fig. 2). This approach is known as chemical shift

mapping. Nowadays collections of [15N, 1H] or [13C, 1H] correlations spectra

(either TROSY-type [49] or conventional HMQC and HSQC) with uniformly or

amino acid type selectively labeled protein samples [50] are the methods of choice

for both chemical shift perturbation or chemical shift mapping studies [2].

The use of chemical shift perturbation to monitor ligand binding has several

major advantages. First, binders to a given protein can be found without the need of

developing a specific assay or even regardless of the knowledge of its function. This

is generally true for most of NMR-based techniques, although the chemical shift

mapping is superior to other NMR-based approaches as it also discriminates

between specific and nonspecific binding. In fact, as mentioned, given that the

resonance assignments and the three-dimensional structure of the target are known,

the location of the site of binding can be obtained. The latter enables a crude yet

rapid and efficient assessment of the site of binding for the ligand on the target’s

surface [50]. This information can be combined with molecular modeling studies to

obtain rapidly a picture of the binding mode of the hit compound that can be used to

formulate hypotheses for further optimizations [51]. In addition, if the structure of

the target was previously determined by NMR, in some instances it is possible to

derive rapidly intermolecular NOE-type constraints (that translate into internuclear

Fig. 2 Chemical shift perturbation and chemical shift mapping. (a) Portions of the [15N, 1H]-

HSQC spectra of Bcl–xL recorded in absence (black) and in presence of each of the four molecules

(in colors). Resonance assignments for amino acid residues that exhibit large shifts are reported.

(b) Structure of Bcl–xL in complex with the BH3 peptide from Bak (PDB code 1BXL) showing the

chemical shift changes in Bcl–xL upon ligand binding (blue, large shits; yellow; no shifts; the Bak
peptide is reported in cyan). Adapted from [48]
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distance measurements) to position more precisely the ligand on the protein binding

site [26]. The drawback of the chemical shift mapping is that the amount of protein

needed for a single NMR experiment is still relatively high for the technique to be

used efficiently to test large libraries of compounds, and the fact that the protein

needs to be labeled. However, the technique is also very sensitive to weak binding

events, a fact that is common to most of NMR-based drug discovery strategies.

Hence, when such a weak binder (a fragment) is found to bind to a given protein,

follow-up hit optimizations strategies can be devised to increase iteratively the

affinity of the compound for the given target [1].

In this respect, the most popular strategy is the SAR by NMR approach [26, 47],

in which a chemical shift mapping-based screen for a second binder is performed in

the presence of an initial weakly interacting first ligand. Compounds that induce

chemical shift changes that correspond to a region on the protein surface that is

adjacent to the site of binding of the first ligand are considered. The structural

characterization of the ternary complex by NMR allows the design of potential

chemical linkers between the compounds to afford a more potent ligand. In practi-

cal applications, initial bidentate compounds represent the starting point for tradi-

tional SAR-based (structure–activity relationships) optimizations to obtain potent

and selective compounds (Fig. 3). This approach proved to be very useful against a

variety of targets, including those for which other techniques did not produce viable

lead compounds (see for example [52]).

4 Transferred NMR Measurements to Detect Ligand

Binding and Related Methods

Without going deeper into technical details, nuclear spin relaxation is dominated by

the rotational correlation time of the molecule. A ligand can assume quite different

apparent rotational correlation times in solution whether it is free or bound to a

large macromolecular target; hence its NMR observables will exhibit different

relaxation properties. These relative differences can be exploited in detecting ligand

binding and in characterizing structurally the ligand binding mode. In nontechnical

terms, NMR spectroscopy measurements are dominated by kinetics of small mole-

cule dissociation from the target relative to nuclear relaxation times for NMR

observables (most often hydrogen nuclei). In the so-called ‘‘fast exchange regime’’

the relaxation properties of a ligand at the equilibrium with its complex state with a

macromolecular target are the weighted average of the values corresponding to the

free and fully bound states. This occurs when the off rate of the complex is fast

compared with the differences in relaxation times of the complexed vs free ligand

[2]. Moreover, in the fast exchange regime (as occurs for ligands with low-micro-

molar to millimolar binding affinities), binding can then be detected by measuring

the relaxation properties of the test ligand in the presence of a substoichiometric

amount of target [2].
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A practical application consists of measuring transverse relaxation rates of

a ligand in the presence of a substoichiometric amount of target. Hence, ligand

screening can be achieved by measuring a 1D 1H NMR spectrum of test ligand(s)

with a relaxation filter (a spin-lock) in the presence and absence of a substoichio-

metric amount of target. The relaxation filter has two functions: first, it eliminates

any residual signal from the target; second, it serves to enhance the differences

in signal intensities in binders vs nonbinders. In typical applications, ligands can

Fig. 3 The SAR by NMR approach. Example of a small bidentate molecule designed using this

approach. The example shown is for the design of a potent inhibitors of the matrix metalloprotei-

nase MMP3. (a) Docked structures of the identified fragment leads are shown with cyan carbons,

whereas the linked compound is shown with green carbon atoms. All structures were experimen-

tally determined by NMR. (b) Chemical structures (and in vitro potencies) of the fragment leads

and subsequent high-affinity linked compounds. Adapted from [7]
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be tested as mixtures at concentrations as low as 50 mM in the presence of as low as

1 mM of target, respectively [53].

Other efficient applications involve a direct transfer of magnetization between

the target and the bound ligand as a way to detect binding. The saturation transfer

difference (STD) experiment [54, 55] is based on a selective irradiation of protein

resonances, which is obtained by irradiating the regions of the 1H NMR spectrum

that are usually not occupied by resonances from small organic molecules, for

example the aliphatic region of the spectrum, between �1 and 2 ppm. The irradia-

tion is transferred to the bound ligand via the Nuclear Overhauser Effect, and is

manifested in a decrease of signal intensity of the bound ligand compared to a

reference spectrum in which the irradiation is outside the spectral region [54, 55].

Hence, in a mixture of test ligands, subtracting the reference spectrum from the

protein irradiated spectrum will result in the NMR spectrum of binding compounds.

WaterLOGSY (Water ligand observation by gradient spectroscopy) is a related

experiment in which the selective saturation of the protein is achieved indirectly by

irradiation of water protons [56]. These experiments exploit simple 1D NMR

experiments and can be useful in screening as well as in hit validation and in

some instances to provide a crude measure of the dissociation constants or displace-

ment constants [57, 58].

In the STD experiment, the epitope of the interactions can be obtained from the

relative saturation of the resonance lines in within a given binder. This is particu-

larly useful and applicable for large ligands such as peptides or carbohydrates [59,

60]. More detailed structural constraints on the bioactive conformation of larger

ligands can also be obtained via transferred 2D [1H, 1H]-NOESY spectra, measured

in the presence of a small amount of protein target. These experiments provide

distance-dependant intramolecular NOEs signals which can be used to determine

the bioactive conformation of the ligand [61].

In addition to intramolecular NOEs, the observation of protein mediated ligand–

ligand NOEs (ILOEs) can be extremely informative in the design of potential

bidentate compounds and for lead optimization [2, 42, 62, 63]. Hence, ILOEs

between adjacent compounds are only mediated by the protein that is therefore

needed only in small amounts and unlabeled (Fig. 4). Much as for all experiments

that are based on the observation of the ligands, the size of the protein is not a

limiting factor. On the contrary, it is common experience that the larger the protein,

the more efficient cross-relaxation (that generates the NOEs) between the adjacent

ligands becomes [3].

In an application called SAR by ILOE [62, 63, 65], in analogy to the SAR by

NMR method, the design of potential bidentate compounds can be achieved via

detection of ILOEs in compound mixtures from small but diverse libraries of low

MW compounds (fragments). In a related approach, the chemical nature of the

identified pair of fragments can be used as a starting point for a pharmacophore

based design of potential bidentate compounds (Fig. 4) [64]. This has the advantage

that compounds could be rapidly and directly selected for testing from large libraries

of commercially available molecules before initiating synthetic chemistry (Fig. 4).
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Finally, an approach that is very efficient in artificially enhancing the transverse

relaxation rates of a ligand upon binding is to introduce a paramagnetic spin on the

target. For example, if the target contains ametal-ion inproximity orwithin the binding

site, the paramagnetic center could simply be the metal ion itself (e.g., Mn2+) [50].

For other targets, a paramagnetic spin can be artificially introduced. A common

spin-label is 2,3,4,6-tetramethyl-piperidine-1-oxyl (known as TEMPO) [66]. A

very useful application consists of utilizing the paramagnetic approach for a second

site screen in hit optimization projects [67]. This could be obtained by designing a

first ligand labeled with a spin-label, hence exploiting the relaxation enhancement

effect that the compound may induce to compounds that bind on the surface of the

target in proximity to the first molecule. In analogy to the SAR by NMR and SAR

by ILOE approaches, this strategy would lead to a pair of compounds that occupy

adjacent sites on the protein surface (Fig. 5). While the drawback of the method is

Fig. 4 Protein-mediated ligand–ligand magnetization transfer. (a) Interligand NOEs in the ali-

phatic region of two weak-binding fragments reported from a screening mixture. Intra- and

interligand NOE cross peaks between the weakly interacting ligands (500 mM concentration

each) are detected in a 2D [1H, 1H] NOESY experiment, in presence of a substoichiometric

amount of p38a (5 mM). The NOE cross-peaks of the reported ligands are labeled with green
(left compound) and blue (right compound) arrows, respectively. (b) Scheme for the discovery of

p38a inhibitors from a pair of binding fragments by pharmacophore search (Pharmacophore by

ILOEs) and by chemical synthesis (SAR by ILOEs) of a high affinity bidentate compound.

Adapted from [64]
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that a spin-labeled compound has to be obtained [67, 69], the advantage of

this method is that the protein is simply mediating the interactions. Hence, only

small amounts of unlabeled target are needed and the size of the target is not

a limiting factor.

5 Conclusions and Outlook

NMR has found an increasingly important role in the study and characterization of

the interactions between small organic molecules and macromolecular targets,

which is particularly useful in drug discovery [35]. These approaches provide a

clear cut validation for hit compounds arising from HTS campaigns. The use of

[15N,1H] correlation spectra or relatiation measurements are becoming routine

experiments to demonstrate a direct interaction between a hit compound and its

macromolecular target [3]. In addition, NMR strategies to support fragment-based

discovery and optimization have emerged in the past 5–10 years that are opening

the way to the design of compounds against challenging drug targets [7, 8].

Hence, we anticipate a significant role for NMR-based techniques in the near future,

both at the early stages of hit identification and validation, and to develop small

organic molecules capable of modulating unconventional drug targets such as those

involved in protein–protein interactions or even nucleic acids andmembrane proteins.

Fig. 5 Paramagnetic spin-labeled compounds for second site screening. Example of screening for

peptide binding in the docking site of the protein kinase JNK. An indazole ATP mimic has been

derivatized with a TEMPO molecule that brings a paramagnetic unpaired electron just at the edge

of the docking site of JNK. Hence, ligand binding in this region can be detected by monitoring the

signal intensity of a test ligand in presence of protein and the reference indazole-TEMPO

molecule. (a) 1D NMR spectra of the test peptide Ac–LNL–OH (1 mM) are measured in presence

of 200 mM of the TEMPO compound (black), in presence of 10 mM of protein target (blue) (JNK),
and in presence of both 200 mM of TEMPO and 10 mM of protein JNK (red). (b) Docking of the

indazole-TEMPO molecule and peptide Ac–LNL–OH in JNK. The surface of the protein is

displayed to highlight the cavities, the compound is displayed in capped sticks without protons

to better visualize the structure and the peptide is displayed in sticks with a translucent surface in a

gradient from red to gray coding for the effect of the paramagnetic probe on the resonance lines of

the peptide, as shown in a: red, more affected; gray, less affected. Peptide pose corresponds to that
obtained directly from the X-ray structure of the complex (PDB-ID 1UKI). Adapted from [68]
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Hit Triage: Medicinal Chemistry Strategies

to Improve the Odds of Success in Discovery

Kevin D. Freeman-Cook and Daniel W. Kung

Abstract This chapter describes the process of collecting and analyzing informa-

tion in order to make decisions which help a project move through a key early stage

in drug discovery. It explains, in general, the sources of hits for a drug discovery

program and explores the link between potency and efficiency in evaluating lead

matter. The chapter then illustrates the collection of both pharmacokinetic data as

well as safety data, and describes the relevance of that data and the process of using

it to make decisions. Of course, there is no one ‘‘right’’ or ‘‘wrong’’ way to do the

work contained in this chapter, but the practice of efficiently building a network of

information on compounds, and then using that to make informed decisions can

help to shift the odds of success in drug discovery.

Keywords Efficiency, Hit, Safety, Series, Triage
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1 Introduction: Philosophy of ‘‘Hit Triage’’

The identification of chemical matter with suitable structure and properties to lead

to the successful identification of drug candidates and drugs is a critical part of drug

discovery. In this chapter, ‘‘hit triage’’ is addressed. We consider hit triage to be a

decision-making process that spans a range of activities: (1) evaluation and assess-

ment of the known and expected properties of validated hit compounds, (2)

description of the key issues facing progression of any hit(s), which helps to define

the intermediate goals or questions to be addressed in hit follow-up, and (3)

prioritization of hit compounds or series for further chemistry optimization [1].

The goal of hit triage is to evaluate and identify chemical matter that will enable the

project to reach stated decision points (such as terminate chemistry, demonstrate

preclinical proof-of-concept, identify a drug).

A major challenge in evaluation of hit matter is typically the relative lack of

information that is available on the properties of the hit compounds. As compound

series are progressed from hits to leads to drug candidates to drugs, the quantity of

data that is available on a given compound increases dramatically, thereby increas-

ing the confidence in the decision to progress or terminate study of a particular

compound. However, at the beginning of a chemistry program (hit evaluation or hit

triage), many more judgments must be made based on probabilities or extrapolation

rather than knowledge.

A hit triage process is advocated here that balances (1) using data and knowledge

to make decisions when possible, with (2) using general principles and hypotheses

to assess probabilities in the absence of data. When linked together, the use of

available data in conjunction with general principles provides a framework for

defining the key questions to be addressed in the optimization of a hit compound

series, as well as the medicinal chemistry strategy and tactics for that optimization.

1.1 Sources of Hits

The potential sources of the compounds that are evaluated in a hit triage process are

described in other chapters in this volume. These sources may include a high

throughput screen (HTS) of a diverse compound collection, a targeted screen of
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a gene-family biased set of compounds (e.g., kinase or protease), a screen of low

molecular weight (MW) fragments, a targeted screen based on some extant knowl-

edge (e.g., biased by virtual screening to increase hit rate), or literature reports of

active compounds. Compounds from each of these sources of hits are likely to have

available different sets of data and knowledge that will be important inputs to hit

triage decision-making [2].

1.2 The Balance Between Data, Knowledge, and Probability

To illustrate the balance of data and knowledge vs probability, consider hits from a

fragment screen. These hits will be low molecular weight (<300) and are often

weak in terms of absolute potency (perhaps hundreds of micromolar); significant

changes to the compound structure including an increase in molecular weight are

likely to be necessary to achieve target potency. In the situation where substantial

structural changes will be made, the hit structure provides very limited data or

knowledge that will link directly to the properties of the optimized compounds [3].

From a decision-making standpoint, however, the power of the fragment approach

is that it enables the medicinal chemist to make assessments of the probability that

any given structural change to be introduced will impart desirable or undesirable

compound properties. For the analysis of a series of compounds or multiple series

of compounds, a probability-based analysis is expected to have the greatest utility.

An obvious weakness in proceeding on the basis of probability, however, is the gap

in correlating probability to actual experimental outcome for any single compound.

At the other end of the data and knowledge spectrum, hits from the literature can

provide a wealth of experimental data and knowledge upon which to base decisions.

Because these compounds have already undergone significant optimization, their

data are likely very relevant to the properties that might arise from further optimi-

zation. In addition to reported biological data and structure activity relationships,

these hits can be synthesized and characterized in any available assays prior to

deciding how to proceed with medicinal chemistry plans. The potency, pharmaco-

kinetic, safety, and intellectual property features can often be well understood,

leading to comprehensive and well defined goals that need to be achieved, as well as

identified assays with which to assess those properties. The number of unknown

properties may be quite small. The existence and identification of assays to assess

known liabilities can enable a much more empirically based setting of medicinal

chemistry strategy, rather than a probability-based one (Fig. 1).

2 Properties to Consider

The identification of a drug requires optimization of the balance among multiple

properties, among them potency/efficacy, pharmacokinetics (PK), safety, and intel-

lectual property. As a consequence, these are also the factors that are important to
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consider for hit triage (assuming that the ultimate goal is to identify a drug – the

considerations may be different for a preclinical tool compound, for example). The

sections that follow on potency, PK, and safety are intended to provide a framework

for considering the experimental data and assays that may be useful for evaluation

of hits, as well as general principles on how probability assessments can be made

when data are not available. Ultimately, the scientists working on a given project

must decide how to balance multiple properties and probabilities. The decisions

made about the properties, goals, probabilities, and prioritization for any hit com-

pound series then lead directly into the execution of chemistry hit follow-up, which

is the subject of this chapter.

The value of optimizing multiple properties concurrently during lead optimiza-

tion, rather than sequentially improving single properties, has been a topic of

growing focus in recent years [4]. In an idealized world (without cost or time

constraints), all compounds from a hit series would be experimentally tested for

potency, absorption, distribution, metabolism, excretion (ADME), and safety prop-

erties. With this full data package, hypotheses could be made about structure-

property relationships for each property independently; decisions about which

series to pursue and how to prosecute those series could then be made in an

informed manner, taking into account the likelihood of successfully optimizing

all the properties. A major factor to consider in prioritization would be the expected

overlap between the hypothesized structure–property relationships. For example,

structural changes that frequently improve stability to cytochrome P450 (CYP)

increasing
confidence in

decision-making on
compound or series

prioritization

number of compounds

HTS

amount of
data per

compound

fragment directed screen

literature

Fig. 1 Different sources of hits typically provide different distributions of number of hit com-

pounds and amount known (and relevant) about those compounds, each of which contributes to the

decision making process of hit selection and hit triage
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metabolism (e.g., reduce lipophilicity) often work counter to other properties (e.g.,

potency).

From a practical standpoint, it is typically not feasible to obtain this complete

idealized data package of all data. The number of data points required can be

reduced by reducing the number of compounds profiled or by reducing the number

of assays. From the viewpoint of trying to build structure–property relationship

hypotheses, it is typically beneficial to profile a range of structures within a given

series, so that the structural boundaries (within the extant chemical space) of

‘‘good’’ properties can be defined. At the hit triage stage, there is often greater

value in profiling a range of structurally different compounds within a series than in

profiling numerous highly similar compounds. The broader selection of compounds

will hold the potential to generate more knowledge about the properties of the

series. Methods for selecting these representative compounds can range from

clustering using computational methods, to spanning a physical property range

(e.g., lipophilicity), to manually selecting ‘‘diverse’’ chemical structures. The intent

of selecting a range of compounds is to build a broader base of knowledge that will

enable more accurate projections of the properties of future compounds in the

series.

In terms of reducing the number of experimental assays employed, the use of

computational models to predict specific in vitro endpoints has grown in recent

years. In deciding how heavily to weight the predictions of a model, one must

consider both the quality of the models predictions and the context in which those

predictions will be used. It may be possible to use experimental measurements to

confirm the predictions of a model for a given chemical series, and then to proceed

with a better defined sense of confidence in the predictions of that model. There are

useful examples of computational models for specific properties performing quite

well; in these cases, model predictions may be useful not only for describing the

properties of extant compounds, but also for virtual testing of proposed structure–

property relationships.

At another level removed from experimental data are some general concepts that

relate physicochemical properties to general trends in existing data. These concepts

can be useful for evaluating the likely properties of hit compounds and series in the

absence of much real data, essentially these can fill the gaps in an existing data set.

They can also be very valuable for guiding medicinal chemistry thinking in the

forward progression of a series of compounds. While real experimental data are

clearly most valuable to evaluate the properties of extant compounds, the use of

these general principles can be extremely powerful in selecting chemical strategies

for the design of compounds that have yet to be made.

Figure 2 illustrates the key inputs to the hit triage decision making process. Data

will come from multiple sources and different hits or hit series will likely have

different quantities and types of data available. The critical project and medicinal

chemistry decisions that must be made are defining the goals for each hit series and

hypothesizing structural changes to reach those goals. The integration and balance

of these data and decisions enables hit triage decisions.
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Keeping all of the above general considerations in mind, the next sections will

cover sequentially various types of experimental data that can be examined in the

course of a hit triage effort. As each is discussed, it is important to remember that a

successful medicinal chemistry program is the ultimate goal. That success will

almost always involve trade-offs between desirable properties, and those can be

hard to define in a concrete fashion. Different projects may place a premium on one

or more of these assays, given the particular needs of the specific therapeutic area,

or the specific project. Simply put, there is no single way to do hit triage, and each

effort has unique considerations. Still, some of the key consistently important

parameters are discussed below.

2.1 Experimental Data: Potency

In almost all cases in drug discovery the search for a successful candidate molecule

is the search for an appropriate ligand to bind to a molecular target. Since binding of

a small molecule to a larger biomolecule is a physical chemical event, the binding of

a ligand to its molecular target is driven completely by physical chemical forces [5].

These include Van der Waals (hydrophobic) interactions, hydrogen bonding, and

ionic interactions. Although ligands are sometimes covalently attached to their targets

by various reactions, these are relatively rare events and not often considered

desirable interactions in a drug discovery setting [6].

Experimental data (potency,
selectivity, ADME, safety,

physchem properties)

Computationally modeled
or calculated properties

(ADME, safety, physchem
properties, potency,

selectivity)

Expected structure-property
trends from current data or prior

experience (e.g., increasing
lipophilicity leads to increasing

clearance; electron-rich aromatic
ring in Series X leads to
increasing clearance)

known calculated expected

Assessment of how many experimental properties
must change by how much to reach project criteria

Medicinal chemistry expertise

Definition of potential paths for chemical structure
changes to improve the targeted properties

estimation of probability of successMedicinal chemistry expertise

Hit triage prioritization decisions

Fig. 2 Hit triage decision making requires inputs of experimental and calculated data and

medicinal chemistry experience and expertise to arrive at an assessment of the probability of

advancing individual chemical series
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Potency is an important property for a lead molecule (or series) when attempting

to make decisions in hit-triage. At the early stages of a drug discovery program, the

binding affinity of a compound is almost always considered as a surrogate for

pharmacological efficacy. True efficacy, the induction of a specific biological

response based on a molecular interaction, is the ultimate goal of a discovery

team. For most of the last few decades, hard cut-offs were used that dramatically

simplified the hit triage process. Teams would either work on the most potent hits, or

would not work on any hit that was below some threshold or ‘‘dignity line’’ (1–5 mM,

for example). When considering the hit triage process, the fundamental question to

consider is how likely is a given series to produce a molecule with the desired potency

to show efficacy. Understanding the assumptions that are built into that question (and

all of their potential limitations) is a critical first step in a successful hit triage process.

In order to understand the potency of a given molecule, project scientists must

first understand the nature of the measurement used to generate the potency value. If

the molecule in question is from a literature report, there may be no in-house data to

examine, and in that case the synthesis of the compound and the development of an

assay usually becomes a critical first step to understanding the project landscape at

that point. More commonly, however, the compound in question has been identified

in some type of in-house screening process. These can take many forms, but they

can broadly be grouped into two major categories:

1. Assays with a physical endpoint measurement

2. Assays with a biological endpoint measurement

2.1.1 Biophysical Assays

While biological assays are by far the most common, biophysical assays are

steadily increasing in scope and popularity [7]. The rise in use of these assays is

essentially paralleled by overall improvements in instrumentation, automation,

and methodology over the last decade, which has provided multiple options for in-

depth understanding of fundamental molecular interactions. These approaches

almost always involve the direct measurement of binding of a molecule with a

target of interest (protein, receptor, etc.). In this respect, these biophysical

approaches differ significantly from assays that rely on a biological endpoint

which will be discussed shortly. Since biophysical methods make direct measure-

ments of molecular interactions, they can potentially reduce the need for complex

validation assays [7].

In making these measurements, discovery teams can often gain key understand-

ing of important physical parameters (binding rates, enthalpy, entropy, and even

structural information). These can occasionally be lost in more traditional

biological assays (particularly when run in a high throughput fashion). Also impor-

tant to note – biophysical methods are often used in conjunction with fragment

based approaches to drug discovery [8]. This is conceptually important, since the

fragment approach identifies an overall smaller number of starting points compared
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to a typical HTS, and teams often have the time to invest in a more thorough

understanding of each potential starting point. Additionally, since each hit is

generally further from an eventual target profile, there is a critical need to do as

much early work as possible to clearly define the scope of the problem at hand.

Without question, one of the most useful biophysical methods is co-crystalliza-

tion and X-ray structure determination [9]. As with other techniques, automation

and robotics are transforming the landscape of what was once thought possible.

There have been published reports of parallel processing as many as 100,000

microcrystallization experiments in a single day [10]. The three dimensional

binding information that is provided using this technique is particularly amenable

to the central question in hit-triage: are there options for further improvements in

these compounds? Of course, these improvements are not limited to enhancements

in potency. X-ray structures can provide avenues for rational adjustment of a large

number of properties by identifying areas of the molecules that may be amenable to

substitution or chemical modification. There has been a significant amount of work

recently in fragment approaches that are enabled by structure based drug design

[11]. In many respects the fragment approach is ideally suited to projects which

have X-ray crystal structures available. The fragments are small and relatively

weak binders, but they often only possess one pharmacophoric element that binds

to a specific feature on the target. If this interaction is identified by X-ray structure

determination, then project teams can propose specific plans which maintain that

critical interaction, and ideally optimize binding through other vectors in their

fragments.

Even when co-crystallization is not feasible, if X-ray structures of the target are

known, then there are opportunities to use computational techniques to try to

understand the potential interactions of the compounds with their biological target

[12]. This technique is inherently more limited when attempting to understand the

binding of smaller fragments, as these are often small enough to bind in multiple

potential conformations, and the calculated energy difference between these con-

formations can be extremely small, leading to relative uncertainty about the actual

binding mode that is being accessed by a potential lead structure [13]. Even with the

associated uncertainty, the low cost of virtual screening in comparison to screening

of discrete compounds makes it a very attractive addition to the search for potential

hits, especially for difficult targets.

Among other biophysical methods, NMR can also provide useful structural

information. For an excellent recent review see Zartler et al. [14]. Critically

important, NMR can often provide data to suggest that the binding of a novel

molecular entity is causing the disruption of binding (displacement) of another

inhibitor (or possibly the natural ligand). This information can be useful in building

confidence in the hypothesized mode of binding and in understanding the effects of

subsequent structural changes – e.g., if a modification is made, and as a result, the

new compound no longer displaces the natural ligand of a given target – that change

has fundamentally altered the binding mode of the new compound, relative to the

starting analog. Traditionally, NMR screening approaches have required relatively

large amounts of protein and of target compounds. This has resulted in the
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generation of NMR screening collections of �1,000–10,000 compounds. Several

groups have focused on the application of NMR techniques to the high throughput

screening problem. Using 15N/1H correlation spectra, Hajduk and co-workers

reported a strategy which would allow the screening of >200,000 compounds in

less than one month [15]. Newer reports suggest that NMR can be used without

labeling of protein or ligand in ligand competition binding experiments to screen

extremely large numbers of compounds, and provide an estimated KD of the ligand

with a single point measurement [16].

More recently, developments in optical biosensors allow the precise measure-

ment of ligand association and dissociation kinetics (kon and koff). Surface Plasmon

Resonance (SPR), when used with immobilized proteins, can provide extremely

sensitive measurements of the interactions of potential lead compounds [17]. The

rate constants that are provided by this method can be critical to a clear understand-

ing of a compound or series. For instance, a compound with a relatively low

micromolar IC50 value in a biological assay may nonetheless display very slow

dissociation kinetics, and thus, while being only a ‘‘weak’’ binder, could be an

interesting starting point due to its unusual kinetic behavior. Overall, the use of this

technology can build confidence in the binding behavior of a compound or series

prior to the additional investment in optimization towards nomination of a clinical

candidate [18]. Further, the knowledge of kinetic and thermodynamic parameters

can help optimize both biological assays and decision-making in later stages of

discovery [19].

As a complement to any (and perhaps all) of the above methods, calorimetry can

be utilized in developing an understanding of the overall energetic behavior of the

binding event [20]. The overall thermodynamics of any molecular interaction is the

sum of both the enthalpic and entropic energy components of the species involved

[21]. While these measurements have historically been somewhat limited due to a

requirement for a significant amount of protein, new techniques have alleviated the

situation substantially [22].

2.1.2 Biological Assays

For strictly biological assays, the assumption is often that the inherent binding

affinity is a surrogate for pharmacological efficacy. Essentially, binding to a

molecular target with higher affinity (driven by both enthalpic and entropic con-

siderations) gives a higher likelihood of producing a desired biological effect. Most

programs, especially at the hit triage stage, use this assumption as a given. The

thermodynamics of binding is used almost exclusively to drive SAR development,

while kinetics, due to more complicated and time consuming assays (or more

expensive techniques, as discussed above) is largely not examined. Recently

more and more reports of unusual kinetic behavior and the subsequent effects on

the drug discovery process have been reported [23]. These reports have resulted in a

growing awareness of developing an understanding of both kinetic and thermody-

namic behavior of potential hits. Recent reports have described the integration of
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HTS data and secondary screening for hit validation and determination of kinetic

on/off rates. These data have been successfully incorporated into hit triage by

enhancing the understanding of SAR differences between potential scaffolds [24].

In this example, those differences allowed informed decision making in the choice

of which series to pursue and which to deprioritize.

Of course, traditional biological assays can provide direct functional data in the

presence or absence of a test compound, i.e., is protein X inhibited in the presence

of compound Y under a given set of conditions. Over-expression and purification,

now of even historically difficult targets, have allowed discovery teams access to

most potential drug targets. Expanding molecular biology techniques have facili-

tated generation of simple constructs for screening, and have enabled many screen-

ing programs that would have been difficult otherwise [25]. There are, of course,

many caveats in setting up any given assay, and running under conditions which

produce consistent data and biologically relevant results. The sheer number of

permutations in ways to run screening assays and interpret screening data is far

beyond the scope of this chapter. However, there have been several excellent

reviews on the subject. In particular, the screening section of Comprehensive
Medicinal Chemistry II gives an excellent starting point for the review of various

methods and strategies for compound screening [26, 27]. Some assays are not a

direct measure of inhibition or functional change, but rather rely on a series of

interdependent biochemical events. The readout comes from a change in some

downstream event in the presence or absence of a test compound. Often cell-based

assays are done in this manner [28]. While these systems can be challenging to

interpret due to complicated interactions and relationships within the system, they

can also be used to provide more information. Specifically, because the compounds

may be in a more biologically relevant environment, their effects on multiple

endpoints can sometimes be monitored. In the best situations, the information

that is gained in these studies can sometimes suggest new potential targets for

therapeutic intervention.

2.2 Ligand Efficiency and Fragment Screening

While the high throughput screening approach has provided optimizable lead

structures for many programs, it suffers from extreme inefficiency; compound

collections at pharmaceutical companies now number in the range of 2�106.

The cost of a typical full file screen can vary dramatically, but can easily approach

(and in some cases exceed) $1 million. Each HTS that is run is a significant

undertaking and large commitment. Unfortunately, while that screening has

provided some success, industry-wide it is fair to say that it has not delivered

consistent success that has allowed teams to rapidly progress fundamentally new

lead structures. At least part of this has been a focus on potency above other critical

parameters, and less consideration of the ability to improve potency in smaller,

more drug-like hits.
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In the late 1990s, various reports which covered the energetics of ligand binding

caused a re-examination of the mindset which had placed a premium on potency

above other properties of a compound [29]. A new parameter was introduced which

described the efficiency of binding, by dividing the binding energy of the com-

pound by the number of heavy (non-hydrogen) atoms [30]. This was a clear

theoretical break from previous hit triage approaches which centered heavily on

potency as a dominant parameter to consider.

The ‘‘ligand efficiency’’ parameter (LE) allows the evaluation of the relative

contribution to binding of all of the heavy atoms in a given molecule. Compounds

which were potent binders, but high molecular weight would be less ‘‘efficient’’

(lower LE) than those that could accomplish similar binding with lower molecular

weight. This parameter can be considered a key link between the traditional HTS

approach and the fragment-based approach mentioned earlier, as it allows a mean-

ingful and simple comparison of compounds (and series) of very different molecular

mass. LE is a useful parameter for describing the interaction between a compound

and its biological target. One must be careful to recognize that LE is not an end

point in its own right, but rather one means of gauging the probability that potency

and other parameters can be optimized concurrently. As a result, it is not appropri-

ate to consider LE as an independent parameter; the context of the compound’s

other properties (absolute potency, lipophilicity, other experimental data) must also

be taken into account. Similarly, the lipophilicity of a hit compound or series can

provide a gauge of what that compound’s properties are likely to be, as well as

provide a direction for subsequent optimization of the series. A recent report from a

group at Abbott lends significant support to this notion [31]. In this work, optimized

compounds from 15 different projects were ‘‘deconstructed’’ back to their putative

‘‘fragment’’ starting points. The analysis showed that at each virtual step of the re-

construction process, the overall binding efficiency index value remained constant

for each target. This provides evidence for the concept that starting from a lead

without appropriate efficiency will result in challenges in balancing potency and

MW to achieve a final compound with desirable physical properties. It is natural,

then, to consider the LE of the hits that are likely to be found in a normal high

throughput screening effort. Traditional HTS approaches are often designed with

bioassays that are optimized to identify single-digit micromolar binding com-

pounds. When those methods are applied to screening a large collection of com-

pounds, many of which have very high molecular weight (having been synthesized

as part of optimization efforts in other projects), the results are generally predict-

able. Identification of an analog (or series of analogs) with molecular weights of

�450–500, and potency in the range of �1–5 mM (i.e., low LE) presents a clear

dilemma. Potency in this range can easily result from the sum total of multiple sub-

optimal interactions, making it difficult to replace any one structural feature and

‘‘jump’’ to truly efficient, high potency analogs.

Ultimately, when low LE series were chosen for further follow-up and medicinal

chemistry optimization, modifications to the structure to produce more potent

analogs would usually involve the addition of mass. This would move compounds

to an undesired property space, and make the balancing of potency and PK
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properties difficult. Regardless, much of this work did occur, without regard to

property space considerations, often in the name of high speed preparation of

libraries of compounds to quickly build SAR within a series of interest. Removal

of mass, while perhaps a desirable strategy to then allow a team to make progress

towards PK objectives, would likely lower potency and compounds could go

undetected in assays that were optimized for the desired high potency range.

Thus, teams would often adopt complicated ‘‘cut and add’’ strategies where one

would simultaneously remove portions of a potential lead structure and add func-

tionality at other positions. Of course, successful analogs could result from these

efforts, but they tended to be slow, erratic, and plagued by difficulty in making

consistent comparisons with preceding compounds.

In choosing a fragment or series that has higher LE, teams could (to some extent)

avoid the tradeoffs that were often encountered in the above approach. By defini-

tion, these hits would have high binding energy per heavy atom, thus every heavy

atom was playing a more important part in the overall binding of the compound or

series. Because of that, one could take a sensible approach to maintain that binding

efficiency and perhaps build conservatively, adding specific functionality to these

lower molecular weight compounds. As these smaller analogs grew, their potency

could increase to more pharmacologically useful levels, and perhaps reach good

potency levels without moving out of desirable property space. Medicinal chemists

are now well aware of the Lipinski ‘‘Rule-of-Five’’ parameters [32, 33], which

provide simple molecular descriptors that help to define high and low probability of

success in overall absorption profile. As described above, building rationally from

initially small fragments provides a chemistry team the opportunity to find analogs

within these parameters. Conversely, an HTS approach may identify starting points

which already fall outside of the desired physical property space, again leading to

optimization plans that involve removal of functionality with re-introduction of

new structural features. Overall, there is considerable and growing recognition that

fragment approaches are a powerful tool for rapid advancement of drug discovery

programs and in many cases can provide attractive alternatives, relative to tradi-

tional high throughput screening approaches [34].

2.3 Lead-Like vs Drug-Like Hits

Much of the above discussion of LE and good starting points can be distilled to the

concept of ‘‘lead-like’’ vs ‘‘drug-like’’ hits. These terms were coined from consid-

eration of the properties of hit compounds in conjunction with some general

knowledge of how physical properties of compounds tend to change as a series is

progressed [35, 36]. As described above, molecular weight and/or lipophilicity

almost always increase as compounds are optimized for potency. Thus, drug

candidates typically turn out to be higher MW and more lipophilic than the hits

that were used as starting points [37].
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The consideration of lead- or drug-like properties can be very useful in evaluat-

ing the attractiveness of hit compounds because of the implicit recognition that the

properties of the optimized compounds are likely to be different [38, 39]. It is

precisely the extrapolation of what will happen to the biological properties of a

compound (or series) as its physicochemical properties change that is the central

goal of hit triage. From a lead-like physicochemical properties starting point (MW

<350, clogP <3, micromolar potency – perhaps a high LE, low molecular weight

hit fragment hit), there may be significant extrapolation that must occur; from a

drug-like starting point (e.g., MW 450, clogP 4, <0.1mM potency – perhaps a

kinase inhibitor from another advanced project, used as a lead in a new kinase

project), there is much less extrapolation. Either of these types of hits may provide

reasonable starting points for medicinal chemistry depending on the project con-

text, but the way that their data are evaluated should be very different. On one end

of the spectrum, a team may be less interested in the precise pharmacokinetic

properties of a ‘‘lead-like’’ series, since they would understand that a significant

evolution of structure and properties will likely take place before a development

candidate could be identified. Conversely, a team will likely place a higher premi-

um on having good quality experimental data (biology and pharmacokinetics) for a

series that is more ‘‘drug-like,’’ because those molecules will already share many of

the characteristics of the eventual candidate.

3 Experimental Data: Pharmacokinetics – Absorption,

Distribution, Metabolism, Excretion

A recurrent challenge in medicinal chemistry is identifying compounds that have an

appropriate overlap between desirable potency and ADME properties. In deciding

which series to pursue at the hit triage stage, one must both consider the properties

of the hit compounds and make a probabilistic assessment of how the properties

will evolve as additional compounds around the hits are synthesized. Experimental

data are obviously the most effective means of identifying the properties of the hits;

the assessment of how the properties will evolve is a judgment of the medicinal

chemist. Factors that can contribute to this judgment include physicochemical

properties, expected potency- or ADME-related SAR trends, predictions from

computational models, as well as prior experience and intuition.

Because the goal of hit triage is to identify chemical series that hold promise for

further optimization, an approach to characterize the ADME properties of a series, not

just individual compounds is often useful. Where possible, characterizing the structure–

ADME property relationship, in much the same way that a structure–potency

relationship is defined, can be valuable for assessing the probability that a given

structural series can be successfully optimized. The goals of this ADME property

characterization are twofold: (1) to identify specific structural features that may be

liabilities (benefits), and (2) to identify general structure–ADME property correlations.
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These specific and general data inputs serve as the basis for making judgments on

how substantially the structure of the hit compound(s) will need to change as the

potency, ADME, and safety properties are concurrently optimized. These judg-

ments form the basis of the lead optimization effort. As such, an important

consideration is the selection of compounds to define the boundaries of the

structure–ADME relationship of a series. In some cases, the compounds that are

selected for defining the ADME relationships will not be the same set of compounds

that have the most potent primary pharmacology.

The key question to assess with regard to pharmacokinetic properties is how

likely optimized compounds will be to reach their intended target tissue, what

concentration they reach in that tissue, and how long that tissue will be exposed

to efficacious levels of the drug. Individual properties that are typically important to

consider include permeability, solubility, clearance, volume of distribution, and

distribution to specific tissues (e.g., penetration to the brain). The attributes that

drive these properties can be divided into two general types: (1) specific structural

features, such as particular groups that are metabolically labile, and (2) general

physicochemical properties, such as ionization state or lipophilicity, that have a

strong correlation to the end point of interest [40–42]. Understanding of these

relationships for each series of compounds will significantly facilitate prioritization

among series.

Because of the cost, difficulty, and low-throughput nature of collecting in vivo

pharmacokinetic data, high throughput in vitro assays are commonly used to assess

many of these ADME properties [43, 44]. Table 1 contains some of the most

commonly used assays. A caveat with all in vitro assessments of pharmacokinetic

properties is that the in vitro assays are set up as models of in vivo parameters. In

most cases, validation of the in vitro results will not occur until in vivo studies (in

humans) are executed, and the uncertainty that is associated with these assays as

models needs to be considered. As part of the effort to characterize series, in vivo

PK experiments at an early stage (perhaps as early as hit triage) may be considered,

particularly for ‘‘drug-like’’ hits. Due to the cost of in vivo experiments, it is not

common to run them in the hit triage phase. Ideally, when they can be run, the main

objective of these experiments is often to validate (or build) a correlation between

Table 1 Common in vitro assays to assess ADME properties of hit compounds

Clearance

Human (rat) liver microsomes

Cryo-preserved or cultured human (rat) hepatocytes

Recombinant CYP450s (also for safety assessment of drug–drug interactions)

Permeability/absorption

Caco-2 cells

MDCK cells

PAMPA (artificial membrane)

Solubility

Kinetic solubility (from DMSO solution)

Thermodynamic solubility (from crystalline material)
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in vitro and in vivo assays. As with in vitro assays it is important to also recall that

preclinical in vivo studies are only models for human pharmacokinetic outcomes.

3.1 Clearance

Clearance is a critical parameter because of its role in determining a drug’s dose

size and frequency. First-pass clearance in combination with absorption determines

a compound’s bioavailability. Clearance and absorption in combination with

potency determine dose size. Clearance and volume of distribution determine

half-life, and thus dosing frequency.

The assessment of clearance is complicated by the numerous mechanisms by

which compounds may be cleared from the body. These mechanisms include

oxidative metabolism, most commonly by CYP enzymes, but also in some cases

by other enzymes including but not limited to monoamine oxidases (MAO), flavin-

containing monooxygenases (FMO), and aldehyde oxidase [45, 46]. Non-oxidative

metabolism such as conjugation or hydrolysis may be effected by enzymes such

as glucuronyl transferases (UGT), glutathione transferases (GST), amidases,

esterases, or ketone reductases, as well as other enzymes [47, 48]. In addition to

metabolic pathways, parent compound may be excreted directly via passive or

active transport processes, most commonly into the urine or bile.

From an early drug discovery and hit triage perspective, a simplification that is

typically made is to focus initially on CYP metabolism that occurs in the liver. This

simplification is appropriate for the majority of compounds – some compounds will

be cleared by other mechanisms, but it is generally assumed that they must be

relatively stable to CYP metabolism to achieve a desirable PK profile.

With this focus on CYP and liver metabolism, most companies have established

high throughput assays to measure compound stability in the presence of human (or

preclinical species) liver microsomes [49]. Disappearance of starting compound from

an incubation with microsomes is monitored. Measurement at a single time point

enables a rank-ordering of compounds for stability based on percent of parent com-

pound remaining; acquisition of data at multiple time points allows determination of

half-life, intrinsic clearance, and extrapolation to a predicted in vivo clearance [50].

Other assays for assessing CYP clearance are also employed, although often less

widely or with lower compound throughput. Recombinant CYP enzymes allow the

determination of the kinetic parameters for metabolism of individual compounds by

individual CYPs. Recombinant CYPs also provide an avenue to assessing and

understanding the potential for drug–drug interactions that may occur between

two or more compounds.

Hepatocytes, whether freshly cultured or cryo-preserved, can provide an assessment

of not only CYP metabolism but also clearance by other metabolizing enzymes and

potentially the role of transporters [51]. The accuracy of the data is of course dependent

on how well the proteins in the hepatocytes function after culturing or freezing.
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In the interpretation of data from a metabolism assay, care must be taken to

consider the role of nonspecific protein binding in the assay [52]. Within a given

chemical series, protein binding typically increases with increasing lipophilicity.

The importance of protein binding on predicting in vivo clearance from in vitro

measurements is well described. At the hit triage stage, when compounds from

multiple chemical series of potentially different lipophilicities are being consid-

ered, the differences in lipophilicity should be taken into account if clearance data

are not corrected for protein binding; apparent metabolic stability in lipophilic

compounds may be an artifact of high protein binding.

In evaluating the clearance properties of a series, identification of a correlation

between lipophilicity and clearance can provide a useful general framework for the

design of subsequent compounds. The absence of a general correlation between

decreased lipophilicity and reduced clearance (i.e., compounds with low logD are

rapidly metabolized) may be an indicator of a specific structural feature that is a

metabolic liability, which can form the basis for specific structural hypotheses to be

tested. General structural features that are often thought to contribute to CYP

metabolism include high lipophilicity, a high number of rotatable bonds, and

electron-rich aromatic rings [53]. Although most chemical series do show a general

correlation between lipophilicity and CYP-mediated clearance, there can be signif-

icant differences between series. These differences may be an important decision-

making factor in prioritizing series during hit triage.

The figures that follow provide examples of some ways in which in vitro

clearance data for two series can be compared and assessed to identify key ques-

tions, trends, or hypotheses. While the data presented here are for clearance in a

human liver microsomal (HLM) incubation, the analysis could be applied in the

same way to other data sets – including other experimental ADME or safety end

points, or computationally predicted end points.

Figure 3 represents two series of compounds where a significant amount of

experimental in vitro clearance data is available. In looking for general trends,

neither series appears to demonstrate a robust correlation between clearance and

lipophilicity. Series A (open squares) series shows a rough trend toward greater

probability of having stable compounds at low (clogD <2) or high (clogD >4)

lipophilicity. For Series B (black triangles) in particular, a key question is whether

there are specific structural features common to the compounds that may be

metabolic liabilities – the few more stable compounds will be valuable points of

comparison.

Figure 4 shows the same compounds as Fig. 3; the clearance data are corrected

for microsomal protein binding as calculated by a computational model. Experi-

mental measurements for a representative subset of these compounds confirmed

that the model was reasonably accurate. Series A demonstrates a strong correlation

between free clearance and lipophilicity; depending on the level of clearance

desired, clogD could be used as a guideline for the design and selection of

subsequent compounds. Assuming a desired Clint,free of <100, clogD of �1–3

might be the target range. A critical question in deciding the relative prioritization

of this series would be how this target lipophilicity range for clearance overlaps
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with the desirable lipophilicity ranges for other properties (potency, safety, etc.).

For Series B, there is still not a strong correlation between clearance and lipophilicity.

For both series, a more detailed analysis of the structure–clearance relationship may

Fig. 4 HLM Clint, free vs clogD. HLM Clint, app corrected for microsomal protein binding using

a computational model for microsomal binding. Open squares and filled triangles represent the
same chemical series as in Fig. 3 (series A and B, respectively)
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identify specific structural features of importance; in particular, ‘‘outlier’’ data

points (e.g., compounds that are unusually stable at a given clogD) often contain

information that can lead to a new direction for the evolution of structure–property

relationships.

Figure 5 shows an alternative view of the free clearance data for these two series.

Free clearance values were binned into three groups, and the compounds in each

series were binned by their clogD values. By the progression in the pie charts, the

correlation (or lack thereof) between clearance and lipophilicity is evident. This

type of view does not directly highlight the individual ‘‘outlier’’ compounds that

may contain extremely informative structural information, but it is valuable for

identifying general trends.

On the assumption that properties other than clearance were similar for Series A

and B, specific structure–clearance relationships and the general clearance-lipophi-

licity trend for Series A are important factors for hit triage prioritization. If the

specific structure–clearance relationships do not differentiate the series, Series A

might be favored for more having a more straightforward strategy to optimize

clearance (target clogD <3). It should be emphasized that this strategy is a

probabilistic one – the identification of low clearance compounds is more likely

at lower clogD; there may well be some higher clogD compounds that would be

stable, and not every lower clogD compound will have the desired clearance profile.

Figure 6 is another view of the data for only the compounds in Series A.

Compounds were binned into groups based on both their clogD and MW.

Series B

Series A

x £ 1 1 < x £ 2 2 < x £ 3 3 < x £ 4 4 < x £ 5 5 < x

clogD

Fig. 5 Pie charts for the two chemical series, colored by binned HLM Clint, free (white – low;

grey – moderate; black – high) and arranged by binned clogD. Series A (bottom), series B (top)
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The trend toward decreased stability of compounds with increased lipophilicity and

MW is obvious. This analysis can provide information about the roles of these two

properties in contributing to clearance for this series. Again, the important question

for hit triage decision making is how the hypothesized structure–clearance trends

correlate to the property trends for other relevant biological properties.

3.2 Permeability/Absorption

The permeability of compounds across biological membranes is important for

compounds to reach their biological targets. Many drug discovery programs target

oral dosing and absorption of compound in the gut; thus permeability across these

membranes is an important parameter to understand. A high percentage of drug

targets have an intracellular location, requiring compounds to cross cell membranes

in the target tissue; an additional subset of compounds must cross the blood–brain

barrier to reach their target tissue. Due to the overall importance of maintaining

good permeability in most traditional programs, many teams will want an early

understanding of the likelihood of permeability problems with the series of interest.

Typical early in vitro permeability assessments measure the rate of flux of a

compound from one side of a barrier to another [54, 55]. The barrier has historically

been derived from a cell line, most commonly Caco-2 or Madin–Darby canine

kidney (MDCK) cells. In the last several years, there has been substantial work and

significant progress in the development of parallel artificial membrane permeability
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Fig. 6 Pie charts for series A only, colored by binned HLM Clint, free (white – low; grey –

moderate; black – high) and arranged by binned clogD and binned MW
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assays (PAMPA) [56–58]. PAMPA assays can decrease the cost of permeability

assessment as compared to cell-based assays. PAMPA also provides the opportuni-

ty to vary the membrane and donor or acceptor buffers, which can allow an

empirically-derived modeling of different biological membranes.

PAMPA is typically used to make a prediction of the passive, transcellular

absorption of a compound. Compounds which may be absorbed by a paracellular

mechanism or may be substrates for active transport (uptake or efflux) are usually

better assessed in a cell based system. A combination of assays can be applied to gain

a greater understanding of the permeability and transport properties of a compound.

The study of active transport mechanisms has grown substantially in recent

years, with transport proteins such as P-gp, BCRP, and MRP-2 among the most

studied [59]. Several types of in vitro assays to assess substrates of transporters have

been established; these include assays directed toward intestinal and biliary efflux

[60]. Assays that measure passive and active transport are also used to assess

penetration of the blood–brain barrier. In addition to the assays described above,

transfected cell lines that overexpress transporters present in the blood–brain barrier

are also employed [61].

In vitro assessments of permeability are commonly used to bin compounds as

high, low, or moderate permeability. At the hit triage stage, compound series that

demonstrate overall low permeability may be a cause for concern (assuming high

permeability is desired), particularly if there are not obvious structural features that

might cause poor permeability. Considering that crossing a membrane requires a

compound to pass from an aqueous environment to a lipid and back to water,

structural properties that can often lead to poor passive permeability include the

extremes of polarity or lipophilicity (e.g., high ionization or high hydrophobicity)

or high hydrogen bonding capacity [62]. Structural rigidity and compound shape

are also likely to play a role in determining a compound’s permeability properties.

Lipinski’s ‘‘Rule-of-Five’’ was a landmark proposal for identifying a subset of

physicochemical properties that tend to correlate with poor absorption.

Figure 7 shows the relationship between permeability in a MDCK cell assay and

clogD for two series. Series C (filled squares) demonstrates good permeability,

although only a relatively narrow clogD range was characterized. The importance

of characterizing permeability for this series at lower clogD before making hit

triage prioritization decisions will depend on whether optimization of other proper-

ties are likely to drive future compounds toward lower clogD. Series D (open

circles) shows variable permeability across a wider clogD range. A more detailed

structural analysis will be valuable to assess the impact of specific structural

features on the permeability properties of this series.

Figure 8 shows PAMPA data for a subset of compounds from the two series in

Fig. 7. The potential concern about low permeability for Series D is confirmed

between the MDCK and PAMPA data. Series C, with the exception of one

compound, also demonstrates good correlation between MDCK and PAMPA

permeability; the compound with low PAMPA permeability should be further

analyzed for relevant structure-permeability information.
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3.3 Solubility

Compound solubility is important because it affects the bioavailability of com-

pounds in vivo, the behavior of compounds in in vitro assays, and the ease with

which preclinical in vivo studies can be run. Solubility assays that measure either
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kinetic or thermodynamic solubility are generally employed in drug discovery [63].

Kinetic solubility assays have been developed to increase compound throughput,

and are thus often used during hit triage and early in chemical series progression.

Thermodynamic solubility assays are generally more resource-intensive and

are usually employed as compounds move closer to being candidates for drug

development.

Kinetic solubility assays generally utilize DMSO-stock solutions of test com-

pounds and measure the extent to which compound comes out of solution upon

dilution with an aqueous solution. Assay times can be short (seconds to minutes),

with detection by light scattering or by physical separation of precipitate and

quantization of remaining solute, thus enabling higher throughput screening. Ther-

modynamic solubility assays generally start with solid compound sample (ideally

crystalline) and measure solute concentration after a time period of hours to days.

Various studies have examined the correlation between kinetic and thermodynamic

solubility measurements, without consistent conclusions [63]. The correlation be-

tween measurements may vary by chemical series or by physicochemical property

class. A general concern about kinetic solubility assays is that they will overesti-

mate thermodynamic compound solubility due to the presence of small amounts of

DMSO or supersaturation of the test solution. Recent research has been directed

toward the development of high throughput assays that more closely mimic ther-

modynamic solubility measurements [63], for example by evaporation of organic

solvent from the test sample before solubility analysis.

At the hit triage stage, it is most common to be able to characterize sets of

compounds in a kinetic solubility assay. In the assessment and utilization of these

data, the potential disconnects between kinetic and thermodynamic solubility must

be considered. Low kinetic solubility for a series of compounds should lead a

project team to be concerned about the behavior of compounds in biological assays

and buffers, as well as the potential for optimizing drug-like properties in that

series. Conversely, while high kinetic solubility is a desirable property, chemists

should still remain cognizant of the need to assess thermodynamic solubility as

compounds are further optimized.

The solubility properties of a compound are determined by the fundamental

interactions of the compound in the solid state and by its interactions with aqueous

solution [64]. Chemical properties that can be manipulated to impact solubility

include ionization state, lipophilicity, hydrogen bonding capacity, and the three-

dimensional shape of compounds.

4 Experimental Data: Safety

Just as there is a significant challenge to understand the relationship between

expected potency and expected PK parameters in order to define the probability of

identifying a low dose compound, there is a similar interplay between potency and

safety endpoints to identify nontoxic compounds. Toxicity represents a significant
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challenge in the development of compounds, accounting for as much as 30% of

early attrition in development [65]. The cost associated with this attrition is

substantial, and has caused pharmaceutical companies to attempt to solve these

problems at earlier stages of the discovery process. Thus, hit-triage teams are now

challenged with the problem of attempting to extrapolate early (and sometimes

incomplete) data on sub-optimal compounds, to identify reasonably high probability

areas on which to focus. As with other properties, experimental data and judgment

are key to solving this problem. In some cases, that data and judgment can be

augmented by predictions from computational models. In the subsections that

follow some of the most significant safety assays are highlighted, and their con-

tributions to decision-making are discussed.

4.1 hERG

In assessing the safety risk of a given molecule (or series) a key question to ask is

how likely is this analog to encounter interaction with ion channels. In particular,

a key cardiac ion channel: the human ether-a-go-go related gene (hERG) can

present a serious safety consideration for teams assessing the likelihood of finding

compounds that are safe as pharmaceutical agents [66]. Interaction with this ion

channel can cause prolongation of the QT interval and potentially lead to the

development of severe cardiac arrhythmia known as ‘‘torsades des pointes’’ [67].

Since this condition can cause sudden death, it has produced a massive industry-

wide effort to understand and avoid the specific molecular interactions involved.

A number of approaches have been undertaken to unravel the specifics of the

hERG interaction of pharmacologically relevant compounds. While screening for

hERG activity itself is possible, the industry standard assay is a patch clamp

approach to measure functional activity [68, 69]. This assay does not support

high throughput screening of large collections of compounds. While there have

been reports of higher throughput [70], assays of this type are still more ‘‘medium

throughput’’ and would not allow the efficient measurement of potential hERG

liability of a collection of thousands of compounds. In order to circumvent this

limitation, groups have developed radiolabeled competitive binding assays which

give an indirect view of potential hERG channel interaction and thus cardiac risk

[71]. More recently, fluorescent dofetilide analogs have been reported that allow a

very high throughput fluorescence polarization binding assay [72]. This type of

assay could dramatically reduce the reliance on radiolabeled substrate, and have

benefits for reduced radioactive waste disposal and lower overall environmental

impact.

Attempts to build predictive models based on common pharmacophoric elements

have had somemodest success. In themost general sense, a basic nitrogen atomwhich

is substituted by aromatic or otherwise hydrophobic groups is a clearly problematic

motif [73, 74]. However, there are many compounds which interact with hERGwhich

do not contain these features, and newer pharmacophore models have been proposed
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to account for these compounds as well [75]. To complement pharmacophore

models, descriptor-based computational models have also been published and used

to make progress, generally within defined series [76, 77]. Many efforts have also

examined the potential correlations with physical properties of the compounds, and

high lipophilicity is strongly correlated with risk of hERG activity [78].

From a hit-triage perspective, this presents a complicated dilemma. For any

given series, there may be a structure–activity relationship, or physical chemical

property information which can lead a team away from an hERG problem. However,

it is rarely the case that a wealth of that information exists when a team must decide

on a potential series for follow-up. More commonly, a team may have hERG

binding data (or a surrogate such as dofetilide assay data) on a small number of

compounds (or just one compound). Those data, then, must be evaluated in context

with the rest of the compounds’ properties, in order to make a reasonable assess-

ment of the impact of the hERG activity. A final complexity involves the relation-

ship between binding affinity for the hERG channel, and binding affinity for the

target of interest. The therapeutic window that is relevant is a difficult question to

assess when dealing with incomplete data sets and early data for a series that is not

yet optimized in either direction: for potency, or away from toxicity endpoints such

as hERG. Somehow, assessment of the relative likelihood of this type of optimiza-

tion is the critical piece of information to consider for each series that presents itself

at the hit triage stage. This is always case dependent. If series A, for example, shows

significant hERG liability for all tested compounds, irrespective of chemical struc-

ture changes, physical property changes, or potency variations, then it could

confidently be deprioritized. A different series, B for instance, might possess

significant hERG liability, but chemistry follow up might be more attractive if
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that liability disappears at a lower logP range, or in the absence of a specific

structural feature that is not required for potency.

Figure 9 provides an example. Two different series (A and B) are plotted. These

series each have unique structural features, and these result in differential behavior

in a high-throughput dofetilide screen. While series A contains three compounds

that have some significant inhibition of 45–60%, those only occur at a logD of 4 or

greater. Series B (open circles) does contain a few scattered compounds that have

very little inhibition, but those only occur at relatively low logD. The vast majority

of the compounds in series B have significant dofetilide inhibition across a large

range of logD values. This indicates a much more severe dofetilide problem in

series B, which cannot be solved by simple lipophilicity modulation. These data can

help to inform a choice between the two series in hit-triage.

4.2 Genetic Toxicity

While the precise mechanisms of toxicity are not always well understood, the risks

associated with the introduction of a xenobiotic into a living organism can be

substantial. Among the most serious of these interactions are those that result in

genetic damage which can ultimately lead to carcinogenesis. While cancer can arise

from many specific mechanisms, compounds can be considered genotoxic carcino-

gens if they interact directly with DNA, or with any of the processes that replicate

and repair DNA. The entire pharmaceutical industry has spent significant time and

effort on the problem of reducing the incidence of genetic toxicity in the nomination

of compounds for clinical development.

Because of the obvious need to avoid the possibility of inducing cancers in

patients or healthy volunteers, regulatory agencies require that there be evidence

that new clinical test compounds are safe and unlikely to cause genetic damage.

Currently, these requirements include a safe result in a bacterial gene mutation

(Ames) assay, and an assay for chromosomal damage in a eukaryotic (mammalian)

cell. Prior to entering Phase 2 clinical development, tests for chromosome damage

in rodent bone marrow are required. Most often, all of these are conducted prior to

beginning Phase 1 trials as a way to lower potential risks to volunteers, and as a way

to lower costs in the event of a positive finding of toxicity.

The Ames test involves the reversion from a his� to his+ phenotype in any one of

multiple bacterial strains (usually five strains are tested simultaneously). If the

addition of test compound to a his� strain of bacteria allows them to grow on

histidine deficient media, the obvious conclusion is compound-induced mutagenesis

and a high potential hazard for the compound being carcinogenic. This test can also

be conducted in the presence or absence of metabolic activation, in order to provide

more information on potential risks (i.e., the parent compound may not be mutagen-

ic, but the primary metabolite may present a safety risk). In practice, a positive Ames

test almost always leads to discontinuing work on a compound of interest, and so

these data are always collected prior to nomination of a compound for development.
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In conjunction with Ames, there are other in vitro tests that are important

predictors of potential genetic damage. The most common of these is the in vitro

micronucleus assay. This assay gives a readout on compound induced chromosomal

damage by studying the formation of micronuclei, chromosomal material that is not

incorporated into the nucleus during cell division. This involves a manual assess-

ment of cells that have been exposed to test compounds (both with and without

metabolic activation, as in the Ames test). With the proper staining techniques,

micronuclei can be identified, counted, and characterized as whole or fragmented

parts of DNA. Due to the nature of the analysis involved, this is a low throughput

assay, and it requires a relatively large amount of test compound (�30 mg).

The difficulty in understanding the scope and relevance of genetic toxicity in the

hit triage process is the same as the difficulty in understanding other parameters:

researchers are often asked to make a judgment about the relevance and significance

of a risk that may be identified in an early compound, or perhaps in a structurally

related analog. Since these studies require longer times and larger amounts of

compounds, they may be difficult to do on multiple analogs, and impossible to do

in a high throughput fashion to provide large amounts of data on a series. Thus, it

is difficult to judge how prevalent these effects might be. Practically speaking, there

are often insufficient data to judge accurately the scope of the problem.

Several solutions to increase the quantity of available data have been published

recently, including a microplate Ames assay (Vitotox) that is very fast (a single

afternoon), requires less than 1 mg quantities of compounds, and detects genetic

damage using a light emission output assay. This can be run in 96-well format, and

the results in one study were �94% concordant with the traditional Ames test [79].

A similar approach to the micronucleus assay has resulted in the yeast DEL screen,

an assay which can detect DNA deletions in Saccharomyces cerevisiae [80]. While

this approach has reasonable concordance with the in vitro micronucleus assay

(�70–80%), there are potential issues with differential compound permeability in

the yeast cell wall relative to mammalian cell membranes. Another approach

involves automation of the scoring of the traditional micronucleus assay, including

a recent report using flow cytometry [81].

Also applicable is the development of in silico models to flag potential com-

pounds (or series) as risks for genetic toxicity. Like any model, these would be far

cheaper, faster, and have no physical sample requirements. The development of

these models has likely been slowed by the lack of freely available toxicology data;

however, certain models are applicable and widely used (DEREK for Windows,

HazardExpert and ToxBox) [82] and new models are frequently discussed in the

literature [83–89]. These models should continue to improve in conjunction with

the increased data available from the improved throughput in modified genotoxicity

assays. As with any other models, their use as early screens (to indicate potential

risks) can help focus limited resources, and potentially help shorten timelines, by

upfront identification of problematic compounds. These early indications can be

followed by more significant investment in Ames or micronucleus screening, which

can help to put the extent of the problem in perspective.
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Finally, the decision of whether to proceed with medicinal chemistry optimiza-

tion, then, may be based on several strategies. In the first, an attempt is made to

avoid a risk completely. This is a possibility when options exist (i.e., pick between

two series for the one with the best profile). The other approach is an attempt to

mitigate a risk (i.e., decide to work on a series with a potential issue). This approach

can be viable when other options are unavailable or in some cases when the severity

of the disease warrants the risk (such as cancer). This is always done with the

understanding that more effort will be required to monitor continually safety end-

points than in a traditional program. As in any hit-triage decision, the specific

genotoxicity data will need to be weighed against everything that is known about a

particular compound (or series), and an overall assessment of the profile will need

to occur. The severity of the outcome with this particular endpoint, however, means

that for most practical purposes (and non-life threatening indications), it would be

rare to work on series that had problems when any other options exist.

4.3 Reactive Metabolite Formation, Mechanism-Based CYP
Inhibition, and Relationship to Toxicity

Another component of toxicity of a given compound or series is the ability to cause

adverse drug reactions. There has been a significant accumulation of evidence over

many decades which provides a clear framework for understanding certain struc-

tural liabilities in compounds [90]. While the purpose of the CYP enzymes is to

modify xenobiotics to allow for clearance to occur, in some specific cases this

metabolism can lead to reactive (electrophilic) species which can then go on to

react with biomolecules. These reactions can be harmless, or can lead to a variety of

increasingly severe outcomes: rash, mild to severe autoimmune responses, hepato-

toxicity, genotoxicity, and even death. There is a compelling accumulation of

evidence suggesting a causative role of the reactive metabolite formation in adverse

drug reactions; however, most of this evidence remains circumstantial. Recent

reviews have covered the relationship between bioactivation of compounds and

possible links with toxicity [91–94].

One specific type of reaction which can occur with these reactive intermediates

is reversible or irreversible inhibition of CYP enzymes. When this occurs irrevers-

ibly, through covalent modification, this is termed ‘‘mechanism-based inactivation’’

(MBI). An excellent review of this phenomenon has recently been published [95].

Beyond hapten formation and autoimmune response, there is an additional risk

from these events. The slow turnover of the inactivated CYP can lead to drug–drug

interactions, potentially exposing patients to unanticipated high levels of the drug in

question, or other drug substances that they may be taking, leading to possible

overdose and associated toxicity. Detailed mechanistic studies can help describe the

level of risk associated with these drug–drug interactions, but those are very

unlikely to be undertaken in an early-stage of drug discovery. As a result, most

companies have compiled both in-house and literature data on specific structural
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features that are likely to predispose a compound to this problem. Many examples

are described by Kalgutkar et al. [95], and have also been described explicitly in an

excellent review by Blagg [96].

In order to provide some experimental context to the possibility of reactive

metabolite formation, assays have been developed that detect the formation of

glutathione adducts post-incubation with human liver microsomes [97]. Of course,

many caveats exist with such assays, such as detection sensitivity, quantization,

relevance to in vivo situations when other clearance pathways are competitive,

trapping with non-glutathione biomolecules, and overall relevance to adverse

events and toxicity. However, this type of early screening can function as a reason-

ably efficient means of identifying a risk which can allow some analysis of options

at the hit-triage stage. The development of increasingly higher-throughput versions

of these screens will allow even more compounds to be analyzed [98], and provide

bigger data sets to build computational models.

In terms of decision-making in hit triage, the options are quite similar to other

toxicological endpoints. The full extent or relevance of an early finding to the

profile of the eventual clinical candidate molecule might be very difficult to predict.

As with other toxicity, the specific indication is a relevant consideration. A theoret-

ical risk of toxicity is less of a concern in a life-saving therapy for cancer than in a

chronic treatment for asthma. However, as an operational consideration, if there is a

choice between multiple series where one appears less likely to form reactive

metabolites, it would be reasonable to minimize risk. An alternative approach

would be to try to correlate the reactive metabolite formation to a specific structural

feature, using the large amount of literature available to make these connections.

When these problematic structural features are required for pharmacological activ-

ity, weighing potency and possible toxicity is more difficult. Relying on in vitro and

in vivo screening can provide a path forward, but this screening approach always

adds complexity, cost, and delay in later stage optimization efforts. Even worse, the

ultimate outcome of these efforts, and their relevance to patients will not necessarily

be known for a given project until late in the development process with a single

compound, perhaps as late as Phase 3 trials, when an enormous investment in time

and money has already been made.

4.4 Broad Ligand Profile Screening

A concern with any molecule is that it selectively interacts with the target (or

targets) of interest. It is quite common for projects to set up counterscreens in order

to profile molecules vs related targets (isoforms that might have undesirable

biological activity, other proteins from the same family with high sequence homol-

ogy, etc.). However, one general concern is the behavior of a given compound or

series when profiled against large panels of enzymes and receptors, each of which

may have its own pharmacological relevance. In the ideal situation, teams would
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identify compounds that act at single targets (or a well defined small group of

targets) and have no significant off-target activity; in reality, this is rarely the case.

For many years it has been routine practice to gather data on potential clinical

candidates, and to try to understand relevant off-target pharmacology. This has

resulted in a significant accumulation of internal data at pharmaceutical and biotech

companies. One way to accomplish this is to determine percent inhibition or

binding at a single high concentration (1 or 10mM). This can be followed, of

course, with full dose-response curves in assays where there is significant interac-

tion. There are multiple vendors that provide screening in various panels, allowing

teams to chose panels with targets of interest (kinases, receptors, etc.), and perhaps

to collect data from multiple sources.

As with any other potential toxicity endpoint, there is a push to collect relevant

data earlier in the discovery process, and in fact this can occasionally become part

of the hit triage process. In practice, the expense of collecting these data for a

significant number of compounds often prevents broad ligand profiling from being

used as a screening tool. However, there have been reports of using broad ligand

screening as a tool in moving from a hit to a lead and making decisions in the hit

triage stage. Poulain et al. describe their findings that compounds that are structur-

ally similar to promiscuous inhibitors have a higher likelihood of being promiscu-

ous themselves [99]. This finding is described generally as insight into the structure

profile relationships, and the concept has been extended to describe a compound’s

specific biological spectrum [100]. Fliri et al. argue that a compound’s specific

pattern of interaction with biological targets of interest generates a profile that can

quantify similarities and differences between molecules, and provide a rational

basis for quantifying the effects of structural changes between analogs. Regardless

of how the data are used and interpreted in specific instances, the ability to assess

potential interactions earlier in the drug discovery process should improve decision

making and allow teams to focus on potential risks at earlier time points.

4.5 Computational Models

In a hit triage decision making process that blends the use of experimental data with

expected general property trends and principles, there are situations where it is not

feasible to obtain sufficient data to identify experimentally property trends for

ADME or safety endpoints (either due to a small number of hit compounds in a

series, or due to limited experimental capacity). Computational models for these

parameters may provide some useful information when integrated with other

known information [101].

There has been extensive work on computational modeling of ADME and safety

properties in recent years, but the field is still evolving [102, 103]. There are two key

limitations on the use of models for these endpoints. One limitation is technical – the

quality and accuracy of the models for the chemical space of interest [104, 105].

Hit Triage: Medicinal Chemistry Strategies to Improve the Odds of Success in Discovery 169



The other limitation is intellectual – the appropriate interpretation of model pre-

dictions and integration into the decision-making process [106, 107].

On the technical side, many different model building techniques are being

explored and utilized. A fundamental constraint on the application of any model

is the quality and availability of the data that it is built upon. In drug discovery,

where the true data of interest (human in vivo parameters) are difficult to obtain and

scarce, in vitro or preclinical in vivo experimental models are used to generate

larger data sets and to guide decision-making. Most commonly, computational

models are then used to predict these in vitro or preclinical endpoints.

The properties that have received the greatest attention with regard to computa-

tional modeling are solubility, intestinal absorption (passive and active), CYP

metabolism and drug–drug interactions, brain penetration, and hERG binding,

although almost all ADME and safety properties that have adequate data sets

have been modeled [108-116].

Key challenges in utilizing model predictions include gauging the likelihood that

the current chemical matter of interest falls within chemical space that is reasonably

predicted by the model and translating model predictions into decisions on what

types of compounds to pursue next. For gauging the relevance of model predictions

to current chemical matter, the use of selected experimental data points can be of

significant value. In utilizing model predictions, one must consider the probabilistic

nature of the models, and exercise care in basing decisions on predictions for a

small number of compounds.

At the hit triage stage, where the task is an assessment of the likely properties of

a series of compounds (either those already identified, or a virtual library of

compounds that might be synthesized), assessment of the predictions over a larger

number of compounds of more varied structure may give greater confidence than

predicting for a single compound. Models which can be analyzed to identify

correlations between physical properties or specific structural features can also be

utilized as an input for hypothesis-generation for the synthesis of the next iteration

of compounds.

5 Summary: Decision Making

When collected across a set of compounds from a chemical series, data on the

properties described above can provide a composite picture of those compounds. As

Fig. 10 illustrates, this data package can be daunting for any one compound;

a potentially incomplete set of data on multiple compounds can be even more

challenging to utilize. However, it is in building this network of information and

then identifying key gaps in data and knowledge that teams effectively accomplish

hit-triage. This composite picture should provide the basis for forming specific

hypotheses for structural changes that can address the shortcomings of a particular

series, and the comparison of property profiles and hypotheses across multiple

chemical series should provide the basis for prioritization. The factors weighing
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into the hit triage prioritization decision are varied but may include the expected

ease with which the issues can be effectively addressed. Teams can also mitigate

risk somewhat by balancing across a project so that chemical series with different

issues are pursued in parallel. At the project level, the probabilities of success for

each approach must be weighed such that a sufficient number of series are pursued

such that the team has confidence that optimization of one will lead to the identifi-

cation of a drug candidate.
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Lead Identification

John W. Ellingboe and Adam M. Gilbert

Abstract High quality leads provide the foundation for the discovery of successful

clinical development candidates, and therefore the identification of leads is an

essential part of drug discovery. Many factors contribute to the quality of a lead,

including biological, physicochemical, ADME, and PK parameters. The identifica-

tion of high quality leads, which are needed for successful lead optimization,

requires the optimization of all of these parameters. Parallel optimization of all

parameters is the most efficient way to achieve the goal of lead identification.

Keywords Hit, Lead, Pharmacokinetics, Physicochemical
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1 Introduction

High quality leads provide the foundation for the discovery of successful clinical

development candidates, and therefore the identification of leads is an essential part

of drug discovery. The process for the identification of leads generally starts with the

screening of a compound collection, either an HTS of a relatively large compound

collection (hundreds of thousands to one million plus compounds) or a more focused

screen of a smaller set of compounds that have been preselected for the target of

interest. Virtual screening methods such as structure-based or pharmacophore-based

searches can complement or replace one of the above approaches. Once hits are

identified from one or more of these screening methods, they need to be thoroughly

characterized in order to confirm activity and identify areas in need of optimization.

Finally, once fully characterized hits are identified, preliminary optimization through

synthetic modification is carried out to generate leads. Parallel optimization of all

properties, including biological, physicochemical, and ADME is the most efficient

approach to the identification of leads. Hit characterization is described in the

previous chapter. The focus of this chapter is on hit optimization and the identifica-

tion of leads. After a general overview of these processes, examples taken from the

literature since 2001 will be used to illustrate specific points. There are also a number

of excellent reviews covering the lead identification process [1–6].

2 Lead Definition

A lead is variously defined in the pharmaceutical industry as a compound derived

from a hit with some degree of in vitro optimization (potency in primary assay,

activity in functional and/or cellular assay), optimization of physical properties

(solubility, permeability), and optimization of in vitro ADME properties (micro-

somal stability, CYP inhibition). Moreover, a lead must have established SAR/SPR

around these parameters such that continued optimization appears possible. A lead

may also have preliminary PK and in vivo animal model data. However, it is the

task of the lead optimization chemist to improve PK and in vivo activity to the

levels needed for identification of a clinical candidate.

3 Establish Lead Profile

At the outset of a lead identification effort, it is imperative to establish specific

criteria for potency, selectivity, ADME properties, etc. to generate a desired lead

profile. This profile serves to guide the lead identification efforts based on the initial

characterization of the hits.
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Criteria for biological properties may be project specific, but ADME property

and physical property criteria are generally invariant. Lead profiles will be

addressed in more detail in the section on parallel optimization.

4 Characterization of Hits

Hits need to be thoroughly characterized to remove compounds that do not interact

with the molecular target in a specific manner, to prioritize the remaining com-

pounds for follow up work, and to provide direction for optimization to leads.

Characterization includes biological profiling, physicochemical and ADME

profiling [7–9], and mechanistic profiling. The profile of the starting compounds

ultimately determines the quality of the leads.

4.1 Biophysical Characterization/Enzymology

While it is important to confirm the activity of hits in the primary assay and also to

collect cellular and/or functional, and ADME data, it is also essential to establish

that the hits interact with the molecular target in a specific and stoichiometric

fashion as functional optimization and establishment of real SAR is impossible

with compounds that show nonspecific binding. It has been shown that one source

of false positives in the screening of enzyme targets is inhibition by colloidal

aggregates, which nonspecifically inhibit the enzyme [10]. Many techniques are

available for demonstrating the specificity of binding of a compound to a molecular

target [11–15].

4.2 Clustering, Series Formation or Identification of Singletons

Once all the data are collected, including potency, selectivity, functional, and

ADME data, and evidence of binding to the molecular target, it is useful to start

trying to define clusters or series of compounds by chemical structure, so that

efforts can be focused in the areas holding most promise. Compounds can be

clustered simply by visual inspection of structures or by using various clustering

algorithms. There are algorithms based on ring scaffold analysis [16], or based on

chemical fingerprints [17, 18]. Clustering may be purely based on chemical struc-

ture, or biological and other data may be introduced to start analyzing SAR. The

goal of clustering the compounds is to identify compound series that demonstrate a

robust SAR, in which compounds possess a range of potencies that can be explained

by the variations in structural features. A cluster of hits may not show a distinct
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SAR, but this may be because there are insufficient compounds or the compounds

do not possess sufficient structural variation.

Efforts to cluster a set of compounds will usually also result in a number of

singletons. While a lack of compounds with related structures having biological

activity may seem discouraging, if the biological data for a singleton are sufficiently

compelling, it is worth retaining such compounds and trying to build a series

through synthesis.

4.3 Pharmacophore/Binding Model

As all of the data are collected and analyzed it is also important to start considering

a binding model or pharmacophore model to help explain the variation in biological

activity with structure, and to provide a basis for the design of new analogs.

For targets that lack structural information, such as GPCRs or ion channels, a

pharmacophore model or multiple pharmacophore models for different series of

compounds can explain SAR and guide the synthesis of new analogs. Alternatively,

homology models based on bacteriorhodopsin have been used to explain the

interactions of small molecules with GPCRs.

When an X-ray crystal structure for the protein molecular target has been solved,

it is possible to model the interactions of the small molecule ligand with the target.

Better yet are co-crystal structures of the ligand with the molecular target. Howev-

er, because of the flexibility of proteins and the changes in three dimensional

protein structure that can be induced by the binding of a ligand [19], it is ideal to

have co-crystal structures for representative compounds from each series being

followed up for lead identification.

4.4 Patentability Assessment

If the goal in a lead identification effort is to provide a patentable series of

compounds, either at the outset of lead optimization or later during optimization,

then an initial novelty assessment is appropriate once hit series are formed. Initial

literature searches using a tool such as SciFinder can give a good indication of how

crowded a structural class is in terms of prior art. Further refined searches of patent

databases such as Marpat provide information on patents or patent applications that

might generically cover a hit series. These searches may be delayed until some

synthetic work has been completed and data generated so that a narrower, more

focused search can be done. While patentability is an important consideration for

lead identification efforts in pharmaceutical companies, it must be balanced with

the biological and pharmaceutical data. It is possible that significant structural

changes will be made during the lead optimization stage that will introduce novelty

into a chemical series.
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5 Supplementing Characterized Hits

In the process of clustering compounds to try to form series, and examining all of

the data for the compound in a cluster, it may become apparent that there is an

insufficient number of compounds, or enough range in the data to reach a decision

as to whether a cluster of compounds is a series with demonstrated SAR. This

problem can be addressed through searching of databases for additional related

compounds or limited synthesis to provide the critical compounds.

5.1 Substructure and Similarity Searching

Substructure and similarity searching of compound collections not screened in the

HTS campaign, including additional compounds in a corporate collection or

commercially available collections, can provide additional compounds for testing.

These compounds may help strengthen a cluster by generating additional data

points and a more robust SAR. Similarity searching based on methods such as

topological atom pairs [20] are related to the methods used for clustering.

5.2 Preliminary Array Synthesis

The synthesis of small, focused arrays based on some of the hits may help define a

series if the desired compounds are not available through substructure or similarity

searching. The purpose of this type of array is not to optimize a hit but to help

prioritize a series for further synthetic work. Inclusion of the original hit in the array

is useful for confirmation of activity, particularly when supplies are limited or the

screening sample was of low purity.

6 Parallel Optimization

Just as it is important to characterize hits fully and to collect not only potency data

but also physicochemical and ADME profiling data and evidence of specific

binding to the molecular target, optimization of the hits to yield leads requires a

focus on all of these parameters. It is most efficient – although also more challenging

– to optimize biological, physicochemical, and ADME properties in parallel. If only

biological potency is optimized, then other properties such as MW or lipophilicity

may increase in an unwanted direction. If one then tries to correct MW or lipophi-

licity, then potency may be lost. High throughput assays are now available for

many of the physicochemical and ADME properties detailed below, so most or all

of the compounds synthesized in a lead identification campaign can be fully

characterized.
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As mentioned in Sect. 3, it is important to establish a detailed lead profile at the

beginning of a lead identification effort. Criteria vary in different lead identification

or hit-to-lead groups, but generally include some or all of the following: potency,

functional activity, selectivity, MW, clogP, solubility, permeability, microsomal

stability and/or hepatocyte clearance, and preliminary PK including oral bioavail-

ability. An example of a lead profile for a kinase inhibitor project is illustrated in

Table 1 [21].

Included in this table are criteria related to kinase inhibition, including detailed

analyses of reversibility, detergent effects, and competition with ATP. Also listed

are criteria for selectivity, cellular activity, and the physicochemical and in vitro

ADME profiles. The final two criteria require the lead to be part of a series of

compounds with demonstrated SAR.

A detailed screening pathway starting with a screen to generate hits and culmi-

nating in leads is also important for guiding lead generation efforts. An example is

illustrated in Fig. 1.

Table 1 Example of desired profile for lead

Desired profile

IC50 (mM) <1.0 mM
Reversibility >70%

10 � enzyme (IC50 change) <fivefold

w/wo Triton (IC50 change) <fivefold

Enzyme kinetics (Ki mM) <10.0 mM
IC50(FL) (mM) w/Triton <1.0 mM
Binding to target (NMR, FP, Trp-Fl.) Yes (NMR, FP)

Cell assay 1 (50% of control) <10 mM
Cell assay 2 <10 mM
Selectivity enzyme 1 >10-fold

Selectivity other enzymes As a bonus

MW <450

clogP <4.0

PSA <80

Aqueous solubility (mg mL�1 at pH 7.4) >60

Permeability (10�6 cm s�1 at pH 7.4) >1

CYP 3A4 inhib (at 3 mM) <15

CYP 2D6 inhib (at 3 mM) <15

CYP 2C9 inhib (at 3 mM) <15

Microsome stability (% remaining at 15 min) >80

Preliminary PK Profile Yes

hERG block (at 10 mM) <20%

Definable series Yes

Definable SAR Yes
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6.1 Biological Properties

Generally, all of the assays used for characterization of hits in terms of potency,

selectivity, function, and or cellular activity will continue to be used to characterize

new compounds synthesized to identify leads. However, additional assays will

normally be added to characterize compound selectivity more fully, to provide

additional evidence that compounds are acting on the desired pathway and by the

desired mechanism.

6.1.1 Potency

The primary assay used to generate hits will continue to be useful for characterizing

the potency of new compounds against the molecular target. In some cases,

however, the format used by an HTS group may be changed for a benchtop assay

where a greater range of detection methods may be accommodated. Also, in some

cases, while an HTS campaign may have used one type of assay, such as binding, to

identify hits, during the lead identification phase a different assay type, such as a

cellular assay, may become the primary assay. During the lead identification stage,

achieving an increase in potency of at least one order of magnitude builds confi-

dence in a series and suggests that it can be fully optimized during the lead

optimization stage. For example, if a hit series has a potency range of 1–5 mM,

then the synthesis of compounds with a potency in the 100–500 nM range would

meet the potency criterion.

6.1.2 Selectivity

Starting with hits that may not be selective vs a nearest neighbor or vs another target

associated with some liability, at the lead identification stage it is important to start

focusing on introducing selectivity. The selectivity criterion will be project depen-

dent, but a minimum of 10-fold selectivity is a good target for leads assuming this

selectivity can be rationalized and there is a potential for further improving selectivity.

It is expected that selectivity will be fully achieved during the lead optimization stage.

Additional selectivity assays for a wider range of molecular targets will also be

introduced. These could include, for example, a panel of kinases representing the

various classes of kinases or a panel of GPCRs.

6.1.3 Function

For programs where the primary assay is a binding type assay, it is important to

continue to evaluate the functional response of newly synthesized compounds.

Changes in functional potency should correlate with changes in binding potency.

Other parameters that may need to be tracked are efficacy and agonism vs antagonism.
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6.1.4 Cellular Activity

An assay for cellular activity of newly synthesized compounds is important because it

can be used to demonstrate functional activity in a more complex system that is one

step closer to an in vivo model. Again, changes in cellular activity should correlate

with changes in potency in a binding or inhibition assay, although other physicoche-

mical parameters such as solubility and permeability also need to be considered.

Cellular assays can also confirm the mechanism of action of a compound on a path-

way. For example, a phosphoblotting assay can be used to show that inhibition of a

kinase blocks the phosphorylation of the kinase substrate specifically. Demonstration

of activity in a cellular assay can be used as one criterion for selecting compounds to

test in vivo models in the lead optimization stage, so it is important to have comp-

ounds fully characterized in this type of assay during the lead identification stage.

6.2 Physical Properties

During the characterization process, hits are typically tested for kinetic solubility

and permeability in a model of passive diffusion such as PAMPA [22]. As new

compounds are synthesized, additional parameters also need to be considered, such

as pKa, chemical and plasma stability, and protein binding. Calculated properties

such as MW, clogP, and PSA should also be tracked.

6.2.1 Solubility

All newly synthesized compounds should be tested for solubility to ensure that a

series is maintaining good solubility properties, or in the case of hits with poor

solubility, that there is an improvement in solubility. Good compound solubility is

essential for data from all other assays to be meaningful, and it is important to

maintain or introduce good solubility from the beginning of the drug discovery

effort to ensure ultimately that clinical candidates have the good solubility that is

important for developability [23]. In addition to routine kinetic solubility assays in a

standard buffer, other custom assays may be needed. For example, if biological data

do not follow a trend that can be rationalized, or there is a lack of correlation

between binding and cellular assay results, it is worth checking the solubility of

compounds in the various assay media used for a program. In some cases, com-

pounds may exhibit quite different solubilities in different media.

When compounds are selected for preliminary PK studies, the identification of an

appropriate dosing vehicle for iv studies requires solubility studies in various vehicles.

Also, the study of thermodynamic solubility is useful as this more closely reflects

the environment experienced by compounds on oral dosing. Higher throughput

thermodynamic solubility assays have been introduced recently [23] so it will be

possible to introduce this type of assay earlier in the discovery process.
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6.2.2 pKa

The ionizability of compounds affects other parameters such as solubility, perme-

ability, and ultimately oral bioavailability, so it may be important to track changes

in the pKa of new compounds. Calculated pKa values can be used when planning

the synthesis of new compounds, but it is also a good idea to confirm these values

experimentally. An example where this strategy can be useful is in the search for

bioisosteric replacements for a carboxylic acid group.

6.2.3 Stability (Chemical, Plasma)

The confirmation of the chemical and plasma stability of new compounds is

important to ensure that the synthesized compounds are actually responsible for

the observed biological activity (rather than a degradation product), and to help

ensure good bioavailability. Selected compounds can be tested for chemical stability

in buffers across a pH range of 1.0–9.0, and in simulated gastric and intestinal

fluids. Also, assaying compounds for stability in plasma gives one an initial

indication of how a compound may behave in an in vivo system. High throughput

assays for plasma stability are available [24].

6.2.4 Protein Binding

The characterization of the protein binding of lead compounds is important because

of the effect that high levels of protein binding can have on PK and in vivo model

data, and ultimately on clinical efficacy. Only unbound drug is available to interact

with the molecular target. However, a highly bound compound with a fast off rate

may still exhibit good in vivo profiles. Binding to HSA and AGP is measured with

equilibrium dialysis assays, or other higher throughput assays such as affinity

chromatography with immobilized HSA [25]. A preliminary indication of protein

binding can also be identified by running an in vitro biological assay in the absence

and presence of protein such as BSA.

6.2.5 Calculated Properties

In addition to the in vitro assays described above, physical properties should be

calculated for all new compounds designed for synthesis. It is necessary to keep in

mind the target values for leads, such asMW< 450, clogP< 4.0, and PSA< 80. It has

been demonstrated that properties such asMWand clogP increase during optimization

[26], so that a lead needs to have lower values for these properties than a drug

candidate. Additional factors that make up the rule-of-five [27] as well as the

number of rotatable bonds as described by Veber [28] can also be tracked. While
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these properties should be kept under the upper limits because of the correlation

with good PK properties [29], they may also be useful as variables when conducting

multivariate data analyses of SAR. After compounds are synthesized and tested,

LE, defined as the binding energy of the ligand per atom [30, 31], can also be

tracked for each series.

6.3 In Vitro ADME

Drug candidates that are intended for oral dosing need to have good ADME

properties so that they can be dosed once or twice daily. The drug should be well

absorbed, survive first pass metabolism, and have sufficiently low clearance. At the

lead identification stage, the primary in vitro ADME assays employed are those that

assess permeability and metabolic stability. There are a variety of assays available

for both parameters, as described in the previous chapter.

6.3.1 Metabolite Identification

If low metabolic stability is identified in a series, then it is useful to carry out

metabolite identification in order to pinpoint the site of metabolism and to develop a

synthetic strategy to address the stability. A general strategy for identifying the

structure of metabolites is to incubate the compound of interest with liver micro-

somes to generate the metabolite and carry out a preliminary analysis using LC/MS

techniques [32]. The LC/MS results may be sufficient to determine an exact

structure, but in some cases additional analysis using NMR or LC/NMR may be

required to establish an exact structure. If necessary, synthesis can be used to

confirm a structural assignment, and to provide material for testing to determine

if it is an active metabolite.

With the structure of a metabolite in hand, synthetic strategies to block the

metabolism can be designed. Various synthetic modifications have been shown to

block oxidation, dealkylation, glucuronidation, etc. [33]. Solving metabolic stability

issues can be one of the tougher challenges early in the drug discovery process, but

it is important to try to solve them early to help ensure that high quality drug

candidates are delivered.

6.4 Toxicology

While little in vivo testing may take place in the lead identification stage, there are

some in vitro approaches for looking at specific aspects of toxicology, such as

inhibition of CYP450 enzymes which could lead to drug–drug interactions in

humans, as described in the previous chapter, and hERG inhibition, which could

lead to cardiac arrhythmias. At the lead identification stage, it is best to look at

trends within series for these liabilities, and to try to eliminate common structural
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features within series or overall properties of series to correct the issues. Other types

of assays such as incubation of compounds with hepatocytes have been used to look

at to toxicity towards a specific organ type.

6.4.1 hERG Inhibition

Inhibition of potassium current through the IKr channel encoded by hERG can cause

long QT syndrome, the prolongation of the QT signal in an electrocardiogram, and

this can in turn result in potentially fatal torsade de pointes cardiac arrhythmias.

A number of marketed drugs were withdrawn when it was found that they caused

sudden cardiac death, and it is now essential that all drug candidates be free of

hERG inhibition at the concentration likely to be found on dosing. The standard

assay for assessing hERG inhibition is a patch-clamp. It is important at the lead

generation stage to look for trends in series, and to try to eliminate structural

features that my be responsible for hERG inhibition in a series [34]. There are a

number of in silico approaches that can be used to try to predict hERG liabilities

[35, 36], but in vitro assays are needed for confirmation.

7 Pharmacokinetics

During the lead identification process, PK data are used to varying degrees,

depending on the availability of PK assay support for early drug discovery. Ideally,

for a given series, it would be best to have PK data for several iterations of

compounds, with the goal of improving PK properties if the initial hit has poor

properties. A complete data set including both iv and po dosing is optimal when the

target profile is oral dosing.

It is also important to correlate PK data with in vitro ADME assay data for each

series to validate the predictive potential for the in vitro assays within a series. Once

this is done, one can rely on the in vitro assays with more confidence.

With more limited PK support, an initial PK profile for a lead compound may be

all that is available. This profile identifies issues that need to be solved during lead

optimization.

There are a number of solutions that have been proposed to address the limita-

tions on throughput in PK assays, including cassette dosing [37], where typically

five compounds are dosed in a mixture, pooling of plasma samples from multiple

animals receiving a specific dose, or the cassette-accelerated rapid rat screen where

the processing of samples is streamlined [38].

In addition to the data generated from plasma samples in a standard PK study, for

targets that are containedwithin the brain, it is also important to determine brain levels

of compound, so that brain/plasma ratios can be determined. Again, these data should

be correlated with in vitro assays and calculated properties such as BBB PAMPA [39]
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and PSA for a given series. For example, while the default cutoff PSA value for

good BBB penetration is 80, for a specific series of compounds it may be lower.

8 Tools for Data Analysis

As discussed above, it is important to try to optimize biological, physicochemical,

and ADME properties in parallel. However, the data from all of these assays for the

numerous compounds prepared by parallel synthesis make the interpretation of

results challenging. The use of tools such as MVA helps in the effective utilization

of all data in the optimization process.

8.1 Multivariate Data Analysis

MVA is a very useful tool for classifying sets of compounds and identifying the

primary latent variables that summarize the data through PCA, and for identifying

correlations between variables describing the properties of compounds and the

biological effects of these compounds through PLS [40].

PCA is a projection method that allows one to take a multivariate data matrix and

represent it in low-dimension space. It then becomes more straightforward to identify

dominant patterns and major trends in the data. The relationships between com-

pounds and data, and among the data variables, are uncovered. In PCA we take linear

combinations of observations (compounds) and variables. The data matrix is sum-

marized row-wise as scores (ta) and column-wise as loadings (pa). The directionality
in a scores plot corresponds to that of a loadings plot, so the dominant variables

associated with a compound can be identified [41]. Through these techniques (PCA

and PLS), correlations between molecular descriptors, measured physical proper-

ties, ADME assay results, and biological assay results can be uncovered in large

data sets, which could not readily be found through visual inspection of data tables.

This type of analysis can provide guidance for future iterations of synthesis.

8.2 Non-Linear Mapping

In addition to looking for data trends in physical property space using PCA and

PLS, trends in chemical structure space can be delineated by viewing nonlinear

maps (NLM) of two-dimensional structure descriptors such as Unity Fingerprints or

topological atom pairs using tools such as BenchwareTM DataMiner [42]. Two-

dimensional NLM plots provide an overview of chemical structure space and

biological activity/molecular properties are mapped in a 3rd and/or 4th dimension

to look for trends in the dataset.
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9 Tools for the Design of Synthetic Targets

Multiple approaches are available to aid in the design of new analogs to optimize

hits with the goal of identifying leads. Depending on the target type and the

availability of structural information, either structure-based or pharmacophore-

based design of new analogs may be appropriate. In the initial phases of lead

identification, the synthesis of several arrays of compounds based on each hit can

help to determine quickly whether the hit is a singleton or whether a series can be

formed around the hit. These arrays can also provide some initial SAR and guidance

on how to focus future iterations.

9.1 Structure-Based, Structure-Guided Array Synthesis

For soluble protein targets such as enzymes or protein–protein interactions the

availability of structural information can greatly aid the design of new analogs. In

the lead identification stage, while potency improvement is one goal that can be

addressed with structural information, the larger challenges are often selectivity,

physical properties, and ADME issues. With a co-crystal structure of a hit bound to

the molecular target, it is possible to identify regions of the hit that could accom-

modate, for example, a functional group that would improve solubility without

interfering with the interactions that contribute to compound binding affinity for the

target. Similarly, areas where metabolism-blocking groups can be introduced

without affecting binding can be identified. Finally, with structures of selectivity

targets in hand, it is possible to start introducing structural changes that may

improve selectivity.

It is particularly effective to pair structure-based design with array synthesis.

A relatively larger virtual library of possible analogs can be docked into the

structure and the analogs prioritized for synthesis or eliminated if scored low.

If crystal structures of the molecular target and co-crystal structures of bound

ligands are not available, the use of homology models may help with analog design.

Homology models based on related enzymes may help with design, but may also

need to be refined further based on assay data of new analogs. Homology models

based on bacteriorhodopsin have been used to rationalize the SAR of compounds

synthesized for GPCR targets.

9.2 Pharmacophore Guided Array Synthesis

The design of new analogs based on pharmacophore models is complementary to

structure-based design. This method may be used even where structural information

is available, but is also of use for targets where structural information is not
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available, such as GPCRs. A pharmacophore model can provide guidance about

which functional groups in a structure are essential for binding, and which areas

may be open for greater variation to optimize physical properties, etc.

9.3 Design of Experiments Applied to Array Design

When optimizing a hit with more than one region that can be varied, it is important

not to vary only one group at a time while holding the others constant. The strategy

of COST does not necessarily lead to the optimal compound. Systems influenced

by more than one factor are poorly studied by the COST strategy [43]. To avoid

missing an optimal compound without having to synthesize every possible combi-

nation of substituents (which could require the synthesis of many thousands of

compounds), the use of a Design of Experiments (DoE) approach is both efficient

and can lead one towards the optimal combination of substituents. Using DoE, one

avoids synthesizing redundant compounds and obtains the maximum amount of

SAR information through the synthesis of a relatively small number of representa-

tive compounds. Also, a designed set of compounds can result in a better PLS

model. While DoE was initially used primarily for optimization in process research,

more recently it has been demonstrated to have a variety of applications in drug

discovery [44], including the design of arrays [45].

9.4 Scaffold Hopping

For various reasons, including the potential for patentability, chemical tractability,

or structural features that contribute to physicochemical or ADME issues, it may be

desirable to identify a new scaffold for lead identification in a program. Retaining

appendages that may be key for interaction with the molecular target, the core or

scaffold in a hit can be replaced with a new scaffold that yields compounds with

improved properties [46]. New scaffolds can be identified computationally through

similarity searches of compound collections, or through de novo design, using

structural information if available.

10 Establishing an Intellectual Property Position

Finally, in addition to addressing all the scientific issues outlined above during the

lead identification process, the design of analogs with features that ensure the

potential patentability of a series is an important consideration for lead identification

work done in a commercial enterprise. The timing of the filing of patent applications

will depend on the overall patenting strategy of the company where the work is carried

out. If patents are filed at the lead stage, then a detailed patentability assessment is
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required. If patent filing takes place later in the lead optimization stage, it is still

important to consider the potential for patenting a series, including analogs that are

anticipated to be made in the future, when recommending a lead for optimization.

11 Illustrations with Examples

The following examples taken from the literature since 2001 are intended to illustrate

the parallel optimization of some or all of the parameters discussed above, and to

illustrate how some of the tools described above can aid in lead generation. It is not

meant to be an exhaustive survey of the literature. The specific criteria used to define a

successful lead identification campaign vary by group, as do the processes used to reach

the lead stage. However, there are also many themes that are common to many of the

examples below. A summary of the examples described below is contained in Table 2.

11.1 Example 1: CCR4 Antagonists

CCR4 is a member of the GPCRCC chemokine family predominantly expressed on T

cells, and is involved in the migration of inflammatory cells. Antagonists have the

potential to treat inflammatory diseases.Wang et al. [47] report on the optimization of

a mMnaphthalene/thiazole hit which has a high iv clearance and a short in vivo half-

life. After optimizing the linker between the naphthalene and the thiazole (NH is

optimal), optimization of the 4-thiazole position to bulky alkyl groups provided

compounds with increased CCR4 potency using a TARC (thymus and activation

regulated chemokine) binding assay. Naphthalene replacements were identified

(N-methyl indole) as well as thiazole replacements (N-methyl pyrazole and pyridine

cores). However the optimal compound maintains the original naphthalene amine-

substituent, the original thiazole core and incorporation of an N, N-bis(cyclohex-
ylmethyl)methyl amine moiety at the 4-thiazole position (Scheme 1). This optimized

compound shows improved potency over the starting hit, improvement of cellular

activity in a CEM cell migration assay, and improved clearance and half life in a

PK study.

11.2 Example 2: cPLA2a Inhibitors

cPLA2a releases arachidonic acid to initiate the production of multiple mediators of

inflammation, such as leukotrienes, prostaglandins, and thromboxanes. Inhibition

of this enzyme has the potential to be useful for treating inflammatory diseases.

McKew et al. [48] report on the optimization of a weakly potent benzhydryl indole

diacid with weak rat whole blood activity measuring the inhibition of thromboxane

B2 production. Incorporation of a 2-indole methyl group to increase potency,
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removal of one of the carboxylic acids as well as elongation of the linker between

the 3-indole and benzoic acid moiety gives compounds that show improved potency

in a cPLA2 GLU micelle assay as well as mM-potency in a rat whole blood assay.

Additional optimization of the linker and extension of the acid moiety away from

the benzene ring gives a sub-mM compound even in the whole blood assay.

Although the optimized compound shows relatively high clearance, oral bioavail-

ability has been improved (Scheme 2).

11.3 Example 3: MCH1 Receptor Antagonists

MCH is a cyclic 19-amino acid peptide that plays a major role in body weight

regulation in rodents. Antagonism of the MCH1 receptor is a potential approach

to the treatment of obesity. Souers et al. [49] report on the optimization of a

2-aminoquinoline HTS hit which initially showed divergent MCH1R binding affinity

and MCH1R FLIPR potency. Optimization of the oxygen CyHCH2-substituent

CCR4 TARC Ki: 1.7 μM
CEM cells IC50: 6.4 μM

CL: 4.2 L/h/kg
t1/2: 0.4 h CCR4 TARC Ki: 0.018 μM

CEM cells IC50: 0.53 μM
CL: 1.1 L/h/kg

t1/2: 3.6 h
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S

N
Me

HN

S

N

N

Scheme 1 CCR4 antagonists

cPLA2 GLU micelle IC50: 160 μM 

rat WB TXB2 IC50: >400 μM 

cPLA2 GLU micelle IC50: 3 μM
rat WB TXB2 IC50: 7 μM

Clp (mL/min/kg): 3.2
% Fpo: 2.6%  

cPLA2 GLU micelle IC50: 0.5 μM
rat WB TXB2 IC50: 0.8 μM

Clp (mL/min/kg): 47
% Fpo: 11%  

HtL
NCl
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CO2H
CO2H
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HtLMe
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N
Me

S
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Cl Cl

Scheme 2 cPLA2a inhibitors
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shows that increased MCH1R binding affinity and potency can be obtained by using

hydrophobic/bulky moieties (i.e. a 4,4-dimethylpentan-2-ol group). Variation of the

2-amino group produces compounds with reduced affinity and MCH1R antago-

nism. The optimized lead was found to have potent and correlated MCH1R affinity/

functional antagonism, showing good exposure after po dosing at 10 mg kg�1 and an

excellent B/P ratio at 10 mg kg�1, po (Scheme 3).

11.4 Example 4: RARb2 Receptor Agonists

The retinoic acid b2 receptor is a nuclear receptor, and agonism has the potential for

treatment of cancer and other hyperproliferative disorders. Lund et al. [50] report on

the optimization of AC-55649, a sub-mM agonist of RARb2 with high cLogD and

poor aqueous solubility. RARb2 agonism was increased by incorporating a F atom

ortho- to the CO2H moiety. The physicochemical profile of the lead was improved

by converting one of the phenyl rings to a thiazole and by transforming the octyl-

alkyl chain to a 2-butoxyethyl moiety. The resulting lead, AC-261066, displays an

RARb2 pEC50 = 8.0, an aqueous solubility of 4.8 mg mL�1, a clogD = 0.7 and an %

F = 52%. A homology model based on RARg was utilized in the optimization

(Scheme 4).

11.5 Example 5: HCV NS5B Polymerase Inhibitors

HCV NS5B polymerase is an RNA-dependent RNA polymerase that is essential for

viral replication. Thus, the inhibition of this enzyme offers a potential treatment for

hepatitis C infection. Beaulieu et al. [51] report on the parallel optimization of

enzyme inhibition potency and physical properties. In the first stage of hit characteri-

MCH1R IC50: 0.091 μM
MCH1R FLIPR IC50: 1.7 μM D-enantiomer

MCH1R IC50: 0.02 μM
MCH1R FLIPR IC50: 0.098 μM

Cmax (ng/mL): 127 (10 mg/kg, po)
B/P: 4.15 (10 mg/kg, po)

HtL
N

O
NH2 N

O
NH2

Me

Me

Me
Me

Scheme 3 MCH1 receptor antagonists

Lead Identification 195



zation, the group employed NMR differential line broadening and transferred-

NOESY experiments to confirm the specificity of ligand binding to the target

protein. In the course of optimization, the right side of the hit was truncated

resulting in a MW reduction from 484 to 323 by converting the 3,4-dimethoxyphe-

nethyl amide to a carboxylic acid, which also reduces the clogP and TPSA of

the lead. Unfortunately, the compounds did not show activity in a replicon assay

(Scheme 5).

11.6 Example 6: CGRP Antagonists

CGRP is a 37 amino acid neuropeptide that is a potent vasodilator, and CGRP

release is associated with migraine headaches. Antagonism of the CGRP receptor is

an attractive target for the treatment of migraines. Williams et al. [52] describe the

optimization of a mM CGRP antagonist lead by modifying the spiro[imidazolidine-

dione]tetrahydronaphthalene to a piperidinyl-benzoimidazolone which mimics the

same moiety in Boehringer–Ingelheim CGRP antagonist BIBN 4096 BS. The ben-

zodiazepine-1-methyl substituent was also transformed to a 2,2,2-trifluoroethyl moi-

AC-55649
RARβ2 pEC50: 6.9 (92% eff)

sol < 0.001 mg/mL
cLogD 5.6

HtL

Me
7

CO2H CO2H

F

N

S

Me

O

n-BuO

AC-261066
RARβ2 pEC50: 8.0 (96% eff)

sol 4.8 mg/mL
cLogD 0.7

%Fpo: 52%

Scheme 4 RARb2 receptor agonists

HCV NS5B IC50: 12 µM
Poliovirus IC50: > 500 µM

MW: 484.59

HCV NS5B IC50: 1.8 µM
Poliovirus IC50: > 500 µM

MW: 323.39
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Scheme 5 HCV NS5B polymerase inhibitors
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ety. These changes increase potency by 100-fold, lower the TPSA, and produce a

compound with good PK parameters. The CGRP receptor is heterodimeric, and the

assay utilized a cell line with both components (CLR and RAMP1) expressed or a

human neuroblastoma cell line expressing native receptor. A pharmacophore model

was used to guide synthesis, and the authors postulate that the piperidinyl–benzoi-

midazolone group acts as a constrained Ala–Phe–NH2 moiety (Scheme 6).

11.7 Example 7: IKKb Inhibitors

IkB kinase-b is a key regulatory enzyme in the NF-kB pathway, and inhibition

of this enzyme has the potential for yielding treatments for inflammatory and

autoimmune diseases. Morwick et al. [53] report on the optimization of a mM
IKKb inhibitor with low aqueous solubility, moderate human liver microsome

stability, and inhibition of several CYPs (3A4, 2C9, 1A2) with mM potencies.

Modulation of the thiophene core (other thiophene isomer, pyrimidine and oxazole)

produces compounds of similar potency to the hit. Fusing the 5-phenyl moiety to

the thiophene to form a thieno[2,3-b]pyridine core increases aqueous solubility of

the series as well as reduces the CYP liability. While the optimized compound still

shows mM IKKb potency, the aqueous solubility, HLM stability and CYP profiles

are much improved. A pharmacophore model was generated that enabled scaffold

hopping to yield this new chemotype (Scheme 7).

11.8 Example 8: IKKb Inhibitors

In a second example of the identification of IKKb inhibitor leads (termed IKK2 in

this paper), Baxter et al. [54] report on the optimization of enzyme and cellular

potency, physicochemical properties, ADME properties, and PK. This group targets

CLR/RAMP1 Ki: 4250 nM
CLR/RAMP1 IC50: 57% @ 17 µM 

CLR/RAMP1 Ki: 44 nM
CLR/RAMP1 IC50: 38 nM
rat %F: 10% (10 mg/kg)

t1/2 1.2 h
Cl: 20 mL/min/Kg
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N

Me O
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O
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Scheme 6 CGRP antagonists
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rat hepatocyte CLint of <14 mL min�1 106 cells�1 and human liver microsome

clearance of <23 mL min�1 mg�1 (which represent half of the hepatic blood flow)

for all of their Hit to Lead activities. This example is similar to 11.7 above except

that the thiophene core does not have a 4- or 5-substituent. The main issue with the

mM IKKb inhibitor in Scheme 8 appears to be the high rat hepatocyte and HLM

clearance which is likely due oxidation of the thiophene scaffold. Appending a

(4-F)Ph group to the 5-position of the thiophene not only significantly improves the

IKKb potency, but also improves the CLint. The optimized chemical lead also has

excellent rat oral bioavailability and is not highly bound to plasma protein.

11.9 Example 9: PKCu Inhibitors

Protein kinase C theta plays a critical role in T cell signaling and thus the inhibition

of this enzyme has the potential to be useful for treating inflammatory diseases.

Cywin et al. [55] describe the parallel optimization of potency against the enzyme,

IKKβ IC50: 2.6 μM
IKKα: 24 μM

Aq. sol. pH 7.4: 7 μg/mL
Caco-2 A to B: 19.3 cm/s

HLM t1/2: 12 min
CYP IC50s: 2 to >30 μM

IKKβ IC50: 2.2 μM
IKKα: 2.8 μM

Aq. sol. pH 7.4: 24 μg/mL
Caco-2 A to B: 13.6 cm/s

HLM t1/2: 78 min
CYP IC50s: >30 μM

HtL

S
F

NH2

NH2

NH2

NH2
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Scheme 7 IKKb inhibitors (1)
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IKK-2 IC50: 2 μM
IKK-1 IC50: N/A

TNF cell IC50: 10 μM
Rat Hepatocyte CI: 14 μl/min/106 cells

HLM CI: 49 μl/min/mg

IKK-2 IC50: 0.06 μM
IKK-1 IC50: 6.3 μM

TNF cell IC50: 0.40 μM
Rat Hepatocyte CI: 2 μl/min/106 cells

HLM CI: 8 μl/min/mg
Rat CIiv: 6 ml/min/kg

Rat % Fpo: 78
Plasma protein binding: 92.5%

Scheme 8 IKKb inhibitors (2)
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potency in a cellular assay for IL-2 production, physicochemical, and ADME

properties. A homology model based on CDK2 was used to rationalize SAR

which led to the exploitation of the 2-benzylamino substituent in order to build in

PKCy potency as well as selectivity vs VEGFR1, LYN, IR, and SYK kinases. Also

of importance is the transformation of the (4-cyclohexyl)methanamine moiety to a

4-piperidine which maintains PKCy potency, improves the CYP profile and most

likely improves the in vivo clearance of the series (no glucuronidation of the

primary amine). It is noted in the paper that the lead contains a nitro group,

which would raise a toxicity structural alert (Scheme 9).

11.10 Example 10: m Opioid Receptor Modulators

The m opioid receptor is a GPCR and a potential target for pain. In a study designed

to illustrate two approaches to pharmacophore-based design for optimization,

Poulain et al. [70] describe the optimization of binding affinity and physicochemi-

cal properties. Potency at the m, k, and d opioid receptors is increased by basifying

the central amine of the starting hit by removing the carbamate functionality.

Replacement of the nitro group with a less problematic chlorine atom improves

both opioid receptor potency as well as aqueous solubility. Key in the optimization

is the replacement of the piperidinylbenzimidazolone fragment with a phenyltria-

zaspirodecanone moiety which shows similar m and k potency and improved

selectivity over d. Aqueous solubility can also be improved by the incorporation

of the N-methylacetamide group (Scheme 10).
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PKCΘ IC50: 0.09 μM
IL-2 IC50: 0.72 μM

CYP2C9 IC50: 17.6 μM
CYP2D6 IC50: >30 μM
CYP3A4 IC50: 28 μM

HLM t1/2: 66 min
Caco-2 AB: 8.1 x 10−6 cm/sm
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PKCΘ IC50: 0.5 μM

Scheme 9 PKCy inhibitors
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11.11 Example 11: AcpS Inhibitors

AcpS is an essential enzyme in bacteria that is required for the biosynthesis of

components of membrane lipids and bacterial lipopolysaccharides, and is thus an

attractive antibacterial target. Gilbert et al. [45] describe the parallel optimization of

enzyme inhibition potency, antibacterial efficacy (minimum inhibitory concentra-

tion or MIC), and physicochemical properties. In this work, an initial array of 42

4H-oxazol-5-ones was prepared using Design of Experiments (DoE) software

where three R-groups were varied around a 2-phenyl-4-((phenylamino)methy-

lene)oxazol-5(4H)-one scaffold. MVA (PLS) of the calculated physical properties

of these R-groups, the in vitro AcpS IC50 data as well as the MIC antibacterial

potency shows a clear trend where the 2-(4-(trifluoromethyl)phenyl)oxazol-5(4H)-
one moiety gives increasing AcpS potency and a slight improvement in antibacter-

ial activity. A second array was next prepared again using DoE software varying

additional R-groups where the 2-(4-(trifluoromethyl)phenyl)oxazol-5(4H)-one
moiety was incorporated into every product. Optimized compounds were identified

(an example is presented in Scheme 11) where AcpS has been improved to sub-mM
potency and antibacterial activity had been improved as well.

11.12 Example 12: PDE5 Inhibitors

PDE5 cleaves cGMP, and inhibition of this enzyme helps to maintain cGMP

concentrations, which in turn relaxes blood vessels. Inhibitors of this enzyme are

marketed for erectile dysfunction. Palmer et al. [57] describe the parallel optimiza-

tion of enzyme inhibition potency, selectivity, physicochemical properties and PK.

The initial start point was a potent PDE5 inhibitor with an unacceptably high MW

for a hit to lead starting point. A key PDE5 fragment with reduced MW (309 vs 545

for the hit) and LE (0.4 vs 0.27 for the hit) was identified via preparation of a library

of 192 compounds aided by a PDE5/sidenafil crystal structure. Modification of the

μ IC50: 1050 nM
κ IC50: >10,000 nM
δ IC50: >10,000 nM

Aq. solubility: <10 μM 

μ IC50: 0.9 nM
κ IC50: 2.1 nM

δ IC50: 11.4 nM
Aq. solubility: 209 μM

logD: 2.9 
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Scheme 10 m Opioid receptor modulators
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quinazoline scaffold to a 1-methyl-3-propyl-1H-pyrazolo[4,3-d]pyrimidine and

constraining the 2-methoxyethylamine to a piperidine produces an optimized lead

with potent PDE5 potency, good selectivity over PDE6, a clogP and MW that

would be consistent with a brain permeable compound and a good in vivo half-life

in rat (Scheme 12).

B. subtilis AcpS IC50: 15 μM
B. subtilis, E. faecalis and

S. pneumo+ MICs: > 200 μM

B. subtilis AcpS IC50: 0.27 μM
B. subtilis MIC: 25 μM

E. faecalis ATCC MIC: 100 μM
E. faecalis VRE MIC: 100 μM

S. pneumo+ MIC:  25 μM 
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Scheme 11 AcpS inhibitors

PDE5 IC50: 20 nM
clogP: 5.4
MW: 545
LE: 0.27

PDE5 IC50: 255 nM
clogP: 3.8
MW: 309
LE: 0.4

PDE5 IC50: 71 nM
PDE6 IC50: 1330 nM
PDE10 IC50: 79 nM

PDE11 IC50: 210 nM
clogP: 3.1
MW: 366
LE: 0.37

Rat t1/2: 1.4 h
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11.13 Example 13: CXCR2 Antagonists

CXCR2 is a member of the CXC family of chemokine receptors. IL-8 activates this

receptor, and an antagonist would potentially be useful for the treatment of inflam-

matory diseases. Baxter et al. [58] describe the parallel optimization of binding and

functional potency, physicochemical properties, ADME properties, and PK. The

thiol of the HTS hit was varied with typical replacements (i.e., OH, NH2, SMe,

NHAc, etc.), but this only led to inactive compounds. Variation of the substituent at

N(2) showed that a benzyl moiety was required (Ph, Me substituents gave inactive

compounds). Variation of the C(5) substituent showed that o-substituents produced
optimal activity. The optimized lead has substantially improved CXCR2 binding

and functional activity as well as an excellent PK profile (Scheme 13).

11.14 Example 14: CXCR2 Antagonists

In a second example of the identification of a CXCR2 antagonist lead, Baxter et al.

[59] discuss the parallel optimization of binding potency and functional potency,

physicochemical properties, ADME properties, and PK for a different chemotype.

This initial hit showed high rat hepatocyte clearance presumably due to the aromatic

OH and NH2 groups as well as the lipophilic n-pentyl group. The 2-, 5- and

7-positions of the thiazolo[4,5-d]pyrimidine scaffold were sequentially varied to

optimize potency. The 2-amino group could be changed to a hydrogen, however

this group was maintained as an NH2 presumably since it confers good aqueous

HtL

CXCR2 Binding IC50: 4.6 μM
CXCR2 FLIPR IC50: 2.4 μM

MW: 268
clogP: 3.4

Rat Hepatocyte Cl: 19μI/min/106 cells
HLM CI: 13 μl/min/mg
Rat CIiv: 12 ml/min/kg

CXCR2 Binding IC50: 0.028 μM
CXCR2 FLIPR IC50: 0.048 μM

MW: 336
clogP: 4.3

sol: 20 μg/ml
Rat Hepatocyte Cl: 26 μI/min/106 cells

HLM CI: 14 μl/min/mg
Rat CIiv: 12 ml/min/kg

Rat %Fpo: 61%
Plama proten binding: 99%
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Scheme 13 CXCR2 antagonists (1)
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solubility to the series. The 5-thio n-pentyl group could be modified to a benzyl

moiety. The incorporation of fluorines on the benzyl group adds additional potency

to this series. Finally the 7-hydroxyl group could be modified to a much more

hindered 2-amino-2-methylpropan-1-ol. The resulting lead showed increased

potency and substantially improved rat hepatocyte clearance. For this lead, most

criteria were met, with the exception of solubility, which decreased (Scheme 14).

11.15 Example 15: CXCR2 Antagonists

A third example of the identification of a CXCR2 antagonist lead is described by

Ho et al. [60]. This group carried out the parallel optimization of binding affinity,

ADME properties, and PK. While the initial hit had good CXCR2 potency, stability

in RLM was only modest due to the highly lipophilic S-n-octyl substituent on the

pyrimidine. Shortening of the S-n-octyl group led to improvement of rat liver

microsomal stability but at the expense of CXCR2 potency. CXCR2 potency

could be gained back by the addition of a phenyl moiety at the 4-position of the

imidazole group. The optimal balance of potency and stability was obtained with a

pyrimidine S-n-propyl substituent in combination with an imidazole p-CF3OPh
moiety (Scheme 15).

CXCR2 Ki: 10 μM
CXCR2 IC50: 2 μM

Rat hepatocyte Cl: 49 μl/min/106 cells
HLM Cl: 18 μl/min/106 cell

MW: 270
Aq. solubility: 27 μg/mL

clogP: 2.0
logD: 2.9

CXCR2 Ki: 0.014 μM
CXCR2 IC50: 0.04 μM

Rat hepatocyte Cl: 4 μl/min/106 cells
HLM Cl: 31 μl/min/106 cell

MW: 397
Aq. solubility: 0.5 μg/mL

clogP: 3.1
logD: 3.4

Rat Cliv: 25 mL/min/kg
Rativ T1/2: 1.2 h
Rat %Fpo: 15%

Plasma protein binding: 98.4%
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Scheme 14 CXCR2 antagonists (2)
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11.16 Example 16: CCR5 Antagonists

The CCR5 chemokine receptor is a GPCR and a member of the CC family. It is a

major coreceptor for fusion and entry of HIV into cells, and is thus an attractive

target for the treatment of HIV infection. Armour et al. [61] describe the parallel

optimization of binding potency, efficacy (inhibition of HIV replication in PM-1

cells), physicochemical and ADME properties. The initial hit was a strong inhibitor

of the CYP450, CYP2D6, and modeling of the CYP2D6 enzyme was used to

identify a way to reduce this inhibition (Scheme 16).

11.17 Example 17: CDK2 Inhibitors

CDK2 is involved with controlling normal cell proliferation. Disregulation in

cancer makes this a good antitumor target. Pevarello et al. [62] describe the parallel

optimization of enzyme inhibition potency, cellular activity, physicochemical

properties, and PK. A low MW hit (MW = 201) was specifically selected with the

CXCR2 Ki: 60 nM
RLM (% remaining, 30 min, 37 °C): 26%
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Scheme 15 CXCR2 antagonists (3)

CCR5 IC50: 400 nM
CYP2D6 IC50: 40 nM

CCR5 IC50: 20 nM
HIVBal PM-1 IC50: 73 nM

CYP2D6 IC50: 5 μM
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goal of identifying a low MW lead, in this case the lead MW is 292. Crystallo-

graphy was used to guide the design of new analogs (Scheme 17).

11.18 Example 18: P2X7 Inhibitors

The P2X7 receptor is a ligand-gated ion channel present in cells involved with

inflammation. The receptor is activated by extracellular ATP, which leads to the

processing and release of IL-1b. Baxter et al. [63] report on the parallel optimiza-

tion of binding affinity, efficacy, physicochemical properties, ADME properties,

and PK (Scheme 18).
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P2X7 pA2: 6.9
MW: 540
clogP: 6.9

P2X7 pA2: 7.4
MW: 309
clogP: 4.1

Rat Hepatocyte Cl: 5 μl/min/106 cells
HLM Cl: 21 μl/min/mg
Rat Cliv: 47 ml/min/kg  
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Scheme 18 P2X7 inhibitors

MW 201
CDK2/cyclinA IC50: 1500 nM
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MW 292
CDK2/cyclinA IC50: 37 nM
A2780 cells IC50: 286 nM
HT-29 cells IC50: 170 nM
HTC116 cells IC50: 73 nM
DU145 cells IC50: 651 nM

>50 fold selective vs. 33 kinases except:
CDK2/cyclinE (2.5 fold), CDK5/p25 (3.1 fold),

CDK1/cyclinB (7.3 fold)
Rat Cliv: 13.5 mg/min/kg (5 mg/kg)

Rat %Fpo: 90% (10 mg/kg)
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Scheme 17 CDK2 inhibitors

Lead Identification 205



11.19 Example 19: DPP-4 Inhibitors

DPP-4 is a serine protease that inactivates GLP-1. GLP-1 stimulates insulin secretion

and suppresses glucagon release. The inhibition of DPP-4 prolongs the half-life of

GLP-1 and brings about beneficial effects on glucose levels and glucose tolerance in

type 2 diabetics. Backes et al. [64] report on the parallel optimization of enzyme

binding affinity and inhibition, selectivity, ADME properties, and PK (Scheme 19).

11.20 Example 20: BACE-1 Inhibitors

BACE-1 (b-secretase) is one of the enzymes involved in breaking down APP to

produce Ab (amyloid b-peptide, Ab40,42), the protein that eventually oligomerizes

to form Ab plaques, the hallmark of Alzheimer’s disease (AD). Thus an agent that
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DPP4 Ki: 0.002 μM
>1000-fold selective vs. DPP8, DPP9, POP and FAPα

IC50 > 10 μM vs. CYP3A4, CYP2D6, CYP2C9
RLM and HLM t1/2: > 3h

Rat Cliv: 0.15 L/h/kg (5 mg/kg)
Rat %Fpo: 74% (5 mg/kg)

Plasma protein binding: < 95%

Scheme 19 DPP-4 inhibitors
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Scheme 20 BACE-1 inhibitors
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inhibits BACE-1 could be a disease-modifying treatment for AD. Cole et al. [65]

report on the optimization of a mM acylguanidine BACE-1 inhibitor to a sub-mM
compound with some selectivity over BACE-2, good selectivity over Cathepsin D

and low mM activity in a cellular assay of Ab production. X-ray crystallography of

the initial hit was used to find substituents for the two pyrazole phenyl rings to

explore effectively the S1 and S20 pockets (Scheme 20).

11.21 Example 21: mGluR1 Inhibitors

The Group I metabotropic glutamate receptors located in the dorsal horn have been

well validated as targets for pain. In particular, mGluR1 antagonists have become

an attractive target for nociception. Wang et al. [66] have shown that slight changes

to an HTS hit can lead to large improvements in the PK profile of a series.

Adjustment of the phenyl groups at the 1 and 5 positions of a 1H-pyrazolo[3,4-d]
pyrimidin-4(5H)-one scaffold does not change the excellent mGluR5/mGluR1

functional selectivity of the series, but greatly improves the rat microsomal CLint

(6.9 to < 2.5 L h�1 kg�1), and also improves in vivo rat clearance (0.8 to 0.2 ng

mL�1) and oral bioavailability (8 to 100%) (Scheme 21).

11.22 Example 22: ITK Inhibitors

Interleukin-2-inducible T cell kinase (ITK) is expressed mainly in T-lymphocytes

and plays a major role in the activation of T-cells. Thus inhibitors of ITK should be

useful as immunosuppressives and antiinflammatory agents. Snow et al. [67]

describe a novel series of 2-aminobenzimidazole ITK inhibitors which is optimized

HtL

hmGluR1 FLIPR EC50: 78 nM
hmGluR5 FLIPR EC50: >100,000 nM

clogP: 4.35
Aq. Solubility: 14 μM
RLM Cl: 6.9 L/h/kg

PAMPA: 19.4 x 10−6 cm/s
Rat Cliv: 0.8 ng/mL

Rat %Fpo: 8% 

hmGluR1 FLIPR EC50: 127 nM
hmGluR5 FLIPR EC50: >100,000 nM

clogP: 2.7
Aq. Solubility: 42 μM
RLM Cl: <2.5 L/h/kg

PAMPA: 17.6 x 10−6 cm/s
Rat Cliv: 0.2 ng/mL
Rat %Fpo: 100% 
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to a 25 nM lead with excellent selectivity over a large panel of kinases (exceptions

are IRK and TXR, also a member of the Tec family of kinases). While this novel

series possesses excellent selectivity of a lead, the cellular potency of this series is

weak and additional in vitro potency will need to be achieved to see better cellular

activity (Scheme 22).

11.23 Example 23: CCR1 Antagonists

Chemokines play an important role in leukocyte migration and activation. Specifi-

cally, CCR1 has been implicated in the pathogenesis of chronic inflammatory

diseases including rheumatoid arthritis and multiple sclerosis. Xie et al. [68]

describe a series of 4-(4-chlorophenyl)piperidin-4-ols where the CCR1 potency/

binding affinity was increased almost 100-fold by constraining the propyl amine

moiety to a piperidine and changing the amide to a sulfonamide. The optimized

compound has >100-fold selectivity vs CCR2, CCR3, CCR4, and CCR5

(Scheme 23).

HtL

ITK IC50: 0.025 μM
DT40 cell IC50: 2.4 μM

Profile against >100 kinases.  Only active against:
IRK (IC50: 0.2 μM) and TXK (IC50: 1.4 μM)    

N

N

NH2O

NH

O

S
N

O

Me

ITK IC50: 0.11 μM
DT40 cell IC50: 3.0 μM
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O
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Scheme 22 ITK inhibitors
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CCR1 Binding IC50: 5.61 μM
CCR1 FLIPR IC50: 1.65 μM

CCR1 Binding IC50: 0.09 μM
CCR1 FLIPR IC50: 0.09 μM

>100-fold selectivity vs. CCR2, CCR3, CCR4, CCR5
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Scheme 23 CCR1 antagonists
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11.24 Example 24: CHK-1 Inhibitors

Recent studies have shown that inhibition of CHK-1 can make tumor cells sensi-

tized to DNA-damaging chemotherapeutic agents, potentially making them more

efficacious and selective. Tong et al. [69] have shown that a series of 1,4-dihy-

droindeno[1,2-c]pyrazole CHK-1 inhibitors can be optimized to a nM lead with

>200-fold selectivity vs a number of related kinases. Moreover, the lead potentiates

the effects of doxorubicin and camptothecin, both DNA-damaging agents in cell

proliferation assays (MTS and soft agar assays) and abrogates G2/M checkpoint in

a mechanism-based FACS assay. In vivo efficacy may be challenging since the

hydroxyl groups should be easily conjugated and cleared via Phase II metabolic

processes (Scheme 24).

12 Summary

High quality leads provide the foundation for the discovery of successful clinical

development candidates, and therefore the identification of leads is an essential part

of drug discovery. The thorough characterization of hits coming from a screening

campaign is the important first step in lead identification. Once fully characterized,

the hits with the highest likelihood of successful optimization to leads can be

selected. Many factors contribute to the quality of a lead, including biological,

physicochemical, ADME, and PK parameters. The identification of high quality

leads, which are needed for successful lead optimization, requires the optimization

of all of these parameters. Parallel optimization of all parameters is the most

efficient way to achieve the goal of lead identification.

CHK-1 IC50: 510 nM

HtL

CHK-1 IC50: 6.2 nM
>200-fold selective for CHK-2, Aur1, CK2, PKA,

PKCδ, PKCγ, EMK, ERK2, SGK, SRC,
MARKAP2, AKT, CDC2

MTS assay with doxorubicin: EC50: 1.8 μM
FACS assay with doxorubicin: EC50: 0.77 μM

Camptothecin potentiation ratio: 6.7   

N
H
N

H
N

HN F

N
H
N

H
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Scheme 24 CHK-1 inhibitors
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