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Preface

This handbook was conceived as a way of
introducing applied statisticians, empirical
researchers, and graduate students to the broad

array of state-of-the-art quantitative methodologies
in the social sciences. Quantitative methodology is
a highly specialized field, and with any highly spe-
cialized field, working through idiosyncratic language
can be challenging—especially when concepts are
conveyed in the language of mathematics and statistics.
With that challenge in mind, the contributing authors of
this handbook were asked to write about their areas of
expertise in a way that would convey to the reader the
utility of their respective methodologies. Mathematical
language was not to be avoided per se, but as much
descriptive meat was to be added to the mathematical
bones as possible. Relevance to real-world problems in
the social sciences was to be an essential ingredient of
each chapter. The goal was for a researcher working in
the area of, say, multilevel modeling to be able to read
the chapter on, say, dual scaling and understand the
basic ideas and the critical arguments for the utility of
the method. In my view, the authors of these chapters
rose to the requirements admirably. I hope you agree,
and I now invite you to dip into the broad and deep
pool of quantitative social science methodology.

This handbook is organized around six topical
sections. The ordering of the sections is not accidental.
Rather, it represents a view of the progression of quan-
titative methodology, beginning with the scaling of
qualitative experience, through the properties of tests
and measurements; advancing to the application of
statistical methods applied to measures and scales; and
closing with broad philosophical themes that transcend
many of quantitative methodologies represented here.

Section I concerns the topic of scaling—the
quantitative representation of qualitative experiences.
Shizuhiko Nishisato opens this section with dual scal-
ing. He begins by arguing that the main goal of
data analysis is to extract as much information as

possible from the linear and nonlinear relations among
variables. Dual scaling (also referred to as optimal
scaling) is a method to accomplish this goal by assign-
ing optimal spaced weights to variables. Nishisato
provides an interesting example of whether Likert cate-
gory weights are appropriate for scaling two attitudinal
items. He then moves to examples of dual scaling
applied to incidence and dominance data, providing
many interesting examples along the way. The next
chapter is a discussion of multidimensional scaling
and unfolding of symmetric and asymmetric proxim-
ity relationships by Willem Heiser and Frank Busing.
These authors show how the methods of multidimen-
sional scaling and unfolding provide a unified approach
to the study of entire relational systems. Their chapter
focuses on methods primarily for proximity relation-
ships as separate from so-called dominance or order
relationships commonly found in multivariate statis-
tical methods. This section closes with a discussion
of principal components analysis with nonlinear opti-
mal scaling of nominal and ordinal data by Jacqueline
Meulman, Anita Van der Kooij, and Willem Heiser.
These authors consider the ubiquitous problem of
scales having arbitrary measurement units, such as an
ill-defined zero point or unequal/unknown distances
among category points. Meulman and her colleagues
show how categorical principal components analysis
can be used to develop optimal quantitative values for
qualitative scales.

As one proceeds from the scaling of qualitative
experiences, the question arises as to the statistical
and psychometric properties of measuring instruments.
Section II addresses advances in this area. At the
most fundamental level are issues of reliability and
validity. Thus, this section opens with the chapter
by Bruno Zumbo and André Rupp, who situate the
concepts of reliability and validity in their histori-
cal context but also provide an overview of modern
ideas in reliability and validity theory. Rather than
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cataloging every new method under the general rubric
of reliability and validity, Zumbo and Rupp provide
a unifying view of reliability and validity through the
lens of statistical modeling. Moving to more advanced
ideas in the analysis of item response data, Ratna
Nandakumar and Terry Ackerman write about the
problem of test modeling. Their chapter provides a
comprehensive overview of modeling test data, specif-
ically within the item response theory framework.
An important contribution of the Nandakumar and
Ackerman chapter is the presentation of an algorithm
for choosing an appropriate model for test data along
with an illustration of their algorithm using simulated
data. Louis Roussos and William Stout offer a discus-
sion of practical issues and new ideas in differential
item functioning. They note that with federal legis-
lation such as the No Child Left Behind Act, the
issue of test equity is of paramount importance, and
methods of assessing differential item functioning are
key to documenting the equity of tests. Finally, Hua-
Hua Chang continues with advances in computerized
adaptive testing (CAT). Given the well-documented
achievements and advantages of CAT over paper-and-
pencil test administrations, Chang focuses his attention
on issues and problems with CAT—particularly issues
of test compatibility and security.

With respect to the organization of this handbook,
Sections I and II are fundamental to statistical model-
ing. Scaling qualitative experiences along with knowl-
edge of the properties of measurement instruments
are necessary first steps toward the interpretation of
statistical models applied to data derived from the
employment of those instruments. The next three
sections are composed of chapters that detail advances
in modern statistical methodology.

Section III concerns statistical models for categori-
cal outcomes. David Rindskopf provides an overview
of recent, as well as recycled, trends in the analysis of
categorical variables. Rindskopf considers a method as
recycled if it was developed long ago but resurrected
in a context that is more general than the original
idea. Rindskopf also offers some methods that he
argues are candidates for recycling. This is followed
by an overview of ordinal regression models by Valen
Johnson and James Albert. A particularly interest-
ing example used in the Johnson and Albert chapter
concerns the modeling of ratings given to student
essays—a problem of great significance to large-scale
testing companies. Jay Magidson and Jeroen Vermunt
continue with a discussion of latent class analysis,
in which categorical (dichotomous) measurements are
related to a categorical latent variable. Magidson and
Vermunt offer formal treatment of the latent class

factor model and a detailed discussion of latent class
regression models. They show how the latent class
cluster model, as applied to continuous variables,
can be an improvement over common approaches to
cluster analysis. Moving from models of categori-
cal data for cross-sectional studies, John Willett and
Judith Singer take up the analysis of ordinal outcomes
in longitudinal settings—specifically, the analysis of
discrete-time survival data. A particularly important
part of Willett and Singer’s chapter is the discussion of
how researchers can be led astray when using methods
other than discrete-time survival analysis to model the
event occurrence.

Arguably, one of the most important recent devel-
opments in quantitative methodology for the social
sciences has been the advent of models to handle
nested data. Such data typically derive from the study
of social organizations, such as schools. However,
the analysis of individual change, as well as meta-
analytic studies, can also yield nested data. Models
for the analysis of nested data are the subject of
Section IV. At the most basic level is the analysis of
individual growth and change. Donald Hedeker begins
by offering a didactic introduction to the analysis
of growth and change from the multilevel modeling
perspective, illustrating general ideas with data from a
longitudinal study of the response to tricyclic antide-
pressants for psychiatric patients suffering nonendoge-
nous and endogenous forms of depression. Moving
to the application of multilevel modeling to organiza-
tional studies, Russell Rumberger and Gregory Palardy
provide a comprehensive overview of multilevel
modeling applied to the study of school effects. Their
chapter takes the reader through a number of decisions
that have to be made regarding research questions
and data quality, at each point relaying these con-
cerns back to basic substantive issues. Extensions of
multilevel modeling to complex designs in program
evaluation are taken up in the chapter by Michael
Seltzer. Seltzer’s chapter is particularly timely given
the increased attention to the evaluation of social inter-
ventions in experimental and quasi-experimental field
settings. Finally, the methodology of meta-analysis is
discussed in the chapter by Spyros Konstantopoulos
and Larry Hedges. The authors point out that the term
meta-analysis is often used to connote the entire range
of methods for research synthesis but that their chapter
will focus on the statistical methods of meta-analysis.
Although the authors provide a very general descrip-
tion of meta-analysis, this chapter fits nicely in the
section on multilevel modeling insofar as multilevel
models provide a convenient framework for estimating
across-study variation in study-level effect sizes.
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The bulk of the chapters in Sections III and
IV concern the analysis of manifest outcomes. In
Section V, attention turns specifically to the analysis
of unobserved (i.e., latent) variables. The chapter
that opens Section V is a discussion of unre-
stricted exploratory factor analysis by Rick Hoyle and
Jamieson Duval. In addition to providing a review
of commonly used methodologies for determining
the number of factors, Hoyle and Duval show how
two commonly used procedures yield incorrect con-
clusions regarding the number of factors. Following
Hoyle and Duval is Gregory Hancock’s overview
of latent variable models for quasi-experimental,
experimental, and nonexperimental designs. Hancock
focuses specifically on the utility of structured
means analysis and multiple-indicator, multiple-cause
(MIMIC) analysis to remove problems of measure-
ment error from hypothesis testing in designed studies.
Moving from latent variable models for cross-sectional
data, we turn to the method of dynamic factor
analysis discussed in the chapter by John Nessel-
roade and Peter Molenaar. Their chapter concen-
trates on examining the history of factor-analytic
approaches to time-series data and presents new
developments aimed at improving applications of
dynamic factor analysis to social and behavioral
science research. The section closes with Bengt
Muthén’s chapter on growth mixture modeling—
nicely tying in a number of methodologies discussed
in Sections IV and V—including multilevel model-
ing, growth curve modeling, latent class analysis, and
discrete-time survival modeling.

In considering the content of this handbook, I viewed
it as important to provide the reader with a discussion
of some of the major philosophical issues that underlie
the use of quantitative methodology. Thus, Section VI
covers a number of different foundational topics that
are more or less applicable to all of the methodolo-
gies covered in this handbook. This section opens

with a chapter by Richard Neapolitan and Scott Morris
that focuses on probabilistic modeling with Bayesian
networks. In their chapter, Neapolitan and Morris
first provide a philosophical context, comparing the
frequentist approach of von Mises to the subjective
probability/Bayesian approach most closely associated
with Lindley. From there, they move to Bayesian net-
work models—also referred to as direct acyclic graph
(DAG) models. The Neapolitan and Morris chapter is
followed by an engaging critique of the “null hypoth-
esis ritual” by Gerd Gigerenzer, Stefan Krauss, and
Oliver Vitouch. In this chapter, Gigerenzer et al. make
a compelling case for reconsidering the ritual aspects
of null hypothesis testing and instead considering null
hypothesis testing as a tool among many for empirical
research. My contribution to the handbook overviews
advances on the problem of defining and testing
exogeneity. I examine the problem of exogeneity from
within the econometric perspective, highlighting prob-
lems with existing ad hoc definitions of exogeneity
commonly found in applied statistics textbooks, and
point to statistical criteria that distinguish between
three types of statistical exogeneity. This is fol-
lowed by Stanley Mulaik’s discussion of objectivity in
science and structural equation modeling. Locating the
problem of objectivity in the work of Emanuel Kant,
Mulaik’s chapter provides a sweeping examination
of how various metaphors from the theory of object
perception underlie the practice of structural equation
modeling and how recent developments in the cog-
nitive sciences provide an expansion of Kant’s ideas.
Finally, the handbook closes with a detailed discussion
on causal inference by Peter Spirtes, Richard Scheines,
Clark Glymour, Thomas Richardson, and Chris Meek.
These authors closely examine such questions as the
difference between a causal model and a statistical
model, the theoretical limits on causal inference, and
the reliability of certain methods of causal inference
commonly used in the social sciences.
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Chapter 1

Dual Scaling

Shizuhiko Nishisato

1.1. Why Dual Scaling?

Introductory and intermediate courses in statistics are
almost exclusively based on the following assump-
tions: (a) the data are continuous, (b) they are a random
sample from a population, and (c) the population dis-
tribution is normal. In the social sciences, it is very
rare that our data satisfy these assumptions. Even if
we manage to use a random sampling scheme, the data
may not be continuous but qualitative, and the assump-
tion of the normal distribution then becomes irrelevant.
What can we do with our data, then? Dual scaling
will offer an answer to this question as a reasonable
alternative.

More important, however, the traditional statistical
analysis is mostly what we call linear analysis, which
is a natural fate of using continuous variables, for
which such traditional statistical procedures as analysis
of variance, regression analysis, principal component
analysis, and factor analysis were developed. In tra-
ditional principal component analysis, for example,
we can look into such a linear phenomenon as “blood
pressure increases as one gets older” while failing to
capture a nonlinear phenomenon such as “migraines
occur more frequently when blood pressure is very
low or very high.” When we look at possible forms of
relations between two variables, we realize that most
relations are nonlinear and that it is not advantageous

AUTHOR’S NOTE: This work was supported by the Natural Sciences and Engineering Research Council of Canada. The paper was
written while the author was a Visiting Professor at the School of Business Administration, Kwansei Gakuin University, Nishinomiya,
Japan.

to restrict our attention only to the linear relation. Dual
scaling captures linear and nonlinear relations among
variables, without modeling the forms of relations for
analysis.

Dual scaling is also referred to as “optimal scaling”
(Bock, 1960) because all forms of relations among
variables are captured through optimally spacing cate-
gories of variables. The main purpose of data analysis
lies in delineating relations among variables, linear
or nonlinear, or, more generally, in extracting as
much information in data as possible. We will find
that dual scaling is an optimal method to extract
a maximal amount of information from multivariate
categorical data. We will see later that dual scaling can
be applied effectively to many kinds of psychologi-
cal data such as observation data, teacher evaluation
forms, attitude/aptitude data, clinical data, and all
types of questionnaire data. This chapter contains a
minimal package of information about all aspects of
dual scaling.

1.2. Historical Background

1.2.1. Mathematical Foundations in Early Days

Two major contributions to the area from the
past are (a) algebraic eigenvalue theory, pioneered

3
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by mathematicians (e.g., Euler, Cauchy, Jacobi,
Cayley, and Sylvester) in the 18th century, and
(b) the theory of singular value decomposition
(SVD) by Beltrami (1873), Jordan (1874), and
Schmidt (1907).

The eigenvalue decomposition (EVD) was for
orthogonal decomposition of a square matrix, put into
practice as principal component analysis (Hotelling,
1933; Pearson, 1901). SVD was for the joint orthog-
onal decomposition of row structure and column
structure of any rectangular matrix and reappeared
much later in metric multidimensional scaling as the
Eckart-Young decomposition (Eckart & Young, 1936).
Both EVD and SVD are based on the idea of princi-
pal hyperspace, that is, space described in terms of
principal axes.

1.2.2. Pioneers in the 20th Century

With these precursors, Richardson and Kuder
(1933) presented the idea of what Horst (1935)
called the method of reciprocal averages (MRA)
for the analysis of multiple-choice data. Hirschfeld
(1935) provided a formulation for weighting rows
and columns of a two-way table in such a way
that the regression of rows on columns and that of
columns on rows could be simultaneously linear,
which Lingoes (1964) later called simultaneous linear
regressions. Fisher (1940) considered discriminant
analysis of data in a contingency table, in which
he, too, suggested the algorithm of MRA. Most
important contributions in the early days were by
Guttman (1941) for his detailed formulation for the
scaling of multiple-choice data and Maung (1941) for
elaborating Fisher’s scoring method for contingency
tables. Guttman (1946) further extended his approach
of internal consistency to rank-order and paired-
comparison data. Thus, solid foundations were laid
by 1946.

1.2.3. Period of Rediscoveries
and Further Developments

We can list Mosier (1946), Fisher (1948), Johnson
(1950), Hayashi (1950, 1952), Bartlett (1951),
Williams (1952), Bock (1956, 1960), Lancaster
(1958), Lord (1958), Torgerson (1958), and many
other contributors. Among others, there were four
major groups of researchers: the Hayashi school in
Japan since 1950, the Benzécri school in France since

the early 1960s, the Leiden group in the Netherlands
since the late 1960s, and the Toronto group in Canada
since the late 1960s.

Because of its special appeal to researchers in
various countries and different disciplines, the
method has acquired many aliases, mostly through
rediscoveries of essentially the same technique—
among others, the method of reciprocal averages
(Horst, 1935; Richardson & Kuder, 1933), simulta-
neous linear regressions (Hirschfeld, 1935; Lingoes,
1964), appropriate scoring and additive scoring
(Fisher, 1948), principal component analysis of
categorical data (Torgerson, 1958), optimal scaling
(Bock, 1960), correspondence analysis (Benzécri,
1969; Escofier-Cordier, 1969), biplot (Gabriel, 1971),
canonical analysis of categorical data (de Leeuw,
1973), reciprocal averaging (Hill, 1973), basic struc-
ture content scaling (Jackson & Helmes, 1979), dual
scaling (Nishisato, 1980), homogeneity analysis (Gifi,
1980), centroid scaling (Noma, 1982), multivariate
descriptive statistical analysis (Lebart, Morineau, &
Warwick, 1984), nonlinear multivariate analysis (Gifi,
1990), and nonlinear biplot (Gower & Hand, 1996).
Because all of these are based on singular value
decomposition of categorical data, they are either
mathematically identical or not much different from
one another.

1.2.4. Dual Scaling

The name dual scaling (DS) was coined by Nishisato
(1980) as a result of the discussion at the symposium
on optimal scaling during the 1976 annual meeting of
the Psychometric Society in Murray Hill, New Jersey
(see Nishisato & Nishisato, 1994a). With the general
endorsement among the participants, he adopted it in
the title of his 1980 book. Franke (1985) states that
he “uses Nishisato’s term for its generality and lack of
ambiguity” (p. 63).

Under the name dual scaling, Nishisato has
extended its applicability to a wider variety of cat-
egorical data, including both incidence data and
dominance data. This aspect of DS is reflected in
Meulman’s (1998) statement that “dual scaling is
a comprehensive framework for multidimensional
analysis of categorical data” (p. 289). For those
interested in the history of quantification theory,
see de Leeuw (1973), Benzécri (1982), Nishisato
(1980), Greenacre (1984), Gifi (1990), Greenacre and
Blasius (1994), and van Meter, Schiltz, Cibois, and
Mounier (1994).
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1.3. An Intuitive

Introduction to Dual Scaling

1.3.1. Is Likert Scoring Appropriate?

Suppose subjects were asked two multiple-choice
questions.1

Q1: What do you think of taking sleeping pills?
(1) strongly disagree, (2) disagree, (3) indifferent,
(4) agree, (5) strongly agree

Q2: Do you sleep well every night? (1) never,
(2) rarely, (3) sometimes, (4) often, (5) always

The data are in Table 1.1. Likert scores are often used
for ordered sets of categories (Likert, 1932). Suppose
we assign−2,−1, 0, 1, 2 to the five ordered categories
of each set in the above example. Our question here is
if these Likert scores are appropriate. There is a simple
way to examine it.

First, we calculate the mean of each category, using
Likert scores. For example, the mean of category
never is [15 × (−2) + 5 × (−1) + 6 × 0 + 0 × 1 +
1×2]/27 = −1.2.Likewise, we calculate the means of
row categories and those of column categories, which
are summarized in Table 1.2. We now plot those aver-
ages against the original scores (−2, −1, 0, 1, 2), as
seen in Figure 1.1. The two lines are relatively close to
a straight line, which indicates that the original scores
are “pretty good.” Suppose we use, instead of those
subjective category weights, the weights derived by
DS and calculate the weighted category means and
plot these against the DS weights. We then obtain
Figure 1.2.

Notice that the two lines are now merged into a
single straight line. This is “mathematically optimal,”
as seen later. We will also see shortly that the slope
of the line in Figure 1.2 is equal to the maximal
“nontrivial” singular value for this data set.

But how do we arrive at the DS weights? It is
simple: Once we obtain the mean category scores as in
Figure 1.1, replace the original scores (e.g., −2, −1,
etc.) with the corresponding mean scores, and then
calculate the new mean category scores in the same
way as before and plot the new category scores against
the first mean scores, replace the old mean scores with
the new mean scores, and calculate new mean category
scores and plot them. This is a convergent process
(Nishisato, 1980, pp. 60–62, 65–68). Horst (1935)
called the above process the method of reciprocal

1. With permission from Nishisato (1980).

Table 1.1 Sleeping and Sleeping Pills

Never Rarely Sometimes Often Always Sum Score

Strongly
against 15 8 3 2 0 28 −2

Against 5 17 4 0 2 28 −1
Neutral 6 13 4 3 2 28 0
For 0 7 7 5 9 28 1
Strongly

for 1 2 6 3 16 28 2
Sum 27 47 24 13 29 140
Score −2 −1 0 1 2

Table 1.2 Likert Scores and Weighted Means

Score Mean Score Mean

−2 −1.2 −2 −1.3
−1 −0.5 −1 −0.8

0 0.4 0 −0.6
1 0.5 1 0.6
2 1.3 2 1.1

Figure 1.1 Likert Scores

Mean

Likert Score

−2 −1 0 1 2

averages (MRA), used by Richardson and Kuder
(1933), also suggested by Fisher (1940), and fully
illustrated by Mosier (1946). MRA is one of the
algorithms for DS.

1.3.2. The Method
of Reciprocal Averages (MRA)

Let us illustrate the process of MRA.2 Suppose three
teachers (White, Green, and Brown) were rated on their
teaching performance by students (see Table 1.3).

2. With permission from Nishisato and Nishisato (1994a).
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Figure 1.2 Dual-Scaling Optimal Weights

Mean

Optimal Weight

Table 1.3 Evaluating Teachers

Teacher Good Ave Poor Total

White 1 3 6 10
Green 3 5 2 10
Brown 6 3 0 9
Total 10 11 8 29

The MRA is carried out in the following way:
Step 1: The MRA starts with assigning arbitrary

weights to columns (or rows, if preferred). Although
such values are arbitrary, one must avoid identical
weights for all columns (or rows), including zero. It
is always a good strategy to use “reasonable” values.
As an example, consider the following:

x1(good) = 1,

x2(average) = 0,

x3(poor) = −1. (1)

Step 2: Calculate the weighted averages of the rows:

y1(White) = 1× x1 + 3× x2 + 6× x3

10

= 1× 1+ 3× 0+ 6× (−1)

10
= −0.5,

(2)

y2(Green) = 3× 1+ 5× 0+ 2× (−1)

10
= 0.1000,

(3)

y3(Brown) = 6× 1+ 3× 0+ 0× (−1)

9
= 0.6667.

(4)

Step 3: Calculate the mean responses weighted by
y1, y2, y3:

M = 10y1 + 10y2 + 9y3

29

= 10× (−0.5)+ 10× 0.1+ 9× 0.6667

29

= 0.0690. (5)

Step 4: Subtract M from each of y1, y2, y3, and
adjusted values should be indicated again by y1, y2, y3,
respectively:

y1 = −0.5000− 0.0690 = −0.5690, (6)

y2 = 0.1000− 0.0690 = 0.0310, (7)

y3 = 0.6667− 0.0690 = 0.5977. (8)

Step 5: Divide y1, y2, y3 by the largest absolute
value of y1, y2, y3, say, gy . At this stage, gy =
0.5977. Adjusted values should again be indicated by
y1, y2, y3:

y1 = −0.5690

0.5977
= 0.9519,

y2 = 0.0310

0.5977
= 0.0519,

y3 = 0.5977

0.5977
= 1.0000. (9)

Step 6: Using these new values as weights, calculate
the averages of the columns:

x1 = 1y1 + 3y2 + 6y3

10

= 1× (−0.9519)+ 3× 0.0519+ 6× 1.0

10

= 0.5204, (10)

x2 = 3× (−0.9519)+ 5× 0.0519+ 3× 1.0000

11

= 0.0367, (11)

x3 = 6× (−0.9519)+ 2× 0.0519+ 0× 1.0000

8

= −0.7010. (12)

Step 7: Calculate the mean responses weighted by
x1, x2, x3:

N = 10× 0.5204+ 11× 0.0367+ 8× (−0.7010)

29

= 0. (13)

Step 8: Subtract N from each of x1, x2, x3.



Chapter 1 / Dual Scaling • 7

Table 1.4 Iterative Results

Iter2 y Iter2 x Iter3 y Iter3 x Iter4 y Iter4 x Iter5 y Iter5 x

1 −0.9954 0.7321 −0.9993 0.7321 −0.9996 0.7311 −0.9996 0.7311
2 0.0954 0.0617 0.0993 0.0625 0.0996 0.0625 0.0996 0.0625
3 1.0000 −1.0000 1.0000 −1.0000 1.0000 −1.0000 1.0000 −1.0000
g 0.5124 0.7227 0.5086 0.7246 0.5083 0.7248 0.5083 0.7248

Step 9: Divide each element of x1, x2, x3 by the
largest absolute value of the three numbers, say,
gx . Because −0.7010 has the largest absolute value,
gx = 0.7010. Adjusted values are indicated again by
x1, x2, x3:

x1 = 0.5204

0.7010
= 0.7424,

x2 = 0.0367

0.7010
= 0.0524,

x3 = −0.7010

0.7010
= −1.0000. (14)

Reciprocate the above averaging processes (Steps 2
through 9) until all the six values are stabilized.
Iteration 5 provides the identical set of numbers as
Iteration 4 (see Table 1.4). Therefore, the process has
converged to the optimal solution in four iterations.
Notice that the largest absolute values at each iteration,
gy and gx , also converge to two constants, 0.5083 and
0.7248. Nishisato (1988) showed that the eigenvalue,
ρ2, is equal to the product, gygx = 0.5083×0.7248 =
0.3648, and the singular value, ρ, is the geometric
mean,

ρ = singular value = √gygx
= √0.5083× 0.7248 = 0.6070. (15)

If we start with the cross-product symmetric table,
instead of the raw data (the present example), the
process will converge to one constant of g,which is the
eigenvalue, and its positive square root is the singular
value (Nishisato, 1980). See Nishisato (1994, p. 89)
for why the final value of g is the eigenvalue.

Step 10: In the DUAL3 for windows (Nishisato &
Nishisato, 1994b), the unit of weights is chosen in such
a way that the sum of squares of weighted responses
is equal to the number of responses. In this case, the
constant multipliers for adjusting the unit of y (say, cr )
and x (cc) are given by

cr =
√

29

10y1
2 + 10y2

2 + 9y2
3

= 1.2325,

cc =
√

29

10x1
2 + 11x2

2 + 8x2
3

= 1.4718. (16)

Table 1.5 Two Types of Optimal Weights

Normed y Normed x Projected y Projected x

1 −1.2320 1.0760 −0.7478 0.6531
2 0.1228 0.0920 0.0745 0.0559
3 1.2325 −1.4718 0.7481 −0.8933

The final weights are obtained by multiplying
y1, y2, y3 by cr and x1, x2, x3 by cc. These weights
are called normed weights. The normed weights,
multiplied by the singular value—that is, ρyi and
ρxj—are called projected weights, which reflect the
relative importance of categories. The distinction
between these two types of weights will be discussed
later. In the meantime, let us remember that normed
weights and projected weights are what Greenacre
(1984) calls standard coordinates and principal co-
ordinates, respectively, and that projected weights
are the important ones because they reflect relative
importance of the particular solution (component,
dimension). The final results are in Table 1.5. These
weights thus obtained are scaled in such a way that
(a) the sum of responses weighted by y is zero, and
the sum of responses weighted by x is zero; (b) the
sum of squares of responses weighted by y is the total
number of responses, and the same for x.Once the first
solution is obtained, calculate the residual frequencies,
and apply the MRA to the residual table to obtain
the second solution. This process will be discussed
later.

1.4. Two Types of Categorical Data

Nishisato (1993) classified categorical data into two
distinct groups, incidence data (e.g., contingency
tables, multiple-choice data, sorting data) and domi-
nance data (e.g., rank-order, paired-comparison data).

1.4.1. Incidence Data

Elements of data are 1 (presence), 0 (absence),
or frequencies, as we see in contingency tables,
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multiple-choice data, and sorting data. DS of incidence
data is characterized by (a) the use of the “chi-
square metric” (Greenacre, 1984; Lebart et al., 1984;
Nishisato & Clavel, 2003), (b) a lower rank approx-
imation to input data, (c) “a trivial solution” (Gifi,
1990; Greenacre, 1984; Guttman, 1941; Nishisato,
1980, 1994), and (d) more than one dimension needed
to describe the data (Nishisato, 2002, 2003). This
last point is true even when all variables are perfectly
correlated to one another. Correspondence analysis
and multiple correspondence analysis were originally
developed in France specifically for incidence data
for the contingency table and multiple-choice data,
respectively.

1.4.2. Dominance Data

Elements of data are greater than, equal to, or
smaller than, as we see in rank-order data and paired-
comparison data. Because the information is typically
given in the form of inequality relations, without
any specific amount of the discrepancy between the
two attributes or stimuli indicated, it is not possi-
ble to approximate the value of the data directly as
is done with the incidence data. Instead, the objec-
tive here is to derive new measurements for objects
in such a way that the ranking of the measurements
best approximates the corresponding ranking of the
original dominance data. DS of dominance data is
characterized by (a) the use of the Euclidean metric
(Nishisato, 2002), (b) a lower rank approximation
to the ranks of the data (Nishisato, 1994, 1996),
(c) no trivial solution (Greenacre & Torres-Lacomba,
1999; Guttman, 1946; Nishisato, 1978; van de Velden,
2000), and (d) one dimension to describe the data when
all variables are perfectly correlated to one another
(Nishisato, 1994, 1996).

1.4.3. Scope of Dual Scaling

DS is applicable not only to the incidence data but
also to the dominance data. The DUAL3 for Win-
dows (Nishisato & Nishisato, 1994b), a computer
program package for DS, handles both types of cate-
gorical data. Recently, Greenacre and Torres-Lacomba
(1999) and van de Velden (2000) reformulated corre-
spondence analysis for dominance data, which were
not much different from Nishisato’s (1978) earlier
study. After all, they are all based on singular-value
decomposition.

1.5. Scaling of Incidence Data

1.5.1. Contingency Tables

Contingency tables are often used to summarize
data. For example, a small survey on the popularity of
five movies, collected from three age groups, can be
summarized into a 5× 3 table of the number of people
in each cell. Similarly, we often see a large number of
tabulation tables on voting behavior, typically on two
categorical variables (e.g., age and education). These
are contingency tables.

1.5.1.1. Some Basics

Consider an n-by-m contingency table with typical
element fij. DS first eliminates from this table the
frequencies expected when rows and columns are sta-
tistically independent, that is, fi.f.j /ft , where ft is
the total frequency in the table. This is called a trivial
solution. Then, the residual table, consisting of typical
elements for row i and column j, say,

fij − fi.f.j
ft
= fij − hij, (17)

is decomposed into independent components, called
solutions. Let min(n,m) be the smaller value of n
and m. Then the n-by-m residual table can be exhaus-
tively explained by at most [min(n,m)− 1] solutions.
In other words, the total number of nontrivial solutions,
that is, proper solutions T (sol), is given by

T (sol) = min(n,m)− 1. (18)

The variance of solution k is called the eigenvalue,
ρ2
k , which is a measure of information conveyed by

solution k.The total information contained in the resid-
ual matrix, T (inf), is the sum of the [min(n,m) − 1]
eigenvalues, which is equal to

T (inf) =
p∑
k=1

ρ2
k =

χ2

ft
, where

χ2 =
n∑
i

m∑
j

(fij − hij)
2

hij
, (19)

and hij is the frequency expected when the ith row and
the j th column are statistically independent. The per-
centage of the total information explained by solution
k is indicated by δk and is given by

δk = 100ρ2
k

T (inf)
. (20)
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1.5.1.2. Example: Biting Habits
of Laboratory Animals

The biting habits of four laboratory animals were
investigated. The following data were obtained from
Sheskin’s (1997) book.3 Because this is a small exam-
ple, let us list the main output from the program
DUAL3 (Nishisato & Nishisato, 1994b) (Table 1.7).

Because this data set is a 4×3 table, T (sol) = 2, and
the analysis shows that δ1 and δ2 are 94.2% and 5.8%,
respectively. The order-0 approximation is the trivial
solution. The trivial solution is removed from the data,
and the residual table is analyzed into components. The
order-1 approximation is what one can predict from the
trivial solution and Solution 1:

f ∗ij(1) =
fi.f.j

ft
[1+ ρ1yi1xj1]. (21)

Because the value of δ1 is 94.2% (the contribution
of Solution 1), this approximation to the input data is
very good, and the residual table does not contain much
more information to be analyzed. In the current exam-
ple, the order-2 approximation perfectly reproduces
the input data:

f ∗ij(2) =
fi.f.j

ft
[1+ ρ1yi1xj1 + ρ2yi2xj2]. (22)

See also the residual table (Table 1.7), which shows
no more information left to be analyzed. Notice that
it is not clear what relations between the animals and
biting habits are from the input table, but see the graph
based on DS: The two-dimensional graph (Figure 1.3)
shows, among other things, that (a) guinea pigs are
flagrant biters, (b) mice are between flagrant biters
and mild biters, (c) mild biters and nonbiters are rel-
atively closely located, (d) gerbils are nonbiters, and
(e) hamsters are between mild biters and nonbiters. The
graph is much easier to understand than the original
table.

1.5.2. Multiple-Choice Data

Multiple-choice data are ubiquitous in psycholog-
ical research, particularly in personality, social, and
clinical research. We should question, however, how
arbitrarily such data are typically analyzed. When
response options are ordered (e.g., never, sometimes,
often, always), researchers often use the integer scores
1, 2, 3, and 4 for these ordered categories and ana-
lyze the data. This practice of using the so-called
Likert scores is by no means effective in retrieving

3. Reprinted with permission from Sheskin (1997).

Table 1.6 Sheskin’s Data on Biting Habits of
Laboratory Animals

Animals Not a Biter Mild Biter Flagrant Biter

Mice 20 16 24
Gerbils 30 10 10
Hamsters 50 30 10
Guinea pigs 19 11 50

information in data. We will see this problem very
shortly. In contrast, dual scaling can analyze such
multiple-choice data in a very effective way in terms
of information retrieval. We will see an example of
dual-scaling analysis shortly.

1.5.2.1. Some Basics

Consider n multiple-choice items, with item j

having mj options. Consider further that each of N
subjects is asked to choose one option per item. Let
m be the total number of options of n items. For DS,
multiple-choice data are expressed in the form of (1,0)
response patterns (see the example in 1.5.2.2) and also
have a trivial solution. The aforementioned statistics
of multiple-choice data are as follows:

T (sol) = m− n or N − 1,whichever is smaller.

(23)

T (inf) =
m−n∑
k=1

ρ2
k =

∑n
j=1mj

n
− 1 = m− 1. (24)

The definition of δk is the same as the contingency
table, but in practice we will modify it as we dis-
cuss later. Option weights are determined, as Lord
(1958) proved, to yield scores with a maximal value
of the generalized Kuder-Richardson internal consis-
tency reliability, or Cronbach’s α (Cronbach, 1951),
which can be inferred from the following relations
(Nishisato, 1980):

α = 1− 1− ρ2

(n− 1)ρ2
= n

n− 1

(∑
r2

jt − 1∑
r2

jt

)
since

ρ2 =
∑n

j r
2
jt

n
, (25)

where r2
jt is the square of correlation between item j

and the total score. It is known (Nishisato, 1980, 1994)
that the average information in multiple-choice data,
that is—T (inf)/T (sol)—is 1/n and that α becomes
negative when ρ2 is smaller than the average infor-
mation. Therefore, Nishisato (1980, 1994) suggests
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Table 1.7 Approximation to Input

ORDER 0 APPROXIMATION RESIDUAL MATRIX

25.5 14.4 20.1 −6.5 1.6 3.9
21.3 12.0 16.8 8.8 −2.0 −6.8
38.3 21.5 30.2 11.8 8.5 −20.2
34.0 19.1 26.9 −15.0 −8.1 23.1

ORDER 1 APPROXIMATION RESIDUAL MATRIX SOLUTION 1

22.7 13.1 24.2 −2.7 2.9 −0.2 Eigenvalue = 0.20
26.1 14.2 9.7 3.9 −4.2 0.3 Singular value = 0.45
52.1 27.8 10.2 −2.1 2.2 −0.2 Delta = 94.2%
18.1 12.0 49.9 0.9 −1.0 0.1 CumDelta = 94.2

ORDER 2 APPROXIMATION RESIDUAL MATRIX SOLUTION 2

20.0 16.0 24.0 0.0 0.0 0.0 Eigenvalue = 0.01
30.0 10.0 10.0 0.0 0.0 0.0 Singular value = 0.11
50.0 30.0 10.0 0.0 0.0 0.0 Delta = 5.8%
19.0 11.0 50.0 0.0 0.0 0.0 CumDelta = 100.0

PROJECTED WEIGHTS PROJECTED WEIGHTS

Sol-1 Sol-2 Sol-1 Sol-2

Mice 0.14 0.12 Not a biter −0.34 −0.10
Gerbils −0.30 −0.21 Mild biter −0.27 0.19
Hamsters −0.47 0.06 Flagrant biter 0.63 −0.01
Guinea pigs 0.61 −0.03

Figure 1.3 Biting Habits of Four Animals

Mild Biter
Mice

Flagrant Biter

Guinea PigsNonbiter

Gerbils

Hamster

stopping the extraction of solutions as soon as ρ2

becomes smaller than 1/n. Accordingly, we redefine
the statistic δk as the percentage of ρ2

k over the sum of
ρ2
j greater than 1/n.

1.5.2.2. Example: Blood Pressure,
Migraines, and Age

As mentioned earlier, Torgerson (1958) called DS
“principal component analysis of categorical data.”
Because principal component analysis (PCA) is a
method to find a linear combination of continuous
variables (PCA) and that of categorical variables
(DS), it would be interesting to look at differences
between them. The following example is adopted from
Nishisato (2000):

1. How would you rate your blood pressure? (Low,
Medium, High): coded 1, 2, 3

2. Do you get migraines? (Rarely, Sometimes,
Often): 1, 2, 3 (as above)

3. What is your age group? (20–34, 35–49, 50–65):
1, 2, 3

4. How would you rate your daily level of anxiety?
(Low, Medium, High): 1, 2, 3

5. How would you rate your weight? (Light,
Medium, Heavy): 1, 2, 3

6. What about your height? (Short, Medium, Tall):
1, 2, 3

Suppose we use the traditional Likert scores for
PCA—that is, 1, 2, 3 as scores for the three categories
of each question. DS uses response patterns of 1s and
0s. See the two data sets from 15 subjects in Table 1.8
and the product-moment correlation matrix for PCA
in Table 1.9. Examine the correlation between blood
pressure (BP) and age (Age) (r = 0.66) and that
between BP and migraines (Mig) (r = −0.06) using
the data in the contingency table format (Table 1.10).

Notice a linear relation between BP and Age and a
nonlinear relation between BP and Mig. It seems that
the nonlinear relation between BP and Mig is much
clearer than the linear relation between BP and Age:
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Table 1.8 Likert Scores for PCA and Response Patterns for DS

PCA DS

Bpr Mig Age Anx Wgt Hgt Bpr Mig Age Anx Wgt Hgt
Subject Q1 Q2 Q3 Q4 Q5 Q6 123 123 123 123 123 123

1 1 3 3 3 1 1 100 001 001 001 100 100
2 1 3 1 3 2 3 100 001 100 001 010 001
3 3 3 3 3 1 3 001 001 001 001 100 001
4 3 3 3 3 1 1 001 001 001 001 100 100
5 2 1 2 2 3 2 010 100 010 010 001 010
6 2 1 2 3 3 1 010 100 010 001 001 100
7 2 2 2 1 1 3 010 010 010 100 100 001
8 1 3 1 3 1 3 100 001 100 001 100 001
9 2 2 2 1 1 2 010 010 010 100 100 010

10 1 3 2 2 1 3 100 001 010 010 100 001
11 2 1 1 3 2 2 010 100 100 001 010 010
12 2 2 3 3 2 2 010 010 001 001 010 010
13 3 3 3 3 3 1 001 001 001 001 001 100
14 1 3 1 2 1 1 100 001 100 010 100 100
15 3 3 3 3 1 2 001 001 001 001 100 010

Table 1.9 Product-Moment Correlation Based on
Likert Scores

BP Mig Age Anx Wgt Hgt

Blood
pressure (BP) 1.00

Migraine (Mig) −.06 1.00
Age (Age) .66 .23 1.00
Anxiety (Anx) .18 .21 .22 1.00
Weight (Wgt) .17 −.58 −.02 .26 1.00
Height (Hgt) −.21 .10 −.30 −.23 −.31 1.00

Table 1.10 Relation of Blood Pressures to Age and
Migraines

Age Migraine

20–34 35–49 50–65 Rarely Sometimes Often

High BP 0 0 4 0 0 4
Mid BP 1 4 1 3 3 0
Low BP 3 1 1 0 0 5

“If you have frequent migraines, your blood pressure is
either high or low.” The first two principal components
of Likert scores are plotted in Figure 1.4. Notice that
it captures only linear relations. The data for DS are
expressed in terms of chosen response patterns, and
the units of analysis are response options, not items
as in the case of PCA. PCA is a method to determine
the most informative weighted combinations of items,
whereas DS looks for the most informative weighted

Figure 1.4 Two Solutions From Principal
Component Analysis

Height

Migraines

Age

Anxiety

Blood Pressure

Weight

combinations of categories of items. This means that
DS yields an inter-item correlation matrix for each
solution, rather than one for the entire data set as in
PCA.

The current data yield four solutions associated
with positive values of reliability coefficient α (see
Table 1.11).

The adjusted delta is the one redefined in
terms of solutions associated with positive values of
reliability α. CumDelta and CumAdjDelta are cumu-
lative values of delta and adjusted delta, respectively.
For the limited space, we will look at only the first
two solutions and their projected option weights (see
Table 1.12). Notice that the weights for options of BP
and Mig for Solution 1 are weighted in such a way that
the nonlinear relation is captured. Study the weights
to convince yourself. Using these weights, inter-item



12 • SECTION I / SCALING

Table 1.11 Four Solutions

Solution 1 Solution 2 Solution 3 Solution 4

Eigenvalue 0.54 0.37 0.36 0.31
Singular value 0.74 0.61 0.59 0.55
Delta 27 19 17 15
CumDelta 27 46 63 79
Adjusted delta 34 24 22 20
CumAdjDelta 34 58 80 100

Table 1.12 Projected Option Weight of Two
Solutions

Solution 1 Solution 2

Blood Pressure
Low −0.71 0.82
Medium 1.17 −0.19
High −0.86 −0.74

Anxiety
Low 1.55 1.21
Medium 0.12 0.31
High −0.35 −0.33

Migraine
Rarely 1.04 −1.08
Sometimes 1.31 0.70
Often −0.78 0.12

Weight
Light −0.27 0.46
Medium 0.32 0.01
Heavy 0.50 −1.40

Age
20–34 0.37 0.56
35–49 1.03 0.22
50–65 −0.61 −0.56

Height
Short −0.56 −0.63
Medium 0.83 −0.35
Tall −0.27 0.98

correlation matrices are obtained for the two DS
solutions (see Table 1.13).

BP and Mig are now correlated at 0.99 in Solution 1.
This was attained by assigning similar weights to high
BP, low BP, and frequent migraines, which are very
different from the weights given to medium BP, rare
migraines, and occasional migraines. The same cor-
relation for Solution 2 is 0.06. Characteristics of the
first two DS solutions can be obtained by putting
options of similar weights together (see Table 1.14).
“Nonlinear combinations” of response categories are
involved in each solution. In DS, linear correlation is
maximized by transforming categories linearly or non-
linearly, depending on the data, whereas PCA filters
out all nonlinear relations in the process of analysis,
which is why it is called linear analysis. The first two

DS solutions are plotted in Figure 1.5. Unlike PCA
solutions, three categories of a single variable are not
forced to be on a single line but usually form a tri-
angle, the area of which is monotonically related to
the contribution of the variable to these dimensions.
PCA can never reveal a strong relation between BP
and Mig, but this relation is the most dominant one in
DS. In DS, high and low BP are associated with fre-
quent migraines, but the second dimension identifies
a different association between low and high BP—the
former with young, skinny, and tall subjects and the
latter with old, heavy, and short subjects.

1.5.3. Sorting Data

Sorting data are not as popular as contingency tables
and multiple-choice data, but in some areas, such
as cognitive psychology, we often see references to
sorting data. So, in this section, we will learn how
sorting data are collected and optimally analyzed by
dual scaling.

1.5.3.1. Some Basics

Sorting data are collected in the following way.
Consider the first object to be a member of the first pile
and assign 1 to it; go down the list, and each time you
find an object similar to the first object, assign 1 to it.
When you finish identifying all the objects with 1, go to
the next object that has not been chosen so far and give
it 2; go down the list and identify all the objects that are
similar to the object with number 2. In this way, you
classify all objects on the list into piles. Takane (1980)
demonstrated that DS can be used to analyze sorting
data by transposing the data or exchanging the roles of
subjects and item options in multiple-choice data with
objects and subject piles in sorting data, respectively.
With this understanding, T (sol) and T (inf) are the
same as those of multiple-choice data.

1.5.3.2. Example: Sorting
19 Countries Into Similar Groups

The data in Table 1.15 were collected from
Nishisato’s class in 1990. The last two columns of
the table indicate the optimal (projected) weights of
the countries on the first two solutions. Note that
prior to DS analysis, the data are first transformed to
(1, 0) response patterns, as was the case of multiple-
choice data. One of the outcomes is the inter-subject
correlation matrix, just like the inter-item correlation
matrix in multiple-choice data. Table 1.16 shows the



Chapter 1 / Dual Scaling • 13

Table 1.13 Correlation Matrices From Two DS Solutions

Solution 1 Solution 2

BP Mig Age Anx Wgt Hgt BP Mig Age Anx Wgt Hgt

BP 1.0 1.0
Mig .99 1.0 .06 1.0
Age .60 .58 1.0 .59 −.31 1.0
Anx .47 .52 .67 1.0 .07 .35 .35 1.0
Wgt .43 .39 .08 −.33 1.0 .28 .62 −.01 .19 1.0
Hgt .56 .57 .13 .19 .20 1.0 .31 .29 .32 .17 .38 1.0

Table 1.14 Characteristics of Two DS Solutions

Solution 1 Solution 2

One End The Other End One End The Other End

Low BP Medium BP High BP Low BP
High BP Rare migraine Rare migraine Occasional migraine
Frequent migraine Middle age Old Young
Old age group Low anxiety Heavy Tall
High anxiety Medium height Short
Short

Figure 1.5 First Two Dual-Scaling Solutions
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Table 1.15 Sorting of 19 Countries by Five Subjects

Country S1 S2 S3 S4 S5 Solution 1 Solution 2

Britain 1 1 1 1 1 −0.50 −0.69
Canada 5 2 2 2 1 1.06 −0.81
China 2 3 3 3 2 1.53 0.52
Denmark 1 1 1 1 3 −0.73 −0.71
Ethiopia 3 5 5 4 4 −1.00 2.15
Finland 1 4 1 1 3 −0.81 −0.71
France 1 1 1 1 5 −0.73 −0.71
Germany 1 4 1 5 8 −0.50 −0.60
India 4 3 4 3 6 1.02 0.81
Italy 1 4 5 5 7 −0.93 −0.17
Japan 2 3 6 2 8 1.21 −0.01
New Zealand 4 1 6 1 1 0.24 −0.31
Nigeria 3 5 4 4 4 −0.76 2.34
Norway 1 4 1 1 3 −0.81 −0.71
Singapore 4 3 6 3 8 1.12 0.24
Spain 1 5 5 1 7 −0.92 0.34
Switzerland 1 4 1 5 5 −0.85 −0.71
Thailand 4 3 6 3 6 1.20 0.46
United States 5 2 2 2 8 1.17 −0.73

Table 1.16 Inter-Subject Correlation for Two DS Solutions

Solution 1 Solution 2

Subject 1 1.00 1.00
Subject 1 0.90 1.00 0.63 1.00
Subject 3 0.93 0.82 1.00 0.60 0.90 1.00
Subject 4 0.88 0.99 0.81 1.00 0.98 0.67 0.63 1.00
Subject 5 0.77 0.87 0.75 0.85 1.00 0.90 0.87 0.82 0.90 1.00

inter-subject correlation matrices associated with
the two solutions. In both solutions, the correlation
between subjects is relatively high. Figure 1.6 shows
only the configuration of 18 of the 19 countries (France
is missing because it occupies the same point as
Denmark) captured by the first two solutions. The
graph clearly shows geographical similarities of the
countries.

One commonly observed characteristic of sorting
data is that there are often too many dominant solutions
to interpret. It must be a reflection of the freedom that
the subjects can enjoy in terms of the number of piles
and the sizes of piles that are completely in the hands
of the subjects. The δ values of the first eight solutions
are 19%, 18%, 16%, 11%, 9%, 7%, 6%, and 5%, an
unusually gradual drop in percentage from solution to
solution. This poses in practice a problem of how many
solutions to extract and interpret.

1.6. Scaling of Dominance Data

We will discuss only rank-order data and paired-
comparison data. As for DS of successive categories
data, see Nishisato (1980, 1986,1994), Nishisato and
Sheu (1980), and Odondi (1997).

1.6.1. Rank-Order Data

Ranking is a very popular task in psychological
research. For instance, we ask people to rank a number
of candidates for a committee and choose the winner in
terms of the average ranks of the candidates. Although
this popular method for processing ranking data looks
reasonable, it is far from even being good and is rather
misleading. Why? We will see why such averaged
ranks should not be used to evaluate candidates or
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Figure 1.6 Sorting of 19 Countries
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voters, which becomes obvious once we analyze the
same ranking data with dual scaling.

1.6.1.1. Some Basics

Suppose that each of N subjects ranks all of n
objects, according to the order of preference, with 1
being the first choice and n being the last choice.
Assuming that the number of subjects is greater than
that of the objects, the total number of solutions and
the total information from the data are given by the
following:

T (sol) = n− 1 and T (inf) = n+ 1

3(n− 1)
. (26)

When dominance data are subjected to DS, the
original rank-order data are first converted to a dom-
inance table. Let us indicate by Rij the rank given to
object j by subject i. Then, assuming that each subject
ranks n objects, the corresponding dominance number,
eij, is given by the formula

eij = n+ 1− 2Rij, (27)

where eij indicates the number of times subject i ranked
object j before other objects minus the number of times
the subject ranked it after other objects. So it indicates
relative popularity of each object within each subject.
The sum of dominance numbers for each subject is
always zero, and the dominance number is bounded

between −(n − 1) and (n − 1). Because dominance
numbers are ipsative (i.e., each row sum is a constant),
we must modify the process of MRA by redefining
each row marginal to be n(n − 1) and that of column
N(n− 1). The total number of responses in the dom-
inance table is Nn(n − 1). These numbers are based
on the fact that each element in the dominance table is
the result of (n− 1) comparisons between each object
and the remaining (n − 1) objects (Nishisato, 1978).
Using these redefined marginals, we may use MRA for
analysis.

The ipsative property of dominance numbers has
another implication for quantification: There is no
centering constraint on weights for subjects. Thus, the
weights for subjects can be all positive or negative.
This aspect of quantification of dominance data is very
different from that of incidence data, in which both
weights for subjects and those for stimuli are centered
within each set.

1.6.1.2. Example: Ranking
of Municipal Services

Table 1.17 contains ranking of 10 municipal ser-
vices by 31 students, collected from Nishisato’s class
in 1982, together with the dominance table. If there
were no individual differences, the reasonable scale
values or satisfaction values of the 10 government
services would be given by the average dominance
numbers of the services over subjects. However, in DS,
we assume that individual differences are worthwhile
variates. The scale values of the services are calcu-
lated as averages differentially weighted by subjects’
weights. Its main task is to determine appropriate
weights for subjects, appropriate in the sense that
the variance of the weighted means be a maximum.
Individual differences are responsible for multidimen-
sional data structure. T (sol) is 9, and the δ values are
in Table 1.18. Considering a relatively sharp drop from
Solution 2 to Solution 3, one may decide to look at two
solutions, as is done here.

For dominance data, there exists a strict rule for
plotting (Nishisato, 1996), namely, plot-normed
weights of subjects and projected weights of objects.
Then, in the total space, we obtain a configuration
such that each subject ranks the closest object first,
second closest second, and so on for all subjects and
objects—that is, a solution to the Coombs problem of
multidimensional unfolding (Coombs, 1964).

Figure 1.7 (p. 18) shows a plot of the first two solu-
tions. A large number of subjects are furthest from
postal service, which indicates that postal service is
the least satisfactory. This is partly due to the fact that
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Table 1.17 Ranking of 10 Government Services in Toronto and Dominance Table

A B C D E F G H I J A B C D E F G H I J

1 1 7 9 10 2 6 3 8 5 4 9 −3 −7 −9 7 −1 5 −5 1 3
2 6 10 9 5 3 1 7 2 4 8 −1 −9 −7 1 5 9 −3 7 3 −5
3 9 8 4 3 5 6 10 2 1 7 −7 −5 3 5 1 −1 −9 7 9 −3
4 2 10 5 6 3 1 4 8 7 9 7 −9 1 −1 5 9 3 −5 −3 −7
5 2 10 6 7 4 1 5 3 9 8 7 −9 −1 −3 3 9 1 5 −7 −5
6 1 3 5 6 7 8 2 4 10 9 9 5 1 −1 −3 −5 7 3 −9 −7
7 7 10 1 6 5 3 8 4 2 9 −3 −9 9 −1 1 5 −5 3 7 −7
8 2 10 6 7 4 1 5 3 9 8 7 −9 −1 −3 3 9 1 5 −7 −5
9 2 10 5 8 4 1 6 3 7 9 7 −9 1 −5 3 9 −1 5 −3 −7

10 2 10 5 9 8 7 4 1 3 6 7 −9 1 −7 −5 −3 3 9 5 −1
11 9 10 7 6 5 1 4 2 3 8 −7 −9 −3 −1 1 9 3 7 5 −5
12 6 10 7 4 2 1 3 9 8 5 −1 −9 −3 3 7 9 5 −7 −5 1
13 1 10 3 9 6 4 5 2 7 8 9 −9 5 −7 −1 3 1 7 −3 −5
14 8 6 5 3 10 7 9 2 1 4 −5 −1 1 5 −9 −3 −7 7 9 3
15 8 10 9 6 4 1 3 2 5 7 −5 −9 −7 −1 3 9 5 7 1 −3
16 3 5 10 4 6 9 8 2 1 7 5 1 −9 3 −1 −7 −5 7 9 −3
17 1 10 8 9 3 5 2 6 7 4 9 −9 −5 −7 5 1 7 −1 −3 3
18 5 4 9 3 10 8 7 2 1 6 1 3 −7 5 −9 −5 −3 7 9 −1
19 2 10 6 7 8 1 5 4 3 9 7 −9 −1 −3 −5 9 1 3 5 −7
20 1 4 2 10 9 7 6 3 5 8 9 3 7 −9 −7 −3 −1 5 1 −5
21 2 10 5 7 3 1 4 6 8 9 7 −9 1 −3 5 9 3 −1 −5 −7
22 6 3 9 4 10 8 7 2 1 5 −1 5 −7 3 −9 −5 −3 7 9 1
23 6 9 10 4 8 7 5 2 1 3 −1 −7 −9 3 −5 −3 1 7 9 5
24 5 2 1 9 10 4 8 6 3 7 1 7 9 −7 −9 3 −5 −1 5 −3
25 2 10 6 7 9 1 3 4 5 8 7 −9 −1 −3 −7 9 5 3 1 −5
26 7 10 9 5 2 6 3 1 4 8 −3 −9 −7 1 7 −1 5 9 3 −5
27 8 7 10 3 5 9 4 2 1 6 −5 −3 −9 5 1 −7 3 7 9 −1
28 3 8 6 7 5 10 9 2 4 1 5 −5 −1 −3 1 −9 −7 7 3 9
29 2 10 7 9 4 1 5 3 6 8 7 −9 −3 −7 3 9 1 5 −1 −5
30 2 10 9 1 4 7 5 3 6 8 7 −9 −7 9 3 −3 1 5 −1 −5
31 4 10 9 7 5 1 3 2 6 8 3 −9 −7 −3 1 9 5 7 −1 −5

Table 1.18 Nine Solutions and Their Contributions

Solution

1 2 3 4 5 6 7 8 9

Delta 37.9 22.4 13.4 10.6 4.9 4.2 2.7 2.2 1.9
CumDelta 37.9 60.2 73.6 84.2 89.0 93.2 95.9 98.1 100.0

the data were collected shortly after a major postal
strike. There are groups who prefer theaters first and
restaurants second, or vice versa, suggesting that those
who go to theaters must go to good restaurants near the
theaters. The most dominant group considers public
libraries most satisfactory. One important message of
this graphical analysis is that it is very difficult, if
not impossible, to interpret the configuration of only
services. When we plot subjects and see they are all
scattered in the space, the configuration of the services
suddenly becomes meaningful because they provide
us with how they view those services in terms of
satisfaction.

One can calculate the distance from each subject
(normed) to each service (projected) in the two-
dimensional graph and see if indeed the ranking of
distances between each subject and each of the 10
services is close to the ranking in the input data.
The ranking thus derived from the first two solutions
is called rank-2 approximation to the input ranking.
The DUAL3 (Nishisato & Nishisato, 1994b) pro-
vides these distances and approximated ranks. The
distances between each of the first five subjects and
the 10 services and the rank-2 and rank-8 approxi-
mations to input ranks are in Tables 1.19 and 1.20.
The rank-9 approximation perfectly reproduces the
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Table 1.19 Rank 2: Distances and Ranks of Distances

Service

1 2 3 4 5 6 7 8 9 10

Distances
Subject 1 0.20 2.05 0.66 1.32 0.26 0.13 0.29 1.29 1.81 1.29
Subject 2 2.05 5.42 3.65 2.79 2.43 1.81 2.33 1.14 2.09 3.64
Subject 3 3.03 3.48 3.40 1.76 3.08 3.35 2.94 1.08 0.94 2.49
Subject 4 1.33 4.82 2.48 3.56 1.57 0.95 1.63 2.97 4.10 3.60
Subject 5 1.31 5.26 2.81 3.40 1.65 0.87 1.66 2.29 3.55 3.72

Ranks of distances
Subject 1 2 10 5 8 3 1 4 7 9 6
Subject 2 3 10 9 7 6 2 5 1 4 8
Subject 3 6 10 9 3 7 8 5 2 1 4
Subject 4 2 10 5 7 3 1 4 6 9 8
Subject 5 2 10 6 7 3 1 4 5 8 9

Table 1.20 Rank 8: Distances and Ranks of Distances

Service

1 2 3 4 5 6 7 8 9 10

Distances
Subject 1 13.90 16.75 17.42 17.76 14.20 16.15 14.63 16.91 15.67 15.02
Subject 2 5.79 8.16 6.69 4.99 4.40 4.03 5.49 4.36 4.49 6.78
Subject 3 11.29 11.02 9.04 8.48 9.36 9.98 11.58 8.07 7.73 10.18
Subject 4 4.99 8.49 6.52 6.75 5.24 4.32 6.05 7.30 7.44 7.71
Subject 5 2.70 6.79 4.09 4.59 3.52 2.66 3.36 3.43 5.45 5.42

Ranks of distances
Subject 1 1 7 9 10 2 6 3 8 5 4
Subject 2 7 10 8 5 3 1 6 2 4 9
Subject 3 9 8 4 3 5 6 10 2 1 7
Subject 4 2 10 5 6 3 1 4 7 8 9
Subject 5 2 10 6 7 5 1 3 4 9 8

Table 1.21 Average Squared Rank Discrepancies

Rank k

1 2 3 4 5 6 7 8 9 Solution 1 Solution 2

Subject 1 8.8 7.8 9.0 4.6 4.2 1.4 1.6 0.0 0.0 0.65 −0.51
Subject 2 6.2 2.8 1.4 0.2 0.4 0.4 0.2 0.4 0.0 1.15 1.08
Subject 3 19.6 8.0 8.0 1.2 1.2 0.0 0.0 0.0 0.0 −0.16 1.51
Subject 4 1.4 1.0 1.2 1.6 1.6 1.6 0.6 0.2 0.0 1.39 −0.73
Subject 5 1.2 0.8 1.4 1.4 1.4 1.0 0.8 0.6 0.0 1.54 −0.21

input ranks. It is useful to look at average squared
rank discrepancies between these approximated ranks
and the original ranks (see Table 1.21). Notice that
the rank-9 approximation reproduced the input ranks,

thus showing no discrepancies. Table 1.21 also lists
normed weights for those five subjects, which should
be all equal to 1.00 if no individual differences were
involved.
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Figure 1.7 Ten Government Services
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1.6.2. Paired-Comparison Data

The method of paired comparison (see Bock &
Jones, 1968) has been one of the pillars in the history
of psychological scaling. For a unidimensional prefer-
ence scale to be constructed from paired-comparison
data, we must avoid intransitive judgments (e.g., A
is preferred to B, B to C, and C to A), and we must
consider individual differences as random fluctuations
of judgments. But in real data, we see many intransi-
tive judgments and substantial individual differences.
For us to analyze such paired-comparison data, there-
fore, we must consider a multidimensional scale and
treat individual differences as legitimate variates for
analysis. This mode of more realistic analysis than
the traditional method of paired comparisons is what
dual scaling offers. There is no need to worry about
unidimensionality, for dual scaling yields as many
dimensions as data dictate. We will see how paired-
comparison data can be effectively analyzed by dual
scaling.

1.6.2.1. Some Basics

For n objects, create all n(n − 1)/2 possible pairs,
present each pair to N subjects, and ask which object
in the pair they like better. Collected in this way,
such paired-comparison data have mathematically the
same structure as the N -by-n rank-order data: T (sol)
and T (inf) are identical to those of rank-order data.
The only difference is that in rank order, one must
arrange all objects in a single order, whereas in paired

comparisons, one can anticipate so-called intransitive
choices (e.g., A is preferred to B, B is preferred to
C, and C is preferred to A). For subject i and pair
(Xj ,Xk), Nishisato (1978) defined a response variable
as follows:

ifjk =



1 if Xj > Xk

0 if Xj = Xk
−1 if Xj < Xk

. (28)

The subjects-by-objects dominance table can be
obtained by transforming ifjk to eij by the following
formula:

eij =
n∑
k=1
k=/ j

ifjk. (29)

Recall that the dominance numbers were easily
obtained for rank-order data by a simpler formula than
this. The meaning is the same; that is, eij is the number
of times subject i preferredXj toXk minus the number
of times subject i preferred other objects to Xj .

1.6.2.2. Wiggins’s Christmas Party Plans

As a course assignment, Ian Wiggins, now a success-
ful consultant in Toronto, collected paired-comparison
data4 from 14 researchers at a research institute on his
eight Christmas party plans:

1. A potluck at someone’s home in the evening
2. A potluck in the group room
3. A pub/restaurant crawl after work
4. A reasonably priced lunch in an area restaurant
5. Keep to one’s self
6. An evening banquet at a restaurant
7. A potluck at someone’s home after work
8. A ritzy lunch at a good restaurant (tablecloths)

Table 1.22 contains data in the form of subjects (14)
by pairs (28 pairs), with elements being 1 if the subject
prefers the first plan to the second one and 2 if the
second plan is preferred to the first (“2” will be later
changed to “−1” for analysis). Dominance numbers
are in Table 1.23. As is the case with rank-order data,
each element of the 14×8 dominance table is based on
seven comparisons. Or, more generally, for the N × n
dominance table, each element is based on (n − 1)
comparisons. Therefore, the marginal frequency of
responses for each row is n(n − 1) and that of each
column is N(n− 1).

4. Data used with permission from Ian Wiggins.
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Table 1.22 Wiggins’s Christmas Party Plans Data

j 1111111 222222 33333 4444 555 66 7
k 2345678 345678 45678 5678 678 78 8

1 1121121 222222 21121 1121 121 21 2
2 2221212 121212 21112 1112 222 12 2
3 1111121 111121 11121 1121 222 21 1
4 2121112 111112 21222 1112 222 22 2
5 2221212 221222 21212 1111 222 12 2
6 1111111 221222 21222 1111 222 22 1
7 1111121 121121 21121 1121 222 22 1
8 1111121 121221 21221 1221 221 21 1
9 1221121 221122 11121 1121 222 22 1

10 1211222 221222 11111 1222 222 11 2
11 1211111 222222 11111 1111 222 22 2
12 2222122 121111 21111 1111 111 22 1
13 1211212 222222 11111 1212 222 11 2
14 2222121 211111 11111 2121 121 21 1

Table 1.23 Dominance Table

j 1 2 3 4 5 6 7 8

1 3 −7 1 5 −1 −3 5 −3
2 −3 1 −1 5 −7 1 −5 7
3 5 3 1 −1 −7 −3 7 −5
4 1 5 −5 3 −7 −3 −1 7
5 −3 −3 1 7 −7 3 −3 5
6 7 −5 −3 5 −7 −1 3 1
7 5 1 −1 3 −7 −5 7 −3
8 5 −1 −3 1 −5 3 7 −7
9 1 −3 5 3 −7 −5 7 −1

10 −1 −5 7 −3 −7 5 1 3
11 5 −7 7 3 −5 −3 −1 1
12 −5 5 3 7 1 −7 −1 −3
13 1 −7 7 −1 −5 5 −3 3
14 −3 5 7 −1 1 −5 3 −7

From the dominance table, it is clear that Plan 5 is
not very popular because the corresponding elements
from 14 subjects are mostly negative. If we calculate
the mean dominance numbers of the eight columns,
they may provide good unidimensional estimates of
preference values of the party plans, provided that
individual differences are negligible. In DS, we weight
subjects differentially in such a way that the variance
of the eight weighted averages be a maximum. For
the present data set, T (sol) is 7, and the correspond-
ing δ values are in Table 1.24. Although weights are
not listed here, Solution 4 is dominated only by one
variable, that is, “pub/restaurant crawl.” In contrast,
the first three solutions present a variety of prefer-
ence patterns. Therefore, let us look at the first three
solutions. Figures 1.8 and 1.9 show the following:
Dimension 1 divides party plans into the convivial
side and the “Keep to one’s self” side, Dimension 2

Table 1.24 Contributions of Seven Solutions to
Total Information

Solution

1 2 3 4 5 6 7

Delta 34 26 16 13 7 3 1
CumDelta 34 60 76 89 96 99 100

Figure 1.8 Solutions 1 and 2
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separates plans into expensive and nonexpensive, and
Dimension 3 divides party plans into daytime parties
and evening parties. Note that the weights of subjects
on Solution 1 are mostly positive, but that those on
Solutions 2 and 3 are much more evenly distributed
than those on Solution 1. This is a reflection of the
property of dominance data that the weights for sub-
jects are not centered, due to the row-ipsative nature
of dominance data, and are free to vary.

That subjects are scattered in the three-dimensional
space means that different subjects prefer different
party plans. As noted earlier, each subject in total
space ranks the closest plan first. The graphs offer
an interesting way to look at individual differences
in judgment: DS can accommodate any patterns or
combinations of different aspects of the party, such
as daytime-inexpensive, daytime-expensive, evening-
inexpensive, and evening-expensive.
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Figure 1.9 Solutions 1 and 3
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1.7. Forced Classification

for Multiple-Choice Data

We have seen dual scaling of multiple-choice data, and
it was noted that dual scaling maximizes the average
of all possible inter-item correlation coefficients. There
are occasions, however, when we are not interested in
all the items but only one item. For instance, if we col-
lect children’s background medical and psychological
information in addition to whether or not they have
allergy problems, we would be interested in finding
which of the medical and psychological variables may
be related to the allergy problems. In this case, we
are no longer interested in scaling data to maximize
the average inter-variable correlation, but our interest
now lies in the scaling method that maximizes the
correlation between the allergy variable and the other
variables. This task is carried out by the procedure
called forced classification.

Nishisato (1984) proposed a simple procedure to
carry out the above task, which is nothing but dis-
criminant analysis with categorical data. It is based on
two principles: principle of internal consistency (PIC)
and principle of equivalent partitioning (PEP). Let us
denote the data of nmultiple-choice questions fromN

subjects as

F = [F1,F2, . . . ,Fj , . . . ,Fn], (30)

where Fj is an N -by-mj matrix, in which the row i

consists of subject i’s response to item j, with 1 being
the choice and 0s the nonchoices out of mj options.
Each subject chooses only one option per item. Sup-
pose that we repeat Fj k times in the data matrix. As
k increases, the response patterns in Fj become more
dominant in the data set, and eventually we will see
that the response patterns in the repeated Fj determine
the first solution (PIC). Instead of repeating Fj k times,
it is known that the same dual-scaling results can be
obtained from analysis of the following matrix (PEP):

[F1,F2, . . . , kFj , . . . ,Fn]. (31)

This matrix is obtained from the original matrix by
replacing each 1 in Fj with a k. Thus, the computation
involved here is ordinary DS with an altered data matrix
by multiplying the chosen submatrix by a large enough
scalar k.Possible applications of this procedure are, for
instance, the following:

1. to identify personality traits that are closely
related to the school dropout,

2. to find out if academic performance is influenced
by some environmental factors (school buildings,
computers, etc.),

3. to see if the high blood pressure is related to the
regions where people live,

4. to collect questions related to anxiety for the
construction of an anxiety scale

5. to eliminate age effects, if any, from consumer
data on purchase patterns of cosmetics after
finding significant age effects.

Due to the limited space for this chapter, a numeri-
cal example of forced classification is not given here.
Please refer to Nishisato and Gaul (1990) for its appli-
cations to marketing research and to Nishisato and
Baba (1999) for the latest development.

1.8. Mathematics of Dual Scaling

1.8.1. Structure of Data

Given a two-way table of data with typical element
fij, singular-value decomposition can be described as
bilinear decomposition:

fij = fi.f.j

f..
[1+ ρ1yi1xj1 + ρ2yi2xj2

+ · · · + ρkyikxjk], (32)
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where ρk is the kth largest singular value, yik is the
ith element of singular vector yk for the rows, and
xjk is the j th element of singular vector xk for the
columns of the table. These singular vectors can be
viewed as weight vectors for the rows and the columns.
The first term inside the bracket—that is, the element
1—is called a trivial solution associated with the case
in which the rows and the columns are statistically
independent. Another well-known expression of the
singular-value decomposition is what Benzécri et al.
(1973) call transition formulas and Nishisato (1980)
refers to as dual relations:

yik = 1

ρk

�fijxjk

fi.
; xjk = 1

ρk

�fijyik

f.j
. (33)

These weights, yik, xjk, are called normed weights
(Nishisato, 1980) or standard coordinates (Greenacre,
1984). If we multiply the formulas by ρk, the resul-
tant weights are called projected weights (Nishisato,
1980) or principal coordinates (Greenacre, 1984). The
projected weights are

ρkyik =
n∑
j=1

fijxjk

fi.
, ρkxjk =

m∑
i=1

fijyik

f.j
. (34)

The above sets of formulas hold for any data
matrix (fij).

To arrive at these formulas, one can define the task
in many ways, which is probably one of the reasons
why so many researchers have discovered the method
independently and coined their own names. For exam-
ple, one may state the problem in any of the following
ways:

• Determine xjk and yik in such a way that the data
weighted by xjk and the data weighted by yik attain
the maximal product-moment correlation.
• Determine xjk to make the between-row sum of

squares, relative to the total sum of squares, be
a maximum; determine yik so as to make the
between-column sum of squares to the total sum
of squares be a maximum.
• Determine those two sets of weights to make

the regression of the rows on the columns and
the regression of the columns on the rows be
simultaneously linear.
• Determine those two sets of weights in such a

way to make the sum of the squared differences
between fij and fi.f.j

f..
xρyikxjk be a minimum.

All of these lead to the identical solution
set (ρk, yik, xjk). For detailed mathematical deriva-
tions, see Benzécri (1973), Nishisato (1980, 1994),
Greenacre (1984), and Gifi (1990).

1.8.2. Row Space and
Column Space Are Different

We are interested in the relations between rows and
columns of a two-way table, for example, relations
between subjects and chosen objects. Unfortunately,
the space for row variables and the space for column
variables are different, the discrepancy of which is
related to the cosine of the singular values. In other
words, when singular values are relatively large, the
discrepancy between the row space and the column
space is comparatively small. When we want to put
both row and column variables in the same space,
we must plot normed weights of rows (or columns)
and projected weights of columns (or rows). Then,
both sets of weights span the same space. We often
talk about symmetric scaling to indicate that both pro-
jected row and projected column weights are plotted,
in which case care must be exercised in judging their
distances because of the discrepancy of the two spaces.
Or, rather, symmetric scaling may be justified only
when singular values are close to 1. Nonsymmetric
scaling of one set of weights to be projected to the
other set is the mathematically correct one, but we must
often deal with a rather nasty problem of a large differ-
ence between the spread of normed weights and that
of projected weights, the latter being often too much
smaller than the former, making comparisons between
them difficult. See Nishisato and Clavel (2003) for a
discussion on the discrepant spaces and the calculation
of distances between points in two different spaces.

1.8.3. Chi-Square Metric and Data Types

One of the difficult problems in quantifying inci-
dence data lies in its use of the chi-square metric, which
is necessitated by the sheer characteristics of the data.
When Point A has one observation and Point B nine
observations, the midpoint between them is 9 units
away from A and one unit away from B. This is an
example of a chi-square metric, which is a reciprocal
function of the number of observations. In the above
example, the distance between A and the midpoint
times 1 (observation) is equal to the distance between
the midpoint and B times 9. Thus, the point with more
observations has a stronger pull than the point with
fewer observations.

In contrast, each cell in the dominance table is rep-
resented by a constant number of observations (i.e.,
n− 1). Therefore, the chi-square metric is reduced to
the Euclidean metric, where the midpoint between A
and B is located halfway between A and B. It should
be remembered, however, that the way in which DS
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handles dominance data is to treat dominance numbers
as cardinal numbers, rather than ordinal. At the present
moment, we have not developed an ordinal way of
handling dominance numbers. This is one problem for
future research. Another point of caution is that both
chi-square metric and Euclidean metric are defined for
the Euclidean space.

1.9. Linear Analysis

and Dual Scaling

In the principal coordinate system, each continuous
variable is expressed as a straight line (axis), whereas
categories of each variable in DS no longer lie on a
straight line. In consequence, when data are in mul-
tidimensional space, the contribution or information
of each variable in PCA is expressed by the length
of its vector, which increases as the dimensionality
increases, whereas the contribution of each variable
in DS increases as the dimensionality increases in a
distinctively different way from PCA. The DS con-
tribution of each variable to the given space is not
expressed by the length of any vector but by the area
or volume formed by connecting the points of those
categories of the variable.

If an item has three categories, the information of
the variable in the given dimension is the area of a tri-
angle obtained by connecting the three category points
in the space. The area of the triangle monotonically
increases as the dimensionality of the space for the
data increases. If a variable has four categories, the
information of the variable in three-dimensional or
higher dimensional space is given by the volume of
the form created by connecting four-category points.
If the variable has n categories, the information of the
variable inn−1 or higher dimensional space is given by
the volume of the form created by connecting n points.

Thus, by stretching our imagination to the con-
tinuous variable, where the number of categories is
considered very large but finite, we can conclude that
the information of the variable in the given space must
be expressed by the volume of a shape and not by the
length of a vector. This conjecture can be reinforced
by the fact that many key statistics associated with
dual scaling are related to the number of categories
of variables. Some of the examples are given below.

The total number of dimensions required to accom-
modate a variable with mj categories is

Nj = mj − 1. (35)

The total number of dimensions needed for n
variables is

NT =
n∑
j=1

(mj − 1) =
n∑
j=1

mj − n = m− n. (36)

The total amount of information in the data—that
is, the sum of the squared singular values, excluding
1—is given by

K∑
k=1

ρ2
j =

∑n
j=1mj

n
− 1 = m− 1. (37)

Therefore, as the number of categories of each
variable increases, so does the total information in
the data set. The information of variable j with mj
categories is given by

m−n∑
k=1

r2
j t (k) = mj − 1. (38)

These are all related to the number of categories of
each variable. Thus, we can imagine what will happen
asmj increases to infinity or, in practice, to the number
of observations (subjects)N.An inevitable conclusion,
then, seems to be that the total information in the data
set is much more than the sum of the lengths of vectors
of the variables in multidimensional space: It is the
sum of the volumes of hyperspheres associated with
categories of individual variables.

The above conclusion (Nishisato, 2002) suggests
how little information popular linear analyses such
as PCA and factor analysis capture. Traditionally, the
total information is defined by the sum of the eigen-
values associated with a linear model. But we have
just observed that it seems inappropriate unless we are
totally confined within the context of a linear model.
In a more general context, in which we consider both
linear and nonlinear relations among variables, DS
offers the sum of the eigenvalues as a reasonable statis-
tic of the total information in the data. As the brain
wave analyzer filters a particular wave such as alpha,
most statistical procedures—particularly PCA, factor
analysis, other correlational methods, and multidimen-
sional scaling—play the role of a linear filter and filter
out most of the information from the data, that is, a non-
linear portion of the data. In this context, dual scaling
should be reevaluated and highlighted as a means for
analyzing both linear and nonlinear information in the
data, particularly in the behavioral sciences, where it
seems that nonlinear relations are more abundant than
linear relations.
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2.1. Introduction:

Relations and Relational Systems

The behavioral and social sciences have produced
an extensive methodology to study relations. In psy-
chology, studying relations often implies studying
the overall strength of a relation between variables.
For example, one may ask how strongly—if at all—
aggression depends on frustration. It is common to
express the strength of such relations in a correlation
coefficient, anF -ratio, or a chi-square value and to test
their significance. However, there are also occasions
in which interest is not so much in the overall strength
of a single relation but in the details of a complete
relational system. In one of the applications that will be
discussed later, for example, knowledge diffusion in a
social network of 12 psychological journals is studied
by analyzing the citing behavior among all pairs of

AUTHORS’ NOTE: The authors thank Natale Leroux for help with the data entry of the Breakfast data.

them. In another application that will serve to illustrate
how to study relational differences, the starting point
is a set of ratings provided by six samples of judges,
who had to assess the relative friendliness or hostility
between nations at the time of World War II. In each
case, the goal is to model all pairwise relations to
discover or confirm which factors are operative in the
system, among many potential ones.

Because a relational system may involve relations
between variables or between persons, between stimuli
or between responses, between processes or between
concepts, and even between combinations of all of
these, there is room for a variety of relational systems.
Therefore, it is useful to delineate the position of multi-
dimensional scaling (MDS) and unfolding, which are a
group of analysis techniques for relational data, com-
pared to some cognate methodologies for analyzing
relational systems.

25
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2.1.1. Proximity and Dominance Relations

To start off, MDS and unfolding provide models
for proximity relations. When Roger Shepard intro-
duced his revolutionary nonmetric multidimensional
scaling technique (Shepard, 1962), he was interested
in modeling the substitution errors between stimuli
during identification learning as a way to describe and
explain stimulus generalization processes by their
psychological similarity (Green & Anderson, 1955;
Rothkopf, 1957). But he also noted that for other
classes of entities, the notion of similarity or sub-
stitutability seems inappropriate while we are still
interested in relations of closeness or remoteness—
for instance, when we study communication between
persons in groups (Frank, 1996) or when we run
experiments using word-association or free-recall
tasks (Henley, 1969). He then coined the generic term
proximity for all relations of this kind.

The second pioneer of multidimensional scaling and
unfolding methods, Clyde Coombs, in his Theory of
Data (1964), introduced the notion that all psycho-
logical observations can be interpreted as a relational
system and distinguished proximity relations from
dominance or order relations. Proximity refers to psy-
chological nearness, which is symmetric (if orange is
near red, then red must also be near orange), whereas
dominance refers to a hierarchy or an ordering among
the objects involved, which implies lack of symme-
try (if Roger dominates Clyde, then Clyde cannot
dominate Roger at the same time). Typical techniques
for studying dominance relations are based on paired-
comparison models if the relation is defined on one
set of objects, for example, stimuli (cf. Critchlow &
Fligner, 1991). Item response (IRT) models are used
if the relation is defined on two sets of objects, where
the prime example is persons and items (cf. Fischer &
Molenaar, 1995; Van der Linden & Hambleton, 1997).
In the sequel, we will only meet dominance relations
in passing, when we discuss asymmetric data. They
are mentioned here by way of contrast and because
the unfolding technique has been associated with the
analysis of dominance data by Carroll (1980), DeSarbo
and Rao (1984), and DeSarbo and Carroll (1985).
However, in their terminology, the term dominance
refers to order relations among proximities, not among
persons and items.

2.1.2. Unipolar and Bipolar Relations

To further demarcate our subject, we introduce a
new distinction. A proximity measure may be either
bipolar or unipolar. Bipolarity refers to the fact that

a measure can have three designated markers on its
scale: a maximal value associated with one pole, a
neutral value, and a minimal value associated with
a second pole. A prototypical example of a bipolar
proximity measure is the correlation coefficient: As
is well known, it measures the association between
two variables, ranging from +1.0, indicating per-
fect (linear) association, through 0.0, indicating lack
of (linear) association, to −1.0, indicating perfect
negative (linear) association. At both poles, the
variables are completely substitutable, whereas at the
neutral point, positions on one variable cannot be pre-
dicted from positions on the other. Some more exam-
ples of bipolar proximity measures are the covariance,
Kendall’s τ , and any other coefficient measuring
linear or monotonic association between variables (cf.
Coxon, 1982, chap. 2).

Unipolarity is characterized by nonnegativity, that
is, by the absence of negative association, and hence
by the absence of the negative pole. A unipolar prox-
imity measure, which can be keyed either as similarity
or as dissimilarity, has only two designated markers
on its scale, one of which is associated with a pole,
whereas the other one is a neutral point. In the case of
a similarity measure, there is some maximal value indi-
cating equality or substitutability and a minimal value
of zero indicating complete lack of similarity. Con-
versely, in the case of a dissimilarity measure, there is
some maximal value indicating complete lack of sim-
ilarity and a minimal value of zero indicating equality
or substitutability. Thus, the single pole of a unipolar
proximity scale is associated with maximal similarity
or minimal dissimilarity, and the other side of the scale
plays the role of the zero point in a bipolar proximity
measure: lack of likeness, lack of resemblance, and
lack of affinity or association. Unipolar proximity rela-
tions formed the primary context in which MDS and
unfolding were developed, whereas bipolar proximity
relations form the realm of factor analysis and struc-
tural equations modeling. Thus, difference in polarity
leads to different use of geometry.

2.1.3. Empirical Relations
Become Geometric Relations

Coombs (1964) has made a strong case for the notion
that any system of empirical relations can be modeled
as a system of geometric relations. What is the connec-
tion between polarity and the type of geometric model
used for representing the system of relations? If prox-
imity is measured on a bipolar scale, as is the case with
correlations between variables, it is natural to require
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a geometric model in which the three designated
markers also have a definite representation. In the
common factor analysis model (Mulaik, 1972; Yates,
1987), this requirement is indeed satisfied: The
observed variables and the unobserved factors are rep-
resented as vectors, and their inter-correlations are
represented as angles between these vectors. Two
variables with a correlation of+1.0 will have an angle
of zero degrees, two variables with a correlation of
0.0 an angle of 90 degrees, and two variables with a
correlation of−1.0 an angle of 180 degrees. A multidi-
mensional scaling model of the same variables would
represent them by a set of points instead of vectors
and would represent their inter-correlations by some
decreasing function of the inter-point distances—for
instance, by some optimal, monotonically decreasing
transformation, which is characteristic for nonmetric
MDS (Kruskal, 1964). Whereas bipolarity leads to
a geometric model in which each element has an
antipode (a unique opposite vector), unipolarity leads
to a geometric model in which such a notion does
not exist.

Although nonmetric multidimensional scaling of
inter-correlations has been propagated and used with
some success (Levy & Guttman, 1975; Paddock &
Nowicki, 1986; Rounds, Davison, & Dawis, 1979;
Schlesinger & Guttman, 1969), on the grounds that
it tends to give low-dimensional representations that
are easier to understand than traditional factor analysis
results, it appears that there are also drawbacks.
MDS provides no identification of factors or any
other data-generating mechanism from which clusters
of variables can be formed, whereas clustering the
variables is often the ultimate motivation for psychol-
ogists to analyze their inter-correlations. In addition,
only one of the three markers on the correlation scale
is preserved. Pairs of variables with a correlation of 1
will obtain zero distance (they will coincide), but pairs
of variables with zero correlation and with perfectly
negative correlation are not easily distinguished or
recognized in the representation.

2.1.4. Recent Applications
of Multidimensional Scaling

Applications of multidimensional scaling in psy-
chology are numerous. Some recent examples in
cognitive psychology include work on category learn-
ing and cognitive skills (Griffith & Kalish, 2002;
Lee & Navarro, 2002; Nosofsky & Palmeri, 1997),
brain diagnostics, neural activity and evoked responses

(Beckmann & Gattaz, 2002; Laskaris & Ioannides,
2002; Samson, Zatorre, & Ramsay, 2002; Welchew,
Honey, Sharma, Robbins, & Bullmore, 2002), the
nonvisual senses (Barry, Blamey, & Martin, 2002;
Berglund, Hassmen, & Preis, 2002; Clark, Yang,
Tsui, Ng, & Clark, 2002; Francis & Nusbaum, 2002;
Kappesser & Williams, 2002; Sulmont, Issanchou, &
Koster, 2002), and body images and body comparison
processes (Fisher, Dunn, & Thompson, 2002; Viken,
Treat, Nosofsky, McFall, & Palmeri, 2002).

But there are also many applications in less “hard”
areas, such as social cognition and emotion recogni-
tion (Alvarado & Jameson, 2002; Green & Manzi,
2002; Pollick, Paterson, Bruderlin, & Sanford, 2001),
clinical assessment via cognitive tasks (Sumiyoshi
et al., 2001; Treat, McFall, Viken, & Kruschke, 2001;
Treat et al., 2002), vocational and leisure interest
questionnaires and personality assessment (du Toit &
de Bruin, 2002; Hansen & Scullard, 2002; Pukrop
et al., 2002; Shivy & Koehly, 2002), measurement
of quality of life (Kemmler et al., 2002; Mackie,
Jessen, & Jarvis, 2002; Takkinen & Ruoppila, 2001),
cross-cultural psychology (Smith, Cowie, Olafsson, &
Liefooghe, 2002; Struch, Schwartz, & Van der Kloot,
2002), communication behavior and social influence
(Porter & Alison, 2001; Taylor, 2002), and crime
behavior and coping with crime (Kocsis, Cooksey, &
Irwin, 2002; Lundrigan & Canter, 2001; Magley,
2002). Applications of multidimensional unfolding
lag seriously behind, undoubtedly due to the many
technical problems that formed a serious obstacle to
successful data analysis until recently.

2.1.5. Organization of This Chapter

The rest of this chapter is organized as follows. The
next section introduces MDS and unfolding on an equal
footing by considering one square proximity table that
may be asymmetric. General strategies to deal with
the asymmetry are discussed and applied to the same
example mentioned earlier, concerning mutual citation
frequencies among psychological journals. Next, we
extend the discussion to strategies for studying rela-
tional differences to accommodate designs in which
proximity data are collected under several different
conditions. A number of these strategies are demon-
strated in two further applications: an MDS study con-
cerning national attitudes at the onset of Word War II
and an unfolding study concerning preferences for
food items. The chapter concludes with a discussion
of some recent methodological developments.
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2.2. Analyzing One

Proximity Relation

The situation in which we have one proximity relation
between the elements of one set of objects consti-
tutes the classic multidimensional scaling setup, which
is well documented in the literature (e.g., Everitt &
Rabe-Hesketh, 1997; Kruskal & Wish, 1978). After a
summary of the general MDS setup, we pay special
attention to the analysis of asymmetric data and
conclude this section with a related discussion of
unfolding, analyzing one proximity relation between
the elements of two sets of objects.

2.2.1. General MDS Setup

In brief, the objective of MDS is to find a config-
uration of n points {xi , i = 1, . . . , n}, where xi has
coordinates {xiu, u = 1, . . . , p} specifying its loca-
tion in a p-dimensional spatial model. Typically, the
configuration is two-dimensional (p = 2), but this
choice can only be justified, of course, by a reason-
ably good fit. The quality of the fit is assessed by
determining distances d(xi, xj ) between all pairs of
points (most common is the ordinary Euclidean dis-
tance). These inter-point distances should reflect the
inter-object proximities: If two objects are relatively
similar in the data, their corresponding points in the
model must be close together, but if two objects are
relatively dissimilar, their corresponding points must
be far apart. Goodness of fit of the configuration is
measured (quite indirectly) by the quality of the fit of
the nonlinear regression equation

ϕ[δ(ai, aj )] = d(xi, xj )+ εij. (1)

Here, δ(ai, aj ) denotes the given dissimilarity value
for objects ai and aj ;ϕ[.] denotes a transformation that
maps the dissimilarity values into a set of transformed
values d̂(ai, aj ), called pseudo-distances or d-hats;
and εij are the residuals. In general, ϕ[.] will be some
selected type of function, reflecting the kind of infor-
mation in δ(ai , aj ) that we want to take into account
in the analysis. For example, ϕ[.] could be a linear
function with positive slope and either with or without
an intercept, or it could be a step function that assigns
new, identically ordered values to the given δ(ai, aj ),
so that only the rank-order information is preserved.
When the relation between the objects is given in terms
of a similarity function ρ(ai, aj ), the transformation
ϕ[.] is required to be linear with negative slope, or
monotonically decreasing.

2.2.1.1. Measures of Fit and
Distributional Assumptions

In any case, according to (1), the pseudo-distances
d̂(ai , aj ) = ϕ̂[δ(ai , aj )] follow from the optimal
transformation, that is, the transformation that opti-
mizes the fit for given xi and xj , and so they are
approximately equal to the d(xi, xj ) in some definite
sense. Measuring quality of fit of an MDS solution
by a least squares criterion was an idea introduced
by Kruskal (1964), who actually used the root mean
square error, which he called Stress (the reverse of
fit). Mainly for computational convenience, Takane,
Young, and de Leeuw (1977) squared the distances
in (1), calling the resulting badness-of-fit function
S-Stress. Noting that proximities are always nonnega-
tive, Ramsay (1977, 1978, 1980, 1982) introduced an
alternative regression equation based on the idea that
the distances are not disturbed by additive random fac-
tors εij, but by multiplicative, positive random factors
υij, which are asymmetrically distributed around 1,
in such a way that log υij is normally distributed
around zero. In a similar vein, Takane (1981, 1982),
Takane and Carroll (1981), Takane and Sergent (1983),
and Sergent and Takane (1987) suggested and tested
several multidimensional scaling models based on a
variety of distributional assumptions for specific data
collection processes.

Here, we stay in the least squares framework, which
provides maximum likelihood estimates under the
assumption of normal errors. Reiterating the strong
points, the least squares method is flexible, weights
can be used to adjust for nonstandard error structures,
and it is known to perform well under a broad range
of circumstances. In fact, Storms (1995) has shown
in a Monte Carlo study that violations of the assumed
error distribution have virtually no effect on the esti-
mated parameters. Spence and Lewandowsky (1989)
and Heiser (1988a) studied robust methods for MDS
but reached the conclusion that under moderate levels
of error, standard MDS methods are not particularly
vulnerable to outliers, especially when robust initial
configurations are used.

2.2.1.2. Probabilistic Models

It is also possible to make distributional assumptions
on the model side of the equation—that is, on xi and
xj in (1)—from which a different class of methods
has arisen (Ennis, Palen, & Mullen, 1988; MacKay,
1989, 1995, 2001; Mullen & Ennis, 1991; Zinnes &
Griggs, 1974; Zinnes & MacKay, 1983; Zinnes &
Wolff, 1977). These probabilistic models provide a
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rather different mechanism of random variation, with
the counterintuitive property that the expected value of
a dissimilarity judgment over replications can be far off
the model value of the corresponding distance (even
to the extent that there is no monotonic relationship
between expected dissimilarity and distance). For this
reason, Monte Carlo studies using random perturba-
tions of the point locations xi to study the behavior
of standard MDS methods, such as Young (1970),
Sherman (1972), Spence (1972), and Spence and
Domoney (1974), have questionable validity. The
same remark applies to the studies by Girard and
Cliff (1976), MacCallum and Cornelius (1977), and
MacCallum (1979), who used a data generation mech-
anism with biases in the small and large distances.

2.2.1.3. The Problem of Asymmetry

A key assumption in the classic multidimensional
scaling setup is symmetry of the proximity relation—
that is, δ(ai , aj ) = δ(aj , ai)—in accordance with the
symmetry of the distance function used in the geomet-
ric model. Yet, quite often, relational data in their raw
form are not symmetric. For instance, in stimulus iden-
tification experiments, confusion errors are counted,
and it is not unusual to observe rather big asymme-
tries between the count of responding with aj when
stimulus ai is presented and the count of responding
with ai after presentation of aj (cf. Heiser, 1988b).
These effects may be due to stimulus familiarity or a
response bias or to similar processes in other contexts.
They can be removed prior to analysis or explicitly
incorporated in a model. For comprehensive reviews
of the treatment of asymmetry, the reader is referred to
Everitt and Rabe-Hesketh (1997, chap. 6) and Zielman
and Heiser (1996).

Here, attention will be restricted to two strategies to
analyze asymmetric relational data. The first splits the
relation into two parts and finds two representations of
a single set of objects; the second considers the row and
column elements of the data matrix as two different
kinds of entities and finds a single representation of
two sets of objects. Taking frequencies as our leading
case of data collection, we denote the raw observations
by fij, with i = 1, . . . , n and j = 1, . . . , n, and we
assume fij > 0 for all i, j.

2.2.2. Making Two Representations
of a Single Set of Objects

As a preliminary to any consideration of genuine
asymmetry, it is often useful to remove the main effects
from the data, which reflect the tendency of some

objects having consistently higher frequencies than
others, because they are more prominent, more popu-
lar, or otherwise more bulky. A simple correction for
such main effects is to equalize all self-similarities by
the standardization

sij = fij√
fiifjj

, (2)

which ensures that sii = 1 for all i. The rationale of
using this standardization is that, if the simple model
fij = αiαj θij holds, with αi some object-specific
main effect parameter and θij an interaction parameter
with equal diagonal elements (θii = 1), then these
assumptions would give sij = θij in (2). Note that this
standardization does not affect the asymmetry in fij

except for scale; that is, the odds across the diagonal
remain the same: sij/sji = fij/fji.

2.2.2.1. Multiplicative Decomposition

Now consider the multiplicative decomposition
of sij into a symmetric factor and an antisymmetric
factor,

sij = r(ai , aj ) t (ai, aj ), (3)

where the two constituting factors are defined as

r(ai, aj ) = √sijsji, (4a)

t (ai, aj ) =
√
sij

sji
. (4b)

In these definitions, the objects are again identified
explicitly by ai and aj , for reasons that will become
apparent shortly. It is easily verified by substitution
of r(ai , aj ) and t (ai , aj ) that equation (3) is always
true, so that the decomposition can always be made
without any further conditions. It is also clear from
(4a) that the first factor is symmetric, r(ai , aj ) =
r(aj , ai), and that it equals the geometric mean of the
elements above and below the diagonal of the matrix
S = {sij}, whereas (4b) shows that the second factor
is antisymmetric: Two corresponding elements across
the diagonal have a perfectly inverse relationship,
t (ai, aj ) = 1/t (aj , ai).

2.2.2.1.1. Shepard’s universal law of general-
ization. Combining (4a) with (2), we obtain the
symmetric similarity measure

r(ai, aj ) =
√
fijfji

fiifjj
, (5)



30 • SECTION I / SCALING

an expression first developed by Shepard (1957) for
stimulus and response generalization processes. In this
paper, he also gave the rationale for linking similarity
to distance by the rule

r(ai , aj ) = e−d(xi ,xj ). (6)

If (6) is correct, then it follows that a nonmetric MDS
of r(ai, aj ), based on (1), should yield the transforma-
tion ϕ [.] = − log. Evidence in more than 10 studies
(Shepard, 1987; also see Nosofsky, 1992), involving
both human and animal subjects and both visual and
auditory stimuli, has confirmed this hypothesis, and
hence the exponential decay function (6) has been
named the universal law of generalization.

2.2.2.1.2. Luce’s choice model. Combining (4b)
with (2), we find

t (ai , aj ) =
√
fij

fji
, (7)

which can be interpreted as the root odds of responding
with aj if ai is presented against the reverse; t (ai , aj ) is
a natural measure of the dominance relation between ai
and aj . The simplest model for a dominance relation
is the Bradley-Terry-Luce (BTL) model, a theory of
choice developed by Bradley and Terry (1952), which
was extended and given an axiomatic basis by Luce
(1959). It states that the probability of ai dominating
aj depends only on the two nonnegative parameters
associated with each object, αi and αj , and not on any
other parameter:

pij = αi

αi + αj . (8)

From (8), it follows that pij + pji = 1 and that the

root odds defined in (7) under this model are
√
αi
/
αj ,

simply the root of the ratio of the two parameters. Sum-
marizing the development so far, we can decompose
any asymmetric set of similarities {sij} into a symmet-
ric component {r(ai, aj )}, on which we can do some
form of multidimensional scaling, and an antisymmet-
ric component {t (ai , aj )}, on which we can fit the BTL
model, or some similar model, for paired-comparison
data.

2.2.2.2. Additive Decomposition

Up to this point, all operations have been multipli-
cations and divisions. However, it is often desirable
when working with frequencies to use a log scale, as
is done in log-linear analysis (Wickens, 1989). An

additive version of the basic decomposition (3) is
obtained by taking the logarithm of both sides of the
equation, yielding

µij = ρ(ai, aj )+ τ(ai, aj ), (9)

where µij = log sij, ρ(ai, aj ) = log r(ai, aj ), and
τ(ai , aj ) = log t (ai, aj ). The equivalents of (4a) and
(4b) are

ρ(ai, aj ) = 1

2
[µij + µji], (10a)

τ(ai , aj ) = 1

2
[µij − µji]. (10b)

In general, any matrix can be additively decomposed as
in (9), that is, into the sum of a symmetric component
(10a) and a skew-symmetric component (10b). Instead
of a geometric mean (4a), we now have an arithmetic
mean (10a), and instead of the antisymmetry property
t (ai, aj ) = 1/t (ai , aj ), we now have the skew-
symmetry property τ(ai, aj ) = −τ(ai, aj ). Additive
decomposition of asymmetric matrices is well known
through the work of Gower (1977), although the idea
seems to be much older: Halmos (1958, p. 136) refers
to it as the Cartesian decomposition. As pointed out
by Gower, the components ρ(ai, aj ) and τ(ai, aj ) are
uncorrelated, so that we can analyze them separately
by least squares.

2.2.2.3. Application: Citation Frequencies
Among Psychological Journals

To illustrate this approach to asymmetry, we now
reanalyze some data collected by Weeks and Bentler
(1982) on citation patterns among 12 psychologi-
cal journals. The raw frequencies are reproduced in
Table 2.1, together with the list of journals used. An
entry in Table 2.1 indicates the number of times that a
paper in the row journal cites some paper in the column
journal. It is clear that the Journal of Personality and
Social Psychology (JPSP) generates by far the largest
number of citations, including many self-citations,
whereas the American Journal of Psychology (AJP)
and Multivariate Behavioral Research (MBR) have a
rather low number of citations (primarily due to the
smaller number of articles per year), with AJP citing
the Journal of Experimental Psychology (JEP) more
frequently than itself and MBR citing Psychometrika
(PKA) more frequently than itself. To avoid problems
with zero frequencies, we added 0.5 to all entries of
the table. Then sij was calculated according to (2); the
symmetric similarities ρ(ai, aj ) according to (10a),
in which the minimal value was added to make all
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Table 2.1 Journal Citation Data

AJP JABN JPSP JAPP JCPP JEDP JCCP JEP PKA PB PR MBR

AJP 31 10 10 1 36 4 1 119 2 14 36 0
JABN 7 235 55 0 13 4 65 25 3 50 31 0
JPSP 16 54 969 28 15 21 89 62 16 149 141 16
JAPP 3 2 30 310 0 8 5 7 6 71 14 0
JCPP 4 0 2 0 386 0 2 13 1 22 35 1
JEDP 1 7 61 10 2 100 6 5 4 18 9 2
JCCP 0 105 55 7 3 10 331 3 19 89 22 8
JEP 9 20 16 0 32 6 1 120 2 18 46 0
PKA 2 0 0 0 0 6 0 6 152 31 7 10
PB 23 46 124 117 138 7 86 84 62 186 90 7
PR 9 2 21 6 3 0 0 51 30 32 104 2
MBR 0 7 14 4 0 0 24 3 95 46 2 56

SOURCE: Weeks and Bentler (1982).
NOTE: Rows represent journals giving citations; columns represent journals receiving citations. Data collected in 1979. Journals and their abbreviations:
AJP = American Journal of Psychology; JABN = Journal of Abnormal Psychology; JPSP = Journal of Personality and Social Psychology; JAPP =
Journal of Applied Psychology; JCPP= Journal of Comparative and Physiological Psychology; JEDP= Journal of Educational Psychology (numbers
1–3 only); JCCP = Journal of Consulting and Clinical Psychology; JEP = Journal of Experimental Psychology (General); PKA = Psychometrika;
PB = Psychological Bulletin; PR = Psychological Review; MBR = Multivariate Behavioral Research.

Table 2.2 Journal Citation Data: Decomposition in Symmetric and Skew-Symmetric Parts

AJP JABN JPSP JAPP JCPP JEDP JCCP JEP PKA PB PR MBR

AJP 0 4.37 4.06 2.88 4.49 3.57 1.87 6.04 3.32 5.22 5.52 2.21
JABN 0.17 0 4.48 1.16 1.89 3.37 5.43 4.65 1.68 5.18 3.77 2.56
JPSP −0.23 0.01 0 3.72 2.06 4.49 4.56 4.28 1.75 5.51 4.89 3.93
JAPP −0.42 −0.80 −0.03 0 0.10 3.72 2.73 2.04 1.85 5.68 3.72 2.16
JCPP 1.05 1.65 0.91 0 0 1.47 1.85 4.31 1.01 5.07 3.75 1.51
JEDP 0.55 −0.26 −0.53 −0.11 −0.80 0 3.55 3.73 3.51 4.19 2.79 2.43
JCCP 0.55 −0.24 0.24 −0.16 −0.17 −0.24 0 2.18 2.37 5.61 2.63 4.40
JEP 1.27 0.11 0.67 1.35 −0.44 −0.08 0.42 0 3.13 5.31 5.82 2.51
PKA 0 0.97 1.75 1.28 0.55 −0.18 1.83 −0.48 0 5.31 4.52 5.57
PB −0.24 0.04 0.09 −0.25 −0.91 0.45 0.02 −0.76 −0.34 0 5.70 4.94
PR 0.67 1.27 0.94 0.40 1.16 1.47 1.90 −0.05 −0.70 0.51 0 3.22
MBR 0 −1.35 0.06 −1.10 0.55 0.80 −0.53 −0.97 −1.10 −0.91 0 0

β̂i 0.28 0.10 0.36 0.22 −0.31 0.28 0.30 −0.46 −0.66 0.12 −0.63 0.38

NOTE: Upper triangular part contains symmetric similarities; lower triangular part contains skew-symmetric dominances. Journals and their abbrevi-
ations: AJP = American Journal of Psychology; JABN = Journal of Abnormal Psychology; JPSP = Journal of Personality and Social Psychology;
JAPP= Journal of Applied Psychology; JCPP= Journal of Comparative and Physiological Psychology; JEDP= Journal of Educational Psychology;
JCCP = Journal of Consulting and Clinical Psychology; JEP = Journal of Experimental Psychology (General); PKA = Psychometrika; PB =
Psychological Bulletin; PR = Psychological Review; MBR = Multivariate Behavioral Research.

quantities nonnegative; and the skew-symmetric
dominance data τ(ai , aj ) according to (10b). The
results are given in Table 2.2 above the diagonal and
below the diagonal, respectively.

2.2.2.3.1. MDS analysis of the symmetric part.
The symmetric similarities in the upper-triangular
section of Table 2.2 were then input to the
MDS program PROXSCAL1, with the ordinal

1. PROXSCAL is distributed by SPSS, Inc., 233 S. Wacker Drive, 11th
Floor, Chicago, IL 60606–6307 (www.spss.com), as part of the Categories
package.

transformation option chosen, and initialized with the
classic Torgerson solution (Torgerson, 1958) on the
quantities ρmax − ρ(ai, aj ), where ρmax is the maxi-
mal similarity value. The two-dimensional solution is
shown in Figure 2.1 (as we have 12 (12 − 1)/2 = 66
independent data values, we restrict attention here
to p = 2, which requires 2 (12 − 1) − 1 = 21
free parameters to be estimated). The fit of the solu-
tion in terms of Kruskal’s Stress-1 is 0.192, which is
“fair” according to Kruskal’s (1964) qualifications. In
terms of the percentage of dispersion accounted for
(%DAF)—which is defined as 100 times the sum of
squared distances, divided by the sum of squared
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Figure 2.1 Two-Dimensional Ordinal MDS Solution for the Symmetric Part of the Journal Citation Data
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NOTE: Journals and their abbreviations: AJP = American Journal of Psychology; JABN = Journal of Abnormal Psychology;

JPSP = Journal of Personality and Social Psychology; JAPP = Journal of Applied Psychology; JCPP = Journal of Comparative and

Physiological Psychology; JEDP = Journal of Educational Psychology; JCCP = Journal of Consulting and Clinical Psychology;

JEP = Journal of Experimental Psychology (General); PKA = Psychometrika; PB = Psychological Bulletin; PR = Psychological

Review; MBR = Multivariate Behavioral Research.

pseudo-distances2 (Heiser & Groenen, 1997), and
which is comparable to percentage of variance
accounted for, except that the mean is not taken
out—the fit is 96.3%, which is quite satisfactory.
To give a visual impression of the fit, we provide a
regression plot in Figure 2.2a of the fitted distances
against the transformed proximities, which are in turn
plotted against the original similarities ρ(ai, aj ) in
Figure 2.2b, in a so-called transformation plot. What
Figure 2.2b shows is that the monotonically decreasing
values of the transformed proximities (which preserve
the order of the original proximities) are rather close
to a linear transformation of ρ(ai, aj ) = log r(ai, aj ),
with negative slope. The implication is that (6) is cor-
rect, a confirmation of Shepard’s law. The location of

2. Dispersion accounted for is equal to 1 minus the quantity actually
minimized in PROXSCAL.

the journals in Figure 2.1 is close to the result obtained
by Weeks and Bentler (1982) with their specific model.
It shows Psychological Bulletin (PB) in the center and,
going counterclockwise, a clinical-social-educational
cluster at the top, a physiological-cognitive cluster in
the lower left corner, a quantitative-methodological
cluster in the lower right corner, and finally the
Journal of Applied Psychology (JAPP), which com-
municates least with the Journal of Comparative and
Physiological Psychology (JCPP).

2.2.2.3.2. BTL analysis of the skew-symmetric
part. As originally pointed out by Fienberg and
Larntz (1976), the maximum likelihood estimates of
the BTL parameters in their log form (βi = logαi)
can be obtained by a standard log-linear analysis
program (cf. Wickens, 1989, pp. 255–257). Simple
least squares estimates of these β-parameters can
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Figure 2.2 Scatter Plots of Journal Citation Data
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be more easily obtained by just taking the column
averages of a matrix that has the same lower triangular
elements as Table 2.2, denoted by τ(ai, aj ), and upper
triangular elements defined as τ(aj , ai) = −τ(ai , aj );
such column averages are given in the last row of
Table 2.2. The values of the estimated BTL scale
values range from −0.66 to 0.38, which is a rather
small range (they can be compared to z-values), indi-
cating that the amount of asymmetry is modest. In
fact, the relative amounts of symmetry and skew-
symmetry in the table can be expressed quantitatively
because the fact that ρ(ai, aj ) and τ(ai , aj ) are uncor-
related implies that from (9), we can derive an addi-
tive decomposition of the sum of squares of the µij

values:

SSQ[µij] = SSQ[ρ(ai, aj )]+ SSQ[τ(ai, aj )]. (11)

In the present example, we obtain SSQ[µij] =
1030.22, SSQ[ρ(ai, aj )] = 988.88, and SSQ
[τ(ai, aj )] = 41.34, from which the relative con-
tributions of the symmetric and the skew-symmetric
component are 96% and 4%, respectively. As the last
line in Table 2.2 shows, PKA, PR, JEP, and JCPP are
journals that tend to be cited, whereas MBR, JPSP,
and the Journal of Consulting and Clinical Psychol-
ogy (JCCP) tend to cite others more than others
cite them.

2.2.3. Unfolding: Analyzing the Proximity
Relation Between Two Sets of Objects

In the example of citation counts between journals,
we might also consider the row elements as being
different from the column elements because they have
different roles: row journals are citing, whereas col-
umn journals are being cited. More generally, we might
consider the proximity relation as being one between
a set of row objects {ai, i = 1, . . . , n} and a set of
column objects {bj , j = 1, . . . , m}, to be represented
as a set of row points {xi, i = 1, . . . , n} and a set of
column points {yj , j = 1, . . . , m}, respectively, with
xi having coordinates {xiu}, as before, and yj having
coordinates {yju}.

2.2.3.1. General Definition of Unfolding

In the general unfolding situation, we do not neces-
sarily have n = m, as is the case in the current citation
example, and we might even have completely different
types of objects in rows and columns. Most typically
for unfolding, the set {ai} usually refers to persons,
the set {bj} usually refers to attitude items or stimuli,
and the proximity relation expresses the strength with
which a particular person ai endorses a particular item
bj , or the relative amount of time or money ai would
be willing to spend on bj . In the spatial representation
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sought, we determine the Euclidean distance between
xi and yj by the formula

d(xi, yj ) =
√∑

u
(xiu − yju)

2. (12)

A related model for analyzing individual differences
in rankings or ratings that is often subsumed under
the unfolding concept (Carroll, 1972; Nishisato,
1994, 1996) is the so-called vector model, indepen-
dently conceived by Tucker (1960) and Slater (1960).
Because this chapter is restricted to distance models,
whereas the Tucker-Slater model uses inner products
between vectors to represent the data, the reader is
referred to Heiser and de Leeuw (1981) for a detailed
comparison between the two.

2.2.3.2. Unfolding a Square Table

Note that the Euclidean distance used in MDS is a
constrained version of (12), for which it is required
that the two sets of points coincide: We have yju = xiu

for corresponding i and j. These constraints have two
consequences, which make the distance used in unfold-
ing fundamentally different from the distance used in
MDS and which become particularly apparent in the
analysis of square tables. First, although equation (12)
is symmetric in the sense that d(xi, yj ) = d(yj , xi),
this fact only implies that if we transpose the distance
matrix and switch the two sets of objects at the same
time, nothing has really changed. However, although
we do have d(xi , xj ) = d(xj , xi) in the ordinary MDS
model, we generally find d(xi , yj ) =/ d(xj , yi) in
the unfolding model (as far as the range of subscripts
permit). Thus, distances in unfolding are inherently
asymmetric. Second, although in MDS we must have
d(xi, xi) = 0, we generally have d(xi, yi) =/ 0 in
unfolding. Thus, the unfolding model also allows
modeling of the diagonal of a square table, unlike
the MDS model. In the citation example, the diagonal
represents the amount of self-citation, which can be a
characteristic attribute of a journal and its readership. If
we look at the raw data in Table 2.1, we already get the
impression that the Journal of Educational Psychology
(JEDP) has a relatively high amount of self-citations,
whereas JPSP—which has a much higher absolute
number of self-citations—is relatively often cited by
or citing others.

2.2.3.3. Correcting the Data
for Independent Main Effects

It is clear that in the unfolding case, too, it is a
good idea to correct for the main effects. If the journals

would cite each other completely in a random fashion,
we would expect the joint frequencies to satisfy the
usual formula for the expected frequencies (eij) under
independence:

eij = N
(
fi+
N

)(
f+j
N

)
= fi+f+j

N
, (13)

that is, the product of the estimated probability of citing
and the estimated probability of being cited times the
total number of citationsN (here, the+ in the marginal
totals replaces the index over which we have summed).
As a measure of similarity to be used in the unfolding
analysis, we define the odds of journal ai citing journal
bj against what we expect under independence:

ρ(ai, bj ) = fij

eij
= Nfij
fi+f+j

. (14)

These similarities are given in Table 2.3. Note that
ρ(ai, bj ) = 1 if journal ai cites journal bj as expected
according to the size of the journals (like JPSP toward
Psychological Review [PR]), ρ(ai, bj ) < 1 if journal
ai does not cite journal bj as much as expected accord-
ing to the size (like JCPP and JCCP mutually), and
ρ(ai, bj ) > 1 if journal ai does cite journal bj rela-
tively often (like MBR towards PM). The self-citations
are also higher than expected. The odds that a paper in
JEDP is citing another paper in JEDP (or being cited
by it), rather than exchanging references with the other
psychological journals, are 16 to 1. MBR and PKA are
also quite self-directed, whereas PB and JPSP are most
open. In the unfolding representation, ρ(ai, bj ) < 1
will lead to a relatively large distance d(xi, yj ) and
ρ(ai, bj ) > 1 to a relatively small distance d(xi, yj ).

2.2.3.4. Unfolding the Citation Frequencies

Figure 2.3 gives the unfolding solution in two dimen-
sions, with a single ordinal transformation across the
whole table because all entries are comparable. In this
figure, the open circles indicate the citing positions and
the closed circles the cited, and corresponding points
are connected with arrows. The quality of the solution,
as measured by %DAF, is 94.3%, which is slightly
lower than the MDS solution. The percentage of vari-
ance accounted for is 63.1%, which corresponds to a
correlation between distances and pseudo-distances of
0.79. The optimal transformation (not shown) again
confirms Shepard’s law. The global position of the
journals is similar to the MDS solution in Figure 2.2,
except that the configuration is rotated counterclock-
wise almost 180 degrees, bringing MBR and PKA to
the top of the plot. Perhaps the most striking feature
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Table 2.3 Journal Citation Data: Odds of a Row Journal Citing a Column Journal Against the Expected Values
Under Independence

AJP JABN JPSP JAPP JCPP JEDP JCCP JEP PKA PB PR MBR

AJP 6.81 0.47 0.17 0.05 1.32 0.56 0.04 5.51 0.12 0.45 1.55 0
JABN 0.83 6.01 0.51 0 0.26 0.30 1.33 0.63 0.10 0.86 0.72 0
JPSP 0.59 0.43 2.76 0.22 0.09 0.49 0.56 0.48 0.16 0.79 1.02 0.61
JAPP 0.38 0.05 0.30 8.57 0 0.64 0.11 0.19 0.20 1.31 0.35 0
JCPP 0.50 0 0.02 0 8.04 0 0.04 0.34 0.03 0.40 0.85 0.13
JEDP 0.26 0.39 1.22 0.56 0.09 16.31 0.27 0.27 0.28 0.67 0.45 0.53
JCCP 0 2.01 0.38 0.14 0.04 0.56 5.07 0.06 0.45 1.15 0.38 0.73
JEP 1.93 0.92 0.27 0 1.15 0.82 0.04 5.44 0.12 0.56 1.93 0
PKA 0.54 0 0 0 0 1.03 0 0.34 11.04 1.22 0.37 2.79
PB 1.38 0.59 0.57 1.52 1.38 0.26 0.89 1.06 0.99 1.61 1.05 0.43
PR 2.01 0.10 0.36 0.29 0.11 0 0 2.40 1.79 1.03 4.54 0.46
MBR 0 0.35 0.25 0.20 0 0 0.95 0.15 5.88 1.54 0.09 13.33

NOTE: Journals and their abbreviations: AJP = American Journal of Psychology; JABN = Journal of Abnormal Psychology; JPSP = Journal of
Personality and Social Psychology; JAPP= Journal of Applied Psychology; JCPP= Journal of Comparative and Physiological Psychology; JEDP=
Journal of Educational Psychology; JCCP = Journal of Consulting and Clinical Psychology; JEP = Journal of Experimental Psychology (General);
PKA = Psychometrika; PB = Psychological Bulletin; PR = Psychological Review; MBR = Multivariate Behavioral Research.

of the current solution is that all open circles tend to
be closer to the origin than their corresponding closed
counterparts, causing all arrows to point outwards. The
interpretation of this effect is that it reflects special-
ization: Almost all journals cite PB or PR regularly
but then have the tendency to just cite within their
own cluster. For example, the eccentric position of the
closed circles of JEDP, JCCP, JPSP, and the Journal
of Abnormal Psychology (JABN) indicates that they
are not cited very much by anyone than themselves
and some of their closest neighbors. In the cognitive
cluster, there is more extensive cross-referencing but
still primarily within their own cluster.

2.2.4. Some Concluding Remarks

In conclusion, the two strategies to asymmetry show
many of the same characteristics of journal citing
behavior, but there are also important differences. On
one hand, the decomposition into a symmetric and a
skew-symmetric part allows a more thorough analysis
of the dominance relations between the journals in their
role of senders and receivers, which is less evident in
the unfolding solution. On the other hand, the unfold-
ing analysis of the odds against independent citing
gives a better understanding of the self-citation behav-
ior of the journals, in connection with how easily they
tend to reach each other.3

3. Similarities and differences between senders and receivers can be made
more apparent in the unfolding solution by connecting with an arrow all
pairs of points that have an odds ratio greater than 1. Drawing such a graph
would show, for example, that PR and PB are both good senders and good
receivers and that JCPP is a good receiver but a poor sender.

The present solution was obtained with the
program PREFSCAL.4 A caveat against the uncritical
use of unfolding programs is in order here because
one has to be aware of a phenomenon called degenera-
tion. Unfolding programs, or unfolding options within
MDS programs, calculate a solution to the nonlinear
regression equation

ϕ[δ(ai , bj )] = d(xi , yj )+ εij, (15)

which is equivalent to (1), except that the dissimilar-
ities refer to two sets of objects, and the distances
refer to two sets of points. No particular problems are
to be expected if ϕ [.] is specified as a linear func-
tion with a (positive) slope parameter but without an
intercept or with an intercept but without a slope para-
meter. However, the simultaneous presence of both a
slope parameter and an intercept will lead to problems
because the distances in (15) can be made equal and the
transformed dissimilarities as well, giving an uninfor-
mative solution with perfect fit (cf. Busing, Groenen,
& Heiser, 2004; Heiser, 1989). Degenerate solutions
often take the form of one set of objects clustering
into one single point. If ϕ[.] is more general (e.g.,
an ordinal transformation) or if there is a separate
ϕi [.] for each row in the data matrix (called “row
conditionality” or “split-by-row” regression), degen-
eration occurs in most circumstances as well, provided
the program is properly allowed to converge. The rem-
edy against this phenomenon proposed by Kruskal and
Carroll (1969)—the introduction of a normalization

4. PREFSCAL (beta version) can be obtained from the second author upon
request (e-mail: busing@fsw.leidenuniv.nl).
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Figure 2.3 Two-Dimensional Ordinal Unfolding Solution for the Journal Citation Data
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factor based on the variance of the distances—
appears to be not effective enough. Therefore, Busing
et al. (2004) introduced a stronger normalization factor
(actually, a penalty factor), which discourages solu-
tions in which transformed dissimilarities (and hence
distances) have small variation. This penalty approach
does seem to work well, and it was used for the
examples in this chapter.

2.3. How to Deal

With Several Relations

Many research questions require the collection of
several sets of proximity data. Relations between the
same objects may be studied under several experimen-
tal conditions, using different individuals or subsam-
ples, or at several points in time. For example, to study
change in citation patterns, one could easily collect

again the type of data analyzed in the previous section,
covering a number of recent years. Using the generic
term source to describe these multiple origins of the
relational data, a natural question to ask is whether the
sources vary systematically and, if so, in what way.
Another interesting question, which is not often asked
and which we will not discuss, is whether one relation
can be predicted from a linear combination of several
others, via a kind of multiple regression equation, and
how to test in this situation the regression coefficients
for significance. For this topic, the interested reader is
referred to Krackhardt (1988).

2.3.1. General Strategies to
Describe Relational Differences

The dissimilarities of source k (k = 1, . . . , K)
are denoted by δk(ai , aj ). There are several strate-
gies to study the differences between relations,
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alternatively called relational differences. In principle,
these strategies are valid for both MDS and unfold-
ing alike, but because MDS is the more common
type of analysis, we use δk(ai, aj ) and d(xi, xj ) in
the discussion below. Simply replacing these func-
tions by δk(ai , bj ) and d(xi , yj ), respectively, gives
the unfolding version of the same strategy.

2.3.1.1. Individual Spaces

A strategy that keeps as closely as possible to the
data, and one that would be especially suitable if very
little is known about the differences to be expected,
is to analyze all sources separately, that is, to fit the
systems of equations

ϕk[δk(ai , aj )] = d(x(k)i , x(k)j )+ εijk (16)

by repeated use of some standard MDS program (for
k = 1, . . . , K). In equation (16), x(k)i denotes the
position of point i in the configuration of source k,
and ϕk[.] is the admissible transformation of source
k. One could then compare the resulting individual
spaces by visual inspection or by generalized Pro-
crustes analysis, a technique that finds translations,
rotations, and dilations (uniform rescaling) of the indi-
vidual configurations to optimize their mutual match
if they are superimposed; this technique has become
especially popular in sensory research (Dijksterhuis &
Gower, 1991).

2.3.1.2. Identity Model

If the sources are replications, or if we are only
interested in what is common among them, we can
fit just one geometric model to all of the sources
simultaneously:

ϕk[δk(ai, aj )] = d(xi, xj )+ εijk. (17)

This approach is almost equal to the even more simple
strategy of averaging the individual dissimilarities and
then scaling the average, but the difference is that in
(17), there is a separate transformation φk for each
source. These transformations allow us, for example,
to quantify ordinal data at the source level while still
summarizing them in one common configuration. If
we fit the regression equation (17) by least squares
and denote the optimal transformed proximities by
d̂k(ai, aj ), then it can be shown that this approach
amounts to fitting an MDS model to the average
(1/K)

∑
k d̂k(ai, aj ).

2.3.1.3. Points-of-View (POV) Model

Suppose we have a way to group the sources into a
limited number of, say, L classes, with 1 ≤ L < K ,
then we can average the proximities in each class. This
idea goes back to Tucker and Messick (1963), and it
has recently been further developed into an integrated
method by Meulman and Verboon (1993). The Tucker
and Messick process finds the classes in a first step by a
principal components analysis of the δk(ai, aj ), strung
out into variables of length n(n− 1)/2, followed by a
rotation to simple structure, which yields component
loadingsµkl for source k and class l. Then the weighted
average proximity is

δ̄l (ai , aj ) = 1/
C

∑
k
µklϕk[δk(ai, aj )], (18)

with C the sum of the weights across k, and on these
quantities an MDS (or unfolding) model for each of
the L classes (points of view) is fitted in a second
step. Meulman and Verboon integrated these steps and
showed that the POV model is a constrained version of
the model to be discussed next.

2.3.1.4. Weighted Euclidean Model

In this model, differences among the sources in
their relations among the objects are assumed to arise
from a differential weighting of the coordinate axes.
So there is one common space and not several, as
in POV analysis. However, each source can have
different weights associated with any dimension of
this common space. If a weight is zero, the corre-
sponding dimension does not affect the proximities
of that source at all. Although the model had been
considered earlier by others, it owes its fame (and its
name, INDSCAL, for INDividual differences SCAL-
ing) to the influential paper by Carroll and Chang
(1970), which provided a forceful justification and an
ingenious computational method. Carroll and Chang
emphasized that INDSCAL dimensions are unique: It
does make a difference which set of dimensions are
differentially weighted; that is, rotations are not per-
missible, even though each individual space is assumed
to be Euclidean (and Euclidean distances by them-
selves do not change if the points are rotated). Thus,
the weighted Euclidean model helps to discover dimen-
sions that matter, in the sense that they cause relational
differences among individuals (or other sources).

Carroll and Chang’s (1970) computational method
does not easily generalize to the nonmetric case, but
Bloxom (1978) showed how to develop a least squares
method based on fitting separate spaces, as in (16), with



38 • SECTION I / SCALING

φk linear transformations (making the method suitable
for interval data) by posing the coordinate constraints

x(k)iu = wkuxiu. (19)

Thus, the weighted Euclidean model has the advantage
that it can be simply interpreted through the coordi-
nates {xiu} of the common space and the weights {wku}
for each source on each dimension. Bloxom’s approach
was generalized by de Leeuw and Heiser (1980) to the
nonmetric case.

2.3.1.5. Generalized Euclidean Model

The previous model can be generalized by allow-
ing differential rotation of axes for each source before
weighting (Carroll & Chang, 1970). Thus, we may fit
(16) with the additional constraints

z(k)iv = ROTAk(xiu) for k = 1, . . . , K, (20a)

x(k)iv = wkvz(k)iv. (20b)

The notation ROTAk(xiu) in (20a) indicates that the
common coordinates {xiu} are expressed with respect
to an idiosyncratic set of axes by rotation, which may
be over different angles for each source k (hence the
model has also been called the IDIOSCAL model). The
result of the rotation are the source-specific coordinates
{z(k)iv} with respect to the axes v = 1, . . . , p, which
still generate the same distances as the common space.
Then the individual coordinates x(k)iv are obtained in
(20b) by weighting the rotated common space. The
dimensions of the common space are no longer unique
in this model because any preliminary rotation of them
would still lead to the same {z(k)iv} in (20a) if (20b) is
to hold.

2.3.1.6. Reduced-Rank Model

The idea of the reduced-rank model (Bloxom, 1978)
is that the individual spaces have dimensionality rk
that is less than the dimensionality p of the common
space (hence the term reduced rank). For instance, the
stimulus objects could be families varying in the
number of boys and the number of girls. One group of
subjects could view their proximity entirely in terms
of the total number of children, whereas another group
of subjects could view the proximity between families
entirely in terms of sex bias, that is, the difference
between the number of boys and the number of girls.
The former group could be represented by projecting
all families on a direction under 45 degrees of the
common axes representing the number of boys and

the number of girls, whereas the latter group could be
represented by projecting all families on a direction
perpendicular to the first. Thus, the common space has
dimensionality 2, whereas the individual spaces are
projected points after rotation and have dimensionality
1. In general, the process is described by

z(k)iv = PROJk [ROTAk(xiu)] for k = 1, . . . , K,

with v = 1, . . . , rk < p, (21a)

x(k)iv = wkvz(k)iv. (21b)

The weighted Euclidean model also allows for solu-
tions in which the sources have lower dimensionality
than the common space but only in terms of the original
axes, not in terms of rotations of them.

2.3.2. Application: MDS of the
Klingberg Great Powers Data

The first multidimensional scaling paper appearing
in Psychometrika with an actual application was by
Klingberg (1941). It described the measurement of
the friendly or hostile relations among states through
expert opinion, using a variety of data collection
methods. Breaking new ground, Klingberg was not
interested in the attitudes of the experts of international
affairs toward certain states but instead attempted to
elicit only their assessment of the attitudes of vari-
ous states toward one another. He collected data in
the period from January 1937 to June 1941, using six
samples at six points in time. The January 1937 sample
had size N = 83, and the experts were to give their
opinion, for 88 pairs of states, of the chance that “war
will exist between them within the next ten years” (only
the 21 pairs of the seven Great Powers were reported).
The November 1938 sample had size N = 144 and
used the less complex task to order triads of states in
terms of their relative friendliness or hostility. For the
March 1939 sample, the “method of multidimensional
rank order” was used, in which judges were asked to
rank the seven Great Powers in order of the friendliness
of 14 small states toward them (and of the other six
Great Powers). For the later samples, the same data
collection method was used. The first method imme-
diately gives proximities in terms of estimated proba-
bilities, whereas the other methods require some extra
calculation (i.e., finding the average proportion of the
judges who regarded any pair of states as more hostile
than all the other pairs with which it was directly com-
pared), but they are easier to carry out by the judges.
Split-half methods were used to show that the reliabil-
ity was high. Klingberg then demonstrated the power
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Figure 2.4 Component Loadings of an Ordinal PCA on the Six Time Points of the Great Powers Data
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of MDS to give an integrated view of the relations
between the seven Great Powers at the onset of World
War II by a three-dimensional analysis of the March
1939 sample.

2.3.2.1. Points-of-View
Analysis of the Great Powers

In a first attempt to trace the development of these
state relations in time, we performed the initial step
of a POV analysis with the program CATPCA,5 which
calculates principal components with optimal ordinal
transformations of the variables (Meulman, Heiser, &
SPSS, 1999). In this case, the variables are the six
proximity matrices, strung out into arrays of
7(7 − 1)/2 = 21 elements, read off from Chart
A in Klingberg (1941). Figure 2.4 shows a plot of
the component loadings of this ordinal PCA, which
clearly exhibits a strong first factor (83.3% variance
accounted for), with a weaker second factor (15.4%,
together 98.7%). There is no evidence for two or
more clusters of variables—for instance, before and
after certain significant dates, such as the German

5. CATPCA is distributed by SPSS, Inc., 233 S. Wacker Drive, 11th
Floor, Chicago, IL 60606–6307 (www.spss.com), as part of the Categories
package.

occupation of Bohemia and Moravia on March 14,
1939, or the outbreak of the war with Great Britain
in September 1939. Because clusters were lacking, the
POV analysis was aborted. However, there does seem
to be some evidence for a regular progression in time
(along the second factor).

2.3.2.2. PROXSCAL Analyses
of the Great Powers

The second analysis of these data was an ordinal
PROXSCAL run under the weighted Euclidean model
to see if the progression could be captured in a pat-
tern of dimension weights. However, this analysis
produced disappointing results, as there appeared
very little variation in the weights, whatever reason-
able dimensionality was chosen. By running separate
two-dimensional analyses of the six tables, it became
clear that most changes from year to year involve
local contractions and expansions, not global ones.
For instance, from January 1937 to November 1938,
Germany and Italy became friendlier on one side of
space, but the United States and France became less
friendly on the other side of space. In March 1939,
there was a complete polarization of Germany, Italy,
and Japan against the other states, whereas from June
1940 to June 1941, the position of France changed
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Figure 2.5 Three-Dimensional Common Space of the Great Powers According to the Reduced-Rank Model
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dramatically because it approached Germany and
receded from Britain.

Next, the reduced-rank model was fitted in various
dimensionalities with ordinal transformations for each
source. As there are only 6 × 21 = 126 indepen-
dent data values, the number of fitted parameters is
an important consideration (we have (n − 1)p −
p(p − 1)/2 free parameters for the common space
and prk for each source). Although the models with
rk = 2 fitted well in four and three dimensions
(Kruskal’s Stress-1 of 0.069 and 0.092, respectively),
the number of free parameters (df ) was considered
too large (df = 66 and df = 51, respectively).
The models with rk = 1 had Kruskal’s Stress-1 of
0.129 in four dimensions (df = 42) and 0.135 in
three dimensions (df = 33), so the last one was pre-
ferred. It has a %DAF of 98.1%, which is good. The
common space is shown in Figure 2.5, in which the
left panel displays Dimensions 3 and 1, and the right
panel displays Dimensions 3 and 2. The first dimen-
sion corresponds closely to the first axis found by
Klingberg (1941), who called it “dynamism” (national
attitudes insistent on change). The direction that runs
from northwest to southeast in the plot of Dimensions
2 and 3 was called “communism” (opposition to or
fear of it) by Klingberg, and the direction perpen-
dicular to it, contrasting Germany and France with
the United States and Italy, was called “belligerency”
(willingness and readiness to fight). Japan clearly has
an ambivalent position in this plane. The lines in
the plots represent the six individual sources, labeled

with their dates; more precisely, the perpendicular
projection of the points onto one of these lines gives an
approximation to the corresponding individual spaces,
which are given separately in Figure 2.6. Although
dynamism was the most important factor through-
out, at the earlier dates, communism was second in
importance, but in March 1939, belligerency became
decisive, causing a complete split into two blocks.
After the fall of France in June 1940, its position had
switched into the middle of the United States/Britain
versus Germany/Japan axis by June 1941, finding itself
still close to the USSR, which had moved toward
Germany and Italy (this was just before the out-
break of the German-Russian war). In conclusion,
it appears that the reduced-rank model picks up the
rather abrupt local changes in interstate relationships
among the Great Powers at the onset of World War II
quite well.

2.3.3. Application: Unfolding of the
Green and Rao (1972) Breakfast Data

A classic example of an unfolding data set is the
one collected by Green and Rao (1972) in the con-
text of a larger study involving dissimilarity judg-
ments, stimulus construct ratings, and preferences of
42 respondents for 15 food items used at breakfast
and snack time. What will be analyzed here are the
rankings of the 15 food items according to six prefer-
ence “scenarios,” the first being for overall preference
(1) and the remainder for the following menus and
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Figure 2.6 One-Dimensional Representations of the Great Powers at Six Time Points According to the
Reduced-Rank Model
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serving occasions: (2) “When I am having a breakfast,
consisting of juice, bacon and eggs, and beverage”;
(3) “When I am having a breakfast, consisting of juice,
cold cereal, and beverage”; (4) “When I am having a
breakfast, consisting of juice, pancakes, sausage, and
beverage”; (5) “Breakfast, with beverage only”; and
(6) “At snack time, with beverage only.”

2.3.3.1. Degeneracy Problems
With Previous Approaches

When Green and Rao (1972) tried an unfold-
ing analysis on the overall preferences, they found
disappointing results and concluded,

The stimuli with the exception of toast pop-up appear to
fall roughly on the circumference of a circle. Ideal-point
concentrations are noted in the third and fourth quad-
rants, suggesting some polarization between groups of
respondents who prefer sweet items and those who

prefer non-sweet items. However, the poor goodness-of-
fit values suggest that (a) either the program was unable
to find an appropriate representation in low dimension-
ality or (b) the simple unfolding model is inadequate to
account for these data. (p. 87)

As was noted in our earlier discussion of unfold-
ing, difficulties that previous approaches had, due to
insufficient awareness of the necessity to push a
method (and the computer program that implements
it) to its limits, can be overcome by a penalty approach
that discourages solutions with small variation in its
distances. Busing et al. (2004) demonstrated that the
overall preference data alone could be unfolded rather
well, without signs of degeneracy and with a reason-
able fit (average product-moment correlation between
distances and d-hats was 0.75, corresponding to a
%VAF of 56%). Here, it will be demonstrated that the
unfolding version of the weighted Euclidean model
is well suited to fit the differences between the six
scenarios as well.
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Figure 2.7 Two-Dimensional Common Unfolding Space for the Breakfast Data According to the Weighted
Euclidean Model
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2.3.3.2. PREFSCAL Analysis
of the Breakfast Data

The PREFSCAL analysis was done completely
nonmetrically, with separate ordinal transformations
for each of the 6 × 42 rankings.6 It required 27,278
iterations because the stopping criteria were set very
strictly (no differences greater than 1.0E-8). Variance
accounted for was 69%, which is higher than the fit
of the overall preferences. Figures 2.7 and 2.8 show,
respectively, the two-dimensional common space of
stimuli and ideal points, as well as the dimension
weights for the scenarios. In Figure 2.7 the respondent
points spread reasonably well; in the stimulus config-
uration, we have horizontally the toast factor: toasted,
crisp, or warm items to the right (several types of toast,

6. Weights were used in the analysis to achieve relatively good fit for
high preferences compared to low preferences because the former are
considered to be more reliable than the latter. In particular, the weight for
each cell was set equal to 1 over the dissimilarity value.

English muffin) and soft and cooled down items to the
left (donuts, coffee cake). The vertical dimension is
the yeast factor: On top, we have breads and pastries
made from dough that is yeast risen (donuts, hard
rolls, toasted bread), and at the bottom, we have quick
breads risen from eggs and baking powder (coffee cake,
muffins) or made from puff pastry (Danish pastry). The
former are what you eat at home, whereas the latter
are what you get if you order a Continental breakfast
in a fine hotel. In Figure 2.8, the six scenarios are
spread out in an interesting way: The yeast factor is
especially important to distinguish preferences condi-
tionally upon the egg-type entrée and the other heavy
breakfast entrees, whereas the very light breakfast and
snack scenarios lead to individual differences along
the toast factor. The overall preference is closest to the
latter scenarios.

Figure 2.9 shows just how strong the effects of
the scenarios influence the shape of the individual
configurations. This result is an indication that a
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Figure 2.8 Source Weights for the Breakfast Data, Showing the Differences Between the Six Scenarios
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three-dimensional model might be called for because
separately, the sources are not so close to one-
dimensionality, but such an analysis is not pursued
here.

2.4. Discussion

The major tool that has been used in this chapter for
presenting an overview of scaling methods has been a
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nonlinear regression equation with proximities on the
left-hand side and distances on the right-hand side. The
scaling literature has contributed a lot to the general
idea that a dependent or response variable—in this
case, proximity—may have to be transformed before
some model can be fitted to it. Optimal data trans-
formations have now become much more common in
other parts of statistics as well. At the model side, we
have a two-way or three-way design. Pairs of stimuli or
pairs of persons and stimuli form the basic independent
variable, which may be extended by a replication factor
(as was implicitly the case in our citation example,
where the replications are the individual citations from
any article in a given journal to any other article in the
same or a different journal). It may also be crossed
with another independent variable (“time” in the case
of the Klingberg data and “scenario” in the case of
the Green and Rao data). Common models for this
situation are linear, bilinear, or multilinear. Charac-
teristic for MDS and unfolding models is that they are
truly nonlinear: If one moves one point xi toward some
other point yj , the distance first decreases (and hence
proximity between the corresponding objects is pre-
dicted to increase), but then if one moves xi beyond yj ,
distance increases (and hence proximity is predicted
to decrease). The regression formulation allowed us to
keep technical issues such as the estimation method
and optimization in the background. Technical details
should follow from general considerations in statistical
theory.

In our discussion of the probabilistic approach to
MDS, which assumes that the point locations arise
from a stochastic process, it was mentioned that these
models tend to violate the basic monotonic relation-
ship between dissimilarity and distance. This objection
does not apply to methods for fitting the weighted
Euclidean (INDSCAL) model that take the point loca-
tions as fixed parameters but the individual dimen-
sion weights as stochastic. Winsberg and de Soete
(1993) offered an approach in which the dimension
weights come from a limited number of latent classes,
whereas Clarkson and Gonzalez (2001) proposed a
genuine random-effects model for the weights. These
approaches have the advantage that the number of
parameters is drastically reduced and does not increase
with the number of sources (or subjects), without
having to sacrifice the rotational invariance property.
There are also new approaches in metric unfolding
that work with latent classes for persons and various
restrictions on the stimulus points (de Soete & Heiser,
1993; Wedel & DeSarbo, 1996).

Asymmetry always has been and still is an
important issue. For a more technical discussion of dis-
tance models for contingency tables and their relation
with the well-known RC (M)-association model, the
reader is referred to de Rooij and Heiser (2004). Okada
(1997) and de Rooij (2002) have recently proposed
models that are also suitable for analyzing several
asymmetric relations. In the unfolding of the journal
citation data, it turned out that the arrows from corre-
sponding senders to receivers all pointed in centrifugal
directions. Special models have been developed for the
case that they all point to the same direction (Zielman
& Heiser, 1993) or to some common location (Adachi,
1999). With a little adjustment, the latter model might
be relevant for the citation example.

A final area of development that deserves to be
mentioned concerns the use of constraints. After
Bloxom’s (1978) seminal paper, which introduced a
class of constraints that is completely covered by stan-
dard options in the PROXSCAL program (Meulman
et al., 1999), there have been two major new direc-
tions for constrained MDS and unfolding. The first one
is the incorporation of cluster constraints in distance
models, which allows a more parsimonious descrip-
tion of large data sets (see Heiser & Groenen, 1997,
for MDS; de Soete & Heiser, 1993, for unfolding).
The second one is the idea of approximating multivari-
ate observations with a distance model, possibly with
optimal scaling of the variables, instead of just project-
ing the data points down into some space of reduced
dimensionality (Commandeur, Groenen, & Meulman,
1999; Meulman, 1992, 1996). Working with a distance
model for low-dimensional representations of high-
dimensional data ensures that the relations between the
objects are better represented in terms of their mutual
proximities compared to the results of other multi-
variate techniques, which work with projection. Both
developments have opened up an entirely new and
exciting area of application for MDS and unfolding
techniques.
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3.1. Introduction

This chapter focuses on the analysis of ordinal and
nominal multivariate data, using a special variety of
principal components analysis that includes nonlinear
optimal scaling transformation of the variables. Since
the early 1930s, classical statistical methods have been
adapted in various ways to suit the particular char-
acteristics of social and behavioral science research.
Research in these areas often results in data that are
nonnumerical, with measurements recorded on scales
having an uncertain unit of measurement. Data would
typically consist of qualitative or categorical variables
that describe the persons in a limited number of cate-
gories. The zero point of these scales is uncertain, the
relationships among the different categories is often
unknown, and although frequently it can be assumed
that the categories are ordered, their mutual distances
might still be unknown. The uncertainty in the unit
of measurement is not just a matter of measurement

error because its variability may have a systematic
component.

For example, in the data set that will be used through-
out this chapter as an illustration, concerning feelings
of national identity and involving 25,000 respondents
in 23 different countries all over the world (Inter-
national Social Survey Programme [ISSP], 1995),
there are variables indicating how close the respon-
dents feel toward their neighborhood, town, and
country, measured on a 5-point scale with labels rang-
ing from not close at all to very close. This response
format is typical for a lot of behavioral research and
definitely is not numerical (even though the categories
are ordered and can be coded numerically).

3.1.1. Optimal Scaling Transformations

An important development in multidimensional data
analysis has been the optimal assignment of quantita-
tive values to qualitative scales. This form of optimal
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quantification (optimal scaling, optimal scoring) is
a very general approach to treat multivariate (cate-
gorical) data. Taking the linear regression model as
a leading case, we may wish to predict a response
variable from a number of predictor variables. This
objective is achieved by finding a particular linear
combination of the predictor variables that correlates
maximally with the response variable. Incorporating
optimal scaling amounts to further maximization of
this correlation, not only over the regression weights
but also over admissible nonlinear functions of the
predictor variables. For instance, in the National Iden-
tity Study data, we may try to find nonlinear scale
values of the response categories of the closeness
variables that improve the multiple-correlation co-
efficient for predicting willingness to move because it
may be that some response categories equally predict
high willingness, whereas other categories strongly
differentiate between small steps in low willingness.
These nonlinear functions are called transformations,
optimal scalings, scorings, or quantifications. In this
chapter, we will use both the terms nonlinear optimal
scaling transformations and optimal quantifications.
The optimal scaling process turns qualitative variables
into quantitative ones. Optimality is a relative notion,
however, because it is always obtained with respect to
the particular data set that is analyzed.

The nonlinear optimal scaling transformations of
ordered categorical or continuous (ordinal) data can
be handled by means of monotonic transformations,
which maintain the order in the original data. Cate-
gorical (nominal) data in which the categories are not
ordered will be given an optimal quantification (scor-
ing). Nonmonotonic functions can also be used for
continuous (numeric) and ordinal variables when non-
linear relationships among the variables are assumed.
In these cases, it is often useful to collapse the data
in a limited number of categories (sometimes called
binning) and find an optimal quantification for the cat-
egories (see Section 3.6.2). However, if we do not want
to lose the fine gradings, we can also fit a monotonic
or nonmonotonic spline. A spline is a function that
consists of piecewise polynomials of a low degree
that are joined at particular points, called knots. Of
course, special software is required to simultaneously
transform and analyze the data.

3.1.2. Software for Nonlinear
Principal Components: CATPCA

A state-of-the-art computer program, called
CATPCA, that incorporates all the features that will

be described in this chapter is available from SPSS
Categories 10.0 onwards (Meulman, Heiser, & SPSS,
1999). In CATPCA, there is a large emphasis on graph-
ical display of the results, and this is done in joint plots
of objects1 and variables, also called biplots (Gower &
Hand, 1996). In addition to fitting points for individ-
ual objects, additional points may be fitted to identify
groups among them, and graphical display can be in a
triplot, with variables, objects, and groups of objects.
Special attention will be given to particular properties
that make the technique suited for data mining. Very
large data sets can be analyzed when the variables are
categorical at the outset or by binning.

Because CATPCA incorporates differential weight-
ing of variables, it can be used as a “forced clas-
sification” method (Nishisato, 1984), comparable to
“supervised learning” in machine learning terminol-
ogy. Objects and/or variables can be designated to be
supplementary; that is, they can be omitted from the
actual analysis but fitted into the solution afterwards.
When a prespecified configuration of points is given,
the technique may be used for property fitting (exter-
nal unfolding), that is, fitting external information
on objects, groups, and/or variables into the solution
(see Section 3.6.1). The information contained in the
biplots and triplots can be used to draw special graphs
that identify particular groups in the data that stand out
on selected variables.

Summarizing, CATPCA can be used to analyze
complicated multivariate data, consisting of nominal,
ordinal, and numerical variables. A straightforward
spatial representation is fitted to the data, and dif-
ferent groups of objects can be distinguished in the
solution without having to aggregate the categori-
cal data beforehand. We will discuss the various
aspects of the analysis approach, giving attention to its
data-analytical, graphical, and computational aspects.

3.1.3. Some Historic Remarks
on Related Techniques

Historically, the idea of optimal scaling originated
from different sources. On one hand, we find the
history of the class of techniques that is nowadays
usually called (multiple) correspondence analysis, a
literal translation of Benzécri’s L’analyse des corre-
spondances (multiples) (Benzécri, 1973, 1992). This
history can be traced in the work of Fisher (1948),

1. In the CATPCA terminology, the units of analysis are called objects;
depending on the application, these can be persons, groups, countries, or
other entities on which the variables are defined.
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Guttman (1941), Burt (1950), and Hayashi (1952),
among others, and in the rediscoveries since the 1970s
(among others, see Benzécri, 1992; de Leeuw, 1973;
Greenacre, 1984; Lebart, Morineau, & Warwick,
1984; Saporta, 1975; Tenenhaus & Young, 1985). The
class of techniques is also known under the names
dual scaling (Nishisato, 1980, 1994) and homogene-
ity analysis (Gifi, 1981/1990). In the course of its
development, the technique has been given many
different interpretations. In the original formulation
of Guttman (1941), the technique was described as a
principal components analysis of qualitative (nominal)
variables. There is also an interpretation as a form of
generalized canonical correlation analysis (Lebart &
Tabard, 1973; Masson, 1974; Saporta, 1975), based on
earlier work by Horst (1961a, 1961b), Carroll (1968),
and Kettenring (1971).

Another major impetus to optimal scaling was given
by work in the area of nonmetric multidimensional
scaling (MDS), pioneered by Shepard (1962a, 1962b),
Kruskal (1964), and Guttman (1968). In MDS, a set
of proximities between objects is approximated by a
set of distances in a low-dimensional space, usually
Euclidean. Optimal scaling of the proximities was
originally performed by monotonic regression; later
on, spline transformations were incorporated (Ramsay,
1982). Since the so-called nonmetric breakthrough in
MDS in the early 1960s, optimal scaling has subse-
quently been integrated in multivariate analysis tech-
niques that hitherto were only suited for the analysis
of numerical data. Some early contributions include
Kruskal (1965), Shepard (1966), and Roskam (1968).
In the 1970s and 1980s, psychometric contributions
to the area became numerous. Selected highlights
from the extensive psychometric literature on the sub-
ject include de Leeuw (1973); Kruskal and Shepard
(1974); Young, de Leeuw, and Takane (1976); Young,
Takane, and de Leeuw (1978); Nishisato (1980);
Heiser (1981); Young (1981); Winsberg and Ramsay
(1983); Van der Burg and de Leeuw (1983); Van der
Burg, de Leeuw, and Verdegaal (1988); and Ramsay
(1988). Attempts at systematization resulted in the
ALSOS system by Young et al. (1976), Young et
al. (1978), and Young (1981) and the system devel-
oped by the Leiden “Albert Gifi” group. Albert Gifi’s
(1990) book, Nonlinear Multivariate Analysis, pro-
vides a comprehensive system, combining optimal
scaling with multivariate analysis, including statis-
tical developments such as the bootstrap. Since the
mid-1980s, the principles of optimal scaling have
gradually appeared in the mainstream statistical lit-
erature (Breiman & Friedman, 1985; Buja, 1990;
Gilula & Haberman, 1988; Hastie et al., 1994;

Ramsay, 1988). The Gifi system is discussed among
traditional statistical techniques in Krzanowski and
Marriott (1994).

3.2. Graphical Representation

The way we will treat principal components analysis
(PCA) is more like a multidimensional scaling (MDS)
technique than a technique from the classic multivari-
ate analysis (MVA) domain. The central concept in
classical multivariate analysis is the covariance or cor-
relation among variables. Consequently, the modeling
of the covariance or correlation matrix is the main
objective of the analysis; therefore, the persons on
which the variables are defined are usually regarded
merely as a replication factor. Thus, the role of the
persons is confined to acting as intermediaries in
obtaining covariance or correlation measures that
describe the relationships among the variables. In
the multidimensional scaling domain, techniques have
been developed for the analysis of a (not necessarily)
symmetric square table, with entries representing the
degree of dissimilarity among any kind of objects,
which may be persons. The objective, then, is to
map the objects in some low-dimensional space, in
which the distances resemble the initial dissimilarities
as closely as possible. To make distinctions between
MDS and classical MVA more explicit than they
would be from a unifying point of view, consider
factor analysis, one of the major data-analytic con-
tributions to statistics originating from the behavioral
sciences. Unfortunately, from a visualization point
of view, the representation of persons became very
complicated in the process. The factor-analytic model
aggregates observations on persons into an observed
covariance matrix for the variables, and the model
involved for representing this covariance matrix is
focused on the fitting of a matrix incorporating the
common covariances among the variables and another
(diagonal) matrix that displays the unique variance of
each variable. By formulating the data-analytic task
through this particular decomposition, the factor scores
that would order the persons with respect to the under-
lying latent variables are undetermined: Although
various approaches exist to have the persons reap-
pear, their scores cannot be determined in a unique
manner.

In contrast, principal components analysis can be
discussed by focusing on the joint representation of
persons and variables in a joint low-dimensional space.
The variables in the analysis are usually represented as
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vectors (arrows) in this low-dimensional space. Each
variable is associated with a set of component loadings,
one for each dimension, and these loadings, which
are correlations between the variables and the prin-
cipal components, give coordinates for the variables
to represent them as vectors in the principal com-
ponent space. The squared length of such a vector
corresponds to the percentage of variance accounted
for and thus equals the sum of squares of the com-
ponent loadings across the dimensions. If we sum the
squared component loadings in each dimension over
the variables, we obtain the eigenvalues. In the CAT-
PCA approach discussed in the sequel of this chapter,
a variable can also be viewed as a set of category
points. When a variable is visualized as a vector, these
category points are located on a line, where the direc-
tion is given by the component loadings. There is,
however, an alternative to representing the category
points on a straight line, which is by displaying them
as points in the middle, the centroid, of the cloud of
associated object points in the low-dimensional rep-
resentation space. These two ways of representing a
variable will be called the vector and the centroid
model, respectively.

3.2.1. The Vector Model

A very first description of the vector model can
be found in Tucker (1960); Kruskal (1978) used the
term bilinear model, and Gabriel (1971) invented the
name biplot. A comprehensive book on biplots is by
Gower and Hand (1996). The prefix bi- in bilinear and
biplot refers to two sets of entities, the objects and the
variables (and not to two dimensions, as is sometimes
erroneously assumed). In PCA, the observed values on
theM variables are approximated by the inner product
of the P -dimensional component scores and compo-
nent loadings for the variables, with P much smaller
than M. Usually, the classic reference to lower rank
approximation is Eckart and Young (1936), but it might
be worthwhile to note that this reference is challenged
by Stewart (1993), who remarks that the contribution
of Schmidt (1907) was much earlier, which is also
noted by Gifi (1990). Because the fit is defined on an
inner product, one has to make a coherent choice of
normalization.2 Usually, the component scores are nor-
malized to have means of zero and variances equal to 1;

2. Because the inner product between two vectors a and b is defined as
a′b, it remains unchanged if we transform a into ã = Ta and b̃ into b =
Sb, with S = (T′)−1, because a′b = a′T′Sb = ã′b̃. Choosing principal
axes and a coherent normalization settles the choice of T and S (also see
Section 3.2.4).

the coherent normalization implies that the component
loadings are correlations between the variables and
the P dimensions of the space fitted to the objects.
Component loadings give coordinates for a variable
vector in the space, and the angles between the
vectors then approximate the correlations between the
variables. The inner product of the matrix of com-
ponent scores and a variable vector approximates a
column of the data matrix, and the length of the variable
vector in the space equals the correlation between the
variable and its approximation.

In the classical PCA biplot, persons are represented
as points, and variables are represented as vectors in
the same low-dimensional space. In contrast, in the
analysis of preference data, in which Tucker’s (1960)
vector model originated, the persons are represented
as vectors and the items are represented as points (for
an extended treatment of the vector model in the con-
text of preference analysis, see Carroll, 1968, 1972;
Heiser & de Leeuw, 1981). Because we include non-
linear optimal scaling transformations for the variables
in principal components analysis, the vector/bilinear
model represents not the original categorical variable
but the transformed variable, which is given optimal
(non)monotonic quantifications for its categories.

3.2.2. The Centroid Model

Unlike the vector model that is based on projec-
tion, the centroid model is most easily viewed in
terms of distances between object points and category
points. In the centroid model, each category obtains
coordinates that represent the category in the same
space as the objects. The centroid model originates
from multiple-correspondence analysis (MCA), where
a nominal variable is represented as a set of category
points, which are in the centroids of the associated
objects. The categories of a particular variable partition
the cloud of object points into subclouds. When these
subclouds overlap considerably, we say that the corre-
sponding variable is a relatively bad discriminator. On
the other hand, well-separated subclouds are associ-
ated with a good discriminator. When we have chosen
the centroid model for two or more variables, and when
the solution has a decent fit, the category points that are
associated with the same objects will be close together,
whereas categories of the same variable will be far
apart (each representing a subcloud of object points
through its centroid). The weighted mean squared
distance of the category points toward the origin gives
a measure similar to variance accounted for and has
been called the discrimination measure (Gifi, 1990).
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A special feature of the CATPCA approach is the
possibility to fit the vector (bilinear) model and the
centroid (distance) model for different variables (or
even for the same variable) in a single analysis, a
feature not available in other software programs that
perform nonlinear principal components analysis.

3.2.3. Clustering and Forced Classification

The CATPCA method accommodates differential
weights for separate variables. In this way, the cen-
troid model can be used for forced classification (a
term coined by Nishisato, 1984), which can also be
called supervised learning. Forced classification is
obtained by applying a (very) large weight for the
particular variable that we have selected for the clas-
sification. Applying this large weight in combination
with the centroid model will cause the object points
that belong together to cluster into subclouds in the
low-dimensional space. The larger the weight that is
given, the tighter the clustering will be. This feature
is especially attractive when the number of objects is
very large and when they can be identified as members
of a particular subgroup, such as citizens of different
countries (as in the example given below) or members
of a particular social group. In these cases, we would
not be so much interested in the individual results but in
the results for the groups. Because we are dealing with
categorical data, it would not make sense to average
the data beforehand. The use of a weighted classi-
fication variable takes care of this averaging during
the analysis, and the size of the weight controls the
subsequent clustering of the object points around their
centroid.

In this way, we make certain that the classifica-
tion variable plays a significant role in the first few
dimensions of the principal components analysis solu-
tion. This property is extremely useful when we would
use PCA as a first step in a discriminant analysis to
diminish the number of predictors. Such a particular
strategy is often used when the number of predictors
exceeds the number of objects in the data matrix, as
is the case, among others, in genometrics (the analysis
of microarray gene expression data), proteometrics,
and chemometrics but also in Q-sort data, with judges
acting as variables, and with a classification variable
available for the objects. In the same manner, CATPCA
can be used as a prestep in a multiple regression
analysis when the number of predictors exceeds the
number of objects. In the latter case, the response
variable is included in the analysis, with a much larger

weight than the other variables and with the application
of the vector model.

3.2.4. Different Normalizations

Different normalization options are possible for the
display of objects and variables in the low-dimensional
Euclidean space. The most commonly used normal-
ization option in principal components analysis is
to display the objects in an orthonormal cloud of
object points, in which the dimensions themselves
have equal variance. Then, the representation of the
variables accounts for the differential fit in subse-
quent dimensions, with the first dimension accounting
for most of the variance and subsequent dimensions
displaying the variance accounted for (VAF) in a
decreasing order. When the object scores are normal-
ized, however, one loses a straightforward distance
interpretation with respect to the objects. To attain
the latter, one should normalize the component load-
ings and leave the object scores free (but keeping the
inner product fixed). Therefore, an alternative option
is provided that should be used if we wish CATPCA to
perform a principal coordinates analysis as described
in Gower (1966), which is equivalent to the classical
MDS method usually attributed to Torgerson (1958).
In principal coordinates analysis, the emphasis is on
the representation of the objects, and the cloud of
object points displays the differential fit in subsequent
dimensions (the cloud is not orthonormal but shows a
definite shape). The interpretation of nonlinear PCA
in terms of distances between objects is given, among
others, in Heiser and Meulman (1983) and Meulman
(1986, 1992). Whether the object points or the (cate-
gory points of the) variables are normalized depends
algebraically on the allocation of the eigenvalues in
the use of the singular-value decomposition to repre-
sent both sets of entities in the low-dimensional space.
Therefore, in CATPCA, the impact of the eigenvalues
(symbolizing the fit) could also be distributed sym-
metrically over objects and variables (enhancing the
joint display, especially when the overall fit is not very
large) or handled in a completely customized way to
optimize the quality of the joint representation.

3.2.5. Different Biplots and a Triplot

For the display of the results, a variety of biplots
is available in CATPCA. A biplot can display the
objects (as points) and the variables (as vectors),
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the objects and groups among them (represented by
centroids), or the variables with groups of objects
(represented by centroids). Combining these three
options reveals relationships between objects, groups
of objects, and variables, and we call this display a
triplot. The ultimate summary of the analysis combines
the information in the biplots and triplots in one-
dimensional displays. These are obtained by taking
centroids of the objects, according to a particular (clas-
sification) variable, and projecting these centroids on
the vectors representing variables of particular inter-
est in the analysis. In this way, the graph identifies
particular groups in the data that stand out on the
selected variables. The use of the projected centroids
representation is demonstrated in Section 3.4.6.

3.3. MVA With Different Nonlinear

Optimal Scaling Transformations

In the nonlinear transformation process in CATPCA,
an appropriate quantification level has to be chosen
for each of the variables. The most restricted transfor-
mation level is called numerical; it applies a linear
transformation to the original integer scale values,
so that the resulting variables will be standardized.
The numerical scaling level fits category points on a
straight line through the origin, with equal distances
between the points. Instead of a linear transformation,
we have the choice between different nonlinear trans-
formations, and these can either be monotonic with the
original order of the categories or nonmonotonic.

3.3.1. Nominal Transformation
and Multiple Nominal Quantifications

When the only fact we will take into account is that
a particular subset of the objects is in the same cate-
gory (whereas others are in different ones), we call the
transformation nominal (or nonmonotonic); the quan-
tifications only maintain the class membership, and the
original categories are quantified to give an optimal
ordering. The nonlinear transformation can be carried
out either by a least squares identity regression (which
amounts to averaging over objects in the same cate-
gory) or by fitting a nonmonotonic regression spline.
Geometrically, the nominal scaling level fits category
points in an optimal order on a straight line through
the origin. The direction of this straight line is given
by the corresponding component loadings.

What has been labeled the centroid model above
(a categorical variable represented by a set of points
located in the centroid of the objects that are in
the associated categories) is also called a multiple
nominal quantification. The quantification is called
multiple because there is a separate quantification for
each dimension (the average of the coordinates of the
objects in the first dimension, the second dimension,
etc.) and nominal because there is no prespecified order
relationship between the original category numbers
and the order in any of the dimensions. An example of
the difference between a nominal and a multiple nom-
inal quantification will be given later on. We choose
a nominal transformation when we wish the category
points to be represented on a vector and a multiple
quantification when we wish them to be in the centroids
of the associated objects.

3.3.2. Monotonic and Nonmonotonic Splines

Within the domain of either monotonic or non-
monotonic transformations, two approaches are avail-
able: optimal least squares transformations or optimal
spline transformations. As indicated above, the class
of monotonic transformations has its origin in the
nonmetric multidimensional scaling literature (Kruskal,
1964; Shepard, 1962a, 1962b), in which original dis-
similarities were transformed into pseudo-distances
to be optimally approximated by distances between
object points in low-dimensional space. Free mono-
tonic transformations have been implemented since
then to generalize multivariate analysis techniques as
well (e.g., see Gifi, 1990; Kruskal, 1965; Kruskal &
Shepard, 1974;Young et al., 1978). We call these
transformations free monotonic because the number of
parameters that is used is free. Because this freedom
could lead to overfitting of the MVA model over the
transformation of the variables, a more restricted class
of transformations was introduced into the psychome-
tric literature. The most important ones form the class
of regression splines, and these were introduced in
multiple regression analysis and principal components
analysis in Winsberg and Ramsay (1980, 1983; for a
nice overview, see Ramsay, 1988). For splines, the
number of parameters is determined by the degree of
the spline that is chosen and the number of interior
knots. Because splines use fewer parameters, they usu-
ally will be smoother and more robust, albeit at the cost
of less goodness of fit with respect to the overall loss
function that is minimized.
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3.3.3. Goodness of Fit: Component
Loadings, Variance Accounted For,
Eigenvalues, and Cronbach’s α

Principal components analysis studies the inter-
dependence of the variables. Nonlinear transforma-
tions maximize the average interdependence, and this
optimality property can be expressed in various forms.
When variables obtain an ordinal (monotonic spline)
transformation or a nominal (nonmonotonic spline)
transformation, the technique maximizes the sum of
the P largest eigenvalues of the correlation matrix
between the transformed variables (where P indi-
cates the number of dimensions that are chosen in
the solution). The sum of the eigenvalues, the over-
all goodness-of-fit index, is equal to the total variance
accounted for (in the transformed variables). The vari-
ance accounted for in each dimension for each variable
separately is equal to the squared component loading,
and the component loading itself is the correlation
between the transformed variable and a principal com-
ponent (given by the object scores) in a particular
dimension.

There is a very important relationship between
the eigenvalue (the total sum of squared component
loadings in each dimension) and probably the most
frequently used coefficient for measuring internal con-
sistence in applied psychometrics: Cronbach’s α (e.g.,
see Heiser & Meulman, 1994; Lord, 1958; Nishisato,
1980). The relationship between α and the total vari-
ance accounted for, as expressed in the eigenvalue
λ, is

α = M(λ− 1)/(M − 1)λ, (1)

where M denotes the number of variables in the
analysis. Because λ corresponds to the largest eigen-
value of the correlation matrix, and because CATPCA
maximizes the largest eigenvalue of the correlation
matrix over transformations of the variables, it fol-
lows that CATPCA maximizes Cronbach’s α. This
interpretation is straightforward when the CATPCA
solution is one-dimensional. Generalized use of this
coefficient in more-dimensional CATPCA is described
in Section 3.4.2.

3.4. CATPCA in Action, Part 1

Throughout this chapter, the principles behind cate-
gorical principal components analysis (CATPCA),
or principal components analysis with nonlinear
optimal scaling transformations, will be illustrated
by using a large-scale multivariate data set from the

ISSP (1995) that can be considered exemplary for
data collected in the social and behavioral sciences.
The ISSP is a continuous annual cross-national data
collection project that has been running since 1985.
It brings together preexisting social science projects
and coordinates research goals, thereby adding a cross-
national perspective to the individual national studies.
Since 1985, the ISSP grew from 6 to 30 participating
countries in 1998. The ISSP Internet pages give access
to detailed information about the ISSP data service
provided by the Zentral Archiv, Cologne. The home-
page of the ISSP-Secretariat provides information on
ISSP history, membership, publications, and the ISSP
listserver.

The original data concern feelings of national iden-
tity from about 28,500 respondents in 23 different
countries all over the world. Because the number of
respondents in the sample in each of the participating
countries is not proportional to the population size, a
random sample from the original data was taken so
that all countries have the same weight in the analysis,
with all being represented by 500 respondents. This
selection makes the total number of individuals in our
examples equal to 11,500.

For the first application, we have selected three
groups of variables from the National Identity Study.
The first group of five variables indicates how close the
respondents feel toward their neighborhood (CL-1),
their town (CL-2), their county (CL-3), their country
(CL-4), and their continent (CL-5). (The data were
recoded so that a score of 1 indicates not close at all
and a score of 5 indicates very close.) The next five
variables indicate whether the respondents are willing
to move from their neighborhood to improve their work
or living conditions, either to another neighborhood
(MO-1), another city (MO-2), another county (MO-3),
another country (MO-4), or another continent (MO-5),
with the score 1 indicating very unwilling and the
score of 5 indicating very willing. The third set of
variables concerns statements about immigrants, ask-
ing the respondents on a scale from 1 to 5 whether
they strongly disagree (1) or strongly agree (5) with
the following statements: “Foreigners should not be
allowed to buy land [in this country]” (I-Land), “Immi-
grants increase crime rates” (I-Crime), “Immigrants
are generally good for the economy” (I-Econ), “Immi-
grants take jobs away from people who were born [in
this country]” (I-Jobs), and “ Immigrants make [this]
country more open to new ideas and cultures” (I-Ideas).
Also, respondents were asked to scale themselves with
respect to the statement, “The number of immigrants to
[my country] nowadays should be reduced a lot (1) . . .
increased a lot (5).” More than 50% of the respondents
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have one or more missing values on these 16 variables;
therefore, a missing data treatment strategy other than
deleting all cases with missing data is required, and
it was decided to use the straightforward CATPCA
option of imputing the modal category for each of the
variables. (See Section 3.6.3 on the treatment of miss-
ing data for more sophisticated approaches available
in the optimal scaling framework.)

3.4.1. VAF and Cronbach’s α

The results of a two-dimensional solution with
monotonic spline transformations will be presented
that explains 41% of the variance of the scores of
the 11,500 respondents on the 16 variables. The
percentage of variance accounted for (PVAF) in
the first dimension (26.7%) is almost twice the
PVAF in the second dimension (14.4%). The VAF
in the first dimension equals .267 × 16 (number of
variables) = 4.275, and in the second dimension,
.144 ×16 = 2.305. As explained above, the VAF is
closely related to Cronbach’s α.

As illustrated in Heiser and Meulman (1994), the
relationship between α and the VAF (eigenvalue) is not
linear but monotonically increasing, and it is severely
nonlinear when M, the number of variables, grows.
For M = 16, as in our example, the VAF in the
first dimension corresponds to a value of α = .817,
and the VAF in the second dimension corresponds to
a value of α = .604. If we take the total variance
accounted for (6.580) as the value of λ in equation (1),
α = .905 (the maximum is 1). This use of equation (1)
clearly gives a much more general interpretation of α
than was originally intended but provides an indica-
tion of the global fit of the CATPCA solution. The
VAF per dimension is equal to the sum of squares of
the component loadings and equal to the associated
eigenvalue of the correlation matrix between the opti-
mally transformed variables. Note that the value of
α for a particular dimension becomes negative when
the associated eigenvalue is less than 1.0. The largest
eigenvalue of the correlation matrix between the orig-
inal variables is 4.084, so the increase in VAF is
1 − 4.084/4.275 = 4.5%, which is not a dramatic
overall increase. For most of the individual variables,
however, the transformation is clearly nonlinear, as
shown in Figure 3.1.

3.4.2. Nonlinear Transformations

In Figure 3.1, the transformations for CL-1 unto
CL-5, MO-1 unto MO-5, and I-Land unto I-Incr are

displayed in its columns; the optimal quantifications
are given on the vertical axes versus the original values
on the horizontal axes. The nonlinear transforma-
tions for CL-1 unto CL-5 show convexity, indicating
that there is less distinction between the not close at
all = ncl(1) and not close = ncl(2) categories, which
are contrasted to the very close = ncl(4) category;
the close = ncl(3) category is almost always near to
the mean of 0. The MO-1 unto MO-5 quantifications
show the opposite pattern: The nonlinear transforma-
tions approximate a concave function, grouping the
willing, very willing categories, which are contrasted
to the very unwilling category. The unwilling cate-
gory has quantifications close to the mean, except for
MO-4 and MO-5, which show the most concave func-
tions. When we then inspect the quantifications for
I-Land, I-Crime, and I-Jobs (the statements in which a
high score expresses a negative attitude toward immi-
grants), we see that the transformations are convex
again, contrasting the flat part for the (strongly) dis-
agree categories at the lower end from the steep part
toward the strongly agree category at the upper end.
So these transformations resemble those for the CL
variables. Looking at the quantifications for I-Econ
and I-Incr, which express a positive attitude toward
immigrants, we see that their quantifications give con-
cave functions, just as for the MO variables: strongly
disagree (at the lower end) is contrasted with agree
and strongly agree (at the upper end) for I-Econ, and
reduced a lot is contrasted with increase and increase
a lot at the upper end for I-Incr (“the number of
immigrants should be . . .”). The overall conclusion
is that the steep parts of each of the transformations
express negative feelings toward immigrants because
they occur at the upper end for the negatively stated
attitudes and at the lower end for the positively stated
attitudes. Simultaneously, this pattern is reflected in
the transformations for the CL variables, with the steep
part indicating that one feels very close to one’s living
environment, and the MO variables, with the steep part
indicating that one is very unwilling to move.

3.4.3. Representing Variables as Vectors

The optimal quantification process turns a qualitative,
nominal (or ordinal) variable into a quantitative,
numerical variable. The resulting nonlinearly trans-
formed variable can be represented as a vector in the
space that is determined for the objects. The coordi-
nates for such a vector are given by the associated
component loadings that give the correlation between
the transformed variable and the dimensions of the
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Figure 3.1 Spline Transformation of CL Variables (First Column), MO Variables (Second Column), and IM
Variables From the CATPCA of the 1995 ISSP National Identity Study
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object space. The graph of the component loadings
is given in Figure 3.2 (left-hand panel), which shows
vectors going in four different directions from the

origin (the point 0, 0). Going clockwise, the first
group of vectors points in the north-northeast direc-
tion, containing I-Econ, I-Incr, and I-Idea; the second
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Figure 3.2 Loadings for MO, CL, and IM Variables (Left-Hand Panel) and Category Points for Country
(Right-Hand Panel) From the CATPCA Analysis
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group points to the east-southeast, comprising the
MO variables. The I-Land, I-Crime, and I-Jobs
variables point in the south-southwest direction, and
the CL variables, finally, point toward the west-
northwest. From the transformation plots described
above, we know that these directions indicate posi-
tive attitudes toward immigrants, willingness to move,
very negative attitudes toward immigrants, and feel-
ing very close to one’s environment, respectively. It
should be noted that each of these four groups of
vectors has starting points representing the opposite
meaning extending at the opposite side of the origin.
So very close to the I-Econ, I-Incr, and I-Idea vectors,
we should also envision the starting points of I-Land,
I-Crime, and I-Jobs representing positive attitudes, as
in the flat parts of the corresponding transformation
plots. The reverse, therefore, is also true: The lower,
very negative sides of the vectors for I-Econ, I-Incr,
and I-Idea are very close to the plotted very negative
sides of the vectors for I-Land, I-Crime, and I-Jobs.
This whole story can be repeated for the MO and CL
vectors that extend either to the right or to the left from
the origin (also, see Figure 3.3).

The very unwilling to move lower endpoints are close
to the very close upper endpoints, whereas the not
close lower endpoints are near the willing to move
upper endpoints. Now that we have interpreted the
extremes of the optimally scaled categories depicted
in the transformation plots, we can also interpret
the full range of quantifications with respect to their

Figure 3.3 Joint Category Points for Country,
MO-1, and I-Crime
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original category labels. Before this will be done
in Section 3.4.5, however, we will first inspect a
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different type of variables that can be introduced into
the analysis described thus far.

3.4.4. Supplementary Variables

In the analysis of the CL, MO, and IM variables,
we added a supplementary variable labeled country.
This variable indicates from which of the 23 different
countries the respondent originates. A supplementary
variable has no influence on the actual analysis, but
its quantifications are computed afterwards to estab-
lish its relationship with the solution obtained. In
the case of the National Identity Study data, the
number of respondents is too large to inspect the
object scores on an individual level. Having the Coun-
try variable as a supplementary variable, however,
gives the opportunity to display clusters of respon-
dents from the same country by a single point. When
the respondents from a particular country are very
heterogeneous, their individual points will be scat-
tered all over the two-dimensional space, and their
associated country point, computed as the centroid
of the appropriate individual points, will be located
close to the origin of the configuration. To obtain
these centroids for the 23 different countries in the
National Identity Study, we have to specify that the
country variable should obtain multiple nominal quan-
tifications. The result is shown in the right-hand
panel of Figure 3.2. In this graph, we see various
clusters of points in three different directions, start-
ing from the origin, which itself is close to Italy
(IT) and Poland (PL) (and Slovenia [SL] and East
Germany [GE]). First, a cluster of points contains
Hungary (HU), Bulgaria (BG), Latvia (LV), Russia
(RU), the Czech Republic (CZ), and the Slovak
Republic (SK) in the lower left corner. Going in the
upper left direction, we see Austria (AU), Japan (JP),
Spain (SP), and Ireland (IR). Finally, going from the
origin straight to the right, we have West Germany
(GW), Norway (NO), Sweden (SW), Great Britain
(GB), the Philippines (PH), the United States (US), and
the Netherlands (NL). New Zealand (NZ) and Canada
(CD) are almost on a straight line from the origin
toward the upper right corner of the graph. Having
these coordinates for the 23 countries, we can construct
a biplot of the country points and the vectors for the
CL, MO, and IM variables.

3.4.5. A Biplot of Centroids and Vectors

As described above, the CATPCA methodology
allows a variety of different biplots. Because the

number of objects in the National Identity Study
is too large to inspect the relationship between the
objects and the variables on the individual level, we
represent the individual points by the centroids that
are obtained by the supplementary country variable.
There are two different ways for joint representation
of country points and the vectors for the variables.
The most straightforward one is a graph with the
centroids from the right-hand panel of Figure 3.2
superimposed on the component loadings depicted
in the left-hand panel. Elements of this plot (not
shown) can be highlighted by the joint representa-
tion of the centroids and category points for selected
variables. For illustration in our case, MO-1 and
I-Crime were chosen, and the resulting plot is given
in Figure 3.3. Here we notice the three most important
clusters: Cluster 1 contains HU, BG, RU, LV, SK, and
CZ; Cluster 2 contains AU, JP, SP, and IR; and Cluster
3 contains GW, NO, SW, GB, PH, US, and NL, located
between the vectors given for MO-1 and I-Crime. In
contrast to the component plot in Figure 3.2, a variable
is now represented by the full set of category points
on a straight line through the origin. For I-Crime,
the category points “disagr(1) = strongly disagree”
and “disagr(2) disagree” are both located at the side
of the vector that points toward the north, whereas
“agr(5) = strongly agree” is located at the opposite
end, pointing to the south. The category “agr(4) =
agree” is located close to the origin (compare the
quantification close to zero in the transformation plot).
The vector for the MO-1 variable contrasts “unwill(1)
= very unwilling” on the left with “will(4) = will-
ing” and “will(5) = very willing” on the right; here,
the category “unwill(2) = unwilling” is close to the
origin.

From the location of the country points with respect
to the vectors for the variables, we can derive the rela-
tive positions by projection; for example, Ireland (IR)
and Canada (CD) score high on the disagree end of
the “Immigrants increase crime” vector. With respect
to the cluster structure described above, the first clus-
ter (with Russia [RU] in the center) agrees with the
statement that immigrants increase the crime rate, and
it is unwilling to move. Cluster 2, containing Japan,
is also unwilling to move but (strongly) disagrees with
the I-Crime statement. The third cluster, containing the
United States, mildly disagrees but is willing to move
(from its neighborhood).

3.4.6. Projected Centroids

The relative joint position of countries on statements
is most clearly represented in the “projected centroids”
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Figure 3.4 Projected Centroids for Country on
Selected Variables (From Right to Left)
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plot, shown in Figure 3.4. Here the 23 countries have
been projected on the vectors for the statements as
in the biplot, but now these projections themselves
are shown on straight parallel lines representing the
statements. From left to right, the following statements
were used: CL-1, MO-1, I-Crime, and I-Econ. As
we know from Figure 3.2 (left-hand panel), CL-1 and
MO-1 are each other’s opposite, and so this is also seen
in Figure 3.4, with HU, AU, IR, JP, and BG scoring
high on CL-1 (and low on MO-1) and NL, PH, CD,
US, and the other countries from Cluster 3 scoring high
on MO-1 (and low on CL-1). The two other variables
represented show contrasts between Cluster 1 (scor-
ing high on I-Crime and low on I-Econ) and CD, IR,
NZ, SP, and NL (scoring low on I-Crime and high on
I-Econ).

We should remind ourselves, however, that the data
analyzed are from 1995 and that points of view will
most probably have changed since then for at least
some of the countries in this study.

3.5. Technical Background

of Nonlinear Principal

Components Analysis

3.5.1. Indicator Matrices

The nonlinear transformation approach deals
with categorical variables in the following way.
A categorical variable hm defines a binary indicator
matrix Gm with N rows and Cm columns, where Cm
denotes the number of categories. Elements him then
define elements gic(m) as follows:

gic(m) =
{

1 if him = cm
0 if him=/ cm , (2)

where cm = 1, . . . , Cm is the running index indi-
cating a category number in the mth variable. If
category quantifications are denoted by the vector ym
(with Cm elements), then a transformed variable qm
can be written as Gmym. For instance, in a stan-
dard linear model, with M predictor variables in X
and bm denoting the regression weight for the mth
variable, the linear combination of the predictors
that correlates maximally with the response z can be
written as ẑ = ∑M

m=1 bmxm. Incorporating the non-
linear scaling of the predictor variables ϕm(xm), for
m = 1, . . . ,M with ϕm(xm) an admissible nonlin-
ear function of xm, the optimal linear combination is
now written as ẑ = ∑M

m bmϕm(xm) =
∑M

m bmGmym.
By mapping a categorical variable into an indicator
matrix, invariance is ensured under the one-to-one
nonlinear transformation of the original variable. The
idea to replace a categorical variable by an indica-
tor matrix can already be found in Guttman (1941).
The term indicator matrix was coined by de Leeuw
(1968); other names used are attribute or trait matrix
(Lingoes, 1968), response-pattern table (Nishisato,
1980), incidence matrix, or dummy variables (in
experimental design).

3.5.2. The Joint Objective Function

In this section, we will describe the objective func-
tion that jointly fits the vector model and the cen-
troid model. We suppose that there are MV variables
fitted according to the vector model and MB variables
fitted according to the centroid model; thus, we have
MV + MB = M. We start by defining the follow-
ing terminology. The N × M matrix Q contains
the scores for the N objects on M variables. The
nature of the individual variables qm will be discussed
shortly. The N × P matrix X contains the coordinates
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for the N objects in a P -dimensional representation
space, and the matrix A (of size MV × P) gives
the coordinates in the same space for the endpoints
of the vectors that are fitted to the variables in the
bilinear (vector) model. Thus, am contains the coor-
dinates for the representation of the mth variable.
Consequently, the part of the objective function that
minimizes the value of the objective function with
respect to the bilinear/vector model can be written
as follows:

LV (Q;X;A) = M−1
V

∑
m∈KV
‖qm − Xam‖2, (3)

where KV denotes the index set that contains the
indices of the variables that are fitted with the vector
model, and ‖ · ‖2 means taking the sum of squares
of the elements. Assuming the data in qm to have Cm
different values, we can also write

LV (yV ;X;A) = M−1
V

∑
m∈KV
‖Gmym − Xam‖2, (4)

where Gm is an indicator matrix that classifies each
of the objects in one and only one category. The opti-
mal category quantifications that will be obtained are
contained in the Cm vector ym, where Cm denotes the
number of categories for the mth variable. The vector
yV collects the quantifications for the MV different
variables and has length

∑
m∈KV Cm.

The projection of the object points X onto the
vector am gives the approximation of the nonlinearly
scaled (optimally quantified) variable qm = Gmym in
P -dimensional Euclidean space. Minimization of the
loss function LV for the bilinear/vector model can be
shown to be equivalent to the minimization of

LV (yV ;A;X) = M−1
V

∑
m∈KV
‖Gmyma′m − X‖2 (5)

(see Gifi, 1990). Here a P -dimensional matrix X is
being approximated by the inner product Gmyma′m,
which gives the coordinates of the categories of themth
variable located on a straight line through the origin in
the joint P -dimensional space. The major advantage
of this reformulation of the objective function is its
capacity of capturing the centroid model in the same
framework. The latter can simply be written as

LB(YB;X) = M−1
B

∑
m∈KB
‖GmYm − X‖2, (6)

where KB denotes the index set of the variables for
which a centroid model is chosen. The Cm×P matrix
Ym contains the coordinates of the categories in the
P -dimensional space, and YB collects the quantities

for the MB variables stacked upon each other. The
objective function for the centroid model implies that
to obtain perfect fit, an object point in X should coin-
cide with its associated category point in one of the
rows of Ym.

At this point, we can write the joint objective
function for CATPCA as a weighted linear combina-
tion of the separate losses:

L(Y;A;X) = (MV +MB)
−1[MVLV (yV ;A;X)

+ MBLB(YB;X)], (7)

where the first part is minimized for variables indexed
by m for which a vector representation is chosen,
and the second part is minimized for the represen-
tation of categorical variables. The optimal X̂ is
found as

X̂ = M−1

[∑
m∈KV

Gmyma′m +
∑
m∈KB

GmYm

]
,

after which the object scores are orthonormalized as
X̂′X̂ = NI (thus, they are uncorrelated).

3.5.3. Quantifications and Geometry

In this section, we will describe the iterative pro-
cess that turns multiple quantifications Yk into vector
coordinates yma′m, possibly incorporating ordinal and
numerical information from the original variables.
Recall that in Figure 3.3, a joint representation was
given for centroids (for the categories of the country
variable) and for vector coordinates (for the cate-
gories of the MO-1 and I-Crime variables). The very
same representation can also be given for one and
the same variable. This idea is illustrated by includ-
ing a copy of the supplementary Country variable in
the analysis as well and giving this supplementary
copy not multiple nominal quantifications but a nom-
inal transformation that positions category points on
a vector. The result is illustrated in Figure 3.5, in
which the uppercase labels are for the centroids from
the previous analysis, and the lowercase labels are for
the additional vector coordinates. We see that in the
cloud of the country points, the dominant direction
is from northeast to southwest, from CD to HU and
through Clusters 1 and 3. Computationally, the transi-
tion from centroids into vector coordinates involves the
following steps.

3.5.3.1. From Centroids to
Unordered Vector Coordinates

For each variable, we start with fitting a centroid
model according to (6), which gives the minimum over
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Figure 3.5 Centroids (Multiple Nominal Quan-
tification) and Vector Coordinates
(Nominal Transformation) for Country
in CATPCA
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Ym as Ym = D−1
m G′mX, where Dm = G′mGm contains

the marginal frequencies of the categories of the mth
variable. Next, for the vector model, the centroids Ym

are projected on a best-fitting line, denoted by am, a
vector through the origin. The least squares fit that is
the minimum of

‖GmYm −Gmyma′m‖2

= tr(Ym − yma′m)
′Dm(Ym − yma′m) (8)

over both ym and am determines the category quan-
tifications ym and (the orientation of) the vector am.
The coordinates yma′m,the outer product of the cate-
gory quantifications ym and the vector am, represent
the category points on this line, which represents the
mth variable in the joint space of objects and variables.
The am are also called the component loadings, and
they give the correlations between the variables and
the dimensions of the principal components space.
Setting the partial derivatives in (8) with respect to

the component loadings am to zero gives the optimal
âm as

âm = Y′mDmym
(y′mDmym)

. (9)

Next, setting the partial derivatives in (8) with respect
to ym to zero shows that the optimal unnormalized ỹm
is found as

ỹm = Ymam
a′mam

. (10)

To satisfy the normalization conventions q′mqm = N,
the standardized variable qm should contain quantifi-
cations ŷm that are rescaled:

ŷm = N1/2ỹm(ỹ′mDmỹm)−1/2. (11)

Note that the length of the vector am has to be dimin-
ished to the same extent as the size of the quantifica-
tions ŷm is increased to keep yma′m the same. Equation
(10) symbolizes the projection of the centroids Ym on
the vector am and defines the category coordinates for
a nominal transformation. It is very unlikely that the
category quantifications in ym will be proportional to,
or even only in the same order as the original integer
scale values 1, . . . , Cm. In many cases, however, we
would like to maintain the original numeric and/or
rank-order information in the transformation, which
can be dealt with as follows.

3.5.3.2. From Nominal to
Ordinal and Numerical Transformations

If the ordinal, rank-order information should be
maintained, an ordinal, monotonic transformation is
chosen for variablem, and the quantifications ym have
to be constrained to be monotonic with the order of the
original categories. As described above, this require-
ment can be satisfied by the use of one of two major
classes of monotonic transformations. The first, also
historically, is the class of least squares monotonic
transformations, obtained by a monotonic regression
of the values in ŷm upon the original scale values
1, . . . , Cm, taking the marginals on the diagonal ofDm

into account. The second class is defined by monotonic
regression splines. As indicated in Section 3.3.2, trans-
formations by regression splines use fewer parameters
than transformations obtained by monotonic regres-
sion. For monotonic regression, the number of param-
eters to be fitted is Cm − 2; for regression splines, the
number of parameters is determined by the degree of
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the spline that is chosen and the number of interior
knots. If the number of categories is small, monotonic
regression and regression splines will basically give the
same result. When the number of categories is large,
it is usually advised to use regression splines because
monotonic regression may result in overfitting:
The variance accounted for will increase, but so will
the instability. (Note: There is a trade-off between the
number of categories and the number of objects in those
categories. If the number of objects is large, and all
categories are sufficiently filled, monotonic regression
will usually not result in overfitting.)

When it is decided to give themth variable a numeri-
cal transformation, the implication is that the distances
between the category points yma′m have to be equal, and
the category quantifications ym will be proportional to
the original category numbers. This can be done by
linear regression of the ŷm on the original scale values
and will result in a standardized version of the set of the
integer scale values 1, . . . , Cm, Gmym = αmhm + βm,
where the multiplicative constant and the intercept
are fitted taking into account the marginal frequen-
cies. If the distances between the categories have to
be stretched very much to obtain unit variance, the
VAF (expressed in the squared length of the vector
am) will be very small. It is important to realize that
this also applies to ordinary PCA with continuous
variables (which can be considered as a CATPCA
with N categories, where N is the number of objects,
as usual).

3.6. Some Additional Options

of the Program CATPCA

3.6.1. External Fitting of Variables

The CATPCA program not only provides an option
for the analysis of supplementary variables, as we
saw in Section 3.4.4, but for supplementary objects
as well. As was true for supplementary variables,
supplementary objects are not active in the analysis
but enter into the representation afterwards. Another
interesting application for the supplementary variables
option is the following. CATPCA offers the possibil-
ity of reading a fixed configuration of object points,
and thus the CATPCA method may be used for so-
called property fitting or external unfolding (Carroll &
Chang, 1967; Meulman, Heiser, & Carroll, 1986). In
this way, external information on objects (contained
in so-called external variables) is fitted into the fixed
representational space by the use of the vector model
(or the centroid model). The option accommodates the

same variety of transformation levels as a standard
CATPCA analysis (with nominal, ordinal, and numer-
ical treatment of the variables, including the use of
splines).

3.6.2. Making Continuous
Variables Discrete—Binning

Although the CATPCA algorithm is tuned to the
analysis of categorical variables, continuous variables
can be introduced into the analysis as well, and this
is after they have been made discrete using one of a
variety of options provided. This process is compara-
ble to fitting a histogram to a continuous distribution.
The grouping options described below can also be
used to merge a large initial number of categories into
less, which is especially warranted when the distribu-
tion of the objects over the original categories is very
skew or when some of the categories have very few
observations.

3.6.2.1. Grouping in a Specified
Number of Categories for a Uniform
or Normal Distribution

In Max (1960), optimal discretization points were
computed to transform a continuous variable into a
categorical one, in which the number of categories
can vary from 2 to 36. These discretization points
are optimal with respect to an assumed distribution,
particularly a univariate standard normal distribution
or a univariate uniform distribution. As an illustration,
we use the age variable from the National Identity
Study: Respondents varied in age from 14 to 98; the
modal age category is 30. When this variable is made
discrete with seven categories, assuming the popu-
lation distribution is normal, the following ranges (with
corresponding marginal frequencies in parentheses)
are obtained: 14–17 (107), 18–30 (2,596), 31–40
(2,335), 41–49 (2,002), 50–59 (1,794), 60–72 (1,916),
and 73–98 (699). If, on the other hand, a uniform dis-
tribution would be assumed, the following categories
and marginal frequencies result: 14–25 (1,653), 26–33
(1,691), 34–39 (1,444), 40–46 (1,657), 47–55 (1,731),
56–65 (1,639), and 66–98 (1,634).

3.6.2.2. Grouping in Equal
Intervals With Specified Size

When it is preferred to have a continuous variable
replaced by a categorical variable in which the original
values are grouped into intervals of equal size, this
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is a feasible option as well. Of course, the choice
of a specific range for the interval determines the
number of categories (bins in a histogram). For the age
variable, choosing intervals of 10 years gives the fol-
lowing: 14–23 (1,216), 24–33 (2,128), 34–43 (2,394),
44–53 (2,066), 54–63 (1,669), 64–73 (1,397), 74–83
(493), 84–93 (79), and 94–98 (7). With this option,
the groupings for the higher age ranges have rather
low marginal frequencies. Comparing this distribu-
tion with the two previous ones, we would prefer the
uniform option.

3.6.2.3. Ranking

This particular form of preprocessing is appropriate
for at least two different situations. In the first place, it
should be noted again that the optimal scaling frame-
work guarantees that any ordinal transformation of the
original data, among which is replacing numeric values
by ranks, will leave the analysis results the same when
variables are treated ordinally. When there are no ties
in the original variable, the number of categories in
the new variable will be N, the number of objects.
However, such an ordinal analysis might involve too
many parameters to be fitted. When the number of
categories approaches the number of objects, it is often
a better choice to fit a monotonic spline of a low degree
with a limited number of knots. Another use of ranking
is to give the resulting rank-order variables a numerical
transformation level. In the latter case, the principal
components analysis amounts to the analysis of the
Spearman rank correlations. If the ranking operation
is applied to a variable that contains a unique identifi-
cation for the objects in the analysis, then the resulting
variable, defined as supplementary, can be used to
identify individual objects in various plots (e.g., in the
projected centroids). Of course, this labeling is only
feasible and useful when the number of objects is not
too large.

3.6.2.4. Multiplying

The distributional properties of a continuous
variable that contains noninteger values can be main-
tained as closely as possible by the particular linear
transformation that transforms the real-valued variable
into a discrete variable containing integers. The result
of this process is a variable that could be treated as
numerical; when all the variables in the analysis are
treated this way, we are back to classical principal
components analysis. However, when one assumes
monotonic (instead of linear) relationships between

such a variable and other variables in the analysis, it is
advised to fit a monotonic spline transformation. When
relationships are completely nonlinear, nonmonotonic
splines should be fitted to allow these relationships to
be revealed in the analysis.

3.6.3. Missing Data

To handle incomplete data in the analysis, a sophisti-
cated option is available that only takes into account the
nonmissing data when the loss function is minimized.
The indicator matrix for a variable with incomplete
data will, in this case, contain rows with only zeros
for an object having a missing observation. The loss
function in Section 3.5.2 is extended by the use of
(internally generated) object weights, collected in a
diagonal matrix in which the diagonal elements indi-
cate the number of nonmissing observations for each
of the objects. Although this option is very attractive
(missing data are completely ignored), it also has a
number of drawbacks that need not be severe, however
(see Meulman, 1982). Because objects have a differ-
ent number of observations, the weighted mean of the
object scores is now equal to 0, and because the mean
itself is not 0, various optimality properties of nonlin-
ear PCA are no longer valid. The maximum/minimum
value of the component loadings is no longer equal
to 1.0 and –1.0, and therefore a component loading
can no longer be interpreted as a correlation. (We can
still project a transformed variable in the space of the
objects, however.) Also, the property that nonlinear
PCA optimizes the sum of the P largest eigenval-
ues of the correlation matrix between the transformed
variables is no longer true. (However, when this cor-
relation matrix is computed, there are various choices
available for imputing values for the missing data.)
Indications on how many data elements can be missing
without too much disturbance are given by Nishisato
and Ahn (1994).

Alternatively, there are other straightforward strate-
gies for treating the missing data in the primary
analysis. The first is to exclude objects with miss-
ing values; the second provides a very straightforward
imputation method, using the value of the modal cate-
gory. Also, a separate, additional category can be fitted
for all objects having a missing value on a particu-
lar variable. For all transformation levels, this extra
category is positioned optimally with respect to the
nonmissing categories. If other, more advanced, miss-
ing data strategies are called for (such as the imputation
strategy of Van Buuren & Van Rijckevorsel, 1992),
these would have to be part of a preprocessing process
performed before the actual CATPCA analysis.
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3.7. CATPCA in Action, Part 2

Having the CATPCA methodology available gives
various interesting possibilities compared to a standard
correspondence analysis in which two variables are fit-
ted according to the centroid model (Gifi, 1990). First,
consider the nominal variables, country and employ-
ment status (Emp-Stat), from the National Identity
Study. A standard correspondence analysis would dis-
play the category points for both variables in a joint
low-dimensional space. An extended correspondence
analysis may include the same two multiple nominal
variables but with a third ordinal variable included as
well. This idea will be illustrated by using the Country
and Emp-Stat variables, which are now joined with
the Democ variable (also from the National Identity
Study). The Democ variable indicates, on a scale from
1 to 4, whether the respondent is very proud (4), some-
what proud (3), not very proud (2), or not proud at
all (1) with respect to his or her country’s democracy.
The distribution of the original variable shows that the
modal respondent is “somewhat proud” (n =4,140);
the smallest category is “very proud” (n = 1,361),
followed by the category “not proud at all” (n =1,606),
with “not very proud” the second largest category (n =
3,496). Where does this variable fit into the country×
Emp-Stat space? The answer is given in Figure 3.6,
the joint plot of the categories for Country, Emp-Stat,
and Democ. Moreover, we added in this plot the vec-
tor representations for Country and Emp-Stat as well,
obtained by including copies of these as supplementary
variables to be fitted with the vector model.

The centroid representation for Country and Emp-
Stat shows their relationship in terms of their category
points. The vector representation for Emp-Stat shows
that the two extreme categories on a one-dimensional
scale would be “Retired” and “Unemployed” at the
north-northwest endpoint and “Housewives” at the end
pointing south-southeast. From the vector represen-
tation, it is easy to see that the category “House =
house wives” scores relatively high in the Philippines
(PH), Spain (SP), Ireland (IR), Japan (JP), Italy (IT),
and the Netherlands (NL). The categories “Retired”
and “Unemployed” score high in East Germany
(GE), Bulgaria (BG), and Sweden (SW). The one-
dimensional projection of the country category points
shows that the major direction goes from west to east.
The relationship between Country and Emp-Stat in
an ordinary correspondence analysis changes when
Democ is taken into account. The ordinal transforma-
tion of Democ (not shown) turned out to be close to
linear but gives emphasis to the modal category “some-
what proud,” which is quantified with a higher value

Figure 3.6 Use of CATPCA: Extended Correspon-
dence Analysis of Country and Em-Stat
With Democ (nproud(1) = not proud at
all to proud(4)= very proud) as an Extra
Ordinal Variable
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SP = Spain; IR = Ireland; GW = West Germany; NO =
Norway; SW= Sweden; GB=Great Britain; PH= Philippines;

US = United States; NL = Netherlands; NZ = New Zealand;
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than its numeric counterpart if the original variable
containing the scores 1 to 4 had been standardized. The
vector for Democ is orthogonal to the direction that
connects the categories “Retired” and “Housewives”
and is mostly related to the vector representation
of Country, contrasting the “very proud of demo-
cracy” countries of Canada, the United States, and the
Netherlands with the “not proud at all” countries of
Italy, Russia, the Slovak Republic, and Hungary.

3.8. Discussion

3.8.1. Optimal Scaling and (Multiple)
Correspondence Analysis

Although we stated earlier that it is beyond the
scope of the present chapter to discuss the technique
called multiple correspondence analysis (MCA), we
need to mention explicitly the relationship between
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principal components with nonlinear optimal scaling
transformations and MCA. When the transformation
level is chosen to render multiple nominal quan-
tifications for all variables, the two techniques are
completely equivalent. So the current CATPCA pro-
gram, with all its special options for discretization,
missing data, supplementary objects and variables, and
a variety of plots, can be used to perform MCA as well.
In terms of the loss function in Section 3.5.2, we have
MV = 0 and MB = M, and we minimize (6) for all
variables.

The classic case of simple correspondence analysis
concerns two categorical variables, displayed in a cross
table, with the categories of the first variable in the
rows and the categories of the second variable in the
columns. The cells of the table then contain the fre-
quencies of the joint occurrence of category CA from
variable A and category CB from variable B, and
correspondence analysis displays the residuals from
independence between the two variables (their interde-
pendence). There are some details that should be taken
into account with respect to normalizing the dimen-
sions of the space, but a standard correspondence
analysis and a CATPCA are basically equivalent when
the two variables are given multiple nominal quantifi-
cations. The similarity is largest when the object scores
in CATPCA are standardized so that the categories are
the average of the object scores, and geometrically the
category points will be in the centroid of the object
points.

When we have two variables, a number of optimal
scaling techniques are in fact equivalent. CATPCA
with two nominal variables, combined with opti-
mization in one dimension, is equivalent to simple
regression with optimal scaling, and maximizes the
Pearson correlation coefficient over all possible nom-
inal quantifications (Hirschfeld, 1935). When the two
variables have a nonlinear relationship, the regres-
sion is linearized because categories are allowed
to be reordered (permuted), and distances between
them are optimally scaled. The term optimal scal-
ing, in this context, is due to Bock (1960); also,
see Fisher (1940, 1948) for the maximal mutual dis-
crimination principle, as well as the overview in de
Leeuw (1990). Applying ordinal (spline) transfor-
mations maximizes the correlation coefficient under
monotonicity restrictions. When one of the variables
is treated as numeric, and the other is given a
nominal transformation, the CATPCA technique
would be equivalent to linear discriminant analysis
but with one single predictor. Obviously, allowing
an ordinal transformation instead of the numerical
transformation level generalizes the latter technique,

maximizing the between to total variation ratio under
monotonic transformation of the predictor variable.

3.8.2. Special Applications

In the following subsections, we will briefly discuss
some special types of applications of CATPCA. For
a selection of concrete applications, sometimes using
the precursor program PRINCALS, the user is referred
to the following: Arsenault, Tremblay, Boulerice,
and Saucier (2002); Beishuizen, Van Putten, and
Van Mulken (1997); de Haas, Algera, Van Tuijl, and
Meulman (2000); de Schipper, Tavecchio, Van
IJzendoorn, and Linting (2003); Eurelings-Bontekoe,
Duijsens, and Verschuur (1996); Hopman-Rock, Tak,
and Staats (2001); Huyse et al. (2000); Theunissen
et al. (2003); Vlek and Stallen (1981); Zeijl, te Poel,
du Bois-Reymond, Ravesloot, and Meulman (2000);
and Van der Ham, Meulman, Van Strien, and Van
Engeland (1997).

3.8.2.1. Preferential Choice Data

In preferential choice data, respondents give a rank-
ing of objects (sometimes called stimuli) according
to some attribute, giving an explicit comparison.
Consumers, for example, can be asked to rank a set
of product brands, or psychologists may be asked to
rank a number of psychology journals (see Gifi, 1990,
pp. 183–187). Such rankings are usually collected in a
data matrix, with the stimuli, options, or objects in the
rows and the persons (judges) in the columns acting as
the variables of the analysis. This situation was actually
the very same one in which Tucker’s (1960) vector
model was applied in Carroll (1972) to preference data.
In the latter mentioned application, the analysis was
metric because no optimal scaling of the rankings was
possible. Because rankings are ordinal by definition,
optimal scaling by monotonic (spline) transformations
appears most appropriate.

3.8.2.2. Q-Sort and Free-Sort Data

Another situation for which the persons act as
variables is in the so-called analysis of Q-sort data.
Here, a number of judges have to groupN given objects
in a predetermined number of piles (categories), in
which the categories have a particular order and the
frequencies have to follow a normal distribution
as closely as possible. Again, this is a very
natural situation for a CATPCA analysis with ordinal
transformations. When theM judges are merely given
a set of objects and have the liberty to group them
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in as many categories as they like, without any given
order of the categories, we use the term free-sort data.
Nominal quantification options are called for in this
case, either in the form of nominal (nonmonotonic
spline) transformations, when the judges seem to group
on one (unknown) dimension, or in the form of mul-
tiple nominal quantifications, when judges use more
than one latent dimension and when different order-
ings of the categories are allowed for each dimension.
(Nominal or nonmonotonic spline transformations will
give the same reordering in each dimension.) Examples
of multiple nominal quantifications in free-sort data
can be found, among others, in Van der Kloot and Van
Herk (1991) and Meulman (1996). In the latter paper,
groupings were analyzed in the form of a free-sort of
statements about the so-called rape myth.

3.8.2.3. The Analysis
of Ratings Scales and Test Items

The application of CATPCA in one dimension
is extremely useful because it explores the homo-
geneity between a set of variables that are assumed
to measure the same property (latent characteristic).
Optimal scaling minimizes the heterogeneity and max-
imizes the largest eigenvalue of the correlation matrix.
For an extensive treatment of this particular applica-
tion with its relationship to differential weighting of
variables and classical psychometrics, see Heiser and
Meulman (1994).

3.8.3. CATPCA and the Correlation
Matrix Between the Transformed Variables

In ordinary PCA, the results in a two-dimensional
solution are identical to those in the first two dimen-
sions of a three-dimensional solution. This property
is called nestedness. When quantifications have been
chosen to be optimal in one dimension, the largest
eigenvalue of the correlation matrix is maximized.
When they are optimal for P dimensions, the sum of
the first P eigenvalues is optimized. The latter does
imply that the first eigenvalue, by itself, does not need
to be as large as possible, and because this is true by
definition for the one-dimensional solution, it implies
that CATPCA solutions with different dimensionalities
are not necessarily nested. Inspection of the eigen-
values of the transformed correlation matrix shows
the distribution of the total sum of the eigenvalues
(which is equal to M, the number of variables) over
the optimized and nonoptimized dimensions. When
the CATPCA includes variables with multiple nominal

quantifications and a more-dimensional solution is
obtained, the situation is somewhat more compli-
cated. The first CATPCA dimension optimizes the
largest eigenvalue between the transformed variables,
including the first set of the multiple nominal quantifi-
cations, whereas the second dimension optimizes the
largest eigenvalue of the same correlation matrix, but
now including the second set of the multiple nominal
quantifications. Therefore, if the primary objective is
to maximize the homogeneity, either in one dimen-
sion for all variables together or in two dimensions,
when the variables seem to form two groups (as in
our example in Section 3.4.3), unordered variables
should be given a nominal (or nonmonotonic spline)
transformation.

3.8.4. Prospects

Because unordered or ordered categorical
variables are so common in the behavioral sciences, the
prospects for nonlinear principal components analysis
seem to be good, especially in contexts where a rela-
tively large number of responses have been collected
and their mutual relationships have to be sorted out,
as in survey research. Another clear application area
for CATPCA is instrument development, where it can
supplement the usual factor analysis and Cronbach’s
α calculations for item selection. Because CATPCA
directly analyzes the data matrix and not the derived
correlation matrix, there need not be the usual concern
to have at least 15 times as many observations as the
number of variables. In fact, CATPCA is eminently
suited for analyses in which there are (many) more
variables than objects.

Finally, we would like to mention that there is
similar optimal scaling software in the SPSS
Categories module for related multivariate analysis
techniques. Among these are CATREG for (multi-
ple) regression analysis with optimal scaling,
CORRESPONDENCE for correspondence analysis,
and OVERALS for nonlinear canonical correlation
analysis (Meulman et al., 1999). Like CATPCA, these
methods allow one to pursue classic objectives of
multivariate analysis when the data do not satisfy
the classic quantitative measurement requirements but
are qualitative.
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4.1. Introduction

If the statistical, conceptual, and practical activities
of measurement were a crop seeded by Spearman,
Yule, Pearson, and others working the early fields
of social and behavioral research, we could proudly
say that those seedlings have resulted in a bountiful
harvest. The annual yield of measurement research
continues to grow, and the number of new journals and
books devoted to and surveying the field and reporting
advances has increased over the past decade. The goal
of indexing data quality has a longstanding tradition in
statistical modeling, and its ubiquity in psychometric
modeling thus comes as no surprise, which is why
research in reliability and validity theory continues to
be of relevance today, as a quick glance at the reference
list of this chapter reveals. Before we begin to describe
the process of harvesting the statistical crops that have

been sown, however, let us first take a look at the
analyst’s task in measurement itself.

Analysts of test data are typically faced solely with
an array of numbers, which often consists of 0s and
1s when all items on a test are scored dichotomously.
It is the objective of the analyst to use this array for
a variety of meaningful inferences about the exam-
inees and the measurement instrument itself, which
should be appreciated as a daunting task. Statistical
modeling has always been concerned with decom-
posing observational values into a component that is
deterministic and a component that is stochastic so
that relationships between manifest and unobserved
variables can be explicitly stated and uncertainty about
model parameters can be estimated and used to qual-
ify the inferences that are possible under a given
model. Psychometric models are, of course, descen-
dants of this tradition (see Goldstein & Wood, 1989;
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McDonald, 1982; Mellenbergh, 1994; Rupp, 2002) but
are unique because they are located at the intersection
of examinee and item spaces, both of which are typi-
cally of interest to measurement specialists. For exam-
ple, classical test theory (CTT) (e.g., Lord & Novick,
1968) generically decomposes the observed score into
a deterministic part (i.e., true score) and a stochas-
tic part (i.e., error), generalizability theory (g-theory)
(e.g., Brennan, 2001; Cronbach, Gleser, Nanda, &
Rajaratnam, 1972; Shavelson & Webb, 1991) further
unpacks the stochastic part and redefines part of error
as systematic components, and item response theory
(IRT) (e.g., Lord, 1980; van der Linden & Hamble-
ton, 1997) reformulates the two model components by
inducing latent variables into the data structure. Struc-
tural equation models (SEM) (e.g., Muthén, 2002)
and exploratory as well as confirmatory factor analysis
models (EFA and CFA, respectively) (e.g., McDonald,
1999) decompose the covariance matrix of multivari-
ate data into deterministic (i.e., reproduced covariance
matrix) and stochastic (i.e., residual matrix) compo-
nents, which is a model that can be equivalently written
as a formulization involving latent variables.

Even though latent trait indicator values and
observed composite scores are typically highly cor-
related, the injection of a latent continuum into the
data matrix has given us the property of item and
examinee parameter invariance for perfect model fit
across populations and conditions, has allowed us to
define conditional standard errors of measurement sim-
ilar to g-theory (Brennan, 1998b), and has opened up
the road for adaptive testing through the use of item
and test information functions (e.g., Segall, 1996; van
der Linden & Hambleton, 1997). Still, these advances
have not come without a price. Improvements in the
level of modeling and in quantifying measurement
error have come at the expense of large sample sizes
that are typically required for parameter estimation in
both frequentist and Bayesian frameworks (see Rupp,
Dey, & Zumbo, in press). For example, categorical
data, particularly dichotomous data, require the use
of estimation methods such as weighted least squares,
which make, for example, reliability estimates based
on small sample sizes suspect (Raykov, 1997a).

The focus in this chapter is on reliability and valid-
ity, two topics that have generated many papers and
books, even if one were to focus on the past 25
years only. As it is nearly impossible to review all of
the developments in a single book chapter, we aim
to provide a broad overview of recent developments
in reliability and validity theory and periodically
provide more detail to demonstrate the vast array of
measurement methodologies and approaches currently

available to aid us in illuminating our understanding
of social and behavioral phenomena. We will view
these developments through a statistical modeling lens
to highlight the consequences of choosing—perhaps
even abusing—a particular modeling framework for
inferential decisions.

We assume a basic exposure to measurement and
test theory, but we will define basic key terms. For
an accessible overview and advances in the statistical
basis of reliability theory, the interested reader can
consult Feldt and Brennan (1989), Knapp (2001), and
Traub (1994), and for validity theory and practice,
the reader can consult Messick (1995) and the papers
in Zumbo (1998). Because our chapter presumes a
working knowledge of modeling frameworks used in
practical measurement problems, the reader might
refer to Hambleton, Swaminathan, and Rogers (1991)
or Lord (1980) as useful references for IRT, Kaplan
(2000) or Byrne (1998) as useful references for struc-
tural equation modeling, and Comrey (1973), Everitt
(1984), or McDonald (1999) as useful references for
factor analysis (FA) methods.

Our discussion begins with an overview of fre-
quently used key terms in the measurement literature
to aid the understanding of our subsequent discussions,
clarify some common misconceptions, and allow for
more precise statements. We then present some impor-
tant and practically relevant findings from the literature
on reliability theory in roughly the past decade, with
a strong focus on developments for reliability coeffi-
cients, standard errors of measurement, and other local
quantifiers of measurement error. Finally, a section
on validity theory illustrates how models for cogni-
tively diagnostic assessment have forced measurement
specialists to rethink their approaches to defining and
measuring what constitutes valid inferences from test
scores. But first, let us lay some groundwork with a
brief discussion of terminology relevant for modeling
data from measures.

4.2. Commonly Used and

Misunderstood Terms in Measurement

Although the definitions presented in this section are
fundamental, it is remarkable how often they are used
inconsistently in the measurement literature. This is
probably partly an artifact of inconsistent historical
usage but can also be traced back to a discrepancy that
typically exists between the everyday usage of these
terms and their precise meaning in a mathematical
modeling context.
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First, there is the word reliability itself. In
nonacademic contexts, reliable is commonly under-
stood to mean “a consistent dependability of judgment,
character, performance, or result” (see Braham, 1996,
p. 1628). For applied measurement specialists, reli-
ability is a desired property of tests, which should be
dependable measurement instruments of the constructs
that they are supposed to measure or dependable
measurement instruments for performance evaluation
(Klieme & Baumert, 2001). Even though these notions
are intuitively appealing, they are relatively impre-
cise and need to be translated into properties that
can be mathematically tested and estimated through
sample quantities. Consequently, reliability in a non-
mathematical sense is often understood to be so much
more than reliability in a strictly mathematical sense
because, under the latter lens, reliability is basically
translated into the estimation of a coefficient based on
variance components in a statistical model. Such a
reliability coefficient assesses consistent scores but,
per se, says little about the assessment instrument
itself, related inferences, and social consequences
because those aspects are embedded in the larger
value-laden ethical and social context of test use
(Messick, 1995).

As Zimmerman and Zumbo (2001) note, formally,
test data are the realization of a stochastic event defined
on a product space� = �I×�J ,where the orthogonal
components,�I and�J , are the probability spaces for
items and examinees, respectively. The joint product
space can be expanded to include other spaces as
well, such as spaces induced by raters or occasions,
a concept that was formalized in g-theory from an
observed-score perspective and the facets approach
to measurement from an IRT perspective. Hence,
modeling of test data minimally requires sampling
assumptions about items and examinees, as well as
the specification of a stochastic process that is sup-
posed to have generated the data (for readers interested
in a measure-theoretic Hilbert-space approach to the
analysis of test data, see Zimmerman & Zumbo, 2001).
Therefore, two distinct directions of generalizability
are typically of interest, which require an understand-
ing of the reliability and validity properties of scores
and inferences. First, it is of interest to make statements
about the functioning of a particular assessment instru-
ment for groups of examinees who share characteristics
with those examinees who have already been scored
with it. Second, it is of interest to make statements
about the functioning of item sets that share character-
istics with those items that are already included on a
particular test form. For example, it is often of inter-
est to show that the scores and resulting inferences

for different examinee groups are comparably reliable
and valid if the same instrument is administered to the
different groups, a parallel version of the instrument
is administered to the different groups, or selected
subsets of items are administered to the different
groups. This also specifically implies that researchers
should report estimates of reliability coefficients and
other parameters for their own data, rather than rely-
ing on published reports from other data, and that
comparable validity needs to be continually assessed
rather than being taken for granted based on a single
assessment calibration. Let us take a look at some com-
monly used terms to describe the process of modeling
assessment data.

It is useful to first distinguish between test-level
models (e.g., CTT, g-theory models), in which mod-
eling takes place at the observed total-score level,
and item-level models (e.g., IRT for binary or rating
scale item data and factor analysis models for con-
tinuous item data), in which modeling takes place at
the item-score level along with the total-score level.
For the latter models, the primary modeling unit is
the item, which can be a written, aural, or graphical
stimulus that entices examinees to produce behavioral
responses. Yet the seemingly unambiguous notion of
an item is rather fluid and context dependent. For
example, items can be collected, either naturally
through their placement alongside reference informa-
tion on an assessment or statistically through defini-
tion, into item bundles or testlets, which can then
be treated as a single item in subsequent mathemat-
ical analyses (note that potential response dependen-
cies can be modeled explicitly as well; see Bradlow,
Wainer, & Wang, 1999; Wang, Bradlow, & Wainer,
2002). Moreover, in other testing contexts with com-
plex work products the definition of a single item can
become extremely challenging if not impossible, and it
might be preferable and necessary in the future to think
of measurement opportunities more generally instead.
For a recent description of the variety of items currently
being used in measurement practice, see Zenisky and
Sireci (2002).

Items can be assembled for different purposes such
as personality trait assessment or knowledge assess-
ment, and it is the latter scenario that typically leads to
instruments that are commonly called tests. In addition,
the term scale is also often used in the social science
literature on personality assessment interchangeably
with the term questionnaire. The terms test, scale,
and measure are used interchangeably in this chapter,
but it is acknowledged that tests are, in common
language, used to imply some educational achievement
or knowledge test with correct or incorrect responses.
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A subject’s response to an item then becomes a
behavioral observation in an abstract conceptual sense
that needs to be quantified with a score, which, in
turn, becomes a statistical observation. Some typical
forms of scores are the (weighted) linear composite
or total score that arises from individual items being
scored dichotomously or polytomously. Measurement
specialists then resort to specific modeling frameworks
to account for the fact that behavioral observations are
imperfect representations of the latent variable whose
relative absence or presence the assessment instrument
is supposed to quantify and, as such, contain measure-
ment error. Indeed, the choice of measurement model
has fundamental implications for how measurement
error is viewed, and these differences lead modelers to
choose particular model-specific statistics to quantify
this error. Error, then, albeit a universally present
phenomenon of observed behavioral responses, is
conceived and quantified differently in alternate
micro-universes created by different modeling frame-
works. Interestingly, the well-known psychometric
statement X = T + E is axiomatic for all models
in such frameworks.

In any modeling framework, the observable or
manifest scores created by the interaction of examinees
with items on a measure are considered to be indica-
tors or markers of unobservable or latent variables.
In this chapter, we will use the term latent variable
to refer to a random variable that is deliberately con-
structed or derived from the responses to a set of
items and that constitutes the building block of a sta-
tistical model (e.g., θ scores in IRT or factor scores
in FA). In other words, the scores are indicators of
the latent variable, which is itself supposed to be an
indicator of an underlying latent trait that is inher-
ent in the examinees and supposedly tapped into by
the items. However, these quantities and objects are
not identical: The latent variable is a psychometric
construction, whereas the latent trait is a psycholog-
ical phenomenon. Put in a nutshell, a construct is
defined with reference to a nomological network of
other phenomena, empirical findings, and theories
linking latent variables to abstract constructs (Embret-
son, 1983; Messick, 1995), whereas a latent variable
is a mathematical construction. This often leads to
confusion for applied specialists when psychometric
dimensionalities of tests do not coincide with believed
psychological dimensionalities, although this appar-
ent discrepancy is perfectly expected if the precise
distinction above is made.

Let us illustrate this distinction with an example.
The Center for Epidemiological Studies–Depression
(CES-D) is a 20-item scale introduced originally by

Lenore S. Radloff to measure depressive symptoms
in the general population. If we were studying the
measurement properties of the CES-D via CFA models
or IRT, the items would be considered indicators of
a latent variable (which most researchers would call
“depression”), but the latent variable is not depression
itself as it is merely a mathematical construction. The
latent variable is related to the construct of depres-
sion, however, which is defined as per the complex
interrelations of ideas, definitions, and empirical find-
ings in the clinical literature. Likewise, if one were
empirically scoring the CES-D by summing the item
responses, the resultant composite scale score is not
depression itself either but again only related to that
construct as an observable indicator of it. Even more
precisely, the score is an indicator of the severity of
depressive symptoms.

It should be noted, however, that the measurement
literature is generally somewhat vague and inconsistent
in its use of the term latent variable. The term has a
number of different meanings in the measurement and
statistics literature, each of which can lead to quite
different variables. There are at least three common
uses of relevance to this chapter. The first definition,
which is the closest description of a (unobserved)
latent variable in classical test theory, is that latent
variables are real variables that could, in principle, be
measured (e.g., proficiency or knowledge in a domain,
such as mathematics, or level of depressive symptoma-
tology). A second form of a latent variable is when
observed scores arise by recording whether an underly-
ing variable had values above or below fixed thresholds
(e.g., a response to a Likert-type question). The former
definition can be conceptualized within a framework
of the latter definition, although it does not neces-
sarily have to be so. The third definition, which is the
most commonly used meaning in the social sciences,
describes a latent variable as a constructed variable that
comes prior to the items (or indicators) of which we
measure. With item responses at hand and the use of a
statistical model, one can predict a score on this latent
variable for each person in the sample. This third mean-
ing is most commonly used in factor analysis, latent
variable modeling, and covariance structure models
and is therefore the one used in this chapter. In terms of
the psychometric approach to factor analysis, a latent
variable is a reason for or summary of behavioral or
cognitive manifestations. In the statistical framework,
a latent variable is defined by local or conditional
independence (statistical entity with no real theoret-
ical purpose). Statistically, it is assumed that if two
variables are correlated, they have something unob-
served in common (i.e., the latent variable). Therefore,
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uncorrelated errors (i.e., the residual correlation among
the items over and above the factors) are a key defining
feature of latent variable models.

Finally, it is useful to differentiate between
observed-score and latent variable models. When an
observed composite score is decomposed into two
independent additive components, true score and error,
without any further assumptions about the structure
of the true score, researchers have termed this CTT.
At the same time, different sets of assumptions about
the error structure and true scores for repeated assess-
ments and different sampling schemes for items and
examinees have led to the definition of parallel, essen-
tially parallel, τ -equivalent, essentially τ -equivalent,
and congeneric test scores. Moreover, if no particular
statistical model is assumed for the responses, models
in CTT are typically referred to as weak true-score
models, and if a statistical model is assumed (e.g.,
binomial, compound binomial), they are referred to
as strong true-score models. If the relationship of the
observed score to the true-score and error components
is of a specific functional form that depends on at
least one latent variable and can be formulated in a
generalized linear (latent variable) model framework,
we typically speak of latent variable models. Latent
variables belong to the class of unobservable random
variables, but they are a specific subset because their
existence is postulated, and their metric is established
through the specification of the model and the param-
eter estimation strategy. If response data are modeled
at the item level, measurement specialists refer to
these models as IRT models, which have become
increasingly popular in the past two decades due to
increasing computer power and their flexible mathe-
matical formulation. It is interesting to note that there
is no substantive theory in IRT but that, generally,
the model is the theory, which, some argue, makes
the rational link between the latent variable and the
underlying construct it potentially indexes harder to
establish as one can alternatively conceive of a latent
variable as a mere data-processing filter that allows
for ordered inferences about examinees and items (see
Junker, 1999). In general, observed and latent variable
frameworks benefit from one another and are compat-
ible as, for example, methods of covariance structure
analysis that are well suited to test assumptions about
error structures associated with CTT.

At this point, it is important to take a small side-
bar to highlight an essential difference between factor
analysis (as it is commonly used) and IRT in item
calibration. Although FA and IRT can be written as
generalized linear latent variable models, the statisti-
cal estimation problem is compounded in IRT because

the item responses are binary or ordered polytomous
random variables, and the estimation strategy neces-
sitates the estimation of the latent variable score for
each individual in order to estimate the parameters of
the item response function (i.e., calibrate the items).
This is in stark contrast to most factor analysis models,
wherein the latent variable is integrated out of the
estimation equation by, in essence, marginalizing over
the latent variable (i.e., focusing on reproducing the
observed covariance matrix).

Once items have been calibrated, examinees have
been scored, and quantifiers of measurement error have
been computed, inferences are being made grounded
in the mathematical model that was used. Ideally,
those inferences ought to be accurate and result in
fair conferences for the examinees and the assessment
discipline. Investigations of the degree to which scores
are consistent across administration conditions fall
under the umbrella term of reliability theory, whereas
investigations of the degree to which inferences made
from test scores and the consequences of decisions
based thereon are appropriate fall under the umbrella
term of validity theory. Specifically, reliability is a
question of data quality, whereas validity is a ques-
tion of inferential quality. Of course, reliability and
validity theory are interconnected research arenas, and
quantities derived in the former bound or limit the
inferences in the latter. This is seen explicitly in CTT
statistics, for example, where it can be easily shown
that a validity correlation coefficient is never greater
than the square root of the test reliability coefficient.
Moreover, to increase both reliability of scores and
validity of inferences, a surge in models for cogni-
tively diagnostic assessment has forced measurement
specialists to refocus their attention on the cogni-
tive processes that examinees are engaged in when
responding to items. This has led to a renewed dissec-
tion of what forms of evidence support valid inferences
and has brought the focus of investigations back to the
examinees.

The title of this chapter was chosen to highlight that,
when dealing with matters of reliability and validity,
we are, in essence, dealing with matters of making
inferences from test or scale scores. In other words,
data on reliability and validity gathered in the process
of measurement aid social and behavioral researchers
in judging the appropriateness and limitations of their
inferences from the test or scale scores. In the next
section, we provide an overview of reliability theory
and the statistical properties of test and scale scores.
In the section that follows, we provide an overview
of validity theory and then end the chapter with some
pointers to future developments.
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4.3. A Unified Look at Reliability

and Error of Measurement

as a Basis for Valid Inferences

Quantifying measurement error can take different
forms, depending on the scoring framework that is
used for modeling the data. Traditionally, CTT has
been used predominantly by test developers as well
as applied specialists. In CTT, reliability is quanti-
fied using reliability coefficients, and uncertainty in
scores is quantified using unconditional and condi-
tional standard error of measurement. In recent years,
the ever-growing literature on latent variable models,
particularly IRT models, might seem to suggest to
some that CTT models are passé. This would be an
inappropriate perception of testing reality, however,
fueled more by academic research practice than by
testing practice across a wide range of situations,
and we will thus briefly address this controversy. For
example, Brennan (1998a) writes, “Classical test
theory is alive and well, and it will continue to survive, I
think, for both conceptual and practical reasons” (p. 6).

Nevertheless, the growing interest in IRT by theo-
reticians and practitioners alike over the past 30 years
has been nothing short of spectacular. This is evidenced
in the number of sessions at measurement and testing
conferences and the large proportion of publications in
measurement and testing journals devoted to theoreti-
cal developments or applications of IRT. Although it is
true that IRT is frequently being used in moderate- to
large-scale testing programs and projects, CTT statis-
tics continue to be widely used in the development
and evaluation of tests and measures in many areas
of the educational, social, and behavioral sciences
that are concerned with tests and measures of limited
volume of production and distribution. For example, an
overwhelming majority of tests and measures reviewed
in source books such as the Mental Measurements
Yearbook series, produced by the Buros Institute of
Mental Measurements, or the Measures of Personality
and Social Psychological Attitudes book by Robinson,
Shaver, and Wrightsman (1991) predominantly report
CTT statistics. The primary reason for using CTT in
small-volume testing programs and in research envi-
ronments is the large sample sizes that are needed when
one seeks to apply latent variable modeling approaches
such as IRT and SEM (e.g., Bedeian, Day, & Kelloway,
1997; Bentler & Dudgeon, 1996; Junker, 1999). With
observed-score measures being alive and well, it is
thus worthwhile to investigate the recent developments
that have taken place on these measures in the past
decade. We will start appropriately with one of the
oldest and most versatile indicators of score consis-
tency, the reliability coefficient.

4.3.1. Recent Developments in the
Theory of Reliability Coefficients

In the past 10 years, particularly due to the impact
of increasing computer power, psychometric model-
ing has seen an explosion of sophisticated models that
require the computer-intensive simultaneous estima-
tion of numerous model parameters that has fueled
a rethinking of the role of reliability coefficients. It
is worth stating, though, that the dominating role of
entities such as the information function in IRT has not
changed modelers’ desire for conceptual reliability. It
has, however, changed the ways in which we look at
the mathematical formalization of reliability.

As stated before, reliability is typically measured by
a reliability coefficient, often denoted ρXX′ , which in
CTT or observed-score models is defined as the ratio of
true-score variance to observed-score variance or the
proportion of variation in the data that can be explained
by differences among individuals or objects of mea-
surement. Because the observed score is decomposed
into two additive unobserved components, leading to
ambiguities about the relative contribution of each
unobserved component to total observed variance, the
reliability coefficient cannot be computed directly.
Instead, estimators have to be defined that provide
reliability coefficient estimates based on test data from
one or multiple measurement occasions. However, it is
noteworthy that the definition of a reliability coefficient
itself, in the context of multiple measurement occa-
sions, poses subtle challenges to measurement special-
ists, who have been haunted for more than 40 years
by complications that arise from difference scores.
Some have called for a ban in difference scores because
of their supposed low reliability, but today this ban
has been lifted. It is recognized that although the
frequently cited limitations of difference scores are
real, these limitations mostly hold for restrictive situa-
tions and that there are many scenarios for which dif-
ference scores are most appropriate (Zumbo, 1999b).

A reliability coefficient is a particularly natural index
in observed-score models, and the definition of a relia-
bility coefficient in latent variable models such as IRT
or SEM is much more artificial. For both latent variable
models and observed-score models, the formulization
of conditional measurement error and information is a
natural pathway that connects different models. Yet the
reliability coefficient is intricately related to the error of
measurement. For example, variance ratios in random-
effects models prevalent in g-theory or the asymptotic
variance of the ability trait distribution in IRT models
depend directly on quantities that measure the error
in the associated models. Nevertheless, the reliability
coefficient itself is sometimes preferred as an index of
the amount of measurement uncertainty inherent in test
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scores because it is unitless and is a single informative
number that is practically easy to compute and included
in most standard software packages (see Feldt &
Brennan, 1989). Moreover, it is easily interpreted. Let
us now turn to a few commonly encountered estimators
of the population reliability coefficient.

4.3.2. Estimators of the Reliability
Coefficient and Their Properties

A fundamental fact concerning unreliability is that, in
general, it cannot be estimated from only a single trial.
Two or more trials are needed to prove the existence
of variation in the score of a person on an item, and to
estimate the extent of such variation if there is any. The
experimental difficulties in obtaining independent trials
have led to many attempts to estimate the reliability of
a test from only a single trial by bringing in various
hypotheses. Such hypotheses usually do not afford a
real solution, since ordinarily they cannot be verified
without the aid of at least two independent trials, which
is precisely what they are intended to avoid. (Guttman,
1945, p. 256)

It is typically argued that reliability estimators fall
into three distinct classes: (a) internal consistency co-
efficients, (b) alternative-forms reliability coefficients,
and (c) test-retest coefficients. However, because reli-
ability coefficients that involve multiple occasions for
testing or rating can be estimated using intra-class
coefficients, it seems more appropriate to distinguish
only internal consistency coefficients and intra-class
coefficients. Moreover, the intra-class coefficient in
CTT is essentially a Spearman-Brown extrapolation
of Cronbach’s α (Feldt, 1990), which is itself the
average of all split-half internal consistency correla-
tion coefficients under appropriate model assumptions
(Cronbach, 1951) and is, as such, preferred over a
split-half coefficient computed for some arbitrary
random split. Cronbach’sα can be computed from data
on a single administration of a test and does not require
parallel forms, a test-retest scenario, or multiple judges
for which an intra-class correlation coefficient can be
used. For tests or items that are at least essentially τ
equivalent with uncorrelated errors, α equals the corre-
lation coefficient, and for congeneric tests, it is a lower
bound (Lord & Novick, 1968; see Komaroff, 1997).

Coefficient α is among the most commonly reported
statistics in all of social and behavioral sciences. What
makes it so useful to researchers and test developers?
First, it provides a conservative lower bound estimate
of the theoretical reliability in the worst of situations
(i.e., when essential τ equivalence does not hold). That
is, the proportion of observed-score variance that is due

to true individuals’ differences is in truth at least the
magnitude of coefficient α. Second, it provides this
estimate without having to resort to repeated testing
occasions and without necessitating parallel forms of a
test. Third, it is easily computed and available on most
statistical computer programs. The biggest limitation
of coefficient α is that it results in an undifferentiated
error of measurement. Generalizability theory, on the
other hand, acknowledges that there are several sources
for measurement error, which depend on the various
factors modeled in the measurement experiment, and
that one may want to model these various sources. Of
course, it should be noted that in differentiating the
error of measurement, one is actually also redefining
the consistent or true-score part of the data.

It seems that Guttman’s fears were not warranted
and that we have overcome the problem of estimating
reliability, a property of scores from repeated admin-
istrations, from scores from a single administration.
Unfortunately, the situation may not be that simple
if assumptions underlying the scoring model used are
violated. In considering the assumptions of measure-
ment models (and particularly uncorrelated errors),
Rozeboom (1966) reminds us in his classic text on
test theory that statistical assumptions are empirical
commitments:

However pleasant it may be to shuffle through the inter-
nal statistics of a compound test in search of a formula
which gives the closest estimate of a test’s reliability
under conditions of uncorrelated errors, this is for prac-
tical applications like putting on a clean shirt to rassle a
hog. (p. 415)

More than 35 years ago, Maxwell (1968) showed
analytically that correlated errors lead to biased esti-
mates of the correlation coefficient if an intra-class
correlation coefficient is used as an estimator and
argued that this bias is most likely to be an overes-
timate. It has been confirmed via simulation studies
that Cronbach’s α underestimates ρXX′ under violation
of essential τ equivalence and that it overestimates
ρXX′ if errors are correlated (Zimmerman, Zumbo, &
LaLonde, 1993; see Raykov, 1998b, for composite
tests and Zumbo, 1999a, for a simulation frame-
work), but these effects can be partly attenuated if both
assumptions are violated simultaneously (Komaroff,
1997). Nevertheless, it appears that α is relatively
robust against moderate violations of these assump-
tions (see Bacon, Sauer, & Young, 1995; Feldt, 2002).
Similar results have been found for g-theory designs
with multiple time points. In such designs, under-
estimation was present for uncorrelated errors with
increasing variances over time, overestimation was
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present for correlated errors with equal variances over
time, and both directions of estimation bias were
present for correlated errors with unequal variances
over time (Bost, 1995). It is important to note that
correlated errors may arise for a variety of reasons.
Given the advent of new item formats, one of the
most common reasons for correlated errors is linked
items. That is, historically, measurement specialists
have advocated that items be disjoint statements that
would not result in extra covariation in latent variable
modeling due to item format. Items that are linked,
however, may induce extra covariation among the
items that appear as correlated errors (for an example,
see Higgins, Zumbo, & Hay, 1999). We recommend
that researchers faced with correlated errors arising
from item format see Gessaroli and Folske (2002)
for a useful, yet general, approach for estimating
reliability.

In latent variable modeling, correlated errors
are equivalent to introducing an additional latent
variable (i.e., factor) that loads on the manifest
variables (e.g., MacCallum, Wegener, Uchino, &
Fabrigar, 1993; Raykov, 1998a). Today, FA methods,
particularly CFA, continue to be useful tools to assess
the degree of correlated errors (e.g., Reuterberg &
Gustafsson, 1992) and have recently been used to
construct adjusted αs that reduce and sometimes elim-
inate the inflation effect (Komaroff, 1997). Moreover,
SEM allows for the estimation of a reliability coeffi-
cient for congeneric tests that is not a lower bound for
the true reliability coefficient (unlike Cronbach’s α)
(Raykov, 1997a), along with a bootstrap estimation
of its standard error that does not depend on nor-
mality assumptions (Raykov, 1998b). Unfortunately,
large sample sizes are required for the stable esti-
mation of model parameters, and not all estimation
methods are recommendable (see Coenders, Saris,
Batista-Foguet, & Andreenkova, 1999). Researchers
need to be aware of the additional assumptions that are
required for proper estimation in a covariance structure
analysis (Bentler & Dudgeon, 1996). Among these are
multivariate normality of the response data required for
some estimation approaches, which is unlikely to hold
for categorical data, and large sample sizes required
for asymptotic theory, which are unlikely to exist for
small-scale assessments.

Estimating reliability coefficients and assessing
model assumptions has also been done for more than
three decades using FA methods (e.g., Feldt, 2002;
Fleishman & Benson, 1987; Jöreskog, 1970, 1971;
Kaiser & Caffrey, 1965). It has been shown repeatedly
that the assumption of uncorrelated errors, coupled
with unidimensionality and the use of the simple total

score in observed-score modeling, corresponds to an
orthogonal factor model with a single dominant factor
that has loadings for each item in the test. Under this
model, the reliability coefficient is estimated as the sum
of squared loadings (i.e., the communalities) divided
by the sum of squared loadings plus error loadings
(i.e., communalities plus unique variances).

Along with FA models, SEMs allow for flexible
testing of multiple assumptions such as type of model
(i.e., parallel, τ equivalent, congeneric), correlation
of errors, invariance across time, and invariance across
subgroups (e.g., Feldt, 2002; Fleishman & Benson,
1987; Raykov, 1997a, 1997b, 1998a, 1998b, 2000,
2001). In an SEM framework, the reliability co-
efficient can be estimated as an internal parameter
or an external parameter of the model, and test or
item weights can either be preset by the investigator
or estimated as factor loadings simultaneously with
all other model parameters. The general approach for
testing assumptions about error structures using SEM
requires at least four items or tests due to the identifi-
cation requirements of the model so that all hypothesis
tests, including the one about congenerity, can be
performed (e.g., Raykov, 1997a). In addition to coeffi-
cient α, the omega coefficient with equal and unequal
weights has been proposed; unequal weights are pre-
ferred by some authors because the coefficient never
increases when items are dropped. Note, however, that
reliability estimates are not necessarily recommended
as sole yardsticks for test construction (Bacon et al.,
1995). More recently, SEM has been advocated by
some to model the type of correlation structure via
integrated time-series models, but the practical utility
of that approach remains limited at this point (Green &
Hershberger, 2000). Finally, note that, just as attenu-
ated correlation coefficients have been shown to be
sensitive to the true-score distributions for examin-
ees (Zimmerman & Williams, 1997), coefficient α is
sensitive to the score distribution of examinees, which
has led to the proposal of a robust generalization of α
that is insensitive to tail fluctuations in this distribution
(Wilcox, 1992).

So what is a practitioner to do when coefficient α
needs to be estimated? It appears that for small sample
sizes, sophisticated latent trait models would provide
unreliable results, and the effort of estimating these
is probably not worth it. If the sample size is large
(e.g., at least 200 examinees for moderate tests as a
guiding principle) and one has complex item formats,
then latent trait models such as SEM may be useful to
estimate reliability and related quantities. It is impor-
tant to always be aware of the model assumptions that
are lurking in the background when choosing a par-
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ticular scoring model (Zumbo, 1994), however, and
for larger sample sizes and high-stakes assessment
scenarios, these should be investigated to obtain the
most accurate estimate of reliability and measurement
error. We recommend Gessaroli and Folske’s (2002)
approach.

4.3.3. Hypothesis Tests
for Reliability Coefficients

The intra-class correlation coefficient, which can be
used for test-retest, parallel forms, subtest, and inter-
rater reliability, has found wide applications in social
and behavioral research (Alsawalmeh & Feldt, 1992).
Its distribution theory and the distribution theory
for Cronbach’s α have recently been developed in
more detail (Feldt, 1990; van Zyl, Neudecker, &
Nel, 2000). Hence, approximate tests have been
developed for two independent intra-class reliability
coefficients (Alsawalmeh & Feldt, 1992), two inde-
pendent coefficient αs (Alsawalmeh & Feldt, 1999;
Charter & Feldt, 1996), and two dependent co-
efficient αs (Alsawalmeh & Feldt, 2000). Simi-
larly, tests for disattenuated correlation coefficients
can be easily formulated in an SEM framework
(Hancock, 1997).

Note, however, that not all distributional results are
easily applicable across a wide range of situations. For
example, the asymptotic distribution of the maximum
likelihood (ML) estimator ofα derived by van Zyl et al.
(2000) requires no assumptions about the covariance
structures of the items; yet, as an asymptotic result,
it requires large sample sizes. Furthermore, the multi-
variate normal distribution of the item response data is
unlikely to hold for dichotomously scored items.

Because the meaningful interpretation of hypothe-
sis test results depends on the power of the test, it
is essential to understand that the power of a test is
not a function of the reliability coefficient but a rela-
tion of it (Williams, Zimmerman, & Zumbo, 1995;
Zimmerman, Williams, & Zumbo, 1993a, 1993b). As
these authors remind us, power is a function of the
absolute value of observed variance, and its relative
decomposition is irrelevant, even though it influences
the magnitude of the reliability coefficient. However,
formulas for computing the power and required sample
size of a test for comparing coefficient αs for two
populations can indeed depend on the direct magnitude
of the respective sample values for the coefficient αs
due to the sampling theory involved (Feldt & Anken-
mann, 1998). In summary, the class of statistical

tests for population reliability coefficients has been
broadened, and even though the individual papers need
to be referred to for the exact ways of conducting the
tests, these tests are often not difficult.

4.3.4. Maximizing Reliability
Coefficients and Composite Scores

It has long been acknowledged that Cronbach’s
α is not an indicator of test homogeneity or unidi-
mensionality (e.g., Green, Lissitz, & Mulaik, 1977;
Miller, 1995), and violations of the assumption of
test homogeneity have been researched (e.g., Feldt &
Qualls, 1996). If tests are measuring several related
constructs, modelers in CTT deal with this by con-
structing composite test scores that receive appro-
priate weights using a table of specifications. Using
a composite-score analysis instead of a total-score
analysis may have a strong effect on the reliability
estimate for the data, though. Formulas exist, most
commonly for congeneric tests, which maximize
reliability measures under different conditions (e.g.,
Armstrong, Jones, & Wang, 1998, for coefficient
α; Goldstein & Marcoulides, 1991, and Sanders,
Theunissen, & Baas, 1989, for generalizability co-
efficients; Knott & Bartholomew, 1993, for a normal
factor model; Li, 1997, for a composite score; Li,
Rosenthal, & Rubin, 1996, for cost considerations;
Rozeboom, 1989, for using regression weights on a
criterion variable; Segall, 1996, for linearly equated
tests; Wang, 1998, for congeneric models).

Maximizing reliability is akin to determining the
ideal sample size for a designed experiment under
power considerations, and so, just as in traditional
statistical design, practical consideration will even-
tually be the ultimate determining factor for test
construction or the analysis method as some tests
proposed to maximize reliability seem to have unre-
alistic characteristics (e.g., 700 multiple-choice items;
see Li et al., 1996). In addition, most formulas for
composite reliability coefficients require knowledge of
the componential reliability coefficients. If reliability
information is not available on the subcomponents that
are supposed to be weighted, a multivariate covariance
structure analysis approach may be called for, and for-
mulas for weights that maximize reliability have been
derived for some cases (Wang, 1998).

Coefficient α and intra-class correlation coefficients
are not the only means of indexing measurement
precision. In fact, they are only single numbers
that capture the quality of the scores in a rather
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superficial sense. To obtain more precise information
about how measurement error actually affects the
scores and hence decisions about examinees, we need
to turn to score-level measures of precision.

4.3.5. Local Estimates of Precision in Scores

Scoring test data eventually brings about conse-
quences for examinees. These consequences are math-
ematically dependent on accurately estimating the
error associated with examinees’ scores, which is most
crucial for examinees with an observed score some-
where around the cut-score in criterion-referenced
assessment or along the entire continuum for norm-
referenced assessment. It has long been recognized
that the score error is not constant along the contin-
uum, even though in early work in CTT, unconditional
raw-score SEM was reported and used. However,
responsible data analysts and decision makers are
aware that score error varies along the ability con-
tinuum, and more evidence from different estimation
methods has been accumulated in the past decade to
support this. Generally speaking, for observed-score
models, curves depicting the conditional SEM will
be somewhat inverse U-shaped, with smaller standard
errors near the upper and lower tails of the true-score
continuum and larger standard errors in the center of
the true-score continuum. In contrast, the local preci-
sion curve for a test analyzed via IRT methods has the
opposite, regular U shape. That is, there is less error
in the center of the latent continuum near the point of
maximum test information and more error for extreme
values on the latent continuum. Thus, local measures
of precision need to be considered in observed and
latent variable models. Moreover, it is clear that a
conditional raw-score standard error of measurement
(CRS-SEM) should be used for fair decision making
based on raw scores and that a conditional scale-score
standard error of measurement (CSS-SEM) should be
reported if raw scores are transformed via linear or
nonlinear transformations to some other practically
meaningful scale such as the percentiles, grade point
equivalent, or stanine scales.

Although in the 1989 chapter by Feldt and Brennan,
CRS-SEM only received a two-page treatment nested
within a section on “special” issues in reliability and
CSS-SEM was not discussed in much detail, during the
past decade, researchers in the field of measurement
have produced a series of papers that meticulously
investigated different approaches to estimating local
or conditional standard errors for scoring models on
different scales and the behavior of these approaches

in different calibration situations (e.g., Brennan,
1998b; Brennan & Lee, 1999; Feldt, 1996; Feldt &
Qualls, 1996, 1998; Kolen, Hanson, & Brennan, 1992;
Kolen, Zeng, & Hanson, 1996; Lee, 2000; Qualls-
Payne, 1992; see also May & Nicewander, 1994). In
general, most methods produce similar results that
lead only to slight differences in confidence inter-
val width if the conditional standard errors are used
for their construction. As usual, CTT methods are
comparatively easier to compute and do not rely as
heavily on larger sample sizes for stable parameter
estimation.

From earlier discussions, it should be clear that
the explicit treatment of specific error structures in
scoring models has been one of the most important
contributions in the past decade. Within an observed-
score context of conditional standard error, this has
most notably resulted in a synthesis of conditional
standard error estimation approaches for g-theory
designs and estimations that include CTT scenarios
as special cases (Brennan, 1998b). Within a latent
trait framework, the dependency of responses for items
presented with the same stimulus in testlets has driven
researchers to develop a Bayesian estimation frame-
work for dichotomous and polytomous items on the
same test scored with IRT models (Bradlow et al.,
1999; Wainer, Bradlow, & Du, 2000; Wainer &
Thissen, 1996; Wainer & Wang, 2001; Wang et al.,
2002; see also Sireci, Thissen, & Wainer, 1991, for
reliability estimation as well as Lee & Frisbie, 1999,
for a g-theory approach). These studies have found
that incorporating testlet effects into an IRT model
or g-theory model always improved estimation accu-
racy by incorporating within-testlet response pattern
information into parameter estimates and is necessary
if strong testlet effects are present to prevent biased
ability estimates and thus incorrect decisions. This
conclusion was further supported in a direct compari-
son of CRS-SEM estimates with models that accounted
for testlet effects producing more accurate CRS-SEM
under all conditions, even though g-theory estimation,
as an alternative to IRT testlet models, worked well
under mild testlet dependencies (Lee, 2000; see also
Lee & Frisbie, 1999). Again, the message is that for
larger sample sizes, it is particularly important to assess
whether model assumptions are likely to hold, but for
both smaller and larger sample sizes, conditional stan-
dard errors should be computed and used for decision
making. It appears that the particular method for com-
puting CRS-SEM or CSS-SEM does not matter much
for most practical decisions and that the one that is
simplest to implement should be chosen.
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4.3.6. Relationships Between Error
Estimates in Different Scoring Frameworks

We want to close the discussions about reliability
and measurement error with a section on relation-
ships between observed-score and IRT models as some
concepts are often confused. As we have just seen,
the notion of a local measure of precision, which
is captured by the information function in IRT, also
exists in CTT through conditional standard errors
for raw and scale scores. Moreover, it is similarly
possible to compute information functions in CTT
(Feldt & Brennan, 1989; Mellenbergh, 1996) as
well as unconditional standard errors and reliability
coefficients in IRT (e.g., Samejima, 1994). In particu-
lar, the IRT equivalent to the unconditional standard
error in CTT is the expectation of the asymptotic
conditional standard error:

SEM = σε =
∞∫
−∞

[I (θ)]−1/2f (θ)dθ.

For practical estimation purposes, the information
function in the above equation is replaced by the
estimated test information function, and the ability
distribution can be empirically estimated if condi-
tional unbiasedness of θ̂ holds; otherwise, test infor-
mation functions adjusted for bias should be used
(Samejima, 1994). The reliability coefficient can now
be predicted from a single administration of a test
using the observed variation in θ and the estimated
standard error as described above (in the formula, SEM
indicates standard error):

ρ̂θ̂1,θ̂2
= Vâr(θ̂)− SÊM

Vâr(θ̂)
= Vâr(θ)

Vâr(θ̂)
.

The relationship between the multiple-occasion
estimators of the reliability coefficient in CTT and
IRT models has been investigated for some time, and
some authors even go so far as to declare the reliability
coefficient redundant (Samejima, 1994, p. 243). This
statement seems a bit extreme because the appropri-
ateness of an IRT estimate of reliability depends on
the accuracy of the fitted model (see Meijer, Sijtsma,
& Molenaar, 1995, p. 334, for this argument in a
nonparametric context), and fitting a more complex
IRT model may require more data than are available
at a given moment. In addition, even though in IRT,
standard errors are larger at the extreme ends of the
scale (Lord, 1980), this is dependent on the choice of
transformation from the true score to the latent trait
scale, and dramatic differences between conditional
standard errors can be observed for different choices
of transformation (see Brennan, 1998b).

As another similarity between CTT and IRT models,
recall that the reliability coefficient in CTT is the ratio
of true-score variance to total observed variance or the
ratio of signal to signal plus noise. Put differently,
the signal-to-noise ratio equals the correlation coef-
ficient divided by 1 minus the correlation coefficient.
Therefore, a local reliability coefficient can be defined
as a function of the item information function, which
is itself proportional to the local signal-to-noise ratio
(Nicewander, 1993).

Conditional standard errors for absolute decisions
(and thus dependability coefficients) or relative deci-
sions (and thus generalizability coefficients) can also
be formulated in g-theory (Brennan, 1998b, 2001).
In g-theory, the class of model specifications, albeit
all generalized linear models (GLIMs), has been
enlarged, but typically larger sample sizes are required
for accurate estimation of variance components. In
IRT, the class of GLIMs uses different link functions,
but choices have to be made now between logit and
probit models, the number of parameters in the model,
and whether to choose a parametric or nonparametric
formulation. In the latter case, reliability estimation is
not even common practice, and even though a reliabil-
ity coefficient that is related to a scalability coefficient
can be estimated in Mokken’s nonparametric alter-
natives to the Rasch model, their complementary
uses remain unclear (Meijer et al., 1995; Meijer,
Sijtsma, & Smid, 1990).

Finally, it needs to be highlighted that one of the
advantages of reliability estimation in CTT is the
relative simplicity of the model, whose only major
alternatives consisted of different assumptions about
its unobserved components. Claims that CTT is merely
a special case of IRT (Nicewander, 1993) or FA seem
to be overstatements and seem to ignore the difference
between score-level and item-level modeling, as well
as between a latent variable and a more general un-
observed variable such as the true score in CTT. To the
contrary to the overstatement, it can be argued that IRT
is a first-order approximation to CTT. The overstate-
ment also ignores the role that parameter estimation
strategy has in defining a psychometric model. Put
simply, the liberalization of CTT into g-theory—along
with its reformulation and extension, in latent variable
terms, in FA and SEM—and the advent of IRT have
come at the price of stronger requirements on the data,
which have affected reliability estimation. For larger
sample sizes, we can definitely investigate more com-
plex assessment scenarios through g-theory, as well
as more complex dependency structures through FA
and SEM, and achieve invariance properties for adap-
tive testing in IRT (see Rupp, 2003; Rupp & Zumbo,
2003, in press, on quantifying a lack of invariance
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in IRT models), but for smaller sample sizes, these
advances are often of limited benefit to the practitioner.
In addition, no matter how sophisticated the model
statement and estimation routines have become, a test
of poor validity and thus poor conceptual reliability
will always remain unaltered. This brings us to our
final section.

4.4. Validity and

the Practice of Validation

Validity theory aids us in the inference from the
true score or latent variable score to the construct of
interest. In fact, one of the current themes in valid-
ity theory is that construct validity is the totality of
validity theory and that its discussion is comprehen-
sive, integrative, and evidence based. In this sense,
construct validity refers to the degree to which infer-
ences can be made legitimately from the observed
scores to the theoretical constructs about which these
observations are supposed to contain information. In
short, construct validity involves generalizing from
our behavioral or social observations to the con-
cept of our behavioral or social observations. The
practice of validation aims to ascertain the extent
to which an interpretation of a test is conceptually
and empirically warranted and should be aimed at
making explicit hidden ethical and social values that
influence that process (Messick, 1995).

It is hard not to address validity issues when one is
discussing errors of measurement. Yet the develop-
ments in validity theory have not been as dramatic
over the past 15 years as have been the developments
in reliability estimation and measurement model
development. For a cursory overview, several papers
are available that describe important current develop-
ments in validity theory (Hubley & Zumbo, 1996;
Johnson & Plake, 1998; Kane, 2001). In brief,
the recent history of validity theory is perhaps best
captured by the following observations.

• As one can see in Zumbo’s (1998) volume, there
is a move to consider the consequences of inferences
from test scores. That is, along with the elevation of
construct validity to an overall validity framework for
evaluating test interpretation and use came the consid-
eration of the role of ethical and social consequences as
validity evidence contributing to score meaning. This
movement has been met with some resistance. In the
end, Messick (1998) made the point most succinctly
when he stated that one should not be simply concerned

with the obvious and gross negative consequences of
score interpretation, but rather one should consider the
more subtle and systemic consequences of “normal”
test use. The matter and role of consequences still
remains controversial today and will regain momentum
in the current climate of large-scale test results affect-
ing educational financing and staffing in the United
States and Canada.
• Although it was initially set aside in the move to

elevate construct validity, criterion-based evidence is
gaining momentum again in part due to the work of
Sireci (1998).
• Of all the threats to valid inferences from test

scores, test translation is growing in awareness due
to the number of international efforts in testing and
measurement (see Hambleton & Patsula, 1998).
• The use of cognitive models as an alternative to

traditional test validation is gaining a great deal of
momentum. One of the limitations of traditional quan-
titative test validation practices (e.g., factor-analytic
methods, validity coefficients, and multitrait multi-
method approaches) is that they are descriptive rather
than explanatory. In other words, they are statisti-
cal and not psychological. Models for cognitively
diagnostic assessment, particularly the work of Susan
Embretson and Kikumi Tatsuoka, has expanded the
evidential basis for test validation as well as the nomo-
thetic span of the nomological network. The basic
idea is that if one could understand why an individual
responded a certain way to an item, then that would go
a long way toward bridging the inferential gap between
test scores and constructs.

Given that cognitive models present one of the
most exciting new developments with implications for
validity theory, the next section discusses them in
more detail.

4.4.1. Cognitive Models for a Stronger
Evidentiary Bases of Test Validation

It is informative to start this discussion by addressing
the use of the term cognitive psychology in the literature
on cognitive models. For many assessment situations,
researchers use the word cognition to loosely refer to
any process that is somehow grounded in our minds
and therefore eventually our brains. Yet there is little
doubt that measurement specialists are not interested
in the biological or neuroscientific bases of cognitive
processes for typical cognitively diagnostic assess-
ments, so that we really often mean a “soft” form of
cognitive psychology in a measurement context.
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Some will undoubtedly argue that it is not the job
of a psychometric data modeler to worry about what
is done with the numerical estimates once they are
handed down, but it is exactly this neglect of mean-
ingful inferences at the expense of sophisticated
estimation techniques that has often eradicated the
psychology in “psycho”-metrics. The realization that it
is time to put psychology back into the equation so that
investigators who desire “reliable” tests are assured by
modelers that their data do indeed provide evidence for
dependable meaningful inferences. To appreciate the
relevance and importance of cognitive models, one has
to understand that we have not made many significant
advances toward explicit validation of the inferences
drawn from test scores through mathematical models.
This holds true despite the injection of a latent contin-
uum that allows modelers to extract information from
test data more flexibly and accurately at the item level
in IRT. For example, Junker (1999) suggests that

despite the persistence of the “latent trait” terminology
in their work, few psychometricians today believe that
the latent continuous proficiency variable in an IRT
model has any deep reality as a “trait”; but as a vehi-
cle for effectively summarizing, ranking, and selecting
based on performance in a domain, latent proficiency
can be quite useful. (p. 10)

The main goal of modeling test data should always
be to make valid inferences about the examinees, but
the validity of these inferences cannot be mechanically
increased by inducing latent constructs into the data
structure.

Cognitive models seek to explicitly represent the
cognitive processes that examinees engage in when
responding to items through parameters in mathemat-
ical models, which typically consist of augmented
IRT models, classification algorithms based on reg-
ular IRT models, or Bayesian inference networks
that have IRT models as a central component. One
approach to cognitively diagnostic assessment is the
rule-space methodology that attempts to classify exam-
inees into distinct attribute states based on observed
item response data, an appropriate IRT model, and
the attribute specification for the items (Tatsuoka,
1983, 1991, 1995, 1996; Tatsuoka & Tatsuoka,
1987). Despite a lack of consensus in the litera-
ture about what is meant exactly by an attribute
and the sensitivity of the classification to the appro-
priateness of the chosen IRT model, this approach
forces test developers to specify prerequisite cog-
nitive characteristics of examinees—ideally before
designing a test (Gierl, Leighton, & Hunka, 2000).
Other approaches based on item attribute incidence

or Q-matrices have been developed (e.g., DiBello,
Stout, & Roussos, 1995), but their main weakness
to date remains the vagueness and lack of guid-
ance in attribute specification (e.g., Junker & Sijtsma,
2001). Developments in cognitive models have often
taken place primarily in educational achievement and
psychoeducational assessment contexts, though. An
exception was Zumbo, Pope, Watson, and Hubley
(1997) in personality assessment, in which they studied
the relation of the abstractness and concreteness of
items to the psychometric properties of a personality
measure. Other advances are currently made in the
development of simulation-based assessment software
that emphasizes a deeper and richer understanding of
the cognitive processes required for performing certain
tasks in which data are analyzed through Bayesian
networks (Mislevy, Steinberg, Breyer, Almond, &
Johnson, 1999).

More sophisticated models for cognitive assessment
do not come without a price. One of the components
of this price is again sample size because more com-
plex IRT models, cognitive state models, or Bayesian
inference networks typically require a larger number of
parameters to be estimated. More important, however,
the more useful models for cognitively diagnostic
assessment are built on a solid understanding of the
cognitive processes underlying the tasks that are being
assessed. As an excellent example, consider the work
by Embretson (1998), who used the cognitive process
analysis of the Raven’s Advanced Progressive Matrix
test by Carpenter, Just, and Shell (1990) to model
examinees’ responses, extract diagnostic information,
and generate similar items. Comprehensive models of
cognitive abilities are still relatively rare, and even
though advances have been made, it is necessary to
note that their most important cornerstone, the analysis
of cognitive processes, is still their weakest element.

The issue is less a lack of models for new kinds of
test data but rather a lack of awareness in the applied
world that these models exist along with a mismatch
of assessment instruments and modeling practice. In
other words, if test developers are interested in pro-
viding examinees and institutions with richer profiles
of abilities and developmental progress, the nature
of the assessment methods has to change to provide
richer data sets from which relevant information can be
more meaningfully extracted. What is meant by more
meaningful will, of course, in the end depend on the
use of the assessment data, but in general, authorities
in the field are nowadays beginning to agree that we
need more than simple test responses scored 0 and 1
to validate the inferences that are being made from the
test data. As Embretson’s (1998) work demonstrates,
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the key to useful cognitive models is that they need to
be explanatory and not just another set of descriptive
models in cognitive terms rather than mathematical
terms (Zumbo & MacMillan, 1999). Put differently,
a change of terminology is insufficient to claim true
advances in gathering more meaningful and weighty
validity evidence.

A similar push for explanatory power has also taken
place in the area of differential item functioning,
where attitudinal, background, and cognitive variables
are used to account for differential achievement pro-
files to investigate the inferential comparability of
scores across populations (Klieme & Baumert, 2001;
Watermann & Klieme, 2002). The developments
that are currently taking place serve in part as a
consciousness-raising device to help test developers
and users to reflect more closely on how valid their
inferences from test data really are and how these
inferences can be improved. This continues the path
toward a comprehensive and unified validation process
of assessment instruments that has been eloquently laid
out by Messick (1989, 1995).

4.4.2. Implications of Cognitive Models
for Modeling Novel Dependency Structures

In traditional psychometric models, dependencies
among item responses over and above what can
be accounted for by the unobserved variables have
been a dreaded feature of test data, and every effort
has always been made to eliminate this dependency
through test design or modeling efforts. This may
be the wrong lens that is applied to the data, and
it appears that cognitively diagnostic assessments—
along with models for testlet structures and more
complicated error dependencies—are the new figures
that are slowly taking shape under a new perspective
on items and responding to items. We have begun to
shift our thinking back to the individual examinees
because we are starting to realize that the goal of any
assessment, be it strictly cognitively diagnostic or not,
is to arrive at better inferences about examinees’ abili-
ties. Furthermore, item difficulty and discrimination
are properties of the examinees that respond to the
items because the items are windows into the minds of
the examinees and are not qualities inherent in items
independent of populations of examinees.

All of this is to say that the current push toward
cognitively diagnostic assessment seems to be more
than just an extension of currently existing models and
statistical methodologies to richer domains. In fact, it
is our chance to clean our windows into the minds
of examinees and to refocus our lenses toward the

examinees as the unit of investigation that matters
most. From a mathematical perspective, this means
looking for different types of information in data struc-
tures that may posit new challenges to the modelers.
In particular, if cognitive processes are highly inter-
related in complex neural networks at a biological-
chemical level, then we can expect that item responses
are probably also interrelated to a much higher degree
than gives us comfort. Indeed, what we need is an
extension of the models that are currently used in
covariance structure analysis because the future seems
to lie in accepting covariation and interrelationships
rather than dreading them.

This can be seen not only in the models and scenar-
ios discussed so far but also by looking at the variety
of item types that can be found in new tests across
multiple disciplines (Zenisky & Sireci, 2002). As these
authors show, traditional test formats have been aug-
mented with a whole new battery of items that require
the test taker to engage in more sophisticated com-
plex cognitive processes. We certainly have choices
when scoring these item types as we really also have
when dealing with the items that are used in cogni-
tively diagnostic assessments. We could theoretically
score them all 0–1 or on a simple graded scale and
apply traditional models in CTT, g-theory, or IRT to
the responses. We might find, however, that depen-
dency structures in the data sets might compromise
our simple analyses because the items are not isolated
items anymore. Indeed, to use such items more suc-
cessfully, it would make much more sense to focus on
the interdependencies and go from there.

It should also be noted that the nature of depen-
dencies that are deliberately build into more complex
item types has crept up with traditional tests as well.
For example, researchers have been busy investigat-
ing the data structure for CTT models in terms of
the degree of test parallelism. As one dimension of
complexity, researchers have defined parallel, essen-
tially parallel, τ -equivalent, essentially τ -equivalent,
and congeneric tests; as a second dimension, they
consider uncorrelated and correlated errors; and as
a third, they investigate sampling type (i.e., Type 1,
Type 2, Type 12). With all these considerations at
hand, psychometricians have been busy trying to find
the best estimators of quantities such as the reliability
coefficient or conditional standard errors for different
data structures. Nevertheless, we are faced these days
with data structures that do not adhere to any of the
criteria above (e.g., spherical covariance matrices; see
Barchard & Hakstian, 1997; Hakstian & Barchard,
2000), which compel us to search for better descrip-
tions of the data structure at hand.
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4.5. Conclusion

The emphasis in this chapter has been on measure-
ment error, reliability, and validity through the lens
of scoring data from tests within a particular scoring
framework. We have highlighted on several occasions
the distinctions between observed variable frameworks
(i.e., CTT and g-theory) and latent variable frame-
works (i.e., EFA, CFA, SEM, and IRT). We believe
it is important to understand that the use of a par-
ticular scoring model always remains the choice of
the data analyst and is not necessitated by the data.
More often than not, the choice of a particular scoring
model is the result of personal beliefs, training, and
working conventions (Rupp & Zumbo, 2003). Yet it
has severe consequences for how we define, quantify,
and use measurement error and the decisions that we
base thereon. Choosing a scoring model is an empir-
ical commitment that demands the data analyst take
responsibility for the consequences imparted on the
examinees by this choice.

To underscore this responsibility one last time, con-
sider for a moment a few issues that can arise with
some popular scoring models. When working within a
latent variable framework, it is certainly irresponsible
to blindly fit IRT models to any kind of data—even if
the models formally match the type of scores given
(e.g., dichotomous, polytomous)—without ensuring
that sufficiently large and representative calibration
samples are available so that stable and representative
parameter estimates can be obtained. If the parameters
are not well estimated, decisions will be biased. In
addition, if the intention is to use a one-shot calibra-
tion at one point in time with one set of examinees,
it is logically inconsistent to justify the use of an IRT
model because model parameters possess the feature
of invariance. Invariance refers to the identity of item
and examinee parameters from repeated calibration for
perfect model fit and is not needed in this case. Hence,
it should not be cited as the primary reason for using
such a model.

Another example comes from the area of cogni-
tively diagnostic assessment. Without any detailed data
collected on examinees and any detailed attempts to
develop realistic processing models, truly cognitively
diagnostic assessment is not possible. In addition, an
augmented IRT model for cognitive assessment needs
to be judiciously chosen based on the cognitive theory
underlying the test response processes and not simply
because it is an interesting extension of basic IRT
models (for excellent examples, see Embretson, 1998;
Maris, 1995).

In the area of observed-score modeling, it is equally
irresponsible to use the unconditional raw-score stan-
dard error when a large body of evidence has shown for
years that CRS-SEM varies along the score continuum.
Similarly, CSS-SEM needs to be computed separately
if scores are transformed to scales such as stanine, per-
centile, or grade-equivalent scales as it also varies and
is generally not equal to the CRS-SEM. Using inappro-
priate measures of error can lead to incorrect and unfair
decisions for some, if not most, students. On a more
subtle level, most observed-score scoring methods rely
on assumptions about the score matrix such as paral-
lelism, essential τ equivalence, or congenerity. In some
cases, failing to adjust reliability coefficients or other
measures of error to the right model can lead to biased
statements about a test, overconfidence in test use, and
unfair decisions about examinees. Moreover, factor-
analytic procedures and software can nowadays easily
be used to test for these assumptions and to produce
appropriate error estimates for larger sample sizes.

It is the responsibility of mathematically trained
psychometricians to inform those who are less versed
in the theory about the consequences of their deci-
sions to ensure that examinees are assessed fairly.
Because models (which, in part, include the param-
eter estimation strategy) are empirical commitments,
it is measurement specialists who need to take partial
responsibility for the decisions that are being made
with the models they provide to others. Everyone
knows that a useful and essential tool such as an auto-
mobile, a chainsaw, or a statistical model can be very
dangerous if put into the hands of people who do not
have sufficient training and handling experience or lack
the willingness to be responsible users.

All of this is not to say that decision-making disas-
ters will immediately occur if the above things are not
adhered to in the fullest. However, it can also be too
tempting to take that exact fact to be less stringent and
less careful about our practices, and we believe it is
important that we all in the psychometric community
work together to ensure fair and sound decision mak-
ing. Technological advances have opened up doors for
us to do more sophisticated and complex simulation
work, analyze richer and more nested data structures
than ever before, and synthesize findings across anal-
yses. At the same time, it is important to remember
that examinees are typically not interested in the par-
ticular scoring models used for obtaining their score
but rather in a fair assessment, which simply translates
to fair decisions based on their responses. The term
fair is of course heavily value laden and can take on
different shades of meaning for different examinees,
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but nevertheless responsible data models consider the
consequences of test score interpretation for which
they provide the numerical ingredients.

Numerous questions about the reliability of tests
have been asked in the past decade, and important
advances have been made in the area of estimating
conditional standard error for nonlinear scale trans-
formations, estimating bias of reliability coefficient
estimates such as coefficient α under simultaneous
violations of assumptions, deriving algorithms for
maximizing α, deriving tests for αs from different
populations, and establishing relationships between
CTT, g-theory, IRT, and SEM that show the inter-
relatedness of these procedures. In other words, we
have been able to make convincing arguments for the
unification of measurement models (see McDonald,
1999; Rupp, 2002; Zimmerman & Zumbo, 2001), and
we have made convincing arguments for advantages of
g-theory over CTT, IRT over g-theory, IRT over
CTT, and SEM over g-theory, CTT, and IRT and
so on. Important research in this area still needs to
happen, and a wealth of unanswered research questions
can be found in the concluding sections of the more
than 100 articles that we could find in journals over
the past 10 years.

We believe that this is fruitful work but that it is at
least as important to reflect on our testing practice in the
new millennium. Cognitively diagnostic assessments
will play an important part, but we believe that they
will neither replace traditional assessments entirely in
the near future nor answer all of the problems encoun-
tered by psychometricians at the moment. But they
are the psychometric discipline’s way of pointing out
that data modelers are ready to face new challenges
posed by the need for richer information about exam-
inees, concurrent new item types, redefinitions of the
construct of an item itself, and a higher degree of inter-
relatedness of responses from a mathematical as well
as from a soft cognition perspective. Reliability and
validity will always be important in test development.
Reliability indices are not irrelevant, as some proclaim,
because they serve different purposes than conditional
SEM and test information functions, and validity will
always be the cornerstone of test development and
use, particularly if we move to a more unified test
development–data modeling–test use process. Mea-
surement specialists are beginning to talk and reach
out to each other more and more across disciplines and
cultural boundaries. Content experts, psychometric
data analysts, and cognitive psychologists may not
always be at the same table yet, but at least they
are more often pooling their expertise in the same
metaphorical room, and that is certainly a good thing.

We are far from a practical revolution in testing, but
we seem to be at an exciting juncture for pausing and
reflecting on what to focus on.
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Chapter 5

Test Modeling

Ratna Nandakumar

Terry Ackerman

Discoveries with item response theory (IRT)
principles, since the 1960s, have led to major
breakthroughs in psychological and educa-

tional assessment. For example, using IRT principles,
it is possible to determine the relative standing of an
examinee on the latent continuum by administering any
sample of items from a given domain of knowledge.
This is possible through the principle of invariance
in IRT, which means that item properties such as
difficulty and discrimination can be determined irre-
spective of the ability level of the examinee. Hence,
any set of items from a given domain can be used
to estimate an examinee’s position along the latent
continuum. This is in sharp contrast to the traditional
classical test theory (CTT), in which item statistics are
a function of the specific group of examinees who took
the item, and the examinee’s performance is a function
of the items on the test. That is, in CTT, the same item
may have different p-values depending on the level of
the examinees’ ability taking the item. Similarly, in
CTT, it is not possible to generalize the performance
of an examinee beyond a given set of test items.

The advantages of IRT techniques are associated
with strong models used to characterize examinee
performance on a test, as opposed to the weak models
of CTT that are tautologies and not testable. One can
realize the potentials of IRT modeling and its conse-
quences only if there is a close match between the
model and data. Application of IRT techniques to data

without ensuring the model-data fit can lead to unfair
and unjustified ranking of examinees on the latent
continuum of domain of interest.

The fundamental underlying assumptions of item
response models are monotonicity, dimensionality,
and local independence. Monotonicity implies that
item performance is monotonically related to the
ability. That is, a high-ability examinee has a greater
probability of responding correctly to the item than
a low-ability examinee. Because achievement test
items inherently satisfy this assumption, it is implicitly
assumed.1 Local independence (LI) implies that item
responses are conditionally independent. The condi-
tional ability vector that ensures item independence
is key to determining the dimensionality of data. For
example, if local independence is achieved by con-
ditioning on a unidimensional latent trait, then the
response data are said to be unidimensional. If local
independence is achieved by conditioning on a two-
dimensional latent trait vector, then the response data
are said to be two-dimensional. Hence, local indepen-
dence and dimensionality assumptions are intertwined.
One can only statistically test either of the assumptions
assuming the other.

In addition to these basic foundational assump-
tions, a given model may have other assumptions. For

1. Normally, during the test construction process, if an item does not
satisfy the assumption of monotonicity, it is deleted from the test.

93



94 • SECTION II / TESTING AND MEASUREMENT

example, among parametric models, there are models
associated with different item types, such as dichoto-
mous items (item is scored correct vs. incorrect) and
polytomous items (arising from scoring essays and
performance-type tasks). Each model has a set of
assumptions associated with it. For a list of IRT models
for different item formats and their development, refer
to van der Linden and Hambleton (1997). To date, a
great majority of tests are intended to be unidimen-
sional (d = 1). That is, the purpose of the test is to
assess an examinee’s trait level based on his or her
responses to unidimensional test items. Examinee test
performance on a unidimensional test can be summa-
rized with a single scale score. It is also well known
that any unidimensional test is typically influenced
by transient dimensions (abilities) common to just a
few of the items. It is well documented (Hambleton &
Swaminathan, 1985; Humphreys, 1985, 1986; Stout,
1987) that summarizing examinees’ performance with
a single scale score in the presence of transient abilities
is harmless. However, when transient abilities are not
insignificant, such as a paragraph comprehension test,
or when a test is intentionally multidimensional, then
a single scale score is not a meaningful format to sum-
marize examinee performance. A multidimensional or
other appropriate model is needed to summarize exam-
inee performance. Hence, given test data, we need
to empirically determine if unidimensional modeling
and the resulting single-scale score summary is mean-
ingful. If unidimensional modeling is not appropriate,
ways to go about selecting an appropriate model are
needed.

The focus of this chapter is to illustrate modeling
of dichotomous data. Both unidimensional and multi-
dimensional modeling are considered. In the follow-
ing sections, assumptions of local independence and
dimensionality are defined; several tools for assessing
these assumptions will be described, and these tools
will be illustrated with several realistic data sets. Based
on these tools and indices, guidelines for determining
an appropriate model for given data will be delineated.

5.1. Definition of Local

Independence and Dimensionality

The purpose of a majority of standardized tests is
to measure a single construct, ability, or dimen-
sion. Hence, a major question facing any test devel-
opment, analysis, and interpretation is whether it
is appropriate to summarize the performance of an
examinee to test items using a single scaled score.
That is, can the test be modeled using a monotone,

locally independent, unidimensional model? The
answer is simple. If the test items are tapping a single
construct or one dominant dimension, and if the exam-
inee subpopulation taking the test is homogeneous
with respect to the construct being measured, then a
single scaled score will summarize examinees’ per-
formance on the test. Although the answer is simple,
ways of determining that the test indeed is measur-
ing a dominant construct is not so simple. Assuming
that the assumption of monotonicity is checked and
satisfied during the test development process,2 let us
examine the definitions of local independence and
dimensionality.

Let Un = (U1, U2, . . . , Un) denote the item
response pattern of a randomly sampled examinee on a
test of length n. The random variable Ui takes a value
of 1 if the item is correctly answered and 0 if the item
is incorrectly answered. Let� denote the latent ability,
possibly multidimensional, underlying item responses.

Definition 1. The test items Un are said to be
locally independent if

Prob(Un = un|Θ = θ) =
n∏
i=1

Prob(Ui = ui |θ) (1)

for each response pattern un = (u1, u2, . . . , un) and
for all θ. That is, conditional on examinee ability,
responses to different items are independent.

The dimensionality d of a test Un is the minimal
dimensionality required for Θ to produce a model
that is both monotone and locally independent (Stout,
Habing, Douglas, Kim, Roussos, & Zhang, 1996).
When Θ consists of a single component, θ, then the
test is said to be unidimensional. The definition of
local independence provided above is referred to as the
strong local independence (SLI) as it involves complete
independence among items conditioned on examinee
ability. On the other hand, weak local independence
(WLI) involves conditional item pair covariance to be
zero for all items pairs. That is, cov(Ui, Uj |θ) = 0.

Definition 2. The test items Un are said to be
weakly locally independent if

Prob(Ui = ui, Uj = uj |� = θ) = Prob(Ui =
ui |� = θ)Prob(Uj = uj |� = θ) (2)

for all n(n−1)/2 items pairs and for all θ . WLI is also
referred to as pairwise local independence (McDonald,
1994, 1997). Obviously, SLI implies WLI. It is

2. Monotonicity of items is established by high positive point-biserial
correlation between the item score and the test score.
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commonly accepted that, if the unidimensionality can
be achieved through pairwise local independence, then
unidimensionality is closely approximated through
SLI (Stout, 2002).

From a factor-analytic point of view, it is not realistic
to construct a strictly unidimensional test. In any test,
it is not uncommon to find transient abilities common
to one or more items (Humphreys, 1985; Tucker,
Koopman, & Linn, 1969). In this sense, unidimen-
sionality refers to the dominant ability measured by
the test. The WLI, although very useful for empiri-
cal investigation of a dimensional structure underlying
test data, does not capture the concept of dominant
dimensions underlying data.

Stout (1987, 1990, 2002) theoretically conceptu-
alized the separation of dominant dimensions from
inessential or transient dimensions and referred to
them as essential dimensions, meaning what the test
is essentially measuring. Stout (1987) also developed
a statistical test of essential unidimensionality. In
his conceptual formulation and definition of essential
dimensionality, Stout (1990) used the “infinite-length
test” abstraction. That is, to understand the structure
underlying test data resulting from administering a
finite test to a finite group of examinees, Stout derived
theoretical foundational results based on the abstrac-
tion of an infinite-length test U∞ administered to a
large group of examinees. Using this conceptual frame-
work of infinite-length test, essential dimensionality is
defined as follows.

Definition 3. A test U∞ is essentially unidimen-
sional with respect to the unidimensional latent random
variable � if, for all θ ,∑

1≤i<j≤n |Cov(Ui, Uj |� = θ)|(
n

2

) → 0, (3)

as n → ∞. The above definition implies that the
average covariance, in the limit, approaches 0 as the
test length increases to∞. In other words, transient or
nonessential traits common to one or more items may
result in nonzero conditional covariance. However, the
average covariance approaches 0. Essential dimension-
ality is a weaker form of strict dimensionality based on
either SLI or WLI.

The definition of essential dimensionality has further
led to theoretical results establishing the usefulness
of number-correct score as a consistent estimator of
unidimensional ability on the latent true-score scale
(Stout, 1990) and to nonparametric estimation of item
response functions (Douglas & Cohen, 2001).

5.2. Geometrical Representation

of Multidimensional Structure

Although, in reality, dimensionality is determined by
test items together with the examinee population tak-
ing the test, the geometrical description of items in
the latent space provides an intuitive understanding of
how item direction with respect to the test direction
contributes to the dimensional structure underlying test
data. In explaining the dimensional structure of test
items geometrically, only two-dimensional test items
are considered.

An item can be geometrically represented by a
vector, which, if extended, passes through the origin
of a coordinate system. The coordinate axes represent
the two dimensions, θ1 and θ2, underlying test data.
The origin of the coordinate system is the population
multidimensional trait-level mean. The direction of the
vector represents the θ1, θ2−, composite that has
the maximum discrimination, which is appropriately
defined for the model in use. The length of the vector
is a measure of the magnitude of the item’s discrim-
ination, denoted by MDISC = (a2

1 + a2
2)

1/2, where
a1 and a2 are the discriminating parameters associ-
ated with the two dimensions. The location of the
base of the item vector corresponds to that level of
multidimensional ability at which the probability of
correct response to the item is 0.5. The item vector
is orthogonal to the p = .5 equiprobability contour
(Ackerman, 1996; Reckase, 1997). For example, in a
two-dimensional space, items are located only in the
first or third quadrants. This is because item discrim-
inations can only take positive values. Easy items are
located in the third quadrant and difficult items in the
first quadrant. Figure 5.1 shows vector representation
of items in a two-dimensional space. Item 1 is an easy
item with low discrimination, whereas Item 2 and Item
3 are more difficult and high-discriminating items.
The angle direction of the item measured from the
θ1-axis represents a composite of dimensions that
the item is best measuring. For example, in a two-
dimensional space, if the angle distance of an item from
the θ1-dimension is small, then the item is measuring
mostly the θ1-dimension (Item 3 in Figure 5.1). On
the other hand, if the item vector is at 45 degrees, then
the item’s ability composite measures both dimensions
equally (Item 1 in Figure 5.1).

Intuitively speaking, a test of items whose vectors
cluster in a narrow sector (i.e., where all the items are
measuring similar ability composites) is considered to
be essentially unidimensional. If all test items lie on the
coordinate axis (as opposed to a narrow sector), then
the test would be considered strictly unidimensional.
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Figure 5.1 Vector Representation of
Two-Dimensional Items

Item 1

Item 2

Item 3

Θ2

Θ1

The way item vectors cluster together with respect
to the coordinate axes, in a multidimensional space,
determines the dimensional structure of the test. For
the two-dimensional latent space, Figure 5.2 provides
an example of a test with two clusters, whose direc-
tion of best measurement is represented by vectors
�d1 and�d2.3 The direction of best-measurement vec-
tor �d1 is a weighted average of item discrimination
vectors comprising its cluster. The same is true for
�d2. The direction of best measurement of the total
test comprising the two clusters is represented by the
vector �TT.

A test is considered to have simple structure if all
items in the test lie along the coordinate axes. In this
case, although the dimensional clusters may be corre-
lated, each is an independent item cluster. If, on the
other hand, test items are spread along a narrow sec-
tor surrounding the coordinate axes, then each narrow
sector of items is considered exhibiting an approximate
simple structure. Figure 5.2 illustrates an example of an
approximate simple structures test with two item clus-
ters. Mathematically speaking, approximate simple
structure can be defined as a k-dimensional latent co-
ordinate axis existing within a d-dimensional latent
space (d ≥ k) such that items only lie within narrow
sectors surrounding the coordinate axis. In such a case,
there are k-dominant dimensions (Stout et al., 1996).

Zhang and Stout (1999a) have proved theoret-
ical results for using conditional covariances as

3. Coordinate axes are not necessarily orthogonal. For example, if
cov(�i ,�j ) > 0, then the coordinate axes are not orthogonal.

Figure 5.2 An Example of an Approximate Simple
Structure Test
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the basis for determining the dimensional structure
underlying multidimensional data. The central theme
of their results is that the dimensional structure of
test data can be completely discovered using item pair
conditional covariances (CCOV), conditional on the
test vector represented by �TT, provided there is an
approximate simple structure underlying test data. The
pattern of CCOVij is positive if items i and j measure
similar ability composites, negative if items i and j
measure different ability composites, and 0 if one of
the items measures the same composite as �TT. For
example, in the case of a two-dimensional structure,
as in Figure 5.2, the CCOV of an item pair is positive
if the item vectors in the pair lie on the same side of the
conditioning variable’s direction of best measurement,
�TT (e.g., Items 3 and 4). The CCOV is negative if
the item vectors lie on the opposite sides of �TT (e.g.,
Items 1 and 2). The CCOV is zero if one of the items
lies near the direction of best measurement,�TT. This
reasoning has been generalized to higher dimensions
by Zhang and Stout through d − 1 dimensional hyper-
planes orthogonal to �TT and by projecting each item
onto this hyperplane.

The magnitude of CCOV indicates the degree of
closeness of items’ directions of best measurement
to each other and their closeness to the conditional
vector, �TT. CCOV increases as the angle between
item pair vectors decreases and as the angle either
of the items makes with the �TT-axis increases. The
CCOV also relates to the degree of discrimination of
the vectors. The CCOV increases in proportion to the
items’ discrimination vectors. Hence, CCOVs form
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the basis for establishing the dimensional structure
underlying given data. Methods for assessing dimen-
sional structure based on CCOVs are described and
illustrated below.

5.3. Methods to Assess

the Dimensional Structure

Underlying Test Data

This section describes nonparametric methodologies
for empirically determining the dimensional structure
underlying test data based on CCOVs. It is assumed
that one would use these procedures after the test is
well developed and its reliability and validity have been
established. As explained earlier, it is very important to
assess the dimensional structure of the test to determine
the test scoring and related issues such as equating
and differential item functioning. If the unidimensional
model is not appropriate, then recommendations will
be made about finding an appropriate model.

Nonparametric tools DIMTEST and DETECT will
be used to illustrate the steps involved in determining
the correct model for data. We chose these methods
because they are not dependent on any particular
parametric model for scoring and describing data,
and they are simple and easy to use. DIMTEST and
DETECT are described below, followed by a flowchart
to correctly determine the appropriate model for
given data.

5.3.1. DIMTEST

DIMTEST (Stout, 1987; Nandakumar & Stout,
1993; Stout, Froelich, & Gao, 2001) is a nonparametric
statistical procedure designed to test the hypothesis
that the test data were generated from an LI, d = 1
model. The procedure for testing the null hypothesis
consists of two steps. In Step 1, n test items are par-
titioned into two subtests, AT and PT. The AT subtest
is of length m(4 ≤ m < half the test length), and
the PT subtest is of length n − m. The AT subtest
consists of items that are believed to be dimension-
ally homogeneous, and the PT subtest consists of the
remaining items of the test. One way to select items
for AT and PT subtests is through linear factor analysis
of the tetrachoric correlation matrix (Froelich, 2000;
Hattie, Krakowski, Rogers, & Swaminathan, 1996;
Nandakumar & Stout, 1993). This is an automated
procedure that uses part of the sample to select items
for AT and PT subtests. Items loading on the same

dimension are selected into the AT subtest. Expert
opinion is another way to select items into these sub-
tests (Seraphine, 2000). Because of the manner in
which items are selected, when multidimensionality
is present in test data, items in the AT subtest will
be predominantly measuring the same unidimensional
construct, whereas the remaining items in the PT sub-
test will be multidimensional in nature. If, on the other
hand, the test is essentially unidimensional, then items
in both the AT and PT subtests will be measuring the
same valid unidimensional construct.

In Step 2, the DIMTEST statistic, T , is computed as
follows. Examinees are grouped into subgroups based
on their score on the PT subtest consisting of n − m
items. The kth subgroup consists of examinees whose
total score on the PT subtest, denoted by XPT, is k.
In each subgroup k, two variance components, σ̂ 2

k and
σ̂ 2
U,k, are computed using items in the AT subtest:

σ̂ 2
k =

1

Jk

Jk∑
j=1

(Y
(k)
j − Ȳ (k))2

and

σ̂ 2
U,k =

m∑
i=1

P̂
(k)
i (1− p̂(k)i ),

where

Y
(k)
j =

m∑
i=1

U
(k)
ij , Ȳ (k) = 1

Jk

Jk∑
j=1

Y
(k)
j ,

p̂
(k)
i =

1

Jk

Jk∑
j=1

U
(k)
ij ,

andUk
ij denotes the response of the j th examinee from

subgroup k to the ith assessment item in AT, and Jk
denotes the number of examinees in the subgroup k.
After eliminating sparse subgroups containing too few
examinees, letK denote the total number of subgroups
used in the computation of the statistic T .

For each examinee subgroup k, compute

TL,k = σ̂ 2
k − σ̂ 2

U,k = 2
∑

i < l ∈AT

Ĉov(Ui, Ul |XPT = k),

where Ĉov(Ui, Ul |XPT = k) is an estimate of the
covariance between items Ui and Ul for examinees
whose score on the PT subtest is k.

The statistic TL is given by

TL =
∑K

k=1 TL,k√∑K
k=1 S

2
k

,
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where S2
k is the appropriately computed asymptotic

variance (Nandakumar & Stout, 1993; Stout et al.,
2001) of the statistic TL,k. For finite test lengths, the
statistic TL is known to exhibit positive bias (Stout,
1987). The positive bias in TL is eliminated using
a bootstrap technique as follows: For each item, an
estimate of its unidimensional item response function
(IRF) is computed using a kernel-smoothing procedure
(Douglas, 1997; Ramsay, 1991). Using the estimated
IRFs, examinee responses are generated for each of
the items. Using the generated data and the original
AT and PT subtest partition, another DIMTEST statis-
tic is computed, denoted by TG (see Froelich, 2000,
for details). This process of the random generation of
unidimensional data with kernel-smoothed estimates
of items and the computation of TG is repeated N
times, and the average is denoted by T̄G.T̄G denotes the
inflation or bias in TL that is due to the finite test length
administered to a finite sample of examinees. The final
bias-corrected DIMTEST statistic T is given by

T = TL − T̄G√
(1+ 1/N)

. (4)

The statistic T follows the standard normal dis-
tribution as the number of items and the number of
examinees tend to infinity. The null hypothesis of
unidimensionality is rejected at level α if T is larger
than the 100(1−α)th percentile of the standard normal
distribution.

A number of studies have found the DIMTEST to
be a reliable and consistent methodology for assessing
unidimensionality. It is also extremely powerful com-
pared to other methodologies in its power to detect
multidimensionality (Hattie et al., 1996; Nandakumar,
1993, 1994; Nandakumar & Stout, 1993). The current
version of DIMTEST, with recent revisions by Stout
et al. (2001), is even more powerful than the former
version and can be applied on test sizes as small as
15 items.

5.3.2. DETECT

DETECT (Kim, 1994; Zhang & Stout, 1999a,
1999b) is a statistical methodology for determining
the multidimensional structure underlying test data. It
partitions the test items into clusters in such a manner
that items within clusters are dimensionally cohesive.
The DETECT methodology uses the theory of condi-
tional covariances to arrive at the partitioning of test
items into clusters. As a result, items within a clus-
ter have positive CCOVs with each other; and items
from different clusters have negative CCOVs. The

DETECT procedure also quantifies the degree of
multidimensionality present in given test data. It is
important to note that the number of dimensions and
the degree of multidimensionality are two distinct
pieces of information. For example, one could have
a two-dimensional test in which the two item clusters
are dimensionally far apart or close together. In the
former case, the degree of multidimensionality is more
than in the latter case. For example, in Figure 5.2,
clusters represented by vectors �d1 and �d2 are the
two dimensions underlying test data comprising all
test items. The angle between these two vectors deter-
mines the degree of multidimensionality present in
test data. If the angle between vectors �d1 and �d2

is small, the degree of multidimensionality present in
test data is small, implying that the two clusters are
dimensionally similar. If, on the other hand, the angle
between the vectors is large, then two item clusters are
dimensionally apart.

The theoretical computation of the DETECT index
is briefly described here (for details, see Zhang &
Stout, 1999b). Letndenote the number of dichotomous
items of a test. Let P = {A1, A2, . . . , Ak} denote a
partition of the n test items into k clusters. The theo-
retical DETECT index D(P ), which gives the degree
of multidimensionality of the partition P, is defined as

D(P ) = 2

n(n− 1)

×
∑

1≤i≤j≤N
δijE[Cov(Xi,Xj |�TT = θ)], (5)

where�TT is the test composite, Xi and Xj are scores
on items i and j , and

δij =



1 if items i and j are in the
same cluster of P

−1 otherwise.
(6)

The index D(P ) is a measure of the degree of
multidimensionality present in the partition P. It is
obvious that numerous ways exist to partition items of
a test into clusters, and each partition produces a value
of D(P ). Let P ∗ be a partition such that D(P ∗) =
max{D(P )|P is a partition}. Then P ∗ is treated as the
optimal simple dimensionality structure of the test, and
D(P ∗) is treated as the maximum amount of multidi-
mensionality present in the test data. For example, for
a purely unidimensional test, the optimal dimension-
ality structure of the test is that all the items will be
partitioned into one single cluster, and D(P ∗) for the
test will be close to 0. It has been shown by Zhang and
Stout (1999b) that when there is a true simple structure
underlying test data,D(P )will be maximized only for
the correct partition.
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To determine if the partitionP ∗, which produced the
maximum DETECT indexD(P ), is indeed the correct
simple structure of the test, we can use the following
ratio:

R(P ∗) = D(P ∗)

D̃(P ∗)
, (7)

where

D̃(P ∗) = 2

n(n− 1)

×
∑

1≤i≤j≤n
|E[Cov(Xi,Xj |�TT = θ)]|. (8)

When there is an approximate simple structure
underlying test data, then the ratio R(P ∗) is close to 1.
The extent to which R(P ∗) differs from 1 is indicative
of the degree to which the test structure deviates from
the simple structure.

Because the true ability of an examinee is unob-
servable, E[Cov(Xi,Xj |�TT = θ)] of equation (5)
cannot be computed directly but must be estimated
using observable data. There are two natural estimates
of E[Cov(Xi,Xj |�TT = θ)]:

Ĉovij(T ) =
N∑
m=0

Jm

J
Ĉov(Xi,Xj |T = m), (9)

where the conditional score T = ∑N
l=1 Xl is the total

score of all test items, J is the total number of exam-
inees, and Jm is the number of examinees in subgroup
m with the total score T = m. The other is the esti-
mator based on the total score of remaining items
given by

Ĉovij(S) =
N−2∑
m=0

Jm

J
Ĉov(Xi,Xj |S = m), (10)

where the score S = ∑N
l=1,l =/ i,j Xl is the total score

of the remaining items, other than items i and j, and
Jm is the number of examinees in subgroupmwith the
conditional score S = m.

When a test is unidimensional, Ĉovij(T ) tends to
be negative because items Xi and Xj are part of T .
Therefore, Ĉovij(T ) as an estimator ofE[Cov(Xi,Xj |
�T = θ)] results in a negative bias (Junker, 1993;
Zhang & Stout, 1999a). On the other hand, Ĉovij(S)

tends to be positive and results in a positive bias
(Holland & Rosenbaum, 1986; Rosenbaum, 1984;
Zhang & Stout, 1999a).

Because Ĉovij(T ) tends to have a negative bias and
Ĉovij(S) tends to have a positive bias as estimators
of E[Cov(Xi,Xj |�T = θ)] in the unidimensional
case, Zhang and Stout (1999b) proposed an aver-
age of these two estimates, resulting in the following

index as an estimator of the theoretical DETECT
index D(P ):

DZS(P ) = 2

n(n− 1)

∑
1≤i≤j≤N

δijĈov
∗
ij, (11)

where

Ĉov
∗
ij =

1

2
[Ĉovij(S)+ Ĉovij(T )]. (12)

An estimate of R(P ) can be similarly obtained. The
DETECT software adopts a special technique, called
the genetic algorithm, to divide items of a test into
different dimensional clusters. The genetic algorithm
iteratively mutates items to different dimensional clus-
ters until the maximum degree of multidimensionality
of the test Dmax, an estimate of D(P ∗), is obtained.
The dimensional cluster pattern that produces Dmax

is treated as the final dimensionality structure of the
test. The process is accelerated when the initial clus-
ter solution for the genetic algorithm is obtained via
cluster analysis developed by Roussos, Stout, and
Marden (1993).

To interpret the results of DETECT in applications,
Zhang and Stout (1999b) provided the following rule of
thumb based on simulation studies. Divide the exam-
inee sample into two parts: sample1 and sample2 (cross
validation sample). Using sample1, find item partition,
P ∗1 , that maximizes the detect index for sample1, called
Dmax. Using sample2, find P ∗2 , that maximizes the
detect index for sample2. Then using the item parti-
tion P ∗2 , from the cross validation sample, compute
the detect value for sample1, called Dref . Generally
is less than or equal to Dmax. A test is judged to be
essentially unidimensional if Dref is less than 0.1 or
Dmax−Dref

Dref
> .5.

5.4. Data Modeling

An algorithm is proposed below to model test data.
As emphasized hitherto, the goal is to determine if
unidimensional scoring is meaningful for given data.
Although any appropriate methodology can be used
to carry out the steps of the algorithm, DIMTEST
and DETECT are recommended, as they are specif-
ically developed for this purpose, easy to use, and
nonparametric.

The flowchart in Figure 5.3 details the steps for
test modeling, which are described in the algorithm
following the flowchart. These steps are illustrated
through the analyses of simulated data in the following
section.
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Figure 5.3 Flowchart Describing Steps for Test Modeling

Unidim

1 pl 2 pl 3 pl

DETECT

DIMTEST

d > 1d = 1

Multidim
NOHARM

Parametric
BILOG, MULTILOG

Nonparametric
Testgraf

DIMTEST
on each cluster and combine clusters

5.4.1. An Algorithm for Test Modeling

Step 1. Use DIMTEST to determine if dimension-
ality, d, underlying test data is essentially 1.

Step 2. If d = 1, then fit a unidimensional model
to data. Choose an appropriate unidimensional
model. Exit.

Step 3. If d > 1, then investigate if test items can be
decomposed into unidimensional clusters using
DETECT.

Step 4. Test each cluster using DIMTEST to deter-
mine if d = 1.

Step 5. Combine clusters, if necessary, based on
expert opinion and item content of the AT subtest
of DIMTEST. Again test the hypothesis d = 1.

Step 6. If d = 1, go to Step 2. If d > 1 for any
of the clusters, either delete them from the test or
explore multidimensional modeling.

If unidimensional modeling is appropriate either on
the whole test or on subtests (Step 2), one can fit
either a parametric model or a nonparametric model.
If a parametric model is desired, there are several
models to choose from. Some of the commonly used
models are the one-parameter logistic model (1PL),
the two-parameter logistic model (2PL), or the three-
parameter logistic model (3PL). Parameters of these
models can be estimated using standard computer
software such as BILOG (Mislevy & Bock, 1989),
MULTILOG (Thissen, 1991), and RUMM (Sheridan,
Andrich, & Luo, 1998). For more detailed information
about fitting various parametric models, estimating
parameters, and scoring, refer to Embretson and
Reise (2000) and Thissen and Wainer (2001). An

alternative is nonparametric modeling. Nonparametric
estimation of item response functions can be carried
out using the software TESTGRAF (Douglas & Cohen,
2001; Ramsay, 1993). If unidimensional modeling
is not appropriate either for the whole test or after
splitting into subtests (Step 6), multidimensional mod-
eling of data is necessary. Currently, multidimensional
models and estimation of their parameters are lim-
ited. One program that has shown a lot of promise in
estimating multidimensional parameters is NOHARM
(Fraser, 1986). For details about fitting multidimen-
sional models, see Reckase (1997), McDonald (1997),
and Ackerman, Neustel, and Humbo (2002).

5.4.2. Illustration of Test Modeling

Data modeling will be illustrated using simulated
data. Unidimensional and two-dimensional data were
simulated. All data sets had 30 items and 2,000
examinees, which are typical values usually encoun-
tered in applications. One unidimensional test and
four two-dimensional tests were generated. Unidi-
mensional data were generated using a unidimen-
sional two-parameter logistic model (Hambleton &
Swaminathan, 1985).

Pi(θj ) = 1

1+ exp[−1.7[ai(θj − bi)]] , (13)

where Pi(θj ) is the probability of a correct response
to the dichotomous item i by an examinee with ability
(θj ), ai is the discrimination parameter of the dichot-
omous item i, and bi is the difficulty parameter of
item i.
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Figure 5.4 Item Vectors Representing the Simple
Structure Test
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Examinee abilities were randomly generated from
the standard normal distribution with mean 0 and the
standard deviation 1. Item parameters were randomly
selected from a pool of parameter estimates from
several nationally administered standardized achieve-
ment tests.

Two types of two-dimensional data were generated:
simple structure and complex structure. Item param-
eters for the simple structure were such that items of
each dimension were located within 15 degrees from
the respective axes, as illustrated in Figure 5.4. Item
parameters for the complex structure were selected
from a two-dimensional calibration of an American
College Test (ACT) mathematics test in which items
span the entire two-dimensional space, as illustrated in
Figure 5.5.

Two levels of correlation between dimensions
(ρθ1,θ2)were considered: .5 and .7. This resulted in four
two-dimensional tests: simple structure with ρ = .5,
simple structure with ρ = .7, complex structure with
ρ = .5, and complex structure with ρ = .7. For
each two-dimensional test, the first half of the items
(Items 1 to 15) measured predominantly the first
dimension, and the second half measured predomi-
nantly the second dimension. Each examinee’s abil-
ities θ1 and θ2 were randomly generated from a
bivariate normal distribution with an appropriate
correlation coefficient between the abilities. Two-
dimensional data were generated using the following

Figure 5.5 Item Vectors Representing the Complex
Structure Test
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two-dimensional, two-parameter compensatory model
(Reckase, 1997; Reckase & McKinley, 1983):

Pi(θ1j , θ2j ) = 1

1+ exp[−1.7(a1i θ1j + a2iθ2j + bi)] ,
(14)

where Pi(θ1j , θ2j ) is the probability of a correct
response to the dichotomous item i by an exami-
nee j with ability (θ1j , θ2j ), a1i is the discrimination
parameter of the dichotomous item i on dimension
θ1, a2i is the discrimination parameter of the item i

on dimension θ2, and bi is the difficulty parameter
of item i. The simulated data sets are described in
Table 5.1.

5.4.3. Results of Data Analyses

For each data set, the correct model was arrived at
by following the steps described in the algorithm for
test modeling, as illustrated in Figure 5.3. Results of
the analyses are tabulated in Tables 5.2 and 5.3. These
results will be summarized below in detail for each of
the tests.

Uni.dat: DIMTEST results (T = 0.85 and p =
.20) showed that it is essentially unidimensional.
Hence, unidimensional modeling is appropriate for
these data.
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Table 5.1 Description of Simulated Data

Test # Items # Examinees ρa Dimensionality

uni.dat 30 2,000 — d = 1
simplr5.dat 30 2,000 0.5 d = 2, simple structure
simplr7.dat 30 2,000 0.7 d = 2, simple structure
realr5.dat 30 2,000 0.5 d = 2, complex structure
realr7.dat 30 2,000 0.7 d = 2, complex structure

a. Denotes the correlation between latent abilities for two-dimensional tests.

Table 5.2 DIMTEST and DETECT Results

DIMTEST DETECT

Test T p Dmax R # Clusters Item Clusters

uni.dat 0.85 .20 — — — —
simplr5.dat 9.69 .00 1.33 0.98 2 1–15, 16–30
simplr7.dat 6.0 .00 1.58 0.74 2 1–15, 16–30
realr5.dat 2.63 .00 0.16 0.29 3 (1, 4, 6, 7, 10, 11, 13, 14, 15, 27);

(2, 5, 8, 9, 12, 19, 23, 29);
(3, 16, 17, 18, 20, 21, 22, 24, 25, 26, 28, 30)

realr7.dat 0.86 .19 — — — —

Table 5.3 Further Analyses of Two-Dimensional Data

DIMTEST DETECT

Test Item Cluster T P Dmax R

simplr5.dat 1–15 –0.77 .78 — —
16–30 0.03 .49 — —

simplr7.dat 1–15 –1.36 .91 — —
16–30 0.90 .18 — —

realr5.dat 1, 4, 6, 7, 10, 11, 13, 14, 15, 27 –.76 .78 — —
2, 5, 8, 9, 12, 19, 23, 29 — — 0.01 0.02
3, 16, 17, 18, 20, 21, 22, 24, 25, 26, 28, 30 1.04 .15

realr5.dat 1, 2, 4 to 15, 19, 23, 27, 29 0.52 .30 — —
clusters 1 and 2

simplr5.dat: DIMTEST results (T = 9.69 and
p = .00) indicated the presence of more than one dom-
inant dimension underlying these test data. DETECT
analyses resulted in a two-cluster solution with a
high value of Dmax (1.33) and an R-value close to
1, indicating two dimensions with a simple struc-
ture solution. As expected, Items 1 to 15 formed one
cluster, and the rest of the items formed the second
cluster. Further analyses on these clusters, shown in
Table 5.3, showed that each of these clusters is uni-
dimensional (T = −0.77 and p = .78 for Items 1
to 15; T = 0.03 and p = .49 for Items 16 to 30).
Hence, these subtests are amenable to unidimensional
modeling.

simplr7.dat: These test data were also assessed
as multidimensional (T = 6.0 and p = .00) by
DIMTEST. DETECT analyses on these data resulted
in a two-cluster solution. However, the Dmax (0.58)
and R-values (0.74) were not high, indicating that
the simple structure solution is not as explicit as it
was for simplr5.dat. This is due to high correlation
between latent abilities. Nonetheless, it is noteworthy
that DETECT was able to correctly classify items into
clusters given the high degree of correlation between
abilities. Further analysis on the clusters, shown in
Table 5.3, showed that each cluster is unidimensional
(T = −1.36 and p = .91 for Items 1 to 15; T = 0.90
and p = .18 for Items 16 to 30).
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Figure 5.6 Item Vectors Representing the Three Clusters in the Test: realr5
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realr5.dat: DIMTEST results (T = 2.63 and
p = .00) indicated that the data violated the
unidimensionality assumption. Subsequent DETECT
analyses showed three clusters. Although the DETECT
procedure split the test items into three clusters, the
corresponding Dmax (0.16) and R-values (0.29) were
small, indicating that the degree of multidimensional-
ity was not of a concern. In fact, the Dmax value was
within the range of what is expected for a unidimen-
sional test. Here, the unidimensionality assumption
is violated. However, there is not enough evidence
of multidimensionality to warrant significant separate
clusters.

To understand the nature of multidimensionality,
each of the clusters was further analyzed for unidi-
mensionality using DIMTEST. As the results suggest
in Table 5.3, Clusters 1 and 3 were confirmed as uni-
dimensional by DIMTEST (T = −0.76 and p = .78
for Cluster 1; T = 1.04 and p = .15 for Cluster 3).
Because Cluster 2 contained too few items to apply
DIMTEST, its dimensionality was estimated using
DETECT. Note that the Dmax value (0.01) associated
with Cluster 3 was very small and resembles a value
associated with unidimensional tests. Hence, one may
treat this cluster as unidimensional.

DIMTEST also provided clues regarding the
source of the multidimensionality. If the null hypoth-
esis of d = 1 is rejected, it means that items in the
subtest AT are contributing to multidimensionality.
Upon observing the AT subtest of DIMTEST results
of realr5.dat, it was found that there was an overlap
of items between Cluster 3 and the AT subtest. Hence,
it was conjectured that Cluster 3 was dimensionally
distinct from Clusters 1 and 2. Hence, Clusters 1 and
2 were combined to confirm if the combined subtest
is unidimensional. DIMTEST analysis confirmed

unidimensionality of this subtest (T = 0.52 and
p = .30). Hence, there are two unidimensional sub-
tests of realr5.dat.

Figure 5.6 shows a graphical display of vector plots
of items in the three clusters identified by DETECT.
Contrasting Figures 5.5 and 5.6, it can be seen that
the item vectors in Figure 5.5 (in which abilities have
a correlation of 0.5) are split into three clusters by
the DETECT procedure. The test composite vector of
Cluster 1 is at 23.8 degrees from the θ1-axis, the test
composite vector of Cluster 2 is at 45.7 degrees from
the θ1-axis, and the test composite vector of Cluster 3 is
at 65.2 degrees from the θ1-axis. Both the DIMTEST
and DETECT procedures are sensitive to the differ-
ences among these three clusters. As the detailed
analyses revealed, Clusters 1 and 2 can be combined
to form a unidimensional subtest, whereas Cluster 3
is an independent cluster dimensionally different from
the other two clusters.

realr7.dat: DIMTEST analyses of this test revealed
unidimensionality (T = 0.86 andp = .19). This is not
surprising as the items span the entire two-dimensional
space in which the two abilities are highly correlated.
Hence, this group of items is best captured by a unidi-
mensional vector encompassing all items in the space.
Unidimensional scoring is the best way to summarize
these data.

In summary, unidimensional modeling was appro-
priate for the following test data: uni.dat and realr7.dat.
The former is an inherently unidimensional test,
whereas the latter resembles a unidimensional test
because of high correlation between abilities coupled
with items spanning the entire two-dimensional space,
as in Figure 5.5. For both of these tests, the DIMTEST
results indicated unidimensionality. Two-dimensional
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data sets—simplr5.dat and simplr7.dat, both
simple-structure tests—were assessed as multidimen-
sional based on DIMTEST analyses. DETECT results
confirmed this fact by indicating a high degree of
multidimensionality, as evidenced by large Dmax and
R-values. It is remarkable that DETECT, despite
highly correlated abilities for simplr7.dat, correctly
partitioned test items into clusters/subtests. The sub-
tests of simplr5.dat and simplr7.dat were further
assessed by DIMTEST as unidimensional. Hence, uni-
dimensional modeling for each of these subtests is
meaningful. Among all simulated test data, the dimen-
sionality structure of realr5.dat turned out to be the
most complex. For these test data, even though the
DIMTEST analyses indicated the presence of multi-
dimensionality, DETECT analyses indicated a very
low degree of multidimensionalily. Further investiga-
tion and detection of the source of multidimensionality
in realr5.dat led to the identification of two subtests,
which were each unidimensional. Hence, all three
two-dimensional tests could be split into subtests for
unidimensional modeling or could be combined for
two-dimensional modeling and scoring.

5.5. Summary and Conclusions

The aim of a test is to accurately capture the exam-
inee’s position on a continuum of latent trait(s) of
interest. To accomplish this, one must use a model
that best explains given data, which is an inter-
action between items and the examinee population
taking the test. Most commonly used models to
explain test data comprise monotone, local inde-
pendent, and unidimensional assumptions. However,
increasingly, tests are designed to measure more than
one dominant trait. Hence, it has become ever more
important to empirically investigate the suitability
of the unidimensional modeling of test data. This
chapter has provided a modeling algorithm using a
series of procedures to investigate whether test data
are amenable to monotone, local independent, and
unidimensional modeling. The proposed algorithm
for test modeling was illustrated using simulated test
data. Although the algorithm described here provides a
framework for test modeling, the process is more of an
art than a science. Often, data in the real world may not
strictly satisfy the criteria proposed here for test model-
ing. For example, results of DIMTEST and DETECT
may lead to conclusions that test data do not adhere
to unidimensional modeling. At the same time, test
data may not warrant multidimensional modeling (e.g.,

realr5.dat). In such a situation, it is important to go
beyond statistical analyses and consult content experts
and test specifications to decide the most appropriate
modeling of test data. Clearly, modeling test data
involves many decisions and thus is more a craft than
an exact science.

Another important aspect of test modeling is to
consider implications of dimensionality considera-
tions. There are well-established methodologies and
a choice of software for fitting unidimensional models
and estimating parameters of items and examinees.
Hence, the selection of multidimensional models
over unidimensional models needs careful exami-
nation. Other important factors to consider are the
cost, improvement in accuracy and understanding
of the results, and communication of results with
the public.
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Differential Item

Functioning Analysis

Detecting DIF Items and Testing DIF Hypotheses

Louis A. Roussos

William Stout

Standardized testing permeates our educational
system from primary school to graduate school.
In particular, high-stakes standardized testing

has spread from postsecondary education down to
secondary and primary schools. For example, a total of
19 states currently require students to pass a standard-
ized high school exit exam to graduate. Moreover, the
U.S. government has passed the No Child Left Behind
Act of 2001, which mandates that all states have in
place by 2005–2006 annual tests in reading and math
in Grades 3 to 8 (U.S. Department of Education, 2002).
Therefore, the educational measurement community
must ensure that the highest standards are maintained
for the development, administration, scoring, and
usage of these tests. One important standard (some
would say the most important) is that of test equity.

Test equity is the assurance of test validity in regard
to particular subgroups of the test-taking population.
In other words, all subgroups of the population should
experience equally valid assessment for test takers
of equal proficiency on the construct or constructs
intended to be measured by the test. (For the rest of
this chapter, we will restrict our discussion to tests
intended to measure a single dominant construct—by

far the most common situation.) The most typical
subgroups of interest are based on ethnicity or gender;
but groups based on other variables, such as instruc-
tional background or testwiseness, would clearly also
be considered worthy of study.

Test equity is primarily achieved by ensuring that
a test measures only construct-relevant differences
between subgroups of the test-taking population
(Messick, 1989). Procedures that help ensure test
equity are implemented at every stage in the life of a
test: development, administration, scoring, and usage.
This chapter focuses on one particular procedure—
differential item functioning (DIF) analysis. DIF
analysis is most helpful when it occurs at the test devel-
opment stage, but it is also (sometimes only) used at
the test scoring stage.

DIF is said to occur in a test item when test takers
of equal proficiency on the construct intended to be
measured by a test, but from separate subgroups of
the population, differ in their expected score on the
item. (For ease of exposition, most of our examples
and discussion will be for tests consisting of items
that are dichotomously scored, although the tech-
niques we describe apply just as easily to polytomously
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scored items.) DIF items give an unfair advantage
to one group over another. DIF clearly involves both
substantive (e.g., the construct the test is intended to
measure) and statistical (e.g., statistically significant
differences) components. Unfortunately, throughout
most of the history of DIF statistics, they have been
used in almost total isolation from the substantive
aspects. Until recently, the standard DIF procedure has
been the application of a DIF statistic in an automatic
one-item-at-a-time purely statistical analysis.

In this chapter, we first review DIF terminology and
nomenclature, including a broad framework for orga-
nizing the various theoretical, statistical, and practical
components of DIF analysis. Next we focus on the
practical implementation of DIF analysis procedures.
Here we first describe the traditional approach to DIF
analysis, reviewing its successes as well as its limita-
tions, and then we present a detailed description of a
more sophisticated DIF analysis approach based on the
latest advancements in DIF analysis research, which
addresses the limitations of the traditional approach.
Next, we briefly review recent research articles and
papers that demonstrate how the latest advances in DIF
analysis have resulted in new and significant progress
in understanding the root causes of DIF and, thus, in
increasing test equity for takers of standardized tests.
Finally, we summarize the chapter and encourage an
optimal (and practical) approach to DIF analysis that
combines the advantages of the simpler traditional pro-
cedure with the advantages accrued from employing
the more sophisticated procedure.

6.1. DIF Terminology

For dichotomously scored items, DIF occurs in an item
when test takers of equal proficiency on the construct
the test is intended to measure, but from separate sub-
groups of the test-taking population, differ in their
probability of a correct response on the item.

In current practice, standardized tests yield scores
on a unidimensional scale. The construct that the test
is intended to measure is the construct that corresponds
to the substantive interpretation given to the test score.
This construct is referred to as the primary dimension
of the test. The term dimension here is used to refer to
any substantive characteristic of an item that can affect
the probability of a correct response on the item. It
is generally accepted that all tests, in truth, measure
multiple dimensions, but the primary dimension is
the only one that all the items have in common. The
remaining dimensions on the test are referred to as
secondary dimensions. Each secondary dimension is

measured by a (usually small) minority of the test
items.

The item that is being tested for DIF is commonly
referred to as the studied item. The items whose scores
are used to match the test takers on the primary dimen-
sion of the test are called the matching subtest or
the matching criterion. The subgroups of interest for
DIF analyses are most commonly based on ethnic-
ity or gender. The subgroups are typically studied in
pairs, with one group labeled the reference group (e.g.,
Caucasians or males) and the other group labeled the
focal group (e.g., various minority groups or females).
The term focal refers to the particular group of interest
for the DIF analysis, and reference refers to the group
with whom the focal group (or groups) is to be com-
pared. When multiple items are being studied as a set
to test the statistical significance of the sum of their
individual DIF estimates, the set of items is referred
to as a studied item bundle, and the sum of their DIF
estimates is referred to as an estimate of differential
bundle functioning, or DBF.

It has long been recognized and accepted that the
general cause of DIF is the presence of multidimen-
sionality in items displaying DIF (e.g., see Ackerman,
1992); that is, such items measure at least one sec-
ondary dimension in addition to the primary dimension
that the item is intended to measure. Although the
presence of DIF automatically implies the presence
of a secondary dimension, the presence of a secondary
dimension does not automatically imply the presence
of DIF. Some secondary dimensions cause DIF and
some do not, depending on how the reference and
focal groups differ in their proficiency on the secondary
dimension. This is discussed more below, and the
reader is referred to Ackerman (1992) and Roussos
and Stout (1996) for more in-depth discussions.

When secondary dimensions do cause DIF, they are
further categorized as either an auxiliary dimension
or a nuisance dimension. An auxiliary dimension is a
secondary dimension that is intended to be measured
by the item (perhaps as mandated by test specifica-
tions and typically closely associated with the primary
dimension), whereas a nuisance dimension is a sec-
ondary dimension that is not intended to be measured
by the item (e.g., the context of a word problem in
a situation where the context is not included in the
test specifications). DIF that is caused by an auxil-
iary dimension is referred to as benign DIF, whereas
DIF caused by a nuisance dimension is referred to as
adverse DIF. DIF caused by an auxiliary dimension
is considered benign because the item is intended to
measure the auxiliary dimension; however, as pointed
out by Linn (1993), “The burden should be on those
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who want to retain an item with high DIF to provide
a justification in terms of the intended purposes of the
test” (p. 353). Moreover, benign DIF is not necessarily
ignorable if auxiliary dimensions with large benign
DIF can be replaced by equally valid auxiliary dimen-
sions with less DIF or if the distribution of items across
the various auxiliary dimensions can be modified to
reduce the overall amount of benign DIF. DIF caused
by a nuisance dimension is considered adverse because
the difference in probability of a correct response on the
item between different groups is due purely to group
differences on an irrelevant construct.

Before we discuss specific implementation proce-
dures for conducting DIF analyses, it is important to
recognize that the explication of an implementation
procedure is the last step of a three-step process in the
development of a DIF analysis approach. The three
steps are as follows:

1. Conceptualization of a DIF parameter
2. Formulation of a DIF statistic
3. Implementation of a DIF analysis procedure

In terms of item response theory (IRT), there exist
infinitely many ways to specify a parameter that
represents the amount of DIF in an item. It is impor-
tant that this parameter be explicitly specified so
that researchers can test whether a corresponding
DIF statistic effectively estimates the parameter (see
Roussos, Schnipke, & Pashley, 1999, for a striking
example of how a faulty parameter can have unfore-
seen harmful consequences). Thus, the next step is to
develop a statistic to estimate the DIF parameter. The
statistic should be thoroughly investigated both theo-
retically (to ensure that its expected value approaches
the value of the DIF parameter as the number of items
and number of examinees increases) and in simulation
studies (to document its Type 1 error and power rates).
The last step is the explication of a procedure for how
to carry out DIF analysis with real data. This last step is
the focus of this chapter. To describe the implementa-
tion of DIF analysis procedures clearly requires some
reference to and discussion of the DIF parameters and
the DIF statistics, but the reader will be referred to
appropriate references for detailed discussion of these
parameters and statistics.

6.2. DIF Analysis Procedures

In our description of DIF analysis procedures, we will
differentiate between two settings: a “stand-alone” test
and a “linked” test. We use the term stand-alone to

refer to a test that is developed, administered, and
scored without any formal statistical connection to any
other test. All the items on such a test are intended to
be scored. A pilot study may or may not be carried
out before the test is first used for scoring purposes.
After the test has been administered once, any further
administrations use the same items as in the first admin-
istration, with the notable exception of any items found
to be faulty in the first administration.

We use the term linked to refer to a test that is linked
through pretest items to other tests in a chain of sta-
tistically equated tests. Specifically, when such a test
is administered, it is composed of two types of items:
operational items and pretest items. The operational
items are ones that have already been pretested with
earlier administered tests in the chain and have been
found to be high-quality items. The operational items
are the ones that the test takers’ scores will be based
on. The pretest items are ones that have not been pre-
viously administered and are being tested out to see if
they are of high enough quality to be used in a future
administration. Test taker performance on the pretest
items does not contribute to the test taker’s reported
test score. The pretest items are also used to ensure
that every test has some common items with at least
one other test, and these common items can be used
to maintain a common scale across the chain of tests
by employing IRT equating methodology. (See Lord,
1980, for an introduction to IRT equating.)

For purposes of detecting DIF, the use of linked tests
is preferred over stand-alone tests because items can be
tested for DIF before they are presented operationally.
The use of linked tests is a common practice in the
development of standardized tests by major testing
companies. However, in many situations, pretesting
items is not practical or feasible, but it is still important
that DIF analysis be conducted.

6.2.1. Traditional DIF Analysis Procedure

6.2.1.1. Stand-Alone Tests

This DIF analysis is conducted the first time the test
is administered, whether in a pilot study or in an opera-
tional setting. The traditional approach is often referred
to as a “one-item-at-a-time” DIF analysis because each
item is individually tested for DIF, with the matching
criterion being the remaining items on the test.

The approach can be summarized by the following
steps:

1. Calculate a DIF statistic and its standard error for
each item on the test.
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2. If the magnitude of the DIF is large and
statistically significantly larger than a prescribed
negligible level, then the item is flagged as displaying
unacceptably high DIF.

The traditional method may also include a “purifica-
tion” step in which the above analysis is redone using
a matching criterion consisting only of those items that
were not flagged in the initial analysis:

3. Remove from the matching criterion all items
flagged in Step 2. This creates a “purified” matching
criterion.

4. Repeat Steps 1 and 2 above. One might restrict the
studied items to be only those flagged in Step 2 above,
or one may choose to use all the items as studied items.

Finally, a decision is then made as to whether or
which flagged items will be discarded:

5. The practitioner either automatically discards all
the flagged items, or the flagged items are investigated
by an item review committee and discarded only if the
committee can agree on a substantive explanation for
why the DIF occurred. This latter approach is favored
when the cost of item replacement is expensive.

Conceivably, any established DIF statistic could be
used to carry out this traditional DIF analysis; however,
the Mantel-Haenszel (MH) DIF statistic (Holland &
Thayer, 1988), denoted by �̂, has been the one most
commonly used. Note that when the MH DIF statistic
is used, the score on the studied item is included in the
matching criterion. Because the MH statistic has been
commonly used, standard criteria (see, e.g., Zieky,
1993) have been developed for Step 2, although, in
truth, the criteria were not intended to be used out-
side of the testing programs (at Educational Testing
Service) that they were originally developed for. The
criterion that would be used in Step 2 above is as
follows: An item is flagged for DIF when |�̂| ≥ 1.5
and |�̂| is significantly greater than 1.0 in the sense of
statistical hypothesis testing. In other words, for this
particular setting, a value of |�̂| greater than 1.5 is
interpreted to indicate a large amount of DIF, and a
value less than 1.0 is interpreted to be negligible. So,
if |�̂| is large and significantly greater than a negligible
amount, the item is flagged for unacceptably large DIF.

Similar rules could be established for other DIF
statistics. Probably the most notable example would
be that of the SIBTEST statistic (MH and SIBTEST
are probably the two most thoroughly tested statis-
tics), whose DIF estimate is denoted by β̂. Based on
Dorans (1989), a reasonable rule in this context would
be the following: An item is flagged for DIF when

|β̂| ≥ 0.100 and |β̂| is significantly greater than 0.050
in terms of hypothesis testing.

These rules for MH and SIBTEST are rather arbi-
trary. A quite fertile area for future research is the
development of methods to help practitioners come up
with more appropriate guidelines for particular testing
situations. For ease of exposition, in the rest of this
chapter, we will employ the above arbitrary rules (and
corresponding rules for moderate DIF, as will be seen
below) while also reminding the reader of the need for
further research in this area.

6.2.1.2. Linked Tests

In this setting, for a given test administration, DIF
analysis is conducted on both the pretest and opera-
tional items, although the process differs in significant
ways for the two types of items. However, for both
types of items, the analysis still follows the same
general one-item-at-a-time approach.

6.2.1.2.1. Operational items. For the operational
items, the approach is almost the same as described
above for the stand-alone test. The main differences
are that the purification process is generally not used
and DIF items are not automatically discarded—they
are reviewed by a committee, and an item is discarded
only if the committee agrees on an identified problem
with the item. The raising of the bar for throwing out an
operational item is introduced because the operational
items have already passed a DIF test as pretest items,
and the cost of throwing out items once they reach the
operational stage is quite high.

6.2.1.2.2. Pretest items. Thus, in this setting, it is
very important to flag DIF items at the pretest stage,
when the cost of throwing out an item is much lower
than at the operational stage. At the pretest stage, it is
desirable to have a more liberal approach to flagging
DIF items so as to ensure that few large DIF items ever
make it to the operational stage.

Although the general procedure is again similar to
that described above for the stand-alone test, there are
a number of notable differences. One major difference
is that the matching criterion is the operational items.
Having an external (i.e., external to the pretest studied
items) matching criterion is a major advantage because
every studied item has the same matching criterion,
which makes for a more valid statistical analysis. When
the matching criterion is simply the other studied items
(an internal matching criterion), the DIF estimates are
artificially constrained to approximately sum to zero,
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no matter what the true levels of DIF are in the items.
Another advantage of using the operational items as the
matching criterion is that the operational items have
already been tested previously for DIF and are thus
likely to have only negligible values of DIF associated
with them.

A second difference is that no purification of the
matching criterion is used. This is because the match-
ing criterion is the operational items that have already
been screened for DIF when they were pretest items.

A third difference is that an item that displays large
DIF and is significantly larger than negligible DIF
would be automatically discarded.

Moreover, an additional rule that is sometimes used
is that if an item displays moderate DIF and is sig-
nificantly larger than zero DIF, then, if possible, the
item is replaced by another item having a smaller DIF
estimate.

Because there are so many differences between the
DIF procedure for the pretest items as compared with
the DIF procedure for a stand-alone test, we provide
a separate summary of the step-by-step procedure for
pretest items:

1. Calculate a DIF statistic and its standard error for
each pretest item on the test using the operational items
as the matching criterion.

2. If the magnitude of the DIF is large and statisti-
cally significantly larger than a prescribed negligible
level, then the item is flagged as displaying unaccept-
ably high DIF. If the magnitude of the DIF is moderate
and statistically significantly larger than zero, the item
is flagged as displaying moderately high DIF.

3. The practitioner automatically discards all the
flagged high DIF items. The flagged moderately high
DIF items are replaced, when possible, by items with
lower DIF estimates.

The standard criterion (see Zieky, 1993) that has
been developed for flagging moderate DIF items in
Step 2 using the MH statistic is as follows: An item
is flagged for moderately high DIF when |�̂| ≥ 1.0
and |�̂| is significantly greater than 0.0 in the sense of
statistical hypothesis testing. Similarly, for SIBTEST,
an item is flagged for moderately high DIF when |β̂| ≥
0.050 and |β̂| is significantly greater than 0.0 in terms
of hypothesis testing.

6.2.1.3. Strengths and Limitations
of the Traditional Approach

The major strength of the traditional approach
described above is that it provided the first

statistically rigorous DIF analysis procedure. The
traditional approach gave DIF analysis a strong statisti-
cal foundation. Second, even though the DIF effect size
rules for the MH statistic were not intended for general
consumption, the specification of one set of rules is
a major accomplishment that provides an important
benchmark for the many situations where no rules have
yet to be established. Furthermore, the introduction of
some substantive review of flagged DIF items made
it possible for some understanding of the root causes
of DIF to begin to be formed and potentially provide
feedback to the test development process.

As DIF research progressed over the years since the
introduction of the MH statistic and the concurrent
development of the traditional DIF analysis procedure,
a number of important limitations of the procedure
have become apparent. First, the procedure is restricted
to analyzing only one item at a time (an inherent limi-
tation of the MH statistic). Statistically greater power
can be gained by analyzing bundles of items, if the bun-
dles are carefully selected. Hence, merely introducing
the analysis of item bundles would be a meaningless
adjustment without addressing an even more impor-
tant limitation: The traditional procedure focuses on
testing items for DIF rather than testing for the root
causes of DIF. Even though the root causes of DIF
are known to flow from the presence of multidimen-
sionality, dimensionality considerations come into the
traditional approach in only a very limited role—when
substantive analyses of flagged items are conducted to
try to determine the cause of DIF in individual items.

The one-item-at-a-time statistical analysis that dom-
inates the traditional DIF analysis procedure is an
essential component in DIF analysis, but by incorpo-
rating both statistical and substantive dimensionality
analysis considerations into DIF analysis, it can be
transformed from merely testing items for DIF to
testing secondary dimensions for DIF/DBF.

6.2.2. Latest Developments
in DIF Analysis Procedures

Roussos and Stout (1996) introduced a new
multidimensionality-based DIF analysis procedure
that integrates dimensionality analysis with DIF
analysis at both the substantive and statistical levels.
The resulting DIF analysis procedure focuses on find-
ing the root causes of DIF by testing secondary dimen-
sions through item bundles. Thus, this DIF analysis
procedure can be described by two simple steps:

1. Development of DIF hypotheses
2. Testing of DIF hypotheses
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6.2.2.1. Developing DIF Hypotheses

The first step is the development of hypotheses about
whether particular substantive item characteristics will
cause DIF. One natural way to accomplish this is by
first identifying substantive item characteristics and
then determining, if possible, if either the reference
group or one of the corresponding focal groups would
be expected to be favored based on the Shealy-Stout
multidimensional model for DIF (Shealy & Stout,
1993), as described in Roussos and Stout (1996).

Another way to develop DIF hypotheses is from
purely theoretical substantive considerations. A good
example of this is a study by Gierl, Bisanz, Bisanz, and
Boughton (2002), who reference a cognitive theory
that implies that certain substantive item characteris-
tics should result in DIF favoring females, whereas
other characteristics should result in DIF favoring
males.

The identification of item characteristics that may
represent potentially DIF-causing secondary dimen-
sions can come about in at least three general ways:

1. by item-writing specialists reading test items and
using their expert judgment,

2. by flagging DIF items in a traditional DIF analysis
implementation procedure and having item-writing
specialists inspect the wordings of these items,

3. by conducting exploratory statistical dimension-
ality analyses and substantively inspecting the results.
(See Stout, Habing, Douglas, Kim, Roussos, & Zhang,
1996, for a review of the latest advancements in
nonparametric dimensionality analyses.)

A fuller discussion of methods that can be used to
develop DIF hypotheses can be found in Roussos and
Stout (1996). Furthermore, these methods have now
been extensively demonstrated in research articles and
papers such as the following: Douglas, Roussos, and
Stout (1996); Walker and Beretvas (2001); Stout et al.
(2003); Bolt (2000, 2002); Gierl and Kaliq (2001);
McCarty, Oshima, and Raju (2002); Ryan and Chiu
(2001); and Gierl et al. (2002).

Once these secondary dimensions have been iden-
tified, the multidimensional model for DIF described
in Roussos and Stout (1996) is used to see if a direc-
tional DIF hypothesis can be conjectured. According
to this model, when the mean proficiency on the
secondary dimension, conditional on proficiency on
the primary dimension, is greater for one group as
compared to another, then the potential exists for
DIF favoring the first group. Identifying potentially
DIF-causing secondary dimensions is clearly easier to

carry out than conjecturing about whether one group
has a greater mean proficiency on a conditional dis-
tribution than another group, so that two-tail DIF
hypotheses (a secondary dimension is identified, but
it is not known which group would be favored by it)
are the most typical ones developed. Still, Bolt (2002)
has begun investigating a promising line of research
in this regard employing estimation of a parametric
multidimensional IRT model.

6.2.2.2. Testing of DIF Hypotheses

Once item characteristics that represent potentially
DIF-causing secondary dimensions have been identi-
fied, item bundles are formed in which all the items in a
given bundle share a common characteristic suspected
of causing DIF. Because an item may contain several
characteristics that it may share with other items, these
bundles may exhibit some overlap in terms of the
items they contain. These item bundles are then tested
for DBF using an appropriate DBF statistic, such as
SIBTEST (the MH statistic cannot be applied to item
bundles).

The procedure by which these DIF hypotheses are
tested does vary depending on whether the test is a
stand-alone test or a linked test, similar to how the
traditional procedure is varied. Note that the develop-
ment of the DIF hypotheses is not restricted by whether
the test is stand-alone or linked. DIF hypotheses are
theoretical constructs that may arise from any test or
situation and then be applied to other tests.

For stand-alone tests, a general framework for the
testing of DIF hypotheses is as follows:

1. Read the items and label them according
to whether they exhibit each of the hypothesized
secondary dimensions of interest from the DIF
hypotheses.

2. Form item bundles according to these potentially
DIF-causing secondary dimensions.

3. The matching criterion will be the items that are
not identified as measuring a potential DIF-causing
secondary dimension. If the number of these items is
too small (e.g., fewer than 20 or perhaps fewer than
15), then the matching criterion for each item bundle
would be simply the remaining items on the test.

4. Calculate the DBF estimate and standard error for
each item bundle and test if it is statistically significant
(relative to zero DIF).

5. Item bundles having DBF estimates that are
statistically significant represent secondary dimen-
sions that exhibit strong evidence of causing DIF. The
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DBF estimates, divided by the number of items in the
bundle, provide a rough estimate of the average amount
of DIF per item that this secondary dimension causes
when it seems to be present in an item. More sophisti-
cated analyses of the DIF indices based on analysis of
variance can also be used to more accurately account
for the overlapping bundles in estimating the DIF effect
size for a secondary dimension—the reader is referred
to Stout et al. (2003) and Bolt (2000) for two detailed
examples.

6. If a DIF secondary dimension is an auxiliary
dimension, the DIF is labeled benign, whereas if the
secondary dimension is a nuisance dimension, the DIF
is labeled adverse. Depending on how large the DIF
effect size is and the type of DIF, different actions
would be considered in response to the identified DIF
dimensions. If the DIF is statistically significant but
small, then probably no action should be taken other
than to document the finding for future reference.
Significant large adverse DIF would clearly call for
item reviewers and item writers to be alerted so
that they can ensure that items measuring this DIF
dimension will be avoided on future tests. For sig-
nificant large benign DIF, test development staff
should be alerted to the finding so that they can
keep this in mind during the test assembly process
and perhaps develop new methods or test specifica-
tions that can minimize the use of such auxiliary
dimensions. Indeed, automatic test assembly pro-
grams could include auxiliary dimension DBF as a
variable that is constrained to be below a certain
value.

For linked tests, the above stand-alone procedure
might be carried out on the operational items. For the
pretest items, the above procedure would be carried out
on the pretest items using the operational items as the
matching criterion. It should be noted here that DBF
effect size criteria for item bundles are still a research
area that needs further study.

6.2.2.3. Examples of Progress
in Identifying Causes of DIF

Here we present brief examples of how the latest
advancements in DIF analysis procedures focusing on
developing and testing DIF hypotheses have resulted
in significant progress in identifying the causes of DIF
on standardized tests.

1. Bolt (2000) analyzed pretest items that were
specially designed to test preformed DIF hypotheses
about gender DIF on an SAT math test. In particular,

he discovered that when items are presented in
multiple-choice format as opposed to an open-ended
format, the items exhibit DIF in favor of males.
Another DIF hypothesis he was able to confirm was
that DIF in favor of males also occurred for concrete-
type items as opposed to abstract-type items. In both
cases, however, the DIF effect sizes were clearly small
enough to not be of concern.

2. Walker and Beretvas (2001) analyzed fourth-
grade and seventh-grade math tests and confirmed
another preformed DIF hypothesis that an item bun-
dle consisting of open-ended math items that require
students to communicate in writing about their solution
would favor proficient writers over nonproficient
writers. Their findings led to concrete recommenda-
tions for improving the fairness of the scoring of the
open-ended items and also improving the communi-
cation of the test results to the teachers (and, hence,
leading to improved instruction).

3. Stout et al. (2003) analyzed Graduate Record
Examination (GRE) math pretest and operational data
and identified 15 secondary dimensions (mostly auxil-
iary dimensions) using a combination of substantive
and statistical dimensionality analyses. Using two
different very large sets of pretest data, they were
able to test the DIF hypotheses for consistency in a
cross-validation study. Their results showed a remark-
ably high consistency for both item bundles that
exhibited statistical rejection and those that exhibited
nonrejection.

4. At the 2002 annual meeting of the National
Council on Measurement in Education in New Orleans,
Louisiana, an entire symposium was devoted to “New
Approaches for Identifying and Interpreting Differen-
tial Bundle Functioning.” As part of this symposium,
a paper presented by Gierl et al. (2002) investigated
preformed DIF hypotheses based on a cognitive theory
about gender differences in mathematical problem
solving. Their DBF analyses indicated strong sup-
port for the hypothesis that items requiring significant
spatial processing show substantial DIF in favor of
males. Moreover, the existence of this secondary
dimension was supported by both DBF and dimen-
sionality analyses.

5. At this same symposium, another paper by
McCarty et al. (2002) analyzed item bundles on a
survey instrument for rater DIF between parents and
teachers on particular secondary dimensions. They
found that teachers are more strict than parents in
their ratings of assertive behaviors of children, whereas
teachers are more lenient than parents in rating co-
operative and self-control behaviors of children. Test
developers can use this information to better tailor
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survey questions for specific types of raters so as to
minimize the manifest DIF.

Clearly, when DIF analysis procedures incorporate
the Roussos and Stout (1996) multidimensionality-
based DIF analysis paradigm focusing on the testing
of secondary dimensions in the form of item bundles,
significant progress can be achieved in identifying
DIF-causing secondary dimensions and estimating the
amount of DIF they may cause.

6.3. Summing Up: A More Complete

Approach to DIF Analysis

The general purpose for conducting a DIF analysis
is to help ensure test equity. The statistical flag-
ging of items that exhibit evidence of DIF represents
an essential contribution toward the achievement of
this objective. Because tests are inherently multidi-
mensional and multidimensionality is the basic cause
of DIF, increased understanding of test multidimen-
sionality and the effects of these dimensions on DIF
hold the potential for a more accurate interpretation
of the test score, more control over the influence
of relevant auxiliary dimensions, and the reduction
of influence by unintended and irrelevant nuisance
dimensions.

Thus, the optimal approach for a DIF analysis
procedure would seem to be one that incorporates the
immediate critical goal of detecting DIF items, which
is the focus of the traditional DIF analysis approach,
and the longer range goal of identifying the DIF
secondary dimensions, which is the focus of the more
recent advancements that have been accomplished in
DIF research.

It is important to note that the process of test design
and development already involves consideration of a
wide variety of substantive item characteristics through
the item review processes (including the review of
flagged DIF items and the sensitivity review of items
for offensive language that could cause DIF) and the
creation and implementation of test specifications, and
these identified characteristics provide a ready source
of secondary dimensions for DIF hypotheses. Also, in
the case of linked tests, the large number of pretest
items that are typically tested provides a more than
adequate pool for forming item bundles for these
hypotheses. Moreover, pretest items are already fre-
quently used for research purposes so that some of
these pretest slots can be reserved for controlled testing
of DIF hypotheses (e.g., see Bolt, 2000).

Thus, the advantages of increased understanding
of DIF secondary dimensions by augmenting the tra-
ditional DIF analysis implementation procedure with
the developing and testing of DIF hypotheses do not
necessarily involve any significant increase in expense.
The inclusion of the developing and testing of DIF
hypotheses in a DIF analysis implementation proce-
dure often involves merely increased awareness that
the hypotheses already exist and can be easily tested.
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Chapter 7

Understanding Computerized

Adaptive Testing

From Robbins-Monro to Lord and Beyond

Hua-Hua Chang

7.1. Overview

Computerized adaptive testing (CAT) has become
a popular mode of educational assessment in
the United States. Examples of large-scale CATs
include the Graduate Record Examination (GRE), the
Graduate Management Admission Test (GMAT),
the National Council of State Boards of Nursing,
and the Armed Services Vocational Aptitude Battery
(ASVAB).

A CAT test differs profoundly from a paper-and-
pencil (P&P) test. In the former, different examinees
are tested with different sets of items. In the latter,
all examinees are tested with an identical set of items.
The major goal of CAT is to measure the trait levels
of examinees (θs) with greater precision than conven-
tional P&P tests by building an individualized test for
each examinee. Each examinee’s latent trait level is
fit precisely by selecting test items sequentially from a
large item pool according to the current performance of
an examinee. In other words, the test is tailored to each
examinee’s θ level, thus matching the difficulties of the
items to the examinee being measured. Clever exam-
inees can avoid responding to too many easy items, and
less clever examinees can avoid being exposed to too

AUTHOR’S NOTE: The writing of this chapter is partially supported by the NSF PJ SES-0241020 “Improving Computerized Adaptive
Testing in the U.S.”

many difficult items. So, the examinees are always
challenged during the entire course of the testing.
The major advantage of CAT is that it provides more
efficient latent trait estimates (θ ) with fewer items
than would be required in conventional tests (e.g.,
Weiss, 1982).

Although the implementation of CATs has led to
many advantages, such as new question formats, new
types of skills that can be measured, easier and faster
data analysis, and faster score reporting, many issues
related to CATs are not well understood. One of them
is the compatibility between CAT and P&P tests. It
has been widely speculated that some examinees may
get much lower scores than they would normally do
if an alternative P&P version were given. Accord-
ing to Carlson (2000), in 2000, Educational Testing
Service (ETS) found that the GRE CAT system does
not produce reliable scores for about half of 1% of test
takers. ETS offered them a chance to retake the test
at no charge. However, examinees currently required
to take the GRE are not given a choice between the
standard P&P version of the tests and the CAT ver-
sions. Since the late 1990s, the GRE testing program
has made a complete transition from P&P to CAT in
the United States. Thus, without effective remedial
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measures, this could significantly undermine the
credibility of CAT.

Another important issue in the development and
implementation of CAT is about test security and item
pool usage. Wainer et al. (2000) noted that the basic
notion of an adaptive test is to mimic automatically
what a wise examiner would do. In doing so, certain
types of items tend to be always selected by the com-
puters, and many items are not selected at all, thereby
making item exposure rates quite uneven. Because
CATs are usually administered to small groups of
examinees at frequent time intervals, examinees who
take tests earlier may share information with exam-
inees who will take tests later, escalating the risk that
many items may become known.

In 1994, Kaplan Educational Centers sent its
employees several times to take the GRE to memorize
as many items as possible and to report those items
back to Kaplan. Within a short period of time, Kaplan
discovered that most of the items its employees col-
lected were already on the list of compromised items.
Kaplan notified ETS about the incident. Due to the
large portion of the item pool made known to Kaplan,
ETS temporarily shut down testing while new items
were developed (Davey & Nering, 2002).

As the Kaplan-GRE event so clearly indicated, the
major security weakness of CAT lies with continuous
testing. Today, the CAT GRE is administered more
than 100 days each year, whereas the conversional
P&P version is administered only three times per year.
Indeed, it has been nearly 10 years since the Kaplan-
ETS incident, and people have just started to realize
how vulnerable the item pools could be to organized
item thievery during the period in which those pools
are being used. On August 6, 2002, following an inves-
tigation that uncovered a number of Asian-language
Web sites offering questions from live versions of the
computer-based GRE General Test, ETS suspended
the CAT GRE General Test and reintroduced P&P-
based versions in China, Hong Kong, Taiwan, and
Korea (www.ets.org, August 20, 2002).

In this chapter, our major goal is to address issues
related to CAT test compatibility and security. To
find the root of the problems, we need to understand
some general principals and fundamental assump-
tions of sequential design from which the theoretical
development CAT is based on. Likewise, we need to
understand how it works for today’s most commonly
used Fisher information procedure, which has been
adopted by some major testing programs, including
the GRE and GMAT. Moreover, as already noted,
our discussions here will focus exclusively on issues
and problems instead of advantages and achievements

of CAT, which have been reported extensively
elsewhere.

7.2. Item Selections in CAT

The most important component in CAT is the item
selection procedure that is used to select items during
the course of the test. Suppose θ is the latent trait to
be measured for a specific examinee. According to
Lord (1970), an examinee is measured most effectively
when test items are neither too difficult nor too easy.
The dilemma is how to select such n test items from
an item pool so that the examinee’s corresponding
responses will enable us to estimate θ as efficiently
as possible. Heuristically, if the examinee answers
an item correctly, the next item selected should be
more difficult; if the answer is incorrect, the next item
should be easier. This is referred to as the branch-
ing rule (see Lord, 1970). However, to carry out
the branching rule, one must precalibrate all items in
the pool according to their psychometric characteris-
tics, such as item difficulty, item discrimination, and
guessing probability.

7.2.1. Models for CAT

7.2.1.1. The Three-Parameter Logistic Model

The most commonly used model in CAT applica-
tion is the three-parameter logistic model (1) described
below. Let Xj be the score for a randomly selected
examinee on the j th item, with Xj = 1 if the answer
is correct and Xj = 0 if incorrect, and let Xj = 1
with probability Pj (θ) and Xj = 0 with probability
1 − Pj (θ), where Pj (θ) denotes the probability of a
correct response for a randomly chosen examinee of
latent trait θ that is,

Pj(θ) = P {Xj = 1|θ},

where θ is unknown and has the domain (−∞,∞)
or some subinterval on (−∞,∞). When the three-
parameter logistic model (3PL) is used, the probability
becomes

Pj (θ) = cj + (1− cj ) 1

1+ e−aj (θ−bj ) , (1)

where

aj is the item discrimination parameter,
bj is the difficulty parameter,
cj is the guessing parameter.



Chapter 7 / Understanding Computerized Adaptive Testing • 119

Figure 7.1 Four Items With Item Parameters
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Figure 7.1 shows item response functions for four
hypothetical items. The horizontal axis presents the
latent trait scale (θ ), and the vertical axis corresponds
to Pi(θ). Items 1 and 2 have the largest discrimination
parameters, and their shapes are “steeper.” Items 3
and 4 have smaller discrimination parameters, and
their curves increase more slowly. Item 2 is the most
difficult because it has the largest b-value, and Item 3
is the easiest since it has the smallest b-value. Item 3
has a guessing parameter c = 0.2, indicating the prob-
ability that a correct response occurs by guessing for
low–ability level examinees.

There are two special cases. One is the two-
parameter logistic model (2PL), in which ci ≡ 0.
The other is the one-parameter logistic model (1PL),
in which ci ≡ 0 and ai is a fixed constant for all
items.

According to the probability model, a difficult item
will have large b-value, and an easy item will have
small b-value. Knowing the difficulty levels of all the
items in the pool, one can possibly develop an item
selection algorithm based on branching. For instance,
if the examinee answers an item incorrectly, the next
item to be selected should have a lower b-value. By
the same token, if he or she answers correctly, the
next item should have a higher b-value. However,
two fundamental questions need to be addressed to

explain how the algorithm works: (a) how much
the b-value should be varied from item to item and
(b) how to score the responses after the items have
been administered.

Let b1, b2, . . . , bn be a sequence of the difficulty
parameters after administering n items to the exam-
inee. The new items should be selected such that
bn approaches to a constant b0 as n is indefinitely
large, where b0 represents the difficulty level of an
item that the examinee has about a 50% chance of
answering correctly. Because for the 1PL and 2PL
models, the probability for a randomly sampled exam-
inee with θ to answer an item correctly is 0.5 (given
that θ = b0), knowing b0 is equivalent to knowing θ .
Mathematically speaking,

bn → b0, as n→∞ (2)

where b0 is the item difficulty level such that
P {X = 1|θ = b0} = 0.5. If this happens, the item
selection strategy will allow us to pinpoint the dif-
ficulty level at which the examinee answers half the
items correctly. The convergence of bn to b0 in (2)
indicates that at the beginning of the test, differences
in bs may vary greatly from item to item, and these
differences will be gradually diminished to reach a
level of approximately equal difficulty. This implies
that b0 is a reasonable guess for θ , and thus we can
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characterize θ in terms of the item difficulty level.
Because our goal is to estimate θ , we can use b0 as
the score for the examinee’s responses. Notice that b0

can be linearly transformed to any meaningful score
scale, which makes it convenient for us to score the
examinee’s test responses by a function of b0.

The above process is called a Robbins-Monro
process, and Lord is the first person who introduced
the Robbins-Monro process in application in adaptive
testing.

7.2.2. Robbins-Monro Process

The stochastic approximation of Robbins and Monro
(1951) is a sequential design scheme for locating a
point of interest, which is usually formulized as the
zero of an unknown regression function. Let b denote
the design point and x the corresponding response, and
m is the mean of x, which is a function of b. Robbins
and Monro proposed using bn, which is generated from
the following recursion,

bn+1 = bn − δnxn, (3)

to approximate the root m, where δn is a sequence
of preassigned constants. Robbins and Monro showed
that, with δn properly chosen, the sequentially deter-
mined bn converges to the root of m. Numerous
further refinements have been developed since the
pioneering work, and this simple stochastic approxi-
mation in (3) has inspired many important applications,
including those in engineering (Goodwin, Ramage, &
Caines, 1980), biomedical science (Finney, 1978), and
education (Lord, 1970).

Lord (1970) proposed several procedures as appli-
cations of the Robbins and Monro process, and one of
them is described in the following equation:

bn+1 = bn + dn(xn −m), (4)

where xn is the item response on the nth item (xn = 1
if the answer is correct, xn = 0 if the answer is incor-
rect); d1, d2, . . . is a decreasing sequence of positive
numbers chosen before the testing; and m is a prede-
termined constant, say, m = 0.5. Assume the item
pool is so rich that we can select any b-value from the
range of (−∞,+∞). Equation (4) indicates that the
difficulty level of the (n + 1)th item to be selected is
determined from that of the nth item plus dn/2 if the
answer is correct or minus dn/2 otherwise. If d1 is not
too small, according to Hodges and Lehmann (1956),
the sequence of d can be chosen as

di = d1/i, i = 2, 3, . . . (5)

A point to be made here is that the sequence of
b1, b2, b3, . . . constructed from (4) will converge to
b0, where b0 can be interpreted as the difficulty level
of an item that the examinee will have a 50% chance
to answer correctly.

In application of the Robbins-Monro process, it is
essential to know the b-values for all the items in the
pool, and the pool should be rich in b to such an
extent that with any given bn+1 defined in (4), there
is a corresponding item with the difficulty level bn+1.
Interestingly, the convergence of bn to b0 does not
require strong assumptions, including that of the local
independence or the assumption that the exact shapes
of the item characteristic curves be known as described
by (1). Because the design point is only bn for the
Robbins-Monro process, the guessing parameters and
discrimination parameters defined in the 3PL model
are not needed.

7.2.3. Lord’s Maximum-Information Process

Let θ̂n be an estimator of θ based on n responses.
θ̂n is called a consistent estimator if it converges to θ
as n goes to ∞. Consistency is the most important
property in our adaptive design because our objec-
tive is to identify the unknown θ . To this end, the
Robbins-Monro process is handy and can be ade-
quately used to construct a consistent estimator to
the desired point for θ . As demonstrated by Lord
(1970), the conditions for convergence can be approx-
imated in practice. However, the size of the item
pool must be large so that it contains various values
of b. On the other hand, the speed of convergence
may not be fast. In other words, it may need many
items for θ̂n to be close to θ . Another problem
frequently encountered in CAT design is efficiency.
In addition to consistency, we would like to know
whether our estimator has the smallest sample variance
among other consistent estimators. In doing so, we
need to compare the efficiency of different methods
for estimating an examinee’s ability, and hence it
becomes necessary to include more information in
our adaptive design, such as the exact shapes of the
item response functions and the information functions
as well.

7.2.3.1. Some Preliminary Conditions

One of the most important assumptions in item
response theory (IRT) is local independence, which
is defined in the following.
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Definition 1. A test X = (X1, X2, . . . , Xn) is
said to be locally independent with respect to a latent
variable � if, for all x = (x1, x2, . . . , xn) and θ ,

P {X = x|θ} =
n∏
i=1

P {Xi = xi |� = θ}.

Suppose that an examinee with a fixed θ is given
n items X2, X2, . . . , Xn. According to the local inde-
pendence assumption, the likelihood function can be
expressed as

Ln(θ) =
n∏
i=1

Pi(θ)
XiQi(θ)

1−Xi , (6)

where Qi(θ) = 1 − Pi(θ). Then, θ can be esti-
mated by maximizing the likelihood function. Let θ̂n
denote the resulting estimator. It is clear that θ̂n also
solves the following maximum likelihood estimating
equation:

Un(θ) = ∂

∂θ
logLn(θ)

=
n∑
i=1

∂

∂θ
log

Pi(θ)

Qi(θ)
[Xi − Pi(θ)] = 0. (7)

For conventional paper-and-pencil tests, it is well
known that, under suitable regularity conditions,
including the local independence condition, θ̂n is con-
sistent and asymptotically normal, centered at the true
θ , and with variance approximated by I−1(θ̂n), where
I (θ) is the Fisher test information function. Under the
local independence condition, an important feature of
I (θ) is that the contribution of each item to the total
information is additive:

I (θ) =
n∑
i=1

Ij (θ), (8)

where Ij (θ) is Fisher item information for item j ,
which is defined as

Ij (θ) =
[
∂Pj (θ)

∂θ

]2

/Pj (θ)[1− Pj (θ)].

Thus, under the local independence assumption,
the total amount of information for a test can be
readily determined. This feature is highly desirable in
CATs because it enables test developers to separately
calculate the information for each item and combine
them to form updated test information at each stage.
To make the sample variance of θ̂n small, we can
sequentially select n items so that their information
at θ̂j , j = 1, 2, . . . , n, is as large as possible.

7.2.3.2. The Maximum-Information Approach

Lord (1970) proposed a standard approach to item
selection in CAT, which is to select the item with the
maximum Fisher item information as the next item.
Note that the original motivation for adaptive test-
ing is to match items with the examinee’s trait level
θ (Lord, 1970). Under the 3PL model, maximizing
Fisher information means intuitively matching item
difficulty parameter values with the latent trait level
of an examinee. Because the latent trait is unknown,
the optimal item selection rule cannot be implemented
but may be approximated using the updated estimate
θ̂ each time a new item is to be selected. This is essen-
tially the basic design behind Lord’s original proposal
of adaptive testing. Under the maximum-information-
based design, items with high a-parameters will be
preferentially selected.

The motivation for maximizing the Fisher infor-
mation is to make θ̂n the most efficient. This can
be achieved by recursively estimating θ with current
available data and assigning further items adaptively.
Note that in IRT, the large sample properties of θ̂n,
such as consistency and asymptotic normality, were
established under the local independence assumption.
In adaptive design, the selection of the next item is
dependent on the basis of the examinee’s responses
to the items previously administered. Thus, the likeli-
hood function may not be expressed as equation (6)
(see Mislevy & Chang, 2000, for a detailed dis-
cussion about the local independence assumption in
adaptive testing). Therefore, it is necessary to estab-
lish the corresponding large sample properties for
the maximum-information approach. Chang and Ying
(in press) showed that the asymptotic normality and
the validity of using Fisher information to estimate
variance continue to hold under the adaptive item
allocation of CAT. Their result indicates that, for the
1PL model (cj ≡ 0 and aj ≡ 1 in equation (1))
and an infinitely large item pool, the maximum likeli-
hood estimator of θ with maximum-information item
selection is strongly consistent. For the 2PL (cj ≡ 0
in equation (1)), consistency holds under the realis-
tic assumption that the discrimination parameters are
bounded. For the 3PL model, the same results hold
under some reasonable regularity conditions, such as
a bound on the guessing parameter being met and the
likelihood equations not having a multiple solution.

The maximum-information method is more efficient
than the Robbins-Monro process. For large n, the
Fisher information measures the effectiveness of the
estimator because the reciprocal of the Fisher infor-
mation is the asymptotic lower bound of the sample
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variance of θ̂ . Var(θ̂n) → 1/I (θ) as n → ∞ under
suitable conditions.

7.3. Limitations of the

Maximum-Information Approach

The assumption of an “infinitely large item pool” never
holds in reality. An operational item pool usually con-
sists of several hundred items. Furthermore, the set of
items selected for each examinee must satisfy certain
nonstatistical constraints such as content balance. The
more constraints one has to impose, the fewer degrees
of freedom one can have in a design. To design a good
CAT algorithm, we need further analytical study.

7.3.1. Constraint of Item Exposure Control

Under the maximum-information-based design,
items with high a-parameters will be preferentially
selected. In the simple case when all items follow
c = 0, Fisher information becomes

Ij (θ) =
a2
j e
aj (θ−bj )

[1+ eaj (θ−bj )]2
. (9)

Suppose the examinee’s true ability is θ0. For a fixed
aj , Fisher information reached the maximum a2/4 at
bj = θ0. Thus, if the true ability is known, the informa-
tion approach tends to select an item with bj close to
θ0 and aj as large as possible. The rationale is that this
leads to a substantial efficiency gain (Hau & Chang,
2001).

If information-based item selection methods are
used, items with high a-parameters might be fre-
quently exposed, whereas others might never be
exposed. The exposure rate of an item is defined as the
ratio between the number of times the item is admin-
istered and the total number of examinees. Because
CATs are administered frequently to small groups of
examinees, there is a risk that items with high exposure
rates might become known to examinees. Thus, item
exposure rates must be controlled (e.g., Hau & Chang,
2001; Mills & Stocking, 1996).

Remedies to restrain overexposure of high a-items
have been proposed by McBride and Martin (1983),
Sympson and Hetter (1985), Stocking and Lewis
(1995), Davey and Parshall (1995), Thomasson
(1995), and others. The most common method for
controlling exposure rate was developed by Sympson
and Hetter (SH), whose general idea is to put a “filter”
between selection and administration—an item that

is selected by the maximum-information criterion is
evaluated to determine whether it will be adminis-
tered. In so doing, the exposure rate can be kept
within a certain prescribed value. Let us name the
item selection method that maximizes the Fisher infor-
mation while imposing that the SH exposure control
the FSH method. Obviously, by restraining the actual
use of the frequently chosen items, the FSH method
puts a cap on the exposure rates of “popular” items
and effectively keeps them within some desirable
thresholds.

The SH control method suppresses the usage of the
most overexposed items and spreads their usage over
the next tier of overexposed items (e.g., see Chang
& Ying, 1999). According to Hau and Chang (2001),
the weakness of the SH control method is that it does
not proactively raise the exposure of the least exposed
items. The FSH method has a number of limitations.
The selection rule guides the computer to choose
items with certain specific characteristics (e.g., high
discrimination); however, the FSH method devises a
mechanism to suppress the chance that these items
would be chosen so that they will not be overused.
Because of these contradictory guidelines, the ability
estimation efficiency of FSH is lower than the original
Fisher method.

7.3.2. Should Low-Discrimination
Items Ever Be Used?

If the computer algorithm only selects high a-items,
we may have to force item writers to generate only
high a-items. However, when item writers produce
items, the items will follow certain distribution char-
acteristics. Item writers may control some of the
characteristics such as item content and item difficulty
level, but it is extremely challenging to produce only
highly discriminating items. As Mills and Stocking
(1996) indicate, current testing programs are under
greater pressure to produce the “best” items for CAT at
a faster rate than for traditional P&P tests. The common
practice to generate more relatively high a-items is to
discard items whose a-parameter values are lower than
a given threshold.

On the other hand, many items in the item pool still
will never be selected by the computer. Once items
are included in the pool, they have already under-
gone certain rigorous review processes and shown
no problems. Items with relatively lower discrimina-
tion parameters are still of good quality and should
be used. In practice, however, most item exposure
control procedures currently available have failed to
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yield more balanced item usage within a pool. Wainer
(2000) examined the item usage within the GRE CAT
pools and found that as few as 12% of the avail-
able items could account for as much as 50% of the
functional pool (those items were actually adminis-
tered). Obviously, one way to resolve this problem is
to increase the usage of lower a-items.

7.3.3. When Should
Low-Discriminating Items Be Used?

Ideally, all items in a pool should have similar
exposure rates to meet the requirements of test secu-
rity and efficiency of item usage as well (Hau &
Chang, 2001; Mills & Stocking, 1996). When should
lower a-items be used? The study of Hau and Chang
(2001) confirmed that FSH administrated items with
larger a-values at the earlier stages of testing. As
testing progressed, more items with smaller a-values
were selected. This practice follows the philosophy
of maximizing Fisher information. Hau and Chang
referred to this as the descending a-method. It is crucial
to know when a low a-item should be used. For the
purpose of accuracy, low a-items should be used first
because estimation of θ could be inaccurate early in
the test.

According to (9), for the 2PL model, items with high
a-values and b-values close to the examinee’s true θ
provide the most information. This is true also for the
3PL model. Thus, more accurate θ̂s allow items with
high a-values to provide more information. Using the
highest a-items at the beginning of the testing may
cause the underestimation problem. One major factor
of uncertainty comes from inaccurate estimation of
the latent trait in the initial stages when the number
of administered items is small. This could result in
grossly underestimating θ at early stages. To educate
researchers in the field of CAT research and develop-
ment, one must demonstrate certain strong evidence
from analytical derivation.

7.3.4. Is Item Information
Always Maximized When θ ≈ b?

To build a CAT system, one must specify a certain
mathematical model for item response functions. The
logistic and normal ogive models are the two most
commonly used models in CAT research and imple-
mentation. Lord (1980) proved that for the logistic
model, the corresponding item Fisher information
is unimodal. Actually, Ij (θ) reaches the maximum

value at θ = bj for the 1PL and 2PL models and

θ = bi + 1
ai

ln( 1
2 +

√
1+8ci

2 ) for the 3PL model,
respectively. According to Bickel, Buyske, Chang,
and Ying (2001), this property also holds for the
normal ogive model. Thus, for the two models,
the item information function reaches the maximum
value when θ is close to the difficulty parameter.
Therefore, the maximum-information approach is
equivalent to the basic design behind Lord’s orig-
inal proposal of adaptive testing. The fundamental
assumption about the equivalence between match-
ing ability with difficulty and maximizing informa-
tion means that Ij (θ) reaches the maximum value
when θ ≈ b.

However, logistic and normal ogive are just two
convenient mathematical models for the true under-
lying item response functions, so it is important to
check whether this fundamental assumption holds for
a more general class of IRT models, which includes
the logistic and the normal ogive models as spe-
cial cases. This CAT delivery modeling issue should
be addressed in light of Lord’s (1970) maximum-
information approach. Bickel et al. (2001) studied the
sensitivity of the maximum-information item selec-
tion strategy to the assumed item response function
modeling family. They show that two item response
functional families that are similar in shape can in
fact have different information optimizing strategies. If
the IRT model uses one type of functional family, one
obtains the usual optimal item selection rule of choos-
ing an item with difficulty close to current estimated
examinee ability. But if the IRT model uses the other
type of functional family, one obtains the counterintu-
itive optimal item selection rule of choosing an item
with difficulty as far away from the estimated ability
as possible. Although we do not understand this study
from a practical perspective, it suggests possible over-
reliance on the maximum-information item selection
approach.

7.4. Revealing the Cause

for Underestimation

Chang and Ying (2002) made an attempt to quan-
titatively reveal the cause that is most likely to
account for the underestimation phenomenon for the
CAT GRE exam reported by the Chronicle of Higher
Education (Carlson, 2000). One major factor of
uncertainty comes from inaccurate estimation of
the latent trait in the initial stages when the
number of administered items is small. Because the
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maximum-information-based methods rely too
heavily on the items administered at the initial stages,
this could result in grossly underestimating the latent
trait at early stages. Chang and Ying’s analytical
derivation shows that, under the current item selection
strategy adopted by ETS, if an examinee failed a few
items at the beginning of the test, easy (but more dis-
criminating) items are likely to be administered, and
such items are ineffective at bringing the estimate close
to the true θ , unless the test is sufficiently long or a
variable-length test is used. Their derivations show that
a certain weighting mechanism is necessary to make
the algorithm rely less on the items administered at the
beginning of the test.

7.4.1. Information and MLE

Suppose that an examinee with a fixed θ is given
n items X1, X2, . . . , Xn. Then, θ can be estimated by
maximizing the likelihood function specified in (6).
Let θ̂n denote the resulting estimator. It is clear that
θ̂n also solves the following maximum likelihood
estimating equation (7).

It is well known that, under suitable regularity con-
ditions, θ̂n is asymptotically normal, centered at the
true θ , and with variance approximated by I−1

n (θ̂n),
where In(θ) is the Fisher information function.

An original motivation for CAT is to maximize the
Fisher information so as to make θ̂n the most accu-
rate. This can be achieved by recursively estimating θ
with current available data and assigning further items
adaptively.

7.4.2. Sensitivity of θ̂n for Small n

Chang and Ying (2002) proposed a way to illustrate
the sensitivity of θ̂n on initial items in CAT. Their goal is
to motivate remedies for the underestimation problem
while promoting learning to CAT developers. Let us
only demonstrate the case of the 2PL model. Although
the cases for the 1PL and 3PL models are similar to that
of the 2PL model, the 2PL model is more convenient
to show where the problem is. See Chang and Ying for
the discussions of 1PL and 3PL models. For the 2PL
model, the Fisher test information function becomes

In(θ) =
n∑
i=1

a2
i

eai (θ−bi )

[1+ eai(θ−bi )]2
, (10)

and the likelihood estimation function takes the form

Un(θ) =
n∑
i=1

ai

(
Xi − eai (θ−bi )

1+ eai(θ−bi )
)

(11)

after n items were administered. For the maximum
likelihood estimator, θ̂n, Un(θ̂n) = 0. Chang and Ying
proved

θ̂n+1 = θ̂n

+ an+1

In+1(θ
∗
n+1)

(
Xn+1 − ean+1(θ̂n−bn+1)

1+ ean+1(θ̂n−bn+1)

)
,

(12)

where θ̂n is the current estimator, θ̂n+1 is the next
estimator, bn+1 is the b-parameter of the (n + 1)th
item, and θ∗ is a point between θ̂n and θ̂n+1. If the
item pool is sufficiently rich, allowing each given θ to
match a difficulty parameter b with the same value,
then bn+1 ≈ θ̂n or ean+1(θ̂n−bn+1)/(1 + ean+1(θ̂n−bn+1))

≈ 1
2 . This entails that the one-step update from θ̂n

to θ̂n+1 is ± 1
2 multiplied by an+1I

−1
n+1(θ

∗
n+1), which

indicates that the size of the step may be determined
by the value of a for small n. Consequently, the larger
the n is, the smaller the one-step adjustment it gets. As
indicated earlier, the maximum-information approach
would select the items with the highest a-values, which
may cause a big step size at the beginning of the test.
Therefore, it is plausible that if the examinee misses a
number of initial items and the test length is short to
moderate, then he or she may not be able to regain a
score (estimate) comparable (close) to the true θ , even
though he or she responds well to the rest of the items.

Through their analytic derivations and simulation
studies, Chang and Ying (1999) argued that, provided
the necessary constraints are met, the a-parameter
should be selected in an ascending order. Their moti-
vations come from the considerations of efficiency
improvement and item exposure balance. In view of
(12), an additional benefit of the a-stratified approach
of Chang and Ying is that it automatically adjusts step
sizes in updating the current estimation of θ . Specifi-
cally, it shrinks weights at early stages, making it less
likely to have extreme values in estimating θ . It also
inflates weights at final stages, counteracting the effect
of the multiplier I−1

n+1(θ
∗
n+1) and making it more likely

to adjust the final estimator of θ .

7.4.3. Overestimation Is Also Possible

In the 2000 GRE incident, even though ETS refused
to comment on whether the examinees who were
offered to retake the GRE were scored lower or higher
(Carlson, 2000), our speculation is that they most likely
received extremely low scores. One explanation for
such conjecture is that examinees who received high
scores would most likely not take the offer to retake
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the test; in other words, it does not make sense to ask
them to retake the test. If this speculation stands, then
in 2000, about the same number of examinees as those
who received the ETS offer were scored higher than
what they deserved. According to equation (12), it is
possible that a person who guesses correctly early in
the test could have overestimated. More specifically,
under the current design, large a-items are used first,
allowing for big moves in estimates of ability. Thus, a
person who guesses correctly at early stages of the test
could obtain a high ability-level estimate, even though
he or she did not do well for the remainder of the test.
Actually, during the period from 2000 to 2002, “Never
miss the first five items” was advised by several GRE
preparation Web sites in China (e.g., www.taisha.org).

7.5. Alternative Approaches

An alternative to the maximum-information approach
is the Bayesian method (e.g., Owen, 1975). Instead
of using item information at θ̂ , the Bayesian approach
uses the posterior variance as the criterion for item
selection. At the initial stages, posterior distributions
depend heavily on the choice of prior distribution for
θ , but the dependency diminishes at the later stages.
Furthermore, according to Chang and Stout (1993),
the posterior variance approaches the reciprocal of the
test information when the number of items becomes
large. For those who are interested in other selection
models, see Folk and Smith (2002) for details.

7.5.1. Procedures to Deal
With Early Stage Estimation

Several procedures have been proposed that deal
with large estimation error at the beginning of the
test. Chang and Ying (1996) suggested replacing
Fisher information by Kullback-Leibler information.
Generally, Kullback-Leibler information measures the
“distance” between two likelihoods. The larger the
Kullback-Leibler information, the easier it is to dis-
criminate between two likelihoods. Veerkamp and
Berger (1997) suggest using weighted Fisher’s infor-
mation with the likelihood function and selecting the
kth item according to the maximum integrated infor-
mation. van der Linden (1998) recommends using a
Bayesian criteria for item selection that involves some
form of weighting based on the posterior distribution
of θ . Because the posterior distribution is a combina-
tion of the likelihood function and a prior distribution,

the basic difference with the previous criterion is the
assumption of a prior distribution.

7.5.2. The a-Stratified Method

On the basis of global information theory (Chang &
Ying, 1996), Chang and Ying (1999) propose the
ascending a-stratified item selection method. A simple
version of the a-stratified method can be described as
follows:

1. Partition the item pool intoK levels according to
item a-values.

2. Partition the test into K stages.
3. In the kth stage, select nK items from the kth

level based on the similarity between b and
θ̂ , then administer the items (note that n1 +
n2+ , . . . ,+ nK equals the test length).

4. Repeat Step 3 from k = 1, 2, . . . , K .

The rationale behind the a-stratified method is that,
because the accuracy of θ̂ generally becomes greater
as the test progresses, one effective testing strategy is
to stratify the item bank into levels according to item
a-values and then partition the test into corresponding
stages. That is, items from the lowest a−level would be
administered at the early stages of the test, and those
from the highest level would be administered at the
last stage of the test. At each stage, only items from
the corresponding level are selected.

Item pool stratification also affects item exposure
rates. As indicated by Chang and Ying (1999), one
major cause of unevenly distributed item exposure
rates is that when using maximum-information item
selection, items with large a-values are more likely to
be selected than those with small a-values. By group-
ing items with similar a-values together and selecting
within a group at each stage, exposure rates would be
more evenly distributed because items with alla-values
would be selected with equal frequency. Stratification
would, therefore, both decrease exposure rates of high
a-items and increase exposure rates of low a-items.

The a-stratified design has received positive remarks
from many researchers. Davey and Nering (2002)
indicate the following:

Highly discriminating items are like a tightly focused
spotlight that shines intensely but casts little light out-
side a narrow bean. Less discriminating items are more
like floodlights that illuminate a wide area but not too
brightly. The idea of Chang and Ying is to use the
floodlights early on to search out and roughly locate
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the examinee, then switch to spotlights to inspect things
more closely. (p. 181)

However, this method also received criticism.
Stocking (1998) indicates,

If the suggested approach worked well on real pools con-
structed for CATs, then the time-consuming iterations
required to develop stable exposure control parame-
ters in such exposure control approaches as Hetter
and Sympson (1997), Stocking and Lewis (1998), and
Davey and Nering (1998) could be eliminated. This
might also be accompanied by more efficient pool usage
in that items that are seldom or never used might be used
with greater frequency.

Stocking’s (1998) criticisms are basically from the
following three aspects:

1. There is concern regarding the correlation
between the item difficulty and item discrim-
ination parameters, and this relationship may
interfere with the predicted operating charac-
teristic of CAT test designs, which depends on
stratification of the pool on item discrimination
(Stocking, 1998).

2. The a-stratified design did not incorporate the
ability to handle item content (Stocking, 1998).

3. Other criticisms include the lack of guidelines
regarding the number of strata to use as well as the
number of items to administer from each stratum
(Stocking, 1998).

The a-stratified method proposed in Chang and
Ying (1999) is solely a prototype version. Their ini-
tial studies were too simplistic, and they did not
address such designing issues as what the best set
of stratification properties might be or whether these
characteristics are general or dependent on the struc-
ture of the item pool and population distribution.
Further research has taken place and yielded numer-
ous refinements. Chang, Qian, and Ying (2001) have
developed the a-stratified design with b-blocking to
overcome the first problem by balancing the distribu-
tions of b-values among all strata. This method first
prepartitions the item pool according to b-values and
then implements the a-stratification. Their simulation
study showed that the blocking method performs sig-
nificantly better than the original stratified method in
a sense that it improves item exposure rate control,
reduces mean squared errors (MSE), and increases
test reliability. Chang and van der Linden (2003) and
van der Linden and Chang (2003) propose using 0-1

mathematical programming models, together with the
a-stratified method, to balance contents and improve
accuracy. Yi and Chang (2003) and Leung, Chang,
and Hau (2003) proposed solutions to incorporating
the ability to handle item content.

Application of the a-stratified method may be taken
one step further to overcome the underestimation
problem. As demonstrated analytically by Chang and
Ying (2002), items with high-discrimination param-
eters tend to cause “big jumps” for the latent trait
estimator at the very early stage of the test. To success-
fully maintain a normal pace at the beginning of the
test, items to be administrated must possess the char-
acteristic of low discrimination. Chang and Ying’s
simulation study revealed that the proposed ascending
a-methodology is pivotal to overcoming the underes-
timation problem.

The theoretical results derived by Chang and Ying
(2002) show that, for the 3PL model, the use of
ascending order of an in item selection, as advo-
cated in Chang and Ying (1999), plays a pivotal
role in overcoming the underestimation problem
encountered in current large-scale administrations of
CATs. Some obvious benefits include the following:

• robustness, reducing fluctuation due to initial item
response irregularity;
• effectiveness, offsetting initial item influence by

the test performance based on the responses to
later items;
• more balanced exposure rates, improving item

pool usage and increasing test security;
• high reliability, increasing the score consistency

between test and retest; and
• a higher level of efficiency, maintaining the high

quality of the latent trait estimation by using
high discriminating items when they can be most
effectively used.

7.6. Assessing CAT

Test Security Breaches

Around 10 years have passed since the Kaplan-ETS
incident. However, unlike many other aspects in CAT,
there is a lack of theoretical developments in assessing
test security breaches. Way (1998) pointed out that
there is no common understanding as of yet about
issues such as what represents acceptable item expo-
sure rates and how long CAT item pools should be
used. Many rules currently used in large-scale CAT
programs were derived essentially from simulation
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studies, which may not be sufficient in assessing
test security breaches caused by organized item
thievery.

On August 6, 2002, ETS announced that it would
temporarily suspend the CAT GRE General Test and
reintroduce paper-based versions in several foreign
countries. The news release is as follows (www.ets.org,
August 20, 2002):

ETS is undertaking the change at the request of the
GRE Board, the policy setting body of the examination,
following an investigation that uncovered a number of
Asian-language Web sites offering questions from live
versions of the computer-based GRE General Test. The
Web sites included both questions and answers illegally
obtained by test takers who memorize and reconstruct
questions and share them with other test takers. The Web
sites are located in China and Korea, and easily accessed
in Hong Kong and Taiwan.

Clearly, CAT test security must be studied in a broad
context, and certain theoretical justifications must be
developed. The new emphasis should be on organized
item theft. More specifically, for a given GRE item
pool, if each examinee can memorize β items (say,
β = 10), how many thieves are needed to steal the
large-enough portion of the pool? Because different
item selection strategies may yield different stealing
rates, the objective of this kind of research is to develop
a theoretical upper bound for the expected number of
thieves under various CAT settings. An assessment that
test developers typically need might very well be like
the following: Assume the test length is 30 and the
item pool size is 700; if every thief can remember 20
items, at most 20 thieves are needed to steal about 60%
of items in the pool.

7.6.1. Chang and Zhang’s Item Pooling Index

An item overlap rate for a group of examinees was
originally defined as the ratio of the expected number
of overlapping items encountered by two randomly
sampled examinees from the group over the test length.
The Venn diagram in Figure 7.2 shows two sets of items
for Examinees A and B, respectively. The intersection
indicates that the common items can be seen by both
examinees. The item overlap rates can be estimated by
calculating the percentage of the items that are shared
by each pair of examinees and then averaging across all
the pairs of examinees from the group. The estimated
item overlap rate is also referred to as the average
item overlap rate (Way, 1998). Ideally, the number of
overlapping items within any group of examinees

Figure 7.2 Items Can Be Shared by Two Examinees

• A: Test Items for Examinee A
• B: Test Items for Examinee B
• X: # of Common Items Between A and B

A X B

should be kept to a minimum. According to Chang
and Zhang (2002), higher item overlap rates are evi-
dence that item exposure rates are heavily skewed.
If every item in the pool has an equal possibility of
being selected, the number of common items among
examinees will be kept to a minimum.

There are two limitations in the original definition.
First, it only considers two examinees in the rate cal-
culation instead of a group of α examinees. In reality,
it is often the case that one examinee pools informa-
tion from several examinees who have taken the test.
Second, it does not distinguish beneficiary from non-
beneficiary. An examinee who will take the test is a
beneficiary, whereas examinees who have taken the
test are nonbeneficiaries. So, it is necessary to extend
the definition to overcome the limitations.

LetXα denote the number of common items encoun-
tered by a group of test takers, where α is the number
of test takers. For example, X3 represents the number
of common items encountered by three test takers;
Xα is a random variable, and its randomness comes
from both the item selection algorithm and test taker
sampling. In this chapter, we only consider a fixed
group of test takers so that the randomness of Xα
uniquely comes from the item selection algorithm.
Suppose α sets of items are assembled for α test tak-
ers; the common items should be the intersection of
these α sets. See Figure 7.3 for the case of α = 3,
where the shaded area represents the common items
encountered by these three test takers. We call this item
sharing because the information in the intersection can
be shared by all α examinees. Ideally, we would like
to know the distribution of Xα so that its expected
value can be calculated. A large value of E[Xα]
indicates that the test overlap rate (for α test takers)
is high.
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Figure 7.3 Item Sharing Versus Item Pooling for
Three Examinees

Item Sharing  vs. Item Pooling
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Item Pooling
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Chang and Zhang (2002) generalize the definition
of item overlap rates from two examinees to a group
of α examinees:

Definition 2. Let Xα be the number of common
items shared by a group of randomly sampled α exam-
inees; then E[Xα], which is the expected value of Xα ,
is called the item-sharing index.

When α = 2, E[Xα] has an intuitive meaning that
indicates how many common items we would expect
that a student could get from a friend who just took the
test. However, when α ≥ 3, although E[Xα] is still a
good indicator of test security, it may be less intuitive
in interpretation. Note that the information about the
common items is beneficial to those who will take the
test but not to those who have already taken the test.
However, when α ≥ 3, E[Xα] does not distinguish the
former from the latter.

Suppose test taker A, who will take the test, seeks
help from two friends, B and C, who have taken the test.
Let’s call this information pooling, meaning that one
beneficiary pools information from several nonbene-
ficiaries. Let Yα be the number of overlapping items
encountered by a test taker with other α test takers
who have already taken the test. See Figure 7.3 for the
graphical presentation for α = 2, where A, B, and C
represent the items taken by test takers A, B, and C,
respectively. Clearly,A∩(B∪C) are the items that test
taker A can pool from B and C. Apparently, Y1 ≡ X2.
But Yα is different from Xα+1 for α ≥ 2. Chang and
Zhang proposed using a new definition to distinguish
item sharing from item pooling.

Definition 3. Let Yα be the number of common
items one examinee can pool from randomly sampled
α examinees, and then E[Yα], which is the expected
value of Yα , is called the item-pooling index.

7.6.2. Lower Bounds of E[Xα] and E[Yα]

One aspect of test security control should be to keep
test overlap rates to below a reasonable threshold. This
raises an interesting question: What is the criterion for
a small overlap rate? In item exposure rate control, it
is common to set a threshold as an upper bound and to
require that no item usage rates should exceed such a
bound. Analogous to this, a straightforward way to set
a criterion for test overlap control would be to base it on
a minimum value of overlap rates. However, test over-
lap rates are highly sensitive to methods used in item
selection, ability estimation, and exposure control. To
make comparisons across all possible methods, one
must search for a promising candidate across all pos-
sible item selection rules, ability estimation methods,
and exposure control strategies. If such minimum value
exists, it can serve as a lower bound. A test security
panel may evaluate the discrepancy between the theo-
retical lower bound and the observed test overlap rate
generated by the item selection algorithm under inves-
tigation. A big difference indicates that the algorithm
needs to be further improved by lowering the overlap
rate, and a small difference indicates that there is not
much to improve.

Because different procedures may yield different
overlap rates, the distributions ofXα and Yα rely on the
item selection procedure built in the CAT test, and so,
in general, it may not be possible to derive theoretical
distributions for the two random variables. However,
for the randomized item selection procedure (i.e., we
just randomly select n items to each examinee), the
theoretical distributions of Xα and Yα can be derived.
The need for randomization is important in the math-
ematical derivation of the theoretical distributions of
Xα and Yα , but it may not be apparent to some practi-
tioners because none of the CAT programs endorses
the randomized item selection method. In terms of
the consequence of the randomization assumption, as
pointed out by Wainer (2000), when every item has an
equal possibility to be administered to the examinees,
test security will reach the maximum. As a result, the
expectations defined in Definition 2 and Definition 3
can serve as two theoretical lower bounds for the item
overlap rates.

7.6.3. About Theoretical Derivations

One purpose of test security control in a CAT is to
lower the test overlap rate. To this end, it is desir-
able to find distributions of random variables Xα and
Yα , α = 2, 3, . . . , n, so that the expected values Xα
and Yα can be calculated. These values may serve
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as theoretical lower bounds of test overlap rates for
test developers, who can assess their CAT selection
designs by comparing the observed or simulated over-
lap rates with the lower bounds. Under the assumption
that every item has equal possibility of being selected,
Chang and Zhang (2002) derived the theoretical dis-
tributions for the sharing variable Xα and the pooling
variable Yα for any given number α.

Although their derivations are mathematically rig-
orous, it becomes extremely simple for X2 or, equiv-
alently, Y1. Let’s consider the simplest case in which
only two examinees are encountered, say, A and B.
For A, we randomly selected m items from an item
pool containing N items. After A finished the test,
we put the m items back into the pool. Now we may
consider them items as “bad” items because they were
used by A. Now, for test taker B, a set of m items is
to be drawn from the same item pool with m “bad”
items. It is interesting that this process is equivalent
to the experiment in which one randomly selects m
units from a set of N units with m defected units.
Obviously, the number of the defected units that would
be found in the m draws follows the hypergeometric
distribution (Bickel & Doksum, 1977). Recall that Xα
is the number of commonly overlapping items encoun-
tered by α examinees. Then, X2 has a hypergeometric
distribution, that is,

Prob{X2 = k} =

(
m

k

)(
N −m
m− k

)
(
N

m

) ,

k = 0, 1, 2, . . . , m,

where N is item pool size, m is the test length, and
k is the number of common items. Following any of
elementary statistics textbooks, we have

E[X2] = m2

N
.

See Chang and Zhang (2002) for the derivations
for α ≥ 2.

7.6.4. How to Use the Lower Bounds

Now, under the best test security consideration, the
expected item overlap rate between one examinee and
a group of α examinees can be precisely calculated.
Based on the calculation, a table of lower bounds of
item overlap rates for various combinations of test set-
tings can be readily constructed. Such a table is useful
as a benchmark for practitioners in evaluations of test
security and item selection algorithms.

Figure 7.4 Item Sharing Versus Item Pooling for
Five Examinees
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Note that the results derived by Chang and Zhang
(2002) are the lower bounds, and the observed overlap
rates should be higher than those lower bounds. The
discrepancy between the theoretical lower bound and
the observed rate based on a particular item selec-
tion method provides information about the security
perspective of this test design. Clearly, the use of the
item-pooling rate may allow for better assessing test
security for the methods used in item selections.

7.6.5. Limitations in Chang
and Zhang’s Original Derivation

The item-sharing index is the lower bound of the
expected number of the common items encountered
by a group of α examinees. Although the derivation
is theoretically interesting, it may not be practically
informative to practitioners when the number of exam-
inees is large. According to Figure 7.4, as α gets large,
the number of common items in the intersection part
will become very small. On the other hand, the item-
pooling index, which calculates the lower bound of the
expected number of items one examinee can pool from
a group of α examinees, should be a much more useful
index. However, the derivation is based on the assump-
tion that every examinee can memorize all the items
in the test, which seems unlikely in a real situation. To
what extent can the severity of item-pooling activity be
assessed? Chang and Zhang’s result provides a partial
answer for CAT tests with a short test length. For CAT
with a moderate to long test length, the assumption to
memorize all the items in the test is unrealistic.

7.6.6. Extension of Chang
and Zhang’s Item-Pooling Index

Chang and Zhang (2003) found that for the applica-
tion of the item-pooling index, one can simply assume
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Figure 7.5 Items Can Be Compromised by N Thieves
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Items Remembered by An
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Items Remembered by A2

that each examinee only memorizes β items, where
1 ≤ β ≤ n and where n is the test length. Note that
the result of Chang and Zhang (2002) is a special case
of β = n.

An interesting property in Chang and Zhang (2002)
is that the test length can vary in the calculation of
the item-pooling rate, which is the most concrete
and convenient condition that can be employed in the
extension. Let us assume that each thief can only
remember β items out of the total n items adminis-
tered to him or her; because those n − β items that
the thief cannot remember do not cause test security
breach, one can simply remove them from the test
so that the “authentic” test length is β. Even though
the test length is reduced from n items to β items, all
the derivations remain the same. As a consequence, the
result of Chang and Zhang can be readily used under
the assumption that each thief only remembersβ items,
and such generalization under the weakened condition
is fairly straightforward.

7.6.7. Assess Organized Item Theft

For years, research efforts to defend CAT test
security have been concentrated on item-sharing activ-
ities among examinees. The indexes discussed in this
chapter so far are not specifically designed to measure
security breaches caused by organized thievery activ-
ity. The Kaplan-ETS incident demonstrates that the
organized item theft may cause more severe damage
than sharing information among friends. To propose
a quantitative model for organized item thievery, we

might best think of the Kaplan-ETS example. Suppose
a group of thieves takes a CAT sequentially. For con-
venience, these thieves are ordered by the sequence of
their test times. To test administrators, the items in the
union ofA1, A2, . . . , Aα can be considered bad items,
where Ai is the set of n items that the ith examinee
takes. See Figure 7.5 for a demonstration.

Definition 4. Let Aα be the set of n items that the
αth thief takes, and

⋃α
i=1 Ai are “bad” items that can be

compromised by the α thieves. Let Zα be the number
of items in

⋃α
i=1 Ai .

Under the randomized item selection assumption,
Chang and Zhang (2002) derived the theoretical dis-
tribution of Zα so that E[Zα] can be analytically
calculated, which can be interpreted as the expected
value of the upper bound of the number of items com-
promised by the α thieves. Again, let us consider that
Ai only contains β items that the ith thief can remem-
ber; then, one should be able to predict how many
thieves are needed at most to recover γ% (0 ≤ γ ≤
100) of the item pool.

7.6.8. How Many Thieves Are Needed
to Compromise a CAT GRE Item Pool?

To what extent can a high-stakes CAT test, such as
the GRE, be compromised? Based on the findings of
Chang and Zhang (2003), a table can be constructed of
theoretical upper bounds of expected values of number
thieves, which are needed for various combinations of
test settings. The settings will include both the GRE
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and the GMAT as special cases. Such tables are useful
as an assessment of test security breaches in locations
where organized crimes of stealing and sharing CAT
items tend to take place.

Stocking (1994) proposed that the item pool size
should be approximately 12 times the length of CAT
exam, which Way (1998) referred to as a rule of
thumb. According to the CAT GRE test length set-
ting (www.gre.org, June 18, 2003), the Verbal test
consists of 30 items, and the Quantitative test consists
of 28 items. In line with the rule of thumb, the pool
sizes should be 360 for the Verbal test and 336 for
the Quantitative test. However, these numbers may
seem too small. Let’s double the sizes by assuming
that each subtest consists of 2 item pools with a random
chance to be assigned to each examinee. Thus, there
are about 700 items in each of the subpools. In com-
puting Chang and Zhang’s (2003)E[Zα], β can be any
fixed number bounded by n, where n is the test length.
Let β = 10; in other words, each thief can remember
10 items. Chang and Zhang (2003) calculated E[Zα]
for α = 2, 3, . . . , 100, where α stands for the number
of thieves who have already taken the test. They found
disturbing results for the above GRE setting—if every
thief can remember 10 items, at most 50 thieves are
needed to compromise about 55% of the items in the
pool. However, if every thief can remember 20 items,
at most 20 thieves are needed to steal the same amount
of items.

Illegal actions of stealing and sharing CAT items will
inflate test scores for some test takers and hurt hon-
est test takers. Without effective measures, this could
significantly undermine the credibility of CATs. The
findings of Chang and Zhang (2003) are both encourag-
ing and disturbing to CAT researchers. The proposed
theoretical indices will allow assessing test security
severity under various situations. Meanwhile, calcula-
tions based on these indices can help CAT developers
to improve their CAT designs for better item pool usage
and test security. However, their numerical result indi-
cates that the current practice to form a high-stakes
CAT with only several hundred items may not be suit-
able for areas where the prevention of stealing and
sharing CAT items cannot be guaranteed.

As indicated earlier, Chang and Zhang’s (2003)
results are based on randomized item selection, and
randomized item selection equalizes item exposure
rates and hence yields the best test security control.
Even under the best security design, one can get 385
items compromised from 700 items by talking to 50
test takers who can only remember 10 items after the
test. In reality, ETS uses a constrained maximum-
information item selection method that yields a greatly

skewed item exposure distribution. So, the number of
thieves needed to compromise 55% items in the pool
could be much smaller than 50. It is interesting to note
that Kaplan only sent 20 “thieves” in the 1994 incident,
which resulted in ETS’s temporary suspension of the
CAT GRE test.

7.7. Conclusions

Computerized adaptive testing has become fashionable
in many high-stakes testing programs. The principal
component in CAT is the item selection procedure
built into the CAT system, which selects the next item
for the examinee on the basis of his or her responses
to the items previously administered. For the past
two decades, the most commonly used item selec-
tion procedure has been based on maximizing item
information. More specifically, an item is selected that
has maximum information at the currently estimated
θ level (θ̂), which is estimated from the available
responses at that time.

However, the original item selection algorithm
developed by Lord (1970) is based on the Robbins-
Monro process, and hence it can be considered as a
non-IRT scoring approach. As noted by Lord, the aim
of an adaptive test is to tailor the difficulty levels of the
items administered to the latent trait θ of the examinee
being tested. So, the items chosen for administration
should have b-values that match the examinee’s θ̂ .
When certain mathematical models are used for the
item response functions, such as the logistic and
normal ogive models, the item selected by max-
imizing item information at θ̂ should have its b-
value close to θ̂ . Bickel et al. (2001) show that
the maximum-information approach is model sen-
sitive. Many reasonable models that have shapes
similar to that of the logistic model have different
shapes of the information functions and hence dif-
ferent optimizing strategies. Although the practical
perspective of this study is difficult to understand, it
suggests that the maximum-information approach may
overly depend on specific IRT mathematical models.
Recently, several practitioners have emphasized that
some alternatives for scoring computer-based testing
should be considered (e.g., Dodd & Fitzpatrick, 2002;
Plake, 2002).

Yes, the maximum-information approach yields
more efficient estimates. However, the efficiency is
under the assumption of an “infinitely large item
pool” that never holds in reality. An operational
item pool usually consists of several hundred items.
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Furthermore, the set items selected for each
examinee must satisfy nonstatistical constraints such
as content balance. The more constraints one has to
impose, the fewer degrees of freedom one can have
in a design. To design a CAT algorithm that works
reasonably well, one should consider some sampling
strategy, including stratification.

One of the main purposes of this chapter is to
intuitively reveal the cause for the underestimation/
overestimation phenomenon. Based on the theoretical
results of Chang and Ying (2002), these problems may
be caused by heavy reliance on high-discrimination
items at the beginning of the test, resulting in a lack
of stability and consistency that are essential in every
CAT administration, especially in high-stakes test situ-
ations. To this end, Chang and Ying propose modifying
the statistical procedure used for CAT item selection by
incorporating some analytic techniques. Their results
show that weighting the likelihood score is a possibility
in alleviating the problem of underestimation because
the true θ will be closer to its ongoing estimator θ̂ after
more CAT items have been administered.

CAT was originally developed for assessing the
unidimensional latent trait, θ . Recently, Tatsouka
(2002) and Xu, Chang, and Douglas (2003) proposed
several promising item selection methods for cogni-
tive diagnostic applications, which incorporate the
ability of diagnostic assessment to provide helpful
diagnostic information to examinees. One innovative
future application of this research would be to use
the computer adaptive approach to cognitive diagno-
sis in the realm of Web-based learning. A computer
program could be developed to use the information
provided by diagnostic testing as an online tutor. This
research could be applied to the realm of Web-based
instruction to produce a program that uses the diag-
nostic information from an individual’s knowledge
state estimate to provide additional instruction via the
Internet. This specific instruction could be individual-
ized to provide information for all of the nonmastered
attributes, but not the mastered attributes, for the
individual.

Finally, what conclusions may be drawn about
organized item thievery in the context of test secu-
rity? The analytical results discussed by Chang and
Zhang (2003) clearly indicate that structuring an oper-
ational CAT exam with only several hundred items
should be considered willful negligence. A high-stakes
CAT exam must have, among many other things, a
large item pool. This can be accomplished partly by
including many items that have never been selected
by the current maximum-item selection algorithms.
Chang and Zhang show that test security can be

strengthened greatly by increasing item pool size from
several hundred items to a few thousand. This may
also be accomplished by including many items that
have been used in the past (maybe 20,000 used items
for the GRE). According to Green (2000),

If the item pool is sufficiently large, an examinee
who has studied the pool has relatively little special
advantage studying the pool amounts to reviewing the
knowledge domain. But if the pool is small, a person
who has studied the items may have an advantage. One
possibility is to have two or more distinct item pools, or
test forms. (p. 33)

Moreover, even more important, the structure of the
organization should include on-the-fly item generation
(e.g., see Bennett, 2003, for item generation) from
schemas that allow, for some item types, indefinitely
many items. In such a test, learning the princi-
ples behind the items becomes the most efficacious
strategy (Robert Mislevy, personal communication,
June 7, 2003).
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Chapter 8

Trends in Categorical

Data Analysis

New, Semi-New, and Recycled Ideas

David Rindskopf

Kierkegaard probably knew nothing about
statistics, but nonetheless he aptly summa-
rized the plight of statisticians when he

wrote that “life can only be understood backward,
but it must be lived forward” (quoted in Smith, 1990,
p. 6). In data analysis, we to try to predict the future
by understanding the past.

Until recently, those of us who deal with categorical
data have had to use a very restricted set of tools to
attain understanding. And whether by design or by
force of circumstance, most researchers end up with
many variables in categorical form. For many years,
the analysis of such data was, by and large, restricted to
a simple chi-square test of independence in a two-way
table of categorical variables, and perhaps the calcula-
tion of an appropriate measure of association. The field
is now flooded with new techniques, and problems that
once seemed insoluble are now either solved or on the
brink of being solved.

In this chapter, I discuss some of these new methods.
I begin with the broader task of presenting an overview
of recent major advances in applied statistics. These
advances will be illustrated using examples of research,
both of my own and others, in the area of categorical
data analysis. Some advances involve completely new
ideas, whereas others represent either the resurrection
or recycling of old ideas.

The independent rediscovery of what really are old
ideas is more common now, because the literature is so
extensive that no one could know every idea in it. But
not all ideas that have roots in the past are the same
as they were when originally proposed. I call an idea
recycled if it was developed long ago in its basic form,
but has been put in the context of modern theory and
methods. In applied statistics, recycled ideas are put
in a more general context than the original idea; they
are put in a sound statistical framework, often using
maximum likelihood estimation or Bayesian methods;
and they are implemented in a computer program
that makes their application feasible for the typical
researcher. Later, I will discuss the partitioning of
chi-square in contingency tables, which is both a good
old idea and a good idea for recycling.

8.1. Balance of Emphasis

in Applied Statistics

Broad trends in the development of applied statistics
can be understood most easily by contemplating the
rise and fall of emphasis on its three main components:
description, exploration, and inference. The primary
question addressed by description is, “What’s there?”;
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its fundamental purpose is to summarize information,
either numerically or graphically. Exploration deals
with hypothesis generation and answers the question,
“What might the data mean?” Inference is intended
to settle the matter as much as possible; hypothesis
testing, confidence intervals, prediction, and related
methods respond to the desire to quantify the amount
of evidence in the data. The evolution of mathematics,
probability, statistics, and computational methods has
led to changes in the emphasis given to description,
exploration, and inference.

Many years ago, before the field of applied statistics
existed, people primarily made qualitative descrip-
tions and used informal (or no) inference. Gradually,
the need for quantitative description was recognized,
but inference was still informal. Eventually, statis-
tical theory began to develop, and formal inference
was possible. Unfortunately, formal inference began
to monopolize the field, either replacing or dominating
the descriptive function.

Only recently have we seen a move toward the bal-
ancing of description and inference, an emphasis on
hypothesis generation as well as hypothesis testing,
and the emergence of exploration as a primary purpose
of applied statistics. For too long, hypothesis genera-
tion was ignored, not only in statistics courses but also
more generally in methodology courses. Some consid-
ered it too hard to formalize these methods, or perhaps
impossible because there was too much of the “human
element” involved. Others (mistakenly) considered it
unnecessary because hypotheses seemed so simple and
obvious, such as “Treatment A has the same effect as
Treatment B.” Many students have thereby erroneously
inferred that hypothesis generation is less important
than hypothesis testing.

Luckily, exploratory methods are now in vogue,
probably because they were advocated by John Tukey,
who was respected by the “tough-minded” statistical
theorists. Exploratory methods will not usually gener-
ate hypotheses by themselves, but they certainly help
in the process by highlighting important features of
the data.

Although the best-known exploratory methods deal
with quantitative variables, some progress has been
made for analyzing qualitative data. Correspondence
analysis is fast becoming a popular technique in this
area; it is a good example of an old idea that has been
resurrected and recycled with additions such as graph-
ical representation of the results. The technique was
first proposed by, among others, R. A. Fisher (1930),
and is actually just canonical correlation of frequen-
cies in a two-way cross-tabulation. The correspond-
ing inferential techniques using maximum likelihood

estimation have recently been developed by Leo
Goodman (1978).

Graphical methods for quantitative variables have
become more widely known and used in the past
few years, but most of those analyzing categorical
data have had few tools to work with. That situation
is changing, and many promising new methods are
being developed. The state of the art is demonstrated
in the excellent new book of graphical methods for
categorical data by Friendly (2000).

8.2. Mathematics Versus

Data Analysis Focus

The cause of the conflict between hypothesis gen-
eration and hypothesis testing is intriguing. It arose
primarily because of a difference in focus between
mathematical statisticians and data analysts. Statisti-
cians typically want to get exactly the right answer,
even if it is not the answer to the right question.
Data analysts typically do not care if the answer is
an approximate one, as long as it is an answer to
the right question. This caricature might be a slight
exaggeration, but not by much.

Theoretical statisticians are basically mathemati-
cians; they place a high value on exactness. Data ana-
lysts are guided by research questions to be answered
as well as possible, regardless of whether or not the
answers are exact. Data analysts often develop ad hoc
methods to attack important problems for which no
methods based on statistical theory exist. Statisticians,
repelled by the ad hoc nature of these methods, either
dismiss them or try to develop and apply appropriate
statistical theory. Thus, statisticians and data ana-
lysts sometimes differ in their method of approach
to a problem, as well as in what they consider to be
acceptable criteria for a satisfactory solution.

In architecture, “form follows function” was once
the rule. But too often, form replaced or superceded
function, so buildings looked interesting but did not
work. In statistics, too often sophisticated mathematics
replaces (instead of building on) thoughtful conceptu-
alization. Happily, at least in some areas, there is a call
to strike a balance between the goals of answering the
right question and being rigorous (Wilkinson & Task
Force on Statistical Inference, 1999). In the area of
categorical data, partitioning of chi-square has practi-
cally disappeared, even though the usual hierarchical
log-linear models cannot replace its function.

As we will see in some detail in the discussion
of partitioning chi-square and nonstandard log-linear
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models, current statistical methodology is moving
toward allowing almost everyone to be satisfied: The
right questions can be answered, and they can be
answered in a sufficiently rigorous way to please most
statisticians.

8.3. Realism, Complexity,

Computability, and Generality

The past three decades have seen monumental changes
in the realism of statistical models. Among the realities
that can now be accommodated are the following:

• Data are often missing.
• Measurements almost always are made with

error, and many constructs in psychology are
latent variables, which can only be imperfectly
observed.

• In many studies, people assign themselves to
groups or drop out of the study.

• People live and work in groups, such as families,
neighborhoods, and classrooms, necessitating
multilevel models.

• The normal distribution does not adequately
approximate the behavior of all continuous
variables.

• Linear models often need to allow curves or inter-
actions among predictors, and sometimes even
this is not enough to avoid nonlinear statistical
models.

• Important substantive hypotheses cannot always
be expressed merely in terms of which main
effects or interactions are significant.

Of necessity, greater realism leads to greater com-
plexity of the theoretical and computational methods
used for analysis. Unfortunately, greater complex-
ity often leads to incomprehensible or uninterpretable
results. We do not always know whether our results are
correct, because sometimes there is no easy way to ask
whether they seem reasonable.

Complex statistical models have existed in their
theoretical form for quite a long time. Many good ideas
languished for decades because they were impractical
when first proposed. For example, Fisher invented
maximum likelihood estimation (including the case
with missing data) in the 1920s, and Lawley devel-
oped the theory of maximum likelihood factor analysis
in the 1940s, but until computer power and numer-
ical methods became available in the 1960s, no one
could make use of this knowledge. Not only has

rapid progress in the development of computer power
made some of these methods practical, but, interest-
ingly enough, it has also spawned many new methods
(such as exact methods, data mining, the bootstrap
and Monte Carlo techniques) that no one even con-
sidered until recently. When the new tools became
available, people suddenly discovered many uses
for them.

The initial breakthrough was the ability to solve
a large number of linear equations simultaneously,
so that multiple regression with large numbers of
variables was simple to do. Then, techniques for
finding eigenvalues and eigenvectors made many
multivariate techniques possible. Techniques for
solving nonlinear systems have been greatly improved.
These evolved in part from the iterative solution to
linear systems and, in part, from specialized methods
such as the EM algorithm. Methods for numerical
integration have made many Bayesian techniques prac-
tical. Finally, Monte Carlo methods, the bootstrap
(and related resampling techniques), and other com-
putational techniques have made it possible to test
hypotheses without making assumptions about the
underlying probability distribution involved, and to
see how robust the usual techniques are when their
assumptions are violated.

One previously mentioned disadvantage of compu-
tational progress is that many researchers have lost the
close contact with their data that was the hallmark of
previous work, because it is often difficult to know
whether these complicated techniques are giving rea-
sonable results. On the other hand, it is becoming easier
to work with more general statistical models that can be
used to analyze a variety of types of data from different
research designs that used to require separate methods
of analysis. One simple example is the use of multi-
ple regression to do t-tests, ANOVA, ANCOVA, and
so on.

Many current ideas about the analysis of categorical
data have their origins in developments made decades
ago. Some of these old ideas can be used as they are,
“right out of the box,” so to speak. Others have needed
some “recycling,” with changes to put them within the
context of modern statistical theory and methodology.
Yet other ideas are completely new, often represent-
ing a major extension or generalization of previous
research. The rest of this chapter has two purposes:
First, I will outline some of the major areas in which
progress has been made, and illustrate these ideas and
trends in applied statistics using some examples from
research on categorical data analysis. Second, I will
provide a context in which the other chapters in this
section can be placed.
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8.4. Partitioning Chi-Square

Partitioning of chi-square is an old idea about testing
very specific hypotheses for frequency data, rather than
just testing a general hypothesis such as independence
of rows and columns in a contingency table. As with
many ideas in statistics, the idea for partitioning chi-
square can be traced to Fisher. The simplest example
is found in his book Statistical Methods for Research
Workers (Fisher, 1930). Fisher described data from a
genetics experiment in which corn was classified as
either starchy or sugary, and as to whether the base leaf
was either green or white. According to one genetic
theory, the frequencies in the four cells of the contin-
gency table should be in a 9:3:3:1 ratio. A chi-square
test showed that the frequencies were not as the theory
predicted, so what should be concluded? Obviously,
the theory is wrong, but can more be said?

Fisher (1930) noted that the theory being tested
could be wrong in any of its three assumptions: The
expected 3:1 ratio of starchy to sugary might not hold,
the expected 3:1 ratio of green to white might not hold,
or the traits might not be independent. To test these
assumptions, he partitioned the total chi-square with
3 degrees of freedom into three components, each with
1 degree of freedom, to test these three assumptions.
He found that the 3:1 ratio held for each factor but that
they were not independent.

Fisher’s method did not catch on, perhaps because
he discussed only genetics examples, and perhaps
because he did not indicate a general method for
the partitioning (although he did show how to test
linear combinations of cell frequencies). In discussing
another example, Fisher (1930) did, however, point
to the need for subject matter theory to dictate which
hypothesis tests would be performed:

Mathematically the subdivision may be carried out in
more than one way, but the only way which appears to
be of biological interest is that which separates the parts
due to inequality of the allelomorphs of the three factors,
and the three possible linkage connections. (p. 93)

A simple example using a two-way table will show
how partitioning chi-square can allow researchers
to address the questions they consider important,
rather than being limited to the usual global hypoth-
esis tests. Consider the cross-tabulation shown in
Table 8.1, adapted from Goleman (1985), which
shows how well breast cancer patients with various
psychological attitudes survive 10 years after treat-
ment. Almost every researcher would know to do a
test of independence for the data in this table; the

Table 8.1 Ten-Year Survival of Breast Cancer
Patients With Various Psychological
Attitudes

Response

Attitude Alive Dead

Denial 5 5
Fighting 7 3
Stoic 8 24
Helpless 1 4

NOTE: LR = 7.95; P = 8.01. LR is the likelihood ratio goodness-of-fit
statistic; P is the Pearson goodness-of-fit statistic. Each test has 3 degrees
of freedom.

familiar Pearson chi-square statistic is 8.01 with 3
degrees of freedom. Here, p < .05, so there is
a relationship between the two variables: Attitude
is related to survival. From the traditional point
of view, that is that; there is nothing else to say.
The issue of where the relationship lies is con-
sidered in only a few textbooks, most of which
were written before 1980. (A pleasant exception is
Wickens, 1989.)

In this example, the researchers had a theory that
active responses to cancer, such as fighting and denial,
would be beneficial compared to passive responses
such as stoicism and helplessness. They were not
sure whether patients with different active modes of
response would differ in survival rate, or whether
patients with different passive modes would have
different survival rates.

The theory immediately suggests that instead of a
single overall test of independence, three tests should
be done. The first should test whether fighters and
deniers differ, the second whether stoics and the help-
less differ, and the third whether the active responders
differ from the passive responders. Each of these tests
is displayed in Table 8.2, along with both Pearson and
likelihood ratio chi-square tests. (The likelihood ratio
chi-square, denoted LR in the tables here, differs little
from the usual Pearson chi-square, but we will see
that it is more useful for what we will do here. The
actual formula appears below in the section on log-
linear models.) Each of the three tests has 1 degree
of freedom, and the results are as the researchers had
hypothesized: Fighters and deniers do not differ in
survival rate, nor do stoics and the helpless differ, but
those with active modes of responding survive better
than those with passive modes. These results would
never have been tested without the availability of a
technique such as partitioning chi-square.

Notice that the likelihood ratio statistics for the three
tests of the specific hypotheses sum to the value of the
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Table 8.2 Partition of Chi-Square for Attitude and
Cancer Survival Data

Response

Attitude Alive Dead

Denial 5 5
Fighting 7 3

(LR = .84, P = .83.)

Response

Attitude Alive Dead

Stoic 8 24
Helpless 1 4

(LR = .06, P = .06.)

Response

Attitude Alive Dead

Denial + Fighting 12 8
Stoic + Helpless 9 28

(LR = 7.05, P = 7.10.)
NOTE: LR is the likelihood ratio goodness-of-fit statistic, and P is the
Pearson goodness-of-fit statistic for the 2 × 2 table that precedes them.
Each test has 1 degree of freedom.

test of the overall hypothesis of independence. That is,
the overall chi-square has been partitioned into three
components, each of which tests a specific hypothesis
about comparisons among the groups. (The Pearson
test statistics, although not partitioning exactly, still
are valid tests of the same hypotheses.)

Although traditionally applied to studies with
only two variables, partitioning of chi-square can
be extended to test hypotheses in tables involving
three or more variables; some examples are shown in
Rindskopf (1990). However, the method also has its
limitations because not all hypotheses one might wish
to test can be specified using partitioning. Further-
more, several possible problems can arise regarding
the proper use of partitioning; most important are
whether post hoc use is justifiable and what should
be done to control the Type I error rate of post hoc
partitioned tests.

Partitioning chi-square is a simple technique; it
can be taught in a short period of time to anyone
familiar with the usual test of independence in a con-
tingency table. Software is readily available: Everyone
has access to a program that will produce chi-square
statistics. Most important, it allows researchers to test
hypotheses that are important to them, rather than
hypotheses that statisticians tell them to test. Parti-
tioning chi-square could be called a context-dependent
statistical technique because the exact way it is

implemented in the analysis of a specific data set
depends on the context in which it is used. Statis-
ticians can show some of the possibilities for the
technique, but the research hypotheses suggested by
the subject matter determine how the technique is used
in any specific case. The importance of testing such
focused contrasts is discussed for continuous variables
by Aiken and West (1991) and Rosenthal and Rosnow
(1985), among others, and for categorical variables by
Rindskopf (1990, 1999).

8.5. Log-Linear and Logit Models

The development of statistical methods for categori-
cal data has long lagged behind the development of
techniques for continuous data. When faced with
multivariate data sets consisting of continuous data,
researchers could choose from a variety of tools,
including regression, principal components and factor
analysis, discriminant analysis, cluster analysis, and
canonical correlation. When faced with multivariate
categorical data, most researchers could do little but
collapse over all but two variables and use the usual
test of independence on these remaining two variables.
The end result would be a set of tests of independence
for all pairs of variables.

This methodology is inadequate for many reasons.
Most important is the problem that the overall relation-
ship between two variables, ignoring (i.e., collapsing
over) other variables, can be very different from the
relationship between those two variables at each level
of other variables (i.e., conditional on the others). By
now, most researchers have seen examples of this in the
form of Simpson’s paradox. For instance, in a random
sample of people, there is a strong relationship between
whether they get medical treatment and whether they
die: Those getting medical treatment are more likely
to die. Of course, we have collapsed over an impor-
tant variable: Were these people seriously ill? If we
look at those who are seriously ill, the relationship is
the reverse of the overall relationship: Those who are
treated are less likely to die.

8.5.1. Log-Linear Models

To deal with the problem of analyzing multivariate
categorical data, we needed new approaches; the solu-
tion came with the development of log-linear models.
From one viewpoint, there is a strong analogy between
log-linear models and analysis of variance (ANOVA).
The main emphasis in ANOVA is testing hypotheses
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about main effects and interactions. The same is true of
log-linear models, but the dependent variable for log-
linear models is the logarithm of the cell frequency.
For example, consider a situation with three categor-
ical variables A, B, and C, with levels denoted by
subscripts i, j , and k, respectively. A log-linear model
with only main effects would be represented as

ln(Fijk) = µ + ai + bj + ck,

where Fijk is the expected cell frequency for A = i,
B = j , and C = k, and ln(.) means the natural loga-
rithm. Except for the logarithm, the form is identical
to an ANOVA model. Because this model contains
no interaction terms, which would allow relationships
among variables, this is the model for complete inde-
pendence among the three variables. The model is
usually specified by notation such as [A] [B] [C],
{A, B, C}, or simply A, B, C to indicate which terms
are included.

Just as with the model for independence in two-way
tables, expected frequencies can be calculated for this
model. These can then be used to assess whether the
model is consistent with the data by comparing the
expected with the observed frequencies. This can be
done using the usual Pearson goodness-of-fit statistic,

X2 =
∑

t

{(Ot − Et)
2/Et },

where t has been used to index the cells of the cross-
tabulated data, O represents the observed frequency,
and E represents the expected frequency in a cell. The
symbol

∑
t means to sum over all the cells of the

table. (The use of a single subscript t makes it possible
to use this formula to easily represent tables of any
dimension and also data sets that are not rectangular.)
Conceptually, for each cell of the table, a number is
calculated that measures how close the observed cell
frequency is to the value that would be expected if the
model were true. These numbers are then summed to
give X2. If the model is true, we would anticipate the
value of X2 to be small, but if the model is not true,
we would anticipate a large value of X2.

As discussed in the section on partitioning chi-
square, an alternative fit statistic is the likelihood-ratio
statistic,

G2 = 2
∑

t

Ot ln(Ot/Et).

Although it is not so obvious why this is a rea-
sonable measure of fit of a model to the data, notice
what would happen if the model fit the data perfectly:
Each observed frequency would equal the expected
frequency, so Ot/Et would equal 1 for each cell.

Because the logarithm of 1 is 0, the value of G2 would
be zero, indicating perfect fit.

How large a value of X2 or G2 is necessary to reject a
model as being inadequate to account for the observed
pattern of frequencies? As with any statistic that
follows a chi-square distribution, the number of
degrees of freedom must be counted to find the critical
value in a table. The total number of degrees of freedom
in the data is the number of cells in the cross-tabulated
table. The number of parameters in the model is sub-
tracted from this total to give the number of degrees of
freedom for the goodness-of-fit statistic.

Finding the number of parameters in the model is
easy, because it is the same as in ANOVA models.
There is 1 degree of freedom for the constant (inter-
cept). For each main effect, the number of degrees of
freedom is 1 less than the number of levels of that
variable. For interactions (discussed further below),
multiply the degrees of freedom for each variable
involved in the interaction.

For example, consider a table with two variables,
and suppose that one variable has three levels, the
other four. The table thus has 3 × 4 = 12 cells.
The log-linear model corresponding to the usual test
of independence would have an intercept, 3 − 1 = 2
parameters for one main effect, and 4−1 = 3 parame-
ters for the other main effect. In all, six parameters are
estimated, so the goodness-of-fit test has 12 − 6 = 6
degrees of freedom. (Notice that the usual rule for test-
ing independence would also give (2)(3) = 6 degrees
of freedom.)

As another example, consider the independence
model for the three-way table described above, where
there are three, four, and five levels of variables A, B,
and C, respectively. Then there would be 1 + 2 + 3 +
4 = 10 parameters in the model, and 3 × 4 × 5 = 60
cells in the table. The goodness-of-fit test would have
60 − 10 = 50 degrees of freedom. (Notice that trying
to extend the usual rule would fail here: (2)(3)(4) =
24, which is incorrect.)

Of course, models of complete independence are not
only too simple to explain most multivariate data, but
researchers would be devastated if they did fit; after all,
no one examines variables because they think that all of
them will be unrelated to each other. Instead, we expect
that there will be relationships, and we want to find the
simplest model that accounts for these relationships.
To do this, we start adding to the model what would
be called interactions in the context of ANOVA.

To illustrate the general procedure, we will rean-
alyze a famous data set on ulcer and blood type,
originally reported in Woolf (1955) and reproduced
in Table 8.3. This data set has three variables: city
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Table 8.3 Relationship Between Ulcer and Blood
Type

Ulcer?

City Blood Type Yes No % Ulcer

London O 911 4,578 16.6
A 579 4,219 12.1

Manchester O 361 4,532 7.4
A 246 3,775 6.1

Newcastle O 396 6,598 5.7
A 219 5,261 4.0

Table 8.4 Fit of Log-Linear Models to Ulcer and
Blood Type Data

Model G2 df p

U, B, C 754.47 7 .000
BU, C 700.97 6 .000
CU, B 83.59 5 .000
BC, U 737.74 5 .000
BU, BC 684.25 4 .000
BU, CU 30.10 4 .000
BC, CU 66.87 3 .000
BC, BU, CU 2.96 2 .227
BCU 0.0 0 1

NOTE: U = ulcer; B = blood type; C = city.

(London, Manchester, and Newcastle), blood type
(only O and A are included here), and ulcer (whether or
not the person has an ulcer). The table has 3×2 ×2 =
12 cells. Table 8.4 contains the fit of several log-linear
models for this data set. A common abbreviated nota-
tion is used: If an interaction is listed, then all lower
order interactions and main effects of those variables
are also in the model. For example, if an AB term is
in the model (indicating that an A × B interaction is
included), then A and B main effects are also assumed
to be present. This is called the hierarchy principle;
most applications of log-linear models follow this
principle.

As can be seen in Table 8.4, no simple model fits the
data. The last model, called the saturated model, has no
degrees of freedom left to test the model: It fits the data
exactly because it uses all of the information in each
cell. Because this model represents no simplification
over the frequencies themselves, one would hope that
other models would fit the data. In this case, the model
[BC] [BU] [CU], with all main effects and three two-
way relationships (BC, BU, and CU) but no three-way
relationship, fits well. So blood type is related to city,
blood type is related to ulcers, and city is related to
ulcers, but the relationship between any two variables
is the same at each level of the third variable (no three-
way relationship).

Researchers often have one or more ordered
variables (e.g., no symptoms, mild symptoms, severe
symptoms). The most frequently used strategy in the
past has been to treat ordered variables as if they
were continuous. Now there are many methods for
more adequately analyzing such data; these methods
are discussed by Johnson and Albert (Chapter 9, this
volume).

8.5.2. Logit Models

Frequently, a researcher considers one variable to
be an outcome variable, and the others to be control or
predictor variables. For this data set, ulcer (U ) might be
considered an outcome, blood type (B) a predictor, and
city (C) a control or possible moderator of the effect of
blood type on ulcer. In the usual ANOVA terminology,
we would be interested in the main effect of blood type
(on likelihood of ulcer), the main effect of city, and
the interaction between blood type and city. The most
obvious approach would be to model the probability
of ulcer as a function of blood type and city. But using
probability as an outcome is problematic: It can only
vary between 0 and 1, whereas in ANOVA models, the
outcome variable can have any value. The solution is to
use the logit of the probability as the outcome, where
the logit is defined as the logarithm of the odds:

logit(p) = ln{p/(1 − p)}.

The logit can take on any real value and is therefore
appropriate as an outcome variable.

Although logit models can be represented in differ-
ent ways, one useful approach is to note a correspon-
dence between logit models and log-linear models:
Each logit model is equivalent to a log-linear model
(but not all log-linear models are logit models). To
understand the equivalence, consider each logit model
as if it were a regression model. In regression models,
no constraint is placed on relationships among the
predictors; the predictors might be independent, but
more likely they are related. Similarly, the log-linear
version of a logit model contains (i.e., allows) all
possible relationships among predictor variables. This
is done because we are not concerned with relation-
ships among predictors but with relationships between
predictors and the outcome variable.

In the ulcer data, this means that any logit model
would include a BC term (and, because of the hier-
archy principle, B and C terms by implication).
Furthermore, all logit models include a term involv-
ing the dependent variable U . Any log-linear model
that includes these components is a logit model also.



144 • SECTION III / MODELS FOR CATEGORICAL DATA

For example, the log-linear model [BC] [BU] can be
interpreted as a logit model in which blood type is
related to ulcers (BU), but city is not (no CU term).
Note that BU is an interaction in a log-linear model
but a main effect (of B on U ) in the corresponding
logit model. Furthermore, there is no interaction (BCU
term), so the effect of blood type on ulcers is the same
in each city.

The log-linear model that actually fit the data was
[BC] [BU] [CU]. This can be interpreted as a logit
model in which blood type affects ulcers and city
affects ulcers, but there is no interaction between the
blood type and city effects on ulcers. (As an example
of a log-linear model that is not a logit model, consider
the independence model: [B][C][U ]. Because there is
no BC term, this is not a logit model.)

8.5.3. Logistic Regression

In some cases, the outcome variable is dichotomous,
but one or more predictors are continuous. In this case,
an analysis is desired that is similar to multiple regres-
sion, but that takes into account the categorical nature
of the dependent variable. Logistic regression is such
a procedure; the outcome is the logit of the probability
of the outcome event occurring. That is, the model is
the same as a logit model, except that one or more
predictors are continuous.

Because one or more predictors are continuous, the
data are not easily summarized in a contingency table;
such a table would have a large number of cells. Many
of the cells would be empty, and few would contain
more than one observation. This means that the G2

and X2 statistics are not good approximations to the
chi-square distribution and cannot be used to assess
the goodness of fit of the model. The utility of the pre-
dictor variables must be assessed by examining either
the ratio of parameters to their standard errors (com-
monly denoted as t or z in computer output), or the
difference in G2 statistics for models with and without
a set of parameters. The first method is similar to what
is done in testing individual parameters in a regression
model; the second method is comparable to testing the
increase in R2 when a set of predictors is added to a
regression model.

As with log-linear models, extensions of logit and
logistic regression models allow polytomous (more
than two-category) dependent variables. Some poly-
tomous variables are unordered (e.g., race), whereas
others are ordered; both types of situations are handled
by more complex versions of the models discussed
previously.

8.6. Nonstandard

Log-Linear and Logit Models

Partitioning of chi-square is a simple technique to
learn and use, and it can go a long way toward test-
ing hypotheses that are important to researchers. But
because it cannot test all important hypotheses, a more
general method is needed.

To provide a context, consider the data on admis-
sions to graduate school at UC Berkeley that have
become well publicized (see, e.g., Freedman, Pisani, &
Purves, 1978, pp. 12–15). For six major areas of study,
Table 8.5 shows data on what proportion of each gen-
der were admitted in each of six major areas of study.
The three variables will be called Major, Gender, and
Admission (or M , G, and A for brevity).

We would presume that there might be a relationship
between gender and major (a G × M effect) because
males and females might tend to apply to different
major areas at different rates. We would also pre-
sume that there might be a relationship between major
area and admissions (an M × A effect) because some
major areas get many more applicants per opening than
others do.

If there is no bias in admissions, however, we
would hope to find no relationship between gender
and admission in any major area. (We oversimplify
here and ignore the possibility of other confound-
ing variables, such as prior achievement or aptitude.)
The usual log-linear model described by this situation
would be specified as [GM] [MA], to show inclusion
of both G × M and M × A effects in the model.
If there is bias, the additional term (GA) would be
added to the model to show that gender is related to
admissions.

If there is bias, and if that bias differs across
major areas, then there would be a three-way
Gender × Major × Admission interaction (GMA) in
the model. This is the saturated log-linear model, with
zero degrees of freedom; it will fit the data exactly but
provides no simple interpretation of the data.

In fact, this occurs for the Berkeley data: The model
of no three-way interaction does not fit the data and
is rejected, leaving the conclusion that there is bias,
and it differs across major areas. For those who limit
themselves to the usual hierarchical log-linear models,
there is not much else to say here, but inspection of the
data in Table 8.5 shows something very interesting.
For major area A, it appears that males are admitted
at a lower rate than females. For each of the other
major areas, there is no apparent difference in rates of
admission.
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Table 8.5 Graduate Admissions Data at UC
Berkeley

Major Area Gender % Admitted

A M 62
F 82

B M 63
F 68

C M 37
F 34

D M 33
F 35

E M 28
F 24

F M 6
F 7

This description does not correspond to any standard
log-linear model; therefore, a nonstandard log-linear
model is needed. (In this instance, we could use par-
titioning chi-square, but that will not be possible for
all nonstandard models.) A model of no bias in major
areas B through F, but possible bias in major area A, has
a likelihood ratio chi-square of 2.33 with 5 degrees of
freedom, and thus fits the data quite well. The simplest
way to represent the model is as a logit model, with
admission (A) as the dependent variable. The model
matrix (sometimes called a design matrix) for the logit
form of the model is presented as follows:



1 1 0 0 0 0 1
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0
1 0 0 0 1 0 0
1 0 0 0 0 1 0
1 0 0 0 0 1 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0




.

The rows of this matrix correspond to the 12 groups
in the study, as shown in Table 8.5 (i.e., six major areas
by two genders). Those who are used to looking at such
matrices will notice that the first column represents
the intercept term, and the next five columns represent
the main effect of major area. There is no column
for the main effect of gender, but there is one column
for the interaction of gender and major. Normally,
there would be five such columns; they would be the
product of the gender effect with each of the five major
area effects. Here, however, we are including such an

interaction only for major area A. The omitted main
effect for gender and the four omitted interaction terms
produce the 5 degrees of freedom mentioned above
for testing the model. Of course, the hypothesis tested
here is post hoc, and the results must be considered
tentative.

Nonstandard log-linear models illustrate one of
the main trends in applied statistics discussed previ-
ously in the section on partitioning chi-square, the
testing of context-dependent models. Nonstandard
models also illustrate another trend, the increasing
generality of statistical models. They provide a frame-
work that includes as special cases many situations
that were previously dealt with separately by other
researchers. Most obviously, the usual hierarchical
log-linear models and partitioning chi-square can be
put in this framework. In addition, the nonstandard
log-linear approach includes models for data with
structural zeros, incomplete designs, models for sym-
metry and quasi-symmetry, models with linear restric-
tions on parameters, polynomial models, and many of
Goodman’s models for association with ordered
variables (details can be found in Rindskopf, 1990).
One general framework and one computer program
can deal with this wide variety of problems.

8.7. Methods for Rates

(Survival Analysis)

Data from studies with dichotomous outcome variables
are not always best analyzed using logit or log-linear
models. Some outcomes, such as marriage, divorce,
contraction of an illness, or job termination, occur after
different lengths of time for different people; these
time or duration differences should be used in the data
analysis. Furthermore, the event does not occur for
every person in the study. If we were to try using time
until occurrence of the event as an outcome variable,
what length of time should be used when the event does
not occur (at least during the period during which the
study is conducted)? These issues are dealt with by a set
of statistical procedures known collectively as survival
analysis. This topic is treated in detail by Willett and
Singer (Chapter 11, this volume); here I discuss one
particular analytic method for survival analysis that is
related to log-linear models.

The example I will use is a well-known data set to
those doing survival analysis (Laird & Olivier, 1981).
It is also a small enough data set to analyze by hand.
Table 8.6 lists the number of deaths for old and young
males who had either aortic or mitral heart valve
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Table 8.6 Data on Heart Valve Replacement
Operations

Type Age Deaths Exposure Death Rate

A Y 4 1,259 3.177
M Y 1 2,082 0.480
A O 7 1,417 4.940
M O 9 1,647 5.464

NOTE: For type of operation, A = aortic, M = mitral; for age, Y =
young, O = old; exposure is in patient-months; death rate (= 1, 000 ×
Deaths/Exposure) is per 1,000 patient-months.

replacements. We could, of course, list the number
of people in each group who did not die, and fit a logit
model for the probability of dying as a function of age
and type of valve. But this would ignore the fact that
we are able to observe some people for longer periods
of time than others. Furthermore, even if the same
proportion of people eventually died in each group,
those in some groups may live longer than those in
other groups.

To deal with these problems, instead of looking at
the number of deaths, we will calculate the death rate
per unit of time that people are observed. To illustrate,
if five people are observed for 2, 3, 3, 5, and 7 months,
the total period of observation is 20 months. If two
of these people die during our study, the death rate
is 2/20 = .10 deaths per person-month. Table 8.6
lists 1,000 times the death rate for each of the four
groups. For example, the young subjects who received
aortic valves have a death rate of 3.177 per 1,000
person-months.

Symbolically, the expected rate can be represented
as Fi/zi , where Fi is the expected number of deaths in
group i, and zi is the total exposure time of all people
in group i. To extend the log-linear model so that rates
instead of frequencies are modeled, we can write

ln(Fi/zi) = b0 + b1X1 + b2X2 + . . . ,

where X1, X2, and so forth are predictor variables,
and b0, b1, b2, and so forth are the parameters of the
model (like regression coefficients). The only differ-
ence between this model and the usual log-linear model
is the denominator zi .

Fitting the model with main effects of age and type
of operation to the heart valve data, we find that the
likelihood ratio chi-square is 3.223 with 1 degree of
freedom. Although this model fits well, it can be sim-
plified; tests of the statistical significance of the two
parameters indicate that only the effect of age, not
type of operation, is significantly different from zero.
Fitting a model with only an age main effect gives

a likelihood ratio chi-square of 3.790 with 2 degrees
of freedom. This model also fits well. Examining the
difference in the fit of the two models (3.790−3.223 =
0.567, with 2 − 1 = 1 degree of freedom) shows that
the second model fits no worse than the first model;
the second is therefore preferred because it is more
parsimonious.

Standard model tests would stop at this point, but
examination of the death rates leads to consideration of
another model. The death rates for three of the groups
seem similar; only the young subjects who received
mitral valves seem to have a lower death rate. Using
nonstandard log-linear models, we can test the hypoth-
esis that the other three groups have equal death rates.
The likelihood ratio chi-square for this model is .909
with 2 degrees of freedom, which provides support for
this model. (Distinguishing between this model and the
model with only the main effect of age would require
a greater amount of data.)

8.8. Latent Class Analysis

Latent class analysis provides an example of a
recycled technique that is bringing a radical change in
applied statistics for categorical data. Most quantita-
tive psychologists are acquainted with factor analysis;
in many ways, latent class analysis (LCA) is the
categorical variable analog of factor analysis. As with
factor analysis, LCA models presume that relation-
ships among a number of observed variables can be
explained by a smaller number of unobserved or latent
variables. In these models, the variables we observe
are presumed to be measured with error; we would
rather observe the latent variable directly but cannot
do so.

LCA is closely related to an area with which most
researchers are at least somewhat familiar—genetic
models for discrete traits such as blood type, eye
color, and certain diseases. These genetic models pre-
sume that observed characteristics (phenotypes) are
determined by unobserved characteristics (genotypes).

An interesting psychological example arises in con-
sidering Piaget’s theories. In a group of children, there
should be two types: Those who can conserve number
and those who cannot. If we were to administer to
children a four-item test to assess conservation and if
there were no errors of responding, then children who
can conserve should get each item right, but those who
cannot should get each item wrong. According to the
theory, no one should get some items right and others
wrong.
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Of course, no matter how well we write items and
how well we develop scoring schemes to assess reason-
ing behind answers, through sheer perversity children
will not accommodate us by responding perfectly.
Would this mean that Piaget’s theory was wrong? Or
is it possible that a model for two kinds of children
may still be right if we allow errors of responding?

Latent class models allow us to test such hypothe-
ses. The simplest such model would include the two
kinds (i.e., classes) of children specified by the original
model. One type of child would be those who can
conserve, and the other type would be children who
cannot conserve. These types would be the two latent
classes. For any item testing conservation, one type of
child should have a high probability (though not neces-
sarily perfect) of answering the item correctly, whereas
the other type of child should have a low probability
(though not necessarily zero) of answering correctly.
If we have enough items (four in this case), the theory
that there are only two types of children can be tested.

If this simple model is wrong, we can test other
models, such as those that include a transition class
for children who are “on their way” toward acquir-
ing conservation. More complicated models can test
theories about the sequence of acquisition of vari-
ous types of conservation. Rindskopf (1987) discusses
a variety of such models in the context of develop-
mental psychology, as well as the work of others in
this area. Magidson and Vermunt’s chapter in this
volume (Chapter 10) illustrates many extensions of
the basic latent class model. The original articles that
put LCA on a firm statistical basis are reprinted in
Goodman (1978).

Latent class models illustrate a variety of trends in
data analysis. First, they involve latent variables and
therefore are more realistic than models that do not.
Consequently, they (like factor analysis models) can
be complex computationally and often involve various
subtleties not encountered in most models that involve
only observed variables.

Second, many latent class models are context depen-
dent. This is especially true for those models of
learning and development that hypothesize specific
sequences in which skills should develop. Many spe-
cial cases of latent class models can be devised to test
specific theories and hypotheses.

Finally, latent class models also illustrate the trend
toward generality in statistical models because many
apparently different models fit within the latent class
framework. One example is a model for a dichoto-
mous outcome variable with error of classification;
such a model can be tested using latent class analysis.
However, the next example, which concerns missing

categorical data, demonstrates that there are even more
general frameworks that include latent class models as
special cases.

8.9. Missing Data Problems

Missing data is a problem that plagues most
researchers, and yet only recently have computational
and theoretical advances enabled such problems to
be treated appropriately. For categorical data, little
progress was made for decades after Fisher (1930)
used maximum likelihood to estimate the parameter
of a genetic model with missing data.

We can now realistically treat many missing data
problems, at some cost in computational complexity.
The approach I will use as an illustration results in a
very general framework for analysis with categorical
missing data, into which many special cases fit.

The general principles are very simple, although
it is not always obvious how a particular case fits
within the framework. First, one constructs a model
expressing the relationships that would be observed if
there were no missing data. The usual type of linear or
log-linear model can often be used to represent these
relationships. Then, another part of the model speci-
fies how the hypothetical complete data are collapsed
(i.e., summed) to form the observed data.

To see how this framework is implemented, consider
the following example: A study has been done in which
an ordered variable has been more finely classified for
some subjects than others, perhaps because of cost con-
siderations. In a study of psychotherapy, some patients
might be rated as either improved or not, whereas
others might have each of those categories more finely
divided, such as much improved or slightly improved;
and stable, slightly worse, or much worse.

Figure 8.1 illustrates some hypothetical data for
such a study. In a real study, other variables would
be included such as predictors of improvement and
control variables, but for clarity, these are omitted from
the figure. The numbers in the cells indicate observed
frequencies; a question mark indicates that the fre-
quency is not observed. The five frequencies on the
left-hand side of the figure represent people who were
actually assessed on the 5-point scale. The numbers 18
and 10 are observed for people who are classified only
as either improved or not. Each of these two frequen-
cies is the sum of cells that we would like to observe
directly but cannot. We do not know how many of the
18 who were rated only as improved were really much
improved and how many were slightly improved.
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Figure 8.1 Data From a Coarsely Categorized
Variable Conceptualized as Incom-
pletely Observed Data
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A statistical model would be specified for the
complete data that would be observed if everyone
were measured on the more finely categorized variable.
The remaining part of the model would specify that
certain cells are not observed; only their sums, such
as those indicated in the figure, are observed. In
this case, the second part of the model would show
that for the second group of people, two unobserved
cells would be merged (i.e., summed) to create the
observed category “improved,” and three unobserved
cells would be collapsed to create the observed cate-
gory “not improved.” Researchers familiar with confir-
matory factor analysis and structural equation models
will probably guess (correctly) that some missing data
models have unidentified parameters, so the analysis
is sometimes complicated.

A wide variety of missing data cases can be ana-
lyzed using this framework. These include estimating
frequencies when some people are missing data on
some variables; fitting log-linear models when there
are missing data; fitting latent class models and, more
generally, models with fused cells (such as genet-
ics models); fitting latent class models when some
observed variables have missing data; fitting models
when some variables are more finely categorized than
others; and fitting models with various assumptions
about the missing data process. Some of the above
models were not previously conceptualized as missing
data problems, so it was not realized how many situa-
tions could be treated within one general framework.
Rindskopf (1992) describes these models in detail.

Even more general models for missing data can be
estimated using the Bayesian program BUGS (Spiegel-
halter, Thomas, & Best, 1999; Spiegelhalter, Thomas,
Best, & Gilks, 1996). BUGS was primarily developed
for Bayesian analysis with missing data, but it has
been applied to a wide variety of statistical models.
The categorical data models for which it has been
used include logistic regression, Poisson regression,
item response theory, latent class analysis, multilevel
(nested) models, and log-linear models.

One trend illustrated by this example is obviously
the move toward a comprehensive, general model
that includes many special cases. This approach also
requires numerical methods involving heavy com-
putation, especially for large problems. Even rela-
tively large problems can now be analyzed using a
microcomputer.

8.10. Summary and Implications

Categorical data analysis, like most of applied statis-
tics, has become more realistic, more general,
more comprehensive, and more complex. In fact,
there are models even more general than some dis-
cussed here. For example, generalized linear models
(McCullagh & Nelder, 1989) have been developed
that include regression, ANOVA, logistic regres-
sion, and log-linear models (among others) as special
cases. Computer hardware and software (e.g., BUGS,
Mplus, LEM, SPlus) that did not previously exist
have made many of these new methods possible, and
have stimulated the development of more statistical
methods.

Many other areas of recent research have expanded
the set of tools for analyzing categorical data. Some of
these are too specialized for discussion here (e.g., exact
methods, meta-analysis, and data-mining methods
such as CHAID, CART, and neural networks). Others
are covered in separate sections of this volume (e.g.,
multilevel models, longitudinal models, item response
theory, and structural equation models).

Researchers must also keep in mind that analysis
has implications for design; a badly designed study
cannot be rescued by a brilliant analysis. Complex
statistical methods require additional design consider-
ations beyond those encountered with more traditional
designs. In particular, latent variable models and
multilevel models cannot be used without a properly
designed study.

I hope that the examples presented here have pro-
vided a taste for the exciting new developments in



Chapter 8 / Trends in Categorical Data Analysis • 149

categorical data analysis. We have not only exciting
new methods but also exciting old methods; what could
be better?
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Chapter 9

Ordinal Regression Models

Valen E. Johnson

James H. Albert

9.1. Regression Models

for Ordinal Data

Ordinal data are the most frequently encountered
type of data in the social sciences. Survey data, in
which respondents are asked to characterize their
opinions on scales ranging from strongly disagree
to strongly agree, are a common example of such
data. For our purposes, the defining property of
ordinal data is that there exists a clear ordering
of the response categories but no underlying inter-
val scale between them. For example, it is gen-
erally reasonable to assume an ordering of the
form

strongly disagree < disagree < don’t know

< agree < strongly agree,

but it usually does not make sense to assign integer
values to these categories. Thus, statements of the
type

disagree− strongly disagree

= agree− don’t know

are not assumed to be valid.

AUTHORS’ NOTE: Much of the material in this chapter was adapted from Johnson, V. E. & Albert, J. H., Ordinal Data Modeling.
Copyright © 1999. Reprinted with permission from Springer-Verlag.

9.2. Ordinal Data

Via Latent Variables

The most natural way to view ordinal data is to assume
the existence of an underlying latent (unobserved)
variable associated with each response. Such variables
are often assumed to be drawn from a continuous dis-
tribution centered on a mean value that varies from
individual to individual. Often, this mean value is mod-
eled as linear function of the respondent’s covariate
vector.

To illustrate this concept, suppose that we are inter-
ested in estimating the effects of, say, SAT scores on
the performance of students in an introductory college
statistics course. Assuming that the course is graded
on an A to F scale, the latent variable approach to this
problem can be defined by assuming the existence of
four category cutoffs on the latent scale that separate
the observed values of the latent variables into the
observed grade categories. Also, because the response
categories are ordered, we must impose a correspond-
ing constraint on the grade cutoffs. Letting the upper
grade cutoff for an F be denoted by γ1, the upper grade
cutoff for a D be denoted by γ2, and so on, this ordering
constraint may be stated mathematically as

−∞ < γ1 ≡ 0 ≤ γ2 ≤ γ3 ≤ γ4 ≤ γ5 ≡ ∞.

151
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Figure 9.1 Latent Trait Interpretation of Ordinal Classification
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NOTE: In this plot, the logistic density represents the distribution of latent traits for a particular individual. It is assumed that a random

variable is drawn from this density, and the value of this random variable determines an individual’s classification. For example, if a

deviate of 0.5 is drawn, the individual receives a D grade.

Note that the upper cutoff for an A, γ5, is assumed to
be unbounded. For notational convenience, we define
γ0 = −∞.

Geometrically, Figure 9.1 illustrates the way a latent
variable formulation can be used to define a model
for the probability that students in the statistics class
receive grades A through F, assuming grade cut-
offs γ1, . . . , γ4. In this figure, we imagine a latent
variable—say, Z—that underlies the generation of the
ordinal data. In extending this framework to the regres-
sion setting, we further assume that the variableZmay
be expressed

Z = x′β + ε, (1)

where ε is a random variable drawn from the
standard logistic distribution. When Z falls between
the grade cutoffs γc−1 and γc, the observation is
classified into category c. To link this model for
the data generation to the probability that an
individual receives a particular grade, let f denote the
density of the standard logistic distribution, and let F
denote the logistic distribution function. Denote by pc

the probability that an individual receives a grade of c.
Then from (1), it follows that

pc =
∫ γc−x′β

γc−1−x′β
f (z)dz

= Pr(γc−1 < Z < γc)

= F(γc − x′β)− F(γc−1 − x′β).

The latent variable formulation of the problem thus
provides a model for the probability that a student
receives a particular grade in the course or, in the more
general case, that a response is recorded in a particular
category. If we also assume that the responses or grades
for a sample of n individuals are independent of one
another given these probabilities, the sampling distri-
bution for the observed data is given by a multinomial
distribution.

To specify this multinomial distribution, let us
assume that there are C possible grades, denoted by
1, . . . , C. Also, suppose that n items are observed
and that the grades or categories assigned to these
n items are denoted by y1, . . . , yn; yi denotes the
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grade observed for the ith individual.1 Associated with
the ith individual’s response, we define a continuous
latent variable Zi , and, as above, we assume that
Zi = x ′iβ + εi , where xi is the vector of covariates
associated with the ith individual, and εi is distributed
according to the distribution F . We observe the grade
yi = c if the latent variable Zi falls in the interval
(γc−1, γc). If pic denotes the probability that a single
response from the ith respondent falls into category c,
we may write this probability as

pic = Pr(γc−1 < Zi < γc)

= F(γc − x′iβ)− F(γc−1 − x′iβ). (2)

In addition, let pi denote the vector of probabili-
ties associated with assignment of the ith item into
the categories 1, . . . , C; that is, pi = (pi1, . . . , piC).
Let y = (y1, . . . , yn) denote the observed vector of
responses for all individuals. It then follows that the
probability of observing the data y, for a fixed value of
the probability vectors {pi}, is given by a multinomial
density proportional to

Pr[y|{pi}] ∝
n∏
i=1

piyi . (3)

Substituting the value of pic from (2) leads to the
following expression for the likelihood function for β:

L(β, γ ) =
n∏
i=1

[F(γyi − x′iβ)

− F(γyi−1 − x′iβ)]. (4)

In terms of the latent variables Z, the likelihood
function may be reexpressed as

L(β, γ,Z) =
n∏
i=1

f (Zi − x′iβ)I (γyi−1 ≤ Zi < γyi ),

(5)

where I (·) indicates the indicator function. Note that
the latent variables Zi may be integrated out of (5) to
obtain (4).

1. In defining the multinomial sampling density for an ordinal response, we
assume that the multinomial denominator associated with each response
is 1. For the more general case in which the ordinal responses are grouped
by covariate, so that the multinomial denominator (say, mi) for the ith
individual is greater than 1, this simply means that the mi observations
associated with the ith individual are considered independently in our
model description. Because a multinomial observation with a denomina-
tor greater than mi > 1 can always be reexpressed as mi multinomial
observations with denominator 1, this distinction is irrelevant for most of
the theoretical development discussed in this chapter, and it somewhat
simplifies notation and exposition. Of course, the likelihood function
is unaffected by this change. The distinction only becomes important
in defining the deviance statistic and individual deviance contributions,
but further comments on this point are delayed until these quantities are
introduced in Section 9.4.

9.2.1. Cumulative Probabilities
and Model Interpretation

Ordinal regression models are often specified in
terms of cumulative probabilities rather than individual
category probabilities. If we define

θic = pi1 + pi2 + · · · + pic,

then the regression component of an ordinal model of
the form (2) may be rewritten as

θic = F(γic − x′iβ). (6)

For example, if a logistic link function is assumed,
equation (6) becomes

log

(
θic

1− θic

)
= γc − x′iβ. (7)

Note that the sign of the coefficient of the linear pre-
dictor is negative, as opposed to the positive sign of
this term in the usual binary regression setting.

An interesting feature of model (7) is that the ratio
of the odds for the event y1 ≤ c to the event y2 ≤ c is

θ1c/(1− θ1c)

θ2c/(1− θ2c)
exp[−(x1 − x2)

′β], (8)

independently of the category of response, c. For this
reason, (7) is often called the proportional odds model
(see, e.g., McCullagh, 1980).

Another common regression model for ordinal data,
the proportional hazards model, may be obtained by
assuming a complementary log-log link in (2). In this
case,

log[− log(1− θic)] = γc − x′iβ.

If one interprets 1 − θic as the probability of survival
beyond (time) category c, this model may be consid-
ered a discrete version of the proportional hazards
model proposed by Cox (1972). Further details con-
cerning the connection between this model and the pro-
portional hazards model may be found in McCullagh
(1980).

Another link function often used to model
cumulative probabilities of success is the standard
normal distribution. With such a link, (2) becomes

�(θic)
−1 = γc − x′iβ.

This model is referred to as the ordinal probit model.
The ordinal probit model produces predicted probabil-
ities similar to those obtained from the proportional
odds model, just as predictions from a probit model
for binary data produce predictions similar to those
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obtained using a logistic model. However, the ordinal
probit model possesses a property that makes sampling
from its posterior distribution particularly efficient. For
that reason, it may be preferred over other model links
(at least in preliminary studies) if a Bayesian analysis
is to be performed.

9.3. Parameter Constraints

and Prior Models

An ordinal regression model with C categories
and C − 1 unknown cutoff parameters γ1, . . . , γC−1

is overparameterized if an intercept is included in the
regression function. To see this, note that if we add a
constant to every cutoff value and subtract the same
constant from the intercept in the regression function,
the values of γc − x′iβ used to define the category
probabilities are unchanged. Two approaches might
be taken toward resolving this identifiability problem.
The first is to simply fix the value of one cutoff, usually
the first. In other words, we might assume that γ1, the
upper cutoff for the lowest category of response, is 0.
A second approach that can be taken for establishing
identifiability of parameters is to specify a proper prior
distribution on the vector of category cutoffs, γ . Of
course, for ordinal data containing more than three
categories, a Bayesian approach toward inference
requires that a prior distribution be specified for at least
one category cutoff, regardless of which approach is
taken. For that reason, we now turn our discussion to
prior specifications for ordinal regression models.

9.3.1. Noninformative Priors

In situations in which little prior information is avail-
able, the simplest approach toward constructing a prior
distribution over the category cutoffs and regression
parameter begins by fixing the value of one cutoff,
usually γ1, at 0. The values of the remaining cutoffs
are then defined relative to the first, and posterior vari-
ances of category cutoffs represent the variances of the
contrasts γc − γ1. After fixing the value of one cutoff,
a uniform prior can then be assumed for the remaining
cutoffs, subject, of course, to the constraint that

γ1 ≤ · · · ≤ γC−1,

Normally, the components of the category cutoff vec-
tor and the regression parameter are assumed a priori
to be independent, and a uniform prior is also taken
for β.

This choice of prior results in a maximum a
posteriori (MAP) estimate of the parameter values
that is identical to the maximum likelihood estima-
tion (MLE). In general, these point estimators provide
satisfactory estimates of the multinomial cell proba-
bilities when moderate counts are observed in all C
categories. However, if there are categories in which
no counts are observed or in which the number of
observations is small, the MLE and MAP estimates
will differ significantly from the posterior mean. Fur-
thermore, the bias and other properties of estimators of
the extreme category cutoffs may differ substantially
from the corresponding properties of estimators of the
interior category cutoffs.

9.3.2. Informative Priors

As in the case of binary regression, informative
priors on the components of γ and β may be speci-
fied using the conditional means approach of Bedrick,
Christensen, and Johnson (1996). However, in addi-
tion to the specification of an independent assessment
for each component of the regression parameter β,
an independent assessment must also be specified for
each random component of γ . If the dimension of the
regression parameter is a and the dimension of the
random component of γ is b, then a + b independent
assessments are needed for the specification of a proper
prior. For example, if an intercept term is included in
the regression parameter, so that the total dimension
of β is b, and γ1 is set to 0 so that there are C − 2
random components of γ , then b+C−2 independent
assessments must be solicited to set the joint prior on
γ and β. The precision of each assessment must also
be specified.

In setting the prior using the conditional means
approach, it is often easier to specify prior estimates
of cumulative success probabilities than it is to spec-
ify estimates of the probability of observing specific
categories of response. Also, to establish identifiabil-
ity of parameters in the prior, we need to estimate
at least one cumulative probability for each random
component of the vector γ . In other words, if there
are four categories of response and γ1 = 0, at least
one prior assessment must be made of the cumulative
probability that a response is observed to be less than
or equal to the second category (γi ≤ 2), and at least
one prior assessment must be made of the probability
of observing at least one response less than or equal
to the third category. In addition, the design matrix
selected for the covariate values (including category
cutoffs) should be invertible.
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Suppose then that there are a unknown components
of the cutoff vector γ and b unknown components of
the regression vector β. To construct a conditional
means prior, we must examine M = a + b values
of the covariate vector x—call these covariate vec-
tors x2, . . . , xM . For each of the covariate vectors xj ,
we specify a prior estimate and prior precision of our
estimate of the corresponding cumulative cutoff prob-
ability θ(j). Thus, for each covariate value, two items
are specified:

1. An assessment at the cumulative probability
θ(j)—call this assessment gj .

2. A statement about the precision of this assess-
ment in terms of the number of “prior observa-
tions.” Denote this prior sample size by Kj .

This prior information about θ(j) can be incorporated
into the model specification using a Dirichlet density
with parametersKjgj andKj(1− gj ) if the prior dis-
tributions of the cumulative probabilities θ(1), . . . , θ(M)
are assumed to be independent. In that case, it follows
that the joint prior density is given by the product

g(θ(1), . . . , θ(M)) ∝
M∏
j=1

θ
Kjgj−1
(j) (1− θ(j))Kj (1−gj )−1.

By transforming this prior on the cumulative proba-
bilities back to (β, γ ), the induced conditional means
prior may be written

g(β, γ ) ∝
M∏
j=1

F(γ(j) − x′j β)
Kj gj

· [1− F(γ(j) − x′j β)]
Kj (1−gj )f (γ(j) − x′j β), (9)

subject to γ1 ≤ γ2 ≤ · · · ≤ γC−1. As before, F(·)
denotes the link distribution function, and f (·) is the
link density.

9.4. Residual Analysis

and Goodness of Fit

Associated with every multinomial observation are
C categories, and an individual’s response (or absence
of a response) in each of these categories can be used to
define a residual. For binomial data (C = 2), two such
residuals are yi−nipi and yi−ni(1−pi). Of course, if
you know the value of the first residual—that is, if you
know pi—you can figure out the value of the second,
which depends only on (1−pi) (because yi and ni are
assumed known). The same is true for ordinal data with

C categories; if you know the values ofpic forC−1 of
the categories, you can figure out the probability for the
last because the probabilities have to sum to 1. Thus,
for ordinal data, we potentially have C − 1 residuals
for each multinomial observation.

This increase in dimensionality, from 1 to C − 1,
complicates residual analyses. Not only are there more
residual values to be examined, but the C − 1 resid-
uals from each observation are also correlated. It is
therefore not clear how classical residuals (e.g., Pear-
son, deviance, and adjusted deviance residuals) should
be displayed and analyzed. In the case of Bayesian
residual analyses, the standard Bayesian residual and
posterior-predictive residuals both involve (C − 1)-
dimensional distributions, which again complicates
model criticism. One possible solution to this problem
is to create a sequence of binary residuals by col-
lapsing response categories. For example, we might
redefine a “success” as exceeding the first, second, . . . ,
or (C − 1)st category. The resulting binary residuals
can then be analyzed using the procedures described
in, for example, Chapter 3 of Johnson and Albert
(1999), keeping in mind that the residuals defined for
each success threshold are highly correlated. From a
practical viewpoint, the binary residuals formed using
exceedance of the extreme categories (Categories 1 and
(C − 1)) are often the most informative in identifying
outliers, and so attention might be focused first on these
residuals.

In contrast, residuals based on the vector of latent
variables Z do not suffer from the problem of dimen-
sionality because only a single latent variable is defined
for each individual. The latent residual for the ith
observation is defined as

ri,L = Zi − x′iβ.
Nominally, the residuals r1,L, . . . , rn,L are indepen-
dently distributed as draws from the distribution F .
Deviations from the model structure should therefore
be reflected as deviations of the observed values of
these quantities from typical samples drawn from F .
For this reason, case analyses are generally easier to
perform and interpret using the scalar-valued latent
residuals.

To judge the overall goodness of fit of an ordinal
regression model, we can use the deviance statistic,
defined as

D = 2
n∑
i=1

C∑
j=1

I (yi = j) log(I (yi = j)/p̂ij),

where p̂ij denotes the maximum likelihood estimate
of the cell probability pij, and I is the indicator func-
tion. In this expression, the term I () log(I ()/p̂ij) is
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assumed to be 0 whenever the indicator function is 0.
The degrees of freedom associated with the deviance
statistic is n − k − (C−1), where k is the number
of regression parameters in the model, including the
intercept. Asymptotically, the deviance statistic for
ordinal regression models has a chi-square distribu-
tion only when observations are grouped according to
covariate values and the expected counts in each cell
become large. When only one observation is observed
at each covariate value, the deviance statistic is not
well approximated by a chi-square distribution.2

Besides its role as a goodness-of-fit statistic, the
deviance statistic can also be used for model selection.
Perhaps surprisingly, the distribution of differences in
deviance statistics for nested models is often remark-
ably close to a chi-square random variable, even
for data in which the expected cell counts are rela-
tively small. The degrees of freedom of the chi-square
random variable that approximates the distribution of
the difference in deviances is equal to the number of
covariates deleted from the larger model to obtain the
smaller model.

Related to the model deviance are the contributions
to the deviance that accrue from individual observa-
tions. In the case of binary residuals, the signed square
root of these terms was used to define the deviance
residuals. However, for ordinal data, it is preferable to
examine the values of the deviance contribution from
individual observations directly, or

di = 2
C∑
j=1

I (yi = j) log(I (yi = j)/p̂ij).

Observations that contribute disproportionately to
the overall model deviance should be regarded with
suspicion.3

2. For grouped ordinal data, a more general definition of the deviance is
needed. Letting yij denote the observed counts in category j for the ith
observation, the deviance statistic can be redefined as

2
n∑
i=1

C∑
j=1

yij log(yij/ŷij),

where ŷij denotes the maximum likelihood estimate of the expected cell
counts yij . As the expected number of counts in each cell of every obser-
vation approaches infinity (i.e.,> 5), the distribution of this more general
form of the deviance statistic does approach a chi-square distribution.
Whenever it is possible to group observations, this form of the deviance
function should therefore be used when assessing goodness of fit and for
model selection.

3. For grouped ordinal data, an alternative definition of the deviance
contribution from an individual observation is

2

mi

C∑
j=1

yij log(yij/ŷij),

where mi =
∑
j yij.

Turning to Bayesian case analyses, posterior-
predictive residuals provide a generally applicable tool
by which model adequacy can be judged and outly-
ing observations can be identified. As in the case of
binary regression, observations for which the resid-
ual posterior-predictive distributions are concentrated
away from zero represent possible outliers.

9.5. Examples

9.5.1. Grades in a Statistics Class

For a simple application of this methodology, we
first consider the grades received by students in an
advanced statistics class. Interest in this example
focuses on predicting the grades of the students in
this class using their SAT math scores and their grades
in a prerequisite class. The data for this example are
depicted in Table 9.1. We begin by illustrating max-
imum likelihood estimation for a proportional odds
model. After discussing classical model-checking
procedures, we then discuss Bayesian analyses using
both informative and noninformative priors.

9.5.1.1. Maximum Likelihood Analysis

As a first step in the analysis, we assume that the
logit of the probability that a student receives a grade
in category c or worse is a linear function of his or her
SAT-M score. That is, we assume a proportional odds
model of the form

log

(
θic

1− θic

)
= γc − β0 − β1 × SAT−Mi . (10)

Because an intercept is included in this relation, to
establish identifiability, we fix γ1 = 0.

The maximum likelihood estimates and associated
standard errors for the parameters γ and β are dis-
played in Table 9.2. These estimates were obtained
using MATLAB routines described in Johnson and
Albert (1999) and are available from that publication’s
Web site. The corresponding estimates of the fitted
probabilities that a student receives each of the five
possible grades are plotted as a function of SAT-M
score in Figure 9.2. In this figure, the white area reflects
the probability that a student with a given SAT-M
received an A, the lightly shaded area the probability of
a B, and so on. From the plot, we see that the probability
that a student with a 460 SAT-M score receives a D or F
is about 57%, that a student scoring 560 on the SAT-M
has approximately a 50% chance of receiving a B, and
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Table 9.1 Grades for a Class of Statistics Students

SAT-M Grade in Previous
Student # Grade Score Statistics Course

1 D 525 B
2 D 533 C
3 B 545 B
4 D 582 A
5 C 581 C
6 B 576 D
7 C 572 B
8 A 609 A
9 C 559 C

10 C 543 D
11 B 576 B
12 B 525 A
13 C 574 F
14 C 582 D
15 B 574 C
16 D 471 B
17 B 595 B
18 D 557 C
19 F 557 A
20 B 584 A
21 A 599 B
22 D 517 C
23 A 649 A
24 B 584 C
25 F 463 D
26 C 591 B
27 D 488 C
28 B 563 B
29 B 553 B
30 A 549 A

NOTE: The first column is student number. The second column lists the
grade received in the class by the student, and the third and fourth columns
provide the SAT-math score and grade for a prerequisite statistics course.

Table 9.2 Maximum Likelihood Estimates and
Standard Errors for Proportional Odds
Model for Statistics Class Grades
Example

Parameter Estimate Standard Error

γ2 2.22 0.64
γ3 3.65 0.78
γ4 6.51 1.33
β0 –20.08 6.98
β1 .0430 0.012

that a student who scored 660 on his or her SAT-M has
a better than 80% chance of earning an A in the course.

An important property of the ordinal regression
model that underlies the model for these data is that
the interpretation of regression parameters is invariant
with respect to the number of classification categories
used. In the present case, the regression param-
eter β in the proportional odds model has the same

interpretation as would the regression parameter
appearing in a logistic model, in which grade cate-
gories were collapsed into a pass/fail system (i.e., if
Ds and Fs were considered failing and As to Cs were
considered passing). Further discussion of this point
within the context of this example may be found in
Johnson and Albert (1999).

As a cursory check for model fit, we plotted the
contributions to the deviance from individual observa-
tions against observation number in Figure 9.3. The
most extreme observation in the proportional odds
model appears to be Student 19, who received an F in
the course while having an above-average SAT score
of 559. It is also interesting to note that Student 30’s
grade resulted in the second highest deviance contribu-
tion; this student had a slightly below-average SAT-M
score but received an A in the course.

For purposes of comparison, we next fit the ordinal
probit model to the same data. In this case, the ordinal
probit model takes the form

θic = �(γc − β0 − β1 × SAT−Mi ). (11)

As before, an intercept was included in this model
because γ1 was assigned the value 0.

The maximum likelihood estimates for the probit
model appear in Table 9.3 and were obtained using
MATLAB functions described in Johnson and Albert
(1999).

As in the proportional odds model, one can plot
the deviance contributions from each observation.
The appearance of this plot was almost identical to
Figure 9.3, and so comments regarding the fit of the
proportional odds model to individual student marks
apply to the ordinal probit model as well. The simi-
larity of the two deviance plots is a consequence of
the fact that the fitted values under each model are
nearly identical. This point is illustrated in Figure 9.4,
in which the predicted cell probabilities under the two
models are plotted against one another. The deviance
under the ordinal probit model was 73.5, but it was
72.7 under the proportional odds model.

9.5.1.2. Bayesian Analysis
With a Noninformative Prior

To further investigate the relationship between the
student grades and SAT-M score, we next considered a
Bayesian model using a vague prior on the parameters
γ and β. Because of the similarity of fitted values
obtained under the ordinal probit and proportional haz-
ards model, as well as the computational simplicity of
sampling from the ordinal probit model using Cowles’s
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Figure 9.2 Fitted Multinomial Probabilities From the Maximum Likelihood Fit of the Proportional Odds Model
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Figure 9.3 Deviance Contributions in the Proportional Odds Model for Student Grades
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NOTE: This plot does not depict deviance residuals, as the square root of the deviance contributions was not taken (nor was there a

natural way to attribute a sign to each observation).
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Figure 9.4 Fitted Probabilities Under the Ordinal Probit Model Versus Fitted Probabilities for the Proportional
Odds Model
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NOTE: All 150 predicted cell probabilities from the 30 observations are shown.

Table 9.3 Maximum Likelihood Estimates and
Standard Errors for Ordinal Probit
Model

Asymptotic
Parameter Estimate Standard Deviation

γ2 1.29 0.35
γ3 2.11 0.41
γ4 3.56 0.63
β0 –11.22 3.64
β1 .0238 0.0063

algorithm (Cowles, 1996), we restrict attention to the
probit link.

In applying Cowles’s algorithm to these data, we
initialized the parameter vectors with the maximum
likelihood values. We then performed 20,000 Monte
Carlo Markov chain (MCMC) iterations. The MCMC
sample estimates of the posterior means of the para-
meter values are displayed in Table 9.4 and indicate
that the posterior means agree well with the max-
imum likelihood estimates provided in Table 9.3.
This fact suggests that the posterior distribution of
the parameter estimates is approximately normal.
The histogram estimates of the marginal posterior

Table 9.4 Simulation Estimates of the Posterior
Means and Standard Deviations for
the Ordinal Probit Model Using Vague
Priors

Posterior
Parameter Posterior Mean Standard Deviation

γ2 1.38 0.37
γ3 2.26 0.42
γ4 3.86 0.63
β0 –12.05 3.73
β1 .0257 0.0065

distributions displayed in Figure 9.5 support this
conclusion.

A by-product of the MCMC algorithm used to esti-
mate the posterior means of the parameter estimates
is the vector of latent variables Z. As discussed at
the end of Section 9.4, these variables provide a
convenient diagnostic for detecting outliers and assess-
ing goodness of fit. A priori, the latent residuals
Z1 − x ′1β, . . . , Zn − x ′nβ are a random sample from a
N(0, 1) distribution. Thus, deviations in the values
of the latent residuals from an independent sample
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Figure 9.5 Histogram Estimates of the Marginal Posterior Distributions of the Regression and Category Cutoff
Parameters in the Statistics Grades Example
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of standard normal deviates are symptomatic of
violations of model assumptions.

A normal scores plot of the posterior means of the
latent residuals is depicted in Figure 9.6. As might be
predicted from the deviance plots presented above, the
most extreme latent residuals correspond to Students
19 and 30. The value of Student 19’s latent residual,
−2.57, is smaller than would be expected in a sample
of this size, and thus this observation might be regarded
as an outlier. Student 30’s latent residual value is 2.27
and is somewhat less suspicious.

Overall, the normal scores plot does not suggest
serious violations of model assumptions.

9.5.2. Prediction of Essay Scores
From Grammar Attributes

A problem faced by large educational testing com-
panies (e.g., ETS, ACT) involves grading thousands
of student essays. As a result, there is great interest
in automating the grading of student essays or—

failing this—determining easily measurable qualities
of essays that are associated with their ranking. The
purpose of this example is to study the relationships
between essay grades and essay attributes. The data in
this example consist of grades assigned to 198 essays
by five experts, each of whom rated all essays on a
10-point scale. A score of 10 indicates an excellent
essay. Similar data have also been analyzed by, for
example, Page (1994) and Johnson (1996). For present
purposes, we examine only the grades assigned by
the first expert grader and the essay characteristics of
average word and sentence length, number of words,
and the number of prepositions, commas, and spelling
errors.

Following a preliminary graphical analysis of the
data, we chose to examine the predictive relationships
between an expert’s grade of an essay and the variable’s
square root of the number of words in the essay (SqW),
average word length (WL), percentage of prepositions
(PP), number of commas × 100 over the number of
words in the essay (PC), the percentage of spelling
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Figure 9.6 Normal Scores Plot of the Posterior Means of the Sorted Latent Residuals From Grades Example
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errors (PS), and the average sentence length (SL). Plots
of each of these variables versus the essay grades are
displayed in Figure 9.7.

On the basis of the plots in Figure 9.7, we posited a
baseline model of the form

�−1(θic) = γc + β0 + β1WL + β2SqW

+ β3PC+ β4PS+ β5PP + β6SL, (12)

where, as before, θic denotes the cumulative probabil-
ity that an essay received a score of c or below, and
� denotes the standard normal distribution function.
The maximum likelihood estimates for this model are
displayed in Table 9.5.

The deviance of model (12) was 748.7 on
198 − 15 = 183 degrees of freedom, using the usual
convention that the number of degrees of freedom in
a generalized linear model is equal to the number of
observations less the number of estimated parameters.
The deviance statistic is much larger than the degrees
of freedom, suggesting some overdispersion in the
model. This confirms our prior intuition that the six
explanatory variables in the model cannot accurately
predict the grades assigned by any particular human
expert. (In fact, we might expect considerable variation
between the grades assigned by different experts to
the same essay.) Thus, it is probably prudent to apply
a correction for overdispersion for us to interpret the

standard errors in the table. Because the usual esti-
mate of overdispersion for ordinal regression models
is deviance/degrees of freedom (in this case, 4.09),
each of the standard errors in Table 9.5 should be multi-
plied by the square root of the estimated overdispersion
(≈ 2.0) to obtain a more realistic estimate of the
sampling uncertainty associated with each parameter.

To investigate the source of overdispersion, we need
to examine the deviance contribution from each essay
grade. To this end, a plot of deviance contribution
versus the square root of the number of words is pro-
vided in Figure 9.8. As this figure illustrates, there are
several observations for which the deviance exceeds 8
and two observations for which the deviance exceeds
14. The values 8 and 14 correspond approximately to
the 0.995 and 0.9998 points of a χ 2

1 random variable,
although it is unlikely that the asymptotic distribu-
tion of either the total deviance or the deviance of
individual observations is well approximated by a chi-
square random variable. However, the large values of
the deviance associated with these observations pro-
vide further evidence that the grammatical variables
included in the model do not capture all features used
by the grader in evaluating the essays.

From Table 9.5 and the preliminary plots of the
essay grades versus explanatory variables, it is clear
that several of the variables included in the base-
line model were not significant in predicting essay
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Figure 9.7 Plots of Essay Grades Obtained From the First Expert Grader Versus Six Explanatory Variables
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Table 9.5 Maximum Likelihood Estimates and
Asymptotic Standard Deviations for the
Baseline Regression Model for Essay
Grades

Maximum Likelihood Asymptotic Standard
Parameter Estimate Deviation

γ2 0.632 0.18
γ3 1.05 0.20
γ4 1.63 0.21
γ5 2.19 0.22
γ6 2.71 0.23
γ7 3.39 0.24
γ8 3.96 0.26
γ9 5.09 0.35
β0 –3.74 1.08
β1 0.656 0.23
β2 0.296 0.032
β3 0.0273 0.032
β4 –0.0509 0.038
β5 0.0461 0.023
β6 0.00449 0.013

grade. To explore which of the variables should be
retained in the regression function, we used a backward
selection procedure in which variables were excluded
sequentially from the model. The results of this

procedure are summarized in the analysis of deviance
table displayed in Table 9.6. Both the reduction in
deviance associated with the deletion of each model
variable and the reduction in the deviance corrected
for overdispersion are provided.

By comparing the corrected changes in deviance
displayed in the table to the corresponding tail prob-
abilities of a χ2

1 random variable, it appears that the
variables SL, PC, and PS (average sentence length and
percentage of commas and spelling errors) were not
important in predicting the essay scores assigned by
this grader. Likewise, the variable PP (percentage of
prepositions) appears to be only marginally significant
as a predictor, whereas the variables WL and SqW
(word length and square root of number of words) are
significant or highly significant. These results suggest
that the variables SL, PC, and PS might be excluded
from the model, leaving a predictive model of the form

�−1(θic) = γc + β0 + β1WL + β2SqW + β3PP.
(13)

Turning next to a default Bayesian analysis
of these data, if we assume a vague prior on all model
parameters, we can use an MCMC algorithm similar
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Figure 9.8 Deviance Contribution From Individual Essay Grades Versus the Square Root of the Number of Words
Contained in Each Essay

2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

20

square root of number of words

de
vi

an
ce

Table 9.6 Analysis of Deviance Table for Essay
Grades

Change in Corrected Change
Model Deviance in Deviance

Full model — —
SL 0.12 0.03
PC 0.71 0.17
PS 1.28 0.31
PP 3.93 0.96
WL 8.84 2.16
SqW 86.42 21.13

NOTE: The entries in the second column represent the increase in deviance
resulting from deletion of the variable indicated in the first column as
compared to the model on the previous row. The entries in the third column
represent the entries in the second column divided by 4.09, the estimate
of the model overdispersion from the full model.

to that described in Chapter 4 of Johnson and Albert
(1999) to sample from the posterior distribution on the
parameters appearing in either the full model (12) or
the reduced model (13). For purposes of illustration,
we generated 5,000 iterates from the full model and
used these sampled values to estimate the posterior
means of the regression parameters. These estimates
are provided in Table 9.7 and are quite similar to the
maximum likelihood (and, in this case, maximum a
posteriori) estimates listed in Table 9.5.

Table 9.7 Posterior Means of Parameter Estimates
and Standard Deviation for the Full
Regression Model for the Essay Grades

Posterior
Parameter Posterior Mean Standard Deviation

γ2 0.736 0.16
γ3 1.19 0.18
γ4 1.79 0.21
γ5 2.35 0.21
γ6 2.88 0.22
γ7 3.59 0.22
γ8 4.18 0.24
γ9 5.30 0.30
β0 –3.76 1.12
β1 0.670 0.24
β2 0.305 0.033
β3 0.0297 0.033
β4 –0.0520 0.038
β5 0.0489 0.024
β6 0.00463 0.013

Bayesian case analyses based on output from the
MCMC algorithm proceed as in the previous exam-
ple. By saving the latent variables values generated
in the MCMC scheme, we can easily construct a nor-
mal scores plot of the latent residuals, as depicted in
Figure 9.9. Like the deviance plot, this figure sug-
gests that at least two observations did not conform
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Figure 9.9 Normal Scores Plot of the Posterior Means of the Sorted Latent Residuals for the Essay Grading
Example
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to model assumptions. There is also evidence that the
distribution of the latent residuals is non-Gaussian,
another form of model misspecification.

In addition to the latent residuals, we can also exam-
ine the posterior-predictive residuals to further inves-
tigate the overdispersion detected in the likelihood-
based analysis. If we let y∗i denote the posterior
distribution of the simulated essay grade for the ith
essay and let yi denote the observed grade of the ith
essay, then the posterior-predictive residual distribu-
tion for the ith observation is defined as the distribution
of yi − y∗i .

A plot of the estimated interquartile ranges of
the posterior-predictive residuals is provided in
Figure 9.10. The appearance of this plot indicates
model lack of fit. To more formally quantify this lack
of fit, we might again posit a random-effects model,
but in this case, there are at least two distinct sources
of error that we would like to model. The first is
the inability of the regression model to fully explain
the nuances of human graders; the regression model
clearly cannot account for all of the essay attributes
used by the expert in arriving at a grade for an essay.
The second is the variability between experts in assign-
ing grades to essays. As we mentioned at the beginning
of this example, there were four other experts who

also assigned grades to these same essays, and there
was considerable disagreement among the experts on
the appropriate grade for any particular essay. Thus,
a simple random-effects model is unlikely to capture
both sources of overdispersion, which suggests that a
more comprehensive model is needed. We investigate
such models in the next section.

9.6. Analyzing Data

From Multiple Raters

In the example of the last section, we examined the
relationship between an expert’s ratings of a set of high
school students’ essays and several easily quantifiable
attributes measured from these essays. The particular
essay grades that we examined happened to be the
grades from the first of five experts who graded the
essays. However, with more than one expert grader, an
obvious question becomes the following: How would
our analysis change if we used another expert’s rat-
ings or if we somehow combined the grades from all
experts?

In the previous section, we assumed that the “true
grade” of each essay was known, and then we analyzed
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Figure 9.10 Interquartile Ranges of the Posterior-Predictive Residuals
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NOTE: The fact that a high proportion of these ranges does not cover 0 is an indication of overdispersion, or other lack of fit.

the essays to assess the relationship between these
grades and various grammatical attributes. Unfortu-
nately, when we examine ratings from several raters, it
generally happens that the classifications assigned to
individuals by different raters are not consistent. We
must therefore decide how to combine the information
gathered from different raters.

Numerous approaches have been proposed for
analyzing ordinal data collected from multiple raters.
Often, emphasis in such analyses focuses on modeling
the agreement between raters. Among the more com-
monly used indices of multirater agreement in social
sciences and medicine is the κ-statistic (Cohen, 1960).
Assuming that all judges employ the same number of
rating categories, the κ-statistic can be estimated by
constructing a contingency table in which each judge
is treated as a factor havingK levels. The κ-statistic is
then defined by

κ = p0 − pc
1− pc ,

where p0 represents the sum of the observed propor-
tions in the diagonal elements of the table, and pc
represents the sum of the expected proportions under
the null hypothesis of independence. Large positive
values of κ may be interpreted as indicating sys-
tematic agreement between raters. This statistic has

been developed and extended by a number of authors,
including Fleiss (1971), Light (1971), and Landis
and Koch (1977a, 1977b). A related index has been
proposed by Jolayemi (1991a, 1991b).

A more recent, model-based approach toward mea-
suring rater agreement was proposed by Tanner and
Young (1985). In their paradigm, the contingency table
used in the construction of the κ-statistic was ana-
lyzed in the context of a log-linear model. Indicator
variables corresponding to subsets of diagonal cells in
subtables were used to model agreement between dif-
ferent judges. An advantage of this approach over the
κ-statistic is that specific patterns of rater agreement
can be investigated. Both methodologies are applicable
to nominal and ordinal categorical data. Further work
in this direction was proposed by Uebersax (1992) and
Uebersax and Grove (1993).

In contrast to these approaches, the approach that
we advocate emphasizes the tasks of evaluating rater
precision, estimating the relative rankings of individu-
als, and predicting rankings from observed covariates.
Unlike the approaches mentioned above, we assume a
priori that all judges essentially agree on the merit of
various individuals and that an underlying trait (or trait
vector) determines the “true” ranking of an individual
in relation to all others. Generally, we assume that this
trait is scalar valued.



166 • SECTION III / MODELS FOR CATEGORICAL DATA

9.7. Essay Scores From Five Raters

To illustrate our modeling approach, let us again con-
sider the essay grade data that we encountered at the
end of Section 9.5.

Figure 9.11 depicts the marginal distribution of the
grades assigned by each of the five judges to the 198
essays. From this figure, we see that the proportion
of essays assigned to each grade category varies sub-
stantially from judge to judge. The raters vary with
respect to their average ratings and also with respect
to the spread of their ratings. For example, Rater 1
appears to assign higher ratings than Rater 2. Rater 3
seems unusual with respect to the relatively large
variation of his or her ratings. Of course, the varia-
tion between ratings that we see in Figure 9.11 does
not necessarily mean that the rankings of the essays
were not consistent across judges; it might mean only
that the grade cutoffs employed by the judges were
different. To examine the consistency of the rank-
ings, we can plot the essay grades assigned by the
judges against one another. Such a plot is provided
in Figure 9.12. To make this plot easier to interpret
visually, we have plotted the elements in the cross-
tabulation tables as a gray-scale image, with darker
squares corresponding to higher counts in the bivariate
histogram. The extent to which raters agree is indi-
cated by the concentration of dark squares along a line
with positive slope. When raters agree both in their
rankings of individuals and also employ similar defi-
nitions of the category cutoffs, the slope of this line is
approximately 1.

From Figure 9.12, we see that the variability of the
third rater is comparatively large in comparison to the
other four raters. It also appears that the second, fourth,
and fifth raters produced rankings that were largely
consistent with one another and that the second and
fifth raters used similar category definitions.

9.8. The Multiple-Rater Model

9.8.1. The Likelihood Function

As in preceding sections, we denote the “true” value
of the ith individual’s latent trait on a suitably chosen
scale byZi . The vector of latent traits for all individuals
is denoted by Z = {Zi}.

We assume that the available data have the follow-
ing general form. There are n individuals rated, and
each individual is rated by at most J judges or raters.
In many cases, every judge rates every individual. In

the situation when all individuals are not rated by all
judges, we assume that the decision for a judge to rate
an individual is made independently of the qualities
of both the judge and individual. We further assume
that judge j classifies each individual into one of Kj

ordered categories. Typically, all judges use the same
number of categories, in which case we drop the sub-
script j and let K denote the common number of
ordered categories. We let y = {yij} denote the data
array, with yij denoting the rating assigned by judge j
to individual i. The matrix of covariates relevant for
predicting the relative rankings of the individuals is
denoted by X.

In assigning a category or grade to the ith object,
we assume that judge j observes the value of Zi with
an error denoted by eij. The quantity tij = Zi + eij

then denotes judge j ’s estimate of the latent trait for
individual i on the underlying trait scale.

The error term eij incorporates both the observational
error of judge j in assessing individual i and the bias of
judge j in assessing the true value ofZi . In some cases,
it might be sensible to model eij as a function of indi-
vidual covariates, although in what follows, we assume
that the expectation of eij, averaged over all individuals
in the population that have the same covariate values
as individual i, is zero.

As in the single-rater setting, we assume that
individual i is assigned to category c by judge j if

γj,c−1 < tij ≤ γj,c (14)

for judge-specific category cutoffs γj,c−1 and γj,c.
As in the single-rater case, we define γj,0 = −∞,
γj,K = ∞ and let γj = (γj,1, . . . , γj,K−1) denote
the vector of cutoffs for the j th judge. Let γ =
{γ1, . . . , γJ } denote the array of category cutoffs for
all judges.

To this point, the model for the multirater ordinal
data generation is entirely analogous to the single-
rater case. However, in specifying the distribution of
the error terms eij, we must decide whether we wish
to assume that all judges rank individuals with equal
precision or whether some judges provide rankings that
are more accurate than others.

In either case, it is convenient to assume a common
distributional form for the error terms eij across judges.
We therefore assume that eij, the error of the j th
judge in rating the ith individual, has a distribution
with mean 0 and variance σ 2

j . We write the dis-
tribution function of eij as F(eij/σj ) for a known
distribution function F . We denote the density function
corresponding to F by f .
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Figure 9.11 Histogram Estimate of the Marginal Distribution of the Grades Assigned by Each Expert Rater to the
Essays
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By taking σ 2
j = σ 2 for all j , we impose the

constraint that all judges rank individuals with sim-
ilar precision. In practice, however, this assumption
is seldom supported by data, and so unless explicitly
stated otherwise, we assume distinct scale parameters
for each judge.

Under these assumptions, it follows that the likeli-
hood function for the observed data y (ignoring, for the

moment, regression of the latent traits Z on explanatory
variables X) may be written as

L(Z, γ, {σ 2
j }) =

n∏
i=1

∏
j∈Ci

[
F

(
γj,yij − Zi

σj

)

−F
(
γj,yij−1 − Zi

σj

)]
, (15)
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Figure 9.12 Bivariate Histogram Representations of Joint Marginal Distributions of the Grades Assigned by Each
Pair of Expert Raters to the Essays
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NOTE: Darker squares represent higher counts.

where Ci denotes the set of raters who classified
individual i. If we introduce the latent trait esti-
mates tij into the estimation procedure, the augmented
likelihood function can be expressed as

L(Z, {tij}, γ, {σ 2
j }) =

n∏
i=1

∏
j∈Ci

I

σj
f

(
tij − Zi
σj

)

· I (γj,yij−1 < tij ≤ γj,yij ). (16)

As before, I (·) denotes the indicator function.
Graphically, this model for the likelihood function is
illustrated in Figure 9.13. In this plot, two raters clas-
sify an individual with true trait 1.5, indicated by the
isolated vertical line. The distribution of their obser-
vations of this individual’s trait is depicted by the two
normal densities, from which it is clear that the second
rater is less precise. The horizontally shaded region
represents the probability that the first rater classifies
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Figure 9.13 Depiction of Multirater Ordinal Data Model
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this individual as “2,” supposing that the lower and
upper category cutoffs for the first rater’s second cat-
egory were (γ1,1, γ1,2) = (−1.0, 0.1). Similarly, the
vertically shaded region depicts the probability that
the second rater classified this individual in the second
category, given that the corresponding category cutoffs
were (γ2,1, γ2,2) = (−0.2, 1.0).

9.8.2. The Prior

Upon careful examination of the likelihood function
(15 or 16), it is clear that the model parameters are not
identifiable. That is, for any constants a and b > 0,
we may replace Z with b(Z − a), tij with b(tij − a),
γ with b(γ − a), and σj with bσj without changing
the value of the likelihood. We faced a less severe
identifiability problem when we composed a model
for single-rater ordinal data. To solve that problem,
we imposed a constraint on the value of the first cat-
egory cutoff to make γ and the regression intercept
identifiable. In this case, the problem is exacerbated
because it is generally unreasonable to assume that
the upper cutoff for the lowest category is the same
for all raters. Furthermore, when data from only one
rater are available, the value of the rater variance σ 2

can be assigned the fixed value of 1. This constraint
on σ eliminates the scaling problem (i.e., multiplying
all model parameters by a positive constant b) but, as

stated above, is generally not appropriate for multirater
data because different raters exhibit different levels of
precision in their rankings.

The identifiability problem can be overcome by
imposing proper prior distributions on some or all
model parameters. The location of the trait distribution
can be fixed by specifying a proper prior for the latent
traits. For convenience, we assume throughout the
remainder of this chapter that the proper prior chosen
for the latent traits is a Gaussian distribution or, in other
words, that the latent traitsZ1, . . . , Zn are distributed a
priori from independent standard normal distributions.

In addition to specifying a proper prior distribution
on the latent trait vector Z, we also assume a specific
distributional form for the rater variance parameters σ .
In particular, we assume that rescaled versions of the
rater variances are distributed according to a known
distribution F , and then we assign a proper prior dis-
tribution to the scaling factors applied to each rater
variance so that they have distribution F . In other
words, we assume that the rater error terms eij/σj
are distributed according to F and take an informative
prior on σj . A convenient choice for F(·) is a standard
normal distribution. If we combine this assumption
with the assumptions made above, it follows that the
conditional distribution of the rater-observed latent
traits {tij}, given Zi , are independent and normally
distributed with mean Zi and variance σ 2

j .
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Figure 9.14 Inverse Gamma Density With Parameters λψ = 0.2 and λψ = 0.1
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The assumption of normality of the judge error terms
can be at least partially justified by noting that the errors
in a judge’s perception of an individual’s attributes
usually result from a large number of small effects. By
the central limit theorem, we might therefore expect
that the rater errors are approximately Gaussian. Fur-
thermore, it should be noted that predictions obtained
under a model that assumes normally distributed rater
errors generally produces predictions that are quite
similar to predictions obtained under other common
error models. Thus, the final conclusions drawn from
this class of models tend to be relatively insensitive
to the particular distributional form assumed for the
components of eij.

A priori, we also assume that the rater variances
σ 2

1 , . . . , σ
2
J are independent. If F is chosen to be a

standard normal distribution, then the conjugate prior
for the variance parameters σ 2

j is an inverse gamma
density, expressible in the form

π(σ 2
j ; λ, α) =

λα

(α)
(σ 2
j )
−α−1 exp

(
− λ

σ 2
j

)
,

α, λ > 0. (17)

We denote the inverse gamma distribution corre-
sponding to this density by IG(α, λ); the mean and
mode of the distribution are λ/(α − 1) (assuming
α > 1) and λ/(α + 1), respectively. A density plot
for an IG(0.2, 0.1) random variable is depicted in

Figure 9.14. The parameters α and λ can be chosen
so that the prior density on the rater variances con-
centrates its mass in the interval (0.01, 4.0). It is
important to assign a positive value to λ to prevent
singularities in the posterior distribution that would
occur if the components of σ 2 were allowed to become
arbitrarily small.

To complete the prior model, we need to specify
a distribution on the vector of category cutoffs γ .
For present purposes, we assign independent uniform
priors on the category cutoff vectors γj , subject to the
constraint that

γj,1 ≤ · · · ≤ γj,K−1.

Combining all of these assumptions, the joint prior
density on (Z, γ, {σ 2

j }) is given by

g(Z, γ, {σ 2
j }) =

n∏
i=1

ϕ(Zi; 0, 1)
J∏
j=1

π(σ 2
j ; λ, α)

(18)

where ϕ(x;µ, σ) denotes a normal density with mean
µ and standard deviation σ . Taken together, this set of
assumptions defines what we refer to as the multirater
ordinal probit model. As we demonstrate below, this
model provides a useful framework for analyzing a
wide variety of ordinal data sets.
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9.8.3. Analysis of Essay Scores
From Five Raters (Without Regression)

To quantify the qualitative conclusions drawn from
Figures 9.12 and 9.13, we apply the model described in
the last section to obtain the posterior distributions on
each rater’s variance parameter. As a by-product of this
model-fitting procedure, we also obtain the posterior
distribution on the underlying trait for each essay’s
grade.

With the introduction of the latent trait estimates tij
into the estimation problem, the joint posterior density
of all unknown parameters is given by

g(Z, {tij}, γ, {σ 2
j }) ∝ L(Z, {tj },

γ, {σ 2
j })g(Z, γ, {σ 2

j }),

where the likelihood function is given by (15) and
the prior density by (18). To obtain samples from this
posterior distribution, we modify the MCMC algo-
rithm described for single-rater data to accommodate
additional raters. After initializing model parameters,
we begin the MCMC algorithm by sampling from the
conditional distribution of Z. From (16), we see that
the conditional distributional of the component Zi ,
given the array {tij} and σ 2

j , is normally distributed
with mean s/r and variance 1/r , where

r = 1+
∑
j∈Ci

1

σ 2
j

and s =
∑
j∈Ci

tij

σ 2
j

. (19)

Given the value of Z, updating the components
of γj proceeds as in the single-rater case. Similarly,
rater-specific trait values tij can be sampled from a
truncated Gaussian density with meanZi and variance
σ 2
j , truncated to the interval (γj,yij−1, γj,yij).
Finally, the conjugate prior structure specified for

the variances σ 2
1 , . . . , σ

2
J makes sampling from the

conditional distributions of these parameters straight-
forward. If we let Dj denote the set of individuals
rated by the j th judge and take nj to be the number
of elements of Dj , then the conditional distribution
of σ 2

j is

σ 2
j ∼ IG

(
nj

2
+ α, S

2
+ λ

)
, where

S =
∑
i∈Dj

(tij − Zi)2. (20)

These conditional distributions can be used to
sample from the joint posterior distribution on all
model parameters, as described in more detail in
Johnson and Albert (1999). After this MCMC algo-
rithm is implemented, we can estimate the posterior

Table 9.8 Posterior Means and Posterior Standard
Deviations of Rater Variance Parameters

Rater

1 2 3 4 5

Posterior mean 0.91 0.53 2.05 0.61 0.89
Standard Deviation 0.22 0.14 0.54 0.14 0.24

means and variances of the rater variance parameters
from the MCMC output. Estimates obtained in this
way are depicted in Table 9.8. Note that the values dis-
played in this table agree qualitatively with the graph-
ical analysis of the data presented in Figure 9.12. As
predicted, the third rater tended to assign essay grades
that were not consistent with the grades assigned by
the other raters.

The values obtained from the MCMC algorithm can
also be used to perform residual analyses in ways
similar to those described for single-rater data. For
example, the simulated values of tij and Z obtained
from the MCMC algorithm can be used to define
standardized residuals of the form

rij = tij − Zi
σj

.

A normal scores plot of the posterior means of the stan-
dardized residuals for the first rater’s grades is shown
in Figure 9.15. In this case, none of the grades assigned
by this rater appears unusually large.

9.9. Incorporating Regression

Functions Into Multirater Data

If we compare the model framework outlined above
for multirater ordinal data to the standard model for
single-rater ordinal data described, we find two basic
differences. First, in the case of single-rater data, there
is no loss of generality incurred by fixing the value
of the first category cutoff at zero, provided that we
include an intercept in the linear regression of the
latent trait variables {Zi} on the matrix of explanatory
variables X. Second, and more important, is the fact
that we implicitly assumed a value of 0 for the rater
variance parameter in the single-rater case. Coupled
with the assumption that

Zi = x′iβ + ηi, ηi ∼ F(·), (21)

whereF(·) denoted the link function for the regression
model, this allowed us to define a scale of measure-
ment for both the latent variables and the regression
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Figure 9.15 Normal Scores Plot for the Posterior Means of the Standardized Latent Residuals for the First Rater’s
Grades
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parameter. Of course, with data from only one rater, we
really had no choice but to make the assumption that
the rater correctly categorized each observation, that
is, that the rater’s error variance was exactly 0. Indeed,
in many instances, this assumption might actually be
justified from substantive considerations. In testing
mechanical parts for failure, for example, the binary
classification of tested parts as either a success or
failure might be completely objective.

However, for multirater data, the situation changes.
The very fact that data in an experiment or study
were collected from multiple raters implies that the
classification of individuals into categories was sub-
jective. That is, different raters are expected to have
different opinions on the relative merit of each individ-
ual. Substantively, the subjectiveness of the observed
data means that one must question the validity of the
regression assumption.

To illustrate the importance of this point, recall
that in the case of single-rater data, the latent
traits Zi were assumed to follow the regression

relation (21). If we assume that F (.) is a standard
normal distribution function, equation (21) can be
combined with the model assumptions of the previous
section to obtain the following expression for the value
of the latent trait observed by a single rater:

tij = x′iβ + ηi + εij, where ηi ∼ N(0, 1)

and εij ∼ N(0, σ 2
j ). (22)

It follows that the rater-observed latent trait tij has
a normal distribution with mean x′jβ and variance
1 + σ 2

j . This implies that the estimated variance
for those raters whose classifications most closely
follow the regression function will be the smallest.
Data obtained from these raters will consequently be
given more weight than data from the other raters in
estimating the true ranking of individuals.

These ideas are well illustrated in terms of our exam-
ple involving the essay grades collected independently
from five judges. In the previous section, we posited
a linear model for the latent performance variable
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associated with the grade acquired from the first judge.
Assuming that a similar model can be used to predict
the grade of any of the five judges participating in the
study, we obtain the following regression equation for
the prediction of tij:

tij = β0 + β1WLi + β2SqWi + β3PPi + ηi + εij.

(23)

As before, WL, SqW, and PP represent the aver-
age word length, the square root of the number of
words in the essay, and the percentage of prepositions
used, respectively. The variance of eij, σ 2

j measures
the agreement of the j th judge’s ratings with the
explanatory variables. From a substantive viewpoint,
the critical question is the following: Do we wish
to give more weight to the rankings of those judges
whose grades were most linear in these explanatory
variables? In this example, the answer is probably not.
Our primary interest in performing this regression was
to investigate the extent to which an expert’s grade
might be modeled using easily quantified grammatical
variables. We did not anticipate that these variables
would ideally predict the relative merit of the essays.

To overcome this difficulty, we need to specify our
regression model so that lack of fit of the regression
function can be accommodated. One way to do this
is to assume that for given values of the parameters β
and τ 2,

zi = x′iβ + ζi, where ζi ∼ N(0, τ 2). (24)

That is, we put the regression equation on equal foot-
ing with the ratings obtained from a single judge.
The error ζi term accounts for the “lack-of-fit” error
associated with the regression equation. This term is
completely analogous to the term εij associated with
the observation of the latent trait by a single rater.

The precision of the regression relationship depends
on the value of τ 2, which might also be estimated from
within the model framework.

The difficulty with this formulation (24) is that
it is inconsistent with the assumptions made in the
last section concerning the marginal distribution on
Z—that Z ∼ N(0, I). Recall that this assumption
was needed to make parameters in the likelihood
identifiable. Unfortunately, if a vague prior is speci-
fied for β, constraint (24) does not establish a scale of
measurement for the latent traits.

To summarize our discussion to this point, we have
reached two conclusions. First, in many applications,
it is not reasonable to assume that the “true” rating
of an individual is exactly predicted by the regression
function. For this reason, the assumptions implied by

model (22) are often inappropriate for modeling ordi-
nal data. Second, we cannot assume that the values of
the latent trait vector Z are governed by a relationship
of the type expressed in (24) without assuming a proper
prior on the components of β. Doing so leads to an
improper prior on Z and nonidentifiability of all model
parameters.

We can solve each of these problems by building
our ordinal regression model on top of the multiple-
rater ordinal model described. Essentially, this means
that we must specify the conditional distribution of β
given Z, rather than reversing the conditionality rela-
tionships and specifying the distribution of Z given β.
In this way, we can preserve the prior assumption that
Z ∼ N(0, I) while coupling the scale of β to the scale
used to model the rater variances.

To specify the conditional distribution of β given
Z, we use standard results from the Bayesian analysis
of the normal linear model. In the normal setting, if
we let W denote the data vector and assume that
W ∼ N(Xb, a2I) for an unknown regression param-
eter b and known variance a2, then the posterior
distribution of b is

b ∼ N((X′X)−1X′W, a2(X′X)−1),

provided a uniform prior is assumed for b. If the
prior on b is N(d,D), then the posterior distribution
for b is

b ∼ N(f, a2F),

where

f = [(XtX)+D−1]−1(XtW+D−1d)

and

F = a2(XtX+D−1)−1.

Applying these normal theory results to our problem,
we might therefore assume that the prior distribution
for β, given Z and τ 2, can be expressed as

β|Z,X, τ 2 ∼ N(c, C). (25)

In the absence of specific prior information regard-
ing the prior density for β, we take c and C to be the
least squares estimates of β and C:

c = (X′X)−1XtZ (26)

and

C = τ 2(X′X)−1. (27)
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Alternatively, when prior information concerning
the regression parameter β is available, the parameters
c and C might be chosen as

c = [(XtX)+D−1]−1(XtZ+D−1d),

C = τ 2(XtX+D−1)−1,

where d and τ 2D are the prior mean and covariance
of β.

Continuing the analogy with the normal theory
models, we complete our specification of the prior
model by taking the prior for τ 2, given Z, to be an
inverse gamma density of the form

g(τ 2|Z) = (RSS/2+ λr)(n−p)/2+αr
[(n− p)/2+ αr ] (τ 2)−(n−p)/2−αr−1

× exp

(
−RSS/2+ λr

τ 2

)
. (28)

In (28), RSS denotes the residual sum of squares
of the regression of Z on Xβ; that is, RSS =
Zt (I − Xt (XtX)−1X)Z, and αr and λr are prior
hyperparameters.

From a technical standpoint, it is interesting to note
that this specification of the prior density for β and
τ 2 (given Z) differs from the prior density implied by
model (24) by a factor of

(RSS/2+ λr)(n−p)/2+αr .

In the case of a vague prior for β and τ 2 (i.e., when
λr = αr = 0), this factor approaches zero as the resid-
ual sum of squares approaches zero. Multiplication by
this factor in the revised model prevents the posterior
distribution from becoming arbitrarily large in a region
near the value τ 2 = 0 because the residual sum of
squares approaches zero as Z becomes small. Without
this factor, the prior specified in (24) leads to a posterior
distribution that is unbounded for small values of Z
and τ 2.

Finally, we must specify values for the hyper-
parameters αr and λr . A natural choice for these
parameters is to assign them the values α and λ used
in the specification of the prior on the rater vari-
ances. Doing so facilitates the comparison of the
posterior distribution on the rater variances and
the variance of the regression relation. Alternatively,
the prior on τ 2 might be taken to be a scaled ver-
sion of the prior assumed for σ 2, with a scaling
constant determined from prior knowledge of the

relative reliability of a single judge’s scores relative
to predictions obtained from the regression relation.
Further details, examples, and software implementa-
tion for multirater ordinal regression models may be
found in Johnson and Albert (1999).
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Chapter 10

Latent Class Models

Jay Magidson

Jeroen K. Vermunt

10.1. Introduction

Latent class (LC) modeling was initially introduced
by Lazarsfeld and Henry (1968) as a way of formu-
lating latent attitudinal variables from dichotomous
survey items. In contrast to factor analysis, which
posits continuous latent variables, LC models assume
that the latent variable is categorical, and areas of
application are more wide-ranging. The methodology
was formalized and extended to nominal variables by
Goodman (1974a, 1974b), who also developed the
maximum likelihood (ML) algorithm that serves as
the basis for many of today’s LC software programs. In
recent years, LC models have been extended to include
observable variables of mixed scale type (nominal,
ordinal, continuous, and counts) and covariates, as well
as deal with sparse data, boundary solutions, and other
problem areas.

In this chapter, we describe three important special
cases of LC models for applications in cluster, factor,
and regression analyses. We begin by introducing the
LC cluster model as applied to nominal variables (the
traditional LC model), discuss some limitations of this
model, and show how recent extensions can be used to
overcome them. We then turn to a formal treatment of
the LC factor model and an extensive introduction to
LC regression models before returning to show how the
LC cluster model, as applied to continuous variables,
can be used to improve on the K-means approach to

cluster analysis. We use the Latent GOLD computer
program (Vermunt & Magidson, 2003) to illustrate the
use of these models as applied to several data sets.

10.2. Traditional

Latent Class Modeling

Traditional LC analysis (i.e., Goodman, 1974b)
assumes that each observation is a member of one
and only one of T latent (unobservable) classes and
that local independence exists between the manifest
variables. That is, conditional on latent class member-
ship, the manifest variables are mutually independent
of each other. This model can be expressed using
(unconditional) probabilities of belonging to each
latent class and conditional response probabilities as
parameters. For example, in the case of four nominal
manifest variables A, B, C, and D, we have

πijklt = πXt πA|Xit π
B|X
jt π

C|X
kt π

D|X
lt , (1)

where πXt denotes the probability of being in latent
class t = 1, 2, . . . , T of latent variable X; πA|Xit

denotes the conditional probability of obtaining the
ith response to item A, from members of class t , i =
1, 2, . . . , I ; and πB|Xjt , πC|Xkt , πD|Xlt , j = 1, 2, . . . , J ,
k = 1, 2, . . . , K , l = 1, 2, . . . , L, denote the cor-
responding conditional probabilities for items B, C,
and D, respectively.
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Model 1 can be described graphically in terms of a
path diagram (or a graphical model) in which manifest
variables are not connected to each other directly but
indirectly through the common source X. The latent
variable is assumed to explain all of the associations
among the manifest variables. A goal of traditional LC
analysis is to determine the smallest number of latent
classes T that is sufficient to explain away (account
for) the associations (relationships) observed among
the manifest variables.

The analysis typically begins by fitting the T = 1
class baseline model (H0), which specifies mutual
independence among the variables. Model H0:

πijkl = πAi πBj πCk πDl .
Assuming that this null model does not provide an

adequate fit to the data, a one-dimensional LC model
with T = 2 classes is then fitted to the data. This
process continues by fitting successive LC models to
the data, each time adding another dimension by incre-
menting the number of classes by 1, until the simplest
model is found that provides an adequate fit.

10.2.1. Assessing Model Fit

Several complementary approaches are available for
assessing the fit of LC models. The most widely used
approach uses the likelihood ratio chi-squared statistic
L2 to assess the extent to which maximum likelihood
(ML) estimates for the expected cell frequencies, F̂ijkl

differ from the corresponding observed frequencies,
fijkl:

L2 = 2
∑
ijkl

fijkl ln(F̂ijkl/fijkl).

A model fits the data if the value of L2 is suffi-
ciently low to be attributable to chance (within normal
statistical error limits—generally, the .05 level).

The F̂ijkl are obtained using the following two-step
process. First, ML estimates for the model parame-
ters are obtained and substituted into the right side of
equation (1) to obtain ML estimates of the probabili-
ties π̂ijklt. These probability estimates are then summed
over the latent classes to obtain estimated probabilities
for each cell in the observed table and multiplied by
the sample size N to obtain the ML estimates for the
expected frequencies:

F̂ijkl = N
T∑
t=1

π̂ijklt.

In the case that F̂ijkl = fijkl for each cell (i, j, k, l),
the model fit will be perfect and L2 equals zero. To the

extent that the value forL2 exceeds 0, theL2 measures
lack of model fit, quantifying the amount of associa-
tion (nonindependence) that remains unexplained by
that model. When N is sufficiently large, L2 follows
a chi-square distribution, and as a general rule,1 the
number of degrees of freedom (df ) equals the number
of cells in the full multiway table minus the number
of distinct parameters M minus 1. For example, in
the case of four categorical variables, the number of
cells equals IJKL, and the number of parameters is the
following:

M = T − 1+ T [(I − 1)+ (J − 1)

+ (K − 1)+ (L− 1)].

M is obtained by counting the T − 1 distinct LC
probabilities and, for each latent class, the I−1 distinct
conditional probabilities associated with the categories
of variable A, the J − 1 distinct conditional probabili-
ties associated withB, and so on. Because probabilities
sum to 1, the probability associated with one category
of each variable is redundant (and hence not counted
as a distinct parameter): It can be obtained as 1 minus
the sum of the others.

In situations involving sparse data, the chi-squared
distribution should not be used to compute the
p-value because L2 would not be well approximated.
Instead, the bootstrap approach can be used to esti-
mate p (Langeheine, Pannekoek, & Van de Pol, 1996).
Sparse data often occur when the number of observed
variables or the number of categories of these variables
is large. In such cases, the total number of cells in the
resulting multiway frequency table will be large rela-
tive to the sample size, resulting in many empty cells.
This situation is illustrated below with a data example.
Sparse data also result when LC models are extended
to include continuous variables, which is illustrated in
the last section.

An alternative approach to assessing model fit in
the case of sparse data uses an information criterion
weighting both model fit and parsimony. Such mea-
sures, such as Akaike’s information criterion (AIC)
and the Bayesian information criterion (BIC), are espe-
cially useful in comparing models. The most widely
used in LC analysis is the BIC statistic, which can be

1. According to the general rule, if it turns out that df < 0, the model is
not identifiable, which means that unique estimates are not available for
all parameters. For example, for I = J = K = L = 2, df = −4 for
T = 4, which means that the four-class model is not identifiable. In some
cases, however, this general counting rule may yield df > 0, yet the model
may still not be identifiable. For example, Goodman (1974b) shows that
in this situation of four dichotomous variables, the three-class model is
also unidentifiable despite the fact that the counting rule yields df = 1.
See also Note 3.
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defined as follows: BICL2 = L2 − ln(N)df (Raftery,
1986). A model with a lower BIC value is preferred
over a model with a higher BIC value. A more general
definition of BIC is based on the log-likelihood (LL)
and the number of parameters (M) instead of L2 and
df ; that is,

BICLL = −2LL + ln(N)M.

Again, a model with a lower BIC value is preferred
over a model with a higher BIC value.2

If the baseline model (H0) provides an adequate fit
to the data, no LC analysis is needed because there is
no association among the variables to be explained. In
most cases, however, H0 will not fit the data, in which
case L2(H0) can serve as a baseline measure of the
total amount of association in the data. This suggests
a third approach for assessing the fit of LC models by
comparing theL2 associated with LC models for which
T > 1, with the baseline value L2(H0) to determine
the percent reduction in L2. Because the total asso-
ciation in the data may be quantified by L2(H0), the
percent reduction measure represents the total associa-
tion explained by the model. This less formal approach
can complement the more statistically precise L2 and
BIC approaches.

As an example of how these measures are used,
suppose that the L2 suggests that a three-class model
falls short of providing an adequate fit to some data
(say, p = .04) but explains 90% of the total asso-
ciation. Moreover, suppose a four-class model is the
simplest model that fits according to the L2 statistic,
but this model only explains 91% of the association. In
this case, it may be that, on practical grounds, the three-
class model is preferable because it explains almost as
much of the total association.

10.2.1.1. Example: Survey Respondent Types

We will now consider a first example that illustrates
how these tools are used in practice. It is based on the
analysis of four variables from the 1982 General Social
Survey given by McCutcheon (1987) to illustrate how
traditional LC modeling can be used to study the differ-
ent types of survey respondents. Two of the variables
ascertain the respondent’s opinion regarding (A) the
purpose of surveys and (B) how accurate they are, and
the others are evaluations made by the interviewer of
(C) the respondent’s levels of understanding of the
survey questions and (D) cooperation shown in

2. The two formulations of BIC differ only with respect to a constant.
More precisely, BIC2

L
equals BICLL minus the BICLL corresponding to

the saturated model.

answering the questions. McCutcheon initially
assumed the existence of two latent classes correspond-
ing to “ideal” and “less than ideal” types.

The study included separate samples of White and
Black respondents. Beginning with an analysis of the
White sample, McCutcheon (1987) later included data
from the Black sample to illustrate a two-group LC
analysis. We will use these data to introduce the basics
of traditional LC modeling and to illustrate several
recent developments that have been made over the
past decade. These include allowing for specific local
dependencies (Section 10.3.1), the usage of LC factor
models (Section 10.3.2), and the inclusion of covari-
ates as well as the methodology for making multigroup
comparisons (Sections 10.3.3 and 10.3.4).

Traditional exploratory LC analysis begins by fitting
the null model H0 to the sample of White respon-
dents. Because L2(H0) = 257.3 with df = 29 (see
Table 10.1), the amount of association (nonindepen-
dence) that exists in these data is too large to be
explained by chance, so the null model must be rejected
(p < .001) in favor of T > 1 classes.

Next, we consider McCutcheon’s (1987) two-class
model (H1). For this model, theL2 is reduced to 79.5,3

a 69.1% reduction from the baseline model, but still
much too large to be acceptable with df = 22. Thus,
we increment T by 1 and estimate model H2C , the
three-class model. This model provides a further sub-
stantial reduction inL2 to 22.1 (a 91.5% reduction over
the baseline) and also provides an adequate overall fit
(p > .05). Table 10.1 shows that the four-class LC
model provides some further improvement. However,
the BIC statistic, which takes parsimony into account,
suggests that the three-class model is preferred over
the four-class model (see Table 10.1).

The parameter estimates obtained from the three-
class model are given in the left-most portion of
Table 10.2. The classes are ordered from largest to
smallest. Overall, 62% are estimated to be in Class 1,
20% in Class 2, and the remaining 18% in Class 3.
Analogous to factor analysis, in which names are
assigned to the factors based on an examination of the
“factor loadings,” names may be assigned to the latent
classes based on the estimated conditional probabili-
ties. Like factor loadings, the conditional probabilities
provide the measurement structure that defines the
latent classes.

3. This value differs slightly from the value 79.3 reported in McCutcheon
(1987) because our models include a Bayes constant set equal to 1
to prevent boundary solutions (estimated model probabilities equal to
zero). For further information on Bayes constants, see the technical
appendix of the Latent GOLD 3.0 manual (Vermunt & Magidson, 2003,
or www.latentclass.com).
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Table 10.1 Results From Various Latent Class Models Fit to the General Social Survey 1982 Data

% Reduction in
Model BICLL L2 df p-Value L2(H0)

Sample of White respondents
Traditional
H0 One-class 5787.0 257.3 29 2.0× 10−38 0.0
H1C Two-class 5658.9 79.5 22 2.0× 10−8 69.1
H2C Three-class 5651.1 22.1 15 .11 91.4
H3C Four-class 5685.3 6.6 8 .58 97.4
Nontraditional
H1C+ Two-class + {CD}

direct effect
5606.1 12.6 20 .89 95.1

H2F Basic two-factor 5640.1 11.1 15 .75 95.7

Sample of Black respondents
Traditional
H′0 One-class 2402.1 112.1 29 1.0× 10−11 0.0
H′1 Two-class 2389.6 56.9 22 .00006 49.2
H′2C Three-class 2393.8 18.3 15 .25 83.7
H′3C Four-class 2427.6 9.4 8 .31 91.6
Nontraditional
H′1C+ Two-class + {CD}

direct effect
2360.2 15.2 20 .77 86.4

H′2F Basic two-factor 2387.0 11.5 15 .72 89.7

Full sample (multiple-group analysis)
Traditional
M0 One-class 8185.1 400.0 64 4.3× 10−50 0
M1 Two-class 8013.8 169.5 56 2.4× 10−13 57.6
M2C Three-class unrestricted

(complete heterogeneity)
8077.4 40.4 30 .10 89.9

M2CR Three-class restricted
(partial homogeneity)

7953.0 49.4 48 .42 87.7

M2CRR Three-class restricted
(complete homogeneity)

7962.1 73.3 50 .02 81.7

M3CR Four-class restricted
(partial homogeneity)

7989.8 27.0 40 .94 93.3

Nontraditional
M2F Basic two-factor

unrestricted
8059.6 22.6 30 .83 94.4

M2FR Basic two-factor restricted 7934.9 31.3 48 .97 92.2

NOTE: BIC = Bayesian information criterion.

McCutcheon (1987) assigned the name “ideal” to
latent Class 1, reasoning as follows:

The first class corresponds most closely to our antici-
pated ideal respondents.

Nearly 9 of 10 in this class believed that surveys
“usually serve a good purpose”; 3 of 5 expressed a
belief that surveys are either “almost always right” or
“right most of the time”; 19 of 20 were evaluated by the
interviewer as “friendly and interested” during the inter-
view; and nearly all were evaluated by the interviewer
as having a good understanding of the survey questions.
(p. 34)

He named the other classes “believers” and
“skeptics” based on the interpretations of the

corresponding conditional probabilities for those
classes.

10.2.2. Testing the Significance of Effects

The next step in a traditional LC analysis is to delete
from the model any variable that does not exhibit a sig-
nificant difference between the classes. For example, to
test whether to delete variableA from a T -class model,
one would test the null hypothesis that the distribution
over the I categories of A is identical within each
class t :

π
A|X
i1 = πA|Xi2 = · · · = πA|XiT for i = 1, 2, . . . , I.
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Table 10.2 Parameter Estimates for the Three-Class Latent Class (LC) Model by Sample

White Sample Black Sample

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3
Ideal Believers Skeptics Ideal Believers Skeptics

LC probabilities 0.62 0.20 0.18 0.49 0.33 0.18
Conditional probabilities
(A) PURPOSE

Good 0.89 0.92 0.16 0.87 0.91 0.19
Depends 0.05 0.07 0.22 0.08 0.04 0.17
Waste 0.06 0.01 0.62 0.05 0.05 0.65

(B) ACCURACY
Mostly true 0.61 0.65 0.04 0.54 0.65 0.01
Not true 0.39 0.35 0.96 0.46 0.35 0.99

(C) UNDERSTANDING
Good 1.00 0.32 0.75 0.95 0.37 0.68
Fair, poor 0.00 0.68 0.25 0.05 0.63 0.32

(D) COOPERATION
Interested 0.95 0.69 0.64 0.98 0.56 0.64
Cooperative 0.05 0.26 0.26 0.01 0.37 0.25
Impatient/hostile 0.00 0.05 0.10 0.00 0.07 0.11

To implement this test, we make use of the
relationship between the conditional response prob-
abilities and the log-linear parameters (see, e.g.,
Formann, 1992; Haberman, 1979; Heinen, 1996):

π
A|X
it = exp(λAi + λAX

it )∑I
i′=1 exp(λAi′ + λAX

i′t )
.

Standard log-linear modeling techniques can then be
used to test the null hypothesis, reexpressed in terms
of the log-linear parameters associated with the AX
relationship:

λAX
i1 = λAX

i2 = · · · = λAX
iT = 0 for i = 1, 2, . . . , I.

One way to test for significance of the four indicators
in our three-class model is by means of an L2 differ-
ence test, where �L2 is computed as the difference
between the L2 statistics obtained under the restricted
and unrestricted three-class models, respectively. The
�L2 values obtained by setting the association param-
eters corresponding to one of the indicators to zero
were 145.3, 125.4, 61.3, and 101.1, forA,B,C, andD,
respectively. These numbers are higher than of the cor-
responding Wald statistics, which took on the values
29.6, 8.4, 7.4, and 19.0. This is because the latter test is
uniformly less powerful than the �L2 statistic. Under
the assumption that the unrestricted model is true, both
statistics are distributed asymptotically as chi-square
with df = (I−1)·(T −1), where I denotes the number
of categories in the nominal variable. The encoun-
tered values show that each of the four indicators

included in the model is significantly related to class
membership.

10.2.3. Classification

The final step in a traditional LC analysis is to
use the results of the model to classify cases into the
appropriate latent classes. For any given response pat-
tern (i, j, k, 1), estimates for the posterior membership
probabilities can be obtained using Bayes’s theorem as
follows:

π̂
X|ABCD
tijkl = π̂ABCDX

ijklt∑T
t=1 π̂

ABCDX
ijklt

, t = 1, 2, . . . , T (2)

where the numerator and denominator in equation (2)
are obtained by substituting the model parameter esti-
mates in place of the corresponding parameters in
equation (1).

Magidson and Vermunt (2001) and Vermunt and
Magidson (2002) refer to this kind of model as a LC
cluster model because the goal of classification into
T homogeneous groups is identical to that of cluster
analysis. In contrast to an ad hoc measure of dis-
tance used in cluster analysis to define homogeneity,
LC analysis defines homogeneity in terms of prob-
abilities. As indicated by equation (1), cases in the
same latent class are similar to each other because
their responses are generated by the same probability
distribution.

Cases are then assigned to the class for which
the posterior probability is highest (i.e., the modal
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Figure 10.1 Barycentric Coordinate Display for Three-Class Model
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class). For example, according to the three-class
LC model, someone with response pattern A = 1
(PURPOSE = “good”), B = 1 (ACCURACY =
“mostly true”), C = 1 (UNDERSTANDING =
“good”), and D = 1 (COOPERATION = “inter-
ested”) has posterior membership probabilities equal
to 0.92, 0.08, and 0.00. This means that such a person
is assigned to the first class.

10.2.4. Graphical Displays

Because for any given response pattern (i, j, k, l),
the T -class membership probabilities sum to 1, only
T −1 such probabilities are required as the probability
of belonging to the remaining class can be obtained
from the others. Hence, the class membership proba-
bilities π̂X|ABCD

tijkl can be used to position each response
pattern in T − 1 dimensional space, and for T = 3,
various two-dimensional barycentric coordinate dis-
plays can be produced.

Rather than plotting every one of the many response
patterns, instructive plots of the kind used in corre-
spondence analysis can be produced, where points are
plotted for each category of each variable as well as
other meaningful aggregations of these probabilities
(Magidson & Vermunt, 2001).

Figure 10.1 depicts the corresponding barycentric
coordinate display under the three-class LC model.
Points are plotted for each category of each of the
four variables in our example. Because these points
contain information equivalent to the LC parameter
estimates (Van der Heijden, Gilula, & Van der Ark,
1999), this type of plot provides a graphical alter-
native to the traditional tabular display of parameter
estimates and can yield new insights into data.
Also displayed in Figure 10.1 are two additional
aggregations associated with the response catego-
ries UNDERSTANDING = “good” and “fair, poor”
(k = 1, 2) among those for whom COOPERATION=
“hostile/impatient” (1 = 3).

The horizontal dimension of the plot corresponds
to differences between McCutcheon’s (1987) “ideal”
and “believer” types (latent Classes 1 and 2). We see
that the categories of the variable C tend to spread out
along this dimension. Respondents showing “good”
understanding are most likely to belong to the ideal
class (the corresponding symbol is plotted closest to
the lower left vertex that represents Class 1), whereas
those showing only “fair or poor” understanding are
plotted closest to the lower right vertex that represents
Class 2.

Differences along the vertical dimension of the plot
are best shown by the categories of A and B. For
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Table 10.3 Descriptive Information and Parameter Estimates From Three-Class and Two-Factor Latent Class
(LC) Models Obtained With the Landis and Koch (1977) Data

Two Factors (Joint Probabilities)

Descriptive Information Factor 1=1 Factor 1 = 2
(True Negative) (True Positive)

% of Ratings That
% of Agree With Three Classes Factor Factor Factor Factor

Slides 2 = 1 2 = 2 2 = 1 2 = 1
Rated 5+ 6+ Class Class Class (Negative (Positive (Negative (Positive

Positive Raters Raters 1 2 3 Bias) Bias) Bias) Bias)

Class size 0.44 0.37 0.18 0.36 0.19 0.30 0.16
F 21 64 58 0.47 0.00 0.00 0.00 0.01 0.23 0.86
D 27 70 62 0.59 0.00 0.06 0.00 0.05 0.37 0.92
C 38 80 64 0.85 0.00 0.01 0.00 0.00 0.83 0.83
A 56 82 64 1.00 0.06 0.51 0.06 0.47 0.99 1.00
G 56 85 66 1.00 0.00 0.63 0.01 0.58 0.99 1.00
E 60 80 64 1.00 0.06 0.76 0.06 0.72 0.99 1.00
B 67 75 61 0.98 0.15 0.99 0.13 0.99 0.97 1.00

NOTE: False-negative and false-positive rates are highlighted in bold.

example, respondents agreeing that the purpose of
surveys is “good” are plotted close to the lower left
(Class 1) vertex. Those who say “it depends” are plot-
ted somewhat midway between the Class 1 and Class 3
(top) vertex. Those who say “it’s a waste of time and
money” are most likely to be in Class 3 and are posi-
tioned near the top vertex. The fact that the positioning
of categories for bothA andB spreads out over the ver-
tical dimension suggests a high degree of association
between these variables. In contrast, the categories of
C are spread over the horizontal dimension, suggesting
that the association between C and the two variables
A and B is close to nil.

The categories of the variable D form an interest-
ing diagonal pattern. Respondents showing they are
“interested” in the questions are most likely to be in
Class 1 (“ideal”), whereas those who are only “co-
operative” or exhibit “impatience/hostility” are plotted
closer to Classes 2 and 3. This suggests the hypothesis
that impatience and hostility may arise for either of
two different reasons: (a) disagreement that surveys
are accurate and serve a good purpose (indicated by
the vertical dimension of the plot) and/or (b) lack of
understanding (indicated by the horizontal dimension).

The additional points plotted deal with the rela-
tionship between variables C and D. The positioning
of these points suggest that among impatient/hostile
respondents, those who show good understanding of
the questions tend to be more in Class 3, whereas
those whose understanding is fair/poor tend to be about
equally likely to be in Class 2 or 3.

We will revisit these data and obtain further insights
later when we examine an alternative nontraditional
two-dimensional LC model, the two-factor LC model.

10.2.4.1. Example: Sparse
Multirater Agreement Data

We next consider an example with sparse data in
which seven pathologists each classified 118 slides as
to the presence or absence of carcinoma in the uterine
cervix (Landis & Koch, 1977) that was also analyzed
by Agresti (2002). LC modeling will be used here to
estimate the false-positive and false-negative rates for
each pathologist and to use multiple ratings to distin-
guish between slides that indicate carcinoma and those
that do not (for similar medical applications, see Rinds-
kopf & Rindskopf, 1986; Uebersax & Grove, 1990).
The second column of Table 10.3 shows that the raters
vary from classifying only about 1 of every 5 slides as
positive (Rater D) to classifying more than 2 of every
3 as positive (Rater B). The next two columns indicate
for which percentage of slides the ratings agree among
five or more and six or more raters. This information
shows that agreement is highest among Raters C, A,
G, and E.

As a starting point, Agresti (2002) formulated a
model containing two latent classes, in an attempt
to confirm the hypothesis that slides are either “true
positive” or “true negative.” The assumption of local
independence in the two-class model means that
rater agreement is caused solely by the differing
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Table 10.4 Results From Various Latent Class (LC) Models Fit to Landis and Koch (1977) Data

Bootstrap % Reduction
Model BICLL L2 p-Value in L2(H0)

Traditional
H0 One-class 1082.3 476.8 .00 0.0
H1 Two-class 707.9 64.2 .00 86.5
H2C Three-class 699.6 17.7 .49 96.3
H3C Four-class 729.4 9.3 .79 98.0

Nontraditional
H2C+ Three-class+ {DF}

direct effect
698.0 11.3 .83 97.6

H2FR Restricted basic
two-factor

688.4 11.3 .90 97.6

NOTE: BIC = Bayesian information criterion.

characteristics between these two types of slides. That
is, given that a slide is in the class of “true posi-
tive” (“true negative”), any similarities and differences
between raters represent pure error. However, in his
analysis of these data, he found that three classes were
necessary to obtain an acceptable fit.

Although there are 27 = 128 possible response
patterns, because of the large amount of inter-rater
agreement, 108 of these patterns were not observed
at all. As mentioned above, sparse data such as these
cause a problem in testing model fit because the
L2 statistic does not follow a chi-square distribution.
For this reason, Agresti (2002) simply alluded to the
obvious discrepancy between the expected frequen-
cies estimated under the two-class model and the
observed frequencies and speculated that this model
does not provide an adequate fit to these data. He
then compared estimates obtained from the three-class
model and suggested that the fit of this model was
adequate.

We report the bootstrapp-value in Table 10.4, which
confirms Agresti’s (2002) speculation that the fit of
the two-class model is poor and that of the three-class
model is adequate. It also shows that the three-class
model is preferred over the four-class model according
to the BIC criteria.

The parameter estimates obtained with the three-
class model are given in the middle portion of
Table 10.3. The largest class (44%) refers to slides that
all pathologists (except for D and F) almost always
agree show carcinoma (“true positive”). Class 2 (37%)
refers to slides that all pathologists (except occasion-
ally B) agree show no carcinoma. The remaining
class of slides (18%) shows considerable disagreement
between pathologists—B, E, and G usually diagnose
carcinoma, whereas C, D, and F rarely do, and A
diagnoses carcinoma half the time.

If we assume that Class 1 represents cases of true
carcinoma, the results reported in Table 10.3 show
that those pathologists who rated the fewest slides
as positive (D and F) have the highest false-negative
rates (42% and 53%, respectively, highlighted in bold).
Similarly, under the assumption that Class 2 repre-
sents cases free from carcinoma, the results show that
the pathologist who rated the most slides as posi-
tive, Rater B, shows a false-positive rate (15%) that
is substantially larger than the other pathologists.

The traditional model-fitting strategy requires us to
reject our two-class hypothesis in favor of a three-class
alternative in which the third latent class consists of
slides that cannot be classified as either “true positive”
or “true negative” for cancer. Next we consider some
nontraditional LC models that provide classification of
each slide according to its likelihood of carcinoma. In
particular, we will show that a two-factor LC model
provides an attractive alternative whereby Factor 1
classifies all slides as either “true positive” or “true
negative,” and Factor 2 classifies slides according to a
tendency for ratings to be biased toward false-positive
or false-negative error.

10.3. Nontraditional

Latent Class Modeling

Rejection of a traditional T -class LC model for lack of
fit means that the local independence assumption does
not hold with T classes. In such cases, the traditional
LC model-fitting strategy is to fit a T + 1 class model
to the data. In both of our examples, theory supported
a two-class model but because this model failed to
provide an adequate fit, we formulated a three-class
model. In this section, we consider some alternative
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strategies for modifying a model. In both cases, we
will see the nontraditional alternatives lead to models
that are more parsimonious than traditional models, as
well as models that are more congruent with our initial
hypotheses. The alternatives considered are as follows:

1. adding one or more direct effects,
2. deleting one or more items,
3. increasing the number of latent variables.

Alternative 1 is to include “direct-effect” parameters
in the model (Hagenaars, 1988) that account for the
residual association between the observed variables
that are responsible for the local dependence. This
approach is particularly useful when some external
factor, unrelated to the latent variable, creates an irrel-
evant association between two variables. Examples of
such external factors include similar question wording
used in two survey items, as well as two raters using
the same incorrect criterion in evaluating slides.

Alternative 2 also deals with the situation in which
two variables are responsible for some local depen-
dency. In such cases, rather than add a direct effect
between two variables, it may make more sense to
eliminate the dependency by simply deleting one of
the two items. This variable reduction strategy is
especially useful in situations in which there are many
redundant variables.

Alternative 3 is especially useful when a group
of several variables accounts for a local dependency.
Magidson and Vermunt (2001) show that by increas-
ing the dimensionality through the addition of latent
variables rather than latent classes, the resulting LC
factor model often fits data substantially better than the
traditional LC cluster models having the same number
of parameters. In addition, LC factor models are iden-
tified in some situations when the traditional LC model
is not.4

In the next section, we introduce a diagnostic statis-
tic called the bivariate residual (BVR) and illustrate its
use to develop some nontraditional alternative models
for our two data examples. The BVR helps pinpoint
those bivariate relationships5 that fail to be adequately

4. For example, with four dichotomous variables, an LC two-factor model
(composed of four latent classes) is identified, whereas a traditional three-
class model is not (Goodman, 1974b).

5. Traditional factor analysis, through the assumption of multivariate nor-
mality, limits its focus to bivariate relationships (i.e., the correlations)
because higher order relationships are assumed not to exist. In contrast,
LC models do not make strict distributional assumptions and hence attempt
to explain higher order associations as well. Nevertheless, the two-way
(bivariate) associations are generally the most prominent, and the ability to
pinpoint specific two-way tables in which lack of fit may be concentrated
can be useful in suggesting alternative models.

Table 10.5 Values for Bivariate Residuals Obtained
Under Various Models for the Sample of
White Respondents

ModelTwo-Way
Table H0 H1 H2C H3C H2C+ H2F

{AB} 61.6 0.1 0.1 0.0 0.0 0.0
{AC} 0.5 0.7 0.1 0.0 0.2 0.0
{AD} 10.6 0.0 0.1 0.0 0.2 0.1
{BC} 0.3 1.1 0.0 0.0 0.0 0.0
{BD} 8.6 0.4 0.3 0.2 0.2 0.4
{CD} 43.4 32.3 2.4 0.0 0.0 0.2

explained by the LC model and can help determine
which of the three alternative strategies to employ. We
will see that even in situations when the L2 statistic
reports that the model provides an adequate overall
fit, the fit in one or more two-way tables may not be
adequate and may indicate a flaw or weakness in the
model.

10.3.1. Bivariate Residuals and Direct Effects

A formal measure of the extent to which the observed
association between two variables is reproduced by
a model is given by the BVR statistic (Vermunt &
Magidson, 2003). Each BVR corresponds to a Pearson
chi-square statistic (divided by the degrees of freedom)
in which the observed frequencies in a two-way cross-
tabulation of the variables are contrasted with those
expected counts estimated under the corresponding LC
model.6 A BVR value substantially larger than 1 sug-
gests that the model falls somewhat short of explaining
the association in the corresponding two-way table.

10.3.1.1. Example: Survey
Respondent Types (Continued)

Table 10.5 reports BVRs for each variable pair under
each of several models estimated in our first exam-
ple. Because model H0 corresponds to the model
of mutual independence, each BVR for this model
provides a measure of the overall association in the
corresponding observed two-way table; that is, each
BVR equals the usual Pearson chi-square statistic used
to test for independence in the corresponding two-way
table divided by the degrees of freedom. The results
show that except for the nonsignificant relationships in

6. These residuals are similar to Lagrangian statistics. A difference is that
they are limited-information fit measures: Dependencies with parameters
corresponding to other items are not taken into account.
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the {AC} and {BC} tables, all of the remaining BVRs
are quite large, attesting to several significant asso-
ciations (local dependencies) that exist among these
variables. The BVR is especially large for {AB} and
for {CD}. For example, in Table {CD}, a Pearson chi-
square test confirms that the observed relationship is
highly significant (χ2 = 86.8, df = 2, p < .001;
BVR = 86.8/2 = 43.4).

Under the two-class model (H1), note that the BVRs
are all near or less than 1, except for one very large
value of 32.3 for {CD}. This suggests that the overall
lack of fit for this model can be traced to this single
large BVR. The traditional way to account for the lack
of fit is by adding another latent class. However, Table
10.5 shows that even after the addition of a third class,
the BVR for {CD} under the three-class model H2C

remains unacceptably high (BVR = 2.4). Although
the inclusion of the third class does add a second
dimension that causes the overall fit to be adequate,
it is not until we add a fourth class (model H3C) that
all BVRs are at acceptable levels.

Below, we consider the alternative approach of
adding a “direct effect” to the model to account for
the residual correlation. In addition, we consider use
of the two-factor LC model and further explore the
differences between the three- and four-class models.

10.3.1.2. Example: Sparse Multirater
Agreement Data (Continued)

Turning now to our second example, Table 10.6
shows that all of the BVRs under the one-class model
of mutual independence (model H0) are very large,7

indicating that the amount of agreement between each
pair of raters is highly significant. Under the two-class
model, many BVRs remain large. Although the three-
class model provides an acceptable overall fit to these
data, again we see that there is a single BVR that
remains unacceptably large—BVR = 4.5 for Raters D
and F, the two pathologists who rated the fewest slides
positive (recall Table 10.3). This large BVR suggests
that Raters D and F may be using some rating criterion
not shared by the other raters.

To account for this large residual association, we will
use nontraditional Alternative 1 and modify the three-
class model by adding the D through F direct-effect
parameter λDF into the model (Hagenaars, 1988; for
a slightly different formulation, see Uebersax, 1999).
Formally, this new model, H2C+, is expressed as

πijklmpt = πA|Xit π
B|X
jt π

C|X
kt π

E|X
mt π

DF|X
lpt ,

7.The smallest BVR under model H0 is 20.8, which occurs in table {EF}.

Table 10.6 Bivariate Residuals Obtained Under
Various Models for Landis and Koch
(1977) Data

Model

Traditional NontraditionalTwo-Way
Tablea H0 H1 H2C H2C+ H2FR H2FRC

{BE} 66.4 8.4 0.0 0.0 0.0 0.1
{DF} 38.0 7.2 4.5 0.0 0.0 0.0
{BG} 66.7 5.2 0.0 0.0 0.1 0.1
{EG} 77.2 3.3 0.1 0.1 0.2 0.2
{AB} 54.5 1.7 0.1 0.0 0.1 0.1
{CF} 28.0 1.3 0.0 0.0 0.0 0.0
{CE} 47.7 1.1 0.1 0.1 0.2 0.1
{DE} 24.5 0.0 0.7 0.6 0.6 1.2

a. These are the two-way tables for which the bivariate residuals were
larger than 1 under any of the reported models (other than H0).

where the probabilities π
DF|X
lpt are constrained as

follows:

π
DF|X
lpt =

exp(λDl + λFp + λDF
lp + λDX

lt + λFX
pt )∑L

l=1

∑P

p=1 exp(λDl + λFp + λDF
lp + λDX

lt + λFX
pt )
.

By relaxing the local independence assumption
between Raters D and F, model H2C+ is able to account
for the excessive association between D and F that is
not explainable by the latent classes. The �L2 test
shows that inclusion of the direct-effect parameter
provides a significant improvement over the tradi-
tional model H2C (�L2 = 17.7 − 11.3 = 6.4;
p = .01).

From a practical perspective, models H2C and H2C+
do not differ much as both models assign the 118 slides
to the same classes under the modal assignment rule.
This occurs despite the fact that model H2C+ gives D
and F less weight than model H2C during the computa-
tion of the posterior probabilities. The primary benefit
of model H2C+ is to suggest the possibility that Raters
D and F share a bias when evaluating Class 1 slides,
those slides that D and F often rate negative but that the
other pathologists almost always rate positive (recall
Table 10.3). The implication of including the direct
effect is that model H2C+ provides higher predictions
of agreement between Raters D and F than model H2C

on Class 1 slides.8

8. Because model H2C assumes local independence, the expected proba-
bility of both raters agreeing that a given Class 1 slide is free from cancer
can be computed by multiplying the corresponding conditional probabili-
ties. Using the estimates from Table 10.3, the probability of both agreeing
that a Class 1 slide is negative is .42× .53 = .22, and similarly, the prob-
ability of both agreeing that it was positive is .59× .47 = .28. In contrast,
model H2C+ predicts higher probabilities (.31 and .35, respectively) for
Raters D and F agreeing in both cases. Under the assumption that Class 1
slides are “true positive,” the results from model H2C+ mean that Raters
D and F both tend to share a bias toward committing a false-negative error.



Chapter 10 / Latent Class Models • 185

Returning to the first data example for a moment,
we might now expect to find similar insights by
the inclusion of the direct-effect parameters, λCD

kl ,
in the two-class model. Table 10.1 shows that this
model (H1C+) provides a good fit to the data.
However, under this model, the parameter measur-
ing the contribution of C to the latent classes is no
longer significant, and therefore C can be deleted
from the LC model completely. As this amounts to
deleting an association simply because it could not
be explained by a model with two latent classes,
Alternative 1 does not provide a desirable solution
here.

10.3.2. LC Factor Models

Next we consider Alternative 3, in which we use
LC factor models to include more than one latent
variable in the model. LC factor models were proposed
as a general alternative to the traditional exploratory
LC modeling by Magidson and Vermunt (2001). For
both examples, the results (given in Table 10.1 and
Table 10.4) show that a two-factor model is preferable
to the other models. We shall see that the two-factor
model is actually a restricted four-class model. In both
cases, the fit is almost as good as the (unrestricted)
four-class solution but is more parsimonious and
parameterized in a manner that allows easier interpre-
tation of the results.

LC factor models were initially proposed by
Goodman (1974a) in the context of confirmatory
latent class analysis. Certain traditional LC models
containing four or more classes can be inter-
preted in terms of two or more component latent
variables by treating those components as a joint
variable (see, e.g., Hagenaars, 1990; McCutcheon,
1987). For example, a latent variable X consist-
ing of T = 4 classes can be reexpressed in
terms of two dichotomous latent variables V =
{1, 2} and W = {1, 2} using the following
correspondence:

W = 1 W = 2
V = 1 X = 1 X = 2
V = 2 X = 3 X = 4

Thus, X = 1 corresponds with V = 1 and W = 1,
X = 2 with V = 1 and W = 2, X = 3 with V = 2
and W = 1, and X = 4 with V = 2 and W = 2.

Formally, for four nominal variables, the four-
class LC model can be reparameterized as a LC

factor model with two dichotomous latent variables
as follows:

πijklrs = πVW
rs π

ABCD|VW
ijklrs

= πVW
rs π

A|VW
irs π

B|VW
jrs π

C|VW
krs π

D|VW
lrs .

Magidson and Vermunt (2001) consider various
restricted factor models. They use the term basic
LC factor models to refer to certain LC models that
contain two or more dichotomous latent variables
that are mutually independent of each other and that
exclude higher order interactions from the conditional
response probabilities. Such a model is analogous to
the approach of traditional factor analysis in which
multiple latent variables are used to model multidi-
mensional relationships among manifest variables.

It turns out that by formulating the model in terms of
R mutually independent, dichotomous latent factors,
the basic LC factor model has the same number of
distinct parameters as a traditional LC model withR+1
classes. That is, the LC factor parameterization allows
specification of a 2R-class model with the same number
of parameters as a traditional LC model with onlyR+1
classes! This offers a great advantage in parsimony
over the traditional T -class model as the number of
parameters is greatly reduced by natural restrictions.

As mentioned previously, the basic two-factor model
provides an excellent fit to both of our example data
sets. For the first example, Table 10.1 shows that this
model (model H2F) is preferred over any of the LC
cluster models according to the BIC. In addition, this
model explains all bivariate relationships in the data
(see Table 10.5). We will interpret the results from this
model in the next section in conjunction with a more
extensive analysis, including both the White and Black
sample.

10.3.2.1. Example: Sparse Multirater
Agreement Data (Continued)

Regarding our second example, Table 10.4 shows
that the basic two-factor model is preferred over all the
other models according to the BIC criteria. The right-
most portion of Table 10.3 provides the parameter
estimates9 that we used to name the factors. These
are joint latent class and conditional response proba-
bilities for combinations of factor levels. We assigned
the names “true negative” and “true positive” to Levels
1 and 2 of Factor 1, respectively. Each of these levels
is split again into two levels by Factor 2, which we

9. The two-factor model in Table 10.3 was further restricted by setting
the effect of indicator C on Factor 2 to zero because this effect was not
significant.
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named “tendency toward ratings bias.” We named the
two levels of Factor 2 “tend to negative bias” and “tend
to positive bias,” respectively.

Comparing the four factor cells (right-most portion
of Table 10.3) to the classes in the three-class model
(middle portion of Table 10.3), we see the following
similarities. First, note that Class 1 of the three-class
solution (representing 44% of the slides mostly rated
positive) corresponds primarily to Factor 1, Level 2
slides (those named “true positive”), which account
for 46% of all slides. These “true-positive” slides are
divided according to Factor 2 into cell (2, 1), account-
ing for 30% of all slides, and cell (2, 2), accounting for
16% of the slides. Note that the former slides show a
clear tendency toward a false-negative error, especially
among Raters D and F.

Next, notice the similarity between Class 2 of the
three-class solution, representing 37% of the slides
rated mostly negative, and factor cell (1, 1), accounting
for 36% of the slides rated mostly negative. In addition,
from Table 10.3, we can also see the strong similarity
between Class 3 of the three-class solution and factor
cell (1, 2), identified in the table as “true-negative”
slides that are prone to false-positive error, especially
by Raters A, B, E, and G.

In conclusion, we have shown that the two-factor LC
model fits better than the traditional three-class model
and offers two substantive advantages. First, it pro-
vides a clear way to classify slides as “true positive” or
“true negative.” Second, it provides a further grouping
of slides that may be useful in pinpointing the rea-
sons for rater disagreement. Of course, whether Factor
1 actually distinguishes between “true negative” and
“true positive” and whether the error characterization
given by Factor 2 is accurate are important questions
that could be addressed in future research.

10.3.3. Multigroup Models

Multigroup LC models can be used to compare
models across groups. A completely unrestricted
multigroup LC model, referred to by Clogg and Good-
man (1984) as the model of complete heterogeneity, is
equivalent to the estimation of a separate T -class LC
model for each group. The fit of such a model can be
obtained by simply summing the L2 values (and cor-
responding degrees of freedom) for the corresponding
models in each group.

Let G denote a categorical variable representing
membership in group g. The model of complete
heterogeneity is expressed as (model M2C)

π
ABCDX|G
ijklt|g = πX|Gt |g π

A|X,G
it|g π

B|X,G
jt|g π

C|X,G
kt|g π

D|X,G
lt|g .

10.3.3.1. Example: Survey
Respondent Types (Continued)

The second part of Table 10.1 provides the results
of repeating our Example 1 analyses for the sample of
Black respondents. These results turn out to be very
similar to those obtained for the White respondents
(see first part Table 10.1). As in our analysis for the
White sample, we again reject the one- and two-class
models in favor of three classes to obtain a model that
provides an overall fit to the data that is adequate. The
right-most portion of Table 10.2 presents the parameter
estimates obtained from the three-class model (model
H′2C) as applied to the sample of Blacks. As in our
earlier analysis, the classes are ordered from largest to
smallest.

In comparing results across these two groups, it
is important to be able to interpret the three classes
obtained from the Black respondents as representing
the same latent constructs (“ideal,” “believers,” and
“skeptics”) as in our analysis of the White respondents.
Otherwise, any between-group comparisons would be
like comparing apples with oranges. Although it is
tempting to interpret Class 1 for both samples as repre-
senting the “ideal” respondents, this is not appropriate
without first restricting the measurement portion of
the models (the conditional probabilities) to be equal.
These restrictions are accomplished using the model
of partial homogeneity (model M2CR):

π
ABCDX|G
ijklt|g = πX|Gt |g π

A|X
it π

B|X
jt π

C|X
kt π

D|X
lt . (3)

Estimates from this model are given in the left-most
portion of Table 10.7. The third part of Table 10.1
compares the fit of the unrestricted model M2C and
restricted model M2CR. The �L2 statistic can be
used to test the restrictions made under model M2CR.
Because �L2 = 9.0 with 18 df is not significant,
we are free to use this restricted model for our group
comparisons.

The model of complete homogeneity (model M2CRR)
imposes the further restriction that the latent class prob-
abilities across the groups are identical: πX|Gt |1 = πX|Gt |2 ,
for t = 1, 2, 3. Because these restrictions yield a
significant increase in L2, we reject the model of
complete homogeneity in favor of the model of partial
homogeneity and conclude that there are significant
differences in latent class membership between the
White and Black samples.

Table 10.1 also includes results obtained from the LC
factor model counterparts to the models of complete
heterogeneity and partial heterogeneity. Because these
models contain two dichotomous and independent
factors, they contain the same number of parameters
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Table 10.7 Parameter Estimates for the Three-Class Latent Class (LC) Model of Partial Homogeneity
(Model M2CR) and the Corresponding LC Two-Factor Model M2FR

Three Classes Two Factors (Marginal Probabilities)

Class 1 Class 2 Class 3 Factor V Factor W

Ideal Believers Skeptics Level 1 Level 2 Level 1 Level 2

LC probabilities
Whites 0.68 0.15 0.17 0.81 0.19 0.85 0.16
Blacks 0.51 0.30 0.19 0.79 0.21 0.70 0.31

Conditional probabilities
PURPOSE

Good 0.89 0.90 0.16 0.90 0.20 0.76 0.78
Depends 0.06 0.06 0.21 0.06 0.21 0.09 0.07
Waste 0.05 0.04 0.63 0.05 0.59 0.15 0.15

ACCURACY
Mostly true 0.60 0.64 0.01 0.63 0.02 0.50 0.55
Not true 0.40 0.36 0.99 0.37 0.98 0.50 0.45

UNDERSTANDING
Good 0.94 0.32 0.74 0.79 0.76 0.92 0.26
Fair, poor 0.06 0.68 0.26 0.21 0.24 0.08 0.74

COOPERATION
Interested 0.95 0.57 0.65 0.86 0.66 0.90 0.50
Cooperative 0.05 0.35 0.25 0.12 0.24 0.09 0.38
Impatient/hostile 0.00 0.08 0.10 0.02 0.10 0.01 0.12

as the three-class models M2C and M2CR. The lower
part of Table 10.1 shows that these models fit better
than the corresponding LC cluster models according to
the BIC criteria. Also, the smaller BVRs than the LC
cluster counterpart confirm that the LC factor model
fits the data better.

The parameter estimates from the two-factor model
M2FR are presented in the right-most portion of
Table 10.7. These are marginal latent class and con-
ditional response probabilities for factors V and W ,
which are obtained by summing over the other factor.
Note that variableD is strongly related to both factors
V and W . That is, respondents at Level 1 of each
factor have a higher probability (.90 or .91) of being
“interested” than those at Level 2. Variables A and B
relate only to factor V , and variable C relates only to
factor W . That is, for factor V , those at Level 1 are
substantially more likely to agree that surveys serve a
good purpose and are more accurate than those at Level
2, but the two levels are about equal in showing a good
understanding of the questions. For factor W , Level 1
shows good understanding, but Level 2 does not.

Moreover, Table 10.7 shows that group differences
exist primarily with respect to Factor 2 (observed group
differences on factor V are not significant). Black
respondents are twice as likely as Whites to be at Level
2 of Factor 2 (30% vs. 15%). These results allow us to
formulate a more rigorous test of our earlier hypothesis

that cooperation may be due to two separate factors—
one associated with the belief that surveys serve a good
purpose and are accurate (as assessed by LC Factor 1)
and the second related to understanding the questions
(as assessed by LC Factor 2).

Before concluding this section, we note that thus far,
we have treated the trichotomous variables COOPER-
ATE (A) and PURPOSE (C) as nominal. Alternatively,
they can be treated as ordinal, which serves to simplify
the model by reducing the number of parameters. The
most straightforward approach is to restrict the log-
linear parameters by using uniform scores vAi and vCk
for the categories of A and C, implying the following
constraints: λAV

ir = λAV
r v

A
i and λAW

is = λAW
s v

A
i (see,

e.g., Formann, 1992; Heinen, 1996).
The use of these restrictions in our example

increased theL2 by very little, indicating that variables
A and C may in fact be treated as ordinal. In the
next section, we present the results of a modified two-
factor model in which variablesA and C are treated as
ordinal.

10.3.4. Covariates

The parameters in the traditional LC model consist
of unconditional and conditional probabilities. The
conditional probabilities comprise the measurement
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portion of the model. They characterize the distribution
among the observed variables (indicators) conditional
on the latent classes. The unconditional probabilities
describe the distribution of the latent variable(s). To
obtain improved description/prediction of the latent
variable(s), we use a multinomial logit model to
express these probabilities as a function of one or more
exogenous variables Z, called covariates (Dayton &
Macready, 1988).

The multigroup model described in the previous
section is an example of the use of a single nominal
covariate (Z = G). For example, the term π

X|G
tg in

equation (3) can be expressed as

π
X|G
tg = exp(γ Xt + γ XG

tg )∑T
t=1 exp(γ Xt + γ XG

tg )
.

Although the latent variable(s) explain all of
the associations among the indicators, associations
between the covariates are not explained by the latent
variables. This is what distinguishes the indicators
from the covariates.

10.3.4.1. Example: Survey
Respondent Types (Continued)

Regarding the interpretation of the three-class
solution, McCutcheon (1987) questioned whether
some of the difference in latent class membership
between Black and White respondents might be
explained by education, a question that falls outside
the scope of traditional LC modeling. We address
this question below by including E: EDUCATION
as a second covariate in the two-factor model—
Z = (G,E).

The model provides a good fit to the data. The results
indicate that the effect of education does explain most,
but not all, of the group effect on factor W . The
logit parameter estimates are given in Table 10.8, in
which nonsignificant estimates were set to zero. The
multinomial model used for the covariates was

πVW|GE
rsge = exp(γ Vr + γWs + γ GW

gs + γ EW
es )∑R,S

r=1,s=1 exp(γ Vr + γWs + γ GW
gs + γ EW

es )
.

The gamma parameters in Table 10.8 indicate that
the higher the educational level, the lower the score on
factor W . The race effect is very weak: Blacks have a
slightly higher score on factor W than Whites.

The results for this two-factor restricted multi-
group model are also displayed in the biplot display
(Magidson & Vermunt, 2001) given in Figure 10.2.
Like the barycentric coordinate display in Figure 10.1,

Table 10.8 Parameter Estimates for the Two-Factor
Restricted Multigroup Latent Class (LC)
Model With Covariates

Factor

V W

Covariates (gammas)
G: Group

WHITE 0 −0.20
BLACK 0 0.20

E: Years of education
< 8 0 2.19
8–10 0 0.97
11 0 0.08
12 0 −0.34
13–15 0 −1.01
16–20 0 −1.89

Indicator variables (lambdas)
A: PURPOSE 2.26 0
B: ACCURACY

Mostly true −1.34 0
Not true 1.34 0

C: UNDERSTANDING
Good 0 −5.14
Fair/poor 0 5.14

D: COOPERATION 0.98 1.26

we see that the horizontal axis, corresponding to factor
W . is associated with UNDERSTANDING. Overall,
respondents having a good understanding are highly
likely to be at Level 1 of factor W,whereas those
with a fair/poor understanding are highly likely to be
at Level 2. The figure makes it clear that education
is much more related to this factor than race. The
vertical dimension is highly related to PURPOSE.
Figure 10.2 shows more clearly than Figure 10.1 that
COOPERATION is related to both factors. In particu-
lar, those rated as impatient/hostile tend to include two
different types of respondents—those whose under-
standing is fair/poor, as well as those who view the
purpose of surveys as a “waste of time and money.”

10.4. Other Types

of Latent Class Models

Thus far, we have focused on the traditional LC
modeling approach, including some important exten-
sions such as covariates, several latent variables,
and local dependencies. Some common characteris-
tics of these models are that they serve as scaling
methods or tools for dealing with measurement error,
that indicators are nominal or ordinal, and that local
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Figure 10.2 Biplot for Two-Factor Model With Covariates

Factor W 
0.0 0.2 0.4 0.6 0.8 1.0

Factor V

1.0

0.8

0.6

0.4

0.2

0.0

RACE
EDUC

ACCURACY
COOPERATE

UNDERSTAND
PURPOSE

White Black

< 8

8-10

11

12

13-15

16-20

Mostly true

Not true

Interested

Cooperative

Impatient, hostile

Good purpose

Depends

Waste of time and
money 

Good

Fair/poor

independence between indicators is the primary model
assumption. In this section, we discuss other types of
LC models. They are not used as scaling tools but as
clustering methods, tools for dealing with unobserved
heterogeneity, density estimation methods, or random-
coefficients models (McLachlan & Peel, 2000). More-
over, indicators or dependent variables can be of scale
types other than nominal or ordinal, and local indepen-
dence is no longer the basic model assumption. As we
will see, in some cases, there is only one indicator or
dependent variable.

The next section presents simple mixture models
for univariate distributions, with examples of mix-
tures of normals and mixtures of Poisson distributions.
Then, we extend this basic model by including predic-
tors, yielding what is called mixture regression or LC
regression models. We present an example of a mixed
linear regression model and show how the method
can deal with various types of repeated measurements.
Special attention is given to the relationship with
hierarchical or multilevel models. Then, we present

another extension of the simple mixture model, that
is, a mixture model for multivariate distributions. As
will be shown, the resulting LC model can be seen
as a model-based alternative to standard hierarchical
clustering methods such as K-means. We end with a
short overview of LC methods that were not discussed
in detail.

10.4.1. Simple Mixture Models

Consider the histogram depicted in Figure 10.3. This
generated data set of 1,000 cases is obtained from
a population consisting of a mixture of two normal
distributions. For 60% of the population, the variable
of interest follows a normal distribution with a mean
of 0 and a variance of 1, N(0, 1); for the other 40%,
the mean equals 3 and the variance 4, N(3, 4). The
normal curve that is drawn through the histogram
shows that the resulting mixture is clearly not normally
distributed.
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Figure 10.3 Simulated Distribution From a Mixture of Two Normals
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A model that can be used to describe such a
phenomenon is a finite mixture model (Everitt & Hand,
1981; McLachlan & Peel, 2000), which is a particular
kind of LC model. The basic formula for a mixture of
univariate distributions is

f (y|ϑ) =
T∑
t=1

πXt f (y|ϕt ). (4)

The left-hand side of equation (4) indicates that we
are interested in describing the distribution of a random
variable y, which depends on a set of unknown param-
eters ϑ. The right-hand side contains two terms: πXt
is the probability of belonging to latent class or mix-
ture component t , and f (y|ϕt ) is the distribution of y
within latent class t , given some unknown parameters
ϕt . The class-specific distribution of y is assumed to
belong to a particular parametric family. Depending
on the scale type of y, this can, for instance, be a
normal, Poisson, binomial, exponential, or gamma
distribution. The summation on the right-hand side
indicates that the distribution ofy is a weighted mean of
the class-specific distributions, where the latent class
proportions serve as weights.

Mixture models such as these have two important
types of applications. The first is density estimation:
Complicated distributions can be approximated by a

Table 10.9 Test Results for Generated Mixture of
Normals Data

Number of
Model Log-Likelihood BICLL Parameters

Equal variances
One-class −2177.75 4369.31 2
Two-class −2066.99 4161.61 4
Three-class −2050.78 4143.00 6
Four-class −2046.25 4147.75 8

Unequal variances
Two-class −2048.14 4130.81 5
Three-class −2047.78 4150.83 8
Four-class −2045.41 4166.80 11

NOTE: BIC = Bayesian information criterion.

mixture of simple parametric distributions. Another
important application type is clustering, in which case
the class-specific parameters are used to define the
clusters, and the posterior membership probabilities
are used to classify cases into the most appropriate
cluster.

Table 10.9 presents test results for various models
fitted to the data depicted in Figure 10.3. We esti-
mated one- to four-class mixtures of normal dis-
tributions with equal and unequal within-cluster
variances. As can be seen, the BIC measure identifies
the correct model, the two-cluster model with unequal
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Table 10.10 Observed and Estimated Frequency
Distribution of Packs of Hard Candy
Purchased During Past 7 Days Under
the One-Class and Three-Class Poisson
Model

Frequencies

Number of One-Class Three-Class
Packages Observed Model Model

0 102 8.43 101.67
1 54 33.63 54.63
2 49 67.11 50.03
3 62 89.28 53.89
4 44 89.09 47.25
5 25 71.11 34.14
6 26 47.30 22.00
7 15 26.97 14.37
8 15 13.46 11.02
9 10 5.97 10.18

10 10 2.38 10.17
11 10 0.86 9.97
12 10 0.29 9.20
13 3 0.09 7.90
14 3 0.03 6.32
15 5 0.01 4.72
16 5 0.00 3.30
17 4 0.00 2.18
18 1 0.00 1.36
19 2 0.00 0.80
20 1 0.00 0.45

within-cluster variances, as best. The three-class
model with equal within-cluster variances fits almost
as well, showing that a simpler parametric form can
sometimes be compensated by a larger number of
mixture components.

In the two-class model with unequal variances, the
estimated probability of belonging to Class 1 is .64.
This class has an estimated mean of −0.03 and a
variance of 1.01. The mean and variance of the other
class equal 3.24 and 3.95. Note that these estimates are
close to the population values we used to generate this
data set.

Table 10.10 provides a data set taken from
Dillon and Kumar (1994) that we will use as a second
example. It gives the observed frequency distribution
of the number of packs of hard candy consumed by
456 respondents during the 7 days prior to the survey.
Because the outcome variable is a count without a
fixed maximum, it is most natural to assume that it
follows a Poisson distribution. The table also reports
the estimated frequency distribution obtained with a
standard, or one-class, Poisson model, as well as
with a three-class mixture Poisson model. As can
be seen, the standard Poisson model does not fit the

empirical distribution at all, whereas the three-class
Poisson describes the data almost perfectly. This shows
that a mixture of simple parametric distributions can
be used to describe a quite complicated empirical
distribution.

Test results obtained when applying mixture Poisson
models to the hard candy data set show that models
with two and three mixture components perform much
better than the standard Poisson model. As is typi-
cal, there is a saturation point at which increasing
the number of classes no longer increases the log-
likelihood function: In this case, it occurs at four
classes. The three-cluster solution is the one that is
preferred according to the BIC criterion.

The estimated latent class proportions in the three-
class model are 0.54, 0.28, and 0.18, and the Poisson
rates are 3.48, 0.29, and 11.21. This means that we
identified a small cluster of heavy users (more than
11 packs in 7 days), a cluster containing slightly more
than a quarter of the respondents with almost no usage,
and a large group of moderate users.

10.4.2. LC Regression Models

In the simple mixture models discussed above, it
was assumed that the mean of the chosen parametric
distribution differs across latent classes. This can also
be expressed by specifying a linear regression model
for the mean of the distribution of interest, µt , after
applying some transformation or link function g(..)
that depends on the scale type of the y variable. For
the mean of a binomial or multinomial distribution, we
use a logit transformation; for a Poisson mean, a log
transformation; and for a normal mean, no transfor-
mation or an identity link. The regression model has
the form

g(µt) = β0t .

As can be seen, this regression model contains only
an intercept, and this intercept is class specific.

Let w denote a set of predictors or explanatory
variables. Suppose we are no longer interested in the
unconditional distribution of y but in the conditional
distribution of y given w, f (y|w,ϕt ). A natural way
to express the dependency of y onw is by the inclusion
of the set of predictors w on the right-hand side of the
regression equation. In the case of a single predictorw,
the resulting LC regression model (Wedel & DeSarbo,
1994) has the form

g(µt) = β0t + β1tw,

where β0t and β1t are the class-specific regression
coefficients.
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Figure 10.4 Simulated Two-Class Latent Class (LC) Regression Model

14121086420

50

40

30

20

10

0

−10

Class2

Class 1

Overall

Y

Figure 10.4 depicts a data set generated from a
population consisting of two latent classes, with class-
specific regression models equal to µ1 = 1 + 3w
and µ2 = 0 + 1w. It also compares the estimated
y values for the two-class model (YLC2) with the
standard one-class regression model (YLC1). As can
be seen, the description given by the standard regres-
sion model is very poor compared to the two-class
model. The LC regression modeling procedure has no
problem identifying the two regression lines without
preknowledge of class membership.

In an LC regression model, the latent variable is a
predictor that interacts with the observed predictors,
which means that it serves as a moderator variable.
Compared to a standard regression model in which all
predictors are observed, this basic LC regression model
provides several useful functions. First, it can be used
to weaken standard regression assumptions about the
nature of the effects (linear, no interactions) and the
error term (independent of predictors, particular distri-
bution, homoskedastic). Second, it makes it possible to
identify and correct for sources of unobserved hetero-
geneity. As explained below, this is especially useful
in situations when there are repeated measurements

or other types of dependent observations. Longitudi-
nal data applications are sometimes referred to as LC
or mixture growth models (each latent class has its
own growth curve). Third, it can be used to detect
outliers because these are cases for which the primary
regression model does not hold.

An important application area for LC regression
modeling is clustering or segmentation (Wedel &
Kamakura, 1998). In particular, ratings- and choice-
based conjoint studies are designed to identify sub-
groups (segments) that react differently to product
characteristics, which is the same as saying that these
groups have different regression coefficients. This type
of application is illustrated in more detail below with
an empirical example.

10.4.2.1. Example: Repeated
Measurements or Clustered Observations

As explained below, the LC regression model can
be viewed as a random-coefficients model that, sim-
ilar to multilevel or hierarchical models, can take
dependencies between observations into account. This
extends the application of LC regression models to
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Table 10.11 Parameter Estimates for the Abortion Example

Standard
Parameter Class 1 Class 2 Class 3 Class 4 Mean Deviation

Class size 0.30 0.28 0.24 0.19
Intercept −0.34 0.60 3.33 1.59 1.16 1.38
Year

1983 0.14 0.26 0.47 −0.58 0.12 0.35
1984 −0.12 −0.46 −0.35 −1.11 −0.45 0.34
1985 0.04 −0.44 −0.26 1.43 0.10 0.66
1986 −0.06 0.64 0.14 0.26 0.24 0.27

Religion
Roman Catholic −0.53 −0.53 −0.53 −0.53 −0.53 0.00
Protestant 0.20 0.20 0.20 0.20 0.20 0.00
Other −0.10 −0.10 −0.10 −0.10 −0.10 0.00
No religion 0.42 0.42 0.42 0.42 0.42 0.00

situations with repeated measurements or other types
of dependent observations.

We will illustrate LC regression with repeated mea-
surements using an application to longitudinal survey
data. This is, therefore, an example of an LC growth
model. The data set consists of 264 participants in
the 1983 to 1986 yearly waves of the British Social
Attitudes Survey (McGrath & Waterton, 1986). The
dependent variable is the number of yes responses on
seven yes/no questions as to whether it is a woman’s
right to have an abortion under specific circumstances.
Because this is a count variable with a fixed total, it
is most natural to work with a logit link and bino-
mial error function. The predictors that we used are
the year of measurement (1 = 1983, 2 = 1984,
3=1985, 4=1986) and religion (1=Roman Catholic,
2 = Protestant, 3 = other, 4 = no religion). The effect
of year of measurement is assumed to be class depen-
dent, and the effect of religion is assumed to be the
same for all classes.

We estimated models with one to five classes, and
the four-class model turned out to perform best in terms
of the BIC criterion. We also estimated more restricted
models in which the time effect is assumed to be linear
and/or the time effect is assumed to be class indepen-
dent. These models did not describe the data as well
as our four-class model, which indicates that the time
trend is nonlinear and heterogeneous.

The parameters obtained with the four-class model
appear in Table 10.11. The parameter means across
classes indicate that the attitudes are most positive at
the last time point and most negative at the second
time point. Furthermore, the effects of religion show
that people without religion are most in favor and
Roman Catholics and others are most against abortion.

Protestants have a position that is close to the
no-religion group.

The class-specific parameters indicate that the four
latent classes have very different intercepts and time
patterns. The largest Class 1 is most against abortion,
and Class 3 is most in favor of abortion. Both latent
classes are very stable over time. The overall level of
latent Class 2 is somewhat higher than of Class 1,
and it shows somewhat more change of the attitude
over time. People belonging to latent Class 4 are very
instable: At the first two time points they are similar
to Class 2, at the third time point to Class 4, and at the
last time point again to Class 2 (this can be seen by
combining the intercepts with the time effects). Class
4 could therefore be labeled as random responders.
It is interesting to note that in a three-class solution,
the random-responder class and Class 2 are combined.
Thus, by going from a three- to a four-class solution,
one identifies the interesting group with less stable
attitudes.

Vermunt and Van Dijk (2001) used the same empir-
ical example to illustrate the similarity between LC
regression models and random-coefficients, multi-
level, or hierarchical models. Using terminology from
multilevel modeling, the time variable is a Level 1
predictor and religion a Level 2 predictor. The effect
of the Level 1 predictor time is allowed to vary
across Level 2 units—in this case, individuals. The
LC regression output can be transformed into the
usual output produced by a standard multilevel or
hierarchical model—means, variances, covariances of
the intercept, and the three time effects—by elemen-
tary statistical operations. The most important part of
this multilevel output is what appears in the last two
columns of Table 10.11.
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A difference between LC regression analysis and
standard hierarchical models is that the former does not
make strong assumptions about the distribution of the
random coefficients. LC regression models can, there-
fore, be seen as nonparametric hierarchical models
in which the distribution of the random coefficients
is approximated by a limited number of mass points
(= latent classes). As shown by Vermunt and Van Dijk
(2001), the LC approach has the practical advantage of
being much less computationally intensive than para-
metric models, and substantively easier to interpret
results are often obtained.

10.4.2.2. Example: Application
to Choice-Based Conjoint Studies

The LC regression model is a popular tool for the
analysis of data from conjoint experiments in which
individuals rate or choose between sets of products
having different attributes (Wedel & Kamakura, 1998).
The objective is to determine the effect of product
characteristics on the rating or the choice probabilities.
LC analysis is used to identify subgroups or market
segments for which these effects differ.

For illustration of LC analysis of data obtained from
choice-based conjoint experiments, we use a gener-
ated data set. The products are 10 pairs of shoes that
differ on three attributes: fashion (0 = traditional,
1 = modern), quality (0 = low, 1 = high), and price
(ranging from 1 to 5). Eight choice sets offer 3 of
the 10 possible alternative products to 400 individuals.
Each choice task consists of indicating which of the
3 alternatives they would purchase, with the response
“none of the above” allowed as a fourth choice option.

The model that is used is a multinomial logit model
with choice-specific predictors, also referred to as the
conditional logit model. LetM be the number of choice
sets,K the number of choices per set, andJ the number
of predictors. A particular set, choice, and predictor are
denoted by m, k, and j , respectively. The regression
model of interest is

πmkt =
exp(

∑J
j=1 βjtwmjk)∑K

k=1 exp(
∑J

j=1 βjtwmjk)
.

Here, πmkt denotes the probability that someone
belonging to class t selects choice alternative k in
choice set m. The predictors we use are the three
product attributes (fashion, quality, and price), as well
as a dummy variable for the “none” category.

The BIC values indicated that the three-class model
is the model that should be preferred. The param-
eter estimates obtained with the three-class model are

Table 10.12 Parameter Estimates for Conditional
Logit Model in Conjoint Study Example

Wald for
Wald for Equal

Class 1 Class 2 Class 3 No Effect Effects

Fashion 3.03 −0.17 1.20 494.74 216.37
Quality −0.09 2.72 1.12 277.96 171.16
Price −0.39 −0.36 −0.56 144.48 3.58
None 1.29 0.19 −0.43 82.39 59.26

Table 10.13 Parameter Estimates for the Latent
Variable Regression for Conjoint Study
Example

Class 1 Class 2 Class 3 Wald

Intercept 0.37 0.00 −0.37 8.22
SEX

Male −0.66 −0.34 1.01 24.15
Female 0.66 0.34 −1.01

AGE
16–24 1.02 −0.15 −0.87 62.76
25–39 −0.59 −0.37 0.96
40+ −0.43 0.52 −0.09

reported in Table 10.12. As can be seen, fashion has a
major influence on choice for Class 1, quality for Class
2, and both fashion and quality for Class 3. The price
effect is similar for all three classes. The Wald test
for the equality of effects between classes indicates
that the difference in price effects across classes is
not significant. The price effects could, therefore, be
assumed to be class independent.

In addition to the conditional logit model, which
shows how the predictors affect the likelihood of
choosing one alternative over another, differentially
for each class, we specified a second logit model to
describe the latent class variable as a function of the
covariates sex and age. Table 10.13 shows that females
turn out to belong more often to Class 1 and males to
Class 3. Younger persons have a higher probability of
belonging to Class 1 (emphasize fashion in choices),
and older persons are most likely to belong to Class 2
(emphasize quality in choices).

In conclusion, the LC regression model offers com-
putational and interpretive advantages over the more
traditional hierarchical modeling approach that tends
to overfit data (Andrews, Ansari, & Currim, 2002).
In our example, we used the BIC criteria to select a
parsimonious number of classes. However, researchers
who prefer the results to show higher levels of individ-
ual variation in regression coefficients can obtain such
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with LC regression models by simply increasing the
number of latent classes to produce the desired amount
of variation.

10.4.3. LC Analysis as an Alternative
to K-Means Clustering

An important application of LC analysis is cluster-
ing (Banfield & Raftery, 1993; McLachlan & Peel,
2000; Vermunt & Magidson, 2002). Actually, we
already saw several cluster-like applications. The tra-
ditional LC model was used to construct a typology
of survey respondents using a set of categorical indi-
cators. We also showed that simple mixture models
such as mixtures of normals or mixtures of Poisson
distributions could be used for clustering purposes.

In this section, we will concentrate on LC analysis as
a tool for cluster analysis with continuous indicators.
These LC models can be seen as multivariate exten-
sions of the mixtures of univariate normals discussed
above. Instead of assuming a univariate normal dis-
tribution, we assume multivariate normal distributions
within latent classes. The most general form of the mix-
ture model concerned assumes that each latent class
has its own set of means, variances, and covariances.
More formally,

f (y|ϑ) =
T∑
t=1

πXt f (y|µt ,�t ).

Here, µt denotes the vector with class-specific
means and �t the class-specific variance-covariance
matrix. Note that, contrary to traditional LC model-
ing, it is not necessary to assume local independence
between the indicators.

The above LC cluster model is similar to the model
used in discriminant analysis. An important difference
is, of course, that in cluster analysis, group member-
ship is unobserved or latent, which is the reason that
LC cluster analysis is sometimes referred to as latent
discriminant analysis.

The first part of Figure 10.5 depicts a data set that
we will use to illustrate the LC cluster model for
continuous variables. Three measures are available to
diagnose diabetes: glucose, insulin, and steady-state
plasma glucose (SSPG) (see Fraley & Raftery, 1998).
In addition to these measures, we have information on
the clinical diagnosis consisting of the three categories
“normal,” “chemical diabetes,” and “overt diabetes.”
However, in practice, a gold standard is not available
in cluster applications. Our objective here is to con-
struct a mixture model that yields a classification that
is close to the clinical diagnosis, without use of the

Figure 10.5 Matrix Scatter Plot of Diabetes Data
Set for the Clinical Classification, the
K-Means-Like Five-Cluster Solution,
and the Final Three-Cluster Solution
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information on the clinical diagnosis. We use this
data set to demonstrate the flexibility of LC clustering
compared to other clustering methods. The gold



196 • SECTION III / MODELS FOR CATEGORICAL DATA

Table 10.14 Test Results for Diabetes Data

Number of
Model Log-Likelihood BICLL Parameters

Equal and diagonal
One-cluster −2750.13 5530.13 6
Two-cluster −2559.88 5169.52 10
Three-cluster −2464.78 4999.24 14
Four-cluster −2424.46 4938.49 18
Five-cluster −2392.56 4894.60 22

Unequal and diagonal
One-cluster −2750.13 5530.13 6
Two-cluster −2446.12 4956.94 13
Three-cluster −2366.92 4833.38 20
Four-cluster −2335.38 4805.13 27
Five-cluster −2323.13 4815.47 34

Unequal and full
One-cluster −2546.83 5138.46 9
Two-cluster −2359.12 4812.80 19
Three-cluster −2308.64 4761.61 29
Four-cluster −2298.13 4790.34 39
Five-cluster −2284.97 4813.79 49

Unequal and y1 − y2 free
One-cluster −2560.40 5155.64 7
Two-cluster −2380.27 4835.19 15
Three-cluster −2320.57 4755.61 23
Four-cluster −2303.14 4760.56 31
Five-cluster −2295.05 4784.19 39

NOTE: Bold numbers (minimum Bayesian information criterion [BIC]) indicate the model that would
be selected according to the BIC criterion.

standard makes it possible to judge whether the
methods do what we want them to do.

LC cluster analysis is a model-based clustering pro-
cedure. As such, it is a probabilistic and more flexible
alternative to K-means clustering. K-means cluster-
ing performs well under very strict conditions—that
is, if indicators are locally independent and if error
variances are cluster invariant and equal across indi-
cators (�t = σ 2I). These implicit assumptions of
K-means imply that in a three-dimensional scatter plot,
each cluster has the form of a sphere with the same
radius, and in each two-dimensional plot, each cluster
will have the form of a sphere with the same radius. The
assumption of equal error variances across indicators
is the reason that in K-means clustering, it is advised to
standardize the variables prior the analysis. Although
standardization often improves the situation, it does
not solve the problem because equating the variance
in the total sample is not the same as equating the
within-group variances (Magidson & Vermunt, 2002).

Having a closer look at Figure 10.5, it can easily
be seen that it is impossible to describe the shape of
the three diabetes clusters by a K-means model, that
is, by three spheres with the same radius. The within-
cluster variances are very different across clusters and

across indicators. Moreover, the glucose and insulin
indicators are strongly correlated within the group with
overt diabetes. Nevertheless, because the clusters are
well separated, a reliable cluster method should be able
to yield a three-cluster solution that is similar to the
clinical classification.

The problems associated with K-means are con-
firmed by the test results reported in Table 10.14.
We estimated one- to five-cluster models, each with
four different specifications of the variance-covariance
matrix: diagonal (= local independence) and equal
across classes, diagonal and unequal, glucose-insulin
covariance and unequal, and all covariances and
unequal. It can be seen that when the specifications
are too restrictive, one needs five and four clusters,
respectively. Actually, with the first K-means-like
specification, even more than five clusters are needed.

Although the BIC values indicate that the two
additional local dependencies (y1 − y3 and y2 − y3)
in the full model are not needed (compare the
three-cluster solutions for the last two specifications),
the fit measures also show that both the model with the
fully unrestricted covariance matrix and the model with
only the glucose-insulin covariance detect the correct
three-cluster solution. This means that working with a
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model with insufficient restrictions does not harm in
this example, but this is not always the case.

The middle part of Figure 10.5 shows the five nearly
spherical clusters identified with the most restricted
specification we used. Similar results would have been
obtained with K-means. The lower part of Figure 10.5
depicts the three-cluster solution that turned out to be
the best according to the BIC criterion. It can be seen
that the three clusters identified by this model are very
similar to the clinical classification. Our three-cluster
solution is smoother in the sense that some of the
overlap between the clinical classes disappears, which
is, of course, what can be expected from a statistical
model. The correspondence between the three-cluster
and the clinical classification is 87%, which is only
slightly lower than the 93% correct classifications of
a quadratic discriminant analysis (in which cluster
membership is treated as known).

The LC cluster model can be applied not only
with continuous indicators but also with indicators of
other scale types and different combinations of scale
types. Depending on the scale type, one will spec-
ify the most appropriate within-cluster distribution for
the indicator concerned. This yields a general cluster
model for mixed-model data (Hunt & Jorgensen, 1999;
Vermunt & Magidson, 2002). Note that the traditional
LC model is the special case in which all indicators are
categorical variables.

10.4.4. Other Developments in LC Modeling

In this chapter, we presented what we believe to be
the most important types of LC models. We did not
discuss LC models for transition, survival, or event
history data (Vermunt, 1997). Most of these models
are mixture regression models and can, therefore, be
handled within the LC regression framework. Another
important class of models for transition data are latent
or hidden Markov models that can be used to separate
true change from measurement error in the outcome
variable of interest (see, e.g., Langeheine & Van de
Pol, 1994). The structure of latent Markov models is
similar to the LC models with several latent variables
discussed in the previous section.

In the previous section, we presented LC models
that can be used for scaling. There also exist more
sophisticated LC scaling models, which can be
obtained by imposing certain constraints on the param-
eters of the traditional LC model. Examples are LC
models for probabilistic Guttman scaling, LC models
with order constraints, LC Rasch models, LC models
for preference data, and LC models for distance data

(see Böckenholt, 2002; Croon, 2002; Dayton, 1998;
Heinen, 1996).

Another more advanced type of LC model we would
like to mention is the LISREL-type framework for cat-
egorical variables developed by Hagenaars (1990) and
extended by Vermunt (1997). Any type of LC models
with categorical indicators, including LC models for
transition data and sophisticated LC scaling models,
are special cases of this general model. A limitation
of this approach is that it is restricted to categorical
indicators.

A final recent development that we would like to
mention is the development of more sophisticated
restricted mixtures of multivariate normals than that
discussed above. LC models have been proposed
in which the class-specific covariance matrices are
constrained by means of principal component
(Fraley & Raftery, 1998) or factor-analytic (Yung,
1997) structures or by structural equation models
(Jedidi, Jagpal, & DeSarbo, 1997).
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Chapter 11

Discrete-Time

Survival Analysis

John B. Willett

Judith D. Singer

An important class of research questions asks
whether and, if so, when a variety of events
occur (Singer & Willett, 1991; Willett &

Singer, 1991). Researchers investigating the conse-
quences of childhood traumas on later well-being,
for instance, ask whether an individual ever experi-
ences depression and, if so, when onset first occurs
(Wheaton, Roszell, & Hall, 1997). Other researchers
ask questions about whether and when street children
return to their homes (Hagan & McCarthy, 1997),
whether and when college students drop out of school
(DesJardins, Ahlburg, & McCall, 1999), whether
and when recently married couples get divorced
(South, 2001), and whether and when adolescent
boys first have sexual intercourse (Capaldi, Crosby, &
Stoolmiller, 1996).

Familiar statistical techniques, such as regression
and analysis of variance, and their more sophisticated
cousins, such as structural equation modeling, are
ill-suited for addressing questions about the timing
and occurrence of events. These usually versatile
methods fail because they are unable to handle situ-
ations in which the value of the outcome—whether
and when the event occurs—is unknown for some
people under study. When studying event occurrence,

AUTHORS’ NOTE: The order of the authors was determined by randomization.

this type of information shortfall is inevitable. No
matter how long a researcher collects data, some
people in the sample will not experience the target
event while he or she watches—some adults will not
have a depressive episode, some street children will
not return to their homes, some college students will
not drop out of school, some recently married couples
will not divorce, and some boys will remain virgins.
Statisticians say that such observations are censored.

Censoring creates an analytic dilemma. Although
the researcher knows something about individuals with
censored event times—if they ever experience the
event, they will do so after data collection ends—this
knowledge is imprecise. If an adolescent boy does not
have sexual intercourse by 12th grade, for example,
we would not want to conclude that he will never do
so. All we can say is that by the end of 12th grade, the
individual was still a virgin. Yet the need to analyze
simultaneously the data from individuals with cen-
sored and noncensored event times is apparent because
the former are a key group of people—those least likely
to experience the event.

Sound investigation of event occurrence
requires an analytic method that deals consistently
and evenhandedly with noncensored and censored

199
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observations. Biostatisticians modeling human
lifetimes (time to death) initially developed a class
of appropriate methods because they were faced with
a related problem, in which some of the individuals
in their studies (thankfully) did not die by the end of
data collection (Cox, 1972; Kalbfleisch & Prentice,
2002). Despite the foreboding appellations of these
techniques—known variously as survival analysis,
event history analysis, and hazard modeling—these
tools are invaluable for social scientists because they
provide a sound mathematical basis for exploring the
“whether” and “when” of any type of event.

In this chapter, we provide a conceptual introduction
to survival methods, focusing specifically on the prin-
ciples of discrete-time survival analysis. After distin-
guishing between discrete-time and continuous-time
survival methods and describing why we encourage
first-time learners to begin with the former approach,
we use data describing the age of first onset of depres-
sion to introduce the fundamental building blocks of
the methods—the hazard and survivor functions. We
then describe the statistical models that can be used
to link the pattern of temporal risk to predictors, com-
menting on the types of predictors that can be included
in these models and how to interpret the results of
statistical modeling. Finally, we show how researchers
can be misled if they use traditional analytic tech-
niques instead of survival methods. Our presentation
here is nontechnical and conceptual. Readers seeking
practical information and data-analytic advice should
consult Singer and Willett (2003) before using survival
analysis in their research.

11.1. How Do You Measure Time

and Record Event Occurrence?

To study event occurrence and its predictors, a
researcher must record how long it takes, from some
common starting time, for each individual in a sample
to experience the target event. Researchers have a
great deal of flexibility in identifying the “beginning
of time.” Because birth is both handy and meaningful
across a wide variety of contexts, most researchers
choose to use it as the “beginning of time,” using an
individual’s age (time since birth) as the marker of
when the event occurred (see, e.g., Wheaton et al.,
1997). But researchers need not restrict themselves
to the metric of chronological age. Another common
way of setting the beginning of time is to tie it to the
occurrence of a precipitating event—one that places all
individuals in the population at risk of experiencing the
target event. When modeling street children’s return to

a parental home, for example, the “beginning of time”
may be defined as the time when the child first left the
parental home (making “time on the street” the metric
for analysis).

Once a common start time is defined, the researcher
follows individuals (either prospectively on a periodic
basis or through retrospective event history reconstruc-
tion) to record whether and, if so, when the target
event occurs. All individuals who experience the target
event during data collection are assigned event times
equal to the value of time when they actually experi-
ence the event. Individuals who do not experience the
target event during data collection are assigned cen-
sored event times, set equal to the value of time when
data collection ended or when the individual was no
longer at risk of experiencing the event. This censored
event time, although seemingly imprecise, tells us a
great deal about event occurrence: It tells us that the
individual did not experience the target event at any
earlier time.

Some researchers can record event occurrence
data very precisely. When studying the relationship
between experiences of childhood adversity and death,
for example, Friedman, Tucker, Schwartz, and
Tomlinson-Keasey (1995) used public records of vital
statistics to determine the precise time (year, month,
and even day) when each individual who had died had
actually passed away. Other researchers can record
only that the target event occurred within some finite
time interval. A researcher might know, for example,
the year when a person first experienced depressive
symptoms, the month when an individual began a
new job, or the grade when a youngster transitioned
from adult-supervised care to self-care. We distin-
guish between these two scales of measurement (very
precise and somewhat coarser) by calling the former
continuous-time data and the latter discrete-time data.

In this chapter, we focus on statistical methods for
analyzing data recorded in discrete time (Singer &
Willett, 1993; Willett & Singer, 1993). We have six
reasons for this emphasis. First, we have found that
discrete-time methods are intuitively more comprehen-
sible than their continuous-time cousins, facilitating
initial mastery and later transition to continuous-time
methods (if required). Second, we believe that these
methods are very appropriate for much of the event
history data collected by social scientists because,
for logistical and financial reasons, data are often
recorded only in terms of intervals (see Lin, Ensel, &
Lai, 1997). Third, this approach facilitates inclu-
sion of both time-invariant and time-varying predic-
tors, whereas inclusion of the latter is more difficult
under the continuous-time approach. Thus, with
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discrete-time models, researchers can easily examine
the effects of predictors whose values fluctuate nat-
urally over the life course such as family structure
and employment status. Fourth, discrete-time survival
analysis fosters inspection of how the pattern of risk
shapes up over time. The most popular continuous-
time survival analysis strategy (“Cox regression”; Cox,
1972) ignores the shape of the temporal risk profile
entirely in favor of estimating the influence of predic-
tors on risk, under a restrictive assumption of “propor-
tionality.” Fifth, under the discrete-time approach, the
proportionality assumption is easily checked and “non-
proportional” models fitted. Finally, in discrete-time
survival analysis, all estimation can be conducted using
standard statistical software packages that fit logistic
regression models. This avoids reliance on the dedi-
cated computer software required for continuous-time
survival analyses.

11.2. Describing Survival Data

The hazard function and the survivor function are the
two fundamental tools for describing the occurrence
and timing of events. Estimates of these functions
provide answers to the two key descriptive questions:
“When is the target event most likely to occur?” and
“How much time passes before people are likely to
experience the event?”

11.2.1. The Hazard Function

When examining the occurrence of an event—such
as “experiencing an initial episode of depression”—for
a random sample of individuals, we begin by ask-
ing about the pattern of event occurrence over time.
We might ask, for example, the following: When
are individuals at greatest risk of first experiencing
a depressive episode—during childhood, during their
teens, or during their 20s, 30s, or 40s? When we pose
such questions, we are implicitly asking about the
“risk” of event occurrence across time periods. Know-
ing how the risk of experiencing a depressive episode
fluctuates over time provides answers to questions
about the “whether” and “when” of event occurrence.

How can we summarize the risk of event occur-
rence among individuals in a sample, especially if
some of these people have censored event times—
that is, by the end of data collection, they had never
been clinically depressed? In discrete-time survival
analysis, the fundamental quantity that represents the
risk of event occurrence in each time period is called

the hazard probability. Its computation in the sample
is straightforward: In each time period, identify the
pool of people still “at risk” of experiencing the event
(those who have reached this time period without
experiencing the event, the so-called “risk set”) and
compute the proportion of this group that experi-
ences the event during the time period. Notice that
this definition is inherently conditional; once some-
one experiences the event (or is censored) in one time
period, he or she no longer is a member of the risk set
in a future time period. The plot of the set of hazard
probabilities against time yields the hazard function, a
chronological summary of the risk of event occurrence.

In the top panel of the left-hand side of Figure 11.1,
we present an illustrative hazard function using ret-
rospective data gathered from a probability sample
of 1,393 adults in metropolitan Toronto who were
asked whether and, if so, when they first experienced a
depressive episode (for a complete description of these
data, see Wheaton et al., 1997). The panel presents two
sample hazard functions, computed separately for men
and women, describing the “risk” of initially experi-
encing a depressive episode in each of 13 successive
time periods—age 9 or younger, 10 to 12, 13 to 15,
16 to 18, and so on in 3-year increments until the time
intervals 40 to 42 and age 43 and older. Inspection of
the sample hazard function helps pinpoint when events
are most likely and least likely to occur. Examining
these two hazard functions, we see that for both males
and females, the risk of experiencing an initial episode
of depression is relatively low in childhood, increases
during adolescence, and then peaks in the early 20s.
After this point in time, the risk of initial onset of
depression, among those individuals who have not yet
had a depressive episode, is much lower, and by the
early 40s, it declines back to preadolescent levels for
men, although it rises again for women. Beyond this
overall pattern of risk, also notice that in all but two
time periods, there is a sex differential: In general,
women are at greater risk of experiencing a depressive
episode than are men.

The “conditionality” inherent in the definition of
hazard is critical. It ensures that all individuals remain
in the risk set until the last time period when they are
eligible to experience the event (at which point, they
are either censored by the end of data collection or
experience the target event). For example, the hazard
probability for initial onset of depression during the age
period 31 to 33 years is estimated conditionally using
the data from all those individuals (852 of the initial
sample of 1,393) who were at least age 31 when data
were collected but who had not yet had a depressive
episode during any earlier time period. Individuals
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Figure 11.1 Hazard and Survivor Functions Describing Age at First Onset of Depression for 1,393 Adults in Toronto,
by Gender
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who were not yet in their early 30s (n = 227) or
who had already experienced a depressive episode
(n = 314) are no longer “at risk” and are therefore
excluded from the calculation of hazard in this time
period and all subsequent time periods. This condi-
tionality is crucial, for it ensures that the sample hazard
probability deals evenhandedly with censoring—using
all the information available in the sample event histo-
ries but not overextending this knowledge beyond the
time when the researcher has data.

11.2.2. The Survivor Function

In addition to using the hazard function to explore
the conditional risk of event occurrence in each time

period, it is useful to cumulate these period-by-period
risks to display the proportion of the sample that
“survives” through each time period—that does not
experience the event. The term survival probability
refers to this proportion, and the term survivor func-
tion refers to plots arraying the survival probabilities
against time. Sample survivor functions summarize
aggregate event histories. They are easily computed by
cumulating the entries in the sample hazard function
over time (see Singer & Willett, 2003).

In the bottom panel of the left-hand side of
Figure 11.1, we display the sample survivor func-
tions for men and women corresponding to the sample
hazard functions displayed in the top panel. These
survivor functions indicate the proportion of adults
who “survived”—did not experience an initial
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depressive episode—through each successive time
period—ages 1 to 9, 10 to 12, 13 to 15, and so on.
Notice that the curves remain high at the beginning of
time and then drop more sharply as time passes. At
birth, all individuals are “surviving”—none of them
has experienced a depressive episode—and so the sur-
vival probabilities are 1.00. Over time, as individuals
experience depressive episodes, the survivor functions
drop. Because most adults do not experience a depres-
sive episode at any time in their lives, the curves do not
reach zero, ending in this sample at .77 for men and .62
for women. These proportions indicate that by the end
of their late 50s, an estimated 77% of men and 62% of
women had not yet experienced a depressive disorder.
By subtraction, we estimate that 23% of men and 38%
of women have experienced a depressive episode at
some point before their 60s.

All sample survivor functions have a similar shape—
a monotonically nonincreasing function of time. The
rate of decline, however, can differ across groups. For
example, although the two sample survivor functions
in Figure 11.1 have similar shapes, the sharper decline
among women suggests that, in comparison to men,
they are at greater risk of experiencing a depressive
episode.

11.3. Detecting Predictors

of Event Occurrence Using

a Discrete-Time Hazard Model

Estimated hazard functions and survivor functions
describe when (and whether) a group of individuals
is likely to experience a target event. These descriptive
statistics can also be used to answer questions about
differences between groups. Are maltreated children
more likely than nonmaltreated children to repeat a
grade in school (Rowe & Eckenrode, 1999)? Are chil-
dren of divorced parents more likely than children of
intact families to experience a divorce themselves?
Are individuals from larger families less likely to
experience a depressive episode than individuals from
smaller families?

Each of these examples implicitly uses individual
characteristics—child maltreatment, parental divorce,
and family size—to predict the risk of event occur-
rence. When we examine the pair of sample hazard
and survivor functions displayed in the left-hand side
of Figure 11.1, we, too, are implicitly treating gender
as a predictor of age at first onset of depression. But
implicit comparisons such as these are limited. How
can we examine the effects of continuous predictors

using such plots? How can we examine the effects
of several predictors simultaneously or explore sta-
tistical interactions among predictors? How can we
make inferences about the population from which the
sample was drawn? With survival analysis, we achieve
these goals by postulating and fitting statistical models
of the hazard function and by conducting hypothesis
tests about the values of population parameters in these
models.

Statistical models of hazard express hypothesized
population relationships between entire hazard profiles
and predictors. To motivate our representation of these
models, examine the two sample hazard functions in
the top panel of the left side of Figure 11.1 and imagine
that we have created a dummy variable, FEMALE,
which takes on two values (0 for males, 1 for females).
In this formulation, we are making the entire hazard
function the conceptual “outcome” and the dummy
variable FEMALE the potential “predictor.”

What is the relationship between the predictor and
the outcome? Ignoring differences in the shapes of the
profiles for the moment, when FEMALE = 1, the
sample hazard function is generally “higher” relative
to its location when FEMALE = 0, indicating that in
virtually every time period, women are more likely to
experience an initial depressive episode. So conceptu-
ally, at least, the effect of the predictor FEMALE is
to “shift” one sample hazard profile vertically relative
to the other. A population hazard model formalizes
this conceptualization by ascribing the vertical dis-
placement in hazard profiles to variation in predictors
in much the same way as an ordinary linear regres-
sion model ascribes differences in mean levels of
a continuous noncensored outcome to variation in
predictors.

The difference between a hazard model and a linear
regression model, of course, is that the entire haz-
ard profile is no ordinary continuous outcome. The
discrete-time hazard profile is a set of conditional
probabilities, each bounded by 0 and 1. Statisti-
cians modeling a bounded outcome as a function of
predictors generally do not use a linear function to
express this relationship but rather use a nonlinear link
function that has the net effect of transforming the out-
come so that it is unbounded. This prevents derivation
of fitted values that fall outside the range of permis-
sible values—in this case, between 0 and 1. When
the outcome is a probability, the logit link function
is especially popular (Hosmer & Lemeshow, 2000). If
p represents a probability, then logit (p) is the natural
logarithm (loge) of p/(1 −p) and, in the case of these
data, can be interpreted as the log-odds of initial onset
of depression.
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Letting h(t) represent the entire population hazard
profile, then, a statistical model that relates the logit
transform of h(t) to the predictor FEMALE is

logit h(t) = β0(t)+ β1FEMALE. (1)

The parameter β0(t) is the baseline logit-hazard
profile. It represents the value of the outcome (the entire
logit-hazard profile) when the value of the predictor
FEMALE is 0 (i.e., it specifies the profile for men). We
write the baseline as β0(t), a function of time, and not
as β0, a single term unrelated to time (as in regression
analysis), because the outcome (logit h(t)) is an entire
temporal profile. The discrete-time hazard model in (1)
specifies that differences in the value of the predictor
“shift” the baseline logit-hazard profile up or down.
The “slope” parameter β1 captures the magnitude of
this shift; it represents the vertical shift in logit-hazard
associated with a one-unit difference in the predictor.
Because the predictor here is a dichotomy, FEMALE,
β1 captures the differential risk of onset (measured
in the logit-hazard scale) for women in comparison
to men.

Discussion of methods for estimating the parameters
of discrete-time hazard models, evaluating goodness
of fit, and drawing inferences about the population is
beyond the scope of this chapter. All of these goals
are easily achieved using standard software for fit-
ting logistic regression models (see Singer & Willett,
2003). Without delving into details, suffice it to say
that once a discrete-time hazard model has been fit,
its parameters can be reported along with standard
errors and goodness-of-fit statistics in much the same
way that the results of familiar regression analyses
are reported. And just as fitted lines can be used to
illustrate the influence of important predictors in the
context of multiple regression, so, too, can fitted hazard
functions (and survivor functions) be displayed for
prototypical people—those who share substantively
important values of statistically significant predictors.

We illustrate the results of this estimation process
in the right-hand panel of Figure 11.1, which presents
fitted hazard and survivor functions for the model pre-
sented in (1). Comparing the right and left panels,
notice that the fitted plots on the right side are far
smoother without the crossing and zigzagging char-
acteristic of the sample plots on the left side. This
smoothness results from the constraints inherent in
the population hazard model stipulated in (1), which
forces the vertical separation between the two hazard
functions to be identical (in logit-hazard scale) in every
time period. Just as we do not expect a fitted regression
line to touch every data point in a scatter plot, we do not
expect a fitted hazard function in survival analysis to

match every sample value of hazard. Indeed, analyses
using procedures described in our companion papers
reveal that the discrepancies between the sample and
fitted plots presented in Figure 11.1 can be ascribed to
nothing more than sampling variation.

What have we learned by fitting this statistical model
to these data? First, we can see the more clearly
articulated profile of risk across time that is revealed
by pooling information across individuals and asking
questions about the population that gave rise to these
sample data. Here, this reveals a clear pattern of risk
resembling that found by many researchers studying
the initial onset of depressive disorders (e.g., Sorenson,
Rutter, & Aneshensel, 1991): The risk of onset is
relatively low in childhood, rises steadily through
adolescence, and reaches a peak in the early 20s, at
which point it declines, falling not back to zero but to
moderate levels that never quite reach the peak risks
of early adulthood.

Second, we can quantify the increased risk of
initially becoming depressed among women in com-
parison to men, and we can conduct a hypothesis test
of whether this gender differential may be a result of
sampling variation. Our analyses yield a parameter
estimate forβ1 of 0.52, which indicates that the vertical
separation in the logit-hazard scale between the pro-
files of risk for men and women is 0.52. Conducting the
appropriate hypothesis test (described elsewhere), we
obtain a chi-square test statistic of 23.20 on 1 degree
of freedom (p < .0001), indicating that we may reject
the null hypothesis that the predictor FEMALE has
no effect on the population hazard profile (i.e., we
reject the null hypothesis H0: β1 = 0). Because few
researchers have an intuitive understanding of the logit-
hazard scale, we recommend using the same data-
analytic practice used when fitting ordinary logistic
regression models: Antilog the coefficient and inter-
pret it in terms of odds and odds ratios (Hosmer &
Lemeshow, 2000). Antilogging .52 (i.e., taking e.52),
we conclude that the estimated odds of experiencing a
depressive episode in any given time period are 1.67
times higher for women in comparison to men.

The fitting of discrete-time hazard models pro-
vides a flexible approach to investigating predictors of
event occurrence that appropriately includes data from
both censored and noncensored individuals. Although
hazard models may appear unusual, they actually
resemble familiar multiple linear and logistic regres-
sion models. Like these familiar models, hazard
models can incorporate several predictors simulta-
neously, simply through the inclusion of additional
predictors. Inclusion of multiple predictors permits
examination of the effect of one predictor while
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controlling statistically for the effects of others.
Similarly, we can examine the synergistic effect of
several variables by including statistical interactions
between predictors.

Rather than describe the similarities between haz-
ard models and familiar regression models (for these
are presented extensively elsewhere), let us turn now
to the unique analytic possibilities offered by hazard
models—possibilities unavailable with standard statis-
tical methods. We do so because we believe that it is the
unique features of hazard models (such as the ability
to investigate time-varying effects) that make them so
exciting for the empirical researcher.

11.4. What If the Values

of Predictors Vary Over Time?

Including Time-Varying Predictors

Hazard models can include two very different types
of predictors: those that are time invariant and those
that are time varying. As befits their label, the former
describe immutable characteristics of people, such as
their sex or race, whose values are stable across the
lifetime, whereas the latter describe characteristics of
people that may fluctuate with time, as might an indi-
vidual’s self-esteem, marital status, or income. For
clarity, when writing statistical models that include
time-varying predictors, we include a parenthetical t in
the variable name to distinguish such predictors from
their time-invariant cousins.

There are at least two reasons why we believe that the
ability to include time-varying predictors represents an
especially exciting analytic opportunity for researchers
studying the predictors and consequences of events
across the life course. First, researchers often find
themselves studying behavior across extended peri-
ods of time, sometimes encompassing more than 20,
30, or even 40 years. Although researchers studying
behavior across short periods of time may reasonably
argue that the values of time-varying predictors will
be relatively stable during the study period (enabling
them to use time-invariant indicators of these time-
varying features), the tenability of this assumption
decreases as the length of time studied increases.
Second, many research questions focus on the links
between the occurrence of several different events.
Researchers ask about whether the occurrence of one
stressful event (e.g., parental divorce or death of a
spouse) predicts the occurrence of another stressful
event (e.g., one’s own divorce or the onset of depres-
sion). Although it is possible to address such questions
by comparing the trajectories of individuals who have

had and who have not had the precipitating event at
any time during the interval covered by data collec-
tion, this approach requires the researcher to set aside
data on all individuals who experienced the precipi-
tating event during the period of data collection. By
coding the precipitating event using a time-varying
predictor, data from all individuals may be analyzed
simultaneously.

We illustrate the use of a time-varying predictor by
considering the dummy variable PARDIV(t), which
indicates whether the individual’s parents had divorced
by time t (0 = not yet divorced; 1 = divorced). We
could investigate the effects of adding this time-
varying predictor to model (1) by fitting the following
model:

logit h(t) = β0(t)+ β1FEMALE

+ β2PARDIV(t). (2)

This model allows the values of the dummy variable
PARDIV(t) to vary over time (beginning at 0 among
intact families and switching to 1 if, and when, the
individual’s parents divorce). However, it also stipu-
lates that the effect of parental divorce on the risk of
onset is constant over time, represented by the sin-
gle parameter β2. If β2 is positive, individuals whose
parents divorced are more likely to develop depressive
symptoms (after the divorce occurs); if it is negative,
they are less likely; and if it is zero, parental divorce
has no effect on risk.

The top panel of Figure 11.2 presents the results
of fitting the population discrete-time hazard model
postulated in (2) to these sample data. We present
the results of this “main effects model” because anal-
yses (not presented here) confirmed that there was
no statistical interaction between these predictors—
in other words, the effect of parental divorce on risk
was identical for men and women. Comparison of
the four fitted hazard functions clearly illustrates the
large and statistically significant effects of the two
predictors: Women are at greater risk of experiencing
an initial depression onset as are individuals whose
parents divorced.

Because PARDIV(t) is a time-varying predictor,
however, these fitted plots cannot be interpreted in the
same way as the fitted plots presented in Figure 11.1.
To learn how to interpret these plots, focus first on
the bottom fitted hazard profile (in the top half of
the figure), which depicts the risk of experiencing a
depressive episode among men whose parents never
divorced. This is the lowest of the four fitted hazard
profiles because this group of individuals is at lowest
risk of experiencing a depressive disorder. Now con-
sider the profile that would result if a boy’s (or man’s)
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Figure 11.2 Fitted Hazard Functions Describing Age
at First Onset of Depression, by Gender,
for Children Whose Parents Had and
Had Not Divorced
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parents divorce. While the parents were married, the
boy’s risk profile would still be represented by the
lowest of the four hazard functions. When they divorce,
however, the latter portion of this boy’s risk profile (the
portion occurring after the divorce) would be described
by the other fitted hazard profile for males, which is
substantially higher, capturing the increased risk of
initial depression onset among males whose parents
had divorced. In essence, then, the fitted hazard profiles
presented in the top panel of Figure 11.2 provide an
envelope of all possible hazard profiles corresponding
to the many different possible times when parents may
divorce. Individuals whose parents are not divorced
remain on the lower profile (for their gender); if and
when their parents’ divorce, their risk of initial onset
rises to the level represented by the higher hazard
profile for their gender.

Another analytic opportunity made possible through
hazard modeling is the option of exploring different
ways of parameterizing the effects of time-varying
predictors. In the model we have just fit for parental

divorce, we have assumed that the effect of parental
divorce on the risk of depression remains with a person
throughout his or her lifetime. But consider an alter-
native possibility: Parental divorce may increase an
individual’s risk of depression, but only during the
time period when the parental divorce occurs. Letting
the dummy variable DIVNOW(t) indicate whether
the individual’s parents had divorced at time t (0 =
not divorced in this time period; 1 = divorced in
this time period), we could investigate the effects of
this time-varying predictor by fitting the following
model:

logit h(t) = β0(t)+ β1FEMALE

+ β2DIVNOW(t). (3)

As with the model postulated in (2), the values
of the dummy variable DIVNOW(t) may vary over
time (being 0 among individuals whose parents did
not divorce during this time period and being 1 if
they do). So, too, we continue to hypothesize that the
effect of parental divorce on the risk of initial onset
of depression is constant over time and is represented
by the single parameter β2. The difference between
the two models is that once the variable PARDIV(t)
takes on the value 1 for an individual, it stays at the
value 1 for the remainder of that individual’s record;
for the variable DIVNOW(t), in contrast, it would
take on the value of 1 only during the time period
when the individual’s parents actually divorced. Thus,
model (3) postulates that the effects of parental divorce
are interval specific. If β2 is positive, then individuals
whose parents divorced in this interval are at greater
risk of depression in this interval. This model does not
allow the effects of parental divorce to carry over into
any interval after the divorce occurs.

The bottom panel of Figure 11.2 presents the results
of fitting this alternative model to these data. We have
plotted these fitted functions on a scale identical to
that used in the top panel so that the differential effect
associated with parental divorce in the two models is
apparent. Once again, begin with the bottom hazard
profile, which represents the risk of onset of depression
among males whose parents did not divorce during
the time period in question. Our model specifies that
a male whose parents remained married would have
this profile of risk over time. If and when that male’s
parents divorce, however, his risk of onset during that
time period would skyrocket, jumping up to the upper
hazard profile for men. The difference between this
model and the previous model, however, is that here,
after the time period in question, the male’s risk pro-
file would return to the lower level represented by the
bottom hazard function.
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Why are these models so different? Both confirm
that the effect of parental divorce is statistically signif-
icant, but the magnitude of the effect differs because
they code the parental divorce variable in dramatically
different ways. The first model allows the effect of
parental divorce to persist throughout a person’s life-
time. It yields an estimated coefficient of 0.34, which
indicates that the odds that children of divorced parents
become depressed are e0.34 = 1.41 times higher than
the corresponding odds for children of nondivorced
parents. The second model, in contrast, stipulates that
the effect of parental divorce “kicks in” only during
the time period when the divorce occurred. It yields a
much larger coefficient (1.36), which implies that the
effect of parental divorce on the risk of depression is
much higher at that particular time period. Antilog-
ging (exponentiating) this coefficient, we find that the
odds of depression among children of divorced parents
are 3.88 times higher at that point in time, but that
afterwards, they revert back, and their risk profiles are
indistinguishable from those whose parents had not
been divorced. The first model essentially amortizes
the dramatically elevated period-specific risk across
an individual’s postparental divorce life, whereas the
latter focuses exclusively on what happens to an indi-
vidual during the time period when his or her parents
actually divorced.

The ease with which time-varying predictors can be
incorporated into hazard models offers social scientists
an innovative analytic opportunity. Many important
predictors of trajectories and turning points fluctuate
naturally with time: family and social structure,
employment, opportunities for emotional fulfillment,
and, perhaps most important, the occurrence and
timing of other events. In traditional statistical anal-
yses, temporal fluctuation in such predictors must be
reduced to a single measure across time. With the
advent of hazard modeling, this is no longer the case.
Researchers can examine relationships between event
occurrence and dynamically changing predictors.

11.5. What If the EFFECTS

of Predictors Vary Over Time?

Including Interactions With Time

When processes evolve dynamically, the effects of both
time-invariant and time-varying predictors may fluc-
tuate over time. A predictor whose effect is constant
over time has the same impact in all time periods. A
predictor whose effect varies over time has a different
impact on hazard in different time periods.

Both time-invariant and time-varying predictors
can have time-varying effects. Consider the effects
of parental divorce (as measured by the variable
PARDIV(t)) on the risk of depression. PARDIV(t) is
a time-varying predictor—its value goes from 0 to 1
if and when parents divorce—but its effect on hazard
might be constant over time (as we have stipulated so
far). If the effect is time invariant, this means that the
effect of parental divorce on the risk of onset is the same
regardless of whether the divorce takes place during
childhood, adolescence, or adulthood. If the effect of
parental divorce varies over time, in contrast, divorce
might have a larger effect on the risk of depression
among children who are still living at home than among
adults who have already moved out of the house.

The discrete-time hazard models posited so far have
not permitted a predictor’s effect to vary with time; they
are called proportional-odds models. Hazard profiles
represented by such models have a special property:
In every time period (t) under consideration, the effect
of the predictor on the logit hazard is the same. In
equation (1), for example, the vertical shift in the
logit-hazard profile for women is always β1, and con-
sequently, the hypothesized logit-hazard profiles for
women and men have identical shapes because their
profiles are simply shifted versions of each other. Gen-
erally, in proportional-odds models, the entire family
of logit-hazard profiles represented by all possible
values of the predictors shares a common shape and
is mutually parallel, differing only in its relative eleva-
tions. If the logit-hazard profiles are parallel and have
the same shape, the corresponding raw hazard pro-
files are (approximate) magnifications and diminutions
of each other—they are proportional.1 Because the
models presented so far include predictors with only
time-constant effects, the fitted hazard functions dis-
played appear to have the required “proportionality.”

But is it sensible to assume that the effects of all
predictors are unilaterally time constant and that all
hazard profiles are proportional in practice? In reality,
many predictors will not only displace the logit-hazard
profile but also alter its shape. If the effect of a predictor
varies over time, we must specify a nonproportional
model that allows the shapes of the logit-hazard profiles

1. For pedagogic reasons, we have taken some mathematical liberties here.
In discrete-time models, the proportionality of the raw hazard profiles is
only approximate because vertical shifts in logit hazard correspond to
magnifications and diminutions of the untransformed hazard profile only
when the magnitude of the hazard probability is small (say, less than .15
or .20). In much empirical research, as in the example we present here,
discrete-time hazard is about this magnitude or less, and therefore the
approximation tends to hold quite well in practice (see Singer & Willett,
2003, for further discussion of this issue).
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Figure 11.3 Fitted Hazard Functions Describing the
Age at First Onset of Depression, by
Gender and the Individual’s Number
of Siblings, From Two Discrete-Time
Hazard Models
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to differ. When the effect of one predictor differs by
the levels of another, we say that the two predictors
interact; in this case, we say that the predictor interacts
with time. To add such an effect into our hazard models,
we include the cross-product of that predictor and time
as an additional predictor.

Figure 11.3 illustrates the types of information that
can be gleaned from determining whether a predictor
interacts with time, presenting the results of fitting
two discrete-time hazard models to the depression
data using the time-invariant predictor NSIBS, which
indicates the number of siblings for each respondent.2

Because NSIBS is a continuous variable (its values
vary from 0 to 26), we present fitted hazard profiles
for two prototypical individuals: those who were only
children (zero sibs) and those who came from larger
families (six sibs). The figure presents fitted hazard
profiles from two distinct models: a “main effects”
model (top panel) and an “interaction with time” model
(bottom panel). The main effects model suggests that

2. Because of data limitations, the values of this predictor are assumed to
be constant during an individual’s lifetime. If we had data indicating when
the respondent’s siblings were born, we could have coded this predictor
as being time varying.

siblings protect against depression: For both men and
women, the greater the number of siblings, the lower
the risk of onset. The four fitted hazard profiles appear
proportional because the main effects model constrains
the effect of NSIBS to be the same in each time period.

But a more accurate and complex story emerges
from the “interaction with time” model displayed
in the bottom panel of Figure 11.3, in which the
effect of NSIBS is allowed to vary over time. Com-
paring the fitted hazard functions from the inter-
action with time model with those from the main
effects model illustrates the untenability of the pro-
portionality assumption due to the statistically sig-
nificant interaction between NSIBS and time. The
hazard functions in the bottom panel are clearly not
proportional. In childhood, when individuals are still
living at home, family size does have a protective
effect: Boys and girls from larger families are at
lower risk of having a depressive episode. Over time,
however, the protective effect of family size dimin-
ishes, and by the time an individual reaches his or her
early 30s, the effect is virtually nonexistent. Instead
of having a constant vertical separation in logit-hazard
space, the relative differences between the hazard func-
tions differ, being larger in childhood and trivial in
adulthood.

We believe that the ability to include and test the
importance of interactions with time represents a major
analytic opportunity for empirical researchers. When
studying the behavior of individuals over very long
periods of time, it seems reasonable to hypothesize
that the effects of predictors will vary as people pass
through different life stages. Although the effects
of some predictors will remain with an individual
throughout his or her lifetime, the effects of others may
dissipate or increase over time. Our example of the
changing effects of family size is but one of hundreds
of reasonable possibilities that depression researchers
might want to investigate. Were we to look for pre-
dictors of depression whose effects might increase
over time, we might find that characteristics of the
individual’s own family in adulthood (say, number of
children) might be an important predictor of depression
in this phase of life.

We believe that it is not hyperbole to state that inter-
actions with time are everywhere, if only researchers
took the time to look for them. Present data-analytic
practice (and the widespread availability of prepack-
aged computer programs) permits an almost unthink-
ing (and often untested) adoption of proportional
hazards models (“Cox” regression), in which the
effects of predictors are constrained to be constant
over time. Yet we have found, in a wide variety of
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substantive applications, including not only our own
work on employment duration (Murnane, Singer, &
Willett, 1989; Singer, 1993a, 1993b) but also others’
work on topics such as age at first suicide ideation
(Bolger, Downey, Walker, & Steininger, 1989) and
child mortality (Trussel & Hammerslough, 1983), that
interactions with time seem to be the rule rather than
the exception. We have every reason to believe that
once researchers start looking for interactions with
time, they will arise commonly. The key is to test
the tenability of the assumption of a time-invariant
effect. Although we have not outlined the statistical
procedures for doing so here, we refer the interested
reader to Singer and Willett (2003).

11.6. Is Survival Analysis

Really Necessary?

In this chapter, we have introduced a class of statistical
methods for analyzing longitudinal data on the occur-
rence and timing of events. Our presentation so far
has encouraged researchers to learn more about these
methods because they offer analytic capabilities that
other methods do not. But now we turn to another
reason for learning about survival methods: Failure to
use them when appropriate can mislead a researcher
alarmingly.

How can traditional methods for analyzing event
occurrence deceive the investigator? The answer to
this question depends on which traditional approach
replaces the survival method and how that approach
responds to the problem of censoring. Survival
methods deal evenhandedly with censored cases—
they contribute information to the analysis up until the
time at which they are censored. Traditional analytic
methods, in contrast, deal with censoring in an ad hoc
way, which can create a series of problems we now
describe.

One common way of “resolving” the censoring
dilemma is to ignore the censored cases completely,
treating them as if they were missing. Traditional
statistical analyses can then be conducted in the
subsample of noncensored individuals, with event
time (or perhaps its logarithm) playing the role of
the dependent variable. Descriptive statistics can be
used to summarize subsample variability in event time.
Correlation analysis, regression analysis, and analysis
of variance can be used to investigate the relationship
between event time and predictors. Unfortunately, this
approach reduces statistical power (due to the smaller
sample size) and leads to negatively biased estimates
of aggregate event time (with a corresponding impact

on estimates of the relationship between event time
and predictors). When studying age at first divorce,
for example, an investigator might be tempted to sub-
sample only those individuals who had divorced by the
end of data collection. But omitting individuals who
remain married modifies the sample in an unfortunate
way, reducing its size by eliminating the very individ-
uals at lowest risk of divorce! After all, some of these
individuals will divorce; they will just do so after data
collection ends. The average time to divorce among
the full population of “ever marrieds” must be longer
than that found among the noncensored (“divorced”)
subsample analyzed.

An alternative to the “convert all censored cases
into missing values” approach involves imputing
their unknown event times and regressing its
logarithm on predictors in the traditional fashion. The
imputation allows the censored cases (for whom con-
tinuous duration data are unavailable) to be included
in analyses with noncensored cases. The basic idea is
well intentioned—there must be equivalent informa-
tion available on both groups if they are to be included
in the same traditional analysis. Although the approach
maintains the sample at its original size (thereby appar-
ently avoiding a loss of statistical power), it does not
resolve the problem of bias. The censored event times
are usually imputed arbitrarily or simply set equal
to the length of data collection. Such a decision is
not completely unreasonable because all the censored
individuals did not experience the target event until
that point in time. But many did not experience the
target event for many more years to come. Full-sample
summaries of event times based on such data neces-
sarily underestimate the true length of time to event
because, for an unknown proportion of the sample,
the ultimate event times must be greater than the
imputed value.

To avoid arbitrary data imputation while retaining
both censored and noncensored cases, many investi-
gators set aside the continuous event-time information
(which is unknown for one of the subgroups) and
focus on the categorical data that are known for both
groups—data on whether each member of the sample
experienced the target event by a particular point in
time, usually the end of data collection. Dichotomiza-
tion provides a new analytic outcome for which indi-
viduals who experienced the target event prior to the
chosen cutoff are assigned a value of 1, and those who
did not (the censored cases) are assigned the value 0.
Descriptive statistics can summarize the proportion of
cases experiencing the event prior to the chosen time,
and logistic regression can be used to investigate the
relationship between event occurrence and predictors.
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Dichotomization can be viewed as the coarsest form
of discrete-time survival analysis available. But its
coarseness creates problems that can obscure knowl-
edge about transitions. First, the approach destructs
perfectly good continuous duration data to create the
new dichotomous outcome. Consider what would
happen, for example, if we followed a sample of
individuals for 50 years and asked whether and, if
so, when they first experienced a depressive episode.
Dichotomization would eliminate known and poten-
tially meaningful variation in event times by clustering
together everyone who onset prior to the cutoff of age
50. Those whose initial depressive episodes occurred
in early childhood would be pooled with those who
did not become depressed until their late 40s, and
yet such individuals undoubtedly differ enormously
in the causes of their depression and in their ultimate
prognosis.

A further problem is that any particular cutoff time—
even one seemingly relevant to the process under
study—is somewhat arbitrary. A researcher studying
the predictors of obtaining employment after being
laid off, for example, might follow a sample of people
for 1 year to see whether they successfully secured a
first job (as in Ginexi, Howe, & Caplan, 2000). But
highly disparate temporal profiles of risk can lead to
similar employment rates at a specific point in time.
Just because individuals with high self-esteem and
low self-esteem were equally likely to find jobs after
2 years does not mean that they got there by fol-
lowing similar trajectories. Perhaps most of the high
self-esteem individuals obtained their jobs relatively
quickly, soon after losing their jobs, whereas the low
self-esteem individuals may have gotten their jobs only
after months and months of searching. The 2-year cut
point is convenient but not purposeful. By avoiding
dichotomization and using survival analysis to dis-
aggregate risk, we can better document variation in
risk over time; by discovering what predicts variation
in risk, we can better understand why some individ-
uals find jobs early and others do not. Traditional
methods disregard the temporal profile of risk; with
survival methods, the risk profile becomes the primary
analytic focus.

Disregard for the temporal variation in risk leads
to yet another problem with the dichotomization
approach; contradictory conclusions can result from
nothing more than differences in the particular cutoff
time adopted. Not only will the overall proportion of
the sample experiencing the event differ as the cutoff is
modified, but the relationship with predictors may also
change. In our previous example, choosing cutoffs of
2 months, 1 year, and 2 years may lead to three entirely

discrepant conclusions about the rate at which high
school dropouts find jobs. The 2-month rates might
erroneously indicate that low self-esteem individu-
als are more likely to find jobs (because they will
take the first job that comes along), the 1-year rates
might register no difference, and the 2-year rates might
suggest that high self-esteem individuals are more
likely to find jobs (because they persist and ulti-
mately do secure employment). By using survival
analysis to look at the relationship between hazard
and self-esteem, the source of these cumulative
differences in risk may be revealed as a statistically
significant interaction between self-esteem and time.
Researchers using traditional methods must constantly
remind themselves that their conclusions can fluctuate
as they modify their cutoff. Although such caveats
usually appear in the “Results” section of an article,
they often disappear by the “Discussion” section. In
survival analysis, the time frame itself is an integral
part of the answer; it highlights, rather than obscures,
variation in risk over time.

The dichotomization “solution” is rendered further
ineffective if censoring occurs at different times for
different members of the sample. This occurs when
sampled individuals are observed for different lengths
of time, perhaps because of the research design (as
when interviewing an age-heterogeneous sample and
obtaining retrospective event history data) or because
of the gradual onset of attrition (a common problem
in longitudinal research). If censoring times differ
across sample members, then both cutoff time and
the opportunity for event occurrence differ as well.
People followed for longer periods of time have greater
opportunity to experience the target event than do those
followed for shorter periods of time. So observed
differences in cumulated risk might be attributable
to nothing more than research design. Although it is
possible to make risk periods equivalent across all
sample members by discarding data describing behav-
ior that occurred after the earliest possible censoring
point for any member of the sample, this will elim-
inate large quantities of perfectly good data already
collected. With survival analysis, a person who does
not experience the event of interest is censored at
the particular time that his or her data record ends;
censoring times need not be identical for everyone
under study.

Finally, traditional analytic methods offer few mech-
anisms for including predictors whose values vary
over time or for permitting the effects of predictors
to fluctuate over time. To overcome this limitation,
researchers studying the effects of variables such as
family functioning, socioeconomic status, or marital
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status often use predictor values corresponding to a
single point in time, the average of the several values
over time, or perhaps a rate of change in values over
time. Survival analysis makes this approach unneces-
sary. The analytic effort is identical whether including
predictors that are static over time or predictors that
change over time; so, too, it is easy to determine
whether the effects of predictors are constant over time
or whether they differ over time. Traditional methods
force researchers to build static models of dynamic
processes; survival methods allow researchers to
model dynamic processes dynamically.

For all these reasons, we believe that empirical
researchers should investigate the possibilities offered
by survival methods. In the recent past, when these
methods were in their infancy and statistical software
was neither available nor user-friendly, researchers
reasonably adopted other approaches. But these
methods, originally developed to model an event
seemingly beyond a person’s control (i.e., death),
lend themselves naturally to the study of individual
behavior and development. The time has come for
empirical researchers to fully exploit the utility of sur-
vival analysis. We are convinced that there is much that
these methods can reveal.
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Chapter 12

An Introduction

to Growth Modeling

Donald Hedeker

12.1. Introduction

Longitudinal studies are increasingly common in
social sciences research. In these studies, subjects
are measured repeatedly across time, and interest
often focuses on characterizing their growth across
time. Traditional analysis of variance methods for
such growth curve analysis are described in Bock
(1975). However, these traditional methods are of lim-
ited use because of restrictive assumptions concerning
missing data across time and the variance-covariance
structure of the repeated measures. The univariate
“mixed-model” analysis of variance assumes that the
variances and covariances of the dependent variable
across time are equal (i.e., compound symmetry).
Alternatively, the multivariate analysis of variance for
repeated measures only includes subjects with com-
plete data across time. Also, these procedures focus
on estimation of group trends across time and pro-
vide little help in understanding about how specific
individuals change across time. For these and other
reasons, hierarchical linear models (HLMs) (Bryk &
Raudenbush, 1992) have become the method of choice
for growth modeling of longitudinal data.

Variants of HLMs have been developed under a
variety of names: random-effects models (Laird &
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Ware, 1982), variance component models
(Dempster, Rubin, & Tsutakawa, 1981), multilevel
models (Goldstein, 1995), two-stage models (Bock,
1989a), random-coefficient models (de Leeuw &
Kreft, 1986), mixed models (Longford, 1987;
Wolfinger, 1993), empirical Bayes models (Hui &
Berger, 1983; Strenio, Weisberg, & Bryk, 1983),
and random regression models (Bock, 1983a, 1983b;
Gibbons, Hedeker, Waternaux, & Davis, 1988). A
basic characteristic of these models is the inclu-
sion of random subject effects into regression models
to account for the influence of subjects on their
repeated observations. These random subject effects
thus describe each person’s growth across time and
explain the correlational structure of the longitudinal
data. In addition, they indicate the degree of subject
variation that exists in the population of subjects.

Several features make HLMs especially useful in
longitudinal research. First, subjects are not assumed
to be measured on the same number of time points;
thus, subjects with incomplete data across time are
included in the analysis. The ability to include sub-
jects with incomplete data across time is an important
advantage relative to procedures that require com-
plete data across time because (a) by including all
data, the analysis has increased statistical power, and
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(b) complete case analysis may suffer from biases to
the extent that subjects with complete data are not
representative of the larger population of subjects.
Because time is treated as a continuous variable in
HLMs, subjects do not have to be measured at the
same time points. This is useful for analysis of lon-
gitudinal studies in which follow-up times are not
uniform across all subjects. Both time-invariant and
time-varying covariates can be included in the model.
Thus, changes in the outcome variable may be due
to both stable characteristics of the subject (e.g., their
gender or race) as well as characteristics that change
across time (e.g., life events). Finally, whereas tra-
ditional approaches estimate average change (across
time) in a population, HLMs can also estimate change
for each subject. These estimates of individual change
across time can be particularly useful in longitudinal
studies in which a proportion of subjects exhibit change
across time that deviates from the average trend.

As these methods have developed, several text-
books describing HLMs for longitudinal data analysis,
to various degrees, have been published (Brown &
Prescott, 1999; Bryk & Raudenbush, 1992; Davis,
2002; Diggle, Liang, & Zeger, 1994; Goldstein,
1995; Hand & Crowder, 1996; Hox, 2002; Longford,
1993; Raudenbush & Bryk, 2002; Singer & Willett,
2003; Verbeke & Molenberghs, 2000). Similarly,
several collected editions are available (Bock, 1989b;
Collins & Sayer, 2001; Leyland & Goldstein, 2001;
Moskowitz & Hershberger, 2002) containing a vari-
ety of HLM developments. Also, review, comparison,
and/or tutorial articles on longitudinal data analysis
treating HLMs have proliferated (Albert, 1999;
Burchinal, Bailey, & Snyder, 1994; Cnaan, Laird, &
Slasor, 1997; Delucchi & Bostrom, 1999; Everitt,
1998; Gibbons et al., 1993; Gibbons & Hedeker,
2000; Keselman, Algina, Kowalchuk, & Wolfinger,
1999; Lesaffre, Asefa, & Verbeke, 1999; Manor &
Kark, 1996; Omar, Wright, Turner, & Thompson,
1999; Sullivan, Dukes, & Losina, 1999). Most of
these articles concern continuous response variables,
although ones dealing specifically with categorical out-
comes have also appeared (Agresti & Natarajan, 2001;
Fitzmaurice, Laird, & Rotnitzky, 1993; Gibbons &
Hedeker, 1994; Hedeker & Mermelstein, 1996, 2000;
Pendergast et al., 1996; Zeger & Liang, 1992).

Applications of growth modeling are steadily
increasing and can be found in many different fields,
including studies on alcohol (Curran, Stice, & Chas-
sin, 1997), smoking (Niaura et al., 2002), HIV/AIDS
(Gallagher, Cottler, Compton, & Spitznagel, 1997),
drug abuse (Carroll et al., 1994; Halikas, Crosby,
Pearson, & Graves, 1997), psychiatry (Elkin et al.,

1995; Serretti, Lattuada, Zanardi, Franchini, &
Smeraldi, 2000), and child development (Campbell &
Hedeker, 2001; Huttenlocher, Haight, Bryk, & Seltzer,
1991), to name a few. Not only do these articles illus-
trate the wide applicability of HLMs, but they also give
a sense of how HLM results are typically reported in
the various literatures. Thus, they can be very useful
for investigators who are new to HLMs and their usage.

This chapter will focus on describing HLMs for
continuous outcomes in a very practical way. We will
first illustrate how HLMs can be seen as an extension
of an ordinary linear regression model. Starting with a
simple linear regression model, the model will slowly
be extended and described to guide the reader going
from familiar to less familiar territory. Following the
descriptions of the statistical models, several HLM
analyses will be presented using a longitudinal psychi-
atric data set. These analyses will illustrate many of the
key features of HLMs for growth modeling. For further
illustration, interested readers can download the data
set and program files to replicate the analyses in this
report from http://www.uic.edu/∼hedeker/long.html.

12.2. HLMs for Longitudinal Data

To introduce HLMs, consider a simple linear
regression model for the measurement y of individ-
ual i (i = 1, 2, . . . , N subjects) on occasion j (j =
1, 2, . . . , ni occasions):

yij = β0 + β1tij + εij. (1)

Ignoring subscripts, this model represents the
regression of the outcome variable y on the indepen-
dent variable time (denoted t). The subscripts keep
track of the particulars of the data—namely, whose
observation it is (subscript i) and the relative order
of the observation (the subscript j ). The independent
variable t gives a value to the level of time and may
represent time in weeks, months, and so forth. Because
y and t carry both i and j subscripts, both the outcome
variable and the time variable are allowed to vary by
individuals and occasions.

In linear regression models, such as (1), the errors
εij are assumed to be normally and independently dis-
tributed in the population with zero mean and common
variance σ 2. This independence assumption makes the
model given in equation (1) an unreasonable one for
longitudinal data. This is because the outcomes y are
observed repeatedly from the same individuals, and so
it is much more likely to assume that errors within an
individual are correlated to some degree. Furthermore,
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the above model posits that the growth, or change
across time, is the same for all individuals because the
model parameters describing growth (β0, the intercept
or initial level, and β1, the linear change across time)
do not vary by individuals. For both of these reasons,
it is useful to add individual-specific effects into the
model that will account for the data dependency and
describe differential growth for different individuals.
This is precisely what HLMs do. Thus, a simple HLM
is given by

yij = β0 + β1tij + υ0i + εij, (2)

where υ0i represents the influence of individual i on
his or her repeated observations.

To better reflect how this model characterizes an
individual’s influence on his or her observations, we
can represent the model in a hierarchical or multilevel
form. For this, it is partitioned into the within-subjects
(or Level 1) model,

yij = b0i + b1i tij + εij, (3)

and the between-subjects (or Level 2) model,

b0i = β0 + υ0i ,

b1i = β1. (4)

Here, the Level 1 model indicates that individual i’s
response at time j is influenced by his or her initial level
b0i and time trend, or slope, b1i . The Level 2 model
indicates that individual i’s initial level is determined
by the population initial level β0, plus a unique con-
tribution for that individual υ0i . Thus, each individual
has his or her own distinct initial level. Conversely, the
present model indicates that each individual’s slope
is the same; all are equal to the population slope β1.
Another way to think about it is that each person’s trend
line is parallel to the population trend determined by
β0 and β1. The difference between each individual’s
trend and the population trend is υ0i , which is constant
across time.

The between-subjects, or Level 2, model is some-
times referred to as a “slopes as outcomes” model
(Burstein, 1980). The hierarchical representation
shows that just as within-subjects (Level 1) covariates
can be included in the model to explain variation in
Level 1 outcomes (yij), between-subjects (Level 2)
covariates can be included to explain variation in Level
2 outcomes (the subject’s intercept b0i and slope b1i).
Note that combining the within- and between–subjects
models (3) and (4) yields the previous single-equation
model (2).

Because individuals in a sample are typically
thought to be representative of a larger population

of individuals, the individual-specific effects υ0i are
treated as random effects. That is, υ0i are consid-
ered to be representative of a distribution of individual
effects in the population. The most common form for
this population distribution is the normal distribution,
with mean 0 and variance σ 2

υ . In the model given by
equation (2), the errors εij are now assumed to be
normally and conditionally independently distributed
in the population with zero mean and common variance
σ 2. Conditional independence here means conditional
on the random individual-specific effects υ0i . Because
the errors now have an influence due to individuals
removed from them, this conditional independence
assumption is much more reasonable than the ordinary
independence assumption associated with (1). Because
individuals deviate from the regression of y on t in
a parallel manner (because there is only one subject
effect υ0i), this model is sometimes referred to as
a random-intercepts model, with each υ0i indicating
how individual i deviates from the model. Figure 12.1
represents this model graphically.

In this figure, the solid line represents the popu-
lation average trend, which is based on β0 and β1.
Also depicted are two individual trends, one below
and one above the population (average) trend. For a
given sample, there are N such lines, one for each
individual. The variance term σ 2

υ represents the spread
of these lines. If σ 2

υ is near zero, then the individ-
ual lines would not deviate much from the population
trend. In this case, individuals do not exhibit much
heterogeneity in growth. Alternatively, as individuals
differ from the population trend, the lines move away
from the population trend line and σ 2

υ increases. In
this case, there is more individual heterogeneity in
growth.

For longitudinal data, the above random-intercepts
model is often too simplistic for a number of reasons.
First, it is unlikely that the rate of growth, or trend
across time, is the same for all individuals. It is more
likely that individuals differ in their rates of growth
across time. Not everyone changes at the same rate.
Furthermore, the above model implies a compound
symmetry assumption for the variances and covari-
ances of the repeated measures. That is, both the
variances and covariances across time are assumed to
be the same, namely,

V (yij) = σ 2
υ + σ 2

C(yij, yij′) = σ 2
υ , where j =/ j ′. (5)

This assumption is usually untenable for most lon-
gitudinal data. In general, measurements at points
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Figure 12.1 Random-Intercepts HLM
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close in time tend to be more highly correlated than
measurements further separated in time. Also, in
many studies, subjects are more similar at base-
line and grow at different rates across time. Thus,
it is natural to expect that variability will increase
over time.

For these reasons, a more realistic HLM allows both
the intercept and time trend to vary by individuals. For
this, the Level 1 model is as before in (3), but the Level
2 model is augmented as

b0i = β0 + υ0i ,

b1i = β1 + υ1i . (6)

In this model, β0 is the overall population intercept,
β1 is the overall population slope, υ0i is the intercept
deviation for subject i, and υ1i is the slope deviation
for subject i. As before, εij is an independent error
term distributed normally with mean 0 and variance
σ 2. The assumption regarding the independence of the
errors is one of conditional independence; that is, they
are independent conditional on υ0i and υ1i . With two
random individual-specific effects, the population dis-
tribution of intercept and slope deviations is assumed to
be bivariate normalN(0, �υ), with the random-effects
variance-covariance matrix given by

�υ =
[
σ 2

υ0
συ0υ1

συ0υ1 σ 2
υ1

]
.

This model can be thought of as a personal trend
or change model because it represents the measure-
ments of y as a function of time, both at the individual
(υ0i and υ1i) and population (β0 and β1) levels. The
intercept parameters indicate the starting point, and
the slope parameters indicate the degree of change
over time. The population intercept and slope param-
eters represent the overall (population) trend, whereas
the individual parameters express how subjects deviate
from the population trend. Figure 12.2 represents this
model graphically.

Again, the figure represents the population trend
with the solid line and the trends from two individ-
uals, who now deviate both in terms of the intercept
and slope. Because the slope varies for individuals,
this model allows the possibility that some individuals
do not change across time, whereas others can exhibit
dramatic change. The population trend is the average
across the individuals, and the variance terms indicate
how much heterogeneity there is in the population.
Specifically, the variance term σ 2

υ0
indicates how much

spread there is around the population intercept, and σ 2
υ1

represents the spread in slopes. To the degree that each
individual’s deviation from the population trend is only
due to random error, these variance terms will approach
zero. Alternatively, as each individual’s deviation from
the population trend is nonrandom but characterized
by the individual trend parameters υ0i and υ1i as being
nonzero, these variance terms will increase from zero.
In addition, the covariance term, συ0υ1 , represents the
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Figure 12.2 Random-Intercept and Slopes HLM
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degree to which the individual intercept and slope
parameters covary. For example, a positive covariance
term would suggest that individuals with higher initial
values have greater positive slopes, whereas a negative
covariance would suggest the opposite.

The coding of the time variable t has implications for
the interpretation of the model parameters. For exam-
ple, in growth models, t sometimes starts with the value
zero for baseline and is incremented according to the
measurement timeline (e.g., 1, 2, 3, 4 for, say, four
monthly follow-ups). In this formulation, the inter-
cept parameters (β0, υ0i , and σ 2

υ0
) then characterize

aspects of the baseline time point. Alternatively, t can
be expressed in centered form, where the average of
time is subtracted from each time value (e.g., −2, −1,
0, 1, 2). In this case, the meaning of the intercept
parameters changes to reflect aspects about the mid-
point of time and not the baseline time point. As yet
another coding choice, sometimes substantive interest
focuses on the end of the measurement timeline. Here,
time could be coded as−4,−3,−2,−1, and 0 (in this
example with five time points), so that the intercept
parameters reflect aspects of the final time point. The
choice of which representation to use often depends on
ease of interpretation and the hypotheses of interest.

The occasions range from j = 1 to ni in the model
specification, with each person being measured on ni
time points. Because n carries the i subscript, each
subject may vary in terms of the number of measured
occasions. Furthermore, there are no restrictions on the

number of observations per individual; subjects who
are missing at a given time point are not excluded from
the analysis. Also, because the time variable t carries
the i subscript, subjects can be measured on different
occasions. The underlying assumption of the model is
that the data that are available for a given individual
are representative of how that individual deviates from
the population trend across the timeframe of the study.

Regarding missing data, as Laird (1988) points out,
HLMs for longitudinal data using maximum likelihood
estimation provide valid statistical tests in the presence
of ignorable nonresponse. By ignorable nonresponse,
it is meant that the probability of nonresponse is depen-
dent on observed covariates and previous values of
the dependent variable from the subjects with missing
data. The notion here is that if subject attrition is related
to previous performance, in addition to other observ-
able subject characteristics, then the model provides
valid statistical inferences for the model parameters.
Because many instances of missing data are related to
previous performance or other subject characteristics,
HLMs provide a powerful method for dealing with
longitudinal data sets in the presence of missing data.

12.2.1. Matrix Formulation

A more compact representation of the model is
afforded using matrices and vectors. This formulation
is particularly useful in model programming and helps
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to summarize statistical aspects of the model. For this,
the HLM for the ni×1 response vector y for individual
i can be written as

yi = Xi β + Ziυi + εi

ni×1 ni×p p×1 ni×r r×1 ni×1 (7)

with i = 1 . . . N individuals and j = 1 . . . ni observa-
tions for individual i. Here, yi is the ni × 1 dependent
variable vector for individual i,Xi is the ni×p covari-
ate matrix for individual i, β is the p×1 vector of fixed
regression parameters, Zi is the ni × r design matrix
for the random effects, υi is the r×1 vector of random
individual effects, and εi is the ni × 1 residual vector.

For example, in the random intercepts and slopes
HLM just considered, we would have

yi =



yi1
yi2
. . .

. . .

yini


 and Xi = Zi =




1 ti1
1 ti2
. . . . . .

. . . . . .

1 tini




for the data matrices and

β =
[
β0

β1

]
and υi =

[
υ0i

υ1i

]

for the population and individual trend parameter
vectors, respectively. The distributional assumptions
about the random effects and residuals are

εi ∼ N(0, σ 2Ini ),

υi ∼ N(0,�υ).

As a result, it can be shown that the variance-
covariance matrix of the repeated measures y is of the
following form:

V (yi ) = Zi�υZ′i + σ 2Ini . (8)

For example, with r = 2, n = 3, and

Zi =

1 0

1 1
1 2


 ,

the variance-covariance matrix equals σ 2Ini+

 σ 2

υ0
σ2
υ0
+ συ0υ1 σ2

υ0
+ 2συ0υ1

σ 2
υ0
+ συ0υ1 σ2

υ0
+ 2συ0υ1 + σ2

υ1
σ2
υ0
+ 3συ0υ1 + 2σ2

υ1
σ 2
υ0
+ 2συ0υ1 σ 2

υ0
+ 3συ0υ1 + 2σ 2

υ1
σ2
υ0
+ 4συ0υ1 + 4σ2

υ1


 ,

which allows the variances and covariances to change
across time. For example, if both συ0υ1 and σ 2

υ1
are

positive, then clearly the variance increases across
time. Diminishing variance across time is also possible
if, for example, −2συ0υ1 > σ 2

υ1
. Other patterns are

possible depending on the values of these variance and
covariance parameters.

Models with more than random intercepts and linear
trends are also possible, as are models that allow auto-
correlated errors; that is, εi ∼ N(0, σ 2Ωi ). Here, Ω

might, for example, represent an autoregressive (AR)
or moving average (MA) process for the residuals.
Autocorrelated error regression models are common
in econometrics. Their application within an HLM
formulation is treated by Chi and Reinsel (1989) and
Hedeker (1989) and extensively described in Verbeke
and Molenberghs (2000). By including both random
effects and autocorrelated errors, a wide range of
variance-covariance structures for the repeated mea-
sures is possible. This flexibility is in sharp contrast to
the traditional ANOVA models, which assume either
a compound symmetry structure (univariate ANOVA)
or a totally general structure (MANOVA). Typically,
compound symmetry is too restrictive, and a general
structure is not parsimonious. HLMs, alternatively,
provide these two and everything in between and so
allow efficient modeling of the variance-covariance
structure of the repeated measures.

12.3. HLM Example

To illustrate an HLM application, we will consider
data from a psychiatric study described in Reisby
et al. (1977). This study focused on the longi-
tudinal relationship between imipramine (IMI) and
desipramine (DMI) plasma levels and clinical response
in 66 depressed inpatients. Imipramine is the pro-
totypic drug in the series of compounds known as
tricyclic antidepressants and is commonly prescribed
for the treatment of major depression (Seiden &
Dykstra, 1977). Because imipramine biotransforms
into the active metabolite desmethylimipramine (or
desipramine), measurement of desipramine was also
done in this study. Major depression is often clas-
sified in terms of two types. The first type, nonen-
dogenous or reactive depression, is associated with
some tragic life event such as the death of a close
friend or family member, whereas the second type,
endogenous depression, is not a result of any spe-
cific event and appears to occur spontaneously. It is
sometimes held that antidepressant medications are
more effective for endogenous depression (Willner,
1985). In this sample, 29 patients were classified as
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nonendogenous, and the remaining 37 patients were
deemed to be endogenous.

The study design was as follows. Following a
placebo period of 1 week, patients received 225-mg/
day doses of imipramine for 4 weeks. In this study,
subjects were rated with the Hamilton depression (HD)
rating scale (Hamilton, 1960) twice during the baseline
placebo week (at the start and end of this week), as well
as at the end of each of the 4 treatment weeks of the
study. Plasma level measurements of both IMI and its
metabolite DMI were made at the end of each treatment
week. The sex and age of each patient were recorded,
and a diagnosis of endogenous or nonendogenous
depression was made for each patient. Although
the total number of subjects in this study was 66, the
number of subjects with all measures at each of the
weeks fluctuated: 61 at Week 0 (start of placebo week),
63 at Week 1 (end of placebo week), 65 at Week 2
(end of first drug treatment week), 65 at Week 3 (end
of second drug treatment week), 63 at Week 4 (end of
third drug treatment week), and 58 at Week 5 (end of
fourth drug treatment week). Of the 66 subjects, only
46 had complete data at all time points. Thus, complete
case analysis under repeated-measures MANOVA, for
example, would discard approximately one third of
the data set. HLM, alternatively, uses the data that are
available from all 66 subjects.

12.3.1. Heterogeneous Growth Model

The first model fit to these data corresponds to the
within-subjects model (3) and the between-subjects
model (6). Here, time is treated using incremen-
tal values from 0 to 5. The results are presented in
Table 12.1.

Focusing first on the estimated regression parame-
ters, this model indicates that patients start, on average,
with an HD score of 23.58 and change by −2.38
points each week. Lower scores on the HD reflect less
depression, so patients are improving across time by
about 2 points per week. The estimated HD score at
Week 5 equals 23.58 − (5 × 2.38) = 11.68. In their
report, Reisby et al. (1977) classified patients into three
groups based on their final HD scores: Responders had
scores below 8, partial responders were between 8 and
15, and nonresponders had final HD scores above 15.
By this criterion, the average trend is in the partial
response range at the final time point.

Both the intercept and slope are statistically signifi-
cant (p < .0001) by the so-called “Wald test” (Wald,
1943), which uses the ratio of the maximum likelihood
parameter estimate to its standard error to determine

Table 12.1 HLM Results for Level 1 Model (3) and
Level 2 Model (6)

Parameter Estimate SE z p <

β0 23.58 0.55 43.22 .0001
β1 –2.38 0.21 –11.39 .0001

σ 2
v0 12.63 3.47

σ 2
v0v1 –1.42 1.03

σ 2
v1 2.08 0.50

σ 2 12.22 1.11

NOTE: –2 log L = 2219.04.

statistical significance. These test statistics (i.e., z =
ratio of the parameter estimate to its standard error)
are compared to a standard normal frequency table to
test the null hypothesis that the parameter equals 0.
Alternatively, these z-statistics are sometimes squared,
in which case the resulting test statistic is distributed as
chi-square on 1 degree of freedom. In either case, the
p-values are identical. The intercept being significant
is not particularly meaningful; it just indicates that HD
scores are different from zero at baseline. However,
because the slope is significant, we can conclude that
the rate of improvement is significantly different from
zero in this study. On average, patients are improving
across time.

For the variance and covariance terms, there are
concerns with using the standard errors in constructing
Wald test statistics, particularly when the population
variance is thought to be near zero and the number of
subjects is small (Bryk & Raudenbush, 1992). This is
because variance parameters are bounded; they cannot
be less than zero, and so using the standard normal for
the sampling distribution is not reasonable. As a result,
statistical significance is not indicated for the vari-
ance and covariance parameters in the tables. However,
the magnitude of the estimates does reveal the degree
of individual heterogeneity in both the intercepts and
slopes. For example, although the average intercept
in the population is estimated to be 23.58, the esti-
mated population standard deviation for the intercept
is 3.55(= √12.63). Similarly, the average population
slope is −2.38, but the estimated population standard
deviation for the slope equals 1.44, and so approxi-
mately 95% of subjects are expected to have slopes in
the interval −2.38 ± (1.96 × 1.44) = −5.20 to .44.
That the interval includes positive slopes reflects the
fact that not all subjects improve across time. Thus,
there is considerable heterogeneity in terms of patients’
initial level of depression and in their change across
time. Finally, the covariance between the intercept and
linear trend is negative; expressed as a correlation, it
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equals −.28, which is moderate in size. This suggests
that patients who are initially more depressed (i.e.,
greater intercepts) improve at a greater rate (i.e., more
pronounced negative slopes). An alternative explana-
tion, though, is that of a floor effect due to the HD
rating scale. Simply put, patients with less depressed
initial scores have a more limited range of lower scores
than those with higher initial scores.

An interesting question, at this point, is whether
the between-subjects model in equation (6) is nec-
essary over that in equation (4). In other words, is
the assumption of compound symmetry rejected or
not? Fitting the more restrictive compound symme-
try model (not shown) yields −2 logL = 2285.14.
Because these are nested models, they can be compared
using a likelihood ratio test. For this, one compares the
model deviance values (i.e., −2 logL) to a chi-square
distribution, where the degrees of freedom equal the
number of parameters set equal to zero in the more
restrictive model. In the present case, χ2

2 = 2285.14−
2219.04 = 66.1, p < .0001, for H0 : συ0υ1 =
σ 2
υ1
= 0. It should be noted that use of the likeli-

hood ratio test for this purpose also suffers from the
variance boundary problem mentioned above (Ver-
beke & Molenberghs, 2000). Based on simulation
studies, it can be shown that the likelihood ratio test
is too conservative (for testing null hypotheses about
variance parameters)—namely, it does not reject the
null hypothesis often enough. This would then lead
to accepting a more restrictive variance-covariance
structure than is correct. As noted by Berkhof and
Snijders (2001), this bias can largely be corrected by
dividing the p-value obtained from the likelihood ratio
test (of variance terms) by 2. In the present case, it
does not really matter, but this modification yields
p < .0001/2 = .00005. Thus, there is clear evi-
dence that the assumption of compound symmetry
is rejected.

Using the estimated population intercept (β0) and
slope (β1), we can estimate the average HD score
across all time points. These are displayed in
Table 12.2, along with the observed means and sample
sizes at each time point.

As can be seen, there is close agreement between
the observed and estimated means. Thus, the average
change across time is very consistent with the posited
linear change model. For a more quantitative assess-
ment, the interested reader is referred to Kaplan and
George (1998), who describe the use of econometric
forecasting statistics to assess various forms of fit
between observed and estimated means.

Similarly, we can address the fit of the observed
variance-covariance matrix of the repeated measures,

Table 12.2 Observed and Estimated Means

Week

0 1 2 3 4 5

Observed 23.44 21.84 18.31 16.42 13.62 11.95
Estimated 23.58 21.21 18.82 16.45 14.07 11.69
Sample

size 61 63 65 65 63 58

which is given below. These are calculated based on
the pairwise data for the covariances and the available
data for each of the variances.

V (y) =




20.55
10.50 22.07
10.20 12.74 30.09
9.69 12.43 25.96 41.15
7.17 10.10 25.56 36.54 48.59
6.02 7.39 18.25 26.31 32.93 52.12




Based on the model estimates, we get

V̂ (y) = Z�̂υZ′ + σ̂ 2I

=




24.85
11.21 24.08
9.79 12.52 27.48
8.37 13.18 18.00 35.03
6.95 13.84 20.73 27.63 46.74
5.53 14.50 23.47 32.44 41.41 62.60



,

where the design matrix of the random effects and the
estimates of the random-effects variance-covariance
matrix are given by

Z′ =
[

1 1 1 1 1 1
0 1 2 3 4 5

]
,

�̂υ =
[

12.63 −1.42
−1.42 2.08

]
,

and σ̂ 2 = 12.22. Given that this variance-covariance
matrix of 21 elements is represented by four parameter
estimates, the fit is reasonably good. The model is
clearly picking up on the increasing variance across
time and the diminishing covariance away from the
diagonal.

Finally, estimates of the individual random effects,
b̂0i and b̂1i , are often of interest. These are plotted in
Figure 12.3. The dashed lines indicate the estimated
population intercepts and slopes. Thus, υ̂0i is repre-
sented by the horizontal distance between a point and
the horizontal line, whereas υ̂1i is represented by the
vertical distance between a point and the vertical line.
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Figure 12.3 Reisby Data: Estimated Random Effects
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This scatter plot reveals the wide range of observed
intercepts and slopes in this sample. In particular,
some patients are very depressed initially but improve
to a great degree (upper left-hand corner). Similarly,
some patients show little or no improvement over time
(toward the right side).

It is worth noting that the estimates of the individual
random effects, presented in Figure 12.3, are empiri-
cal Bayes (EB) estimates, which reflect a compromise
between an estimate based solely on an individual’s
data and an estimate for the population of interest.
Thus, they are not equivalent to ordinary least squares
(OLS) estimates, which would only rely on an indi-
vidual’s data. An important advantage of EB estimates
relative to OLS estimates is that they are not as prone to
the undue influence of outliers. This is especially true
when an individual has few measurements by which
to base these estimates on. Because of this, the EB
estimates are said to be shrunken to the mean, where
the mean of the random effects equals zero in the popu-
lation. The degree of shrinkage depends on the number
of measurements an individual has. Thus, if a subject
has few measurements, then the EB estimate will be
smaller (in absolute value) than the corresponding OLS
estimate. Alternatively, if the subject has many mea-
surements across time, then the EB and OLS estimates
would be very similar. These EB estimates are readily
available from most HLM software programs.

12.3.2. Effect of Diagnosis on Growth

At this point, it may be interesting to examine
whether we can explain some of the heterogeneity in
intercepts and slopes, depicted in Figure 12.3, in terms
of particular subject characteristics. For this, we will
augment the Level 2 model to include a covariate DX,
which equals 0 if the patient’s diagnosis is nonendoge-
nous (NE) and 1 if the patient is endogenous (E). This
variable enters the Level 2 model rather than the Level
1 model because it varies only with subjects (i) and
not with time (j).

b0i = β0 + β2DXi + υ0i ,

b1i = β1 + β3DXi + υ1i . (9)

Now, β0 represents the average Week 0 HD level
for NE patients, and β1 is the average HD weekly
improvement for NE patients. Similarly, β2 represents
the average Week 0 HD difference for E patients (rela-
tive to NE patients), and β3 is the average difference in
HD weekly improvement rates for E patients (relative
to NE patients). Thus, β3 represents the diagnosis-
by-time interaction, indicating the degree to which
the time trends vary by diagnostic group. In this
augmented model, υ0i is the individual’s deviation
from his or her diagnostic group intercept, and υ1i is
the individual’s deviation from his or her diagnostic
group slope. To the degree that the variable DX is
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Table 12.3 HLM Results for Level 1 Model (3) and
Level 2 Model (9)

Parameter Estimate SE z p <

NE intercept β0 22.48 0.79 28.30 .0001
NE slope β1 –2.37 0.31 –7.59 .0001
E intercept 1.99 1.07 1.86 .063

difference β2

E slope β3 –0.03 0.42 –0.06 .95
difference

σ 2
v0

11.64 3.53
σv0v1 –1.40 1.00
σ 2
v1

2.08 0.50
σ 2 12.22 1.11

NOTE: –2 log L = 2214.94

useful in explaining intercept and slope variation, these
individual deviations and their corresponding vari-
ances (σ 2

υ0
and σ 2

υ1
) will be reduced. Results for this

model are listed in Table 12.3.
A likelihood ratio test comparing this model to the

previous one can be used to test the null hypothesis
that the diagnosis-related effects (i.e., β2 and β3) are
zero. This yields χ 2

2 = 2219.04 − 2214.94 = 4.1,
which is not statistically significant. Inspection of the
estimates in Table 12.3 reveals a marginally signifi-
cant difference in terms of their initial scores, with
endogenous patients about 2 points higher and abso-
lutely no difference in their trends across time. This is
also borne out if one compares the variance estimates
from Tables 12.2 and 12.3. Notice that the intercept
variance has diminished slightly from to 12.63 to
11.64 as a result of the marginally significant intercept
difference, whereas the slope variance is the same.
Taken together, there is no real evidence that the two
diagnostic groups differ in terms of their HD scores
across time.

12.3.3. Curvilinear Growth Model

In many situations, it is too simplistic to assume
that the change across time is linear. In the present
example, for instance, it may be that the depression
scores diminish across time in a curvilinear manner.
A curvilinear trend would allow a leveling off of the
improvement across time. This is clearly plausible for
rating scale data, like the HD scores, where values
below zero are impossible. Here, we will consider
a curvilinear growth model by adding a quadratic
term to the Level 1 model. More general polyno-
mial growth models can also be obtained by adding

Table 12.4 HLM Results for Level 1 Model (10) and
Level 2 Model (11)

Parameter Estimate SE z p <

β0 23.76 0.55 43.04 .0001
β1 –2.63 0.48 –5.50 .0001
β2 0.05 0.09 0.58 .56
σ 2
v0

10.44 3.58
σv0v1 –0.92 2.42
σ 2
v1

6.64 2.75
σv0v2 –0.11 0.42
σv1v2 –0.94 0.48
σ 2
v2

0.19 0.09
σ 2 10.52 1.10

NOTE: –2 log L = 2207.64.

cubic terms, quartic terms, and so on to the Level 1
model.

yij = b0i + b1i tij + b2i t
2
ij + εij. (10)

Here, b0i is the Week 0 HD level for patient i, b1i is
the weekly linear change in HD for patient i, and b2i is
the weekly quadratic change in HD for patient i. This
model can also be written as

yij = b0i + (b1i + b2i tij)tij + εij

to point out that the overall effect of time isb1i+b2i tij—
namely, it is not constant but changes across time. The
Level 2 between-subjects model is now

b0i = β0 + υ0i ,

b1i = β1 + υ1i ,

b2i = β2 + υ2i , (11)

where β0 is the average Week 0 HD level, β1 is the
average HD weekly linear change, and β2 is the aver-
age HD weekly quadratic change. Similarly, υ0i is the
individual deviation from average intercept, υ1i is the
individual deviation from average linear change, and
υ2i is the individual deviation from average quadratic
change. Thus, the model allows curvilinearity at both
the population (β2) and individual (υ2i) levels.

Fitting this model yields the results given in
Table 12.4.

Comparing this model to that of Table 12.1 (i.e.,
a model with β2 = σ 2

υ2
= συ0υ2 = συ1υ2 = 0)

yields a deviance of 11.4, which is statistically sig-
nificant on 4 degrees of freedom. This is interesting
given that the Wald test for β2 is clearly nonsignifi-
cant. In fact, comparing the above model to one with
σ 2
υ2
= συ0υ2 = συ1υ2 = 0 (not shown) yields a deviance
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Figure 12.4 Reisby Data: Estimated Curvilinear Trends
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of 11.0. Nearly all of the improvement in model fit
is through the inclusion of the quadratic term as a
random effect and not as a fixed effect. This suggests
that although the trend across time is essentially linear
at the population level, it is curvilinear at the individual
level.

Figure 12.4 contains a plot of the individual trend
estimates from this model. These are obtained by cal-
culating ŷij = b̂0i + b̂1i tij + b̂2i t

2
ij , for t = 0, 1, . . . , 5,

and then connecting the time point estimates for each
individual.

The plot makes apparent the wide heterogeneity in
trends across time, as well as the increasing variance
in HD scores across time. Some individuals have accel-
erating downward trends, suggesting a delay in the
drug effect. Alternatively, others have decelerating
downward trends, which are consistent with a lev-
eling off of the drug effect. Some individuals even
have positive trends, indicating a worsening of their
depressive symptoms across time. This is not too sur-
prising given that antidepressants, such as imipramine,
are known to be ineffective for some patients. The

figure is also interesting in showing that many of the
individual trend lines are approximately linear. Thus,
the improvement that the curvilinear model provides
in describing change across time is perhaps modest.

Finally, the fit of the observed variance-covariance
matrix of the repeated measures is provided as follows:

V̂ (y) = Z�̂υZ′ + σ̂ 2I

=




20.96
9.41 23.86
8.16 15.57 31.07
6.68 16.08 23.11 38.31
4.98 14.88 23.26 30.12 45.98
3.06 11.97 20.98 30.09 39.29 59.11



,

where

Z′ =

1 1 1 1 1 1

0 1 2 3 4 5
0 1 4 9 16 25




�̂υ =

10.44 −0.92 −0.11
−0.92 6.64 −0.94
−0.11 −0.94 0.19


 .
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By comparing this matrix with the observed
variance-covariance matrix, presented earlier, we see
that the estimated variances are close to the observed,
and the model is clearly picking up the pattern of
diminishing covariance away from the diagonal and
at the earlier time points. Comparing this model to one
with a totally general variance-covariance structure
(not shown) yields a likelihood ratioχ2

14 = 14.9, which
is not statistically significant. Thus, this curvilinear
model with seven variance-covariance parameters (σ 2

and six unique parameters in �υ) provides a parsi-
monious fit of the variance-covariance matrix V (y),
which, being of dimension 6 × 6, has 21 unique ele-
ments. More details on methods for assessing and
comparing model fit of the variance-covariance struc-
ture are described by Wolfinger (1993) and Grady and
Helms (1995).

12.3.4. Orthogonal Polynomials

For trend models, it is often beneficial to repre-
sent the polynomials in orthogonal form (Bock, 1975).
Mathematically, this avoids collinearity problems that
can result from using multiples of t (t2, t3, etc.) as
regressors. To see this, consider a curvilinear trend
model with three time points. Then, t = 0, 1, and
2, whereas t2 = 0, 1, and 4; these two variables are
nearly perfectly correlated. To counter this, time is
sometimes expressed in centered form—for example,
(t−t̄ ) = −1, 0, and 1 and (t−t̄ )2 = 1, 0, and 1. If there
is the same number of observations at the three time
points, this centering removes the correlation between
the linear and quadratic trend components entirely.
In the more usual situation of nonequal numbers of
observations across time, this greatly diminishes the
correlation between the polynomials. Another aspect
of centering time is that the meaning of the model
intercept changes. In the previous raw form of time,
the intercept represented differences at the first time
point (i.e., when time = 0). Alternatively, in centered
form, the model intercept represents differences at
the midpoint of time. For this reason, the intercept
is often referred to as the constant or grand mean term
in models using centered regressors.

An additional advantage of using orthogonal poly-
nomials, over simply centering time, is that the polyno-
mials are put on the same scale. Thus, their estimated
coefficients can be compared in terms of their magni-
tude in the same way as standardized beta coefficients
in ordinary regression analysis. For equal time inter-
vals, tables of orthogonal polynomials can be found
in Pearson and Hartley (1976), and Bock (1975) also

Table 12.5 HLM Results for Orthogonal Polyno-
mial Version of Level 1 Model (10) and
Level 2 Model (11)

Parameter Estimate SE z P <

β0 43.24 1.37 31.61 .0001
β1 –9.94 0.86 –11.50 .0001
β2 0.31 0.54 0.58 .56
σ 2
v0

111.91 21.60
σv0v1 37.99 10.92
σ 2
v1

37.04 8.90
σv0v2 –10.14 6.19
σv1v2 –0.82 3.50
σ 2
v2

7.23 3.50
σ 2 10.52 1.10

NOTE: –2 log L = 2207.64.

describes how orthogonal polynomials can be obtained
for unequal time intervals. For the current situation
with six equally spaced time points, these are given as

X′ = Z′ =

 1 1 1 1 1 1
−5 −3 −1 1 3 5

5 −1 −4 −4 −1 5


 /
√

6
/
√

70
/
√

84
.

Notice that these row vectors are independent of
each other. Also, by dividing the values by the square
root of the quantities on the right, which are simply the
sum of squared values in a row, these polynomials have
the same scale. Thus, these terms are simultaneously
made independent of each other and standardized to
the same (unit) scale. This holds exactly when the
number of observations at each time point is equal and
approximately so when they are unequal.

Fitting this orthogonal polynomial trend model
yields the results given in Table 12.5.

Comparing the regression coefficients, as before, we
see that only the constant and linear terms are signifi-
cant. These terms also dominate in terms of magnitude;
not only is the quadratic term nonsignificant, but it
is also negligible. Thus, at the population average
level, the trend is unquestionably linear. Turning to the
variance estimates, we see that the estimated constant
variance (σ̂ 2

υ0
) is much larger than the estimated linear

trend component (σ̂ 2
υ1

), which is much larger than the
estimated quadratic trend component (σ̂ 2

υ2
). In terms of

relative percentages, these three represent 71.7, 23.7,
and 4.6, respectively, of the sum of the estimated indi-
vidual variance terms. Thus, at the individual level,
there is heterogeneity in terms of all three components
but with diminishing return as the order of the poly-
nomial increases. This analysis then quantifies what
Figure 12.4 depicts.
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Inspection of the covariance terms reveals a strong
positive association between the constant and linear
terms (σ̂ 2

υ1υ0
= 37.99, expressed as a correlation =

.59). This seems to be in contrast with the results for
this term from the previous analysis in Table 12.4, in
which there was a slight negative association between
the intercept and linear terms (σ̂ 2

υ1υ0
= −.92, expressed

as a correlation = −.11). The reason for this appar-
ent discrepancy is that in Table 12.4, the intercept
represents the first time point, whereas the constant
term in Table 12.5 represents the midpoint in time.
Thus, an individual’s linear trend is both negatively
associated with his or her baseline depression level
and positively associated with his or her mid-study
depression level. Subjects with higher initial depres-
sion levels have slightly more negative linear slopes
and, as a result, lower values at mid-study.

Finally, notice that the log-likelihood value is iden-
tical in Tables 12.5 and 12.6. Thus, the two solutions
are equivalent; one is simply a reexpressed version of
the other. Because of this, one can derive the results
from Table 12.5 based on those from Table 12.6 and
vice versa. Because the orthogonal polynomial repre-
sentation greatly reduces any collinearity and scale dif-
ferences in the regressors, it is computationally easier
to obtain. For this reason, in cases where numerical
difficulties are occurring with analyses using raw time
values, investigators might consider using orthogonal
polynomials instead.

12.3.5. Growth Model
With Time-Varying Covariates

In this section, we examine the effects of the time-
varying drug plasma levels IMI and DMI. Because
an inspection of the data indicated that the magni-
tude of these measurements varied greatly between
individuals (from 4 to 312 mg/L for IMI and from 0
to 740 mg/L for DMI), a log transformation is used
for these covariates. This helps to ensure that the
estimated regression coefficients are not unduly influ-
enced by extreme values on these covariates. Also,
these variables, ln IMI and ln DMI, are expressed in
grand-mean centered form so that the model intercept
represents HD scores for patients with average drug
levels. To obtain the grand-mean centered versions
of these variables, we subtract the variable’s sample
mean from each observation. For notational simplic-
ity in the model equations, Iij and Dij will represent
the grand-mean centered versions of ln IMI and ln
DMI, respectively, in what follows. Also, whereas
the previous models considered HD outcomes from

Weeks 0 to 5, the models of this section only include
HD outcome data from Weeks 2 to 5. This is because
the drug plasma levels are not available at the first
two time points of the study (i.e., Week 0, or base-
line, and Week 1, or the end of the drug washout
period). Although HLM does allow incomplete data
across time, data must be complete within a given
time point (in terms of both the dependent variable
and covariates) for that time point to be included in
the analysis. Thus, the analyses that follow are for the
4-week period following the drug washout period, with
tij coded as 0, 1, 2, and 3 for these four respective time
points. As a result, the intercept represents HD scores
for Week 2 of the study (i.e., when tij = 0).

The first Level 1 model is given by

yij = b0i + b1i tij + b2i Iij + b3iDij + εij, (12)

where b0i is the Week 2 HD level for patient i under
average levels of both ln IMI and ln DMI, b1i is the
weekly change in HD for patient i, b2i is the patient’s
change in HD due to ln IMI, and b3i is the change
in HD due to ln DMI. The between-subjects model is
given as

b0i = β0 + υ0i ,

b1i = β1 + υ1i ,

b2i = β2,

b3i = β3, (13)

where β0 is the average Week 2 HD level for patients
with average ln IMI and ln DMI values, β1 is the
average HD weekly change, β2 is the average HD dif-
ference for a unit change in ln IMI, andβ3 is the average
HD difference for a unit change in ln DMI. Also, υ0i is
the individual intercept deviation, and υ1i is the indi-
vidual slope deviation. Notice that the Level 2 model
indicates that the drug effects could also be treated
as random. This would be accomplished by adding
υ2i and υ3i to the model and would allow individual
variation in terms of the drug-level effect on HD scores.
Given that antidepressants such as IMI and DMI are not
effective for all individuals, it is plausible that the drug
levels are more strongly related to changes in depres-
sion for some individuals, whereas for others they
are less so. Similarly, one could add individual-level
covariates (e.g., endogenous/nonendogenous group)
into the models for b2i and b3i to examine whether
the drug effects vary with individual-level covariates.
Again, it is feasible that the drug effects on outcome are
stronger for endogenous than nonendogenous patients.
Although these possibilities will not be considered
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Table 12.6 HLM Results for Level 1 Model (12) and
Level 2 Model (13)

Parameter Estimate SE z p <

Intercept β0 18.17 0.71 25.70 .0001
Time slope β1 –2.03 0.28 –7.15 .0001
In IMI β2 0.60 0.85 0.71 .48
In DMI β3 –1.20 0.63 –1.90 .06
σ 2
v0

24.83 5.79

σ 2
v0v1

–0.72 1.74

σ 2
v1

2.73 0.95

σ 2 10.46 1.37

NOTE: –2 log L = 1502.5.

Table 12.7 HLM Results for Level 1 Model (14) and
Level 2 Model (13)

Parameter Estimate SE z p <

Intercept β0 –5.18 0.66 –7.87 .0001
Slope β1 –1.97 0.29 –6.90 .0001
In IMI β2 0.63 0.82 0.77 ns
In DMI β3 –1.97 0.60 –3.26 .0014
σ 2
v0

20.50
σv0v1 0.84

σ 2
v1

2.78

σ 2 10.53

NOTE: –2 log L = 1498.8.

here, an example of an HLM allowing such individ-
ual variation in relationships is described by Hedeker,
Flay, and Petraitis (1996).

Fitting the present model yields the results given
in Table 12.6. It is interesting to note that neither of
the drug levels seems to be significantly related to the
depression scores across time. However, note that the
model given in (12) specifies that a person’s drug level
is related to his or her depression score at that same
time point. It might be more plausible to instead posit
that a person’s drug level is related to his or her change
in depression score, or improvement, at that same time
point. For this, the following alternative Level 1 model
is considered:

(yij − yi0) = b0i + b1i tij + b2i Iij

+ b3iDij + εij, (14)

where yi0 is the individual’s HD score at baseline
(or at Week 1 for those few subjects with a missing
baseline score). This yields the results presented in
Table 12.7.

Interestingly, now the effect of DMI, the metabolite
of IMI, is highly significant and negative. Thus, greater
DMI values are associated with greater improvement

Table 12.8 Correlation Between HD Scores and
Plasma Levels (Natural Log Units)

Drug Week 2 Week 3 Week 4 Week 5

HD total score
IMI –0.034 –0.038 –0.003 –0.189
DMI –0.177 –0.075 –0.246 –0.293∗

HD change
from baseline
IMI –0.049 –0.106 –0.046 –0.240
DMI –0.366∗ –0.281∗ –0.363∗ –0.361∗

NOTE: *p < .05.

(i.e., more negative HD change scores). However, the
parent drug IMI is not significantly related to HD
change scores; in fact, its coefficient is positive. It is
important to remember that the model estimates the
IMI effect, controlling for the DMI effect, and vice
versa. These two drug levels are moderately corre-
lated with each other (r = .18, .23, .22, and .18
for the four respective time points), and so the results
above are not necessarily indicative of the marginal
relationships of each drug with depression scores.
Correlations of the drug plasma levels with the HD
scores, both raw and expressed as change scores,
are given in Table 12.8. These bear out the fact that
the drug levels are much more associated with the
HD change scores than the actual scores. These cor-
relations also show the greater association between
HD change scores and DMI, rather than IMI, drug
levels.

12.3.5.1. Within- and Between-Subjects
Effects for Time-Varying Covariates

When time-varying covariates are included in an
HLM, as in the manner of the last analysis, an
assumption is made that the between- and within-
subjects effects of these variables are equal. To
see this, express the time-varying covariates Iij and
Dij as

Iij = Īi + (Iij − Īi ),
Dij = D̄i + (Dij − D̄i),

where Īi and D̄i are the means of these two time-
varying covariates computed for each individual. Thus,
the first term following the equality represents the indi-
vidual’s mean on the time-varying covariate (i.e., a
between-subjects variable), and the second term rep-
resents the individual’s deviation around his or her
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mean (i.e., a within-subjects variable). Including both
of these terms into the HLM yields

(yij − yi0) = b0i + b1i tij + b2i (Iij − Īi )
+ b3i (Dij − D̄i)+ εij, (15)

and

b0i = β0 + β4Īi + β5D̄i + υ0i ,

b1i = β1 + υ1i ,

b2i = β2,

b3i = β3, (16)

for the Level 1 and Level 2 models. Thus, the total
effect of IMI, for example,

β2(Iij − Īi )+ β4Īi ,

is partitioned into its within- and between-subjects
effects (i.e., β2 and β4, respectively). The between-
subjects part indicates the degree to which the indi-
vidual’s average drug level is related to his or her
average depression level, averaging across time. In
other words, it may be that subjects with consistently
high drug levels have consistently low depression
scores. Alternatively, the within-subjects component
represents the degree to which variation in an individ-
ual’s drug level is associated with a change in his or
her depression scores (i.e., a within-subject change).
Thus, it may be that a higher relative drug level for an
individual is associated with a lower relative depres-
sion score for that individual at a particular time point.
If these two are equal (β2 = β4), then the IMI effect is

β2(Iij − Īi )+ β2Īi = β2Iij,

which is exactly what was used in the last analysis.
Thus, we implicitly assumed that the within- and
between-subjects effects of these two drug levels were
the same in the previous analysis. This assumption can
be tested by comparing the model specified by (14) and
(13) with the more general model of (15) and (16).
Table 12.9 includes the results of this latter analysis.

Comparing the two models yields a likelihood-ratio
statistic of χ2

2 = 3.0, which is not statistically sig-
nificant. Thus, the assumption of homogeneity of
the between- and within-subjects regressions cannot
be rejected for these data. Inspecting the estimated
coefficients for DMI supports this: −1.8 and −2.4
for the within- and between-subjects effects, respec-
tively. Conversely, the estimates for IMI are very
different and even of the opposite sign. However,
neither is statistically significant, and the standard

Table 12.9 HLM Results for Level 1 Model (15) and
Level 2 Model (16)

Parameter Estimate SE z p <

Intercept β0 –5.09 0.66 –7.71 .0001
Slope β1 –2.02 0.29 –6.94 .0001
Within In IMI β2 2.44 1.46 1.68 .10
Within In DMI β3 –1.80 1.00 –1.80 .075
Between In IMI β4 –0.31 1.00 –0.31 ns
Between In DMI β5 –2.37 0.80 –2.97 .004
σ 2
v0

20.32
σv0v1 0.50
σ 2
v1

2.83
σ 2 10.38

NOTE: –2 log L = 1495.8.

errors for these two IMI estimates are quite large.
In conclusion, for these data, there is not sufficient
evidence to reject the assumption of equality in the
within- and between-subjects effects for these two drug
levels.

12.3.5.2. Time Interactions
With Time-Varying Covariates

In some cases, it can be of substantive interest to
examine whether there are interactions between a time-
varying covariate and time. For example, one might
posit that the relationship between the time-varying
covariate and the outcome either increases or decreases
across time. This is clearly plausible in the present
example because the effectiveness of antidepressants
is not thought to be immediate but instead to develop
over time (Reisby et al., 1977). Thus, it is of interest
to examine the degree to which the effects of the time-
varying drug plasma levels on the change in depression
scores vary across time. To explore this possibility, we
can augment the Level 1 model to include the time
interactions, namely,

(yij − yi0) = b0i + b1i tij + b2i Iij

+ b3iDij + b4i(Iij × tij)
+ b5i (Dij × tij)+ εij, (17)

with the accompanying Level 2 model,

b0i = β0 + υ0i ,

b1i = β1 + υ1i ,

b2i = β2,

b3i = β3,

b4i = β4,

b5i = β5. (18)
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To correctly interpret the model parameters, one
should remember that the drug levels have been grand-
mean centered, that the week variable equals 0 for the
second week of the study, and that interpretation of the
“main effects” is altered when interactions are present
(i.e., they represent the effect of the variable when the
interacting variable equals 0). Thus, in this model, β0

represents the average Week 2 HD change score for
patients with average drug levels, β1 is the average
weekly change in HD change scores for patients with
average drug levels, β2 is the HD change score dif-
ference for a unit change of ln IMI at Week 2, and
β3 represents the HD change score difference per unit
change of ln DMI at Week 2. One can think of β2 as
the regression slope corresponding to the plot of HD
change scores versus ln IMI levels considering Week 2
data only (with the caveat that this regression slope is
really a partial regression slope adjusting for the other
drug level). Similar comments apply for interpreting
β3 in terms of ln DMI. Turning to the interactions β4

and β5, these indicate the per week change in the drug
effects on the HD change scores. In terms of the plot
analogy, these interactions correspond to the change
in (partial) regression slopes associated with separate
weekly plots of HD change scores versus drug levels
as one goes across the weeks—in other words, how the
slope for a given drug varies across time. Finally, υ0i

represents the individual intercept deviation, and υ1i is
the individual time-slope deviation. Table 12.10 lists
the results of this analysis.

Comparing this model to the one without the drug-
by-time interaction (i.e., from Table 12.7) yields a
likelihood ratio statistic of χ2

2 = 6.8, which is sta-
tistically significant at the .05 level. Thus, there is
evidence that the drug effects on depression do vary
across time. Inspecting the estimates and their test
statistics in Table 12.10 reveals that it is DMI, not IMI,
that is interacting significantly with time. Specifically,
DMI has an initial Week 2 effect that is significant
(p < .017), indicating that higher levels of DMI are
associated with greater improvement on the HD scale
at this time point, and this beneficial effect of DMI
gets more pronounced across time (p < .01). Con-
cretely, the benefit of a one-unit change in ln DMI
at Week 2 is a 1.5-point reduction on the HD change
score, whereas by the last time point, it is a 4.5-point
reduction (3× 1.5).

At first glance, it might seem a bit unusual that
the DMI-by-time interaction is so highly significant
given the reported correlations in Table 12.8. To better
understand this, consider the simple linear regression
slopes that are obtained from regressing HD change
scores on ln DMI values at each of the four time points

Table 12.10 HLM Results for Level 1 Model (17) and
Level 2 Model (18)

Parameter Estimate SE z p <

Intercept β0 –5.12 0.65 –7.82 .0001
Time slope β1 –1.94 0.28 –7.04 .0001
In IMI β2 0.40 0.87 0.46 ns
In DMI β3 –1.51 0.62 –2.43 .017
In IMI by time β4 0.16 0.41 0.39 ns
In DMI by time β5 –0.90 0.34 –2.65 .01
σ 2
v0

20.24
σv0v1 0.99
σ 2
v1

2.50
σ 2 10.35

NOTE: –2 log L = 1492.0.

separately: These are −2.081, −2.195, −3.370, and
−3.3765, respectively. These regression slopes pro-
vide clearer evidence of the DMI-by-time interaction,
as they increase (in absolute value) more dramati-
cally across time than the analogous correlations in
Table 12.8. Why do these two sets of descriptive statis-
tics suggest different conclusions? Remembering that
the correlation is essentially a scale-free representation
of the slope (i.e., r = β̂ sx/sy), it is clear that the scales
of the dependent and independent variables play a role
here. Interestingly, the scale of these two go in oppo-
site directions across time; the standard deviations of
the HD change scores increase (5.38, 6.51, 7.35, and
7.88 across the four time points), whereas the standard
deviations of the ln DMI values decrease (.95, .84, .79,
and .76 across these same four time points). Thus, the
metric for the slopes across time is very different (i.e.,
the ratio of standard deviations sx/sy equals .18, .13,
.11, and .10, respectively), which explains why the
simple slopes and correlations are not in such close
agreement and why the significant DMI-by-time inter-
action of the HLM is a bit at odds with the apparent
consistent pattern of the correlations across time. As
this final HLM and the descriptive statistics make clear,
it is the scale-dependent slope of DMI (i.e., how much
change in depression is associated with a unit change
in this blood level) that is increasing across time, not
the scale-free association.

12.4. Discussion

As demonstrated, HLM provide a useful way of ana-
lyzing longitudinal data. Specifically, HLM allows
for the presence of missing data, irregularly spaced
measurements across time, time-varying and invari-
ant covariates, accommodation of individual-specific
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deviations from the average time trend, and
estimation of the population variance associated with
these individual effects. In addition, methods and
software exist for the analysis of continuous and cat-
egorical outcomes. Perhaps the most popular feature
of HLM is its treatment of missing data. As has been
illustrated, subjects are not assumed to be measured
at the same number of time points. Because there
are no restrictions on the number of observations per
individual, subjects who are missing at a given inter-
view wave are not excluded from the analysis. The
assumption of the model is that the data that are
available for a given subject are representative of that
subject’s deviation from the average trends across time
(which are estimated based on the whole sample).

A slightly more sophisticated approach for han-
dling missing data is to group subjects based on their
available data pattern across time. For example, sub-
jects might be classified as complete-data subjects or
incomplete-data subjects. This between-subjects clas-
sification variable can then be included in the analysis
to examine the degree to which these two types of
subjects differ in terms of the outcome variable. Inter-
actions can also be included to see if the treatment
group-related effects vary by missing data pattern. This
approach has been called pattern-mixture modeling
by Little (1993, 1994, 1995). Hedeker and Gibbons
(1997) illustrate the use of this approach as applied
to psychiatric clinical trials data. Verbeke and Molen-
berghs (2000) further describe the pattern-mixture
approach in much greater statistical detail, including
how these models can be used to assess the sensitiv-
ity of the results to different assumptions about the
missing data. Although not applied in this chapter,
the pattern-mixture approach provides a further way
of dealing with missing data in longitudinal studies.

Statistical software to perform HLM analysis has
proliferated, especially for continuous outcomes:
HLM 5 (Raudenbush, Bryk, Cheong, & Congdon,
2000), SAS PROC MIXED, MLwiN (Goldstein
et al., 1998), and MIXREG (Hedeker & Gibbons,
1996b), to mention a few programs. For categorical
data, software has become available for dichotomous
(EGRET [CYTEL, 1999]) and ordinal or nominal
outcomes (SAS PROC NLMIXED, HLM 5, MLwiN,
and GLLAMM [Rabe-Hesketh, Pickles, & Skrondal,
2001]; MIXOR [Hedeker & Gibbons, 1996a];
MIXNO [Hedeker, 1999]). Of course, software for
nominal and ordinal outcomes can be used to fit models
for dichotomous outcomes. Review articles compar-
ing some of these software programs include van der
Leeden, Vrijburg, and de Leeuw (1996) and de Leeuw
and Kreft (2001).

This chapter has focused on the modeling aspects
of HLM without discussion of parameter estimation.
In nearly all of the software programs for continu-
ous outcomes, a combination of two complementary
methods has generally been used: empirical Bayes
(EB) methods for estimation of the individual effects
(e.g., υ0i) and maximum likelihood (ML) methods for
estimation of variance and covariance parameters (e.g.,
σ 2, σ 2

υ0
, σ 2

υ1
, and συ0υ1 ) and covariate effects (β). Itera-

tive solutions to estimate these two sets of parameters
have been described using the EM algorithm (Bryk &
Raudenbush, 1992; Laird & Ware, 1982) and the Fisher
scoring algorithm (Bock, 1989a; Longford, 1987).
Because these models are more complex than ordi-
nary fixed-effects regression models, it is sometimes
the case that the iterative procedure does not converge
to a solution. If this occurs, it is often because the
model is overly complex relative to the data being
used to estimate it, and so model simplification is
necessary. Although it is not always apparent why a
particular model does not converge, building models
in a sequential piecewise manner can help to isolate
where troubles occur.

In the example, repeated observations were observed
nested within individuals. In the terminology of multi-
level analysis (Goldstein, 1995) and hierarchical linear
models (Raudenbush & Bryk, 2002), this is termed
a two-level data structure, with individuals repre-
senting Level 2 and the nested repeated observations
Level 1. The models that we have presented are thus
referred to as two-level models. Individuals them-
selves, though, are often observed clustered within
some higher level unit, for example, a classroom,
clinic, or worksite. Cross-sectional clustered data can
also be considered as two-level data, with the clus-
ters representing Level 2 and the clustered subjects
Level 1. Analysis of cross-sectional clustered data
using HLM is discussed by Hedeker, Gibbons, and
Flay (1994) and Hedeker, McMahon, Jason, and Salina
(1994). In some studies, subjects are clustered and
also repeatedly measured, resulting in three levels of
data: the cluster (Level 3), individual (Level 2), and
repeated observation (Level 1). Analysis of three-level
data is described in Goldstein (1995), Raudenbush
and Bryk (2002), Longford (1993), and Gibbons and
Hedeker (1997).

Because longitudinal designs are increasingly used
in the social sciences, it is important that statistical
methods are developed and used to extract the most out
of these longitudinal data sets. HLM provides an attrac-
tive approach for addressing some key questions that
emerge from longitudinal designs. It is hoped that this
chapter has helped in increasing the understanding of
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these methods and their potential for use in analyzing
longitudinal outcomes.
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Chapter 13

Multilevel Models for

School Effectiveness Research

Russell W. Rumberger

Gregory J. Palardy

One of the major topics for social science
research is the study of school effective-
ness. Beginning with the first large-scale

study of school effectiveness in 1966, known as the
“Coleman report” (Coleman et al., 1966), literally
hundreds of empirical studies have been conducted that
have addressed two fundamental questions:

1. Do schools have measurable impacts on student
achievement?

2. If so, what are the sources of those impacts?

Studies designed to answer these questions have
employed different sources of data, different variables,
and different analytic techniques. Both the results of
those studies and the methods used to conduct them
have been subject to considerable academic debate.

In general, there has been widespread agreement
on the first question. Most researchers have con-
cluded that schools indeed influence student achieve-
ment. Murnane’s (1981) early review captured this
consensus well:

There are significant differences in the amount of
learning taking place in different schools and in different

AUTHORS’ NOTE: We would like to acknowledge the helpful comments of David Kaplan and especially Michael Selzter.

classrooms within the same school, even among inner
city schools, and even after taking into account the skills
and backgrounds that children bring to school. (p. 20)

Another reviewer concluded more succinctly,
“Teachers and schools differ dramatically in their
effectiveness” (Hanushek, 1986, p. 1159). Despite this
general level of agreement on the overall impact of
schools, how much impact schools and teachers have
is less clear, an issue we address later in this chapter.

It is the second question, however, that has generated
the biggest debate. Coleman et al. began this debate
with the publication of their report in 1966 by conclud-
ing that schools had relatively little impact on student
achievement compared to the socioeconomic back-
ground of the students who attend them. Moreover,
Coleman (1990) found that “the social composition of
the student body is more highly related to achievement,
independent of the student’s own social background,
than is any school factor” (p. 119). The publication
of the Coleman report also marked the beginning of
the methodological debate on how to estimate school
effectiveness, a debate that has continued to this
day. The Coleman study was criticized on a number
of methodological grounds, including the lack of
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controls for prior background and the regression
techniques used to assess school effects (Mosteller &
Moynihan, 1972).

Since the publication of the original Coleman report,
there have been a number of other controversies on
sources of school effectiveness and the methodological
approaches to assess them. One debate has focused
on whether school resources make a difference. In a
major review of 187 studies that examined the effects
of instructional expenditures on student achievement,
Hanushek (1989) concludes, “There is no strong or
systematic relationship between school expenditures
and student performance” (p. 47). As noted earlier,
Hanushek does acknowledge widespread differences
in student achievement among schools but does not
attribute these differences to the factors commonly
associated with school expenditures—teacher experi-
ence, teacher education, and class size. A recent
reanalysis of the same studies used by Hanushek,
however, reaches a different conclusion: “Reanaly-
sis with more powerful analytic methods suggests
strong support for at least some positive effects of
resource inputs and little support for the existence
of negative effects” (Hedges, Laine, & Greenwald,
1994, p. 13).

Another debate has focused on the effectiveness of
public versus private schools. Several empirical studies
found that average achievement levels are higher in
private schools, in general, and Catholic schools, in
particular, than in public schools, even after accounting
for differences in student characteristics and resources
(Bryk, Lee, & Holland, 1993; Chubb & Moe, 1990;
Coleman & Hoffer, 1987; Coleman, Hoffer, &
Kilgore, 1982). Yet although some (Chubb & Moe,
1990) argue that all private schools are better than
public and thus argue for private school choice as a
means to improve education, other researchers have
argued that Catholic schools, but not other private
schools, are both more effective and more equitable
than public schools (Bryk et al., 1993). Still other
researchers find little or no Catholic school advantage
(Alexander & Pallas, 1985; Gamoran, 1996; Willms,
1985). Moreover, it has been suggested that controlling
for differences in demographic characteristics may still
not adequately control for fundamental and important
differences among students in the two sectors (Witte,
1992, p. 389).

Much of the debate about school effectiveness
has centered on methodological issues. These issues
concern such topics as data, variables, and statis-
tical models used to estimate school effectiveness.
Since the research and debate on school effectiveness
began almost 50 years ago, new, more comprehensive

sources of data and new, more sophisticated
statistical models have been developed that have
improved school effectiveness studies. In particu-
lar, the development of multilevel models and the
computer software to estimate them have given
researchers more and better approaches for investigat-
ing school effectiveness. This chapter reviews some of
the major methodological issues surrounding school
effectiveness research, with a particular emphasis
on how multilevel models can be used to investi-
gate a number of substantive issues concerning school
effectiveness.1

We will illustrate these issues by conducting analy-
ses of a large-scale national longitudinal study that has
been the source of a lot recent research on school effec-
tiveness, the National Education Longitudinal Study of
1988 (NELS). NELS is a national longitudinal study
of a representative sample of 25,000 eighth graders
begun in 1988. Base year data were collected from
questionnaires administered to students, their parents
and teachers, and the principal of their school. Follow-
up data were collected in 1990, 1992, 1994, and, most
recently, in 2000 on a subset of the original sample
(Carroll, 1996). Students were also given a series
of achievement tests in English, math, science, and
history/social studies in the spring of 1988, 1990, and
1992, when most respondents were enrolled in Grades
8, 10, and 12, respectively. In this chapter, we will
use a subsample of the NELS data for 14,199 students
with valid questionnaires from the 1988, 1990, and
1992 survey years who attended 912 high schools in
1990.2 The appendix provides descriptive information
on the variables in the data set that were used to test
the models in this chapter.

We begin this chapter by presenting a conceptual
model of schooling that can be used to frame studies
of school effectiveness. Next we discuss several issues
regarding the selection of data and variables used to
test multilevel models. Then we review various types
and uses of multilevel models for estimating school
effectiveness. Finally, we review techniques for identi-
fying effective schools. For each topic, we will explain
some of the important decisions that researchers must
make in undertaking school effectiveness studies and
how those decisions can influence the outcomes and
conclusions of the study.

1. Many of the concepts and techniques we discuss can be used to study
the effectiveness of other types of organizations, such as hospitals.

2. To generate accurate school-level composition measures, we restricted
the sample to respondents who had a valid school ID in 1990, had valid
test scores in 1988 and 1990, and attended a high school with at least five
students.
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13.1. A Conceptual

Model of Schooling

To undertake quantitative research on school effec-
tiveness, we should have a conceptual model of the
schooling process. A conceptual model can be used
to guide the initial design of the study, such as the
selection of participants and the collection of data, as
well as the selection of variables and the construc-
tion of statistical models. Although several different
conceptual frameworks have been developed and used
in school effectiveness research over the years (e.g.,
Rumberger & Thomas, 2000; Shavelson, McDonnell,
Oakes, & Carey, 1987; Willms, 1992), all have por-
trayed schooling as a multilevel or nested phenomenon
in which the activities at one level are influenced by
those at a higher level (Barr & Dreeben, 1983; Willms,
1992). For example, student learning is influenced by
experiences and activities of individual students, such
as the amount and nature of the homework that they do.
But student learning is also influenced by the amount
and nature of the instruction that they receive within
their teachers’ classrooms, as well as by the qualities
of the schools they attend, such as school climate and
the nature of the courses that are provided. Ignoring
or incorrectly specifying these multilevel influences
can yield misleading conclusions about their effects
on student learning (e.g., Summers & Wolfe, 1977).

In addition to its multilevel nature, the process of
schooling can be divided into distinct components.
One framework is based on the sociological view of
schooling (Tagiuri, 1968; Willms, 1992), which iden-
tifies four major dimensions of schooling: ecology
(physical and material resources), milieu (character-
istics of students and staff), social system (patterns
and rules of operating and interacting), and culture
(norms, beliefs, values, and attitudes). Another frame-
work is based on an economic model of schooling
(e.g., Hanushek, 1986; Levin, 1994), which identi-
fies three major components of schooling: the inputs
of schooling—students, teachers, and other resources;
the educational process itself, which describes how
those inputs or resources are actually used in the educa-
tional process; and the outputs of schooling—student
learning and achievement.3

An example of a conceptual framework based on
the economic model is illustrated in Figure 13.1. The
framework shows the educational process operating
at the three levels of schooling—schools, classrooms,

3. In his landmark study of school effectiveness, sociologist James
Coleman employed an input-output model of the schooling process (see
Coleman, 1990).

and students. It also identifies two major types of
factors that influence the outcomes of schooling:
(a) inputs to schools, which consist of structure
(size, location), student characteristics, and resources
(teachers and physical resources), and (b) school and
classroom processes and practices. School inputs are
largely “given” to a school and therefore are not
alterable by the school itself (Hanushek, 1989). The
second set of factors refers to practices and policies
that the school does have control over and thus are of
particular interest to school practitioners and policy-
makers in developing indicators of school effectiveness
(Shavelson et al., 1987).

13.1.1. Dependent Variables

The framework suggests that school effectiveness
research can focus on a number of different educa-
tional outcomes. The most common measure of school
effectiveness is academic achievement, as reflected in
student test scores, which is considered one of the most
important outcomes of schooling. Although student
academic achievement is affected by the background
characteristics of students, research has clearly demon-
strated that achievement outcomes are also affected
by the characteristics of schools that students attend
(Coleman et al., 1982; Gamoran, 1996; Lee & Bryk,
1989; Lee & Smith, 1993, 1995; Lee, Smith, &
Croninger, 1997; Witte & Walsh, 1990).

Other student outcomes have also been examined in
studies of school effectiveness. One of these is school
dropout, which studies have shown is also affected
by the characteristics of schools that students attend
(Bryk et al., 1993; Bryk & Thum, 1989; Coleman
& Hoffer, 1987; McNeal, 1997; Rumberger, 1995;
Rumberger & Thomas, 2000). Other studies have
examined the impact of school characteristics on
absenteeism (Bryk & Thum, 1989), engagement
(Johnson, Crosnoe, & Elder, 2001), and social behav-
ior (Lee & Smith, 1993). One reason for examining
alternative student outcomes is that schools and school
characteristics that are effective in improving student
performance in one outcome may not be effective in
improving student performance in another outcome
(Rumberger & Palardy, 2003b).

13.1.2. Independent Variables

The conceptual framework suggests that several
types of variables are valuable in constructing statisti-
cal models of school effectiveness. We provide a very
brief review of some of these variables.
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Figure 13.1 A Multilevel Conceptual Framework for Analyzing School Effectiveness
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13.1.2.1. Student Characteristics

Research has demonstrated that a wide variety of
individual student characteristics are related to student
outcomes. These include demographic characteristics,
such as ethnicity and gender; family characteristics,
such as socioeconomic status and family structure;
and academic background, such as prior achieve-
ment and retention. These characteristics have been
shown to relate to such student outcomes as engage-
ment, achievement (test scores), and dropout (Bryk &
Thum, 1989; Chubb & Moe, 1990; Lee & Burkam,
2003; Lee & Smith, 1999; McNeal, 1997; Rumberger,
1995; Rumberger & Palardy, 2003b; Rumberger &
Thomas, 2000).

Student characteristics influence student achieve-
ment not only at an individual level but also at an
aggregate or social level. That is, the social compo-
sition of students in a school (sometimes referred to
as contextual effects) can influence student achieve-
ment apart from the effects of student characteristics
at an individual level (Coleman et al., 1966; Gamoran,
1992). Studies have found that the social composition
of schools predicts school engagement, achievement,
and dropout rates, even after controlling for the effects
of individual background characteristics of students
(Bryk & Thum, 1989; Chubb & Moe, 1990; Jencks
& Mayer, 1990; Lee & Smith, 1999; McNeal, 1997;
Rumberger, 1995; Rumberger & Thomas, 2000).

13.1.2.2. School Resources

School resources consist of both fiscal resources
and the material resources that they can buy. As
mentioned earlier, there is considerable debate in the
research community about the extent to which school
resources contribute to school effectiveness. But there
is much less debate that material resources matter,
particularly the number and quality of teachers. Yet
the exact nature of teacher characteristics that con-
tribute to school effectiveness, such as credentials and
experience, is less clear (Goldhaber & Brewer, 1997).
Beyond the quality of teachers, there is at least some
evidence that the quantity of teachers—as measured
by the pupil/teacher ratio—has a positive and sig-
nificant effect on some student outcomes (McNeal,
1997; Rumberger & Palardy, 2003b; Rumberger &
Thomas, 2000).

13.1.2.3. Structural Characteristics of Schools

Structural characteristics, such as school location
(urban, suburban, rural), size, and type of control
(public, private), also contribute to school perfor-
mance. Although widespread achievement differences
have been observed among schools based on struc-
tural characteristics, what remains unclear is whether
structural characteristics themselves account for these
differences or whether they are related to differences
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in student characteristics and school resources often
associated with the structural features of schools. As
we pointed out earlier, this issue has been most widely
debated with respect to one structural feature: the
difference between public and private schools. More
recently, there has been considerable interest in another
structural feature of schools: school size (Lee &
Smith, 1997).

13.1.2.4. School Processes

Despite all the attention and controversy surround-
ing the previous factors associated with school effec-
tiveness, it is the area of school processes that many
people believe holds the most promise for under-
standing and improving school performance. Although
most individual schools, or at least most public
schools, have little control over student character-
istics, resources, and their structural features, they
can and do have a fair amount of control over how
they are organized and managed, the teaching prac-
tices they use, and the climate they create for student
learning—features referred to as school processes.
Some researchers have also referred to them as “Type
B effects” because, when statistical adjustments are
made for the effects of other factors, they provide
a better and more appropriate basis for comparing
the performance of schools (Raudenbush & Willms,
1995; Willms, 1992; Willms & Raudenbush, 1989).
A number of school processes have been shown to
affect student achievement, such as school restructur-
ing and various policies and practices that affect the
social and academic climate of schools (Bryk & Thum,
1989; Croninger & Lee, 2001; Gamoran, 1996; Lee &
Smith, 1993, 1999; Lee et al., 1997; Phillips, 1997;
Rumberger, 1995).

13.2. Data and Sample Selection

13.2.1. Data

Like all quantitative studies, school effectiveness
research requires suitable data. The conceptual frame-
work discussed earlier shows that student outcomes are
influenced by a number of different factors operating at
different levels within the educational system, includ-
ing student factors, family factors, and school factors.
Generally, insightful school effectiveness research
requires data on all those factors. Moreover, as we
discuss below, longitudinal models are useful for
addressing certain research questions and required

repeated measurements of student outcomes over
time. For these reasons, the data requirements of
multilevel school effectiveness models can be
extensive.

Meeting these extensive data requirements neces-
sitates considerable resources, which are not often
available to small-scale studies. For this reason, the
federal government has invested in the design and
collection of several large-scale longitudinal studies
that have been the basis for most school effective-
ness studies conducted over the past 40 years or so.
Early studies were based on national and some local
(state) longitudinal surveys conducted on cohorts of
high school students (e.g., see Alexander & Eckland,
1975; Hauser & Featherman, 1977; Jencks & Brown,
1975; Summers & Wolfe, 1977). The U.S. Department
of Education conducted the 1972 National Longitudi-
nal Study of the High School Class of 1972, the 1980
High School and Beyond study of 10th- and 12th-grade
students, the 1988 National Education Longitudinal
Study of 8th graders, and, most recently, the 1998 Early
Childhood Longitudinal Study (ECLS) of the kinder-
garten class of 1998–1999 and the birth cohort of 2000,
as well as the 2002 Educational Longitudinal Study of
10th graders.4 All these survey programs involve large
samples of students and schools along with student,
parent, teacher, and school surveys as well as specially
designed student assessments of academic achieve-
ment. One drawback of these studies is that they rarely
have adequate classroom-level sample sizes, which
makes investigations of teaching and classroom effects
problematic. Until recently, all the federal education
studies focused on middle and high school students,
which has resulted in an inordinate proportion of the
school effectiveness research in the past 20 years being
directed at middle and high schools. With the availabil-
ity of ECLS data, that focus seems to be shifting toward
elementary schools.

13.2.2. Sample Selection

Once an appropriate set of data is selected, the next
step in conducting a school effectiveness study is to
select an appropriate sample. In addition to selecting a
set of data and a sample based on the types of research
questions that are to be addressed, two other issues
are important to consider: missing data and sampling
bias.

4. For further information, visit the National Center for Education
Statistics Web site at http://nces.ed.gov/surveys/.
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13.2.2.1. Missing Data

Missing data are a reality in social research and
especially problematic in longitudinal analyses in
which attrition tends to exacerbate the problem. In
panel studies, attrition may occur when families move
or students drop out between waves or students cannot
be located for some other reason at the follow-up sur-
vey. Another situation is nonresponse on certain items.
Deciding how to deal with missing values is a common
dilemma. Perhaps the most widely used approach is
to omit cases with missing data, although the general
consensus is that deletion is only an appropriate course
of action when data are missing completely at random
(see Little & Rubin, 1987, for a detailed treatment
of types of “missingness” and remedies). Deletion
of cases in other situations can bias the sample and
parameter estimates. For that reason, it is important to
consider alternatives to deletion.

13.2.2.2. Sampling Bias

Sampling bias arises when some part of the target
population is inadequately represented in the sample.
This problem is often an outcome of deleting cases
with missing data and, as mentioned above, can lead
to distorted results.5 Other times, researchers may
choose to exclude some valid cases for one reason or
another. For example, dropouts and mobile students
may be excluded from a school effectiveness evalua-
tion analysis because their achievement growth cannot
be attributed to a single school. Whether cases have
missing data or are being considered for removal for
another reason, deletion is an option that should only
be considered after establishing that those cases do
not differ systematically from the rest. In general,
the larger the percentage of cases being excluded,
the greater the potential for selection bias. However,
to be safe against sampling bias, cases with missing
values should not be deleted but rather handled using
an appropriate missing value routine.

As the title of this chapter suggests, school effective-
ness research generally necessitates a multilevel model
because students are nested in classrooms and schools.
The previous discussion of selection bias focused on
omission of student cases. Omissions at the student
level can also bias the school-level sample. A simple
example of this is the effect of deleting students with

5. The problem can also arise due to sampling techniques often used in
collecting multilevel longitudinal studies, such as the large-scale federal
studies mentioned earlier. Such studies typically provide sampling weights
that researchers can use to produce accurate estimates of population
parameters (e.g., see Carroll, 1996).

missing achievement data. If the omitted cases have
lower achievement levels than the retained cases, mean
achievement estimates at the school level will also be
biased. Furthermore, omitting cases at the student level
decreases the average number of students per school,
which generally reduces the reliability of the fixed and
random coefficients in the model.

13.3. Using Multilevel Models

to Address Research Questions

A wide range of multilevel models can and have been
used to conduct school effectiveness research. The
choice of models depends both on the questions the
investigator wishes to answer and on the data available
to answer them. Two key aspects of the data are rel-
evant in selecting models: whether the data represent
measures at a single point in time (cross-sectional) or
multiple points in time (longitudinal) and whether the
outcome measures are continuously distributed (e.g.,
standard test scores) or categorical (e.g., dropout rates).
In this section, we review a number of different models.
We group the models by the types of dependent or
outcome variables used in the models and whether the
data are cross-sectional or longitudinal:

• achievement (cross-sectional) models with con-
tinuous outcomes,
• achievement growth (longitudinal) models with

continuous outcomes,
• models with categorical outcomes.

For each group of models, we pose a series of research
questions and the models most suited to address them.
Then we illustrate the procedures for using them with
the sample NELS data.

13.3.1. Achievement Models

The most commonly used type of multilevel model
for school effectiveness is one in which the dependent
variable is student achievement at a single point in time.
One reason for the popularity of these models is that
they only require one round of data collection, which
is both easier and less expensive than multiple rounds
of data collection found in longitudinal studies. More-
over, even though there are some inherent limitations
in these models, as we discuss below, they can still be
used to address a wide range of research questions.

Student achievement models typically specify two
distinct components or submodels: (a) models for
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student-level outcomes within schools, known as
within-school models, and (b) models for school-
level outcomes, known as between-school models, in
which the parameters from the within-school model
serve as dependent variables in the between-school
model. Because the within-school model may contain
a number of parameters, each parameter produces its
own between-school equation. In most applications, a
series of models are estimated that begin with relatively
simple models and then add parameters to develop
more complete models. Each model is useful for
addressing particular types of research questions, so
school effectiveness studies typically employ a number
of distinct models.

13.3.1.1. Do Schools Make a Difference?

This is the most fundamental research question in
school effectiveness research that focuses on how
much of the variation in student achievement can be
attributed to the schools that students attend. Coleman
was the first researcher to address this question,
and he did it by partitioning the total variation in
student achievement into two components: One com-
ponent consisted of the variation in individual test
scores around their respective school means, and the
other component consisted of the variation in school
means around the grand mean for the entire sample
(Coleman, 1990, p. 76). Coleman found that schools
only accounted for a small amount of the total variation
in student test scores, ranging from 5% to 38% among
different grade levels, ethnic groups, and regions of the
country (Coleman, 1990, p. 77).

This research question can easily be addressed using
a multilevel unconditional or null model. The first
model has no predictor variables in either the within-
school or between-school model and is known as a null
or one-way ANOVA model:

Level 1 model: Yij = β0j + rij, rij ∼ N(0, σ 2).

Level 2 model: β0j = γ00 + µ0j , µ0j ∼ N(0, τ00).

Combined model: Yij = γ00 + µ0j + ri .

In this case, the Level 1 model represents the
achievement of student i in school j as a function of the
average achievement in school j (β0j ) and a student-
level error term (rij), and the Level 2 model represents
the average achievement in school j as a function of
the grand mean of all the school means (γ00) and a
school-level error term (µ0j ). In addition to providing
an estimate of the one fixed effect, the grand mean for

achievement (γ00), the model also provides estimates
for the student-level (σ 2) and at the school-level (τ00)

variance components, which can be used to determine
how much of the total variance is accounted for by
students and schools.

We can illustrate the usefulness of the null model
with the NELS data using 10th-grade math test scores
as the dependent variable. The estimated param-
eters from this model are shown in Table 13.1
(column 1).6 The estimate for the grand mean of the
mean math achievement (γ̂00) among the sample of
912 high schools is 50.85, which is very close to
the actual mean for the students in the sample (see
appendix). The estimated values for the two variance
components can be used to partition the variance in
student math scores between the student and school
levels, as shown as follows:

Student-level variance (σ̂ 2) : 73.88

School-level variance (τ̂00) : 24.12

Total variance: 98.00

Proportion of variance at school level : .25

The results show that 25% of the total variance
is at the school level, which suggests that schools
do indeed contribute to differences in student math
scores. This result is within the range that Coleman
et al. found in their 1966 study7 and the range found
in other recent studies of student achievement using
similar models (e.g., Lee & Bryk, 1989; Rumberger &
Willms, 1992). Once the total variance is decomposed
into its student and school components, subsequent
models can be constructed to explain each component,
much the way single-level regression models are used
to explain variance.

13.3.1.2. To What Degree Does
Mean Achievement Vary Across Schools?

This is a related question that allows the researcher to
determine the extent of the variation in average school
achievement among schools. This question can also
be addressed by using the parameter estimates from
the unconditional model to calculate a 95% confidence
interval, referred to as a range of plausible values,
under the assumption that the school-level variance

6.Because of space considerations, we only provide estimates of fixed and
random effects. Raudenbush and Bryk (2002) also suggest that researchers
examine other statistics, including reliability.

7. Coleman (1990) provides a summary of the findings in Table 3.22.1 on
page 77.
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Table 13.1 Parameter Estimates for Alternative Multilevel Math Achievement Models

Intercepts-
Means-as- Means-as- One-Way Random- and Slopes-
Outcomes Outcomes ANCOVA Coefficient as-Outcomes

Null Model Model 1 Model 2 Model Model Model
(1) (2) (3) (4) (5) (6)

Fixed effects

Model for school mean achievement (β0)
INTERCEPT (γ00) 50.85** 49.93** 50.85** 50.96** 50.84** 50.84**

(0.18) (0.17) (0.12) (0.12) (0.18) (0.11)
MEANSES (γ01) 8.11** 8.11**

(0.25) (0.25)
CATHOLIC (γ02) 3.22** −0.21 −0.23

(0.62) (0.43) (0.43)
PRIVATE (γ03) 9.35** 0.76 0.73

(0.64) (0.53) (0.53)
Model for SES achievement slope (β1)
INTERCEPT (γ10) 4.95** 4.22** 4.51**

(0.10) (0.12) (0.13)
MEANSES (γ11) 1.09**

(0.30)
CATHOLIC (γ12) −1.78**

(0.55)
PRIVATE (γ13) −3.55**

(0.55)
Variance components

Within school (Level 1) (σ 2) 73.88 73.91 73.95 66.55 65.88 65.97
Between school (Level 2)
School means (τ00) 24.12** 17.33** 5.35** 9.00** 24.75** 5.93**
SES achievement slopes (τ11) 1.34** 0.82*
Proportion explained

School means .28 .77 .63 .75
SES achievement slopes .29

NOTE: SES = socioeconomic status; PRIVATE = private schools; CATHOLIC = Catholic schools; MEANSES = mean socioeconomic status.
*p < .05; **p < .01.

is normally distributed (Raudenbush & Bryk, 2002,
p. 71):

Range of plausible values = γ̂00 ± 1.96 (τ̂00)
1/2

= 50.85± 1.96 (24.12)1/2

= (41.23, 60.47).

These results indicate a substantial range in aver-
age achievement among high schools, with average
achievement 50% higher in the highest performing
(97.5th percentile) compared to the lowest performing
(2.5th percentile) high schools.

13.3.1.3. What School Inputs
Account for Differences in School Outputs?

Another fundamental research question on school
effectiveness concerns the relationship between school
inputs and school outputs. Again, this is one of the

main questions that Coleman et al. (1966) addressed
in their landmark study (summarized in Coleman,
1990, p. 2), and it continues to have importance for
policy initiatives designed to address disparities in
school inputs.

This research question can be addressed using a
second type of multilevel model, known as a means-
as-outcomes model. This model attempts to explain
school-level variance, but not student-level variance,
by adding school-level predictors to the model, as
shown in the following example in which we add two
indicator or dummy variables for school sector:

Level 1 model: Yij = β0j + rij.
Level 2 model: β0j = γ00 + γ01CATHOLICj

+ γ02PRIVATEj + u0j .

In this example, there are three fixed effects:
one for the mean math achievement in public high
schools (γ00), one for the mean achievement difference
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between public and Catholic schools (γ01), and one
for the mean achievement difference between public
and private, non-Catholic schools (γ02). The results
of this model (see Table 13.1, column 2) show that
mean student math achievement is 49.93 in public
schools and averages more than 3 points higher in
Catholic schools and more than 9 points higher in pri-
vate schools. Both predictor variables are statistically
significant.8

With these two predictors in the model, the school-
level variance (τ00) is now a conditional variance or the
variance that remains after controlling for the effects of
school sector (CATHOLIC, PRIVATE). Consequently,
it is generally smaller than the variance in the uncon-
ditional model. The difference in the two variance
estimates can be used to determine how much of
the unconditional variance is explained by the model
containing these two predictors:

Proportion of variance explained

= [τ̂00(Model 1)− τ̂00(Model 2)]/τ̂00(Model 1)

= [24.12− 17.33]/24.12

= .28.

The results indicate that 28% of the total vari-
ance between schools in mean math achievement is
accounted for by the two school sector variables.

Next we added a third predictor to the school-level
model, mean socioeconomic status of students in each
school (MEANSESj ):

Level 2 model: β0j = γ00 + γ01MEANSESj

+ γ02CATHOLICj + γ03PRIVATEj + u0j .

In this example, there are four fixed effects: the
mean math achievement in public high schools, where
MEANSES is zero (γ00);9 the effect of school mean
socioeconomic status (SES) on mean math achieve-
ment (γ01); the mean achievement difference between
public and Catholic schools, holding constant school
mean SES (γ02); and the mean achievement differ-
ence between public and private, non-Catholic schools,
holding constant school mean SES (γ03). The results
of this model (see Table 13.1, column 3) show that
MEANSES has a large and statistically significant
effect on mean math achievement (γ̂01 = 8.11,
p < .01)—a one standard deviation increase in

8. Hypothesis testing for both fixed and random effects is explained in
detail in Raudenbush and Bryk (2002, pp. 56–65). The p-values shown in
Tables 13.1 and 13.2 are from single-parameter tests, which are based on
t-tests for fixed effects and chi-square tests for the variance components.

9. This is extremely close to the sample mean of .01.

MEANSES increases mean test scores by 4.22
(8.11× .52) points. After controlling for school mean
SES, the coefficients for Catholic and private schools
are no longer statistically significant. This example
illustrates the importance of correctly specifying a
model to yield valid and unbiased results. Although
this issue applies to all statistical models, it is par-
ticularly important in multilevel models because the
researcher must draw on a broader array of research lit-
erature pertaining to both individual and school deter-
minants of student achievement to correctly specify
models at each level of analysis.

This model explains 77% of the school-level vari-
ance. In other words, only three predictors explain
the majority of the variability in average achievement
among schools.10

13.3.1.4. What Difference Does the School
a Child Goes to Make in the Child’s Achievement?

This is another fundamental question that Coleman
(1990, p. 2) addressed in his landmark study and one
particularly important to parents. Parents are often
interested in selecting a school that will improve their
child’s academic achievement. They are also aware that
the average achievement varies widely among schools,
in part because schools, state education agency Web
sites, and newspapers often report such information.
Yet, all the variance in student achievement at the
school level cannot be attributed to the effects of
schools. Some of that variance is due to the individ-
ual background characteristics of the students, which
affect student outcomes no matter where they attend
school.

This research question can be addressed using
another type of multilevel model, known as a one-way
ANCOVA model. One helpful technique to control for
the effects of student background characteristics in this
model is through “centering” student-level predictors
around their grand or sample mean.

A simple illustration of this model is shown in the
following model, in which a single student-level pre-
dictor, SES, is introduced and centered on the grand
mean:

Level 1 model: Yij = β0j + β1j(SESij − SES..)+ rij.
Level 2 model: β0j = γ00 + u0j.

β1j = γ10.

10. In fact, mean SES alone explains 77% of the variance, which is why
Coleman concluded that the social composition of the school is the most
important school input.
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Grand-mean centering alters the meaning of the
intercept term (β0j ). Instead of representing the actual
mean achievement of students in each school, it now
represents the expected achievement of a student
whose background characteristics are equal to the
grand mean of all students in the larger sample of
students (Raudenbush & Bryk, 2002, p. 33). In other
words, the school means are adjusted for differences in
the background characteristics of the students attend-
ing them and now represent the expected achievement
of an “average” student. In this example, there are two
fixed effects: one for the school mean of the expected
math achievement for students with mean SES (γ00)

and one for the predicted effect of student SES on
math achievement (γ10).11 In addition, the equation for
the student-level predictor is “fixed” at Level 2 in this
model because no random school effect is specified,
which assumes that the effect of student SES does
not vary among schools (like a classical ANCOVA
model)—an assumption that we test below. In this
case, the student-level variance (σ 2) represents the
residual variance of student achievement after con-
trolling for student SES, and the school-level variance
(τ00) represents the variance among schools in adjusted
school means.

The estimated parameters of this model (see Table
13.1, column 4) show that student SES is a power-
ful predictor of academic achievement (γ̂10 = 4.95,
p < .01). A one standard deviation increase in student
SES implies a 4-point (4.95× .81) increase in student
achievement. This single predictor, grand-mean cen-
tered, explains 63% of the school-level variance. In
other words, almost two thirds of the observed vari-
ance in mean math achievement among schools can
be explained by differences in the SES background
of the students who attend them. The magnitude of
this impact can also be illustrated by calculating the
adjusted range of plausible values:

Range of plausible values = γ̂00 ± 1.96(τ̂00)
1/2

= 50.85± 1.96(9.00)1/2

= (45.08, 56.84).

These results indicate that for a student from an aver-
age SES background, his or her expected achievement
would be about 26% higher in the highest perform-
ing compared to the worst-performing high school.
Although such a difference is only about half of the

11. In cases in which student characteristics affect educational outcomes
at both the individual and school levels, as we discuss below, then the
student-level predictors in this model produce biased estimators of the
within-school effects of those characteristics (see Raudenbush & Bryk,
2002, pp. 135–139).

range in the overall means shown earlier, it may still
be considered meaningful.

13.3.1.5. Do the Effects of Student Background
Characteristics Vary Among Schools?

In the preceding example, we assumed that the
effects of the student-level predictors were the same
across schools. In most cases, the investigator should
test this assumption by first specifying them as random
at the school level. If the variance of the random effect
is not significantly different from zero, the researcher
can “fix” the predictor by removing the random effect.
If the variance is significantly different from zero,
the researcher can then try to explain the variance by
adding school-level predictors much the same way that
school-level predictors are added to the intercept term.

This type of multilevel model is known as a random-
coefficient model. To derive accurate estimates of all
the variance parameters in this type of model, we
must use a different form of centering known as
group-mean centering (see Raudenbush & Bryk, 2002,
pp. 143–149). In this case, the student-level predictors
are centered at the mean for the students in their respec-
tive schools, and, by doing so, the intercept term (β0j )

represents the unadjusted mean achievement for the
school (Raudenbush & Bryk, 2002, p. 33).12

To illustrate this model, we estimated a model simi-
lar to the one above, but SES was group-mean centered,
and a random term was added to its Level 2 equation:

Level 1 model: Yij=β0j + β1j (SESij − SES.j)+ rij.
Level 2 model: β0j =γ00 + u0j .

β1j =γ10 + u1j .

In this example, there are two fixed effects—the
grand mean of the mean math achievement among
schools (γ00) and the mean of the SES achievement
slope among schools (γ10)—and three random effects:
the residual variance of student achievement after
controlling for student SES (σ 2), the variance in
the average math achievement among schools (τ00),
and the variance in the SES achievement slopes
among schools (τ11). The results from this model
(see Table 13.1, column 5) show similar parameter
estimates for mean achievement and student SES com-
pared to the previous ANCOVA model (column 4), but
now the variance parameter for the intercept term is
similar to that of the unconditional model (column 1),
and there is a variance estimate for the SES equation,

12. In addition, group-mean centering provides an unbiased estimator of
the student-level effects (see Raudenbush & Bryk, 2002, pp. 135–139).
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which in this case is statistically significant.13 This
suggests that the effects of SES on achievement, some-
times referred to as the SES achievement slope, vary
among schools. The magnitude of this variation can be
illustrated by calculating a range of plausible values:

Range of plausible values = γ̂10 ± 1.96 (τ̂11)
1/2

= 4.22± 1.96 (1.34)1/2

= (1.95, 6.49).

The results suggest that the effects of student SES on
achievement are more than three times as great in some
high schools as in other high schools, which suggests
that some schools are more equitable in that they atten-
uate the effects of student background characteristics
on achievement.

13.3.1.6. How Effective
Are Different Kinds of Schools?

One of the most important policy questions con-
cerns measuring school effectiveness. Policymakers
are interested in identifying effective and ineffective
schools to recognize the effective schools and inter-
vene in the ineffective schools. But this is easier said
than done. Schools should only be accountable for the
factors that they have control over. In most cases, at
least in the public sector, schools do not have con-
trol over the types of students who are enrolled in
them (as well as other types of school inputs). As
we demonstrated earlier, the background characteris-
tics of students explain much of the variation in mean
achievement among schools. In addition, student back-
ground characteristics can affect student outcomes at
the school level, which are known as compositional
or contextual effects (Gamoran, 1992). For example,
the average SES of a school may have an effect on
student achievement above and beyond the individ-
ual SES levels of students in that school. In other
words, a student attending a school where the aver-
age SES of the student body is low may have lower
achievement outcomes than a student from a simi-
lar background attending a school where the average
SES of the student body is high. Data from the 2000
National Assessment of Educational Progress confirm
this: Low-income students attending schools with less
than 50% low-income students had higher scores in the
fourth-grade math exam than middle-income students
attending schools with more than 75% low-income
students (U.S. Department of Education, 2003, p. 58).

13.The SES achievement slope in this model is lower than in the ANCOVA
model (4.22 vs. 4.95), which suggests that there are both student-level and
school-level effects of SES, something we confirm in the next model.

School effectiveness may be judged not simply
by determining which schools have higher average
achievement, after controlling for certain inputs, but
also by how successful they are in attenuating the rela-
tionship between student background characteristics
and achievement, as we suggested earlier. Coleman
(1990, p. 2) argued that there is another important
question about school effectiveness: How much do
schools overcome the inequalities with which children
come to school? For example, some earlier studies
found that not only did Catholic schools have higher
achievement than public schools, even after control-
ling for differences in the average SES of students, but
the relationship between student SES and achievement
was lower, meaning that disparities between high and
low SES students was lower (Byrk et al., 1993; Lee
& Bryk, 1989). In other words, Catholic schools were
found to be more equitable.

A type of multilevel model that can be used to assess
both questions on school effectiveness is referred
to as a means- and slopes-as-outcomes model. This
model incorporates school-level predictors in both the
intercept and random slopes equations. To generate
accurate parameter estimates in these types of models,
one must introduce a common set of school-level pre-
dictors in all the Level 2 equations (see Raudenbush &
Bryk, 2002, p. 151). In addition, to disentangle the
individual and compositional effects of student-level
predictors, one should include school-level means
of all the student-level predictors in the model (see
Raudenbush & Bryk, 2002, p. 152).

An example of this model is the following:

Level 1 model: Yij = β0j + β1j (SESij − SES.j)+ rij.
Level 2 model: β0j = γ00 + γ01MEANSESj

+ γ02 CATHOLICj + γ03 PRIVATEj + u0j .

β1j = γ10 + γ11MEANSESj

+ γ12CATHOLICj + γ13PRIVATEj + u1j .

In this example, there are eight fixed effects and
three random effects. The meaning of the student-
level random effect and the effects for the model for
school means (β0j ) are similar to those described ear-
lier. In the model for the SES achievement slope (β1j ),
there are now four fixed effects: the SES achieve-
ment slope in public high schools, where the school
mean SES is zero (γ10); the effect of school mean
SES on the SES achievement slope (γ11); the differ-
ence between public and Catholic schools in the SES
achievement slope, holding constant school mean SES
(γ12); and the difference between public and private,
non-Catholic schools on the SES achievement slope,
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holding constant school mean SES (γ13). In this model,
the variance (τ11) now represents the residual variance
in the SES achievement slopes after controlling for
school sector and school SES.

The estimated parameters from this model (see
Table 13.1, column 6) yield several important conclu-
sions about differences in school effectiveness among
public, private, and Catholic schools. First, unlike the
earlier reported studies, the average achievement at
private and Catholic schools is not significantly higher
than the average achievement at public schools after
controlling for the effects of school mean SES. Second,
consistent with earlier studies, the effects of student
SES on achievement are higher in high-SES schools
than lower SES schools and lower in Catholic and
private schools than in public schools. For example,
the effect of student SES is 4.51 at public schools, with
a school mean SES equal to zero; at a Catholic school,
it is 2.73 (= 4.51 − 1.78), and at a private school, it
is 0.96 (= 4.51 − 3.55). Third, the SES of students
affects school achievement at both the individual and
schools levels—that is, student SES has both individ-
ual and compositional or contextual effects on student
achievement.14

13.3.2. Achievement Growth Models

Achievement models only examine the relationship
between student outcomes and predictor variables at
discrete points in time. A drawback of this approach is
that it fails to account for the fact that an unknown pro-
portion of the achievement that students demonstrate
at a particular point in a school is due to learning that
took place prior to their arrival at that school. Although
this problem can be partially corrected by including
measures of prior achievement in the model, using an
outcome measure that isolates the student learning that
occurred while students where actually attending that
school is a far better choice.

Growth models are a special class of multilevel
model in which repeated measurements are collected
for each individual in the sample (Singer & Willett,
2003). Growth models are useful for understanding
mean patterns of change as well as individual dif-
ferences in those patterns. Growth models include
two or more level of analyses. A growth trajectory

14.As Raudenbush and Bryk (2002) point out, there is more than one way
to disentangle the individual and compositional effects of student back-
ground characteristics, with the choice of method depending on whether
the analyst wishes to test for random slopes (pp. 139–149). In this exam-
ple, the conditional individual effect of SES (i.e., expected within-school
effects on achievement in public schools with MEANSES equal to zero)
is 4.51, and the compositional effect of SES = 8.11− 4.51 = 3.6.

is estimated for each individual at Level 1 of the
multilevel model, and between-individual differences
in the change pattern are estimated at Level 2.15

A multilevel achievement growth model for schools
will typically include three levels of analysis (e.g.,
Lee, Smith, & Croninger, 1997; Seltzer, Choi, &
Thum, 2003). A special situation arises when there
is a need to estimate teacher or classroom effects in
addition to school effects. Typically, students will
have been members of more than one classroom in
a growth model, which means that they are not strictly
nested within classrooms over time. In this scenario,
a cross-classified random-effects model can be used
to partition the variance in student learning into both
classroom and school components (see Raudenbush &
Bryk, 2002, chap. 12).

In this section, we discuss two different ways
of specifying and estimating achievement growth
models: one using the multilevel regression models
similar to the ones we discussed above and the other
using multilevel latent growth curves. As we did ear-
lier, we discuss these models in relation to the types of
research questions about school effectiveness they can
be used to address.

13.3.2.1. Multilevel Growth Models

We begin with a Level 1 model for individual
growth, where repeated, within-student measurements
of achievement are modeled as a function time. The
simplest model depicts a linear growth trajectory,
although piecewise linear and polynomial terms can
be added to examine nonlinear trends if there are suf-
ficient observations (see Raudenbush & Bryk, 2002,
chap. 6). A Level 1 linear growth model can be written
as follows:

Level 1 model: Ytij = π0ij + π1ij atij + etij,

etij ∼ N(0, σ 2),

where Ytij represents the achievement outcome mea-
sure of student i in school j at time t;π0ij and π1ij

represent, respectively, the initial status (when time
equals zero) and rate of change for student i in school
j ; atij is a measure of time; and etij is a random error
term. For the NELS data, we coded time 0, 0.5, and
1 for 1988, 1990, and 1992, respectively. Coding
the time variable this way offers two advantages in

15. One of the advantages of this approach is that individuals only have
to have a single observation to be included in the analysis (Raudenbush &
Bryk, 2002, p. 199).
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interpreting the results. First, the intercept can be
interpreted as an approximation of student achieve-
ment level upon entering high school since the first
wave of testing was conducted in the spring of 1988,
just before most students entered high school. Second,
the slope represents achievement gains during the
4-year period of high school.16

13.3.2.1.1. Do schools make a difference in
student learning? This question is similar to the one
addressed earlier, except here we are interested in
whether schools make a difference in student learning,
not simply student achievement. This question can be
addressed with a fully unconditional model with no
predictors at Levels 2 and 3:

Level 2 model:

π0ij = β00j + r0ij , r0ij ∼ N(0, τπ00)

π1ij = β10j + r1ij , r1ij ∼ N(0, τπ11).

Level 3 model:

β00j = γ000 + u00j , u00j ∼ N(0, τβ00).

β10j = γ100 + u10j , u10j ∼ N(0, τβ11).

Note that Level 2 here is equivalent to Level 1 in
the multilevel cross-sectional model. In this model,
there are two fixed effects: one for initial status or
achievement (γ000) and one for achievement growth
(γ100), with the latter being of primary focus. There are
also five random effects, which can be used to partition
the variance in both initial achievement and achieve-
ment growth into their within- and between-school
components.

We can illustrate this technique with the NELS data
and math test scores in Grades 8, 10, and 12 as the
dependent variables. The estimated parameters from
this model are shown in Table 13.2 (column 1). The
results indicate that the average math score for students
entering high school (γ̂000) is 45.87 points and that
students increase their math scores (γ̂100) by an average
of 8.76 points over 4 years. The estimated values for
the variance components can be used to partition the
variance in both initial status and learning between
students and schools as we did earlier.17 The results

16. An alternative scheme is 0, 2, 4, which also sets the intercept as
achievement upon entering high school, but now the growth parameter is
scaled so that it is interpreted as achievement gains per year.

17. The variance components can also be used to examine the correlation
between initial status and growth at both the individual and school levels
(see Raudenbush & Bryk, 2002, p. 240). In this example, the correlation
at the student level is .34, and the correlation at the school level is .39,

show that about one quarter of the total variance in both
initial achievement and achievement growth occurs at
the school level in this sample of data (see Table 13.3).

The proportion of variance in achievement growth
at the school level is similar to the proportion we cal-
culated earlier for 10th-grade achievement. In another
study using this same data set, we found the proportion
varied by subject area—ranging from a low of 20% in
reading to a high of 60% in history (Rumberger &
Palardy, 2003a). One study of elementary schools in
Chicago found that almost 60% of the variance in
achievement growth occurred at the school level (Rau-
denbush & Bryk, 2002, p. 239). In general, these
studies suggest schools account for a sizable amount of
variance in both student achievement and achievement
growth.18

To illustrate the usefulness of the growth outcome
and to draw comparisons between it and the achieve-
ment outcome, we estimate a series of achievement
growth models to address the questions we posed above
for the achievement models. The results are shown in
Table 13.2. Because of space limitations, we will not
discuss all of the results of these models, but instead we
will point out where the results of these models yield
different answers to the set of questions about school
effectiveness.

For example, consider the following question: Do
the effects of student background characteristics vary
among schools? To address this question, we specify a
random-coefficient model similar to the one estimated
earlier, where student SES is group-mean centered:

Level 2 model:

π0ij = β00j + β01j (SESij − SES.j )+ r0ij .
π1ij = β10j + β11j (SESij − SES.j )+ r1ij .

Level 3 model:

β00j = γ000 + u00j .

β01j = γ010 + u01j .

β10j = γ100 + u10j .

β11j = γ110 + u11j .

The achievement model estimated earlier (see
Table 13.1, column 5) found that the effect of student

which suggests that students who begin high school with higher math
achievement have higher achievement growth rates than lower achieving
students.

18. Because of the size and heterogeneity of course offerings (tracking)
found in high schools, schools may account for a great proportion of the
variance at the elementary level compared to the secondary level.
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Table 13.2 Parameter Estimates for Alternative Multilevel Math Achievement Growth Models

Means-as- Means-as- Random- One-Way One-Way
Outcomes Outcomes Coefficient ANCOVA ANCOVA

Null Model Model 1 Model 2 Model Model 1 Model 2
(1) (2) (3) (4) (5) (6)

Fixed effects

Model for initial status (π0ij )

Model for school mean of initial
status (β00j )

INTERCEPT (γ000) 45.87** 45.10** 45.82** 45.87** 45.97** 45.92**
(0.16) (0.15) (0.10) (0.16) (0.11) (0.10)

MEANSES (γ001) 7.17** 3.60**
(0.22) (0.25)

CATHOLIC (γ002) 2.18** −0.86* −0.87*
(0.54) (0.39) (0.39)

PRIVATE (γ003) 8.21** 0.61 0.33
(0.62) (0.50) (0.50)

Model for within-school relationship
between SES and initial status (β01j )

INTERCEPT (γ010) 3.58** 4.19** 3.59**
(0.10) (0.09) (0.10)

Model for 4-year learning rate (π1ij )

Model for school mean of 4-year
learning rate (β10j )

INTERCEPT (γ100) 8.76** 8.49** 8.66** 8.76** 8.79** 8.69**
(0.08) (0.08) (0.08) (0.18) (0.07) (0.11)

MEANSES (γ101) 1.65** 0.53**
(0.16) (0.25)

CATHOLIC (γ102) 1.84** 1.15** 1.15**
(0.36) (0.34) (0.37)

PRIVATE (γ103) 2.15** 0.40 0.40
(0.33) (0.37) (0.37)

Model for within-school relationship
between SES and 4-year learning rate (β01j )

INTERCEPT (γ110) 1.12** 1.28** 1.12**
(0.08) (0.07) (0.08)

Variance components

Within students (Level 1) (σ 2) 8.18 8.18 8.18 8.19 8.20 8.19
Within school (Level 2)
Initial status (τπ00) 49.81** 49.83** 49.86** 44.04** 44.62** 44.50**
Four-year learning rate (τπ11) 13.05** 13.05** 13.04** 12.23** 12.47** 12.46**
Between school (Level 3)
Initial status (τβ00) 19.11** 13.98** 4.66** 19.59** 7.75** 5.03**
SES/initial status (τβ01) 0.98*
Four-year learning rate (τβ10) 4.00** 2.91** 2.39** 3.43** 2.57** 2.42*
SES/4-year learning rate (τβ11) 0.55
Proportion school-level variance explained

Initial status .27 .76 .59 .74
Four-year learning rate .27 .40 .36 .40

NOTE: SES = socioeconomic status; PRIVATE = private schools; CATHOLIC = Catholic schools; MEANSES = mean socioeconomic status.
*p < .05; **p < .01.

SES (group-mean centered) on math achievement
(γ10 = 4.22, p < .01) varied significantly between
schools (τ11 = 1.34, p < .01). As a result, several
predictors were added to the model, and it was found
that the effect of SES on math achievement was

lower in Catholic and private schools—that is, the
distribution of achievement appeared to be more equi-
table in Catholics schools. In the achievement growth
model (see Table 13.2, column 4), however, the
effect of student SES (group-mean centered) on math
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Table 13.3 Decomposing the Variance in a Linear
Math Achievement Growth Model

Initial Achievement
Status Growth

Student-level variance (%) 49.81 13.05
School-level variance (%) 19.11 4.00
Total student-level and 68.92 17.05

school-level variance (%)
Proportion of variance .28 .24

at school level

achievement growth (γ110 = 8.76, p < .01) did
not vary significantly between schools (τ̂β11 = .055,
p ≥ .05).19

Consequently, the effect of student SES on
initial status and achievement growth was fixed, and a
one-way ANCOVA model (with SES was grand-mean
centered) was estimated:20

Level 2 model:

π0ij = β00j + β01j (SESij − SES..)+ r0ij .
π1ij = β10j + β11j (SESij − SES..)+ r1ij .

Level 3 model:

β00j = γ000 + u00j .

β01j = γ010.

β10j = γ100 + u10j .

β11j = γ110.

The results (see Table 13.2, column 5) show that
not only do differences in student SES explain a
large proportion of variance between schools in initial
achievement (.59), but these differences also explain a
substantial proportion of the variance between schools
in achievement growth (.36). Nonetheless, even after

19. This result is based on a single-parameter hypothesis in which p =
.05, the threshold of statistical significance. Investigators one can also
use a multiparameter test that tests for significant differences in the entire
array of variances and covariances between two separate models (Bryk
& Raudenbush, 2002, pp. 63–65). In this case, the results of the multi-
parameter test confirmed the results of the single-parameter test—that is,
a model with a fixed SES/achievement growth term was not significantly
different from a model with a random SES/achievement growth term.
Similar models and procedures can be used to examine differences in
achievement growth rates between students within the same school (see
Seltzer, Choi, & Thum, 2003).

20. Because we focused on achievement growth, we fixed the effect of
student SES on initial status, even though its variance was significantly
different from zero. As in the case of achievement models that we discussed
earlier, the grand-mean centered student-level predictors produce biased
estimators of the within-school effects of student characteristics when
those characteristics affect educational outcomes at both the individual
and school levels. The estimates in Table 13.2, column 6 suggest that is
the case in this example, especially for initial status.

controlling for student SES, significant variation in
student achievement growth remains. This model
answers a similar yet more important question that the
earlier model could not address: What difference does
the school a child goes to make in the child’s learning
(as opposed to achievement)?

13.3.2.1.2. How effective are different kinds of
schools? To address this question, we estimated a
second ANCOVA model with the same set of pre-
dictors as in the earlier achievement model. Because
student SES is grand-mean centered in this model, the
model estimates the effects of the school-level pre-
dictors on the adjusted school mean—in this case,
the expected achievement growth for a student with
average SES. As a result, the coefficient for school
SES provides a direct estimate of the contextual or
compositional effect of student SES. In this example,
the individual (γ110) and contextual (γ101) effects of
student SES are both significant—a one standard devi-
ation increase in student SES increases 4-year learning
rates by .91(1.12 × .81) units, or about 4 months of
learning over a 4-year period, and a one standard devi-
ation increase in school SES increases learning rates
by .28(.53 × .51), or about 1 month of learning over
a 4-year period. After controlling for school SES, the
results also show that learning rates in math are not
significantly higher in private schools than in public
schools (γ103 = .40, p ≥ .05), but they are signifi-
cantly higher in Catholic schools than in public schools
(γ102 = 1.15, p < .05) : 8.69 in public schools versus
9.84 (8.69+ 1.15) in Catholic schools.

The preceding question on school effectiveness
focused on differences between different kinds of
schools. To more thoroughly address this question,
an investigator needs to develop a more comprehen-
sive model that more adequately controls for a variety
of differences in student background characteristics
(e.g., prior achievement, aspirations, school expe-
riences) and a variety of other school inputs that
schools typically have little control over (e.g., teachers,
textbooks, facilities, location), as suggested by the
earlier conceptual framework (see, e.g., Rumberger &
Palardy, 2003a). Yet one additional important question
remains to be addressed: Why are some schools more
effective than others? If schools are to be improved,
it is important not just to more accurately identify
effective and ineffective schools but also to determine
why some schools are more effective than others. By
identifying the factors that contribute to school effec-
tiveness, it may be possible to use the information
to improve existing schools. Based on the framework
presented earlier, this involves identifying the factors
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that mediate the relationship between school inputs and
school outcomes as well as explain variance in mean
student achievement, which we refer to as process
variables.

We illustrate this by estimating two additional
ANCOVA models. First, we estimate a model that
includes a single school-level predictor, MEANSES,
because it represents a school input that has been shown
to strongly affect math learning. The second model
adds two school process variables that teachers and
other school personnel have at least partial control
over: MEANNAEP, which measures the mean number
of college-prep courses (as designated by the National
Assessment of Educational Progress [NAEP]) students
complete during high school, and MEANHW, the
mean amount of time students spend on homework per
week during the 10th grade (see the appendix for means
and standard deviations for these measures). The first
model estimates the total compositional effects of
student SES (without additional school-level predic-
tors), and the other can be used to see if the two school
process variables mediate the relationship between
student composition and achievement growth as well
as affect student learning.

Table 13.4 displays the estimates for the school-level
predictors in standardized form so that the relative
magnitude of effects of these factors can be com-
pared. Results from the first model show that the
compositional effect of student SES (MEANSES) is
highly significant. Results from the second model
show that adding the two process variables reduces
the effects of MEANSES to the point that it actually
has a negative impact on math learning (γ̂101 =
−0.139, p < .05). That is, the compositional effects
of mean SES is reversed after controlling for the aver-
age number of college-prep courses that students take
in the school and by the average amount of homework
that students do—what some investigators have found
other studies and have labeled academic press (Lee &
Smith, 1999; Phillips, 1997). Moreover, MEANNAEP
and MEANHW both have significant positive effects
on the mean rate of math learning at schools (γ̂102 =
0.324, p < .01; γ̂103 = 0.276, p < .01). Notice that
although we have concluded that MEANNAEP and
MEANHW mediate the effect of MEANSES on mean
math learning, we have not examined the exact nature
of that relationship. Multilevel regression models are
not suited for estimating this type of indirect effects.
To address this question, we introduce another class
of models: multilevel latent growth curves (MLGC),
an extension of the latent growth curve (LGC) in the
structural equation modeling (SEM) literature.

Table 13.4 Standardized Parameter Estimates of
School-Level Predictors in Model for
School Mean of 4-Year Math Learning
Rate (β10j )

Composition Model Process Model
(1) (2)

MEANSES (γ101) 0.229** −0.139*
MEANNAEP (γ102) 0.324**
MEANHW (γ103) 0.276**

NOTE: MEANSES=mean socioeconomic status; MEANNAEP=mean
number of NAEP (college-prep) courses students complete during high
school; MEANHW=mean amount of time students spend on homework
per week during the 10th grade. This model can be estimated as a three-
level multilevel regression model or a two-level multilevel latent growth
curve model. The models include student SES (grand-mean centered) in
the student-level model (fixed) and a school intercept model with the same
three school-level predictors, although those parameter estimates are not
shown.
*p < .05; **p < .01.

13.3.2.2. Multilevel Latent Growth Curves

SEM is widely used among social scientists because
of its flexibility for modeling covariance structure
in both measurement and structural models. Multi-
level SEM has evolved over the past few decades
(Muthén, 1989, 1991) but has not received much
attention from educational researchers until recently,
although Kaplan and his associates have written on its
usefulness to the study of school effects (Kaplan &
Elliott, 1997; Kaplan & Kreisman, 2000). LGCs (see
McArdle & Epstein, 1987; Meredith & Tisak, 1990)
are a special class of SEMs designed for model-
ing between-person change in an outcome over time.
LGCs are highly similar to regression-based individ-
ual growth trajectories in function, although these two
methods evolved independently. Like other single-
level SEMs, LGCs have limited applications in the
study of school effects because they do not include
a school level of analysis.

LGCs have only recently been formulated to analyze
multilevel data (Muthén, 1997), resulting in a model
that is especially appropriate for the study of school
effects. Much like three-level hierarchical linear model
(HLM) growth models, this method can accommodate
individual growth trajectories, as well as within- and
between-school analyses when at least three waves of
longitudinal data are available for the student achieve-
ment outcome. The appeal of MLGC compared with
the multilevel regression growth model is precisely the
appeal of SEM over regression models—that is, addi-
tional flexibility in specifying covariance relationships,
which can result in a more compelling model of school



Chapter 13 / Multilevel Models for School Effectiveness Research • 251

Figure 13.2 School-Level Path Diagram of MLGC With Indirect Effects
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effects. Additional modeling options include the
estimation of latent variables from multiple observed
variables, of measurement error on observed variables,
of complex measurement error structures, and of group
comparison models. One MLGC advantage that stands
out in particular is the ability to estimate direct, indi-
rect, and total effects between variables. Although
MLGCs are in many ways ideally suited for the study
of school effects, they have rarely been applied to this
field of study (Palardy, 2003). In this section, we illus-
trate how this method can be used to estimate direct,
indirect, and total effects.21

13.3.2.2.1. What are the magnitudes of the indi-
rect effects of mean SES on mean math learning,
flowing through mean NAEP and mean homework?
Recall that this question evolved from our multilevel
regression growth model in which we determined that
two process variables, MEANNAEP and MEANHW,
mediated the effects of MEANSES on mean student
achievement growth in math. We now examine the
magnitudes and significance levels of those indirect
effects.

Figure 13.2 shows the path diagram for the school-
level MLGC with the indirect effects of MEANSES
flowing through MEANHW and MEANNAEP. Note

21.MLGCs can be used to address some additional questions about school
effectiveness, including whether parameter estimates vary among different
samples of schools and alternative specifications for measurement models
for independent and dependent variables. See Palardy (2003) for some
examples.

that this model is highly similar to the “process”
model for which results are displayed in Table 13.4.
The same assumptions hold in this model. Here the
math achievement intercept and growth factors are
estimated by fixing path loadings to a linear arrange-
ment with the intercept centered on Time 1 (1988),
but the interpretation of these parameters, as well
as their values and standard errors, is equivalent to
the intercept and growth parameters of the multilevel
regression growth model. Other than its multilevel
nature, this model is like other LGCs. Table 13.5
shows the standardized coefficient estimates for the
direct and indirect effects of MEANSES. The results
show that MEANHW and MEANNAEP are signifi-
cant mediators of MEANSES on mean achievement
growth. Students attending higher SES schools took
more college-prep courses (0.590, p < .01), which
resulted in more learning (0.191, p < .01). Similarly,
students attending higher SES schools did more home-
work (0.628, p < .01), which resulted in a greater
learning rate (0.173, p < .01). The total effect of mean
SES on student learning is the sum of its direct effect
and indirect effects (0.225, p < .01). Note that the
total effect of mean SES in Table 13.5 is equal to the
direct effect of mean SES in the compositional model,
with no other covariates shown in Table 13.4. Note
that multilevel regression software can estimate some
forms of indirect effects.22

22. For example, HLM software can estimate indirect effects that flow
through variables with random effects (see Raudenbush & Bryk, 2002,
pp. 356–360).
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Table 13.5 Indirect Effects of Mean SES on Math
Achievement Growth Mediated by Mean
NAEP and Mean Homework

Mediating
Process Effect on Effect on
Variable Mediator Growth

Mean SES −0.139*
(direct effect)

NAEP courses 0.590** 0.191**
Homework 0.628** 0.173**

Total effects 0.225**

NOTE: Standardized coefficients. Significance levels of indirect effects
were computed using the Sobel method. SES = socioeconomic status;
NAEP = National Assessment of Educational Progress.
*p < .05; **p < .01.

13.3.3. Categorical Outcome Models

Most school effectiveness studies have focused
on student achievement and other student outcomes
that can be estimated with linear models in which
the random effects are normally distributed. But
some student outcomes cannot be estimated with
such models. In particular, student outcomes such as
dropout rates are binary, taking on one value if the
outcome is present and another value if the outcome
is not (e.g., Y = 1 if the student is a dropout, Y = 0
otherwise). As a result, the random effect can also
only take on two values and hence is not normally
distributed. Other outcomes can involve several
discrete conditions, such as attending a 4-year college,
a 2-year college, or no college.23

Discrete outcomes require a different type of model
from the standard multilevel or hierarchical linear
models we have discussed up until this time. These
models are known as hierarchical generalized linear
models (HGLMs), or simply generalized linear models
(see Raudenbush & Bryk, 2002, chap. 10). These
methods can be used to estimate a wide range of models
using multilevel data, including nonlinear models with
random effects that are not normally distributed. In
fact, hierarchical linear models simply represent a
specific and simple type of generalized linear model.

Estimating generalized linear models requires
several additional steps from those we have discussed
so far. First, the researcher has to specify a Level 1
sampling model. In the linear case, the sampling
model is simply a normal distribution with a mean,
µij, and a variance, σ .24 Second, the researcher
has to specify a link function that transforms the

23. For other examples, see Raudenbush and Bryk (2002, chap. 10).

24.To generate accurate school-level composition measures, we restricted
the sample to respondents who had a valid school ID in 1990, had valid

expected value, �ij, into a predicted value that can be
estimated with a linear model. In the linear case, this
link function is simply the value 1 because no trans-
formation is required. Finally, the researcher specifies
a linear structural model to estimate the transformed
expected value.

We can illustrate this process for the case of
school dropouts. For binary student outcomes, such
as dropout, the Level 1 sampling model is Bernoulli:

Prob(Yij = 1|βj ) = �ij,

where �ij represents the probability of student i in
school j dropping out of school. The Level 1 link
function is a log odds ratio:

ηij = log[�ij/(1−�ij)],

which has a range of −u to +u and takes on the value
of 0 when the probability of an outcome equals .5 and
the odds of success are even [.5/(1− .5) = 1]. The log
odds ratio can be converted to a probability through
the following equation:

�ij = 1/[1+ exp{−ηij}].
The Level 1 structural model is similar to the

previous Level 1 models. In the case of a null or
unconditional model, it is simply

ηij = log[�ij/(1−�ij)] = β0j ,

and the Level 2 model is exactly as in the linear case:

β0j = γ00 + u0j .

Conditional models can be constructed by adding
Level 1 and Level 2 predictors. And as in the linear
case, the analyst must also decide whether the Level 1
predictors should be centered and whether they should
be fixed or random at Level 2.

We can illustrate the use of nonlinear models with
the NELS data. We first estimated an unconditional
model with no Level 1 or Level 2 predictors. The HLM
program that we used actually produces two sets of
estimates for the fixed effects. The first is a unit-specific
estimate, which corresponds to the estimated log odds
with a random effect of zero. The second is a popu-
lation estimate, which provides a better estimate of the
true population mean. The second estimate is needed
because the nonlinear transformation of probability
into log odds means that a symmetrical distribution
of log odds results in an asymmetrical distribution of

test scores in 1988 and 1990, and attended a high school with at least five
students.
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probabilities that is positively skewed and thus has
a higher mean value than the mean of the log-odds
distribution.25 The difference in these two estimates
for dropout rates is shown as follows:

Unit-specific estimated mean: 6.49%
Population average estimated mean: 6.94%
Sample mean: 6.81%

As the figures show, the population average dropout
rate is higher than the unit-specific rate and closer to the
sample mean. The two sets of estimates differ not only
in the values they produce but also in their assumptions
about the underlying distribution of random effects
and in the type of questions they can be used to
address. In general, unit-specific estimates are more
useful for analyzing differences in the effects of Level
1 and Level 2 predictors across Level 2 units, whereas
population-average estimates are more useful for esti-
mating average probabilities for the population as
a whole.

We next estimated the same model we did ear-
lier with one student-level predictor, SES, and three
school-level predictors: MEANSES, CATHOLIC, and
PRVIATE. Both SES and MEANSES were centered on
the grand mean, which affects the value and interpreta-
tion of the intercept term. The unit-specific estimated
parameters are shown in Table 13.6. The parameter
estimate for the student-level predictor is −.868. A
student with average SES attending a typical public
school with average MEANSES would have a pre-
dicted log-odds dropout rate of−2.843, corresponding
to a predicted probability of 1/(1 + exp {2.843}) =
.055. A student with an SES one unit higher than
average attending a typical public school with average
MEANSES would have a predicted log-odds dropout
rate of −2.843 − .868 = −3.711, corresponding to a
predicted probability of 1/(1 + exp {3.711}) = .022.
The average SES of the school, MEANSES, would also
affect the odds of dropping out, even after controlling
for the individual effects of SES, something referred
to as the contextual or compositional effect of SES
(which we discuss below). A student with average SES
attending a school with a MEANSES one unit higher
than average (about two standard deviations, as shown
in the appendix) would have a predicted log-odds drop-
out rate of−2.843− .295 = −3.138, corresponding to
a predicted probability of 1/(1+ exp {3.138}) = .042.
Because of the nonlinear relationship between the log
odds and probability, an additional one-unit increase

25. The two estimates can be quite similar when the fixed effect is close to
zero (which translates to a probability of .5) or when the random effect is
close to zero. For a more complete discussion, see Raudenbush and Bryk
(2002, pp. 297–304).

Table 13.6 Estimated Parameters for Dropout
Models

Null School
Model Model

Fixed effects

Model for school mean
dropout rate (β0)

INTERCEPT (γ00) −2.667** −2.843**
MEANSES (γ01) −0.295**
CATHOLIC (γ02) −1.358**
PRIVATE (γ03) −0.913**
Model for SES

dropout slope (β1)
INTERCEPT (γ10) −0.868**

Variance components

Between school (τ00) .455** .207
Proportion school-level

variance explained .545
Reliability .292 .154

NOTE: SES = socioeconomic status; PRIVATE = private schools;
CATHOLIC = Catholic schools; MEANSES = mean socioeconomic
status.
**p < .01.

in MEANSES (a 100% increase) would only lower the
predicted probability to .031 (a 27% decrease).

13.4. Identifying Effective Schools

Although many school effectiveness studies attempt
to identify school-level factors that predict student
outcomes based on a sample of schools, some analysts
are also interested in identifying individual schools that
are particularly effective. That is, even after controlling
for a given set of predictors, each school may have a
mean student achievement that is above or below the
mean predicted from the model. Schools whose mean
achievement is above the level predicted by the model
can be considered effective, whereas schools whose
mean achievement is below the level predicted can be
considered ineffective schools.

The unique contribution of each school to its effec-
tiveness is captured in the school-level random effect
or error term. Consider the following simple, two-level
achievement model:

Level 1 model: Yij = β0j + rij .
Level 2 model: β0j = γ00 + µ0j .

The dependent variable in the Level 2 model, β0j ,
which represents the average achievement of each
school, is composed of a fixed effect, γ00, and a
random effect, µ0j . Hierarchical analysis produces
an empirical Bayes estimator for the random effect
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Table 13.7 Models and Estimated Random Effects From Two Dropout Models

Unconditional Model Conditional Model

Level 1 model log[�ij /(1−�ij )] = β0j log[�ij /(1−�ij )] = β0j

Level 2 model β0j = γ00 + u0j β0j = γ00 + γ01MEANSESj + u0j

Estimated random effect (u0j )
Mean, standard deviation 0, .365 0, .179
Minimum, maximum −.759, 1.466 −.409, .710

Table 13.8 Estimated Fixed and Random Effects for Two Schools

Unconditional Model Conditional Model

Fixed Random Dropout Fixed Random Dropout
Case n MEANSES Effect Effect Rate Effect Effect Rate

81 15 −.332 −2.667 −.326 4.78 −2.348 −.219 7.13
393 16 .785 −2.667 −.342 4.70 −3.812 −.066 2.03

NOTE: Fixed and random effects are log odds. Dropout rate = 1/{1 + exp[−(Fixed effect + Random effect)]}.

that provides a better and more stable estimate of the
unique school effect than other methods (e.g., ordinary
least squares [OLS] estimates) by taking into account
group membership and the within-school sample size
(Raudenbush & Bryk, 2002, p. 154). More accu-
rate estimates can be obtained by adding school-level
variables to the Level 2 model, which provides con-
ditional shrinkage estimates of the random effects
(Raudenbush & Bryk, 2002, pp. 90–94). In achieve-
ment models, schools with positive random effects
have higher than predicted achievement rates and
should be considered effective, whereas in dropout
models (as we illustrate below), schools with negative
random effects have lower than predicted dropout rates
and should be considered effective.

To illustrate how this technique can be used to iden-
tify effective schools, we can compare the empirical
Bayes estimates for the Level 2 random effects from
two simple dropout models, one unconditional and one
conditional. The two models and descriptive statistics
for the empirical Bayes estimates of the Level 2 random
effects are shown in Table 13.7.

As the descriptive statistics show, the estimated
random effects in the conditional model have a much
narrower range and hence smaller standard deviation
than the unconditional estimates.

Moreover, the conditional model provides a better
way to identify effective schools. Consider the two
schools shown in Table 13.8. Based on the uncondi-
tional model, both schools are equally effective—their
unique or random log-odds dropout rate are both about
one third of a logit less than the fixed or expected
rate—and hence both schools have similar estimated

dropout rates that are considerably smaller than the
average dropout rate of 6.49 for the entire sample
of schools. Estimates from the conditional model tell
another story, however. School 393 has a much higher
average SES than School 81, so its expected log-odds
dropout rate is much higher. Yet the unique contribu-
tion to its dropout rate—that is, its random effect—is
not very large, and hence the school is not particularly
effective. In contrast, School 81 has a much higher
expected dropout rate (i.e., lower log-odds dropout
rate) because its average SES is much lower, yet its esti-
mated dropout rate is actually lower than the expected
rate. Hence, School 81 should be considered more
effective than School 393, even though it has a higher
dropout rate.

13.5. Summary and Future Directions

The need for useful and methodologically sound
school effectiveness studies has never been greater.
Fortunately, the development of large-scale, com-
prehensive, longitudinal studies of student develop-
ment has coincided with the development of new and
powerful statistical techniques for analyzing the data
for these studies. The result has been the continued
growth of more sophisticated and comprehensive
school effectiveness studies.

Several important challenges remain, however. One
is to develop even more comprehensive studies.
Although earlier studies were particularly useful for
identifying student, family, and school factors related
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to student achievement over time, they were not
particularly well suited for studying teacher and class-
room effects. In part, this was due to the nature of
the sampling frame that was used, in which relatively
small samples of students were selected within schools.
Future designs should sample intact classrooms and
develop better measures of classroom practices to
focus on teacher and classroom effects (Mullens &
Gayler, 1999).

looseness1 Another challenge is to encourage
researchers to develop and use more comprehensive
conceptual frameworks for their studies of school
effectiveness. For example, although economists rou-
tinely examine resource variables in their studies
of school effectiveness, sociologists and educational
researchers frequently do not. Conversely, economists
often ignore important process variables in their
models, such as school climate. To the extent that
models are misspecified at any level of analysis, the
resulting estimates can be biased and the conclu-
sions faulty (Raudenbush & Byrk, 2002, chap. 9).
A similar argument can be made regarding out-
come measures: School effectiveness studies focus

predominately on student achievement as measured by
test scores, thereby ignoring outcomes, such as dropout
or attrition, that can be influenced by different factors
and could lead to different conclusions about effective
schools (Rumberger & Palardy, 2003a).

The final challenge is to encourage better use of the
growing advances in statistical modeling techniques
in school effectiveness studies. Although statistical
advances in multilevel and structural equation mod-
eling have been quite rapid, these advances are slow
to find their way into mainstream school effectiveness
studies. Although there is always a lag between the ini-
tial development of new statistical techniques and their
widespread use in the field, as the techniques become
more sophisticated, that lag could increase. This may
be particularly problematic for existing scholars who
were most likely trained in earlier techniques and who
will require a sort of in-service training to learn the
new approaches. Fortunately, many professional asso-
ciations, such as the American Educational Research
Association and the American Sociological Associa-
tion, sponsor such training sessions in conjunction with
their national meetings each year.
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Appendix: Variable Descriptive Statistics and Labels for NELS Data

Variable Name M SD Minimum Maximum Description and (NELS:88 Variables)

Measurement variables (n = 39, 241)

Math 50.31 10.28 23.34 80.67 Math IRT theta score (BY2XRTH, F12XRTH,
F2XRTH)

Time 0.46 0.40 0.00 1.00 Time (0 = 8th grade; 0.5 = 10th grade; 1 = 12th
grade)

Student variables (n = 14, 199)

Math, Grade 10 51.11 9.88 24.87 72.90 Math IRT theta score (F12XRTH)
SES 0.04 0.81 −2.95 2.75 10th-grade SES composite (F1SES)
Transfer 0.06 0.24 0.00 1.00 Transferred schools between 10th and 12th

grades (F2F1SCFG = 1)
Dropout 0.07 0.25 0.00 1.00 Dropped out of school (F2DOSTAT = 3, 4, 5)

School variables (n = 912)

Mean SES 0.01 0.52 −1.33 1.54 Mean SES of students (F1SES)
Catholic 0.07 0.25 0.00 1.00 (G10CTRL1 = 2)
Private 0.08 0.27 0.00 1.00 (G10CTRL1 = 3–5)
Homework time 4.61 2.05 1.06 14.00 Mean number of hours spent on homework per

week (F1S36A2)
NAEP composite 13.76 2.27 6.00 27.74 Number of NAEP units in math, science,

English, and social science earned in high
school (F2ra11 C+ a12 C+ geo C,
tri C+ pre C+ cal C+ bio C+ che C+
phy C+ soc C+ his C)

NOTE: NELS= National Education Longitudinal Study; SES= socioeconomic status; IRT= item response theory; NAEP = National Assessment of
Educational Progress.
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Chapter 14

The Use of Hierarchical

Models in Analyzing

Data From Experiments

and Quasi-Experiments

Conducted in Field Settings

Michael Seltzer

14.1. Introduction

In studies of programs and interventions in a variety of
fields (e.g., education, social welfare, epidemiology),
individuals are typically nested within different sites or
organizational units (e.g., schools, communities, clin-
ics). Ignoring the nested structure of the data in such
studies (e.g., using standard regression techniques to
analyze student or client outcomes) can give rise to a
host of problems. (Note that we often use the terms
site and organizational unit interchangeably in this
chapter.)

AUTHOR’S NOTE: This chapter is dedicated to Leigh Burstein, who made seminal contributions to the development of multilevel
modeling techniques. I wish to thank Maryl Gearhart and Geoff Saxe for permission to use the data from their study, “Integrating
Assessment With Instruction in Elementary Mathematics,” which was supported by NSF grant MDR 9154512. I would also like to
thank the University of Chicago School Mathematics Project for permission to use the data from the Transition Mathematics Field
Study. The development and evaluation of the Transition Mathematics curriculum was supported by grants from the Amoco Foundation
and Carnegie Foundation. I am grateful to Jin-Ok Kim for extremely valuable discussions regarding the issues addressed in this chapter
and for her many thoughtful suggestions and comments. I also wish to thank Noreen Webb and Kilchan Choi for reading this chapter
with care and for their many helpful comments.

First, in such studies, individuals nested in
different sites experience different implementations of
programs. In addition, the background characteristics
of study participants may vary appreciably from site
to site. Factors such as these give rise to a certain
degree of dependency or similarity among the observa-
tions nested within a site. Ignoring such dependencies
(i.e., ignoring the intra-class correlational structure of
multisite data) can result in standard errors for treat-
ment effect estimates that are misleadingly small.

Moreover, when we ignore the nesting of individ-
uals in different sites in our analyses, we run the risk

259



260 • SECTION IV / MODELS FOR MULTILEVEL DATA

of inadvertently concealing potentially substantial
between-site heterogeneity in program effects. Such
heterogeneity is not surprising when we consider that
sites can vary considerably in terms of implementa-
tion, background characteristics of program partici-
pants, and numerous other factors that may dampen
or magnify the effects of a program (see Campbell
& Stanley, 1963, pp. 19–22; Cohen, Raudenbush, &
Ball, 1999; Cronbach, 1975, 1982; McLaughlin, 1987;
Patton, 1980). Failing to attend to differences in results
across sites can, as will be seen, result in erroneous
conclusions concerning the effects of programs and,
in addition, missed opportunities to investigate how
differences in implementation and other key aspects
of program settings relate to differences in program
effectiveness.

In this chapter, we show how hierarchical models
(Kreft & de Leeuw, 1999; Goldstein, 2003; Longford,
1993; Raudenbush & Bryk, 2002; Snijders & Bosker,
1999) can be used to obtain more appropriate standard
errors for estimates of treatment effects and other key
parameters in multisite studies of programs and inter-
ventions. Furthermore, we show how these models
can be used to study how differences in such factors
as implementation and the background characteristics
of program participants relate to differences in results
across sites. Such analyses can potentially provide
insight into questions of the following kind: Under
what conditions does a program of interest appear to
be successful, and for whom?

Drawing sound conclusions regarding the effects of
programs in field settings can be extremely challeng-
ing. In this connection, we emphasize the importance
of collecting data on implementation and the continual
need to attend to possible confounding variables.

In the next section of this chapter, we discuss two
general types of designs that are commonly encoun-
tered in multisite studies of programs and interven-
tions. One type involves blocking and essentially gives
rise to a series of “mini” experiments or “mini” quasi-
experiments. An example would be a study in which
both treatment and control conditions are implemented
in each of a number of schools. The second type,
which does not involve forming blocks, entails assign-
ing organizational units to the different conditions that
are being investigated in a study. An example would
be a study in which schools are randomly assigned to
treatment or control conditions, giving rise to a sample
of treatment schools and a sample of control schools.

We then present analyses of the data from two
multisite studies, which provide examples of these
major design types. Both studies focus on innovative
mathematics curricula and instruction. The analyses

that we present form the heart of this chapter. In
particular, they provide opportunities to discuss the
logic of hierarchical models (HMs) and to illustrate
their value in analyzing data from experiments and
quasi-experiments in field settings.

In the final section of this chapter, we recap key
points and discuss their implications for designing
multisite studies and for analyzing multisite data. We
also discuss some of the possibilities that arise when
longitudinal data are collected, that is, when constructs
of interest (e.g., key outcomes) are measured on a series
of occasions during the course of a study.

14.2. Two General Types

of Designs in Multisite Studies

The kinds of designs commonly encountered in
multisite evaluation studies typically fall into two
broad categories. Designs in the first category involve
blocking and take on two basic forms, which we term
Forms A andB. Form A designs involve implementing
both treatment and comparison conditions in each of a
series of sites (e.g., schools or communities). Consider,
for example, the portion of Pinnell, Lyons, DeFord,
Bryk, and Seltzer’s (1994) study that focuses on the
relative effectiveness of Reading Recovery versus
more conventional remedial reading instruction: In
each of 10 schools, first graders at risk for fail-
ure in reading were randomly assigned to Reading
Recovery or to a more standard remedial program.
Other examples include Raffe’s (1991) study of a voca-
tional educational initiative in Britain. Each of the sites
(schools) in this study provided a comparison of indi-
viduals who participated in the initiative with a group
of individuals who did not. Assignment to program and
comparison conditions in this evaluation, in contrast to
the Reading Recovery study, was not random.

Form B designs entail forming matched pairs of
groups or organizational units (e.g., matched pairs of
communities) and assigning one group within a pair
to the program or intervention of interest and the
other to the comparison condition. One example is the
evaluation of a community-based intervention called
COMMIT, which sought to promote smoking cessa-
tion among heavy smokers (Gail, Byar, Pechacek, &
Corle, 1992). Within each of 11 carefully matched
pairs of communities, 1 community was randomly
assigned to COMMIT, and the other served as a com-
parison community. Another example is the study
of DARE (Drug Abuse Resistance Education) con-
ducted by Rosenbaum, Flewelling, Bailey, Ringwalt,
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and Wilkinson (1994), which entailed forming 18
well-matched pairs of elementary schools; in the case
of 12 pairs, 1 school was randomly assigned to DARE,
whereas the other served as a comparison school, and
in the case of 6 pairs, assignment was nonrandom.

In contrast to Form A designs, assignment to differ-
ent conditions in the case of Form B designs does not
occur at the level of the individual; rather, intact groups
within each matched pair are assigned to different
conditions. However, in either case, our samples
consist of a series of blocks (e.g., schools in the case
of the Reading Recovery evaluation and matched pairs
in the case of the COMMIT study), in which both
treatment and comparison conditions are implemented.
Thus, each block can be viewed as a “mini” experiment
(or “mini” quasi-experiment).

Rather than providing us with a series of experi-
ments or quasi-experiments, the second general type
of design provides us with a sample of organizational
units in each condition (e.g., treatment, control) that
is being investigated. One example is a study of a
social influence-based drug abuse prevention program
reported in Pentz et al. (1989) and Chou, Bentler,
and Pentz (1998), in which 32 middle schools were
randomly assigned to the program and 25 assigned to
the control condition. A second example is a study of
the effectiveness of two school-based violence preven-
tion programs conducted by Flay and his colleagues.
In this study, which involved 12 schools, there were
two treatment conditions and a control condition;
4 schools were randomly assigned to each condition.

In the first general category of designs discussed
above, blocks (e.g., schools in the Reading Recovery
study) are viewed as a random factor crossed with
treatment type, which is viewed as fixed. In the second
category, organizational units (e.g., schools in Pentz
et al.’s [1989] study) are viewed as a random factor
nested within treatment type, which again is viewed
as fixed. (See Raudenbush, 1993, and, for example,
Kirk, 1982, for discussions of these designs.) Thus,
the analysis of data arising from these designs requires
the use of models containing both random and fixed
effects (i.e., mixed models). As Raudenbush (1993)
notes, in the simplest of cases, efficient estimates of the
fixed effects and variance components in such models
are available in closed form. Consider, for example,
a design in which classrooms are nested within treat-
ment type. If the number of students per classroom
is identical across classrooms, if the number of class-
rooms per treatment type is identical, and if we do not
need to adjust for various pretest measures, estimation
can proceed in a straightforward manner (see, e.g.,
Kirk, 1982, chap. 10).

In field settings, however, our data will almost
always be unbalanced. Moreover, there will almost
always be a need to include covariates in our models to
adjust for possible confounding variables or to obtain
more precise estimates of parameters of interest. As
will be seen, hierarchical modeling, with parameter
estimation carried out via iterative techniques such as
the EM algorithm, provides a viable way of proceeding
in such realistically complex settings. Note that the
above designs will also often contain a longitudinal
component, thus giving rise to time-series observations
nested within individuals. Furthermore, in some set-
tings, we may need to explicitly represent the nesting
of students in different classrooms and, in turn, the
nesting of classrooms in different schools. Complex
nested structures of this kind can be modeled readily
using HMs.

We first present a series of analyses of the data from
an evaluation of an innovative prealgebra curriculum
(University of Chicago School Mathematics Project,
1986), and this is followed by a set of analyses of the
data from a study of the effects of reform-minded math-
ematics instructional practices on upper elementary
students’ understanding of fractions (Gearhart et al.,
1999; Saxe, Gearhart, & Seltzer, 1999). The former
study provides an example of a matched-pair design,
whereas the latter can be viewed as a design in which
organizational units (i.e., classes) are nested within
treatment type.

Note that these studies are by no means perfect from
a methodological standpoint. Rather, they provide, we
believe, examples of thoughtful efforts, given limited
resources, to address important substantive questions
in field settings and to tackle the kinds of methodologi-
cal challenges that arise in such settings. Furthermore,
they provide valuable opportunities to illustrate the
kinds of questions that we can begin to address using
HMs in analyses of multisite evaluation data.

14.3. Designs in Which Blocks

Are Crossed With Treatment

Type: Reanalyses of the

Transition Mathematics Data

14.3.1. Background

Transition Mathematics (TM) is an innovative
prealgebra curriculum that seeks to prepare students
for greater success in algebra and geometry. A dis-
tinctive feature of TM is the importance placed on
reading in learning mathematics. Appreciable amounts
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of reading are included in each chapter of the TM text
in efforts to clarify key concepts and to integrate mate-
rial presented in previous chapters. A second notable
feature of TM is its focus on real-world applications of
mathematics.

A large-scale study of the effectiveness of TM was
conducted during the 1985–1986 school year. The
study’s sample consisted of 20 carefully matched pairs
of classrooms located within various school districts
throughout the United States. Each pair of classrooms
was matched on the basis of pretests administered at
the start of the school year as well as on the basis
of information supplied by district math coordinators
and teachers. Within each pair, the students in one
class were taught by a teacher who used the TM text,
whereas the students in the other class were taught
by a teacher who used the materials already in place
at that particular school. An alternative design pos-
sibility would have been to have the same teacher
teach both the TM and comparison classes at a given
site. However, a concern was that a teacher might
consciously or unconsciously draw on elements of
the TM curriculum in teaching the comparison class
and vice versa. Therefore, it was decided that dif-
ferent teachers would teach the classes within a pair.
Note that all teachers who participated in the study
volunteered to do so and tended to have substan-
tial teaching experience. The decision as to which
teacher at a site would use TM and which would use
the materials already in place was based on random
assignment in the case of 10 sites; logistical reasons
precluded this in the case of the 10 other pairs. Later
in this section, we will show how HMs can be used
to assess whether differences in certain key facets
of design are systematically related to program out-
comes. As will be seen, the effects of TM seem to
be similar at sites in which teachers were assigned
randomly and at sites where random assignment was
not possible.

Thus, the 20 well-matched pairs of classes that
provide the basis of this study can in essence be
viewed as 20 studies (i.e., mini-experiments or mini-
quasi-experiments) of the effects of TM. For ease of
exposition, we refer to each matched pair as a site.

In addition to pretests administered at the study’s
outset, a battery of posttests was administered at the
end of the 1985–1986 school year. Note also that
information on program implementation was obtained
through classroom observations, diaries kept by a
sample of teachers, and questionnaires completed by
all participating teachers. In the analyses that follow,
the outcome that we focus on is geometry readiness,
which was measured by a student’s total score on a

19-item test. The analyses that we present represent an
extension of those presented in Seltzer (1994).

14.3.2. Ignoring the Nested Structure
of the Data: A Conventional Ordinary
Least Squares Analysis

We first conduct an analysis that ignores the nest-
ing of students in different sites. To estimate the
expected difference in geometry readiness scores
between students who work with TM materials
versus those who do not, we fit the following regres-
sion model to the N = 572 student-level cases in our
data set:

Yi = β0 + β1TRTi + β2PREi + εi
εi ∼ N(0, σ 2), (1)

where Yi is the geometry readiness score for student i,
TRTi is an indicator variable that takes on a value of
1 if student i is a TM student (0 otherwise), and PREi
represents the score for student i on a general math-
ematics pretest. Note that geometry readiness scores
range from 1 to 19, out of a possible score of 19, and
general math pretest scores range from 5 to 38, out
of a possible score of 40. The parameter of primary
interest in this model is β1, which represents the
expected difference in geometry readiness scores
between TM and comparison group students, hold-
ing constant pretest scores. Note that the εi are errors
assumed independent and normally distributed with
mean 0 and variance σ 2. As will be seen below, the
assumption of independent errors is problematic.

Fitting the above model to the data using ordinary
least squares (OLS), we obtain an estimate of the effect
of TM of 1.08 points (SE = 0.26; t = 4.15). Thus,
these results suggest that students who use TM materi-
als outperform students who do not by approximately
1 point on average.

Given that TM was implemented in 20 sites through-
out the United States, a valuable way of proceeding at
this stage would be to reanalyze the data site by site.
Thus, we fit the model specified in equation (1) to each
site’s data. As can be seen in Table 14.1, the OLS
estimates of the site TM effects vary substantially
across sites, ranging from approximately −2 points
to values exceeding 4.6 points. Furthermore, the 95%
intervals displayed in Table 14.1 suggest positive TM
effects for 7 sites and a negative effect for 1 site
(Site 11). The resulting 90% intervals also suggest
a negative effect for Site 8 and a positive effect for
Site 12. We also see that there are a number of sites
whose point estimates are extremely close to 0 and
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Table 14.1 Site-by-Site Analyses: Ordinary Least Squares (OLS) Estimates of Site Transition Mathematics
(TM) Effects

Random
Implementation Assignment

of Reading of Teachers Site
TM Effect (β̂1j ) 95% CI of 90% CI of (0 = low, (0 = no, Pretest

Site (j)a Size (nj ) [SE(β̂1j )] TM Effect TM Effect 1 = high) 1 = yes) Mean

1 31 −0.25 [−1.85, 1.35] [−1.58, 1.08] 0 0 23.55
[0.78]

2 27 2.69 [0.91, 4.47] [1.21, 4.17] 1 1 16.82
[0.86]

3 34 0.44 [−1.13, 2.01] [−0.86, 1.74] 0 0 11.79
[0.77]

4 44 0.10 [−1.41, 1.61] [−1.16, 1.36] 0 0 19.14
[0.75]

5 17 0.33 [−2.25, 2.91] [−1.79, 2.45] 0 0 16.41
[1.20]

6 35 0.78 [−1.14, 2.70] [−0.82, 2.38] 1 0 21.94
[0.94]

7 37 1.40 [0.05, 2.75] [0.28, 2.52] 1 1 28.00
[0.66]

8 23 −1.68 [−3.45, 0.09] [−3.14, −0.22] 1 0 17.39
[0.85]

9 42 4.67 [3.10, 6.24] [3.36, 5.98] 1 0 14.69
[0.78]

10 17 4.64 [1.43, 7.85] [2.00, 7.28] 1 1 15.24
[1.50]

11 28 −2.15 [−4.07, −0.23] [−3.74, −0.56] 0 1 14.50
[0.93]

12 31 1.68 [−0.22, 3.58] [0.10, 3.26] 1 0 25.13
[0.93]

13 31 0.73 [−1.93, 3.39] [−1.48, 2.94] 0 1 23.32
[1.30]

14 25 3.33 [0.89, 5.77] [1.31, 5.35] 1 1 22.44
[1.18]

15 23 −0.25 [−2.02, 1.52] [−1.71, 1.21] 0 1 21.70
[0.85]

16 33 −1.74 [−3.99, 0.51] [−3.61, 0.13] 0 1 20.06
[1.10]

17 33 1.07 [−0.81, 2.95] [−0.49, 2.63] 0 1 20.27
[0.92]

18 27 0.77 [−1.63, 3.17] [−1.22, 2.76] 1 1 17.63
[1.16]

19 17 2.61 [0.31, 4.91] [0.72, 4.50] 0 0 16.06
[1.07]

20 17 4.64 [0.75, 8.53] [1.44, 7.84] 1 0 17.59
[1.82]

NOTE: CI = confidence interval.
a. The subscript j provides a way of referencing each of the sites in the sample.

whose 90% and 95% intervals comfortably include a
value of 0. Finally, the estimated effect of TM based
on the analysis, ignoring the nesting of students within
sites (i.e., 1.08), lies outside the 95% intervals for 5
sites (8, 9, 10, 11, and 16).

Given that teachers may vary substantially in
their use of instructional materials and in other
critical aspects of practice, and given the appreciable
differences across sites in the TM study in various

student compositional characteristics, the results in
Table 14.1 are not very surprising. A problem, however,
is that the results based on the initial analysis mask
this heterogeneity. Such an analysis gives stakeholders
the misleading impression that the effects of TM are
uniform across sites. Moreover, the results from such
an analysis do not prompt one to ask whether and, if
so, why TM may be more successful in some sites than
others.
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We now show how HMs provide a means of
reflecting the location or nesting of program partici-
pants in different sites and enable us to study the
variability in program effects across sites.

14.3.3. Assessing the Variability
in TM Effects Across Sites

The models that we present are often referred to as
two-stage or two-level HMs (see Mason, Wong, &
Entwistle, 1983; Raudenbush & Bryk, 2002). Each
of the HMs that we employ, as will be seen, consists
of two models: a Level 1 or within-site model and a
Level 2 or between-site model.

We now pose the following within-site model:

Yij =β0j + β1j (TRTij − TRT.j )

+ β2j (PREij − PRE.j )+ εij

εij ∼ N(0, σ 2), (2)

where Yij is the geometry readiness score for student
i in site j ; because there are 20 sites in our sample,
our subscript or index for sites takes on values from 1
to 20 (i.e., j = 1 . . . 20). TRTij is a treatment indicator
variable that takes on a value of 1 if student i in site j
is a member of the TM class (0 otherwise), and PREij

is the pretest score for student i in site j . The param-
eter of primary interest in this equation is β1j , which
represents the expected TM/comparison class contrast
for site j , holding constant pretest performance; β2j

is the pretest/posttest slope for site j , holding constant
TRT. Note that TRTij and PREij are centered around
their site means. This is termed group-mean centering
(see Raudenbush & Bryk, 2002, chaps. 2, 5). By virtue
of this centering, β0j represents the mean geometry
score for site j . The εij are errors assumed independent
and normally distributed with mean 0 and variance σ 2.

A defining characteristic of HMs is that Level
1 parameters—for example, site means (β0j ), TM
effects (β1j ), and pretest/posttest slopes (β2j )—can
be viewed as varying across sites. To represent this
in the form of a model, we treat Level 1 parameters
as outcomes in a between-site model. We now pose a
relatively simple between-site model in which Level
1 parameters (e.g., site TM effects [β1j ]) are viewed
as varying around corresponding grand means (e.g., a
mean TM effect). Thus, we have

β0j = γ00 + U0j U0j ∼ N(0, τ00),

β1j = γ10 + U1j U1j ∼ N(0, τ11),

β2j = γ20 + U2j U2j ∼ N(0, τ22), (3)

where γ00, γ10, and γ20 represent, respectively, the
grand mean for geometry readiness, an overall aver-
age TM effect, and an average pretest/posttest slope.
The residuals in the above model are termed random
effects. Thus, U0j captures the deviation of the mean
readiness score for site j (β0j ) from γ00, U1j cap-
tures the deviation of the TM effect for site j (β1j )
from γ10, and U2j captures the deviation of the
pretest/posttest slope for site j (β2j ) from γ20. The
random effects are assumed normally distributed as in
equation (3). Thus, τ00 represents the variation in site
means around the grand mean, τ11 represents the vari-
ation in site TM effects around the average TM effect,
and τ22 represents the variation in site pretest/posttest
slopes around the average slope. Note that part of the
variation among the OLS estimates of β1j (β̂1j )
shown in Table 14.1 is likely attributable to esti-
mation error, as well as to underlying between-site
differences in the effectiveness of TM. It is the
latter source of variation that is captured by the
variance parameter τ11. Note also that the random
effects in the Level 2 model are assumed to covary:
Cov(U0j , U1j ) = τ01, Cov(U0j , U2j ) = τ02, and
Cov(U1j , U2j ) = τ12.

We refer to the HM defined by equations (2) and
(3) as Model 1. We now fit Model 1 to the data using
the HLM5 program (Raudenbush, Bryk, Cheong, &
Congdon, 2000). Note that the HLM program uses
the EM algorithm and Fisher scoring to obtain maxi-
mum likelihood estimates of the Level 1 and Level 2
variance components (i.e., σ 2, τ00, τ11, τ22, and the
Level 2 covariances) and then uses these estimates
in computing generalized least squares (GLS) esti-
mates of the fixed effects in the model (i.e., γ00, γ10,
and γ20) (see Raudenbush & Bryk, 2002, chap. 3
for details). The two parameters of primary inter-
est in Model 1 are γ10 (i.e., the average TM effect)
and τ11 (i.e., the variance component capturing the
extent to which the effects of TM vary across sites).
As can be seen in Table 14.2, the resulting estimate
of the average TM effect is 1.16 and is more than
twice its standard error. Although this estimate is
extremely close to the estimated TM effect obtained
in the single-level OLS analysis (1.08), note that the
standard error that we obtain in the HLM analysis is
nearly twice as large (0.45 vs. 0.26). Before explain-
ing why this is so, it will first be helpful to focus
on the results for τ11. We see that the resulting point
estimate is 2.96. In addition, a chi-square test of the
hypothesis that τ11 = 0 (i.e., a test of homogene-
ity) results in a test statistic that is highly significant.
(See Raudenbush & Bryk, 2002, pp. 63–65, for a
discussion of such tests.)
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Table 14.2 Treating the Effects of Transition Mathematics (TM) as Varying Across Sites: Hierarchical
Models 1 and 2

Model 1 Model 2

Estimate [SE] t-Ratio Estimate [SE] t-Ratio
Fixed Effects (95% CI) (95% CI)

Grand mean (γ00) 9.10 [.64] 14.28** 9.11 [.64] 14.30**
(7.76, 10.44) (7.77, 10.44)

Overall TM effect (γ10) 1.16 [.45] 2.60* 1.14 [.44] 2.59*
(0.22, 2.10) (0.22, 2.06)

Average within-site
pretest/posttest slope (γ20) 0.27 [.03] 10.69** 0.29 [.02] 13.94**

(0.21, 0.34) (0.25, 0.32)

Variance Components Estimate χ2 (df) Estimate χ2 (df)

Between site
Variance in site mean readiness (τ00) 7.87 708.44** (19) 7.86 695.77** (19)
Variance in site TM effects (τ11) 2.96 76.29** (19) 2.84 74.62** (19)
Variance in pretest/posttest slopes (τ22) 0.01 26.12 (19) — —

Within site
Residual variance (σ 2) 6.56 6.68

NOTE: CI = confidence interval.
*p < .05; **p < .001.

To grasp the practical significance of this result, it is
helpful to consider that the above between-site model
essentially constitutes a model for the population of
sites similar to those in our study. More specifically,
site TM effects, for the population of sites of interest,
are conceived as being normally distributed around a
mean effect (γ10) with variance τ11. Of course, there
is some uncertainty attached to our estimates of γ10

and τ11, but a “best guess” based on the above results
is that site TM effects are normally distributed with a
mean of 1.16 and variance of 2.96. Thus, the effect of
TM for sites located near the mean of the distribution
is a little over 1 point. However, the effect of TM for a
site that is two standard deviations above the mean
would, based on this analysis, be equal to 1.16 +
2(
√

2.96) = 4.60. In contrast, the effect of TM for
sites located two standard deviations below the mean
would be equal to 1.16 + 2(

√
2.96) = −2.28. Thus,

the point estimate of γ10, coupled with the point
estimate of τ11, points to substantial variation in the
effects of TM across sites.1

As noted above, the standard error of the estimate
of the average TM effect obtained in the HM analysis

1. Note that various diagnostics one can compute to assess the plausibility
of normality assumptions at Level 2 (e.g., plots of Mahalanobis distances;
see Raudenbush & Bryk, 2002, chap. 9) suggest that the assumption of
normality is reasonable in the case of this particular analysis. Other model-
checking procedures are discussed in other parts of this chapter.

is nearly twice as large as the standard error obtained
in the single-level OLS analysis. The reason for this is
that in the single-level analysis, it is assumed that the
572 student-level observations contained in the study’s
sample, conditional on the predictors included in the
model (i.e., TRT,PRE), are independent. As such, the
observations from the 20 sites are simply pooled in
estimating the effects of TM. If this assumption were
true, however, one implication would be that there is
no between-site variance in the effectiveness of TM
(i.e., τ11 = 0). The above results of the HLM analysis
clearly indicate that how well TM students perform
relative to comparison group children will depend to
some extent on site membership. This is likely due to
a variety of reasons. For example, the TM students
located in a particular site will experience a particular
implementation of TM, the students in a particular site
will likely differ from students in other sites in terms
of prior educational experiences, and the like. Such
dependencies or clustering in the data are taken into
account in HM analyses. Intuitively, given the large
amount of between-site variance in TM effects, it is
clear that the precision with which we are able to esti-
mate the effects of TM will not depend solely on the
number of students in our sample. Rather, this will also
depend on the number of sites in our sample (J ). As
such, the standard error for the point estimate of γ10

consists of a part involving the estimate of the between-
site variance in TM effects (τ̂11) and a part involving
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the estimate of within-site error variance (σ̂2). As the
number of sites in a sample increases, the magnitude
of the part involving (τ̂11) diminishes. Note further
that if τ̂11 is close to 0, the number of sites becomes
immaterial, and the resulting standard error would be
driven essentially by the total number of students in
TM classrooms and the total number in comparison
classrooms.2

In Table 14.2, we also see that the point esti-
mate of the grand mean for geometry readiness is
approximately 9 points. The resulting estimate for τ00,
however, points to substantial variation in site geome-
try readiness means around the grand mean. To see this,
note, for example, that the geometry readiness mean
for a site that is two standard deviations above the grand
mean would, based on the results for Model 1, be equal
to 9.10+ 2(

√
7.89) = 14.72.

In addition, a test of the hypothesis that the vari-
ance in site pretest/posttest slopes (τ22) is 0 provides
some grounds for retaining the null hypothesis. In the
interests of parsimony, we now refit our HM with τ22

constrained to a value of 0; that is, we remove U2j

from our between-site model. In doing so, we are
essentially viewing site pretest/posttest slopes as being
homogeneous (or parallel). Thus, our Level 2 model is
as follows:

β0j = γ00 + U0j U0j ∼ N(0, τ00),

β1j = γ10 + U1j U1j ∼ N(0, τ11),

β2j = γ20. (4)

As can be seen in Table 14.2, the results based on
the model defined by equations (2) and (4) (termed
Model 2) are extremely similar to those based on our
first HM analysis.

We now illustrate the use of HMs in exploring poten-
tially important sources of variability in the effects
of TM: differences across sites in implementation,
in the characteristics of program participants, and in
design.

2. To take into account the uncertainty that stems from substituting point
estimates of the variance components into the standard errors for the fixed
effects, the HLM program employs critical values based on the family
of t-distributions in conducting hypothesis tests regarding fixed effects.
Thus, for example, in a test of the hypothesis that the overall TM effect
(γ10) is equal to 0, the HLM program employs critical values based on
a t-distribution with J − 1 = 19 degrees of freedom. Note that when
J is small, critical values based on the z-distribution will give rise to
rejection rates that are too high and 95% intervals whose levels of coverage
are less than nominal. Provided that one’s data are not too unbalanced,
basing critical values on the family of t-distributions will tend to provide
appropriate rejection rates and levels of coverage in small-sample settings.
See Raudenbush and Bryk (2002, chap. 9) for further details.

14.3.4. Testing Program Assumptions:
The Role of Reading in TM

The analyses above reveal substantial variability in
the effectiveness of TM across sites. We now illustrate
the use of HMs in helping to identify those aspects of
a program that may be critical to its success.

The developers of TM view daily discussion of the
reading passages in the TM text as a key element of
the program. As such, information regarding the usage
of reading in the text was obtained through a teacher
questionnaire administered at the end of the school
year. As can be seen in Table 14.1, the responses of
the TM teachers fall into two categories: those who
indicated that they discussed the reading in the text
on a daily basis, which we term high implementa-
tion (IMPLRDGj = 1), and those who indicated that
reading was discussed frequently but was not part of
the daily routine, which we term low implementation
(IMPLRDGj = 0).

As can be seen from the data presented in Table 14.1,
TM effect estimates tend to be higher in those sites in
which the reading passages in the text are discussed on
a daily basis. We now examine this more formally by
including IMPLRDGj as a predictor in our between-
site model for site TM effects (β1j ):

β0j = γ00 + γ01(PRE.j − PRE)+ U0j

U0j ∼ N(0, τ00),

β1j = γ10 + γ11IMPLRDGj + U1j

U1j ∼ N(0, τ11),

β2j = γ20. (5)

Given the coding scheme employed for IMPLRDGj ,
γ10 is the expected effect of TM at low-implementation
sites, and γ11 represents the expected increment in the
effectiveness of TM when the level of implementation
at a site is high. Analogous to a regression model, U1j

is a residual capturing the deviation of β1j from an
expected value based on IMPLRDGj . As such, τ11 now
represents the remaining variance in site TM effects
after taking into account IMPLRDGj .

As can be seen, we have also modeled differences
in site geometry readiness means as a function of site
pretest means (i.e., PRE.j ). Thus, γ01 captures the
between-site relationship between pretest scores and
geometry readiness (i.e., the expected change in site
geometry readiness means when site pretest means
increase one unit). Conversely, γ20 captures the within-
site relationship between pretest scores and geometry
readiness (i.e., the expected difference in geometry
scores for two students in the same site whose pretest
scores differ by one unit). Note that PRE represents the
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Table 14.3 Modeling Site Transition Mathematics (TM) Effects as a Function of Implementation and Other Site
Characteristics: Hierarchical Models 3, 4, and 5

Model 3 Model 4 Model 5

Estimate [SE] t-Ratio Estimate [SE] t-Ratio Estimate [SE] t-Ratio
Fixed Effects (95% CI) (95% CI) (95% CI)

Model for site mean readiness
Grand mean (γ00) 9.10 [.28] 32.41** 9.10 [.28] 32.41** 9.10 [.28] 32.42**

(8.51, 9.69) (8.51, 9.69) (8.51, 9.69)

Between-site pretest/posttest 0.62 [.07] 8.93** 0.62 [.07] 8.96** 0.62 [.07] 8.94**
slope (γ01) (0.47, 0.77) (0.48, 0.77) (0.47, 0.77)

Model for site TM effects
Expected TM effect at 0.12 [.53] 0.22 0.09 [.54] 0.16 0.13 [.55] 0.23

low-implementation (−0.99, 1.23) (−1.05, 1.23) (−1.04, 1.29)
sites (γ10)

Expected increase 2.03 [.76] 2.68* 2.11 [.78] 2.72* 2.02 [.78] 2.59*
in effects of TM at (0.43, 3.62) (0.46, 3.76) (0.38, 3.67)
high-implementation
sites (γ11)

Relationship between — — −0.07 [.10] −0.78 — —
site pretest means and (−0.28, 0.14)
the effects of TM (γ12)

Expected difference — — — — −0.22 [.78] −0.28
in effects of TM (−1.86, 1.43)
between RA and
non-RA sites (γ13)

Model for within-site pretest/posttest slopes
Average within-site

slope (γ20) 0.29 [.02] 13.99** 0.29 [.02] 14.00** 0.29 [.02] 13.98**
(0.25, 0.33) (0.25, 0.33) (0.25, 0.33)

Variance Components Estimate χ2 (df) Estimate χ2 (df) Estimate χ2 (df)

Between site
Variance in site 1.33 115.56** (18) 1.33 115.59** (18) 1.33 115.56** (18)

mean readiness (τ00)

Variance in site 1.86 51.56** (18) 1.93 49.58** (17) 2.02 51.42** (17)
TM effects (τ11)

Within site
Residual variance (σ 2) 6.69 6.69 6.69

NOTE: The resulting estimate for τ̂11 based on Models 4 and 5 is slightly larger than the estimate based on Model 3. This can occur when one adds
predictors to a Level 2 equation that are unrelated to the Level 1 parameter that is being modeled (e.g., β1j ). See Raudenbush and Bryk (2002) for
details. CI = confidence interval.
*p < .05; **p < .001.

mean of the PRE.j values for the 20 sites. By virtue of
centering PRE.j around PRE, γ00 retains its meaning
as the grand mean for geometry readiness.

We refer to the HM defined by equations (2) and
(5) as Model 3. As can be seen in Table 14.3, the
resulting estimate for the expected effect of TM at
low-implementation sites is approximately a tenth
of point, and the corresponding t-ratio is extremely
small. Thus, when reading in the TM text is not
discussed on a daily basis, the results suggest that,
on average, TM and more conventional curricula

are equally effective with respect to student
performance in the domain of geometry readiness.
However, the point estimate for γ11 is approximately
2 points and more than twice its standard error. This
suggests that when reading is discussed on a daily
basis, the expected effect of TM is over 2 points:
0.12+ 2.03 = 2.15.

Note that the estimate of τ11 that we obtain when
implementation of reading is included in the analysis is
substantially smaller than the estimate we obtain based
on Model 2 (i.e., 1.86 vs. 2.84). Thus, IMPLRDGj
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accounts for approximately 35% of the variability in
site TM effects.

14.3.5. Taking a Closer
Look at the Results Concerning
Implementation: Examining Residuals

In Table 14.1, we see that the OLS estimate of the
TM effect for one of the high-implementation sites
(Site 8) is negative (−1.68) and substantially smaller
than the TM effect estimate for any of the other high-
implementation sites. Thus, Site 8 appears to be an
outlier. More formally, to help identify outlying sites,
we can construct plots based on OLS or empirical
Bayes (EB) residuals for each site. An OLS resid-
ual would be computed by taking the OLS estimate
of the site TM effect for site j (i.e., β̂1j ) and sub-
tracting a fitted value based on the IMPLRDG value
for site j (i.e., FV1j = 0.12 + 2.03 IMPLRDGj ):
Û1j = (β̂1j − FV1j ). Computing EB residuals (i.e.,
U ∗1j ) entails shrinking OLS residuals toward a value
of 0. In essence, for sites in which the precision of
β̂1j is relatively high, the degree of shrinkage will be
minimal. However, for sites in which the precision is
low, the degree of shrinkage toward 0 will be sub-
stantial. Thus, EB residuals are, in a sense, adjusted
for estimation error connected with the β̂1j (see
Raudenbush & Bryk, 2002, pp. 45–51).

As can be seen in the plot of EB residuals versus fit-
ted values (see Figure 14.1), Site 8 stands clearly apart
from the other high-implementation sites. One possible
explanation centers on the difficulties encountered by
many of the TM students at this site in reading the text;
for many of these students, English was their second
language. Although we cannot say with certainty that
this explanation is the correct one, it is consistent with
the notion that reading plays a key role in the TM
curriculum.

To what extent is Site 8 affecting our results? When
we set aside Site 8 and reestimate Model 3, we
obtain, as might be expected, a larger estimate for the
coefficient for IMPLRDGj (i.e., 2.29 [SE = 0.65]).
However, from a practical standpoint, the conclusions
we might reach concerning the effects of TM given a
high level of implementation are quite similar.3

3. Note that by employing recently developed estimation tools termed
Markov chain Monte Carlo (MCMC) methods, it is possible to refit HMs
under heavy-tailed distributional assumptions. That is, rather than assume
normality at Levels 1 and 2, one can specify t-distributional assumptions
with small degrees of freedom (e.g., 4) at each level. This has the effect
of downweighting possible outliers, thereby yielding robust results for
parameters of interest (see, e.g., Seltzer, Novak, Choi, & Lim, 2002). One

Figure 14.1 EB Residuals Versus Implementation of
Reading
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14.3.6. Considering Possible
Confounding Variables

An issue of fundamental importance that we must
consider in our analysis concerning implementation is
that the 20 TM teachers in this study were not ran-
domly assigned to different levels of implementation.
Rather, for reasons that are unclear, 10 of the TM
teachers discussed the reading in the TM text with their
students on a daily basis, and 10 did not. Put differently,
the TM teachers self-selected into different levels of
implementation. Thus, in terms of trying to assess
whether TM is in fact more effective when reading
in the text is discussed on a daily basis, we are clearly
in a quasi-experimental setting. As such, we need to
consider whether there are other factors at work that
account for the results that we obtained for IMPLRDGj

(i.e., factors that are associated with IMPLRDGj and
with TM/comparison class contrasts). That is, we need
to attend to possible confounding variables. As will be
seen, we take up this issue in several places below.

14.3.7. Who Benefits From the Program?

A key question that often arises when an innovative
curriculum is developed is the following: Will students
from a broad range of backgrounds benefit from the
newly developed curriculum, or will the curriculum
primarily be successful at sites that serve students who
tend to have higher levels of prior achievement or are
from more advantaged backgrounds? In the TM study,

can readily fit HMs under t-distributional assumptions using the software
program WinBUGS (Spiegelhalter, Thomas, Best, & Gilks, 2000), which
is freely available via the Web.
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there are substantial differences across sites in terms of
prior levels of student achievement. This provides an
opportunity to explore whether the effects of TM are
related to differences in prior levels of achievement.
Thus, we now include site mean pretest scores (PRE.j )
as a predictor in the Level 2 model for site TM effects:

β1j = γ10 + γ11IMPLRDGj

+ γ12(PRE.j − PRE)+ U1j

U1j ∼ N(0, τ11). (6)

As in a multiple regression analysis, γ12 represents
the expected increment in β1j when PRE.j increases
one unit, holding constant IMPLRDGj , and, similarly,
γ11 now represents the expected increment in β1j when
reading is discussed on a daily basis, holding constant
PRE.j . By virtue of centering PRE.j around the grand
mean of the site mean pretest scores, γ10 represents
the expected effect of TM in a low-implementation
site whose pretest mean is equal to the grand mean.

In Table 14.3, under the heading Model 4, we
see that the resulting point estimate of γ12 is −0.07
(SE = 0.10). Thus, there appears to be no evidence of
a systematic relationship between site pretest means
and the effectiveness of TM.

Given this result, it is not surprising that the esti-
mate for the fixed effect connected with IMPLRDGj

is extremely similar to the estimate obtained in the
previous analysis. Furthermore, note that even if there
were, for example, a positive relationship between site
pretest means and the effectiveness of TM, this would
still have little impact on the estimated coefficient for
IMPLRDGj . This is due to the fact that there is no
evidence of association between site pretest means
and level of implementation. For example, regressing
IMPLRDGj on PRE.j in a logistic regression analysis,
we obtain an estimate of the coefficient for PRE.j of
0.06 (SE = 0.11). Thus, selection into different levels
of implementation on the part of TM teachers does not
appear to be related to differences in site mean pretest
performance.

14.3.8. Do Differences in Design
Relate to Differences in the Magnitude
of TM Effects Across Sites?

As noted above, the assignment of teachers to TM
was random in the case of 10 sites. In the case of
those sites in which assignment was not random, one
potential concern is that district math coordinators or
school principals, in selecting teachers to teach TM,
may have selected those individuals whom they viewed

as being highly skilled and successful math teachers.
If this were the case, then estimates of the effects of
TM would tend to be biased in these sites; specifi-
cally, they would be larger, on average, than the TM
effect estimates for those sites in which assignment
was random. To explore this possibility, we expand
our Level 2 model for site TM effects as follows:

β1j = γ10 + γ11IMPLRDGj + γ13RAj + U1j

U1j ∼ N(0, τ11), (7)

where RAj takes on a value of 1 if the assignment of
teachers at site j is random (0 otherwise); γ13 rep-
resents the expected decrement (or increment) in the
effects of TM when assignment is random, holding
constant IMPLRDGj ; γ11 now captures how differ-
ences in implementation relate to differences in site
TM effects, holding constant the type of assignment;
and finally, γ10 represents the expected TM effect
in sites in which implementation is low and the
assignment of teachers is nonrandom.

In Table 14.3, under the heading Model 5, we see
that the resulting point estimate for γ13 is less than a
quarter of a point, and that the corresponding t-ratio
is extremely small. Thus, the effects of TM in sites in
which assignment was not random appear to be similar
to the effects of TM in sites in which assignment was
random.

Not surprisingly, given this result, we also see that
the results concerning the relationship between imple-
mentation and the effectiveness of TM are extremely
similar to those based on Model 3. Note that even
if there were evidence of larger TM effects in sites
in which assignment was not random, the results
concerning implementation of reading would remain
essentially unchanged. This is due to the fact that type
of assignment and level of implementation are unas-
sociated: Among the 10 sites in which assignment is
nonrandom, implementation is high in 5 sites and low
in 5, and the pattern is the same among the 10 sites
in which assignment is random. Thus, selection into
different levels of implementation is unrelated to the
type of assignment employed at a site.

Note more generally that variables capturing other
aspects of the design and conduct of a study that are of
potential concern to investigators could be employed
as predictors in Level 2 models.

14.3.9. Taking Other Factors Into Consideration

In addition to the variables considered above, we
also explored a number of other site characteristics
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that could conceivably relate to differences in the
magnitude of TM effects (e.g., differences across
sites in the text employed in comparison classes) and
found no systematic relationships. Furthermore, in
addition to the factors considered above (site pretest
performance, type of assignment), we also exam-
ined a number of other factors that we thought
could conceivably account for the results that we
obtained regarding implementation of reading (e.g.,
how far in the text each TM instructor had got-
ten by the end of the school year), and no con-
founding variables emerged. Our search was by no
means exhaustive. For example, 10 TM teachers
were randomly selected to keep diaries. Combing
through these diaries might suggest further factors
to explore.

Note that the estimates that we obtained of the over-
all effects of TM reflect the fact that implementation
was less than ideal in numerous sites. On one hand,
such estimates may be of interest to policymakers
because they reflect the various challenges and dif-
ficulties experienced by practitioners in the field (see
Shadish, Cook, & Campbell’s [2002, pp. 319–320]
discussion of intent-to-treat analyses). But on the other
hand, if we are interested in the effects of TM when it
is implemented with high fidelity, such estimates are
misleading.

As can be seen in Table 14.3, even after including
IMPLRDGj in our analyses, substantial between-site
variability in the effects of TM remains. In general, an
appreciable amount of between-site variability is likely
to be connected with key differences across sites in
implementation, in the characteristics of program par-
ticipants, and in certain aspects of design. However, at
least some of the variability will likely be due to unique
site characteristics (e.g., unexpected events, unusually
strong administrative support).

14.4. Designs in Which

Organizational Units Are

Nested Within Treatment Type:

Reanalyses of the Integrative

Mathematics Assessment Data

14.4.1. Background

In contrast to more traditional mathematics
instruction, which is characterized by drill and the
memorization and application of algorithms, influ-
ential documents such as the National Council of

Teachers of Mathematics (NCTM) Standards (1989)
call for instructional practices that involve eliciting and
building on students’ thinking and that provide
students with opportunities to engage with mathe-
matical concepts in solving problems. Carrying out
instruction in this way, however, can be extremely
challenging. In this connection, Saxe et al. (1999) and
Gearhart et al. (1999) conducted a study that entailed
developing and implementing two programs intended
to help teachers develop the skills necessary for teach-
ing mathematics for upper elementary students in ways
consistent with the NCTM standards, and comparing
the mathematics learning of students taught by teachers
participating in these programs.

Both programs focused primarily on instruction in
the domain of fractions and centered on teachers’ use of
a textbook titled Seeing With Fractions. One program,
called Integrated Mathematics Assessment (IMA),
focused on helping teachers (a) develop more sophis-
ticated understandings of fractions and related topics,
(b) gain insight into the ways in which students’ under-
standings of fractions change over time, and (c) learn
instructional practices that entail, for example, elic-
iting and building on students’ understandings of
fractions. The aim of the second program, called
Collegial Support (SUPPORT), “was to provide
teachers opportunities to reflect on their practices
with a community of practitioners engaged in similar
efforts” (Gearhart et al., 1999, p. 291). In this model,
participating teachers develop an agenda of topics that
they wish to discuss at each session.

A total of 16 upper elementary teachers in the greater
Los Angeles area participated in IMA and SUPPORT.
All teachers had prior experience using the Seeing
With Fractions text and volunteered to participate in
the study. Nine teachers were assigned to IMA and
7 to SUPPORT via a random assignment procedure
described in Gearhart et al. (1999).

Prior to the start of the school year, the IMA teachers
participated in a 5-day summer institute. During the
school year, the IMA teachers attended 13 evening
meetings, which were held approximately every 2
weeks. The SUPPORT teachers attended 2 full-day
meetings and 7 evening meetings held monthly.

The students of each teacher in the study were
administered a series of pretests at the start of the
school year and a series of posttests immediately after
the last module of the Seeing With Fractions text
was completed. In addition, a measure of student
English-language proficiency was obtained at the start
of the school year. In this section of our chapter, we
present a series of HM analyses that focuses on the
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performance of students in IMA and SUPPORT
classrooms on a posttest that measures problem-
solving skills in the fractions domain. The items on
this test cannot be solved through the mere application
of computational algorithms.

Although the IMA teachers and SUPPORT teach-
ers in our sample were, on average, very similar in
terms of experience and training, students in the IMA
classes tended to be somewhat more advantaged than
students in SUPPORT classes with respect to several
intake characteristics (see below). This is connected
to the fact that although six of the nine IMA teach-
ers were located in six different schools, three were
located in the same school. The latter three teach-
ers were randomly assigned as a group to IMA. A
concern was that assigning, say, two of these teach-
ers to IMA and one to SUPPORT might result in
the diffusion of information and ideas from the IMA
teachers to the SUPPORT teacher during the school
year. This particular school, however, served relatively
advantaged students. As will be seen, we adjust for
differences in various key intake characteristics in our
analyses and conduct a number of sensitivity analyses,
including refitting key models with these three teachers
set aside.

An important feature of this study is that in-depth
information was obtained via classroom observations
of each teacher’s instructional practices over the course
of fractions instruction. Data from these observa-
tions were used to construct scales that capture the
extent to which a teacher’s instructional practices are
aligned with various reform-minded principles. Of
particular interest is a scale capturing the extent to
which a teacher provides opportunities for engage-
ment with mathematical (i.e., fractions) concepts in
discussions of problem solving in ways that build on
students’ thinking (Gearhart et al., 1999, p. 303). This
measure, which we term ALIGN, will be used as a
Level 2 predictor in two of the key analyses presented
below. Studying how differences in this aspect of prac-
tice relate to differences in student outcomes figures
prominently in Saxe et al.’s (1999) and Gearhart et al.’s
(1999) work.

14.4.2. Specifying a Within-Class Model:
The Use of Grand-Mean Centering

The HMs that we employ in our analyses are
two-level models, each of which consists of a within-
class model (Level 1) and a between-class model
(Level 2). We now pose the following within-class

model for the J = 16 classrooms in our sample
(j = 1 . . . 16):

Yij = β0j + β1j (PREPSij − PREPS..)

+ β2j (INCIPij − INCIP..)

+ β3j (ELPij − ELP..)+ εij

εij ∼ N(0, σ 2). (8)

Yij and PREPSij are, respectively, the problem-solving
posttest and pretest scores for student i in classroom
j . Note that the maximum possible score on both
tests is 13 and that the tests are composed of very
similar though not identical items. INCIPij is an indi-
cator variable that takes on a value of 1 if student i in
classroom j demonstrated an incipient understanding
of fractions based on a special pretest (0 otherwise;
see Saxe et al., 1999, for details). ELPij is an indica-
tor variable that takes on a value of 1 if student i in
classroom j is categorized as being fluent in English
(0 otherwise), and β1j , β2j , and β3j are slopes captur-
ing the relationships between the predictors PREPS,
INCIP, and ELP and problem-solving posttest scores.
The εij are errors assumed independent and normally
distributed with mean 0 and variance σ 2.

In contrast to the Level 1 model that we employed
in our analyses of the TM data (equation (2)), the pre-
dictors in equation (8) have been centered around their
grand means. The type of centering that we choose
has important implications for the interpretation of the
intercept term (β0j ) in the model. When we employ
group-mean centering, β0j represents the (unadjusted)
mean outcome score for group j . When we employ
grand-mean centering, β0j , analogous to ANCOVA
models, represents an adjusted mean outcome score
for group j . Thus, for example, if PREPS scores in a
particular class are, on average, lower than the grand-
mean pretest score, and if pretest and posttest scores are
positively related, then the expected outcome score for
that class (β0j ) will be adjusted upwards. For classes
with pretest scores that are, on average, higher than
the grand mean, the expected outcome score for these
classes will be adjusted downwards. Thus, grand-mean
centering at Level 1 provides a way of controlling
for differences among classes in their student intake
characteristics (see Raudenbush & Bryk, 2002,
chaps. 2, 5).

Note that class mean PREPS scores (PREPS.j ) are,
on average, higher for IMA classes than for SUPPORT
classes (3.45 vs. 2.02; t = 2.72, p = .02), where 3.45
represents the average of the PREPS.j values for the
nine IMA classes, and 2.02 represents the average of
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the PREPS.j values for the seven SUPPORT classes.
Class mean ELP and INCIP scores (i.e., the proportions
of students in a class who, respectively, are English-
language proficient and who demonstrated incipient
understanding of fractions) are also somewhat higher,
on average, for IMA classes than for SUPPORT classes
(ELP : 0.94 vs. 0.81, t = 1.93, p = .07; INCIP : 0.77
vs. 0.55, t = 1.88, p = .08). When we set aside
the three IMA teachers located in the school serving
relatively advantaged students, the differences for
PREPS, ELP, and INCIP are, respectively, 2.68 versus
2.02 (t = 1.87, p = .09), 0.91 versus 0.81 (t = 1.20,
p = .26), and 0.68 versus 0.55 (t = 1.01, p = .34).

14.4.3. Assessing Contextual Effects

In HMs for nested designs, such as the ones
employed in Gearhart et al.’s (1999) and Saxe et al.’s
(1999) studies, adjusted means are the Level 1 param-
eters of primary interest. In a Level 2 model, we then
model differences in adjusted means as a function of
various key characteristics of the organizational units
(e.g., classes) in our sample.

Before comparing outcomes for students in IMA
and SUPPORT classes, we first pose a between-class
model of the following form:

β0j = γ00 + γ01 (ELP.j − ELP)+ U0j

U0j ∼ N(0, τ00),

β1j = γ10,

β2j = γ20,

β3j = γ30. (9)

In the above model, γ10, γ20, and γ30 represent,
respectively, the average within-class pretest/posttest
slope, the average within-class INCIP/posttest slope,
and the average within-class ELP/posttest slope. In
initial models that we fit to the data, tests of homo-
geneity pointed to little variation in Level 1 slopes.
Thus, as can be seen in equation (9), we did not specify
random effects in the equations for β1j , β2j , and β3j .
In addition to including ELPij as a predictor in our
within-class model, we have included the proportion of
English-language proficient students in a class (ELP.j )
as a predictor of β0j . Note that γ30 represents the
expected difference in problem-solving posttest scores
between two students—one of whom is proficient in
English and the other who is not—who are in the same
class and who have identical pretest scores and levels
of incipient knowledge of fractions. Raudenbush and
Bryk (2002) term γ30 a person-level effect. In contrast,
γ01 in equation (9) is a contextual effect connected with

the extent to which students in a class are proficient
in English. To grasp the meaning of γ01, consider two
students with identical levels of English proficiency, as
well as identical pretest values and levels of incipient
understanding. Suppose, however, that one student is
in a class in which virtually all students are English-
language proficient (Class A), whereas the other is in
a class in which approximately half of the students
are English-language proficient (Class B). By virtue
of these differences in classroom composition, one
can imagine that pacing might be faster in Class A
and/or that coverage of the material might be more
thorough in Class A. As a result, the student in Class
A might learn appreciably more than the student in
Class B, even though the two students are identical in
terms of their ELP, PREPS, and INCIP values. Such
differences in outcomes, termed a contextual effect,
would be captured by γ01.

The equation for β0j , in contrast to the other Level 2
equations, contains a random effect (U0j ). The random
effects are assumed normally distributed with vari-
ance τ00, which represents the variance in adjusted
means that remains after taking into account the effects
of ELP.j .

We now fit the model defined by equations (8)
and (9), termed Model 1 in Table 14.4, to the data.
One noteworthy finding is that whereas the person-
level effect of English-language proficiency (γ30) is
negligible, the contextual effect (γ01) appears to be
substantial. Consider two students who are identical
in terms of their level of English-language proficiency,
problem-solving pretest score, and level of incipient
knowledge. If one student is in a class in which all
children are proficient (ELP.j = 1.00) and the other
is in a class in which six tenths of the students are
proficient (ELP.j = 0.60), the expected difference in
posttest scores between two such students would be
4.02 × (1 − 0.60) = 1.61. (Note that the minimum
and maximum values for ELP.j in our sample are 0.60
and 1.00, respectively.)

Turning to the results for the other fixed effects
in the model, we see that the estimate of the grand-
mean posttest score (γ00) is 5.85 points and that the
point estimates for the average within-class PREPS and
INCIP slopes (γ10, γ20) are positive and statistically
significant. Finally, the results for τ00 indicate that the
remaining variability in adjusted class mean posttest
performance is appreciable.

Before moving to the next section, note that when
the 3 IMA teachers in the school serving relatively
advantaged students are set aside, the resulting point
estimate for the contextual effect of ELP is slightly
larger than the result based on the entire sample of
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Table 14.4 IMA Study Analyses: Models 1, 2, 3, and 4

Model 1 Model 2 Model 3 Model 4

Estimate [SE] t-Ratio Estimate [SE] t-Ratio Estimate [SE] t-Ratio Estimate [SE] t-Ratio
Fixed Effects (95% CI) (95% CI) (95% CI) (95% CI)

Model for adjusted class means
Grand mean (γ00) 5.85 [.24] 23.95** 5.84 [.23] 25.26** 5.84 [.20] 29.17** 5.85 [.20] 29.13**

(5.33, 6.36) (5.34, 6.34) (5.41, 6.28) (5.42, 6.28)

Class ELP (γ01) 4.02 [1.84] 2.18* 2.69 [1.94] 1.38 3.51 [1.75] 2.01 4.30 [1.56] 2.76*
(0.08, 7.97) (−1.51, 6.88) (−.30, 7.32) (0.93, 7.67)

IMA/SUPPORT
contrast (γ02) — — 0.86 [.53] 1.63 0.49 [.49] 1.00 — —

(−.28, 2.01) (−.58, 1.56)

Alignment (γ03) — — — — 0.80 [.35] 2.29* 0.92 [.33] 2.78*
(0.04, 1.56) (0.21, 1.63)

Average within-class 0.59 [.07] 7.96** 0.57 [.07] 7.77** 0.58 [.07] 7.91** 0.59 [.07] 8.11**
pretest/posttest (0.45, 0.72) (0.44, 0.71) (0.44, 0.72) (0.45, 0.73)
slope (γ10)

Average within-class 1.13 [.35] 3.20** 1.12 [.35] 3.17** 1.17 [.35] 3.34** 1.18 [.35] 3.39**
incipient/posttest (0.44, 1.82) (0.43, 1.80) (0.48, 1.86) (0.49, 1.87)
slope (γ20)

Average within-class 0.02 [.48] 0.04 0.03 [.48] 0.06 0.02 [.48] 0.04 0.01 [.48] 0.02
ELP/posttest (−0.92, 0.96) (−0.92, 0.97) (−0.93, 0.96) (−0.93, 0.95)
slope (γ30)

Variance Components Estimate χ2 (df) Estimate χ2 (df) Estimate χ2 (df) Estimate χ2 (df)

Between class
Variance in adjusted 0.64 42.90** (14) 0.54 35.65** (13) 0.33 24.28* (12) 0.33 26.44* (13)

means (τ00)

Within class

Residual variance (σ 2) 7.24 7.23 7.24 7.23

NOTE: IMA = Integrated Mathematics Assessment; SUPPORT = Collegial Support; ELP = English-language proficiency.
*p < .05; **p < .001.

16 teachers—that is, 4.34 (SE = 2.09, t = 2.08,
p = .06) versus 4.02.

14.4.4. Comparing the Performance
of Students in IMA and SUPPORT Classes

We now add a predictor to the Level 2 equation for
β0j that denotes whether class j was taught by a teacher
who participated in IMA (IMAj = 1) or by a teacher
who participated in SUPPORT (IMAj = 0):

β0j = γ00 + γ01(ELP.j − ELP)

+ γ02(IMAj − IMA)+ U0j

U0j ∼ N(0, τ00). (10)

In this model, γ02 represents the expected differ-
ence in posttest performance between students taught
by IMA teachers and students taught by SUPPORT
teachers, holding constant the student-level predictors

in our model and the proportion of English-language
proficient students in a class. That is, for students
with similar values for the student-level predictors and
who are in classes with similar proportions of English-
language proficient students, the expected difference in
posttest performance between those students in classes
taught by IMA teachers and those taught by SUPPORT
teachers is γ02.

As can be seen in Table 14.4 under the heading
Model 2, the point estimate for the IMA/SUPPORT
contrast is positive and slightly under a point. However,
the corresponding t-ratio is substantially less than 2.
We also see that the resulting point estimate of the
coefficient for ELPj is appreciably smaller than the
estimate obtained in the previous analysis (2.68 vs.
4.02) and that the corresponding t-ratio is substantially
smaller than 2. A plot of residuals versus fitted values
did not reveal any unusual cases.

Note that if we conduct an OLS analysis in which
we simply regress student posttest problem-solving
scores on the set of student and class characteristics
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in the above model, we obtain an estimate of the
IMA/SUPPORT contrast that is very similar to the
estimate reported in Table 14.4 (i.e., 0.89). However,
the resulting standard error is substantially smaller
(0.34 vs. 0.53), and the corresponding t-ratio and
p-value (t = 2.62, p = .01) point strongly toward a
positive contrast. But, as in the case of the OLS student-
level analysis of the TM data, such an analysis ignores
the dependencies among student observations nested
within Level 2 units and hence can result in standard
errors for parameters of interest that are misleadingly
small. As explained earlier, such dependencies or clus-
tering in the data are reflected in the standard errors
obtained in HM analyses. Note that, for similar rea-
sons, the OLS analysis also results in a substantially
smaller standard error for the estimate of the con-
textual effect of English-language proficiency and, in
connection with this, a t-ratio of 2.07 and a p-value
of .04.

Before proceeding to the next section, note that
when we delete the three IMA teachers in the school
serving relatively advantaged children, we obtain
slightly larger estimates for the contextual effect for
English-language proficiency (3.11; SE = 2.04, t =
1.52, p = .16) and for the IMA/SUPPORT contrast
(1.02; SE = 0.57, t = 1.79, p = .10). Thus, we
obtain similar results whether we include or exclude
these three teachers.

14.4.5. Studying the Relationship
Between Teacher Practice
and Problem-Solving Outcomes

Compared with the estimate of τ00 based on
Model 1, adding the IMA indicator variable to the
model results in a reduction in variance of approxi-
mately 15% (i.e., 0.54 vs. 0.64). This would seem to
signal that the information contained in one predictor
is not simply duplicating the information contained in
the other.

The predictor IMAj simply denotes participation in
the IMA or SUPPORT programs. Is there a more prox-
imal factor (i.e., a factor more directly connected with
instruction) underlying the positive estimate obtained
for the IMA/SUPPORT contrast?

At this juncture, we employ the teacher practice
measure described above (i.e., ALIGN ) as a Level 2
predictor. Note that a value of 2 on this scale corre-
sponds to a very high level of implementation, and a
value of −2 corresponds to an extremely low level of
implementation. The ALIGN values for the teachers
in our sample vary considerably, ranging from −0.75

to 1.62. The mean ALIGN value for IMA teachers is
somewhat higher than the mean value for SUPPORT
teachers (0.57 vs. 0.24), although the difference is
modest in magnitude and not statistically significant
(t = 1.10, p = .30).

We now expand the between-class equation for β0j

as follows:

β0j = γ00 + γ01 (ELP.j − ELP)+ γ02(IMAj − IMA)

+ γ03(ALIGNj − ALIGN )+ U0j

U0j ∼ N(0, τ00). (11)

As can be seen in Table 14.4 under the
heading Model 3, adding ALIGN to the model results
in a substantial reduction in the estimate of the
IMA/SUPPORT contrast (0.49 [t = 1.00] vs. 0.86).
Moreover, the results signal an appreciable positive
relationship between ALIGN and posttest performance.
Holding constant all other predictors in the model,
when we consider two teachers with ALIGN values
that are 2 points apart (e.g., 1.50 vs. −0.50), the
expected difference in student posttest performance is
1.60 points (i.e., 2 × 0.80). Furthermore, we see that
the point estimate for τ00 drops markedly from a
value of 0.54 in the previous analysis to a value of
0.33, which represents a decrease of nearly 40%. We
also see that adding ALIGN to the model results in
an appreciable increase in the point estimate for the
contextual effect of English-language proficiency
(3.51; t = 2.01).

Note that the number of Level 2 units in a sample
(J ) sets limits on the number of predictors that we can
include in a Level 2 equation at one time. Analogous
to conducting regression analyses in small-sample
settings, when J = 16, one should be very cau-
tious about including more than two predictors in
a Level 2 equation at one time. Of course, much
care is called for when employing one or two pre-
dictors. One mitigating factor in the case of Model 3
is that ALIGN and ELP.j are essentially uncorrelated
(r = −0.09). However, to help gauge the sturdiness
of these results, we obtained robust estimates of the
fixed effects in Model 3 using an estimation approach
outlined in an article by Seltzer, Novak, Choi, and
Lim (2002).3 These estimates were virtually identical
to those reported in Table 14.4. In addition, we sequen-
tially deleted a number of possible leverage points
(e.g., the class with the largest ALIGNj value; the class
with the smallest ELP.j value). These “leave-one-out”
analyses also yielded results consistent with those in
Table 14.4.

Omitting IMAj and retaining ALIGNj in our Level 2
model, we find that the point estimate for τ00 remains
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virtually unchanged (i.e., 0.33; see the results for
Model 4 in Table 14.4). In addition, we see that the
point estimates of the coefficients for ALIGNj and
ELP.j increase somewhat. Note also that setting aside
the three IMA teachers in the school serving relatively
advantaged children and refitting Model 4, we obtain
extremely similar results for ALIGN (0.98; SE = 0.43,
t = 2.26, p = .05) and for the contextual effect of
ELP (4.26; SE = 1.81, t = 2.36, p = .04).

14.4.6. Attending to Possible
Confounding Variables in Drawing
Conclusions Regarding Alignment

Although the above results suggest that differences
in alignment with reform-minded instructional prac-
tices underlie differences in student problem-solving
performance, it is important that we attend to other
variables that may be associated with ALIGN and
with problem-solving outcomes. We saw above that
the correlation between ALIGN and the proportion
of English-language proficient students in a class is
very low. Correlations between ALIGN and other
class compositional characteristics (e.g., class mean
problem-solving pretest scores) are weak as well.
Thus, the extent to which teacher practice is aligned
with reform-minded principles appears not to depend
on the compositional characteristics of classes.

In terms of teacher experience and training, although
the correlation between ALIGN and years of teaching
experience is close to 0 (r = 0.02), we do see a
moderately large correlation between ALIGN and the
amount of relevant prior professional development and
training (PDT) that a teacher received (r = 0.52).
However, adding PDT to Model 4, we obtain results
for ALIGN (1.07; SE = 0.39, t = 2.78, p = .02)
and for the contextual effect of ELP (3.85; SE = 1.67,
t = 2.31, p = .04) that are very similar to those
reported in Table 14.4. Furthermore, the results for
PDT suggest that holding constant ALIGN and ELP.j ,
PDT is not systematically related to problem-solving
outcomes (−0.31; SE = 0.38, t = −0.81, p = .44).4

4. The procedure by which teachers were assigned to IMA and SUP-
PORT involved a priori matching based on years of teaching experience
(EXPER) and PDT (see Gearhart et al., 1999). Background information
concerning, for example, the demographic characteristics of students in
a given teacher’s school entered into this procedure as well. (Because
the IMA and SUPPORT programs began during the summer, it was not
possible to employ class compositional characteristics such as prior mean
achievement scores in the matching process.) The goal of the matching
procedure in the IMA study was not to construct a series of matched pairs
as in the case of the TM study; that is, the IMA study was not conceived
as a series of experiments. Rather, given the relatively small number
of teachers in the study, the purpose of the matching procedure was to

Thus, as in the case of the TM study, we see that
the collection of implementation data greatly increased
the value of the IMA study. Although various con-
ceptual examinations of mathematics learning point
to the potential value of reform-minded instructional
practices, Saxe et al. (1999) note that few studies
empirically examine the relationship between student
learning and these practices. As we saw above, the
degree to which instruction was aligned with reform-
minded practices emerged as a key factor with respect
to student problem-solving outcomes.5

14.5. Recap, Implications,

and New Directions

14.5.1. Obtaining More
Appropriate Standard Errors

The above examples helped illustrate the use of HMs
in obtaining more appropriate standard errors for fixed
effects of interest. We saw that conducting OLS analy-
ses that ignore the nested structure of multisite data can
result in misleadingly small standard errors. Specifi-
cally, in the case of the IMA example, recall that the
standard error for the estimate of the IMA/SUPPORT
contrast was 40% smaller than the standard error based
on an HM analysis and that the corresponding t-ratios
based on the OLS and HM analyses were 2.62 and
1.63, respectively.

try to ensure that the resulting samples of IMA and SUPPORT teachers
were, on average, comparable in terms of EXPER and PDT, which they
were. Setting aside the three IMA teachers in the school serving relatively
advantaged students, the students of the IMA and SUPPORT teachers
were also fairly comparable in terms of language proficiency and various
baseline skills.

More generally, Murray (1998) notes that simple random assignment
is an unreliable means of achieving baseline comparability among condi-
tions when the sample of organizational units in a study is small. In such
situations, he recommends the use of matching or stratification to help
increase comparability. If it is not possible to obtain very close matches,
as in the case of the IMA study, a sensible strategy is to use matching to try
to achieve overall comparability but to ignore the matching in the analysis
phase.

Note, finally, that we fit a series of HMs to the IMA data employing
the Level 1 model depicted in equation (8) and various Level 2 models
involving EXPER and PDT. Neither of these variables appeared to be
systematically related to adjusted class mean outcome scores (β0j ). In
some respects, this is not too surprising because all but 3 of 16 teachers
in the sample had 12 or more years of teaching experience; furthermore,
although teachers varied in terms of the amount of relevant prior training
they had received, all of the teachers had received at least some prior
training.

5.As we saw above, the ALIGN values for IMA teachers were, on average,
somewhat higher than the ALIGN values for SUPPORT teachers. Note that
the IMA program may help teachers develop instructional practices other
than those captured by the ALIGN measure, which help promote student
learning (see Gearhart et al., 1999, p. 308).
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14.5.2. The Importance of Collecting
and Using Data on Implementation

In multisite studies of programs and interventions,
there will very likely be variability in implementation
across sites. This was clearly the case in both the TM
and IMA studies. Due to a variety of difficulties and
challenges that practitioners may encounter in the field
and, in connection with this, differences in the adap-
tation of programs to local settings, implementation
may be as intended in some sites but partial or poor
in others.

In this regard, estimates of the overall, average effec-
tiveness of a program (e.g., estimates of the average
effect of TM in Table 14.2) may be of interest to poli-
cymakers because such estimates will reflect a variety
of difficulties that may have arisen in the field; they
will reflect the fact that implementation, on the whole,
may have been less than ideal (see Shadish et al., 2002).
It is easy to see that information regarding the extent
to which implementation was good or poor would be
essential for making sense of such estimates.

But clearly, if implementation is poor in some sites
and good in others, such estimates are problematic if
the goal is to draw inferences concerning the effects
of a fully implemented version of the program of
interest. However, when data on implementation have
been collected, we can, for example, begin to explore
differences in the effectiveness of a program when it
is implemented with high fidelity and when it is not.
Furthermore, as we saw in the above examples, we
can begin to test some of the assumptions and ideas
that inform the development of a program and focus
on factors that may be more proximal with respect to
outcomes of interest.

Although analyses involving the use of implementa-
tion data provide opportunities to learn more about the
conditions under which a program might be particu-
larly effective, an important theme that ran throughout
the above examples is that we must be aware that
differences in implementation may be associated with
other factors (e.g., differences in staff experience, dif-
ferences in the background characteristics of program
participants) that are associated with outcomes of inter-
est. That is, we must attend to possible confounding
variables. Thus, not only is it essential to collect data
on implementation, but it is also important to collect
data on factors that, on the basis of relevant theory and
previous research, are likely to be related to differences
in implementation and program outcomes.

An implication of this is the need for multisite
studies involving larger numbers of sites (J ). Anal-
ogous to multiple regression models, increases in J

enable us to specify Level 2 models containing larger
sets of predictors (i.e., measures of implementation,
site compositional characteristics, and other Level 2
characteristics). This becomes crucial in situations
in which we have identified a number of Level 2
covariates that we must adjust for in efforts to draw
sound conclusions regarding, for example, interac-
tions between a particular aspect of implementation
and program effectiveness. In this connection, note
that we frequently encounter multisite studies in which
J < 20. This is understandable, given the expense
of such studies. But the constraints this places on
the number of Level 2 covariates that we can adjust
for in our analyses can hamper our ability to draw
sound inferences. Note also that with larger J comes
increases in the precision with which we can estimate
fixed effects of interest.

14.5.3. Interactions Between Site
Compositional Characteristics
and Program Effectiveness

We also saw how HMs can be used to investigate
whether the effects of a program might depend on
(i.e., interact with) the compositional characteristics
of the individuals at a site. But there are things we
must be mindful of in such investigations. Suppose,
for example, we find that site mean prior achievement
in reading is positively related to the effectiveness of
an innovative fourth-grade reading curriculum. It then
becomes important to consider what factor or factors
may be driving this relationship. Had many of the
students in those sites with high mean prior achieve-
ment acquired certain skills by the end of Grade 3 that
helped them reap the full benefits of the innovative
curriculum? Was more time spent on reading instruc-
tion in those sites with high mean prior achievement?
Was more of the innovative curriculum covered in such
sites? We could attempt to address such questions by
including measures of these factors, if available, as
predictors in subsequent HM analyses. Again, we see
the importance of collecting detailed information on
implementation and other potentially relevant factors.6

6. When we model site treatment effects (e.g., β1j ) as a function of site
characteristics, we are in effect specifying cross-level interactions. For
example, in the case of the TM study, student outcomes are modeled as
a function of treatment group membership (TRTij ) in a Level 1 model,
and the corresponding regression coefficient (β1j ) represents the effect of
TM at site j (see equation (2)). Now consider the Level 2 model specified
in equation (6), in which site TM effects are modeled as a function of
IMPLRDGj and PRE.j . Note that replacing β1j in equation (2) with the
terms on the right-hand side of equation (6) would give rise to the product



Chapter 14 / The Use of Hierarchical Models in Analyzing Data • 277

14.5.4. Assessing the Adequacy of Models

Checking the adequacy of models is an essential
part of any data analysis project. This becomes vital in
the context of multisite studies because the samples in
such studies often contain relatively small numbers of
sites (J ). As we saw above, it is important to examine
plots of Level 2 residuals, search for possible outliers,
conduct “leave-one-out” analyses, and the like. Seltzer
et al. (2002) also point out that Level 1 outliers (e.g.,
a student who has an outcome score that is extremely
high vis-à-vis the other students in her class) can affect
the estimation of parameters of interest in multisite
studies, and they provide an estimation strategy that
downweights such cases. Although outliers are often
viewed as nuisances that can adversely affect one’s
results, it is also important to note that examining field
data pertaining to outlying individuals and sites can
potentially yield insights concerning the conditions
under which a program may be unusually successful
and for whom.

14.5.5. Some Comparisons of Designs
Employing Blocking and Designs in Which
Sites Are Nested Within Treatment Type

Those who have some familiarity with research syn-
thesis will immediately recognize similarities between
HMs for meta-analysis and HMs for the analysis of
data from multisite evaluation studies that employ
blocking (see Chapter 15, this volume). In such studies,
each block can be viewed as a mini-study of the
effectiveness of a particular program or intervention.
Thus, the application of HMs in such settings essen-
tially provides a means of synthesizing results from
a series of mini-studies. This has a great deal of
conceptual appeal. We can, for example, assess the
degree of heterogeneity in treatment effects across sites
(“studies”) and explore how differences in various site
characteristics relate to differences in treatment effects.

In terms of the precision with which we can estimate
key fixed effects, blocking can be extremely beneficial

terms TRTij × IMPLRDGj and TRTij × PRE.j , and the coefficients of
these terms would be γ11 and γ12, respectively.

In contrast, in the case of designs in which organizational units are
nested within treatment type, interactions between treatment type and a
Level 2 predictor of interest would be specified through the inclusion of
a product term at Level 2. Consider the IMA study. To test whether the
effects of program type (IMAj ) interact with the proportion of English-
language proficient students in a class (ELP.j ), we would model adjusted
class posttest means (β0j ) as a function of IMAj , ELP.j , and the product
term IMAj × ELP.j .

(see, e.g., Browne & Liao, 1999). The reason for
this is that the between-block variation in outcomes
(e.g., τ00 in equations (3) through (7)), which can
be quite substantial, is not a key component of the
standard errors for fixed effects of interest (e.g., the
overall effect of TM in equations (3) and (4); the co-
efficient for IMPLRDG in equations (5), (6), and (7)).
Rather, as noted in the analyses of the TM data, a
key factor is the variance component connected with
the between-block variance in treatment effects (e.g.,
τ11). Note that in the case of matched-pair designs,
the degree of improvement in precision will depend
crucially on how strongly the matching factors are
related to the outcomes of interest (see, e.g., Murray,
1998, pp. 72–74). Note also that Shadish et al. (2002)
discuss problems that can arise in employing match-
ing in quasi-experimental settings and offer advice for
obtaining better matches.

In contrast, in the case of designs that do not
involve blocking, the variance component connected
with between-site (e.g., between-class) variability in
posttest scores (τ00) appears in the numerator of
standard errors for estimates of key fixed effects
(e.g., the IMA/SUPPORT contrast, the coefficient
for ALIGN; see equations (14) and (11)). But as
Raudenbush (1997) notes, incorporating Level 1 and
Level 2 covariates that are strongly related to out-
comes of interest can greatly increase the power of
such designs.

Another consideration that arises in connection with
designs for multisite studies revolves around the issue
of contamination. For example, when both treatment
and comparison conditions are implemented within
each of a series of schools, there may be a con-
cern that comparison class teachers will adopt certain
instructional techniques that are being employed by
treatment class teachers. In such cases, researchers
would likely opt instead for a design in which schools
do not serve as blocks. This was a definite consid-
eration in the case of the IMA study. In addition,
for various administrative and organizational reasons,
it may be difficult to implement and staff two (or
more) programs within the same school, and this may
apply in some instances to community-based studies
as well.

For detailed discussions and advice regarding an
array of important issues that arise in designing and
implementing multisite studies, see Browne and Liao
(1999), Donner and Klar (2000), Murray (1998), Rau-
denbush (1997), Raudenbush and Liu (2000), Shadish
(2002), and Shadish et al. (2002).
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14.5.6. Looking Longitudinally: Attending
to the Effects of Programs Over Time

Expanding the above designs by collecting longi-
tudinal data on study participants opens up an array
of modeling opportunities that enriches the kinds of
questions we can address. For illustrative purposes,
consider a setting in which individual growth is essen-
tially linear over time. In the case of designs that
involve blocking, each block would provide us with
a contrast of the rates of change between individu-
als in treatment and control conditions. Analogous to
the analyses of the TM data, we could model differ-
ences across sites in growth rate contrasts as a function
of implementation and other site characteristics. In
the case of designs in which organizational units are
nested within treatment type, each organizational unit
would provide us with a mean (or adjusted mean)
growth rate. We could then contrast the growth rates
for organizational units assigned to the program of
interest with the growth rates for organizational units
assigned to the comparison condition. Analyses of the
data arising from these kinds of longitudinal multi-
site designs can be accomplished readily via the use
of three-level HMs (see Raudenbush & Bryk, 2002,
chap. 8).

We encourage, whenever feasible, the use of designs
in which data are collected at several time points prior
to the start of the treatment phase. This allows us
to examine whether treatment and comparison group
members differ, for example, in their rates of change
prior to the start of the intervention, which is a serious
potential threat to internal validity in settings where
random assignment is not employed (see, e.g., Bryk &
Weisberg, 1977; Raudenbush, 2001). In addition,
recent advances in growth modeling would make it
possible to compare growth for treatment and com-
parison group members during the treatment phase
of a study, controlling for possible differences in, for
example, status at the end of the pretreatment phase
and growth rates in the pretreatment phase (see, e.g.,
Muthén & Curran, 1997; Raudenbush & Bryk, 2002,
chap. 11; Seltzer, Choi, & Thum, 2003).

When the collection of time-series data also entails
collecting data during a follow-up phase, it is then
possible to consider how well individuals fare once
a program has come to an end. For example, do
rates of change tend to slow down, remain constant,
or speed up? What are the factors that appear to
promote sustained progress? Questions of this kind
could be addressed by employing piecewise models for
individual growth in three-level HMs (for discussions
of piecewise models, see, e.g., Raudenbush & Bryk,

2002, chap. 6; Seltzer, Frank, & Bryk, 1994; Singer &
Willett, 2003).

Note that for some individuals, growth rates might
change (e.g., decline) immediately after the treatment
phase, but for others, we might not see a decline
in growth rates until a certain amount of time has
elapsed. The point in time at which growth rates begin
to change is termed a change point. An important
extension of piecewise modeling presented by Thum
and Bhattacharya (2001) treats change points as
potentially varying across individuals.

14.5.7. Studying Sequences of Treatments

Recent work by Raudenbush, Hong, and Rowan (in
press) on the application of HMs to study the effects
of sequences of instructional treatments on student
learning deserves special mention. Specifically,
Raudenbush and his colleagues attempted to assess the
causal effects during Grades 4 and 5 of mathematics
instruction that emphasizes relatively high-level con-
tent and involves appreciable amounts of class time,
which they term intensive mathematics instruction.
Thus, for example, some students may experience
intensive instruction in Grades 4 and 5, whereas
others may experience nonintensive instruction in both
grades. Still others may experience different forms of
instruction in Grades 4 and 5 (e.g., nonintensive in
Grade 4 and intensive in Grade 5). Of particular inter-
est in studies of sequences of treatments are possible
interactions between the types of treatment received at
different points in time. Thus, for example, the type
of mathematics instruction received in Grade 4 may
magnify or dampen the effects of the type of instruction
received in Grade 5.

Raudenbush et al. (2002) note that implementing
and maintaining random assignment in studies of
sequences of treatments can pose serious problems,
including ethical ones. As such, many studies of
sequences of treatments tend to be quasi-experiments.
Thus, not only does treatment group membership
change over time in such studies, but the treatment
one receives at one point in a sequence may depend
on the types of treatments one received at earlier points
in time, how well one fared, various baseline mea-
sures, and the like. Clearly, taking into account pos-
sible confounding variables in such studies is crucial.
To this end, Robins and his colleagues have devel-
oped an extremely valuable strategy (i.e., “inverse
probability-of-treatment weighting”) for properly
taking into account possible confounding variables in
settings in which the goal is to estimate the causal
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effects of sequences of treatments (Robins, 2000;
Robins, Hernan, & Brumback, 2002).

In their analyses, Raudenbush et al. (2002) show
how this strategy can be adapted to the kinds of com-
plex multilevel modeling settings that arise in studies
of sequences of instructional treatments. Studies of
sequences of treatments give rise to longitudinal data
(e.g., time-series observations nested within students).
However, the data analyzed by Raudenbush et al. also
have a cross-classified structure. That is, the students
in a given school who are taught by a particular teacher
in Grade 4 are then split into different classrooms in
Grade 5. Furthermore, the students and teachers in
this sample are nested within different schools. The
complex longitudinal and multilevel character of these
data is explicitly represented in the HMs posed by
Raudenbush et al.

Note, finally, that Raudenbush et al.’s (2002) work
is explicitly grounded in Rubin’s framework for causal
inference (see, e.g., Holland, 1986; Rosenbaum &
Rubin, 1983; Rubin, 1974, 1978). In sum, we feel that
Raudenbush et al.’s work on studying sequences of
treatments is going to generate considerable interest
in education and related fields.

We hope that this chapter has helped convey the
value of HMs in analyzing data from experiments
and quasi-experiments in field settings. In particular,
we have tried to highlight some of the possibilities
that arise when rich data on implementation have
been collected. We believe that hierarchical modeling,
coupled with the use of implementation data, holds
great promise for gaining insight into the effects of pro-
grams in an array of fields, including education, social
welfare, the behavioral sciences, and epidemiology.
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Chapter 15

Meta-Analysis

Spyros Konstantopoulos

Larry V. Hedges

The growth of the social science research
enterprise has led to a large body of related
research studies. The sheer volume of research

related to many topics of scientific or policy interest
poses a problem of how to organize and summarize
these findings to identify and exploit what is known
and focus research on promising areas (see Garvey &
Griffith, 1971). This problem is not unique to the social
sciences. It has arisen in fields as diverse as physics,
chemistry, experimental biology, medicine, and public
health. In each of these fields, as in the social sciences,
accumulation of quantitative research evidence has led
to the development of systematic methods for the quan-
titative synthesis of research (see Cooper & Hedges,
1994). Although the term meta-analysis was coined to
describe these methods in the social sciences (Glass,
1976), the methods used in other fields are remark-
ably similar to those in the social sciences (Cooper &
Hedges, 1994; Hedges, 1987).

Meta-analysis refers to an analysis of the results of
several studies for the purposes of drawing general con-
clusions. Meta-analysis involves describing the results
of each study via a numerical index of effect size (such
as a correlation coefficient, a standardized mean differ-
ence, or an odds ratio) and then combining these esti-
mates across studies to obtain a summary. The specific
analytic techniques involved will depend on the ques-
tion the meta-analytic summary is intended to address.

Sometimes, the question of interest concerns the
typical or average study result. For example, in studies
that measure the effect of some treatment or interven-
tion, the average effect of the treatment is often of
interest (see, e.g., Smith & Glass, 1977). In other cases,
the degree of variation in results across studies will
be of primary interest. For example, meta-analysis is
often used to study the generalizability of employment
test validities across situations (see, e.g., Schmidt &
Hunter, 1977). In yet other cases, the primary interest is
in the factors that are related to study results. For exam-
ple, meta-analysis is often used to identify the contexts
in which a treatment or intervention is most successful
or has the largest effect (see, e.g., Cooper, 1989b).

The term meta-analysis is sometimes used to con-
note the entire process of quantitative research synthe-
sis. More recently, it has begun to be used specifically
for the statistical component of research synthesis.
This chapter deals exclusively with that narrower
usage of the term to describe statistical methods only.
However, it is crucial to understand that in research
synthesis, as in any research, statistical methods are
only one part of the enterprise. Statistical methods
cannot remedy the problem of data that are of poor
quality. Excellent treatments of the nonstatistical
aspects of research synthesis are available in Cooper
(1989b), Cooper and Hedges (1994), and Lipsey and
Wilson (2001).

281
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15.1. Effect Sizes

Effect sizes are quantitative indexes that are used to
summarize the results of a study in meta-analysis. That
is, effect sizes reflect the magnitude of the association
between variables of interest in each study. There are
many different effect sizes, and the effect size used in
a meta-analysis should be chosen so that it represents
the results of a study in a way that is easily inter-
pretable and comparable across studies. In a sense,
effect sizes should put the results of all studies “on a
common scale” so that they can be readily interpreted,
compared, and combined.

It is important to distinguish the effect size estimate
in a study from the effect size parameter (the true
effect size) in that study. In principle, the effect size
estimate will vary somewhat from sample to sample
that might be obtained in a particular study. The effect
size parameter is, in principle, fixed. One might think
of the effect size parameter as the estimate that would
be obtained if the study had a very large (essentially
infinite) sample, so that the sampling variation is
negligible.

The choice of an effect size index will depend on
the design of the studies, the way in which the out-
come is measured, and the statistical analysis used in
each study. Most of the effect size indexes used in the
social sciences will fall into one of three families of
effect sizes: the standardized mean difference family,
the odds ratio family, and the correlation coefficient
family.

15.1.1. The Standardized Mean Difference

In many studies of the effects of a treatment or
intervention that measure the outcome on a con-
tinuous scale, a natural effect size is the standardized
mean difference. The standardized mean difference is
the difference between the mean outcome in the treat-
ment group and the mean outcome in the control group
divided by the within-group standard deviation. That
is, the standardized mean difference is

d = Ȳ T − Ȳ C
S

,

where Ȳ T is the sample mean of the outcome in the
treatment group, Ȳ C is the sample mean of the out-
come in the control group, and S is the within-group
standard deviation of the outcome. The corresponding
standardized mean difference parameter is

δ = µT − µC
σ

,

where µT is the population mean in the treatment
group, µC is the population mean outcome in the
control group, and σ is the population within-group
standard deviation of the outcome. This effect size is
easy to interpret because it is just the treatment effect
in standard deviation units. It can also be interpreted as
having the same meaning across studies (see Hedges &
Olkin, 1985).

The sampling uncertainty of the standardized mean
difference is characterized by its variance, which is

v = nT + nC
nT nC

+ d2

2(nT + nC) ,

where nT and nC are the treatment and control group
sample sizes, respectively. Note that this variance can
be computed from a single observation of the effect size
if the sample sizes of the two groups within a study are
known. Because the standardized mean difference is
approximately normally distributed, the square root of
the variance (the standard error) can be used to compute
confidence intervals for the true effect size or effect size
parameter δ. Specifically, a 95% confidence interval
for the effect size is given by

d − 2
√
v ≤ δ ≤ d + 2

√
v.

Several variations of the standardized mean dif-
ference are also sometimes used as effect sizes (see
Rosenthal, 1994).

15.1.2. The Log Odds Ratio

In many studies of the effects of a treatment or inter-
vention that measure the outcome on a dichotomous
scale, a natural effect size is the log odds ratio. The
log odds ratio is just the log of the ratio of the odds
of a particular one of the two outcomes (the target
outcome) in the treatment group to the odds of that
particular outcome in the control group. That is, the
log odds ratio is

log(OR) = log

(
pT /(1− pT )
pC/(1− pC)

)

= log

(
pT (1− pC)
pC(1− pT )

)
,

where pT and pC are the proportions of the treatment
and control groups, respectively, that have the target
outcome. The corresponding odds ratio parameter is

ω = log

(
πT /(1− πT )
πC/(1− πC)

)
= log

(
πT (1− πC)
πC(1− πT )

)
,
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where πT and πC are the population proportions in
the treatment and control groups, respectively, that
have the target outcome. The log odds ratio is widely
used in the analysis of data that have dichotomous
outcomes and is readily interpretable by researchers
who frequently encounter these kinds of data. It also
has the same meaning across studies, so it is suitable
for combining (see Fleiss, 1994).

The sampling uncertainty of the log odds ratio is
characterized by its variance, which is

v = 1

nT pT
+ 1

nT (1− pT ) +
1

nCpC
+ 1

nC(1− pC) ,

where nT and nC are the treatment and control group
sample sizes, respectively. As in the case of the
standardized mean difference, the log odds ratio is
approximately normally distributed, and the square
root of the variance (the standard error) can be used to
compute confidence intervals for the true effect size or
effect size parameterω. Specifically, a 95% confidence
interval for the effect size is given by

d − 2
√
v ≤ ω ≤ d + 2

√
v.

There are several other indexes in the odds ratio
family, including the risk ratio (the ratio of the propor-
tion having the target outcome in the treatment group
to that in the control group, or pT /pC) and the risk dif-
ference (the difference between the proportion having
a particular one of the two outcomes in the treatment
group and that in the control group, or pT − pC). For
a discussion of effect size measures for studies with
dichotomous outcomes, including the odds ratio family
of effect sizes, see Fleiss (1994).

15.1.3. The Correlation Coefficient

In many studies of the relation between two con-
tinuous variables, the correlation coefficient is a natural
measure of effect size. Often, this correlation is
transformed via the Fisher z-transform

z = 1

2
log

(
1+ r
1− r

)

in carrying out statistical analyses. The corresponding
correlation parameter is ρ, the population correlation,
and the parameter that corresponds to the estimate z
is ξ , the z-transform of ρ. The sampling uncertainty
of the z-transformed correlation is characterized by its
variance

v = 1

n− 3
,

where n is the sample size of the study, and it is used in
the same way as are the variances of the standardized
mean difference and log odds ratio to obtain confidence
intervals.

The statistical methods for meta-analysis are quite
similar, regardless of the effect size measure used.
Therefore, in the rest of this chapter, we do not describe
statistical methods that are specific to a particular effect
size index but describe them in terms of a generic
effect size measure Ti . We assume that the Ti are
normally distributed about the corresponding θi with
known variance vi. That is, we assume that

Ti −N(θi, vi), i = 1, . . . , k.

This assumption is very nearly true for effect sizes
such as the Fisher z-transformed correlation coeffi-
cient and standardized mean differences. However, for
effect sizes such as the untransformed correlation co-
efficient, or the log odds ratio, the results are not exact
but remain true as large sample approximations. For
a discussion of effect size measures for studies with
continuous outcomes, see Rosenthal (1994), and for
a treatment of effect size measures for studies with
categorical outcomes, see Fleiss (1994).

15.1.4. Example

Gender differences in field articulation ability
(sometimes called visual-analytic spatial ability) were
studied by Hyde (1981). She reported standardized
mean differences from 14 studies that examined gen-
der differences in spatial ability tasks that call for the
joint application of visual and analytic processes (see
Maccoby & Jacklin, 1974). The results of these 14
studies are shown in Figure 15.1, in which each study
is depicted as an effect size estimate (a standardized
mean difference) and a 95% confidence interval reflect-
ing the sampling uncertainty of that estimate. These
95% confidence intervals are computed as the effect
size estimate plus or minus two times the square root
of the sampling variance of the effect size.

The figure raises several important issues that might
be explored in the meta-analysis. First, the effect size
estimates from the studies are not identical. This is to
be expected because the estimates are based on data
from samples, and random variations due to sampling
should introduce fluctuations into the estimates. The
confidence interval about each estimate suggests how
large these fluctuations due to sampling might be. If
all of the studies are estimating the same treatment
effect, it is reasonable that combining estimates across
studies (e.g., taking an average) will reduce the overall
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Figure 15.1 Results of 14 Studies That Examined Gender Differences in Spatial Ability Tasks

Model

Fixed

Study
name

Statistics for each study

Std diff in
means

Std diff in means and and 95% interval for each study and summary

Lower limit Upper limit

0.760 
1.150 
0.480 
0.290 
0.650 
0.840 
0.700 
0.500 
0.180 
0.170 
0.770 
0.270 
0.400 
0.450 
0.547

–1.00 1.000.00 2.00

1.000 
2,000 
3,000 
4,000 
5,000 
6,000 
7,000 
8,000 
9,000 

10,000 
11,000 
12,000 
13,000 
14,000

0.238 
0.794 

–0.245 
–0.430 
–0.803 
0.236 
0.062 

–0.182 
–0.271 
–0.140 
0.359 

–0.324 
–0.047 
–0.154 
0.414

1.282 
1.506 
1.205 
1.010 
1.383 
1.444 
1.338 
1.182 
0.631 
0.480 
1.181 
0.864 
0.847 
1.054 
0.680

–2.00

SOURCE: Comprehensive Meta Analysis (www.Meta-Analysis.com).

sampling uncertainty by evening out the study-to-study
sampling fluctuations.

Second, the amount of sampling uncertainty is not
identical in every study, as reflected in the differing
lengths of the confidence intervals. Therefore, it seems
reasonable that, if an average effect size is to be com-
puted across studies, it would be desirable to give more
weight in that average to studies that have more pre-
cise estimates (smaller variances) than those with less
precise estimates. How, exactly, should this be done?

Third, when we examine the confidence intervals,
there is considerable overlap, but the effect size esti-
mates of some studies are outside of the confidence
intervals of other studies. This raises the question of
whether the effect sizes of these studies might differ
by more than would be expected due to sampling vari-
ation alone. To put it another way, is it reasonable to
assume that all of the studies are estimating the same
underlying effect size and differ in their estimates by
sampling variation alone?

Fourth, there seems to be a trend over time in these
data, with the studies that are conducted in earlier years
tending to have larger effect sizes. How do we deter-
mine whether this trend is statistically reliable or is just
an artifact of sampling variation?

Fifth, two of the studies, conducted in 1955 and
1959, appear to have somewhat larger effect sizes than
the others. Are the effects of these studies really dif-
ferent from the others, and if these studies are omitted,
is the pattern of the other studies more consistent?

In the sections that follow, we will intro-
duce methods for exploring these questions as a

paradigm for similar explorations that are sensible in
meta-analyses generally.

15.2. Estimating the Average

Effect Across Studies

Consider now the first question that was raised above—
namely, combining the effect size estimates across
studies to estimate the average effect size. Let θi be the
(unobserved) effect size parameter (the true effect size)
in the ith study, let Ti be the corresponding observed
effect size estimate from the ith study, and let vi be
its variance. Thus, the data from a set of k studies are
the effect size estimates T1, . . . , Tk , and their variances
v1, . . . , vk .

A natural way to describe the data is via a two-level
hierarchical model, with one model for the data at the
study level and another model for the between-study
variation in effects. At the first (within-study) level, the
effect size estimate Ti is just the effect size parameter
plus a sampling error εi . That is,

Ti = θi + εi , εi ∼ N(0, vi).

The parameter θ is the mean effect size parameter for
all of the studies. It has the interpretation that θ is the
mean of the distribution from which the study-specific
effect size parameters (θ1, θ2, . . . , θk) were sampled.
Note that this is not conceptually the same as the mean
of θ1, θ2, . . . , θk , the effect size parameters of the k
studies that were observed.
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At the second (between-study) level, the effect size
parameters are determined by a mean effect size β0

plus a study-specific random effect ηi . That is,

θi = β0 + ηi, ηi ∼ N(0, τ 2).

In this model, the ηi represent differences between
the effect size parameters from study to study. The
parameter τ 2, often called the between-studies vari-
ance component, describes the amount of variation
across studies in the random effects (the ηis) and
therefore effect parameters (the θis).

This model is identical in general form to the hierar-
chical linear model often used in the primary analysis
of social science data. It has two features that are dif-
ferent from that model, however. First, in the usual
model, the Level 1 variance is identical across Level 1
units. In the meta-analytic model, the Level 1 vari-
ances (the vis) are different for each of the Level 1
units (in this case, studies). That is, each study has a
different sampling error variance at Level 1. Second, in
the usual model, the Level 1 variance is unknown and
must be estimated from the data. In the meta-analytic
model, the Level 1 variances, although differing across
studies, are known.

The two-level model described above can be written
as a one-level model as follows:

Ti = β0 + ηi + εi = β0 + ξi ,
where ξi is a composite error defined by ξi = ηi + εi .
Writing this as a one-level model, we see that each
effect size is an estimate of β0, with a variance that
depends on both vi and τ 2. In models such as this, it
is necessary to distinguish between the variance of Ti ,
assuming a fixed θi and the variance ofTi incorporating
the variance of the θi as well. The former is the con-
ditional sampling variance of Ti (denoted by vi), and
the latter is the unconditional sampling variance of Ti
(denoted by v∗i ). Because the sampling error εi and the
random effect ηi are assumed to be independent and
the variance of ηi is τ̂ 2, it follows that the unconditional
sampling variance of Ti is v∗i = vi + τ̂ 2.

The least squares (and maximum likelihood) esti-
mate of β0 under the model is

β̂∗0 =
∑k

i=1 w
∗
i Ti∑k

i=1 w
∗
i

, (1)

where w∗i = 1/(vi + τ̂ 2) = 1/v∗i , and τ̂ 2 is the
between-studies variance component estimate. Note
that this estimator corresponds to a weighted mean of
the Ti , giving more weight to the studies whose esti-
mates have smaller unconditional variance (are more
precise) when pooling.

The sampling variance v∗• of β̂∗0 is simply the
reciprocal of the sum of the weights,

v∗• =
(

k∑
i=1

w∗i

)−1

,

and the standard error SE(β̂∗0 ) of β̂∗0 is just the square
root of v∗• . Under this model, β∗0 is normally dis-
tributed, so a 100(1 – α)% confidence interval for β0

is given by

β̂∗0 − tα/2
√
v∗• ≤ β0 ≤ β̂∗0 + tα/2

√
v∗• ,

where tα is the 100α% point of the t-distribution with
(k – 1) degrees of freedom. Similarly, a two-sided test
of the hypothesis that β0 = 0 at significance level α
uses the test statistic Z = β̂∗0 /

√
v∗• and rejects if |Z|

exceeds tα/2.
To use the estimate of the average effect size given

above and the tests and confidence intervals associated
with it, one needs to know the between-studies vari-
ance component τ̂ 2. Usually, this has to be estimated
from the data. In any particular set of effect sizes, it may
not be clear whether the variation in the observed effect
size estimates is large enough to provide persuasive
evidence that τ 2 > 0. In the next section, we pursue
the problem of testing whether τ 2 = 0 and estimating
a precise value of τ 2 to use in the estimation of β0.

15.3. Testing Whether

the Between-Studies

Variance Component τ 2 = 0

It seems reasonable that the greater the variation in
the observed effect size estimates, the stronger the evi-
dence that τ 2 > 0. A simple test (the likelihood ratio
test) of the hypothesis that τ 2 = 0 uses the weighted
sum of squares about the weighted mean that would be
obtained if τ 2 = 0. Specifically, it uses the statistic

Q =
k∑
i=1

(Ti − β̂0)
2/vi,

where β̂0 is the estimate of β0 that would be obtained
from equation (1) if τ 2 = 0. The statisticQ has the chi-
squared distribution with (k – 1) degrees of freedom
if τ 2 = 0. Therefore, a test of the null hypothesis that
τ 2 = 0 at significance level α rejects the hypothesis
if Q exceeds the 100(1 – α)% point of the chi-square
distribution with (k – 1) degrees of freedom.

This (or any other statistical hypothesis test) should
not be interpreted too literally. The test is not very
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powerful if the number of studies is small or if the
conditional variances (the vi) are large (see Hedges &
Pigott, 2001). Consequently, even if the test does not
reject the hypothesis that τ 2 = 0, the actual varia-
tion in effects across studies may be consistent with
a substantial range on nonzero values of τ 2, some of
them rather large. This suggests that it is important to
consider estimation of τ 2 and use these estimates in
constructing estimates of the mean using (1).

Note, however, that even when the estimate of τ 2 is
equal to zero, there may still be many nonzero values
of τ 2 that are quite compatible with the effect size data
(see Raudenbush & Bryk, 1985). This has led many
investigators to consider the use of Bayesian estimators
that compute the average of the entire meta-analysis
over a range of plausible values of τ 2 (see Hedges,
1998).

15.4. Estimating

the Between-Studies

Variance Component τ 2

Estimation of τ 2 can be accomplished without
making assumptions about the distribution of the
random effects or under various assumptions about the
distribution of the random effects using other methods
such as maximum likelihood estimation. Maximum
likelihood estimation is more efficient if the distribu-
tional assumptions about the study-specific random
effects are correct, but these assumptions are often
difficult to justify theoretically and verify empiri-
cally. Thus, distribution-free estimates of the between-
studies variance component are often attractive.

A simple, distribution-free estimate of τ 2 is
given by

τ̂ 2 =
[
Q−(k−1)

a
if Q ≥ (k − 1)

0 if Q < (k − 1)
,

where a is given by

a =
k∑
j=1

wi −
∑k

j=1 w
2
i∑k

j=1 wi
, (2)

and wi = 1/vi . Estimates of τ 2 are set to 0 when
Q − (k − 1) yields a negative value because τ 2, by
definition, cannot be negative.

If the within-study sampling error variances
v1, . . . , vk used to construct the weights wi are
known exactly and the estimate is not set to 0 when

Q − (k − 1) < 0, then the wi are constants and the
estimate is unbiased, a result that does not depend on
assumptions about the distribution of the random
effects (or the conditional distribution of the effect
sizes themselves). Inaccuracies in the estimation of the
vi (and hence thewi)may lead to biases, although they
are usually not substantial. The truncation of the esti-
mate at zero is a more serious source of bias, although it
improves the accuracy (reduces its mean squared error
about the true τ 2) of estimates of τ 2. This bias can be
substantial when k is small but decreases rapidly when
k becomes larger (see Hedges & Vevea, 1998). The
relative bias of τ̂ 2 can be well over 50% for k = 3
and τ̂ 2 = v/3. This result underscores the fact that
estimates of τ 2 computed from only a few studies
should be treated with caution. For k > 20, the biases
are much smaller, and relative biases are only a few
percent (see Hedges & Vevea, 1998).

Bias is not the only concern in the estimation of τ 2.
When the number of studies is small, τ̂ 2 has a great deal
of sampling uncertainty. Moreover, the sampling dis-
tribution of τ̂ 2 is quite skewed (it is a distribution that is
a constant times a chi-squared distribution). Although
the standard error of τ̂ 2 is known, it serves only to give
a broad characterization of the uncertainty of τ̂ 2 (see
Hedges & Pigott, 2001). In particular, intervals of plus
or minus 2 standard errors would be very poor approx-
imations to 95% confidence intervals for τ 2 unless the
number of studies was very large.

15.4.1. Example

Returning to our example of the studies of gender
differences in field articulation ability, the data
reported by Hyde (1981) are presented in Table 15.1.
The effect size estimates in column 2 are standard-
ized mean differences. All estimates are positive and
indicate that, on average, males are performing higher
than females in field articulation. The variances of the
estimates are in column 3. Finally, the year that the
study was conducted is in column 4.

First, we turn to the question of whether the effect
sizes have more sampling variation than would be
expected from the size of their conditional variances.
Computing the test statisticQ, we obtainQ = 24.103,
which is slightly larger than 22.36, which is the
100(1−0.05) = 95% point of the chi-square distribu-
tion with 14− 1 = 13 degrees of freedom. Actually, a
Q value of 24.103 would occur only about 3% of the
time if τ 2 = 0. Thus, there is some evidence that the
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Table 15.1 Field Articulation Data From Hyde
(1981)

ID ES Var Year

1 0.76 0.071 1955
2 1.15 0.033 1959
3 0.48 0.137 1967
4 0.29 0.135 1967
5 0.65 0.140 1967
6 0.84 0.095 1967
7 0.70 0.106 1967
8 0.50 0.121 1967
9 0.18 0.053 1967

10 0.17 0.025 1968
11 0.77 0.044 1970
12 0.27 0.092 1970
13 0.40 0.052 1971
14 0.45 0.095 1972

NOTE: ID= study ID; ES= effect size estimate; Var= variance; Year=
year of study.

variation in effects across studies is not simply due to
chance sampling variation.

Hence, we investigate how much variation there
might be across studies, and we compute the estimate
of τ 2 using the distribution-free method given above.
We obtain the estimate

τ̂ 2 = 24.103− (14− 1)

195.384
= 0.057.

Comparing this value with the average of the con-
ditional variances, we see that τ̂ 2 is about 65% of the
average sampling error variance. Thus, it cannot be
considered negligible.

Now we compute the weighted mean of the effect
size estimates, incorporating the variance compo-
nent estimate τ̂ 2 into the weights. This yields an
estimate of

β∗0 = 58.488/106.498 = 0.549,

with a variance of

v∗· = 1/106.498 = 0.0094.

The 95% confidence interval for β0 is given by

0.339 = 0.549− 2160.
√

0.0094 ≤ β0

≤ 0.542− 2.160
√

0.00974 = 0.758.

This confidence interval does not include 0, so
the data are incompatible with the hypothesis that
β0 = 0.

15.5. Fixed-Effects Analysis

Two somewhat different statistical models have been
developed for inference about effect size data from
a collection of studies, called the random-effects and
fixed-effects models, respectively (see, e.g., Hedges &
Vevea, 1998). Random-effects models, which we dis-
cussed above, treat the effect size parameters as if they
were a random sample from a population of effect
parameters and estimate hyperparameters (usually just
the mean and variance) describing this population of
effect parameters (see, e.g., DerSimonian & Laird,
1986; Hedges, 1983a, 1983b; Schmidt & Hunter,
1977). The use of the term random effects for these
models in meta-analysis is somewhat inconsistent with
the use of the term elsewhere in statistics. It would
be more consistent to call these models mixed models
because the parameter structure of the models is identi-
cal to those of the general linear mixed model (and their
important application in social sciences, hierarchical
linear models).

Although the idea that studies (and their correspond-
ing effect size parameters) are a sample from a popu-
lation is conceptually appealing, studies are seldom a
probability sample from any well-defined population.
Consequently, the universe (to which generalizations
of the random-effects model apply) is often unclear.
Moreover, some scholars object to the idea of gen-
eralizing to a universe of studies that have not been
observed. Why, they argue, should studies that have
not been done influence inferences about the studies
that have been done? This argument is part of a more
general debate about conditionality in inference, which
dates back at least to debates in the 1920s between
Fisher and Yates about the proper analysis of 2 × 2
tables (e.g., the Fisher exact test vs. the Pearson chi-
square tests) (see Camilli, 1990). This, like many
debates about the foundations of inference, is unlikely
to ever be resolved definitively.

Fixed-effects models treat the effect size param-
eters as fixed but unknown constants to be estimated
and usually (but not necessarily) are used in conjunc-
tion with assumptions about the homogeneity of effect
parameters (see, e.g., Hedges, 1982a; Rosenthal &
Rubin, 1982). That is, fixed-effects models carry out
estimation and testing as if τ 2 = 0. The logic of fixed-
effects models is that inferences are not about any
putative population of studies but about the particular
studies that happen to have been observed.

For example, if the fixed-effects approach had been
applied to the example above, the weights would have
been computed with τ 2 = 0, so that the weight for each
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study would have been wi = 1/vi . In this case, the
weights assigned to studies would have been consider-
ably more unequal across studies, and the mean would
have been estimated as β̂0 = 118.486/216.684 =
0.547. Comparing this with the random-effects
estimate of β̂∗0 = 0.549, we see that the mean effects
are very similar. This is often (but not necessarily) the
case. However, the variance of the mean computed in
the fixed-effects analysis is v· = 1/216.684 = 0.0046.
This is much smaller (nearly 50%) than 0.0094, the
variance computed for the mean effect in the random-
effects analysis above. The variance of the fixed-effects
estimate is always smaller than or equal to that of the
random-effects estimate of the mean, and often it is
much smaller. The reason is that between-studies vari-
ation in effects is included as a source of uncertainty in
computing the variance of the mean in random-effects
models but is not included as a source of uncertainty
of the mean in fixed-effects models.

15.6. Modeling the Association

Between Differences Among

Studies and Effect Size

One of the fundamental issues facing meta-analysts is
how to model the association between characteristics
of studies and their effect sizes. In our example, we
noted the fact that studies conducted earlier appeared
to find gender differences that were larger. Does this
mean that gender differences are getting smaller over
time, or is this just an artifact of sampling fluctuation
in effect sizes across studies? One might observe many
differences among studies that appear to be associated
with differences in effect sizes. One variety of treat-
ment might produce bigger effects than others, more
intensive treatments might produce bigger effects, and
a treatment might be more effective in some contexts
than others. To examine any of these questions, one
must investigate the relation between study character-
istics (study-level covariates) and effect size. The most
obvious statistical procedures for doing so are mixed
models for meta-analysis.

The mixed models considered in this chapter are
closely related to the general mixed linear model,
which has been studied extensively in applied statistics
(e.g., Hartley & Rao, 1967; Harville, 1977). Mixed
models have been applied to meta-analysis since very
early in their use in the social sciences. For example,
Schmidt and Hunter (1977) used the mixed-model idea
(albeit not the term) in their models of validity gener-
alization. Other early applications of mixed models to

meta-analysis include Hedges (1983b), DerSimonian
and Laird (1986), Raudenbush and Bryk (1985), and
Hedges and Olkin (1985).

We first describe the general model and notations
for mixed-model meta-analysis and point out the
connection between this model and classical hierar-
chical linear models used in the social sciences. Then
we consider distribution-free analyses of these models
using software for weighted least squares methods.
Finally, we show how to carry out mixed-model meta-
analyses using software for hierarchical linear models
such as SAS PROC MIXED, HLM, and MLwin.

15.6.1. Models and Notation

Suppose as before that the effect size parameters
are θ1, θ2, . . . , θk , and we have k independent effect
size estimates T1, . . . , Tk , with sampling variances
v1, . . . , vk . We assume, as before, that each Ti is
normally distributed about θi . Thus, the Level 1
(within-study) model is as before:

Ti = θi + εi , εi ∼ N(0, vi).

Suppose now that there are p known predictor
variables for the fixed effects by X1, . . . , Xp , and
assume that they are related to the effect sizes via a
linear model. In this case, the Level 2 model for the
ith effect size parameter becomes

θi = β0xi1 + β1xi2 + · · · + βpxip + ηi,
ηi ∼ N(0, τ 2),

where xi1, . . . , xip are the values of the predictor
variables X1, . . . , Xp for the ith study (i.e., xij is the
value of predictor variable Xj for study i), and ηi is
a study-specific random effect with zero expectation
and variance τ 2.

We can also rewrite the two-level model in a single
equation as a model for the Ti as follows:

Ti = β0xi1 + β1xi2 + · · · + βpxip + ηi + εi
= β0xi1 + β1xi2 + · · · + βpxip + ξi, (3)

where ξi = ηi + εi is a composite residual incorpo-
rating both study-specific random effect and sampling
error. Because we assume that ηi and εi are indepen-
dent, it follows that the variance of ξi is τ 2 + vi .
Consequently, if τ 2 were known, we could estimate
the regression coefficients via weighted least squares
(which would also yield the maximum likelihood esti-
mates of the βis). When τ 2 is not known, there are four
approaches to the estimation of β = (β0, β1, . . . , βp).
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One is to estimate τ 2 from the data and use the estimate
in place of τ 2 to obtain weighted least squares estimates
of β. The second is to jointly estimate β and τ 2 via
unrestricted maximum likelihood. The third is to define
τ 2 to be 0 (which is effectively what is done in fixed-
effects analyses). The fourth approach is to compute
an estimate of β for each of a range of plausible values
of τ 2 and compute a weighed average of those results,
giving a weight to each according to its plausibility
(prior probability), which is effectively what is done
in Bayesian approaches to meta-analysis. We discuss
each of these approaches below.

15.6.2. Analysis Using Software for Classical
Hierarchical Linear Model Analysis

Hierarchical linear models are widely used in the
social sciences (see, e.g., Goldstein, 1987; Longford,
1987; Raudenbush & Bryk, 2002). There has been
considerable progress in developing software to esti-
mate and test the statistical significance of parameters
in hierarchical linear models.

There are two important differences in the hierarchi-
cal linear models (or general mixed models) usually
studied and the model used in meta-analysis (equa-
tion (2)). The first is that in meta-analysis models,
such as in equation (2), the variances of the sampling
errors v1, . . . , vk are not identical across studies. That
is, the assumption that v1 = · · · = vk is unrealis-
tic. The sampling error variances usually depend on
various aspects of study design (particularly sample
size), which cannot be expected to be constant across
studies. The second is that although the sampling error
variances in meta-analysis are different for each study,
they are generally assumed to be known.

Therefore, the model used in meta-analysis can be
considered a special case of the general hierarchical
linear model in which the Level 1 variances are unequal
but known. Consequently, software for the analysis
of hierarchical linear models can be used for mixed-
model meta-analysis if it permits (as do to the programs
SAS PROC MIXED, HLM, and MLwin) the spec-
ification of first-level variances that are unequal but
known.

15.6.2.1. Mixed-Model Meta-Analysis
Using SAS PROC MIXED

SAS PROC MIXED is a general-purpose computer
program that can be used for fitting mixed models in
meta-analysis (see Singer, 1998). The upper panel of

Table 15.2 gives SAS input file for an analysis of the
data on gender differences in field articulation ability
from Hyde (1981). The first 20 lines of the upper panel
of the table are the commands for the SAS data step,
which name the data set (in this case, “genderdiff”) and
list the variable names and labels. The lines following
the statement “datalines;” are the data consisting of
an id number, the effect size estimate, the variance
of the effect size estimate, and the year in which
the study was conducted minus 1900 (the study-level
covariate).

The last seven lines of the upper panel of Table 15.2
specify the analysis. The first line invokes PROC
MIXED for the data set genderdiff. The command
“cl” tells SAS to compute 95% confidence intervals
for the variance component. The second line (“class=
id”) tells SAS that the aggregate units are defined by
the variable “id,” meaning that the Level 1 model is
specific to each value of id (i.e., each study). The third
line (“model effsize = year/solution = ddfm = bw
notest”) specifies that the Level 2 model (the model for
the fixed effects) is to predict effect size from year and
indicates that the “between/within” method of comput-
ing the denominator degrees of freedom will be used in
tests for the fixed effects, which is generally advisable
(see Littell, Milliken, Stroup, & Wolfinger, 1996). The
third line also specifies first (via “random= intercept”)
that the intercept of the Level 1 model (i.e., 2i ) is a
random effect and (via “/sub = id”) that the Level 2
units are defined by the variable “id.” The third line
(“repeated/group = id”) also specifies the structure of
the Level 1 (within-study) error covariance matrix, and
“/group= id” indicates that the covariance matrix of ε
has a block-diagonal structure with one block for each
value of the variable “id”; that is, there is a separate
error variance for each study. The statement on lines 4
and 5 specifies the initial values of the 15 variances in
this model (τ 2, v1, v2, . . . , v14). Note that the values
of the last 14 variances, the sampling error variances
v1, v2, . . . , v14, are fixed, but τ 2 has to be estimated in
the analysis. A good practice (used here) is to use half
of the average of the sampling error variances as the
initial value of τ 2. The part of the statement on line
5 (“eqcons = 2 to 15”) specifies that variances 2 to
15 are to be fixed at their initial values throughout the
analysis. Line 7 runs the analysis.

The lower panel of Table 15.2 gives the output file
for the analysis specified in the upper panel of the
table. It begins with the covariances of all the random
effects. Because our model specifies only variances,
the estimates are all variances, beginning with the
variance of the intercept in the Level 2 model: τ 2,
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Table 15.2 SAS Input and Output Files for the Field Articulation Data From
Hyde (1981)

Input File
data genderdiff; input label id effsize variance year; id =’ID of the

study’effsize=’effect size estimate’ variance
=’variances of effect size estimates’ year
=’year the study swas published’; datalines;

1 0.76 0.071 55
2 1.15 0.033 59
3 0.48 0.137 67
4 0.29 0.135 67
5 0.65 0.140 67
6 0.84 0.095 67
7 0.70 0.106 67
8 0.50 0.121 67
9 0.18 0.053 67

10 0.17 0.025 68
11 0.77 0.044 70
12 0.27 0.092 70
13 0.40 0.052 71
14 0.45 0.095 72
;

proc mixed data = genderdiff cl;
class id;
model effsize = year/solution ddfm = bw notest; random int/sub = id ; repeated/group =
id; parms (0.043) (0.071) (0.033) (0.137) (0.135) (0.140) (0.095) (0.106) (0.121)(0.053)
(0.025) (0.044) (0.092) (0.052) (0.095)/eqcons = 2 to 15;

run;
Output File

Covariance Parameter Estimates

Covariance
Parameter Subject Group Estimate Alpha Lower Upper

Intercept id 0.03138 0.05 0.008314 1.4730
Residual id 1 0.0710
Residual id 2 0.0330
Residual id 3 0.1370
Residual id 4 0.1350
Residual id 5 0.1400
Residual id 6 0.0950
Residual id 7 0.1060
Residual id 8 0.1210
Residual id 9 0.0530
Residual id 10 0.0250
Residual id 11 0.0440
Residual id 12 0.0920
Residual id 13 0.0520
Residual id 14 0.0950

Solution for Fixed Effects

Standard
Effect Estimate Error df t-Value Pr > |t |
Intercept 3.1333 1.2243 12 2.56 0.0250
Year –0.03887 0.01837 12 –2.12 0.0560

showing that the estimate is 0.031. Notice that the 95%
confidence interval of the variance component τ 2 does
not include zero, suggesting that there is significant

variation across studies or that effect size estimates
vary considerably from study to study. This justifies
the use of random-effects models, in which the effect
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size parameter is a random variable and has its own
distribution. The next 14 lines repeat the study-specific
sampling error variances v1, v2, . . . , v14 as they were
given as initial values and then fixed. The last two rows
of the table give the estimates of the Level 2 parameters
β1, β2 (the fixed effects), their standard errors, the test
statistic t , and the associated p-value.

15.6.2.2. Sensitivity Analysis

A close inspection of the data suggests that the
estimates of the two studies conducted in the 1950s
are somewhat larger than the remaining estimates of
the studies conducted in more recent years. Thus, we
decided to conduct sensitivity analysis in which each
of these estimates individually as well as both esti-
mates simultaneously are omitted from our sample.
First, we ran our mixed-models analysis, omitting
the estimate of the 1955 study. Our results indicated
that the year-of-study coefficient was negative (as the
coefficient reported in Table 15.2) and significant at
the .05 level. The between-study variance compo-
nent estimate was comparable to the estimate reported
in Table 15.2 and significantly different from zero.
In our second analysis, we omitted the estimate of
the 1959 study. The year-of-study coefficient was
still negative but much smaller in magnitude and did
not reach statistical significance. The between-study
variance component estimate was statistically signif-
icant but nearly one half as large as the previous
estimates. Finally, we ran a mixed-models analysis,
omitting both estimates of the 1950s studies. In this
specification, the year-of-study coefficient was prac-
tically zero, and the between-study variance compo-
nent estimate was comparable to the estimate in our
second specification. Overall, these results indicated
that our coefficient and variance component estimates
in our specification, in which all effect sizes were
included in the analysis, are sensitive to omission
of the 1950s study estimates, especially the 1959
estimate.

15.6.3. Estimation Using
Weighted Least Squares

If τ 2 were known, we could estimate the regression
coefficients via weighted least squares (which would
also yield the maximum likelihood estimates of the
βis). In this section, we discuss here how to estimate
β if an estimate of τ 2 is available. Actually obtaining
the estimate of τ 2 is discussed in the appendix. The
description of the weighted least squares estimation is

facilitated by describing the model in matrix notation.
The k × p matrix X,

X =



x11 x12 . . . x1p

x21 x22 . . . x2p

. . . . . .

. . . . . .

xk1 xk2 . . . xkp


 ,

is called the design matrix, which is assumed to have
no linearly dependent columns; that is, X has rankp. It
is often convenient to define x11 = x21 = · · · = xk1 =
1, so that the first regression coefficient becomes an
intercept term, as in ordinary regression.

We denote the k-dimensional vectors of population
and sample effect sizes by θ = (θ1, . . . , θk)

′ and
T = (T1, . . . , Tk)

′, respectively. The model for the
observations T as a one-level model can be written as

T = θ+ ε,= Xβ+ η+ ε,= Xβ+ ε, (4)

where β = (β0, β1, . . . , βp)
′ is the p-dimensional

vector of regression coefficients, η = (η1, . . . , ηk)
′

is the k-dimensional vector of random effects, and
ξ = (ξ1, . . . , ξk)

′ is a k-dimensional vector of residu-
als of T about Xβ. The covariance matrix of ξ is a
diagonal matrix where the ith diagonal element is
vi + τ̂ 2.

If the residual variance component τ 2 were known,
we could use the method of generalized least squares
to obtain an estimate of β. Although we do not know
the residual variance component τ 2, we can compute
an estimate of τ 2 and use this estimate to obtain a gen-
eralized least squares estimate of β. The unconditional
covariance matrix of the estimates is a k × k diagonal
matrix V∗ be defined by

V∗ = Diag(v1 + τ̂ 2, v2 + τ̂ 2, . . . , vk + τ̂ 2).

The generalized least squares estimator β̂
∗

under the
model (4) using the estimated covariance matrix V̂∗ is
given by

β̂
∗ = [X′(V∗)−1X]−1X′(V∗)−1T,

which is normally distributed, with mean β and
covariance matrix �∗ given by

�∗ = [X′(V∗)−1X]−1.

Note that the estimate of the between-study variance
component τ̂ 2 is incorporated as a constant term in the
computation of the fixed effects (or regression coeffi-
cients) and their dispersion via the variance-covariance
matrix of the effect size estimates.
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15.6.4. Tests and Confidence Intervals
for Individual Regression Coefficients

The distribution of β̂
∗

can be used to obtain tests
of significance or confidence intervals for compo-
nents of β. If σ ∗jj is the j th diagonal element of �∗,

and β̂
∗ = (β̂∗0 , β̂

∗
1 , . . . , β̂

∗
p)
′, then the approximate

100(1 − α)% confidence interval for βj , 1 ≤ j ≤ p,
is given by

β̂j − Cα/2σjj ≤ βj ≤ β̂j + Cα/2σjj,

whereCα/2 is the 100(1−α) percentile of the standard
normal distribution (e.g., for α = 0.05, C0.05 = 1.64;
for α = 0.025, C0.025 = 1.96).

Approximate tests of the hypothesis that βj equals
some predefined value c0 (typically 0), that is, a test of
the hypothesis

H0 : βj = c0,

uses the statistic

t∗ = (β̂∗1 − c0)/(σ
∗
jj )

1/2.

The one-tailed test rejects H0 at significance level α
when the t∗ > Cα , where Cα is the 100(1 – α) per-
centile of Student’s t-distribution with k − p degrees
of freedom, and the two-tailed test rejects at level α if
|t∗| > Cα/2. The usual theory for the normal distribu-
tion can be applied if simultaneous confidence intervals
are desired.

15.6.5. Tests for Blocks
of Regression Coefficients

As in the fixed-effects model, we sometimes want
to test whether a subset β1, . . . , βm of the regression
coefficients is simultaneously zero, that is,

H0 : β1 = · · · = βm = 0.

This test arises, for example, in stepwise analyses
when it is desired to determine whether a set of m
of the p predictor variables (m =/ p) is related for
effect size after controlling for the effects of the other
predictor variables. For example, suppose one is inter-
ested in testing the importance of a conceptual variable
such as research design, which is coded as a set of
predictors. Specifically, such a variable can be coded
as multiple dummies for randomized experiments,
matched samples, nonequivalent comparison group
samples, and other quasi-experimental designs, but it
is treated as one conceptual variable, and its impor-
tance is tested simultaneously. To test this hypothesis,

compute β̂
∗ = (β̂∗0 , β̂

∗
1 , . . . , β̂

∗
m, β̂

∗
m+1, . . . , β̂

∗
p)
′ and

the statistic

Q∗ = (β̂∗1 , . . . , β̂∗m)(�∗11)
−1(β̂∗1 , . . . , β̂

∗
m)
′, (5)

where �∗11 is the upper m×m submatrix of

�∗ =
(

�∗11 �∗12
�∗21 �∗22

)
.

The test that β1 = · · · = βm = 0 at the 100α% sig-
nificance level consists of rejecting the null hypothesis
if Q∗ exceeds the 100(1 − α) percentage point of the
chi-square distribution with m degrees of freedom.

Ifm = p, then the procedure above yields a test that
all the βj are simultaneously zero; that is, β = 0. In
this case, the test statisticQ∗ given in (5) becomes the
weighted sum of squares due to regression

Q∗R = β̂
′
�−1β̂.

The test that β = 0 is simply a test of whether the
weighted sum of squares due to the regression is larger
than would be expected if β = 0, and the test consists
of rejecting the hypothesis that β = 0 if Q∗R exceeds
the 100(1 − α) percentage point of a chi-square with
p degrees of freedom.

15.6.6. Testing the Significance
of the Residual Variance Component

It is sometimes useful to test the statistical signifi-
cance of the residual variance component τ 2 in addition
to estimating it. The test statistic used is

QE = T′[V−1 − V−1X(X′V−1X)−1X′V−1]T, (6)

where V = Diag(v1, . . . , vk). If the null hypothesis

H0 : τ 2 = 0

is true, then the weighted residual sum of squares QE

given in (6) has a chi-square distribution with k − p
degrees of freedom (where p is the total number of
predictors, including the intercept). Therefore, the
test of H0 at level α is to reject if QE exceeds the
100(1− α)% point of the chi-square distribution with
(k − p) degrees of freedom.

15.6.7. Example

We now return to the data from the 14 studies of
gender differences in field articulation ability analyzed
via SAS PROC MIXED. The hypothesis that gender
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differences were changing over time was investigated
using a linear model to predict effect size x from the
year in which the study was conducted (minus 1900).
The design matrix X is

X =
(

1 1 1 1 1 1 1 1 1 1 1 1 1 1
55 59 67 67 67 67 67 67 67 68 70 70 71 72

)′

and the data vector

T = (0.76, 1.15, 0.48, 0.29, 0.65,

0.84, 0.70, 0.50, 0.18, 0.17,

0.77, 0.27, 0.40, 0.45)′.

Using the method given in the appendix, we com-
pute the constant c as c = 174.537. Therefore, τ̂ 2 =
(15.11−12)/174.537 = 0.018. Note that the standard
error of τ̂ 2 following the appendix is SE(τ̂ 2) = 0.0339,
which is very large compared with τ̂ 2, suggesting
that the data have relatively little information about
τ 2. Using this value of τ̂ 2, the covariance matrix V̂

∗

becomes

V̂
∗ = Diag(0.089, 0.051, 0.155, 0.153, 0.158,

0.113, 0.124, 0.139, 0.071, 0.043, 0.062,

0.110, 0.070, 0.113).

Using SAS PROC REG with weight matrix V∗ as
described above, we obtain the estimated regression
coefficients β̂∗0 = 3.215 for the intercept term and
β̂∗1 = −0.040 for the effect of year. The covariance
matrix of β∗ is

�∗ =
(

1.25963 −0.01887
−0.01887 0.00028

)
,

which was obtained by requesting the inverse of the
weighted X′X matrix. The standard error of β̂∗1 , the
regression coefficient for year, is

√
0.00028 = 0.0167,

and a 95% confidence interval for β∗1 is given by
−0.0765 = −0.040 − 2.179(0.0167) ≤ β∗1 ≤
−0.040+ 2.179(0.0167) = −0.0035.

Because the confidence interval does not contain
zero, we reject the hypothesis that β1 = 0.

Alternatively, we could have computed

z(β̂∗1 ) = β̂∗1 /SE(β̂∗1 ) = −0.040/0.0167 = −2.395,

which is to be compared with the critical value
of 2.179, so that the test leads to rejection of the
hypothesis that β∗1 = 0 at the α = 0.05 significance
level.

The test statistic QR for testing that the slope
and intercept are simultaneously zero has the value

QR = 54.14, which exceeds 5.99, the 95th percentage
point of the chi-square distribution with 2 degrees of
freedom. Hence, we also reject the hypothesis that
β∗0 = β∗1 = 0 at the α = 0.05 significance level.

Note that the estimated regression coefficients and
their standard errors are close to those estimated using
SAS PROC MIXED.

15.6.8. Fixed-Effects Models

Another alternative is to carry out the analysis
assuming that τ 2 = 0. This is conceptually equivalent
to assuming that any deviations from the linear model
at Level 2 are either nonexistent (the linear model
fits perfectly at Level 2) or not random (e.g., caused
by fixed characteristics of studies that are not in the
model). The fixed-effects analysis can be carried out
by using the methods described above with τ 2 = 0 or
by using a weighted regression program and specify-
ing that the weights to be used for the ith study are
wi = 1/vi .

The weighted least squares analysis gives the regres-
sion coefficients β̂0, β̂1, . . . , β̂p. The standard errors
for the β̂j printed by the program are incorrect by a
factor of

√
MSE , where MSE is the error or residual

mean square for the analysis of variance for the regres-
sion. If S(β̂j ) is the standard error of β̂j printed by the
weighted regression program, then the correct standard
error SE(β̂j ) of β̂j (the square root of the j th diagonal
element of (X′�−1X)−1) is most easily computed from
the results given on the computed printout by

SE(β̂j ) = S(β̂j )/
√

MSE.

Alternatively, the diagonal elements of the inverse
of the sum of squares and cross-products matrix
(X′WX)−1 also provide the correct sampling variances
for β̂0, . . . , β̂p .

TheF -tests in the analysis of variance for the regres-
sion should be ignored, but the (weighted) sum of
squares about the regression is the chi-square statistic
QE for testing whether the residual variance compo-
nent is 0, and the (weighted) sum of squares due to
the regression gives the chi-square statistic QR for
testing that all components β are simultaneously zero
(or a related statistic for testing that all components
of β except the intercept are zero if the program fits
an intercept). Therefore, all the statistics necessary to
compute the fixed-effects analysis can be computed
with a single run of a weighted least squares program.

The test statistic (equation (5)) for the simultaneous
test for blocks of regression coefficients can be com-
puted from the matrices directly. Alternatively, it can
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be computed from the output of the weighted stepwise
regression as

QCHANGE = mFCHANGE MSE,

where FCHANGE is the value of the F -test for the sig-
nificance of the addition of the block of m predictor
variables, and MSE is the weighted error or residual
mean square from the analysis of variance for the
regression.

15.6.8.1. Example: Gender
Differences in Field Articulation

We now return to the data from 14 studies of gender
differences in field articulation ability presented by
Hyde (1981). We fit a linear model to predict effect size
θ from the year in which the study was conducted. As
before, the regression model is linear with a constant
or intercept term and a predictor, which is the year
(minus 1900). The design matrix and the data vector
are as before. The covariance matrix is

V = Diag(0.071, 0.033, 0.137, 0.135,

0.140, 0.095, 0.106, 0.121, 0.053,

0.025, 0.044, 0.092, 0.052, 0.095).

Using SAS PROC REG and specifying the weight
for the ith study as wi = 1/vi as described above,
we obtain the estimated regression coefficients β̂0 =
3.422 for the intercept term and β̂1 = −0.043 for the
effect of the year. The covariance matrix of β is

 =
(

0.92387 −0.01385
−0.01385 0.00021

)
,

a result obtained by requesting the inverse of the
weighted X′X matrix.

Consequently, the fixed-effects standard error of β̂1,
the regression coefficient for year, is

√
0.00021 =

0.0145, and a 95% confidence interval for β1 is given
by −0.043 ± 2.179(0.0145) or −0.0749 ≤ β1 ≤
−0.0117.

Because the confidence interval does not contain
zero, we reject the hypothesis that β1 = 0.

Alternatively, we could have computed

z(β̂1) = β̂1/SE(β̂1) = −0.043/0.0145 = −2.986,

which is to be compared with the critical value of 2.179,
so that the test leads to rejection of the hypothesis that
β1 = 0 at the α = 0.05 significance level.

The coefficients in the fixed-effects model are
comparable to the coefficients in the random-
effects model. The standard errors of the regression

coefficients, however, are larger in the random-effects
model, as expected. In the random-effects model, τ̂ 2

is included in the variance-covariance matrix of the
effect size estimates (as a constant), and, therefore, the
diagonal elements of V are somewhat larger than in
the fixed-effects model, where τ̂ 2 is zero. For exam-
ple, in the random-effects model, the standard error of
the year-of-study coefficient is 15% larger than in the
fixed-effects model. It is noteworthy that year of study
explained approximately 45% of the random variation
across studies, suggesting that approximately one half
of the between-study variance is associated with the
year in which the study was conducted.

15.6.9. Bayesian Approaches

The third approach to carrying out the analysis is
not to use any single value of τ 2 by using Bayesian
methods. The problem with carrying out random-
effects analyses by substituting any fixed value of
τ 2 is that information about τ 2 comes from variation
between studies, and when the number of studies is
small, any estimate of the variance component must
be rather uncertain. Therefore, an analysis (such as
the conventional random-effects analysis) that treats
an estimated value of the variance component as if it
were known with certainty is problematic.

Bayesian analyses address this problem by recogniz-
ing that there is a family of random-effects analyses,
one for each value of the variance component. The
Bayesian analyses can be seen as essentially aver-
aging over the family of results, assigning each one
the weight that is appropriate given the posterior
probability of each variance component value con-
ditional on the observed data. Some approaches to
Bayesian inference for meta-analysis do this directly
(see, e.g., DuMouchel & Harris, 1983; Hedges, 1998;
Rubin, 1981). They compute the summary statistics
of the posterior distribution (such as the mean and
variance) conditionally given τ 2, then average (inte-
grate) these, weighting by the posterior distribution
of τ 2 given the data. Although these approaches are
transparent and provide a direct approach to obtain-
ing estimates of parameters of the posterior distribu-
tion, they require numerical integrations that can be
challenging.

An alternative is the use of Markov chain Monte
Carlo methods, which provide the posterior distribu-
tion directly without difficult numerical integrations.
These methods provide not only the mean and vari-
ance of the posterior distribution but also the entire
posterior distribution, making it possible to compute



Chapter 15 / Meta-Analysis • 295

many descriptive statistics of that distribution. Another
major advantage of these methods is that they permit
models in which the study-specific random effects are
not normally distributed but have heavier tailed distri-
butions, such as a Student’s t or gamma distribution
(see Seltzer, 1993; Seltzer, Wong, & Bryk, 1996;
Smith, Spiegelhalter, & Thomas, 1995).

15.7. Conclusion

This chapter presented several models for meta-
analysis, situating these methods within the context of
hierarchical linear models. Three different approaches
to estimation were discussed, and the use of both
random-effects (mixed) and fixed-effects models was
illustrated with an example of data from 14 studies
of gender differences in field articulation. Traditional

statistical software packages such as SAS, SPSS, or
Splus can be easily used to conduct weighted least
squares analyses in meta-analysis. In addition, more
specialized software packages, such as HLM, MLwin,
and the mixed-models procedure in SAS, can carry
out mixed-models analyses for meta-analytic data with
nested structure.

The mixed-effects models presented here can be
extended to three or more levels of hierarchy, capturing
random variation at higher levels. For example, there
is often reason to adopt a three-level structure in meta-
analysis, in which studies themselves are clustered. For
example, when the same investigators (or laboratories)
carry out multiple studies, a three-level meta-analysis
can model the variation between investigators (or lab-
oratories) at the third level, as well as between studies
within the same investigator (or laboratory) at the
second level.
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Appendix

A Distribution-Free Estimate

of the Residual Variance Component

The distribution-free method of estimation involves
computing an estimate of the residual variance com-
ponent and then computing a weighted least squares
analysis conditional on this variance component esti-
mate. Whereas the estimates and their standard errors
are “distribution free” in the sense that they do not
depend on the form of the distribution of the random
effects, the tests and confidence statements associated
with these methods are only strictly true if the random
effects are normally distributed.

Estimation of the Residual

Variance Component τ 2

The first step in the analysis is the estimation of
the residual variance component. Different estima-
tors might be used, but the usual estimator is based
on the statistic used to test the significance of the
residual variance component, the inverse conditional
variance-weighted residual sum of squares. It is the
natural generalization of the estimate of the between-
studies variance component, given, for example, by
DerSimonian and Laird (1986).

The usual estimator of the residual variance compo-
nent is given by

τ̂ 2 = (QE − k + p)/c,

where QE is the test statistic used to test whether the
residual variance component is zero (the residual sum
of squares from the weighted regression using weights
wi = 1/vi for each study), and c is a constant given by

c = tr(V−1)− tr[(X′V−1X)−1X′V−2X],

where V= diag(v1, . . . , vk) is a k× k diagonal matrix
of conditional variances, and tr(A) is the trace of the
matrix A.

The Standard Error of τ̂ 2

When the random effects are normally distributed,
the standard error of τ̂ 2 is given by

[SE(τ̂ 2)]2 = 2{tr(V−2V∗2)− 2tr(MV−1V∗2)

+ tr(MV∗MV∗)}/c2,

where the k × k matrix M is given by

M = V−1X(X′V−1X)−1X′V−1,

V∗ is a k × k symmetric matrix given by

V∗ = V+ τ 2I,

and I is a k × k identity matrix. However, it is impor-
tant to remember that the distribution of the residual
variance component estimate is not close to normal
unless (k − p) is large. Consequently, probability
statements based on SE(τ̂ 2) and the assumption of
normality should not be used unless (k − p) is large.
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Researchers in the social sciences are interested
in the unobserved, or latent, variables that are
causes or consequences of the behaviors they

observe. Latent variables such as attitudes, feelings,
and motives are valuable because, in the context of a
well-reasoned theory, they have the potential to explain
a wide array of behavioral processes using a relatively
small number of constructs. Moreover, they bring rich-
ness and detail to theoretical accounts of behaviors that
are not adequately described by observable influences.

These latent variables, or factors, typically are
inferred from patterns of association among sets of
observed variables believed to be caused, at least
in part, by one or more factors.1 The patterns of

1. The material presented in this chapter is not relevant for factor
models in which the latent variable is presumed to be caused
by the indicators. In such models, the indicators are referred
to as cause indicators (Bollen & Lennox, 1991) or formative
indicators (Cohen, Cohen, Teresi, Marchi, & Velez, 1990).

AUTHORS’ NOTE: Correspondence should be addressed to Rick H. Hoyle, Department of Psychology: SHS, Box 90085, Duke
University, Durham, NC 27708–0085. Send electronic mail to rhoyle@duke.edu.

association are conveyed in matrices of covariances
or correlations, and to the extent that the associations
among the observed variables are near zero when the
influence of the factors is taken into account, the factors
provide a parsimonious account of reliable variance
in the observed variables without significant loss of
information.

The primary statistical tool for drawing such infer-
ences is factor analysis. The aim of factor analysis is
to describe the associations among a potentially large
number of observed variables, or indicators, using a
relatively small number of factors. It is assumed that
the indicators are fallible in their representation of the
underlying factor. That is, a portion of the variability in
observed scores on each indicator is shared with other
indicators of the factor, whereas a portion is, with ref-
erence to the factor, unique to the indicator. In theory,
the uniqueness component can further be decomposed
into variability attributable to other factors, specificity,
and variability attributable to random fluctuation,
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error. In practice, this decomposition is possible only to
the extent that the data matrix includes other indicators
manifesting the same specificity, or covariates that are
associated with the specific component (i.e., specific
effects) (Bentler, 1990b).

A fundamental concern in applications of factor
analysis is the determination of how many factors are
necessary to adequately account for the commonality
among the indicators in a set. Despite the fact that this
concern received considerable attention from quanti-
tative methodologists in the 1950s and 1960s (e.g.,
Cattell, 1966; Guttman, 1954; Horn, 1965), a half
century later, it remains a topic of considerable debate
(e.g., Bollen, 2000; Hayduk & Glaser, 2000; Herting &
Costner, 2000; Mulaik & Millsap, 2000) and, judging
from published applications of factor analysis, still is
poorly understood by social and behavioral scientists
(Fabrigar, Wegener, MacCallum, & Strahan, 1999).

In this chapter, we review five procedures for deter-
mining the number of factors in a factor analysis. Three
apply exclusively to exploratory factor analysis, one
applies either to exploratory or confirmatory factor
analysis, and one applies exclusively to confirmatory
factor analysis. We demonstrate that the two proce-
dures used most frequently by substantive researchers
frequently lead to incorrect inferences regarding the
number of factors underlying a set of indicators. We
illustrate the application of, and compare results from,
the three remaining procedures in a factor analysis
of a widely used self-report measure known to be
factorially complex.

16.1. Exploratory and

Confirmatory Factor Models

In exploratory factor analysis (i.e., principal axis,
common factors), each of the p observed variables,
Xi , is modeled as a linear combination of k factors,
ξ1, ξ2, . . . , ξk , and a uniqueness component, δi . The
model can be expressed as a series of measurement
equations:

X1 =
k∑
j=1

λ1j ξj + δ1

X2 =
k∑
j=1

λ2j ξj + δ2

...

Xm =
k∑
j=1

λmjξj + δm.

The λs are, in effect, regression coefficients that
index the degree to which variance in the indicator
shared with the other indicators (i.e., its communality)
is explained by each of the k factors.2

A significant drawback to exploratory factor
analysis is the indeterminacy of the estimates of the λs
and δs. That is, theλs and δs (as well as the variances of
and covariances between the factors) are not uniquely
determined by the observed data. In theory, there exist
an infinite number of solutions to the measurement
equations that would be equally consistent with the
observed data. Indeed, it is possible to derive equally
valid solutions that imply factors that are scarcely cor-
related (Steiger, 1996). This mathematical property of
solutions generated by exploratory factor models stems
from the fact that, as typically specified, such models
require estimation of more unknowns, or free param-
eters, than there are observed data.3 This is a concern
about degrees of freedom that attends all forms of sta-
tistical inference, and it gives rise to the inferential
problem that such models cannot be disconfirmed.

The solution to both the indeterminacy and inability-
to-disconfirm problems is to impose constraints on the
measurement equations by fixing a subset of the λs
to a specific value. Often, this value is zero, which
represents the hypothesis that the ξ does not contribute
to the common variance in the variable. For instance,
expanding the measurement equations presented ear-
lier for the case of six indicators (p = 6), we might
impose the following constraints:

X1 = λ11ξ1 + 0ξ2 + 0ξ3 + 0ξ4 + 0ξ5 + 0ξ6 + δ1,

X2 = λ21ξ1 + 0ξ2 + 0ξ3 + 0ξ4 + 0ξ5 + 0ξ6 + δ2,

X3 = λ31ξ1 + 0ξ2 + 0ξ3 + 0ξ4 + 0ξ5 + 0ξ6 + δ3,

X4 = 0ξ1 + λ42ξ2 + 0ξ3 + 0ξ4 + 0ξ5 + 0ξ6 + δ4,

X5 = 0ξ1 + λ52ξ2 + 0ξ3 + 0ξ4 + 0ξ5 + 0ξ6 + δ5,

X6 = 0ξ1 + λ62ξ2 + 0ξ3 + 0ξ4 + 0ξ5 + 0ξ6 + δ6.

The particular set of constraints imposed on these
equations yields a two-factor model (k = 2) with
a simple structure pattern of loadings. By fixing all

2. The term exploratory factor analysis, as used in this chapter, does not
encompass principal components analysis.

3. The factor indeterminacy problem can be characterized in other ways
and is substantially more complex than described here. A thoroughgoing
presentation of the problem is beyond the scope of the chapter. Readers
interested in greater detail would benefit from reading the historical review
chapter by Steiger and Schönemann (1978). Readers interested in current
thinking about the factor indeterminacy problem, from both mathematical
and philosophical perspectives, would benefit from reading a series of
articles published in Volume 31 of Multivariate Behavioral Research.
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of the λs for ξ3, ξ4, ξ5, and ξ6 to zero, we have
posited that two factors are sufficient to explain the
commonality among the indicators. Moreover, by
fixing the λs to zero for ξ2 in the first three equations
and ξ1 in the last three equations, we have posited a
model with no factorially complex indicators. Impor-
tantly, we have reduced the number of unknowns in this
set of equations from 42 (36 λs and 6 λs) to 12 (6 λs
and 6 δs).4 Each zero in the measurement equations is a
disconfirmable hypothesis, and the collection of zeroes
and free parameters constitutes a disconfirmable model
of the underlying causes of X1 to X6.

It is important to appreciate that we have ven-
tured two hypotheses by imposing this set of con-
straints. The first, and most fundamental, is that
k = 2. The second is that, given that k = 2,
three indicators are exclusively caused by ξ1, and
three are exclusively caused by ξ2. It is this first
hypothesis, that k equals a specified number, that is
the concern of the remainder of this chapter. For,
as should be apparent from this example, if that
hypothesis is refuted, then any hypothesis regard-
ing the pattern of loadings on the factors is prema-
ture. In short, a fundamental decision that attends
any application of factor analysis is how many fac-
tors to retain, in the case of exploratory factor
analysis, or specify, in the case of confirmatory factor
analysis.

16.2. Strategies for Determining

the Number of Factors

Traditionally, the question of how many factors under-
lie a set of indicators has been viewed as an issue in
applications of exploratory factor analysis but not a
concern in applications of confirmatory factor analysis.
For instance, if, upon evaluating the fit of a confirma-
tory factor model, a researcher determines that there is
an unacceptable degree of misspecification (i.e., the
model does not fit), the typical focus of respecifi-
cation is on either the zero constraints imposed on
the factor loadings (the λs) or the zero constraints
imposed on the covariances between error terms (the

4. Our discussion here does not require that we consider constraints that
could be put on�δ , which, in addition to the δs, includes the covariances
between them, and �, which is the variance-covariance matrix for the
factors. For instance, the zero constraints on all λs for ξ3, ξ4, ξ5, and
ξ6 imply zero constraints on the variances for those factors and their
covariances with each other and with ξ1 and ξ2. We could further constrain
� by fixing the covariance between ξ1 and ξ2 to zero, which would yield
a model with two orthogonal factors.

off-diagonal �δs). By allowing indicators to load on
more than one factor or selected error terms to covary,
researchers often can obtain acceptable statistical fit
of the model to the data. By limiting the search for
misspecification to these options, researchers fail to
consider the possibility that their model is misspeci-
fied in a more fundamental way: It posits too many
or too few factors. When faced with a misspeci-
fied confirmatory factor model, the researcher must
address the same question that attends all applications
of exploratory factor analysis: How many factors are
required to adequately explain variance shared by the
indicators?

In the remainder of this section, we review five
strategies for addressing the number-of-factors ques-
tion in applications of factor analysis. The first
two—the Kaiser-Guttman (K-G) rule and the scree
plot—apply exclusively to exploratory factor analysis,
involve evaluating the latent roots of the correla-
tion matrix, and are the overwhelming favorites of
researchers in the social sciences. We argue that
these strategies are problematic and should not be
used. The other three—parallel analysis, maximum
likelihood exploratory factor analysis, and the unre-
stricted factor model—are less subjective, statistically
sound, and more accurate. Although parallel analysis
is relevant only for applications of exploratory factor
analysis, we demonstrate that maximum likelihood
estimation of common factors and the unrestricted
confirmatory factor model are equivalent approaches
to determining the number of factors in applica-
tions of exploratory and confirmatory factor analysis,
respectively.

16.2.1. K-G Rule

In a seminal paper on the determination of how many
factors are necessary to account for the commonality
among a set of indicators, Guttman (1954), concerned
that investigators frequently retained too few factors,
proposed three rules for determining the minimum
number of factors to retain. Ironically, the rule that
Guttman found least satisfactory, “latent root greater
than or equal to unity,” became the rule of choice
for applied researchers. The popularity of this rule
can be traced to Kaiser (1960). Kaiser found that the
rule favored by Guttman frequently indicated more
than half as many factors as variables, whereas the
latent-root-greater-than-one rule routinely indicated
from one sixth to one third as many factors as variables.
Kaiser further argued that, when the latent root falls
below 1.0, the internal consistency of the factor scores
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approaches zero.5 Finally, on a more practical level,
Kaiser argued that, based on his experience “of having
carried out more factor analytic calculations of the
theoretical sort on electronic computers than anyone
walking the earth” (p. 141), the latent-root-greater-
than-one rule “led to a number of factors correspond-
ing almost invariably . . . to the number of factors
which practicing psychologists were able to interpret”
(p. 145).

The results of subsequent studies of the K-G rule
were not so favorable. On theoretical grounds, the
rule is problematic because, although Guttman (1954)
demonstrated its validity for determining the number
of factors in a population matrix, its application is
virtually always to a matrix based on data from a
sample. Because of errors of measurement that abound
in such data, factors emerge that are not substantively
meaningful (Cattell, 1966). As such, it is possible
that, for a matrix estimated from sample data, a rela-
tively large number of factors with latent roots greater
than one would be detected but that some portion of
these factors would not be substantively meaningful.
Indeed, simulation studies indicate that the K-G rule,
when applied to data from a sample, virtually always
leads to overextraction (e.g., Browne, 1968; Lee &
Comrey, 1979; Yoemans & Golder, 1982; Zwick &
Velicer, 1986).

Despite the now well-documented poor perfor-
mance of the K-G rule in practice, it still is widely
used. In large measure, this persistent adherence to
a faulty strategy seems to be attributable to sim-
plicity and availability. Indeed, as early as the mid-
1960s, Cattell (1966) noted that the K-G rule had
become widely accepted “because of its ease rather
than its rationale” (p. 261). In an influential review
of rules for determining the number of components
to retain in principal components analysis, Zwick
and Velicer (1986) concluded that the K-G remains
popular because it continues to receive favorable cov-
erage in general statistics textbooks and is invoked
automatically by most general-purpose statistical soft-
ware packages. Reflecting on their finding that the
K-G rule often grossly overestimates the number
of components to be retained, Zwick and Velicer
stated,

5. Cattell (1966) took issue with Kaiser’s (1960) argument regarding the
internal consistency of factor scores for latent roots less than 1. Specifi-
cally, he argued that, whereas Kaiser’s point applied to all variables, one
typically is concerned only with those variables having salient loadings on
the factor. He also took issue with the implication by Kaiser that applied
researchers were interested in using factor analysis for the purpose of mea-
suring concepts, arguing instead that the focus is more on the interpretation
of loadings for the purpose of defining theoretical concepts that are not
directly measured.

This pattern of explicit endorsement by textbook authors
and implicit endorsement by computer packages, con-
trasted with empirical findings that the procedure is
very likely to provide a grossly wrong answer, seems
to guarantee that a large number of incorrect findings
will continue to be reported. (p. 439)

This pessimistic projection has been borne out.
Beginning 5 years after the publication of Zwick
and Velicer’s (1986) findings, Fabrigar et al. (1999)
reviewed standard practice as evidenced in articles
published in two major psychology journals. They
found that, among those articles that specified the
method by which they determined the number of fac-
tors, 28% use the K-G rule as the lone strategy, despite
the fact that “we know of no study of this rule that
shows it to work well” (p. 278). In short, application of
the K-G rule is not a defensible strategy for determining
the number of factors in applications of exploratory
factor analysis.

16.2.2. Scree Plot

Another common approach to determining the
number of factors to retain in exploratory factor
analysis is the scree test (Cattell, 1966).6 Like the K-G
rule, the scree test involves evaluating the latent roots,
or eigenvalues, of the observed correlation matrix.
Cattell (1966) described the goal of factor analysis
as detecting “non-trivial common variance” (p. 245).
That is, although the fallible nature of observed data
will give rise to many trivial sources of common
variance, it is the goal of the factor analyst to distin-
guish these “rubble factors” from those factors that are
prominent in the data and substantively meaningful.
Cattell adopted the analogy of a rockslide for the pur-
pose of distinguishing important and trivial common
factors. He noted that, when eigenvalues are plotted
sequentially, the resulting pattern drops precipitously
before leveling off. Following the analogy, this rela-
tively level portion of the plot corresponds to the scree,
“the straight line of rubble and boulders which forms at
the pitch of sliding stability at the foot of a mountain”
(p. 249). A scree plot of hypothetical eigenvalues from
a factor analysis of 10 variables is shown in Figure 16.1.

Cattell (1966) noted that, based on a number of
studies in which the true number of factors was known,
“this scree invariably began at the kth latent root

6. Fabrigar, Wegener, MacCallum, and Strahan (1999) found that the scree
test was used as the lone criterion for determining number of factors in
26% of the published articles included in their review.
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Figure 16.1 Scree Plot From Hypothetical Factor Analysis of 10 Variables
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when k was the true number of factors” (p. 249).
As shown in Figure 16.1, the point at which the
scree begins is referred to as the “elbow.” Follow-
ing Cattell’s logic, the elbow falls at a point on the
horizontal axis corresponding to the likely number
of substantive factors (k = 4 in this example).
Cattell confessed that “even a test as simple as this
requires the acquisition of some art in administering
it” (p. 256). It is this subjective quality of the scree
test that raises concerns about its usefulness. Inter-
rater reliability for judgments of the number of factors
to retain based on the scree test using data typical
of social science research is questionable. Following
training using instructions provided by Cattell and
Vogelman (1977), Zwick and Velicer (1986) observed
inter-rater reliability estimates from .61 to 1.00 (see
also Crawford & Koopman, 1979) and correlations
between judgments by the trained raters and experts
from .60 to .90. The mean correlation of .80 indicates
that, on average, well-trained raters often will reach a
conclusion regarding how many factors to retain that
differs from the conclusion of experts.

Concerns stemming from the less-than-perfect relia-
bility of the scree test when used by individuals who are
not expert factor analysts plague any evaluation of the
validity of the scree test. If trained raters’ judgments
are combined, yielding a judgment that is more reliable
than any given rater’s judgment, a “best-case” estimate

of accuracy can be obtained. Under these conditions,
Zwick and Velicer (1986) found that the scree test
typically resulted in the retention of too many factors,
although the magnitude of overextraction was consid-
erably less than for the K-G rule. Under conditions
of high factor saturation (i.e., salient loadings of .80),
the scree test pointed to the correct number of factors
about 70% of the time; however, accuracy dropped
to 40% under conditions of saturation more typical of
research in the social sciences. In short, the subjective
nature of the scree test, coupled with its tendency to
suggest too many factors in typical research condi-
tions, argues persuasively against its use as the sole
criterion for determining how many factors to extract
in applications of exploratory factor analysis.

16.2.3. Parallel Analysis

A more systematic evaluation of the eigenvalues
of an observed correlation matrix is parallel analysis,
originally proposed by Horn (1965). Parallel analysis
is based on differences between observed eigenvalues
and expected eigenvalues from matrices of random
data. The logic of parallel analysis is as follows: In
population data, the eigenvalues of a matrix of uncor-
related variables would be equal to 1.0. In data from
a sample, a matrix with the same properties would, as
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a result of sampling error and bias due to estimation,
produce some eigenvalues that exceed 1.0 and others
that fall below 1.0. Indeed, if multiple samples were
drawn from the same population, it would be possible
to construct an empirical sampling distribution around
the expected eigenvalues were there no common
factors in the population (Glorfeld, 1995). One could
then compare each observed eigenvalue to the distri-
bution of its corresponding eigenvalue from random
data to determine whether that eigenvalue differed sig-
nificantly (i.e., exceeded the 95th percentile estimate)
from the eigenvalue that would be expected were there
no common variance to explain. The number of eigen-
values that significantly exceed the values expected
from random data is interpreted as the number of
factors or components to retain.

An aspect of parallel analysis that has received
considerable attention is the method by which the
values and distributions of the eigenvalues from
random data are produced. One alternative is to gener-
ate multiple data sets of random-normal deviates that
comprise the same number of variables and assume
the same sample size as the observed data set. Using
this strategy, Humphreys and Montanelli (1975) found
parallel analysis to be accurate (and superior to max-
imum likelihood) across a range of analytic situations
typical of research in the social sciences. Easily
tailored computer programs that run under widely
available statistical software (e.g., SAS and SPSS)
are now available (e.g., O’Connor, 2000). These pro-
grams extend the strategy used by Humphreys and
Montanelli to allow for the generation of random devi-
ates whose distribution corresponds to the distribution
of the observed variables (cf. Glorfeld, 1995).

The allure of parallel analysis, coupled with applied
researchers’ general unfamiliarity with data simu-
lation at the time of Humphreys and Montanelli’s
(1975) work, led to the development of more straight-
forward methods of generating eigenvalues from
random data. Most of this activity centered on the
specification of regression equations for estimating
eigenvalues of matrices with unities on the diago-
nal (e.g., Allan & Hubbard, 1986; Lautenschlager,
Lance, & Flaherty, 1989; Montanelli, 1975; cf.
Lautenschlager, 1989). Although computer programs
and tabled values for selected sample sizes and
numbers of variables are available (e.g., Kaufman &
Dunlap, 2000; Longman, Cota, Holden, & Fekken,
1989a, 1989b), and equations are available for matri-
ces with squared multiple correlations on the diagonal
(Montanelli & Humphreys, 1976), the regression
approach is less precise than the simulation approach.
Moreover, the latter is now quite feasible for social

scientists facile with SAS or SPSS and generally
familiar with the activity of simulating data.

Early evaluations of parallel analysis revealed a
slight tendency (about 5%) toward overextraction
under certain conditions when, as recommended by
Horn (1965), the random-data eigenvalues against
which the observed eigenvalues were compared were
simple means of a set of random-data eigenvalues
at each serial position (Harshman & Reddon, 1983).
This bias vanishes when the criterion is the 95th per-
centile estimate of the random-data eigenvalues at
each serial position, a logic based on the standard
hypothesis-testing criterion (Glorfeld, 1995).7 Despite
the accuracy of parallel analysis for determining the
number of factors to extract under conditions typical of
social science research, its use remains relatively rare.
Fabrigar et al. (1999) found that, of the 129 articles
that reported using factor analysis in two prominent
psychology journals published from 1991 through
1995, only 1 reported the use of parallel analysis to
determine how many factors to extract.

16.2.4. Maximum Likelihood
Exploratory Factor Analysis

There are a variety of procedures for fitting data
to a common factor model. These procedures, which
produce estimates of the λs and δs in the measure-
ment equations, vary in the assumptions they make
regarding the observed data and the information they
provide regarding the adequacy of a particular model
for explaining the associations among indicators.
Although the maximum likelihood procedure requires
a relatively strong set of assumptions regarding the
distribution of indicators and errors (Hu, Bentler, &
Kano, 1992), it has the benefit of providing a test statis-
tic for evaluating the tenability of particular models
given a set of data. Because a fundamental aspect of
the plausibility of a model is the number of factors it
specifies, the test statistics that can be generated when
maximum likelihood estimation is used provide an
alternative means of determining the number of factors

7. Turner (1998) showed that, under certain conditions, use of the 95th
percentile as a criterion for the random-data eigenvalues could lead to
underextraction. Specifically, when the observed data were generated by
a multilevel design or when all items are saturated by a single common
factor, eigenvalues after the first eigenvalue for the observed data will be
underestimated and likely fall below the 95th percentile estimate for the
corresponding random-data eigenvalue. The circumstances that produce
this underextraction by parallel analysis are rare in practice and can be
overcome by building known features of the data structure into the parallel
analysis. At present, there are no computer programs available for this
sophisticated, sequential application of parallel analysis.
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that underlie the pattern of associations among a set of
indicators.

Whereas principal factor procedures focus on
obtaining estimates that minimize residuals (or, alter-
natively, maximize variance accounted for), the max-
imum likelihood procedure focuses on obtaining the
set of estimates of the free parameters in the model
(principally the λs and δs) that has the highest
probability of corresponding to the population values
of the parameters as the size of the sample approaches
the size of the population (Gorsuch, 1974). That is, the
goal of estimation is to maximize the likelihood of the
parameters given the data. When an iterative search
yields the set of parameter estimates that achieve this
goal, the estimation is said to have converged. The
question of whether this set of parameter estimates
offers an account of the data that is no worse than the
generally uninteresting model—which is, in effect, the
observed correlation matrix itself—can be evaluated
using a test statistic that is, in theory, distributed as a
chi-square. Because the goal is to obtain a set of param-
eter estimates in a specified model that fully accounts
for the observed data, the goal of hypothesis testing
is to fail to reject the null hypothesis of no difference
between the observed correlation matrix and the set of
correlations implied by the model.

When maximum likelihood estimation is used in
the context of exploratory factor analysis, the statis-
tical test is, in fact, a test of the adequacy of the
number of factors specified. There are two slightly
different approaches to deriving the test statistic; both
are products involving an adjusted sample size and the
minimized value of the fitting function, computed as

FML = log∗ �(Θ)∗ + tr(S�−1(�))− log∗ S∗ − p,

where �(Θ) is the implied covariance matrix of the
parameters, S is the observed covariance matrix, and
p is the number of indicators. The most widely used
multiplier isN−1, whereN is the sample size (Bollen,
1989; Browne, 1982). An alternative involves a
correction attributable to Bartlett (1937) and uses the
following as a multiplier:

(N − 1)− (2p + 4k + 5)/6,

where p is the number of indicators, and k is
the number of factors (Lawley & Maxwell, 1971).
Although Bartlett corrections, as a class, are useful
in many contexts, the correction is rarely used in the
factor analysis context and is not recommended here.

In the typical application of maximum likelihood
factor analysis, a sequential set of analyses is run,
which begins with the extraction of a single factor

and continues by adding one factor at a time until
the obtained chi-square is nonsignificant. A common
problem with maximum likelihood estimation in
the exploratory factor analysis context are Heywood
cases—solutions in which the communality estimate
associated with one or more factors approaches or
exceeds 1.0, resulting in an associated uniqueness esti-
mate that approaches zero or, counterintuitively, takes
on a negative value. Heywood cases often result from
overfitting (i.e., too many factors) but can result from
underfitting as well.

Concern over Heywood cases, the need for sub-
stantially greater computing power than required of
principal axis procedures, and the validity of the chi-
square test under conditions typical of social science
research argue against unqualified endorsement of
maximum likelihood exploratory factor analysis and
the accompanying fit statistics as a routine strategy
for determining the number of common factors (e.g.,
Jackson & Chan, 1980); however, this approach is the
only one that offers a focused statistical test of the
plausibility of a specific number of factors. Fortu-
nately, computer power is rarely an issue in the current
era, and a variety of criteria for evaluating model
fit have been developed in the context of confirma-
tory factor analysis that can be used for maximum
likelihood exploratory factor analysis as well (e.g.,
Browne & Cudeck, 1993). These are described and
illustrated later in the chapter. Also, increasing inter-
est in confirmatory factor analysis, as well as the
accompanying familiarity with parameter estimation
and evaluation, has resulted in social scientists who are
better equipped than ever to detect Heywood cases and
adjust model specifications to correct or avoid them.

16.2.5. Unrestricted Factor Model

Maximum likelihood is used to greater advantage
as the typical estimation procedure in confirmatory
factor analysis (Hoyle, 2000). The extension of maxi-
mum likelihood estimation from exploratory, or unre-
stricted, factor analysis to confirmatory, or restricted,
factor analysis can be attributed to Jöreskog (1969). As
typically applied, confirmatory factor models specify a
particular number of factors and a pattern of loadings
such that each indicator loads on one and only one
factor. This simple-structure specification is illustrated
in path diagram form in Figure 16.2.

As noted earlier, when omnibus fit indices indicate
misspecification in a model such as the one shown in
Figure 16.2, it is not clear whether the source of mis-
specification is the pattern of loadings or the number
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Figure 16.2 Simple Structure Specification Typical
of Applications of Confirmatory Factor
Analysis
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of factors. As such, the evaluation of model fit is
an evaluation of a diffuse hypothesis and, therefore,
ambiguous in meaning (Rosnow & Rosenthal, 1988).
This problem is exacerbated by the typical strategy
of implementing a specification search while holding
the number of factors constant. Such a search would
primarily be limited to cross-loadings and correlations
between uniquenesses. A preferable strategy would be
to disentangle the two major aspects of specification—
the number of factors and the pattern of loadings on
those factors—and evaluate each in turn. A strategy for
accomplishing this disentanglement is the unrestricted
factor model (Jöreskog, 1977), which is equivalent to
the exploratory factor model estimated by maximum
likelihood, with the important exception that, once
the number of factors has been determined in the un-
restricted factor model, one can readily move to a focus
on the pattern of loadings on those factors.

The unrestricted factor model was described by
Jöreskog (1979) and has been incorporated by Mulaik
and Millsap (2000) into a comprehensive approach to
evaluating the fit of structural equation models. Despite
the appeal of the model as a bridge between exploratory
and confirmatory approaches to factor analysis, it is
relatively unknown to researchers in the social sciences
(for the three published applications of which we are
aware, see Browne & Cudeck, 1993; Hox et al., 1999;
Tepper & Hoyle, 1996). Although specification of the
model is unusual, it is not difficult. Estimation of

the highly parameterized model can be challenging;
however, we later illustrate a strategy that virtually
always results in a proper solution.

The unrestricted factor model is specified as follows:

1. For each of the k factors, one of the p indica-
tors is specified to load only on that factor; the
remaining loadings for these marker variables are
set to zero. The remaining p – k indicators are
left free to load on every factor.

2. The variances of the factors are fixed to unity, and
the covariances between factors are estimated
from the data.

Alternatively, the variances of the factors can be
estimated from the data and the metric of the fac-
tors established by fixing a loading on each of the
k factors to unity (Mulaik & Millsap, 2000). For
a correctly specified model, k2 parameters are fixed
and degrees of freedom equal [p(p + 1)/2]− [(pk−
k2) + k(k + 1)/2]. When specified as described,
the model will be identified and the solution unique
(Howe, 1955).

Successful estimation of the unrestricted factor
model requires certain knowledge about the indica-
tors and their relation to the factors. Specifically, the
marker variable for each factor should be the high-
est loading indicator on that factor, and the starting
values for the free parameters, particularly the load-
ings, should be reasonably close to the final estimates.
This requirement of considerable a priori knowledge
about the model has been a target of criticism (e.g.,
Hayduk & Glaser, 2000) because the most straight-
forward means of acquiring the necessary knowledge
is to submit the data to an exploratory factor analysis
in which the number of factors is extracted that will
be specified in the unrestricted model. And given
that a maximum likelihood exploratory factor analysis
implicitly is specified exactly as described above, it
would not seem necessary to estimate the model using
confirmatory factor analysis.

The benefit of estimating the model using confir-
matory factor analysis is apparent when the model
is considered in the larger context of a framework
for evaluating structural equation models. It is widely
acknowledged that, within such models, a distinc-
tion can (and perhaps should) be drawn between the
measurement model, which concerns the association
between indicators and latent variables, and the struc-
tural model, which concerns the association among
latent variables (Anderson & Gerbing, 1988; Herting
& Costner, 2000). The fit of the measurement model
sets an upper bound for the fit of the full model, as the
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latter involves adding restrictions to the former (i.e.,
they are nested models). As such, it is essential that the
measurement portion of a structural equation model be
properly specified if the full model is to receive support
or, in the event of poor fit of the full model, the source
of misspecification correctly diagnosed.

Mulaik and Millsap (2000) advocate expanding
the two-step model testing sequence to four steps.
The second and third steps in their nested sequence
correspond to the standard steps just described, and
the fourth step involves moving from the fit of the
full model to hypothesis tests about specific free
parameters within the model. Their first step is the
unrestricted model described here, and its inclusion
is based on the same logic that gave rise to the dis-
tinction between measurement and structural models.
Specifically, if, within the measurement model, the
wrong number of factors is specified, then the model
is sure not to fit when restrictions to the loadings are
imposed, and an evaluation of the pattern of loadings
is premature. As such, it is necessary to pin down the
correct number of factors before moving to a full-
blown evaluation of the measurement model.8

For our purposes, the unrestricted model need not
be viewed as part of Mulaik and Millsap’s (2000)
four-step nested sequence because we are interested
in the measurement model as an end in itself. So
we are, in effect, arguing for a two-step approach
to fitting common factor models within confirmatory
factor analysis when there is not an unequivocal basis
for specifying a particular number of factors and pat-
tern of loadings. The first step involves evaluating
the fit of a series of unrestricted models that specify
plausible numbers of factors. In this regard, the strat-
egy does not differ from the standard implementation
of maximum likelihood exploratory factor analysis.
The second step involves imposing restrictions on the
loadings using either a theoretical or empirical ratio-
nale. The fit of a given model at the first step establishes
a ceiling for the fit of restricted models and, therefore,
should be near perfect. Models at the second step are
nested in their unrestricted counterpart and can be eval-
uated using both chi-square differences and absolute
fit indices, such as the comparative fit index (Bentler,
1990a) or root mean square error of approximation
(Steiger, 1990).

8. Although the unrestricted factor model is an appropriate test of the
number of factors for the overwhelming majority of applications in the
social sciences, there clearly are factor models for which it is not appro-
priate (Bollen, 2000; Hayduk & Glaser, 2000). Such examples include
simplex models, models with correlated errors, and models in which
subfactors are expected.

16.2.6. Summary

We have described and offered commentary on
the performance of five strategies for addressing the
number-of-factors question in applications of factor
analysis. Although the Kaiser-Guttman rule and the
scree plot are the most popular among researchers
in the social sciences and are easily implemented
using standard statistical software, empirical evalua-
tions using variables for which the number of common
factors is known indicate that they rarely result in a
correct inference regarding how many factors to retain
and interpret. Like the K-G rule and the scree plot,
parallel analysis focuses on the eigenvalues of the cor-
relation matrix, but it does so in a formal manner using
statistical criteria. Empirical evaluations of parallel
analysis indicate excellent performance under condi-
tions typical of social science research, particularly
when Horn’s (1965) original implementation of the
strategy is adjusted by using the 95th rather than the
50th percentile random-data eigenvalues at each serial
position as criteria. Maximum likelihood exploratory
factor analysis and the unrestricted factor model are
equivalent strategies that provide a statistical test of
whether a specific number of factors is sufficient given
the observed data. The unrestricted factor model is
estimated within the confirmatory factor analysis con-
text and has the benefit of allowing restrictions to the
pattern of loadings once the number of factors has been
established.

In the remainder of the chapter, we illustrate paral-
lel analysis, maximum likelihood exploratory factor
analysis, and the unrestricted factor model using
responses to items on a self-report measure designed
to be multidimensional. These data are particularly
appealing for this purpose because, although the mea-
sure was written to reflect three dimensions, there is
ample evidence to suggest that it reflects four or five
dimensions.

16.3. Example: Dimensionality

of Self-Consciousness

The Self-Consciousness Scale (Fenigstein, Scheier, &
Buss, 1975) is a widely used self-report measure of
the tendency to direct attention toward the self. The
23-item measure comprises three subscales that reflect
different manifestations of self-attention. The private
self-consciousness items tap the tendency to focus
on internal thoughts and feelings. The public self-
consciousness items capture the tendency to focus on
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oneself as a social object—that is, to see oneself from
the imagined perspective of others. The social anxiety
subscale measures the tendency to experience anxiety
in the presence of others as a result of heightened public
self-consciousness.

The numerous factor analyses of responses to these
items have produced conflicting results regarding the
correspondence of the structure evident in responses
with the hypothesized tripartite structure. Fenigstein
et al. (1975), as part of their original presentation of the
measure, interpreted the pattern of loadings on three
orthogonally rotated principal components. Scheier
and Carver (1985) replicated the pattern of load-
ings using principal factors extraction followed by an
orthogonal rotation. Burnkrant and Page (1984) used
confirmatory factor analysis to evaluate the dimension-
ality of each subscale in isolation of the others before
fitting a model to the entire set of items. They obtained
good support for unidimensional models of public
self-consciousness and social anxiety but clear evi-
dence that the private self-consciousness items reflect
two factors. They concluded that four, not three,
factors underlie responses to the Self-Consciousness
Scale. A drawback to their analysis and conclusions
is that they advocated and fit models that excluded
5 of the 23 items; their recommendation that the
five items be eliminated from the scale has not been
accepted by researchers who use the measure. Mittal
and Balasubramanian (1987) used manual iteration of
communalities from maximum likelihood estimation
to evaluate the dimensionality of the three originally
prescribed subscales. They replicated the finding that
the private self-consciousness items break into two
factors and found that the public self-consciousness
items break into two factors as well. A unidimensional
model of the social anxiety items was tenable only after
dropping two items.

A surprising feature of these analyses, as well
as other factor analyses, of responses to the Self-
Consciousness Scale (e.g., Britt, 1992; Piliavin &
Charng, 1988) is that none of them employed any
of the strategies for determining the number of fac-
tors reviewed in this chapter (including the widely
used K-G rule and scree plot). Each began with the
original three-factor structure as the assumed model
and searched for ways to adjust that model to better
account for observed data. None of the analyses that
used maximum likelihood estimation obtained values
of fit statistics that would support incorporating their
measurement model into a model with structural paths.
In each case, values of chi-square were very large rela-
tive to degrees of freedom, and in no case did the value
of the standardized index used to evaluate fit reach the
typical minimum criterion of .90.

As noted in the previous section, when evaluated
in the context of a full structural equation model, a
measurement model must fit exceptionally well
because restrictions placed on the model to evaluate
directional associations between factors will certainly
lead to a decrement in fit. In other words, the fit of
the measurement model sets the ceiling for fit of the
full model of which it is part. Moreover, exceptional
fit of a measurement model is predicated on speci-
fication of the correct number of factors. Hence, if
the Self-Consciousness Scale is to ever be included
in a structural equation model with latent variables,
it is essential that the correct number of factors and
the correct pattern of loadings on those factors be
established.

16.3.1. Parallel Analysis

As detailed earlier, parallel analysis involves com-
paring eigenvalues from a factor analysis of a set of
observed data with eigenvalues from a factor analysis
of sets of random data comprising the same number
of variables and observations as the observed data set.
Only factors whose eigenvalue exceeds, at some pre-
determined probability, the corresponding random-
data eigenvalue are retained for interpretation.
Although relatively straightforward regression-based
procedures for estimating random-data eigenvalues
have been developed, these are not precise for most
applications. Moreover, the more flexible and pre-
cise simulation approach to generating random-data
eigenvalues is not difficult to implement on contempo-
rary desktop computers using programs that run under
widely accessible statistical software.

For the current analysis, we used O’Connor’s (2000)
SAS program for simulating data sets using the raw
observed data as input.9 We generated 500 random
permutations of the raw data, an approach that pre-
serves the distributional properties of the original data
in the random data sets. We used as a criterion the
95th percentile estimate of the random-data eigen-
value for each factor. In other words, we retained all
factors whose eigenvalue exceeded the corresponding
random-data eigenvalue to a degree unlikely to occur
by chance.

The two sets of eigenvalues are overlaid in the scree
plot shown in Figure 16.3. As indicated in the figure,
the two lines intersect between the seventh and eighth

9. The program we used, as well as related programs that run under
SAS, SPSS, or MATLAB, are available for download from the Web
at http://flash.lakeheadu.ca/∼boconn02/nfactors.html. The raw observed
data can be obtained from Rick Hoyle (rhoyle@duke.edu).



Chapter 16 / Exploratory and Confirmatory Factor Analysis • 311

Figure 16.3 Plot of Eigenvalues in Serial Position for Observed Data (Solid Line) and 95th Percentile Eigenvalues
From Distribution of 500 Random Permutations of the Raw Data (Broken Line)
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eigenvalues, indicating that, beyond seven factors, the
eigenvalues of the observed correlation matrix are not
significantly greater than the values that would be
expected were there no common factors at all. Hence,
from the results of parallel analysis, we conclude that
the correct number of factors is seven.

16.3.2. Maximum Likelihood Strategies

As we have established, maximum likelihood
exploratory factor analysis and the unrestricted factor
model are one and the same. As such, we present the
statistical results that would be generated by either
strategy, followed by additional analyses involving the
pattern of loadings using the unrestricted factor model
as a starting point.

Whether one uses exploratory factor analysis or
formally specifies the unrestricted model in a confir-
matory factor analysis, a separate analysis must be
run for each number of factors to be considered. As
parsimony is desirable in factor models, it is typ-
ical to begin by estimating a model with a single
factor and, if necessary, continue sequentially until a

particular number of factors can be justified statisti-
cally. Statistical justification comes in two forms. The
traditional approach to hypothesis testing in the max-
imum likelihood context is a test statistic that, when
certain assumptions are met, is distributed as a chi-
square. If this test is used to justify the decision to retain
a specific number of factors, the criterion is a p-value
greater than .05, signifying a failure to reject the null
hypothesis that the covariance matrix implied by the
model is equivalent to the observed covariance matrix.
An alternative approach is to consult one or more of
a growing number of alternative indexes of fit. We
advocate Bentler’s (1990a) comparative fit index (CFI)
and Steiger’s (1990) root mean square error of approx-
imation (RMSEA).10 CFI indexes the proportionate

10. These fit indices are provided by all major software programs for
estimating structural equation models (e.g., EQS, LISREL, AMOS).
If the models are estimated using maximum likelihood exploratory
factor analysis, the fit indices we reported, as well as several others,
can be obtained using a SAS macro written by Steven Gregorich. The
macro, which requires as input the number of variables, degrees of
freedom, and chi-square for each model of interest, is available for
download from the Web at http://mywebpage.netscape.com/segregorich/
model selection.html.
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Table 16.1 Fit Statistics for Models Positing Zero to Eight Factors Underlying Responses to the Self-Consciousness
Scale

k df FML χ2 p CFI RMSEA RMSEA.05 RMSEA.95

0 253 6.868 2238.85 .00001 .000 .155 .150 .161
1 230 4.041 1317.24 .00001 .453 .120 .114 .127
2 208 2.595 845.91 .00001 .679 .097 .090 .104
3 187 1.392 453.78 .00001 .866 .066 .058 .074
4 167 1.038 338.41 .00001 .914 .056 .047 .065
5 148 0.807 263.07 .00001 .942 .049 .039 .025
6 130 0.657 211.54 .00001 .959 .044 .033 .054
7 113 0.508 165.68 .00092 .973 .038 .025 .050
8 97 0.365 119.10 .06341 .989 .026 .000 .041

NOTE: N = 327; k = number of factors; FML =maximum likelihood fitting function; CFI= comparative fit index; RMSEA = root mean square error
of approximation (with 90% confidence limits). Consistent with common use in confirmatory factor analysis, chi-square values do not reflect Bartlett’s
correction. Italicized values indicate statistical support for the model they accompany.

improvement in fit of a specified model over a model
that specifies no commonality among the indicators—
the null, or independence, model. Following Mulaik
and Millsap’s (2000) recommendation, a value of .95
or greater would provide justification for a particular
measurement model. RMSEA indexes the discrep-
ancy between the observed covariance matrix and the
covariance matrix implied by the model per degree of
freedom. A value of zero indicates no discrepancy and,
therefore, a perfect fit of the model to the data. It is now
commonplace to put a 90% confidence interval around
the point estimate of RMSEA. Although .08 typically
is acceptable as the maximum value of the upper limit,
the goal of a superior fit of the unrestricted factor model
suggests that .05 is a more appropriate maximum for
the upper limit of the confidence interval (Browne &
Cudeck, 1993).

For the confirmatory factor analyses, models were
specified by using output from an exploratory factor
analysis to determine the marker variable (i.e., highest
loading indicator) for each factor. As noted earlier, for
these variables, only the loading on the designated
factor was estimated; the remaining loadings on the
factor were fixed at zero. All other loadings were free
to be estimated. In addition, the variances of the fac-
tors were fixed at unity, and the covariances between
factors were free to be estimated. Loadings and inter-
factor correlations from exploratory factor analyses
were used as starting values.

Results from maximum likelihood estimation of a
series of unrestricted models of the Self-Consciousness
Scale are summarized in Table 16.1. The first model,
for which k = 0, serves as the comparison for com-
putation of CFI. It also can be viewed as a test for
commonality among the indicators, and the highly
undesirable values of the various indices of fit clearly
indicate that at least one common factor underlies

the covariance matrix. As indicated by the italicized
values in the table, the results point to seven, perhaps
eight, factors. Although CFI exceeds .95 for the six-
factor solution, neither the chi-square test nor RMSEA
support it. The RMSEA falls at the criterion, and CFI
well exceeds the criterion for the seven-factor solution;
however, the chi-square remains highly significant. A
model with eight factors yields statistical support on
all criteria.

The parallel analysis and two widely used fit indices
support the interpretation of seven factors. The tradi-
tional chi-square test suggests the need for an addi-
tional factor. The chi-square test requires stringent,
perhaps unrealistic, assumptions about the data and
the model, and it is a somewhat unrealistic test, for
it is a test of whether the model holds exactly in the
population (Browne, 1984). Nonetheless, we exam-
ined parameter estimates for the eight-factor solution
rather than dismiss the chi-square test out of hand.

Upon initial estimation, both the seven- and eight-
factor solutions produced Heywood cases—apparent
negative uniquenesses for Items 8 and 14. When the
values for the suspect uniquenesses were permitted to
dip below zero during iteration, both models yielded
proper solutions. The final estimate for the Item 8
uniqueness in both solutions was negative but non-
significant (p > .60). The final estimate in both
solutions for the Item 14 uniqueness was greater than,
but not significantly different from, zero (p > .50).
Thus, we were able to obtain proper solutions for
both the seven- and eight-factor models by allowing
estimates of uniqueness to dip below zero during the
iterative estimation process (Chen, Bollen, Paxton,
Curran, & Kirby, 2001).

Before attempting to interpret the solutions, we used
the multivariate Wald test to identify loadings and
inter-factor correlations that could be constrained to
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zero without significant loss in fit relative to the gain
in degrees of freedom. For the seven-factor model,
8 of 21 inter-factor covariances were nonsignificant
and, therefore, fixed at zero. Sixty-two loadings were
nonsignificant and constrained to zero, and one loading
that had been fixed in the original specification was
freed. This resulted in a net gain of 69 degrees of free-
dom moving from the unrestricted model to a restricted
model. The fit of this model exceeded our criteria for
CFI and RMSEA, but the chi-square was significant:
χ 2(182, N = 327) = 235.13, p = .004,CFI = .973,
RMSEA = .030(.017, .040). Importantly, the many
zero constraints placed on parameters that had been
free in the unrestricted model did not result in a decline
in fit, �χ2(69, N = 327) = 69.45, p = .46.

Moving to the parameter estimates, the solution
indicated considerable factorial complexity in the item
set. Of the 23 items, only 6 loaded on a single factor.
Most items loaded significantly on two or three factors,
although it is important to note that loadings as low as
.15 were statistically significant. If standard saliency
criteria are used (e.g., .30 or .40), factorial complexity
diminishes, although the pattern still does not manifest
simple structure. Consistent with documented attempts
at factoring the measure, the private and public self-
consciousness item sets each form two factors. The
social anxiety items form a relatively coherent factor,
although a subset of those items coalesces with a sub-
set of the public self-consciousness factor to form a
separate factor. Finally, Items 3 and 9, which typically
fail to load in analyses that extract three or four factors,
are the strongest indicators of a seventh factor.

Our suspicion that the eight-factor solution would
constitute an overextraction was supported when we
followed the same strategy as for the seven-factor solu-
tion in moving from the unrestricted to a restricted
model. One factor (the fifth factor extracted in the max-
imum likelihood exploratory factor analysis) was rep-
resented by a single indicator; therefore, the restricted
eight-factor model was underidentified and could not
be estimated. This result underscores our reservations
about using the chi-square test in either exploratory
or confirmatory factor analysis for determining the
number of factors to interpret. Unlike indices such
as CFI and RMSEA, the chi-square test, even when
assumptions regarding the data and model ensure that
the statistic is in fact distributed as a chi-square, is
a test of exact fit. This unrealistic hypothesis test,
if taken seriously, is very likely to lead to overex-
traction, as illustrated by our eight-factor unrestricted
model, the only model that was supported by the
chi-square test.

16.4. Summary and Conclusions

We described and illustrated three formal approaches
to determining the number of factors that underlie
a set of variables. Parallel analysis focuses on the
eigenvalues of the correlation matrix, a focus familiar
to researchers accustomed to invoking the Kaiser-
Guttman rule or using the scree test. Parallel analysis
requires additional effort because the researcher must
generate a corresponding set of random-data eigen-
values; however, readily available computer programs
render this activity rather straightforward. More impor-
tant, unlike the K-G rule and the scree test, for which
there is scant empirical support, parallel analysis is
virtually always accurate under conditions typical of
social science research.

Maximum likelihood exploratory factor analysis and
the unrestricted factor model, as specified in confir-
matory factor analysis, represent two implementations
of the same statistical model. In each case, a formal
statistical test can be undertaken of the adequacy of
particular numbers of factors to account for the asso-
ciations in an observed correlation matrix. The default
test in both models is a chi-square test; however, our
recommendation is that researchers eschew this un-
realistically stringent hypothesis test and, instead, take
advantage of recently developed fit indexes such as
the CFI and RMSEA. Because factor models estimated
using confirmatory factor analysis often are incor-
porated into structural models including directional
associations among factors, we argue that such models,
particularly at the stage when the number-of-factors
question is being considered, be evaluated against fit
criteria that are more stringent than is typical of tests
of structural models (e.g., CFI > .95; upper limit of
RMSEA confidence interval < .05).

A by-product of our analysis is the illustration, in
extreme form, that confirmatory factor models need not
be specified as simple structure models. Indeed, simple
structure specification, such as the model illustrated
in Figure 16.2, is unlikely to hold for items typical
of measures in the social sciences. For this reason, it
seems unreasonable for researchers to rigidly adhere
to this standard specification, leaving only covariances
among uniqueness terms open to specification search-
ing in misspecified models. And, as we have asserted,
the consideration of cross-loadings (or any pattern of
loadings) is reasonable only after the correct number
of factors has been determined.

Factor analysis is a vital statistical tool for
social scientists. When implemented and interpreted
correctly, factor analysis provides a means of
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operationally defining variables that cannot be
measured directly. At the core of factor analysis is the
question of how many factors underlie a given set of
indicators. In some instances, this question is rendered
moot by a detailed theoretical model or careful con-
struction of indicators with a clear factor structure in
mind. More often, however, the indicators predate the
research of which they are part and are not closely
tied to a detailed theoretical model. In such cases, the
strategies described and illustrated in this chapter
provide feasible and defensible means to determine
the correct number of factors.
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Chapter 17

Experimental,

Quasi-Experimental,

and Nonexperimental

Design and Analysis

With Latent Variables

Gregory R. Hancock

In the physical sciences, common variables such as
temperature, pressure, mass, and volume, when
considered in sufficient quantities, tend to be

measured with relatively little error. In the social
sciences, however, variables often contain fairly large
amounts of measurement error. Educational policy
researchers, for example, might want to know about
teachers’ feelings of burnout but only have measures
of absenteeism and job satisfaction. Family studies
researchers could be interested in maternal warmth for
new mothers but only have mothers’ responses to a
few rating scale items regarding their interactions with
their newborn infants. Health care researchers might
want to know about AIDS patients’ sense of hopeless-
ness while in group therapy but only have measures of
patients’ medication and treatment compliance. Such
is the nature of the social sciences—constructs of inter-
est such as burnout, maternal warmth, or hopelessness

AUTHOR’S NOTE: Portions of this chapter appeared previously in Hancock (1997) and are used here with permission of the American
Counseling Association.

are generally latent, so our analyses must rely on
error-laden measured variables as surrogates.

Experimental design and analysis involving variables
that are directly measured is well established. Analysis
of variance (ANOVA) in its many forms constitutes
the basis for inference regarding population means
on some measured dependent variable as a function
of one or more independent grouping variables (e.g.,
treatment group, sex). Such analyses strive to facil-
itate inferences about the construct underlying the
measured dependent variable, but the sensitivity of
those analyses for detecting construct-level relations
is at the mercy of the reliability of the construct’s
operationalization in the measured variable employed.
In short, unreliability of measured variables presents
a signal-to-noise ratio problem within experimental
design and analysis. Within the social sciences, detec-
tion of subtle but important population differences in
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an experiment, quasi-experiment, or nonexperiment
might be thwarted by the imprecision arising from the
inherent vagaries of human behavior, possibly leading
to proclamations of no apparent population differences
only because those that truly existed were masked by
the outcome measure’s unreliability.

This attenuation in sensitivity to detect specific
population mean differences was described by Cohen
(1988, p. 536). Drawing from Cleary and Linn (1969),
he noted that for a measured variable, the standardized
effect size ES equals (ES∗)(ρYY)

1/2, where ES∗ is the
error-free (i.e., latent) standardized effect size measure
(d for two groups or f for J groups) (Cohen, 1988),
and ρYY is the reliability of a single measured variable
Y . The direct implication is that any latent variability
among population construct means is attenuated by the
reliability of the measured indicator selected. Borrow-
ing from classical test theory (see, e.g., Crocker &
Algina, 1986), the ith score on a measured variable Y
in the j th population may be expressed as Yij =
Tij+Eij, where T is the hypothetical true score, andE
is a random fluctuation from that true value that would
be expected to increase in absolute magnitude when
a less reliable Y variable is chosen to operationalize
the construct of interest. Within the j th population,
this implies (under standard assumed conditions) that
µYj = µTj and σ 2

Yj
= σ 2

Tj
+ σ 2

Ej
, with the latter

facilitating the common definition of reliability as the
proportion of score variance explained by the true
underlying construct: ρYY = σ 2

T /σ
2
Y . Note that the

term σ 2
Yj

represents the assumed homogeneous intra-
population (within-groups) variability, which appears
below as σ 2

Ywithin
in the expectations for the numerator

and denominator for the one-way, between-subjects,
fixed-effects ANOVA F -test statistic. For the equal-n
case, these are

E[MSbetween] = n
[∑

(µYj − µY.)2
J − 1

]
+ σ 2

Ywithin
(1)

and

E[MSwithin] = σ 2
Ywithin

. (2)

Substituting the true and error score information
leads to

E[MSbetween] = n
[∑

(µTj − µT.)2
J − 1

]

+ σ 2
Twithin
+ σ 2

Ewithin
(3)

and

E[MSwithin] = σ 2
Twithin
+ σ 2

Ewithin
. (4)

In equation (3), for E[MSbetween], the first term
represents the signal, whereas the last two variance
terms represent noise. The σ 2

Twithin
term might be con-

sidered true noise, the natural variability of subjects
on the underlying continuum of interest. The σ 2

Ewithin

term, on the other hand, is measurement error
noise, induced by the unreliability of the depen-
dent variable. Thus, when forming the observed
F -ratio as MSbetween/MSwithin, the measurement error
noise dampens the numerator and denominator, poten-
tially masking the variability among true population
means (the signal) contained in the first term of the
E[MSbetween] expression in equation (3).

Two strategies to combat the dampening problem
arising from σ 2

Ewithin
are, put simply, to boost the signal

and to reduce the noise. With regard to the signal, the
group differences would somehow need to be inflated
(implying some change in the nature of the independent
variable and, hence, the research question) and/or the
sample size must be increased (often a costly alterna-
tive). On the other hand, somehow addressing the noise
of unreliability would attempt to facilitate as closely
as possible a test of population differences on the con-
struct itself. For example, if the dependent variable is a
summated scale instrument, perhaps it could be length-
ened through the addition of quality items, thereby
enhancing the variable’s (i.e., total score’s) represen-
tation of the construct. Alternatively, if the reliability of
the instrument is known, one could build some form
of correction for attenuation into the numerator and
denominator of the F -ratio. Unfortunately, the reli-
ability estimate is itself a statistic with a sampling
distribution (see, e.g., Hakstian & Whalen, 1976), ren-
dering any such corrections somewhat tenuous. Most
promising, and the subject of the current chapter,
are two approaches deriving from structural equation
modeling (SEM). Multiple-indicator, multiple-cause
(MIMIC) modeling (Jöreskog & Goldberger, 1975;
Muthén, 1989) and structured means modeling (SMM)
(Sörbom, 1974) employ multiple measured variables,
rather than one alone, in a sort of “triangulation” in
which their patterns of covariances (and means) are
used to infer population differences on the underlying
construct believed to have motivated those observed
patterns. Although not fitting theF -ratio paradigm pre-
cisely, these methods effectively facilitate hypothesis
testing of population means directly at the construct
level, rather than at the level of the fallibly measured
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proxies for those constructs, thereby attempting to pare
away the measurement error noise from the testing
process.

Given that the SEM strategies addressed in this
chapter invoke multiple measures, it is critical to note
that such methods differ fundamentally from another
multivariate group comparison strategy, multivariate
analysis of variance (MANOVA). This difference is
rooted first and foremost in the nature of the assumed
variable system (Bollen & Lennox, 1991; Cohen,
Cohen, Teresi, Marchi, & Velez, 1990; Cole, Maxwell,
Arvey, & Salas, 1993). In an emergent variable system,
the variables are believed to have a causal bearing
on the underlying trait of interest. As an example,
one could imagine an unmeasured entity representing
stress that is related to such variables as relationship
with parents, relationship with spouse, and demands
of the workplace. In this case, it is more reasonable
to posit that changes in the variables lead to changes
in stress, rather than changes in overall stress leading
to changes in these individual variables. Because
the measured variables are theoretically the causal
agents, stress emerges as a linear composite of those
observed variables upon which it is dependent. In
such an emergent variable system, then, it is mean-
ingful to talk about population differences in terms of
a linear composite formed by the variable system. For
this reason, population comparisons in an emergent
variable system are best addressed using MANOVA,
in which population differences are assessed using
composites that maximally differentiate the groups in
multivariate space.

In a latent variable system, on the other hand,
the construct (or “factor” or “latent variable”) is
believed to have a causal influence on the observed
variables, thereby necessitating the existence of covari-
ance among those variables. As an example, consider
measured variables that are Likert scale responses to
the following questionnaire items: “I am comfort-
able with my child marrying a person of another
race,” “I believe schools should have students of all
racial backgrounds,” and “I would be comfortable
if a family of a different race moved in next door
to me.” Here the construct is believed to have a
causal bearing on the variables: Changes in a person’s
attitude would be expected to result in changes in
responses to each of these questionnaire items. As
a result, substantial covariance among these items
should arise because their responses all derive from
attitudes regarding race; in fact, the items might
serve, at least in part, as measured indicators of an
underlying construct of racial attitude. For answering
research questions regarding population differences

on such a construct, MANOVA methods are often
used. However, they are less powerful than the latent
variable SEM methods presented in this chapter, as
demonstrated empirically by Hancock, Lawrence, and
Nevitt (2000) across a broad spectrum of conditions
and also as derived analytically by Kano (2001).
Furthermore, and most important, MANOVA methods
are fundamentally inconsistent with the nature of the
variable system at hand, which may lead researchers
to an inaccurate assessment of population differences
on the construct of interest, if not to missing those
differences altogether (Cole et al., 1993).

To sum, the SEM methods presented in this chapter
help to address research questions about population
differences in a latent variable system. Literally, one
uses measured variable evidence to query whether
populations’ latent construct means differ. Do subjects
randomly assigned to either group counseling sessions
or individual counseling sessions differ in their overall
perception of counselors? Do males and females dif-
fer in terms of mathematics self-efficacy? Do random
samples of husbands and wives differ in the amount
of spousal trust? MIMIC modeling and SMM tech-
niques help to address such questions. In this chapter,
an introduction to both methods is presented, using
the two-group comparison scenario as a framework
within which to describe their conceptual represen-
tations, unique underlying assumptions, and relative
merits and limitations, as well as to point toward
methodological extensions beyond the two-group case
explicitly presented here.

17.1. Preliminary Information

From a pedagogical standpoint, it would be impos-
sible to convey an understanding of the MIMIC
modeling and SMM techniques without assuming
some experience with the underlying principles and
implementation of SEM (e.g., unstandardized path-
tracing rules, parameter estimation techniques, etc.).
The reader unfamiliar with such topics is referred
to several excellent texts (e.g., Bollen, 1989; Hayduk,
1987; Kaplan, 2000; Kline, 1998; Loehlin, 1998;
Mueller, 1996; Schumacker & Lomax, 1996). To
assist the reader in the current chapter, we present an
overview of the notation used next, as well as a brief
reminder of some helpful algebraic relations.

17.1.1. Notation

Fairly traditional SEM notation is used through-
out most of this chapter. Specifically, an independent
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(exogenous) construct is denoted as ξ ; the measured
variables serving as indicators of this construct are
each denoted as X. The path coefficient representing
the impact of the construct ξ on each X (i.e., the
unstandardized loading) is labeled with a λX. The vari-
ability in each X not explained by the construct ξ is a
residual denoted as δ. As for dependent (endogenous)
constructs, these are labeled as η; indicators of these
dependent constructs are denoted as Y . The unstan-
dardized path coefficient representing the impact of the
construct η on each Y is labeled with a λY , whereas
residuals in each Y variable are denoted as ε. In this
chapter, endogenous constructs (η) are either depen-
dent on a group code (“dummy”) variable or on an
exogenous latent covariate. The group code variable
is denoted as X, with its unstandardized path to the
construct η being labeled with a γ . That portion of
the construct η that is not explained by the group code
variable X (and any latent covariates) is residual; a
construct residual is labeled ζ . Finally, as will be
introduced later, some structural equations will require
intercept terms; these intercepts are designated by τ for
measured variables and κ for latent variables.

Exceptions to traditional notation used in this
chapter are as follows. The population mean, vari-
ance, and covariance are represented by M(−), V (−),
and C(−,− ), respectively. As for estimates of those
population parameters derived through the course of
SEM, these are denoted by a circumflex (ˆ) atop
the corresponding parameter symbol. An estimated
unstandardizedX loading, for example, would be des-
ignated as λ̂X; the estimated population mean, vari-
ance, and covariance would be denoted M̂(−), V̂ (−),
and Ĉ(−,−), respectively.

17.1.2. Useful Algebraic Relations

When conducting SEM methods, the researcher is
actually attempting to solve a system of algebraic
relations to get estimates of theoretically meaning-
ful unknowns. Those relations to be solved involve
the decomposition of population variances and covari-
ances (and, in this chapter, means) into their compo-
nent pieces, as implied by the theoretical structural
model. The reader should have some familiarity with
this process already. As a reminder, consider one pos-
sible example involving three independent variables
(X1,X2, andX3) and three dependent variables (Y1, Y2,
and Y3).1 These dependent variables are theoretically

1.Note that this use ofX and Y notation differs from that described in the
previous section and from that used in the MIMIC modeling and SMM
portions of the chapter to follow.

related to the independent variables by the following
familiar system of regression-type equations:

Y1 = τ1 + γ11X1 + ζ1, (5)

Y2 = τ2 + γ21X1 + ζ2, (6)

Y3 = τ3 + γ32X2 + γ33X3 + ζ3. (7)

In these equations, τ represents an intercept, γ rep-
resents a slope, and ζ represents an error (“residual”
or “disturbance”) variable. These can also be depicted
in matrix form as

Y1

Y2

Y3


 =


τ1

τ2

τ3




+

γ11 0 0
γ21 0 0
0 γ32 γ33




X1

X2

X3


+


ζ1

ζ2

ζ3


 (8)

or, symbolically, as

y = τ + �x + ζ. (9)

Assuming that the errors in ζ do not covary with
each other or with any independent variables in x,
unstandardized path-tracing rules (or the algebra of
expected values) yield the following expected relations
for the population:

M(Y1) = τ1 + γ11M(X1), (10)

V (Y1) = γ 2
11V (X1)+ V (ζ1), (11)

C(Y1, Y2) = γ11γ21V (X1), (12)

V (Y3) = γ 2
32V (X2)+ γ 2

33V (X3)

+ 2γ32γ33C(X2, X3)+ V (ζ3). (13)

Certainly, more relations are implied as well; in
fact, for the six measuredX and Y variables, a total of
6 mean decompositions, 6 variance decompositions,
and 15 covariance decompositions are possible. The
individual decomposition relations in equations (10)
through (13) were chosen because they illustrate many
of the types of mean, variance, and covariance de-
compositions necessary for understanding the MIMIC
modeling and SMM analyses presented in this chapter.

Finally, noteworthy in the above model-implied
relations is that intercept terms do not appear in de-
compositions for variances or covariances. Whereas
intercepts are commonly used in multiple regression to
help capture the relation of the predictors’ means to the
mean of the criterion variable, in most SEM analyses,
the intercepts are omitted from the structural equations
because they are irrelevant to SEM’s focus on variances
and covariances. However, as will be shown later, these
intercepts will need to be introduced into our structural
equations when performing SMM.
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17.2. MIMIC Modeling

17.2.1. Development

As the reader may recall, t-tests (and ANOVA in
general) may be conducted in a regression model
through the use of dummy or other group code
variables. Dummy variables assume values of 0 or
1, respectively, indicating the absence or presence of
some condition and are included as predictors in the
linear model. This allows inferences to be made regard-
ing population differences on a particular dependent
variable. A similar idea may be used with a dependent
construct, allowing questions to be answered about
potential population differences on the construct of
interest. This is the basis of the MIMIC modeling
method of testing latent mean differences.

To elaborate, assume a researcher wishes to use two
samples to make an inference about whether a differ-
ence exists between two population means on a latent
construct η1. In other words, η1 may be dependent
on the population to which a subject belongs. Given
the context of a latent variable system, the construct
η1 is defined by the covariation among its measured
indicators. Assume for this example that there are three
such indicators—Y1, Y2, and Y3—where Y1 serves as
the construct’s scale indicator by fixing its loading to
a value of 1. Assuming the Y variables are expressed
as deviation scores, this measurement model may be
expressed in matrix form as


Y1

Y2

Y3


 =


 1
λY21

λY31


 η1 +


ε1

ε2

ε3


 (14)

or, symbolically, as

y = �Y η1 + ε. (15)

Notice that the equations do not contain intercept
terms. In fact, intercept terms could have been included
in these equations; however, because MIMIC mod-
eling (like most of SEM) focuses only on variances
and covariances among measured variables, such inter-
cepts are irrelevant to the necessary variance and
covariance decompositions. Formally, the omission of
intercept terms from structural equations implies zero
values for those intercepts. Zero intercepts result when
all variables have means of zero, such as when each
score is expressed as a deviation from its variable mean.
Thus, in MIMIC modeling, all variables are assumed
to be scaled as deviation scores, thereby having zero
means and intercepts. On the surface, this might seem
to defeat the purpose of the MIMIC model—namely,

the investigation of mean differences on a latent factor.
However, because variables are scaled as deviations
from their means in the combined sample rather than
in each group separately, group differences on the
measured variables and on the underlying construct
are preserved.

As for the information about population member-
ship, a dummy variableX1 is constructed whose values
represent the presence (e.g.,X1 = 1) and absence (e.g.,
X1 = 0) of one of two conditions for each subject.
To capture the potential relation between this dummy
variable and the constructη1, the data from both groups
are combined into a single sample and the dependent
construct is regressed on the dummy variable within
a single structural model. The regression coefficient
expressing the impact of the dummy variable X1 on
the construct η1 is denoted by γ11; this parameter is
essential to the MIMIC analysis because a statistically
significant impact ofX1 on η1 allows the inference that
populations differ in average amount of the underlying
construct. That part of η1 not explained by the dummy
variable is captured by the disturbance term ζ1. This
structural model may be expressed as

η1 = γ11X1 + ζ1. (16)

Notice again that no intercept term appears in this
structural equation, reflecting the condition in which
all variables, including the group code variableX1, are
treated as if they were expressed as deviation scores.

The model containing both measurement and struc-
tural portions is included in Figure 17.1 (variable
labels may be ignored for now). Also shown are the
model-implied variances and covariances among the
four observed variables (i.e., including the dummy
variable X1), expressed as a function of the param-
eters to be estimated in the model and derivable from
unstandardized path-tracing rules (or directly from
the algebra of expected values). Consider, for exam-
ple, the theoretical decomposition of the variance of
Y1, V (Y1) = V (η1)+V (ε1); however, because V (η1)

may be further decomposed into [γ 2
11V (X1)+V (ζ1)],

the expression in brackets has been substituted into
this relation and wherever V (η1) is part of a variance
or covariance decomposition. In total, there are 10
equations and 8 unique parameters to be estimated: 2
loadings (λY21, λY31), 1 structural path (γ11), 1 variable
variance (V (X1)), 1 disturbance variance (V (ζ1)), and
3 error variances (V (ε1), V (ε2), V (ε3)). Overall, the
model is overidentified with 2 (10−8 = 2) degrees of
freedom.

Estimates of the model’s eight parameters are
made so as to reproduce the 10 model-implied vari-
ances and covariances in a 4 × 4 model-implied
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Figure 17.1 Model and Implied Relations for
the Multiple-Indicator, Multiple-Cause
(MIMIC) Modeling Example

ε1

ε2

ε3

λY21

λY31

1

1

1

1

ζ1

1

γ11

η1

X1
dummy

Y1
voc

Y2
comp

Y3
lang

Reading
Proficiency

Model-implied relations
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C(Y1,Y2) = λY21[γ 2
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C(Y1,Y3) = λY31[γ 2
11V (X1)+ V (ζ1)]

C(Y2,Y3) = λY21λY31[γ 2
11V (X1)+ V (ζ1)]

C(X1,Y1) = γ11V (X1)

C(X1,Y2) = γ11λY21V (X1)

C(X1,Y3) = γ11λY31V (X1)

variance-covariance matrix �̂ as closely as possible
to those 10 variance and covariance values observed
in the p = 4 variables’ data and contained in a 4 × 4
sample variance-covariance matrix S. In the context
of maximum likelihood (ML) estimation specifically,
parameter values are selected to imply (reproduce)
a population variance-covariance matrix from which
the observed data’s sample variance-covariance matrix
has the maximum likelihood of arising by random
sampling. As derived elsewhere (e.g., Hayduk, 1987),
this process is operationalized by choosing parameters
so as to minimize the fit function

FML = ln|�̂| + tr(S�̂
−1
)− ln|S| − p. (17)

Assuming that reasonable data-model fit is achieved
(i.e., that parameter estimates are found yielding a �̂

sufficiently close to S), the parameter of greatest inter-
est is the path coefficient γ11 from the dummy variable
X1 to the construct η1. This path represents the direct
effect of the dummy variable on the construct, and its
magnitude actually reflects the difference between the
two population means on the construct η1. To under-
stand why, consider the structural equation relating
the dummy variable X1 to the following construct:
η1 = γ11X1 + 1ζ1. For the population coded X1 = 1,
this equation may be written as η1 = γ11 + 1ζ1; for
the population coded X1 = 0, this equation simpli-
fies to η1 = 1ζ1. Because M(ζ1) = 0, the expected

population mean for each group is 1M(η1) = γ11 and

0M(η1) = 0 (where the prescript indicates the dummy
code). Thus, γ11 = 1M(η1)− 0M(η1), and its estimate
γ̂11 represents the estimated difference between the two
population means on the construct η1.

If the dummy variableX1 accounts for a statistically
significant portion of the variability in the construct
η1, which is determined by a test of the magnitude of
the parameter estimate γ̂11, then we would infer that
a difference exists between the two population means
on this construct. If, on the other hand, X1 fails to
account for a statistically significant portion of the
variability in η1, we must retain as tenable the null
hypothesis stating 1M(η1) = 0M(η1). The test of γ̂11

requires its associated standard error, designated here
as SE( γ̂11), which is part of the typical SEM computer
output. A simple z-test, where z = γ̂11/SE( γ̂11), tests
whether the two population means appear to differ on
the construct of interest.

Given statistical significance, one must be able to
interpret which population has “more” of the con-
struct in question and how much more. To do this,
the researcher must first have a correct interpretation
of the construct, which is done by examining the
signs of the loading estimates (λ̂ values) in light of
what each measured variable represents. Once this
is done, the sign of the value of γ̂11 implies which
population has more of the construct—if positive,
the population codedX1 = 1 has more; if negative, the
population codedX1 = 0 has more. Finally, as detailed
in Hancock (2001), the magnitude of this difference
may be expressed as a standardized effect size estimate
d̂, where

d̂ = |γ̂11|/[V̂ (ζ1)]
1/2. (18)

Because V̂ (ζ1) is effectively a pooled within-group
factor variance, d̂ may be interpreted as the estimated
number of latent standard deviations separating the
two population means on the latent continuum of inter-
est. This estimated standardized effect size might also
be used in post hoc power analysis and sample size
determination (Hancock, 2001).

17.2.2. Two-Group MIMIC Example

To illustrate a MIMIC modeling approach to assess-
ing latent mean differences, we present a hypothet-
ical quasi-experimental example. Imagine two intact
samples of 500 kindergartners, the first assigned to
receive a traditional phonics-based curriculum for
2 years and the other to receive a whole-language
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Table 17.1 Contrived Summary Statistics for Separate and Combined Samples

Phonics

voc comp lang phon alpha print SD M

voc 1.000 4.654 70.944
comp 0.770 1.000 3.943 69.606
lang 0.650 0.659 1.000 3.771 66.962
phon 0.223 0.260 0.181 1.000 1.343 3.274
alpha 0.381 0.413 0.313 0.511 1.000 1.325 3.616
print 0.325 0.349 0.277 0.419 0.640 1.000 1.329 3.300

Whole Language

voc comp lang phon alpha print SD M

voc 1.000 4.687 69.166
comp 0.747 1.000 3.901 68.046
lang 0.641 0.631 1.000 4.083 65.400
phon 0.199 0.238 0.174 1.000 1.300 2.774
alpha 0.289 0.315 0.237 0.507 1.000 1.276 2.794
print 0.267 0.311 0.253 0.439 0.618 1.000 1.238 2.564

Combined

voc comp lang phon alpha print dummy SD M

voc 1.000 4.752 70.055
comp 0.768 1.000 3.997 68.826
lang 0.658 0.657 1.000 4.005 66.181
phon 0.239 0.277 0.207 1.000 1.342 3.024
alpha 0.371 0.400 0.315 0.533 1.000 1.363 3.205
print 0.332 0.365 0.303 0.456 0.660 1.000 1.335 2.932
dummy 0.187 0.195 0.195 0.186 0.302 0.276 1.000 0.500 0.500

curriculum for 2 years.2 At the end of first grade, three
reading assessments are made, focusing on vocabulary
(voc), comprehension (comp), and language (lang).
These are all believed to be observable manifesta-
tions of an underlying construct of reading proficiency.
Summary statistics for these fabricated data are pre-
sented in Table 17.1 for the two samples separately, as
well as in a combined sample with a dummy variable
(X1 = 1, phonics; X1 = 0, whole language). Note
that information on other variables appears in the table
as well; this will be used later.

The model depicted previously in Figure 17.1 was
fit to the covariance matrix (with the dummy variable)
for the combined sample, whose correlations and
standard deviations (SD) are shown in Table 17.1,
using ML estimation in EQS 5.7b (Bentler, 1998). First
and foremost, the fit of the model was excellent by

2. Although such data would typically be multilevel in practice (e.g.,
students in common classrooms, etc.), assume for simplicity that the data
here may be treated as simple random samples.

any standards: χ2(2, N = 1,000) = 2.128, com-
parative fit index (CFI) = 1.000, standardized root
mean square residual (SRMR) = .009, and root mean
squared error of approximation (RMSEA) = .008,
with a 90% confidence interval (CI) = (.000, .064).
Second, key parameter estimates (all with p < .05)
may be summarized as follows: λ̂Y21 = 0.841, λ̂Y31 =
0.723, γ̂11 = 1.872, and V̂ (ζ1) = 16.447. Because
γ̂11 is positive and statistically significant, we may
tentatively infer that the phonics population (X1 = 1)
has a higher mean than the whole-language popu-
lation (X1 = 0) on the latent reading proficiency
continuum. As for the magnitude of the effect, the
estimated standardized effect size would be computed
as d̂ = |γ̂11|/[V̂ (ζ1)]1/2 = 1.872/(16.447)1/2 = .462.
This value implies that the phonics population mean
sits almost one half of a standard deviation higher on
the latent reading proficiency continuum than that of
the whole-language population. By social science stan-
dards (e.g., Cohen, 1988), this could be considered a
medium effect size.
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17.2.3. Extensions of the Basic MIMIC Model

First, the simple two-group scenario illustrated in
this chapter is actually a special case of a more
general class of MIMIC models (see Muthén, 1989).
In MIMIC models in general, as the acronym’s full
name implies, a construct has several measured pre-
dictors causally impinging on it.3 Therefore, just as
the situation of a single dichotomous predictor allows
us to make inferences about latent means for the
case of two populations, using J − 1 group coded
variables allows inferences about J populations in
general. Furthermore, these J groups may represent
populations varying on a single dimension, as in a one-
way ANOVA, or along multiple dimensions, as in a
factorial ANOVA. All the clever group coding schemes
(e.g., dummy, contrast, effect) may be employed to
target the population inferences of interest, just as
they are when conducting ANOVA within a regression
model (see, e.g., Pedhazur, 1997).

Second, when including the path from the group
code predictor(s) directly to the construct, as shown
in Figure 17.1 and analyzed in the MIMIC exam-
ple for the two-group case, an assumption is made
about the relation between the group code variable
and the measured indicator variables. Specifically,
this assumption is that the only relation between the
group code predictor(s) and the indicator variables is
the indirect one mediated by the construct of interest.
Put more practically, this implies that the only reason
for population differences in the measured indicator
variables is the existence of population differences
on the measured construct. Indeed, this is typically
assumed and perhaps is the ideal case. However, one
can imagine an indicator variable in which population
differences are inflated or attenuated in addition to the
construct-level differences (Muthén, 1989). Consider
a researcher in a nonexperimental setting who wishes
to assess population differences between Caucasian
and Hispanic students on an English-language profi-
ciency construct, whereby three English vocabulary
tests are used as measured indicators of that con-
struct. If one of the vocabulary tests consists of many
words whose Latin roots are much more common in
Spanish, then performance on that particular indica-
tor variable will indicate not just the English-language
proficiency construct but also something about cultural
background. This illustrates what is known in the test-
ing literature as differential test functioning, which is
the more general case of differential item functioning
(see, e.g., Holland & Wainer, 1993), and failing to

3.This also implies that, with the single dummy variable as the lone causal
variable in the two-group case, the term MIMIC is technically a misnomer.

accommodate this could lead to improper inference
regarding population differences on the construct of
interest. In the MIMIC model, this problem can be
detected by model comparisons or modification indices
(Lagrange multiplier tests), and it can be addressed by
including an additional path directly from the ethnicity
dummy predictor to that particular indicator variable;
doing so will thereby preserve the integrity of the
population inference at the construct level.

Third, MIMIC models also facilitate the accom-
modation of covariates, even when the covariates are
latent constructs having their own indicator variables.
Typically in analysis of covariance (ANCOVA) appli-
cations, a covariate has the potential to contain con-
siderable measurement error. Covariate measurement
error, whether specifically in ANCOVA settings (see
Trochim, 2001) or in the more general set of mediator-
variable models (see Hoyle & Kenny, 1999), can lead
to inaccurate inference regarding mean differences
and/or structural relations. However, when the desired
covariate is operationalized as a construct from a latent
variable system of measured covariates, the theo-
retically error-free latent covariate may be included
in the model as an additional covarying predictor
of the construct on which population differences are
being investigated. For notational purposes, we may
express the original group code predictor X1 as a
single-indicator factor ξ1(i.e., X1 = ξ1) and the
new latent covariate as ξ2 (with, say, indicators X2

through X4); ξ1 and ξ2 have covariance C(ξ1, ξ2),
often designated as ϕ21. Thus, equation (16) may be
extended as

η1 = [γ11 γ12]

[
ξ1

ξ2

]
+ ζ1 (19)

or, symbolically, as

η1 = �ξ+ ζ1. (20)

In such situations, as in ANCOVA in general, popu-
lation differences above and beyond those resulting
from the covariate are of interest. Thus, the key
path in this model is still γ11—that from the group
code variable (designated herein as ξ1) to the out-
come construct η1, which now represents a covariate-
adjusted latent mean difference. Figure 17.2 depicts
such a model with a three-indicator latent covariate,
and a numerical example of this approach appears
below.4

4. An interesting variation on ANCOVA within MIMIC models is useful
with nonrandom selection into groups (e.g., treatment and control). Kaplan
(1999) proposed using propensity scores (Rosenbaum & Rubin, 1983),
which are conditional probabilities of selection into a target group (e.g.,
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Figure 17.2 Model for the Multiple-Indicator, Multiple-Cause (MIMIC) Example With Latent Covariate
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17.2.4. Two-Group MIMIC
Example, With Latent Covariate

In the previous MIMIC example, the final inference
was that the phonics population was higher in aver-
age latent reading proficiency than the whole-language
population. This inference was noted to be made
tentatively, however, given that the use of intact groups
introduces a selection threat to the study’s internal
validity. To help compensate for the lack of experi-
mental control, we may employ the statistical control
of a latent covariate. Extending the previous MIMIC
example, imagine that at the start of kindergarten (i.e.,
prior to receiving reading instruction), each teacher
had used 6-point rating scales to form ratings for each
child on phonemic awareness (phon), the alphabetic
principle (alpha), and print concepts and conventions
(print). These three measures are all believed to be
observable manifestations of an underlying construct
of reading readiness. Summary statistics for these fab-
ricated data appear in Table 17.1 for the two samples
separately, as well as in a combined sample, with a
dummy variable (X1 = 1, phonics; X1 = 0, whole
language).

The model depicted in Figure 17.2 was fit to the
covariance matrix (with dummy variable) for the
combined sample, whose correlations and standard

treatment) derived from probit or logistic regression using covariates as
predictors. Individuals are then grouped into propensity score strata, and
separate MIMIC models are fit simultaneously to data from cases in each
stratum. Under specific conditions regarding the original selection into
groups and the invariance of the measurement model across populations
(see Kaplan, 1999, for details), conclusions can be reached about the
nature of group differences and its generalizability across strata.

deviations are shown in Table 17.1, using ML esti-
mation in EQS 5.7b (Bentler, 1998). The fit of the
model was excellent: χ2(12, N = 1,000) = 10.507,
CFI = 1.000,SRMR = .012, and RMSEA =
.000, with 90% CI = (.000, .029). Also, all load-
ing parameter estimates were statistically significant
(p < .05) : λ̂Y21 = 0.853, λ̂Y31 = 0.726, λ̂X32 =
1.462, and λ̂X42 = 1.252. As for the structure, key
parameters were as follows: γ̂11 = 0.464 (p =
.087), γ̂12 = 2.481(p < .05), Ĉ(ξ1, ξ2) = 0.141
(p < .05), and V̂ (ζ1) = 12.674. In these structural
parameters, the two effects of using a covariate are
apparent. First, there is a reduction in the endoge-
nous construct’s residual variance, from 16.447 in the
previous example to 12.674 with the latent covariate.
Second, the estimated population mean difference is
adjusted, from a statistically significant 1.872 previ-
ously to a nonsignificant 0.464 with the latent covari-
ate. This result implies that once the differences in
the intact samples’ reading readiness are taken into
account, the null hypothesis that phonics and whole-
language yield equivalent average reading proficiency
appears tenable.

17.3. Structured

Means Modeling (SMM)

17.3.1. Development

The relation between a MIMIC modeling strategy and
using the SMM approach is similar to that between
the regression and t-test approaches to assessing
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univariate differences between two populations. A
simple regression approach, like MIMIC modeling,
uses the data from both groups as part of a single
sample. The criterion variable is regressed on the
dummy predictor, allowing inferences to be made
about potential differences on that criterion through
the magnitude, sign, and statistical significance of the
regression (path) coefficient. No variable means were
directly required in this process, nor did the intercept
commonly appearing as part of a regression equation
have any bearing on the interpretation regarding group
differences on the criterion. In MIMIC modeling—the
SEM analog to a simple regression approach to assess-
ing population differences—intercepts are generally
ignored altogether (for reasons discussed previously).
Similar to regression, population differences on the
construct of interest are inferred directly from the
variables’ covariance structure; specifically, the path
coefficient relating the predictor (dummy variable)
and the criterion (construct) is used. Again, individ-
ual group means on the measured variables are not
required.

In contrast, the SMM approach to assessing popu-
lation differences, like a t-test, keeps the data from
the two groups separate. This eliminates the need for
a group code variable to differentiate because scores
from different groups are not combined for analysis.
Instead, also like a t-test, the means of the variables are
used in the analyses. Thus, SMM will use equations
involving means and, as was shown in the introductory
section, the accompanying variable intercepts. These
new equations constitute the mean structure, which
will be estimated in addition to the covariance structure
that is part of all SEM analyses. The simultaneous esti-
mation of covariance and mean structures associated
with the latent and observed variables will facilitate the
ultimate goal of making inferences about population
means on the construct of interest.

To understand how SMM operates, again assume
there are only two groups to be compared in terms
of their construct means. The construct of interest
ξ1 has three indicators—X1, X2, and X3—and the
scale of the construct is determined by fixing the X1

loading to 1. This model, which is assumed to hold
for both populations, is included in Figure 17.3. The
structural equations for a single population include
intercept terms and may be represented in matrix form
as follows:


X1

X2

X3


 =


τ1

τ2

τ3


+


 1
λX21

λX31


 ξ1 +


δ1

δ2

δ3


 (21)

Figure 17.3 Model and Implied Relations for Struc-
tured Means Modeling (SMM)
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V (X1) = V (ξ1)+ V (δ1)
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V (X3) = λ2
X31V (ξ1)+ V (δ3)

C(X1, X2) = λX21V (ξ1)

C(X1, X3) = λX31V (ξ1)

C(X2, X3) = λX21λX31V (ξ1)

M(X1) = τ1 +M(ξ1)

M(X2) = τ2 + λX21M(ξ1)

M(X3) = τ3 + λX31M(ξ1)

or, symbolically, as

x = τ+�Xξ1 + δ. (22)

Notice also that a unit constant may be inserted in
equation (22) following the vector τ (i.e., x = τ1 +
�Xξ1 + δ), conveying that the τ values can be treated
as paths to each measured X from a unit-constant
pseudovariable (i.e., a variable on which all subjects
have a value of 1). This convention is depicted in
Figure 17.3 with paths to each of theX variables from
a triangle representing this unit constant, thus denoting
measured variable intercepts. These structural equa-
tions may now be interpreted just as in regression.
For example, considering the structural equation for
the measured variable X2, the loading λX21 is a slope
relating change in the construct ξ1 to change in X2,
whereas τ2 represents the predicted value of X2 for a
subject having a zero value on the construct ξ1.

The reader will also notice another convention
represented in Figure 17.3, that of a path from the
unit constant to the construct ξ1 and labeled asM(ξ1).
Because any score in a set can be written as a deviation
from the set’s mean, theoretical scores on the construct



Chapter 17 / Experimental, Quasi-Experimental, and Nonexperimental Design and Analysis • 327

ξ1 can be written as a function of the ξ1 mean and a
residual:

ξ1 = M(ξ1)+ ζ1. (23)

As described previously, notice that a unit constant
may be inserted in equation (23) following the latent
mean M(ξ1) (i.e., ξ1 = M(ξ1)1+ ζ1), conveying that
M(ξ1) can be treated as a path from the unit constant to
the latent construct ξ1. This is conveyed in Figure 17.3
by a path from the unit constant to ξ1, which makes ξ1

appear as a dependent construct. However, because the
unit constant explains no variance in ξ1, ξ1 is techni-
cally still exogenous. For this reason, the disturbance
ζ1 shown in equation (23) is also omitted from the
diagram.

Based on the structural equations contained in
this model, relations are implied regarding popu-
lation variances, covariances, and also means, as
seen in Figure 17.3. Specifically, the three vari-
ances and three covariances among the three observed
variables are seen to be a function of six parameters
requiring estimation: two loadings (λX21, λX31), one
construct variance (V (ξ1)), and three error variances
(V (δ1), V (δ2), V (δ3)). These model-implied relations
constitute the covariance structure for one of the two
populations being compared; the complete covariance
structure includes similar equations for the second
population as well. As for the mean structure, the last
three relations shown in Figure 17.3 express the popu-
lation means for X1 through X3 as a function of four
additional parameters to be estimated (i.e., in addition
to the two loadings, which would be estimable from the
covariance model alone): three intercepts (τ1, τ2, τ3)

and the construct mean (M(ξ1)). These model-implied
relations constitute the mean structure for one popu-
lation; the complete mean structure includes similar
equations for the second population as well. As the
reader may have noticed, though, the mean struc-
ture is currently underidentified; that is, there are
too few equations for the number of unknowns that
must be determined. The solution to this problem
lies in the implementation of theoretically meaningful
cross-group constraints, as discussed next.

Recall the goal of the methods presented in this
chapter: to make inferences about latent means. In
SMM, this is done, at least in part, using information
provided by the observed variable means. Specifically,
any population differences on the observed variables
are presumed to be the direct result of population
differences on the underlying construct. For this to be
a valid presumption, the structural relation between
the construct and each observed variable should be
alike in both populations. That is, SMM generally

requires the equivalence of corresponding loadings
across populations (λX21 and λX31 in this example) and
of corresponding intercept terms across populations
(τ1 through τ3 in this example). In practice, this is
achieved through the imposition of cross-group con-
straints on those parameters. These constraints reflect
the desired condition that the impact of the construct
on the measured variables is invariant across both
populations and that a zero value (or any specific value)
on the construct would yield the same amount of a
given variable in either population. If this were not the
case, the interpretational equivalence of the constructs
across populations could be in question, making a
comparison of means on those constructs substantively
tenuous. Furthermore, with respect to statistical con-
siderations, constraints involving the intercepts reduce
the number of unique parameters to be estimated
within the complete means model and thus help to
make the model identified (as shown later, however,
one additional constraint is still required).

To illustrate this general invariance assumption of
intercepts and loadings across populations, we present
a diagram forX2 in Figure 17.4. The ellipses represent
hypothetical scatter plots of points for each population
on ξ1 and X2, through which pass (overlapping) best-
fit regression lines. Certainly, if the two populations’
scatter plots were identically positioned, they would
be invariant in terms of their lines’ slope (the loading
λX21) and intercept (τ2). In the figure, the popula-
tions are presented as having different means on the
construct ξ1 and the variable X2; however, the struc-
tural relation between ξ1 and X2 (represented by a
regression line) is still the same in both groups. Inter-
pretationally, this implies the desired condition that
any difference the populations may have in terms of the
observed variable is directly attributable to a difference
in the underlying construct and not to differences in
the nature of the structural relation. In actuality, in
some situations, such invariance may not hold, and yet
meaningful inferences may be drawn regarding latent
means. This issue will be mentioned more fully later;
for now, the current discussion will proceed under this
commonly assumed invariance condition.

As alluded to earlier, the imposition of one more
cross-group constraint is still required so that we can
estimate the mean structure’s parameters. To under-
stand the necessity of this constraint, consider the
model-implied means relations from both populations
based on our discussion thus far. These population
relations would be as listed in Figure 17.5, where a
prescript indicates a specific population and a lack
of prescript indicates a parameter that has been con-
strained to be equal across populations (and therefore
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Figure 17.4 Invariance Assumption for Structured
Means Modeling (SMM)

X2

ξ1

Population 1

Population 2

0

τ2

X2 = τ2 + λX21ξ1 + δ2

Figure 17.5 Model-Implied Relations for Mean
Structure With Loading and Intercept
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requires no such differentiation). Because the loading
parameters (λX21, λX31) are estimable from the covari-
ance model alone, the additional relations in the mean
structure pose no threat to their estimation. Unique
to the six equations of the complete mean structure
are five unknowns: three intercepts (τ1 through τ3,
constrained equal across groups) and two construct
means (1M(ξ1), 2M(ξ1)), with these last two being
of key importance to answering the question about
group differences. On the surface, with six equations
and five parameters to estimate, there would seem to
be sufficient information for the mean structure to be
identified. Unfortunately, as the reader can illustrate
with a little algebra, this is not the case.

Specifically, in attempting to solve the system of
relations for either 1M(ξ1) or 2M(ξ1), there is no way
to isolate one of these parameters without the other
being part of the equation. An expression for the dif-
ference [1M(ξ1)] − [2M(ξ1)] can be isolated but not
for either mean individually. The problem is akin to
being told that the difference between two numbers
is 10 and then being asked what each number must
be—there can be no unique answer without assuming
a value for one of those two numbers. The same is true

of the construct means. The only way the relations of
the means model can be used to estimate the relevant
parameters is by fixing one of the construct means to
a particular numerical value. It may seem that fixing
one of the factor means defeats the purpose of means
modeling, but such is not the case. Remember that
the goal is actually to evaluate the difference between
construct means, not the means themselves. Fixing one
construct mean to a particular value does not affect the
difference between those means, just as fixing one of
the two unknown numbers in the above example would
not make the difference between the two numbers any
more or less than the stated 10 points. Doing so merely
allows the determination of a unique value for the other
number in question.

In SMM, it is customary to fix one population’s
construct means to zero. Zero is a most prudent choice
because a test of the difference between the free factor
mean and the fixed factor mean of zero is precisely
accomplished by a one-sample test on the free factor
mean, as will be seen later. In the current example,
then, Population 2 may be considered the reference
population by fixing its mean to zero. This simplifies
the last four structural equations of the means model
shown in Figure 17.5 such that each intercept term
is equal to the observed variable mean for that refer-
ence population, thus allowing a unique solution to
be determined for the mean structure when estimated
along with the covariance structure.

Estimating the complete model for both populations,
with both covariance and mean structure, involves
many model-implied relations and the estimation of
many unknown parameters. Before doing so, however,
in practice it makes sense to estimate the covariance
structure first (with the loading constraints discussed
earlier). If there is a poor fit of this model to the data,
one or both of the following problems may be present.
First, perhaps a single factor model does not adequately
describe the relations among the variables in one or
both groups; second, it is possible that the loadings
are not invariant across populations as constrained.
In either case, the meaningfulness of proceeding
with the mean structure of the model is in question
and is potentially ill-advised; more on this subject
follows later.

Assuming the covariance structure fits satisfacto-
rily as described, the covariance and mean structures
may then be estimated simultaneously. In the current
example (with all loading and intercept constraints
imposed as discussed), the full model consists of
18 model-implied variance, covariance, and mean
relations over both populations, requiring the estima-
tion of 14 unique parameters: 6 error variances (3 per
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population), 2 construct variances (1 per population),
2 loadings (λX21, λX31), 3 intercepts (τ1, τ2, τ3), and
1 factor mean (1M(ξ1)). The model thus has 4 (18 −
14 = 4) degrees of freedom across its covariance
and mean structures. The 6 model-implied variances
and covariances for the p = 3 variables appear in
matrices �̂1 and �̂2 for Population 1 and Popu-
lation 2, respectively, whereas the observed variances
and covariances are contained in matrices S1 and S2.
The 3 model-implied means appear in vectors µ̂1

and µ̂2 for Population 1 and Population 2, respec-
tively, whereas the observed means are contained
in vectors m1 and m2. In the context of ML esti-
mation specifically, parameter values are selected
to imply (reproduce) population variance-covariance
matrices and mean vectors from which the observed
data’s sample variance-covariance matrices and mean
vectors have the maximum likelihood of arising by
random chance. As presented elsewhere (e.g., Bollen,
1989), this process is operationalized for the two-group
case by choosing parameters so as to minimize the
multisample fit function

GML =
2∑
j=1

(nj /N){[ln |�̂j | + tr(Sj �̂
−1
j )

− ln |Sj | − p]+ (mj − µ̂j )
′�̂
−1
j (mj − µ̂j )}.

(24)

After fitting this complete model, one again hopes
for an acceptable degree of data-model fit (i.e., that �̂1

and �̂2 are sufficiently close to S1 and S2, respectively,
and that µ̂1 and µ̂2 are sufficiently close to m1 and m2,
respectively). Given that the loading invariance across
populations has already been assessed in a preliminary
covariance structure analysis, poorness of data-model
fit in this model may be the result of stress in the mean
structure created by untenable intercept constraints. If
so, suspected noninvariant intercepts may have their
constraint released before proceeding with the latent
means comparison. This precisely parallels the differ-
ential test functioning issue discussed previously in the
context of MIMIC models.

Once satisfactory data-model fit is achieved when
fitting the covariance and mean structures simulta-
neously, then the primary question of interest may
finally be addressed. As mentioned previously, a test
of whether the two population means differ is precisely
a test of whether the estimated construct mean for
Population 1, 1M̂(ξ1), differs statistically significantly
from 0 (the value to which the reference population
mean was fixed). This is accomplished by a simple

z-test using the standard error associated with the
Population 1 construct mean estimate, SE[1M̂(ξ1)],
where z = 1M̂(ξ1)/SE[1M̂(ξ1)]. As with MIMIC
modeling, statistical significance requires one to inter-
pret which population has more of the construct under
investigation. Assuming that the researcher has cor-
rectly interpreted the construct by examining signs of
loadings on each specific variable, the sign of the value
of 1M̂(ξ1) facilitates interpretation—if 1M̂(ξ1) is posi-
tive, then Population 1 is inferred to have more of (be
higher on) the construct; if 1M̂(ξ1) is negative, then
Population 1 has less (is lower).

Finally, as detailed in Hancock (2001), the mag-
nitude of the estimated latent mean difference may
be expressed as a standardized effect size estimate
d̂, where d̂ = |1M̂(ξ1)|/[V̂ (ξ1)]1/2, and V̂ (ξ1) is the
weighted average of the two samples’ factor variances
(with respective sample sizes as weights). The value of
d̂ may again be interpreted as the estimated number of
latent standard deviations separating the two popula-
tions on the latent continuum of interest and is useful in
post hoc power analysis and sample size determination
(Hancock, 2001).

17.3.2. Two-Group SMM Example

The contrived reading proficiency data displayed in
Table 17.1 (voc, comp, and lang) are again used, illus-
trating the SMM approach to latent mean differences.
Following the model in Figure 17.3, all free loadings
and intercepts were constrained to be equal across
populations, the first indicator (voc) was selected as
the scale indicator in both populations (fixing the
loading to 1), and whole language (Population 2) was
made the reference population (i.e., by fixing the latent
mean to 0). The program EQS 5.7b (Bentler, 1998)
was again used to conduct ML estimation. First, as
expected, the fit of the model across both groups
simultaneously was excellent: χ2(4, N = 1,000) =
4.036,CFI = 1.000,SRMR = .020, and RMSEA =
.003, with 90% CI = (.000, .048). Second, key
parameter estimates (all with p < .05) may be sum-
marized as follows: λ̂X21 = 0.843, λ̂X31 = 0.722,
τ̂1 = 69.118, τ̂2 = 68.036, τ̂3 = 65.517, 1M̂(ξ1) =
1.871, 1V̂ (ξ1) = 16.454, and 2V̂ (ξ1) = 16.375.
Because 1M̂(ξ1) is positive and statistically signifi-
cant, we may again tentatively infer that the phonics
population has a higher latent reading proficiency
mean than the whole-language population. As for
the magnitude of the effect, a pooled factor variance
must first be determined: V̂ (ξ1) = [n1(1V̂ (ξ1)) +
n2(2V̂ (ξ1))]/(n1 + n2) = 16.415. The estimated
standardized effect size would then be computed as
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d̂ = |1M̂(ξ1)|/[V̂ (ξ1)]1/2 = 1.871/(16.415)1/2 =
.448. As with MIMIC modeling, this value implies a
medium effect size in which the phonics distribution’s
latent mean sits almost one half of a standard deviation
higher on the latent reading proficiency continuum than
that of the whole-language distribution.

17.3.3. Extensions of the Basic SMM Model

Similar to MIMIC modeling, SMM can be extended
to accommodate more complex designs. Data from
J groups in a one-way design can be modeled sepa-
rately but simultaneously as was done with two groups
in this chapter. Initial cross-group constraints are
imposed such that all corresponding loadings are equal,
all corresponding intercepts are equal, and one popu-
lation’s construct mean is fixed to zero. All other
construct means are solved with respect to this ref-
erence population; together with their accompanying
standard errors, inferences may be made regarding
population differences on the construct of interest.
Accommodating designs that are factorial in nature,
however, is less straightforward than with a MIMIC
model’s group code variables; the creative application
of a series of cross-group constraints would be required
for main effect and interaction inferences to be made
within SMM.

As SMM involves the explicit modeling of multiple
groups simultaneously, issues about the invariance of
that model are relevant to ensure the integrity of the
resulting latent mean inference. Many authors have
discussed these issues, resulting in a continuum of
invariance conditions. At the most extreme end is
what Meredith (1993) termed strict factorial invari-
ance, which implies identical loadings, error variances
and covariances, factor variances, and intercepts across
populations. This degree of stringency, however, is not
essential for accurate latent mean inference. Meredith
defined strong factorial invariance as the condition
of equal loadings and equal intercepts across popula-
tions, a condition whose satisfaction will still preserve
the integrity of latent mean inference. The loading
and intercept constraints suggested previously within
SMM mirror this desired condition. Beneath this
exist a variety of weaker conditions, such as partial
measurement invariance (not all loadings are identical
across populations) and partial intercept invariance
(not all intercepts are identical across populations),
as discussed by Byrne, Shavelson, and Muthén (1989).
Indeed, if truly noninvariant loadings and/or intercepts
exist, and if their associated cross-group constraints

are released as a result of theoretical rationale a priori
or empirical rationale post hoc (i.e., modification
indices), accurate latent mean inference can be pre-
served. The challenge is in accurately locating such
noninvariance, and the failure to do so could induce
apparent latent mean differences where none truly exist
or attenuate the magnitude (and even sign) of those
that truly do (see, e.g., Cole et al., 1993; Hancock,
Stapleton, & Berkovits, 1999).

Finally, as with MIMIC modeling, SMM may also
be extended to control for covariates. As described
by Sörbom (1978), the incorporation of covariates
into structured means models can facilitate inference
regarding latent mean differences among populations
above and beyond those resulting from differences on
covariates (measured or latent). In such models, the
covariate is an exogenous construct ξ1, whereas the
construct on which latent population mean differences
are of interest is now labeled η1 due to its theoretical
dependence on the covariate. Thus, in addition to all
loadings and intercepts being assumed invariant across
populations, the latent structure of the model for each
population may be represented as

η1 = κ1 + γ11ξ1 + ζ1, (25)

where κ1 is the latent intercept representing the
predicted value of η1 associated with a zero value
on the construct ξ1. Furthermore, given that γ11

is assumed (and constrained to be) invariant across
populations to mirror ANCOVA’s homogeneity of
slope or parallelism assumption, the expected value
of equation (25) may be taken as follows. For
Population 1,

1M(η1) = 1κ1 + γ11[1M(ξ1)]. (26)

For Population 2,

2M(η1) = 2κ1 + γ11[2M(ξ1)]. (27)

If, for identification purposes, Population 2 is made
the reference population and both of its latent means
are constrained to 0 (i.e., 2M(ξ1) = 0, 2M(η1) = 0,
and thus 2κ1 = 0), then only equation (26) becomes
useful. Specifically, equation (26) states that there are
two reasons why 1M(η1)might differ from 2M(η1) =
0: a difference in the mean level of the covariate
(i.e., between 1M(ξ1) and 2M(ξ1) = 0) and a dif-
ference beyond the covariate (i.e., between 1κ1 and

2κ1 = 0). Thus, the test of the parameter estimate 1κ̂1

(against 0) is precisely the test of the difference
between population means on η1 above and beyond
those explainable by a difference on the covariate ξ1.
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Figure 17.6 Model for the Structured Means Modeling (SMM) Example With Latent Covariate
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Figure 17.6 represents such a model with a three-
indicator latent covariate. It is important to note that
for clarity, the measured variable intercepts have been
omitted from the figure; however, the proper execu-
tion of this model requires intercepts for both factors’
indicators in both populations. The numerical exam-
ple paralleling this figure (and paralleling the previous
MIMIC strategy with a covariate) appears next.

17.3.4. Two-Group SMM
Example, With Latent Covariate

In the previous SMM example, the final tentative
inference was that the phonics population was higher
in average latent reading proficiency than the
whole-language population. Given the intact groups’
threat to internal validity, however, we may again
wish to employ the statistical control of a latent
covariate. Extending the previous SMM example
(and paralleling the second MIMIC example), the
three indicators of reading readiness from start of
kindergarten (phon, alpha, and print) were incorpo-
rated into the model, as shown in Figure 17.6. The
model depicted was fit to the two samples’ covari-
ance matrices and mean vectors using ML estimation
in EQS 5.7b (Bentler, 1998), imposing all cross-
group loading and intercept constraints and making
whole language the reference population with latent
means set to 0. To start, the data-model fit was
excellent: χ2(25, N = 1,000) = 14.646,CFI =
1.000,SRMR = .021, and RMSEA = .000,
with 90% CI = (.000, .002). Equality-constrained
loading parameter estimates for both factors and
equality-constrained intercepts for all measured

variables were statistically significant (p < .05). Key
structural parameters were as follows: γ̂11 = 2.486
(p < .05), 1M̂(ξ1) = 0.562 (p < .05), 1κ̂1 =
0.462 (p = .088), 1V̂ (ζ1) = 12.110, and 2V̂ (ζ1) =
13.150. In these structural parameters, the two effects
of using a covariate are again apparent. First, there
is a reduction in the endogenous construct’s residual
variance, from 16.454 and 16.375 for the two-group
SMM example without the covariate to 12.110 and
13.150 now. Second, the estimated population mean
difference is adjusted from the previous statistically
significant 1.871 to a nonsignificant 0.462 with the
latent covariate. This result parallels the MIMIC exam-
ple with covariate, implying that once the differences
in the intact samples’ reading readiness are taken into
account, the null hypothesis that phonics and whole
language yield equivalent average reading proficiency
appears tenable.

17.4. Summary and Conclusions

As this chapter indicated from the start, the choice
of an SEM method for handling multivariate group
comparisons rests first and foremost in the nature of
the variable system under investigation. Specifically,
latent variable systems are more appropriately han-
dled with methods designed to treat the latent variable;
applying emergent variable system methods such as
MANOVA, although a common approach to deal-
ing with latent variable systems, is theoretically less
appropriate and can be statistically problematic (see
Cole at al., 1993). Whereas MANOVA methods for
assessing group differences involve the creation of
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a linear composite of measured variables, thereby
incorporating variables’ measurement error into the
composite, SEM methods use a theoretically error-
free construct in tests of group differences. Similarly,
SEM methods allow for the inclusion of latent, theo-
retically error-free covariates derived from measured
variables. Finally, SEM methods are more flexible in
that they allow for covariance adjustments not just at
the construct level but also at the individual variable
level. Individual variables’ residuals, for example,
might have reason to covary above and beyond their
variables’ common construct; SEM methods have no
difficulty accommodating such relations.

In the matter of selecting between MIMIC and
SMM approaches, the reader might infer that MIMIC
modeling is more desirable based solely on its relative
simplicity. It is quite true that SMM is more complex,
often requiring good start values to achieve model
convergence, involving the estimation of more param-
eters, and possibly requiring a larger sample size to do
so reliably. Within both methods, however, lie assump-
tions, advantages, and disadvantages that make the
choice between SEM methods require considerations
beyond apparent simplicity.

The primary assumption implicit in MIMIC mod-
eling is that, because the data from the groups are
combined and only one model results, the same
measurement model holds in both populations. This
includes loadings, construct variance, and error vari-
ances. In effect, all sources of covariation among
observed variables are assumed to be equal in both
populations, making the assumption of identical
measurement models tantamount to an assumption
of equal variance-covariance matrices (as is actually
assumed in MANOVA as well). As discussed, such
restrictiveness is not generally required in SMM, in
which only the corresponding loadings are commonly
constrained across populations in the complete covari-
ance model. Furthermore, additional flexibility may
exist to allow for some loading differences across
populations under particular configurations of partial
measurement invariance (Byrne et al., 1989).

Considering Type I error rate and statistical power
for testing latent mean differences, Hancock et al.
(2000) used Monte Carlo simulation to show that SMM
appears to control Type I error acceptably in many
invariant and noninvariant loading scenarios (whether
or not loading constraints were in place). The MIMIC
approach, on the other hand, controlled the error
rate when approximately equal generalized variances
(covariance matrix determinants) and/or equal sample
sizes were present, but not with both sample size
and generalized variance disparities. In short, when

the sample with smaller loadings had a larger sample
size, the Type I error rate increased. Conversely, if the
sample with the smaller loadings had a smaller sample
size, this yielded conservatism in Type I error control.
Finally, regarding power under loading and sample
size scenarios in which both methods controlled Type
I error, the authors used population analysis (see also
Kaplan & George, 1995) to show overall that the power
of both methods to detect true differences in latent
means was quite comparable and unilaterally superior
to MANOVA methods (see also Kano, 2001).

Finally, in favor of the MIMIC approach is its design
flexibility. Specifically, the creative use of group code
predictors of the latent construct of interest can fairly
easily facilitate inferences that parallel those of more
complex ANOVA designs. Although one can imagine
adapting SMM to do likewise, as alluded to previ-
ously, precise methods for doing so currently remain
unarticulated.

In sum, the choice between the MIMIC and
SMM approaches may rest with the researcher’s
specific modeling scenario. Some researchers have
already found these methods to fit their research needs:
Kinnunen and Leskinen (1989) examining teacher
stress; Aiken, Stein, and Bentler (1994) examining
treatment for drug addiction; Gallo, Anthony, and
Muthén (1994) examining depression; and Dukes,
Ullman, and Stein (1995) examining drug abuse
resistance education with elementary school chil-
dren. However, many more opportunities to answer
construct-level questions exist throughout the social
sciences. Consider data from various social science
databases in which, although not truly experimental in
design, these SEM methods can assist with latent mean
inference. In the Monitoring the Future: Lifestyles
and Values of Youth 1976–1992 database, nationally
representative samples of high school seniors were
selected each year from 1976 to 1992. A key construct
of interest from this database would be risk tendency,
the manifest indicators of which could include (but
are not limited to) traffic citations and illicit sub-
stance use. Population differences in this construct
could be investigated across a variety of interesting
between-subject dimensions, including sex of student,
geographic region of the country, urbanicity of the
student’s childhood environment, mother’s employ-
ment status while growing up, and point in time (e.g.,
1976–1980, 1981–1985, 1986–1990). In the National
Health Survey: Longitudinal Study of Aging, 70 Years
and Over, 1984–1990 database, a sample of 7,527
noninstitutionalized elderly people in the United States
were assessed on a variety of dimensions (and at mul-
tiple time points). Three critical constructs of interest
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from this database are personal care independence
(as indicated by ability to perform seven specific per-
sonal care skills), home management independence
(as indicated by ability to perform six specific home
management skills), and medical fragility (with mani-
fest variables such as length of hospital stays, nursing
home time, and number of doctor’s visits). Latent mean
differences could be assessed across such grouping
variables as sex, race, or region of the country. Finally,
a most interesting database exists in the National
Commission on Children: Parent and Child Study,
in which a national sample of 1,738 parents living
with their children was surveyed for data from parent-
child pairs. One key construct is family cohesion, as
assessed by parents and their children using a variety
of measured indicators. Coupling this with between-
subject variables such as urbanicity of child’s home
environment, sex of child, and income classification
might lead to some extremely interesting latent mean
inferences.

It is hoped that the conceptual introduction offered
in this chapter will help to motivate other applied
researchers to investigate latent means methods more
fully and, ultimately, to find applications of these
methods to problems in their own areas of inquiry.
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Jöreskog, K. G., & Goldberger, A. S. (1975). Estimation of
a model with multiple indicators and multiple causes of a
single latent variable. Journal of the American Statistical
Association, 70, 631–639.

Kano, Y. (2001). Structural equation modeling for experimental
data. In R. Cudeck, S. du Toit, & D. Sörbom (Eds.), Struc-
tural equation modeling: Present and future—A Festschrift
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Chapter 18

Applying Dynamic Factor

Analysis in Behavioral

and Social Science Research
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18.1. Introduction

Behavioral and social sciences have witnessed a signif-
icant increase in the use of multivariate, correlational
techniques in the past three decades. Much of this
increase has involved applications of the common
factor model, either in freestanding factor-analytic
applications or as the so-called measurement model
in structural equation modeling (SEM) applications.
Of particular interest in this chapter is the application
of the common factor model to the data obtained when
individual participants (one or several) are measured
many times on many variables to produce multivariate
time series for the purpose of investigating patterns
and interrelationships defined in intra-individual vari-
ability rather than the more common inter-individual
differences framework.

Although it is true that the common factor model
has been applied to multivariate time-series data for
more than 50 years to represent more effectively pro-
cess and other kinds of changes (e.g., Cattell, 1963;

AUTHORS’ NOTE: This work was supported by the Institute for Developmental and Health Research Methodology at the University
of Virginia.

Cattell, Cattell, & Rhymer, 1947), powerful attempts
to remedy the limitations of these earlier repre-
sentations have only been made available relatively
recently. These newer, more powerful conceptualiza-
tions appear capable of dealing much more effectively
with some of the major challenges presented by multi-
variate time-series data (e.g., Browne & Nesselroade,
in press; Hamaker, Dolan, & Molenaar, 2003;
Hershberger, Molenaar, & Corneal, 1996; McArdle,
1982; Molenaar, 1985; Nesselroade, McArdle, Aggen,
& Meyers, 2002; Nesselroade & Molenaar, 1999;
Wood & Brown, 1994).

We are strongly committed to the idea that the study
of changes in behavior with age, for example, is a
much more complicated set of activities than the dom-
inant, traditional methods of empirical research allow
(e.g., Molenaar & Nesselroade, 2001; Nesselroade,
2002; Nesselroade & Ghisletta, 2000). It seems that
mounting challenges to the dominant modes of thought
regarding the conduct of developmental research have,
at the very least, the potential of strengthening current

335
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research approaches through self-examination and, at
the very most, the possibility of leading to signifi-
cant steps forward in the articulation and solution of
problems.

One of the early, systematic attempts to model the
nature of intra-individual change with factor analysis
was called P-technique factor analysis (Cattell et al.,
1947). It involved applying the common factor model
to many repeated measurements of one individual with
a battery of measures. Despite the fact that particu-
lar applications of the model have been controversial
(Anderson, 1963; Cattell, 1963; Holtzman, 1963;
Molenaar, 1985; Steyer, Ferring, & Schmitt, 1992),
the logic underlying its use seems to be sound (e.g.,
Bereiter, 1963), and the results have been instrumental
in the development of important lines of behavioral
research such as the trait-state distinction (Cattell,
1957; Cattell & Scheier, 1961; Horn, 1972; Kenny &
Zautra, 1995; Nesselroade & Ford, 1985; Steyer et al.,
1992). These applications have helped to fuel a long-
standing interest in intra-individual variability as a
source of measurable individual differences (Baltes,
Reese, & Nesselroade, 1977; Cattell, 1957; Eizenman,
Nesselroade, Featherman, & Rowe, 1997; Fiske &
Maddi, 1961; Fiske & Rice, 1955; Flugel, 1928;
Kim, Nesselroade, & Featherman, 1996; Larsen,
1987; Magnusson, 1997; Nesselroade & Boker, 1994;
Valsiner, 1984; Wessman & Ricks, 1966; Woodrow,
1932, 1945; Zevon & Tellegen, 1982). In this chapter,
we will briefly examine some of the history and key
issues of factor analyzing multivariate time series and,
to exemplify the methods, will present analyses of
some promising recent developments aimed at further
improving such applications.

The analytical focus is on building a structural
representation of patterns of within-person fluctuation
of the variables over time. The intention of Cattell
et al. (1947) in introducing this method of analysis
was to discover “source traits” at the individual level.
Cattell (1966) argued for some congruence between the
way people change and the way they differ from each
other. He declared that “we should be very surprised
if the growth pattern in a trait bore no relation to its
absolute pattern, as an individual differences struc-
ture” (p. 358), thus arguing for a similarity of patterns
of intra-individual change and inter-individual differ-
ences (Hundleby, Pawlik, & Cattell, 1965). Bereiter
(1963) noted that

correlations between measures over individuals should
bear some correspondence to correlations between mea-
sures for the same or randomly equivalent individuals
over varying occasions, and the study of individual

differences may be justifiable as an expedient substitute
for the more difficult P -technique. (p. 15)

The flip side of this interpretation, which is not so
often played, is that some of what are interpreted to
be individual differences structures are actually intra-
individual variability patterns that are asynchronous
across persons and (perhaps erroneously) frozen in
time by limiting the observations to a single mea-
surement occasion. A key concern in either case
is the degree of convergence between patterns of
within-person change and among-person differences.
Other authors have discussed this general topic under
the label ergodicity (e.g., Jones, 1991; Molenaar,
Huizenga, & Nesselroade, 2003; Molenaar &
Nesselroade, 2001; Nesselroade & Molenaar, 1999).
The essential point is that investigation of variation
(and covariation) in the individual over time is a mean-
ingful and necessary enterprise, the results of which
need to be integrated into the larger framework of
behavioral research and theory.

Since 1947, a large number of P -technique studies
have been conducted (for reviews, see Jones &
Nesselroade, 1990; Luborsky & Mintz, 1972). By the
early 1960s, neither the proponents of P -technique
factor analysis, such as Cattell, nor its critics, such
as Anderson (1963) and Holtzman (1963), were sat-
isfied with its ability to model the subtleties of intra-
individual change. Consider, for example, the matter
of influence exerted on observed variables by the unob-
served factors. The common factor model, as tradition-
ally applied to individual differences information (e.g.,
ability test scores), implies that individual differences
in the underlying factors are responsible for individual
differences in the observed variables. In P -technique
applications, however, there are no individual differ-
ences because only one person is measured. Rather,
the differences are in that individual’s scores from one
occasion to another (i.e., they are changes). Changes
in the observed variables are modeled as having been
produced by changes in the underlying factors.

The original P -technique model implies that the
total influence of a factor on an observed variable
is exerted instantaneously. Restricting the coupling
between factors and variables in this way implies that,
on those occasions when the factor score is extreme, the
variable score will also tend toward the extreme, and
on those occasions when the factor score is moderate,
the variable score will also tend to be moderate. The
model does not afford explicit representation of more
intricate (read: realistic) patterns of influence of factors
on variables such as persistence over time (e.g., the
gradual dissipation or strengthening of the effects of
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extreme factor scores on one occasion on the variables
at a later occasion). Moreover, the pattern of effect
gradients may differ with different observed variables.
Statements of the type “I’m okay now, I just can’t seem
to stop shaking” illustrate the differences in the rates
at which various components of a response pattern
(e.g., self-reported internal state and objectively ver-
ifiable physical manifestations) return to equilibrium
after the organism experiences an extreme in level of
anxiety or fear. The basic P -technique model simply
does not have the ability to represent the rich variety
of relationships that we tend to associate with notions
of process.

18.2. Dynamic Factor Models

Cattell (1963) himself called for refinements in the
P -technique model that would allow representation of
the effects exerted on the variables by the factors to
dissipate or strengthen gradually over time rather than
to be merely concurrent. For instance, he wanted it to
be possible to represent delayed effects of the factors
on the variables. It was not until the 1980s, however,
that some key attempts to elaborate the P -technique
factor model appeared that improved its capacity to
represent change processes more veridically (e.g.,
Engle & Watson, 1981; Geweke & Singleton, 1981;
McArdle, 1982; Molenaar, 1985). It is only in the
past decade that the implementation of more promis-
ing, rigorous approaches to the study of intensively
measured intra-individual variability in the single case
via multivariate modeling has begun seemingly in
earnest.

In the remainder of this chapter, we will briefly
identify some alternative models and then focus on
one exemplar of these approaches, labeled elsewhere
the WNFS (white-noise factor score) model (Nessel-
roade et al., 2002) and the shock factor analysis model
(SFA model) (Browne & Nesselroade, in press). The
model was first articulated by Molenaar (1985). We
will provide a description of the model and an example
of fitting it to empirical data. In so doing, we want to
draw further attention to the evolving interest in intra-
individual variability phenomena in a wide variety
of content domains and identify some research tools
that seem particularly promising for rapid advance in
these areas. To illustrate the applications concretely,
the factor model will be presented, discussed, and
compared in the context of fitting it to real data using
standard structural equation modeling software (e.g.,
LISREL 8 by Jöreskog & Sörbom, 1993a).

Nesselroade et al. (2002) and Browne and
Nesselroade (in press) distinguished between two
promising dynamic factor models for multivariate
time-series data. Both were developed explicitly to
meet the shortcomings of traditional P -technique
factor analysis. Browne and Nesselroade, as well
as Hamaker et al. (2003), relate the dynamic factor
models to the autoregressive and moving average
models of time-series analysis.

One of the dynamic factor analysis models, explored
by McArdle (1982), featured an auto- and cross-
regressive structure at the level of the latent variables
or factors. Thus, in this model, “continuity” or process
resides at the more abstract level. The factors “drive”
the manifest variables concurrently, as in traditional
P -technique factor analysis, but the values of the
factors at a given occasion (t) are influenced by
the values of those same factors at earlier occasions
(t − 1, t − 2, etc.). This allows for the preserva-
tion of the “signature” loadings of the factors on the
variables in an invariant configuration while allowing
for the kind of continuity we tend to associate with
the term process. As was illustrated by Nesselroade
et al. (2002), it is possible to estimate the lagged
and cross-regressions of the factors under the con-
straints of factorial invariance over time in the loading
patterns.

The second dynamic factor model we consider is
the specification developed and presented by Mole-
naar (1985). This model, as will be seen in subsequent
detail, is also geared toward lagged relationships but
identifies them between earlier values of the factors
and later values of the manifest variables. Thus, the
current values of the variables (t) are “driven” by
both the current values of the factors (t) and ear-
lier values of the factors (t − 1, t − 2, etc.). The
continuity or sense of process is in the patterns of
concurrent and lagged loadings. The values of the
factors at any given time are system inputs. These
ideas will be discussed in detail in the following
sections.

18.2.1. Technical Aspects
of the Dynamic Factor Model

For this exposition, we will present the dynamic
factor model in close parallel to the traditional common
factor model with which most investigators in the
field of behavioral research have some familiarity.
This has the advantage, perhaps, of “demystifying”
the procedure to some extent while also letting the
reader capitalize on already familiar terms and con-
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cepts. One of the easiest ways to grasp the implications
of the common factor model is by apprehending the
fundamental postulate and its derivative, the
fundamental theorem, of common factor analysis.
The fundamental postulate can be written as

z = � · η+ ε,

where

z is a centered (means of 0.0) vector variable of
scores on p observed variables,

� is a p × k matrix of loadings (regression-like
weights) of p variables on k common factors,

η is a vector variable of k common factor scores, and
ε is a vector variable of p unique factor scores

(specific factors+ errors). Under the assumptions
that

• the common and unique factors do not covary, and
• the covariance matrix of the unique factors (�) is

diagonal,

the expected value of z · z′ (the covariance matrix of
the variables in z) yields a version of the fundamental
theorem of factor analysis, namely,

� = � ·� ·�′ +�,

where

� is the covariance matrix,
� is a factor covariance matrix,
� is a diagonal matrix of unique variances, and
� is as defined above.

In operational terms, the fundamental postulate says
that the observed scores are linear combinations of the
common factors and one unique factor corresponding
to each observed variable. The fundamental theorem
says that the covariance matrix can be decomposed
into the product of the factor loadings times the factor
covariance matrix times the transpose of the factor
loadings matrix plus the (diagonal) covariance matrix
of the unique factors. Older, exploratory factor analysis
routines (e.g., the principal axes) operated on the
principal of finding sets of matrices that met this
description and approximated the observed covariance
matrix as closely as possible under the constraints of a
particular algorithm. Newer methods (e.g., maximum
likelihood techniques) involve estimating the elements

in the matrices on the right-hand side of the
equation according to the appropriate statistical esti-
mation algorithm.

If one accepts and understands this basic factor
analysis model, then the essential dynamic factor
(DFA) model follows rather straightforwardly. Indeed,
the DFA counterpart of the fundamental postulate of
factor analysis is as follows:

z(t) = �(0) · η(t)+�(1) · η(t − 1)

+ · · · +�(s) · η(t − s)+ ε(t).

The big difference is that the terms of the DFA
model include time indices.1 These convey explicitly
the time-contingent features of the DFA model. Thus,
for example, the observed scores at time t are deter-
mined, in part, by the factor scores at earlier times.
Clearly, the DFA model has an additional “job to do”
over that required of the traditional common factor
model. That additional job is to represent and account
for lagged relationships in the data as well as the con-
current relationships accounted for by the traditional
model.

To make clear how we are using the terms concur-
rent and lagged relationships in this context, consider
the following empirical example.2 The data consist
of scores for one participant measured on each of six
variables for 103 successive days, yielding a 6 × 103
score matrix. The six variables comprise six adjec-
tive rating scales: active, lively, peppy, sluggish, tired,
and weary. These six scales were deliberately selected
to mark two factors that might be called energy and
fatigue. When these six scales are inter-correlated over
the 103 occasions of measurement, a 6× 6 correlation
matrix is obtained (see Table 18.1).

One can clearly see in this pattern of inter-
correlations a two-factor representation, with the three
energy markers and the three fatigue markers cluster-
ing among themselves and the two sets being slightly
to moderately negatively correlated. A relatively clean
two-factor solution, with the two factors moderately
negatively correlated, is a reasonable expectation for a
factorial representation of this matrix.

1.Another difference is that Molenaar (1985) recommended truncating the
latter terms in the model to some arbitrarily chosen level of precision. The
implications of this are explored by Browne and Nesselroade (in press)
and Nesselroade, McArdle, Aggen, and Meyers (2002) and will not be
detailed here.

2.We wish to thank Dr. Michael A. Lebo for permission to use these data.
Some of the same data were used for exemplary purposes by Nesselroade
et al. (2002).
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Table 18.1 Correlations Among Scales Over Time

active lively peppy sluggish tired weary

Lag 0
active 1.00
lively .64 1.00
peppy .56 .41 1.00
sluggish −.48 −.34 −.42 1.00
tired −.47 −.42 −.47 .72 1.00
weary −.43 −.43 −.44 .64 .83 1.00

Table 18.2 Correlations Among Scales Over Time at a Lag 1 Occasion of
Measurement

active lively peppy sluggish tired weary

active .06 .03 .18 −.15 −.08 −.17
lively .10 .08 .16 .03 .01 −.10
peppy .02 .03 .15 −.07 .05 −.03
sluggish −.03 .02 −.21 .40 .30 .28
tired −.15 .02 −.22 .31 .25 .24
weary −.07 .02 −.08 .27 .17 .21

Table 18.3 Correlations Among Scales Over Time at a Lag 2 Occasion of
Measurement

active lively peppy sluggish tired weary

active .03 .08 .09 −.18 −.16 −.12
lively .13 .24 .13 −.15 −.23 −.19
peppy .01 .07 .08 −.17 −.14 −.15
sluggish −.10 .03 −.11 .35 .32 .19
tired −.09 −.01 −.16 .30 .34 .23
weary −.05 −.01 −.08 .26 .27 .10

The six scales can be lagged by one occasion of
measurement on themselves and each other, with the
resulting lagged correlations shown Table 18.2.

Note that this matrix is not symmetric because the
correlation between active and lively, for example, is
different when active lags lively by one occasion of
measurement versus when lively lags active by one
occasion. The diagonal elements of this matrix are
the familiar autocorrelations (lag 1) of the variables.
An inspection of the values indicates that the fatigue
variables do exhibit some systematic predictability
from time t to t + 1. This is not the case for the energy
variables.

The six variables can be lagged by two occasions of
measurement on themselves and each other, with the
lagged correlations shown in Table 18.3.

Similarly to the lag 1 matrix above, this matrix is
not symmetric either. Its diagonal elements are the
familiar autocorrelations (lag 2) of the variables. There

is evidence of “carryover” at two lags also, especially
in the fatigue variables.

Additional lags are easily computed, but there are
two main issues bearing on how many lags to consider
in analyzing such a multivariate time series. One issue
is determining when additional lags fail to yield useful
information. There is no point to computing additional
lags once the information has been exhausted.3 The
second is more of a structural consideration. Each
lag “costs” an occasion of measurement because it
results in an unpaired set of scores. For instance, if
the time series is 100 occasions long, for lag 1, the
observations at occasions 1, 2, 3, . . . , 99 are paired
with the observations at occasions 2, 3, 4, . . . , 100,

3. Realize, however, that it is possible for relationships to be stronger at
lag t + k than they are at lag t if some cyclicity, for example, resides in
the time series.
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respectively. There are thus only 99 pairings of scores
for computing the covariance or correlation. As the
functional number of observations is decreasing, the
number of variables involved is increasing (e.g., 10
variables at lag 0 becomes 20 variables at lag 1, 30
at lag 2, etc.). One can quickly reach an unfavorable
ratio of variables to occasions of measurement, result-
ing eventually in singular covariance or correlation
matrices.

A corresponding representation for the dynamic
factor model takes the same form as the traditional
common factor model given above but with the addi-
tional feature that lagged information is introduced
explicitly into the model. For example, consider the
covariance matrix, �. It can be represented as a
block-Toeplitz matrix as follows:




�(0)

�(1) �(0)

�(2) �(1) �(0)

· · · �(2) �(1) �(0)

�(t−1) · · · �(2) �(1) �(0)

�(t) �(t−1) · · · �(2) �(1) �(0)



,

where �(0) represents the concurrent covariances (and
variances) of the variables included in a time series.
�(0), of course, is a symmetric matrix. The subma-
trix �(1) represents the asymmetric covariances of
the variables lagged by one occasion of measure-
ment on themselves. It is asymmetric because, as
was pointed out earlier, the covariance of x lagged
one step on y is not likely to be the same value as
y lagged one step on x. Correspondingly, submatrix
�(j) represents the covariance matrix for the variables
lagged on themselves on j occasions of measure-
ment. The reason the block-Toeplitz matrix is used,
despite the obvious redundancy, is that it provides
an overall matrix that both contains all the lagged
information and is symmetric, thus making it pos-
sible to use conventional software to fit a variety of
models to it.

The corresponding DFA factor-loading pattern can
be defined to include the lagged information as
follows:




�(0) �(1) �(2) · · · �(s − 1) �(s) 0 0 0 0 0
0 �(0) �(1) �(2) · · · �(s − 1) �(s) 0 0 0 0
0 0 �(0) �(1) �(2) · · · �(s − 1) �(s) 0 0 0
0 0 0 �(0) �(1) �(2) · · · �(s − 1) �(s) 0 0
· · · · · · · · · · · · �(0) �(1) �(2) · · · �(s − 1) �(s) 0
0 0 0 0 0 �(0) �(1) �(2) · · · �(s − 1) �(s)




The corresponding factor covariance matrix can be
defined as



� 0 0 0 0 · · · 0
0 � 0 0 0 · · · 0
0 0 � 0 0 · · · 0
0 0 0 � 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · �



.

And, finally, the corresponding unique covariance
matrix, �, can be defined as


diag[Cε(0)] diag[Cε(1)] · · · diag[Cε(s)]

diag[Cε(1)] diag[Cε(0)] · · · diag[Cε(1)]

· · · · · · · · · · · ·
diag[Cε(s)] diag[Cε(s − 1)] · · · diag[Cε(0)]


 .

Although the necessary redundancy makes these
matrices more awkward looking than their usual
counterparts, they can be arrayed in a manner com-
pletely analogous to the fundamental theorem of factor
analysis presented above to reproduce the block-
Toeplitz lagged covariance matrix as follows:

� = � ·� ·�′ +�,

where

� is the block-Toeplitz lagged covariance matrix,
� is the super matrix of factor loadings,
� is the factor covariance super matrix, and
� is the super matrix of diagonal unique covariance

submatrices, all as shown above. The point is that,
multiplied and added as indicated just above, the
matrices and their equation are counterparts to the
ordinary common factor model representation.

In summary, then, in conducting a dynamic factor
analysis, one achieves a set of factor loadings, a factor
covariance or correlation matrix, and a uniqueness
covariance matrix that satisfy the fundamental theorem
of factor analysis by reproducing the input covariance
or correlation matrix. The key difference is, however,
that the input covariance or correlation matrix that is
being accounted for contains the lagged as well as the
concurrent relationships.
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18.3. Example Application

In this section, we will demonstrate the fitting of a
particular specification of the dynamic factor model.
As was pointed out by Molenaar (1985; see also
Nesselroade et al., 2002), many alternative specifica-
tions are possible and should be explored as suitable
from the standpoint of the investigator’s hypotheses
regarding the nature of change processes.

Table 18.4 Factor Loadings for Lag 0 Correlation
Matrix (P -Technique Factor Analysis)

Lag 0 Factor Loading Pattern

Energy Fatigue Uniqueness

active .86 .00 .27
lively .72 .00 .48
peppy .65 .00 .58
sluggish .00 .76 .42
tired .00 .95 .10
weary .00 .87 .25

Table 18.5 Factor Intercorrelation for Lag 0
Analysis

Factor

Energy Fatigue

Energy .00 −.63
Fatigue −.63 1.00

To do so, we will fit a DFA model to the matrix given
above. This will be done in three steps. First, the model
will be fitted to the lag 0 correlations, as presented in
Table 18.1. Next, the model will be fitted to the lag 0
and lag 1 correlations shown in Tables 18.1 and 18.2.
Finally, the model will be fitted to the lag 0, lag 1, and
lag 2 correlations given in Tables 18.1, 18.2, and 18.3.

18.3.1. Fitting Lag 0 Correlations

Fitting the lag 0 correlations is analogous to fitting
the conventionalP -technique factor model, depending
on whether one explicitly models the autocorrelations
of the unique parts. In this case we did not, although
that will be done when the modeling includes the lag
1 and lag 2 correlations. The outcome of fitting a
common factor model to this matrix is presented in
Tables 18.4 and 18.5. Here one sees a clean two-factor
solution, with the two factors negatively correlated.

Table 18.6 Factor Loadings for Lag 1 Correlation
Matrix

Factor Loadings

Energy Fatigue Energy Fatigue
Variable Lag 0 Lag 0 Lag 1 Lag 1 Uniqueness

active .80 .00 .24 .00 .28
lively .71 .00 .08 .00 .45
peppy .56 .00 .32 .00 .56
sluggish .00 .72 .00 .37 .40
tired .00 .92 .00 .31 .10
weary .00 .82 .00 .30 .25

Table 18.7 Factor Intercorrelation for Lag 1
Analysis

Factor

Energy Fatigue

Energy 1.00 −.65
Fatigue −.65 1.00

18.3.2. Fitting Lag 0 and Lag 1 Correlations

The outcome of fitting the dynamic factor model to
the lag 0 and lag 1 correlations is shown in Tables 18.6
and 18.7. Now there are both concurrent factor load-
ings and lag 1 factor loadings to consider. The lag 1
loadings for the fatigue factor are relatively consistent
and in keeping with the pattern of lagged correlations
for these variables seen in Table 18.2.

Fitting Lag 0, 1, and 2 Correlations

Fitting the DFA model to the lag 0, 1, and 2 correla-
tions yields the matrices shown in Tables 18.8 and 18.9.
There is clearly still interesting information in the lag 2
loadings for the fatigue factor. The negative correlation
between energy and fatigue has held steady from one
analysis to another.

18.4. Technical Support

Many readers and potential appliers of dynamic factor
models are not in a position to write their own model
code to fit the models to data. There are two main
tasks: (a) developing the lagged covariance or corre-
lation matrix and (b) specifying and fitting a dynamic
factor model to this lagged matrix. Since Molenaar
(1985) presented the DFA model, Wood and Brown
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Table 18.8 Factor Loadings for Lag 2 Correlation Matrix

Factor Loadings

Energy Fatigue Energy Fatigue Energy Fatigue
Variable Lag 0 Lag 0 Lag 1 Lag 1 Lag 2 Lag 2 Uniqueness

active .79 .00 .16 .00 .08 .00 .28
lively .70 .00 .04 .00 .10 .00 .45
peppy .57 .00 .16 .00 .22 .00 .57
sluggish .00 .63 .00 .41 .00 .34 .38
tired .00 .80 .00 .18 .00 .48 .08
weary .00 .71 .00 .27 .00 .31 .25

Table 18.9 Factor Intercorrelation for Lag 2
Analysis

Factor

Energy Fatigue

Energy 1.00 −.65
Fatigue −.65 1.00

(1994) made available the SAS code for conducting
these analyses.4

Nesselroade et al. (2002) provided some examples of
LISREL (Jöreskog & Sörbom, 1993b) code for fitting
dynamic factor specifications to lagged covariance or
correlation matrices. Nesselroade et al. explored two
basic specifications: (a) that by Molenaar (1985) and
(b) one developed by McArdle (1982). Thus, for those
wishing to try fitting DFA models to data, there are
already several points of entry available.

18.5. Conclusion

The rigorous modeling of intra-individual variability
in different content domains (e.g., cognition, tem-
perament) is becoming more and more prevalent in
the behavioral science literature. Compared to ear-
lier approaches to modeling intra-individual variabil-
ity and change such as P -technique factor analysis,
dynamic factor analysis models promise much more
effective means for extracting information regard-
ing lagged relationships from multivariate time-series
data. As the literature is also beginning to reflect,
advances in the modeling of intra-individual variability
promise to hold the key to developing more power-
ful nomothetic laws regarding behavior (e.g., Cattell,

4. R. Nabors-Oberg and P. K. Wood have also written an Mx program
for dynamic factor modeling. Copies can be obtained from woodpk@
missouri.edu.

1957; Nesselroade & Ford, 1985; Nesselroade &
Molenaar, 1999; Shoda, Mischel, & Wright, 1994;
Zevon & Tellegen, 1982). With the availability of
tools such as the dynamic factor models discussed
here, the systematic study of the nature of intra-
individual variation becomes ever more productive and
feasible. These improvements in modeling capabili-
ties are timely adjuncts to stronger research designs
(e.g., measurement “bursts”) and more appropriately
constructed measurement instruments (e.g., adaptive
testing, change-sensitive measures).

The empirical example of short-term, affective vari-
ability presented here illustrates in considerable detail
how one particular DFA model represents dynamic
processes underlying time-series data. First, the
asymmetrical cross-correlations at lag 2 (see
Table 18.3) are indicative of lead-lag relationships
similar to the well-known cross-lagged designs.
For instance, the observed cross-correlation is
r[Lively(t),Tired(t−2)] = −.23, whereas the counterpart
cross-correlation is r[Tired(t),Lively(t−2)] = −.01. In the
cross-lagged design framework, this could be inter-
preted as a (one-way) causal influence of tired on lively.
In factor-analytic terms, such specific lead-lag rela-
tionships can only be captured by the dynamic factor
models. State-space models cannot portray such spe-
cific lead-lag relationships because state-space models
restrict the cross-correlations to symmetry.

Second, the dynamic factor analysis makes explicit
that the fatigue factor series has a longer lasting after
effect (dissipates more slowly) than the energy factor
series in these data. That is, it takes at least 2 consecu-
tive days, t + 1 and t + 2, before the prediction of the
fatigue factor series from day t dissipates, whereas this
is much less so for the energy factor series. In view of
the substantial correlation (−.65) between the fatigue
and energy factor series, the aftereffect of the fatigue
factor series also will explain a substantial part of the
sequential correlations of the observed scores loading
on the energy series. Thus, this modeling approach
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offers a way to “fill the gap” noted by Cattell (1963) and
others regarding lagged relationships between factors
and variables.

Third, using these techniques to examine between-
individual differences, it becomes feasible to examine
how intra-individual change patterns differ not only
in terms of “dimensionality” (e.g., number of factors)
but also in terms of temporal complexity or orga-
nization of behavior in time. Individuals who show
very little occasion-to-occasion predictability no doubt
differ in important ways from those who manifest a
considerable amount of such “continuity” over time.
Musher-Eizenman, Nesselroade, and Schmitz (2002),
for example, reported such temporal organization
differences in intra-individual variability in comparing
low- versus high-performing schoolchildren.

Elsewhere, in arguing for informed rather than blind
aggregation of multivariate time-series information
across multiple individuals, Nesselroade and Molenaar
(1999) presented an approach for identifying sub-
sets of individuals whose lagged covariance functions
are not different and therefore could be justifiably
pooled for dynamic factor analysis. Pooling the lagged
covariance information, when so justified, function-
ally increases the number of observations on which
model parameters rest without unduly increasing the
measurement burden on individual subjects. This has
important implications for optimal design. J. L. Horn
(personal communication, December 2000), among
others, has raised the question that it might be better
to look for similarities and differences at the level
of individuals’ factor models rather than their lagged
covariance matrices because some, but not all, factors
might be invariant over individuals. Certainly, there is
some merit in this suggestion, and such alternatives can
be easily explored within a given set of data provided
there are ample occasions for fitting factor models to
each individual’s data.

In the firm belief that psychology is overdue for
concentrating more heavily on concepts and methods
reflecting less static and more dynamic properties, we
have attempted to provide some insight into a small
subset of the modeling possibilities and to point the
way to applying such methods for those who are
intrigued by the idea but unsure about how to move
in that direction. In so doing, we have minimized
or ignored a number of technical issues and poten-
tial problems (see, e.g., Nesselroade et al., 2002;
Nesselroade & Molenaar, 2003). We believe, however,
that learning to swim is better done in the water than on
the land. With that in mind, we invite the reader to use
the traditional factor analysis model as a springboard
by which to leap into the deeper end of the pool wherein

lie the challenging waters of intra-individual change
and variability.
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Chapter 19

Latent Variable Analysis

Growth Mixture Modeling and Related

Techniques for Longitudinal Data

Bengt Muthén

19.1. Introduction

This chapter gives an overview of recent advances in
latent variable analysis. Emphasis is placed on the
strength of modeling obtained by using a flexible com-
bination of continuous and categorical latent variables.
To focus the discussion and make it manageable in
scope, analysis of longitudinal data using growth
models will be considered. Continuous latent variables
are common in growth modeling in the form of random
effects that capture individual variation in development
over time. The use of categorical latent variables in
growth modeling is, in contrast, perhaps less familiar,
and new techniques have recently emerged. The aim
of this chapter is to show the usefulness of growth
model extensions using categorical latent variables.
The discussion also has implications for latent variable
analysis of cross-sectional data.

The chapter begins with two major parts corre-
sponding to continuous outcomes versus categorical
outcomes. Within each part, conventional modeling
using continuous latent variables will be described

AUTHOR’S NOTE: The research was supported under grant K02 AA 00230 from NIAAA. I thank the Mplus team for software
support, Karen Nylund and Frauke Kreuter for research assistance, and Tihomir Asparouhov for helpful comments. Please send
correspondence to bmuthen@ucla.edu.

first, followed by recent extensions that add categorical
latent variables. This covers growth mixture model-
ing, latent class growth analysis, and discrete-time
survival analysis. Two additional sections demonstrate
further extensions. Analysis of data with strong floor
effects gives rise to modeling with an outcome that
is part binary and part continuous, and data obtained
by cluster sampling give rise to multilevel modeling.
All models fit into a general latent variable frame-
work implemented in the Mplus program (Muthén &
Muthén, 1998–2003). For overviews of this model-
ing framework, see Muthén (2002) and Muthén and
Asparouhov (2003a, 2003b). Technical aspects are
covered in Asparouhov and Muthén (2003a, 2003b).

19.2. Continuous Outcomes:

Conventional Growth Modeling

In this section, conventional growth modeling will
be briefly reviewed as a background for the more
general growth modeling to follow. To prepare for this
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Figure 19.1 LSAY Math Achievement in Grades 7 to 10
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transition, the multilevel and mixed linear modeling
representation of conventional growth modeling will
be related to representations using structural equation
modeling and latent variable modeling.

To introduce ideas, consider an example from math-
ematics achievement research. The Longitudinal Study
of Youth (LSAY) is a national sample of mathematics
and science achievement of students in U.S. public
schools (Miller, Kimmel, Hoffer, & Nelson, 2000).
The sample contains 52 schools with an average of
about 60 students per school. Achievement scores were
obtained by item response theory equating. There were
about 60 items per test with partial item overlap across
grades. Tailored testing was used so that test results
from a previous year influenced the difficulty level of
the test of a subsequent year. The LSAY data used here
are from Cohort 2, containing a total of 3,102 students
followed from Grade 7 to Grade 12 starting in 1987.
Individual math trajectories for Grades 7 through 10
are shown in Figure 19.1.

The left-hand side of Figure 19.1 shows typical
trajectories from the full sample of students. Approx-
imately linear growth over the grades is seen, with the
average linear growth shown as a bold line. Conven-
tional growth modeling is used to estimate the average
growth, the amount of variation across individuals in
the growth intercepts and slopes, and the influence
of covariates on this variation. The right-hand side of
Figure 19.1 uses a subset of students defined by one
such covariate, considering students who, in seventh
grade, expect to get only a high school degree. It is
seen that the intercepts and slopes are considerably
lower for this group of low-expectation students.

A conventional growth model is formulated as
follows for the math achievement development related

to educational expectations. For ease of transition
between modeling traditions, the multilevel notation
of Raudenbush and Bryk (2002) is chosen. For time
point t and individual i, consider the variables

yti = repeated measures on the outcome (e.g., math
achievement),

a1ti = time-related variable (time scores) (e.g.,
Grades 7–10),

a2ti = time-varying covariate (e.g., math course
taking),

xi = time-invariant covariate (e.g., Grade 7
expectations),

and the two-level growth model,

Level 1: yti = π0i + π1i a1t i + π2ti a2ti + eti, (1)

Level 2:



π0i = β00 + β01xi + r0i
π1i = β10 + β11xi + r1i .
π2i = β20 + β21xi + r2i

(2)

Here, π0i , π1i , and π2i are random intercepts and
slopes varying across individuals. The residuals
e, r0, r1, and r2 are assumed normally distributed with
zero means and uncorrelated with a1, a2, and w. The
Level 2 residuals r0, r1, and r2 are possibly corre-
lated but uncorrelated with e. The variances of et
are typically assumed equal across time and uncor-
related across time, but both of these restrictions can
be relaxed.1

1. The model may alternatively be expressed as a mixed linear model
relating y directly to a1, a2, and x by inserting (2) into (1). Analogous
to a two-level regression, when either ati or π2ti varies across i, there
is variance heteroscedasticity for y given covariates and therefore not a
single covariance matrix for model testing.
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The growth model above is presented as a
multilevel, random-effects model. Alternatively, the
growth model can be seen as a latent variable model,
where the random effects π0, π1, and π2 are latent
variables. The latent variables π0, π1 will be called
growth factors and are of key interest here. As will be
shown, the latent variable framework views growth
modeling as a single-level analysis. A special case
of latent variable modeling is obtained via mean-
and covariance-structure structural equation model-
ing (SEM). Connections between multilevel, latent
variable, and SEM growth analysis will now be briefly
reviewed.

When there are individually varying times of obser-
vation, a1ti in (1) varies across i for given t. In this
case, a1ti may be read as data. This means that in
conventional multilevel modeling, π1i is a (random)
slope for the variable a1ti. When a1ti = a1t for all t
values, a reverse view can be taken. In SEM, each a1t

is treated as a parameter, where a1t is a slope multiply-
ing the (latent) variable π1i . For example, accelerated
or decelerated growth at a third time point may be
captured by a1t = (0, 1, a3), where a3 is estimated.2

Typically in conventional multilevel modeling, the
random slope π2ti (1) for the time-varying covariate
a2t is taken to be constant across time, π2ti = π2i .

It is possible to allow variation across both t and i,
although this may be difficult to find evidence for
in data. In SEM, however, the slope is not random,
π2ti = π2t , because conventional covariance struc-
ture modeling cannot handle products of latent and
observed continuous variables.

In the latent variable modeling and SEM frame-
works, the distinction between Level 1 and Level 2
is not made, but a regular (single-level) analysis is
done. This is because the modeling framework consid-
ers the T -dimensional vector y = (y1, y2, . . . , yT )

′ as
a multivariate outcome, accounting for the correlation
across time by the same random effects influencing
each of the variables in the outcome vector. In contrast,
multilevel modeling typically views the outcome as
univariate, accounting for the correlation across time
by the two levels of the model. From the latent variable
and SEM perspective, (1) may be seen as the mea-
surement part of the model where the growth factors
π0 and π1 are measured by the multiple indicators yt .
In (2), the structural part of the model relates growth
factors and random slopes to other variables. A growth

2. When choosing a11 = 0, π0i is defined as the initial status of the
growth process. In multilevel analysis, a1ti is often centered at the mean
(e.g., to avoid collinearity when using quadratic growth), whereas in SEM,
parameters may get highly correlated.

Figure 19.2 Growth Model Diagram

y1 y2 y3 y4

π1

π0

x a21 a22 a23 a24

model diagram corresponding to the SEM perspective
is shown in Figure 19.2, where circles correspond
to latent variables and boxes correspond to observed
variables.

There are several advantages of placing the growth
model in an SEM or latent variable context. Growth
factors may be regressed on each other—for exam-
ple, studying growth while controlling for not only
observed covariates but also the initial status growth
factor. Or, a researcher may want to study growth
in a latent variable construct measured with multiple
indicators. Other advantages of growth modeling in a
latent variable framework include the ease with which
to carry out analysis of multiple processes, both paral-
lel in time and sequential, as well as multiple groups
with different covariance structures. More generally,
the growth model may be only a part of a larger model,
including, for instance, a factor analysis measurement
part for covariates measured with errors, a mediational
path analysis part for variables influencing the growth
factors, or a set of variables that are influenced by the
growth process (distal outcomes).

The more general latent variable approach to growth
goes beyond the SEM approach by handling (1)
as stated (i.e., allowing individually varying times
of observation and random slopes for time-varying
covariates). Here, a1ti = a1t andπ2ti = π2t are allowed
as special cases. The latent variable approach thereby
combines the strength of conventional multilevel mod-
eling and SEM. An overview showing the advantages
of this combined type of modeling is given in Muthén
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Figure 19.3 LSAY Math Achievement in Grades 7 to 10 and High School Dropout
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and Asparouhov (2003a), and a technical background
is given in Asparouhov and Muthén (2003a). In addi-
tion, general latent variable modeling allows modeling
with a combination of continuous and categorical latent
variables to more realistically represent longitudinal
data. This aspect is the focus of the current chapter.

19.3. Continuous Outcomes:

Growth Mixture Modeling

The model in (1) and (2) has two key features. On
one hand, it allows individual differences in develop-
ment over time because the growth intercept π0i and
growth slope π1i vary across individuals, resulting in
individually varying trajectories for yti over time. This
heterogeneity is captured by random effects (i.e., con-
tinuous latent variables). On the other hand, it assumes
that all individuals are drawn from a single population
with common population parameters. Growth mix-
ture modeling relaxes the single population assumption
to allow for parameter differences across unobserved
subpopulations. This is accomplished using latent tra-
jectory classes (i.e., categorical latent variables). This
implies that instead of considering individual varia-
tion around a single mean growth curve, the growth
mixture model allows different classes of individuals
to vary around different mean growth curves. The
combined use of continuous and categorical latent
variables provides a very flexible analysis framework.
Growth mixture modeling was introduced in Muthén
and Shedden (1999) with extensions and overviews in
Muthén and Muthén (1998–2003) and Muthén (2001a,
2001b, 2002).

Consider again the math achievement example and
the math development shown in the right-hand part of
Figure 19.3. This is the development for individuals
who are later classified as having dropped out by
Grade 12. Note that while Figure 19.1 considers an
antecedent of development, Grade 7 expectations,
Figure 19.3 considers a consequence of development,
high school dropout. It is seen that, with a few
exceptions, the high school dropouts typically have
a lower starting point in Grade 7 and grow slower
than the average students in the left-hand part of the
figure. This suggests that there might be an unobserved
subpopulation of students who, in Grades 7 through
10, show poor math development and who have a high
risk for dropout. In educational dropout research, such
a subpopulation is often referred to as “disengaged,”
where disengagement has many hypothesized predic-
tors. The subpopulation membership is not known
during Grades 7 through 10 but is revealed when
students drop out of high school. The subpopula-
tion membership can, however, be inferred from the
Grade 7 through 10 math achievement development.

19.3.1. Growth Mixture Model Specification

To introduce growth mixture modeling (GMM),
consider a latent categorical variable ci representing the
unobserved subpopulation membership for student
i, ci = 1, 2, . . . , K. Here, c will be referred to as a
latent class variable or, more specifically, a trajectory
class variable. Assume tentatively that in the math
achievement example, K = 2, representing a disen-
gaged class (c = 1) and a normative class (c = 2). An
example of the different parts of the model is shown
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Figure 19.4 GGMM Diagram
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in the model diagram in Figure 19.4. The model has
covariatesx and xmis, a latent class variable c, repeated
continuous outcomes y, and a distal dichotomous out-
come u. For simplicity, time-varying covariates are not
included in this example. The covariate x influences c
and has direct effects on the growth factors π0 and π1,
as well as a direct effect on u. In this section, the xmis
covariate will be assumed to have no role in the model.
Its effects will be studied in later sections.

Consider first the prediction of the latent class
variable by the covariate x using a multinomial logistic
regression model for K classes,

P(ci = k|xi) = eγ0k+γ1kxi∑K
s=1 e

γ0s+γ1sxi
, (3)

with the standardization γ0K = 0, γ1K = 0. With a
binary c(c = 1, 2), this gives

P(ci = 1|xi) = 1

1+ e−li , (4)

where l is the logit (i.e., the log odds),

log[P(ci = 1|xi)/P (ci = 2|xi)] = γ01 + γ11 xi,

(5)

so that γ11 is the increase in the log odds of being in
the disengaged versus the normative class for a unit
increase in x. For example, assume that x is dichoto-
mous and scored 0, 1 for females versus males. From
(4), it follows that eγ11 is the odds ratio for being in
the disengaged class versus the normative class when
comparing males to females. For example, γ11 = 1
implies that the odds of being in the disengaged class

versus the normative class is e1 = 2.72 times higher
for males than females.

Generalizing (1) and (2), GMM considers a separate
growth model for each of the two latent classes. Key
differences across classes are typically found in the
fixed effects β00, β10, and β20 in (2). For example, the
disengaged class would have lower β00 and β10 values
(i.e., lower means) than the normative class. Class dif-
ferences may also be found in the covariate influence,
with class-varying β01, β11, and β21. In addition, class-
varying variances and covariances for the r residuals
may be found. In (1), the type of growth function
for Level 1 is perhaps different across class as well.
For example, although the disengaged class may be
well represented by linear growth, the normative class
may show accelerated growth over some of the grades
(e.g., calling for a quadratic growth curve). Here, the
variance for the e residual may also be class varying.

The basic GMM can be extended in many ways.
One important extension is to include an outcome that
is predicted from the growth. Such an outcome is often
referred to as a distal outcome, whereas in this context,
the growth outcomes are referred to as proximal out-
comes. Dropping out of high school is an example of
such a distal outcome in the math achievement context.
Given that the growth is succinctly summarized by
the latent trajectory class variable, it is natural to let
the latent trajectory class variable predict the distal
outcome. With the example of a dichotomous distal
outcome u scored 0, 1, this model part is given as a
logistic regression with covariates c and x,

P (ui = 1|ci = k, xi) = 1

1+ eτk−κkxi , (6)

where the main effect of c is captured by the class-
varying thresholds τk (an intercept with its sign
reversed), and κk is a class-varying slope for x. For
each class, the same odds ratio interpretation given
above can be applied also here. Model extensions of
this type will be referred to as general growth mixture
modeling (GGMM).

19.3.1.1. Latent Class Growth Analysis

A special type of growth mixture model has been
studied by Nagin and colleagues (see, e.g., Nagin,
1999; Nagin & Land, 1993; Roeder, Lynch, & Nagin,
1999) using the SAS procedure PROC TRAJ (Jones,
Nagin, & Roeder, 2001). See also the 2001 special
issue of Sociological Methods & Research (Land,
2001). The models studied by Nagin are character-
ized by having zero variances and covariances for r in
(2); that is, individuals within a class are treated as
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homogeneous with respect to their development.3

Analysis with zero growth factor variances and covari-
ances will be referred to as latent class growth analysis
(LCGA) in this chapter. As will be discussed in the
context of categorical outcomes, the term LCGA is
motivated by it being more similar to latent class
analysis than growth modeling.

LCGA may be useful in two major ways. First,
LCGA may be used to find cut points on the GMM
growth factors. A k-class GMM that has within-
class variation may have a model fit similar to that
of a k + m-class LCGA for some m > 0. The
extra m classes may be a way to objectively find
cut points in the within-class variation of a GMM to
the extent that such further grouping is substantively
useful. This situation is similar to the relationship
between factor analysis and latent class analysis, as
discussed in Muthén (2001a), where latent classes of
individuals were identified along factor dimensions.
From a substantive point of view, however, this poses
the challenge of how to determine which latent classes
represent fundamentally different trajectories and
which represent only minor variations. Second, as
pointed out in Nagin’s work, the latent classes of
LCGA may be viewed as producing a nonparametric
representation of the distribution of the growth factors,
resulting in a semi-parametric model. This view will
be further discussed in the next section.

LCGA is straightforward to specify within the
general Mplus framework. The zero variance restric-
tion makes LCGA easy to work with, giving relatively
fast convergence. If the model fits the data, the simplic-
ity can be a practically useful feature. Also, LCGA can
be used in conjunction with GMM as a starting point for
analyses. Section 19.3.4.1 discusses the use of LCGA
on data that have been generated by a GMM in which
covariates have direct influence on the growth factors.
This misapplication leads to serious distortions in the
formation of the latent classes.

19.3.1.2. Nonparametric Estimation
of Latent Variable Distributions

In the GMM described earlier, the normality
assumption for the residuals on Level 1 and Level 2 is
applied to each class. Within class, the latent variables
of π0, π1, and π2 of (2) may have a nonnormal dis-
tribution due to the influence of a possibly nonnormal

3. Nagin’s work focuses on count data using Poisson distributions. As
discussed in later sections, modeling with count outcomes and categorical
outcomes can also use nonzero variance for r.

x covariate, and the distribution of y in (1) is further
influenced by possibly nonnormal Level 1 covariates.
This implies that the distribution of the outcomes y can
be nonnormal within class. Strong nonnormality for y
is obtained when latent classes with different means
and variances are mixed together.

The normality assumption for the residuals is not
innocuous in mixture modeling. Alternative distribu-
tions would result in somewhat different latent class
formations. The literature on nonparametric estimation
of random-effect distributions reflects such a concern,
especially with categorical and count outcomes already
in nonmixture models. Maximum likelihood estima-
tion for logistic models with random effects typically
uses Gauss-Hermite quadrature to integrate out the
normal random effects. The quadrature uses fixed
nodes and weights for a set of quadrature points. As
pointed out by Aitkin (1999), a more flexible distribu-
tional form is obtained if both the nodes and the weights
are estimated, and this approach is an example of
mixture modeling. The mixture modeling approxima-
tion to a continuous random-effect distribution, such
as a random intercept growth factor, is illustrated in
Figure 19.5 using an approximately normal distribu-
tion as well as a skewed distribution. In both cases, five
nodes and weights are used, corresponding to a mixture
with five latent classes. Aitkin argues that the mixture
approach may be particularly suitable with categorical
outcomes in which the usual normality assumption for
the random effects has scarce empirical support. For
an overview of related work, see also Heinen (1996);
for a more recent discussion in the context of logistic
growth analysis, see Hedeker (2000).

The Mplus latent variable framework can be used
for this type of nonparametric approach. Correspond-
ing to Figure 19.5, a random intercept growth factor
distribution can be represented by a five-class mix-
ture. Here, the estimation of the nodes is obtained
by estimating the growth factor means in the different
classes, and the estimation of the weights is obtained
by estimating the class probabilities (the growth factor
variance parameter is held fixed at zero). If a single-
class model is considered, the other parameters of the
model are held equal across classes; otherwise, they
are not.

19.3.1.3. Growth Mixture
Modeling Estimation

The growth mixture model can be estimated by
maximum likelihood using an EM algorithm. For
a given solution, each individual’s probability of
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Figure 19.5 Random-Effects Distributions Represented by Mixtures
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membership in each class can be estimated, as well
as the individual’s score on the growth factors π0i and
π1i . Measures of classification quality can be consid-
ered based on the individual class probabilities, such
as entropy. This has been implemented in the Mplus
program (Muthén & Muthén, 1998–2003). Technical
aspects of the modeling, estimation, and testing are
given in Technical Appendix 8 of the Mplus User’s
Guide (Muthén & Muthén, 1998–2003), Muthén and
Shedden (1999), and Asparouhov and Muthén (2003a,
2003b). Missing data on y are handled using MAR.
Muthén, Jo, and Brown (2003) discuss nonignorable
missing data modeling using missing data indicators.
As with mixture modeling in general, local optima are
often encountered in the likelihood. This phenomenon
is well known, for example, in latent class analysis,
particularly in models with many classes and data that
carry limited information about the class membership.
Because of this, the use of several different sets of
starting values is recommended, and this is automated
in Mplus.

19.3.1.4. The LSAY Example

To conclude this section in a concrete way using the
LSAY math achievement data, a brief preview of the
analyses in Section 3.5 is of interest. Figure 19.6 shows
that three latent trajectory classes are found, includ-
ing their class probabilities, the mean trajectory and
individual variation for each class, and the probability
of dropping out of high school for each class. Of the
students, 20% are found to belong to a disengaged
class with poor math development. Membership in
the disengaged class dramatically enhances the risk
of dropping out of high school, raising the dropout
percentage from 1% and 8% to 69%. Section 3.5

presents the covariates predicting latent trajectory class
membership, and it is found that having low educa-
tional expectations and dropout thoughts already by
Grade 7 are key predictors.

Before going through the analysis steps for the
LSAY math achievement example, model interpreta-
tion, estimation, and model selection procedures will
be discussed. Latent variable modeling requires good
analysis strategies, and this is even more true in the
framework of growth mixture modeling, where both
continuous and categorical latent variables are used.
Many statistical procedures have been suggested
within the related statistical area of finite mixture
modeling (see, e.g., McLachlan & Peel, 2000), and
some key ideas and new extensions will be briefly
reviewed. Both substantive and statistical consider-
ations are critical and will be discussed. Early pre-
diction of class membership is also of interest in
growth mixture modeling and will be briefly cov-
ered. In the LSAY math achievement example, it is
clearly of interest to make such early predictions of
risk for high school dropout to make interventions
possible.

19.3.2. Substantive Theory and
Auxiliary Information for Predicting
and Understanding Model Results

GGMM should be investigated using substantively
based theory and evidence. Auxiliary information can
be used to more fully understand model results even at
an exploratory stage, when little theory exists. Once
substantive theory has been formulated, it can be
used to predict a related set of events that can then be
tested.
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Figure 19.6 LSAY Math Achievement in Grades 7 to 10 and High School Dropout
M

at
h 

A
ch

ie
ve

m
en

t

7 8 9 10

40
60

80
10

0

40
60

80
10

0

40
60

80
10

0

Poor Development: 20%

Grades 7−10  
7 8 9 10

Grades 7−10
7 8 9 10

Grades 7−10

 

Moderate Development: 28% Good Development: 52%

Dropout: 69% 8% 1%

 

Substantive theory building typically does not
rely on only a single outcome measured repeatedly,
accumulating evidence for a theory only by sorting
into classes observed trajectories on a single outcome
variable. Instead, many different sources of auxiliary
information are used to check the theory’s plausibility.
Mental health research may find that a pattern of a
high level of deviant behavior at ages when this is not
typical is often accompanied with a variety of neg-
ative social consequences, so that there is a distinct
subtype. A good education study of failure in school
also considers what else is happening in the student’s
life, involving predictions of accompanying problems.
Gene-environment interaction theories may predict the
emergence of problems as a response to adverse life
events at certain ages. These are the situations when
GGMM is particularly useful. GGMM can include
the auxiliary information in the model and test if the
classes formed have the characteristics on the auxiliary
variables that are predicted by theory. Auxiliary infor-
mation may take the form of antecedents, concurrent
events, or consequences. These are briefly discussed
in turn below.

19.3.2.1. Antecedents

Auxiliary information in the form of antecedents
(covariates) of class membership and growth factors
should be included in the set of covariates to cor-
rectly specify the model, find the proper number
of classes, and correctly estimate class proportions
and class membership. The fact that the “uncondi-
tional model” without covariates is not necessarily

the most suitable for finding the number of classes
has not been fully appreciated and will be discussed
below.

An important part of GGMM is the prediction of
class membership probabilities from covariates. This
gives the profiles of the individuals in the classes.
The estimated prediction of class membership is a key
feature in examining predictions of theory. If classes
are not statistically different with respect to covariates
that, according to theory, should distinguish classes,
crucial support for the model is absent.

Class variation in the influence of antecedents
(covariates) on growth factors or outcomes also pro-
vides a better understanding of the data. As a caveat,
one should note that if a single-class model has gen-
erated the data with significant positive influence of
covariates on growth factors, GGMM that incorrectly
divides up the trajectories in, say, low, medium, and
high classes might find that covariates have lower and
insignificant influence in the low class due to selection
on the dependent variable. If a GGMM has generated
the data, however, the selected subpopulation is the
relevant one to which to draw the inference. In either
case, GGMM provides considerably more flexibility
than what can be achieved with conventional growth
modeling. As an example, consider Muthén and
Curran’s (1997) analysis of a preventive interven-
tion with a strong treatment-baseline interaction.
The intervention aimed at changing the trajectory
slope of aggressive-disruptive behavior of children
in Grades 1 through 7. No main effect was found,
but Muthén and Curran used multiple-group latent
growth curve modeling to show that the initially more
aggressive children benefited from the intervention
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in terms of lowering their trajectory slope. The
Muthén-Curran technique is not, however, able to
capture a nonmonotonic intervention effect that exists
for children of medium-range aggression and is absent
for the most or least aggressive children. In contrast,
such a nonmonotonic intervention effect can be han-
dled using GGMM with the treatment/control dummy
variable as a covariate having class-varying slopes (see
Muthén et al., 2002). There are probably many cases
in which the effect of a covariate is not strong or even
present, except in a limited range of the growth factor
or outcome.

19.3.2.2. Concurrent Events
and Consequences (Distal Outcomes)

Modeling with concurrent events and consequences
speaks directly to standard considerations of concur-
rent and predictive validity. In GGMM, concurrent
events can be handled as time-varying covariates that
have class-varying effects, as time-varying outcomes
predicted by the latent classes, or as parallel growth
processes. Consequences can be handled as distal
outcomes predicted by the latent classes or as sequen-
tial growth processes. Examples of distal outcomes
in GGMM include alcohol dependence predicted by
heavy drinking trajectory classes (Muthén & Shedden,
1999) and prostate cancer predicted by prostate-
specific antigen trajectory classes (Lin, Turnbull,
McCulloch, & Slate, 2002).

A very useful feature of GMM, even if a single-class
nonnormal growth model cannot be rejected, is that
cut points for classification are provided. For instance,
individuals in the high class, giving the higher prob-
ability for the distal outcome, are identified, whereas
this information is not provided by the conventional
single-class growth analysis. It is true that this classifi-
cation is done under a certain set of model assumptions
(e.g., within-class conditional normality of outcomes
given covariates), but even if the classification is not
indisputable, it is nevertheless likely to be useful in
practice. In single-class analysis, one may estimate
individuals’ values on the growth factors and attempt
a classification, but it can be very difficult to identify
cut points, and the classification is inefficient. The
added classification information in GMM versus con-
ventional single-class growth modeling is analogous to
the earlier discussion of latent class and latent profile
analysis adding complementary information to factor
analysis. In addition, GMM classification is an impor-
tant tool for early detection of likely membership in a
problematic class, as will be discussed in the example
below.

19.3.3. Statistical Aspects of Growth Mixture
Modeling: Studying Model Estimation Quality
and Power by Monte Carlo Simulation Studies

Because growth mixture modeling is a relatively
new technique, rather little is known about require-
ments in terms of sample size and the number of time
points needed for good estimation and strong power.
Monte Carlo studies are useful for gaining understand-
ing about this. Figure 19.4 shows a prototypical growth
mixture model with a distal outcome. The following is
a brief description of how a Monte Carlo study can be
carried out based on this model using Mplus. For back-
ground about Monte Carlo studies of latent variable
models using Mplus, see Muthén and Muthén (2002).
As argued in that article, general rules of thumb are
not likely to be dependable, but Monte Carlo studies
can be done in settings similar to those of the study at
hand.

A total of 100 data sets were generated according
to the Figure 19.4 model without the xmis covari-
ates, using a sample size of 3,000, similar to that
of LSAY. Here, the class percentages are 27% and
73%. Maximum likelihood estimation was carried out
and results summarized over the 100 replications. The
Mplus output contains average parameter estimates,
parameter estimate standard deviations, average stan-
dard errors, 95% coverages, and power estimates.
Here, power refers to the proportion of replications in
which the hypothesis that the parameter value is zero
is rejected.4

The results indicate very good estimation of param-
eters and standard errors as well as good coverage. The
quality is a function of the sample size, the number of
time points, the separation between the classes, and
the within-class variation. Here, the intercept growth
factor means in the two classes are one standard devi-
ation apart. As examples of the power estimates, the
regression coefficient for the slope growth factor on
the covariate is 0.43 for the smaller class, which has
a smaller coefficient, and 1.00 for the larger class,
which has a larger coefficient. Changing the sample
size to 300, the results are still acceptable, although the
power estimates for the slope growth factor regression
coefficients are now reduced to 0.11 and 0.83.

The Mplus Monte Carlo facility is quite flexible. For
example, to study model misspecification, one could
analyze a different model than the one that generated
the data. In latent class models, the misspecifica-
tion may concern the number of classes. For Monte

4. The Mplus input and output for this analysis are given in Example 1 at
www.statmodel.com/mplus/examples/penn.html.
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Carlo designs that are not offered in Mplus, externally
generated data can be analyzed using the RUNALL
utility.5 An extensive Monte Carlo study of growth
mixture and related factor mixture models is given in
Lubke and Muthén (2003).

19.3.4. Statistical Aspects of Growth Mixture
Modeling: Model Selection Procedures

This section gives an overview of strategies and
methods for model selection and testing. An emphasis
is placed on practical analysis steps and recent testing
developments.

19.3.4.1. Analysis Steps

In conventional growth modeling, a common
analysis strategy is to first consider an “unconditional
model” (i.e., not introducing covariates for the growth
factors). This strategy can lead to confusion with
growth mixture modeling. Consider the growth mix-
ture model diagram shown earlier in Figure 19.4. Here
the model has covariates x and xmis, a latent class
variable c, repeated continuous outcomes y, and a
distal dichotomous outcome u. The covariate x influ-
ences c, has direct effects on the growth factors π0 and
π1, and also has direct effects on u.

Consider first an analysis of this model without u
and without the xs. Here, the class formation is based
on information from the observed variables y, chan-
neled through the growth factors. A distorted analysis
is obtained if the xs are excluded because they have
direct effects on the growth factors. This is because
the only observed variables, y, are incorrectly related
to c if the xs are excluded. The distortion can be under-
stood based on the analogy of a misspecified regression
analysis. Leaving out an important predictor, the slope
for the other predictor is distorted. In Figure 19.4, the
other predictor is the latent class variable c, and the
distortion of its effect on the growth factors causes
incorrect evaluation of the posterior probabilities in
the E step and therefore incorrect class probability
estimates and incorrect individual classification. If, on
the other hand, the x covariates do not have a direct
influence on the growth factors (and no direct influ-
ence on y), the “unconditional model” without the xs
would be correct, giving correct class probabilities and
growth curves for y.

To further explicate the reasoning above, consider
a data set generated by the model in Figure 19.4

5. See http://www.statmodel.com/runutil.html.

without the xmis covariate, using the Monte Carlo
feature of Mplus discussed earlier.6 Analysis of the
generated data by the correct model recovers the popu-
lation parameters well, as expected. The estimated
Class 1 probability of 0.26 is close to the true value
of 0.27. The entropy is not large, despite the cor-
rectness of the model, 0.57, but this is a function
of the degree of separation between the classes and
the within-class variation. In line with the discussion
above, the influence of the covariate x is of special
interest. The model that generated the data has a posi-
tive slope for the influence of x on being in the smaller
Class 1, positive slopes for the influence on the growth
factors, and a positive slope for the influence on u. The
estimated class-specific means and variances of the x
covariate are 0.63 and 0.79 for Class 1 and −0.20
and 0.82 for Class 2. The higher mean for Class 1
is expected, given the positive slope for the influence
on the Class 1 membership. Being in Class 1, in turn,
implies higher means for the growth factors. Within
class, the growth factor means are higher due to the
direct positive influence of x on the growth factors.
With x left out of the model, the latent class variable
alone needs to account for the differences in growth
factor values across individuals. As a result, the class
probabilities are misestimated. In the generated data
example, the Class 1 probability is now misestimated
as 0.35.7

Analyzing the Figure 19.4 model excluding u but
correctly including x gives the correct answer in terms
of class membership probabilities for c and growth
curves for y. This is because excluding u does not
imply that the observed variables (y or x) are incor-
rectly related to c. Excluding u simply makes the
standard errors larger and worsens the classification
precision (entropy). In the generated data example, the
Class 1 probability is well estimated as 0.26, whereas
the entropy is now lowered to 0.50.8

In practice, model estimation with and without a
distal outcome u may give different results for the
class probabilities and growth curves for two reasons.
First, if you include u but misspecify the model by
not allowing direct effects from the xs to u, you get
distorted parameter estimates (e.g., incorrect class
probabilities) by the same regression misspecification
analogy given above. In the generated data example,

6. The Mplus input and output for this analysis is given in Example 2 at
www.statmodel.com/mplus/examples/penn.html.

7. The Mplus input and output for this analysis is given in Example 3 at
www.statmodel.com/mplus/examples/penn.html.

8. The Mplus input and output for this analysis are given in Example 4 at
www.statmodel.com/mplus/examples/penn.html.
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this misspecification gave the strongly distorted Class
1 probability estimate as 0.40. Second, key covariates
may have been left out of the model (i.e., may not have
been measured or are missing), causing a model mis-
specification. The notation xmis in Figure 19.4 refers
to such a covariate. Consider two cases, both assuming
that xmis is not available. First, if xmis influences only
u and not the growth factors, the analysis excluding
u gives correct results, but the analysis including u
gives incorrect and hence different results. Second,
if xmis influences both the growth factors and u, the
analyses with and without u give incorrect results and
are different.

In conclusion, the proper choice of covariates is
important in growth mixture modeling. Substantive
theory and previous analyses are needed to make a
choice that is sufficiently inclusive. The covariates
should be allowed to influence not only class member-
ship but also the growth factors directly, unless there
are well-motivated reasons not to. An analysis without
covariates can be useful to study different growth in
different trajectory classes. However, it should not
be expected that the class distribution or individual
classification remains the same when adding covari-
ates. It is the model with covariates properly included
that gives the better answer.

It should also be noted that choosing the correct
within-class variance structure is important. The data
above were generated from a model with class-varying
variances for the residuals of e in (1). Misspecifying
the model by holding these variances equal across
class leads to an estimated Class 1 probability of 0.23.
Larger distortions would be obtained if the growth
factor variances differ across classes.

It is instructive to consider model misspecification
results if data generated by the growth mixture model
are analyzed by a latent class growth analysis. In the
generated data example above, LCGA leads to a mis-
specified model. The misspecification can be studied in
two steps, first by restricting the residual (co)variances
and second by also not allowing the direct influence
from x to the growth factors. In both cases, the distal
outcome is u. In the first step, the estimated Class 1
probability is found to be 0.42, a value far off from
the true probability of 0.27. In the second step, the
estimated Class 1 probability is even more strongly
distorted, 0.51. It is noteworthy that the misspecifica-
tion of not letting x have a direct effect on the growth
factors cannot be discovered using LCGA. Note that in
the last two analyses, the entropy values are strongly
overestimated, 0.80 and 0.85. It is also likely that more
than two classes are needed to account for the within-
class variation. This implies that some of the classes

are merely slight variations on a theme and do not have
a substantial meaning.

19.3.4.2. Equivalent Models

With latent variable models in general and mixture
models in particular, the phenomenon of equivalent
models may be encountered. Here, equivalent models
means that two or more models fit the same data
approximately the same so that there is no statistical
basis on which to base a model choice. Consider two
psychometric examples. First, in exploratory factor
analysis, a rotated solution using uncorrelated factors
gives the same estimated correlation matrix as a rotated
solution with correlated factors. Second, Bartholomew
and Knott (1999, pp. 154–155) point out a well-known
psychometric fact that a covariance matrix generated
by a latent profile model (a latent class model with
continuous outcomes) can be perfectly fitted by a factor
analysis model. A covariance matrix from a k-class
model can be fitted by a factor analysis model with
k− 1 factors. Molenaar and von Eye (1994) show that
a covariance matrix generated by a factor model can be
fitted by a latent class model. This should not be seen
as a problem but merely as two ways of looking at the
same reality. The factor analysis informs about under-
lying dimensions and how they are measured by the
items, whereas the latent profile analysis sorts individ-
uals into clusters of individuals who are homogeneous
with respect to the item responses. The two analyses
are not competing but are complementary.

The issue of alternative explanations is classic in
finite mixture statistics. Mixtures have two separate
uses. One is to simply fit a nonnormal distribution
without a particular interest in the mixture components.
The other is to capture substantively meaningful sub-
groups. For a historical overview, see, for instance,
McLachlan and Peel (2000, pp. 14–17), who refer to
a debate about blood pressure. A classic example con-
cerns data from a univariate (single-class) lognormal
distribution that are fitted well by a two-class model
that assumes within-class normality and has different
means. Bauer and Curran (2003) consider the anal-
ogous multivariate case arising with growth mixture
modeling.9 The authors use a Monte Carlo simula-
tion study to show that a multiclass growth mixture
model can be arrived at using conventional Bayesian
information criterion (BIC) approaches (see below)
to determine the number of classes when data, in
fact, have been generated by a nonnormal multivariate

9. Multivariate formulas that show equivalence are not given.
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distribution that is skewed and kurtotic. Although the
authors only consider GMM, the resulting overex-
traction of classes would be more pronounced for
LCGA. Bauer and Curran’s study serves as a caution to
researchers to not automatically assume that the latent
trajectory classes of a growth mixture model have sub-
stantive meaning. Their article is followed by three
commentaries and a rejoinder that place the discussion
in a larger context. Two of the commentaries, including
one by Muthén (2003), point out that BIC does not
address model fit to data but is a relative fit measure
comparing competing models. Muthén discusses new
mixture tests that aim to address data fit, which are
mentioned below. The use of these alternative models
ultimately has to be guided by arguments related to
substantive theory, auxiliary information, predictive
validity, and practical usefulness.

19.3.4.3. Conventional Mixture Tests

The selection of the number of latent classes
has been discussed extensively in the statistical
literature on finite mixture modeling (see, e.g.,
McLachlan & Peel, 2000). The likelihood ratio
comparing a k − 1 and a k-class model does not
have the usual large-sample chi-square distribution
due to the class probability parameter being at the
border (zero) of its admissible space. A commonly
used alternative procedure is the BIC (Schwartz, 1978),
defined as

BIC = −2 logL+ p ln n, (7)

where p is the number of parameters and n is the
sample size. Here, BIC is scaled so that a small
value corresponds to a good model with a large log-
likelihood value and not too many parameters.

Consider as an example the generated data example
of the previous section. Here, the analysis without the
x covariate or the u distal outcome gave the following
BIC values for one, two, and three classes: 39,676.166,
39,603.274, and 39,610.785. This points correctly to
two classes, despite the fact that the model is misspec-
ified due to not including x and its direct effect on
the growth factors. This fortunate outcome cannot be
relied on, however.

19.3.4.4. New Mixture Tests

This section briefly describes two new mixture test
approaches. A key notion is the need for checking
how well the mixture model fits the data, not merely
basing a model choice on k classes fitting better

than k − 1 classes. It should be emphasized that
there are many possibilities for checking model fit
against data in mixture settings, and the methodology
for this is likely to expand considerably in the future.
One promising approach is the residual diagnostics
based on pseudo-classes, proposed in Wang, Brown,
and Bandeen-Roche (2002).

Lo, Mendell, and Rubin (2001) proposed a like-
lihood ratio–based method for testing k − 1 classes
against k classes. The Lo-Mendell-Rubin approach
has been criticized (Jeffries, 2003), although it is
unclear to which extent the critique affects its use
in practice. The Lo-Mendell-Rubin likelihood ratio
test (LMR LRT) avoids a classic problem of chi-
square testing based on likelihood ratios. This concerns
models that are nested, but the more restricted model
is obtained from the less restricted model by a param-
eter assuming a value on the border of the admissible
parameter space—in the present case, a latent class
probability being zero. It is well known that such like-
lihood ratios do not follow a chi-square distribution.
Lo, Mendell, and Rubin consider the same likelihood
ratio but derive its correct distribution. A low p-value
indicates that the k − 1-class model has to be rejected
in favor of a model with at least k classes. The Mplus
implementation uses the usual Mplus mixture model-
ing assumption of within-class conditional normality
of the outcomes given the covariates. When nonnormal
covariates are present, this allows a certain degree of
within-class nonnormality of the outcomes. The LMR
LRT procedure has been studied for GMMs by Monte
Carlo simulations (Masyn, 2002). More investigations
of performance in practice are, however, of interest,
and readers can easily conduct studies using the Mplus
Monte Carlo facility for mixtures.

Muthén and Asparouhov (2002) proposed a new
approach for testing the fit of a k-class mixture model
for continuous outcomes. As opposed to the LMR LRT,
this procedure concerns a test of a specific model’s
fit against data. The procedure relies on testing if the
multivariate skewness and kurtosis (SK) estimated by
the model fit the corresponding sample quantities. The
sampling distributions of the SK tests are assessed by
computing these values over a number of replications
in data generated from the estimated mixture model.
Obtaining low p-values for skewness and kurtosis
indicates that the k-class model does not fit the data.
Univariate and bivariate test results are also provided
for each variable and pair of variables. These tests
may provide a useful complement to the LMR LRT.
Currently, the SK tests are not available with missing
data. Given the inherent sensitivity to outliers, the SK
testing should be preceded by outlier investigations.
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The SK procedure needs further investigation but is
offered here as an example of the many possibilities
of testing a mixture model against data (see also Wang
et al., 2002).

19.3.5. The LSAY Math Achievement Example

This section returns to the analysis of the mathe-
matics achievement data from the LSAY data men-
tioned earlier. Based on the educational literature, the
following covariates are included: female; Hispanic;
Black; mother’s education; home resources; the
student’s educational expectations, measured in
seventh grade (1 = high school only, 2 = voca-
tional training, 3 = some college, 4 = bachelor’s
degree, 5 = master’s degree, 6 = doctorate); the
student’s thoughts of dropping out, measured in sev-
enth grade; whether the student has ever been arrested,
measured by seventh grade; and whether the student
has ever been expelled by seventh grade. Correspond-
ing to individuals with complete data on the covariates,
the analyses consider a subsample of 2,757 of the
total 3,116 individuals. The analyses were carried
out by maximum likelihood estimation using Mplus
Version 2.13.

19.3.5.1. Statistical Checking

The univariate skewness and kurtosis sample values
in the LSAY data are as follows:

Skewness = (0.168 0.030 0.063 −0.077), (8)

Kurtosis = (−0.551 −0.338 −0.602 −0.559).
(9)

In line with the earlier discussion of the LMR LRT, due
to the low nonnormality in the outcomes, it is plausible
that this test is applicable in the LSAY analysis for
testing a one-class model versus more than one class.
In the LSAY analysis, this test points to at least two
classes with a strong rejection (p = .0000) of the
one-class model. The SK tests carried out on the list-
wise present subsample of 1,538 reject the one-class
model (p = .0000 for both multivariate skewness
and multivariate kurtosis) but do not reject two classes
(p = .4300 and .5800). The LMR LRT for two versus
three or more classes obtained a high p-value (.6143)
in support of two classes. Taken together, the statistical
evidence points to at least two classes. Given that
the skewness and kurtosis tests found that two- and
three-class GMMs fit the data, the LMR LRT is
useful for testing the multiclass alternatives against
each other.

19.3.5.2. Substantive Checking
and Further Statistical Analysis

This section compares analysis results using a con-
ventional one-class growth model and different forms
of GMMs and discusses substantive meaningfulness
based on educational theory, auxiliary information,
and practical usefulness. Figure 19.7 shows a diagram
of the general model.

19.3.5.2.1. Conventional one-class growth
modeling. As a first step, the conventional one-class
growth model results are considered. Briefly stated,
a linear growth model fits reasonably well and has a
positive growth rate mean of about 1 standard deviation
across the four grades. The covariates with significant
influence (sign in parentheses) on the initial status are
as follows: female (+), Hispanic (−), Black (−),
mother’s education (+), home resources (+), expec-
tations (+), dropout thoughts (−), arrest (−), and
expelled (−). The covariates with significant influ-
ence (sign in parentheses) on the growth rate are as
follows: female (−), Hispanic (−), home resources
(+), expectations (+), and expelled (−).

19.3.5.2.2. Two-class GMM. The two-class
solution is characterized by a low class of 41%, which,
in comparison to the high class, has a lower initial
status mean and variance, a lower growth rate mean,
and a higher growth rate variance. It is interesting to
consider what characterizes these students apart from
their poor mathematics achievement development. The
multinomial logistic regression for class membership
indicates that, relative to the high class, the odds of
membership in the low class are significantly increased
by being male, being Hispanic, having a mother with
a low level of education, having low seventh-grade
educational expectations, having had seventh-grade
thoughts of dropping out, having been arrested, and
having been expelled. The low class appears to be a
class of students with problems both in and out of
school. The profile of the low class is reminiscent
of individuals at risk for dropping out of high school
(see, e.g., Rumberger & Larson, 1998, and references
therein). Many of these students are “disengaged,” to
use language from high school dropout theories.

The within-class influence of the covariates on the
initial status and growth rate factors varies significantly
across class. The low class has no significant predic-
tors of growth rate, whereas the growth rates of the
two higher classes are significantly enhanced in well-
known ways by being male, having a mother with a
high level of education, having high home resources,
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Figure 19.7 GGMM Diagram for LSAY Data
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and having high expectations. To the extent that the
low class has substantive meaning, the findings suggest
that different processes are in play for students in the
low class.

19.3.5.2.3. Three-class GMM including a distal
outcome. To more specifically investigate the data
from the high school dropout perspective and further
characterize the low class, the distal binary outcome of
dropping out of high school, as recorded in Grade 12,
was added. The overall dropout rate in the sample is
14.7%, or 458 individuals. Here, class membership
in the GMM is, to some extent, also determined by
the Grade 12 dropout indicator and not only by
the covariates and math achievement development.
Adding the distal outcome, the LMR LRT rejected
the two-class model in favor of at least three classes
(p = .0060). The three-class solution produces a more
distinct low class of 19%, a middle class of 28%, and
a high class of 52%. Here, the low class (estimated as
536 students) has a lower growth rate mean and lower
growth rate variance than in the two-class solution
without the distal outcome.10

10. The Akaike information criterion (AIC) points to at least three classes,
whereas the Bayesian information criterion (BIC) points to two classes.
The one-class log-likelihood, number of parameters, AIC, and BIC values
are as follows: −30,021.955, 27, 60,097.909, and 60,257.791. The two-
class log-likelihood, number of parameters, AIC, BIC, and entropy values
are as follows:−29,676.457, 63, 59,478.914, 59,851.971, and 0.552. The
three-class log-likelihood, number of parameters, AIC, BIC, and entropy
values are as follows: −29,566.679, 99, 59,331.359, 59,917.591, and
0.620.

The class membership regression part of the model
indicates that for the low class relative to the highest
class, the same covariates as in the two-class solu-
tion are significant, except that Hispanic and mother’s
education are insignificant, whereas Black and home
resources are significant. Interestingly, comparing the
middle class to the high class, the disengagement
covariates of low educational expectations, seventh-
grade dropout thoughts, having been arrested, and
having been expelled are no longer significant. This
suggests that the low class is now a more distinct class
that is more specifically characterized as disengaged
and at risk for high school dropout. The two higher
classes may or may not make a substantively mean-
ingful distinction among students, but their presence
helps to isolate the low class. In a two-class solution
including the distal outcome, the low class is not very
different from the more unspecific low class of the
initial two-class solution without the distal outcome. It
is interesting to note that although the LMR LRT does
not point to three classes without the distal outcome,
the three-class solution without the distal outcome
shows a similar low class as in the three-class solution
with the distal outcome. As will be shown next, the
three-class solution with the distal outcome gets not
only statistical support from the LMR LRT but also
substantive support from predicting dropout.

Further bolstering the notion that the low class is
prone to high school dropout, the probability of drop-
ping out, as estimated from the three-class model, is
distinctly different in the low class. The probabilities
are .692 for the low class, .076 for the middle class,
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and .006 for the high class. Other concurrent and distal
events were also added to the three-class model to fur-
ther understand the context of the low class, including
responses to the following 10th grade question: “How
many of your friends will drop out before graduating
from high school?” (1 = none, 2 = a few, 3 = some,
4 = most). Treating this as an ordered polytomous
outcome influenced by class and the covariates resulted
in estimated probabilities for response in either of the
three highest categories (few, some, most): .259 for
the low class, .117 for the middle class, and .030 for the
high class. Considerably more students in the low class
have friends who are also thinking of dropping out. In
contrast, heavy alcohol involvement in Grade 10 was
not distinctly different in the low class. The estimated
growth curves and individual trajectories can be seen
in Figure 19.6.

19.3.5.2.4. Practical usefulness. An educational
researcher is likely to find it interesting that the analy-
ses suggest that dropout by Grade 12 can be predicted
already by the end of Grade 10 with the help of
information on problematic math achievement devel-
opment. Whether the division into growth mixture
classes is meaningful is largely a substantive question.
An argument in favor of there being a distinct “fail-
ing class” is obtained from the distal outcome of high
school dropout. The fact that the dropout percentage is
dramatically higher for the low class than for the other
two, 69% versus 8% and 1%, suggests that the three
classes are not merely gradations on an achievement
development scale but that the low class represents a
distinct group of students.

From the point of view of intervention, it is valuable
to explore whether a dependable classification into
the low class can be achieved earlier than Grade 10.
GGMM can help answer this question. For example, by
Grade 7, the covariates and the first math achievement
outcome are available, and given the estimated three-
class model, new students can be classified based on
the model and their Grade 7 data. GGMM allows the
investigation of whether this information is sufficient
or if math achievement trend information provided by
adding Grade 8 information (or Grades 8 and 9 infor-
mation) is needed before a useful classification can
be made.

19.4. Categorical Outcomes:

Conventional Growth Modeling

With categorical outcomes, the Level 1 model part (1)
has to be replaced with a model that describes the

probability of the outcome at different time points for
different individuals. This model has been studied by
Hedeker and Gibbons (1994). Here, logistic regression
will be used, so that with the example of a binary
outcome u scored 0 and 1,

P(uti = 1|a1ti, a2ti, xi) = 1

1+ eτ−logit(uti)
, (10)

Level 1 (Within): logit(uti) = π0i + π1i a1ti

+ π2tia2ti + eti, (11)

Level 2 (Within):



π0i = β00 + β01xi + r0i
π1i = β10 + β11xi + r1i .
π2i = β20 + β21xi + r2i

(12)

A perhaps more common parameterization is to fix
the threshold parameter τ in (10) at zero, which enables
the identification ofβ00.11 The variance of e is not a free
parameter but is fixed in line with logistic regression.
With ordered polytomous outcomes, Mplus uses the
proportional odds logistic regression model (see, e.g.,
Agresti, 1990, pp. 322–324). This may be thought of
as a threshold model for a latent response variable, so
that withC categories, there is a series ofC−1 ordered
thresholds. The thresholds are held equal across time.
As a standardization, β00 = 0 may be chosen, or
alternatively, the first threshold may be set at zero.
Hedeker and Gibbons (1994) describe maximum like-
lihood estimation and show that this requires heavier
computations than with continuous outcomes, calling
on numerical integration using quadrature methods.
The computational burden is directly related to the
number of random effects (i.e., the number of co-
efficients π for which the variance of r is not fixed
at zero).

19.5. Categorical Outcomes:

Growth Mixture Modeling

The conventional growth modeling for categorical
outcomes given in (11) and (12) can be extended to
growth mixture modeling with latent trajectory classes.
This is a new technique introduced in Asparouhov
and Muthén (2003b), using maximum likelihood esti-
mation based on an EM algorithm with numerical
integration. In line with the latent variable approach to

11. The Mplus input and output for these analyses are given in Example 5
at www.statmodal.com/mplus/examples/penn.html.
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growth modeling with continuous outcomes discussed
in Section 19.2, the Asparouhov-Muthén approach
allows a1ti in (11) to be handled as data or as param-
eters to be estimated. Furthermore, the π2ti slopes can
be random for the time-varying covariates a2ti.12 The
Hedeker-Gibbons model is obtained as a special case
with a single latent class.

As in (3), the covariate effect on class membership
is a multinomial logistic regression,

P(ci = k|xi) = eγ0k+γ1kxi∑K
s=1 e

γ0s+γ1sxi
. (13)

The growth mixture extension of (10) is

P(uti = 1|a1ti, a2ti, xi, ci = k)

= 1

1+ eτ−logit(utik)
, (14)

where the added conditioning on c and the subscript k
emphasize that the growth model for u, as expressed
by the logits, varies across classes. In line with the
extension for continuous outcomes, the different latent
classes have different growth models (11) and (12),
with key differences typically found in the β coef-
ficients but also in the (co)variances of the Level 2
residuals r. Typically, the thresholds τ would be time
and class invariant to represent measurement invari-
ance, although class invariance is not necessary.
Generalizations to including distal outcomes ud, as in
(15), is of interest also here:

P(udi = 1|ci = k, xi) = 1

1+ eτk−κkxi , (15)

with coefficients varying across classes k.
Model building and testing strategies for categorical

outcomes are in line with those discussed earlier for
continuous outcomes.

19.5.1. Categorical Outcomes:
Latent Class Growth Analysis

Latent class growth analysis (LCGA) for categorical
outcomes considers the model in (11) through (13) with
the restriction of zero variances and covariances for the
residuals r. Background references for LCGA include
Nagin (1999), Nagin and Land (1993), and Nagin and
Tremblay (2001).

12. Threshold parameters are useful with ordered polytomous outcomes,
in which case β00 can be fixed at zero, or, alternatively, the first threshold
is fixed at zero.

It is instructive to relate LCGA to latent class
analysis (LCA). As in LCGA, LCA considers mul-
tiple u variables seen as indicators of c and assumed
conditionally independent given c.As in LCGA, there
are no continuous latent variables to explain fur-
ther within-class correlation among the u variables.
Typically, all outcomes are categorical. Continuous
outcomes are, however, possible, giving rise to latent
profile analysis. In LCA, the multiple indicators are
cross-sectional measures, not longitudinal. When the
multiple indicators correspond to repeated measures
over time, latent classes may correspond to different
trends, and trend structures can be imposed across
the indicators’ probabilities. To clarify this, consider
again (14):

P(uti = 1|a1ti, a2ti, xi, ci = k) = 1

1+ eτ−logit(utik)
.

(16)

This means that with, for example, linear growth
over T time points, the probabilities of the T

u variables are structured according to a logit-linear
trend, where the intercept and slope factors have dif-
ferent means across the classes. Note here that τ is held
equal across time points. In contrast, LCA considers

P(uti = 1|xi, ci = k) = 1

1+ eτtk
, (17)

where the τtk thresholds vary in an unrestricted fashion
across the u variables and across the classes. In this
way, LCGA gives a more parsimonious description of
longitudinal data than LCA.

Models with more than one latent class variable are
also of interest. Examples of LCGA with multiple-
class variables are given in Muthén and Muthén (2000),
Muthén (2001a), and Nagin and Tremblay (2001). In
this connection, it is useful to consider another impor-
tant class of growth models, latent transition analysis
(LTA). LTA uses time-specific latent class variables
measured by multiple indicators at each time point to
study class membership change over time.

Both LCA and LTA can be generalized to include
random effects as in growth mixture modeling
(Asparouhov & Muthén, 2003b). All of these model
variations can be captured in a general latent variable
modeling framework and are included in Mplus.

19.5.2. Categorical Outcomes: Comparing
LCGA and GMM on Delinquency Data

Nagin and Land (1993), Nagin (1999), Roeder et
al. (1999), and Jones et al. (2001) used PROC TRAJ
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Figure 19.8 Frequency Distributions for Cambridge Data
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LCGA to study the development of delinquency over
ages 10 to 32 in a sample of 411 boys in a working-
class section of London (Farrington & West, 1990).
These “Cambridge data” were studied from the sub-
stantive perspective of the Moffitt (1993) theory of
adolescent-limited versus life course–persistent anti-
social behavior. This theory suggests two major tra-
jectory classes. Using different ways to aggregate
and model the outcomes, Nagin and Land found
four classes, Nagin three classes, Roeder et al. four
classes, and Jones et al. three classes. Nagin (1999)
used 2-year intervals and excluded the 8 boys who
died during the study, resulting in 11 time points
and n = 403. The frequency distributions are shown
in Figure 19.8. Only ages 11 to 21 will be used
here.

Given that few individuals have more than two con-
victions in the 2-year interval, data will be coded as
0, 1, and 2 for zero, one, or more convictions; 69%
have 0 value at all 11 time points. A logistic ordered
polytomous response model will be used, and three
types of analyses will be illustrated: latent class growth

analysis, conventional growth modeling, and growth
mixture modeling. The analyses draw on Muthén,
Kreuter, and Asparouhov (2003).

19.5.2.1. Latent Class Growth
Analysis of the Cambridge Data

Latent class growth analysis was performed with
two, three, and four classes applying a quadratic
growth curve for all classes. The corresponding BIC
values were 2,230.014, 2,215.251, and 2,227.976.
This points to the three-class model as being the best.
This model has a log-likelihood value of −1,071.632,
12 parameters, and an entropy of 0.821. The estimated
class percentages are 3%, 21%, and 75%, arranging the
curves from high to low. The LMR LRT also points to
three classes in that the test of the two-class model
against the three-class model has a p-value of .0030,
suggesting rejection, whereas the three-class model
tested against the four-class model has a p-value of
.1554. The estimated three-class growth curves for the
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Figure 19.9 Three-Class LCGA for Cambridge Data
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probability of having at least one conviction are shown
in Figure 19.9.13

19.5.2.2. Growth and Growth Mixture
Analysis of the Cambridge Data

Conventional one-class growth modeling of the
ordered polytomous outcome used a centering of the
time scale at age 17 and let the intercept and linear
slope growth factors be random, and the quadratic
slope factor variance was fixed at zero. The inter-
cept and linear slope were allowed to correlate. This
one-class growth model resulted in a log-likelihood
value of−1,072.396 with seven parameters and a BIC
value of 2,186.785.14 The linear slope variance is not
significant and will, for simplicity, be set to zero in
subsequent analyses. In the growth mixture analyses

13. The Mplus input and output for these analyses are given in Example
6 at www.statmodel.com/mplus/examples/penn.html.

14. The Mplus input and output for these analyses are given in Example 7
at www.statmodel.com/mplus/examples/penn.html. This analysis was
carried out by Mplus Version 3.

to follow, this intercept variance was allowed to vary
across the classes.

The two-class growth mixture modeling resulted
in a log-likelihood value of −1,070.898, a BIC of
2,201.785, 10 parameters, and an entropy of 0.414.
The estimated class percentages are 46% and 54%,
arranging the classes from high to low. The intercept
variance is significant in both classes and lower in the
low class. The LMR LRT p-value for one class tested
against two classes is .0362, pointing to the need for
at least two classes.

A specific three-class growth mixture model was
considered next, in which one class was specified
to have zero probability of conviction throughout the
time period. This zero class corresponds to the notion
that some individuals do not get involved in delin-
quency activities at all. In the other two classes, the
intercept variance was allowed to be free to be esti-
mated and different across those classes. This model
resulted in a log-likelihood value of −1,066.767, a
BIC of 2,199.523, 11 parameters, and an entropy
of 0.535. The estimated class percentages are 3%,
50%, and 47%, arranging the classes from high to
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Figure 19.10 Three-Class LCGA for Cambridge Data
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low. The intercept variance is nonsignificant for the
highest class but significant for the middle class.15 An
interesting finding is that this three-class GMM, which
allows within-class variation, has 1 parameter less than
the three-class LCGA but a better fit in terms of
log-likelihood and BIC values. The zero class is
smaller in the GMM than in the LCGA, 47% ver-
sus 75%. The fact that 69% of the individuals have
observed values at zero throughout, whereas the GMM
zero class has only 47% prevalence, is due to the fact
that the individuals who are most likely to be in the
low class according to the posterior probabilities have
a sizable probability of being in the middle class. It
should be noted, however, that the model has several
local optima with log likelihood values close to that of
the best solution, possibly indicating a weakly defined
solution which might not be replicated with new data.
The estimated three-class growth curves for the prob-
ability of having at least one conviction are shown in
Figure 19.10. These curves are clearly different from

15. The Mplus input and output for these analyses are given in Example 8
at www.statmodel.com/mplus/examples/penn.html. This analysis was
carried out by Mplus Version 3.

the LCGA curves in Figure 19.9, with Class 1 and Class
2 peaking at different ages for GMM but not for LCGA.
This may lead to different substantive interpretations
in the context of Moffitt’s (1993) theory.

19.5.3. Categorical Outcomes:
Discrete-Time Survival Analysis

Discrete-time survival analysis (DTSA) uses the
categorical variables u to represent events modeled by
a logistic hazard function (cf. Muthén & Masyn, in
press). For an overview of conventional DTSA, see,
for example, Singer and Willett (1993). Consider a
set of binary 0/1 variables uj , j = 1, 2, . . . , r, where
uij = 1 if individual i experiences the nonrepeatable
event in time period j, and define ji as the last time
period in which data were collected for individual i.
The hazard is the probability of experiencing the event
in time period j given that it was not experienced prior
to j. The hazard is written as

hij = 1

1+ e−(−τj+κj xi ) , (18)
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where a proportional-odds assumption is obtained by
dropping the j subscript for κj .Discrete-time survival
analysis is fitted into the general mixture model above
by noting that the likelihood is the same as for u related
to c and x in a single-class model.

The fact that individual i does not have observations
on u after time period ji is handled as missing data. For
example, with five time periods (r = 5), an individual
who experiences the event in Period 4 has the data
vector u′i

(0 0 0 1 999),

with 999 representing missing data. An individual
who is censored in Period 5 has the data vector u′i

(0 0 0 0 0),

whereas an individual who is censored in Period 4 has
the data vector u′i

(0 0 0 999 999).

Muthén and Masyn (in press) also propose general
discrete-time survival mixture analysis (DTSMA)
models, in which different latent classes have different
hazard and survival functions. For example, a growth
mixture model for y can be combined with a survival
model for u.

19.6. Combination of

Categorical and Continuous

Outcomes: Modeling With Zeros

In the previous section, it was seen that the u variables
need not represent conventional categorical outcomes
but can be used as indicators of events. In this section,
this idea is taken further by using the u variables as
indicators of zero values on a continuous and on a count
outcome variable.

Growth mixture modeling is useful for describing
growth in outcomes that can be seen as continuous
but nonnormally distributed. A type of nonnormality
that cannot be well captured by mixtures of normal
distributions arises in studies in which a significant
number of individuals are at the lowest value of an out-
come, for example, representing absence of a behavior.
Applications include alcohol, drug, and tobacco use
among adolescents. Censored-normal models are often
used for outcomes of this kind, including classic Tobit
regression analysis (Amemiya, 1985; Tobin, 1958) and
LCGA in the PROC TRAJ program (Jones et al., 2001).

A recent article by Olsen and Schafer (2001) gives an
excellent overview of several related modeling efforts.
Censored-normal models have been criticized (see,
e.g., Duan, Manning, Morris, & Newhouse, 1983)
because of the limitation of assuming that the same
set of covariates influences both the decision to engage
in the behavior and the amount observed. A two-part
modeling approach proposed in Olsen and Schafer
avoids this limitation.

To simplify the discussion, the lowest value will be
taken to be zero. It is useful to distinguish between
two kinds of zero outcomes. First, individuals may
have zero values at a given time point because their
behavioral activity is low and is zero during certain
periods (“random zeros”). Second, individuals may not
engage in the activity at all and therefore have zeros
throughout all time points of the study (“structural
zeros”). Olsen and Schafer (2001) proposed a two-part
model for the case of random zeros, whereas Carlin,
Wolfe, Brown, and Gelman (2001) considered the case
of structural zeros. In both articles, a random-effects
logistic regression was used to express the probabilities
of nonzeros versus zeros.

Olsen and Schafer (2001) studied alcohol use in
Grades 7 through 11. To capture the changing zero
status across time, they expressed the logistic regres-
sions for each time point as a random-effects growth
model. The term two-part model refers to having both a
logistic model part to model the probability of nonzero
versus zero outcomes (Part 1) and a continuous-normal
or lognormal model part for the values of the nonzero
outcomes (Part 2). In Olsen and Schafer, the two
parts have correlated random effects. The two parts
are also allowed to have different covariates, avoiding
the limitation of censored-normal modeling.

Carlin et al. (2001) studied cigarette smoking among
adolescents. A two-class model was used with a
“zero class” (structural zeros) representing individuals
not susceptible to regular smoking (also referred to
as “immunes”). As pointed out in Carlin et al., an
individual with zeros throughout the study does not
necessarily belong to the zero class but may show zeros
by chance. In their analysis, the estimated proportion
of immunes was 69%, whereas the empirical propor-
tion with all zeros was 77%. Because of this, an ad hoc
analysis based on deleting individuals with all zeros
may lead to distorted results.

Inspired by Olsen and Schafer (2001) and Carlin
et al. (2001), Muthén (2001b) proposed a generali-
zation of growth mixture modeling to handle both
random and structural zeros in a two-part model.
Multiple latent classes are used to represent the growth
in the probability of nonzero values in Part 1 as well as
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the growth in the nonzero outcomes in Part 2. For the
Part 1 modeling of the probability of nonzero values,
Muthén considered a latent class growth alternative
to the random-effects modeling of Olsen and Schafer
(2001) and Carlin et al. (2001)—that is, a model in
line with Nagin (1999). The use of latent classes for
the Part 1 modeling of the probability of nonzero val-
ues may be seen as a semi-parametric alternative to a
random-effects model in line with Aitkin (1999). In
addition to accounting for random zeros as in Olsen
and Schafer, Muthén’s Part 1 approach incorporates
Carlin et al.’s concept of a zero class that has zero
probability of nonzero values throughout the study.
A further advantage of the proposed approach is that
covariates are allowed to have a different influence
in different classes. For the Part 2 modeling of the
nonzero outcomes, the proposed modeling extends
the Olsen-Schafer growth model to a growth mixture
model. The Olsen-Schafer model, the mixture version
of Olsen-Schafer, the Carlin et al. model, and the
Muthén two-part growth mixture model can all be fitted
into the general latent variable modeling framework
of Mplus.

The question of the proper treatment of zeros also
arises with count variables. Roeder et al. (1999)
considered zero-inflated Poisson modeling (ZIP)
(Lambert, 1992) in the context of LCGA. When a count
outcome is modeled by ZIP, it is assumed that a zero
value can be observed for two reasons. The ZIP model
is a two-class mixture model, similar in spirit to that
of Carlin et al. (2001). First, if an individual is in the
zero class, a zero count has probability 1. Second, if an
individual is in the nonzero class, the probability of a
zero count is expressed by the Poisson distribution. The
probability of being in the zero class can be modeled
by covariates that are different from those that predict
the counts for the nonzero class. In longitudinal data,
this probability can be modeled to vary across time.
The model by Roeder et al. considered an LCGA for
the nonzero part.

19.7. Multilevel Growth

Mixture Modeling

This final section returns to the analysis of the LSAY
math achievement example. Longitudinal data are
often collected through cluster sampling. This was
the case in the LSAY study, in which students were
observed within randomly sampled schools. This gives
rise to three-level data with variation across time on
Level 1, variation across individuals on Level 2, and

variation across clusters on Level 3. This section
discusses three-level growth modeling and its new
extension to three-level growth mixture modeling. Due
to lack of space, details of the modeling will not be
discussed here, but an analysis of the LSAY example
will instead be discussed in general terms. The reader
is referred to Asparouhov and Muthén (2003b) for
technical details.

The model diagram of Figure 19.11 is useful for
understanding the general ideas of the multilevel
growth mixture modeling. This is the LSAY math
achievement example discussed in Section 19.3.5. In
Figure 19.11, the observed math variable rectangles
at the top of the figure represent the Level 1 variation
across time. The latent variable circles, labeled i and
s, represent the Level 2 variation in the intercept and
slope growth factors across students. The ib, cb, sb,
and hb latent variable circles represent the Level 3 vari-
ation across schools. Here, b refers to between-school
variation. One aim of three-level growth modeling
is the decomposition of the intercept variance into i
and ib variation and the decomposition of the slope
variance into s and sb variation. Furthermore, it is of
interest to describe part of this variation by school-level
covariates, as shown at the bottom of the diagram.

Figure 19.11 also includes a distal outcome of high
school dropout and considers across-school variation
in its intercept hb (there may also be across-school
variation in some of the slopes). The intercept varia-
tion is again described by school-level covariates. This
model part is analogous to two-level logistic regression
(see, e.g., Hedeker & Gibbons, 1994). In Figure 19.11,
a new feature is that the two-level logistic regression
has as one of its predictors a latent categorical variable
c, the latent trajectory class variable.

A key new feature in Figure 19.11 is the across-
school variation cb in the individual-level latent class
variable c. This part of the model makes it possible
to study the influence of school-level variables on the
class member probability for the students. This corre-
sponds to multinomial logistic regression with random
effects, except that the dependent variable is latent.

The model in Figure 19.11 was analyzed using
maximum likelihood estimation in Mplus.16 A key
school-level variable used in the modeling was a school
poverty index, measured as the percentage of the
student body receiving full school lunch support. It
was found that this school poverty index did not have
a significant effect on the probability of dropping out

16. The Mplus input and output for these analyses are given in Example 9
at www.statmodel.com/mplus/examples/penn.html. This analysis was
carried out by Mplus Version 3.
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Figure 19.11 Multilevel GGMM for LSAY Data
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of high school. It did, however, have a significant influ-
ence on c in the sense that a high index value resulted
in a higher probability of being a member of the class
with a poor math achievement trajectory in Grades
7 through 10. The growth mixture analyses reported
on earlier showed that membership in the failing class
gave a very high risk of dropping out of high school.
In this way, the multilevel growth mixture modeling
implies that school poverty does not influence dropout
directly but indirectly, in that it influences achieve-
ment trajectory class, which in turn influences dropout.
This is an interesting new type of mediational process,
whereby the mediator is not only categorical but also
latent.

The general latent variable modeling framework
considered here allows multilevel modeling, such as
three-level growth modeling, not only for continuous
outcomes but also for categorical outcomes. In this
way, multilevel modeling is available in Mplus for
GGMM, LCGA, LCA, LTA, and DTSMA.

19.8. Conclusions

This chapter has shown how modeling, using a combi-
nation of continuous and categorical latent variables,
provides an extremely flexible analysis framework.
Different traditions such as growth modeling, latent
class analysis, and survival analysis are brought
together using the unifying theme of latent variable

modeling. New developments in these areas have been
presented. Not only does this create more interesting
analysis options in each area, but the combination
of model parts that is possible leads to even fur-
ther opportunities for investigating data. Several such
combinations were not discussed but include the fol-
lowing (see also Muthén, 2001a, 2002; Muthén &
Asparouhov, 2003a, 2003b):

• Multiple-process growth mixture modeling
Parallel (dual) processes: studying relations
between concurrent outcomes
Sequential processes: predicting later growth
from earlier growth
• Multiple-group growth mixture modeling: study-

ing similarities and differences across known
groups
• Multiple indicator growth mixture modeling:

studying growth in a latent variable construct
• Embedded growth mixture modeling: combining

the growth model with LCA, factor analysis, path
analysis, and SEM components
• Combined growth mixture and discrete-time sur-

vival modeling: predicting survival from trajec-
tory classes and vice versa

Mplus covers these models for outcomes that are
continuous, binary, ordered polytomous, two-part,
zero-inflated Poisson, or combinations thereof, allow-
ing both missing data and cluster data.
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Chapter 20

Probabilistic Modeling

With Bayesian Networks

Richard E. Neapolitan

Scott Morris

20.1. Introduction

Given a set of random variables, probabilistic
modeling consists of acquiring properties of a joint
probability distribution of the variables and thereby
representing that distribution. These properties can be
very important because they often enable us to suc-
cinctly represent a distribution and to do inference
with the variables. For example, we may be able to
concisely represent a joint probability distribution of
diseases and manifestations in a medical application
and, using this representation, compute the probability
that a patient has certain diseases given the patient has
some manifestations. First, Section 20.2 gives a brief
philosophical overview of the notion of a probability
as a relative frequency, which probabilistic modeling
using data presupposes. Then, Section 20.3 introduces
Bayesian networks and Bayesian network models
(also called directed acyclic graph [DAG] models).
Next, Section 20.4 discusses learning DAG models.
Finally, Section 20.5 shows applications of learning
DAG models.

20.2. Philosophical Background

The focus of this chapter is on learning DAG models
from data. The enterprise of learning something about

a probability distribution from data relies on the notion
of a probability as a relative frequency. So we first
review the relative frequency approach to probability,
and then we discuss its relationship to another approach
to probability, called subjective or Bayesian.

20.2.1. The Relative Frequency
Approach to Probability

In 1919, Richard von Mises developed the relative
frequency approach to probability, which concerns
repeatable identical experiments. First we describe
relative frequencies, and then we discuss how we can
learn something about them from data.

20.2.1.1. Relative Frequencies

von Mises (1928/1957) formalized the notion of
repeatable identical experiments as follows:

The term is “the collective,” and it denotes a sequence
of uniform events or processes which differ by certain
observable attributes, say colours, numbers, or anything
else. (p. 12, emphasis added)

The classical example of a collective is an infinite
sequence of tosses of the same coin. Each time we toss
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the coin, our knowledge about the conditions of the toss
is the same (assuming we do not sometimes “cheat” by,
for example, holding it close to the ground and trying
to flip it just once). Of course, something is different
in the tosses (e.g., the distance from the ground, the
torque we put on the coin, etc.) because otherwise, the
coin would always land heads or always land tails. But
we are not aware of these differences. Our knowledge
concerning the conditions of the experiment is always
the same. von Mises (1928/1957) argued that, in such
repeated experiments, the fraction of occurrence of
each outcome approaches a limit, and he called this
limit the probability of the outcome. It has become
standard to call this limit a relative frequency and to
use the term probability in a more general sense.

Note that the collective (infinite sequence) only
exists in theory. We never will toss the coin indefinitely.
Rather, the theory assumes that there is a propensity
for the coin to land heads, and as the number of tosses
approaches infinity, the fraction of heads approaches
this propensity. For example, if m is the number of
times we toss the coin, Sm is the number of heads, and
p is the true value of the propensity for the coin to land
heads, then

p = lim
m→∞

Sm

m
. (1)

Because the propensity is a physical property of the
coin, it is also called a physical probability. In 1946,
J. E. Kerrich conducted many experiments using games
of chance (e.g., coin tosses) indicating that the fraction
does appear to approach a limit.

Note further that a collective is only defined relative
to a random process, which, in the von Mises theory, is
defined to be a repeatable experiment for which the infi-
nite sequence of outcomes is assumed to be a random
sequence. Intuitively, a random sequence is one that
shows no regularity or pattern. For example, the
finite binary sequence “1011101100” appears random,
whereas the sequence “1010101010” does not because
it has the pattern “10” repeated five times. There is
evidence that experiments such as coin tossing and
dice throwing are indeed random processes. Namely,
Iversen, Longcor, Mosteller, Gilbert, and Youtz (1971)
ran many experiments with dice indicating that the
sequence of outcomes is random. It is believed that
unbiased sampling also yields a random sequence and
is therefore a random process. See van Lambalgen
(1987) for a thorough discussion of this matter, includ-
ing a formal definition of random sequence. Neapolitan
(1990) provides a more intuitive, less mathematical
treatment. We close here with an example of a nonran-
dom process. One of the authors prefers to exercise at

his health club on Tuesday, Thursday, and Saturday.
However, if he misses a day, he usually makes up for it
the following day. If we track the days he exercises, we
will find a pattern because the process is not random.

Under the assumption that the fraction approaches a
limit and that a random sequence is generated, in 1928,
von Mises was able to derive the rules of probability
theory and the result that the trials are probabilistically
independent. In terms of relative frequencies, what
does it mean for the trials to be independent? The
following example illustrates what it means. Suppose
we develop many sequences of length 20 (or any other
number), where each sequence represents the result
of 20 coin tosses. Then we separate the set of all these
sequences into disjoint subsets such that the sequences
in each subset all have the same outcome on the first
19 tosses. Independence means that the fraction of
heads on the 20th toss is the same in all the subsets
(in the limit).

A common way to define probability in applications
such as games of chance is to assign the same proba-
bility to all possible elemental outcomes. For example,
in the draw of the top card from an ordinary deck of
cards, each elemental outcome is assigned a probabil-
ity of 1/52 because there are 52 different cards. Such
probabilities are called ratios. We say we are using
the principle of indifference (a term popularized by
J. M. Keynes in 1921/1948) when we assign probabil-
ities this way. The probability of a set of elemental
outcomes is the sum of the probabilities of the out-
comes in the set. For example, the probability of a
king is 4/52 because there are four kings. How are
relative frequencies related to ratios? Intuitively, we
would expect that if, for example, we repeatedly shuf-
fled a deck of cards and drew the top card, the ace of
spades would come up about 1 out of every 52 times.
In the experiment performed by J. E. Kerrich in 1946
(discussed above), the principle of indifference seemed
to apply, and the limit was indeed the value obtained
via the principle of indifference.

20.2.1.2. Sampling

Sampling techniques estimate a relative frequency
for a given collective from a finite set of observations.
In accordance with standard statistical practice, we use
the term random sample (or simply sample) to denote
the set of observations, and we call a collective a popu-
lation. Note the difference between a collective and a
finite population. There are currently a finite number of
smokers in the world. The fraction of them with lung
cancer is the probability (in the sense of a ratio) of
a current smoker having lung cancer. The propensity
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(relative frequency) of a smoker having lung cancer
may not be exactly equal to this ratio. Rather, the ratio
is just an estimate of that propensity. When doing sta-
tistical inference, we sometimes want to estimate the
ratio in a finite population from a sample of the popu-
lation, and other times we want to estimate a propensity
from a finite sequence of observations. For example,
TV raters ordinarily want to estimate the actual fraction
of people in a nation watching a show from a sample
of those people. On the other hand, medical scientists
want to estimate the propensity with which smokers
have lung cancer from a finite sequence of smokers.
One can create a collective from a finite population
by returning a sampled item back to the population
before sampling the next item. This is called sampling
with replacement. In practice, it is rarely done, but
ordinarily, the finite population is so large that statisti-
cians make the simplifying assumption that sampling
is done with replacement. That is, they do not replace
the item, but they still assume the finite population is
unchanged for the next item sampled. In this chapter,
we are always concerned with propensities rather than
current ratios, so this simplifying assumption does not
concern us.

Estimating a relative frequency from a sample seems
straightforward. That is, we simply use Sm/m as our
estimate, where m is the number of trials and Sm is
the number of successes. However, there is a problem
in determining our confidence in the estimate. That is,
the von Mises theory only says the limit in Equality 1
physically exists and isp. It is not a mathematical limit
in that, given an ε > 0, it offers no means for finding
an M(ε) such that∣∣∣∣p − Smm

∣∣∣∣ < ε for m > M(ε).

Mathematical probability theory enables us to deter-
mine confidence in our estimate of p. First, if we
assume the trials are probabilistically independent and
the probability for each trial is p, we can prove that
Sm/m is the maximum likelihood (ML) value of p.
That is, if d is a set of results ofm trials, and P(d : p̂)
denotes the probability of d if the probability of suc-
cess were p̂, then Sm/m is the value of p̂ that maxi-
mizes P(d : p̂). Furthermore, we can prove the weak
and strong laws of large numbers. The weak law says
the following. Given ε, δ > 0,

P

(∣∣∣∣p − Smm
∣∣∣∣ < ε

)
> 1− δ for m >

1

4δε2
.

So mathematically, we have a means of finding an
M(ε, δ).

The weak law is not applied directly to obtain
confidence in our estimate. Rather, we obtain a con-
fidence interval using the following result, which is
obtained in a standard statistics text such as Brownlee
(1965). Suppose we havem independent trials, and the
probability of success on each trial is p, and we have
k successes. Let

0 < β < 1,

α = (1− β)/2,

θ1 = kFα(2k, 2[m− k + 1])

m− k + 1+ kFα(2x, 2[m− k + 1])
,

θ2 = k

(m− k + 1)F1−α(2[m− k + 1], 2k)+ (k) ,

where F is the F distribution. Then,

(θ1, θ2) is a β% confidence interval for p.

This means that β% of the time, the interval
generated will contain p.

Example 1. Suppose we toss a thumbtack 30 times
and it lands heads (i.e., on its head) 8 times. Then
the following is a 95% confidence interval for p, the
probability of heads:

(.123, .459).

Because 95% of the time we will obtain an interval
that contains p, we are pretty confident p is in this
interval.

One should not conclude that mathematical prob-
ability theory somehow proves Sm/m will be close
to p and that therefore we have no need for the von
Mises theory. Without some assumption about Sm/m
approaching p, the mathematical result would say
nothing about what is happening in the world. For
example, without some such assumption, our explana-
tion of confidence intervals would become the follow-
ing: Suppose we have a sample space determined bym
identically distributed independent discrete random
variables, where p is the probability that each of them
assumes its first value. Consider the random variable
whose possible values are the probability intervals
obtained using the method for calculating a β% confi-
dence interval. Then, β is the probability that the value
of this random variable is an interval containingp.This
result says nothing about what will happen when, for
example, we toss a thumbtack m times. However, if
we assume that the probability (relative frequency) of
an event is the limit of the ratio of occurrences of the
event in the world, this means that if we repeatedly did
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the experiment of tossing the thumbtack m times, in
the limit, 95% of the time we will generate an interval
containing p, which is how we described confidence
intervals above.

Some probabilists find fault with the von Mises
theory because it assumes that the observed relative
frequency definitely approaches p. For example, Ash
(1970) says,

An attempt at a frequency definition of probability will
cause trouble. If Sn is the number of occurrences of an
event in n independent performances of an experiment,
we expect physically that the relative frequency Sn/n
should converge to a limit; however, we cannot assert
that the limit exists in a mathematical sense. In the case
of the tossing of an unbiased coin, we expect Sn/n →
1/2, but a conceivable outcome of the process is that
the coin will keep coming up heads forever. In other
words, it is possible that Sn/n → 1, or that Sn/n →
any number between 0 and 1, or that Sn/n has no limit
at all. (p. 2)

As mentioned previously, in 1946, J. E. Kerrich
conducted many experiments using games of chance
indicating that the relative frequency does appear to
approach a limit. However, even if it is only most likely
that a limit is approached, Kerrich’s experiments may
indicate that this happens. So to resolve the objection
posed by Ash, in 1992, R. E. Neapolitan obtained von
Mises’s results concerning the rules of probability by
assuming Sm/m → p only in the sense of the weak
law of large numbers.

20.2.2. The Subjective/Bayesian
Approach to Probability

Next we discuss another approach to probability
called the subjective or Bayesian approach. First
we describe the approach and then show how its pro-
ponents use Bayes’s theorem; finally, we discuss its
relevance to relative frequencies.

20.2.2.1. Subjective Probabilities

We start with an example.

Example 2. If you were going to bet on an upcom-
ing basketball game between the Chicago Bulls and
the Detroit Pistons, you would want to ascertain how
probable it was that the Bulls would win. This prob-
ability is certainly not a ratio, and it is not a relative
frequency because the game cannot be repeated many
times under the exact same conditions (actually, with
your knowledge about the conditions the same). Rather

the probability only represents your belief concerning
the Bulls’ chances of winning.

A probability such as the one illustrated in the
previous example is called a degree of belief or sub-
jective probability. There are a number of ways for
ascertaining such probabilities. One of the most popu-
lar methods is the following, which was suggested by
D. V. Lindley in 1985. This method says an individual
should liken the uncertain outcome to a game of chance
by considering an urn containing white and black balls.
The individual should determine for what fraction of
white balls the individual would be indifferent between
receiving a small prize if the uncertain outcome hap-
pened (or turned out to be true) and receiving the
same small prize if a white ball was drawn from the
urn. That fraction is the individual’s probability of the
outcome. Such a probability can be constructed using
binary cuts. If, for example, you were indifferent when
the fraction was .75, for you, P({bullswin}) = .75.
If someone else were indifferent when the fraction
was .6, for that individual, P({bullswin}) = .6.
Neither individual is right or wrong. Subjective prob-
abilities are unlike ratios and relative frequencies in
that they do not have objective values on which we
all must agree. Indeed, that is why they are called
subjective. Neapolitan (1996) discusses the construc-
tion of subjective probabilities further.

When we are able to compute ratios or estimate rela-
tive frequencies, the probabilities obtained agree with
most individuals’ beliefs. For example, most individu-
als would assign a subjective probability of 1/13 to the
top card being an ace because they would be indifferent
between receiving a small prize if it were the ace and
receiving that same small prize if a white ball were
drawn from an urn containing 1 white ball out of 13
total balls.

20.2.2.2. Using Bayes’s Theorem

The subjective probability approach is called
Bayesian because its proponents use Bayes’s theorem
to infer unknown probabilities from known ones. The
following example illustrates this.

Example 3. Suppose Joe has a routine diagnostic
chest X ray required of all new employees at Colonial
Bank, and the X ray comes back positive for lung can-
cer. Joe then becomes certain he has lung cancer and
panics. But should he? Without knowing the accuracy
of the test, Joe really has no way of knowing how
probable it is that he has lung cancer. When he dis-
covers the test is not absolutely conclusive, he decides
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to investigate its accuracy and he learns that it has a
false-negative rate of .4 and a false-positive rate of .02.
We represent this accuracy as follows. First we define
these random variables:

When the Variable
Variable Value Takes This Value

Test Positive X-ray is positive
Negative X-ray is negative

LungCancer Present Lung cancer is present
Absent Lung cancer is absent

We then have these conditional probabilities:

P(Test = positive|Lung cancer = present) = .6.
P (Test = positive|Lung cancer = absent) = .02.

Given these probabilities, Joe feels a little better.
However, he then realizes he still does not know how
probable it is that he has lung cancer. That is, the prob-
ability of Joe having lung cancer is P(Lung cancer =
present|Test = positive), and this is not one of the
probabilities listed above. Joe finally recalls Bayes’s
theorem and realizes he needs yet another probability
to determine the probability of his having lung cancer.
That probability is P(Lung cancer = present), which
is the probability of his having lung cancer before any
information on the test results was obtained. Even
though this probability is not based on any informa-
tion concerning the test results, it is based on some
information. Specifically, it is based on all information
(relevant to lung cancer) known about Joe before he
took the test. The only information about Joe, before
he took the test, was that he was one of a class of
employees who took the test routinely required of
new employees. So, when he learns only 1 out of
every 1,000 new employees has lung cancer, he assigns
.001 to P(Lung cancer = present). He then employs
Bayes’s theorem as follows:

P(present|positive)

= P(positive|present)P (present)

P (positive|present)P (present)
+P(positive|absent)P (absent)

= (.6)(.001)

(.6)(.001)+ (.02)(.999)
= .029.

So Joe now feels that the probability of his having
lung cancer is only about .03, and he relaxes a bit while
waiting for the results of further testing.

A probability such as P(Lung cancer = present)
is called a prior probability because, in a particu-
lar model, it is the probability of some event prior

to updating the probability of that event, within the
framework of that model, using new information. Do
not mistakenly think it means a probability prior to
any information because P(Lung cancer = present)
is based on some information obtained from past
experience. A probability such as P(Lung cancer =
present|Test = positive) is called a posterior prob-
ability because it is the probability of an event after
its prior probability has been updated, within the
framework of some model, based on new information.

A strict frequentist (e.g., von Mises) could not infer
the probability of Joe having lung cancer using Bayes’s
theorem. That is, from the data used to obtain the false-
negative rate, false-positive rate, and prior probability,
a strict frequentist could obtain confidence intervals
for the actual relative frequencies and maximum like-
lihood values. However, because strict frequentists do
not have subjective probabilities, they cannot obtain
subjective probabilities of the test results and of the
presence of lung cancer from the data and then use
these subjective probabilities to compute the subjective
probability of Joe having lung cancer. On the other
hand, using a subjective approach, Joe can obtain
beliefs from the data, regardless of the size of the
samples, and proceed using Bayes’s theorem.

A statistician who uses Bayes’s theorem is some-
times called a Bayesian. I. J. Good (1983) shows that
there are 46,656 different Bayesian interpretations (he
notes that von Mises’s view is not one of these). He
bases this on 11 different facets of the approach on
which Bayesians can differ. Briefly, there is a descrip-
tive Bayesian interpretation that maintains that humans
reason using subjective probabilities and Bayes’s
theorem, there is a normative Bayesian interpretation
that says humans should reason that way, and there is
an empirical Bayesian interpretation that says, based
on data, we can update our beliefs concerning a relative
frequency using Bayes’s theorem. Mulaik, Raju, and
Harshman (1997) discuss and criticize the first two
views. The methods presented in this chapter concern
only the third view, which we briefly illustrated in
Example 3. In the next subsection, we discuss that
view further.

Before that, we note that one of the facets distin-
guishing types of Bayesians is the concept of physical
probability, as developed in Section 20.2.1. The three
categories for this facet are (a) assumed to exist,
(b) denied, and (c) used as if they exist but without
philosophical commitment. Both Good (1983) and
ourselves are in Category 3. Briefly, in applications
such as sampling individuals and determining whether
they have lung cancer, a limit seems to be approached.
However, an infinite sequence of sampled items only
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exists as an idealization. That is, the circumstances of
the experiment (e.g., pollution, changes in health care,
etc.) change as time goes. Even a coin’s composition
changes as we toss it. In these situations, it seems
philosophically difficult to maintain that a physical
probability, accurate to an arbitrary number of digits,
exists at any given point in time. It appears that pre-
cise relative frequencies exist in very few applications.
These include applications such as the repeated draw-
ing of a top card from a deck of cards, the estimation
of the ratio in a finite population from a sample of the
population (see Section 20.2.1.2), and perhaps some
applications in physics such as statistical mechanics.
In most real-world applications, the notion of a relative
frequency is an idealization, which can be used as a
model for a subjective approach to probability.

20.2.2.3. Bayesian Learning
of Relative Frequencies

At the end of Section 20.2.1.2, we discussed how a
frequentist learns something about a relative frequency
from data by obtaining a confidence interval for the
relative frequency. We illustrate the issue with the
following example:

Example 4. Suppose we sampled 100 American
males and the average height turned out to be 4 feet.
Using a confidence interval, we would become highly
confident that the average height of American males is
close to 4 feet.

Good (1983) would say that we are “sweeping our
prior experience under the carpet” to reach the absurd
conclusion in the previous example. He maintains
that we should instead assign a prior probability dis-
tribution to the average height based on our prior
knowledge, and then we should update this distribu-
tion based on the data. On the other hand, Mulaik et
al. (1997) criticize the use of prior probabilities when
they state, “at the outset, subjective/personal Bayesian
inference based on these subjective/personal probabil-
ities does not give what is just the evidentiary reasons
to believe in something and is unable to separate in its
inference what is subjective from what is objective and
evidentiary.” Both authors have their points. However,
it seems their points concern different circumstances.
Example 4 showed one situation in which we would
not want to sweep our prior knowledge under the car-
pet. As another example, suppose we see a given coin
land heads five times in a row. We would not want
to sweep our prior knowledge about coins under the
carpet and bet according to the belief that it will most

likely land heads on the next toss. Rather, we would
want to update our prior belief with the data consisting
of the five heads. Of more practical interest, consider
the development of a medical expert system, which is
a system used to diagnose illnesses based on symp-
toms. Suppose we had access to the knowledge of a
renowned medical authority. We would not want to
sweep the authority’s knowledge about the probabilis-
tic relationships among the domain variables under the
carpet and only use information from a database in our
system. Rather, we would want to develop our system
based both on the authority’s knowledge and on what
could be learned from the database. On the other hand,
suppose a pharmaceutical company is testing the effec-
tiveness of a new drug by performing a treatment study,
and it wants to communicate its result to the scientific
community. The scientific community would not be
interested in the company’s prior belief concerning the
drug’s effectiveness but only in what the data had to
say. So in this case, even if its prior belief was that the
drug was effective, it would not be acceptable to base
the stated result partly on that belief.

When we obtain an updated probability distribution
for a relative frequency, we can obtain, for example,
a 95% probability interval for the relative frequency.
The probability interval is the Bayesian’s counterpart
to the confidence interval. Neapolitan (2003) shows
that, in many cases, they are mathematically identical.

20.3. Bayesian

Network (DAG) Models

First we introduce Bayesian networks; then we discuss
Bayesian network (DAG) models.

20.3.1. Bayesian Networks

Suppose we have a joint probability distribution P
of the random variables in some set V, and a DAG
G = (V,E). We say that (G, P ) satisfies the Markov
condition if, for each variable, X ∈ V, X is condition-
ally independent of the set of all its nondescendents
given the set of all its parents. We call (G, P ) a
Bayesian network if (G, P ) satisfies the Markov con-
dition. If (G, P ) satisfies the Markov condition, it is
possible to show that P is the product of its condi-
tional distributions in G, and this is the way P is
always represented in a Bayesian network. Further-
more, if we specify a DAG G and any discrete con-
ditional distribution (and many continuous ones), the
probability distribution that is the product of
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the conditional distributions satisfies the Markov
condition with the DAG, and so we obtain a Bayesian
network. This is the way Bayesian networks are con-
structed in practice. See Neapolitan (2003) for proofs
and further discussion of these facts.

If, for example, {X} and {Y,W } are conditionally
independent given {Z} in probability distribution P,
this means for all values of x, y,w, and z, we have

P(x|y,w, z) = P(x|z).

We represent this conditional independency
succinctly by IP ({X}, {Y,W }|{Z}). If there is no
conditioning bar, it means they are conditionally inde-
pendent given the empty set of variables, which means
they are simply independent. If a set only contains one
element, we sometimes do not show curly braces.

Example 5. Suppose we have the following
random variables:

When the Variable
Variable Value Takes This Value

S s1 There is a history of smoking
s2 There is no history of smoking

B b1 Bronchitis is present
b2 Bronchitis is absent

L l1 Lung cancer is present
l2 Lung cancer is absent

F f 1 Fatigue is present
f 2 Fatigue is absent

X x1 Chest X-ray is positive
x2 Chest X-ray is negative

Figure 20.1 shows a Bayesian network containing
those variables in which the conditional distributions
were estimated from actual data. The probability dis-
tribution P in the Bayesian network is the product of
the conditional distributions. For example,

P(f 1, c1, b1, l1, s1)

= P(f 1|b1, l1)P (c1|l1)P (b1|s1)P (l1|s1)P (s1)
= (.75)(.6)(.25)(.003)(.2) = .0000675.

Note that there are only 11 parameter values in the
Bayesian network, but there are 32 values in the joint
probability distribution. When the DAG in a Bayesian
network is sparse, a Bayesian network is a very
succinct way to represent a probability distribution.

Each variable in the network is conditionally inde-
pendent of its nondescendents given its parents. For
example, we have

IP (B, {L,X}|{S}).

Figure 20.1 A Bayesian Network

P (b1| s 1) = .25
P (b1| s 2) = .05

P (l 1| s 1) = .003
P (l 1| s 2) = .00005

lung cancer

chest X-rayfatigue

P (x1| l 1) = .6
P (x1| l 2) = .02

P (f1| b1,l 1) = .75
P (f1| b1,l 2) = .10
P (f1| b2,l 1) = .5
P (f1| b2,l 2) = .05

P (s1) = .2

S

L

XF

B

bronchitis

smoking history

Approximately assuming that relative frequencies
exist (see the end of Section 20.2.2.2), there is some
actual relative frequency distributionF (for frequency)
of the five variables in Example 5. It is argued that
if we draw a causal DAG, F satisfies the Markov
condition with that DAG (see Spirtes, Glymour, &
Scheines, 1993, 2000). By a causal DAG, we mean
a DAG in which each edge represents a direct causal
influence. The DAG in Figure 20.1 is a causal DAG.
The following example briefly illustrates why a causal
DAG should satisfy the Markov condition with F.

Smoking causes both lung cancer and bronchitis. So
the presence of lung cancer makes it more probable
the person is a smoker. Because smoking also causes
bronchitis, this increased likelihood of smoking makes
it more probable that the person has bronchitis. So lung
cancer and smoking are not independent. However,
if we know that the person is a smoker, that person
has a certain probability of having bronchitis based
on this information. Because lung cancer can now no
longer increase the likelihood of smoking (we know
the person smokes), it cannot increase the likelihood
of bronchitis through this chain. So bronchitis and lung
cancer are conditionally independent given smoking,
as entailed by the Markov condition.

The conditional distributions in Figure 20.1 were
obtained from data and are only estimates of the
actual conditional relative frequency distributions. So
their product P is only an estimate of the actual
joint relative frequency distribution F. Neverthe-
less, their product still satisfies the Markov condi-
tion with the DAG because, as mentioned above, if
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we specify any discrete conditional probability
distributions, their product satisfies the Markov con-
dition with the DAG. So we have a Bayesian network
that contains an estimate of the relative frequency
distribution.

There are two main applications of Bayesian net-
works. The first is in expert systems (see Neapolitan,
1990). An expert system is a system that is capable of
making the inferences and possibly the decisions of an
expert. For example, we might include the Bayesian
network in Figure 20.1 in an expert system whose pur-
pose is to diagnose and treat respiratory problems. The
system would need to perform probabilistic inference
such as the computation of P(l1|s1, c1). Inference
algorithms for Bayesian networks have been devel-
oped, which are efficient for a large class of networks
(see Castillo, Gutiérrez, & Hadi, 1997; Neapolitan,
1990; Pearl, 1988). However, Cooper (1990) has
shown that the problem of inference in a Bayesian
network is NP-hard. Bayesian networks that are aug-
mented with decision nodes and a value node are called
influence diagrams (see Clemen, 2000). An influence
diagram can recommend decisions such as treatment
options in the medical domain.

Initially, Bayesian networks for expert systems were
constructed using the knowledge of domain experts.
However, in the 1990s, a great deal of research was
done on learning both the structure (the DAG) and the
parameter values (the conditional probabilities) from
data. For example, if we had data on the five variables
in Example 5, we might learn the Bayesian network in
Figure 20.1.

The second application of Bayesian networks only
concerns learning. In these applications, we try to learn
something about the causal relationships among the
variables from data (see Spirtes et al., 1993, 2000).

20.3.2. Modeling With Bayesian Networks

A probabilistic model M for a set V of random
variables is a set of joint probability distributions of
the variables. Ordinarily, a model is specified using a
parameter set F and combinatoric rules for deter-
mining the joint probability distribution from the
parameter set. Each member of the model is then
obtained by assigning values to the members of F and
applying the rules. If probability distribution P is a
member of model M,we say that P is included in M.
If the probability distributions in a model are obtained
by assignments of values to the members of a parameter
set F, this means there is some assignment of values to
the parameters that yield the probability distribution.
A conditional independency common to all probability

distributions included in model M is said to be in M.
An example of a probabilistic model follows.

Example 6. Suppose we are going to toss a die and
a coin, neither of which are known to be fair. LetX be
a random variable whose value is the outcome of the
die toss, and let Y be a random variable whose value
is the outcome of the coin toss. Then the space of X
is {1, 2, 3, 4, 5, 6}, and the space of Y is {heads, tails}.
The following is a probabilistic model M for the joint
probability distribution of X and Y :

1. F = {f11, f12, f13, f14, f15, f16, f21, f22}, 0 ≤
fij ≤ 1,

∑6
j=1 f1j = 1,

∑2
j=1 f2j = 1.

2. For each permissible combination of the param-
eters in F, obtain a member of M as follows:

P(X = i, Y = heads) = f1if21,

P (X = i, Y = tails) = f1if22.

The conditional independency IP (X, Y ) is in M .
Any probability distribution of X and Y for which X
and Y are independent is included inM; any probabil-
ity distribution of X and Y for which X and Y are not
independent is not included in M.

A Bayesian network model (or DAG model) con-
sists of a DAGG = (V,E), where V is a set of random
variables, and a parameter set F whose members
determine conditional probability distributions for the
DAGs, such that for every permissible assignment
of values to the members of F, the joint probability
distribution of V is given by the product of these
conditional distributions, and this joint probability dis-
tribution satisfies the Markov condition with the DAG.
Owing to the discussion at the beginning of Section
20.3.1, if F determines discrete probability distribu-
tions (and many continuous ones), the product of the
conditional distributions will satisfy the Markov con-
dition. For simplicity, we ordinarily denote a Bayesian
network model using onlyG (i.e., we do not show F).

Example 7. Bayesian network models appear
in Figure 20.2a, b. The conditional independency
IP (X3, X1|{X2}) is in the model in Figure 20.2a;
no conditional independencies are in the model in
Figure 20.2b. The probability distribution contained
in the Bayesian network in Figure 20.2c is included
in both models, whereas the one in the Bayesian net-
work in Figure 20.2d is included only in the model in
Figure 20.2b. That is, even though there are no con-
ditional independencies in the model in Figure 20.2b,
the distribution in Figure 20.2c is in that model.
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Figure 20.2 Bayesian Network Models
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NOTE: Bayesian network models appear in (a) and (b). The probability distribution in the Bayesian network in (c) is included in both models, whereas
the one in (d) is included only in the model in (b).

A set of models, each of which is for the same set of
random variables, is called a class of models.

Example 8. The set of Bayesian network models
containing the same discrete random variables is a class
of models. We call this class a multinomial Bayesian
network model class. Figure 20.2 shows two models
from the class when V = {X1, X2, X3},X1 andX3 are
binary, and X2 has space size 3.

Given some class of models, if M2 includes prob-
ability distribution P and there exists no M1 in the
class, such that M1 includes P, and M1 has smaller
dimension than M2, then M2 is called a parameter
optimal map. In the case of DAG models, the dimen-
sion of the model is the number of parameters in
the models. However, as discussed in Neapolitan
(2003), this is not always the case. The dimension of
the model in Figure 20.2a is 8, whereas the dimen-
sion of the one in Figure 20.2b is 11. The model
in Figure 20.2a is a parameter optimal map of the
probability distribution in the Bayesian networks in
Figure 20.2c.

20.4. Learning DAG Models

In general, the problem of model selection is to find
a concise model that, based on a random sample
of observations from the population that determines
a probability (relative frequency) distribution P,

includesP. So given a class of models, we would want
to find a parameter optimal map of P. We use d to
represent the set of values (data) in the sample. After
discussing the Bayesian method for learning DAG
models, we illustrate the constraint-based method.

20.4.1. Bayesian Method

Although we develop the theory using binary
variables, the theory extends to multinomial and multi-
variate normally distributed variables (see Neapolitan,
2003).

One way to perform model selection is to develop
a scoring function score (called a scoring criterion)
that assigns a value score(d,M) to each model under
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consideration based on the data. We have the following
definition concerning scoring criteria:

Definition 1. Let dM be a set of values (data) of a
set of M mutually independent random vectors, each
with probability distribution P , and let PM be the
probability function determined by the joint distribu-
tion of the M random vectors. Furthermore, let score
be a scoring criterion over some class of models for
the random variables that constitute each vector. We
say score is consistent for the class of models if the
following two properties hold:

1. If M1 includes P and M2 does not, then

lim
M→∞

PM(score(dM,M1)

> score(dM,M2)) = 1.

2. If M1 and M2 both include P, and M1 has a
smaller dimension than M2, then

lim
M→∞

PM(score(dM,M1)

> score(dM,M2)) = 1.

We call P the generative distribution. The limit,
as the size of the data set approaches infinity, of the
probability of a consistent scoring criterion choosing
a parameter optimal map of P is 1.

The Bayesian scoring criterion scoreB , which is the
probability of the data given the DAG, is a consistent
scoring criterion. Before showing that criterion, we
need to discuss quantifying our belief concerning a
relative frequency.

20.4.1.1. Quantifying Our Prior Belief

First we present the beta density function.

Definition 2. The beta density function with
parameters a, b,N = a + b, where a and b are real
numbers > 0, is

ρ(f ) = �(N)

�(a)�(b)
f a−1(1− f )b−1 0 ≤ f ≤ 1.

A random variable F that has this density function is
said to have a beta distribution.

We refer to the beta density function as
beta(f ; a, b).
� is the gamma function. If x is an integer ≥ 1, it is

possible to show�(x) = (x−1)!. The uniform density
function is beta(f ; 1, 1). Figures 20.3 and 20.4 show
the beta(f ; 3, 3) and beta(f ; 18, 2) density functions.

Figure 20.3 The beta(f ; 3, 3) Density Function
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Figure 20.4 The beta(f ; 18, 2) Density Function
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We discuss these figures further after we introduce the
method for quantifying our prior belief concerning a
relative frequency.

In general, the Bayesian approach is to assume we
can represent our belief concerning the relative fre-
quency with whichX equals 1 using a random variable
F whose space is the interval [0, 1]. We further assume
our beliefs are such that

P(X = 1|f ) = f.

That is, if we knew for a fact that the relative
frequency with which X equals 1 was f, our belief
concerning the occurrence of 1 in the first execution
of the experiment would be f. This situation is
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Figure 20.5 An Augmented Bayesian Network (a)
and the Network That It Embeds (b)

F

beta(f; a, b)

P(X = 1|f ) = f

P(X = 1) = a/(a + b)
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represented by the Bayesian network in Figure 20.5a,
in which we have assumed thatF has the beta(f ; a, b)
density function. We stress that the theory does not
require that we use the beta density function for F.
Rather, it is just that this function is commonly used
and is convenient for this overview. We call such a
Bayesian network an augmented Bayesian network
because it augments another Bayesian network (in this
case, one containing the single node X) with node(s)
representing our beliefs about relative frequencies. The
Bayesian network containing the single nodeX and its
marginal distribution is said to be embedded in the aug-
mented Bayesian network. This embedded Bayesian
network appears in Figure 20.5b. Note in that network
that P(X = 1) = a/(a + b). The following theorem
obtains this result.

Theorem 1. Suppose we have an augmented
Bayesian network containing nodes X and F , and
F has the beta(f ; a, b) density function. Then the
marginal distribution of X is given by

P(X = 1) = E(F) = a

a + b ,

where E is the expected value.

Proof. The proof appears in Neapolitan (2003).
The beta density function is often used to quantify

a belief concerning a relative frequency. Briefly, the

reason is as follows: Notice in Figures 20.3 and 20.4
that the larger the values of a and b are, the more
the mass is concentrated around a/(a + b). For this
and other reasons, when a and b are integers, we
often say the values of a and b are such that the prob-
ability assessor’s experience is equivalent to having
seen the first outcome occur a times in a + b trials.
Zabell (1982) discusses this matter more and proves
that, if we make certain assumptions about an indi-
vidual’s beliefs, then that individual must use the beta
density function to quantify any prior beliefs about a
relative frequency. Zabell’s theorem actually concerns
the Dirichlet distribution, which is a generalization
of the beta distribution to more than two outcomes.
The Dirichlet distribution is used to quantify prior
beliefs concerning relative frequencies when we have
multinomial variables.

20.4.1.2. The Bayesian Scoring Criterion

Now we can present the Bayesian scoring criterion,
which is given by

scoreB(d,G) = P(d|G)

=
n∏
i=1

q
(G)
i∏
j=1

�(N
(G)
ij )

�(N
(G)
ij +M(G)

ij )

· �(a
(G)
ij + s(G)ij )�(b

(G)
ij + t (G)ij )

�(a
(G)
ij )�(b

(G)
ij )

(2)

where n is the number of variables in the DAG; qi is
the number of different instantiations of the parents
of Xi ; Fij is a random variable representing our belief
concerning the relative frequency with whichXi equals
1, given that the parents of Xi are in the j th instan-
tiation; Fij has the beta(fij; aij, bij) density function,
Nij = aij + bij;Mij is the number of cases in which
Xi’s parents are in their j th instantiation; and of these
Mij cases, sij is the number in which Xi is equal to 1,
and tij is the number in which it is equal to 2. This
scoring criterion is the binary-variable special case of
the multinomial-variable scoring criterion first devel-
oped in Cooper and Herskovits (1992). Geiger and
Heckerman (1994) have developed a Bayesian scoring
criterion in the case of Bayesian networks containing
multivariate normally distributed variables.

Neapolitan (2003) shows that scoreB is consistent
for Bayesian networks containing multinomial distri-
buted variables. We say P admits a faithful DAG
representation if there exists a DAG G for which the
Markov condition entails all and only the conditional
independencies in P . In this case, we say P andG are
faithful to each other. Neapolitan (2003) shows further
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Figure 20.6 Prior Augmented Bayesian Networks
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that if the generative distribution P admits a faithful
DAG representation (not allP do), the limit, as the size
of the data set approaches infinity, of the probability of
a consistent scoring criterion choosing a DAG faithful
to P is 1.

Next we present two examples of scoring using the
Bayesian scoring criterion.

Example 9. Suppose we have the data d in the
following table:

Case 1 2 3 4 5 6 7 8

X1 1 1 1 1 2 2 2 2
X2 1 1 1 1 2 2 2 2

Let GI be the DAG with no edges and GD be
X1 → X2. Then, using the prior augmented Bayesian
networks in Figure 20.6a, b to quantify our prior
beliefs, we have

scoreB(d,GI )

=
(

�(4)

�(4+ 8)

�(2+ 4)�(2+ 4)

�(2)�(2)

)

·
(

�(4)

�(4+ 8)

�(2+ 4)�(2+ 4)

�(2)�(2)

)
,

= 4.6851× 10−6

scoreB(d,GD)

=
(

�(4)

�(4+ 8)

�(2+ 4)�(2+ 4)

�(2)�(2)

)

·
(

�(2)

�(2+ 4)

�(1+ 4)�(1+ 0)

�(1)�(1)

)

·
(

�(2)

�(2+ 4)

�(1+ 0)�(1+ 4)

�(1)�(1)

)

= 8.658× 10−5.

An attractive feature of the Bayesian scoring
criterion is that it enables us to incorporate prior
probabilities (beliefs) into our posterior beliefs
concerning the models. For example, if we assign

P(GI ) = P(GD) = .5,

then owing to Bayes’s theorem,

P(GI |d) = αP (d|GD)P (GD)

= α(4.6851× 10−6)(.5)

and

P(GD|d) = αP (d|GI)P (GI )

= α(8.658× 10−5)(.5),

where α is a normalizing constant equal to 1/P (d).
Eliminating α, we have

P(GI |d) = .05134

and

P(GD|d) = .94866.

Notice that we become highly confident that
the DAG is the one with the dependency because
in the data, the variables are deterministically
related.

Example 10. Suppose we have the data d in the
following table:

Case 1 2 3 4 5 6 7 8

X1 1 1 1 1 2 2 2 2
X2 1 1 2 2 1 1 2 2
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Then using the prior augmented Bayesian networks
in Figure 20.6a, b, we have

scoreB(d,GI )

=
(

�(4)

�(4+ 8)

�(2+ 4)�(2+ 4)

�(2)�(2)

)

·
(

�(4)

�(4+ 8)

�(2+ 4)�(2+ 4)

�(2)�(2)

)

= 4.6851× 10−6,

scoreB(d,GD)

=
(

�(4)

�(4+ 8)

�(2+ 4)�(2+ 4)

�(2)�(2)

)

·
(

�(2)

�(2+ 4)

�(1+ 2)�(1+ 2)

�(1)�(1)

)

·
(

�(2)

�(2+ 4)

�(1+ 2)�(1+ 2)

�(1)�(1)

)

= 2.405× 10−6.

If we assign

P(GI ) = P(GD) = .5,
then proceeding as in the previous example, we obtain

P(GI |d) = .66079

and

P(GD|d) = .33921.

Notice that we become fairly confident that the DAG
is the one with the independency because in the data,
the variables are independent.

Although we illustrated the method using just two
variables, Equality 2 scores DAGs containing an arbi-
trary number of variables, and so clearly the method
applies to the general case of n variables.

20.4.1.3. Data Compression Scoring Criteria

As an alternative to the Bayesian scoring criterion,
Rissanen (1987), Lam and Bacchus (1994), and Fried-
man and Goldszmidt (1996) developed and discussed
a scoring criterion called the minimum description
length (MDL). The MDL principle frames model
learning in terms of data compression. The MDL
objective is to determine the model that provides the
shortest description of the data set. You should consult
the references above for the derivation of the MDL
scoring criterion. This scoring criterion is also con-
sistent for Bayesian networks containing multinomial
and multivariate normally distributed variables.

Wallace and Korb (1999) developed a data
compression scoring criterion called the minimum
message length (MML), which more carefully deter-
mines the message length for encoding the param-
eters in the case of Bayesian networks containing
multivariate normally distributed variables.

20.4.1.4. DAG Learning Is NP-Hard

In general, to find a DAG that maximizes a scoring
criterion by the brute-force method of considering all
DAGs is computationally unfeasible when the number
of variables is not small. For example, using a recur-
rence established by Robinson (1977), it is possible
to show there are 4.2 × 1018 DAGs containing just
10 nodes. Furthermore, Chickering (1996) proved that
for certain classes of prior distributions, the problem
of finding a DAG that maximizes the Bayesian score
is NP-hard. One way to handle a problem such as this
is to develop a heuristic search algorithm. Heuristic
search algorithms are algorithms that search for a
solution that is not guaranteed to be optimal; rather,
they often find solutions that are reasonably close to
optimal. A number of heuristic greedy search algo-
rithms have been developed for approximately finding
the DAG that maximizes the Bayesian score. Perhaps
most notable of these is the greedy equivalent search
(GES) algorithm, developed by Meek in 1997. In 2002,
Chickering proved that if the generative distribution P
admits a faithful DAG representation, then the limit,
as the size of the data set approaches infinity, of the
probability of GES yielding a DAG faithful to P is 1.

20.4.2. Constraint-Based Method

In the previous subsection, we assumed we had a
set of variables with an unknown relative frequency
distribution, and we developed a method for learning
the DAG structure from data by computing the proba-
bility of the data given different DAGs. Here we take
a different approach. Given the set INDP of condi-
tional independencies in a probability distribution P,
we try to find a DAG for which the Markov condition
entails all and only those conditional independencies.
That is, we try to find a DAG faithful to P. This
is called constraint-based learning. We illustrate the
technique with two simple examples. The technique
was first developed in Spirtes et al. (1993, 2000) and
is discussed in detail in Neapolitan (2003).

Example 11. Suppose P is a joint probability
distribution of three variables—X, Y , and Z—and
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the set INDP of conditional independencies in P is
given by

INDP = {IP (X, Y )}.
Then the DAG faithful to P is the one in Fig-

ure 20.7. There must be an edge between X and Z
because otherwise, the Markov condition would entail
that they are independent given some set (possibly
empty) of variables. Similarly, there must be an edge
between Z and Y. There can be no edge between X
and Y because otherwise, the Markov condition would
not entail that they are independent. The edges con-
necting X and Y to Z must both be directed toward
Z for the following reason. If the edges had any
other direction, the Markov condition would entail
IP (X, Y |Z), and this conditional independency is not
present.

If we are learning a causal DAG and we assume that
there are no hidden common causes and that selection
bias is not present, we could conclude thatX causes Z
and Y causes Z. Causal learning is discussed in detail
in Neapolitan (2003).

Figure 20.7 This DAG Is Faithful to P When
INDP = {IP (X, Y )}

X Z Y

Example 12. Suppose P is a joint probability
distribution of four variables—X, Y , Z, and W—and

INDP = {IP (X, Y ), IP (X,W |{Z}),
IP (Y,W |{Z}), IP ({X, Y },W |{Z})}.

Then the DAG faithful toP is the one in Figure 20.8.
The links (edges without regard to direction) must be
the ones shown for the reason discussed in the previous
example. The edges connectingX andY toZmust both
be directed toward Z also for the reasons discussed in
the previous example. The edge between Z and W
cannot beW → Z for the following reason: If it were,
the Markov condition would entail IP (X,W), and we
do not have that independency.

If we are learning a causal DAG and we assume that
there are no hidden common causes and that selection
bias is not present, we could conclude that X causes
Z and Y causes Z. Neapolitan (2003) shows that even
if we do not make these assumptions, we can con-
clude that Z causes W. Briefly, if we replace the edge

Figure 20.8 This DAG Is Faithful to P When P

Has the Conditional Independencies in
Example 12

X Z

W

Y

Z→ W by Z ← H → W, where H is a hidden
common cause, the Markov condition would entail
IP (X,W), and we do not have that independency.

On the basis of considerations such as those illus-
trated in the previous examples, Spirtes et al. (1993,
2000) developed an algorithm that finds the DAG
pattern faithful to P, when P admits a faithful
DAG representation, from the conditional indepen-
dencies in P. In 1995, Meek proved the correctness
of the algorithm. Meek also developed an algorithm
that determines whether P admits a faithful DAG
representation.

The constraint-based method requires knowledge of
the conditional independencies in a probability distri-
bution. Given data, statistical tests can be used to esti-
mate which conditional independencies are present.
Spirtes et al. (1993, 2000) and Neapolitan (2003) each
describe the statistical tests used in Tetrad II (Scheines,
Spirtes, Glymour, & Meek, 1994), a system that con-
tains implementations of the algorithms developed in
Spirtes et al. (1993, 2000).

20.5. Applications

First we show an application that learns an expert
system. Then we show an example of causal learning.
Finally, we offer a cautionary note concerning applying
the theory.

20.5.1. Learning an Expert System:
Cervical Spinal Cord Trauma

Physicians face the problem of assessing cervical
spinal cord trauma. To learn a Bayesian network that
could assist physicians in this task, Herskovits and
Dagher (1997) obtained a database from the Regional
Spinal Cord Injury Center of the Delaware Valley.
The database consisted of 104 cases of patients with
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Figure 20.9 The Structure Learned by Cogito for
Assessing Cervical Spinal Cord Trauma

Rostral Length

UE_R LE_R

Heme

UE_F LE_F

spinal cord injuries who were evaluated acutely and at a
1-year follow-up. Each case consisted of the following
seven variables:

Variable What the Variable Represents

UE F Upper extremity functional score
LE F Lower extremity functional score
Rostral Most superior point of cord edema as

demonstrated by (MRI)
Length Length of cord edema as demonstrated by MRI
Heme Cord hemorrhage as demonstrated by MRI
UE R Upper extremity recovery at one year
LE R Lower extremity recovery at one year

They discretized the data and used the Bayesian
network learning program CogitoTM to learn a
Bayesian network containing these variables. Cogito,
which was developed by Herskovits and Dagher, does
model selection using the Bayesian method discussed
in Section 20.4.1. The structure learned is shown in
Figure 20.9.

Herskovits and Dagher (1997) compared the perfor-
mance of their learned Bayesian network to that of a
regression model that had independently been devel-
oped by other researchers from the same database
(Flanders, Spettell, Tartaglino, Friedman, & Herbison,
1996). The other researchers did not discretize the
data but rather assumed that they followed a normal
distribution. The comparison consisted of evaluating
40 new cases not present in the original database. They
entered the values of all variables except the outcomes
variables, which are UE R (upper extremity recov-
ery at 1 year) and LE R (lower extremity recovery

at 1 year), and used the Bayesian network inference
program ErgoTM (Beinlich & Herskovits, 1990) to
predict the values of the outcome variables. They
also used the regression model to predict these values.
Finally, they compared the predictions of both models
to the actual values for each case. They found that
the Bayesian network correctly predicted the degree
of upper extremity recovery three times as often as the
regression model. They attributed part of this result to
the fact that the original data did not follow a normal
distribution, which the regression model assumed. An
advantage of Bayesian networks is that they need not
assume any particular distribution and therefore can
accommodate unusual distributions.

20.5.2. Causal Learning:
University Student Retention

Using the data collected by the U.S. News and World
Report magazine for the purpose of college ranking,
Druzdzel and Glymour (1999) analyzed the influences
that affect university student retention rate. By student
retention rate, we mean the percentage of entering
freshmen who end up graduating from the university
at which they initially matriculate. Low student reten-
tion rate is a major concern at many American uni-
versities as the mean retention rate over all American
universities is only 55%.

The database provided by the U.S. News and
World Report magazine contains records for 204 U.S.
universities and colleges identified as major research
institutions. Each record consists of more than 100
variables. The data were collected separately for the
years 1992 and 1993. Druzdzel and Glymour (1999)
selected the following eight variables as being most
relevant to their study:

Variable What the Variable Represents

grad Fraction of entering students who graduate
from the institution

rejr Fraction of applicants who are not offered
admission

tstsc Average standardized score of incoming students
tp10 Fraction of incoming students in the top 10%

of high school class
acpt Fraction of students who accept the institution’s

admission offer
spnd Average educational and general expenses

per student
sfrat Student/faculty ratio
salar Average faculty salary

From the 204 universities, they removed any univer-
sities that had missing data for any of these variables.
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Table 20.1 Records for Six Universities

Univ. grad rejr tstsc tp10 acpt spnd sfrat salar

1 52.5 29.47 65.06 15 36.89 9855 12.0 60800
2 64.25 22.31 71.06 36 30.97 10527 12.8 63900
3 57.00 11.30 67.19 23 40.29 6601 17.0 51200
4 65.25 26.91 70.75 42 28.28 15287 14.4 71738
5 77.75 26.69 75.94 48 27.19 16848 9.2 63000
6 91.00 76.68 80.63 87 51.16 18211 12.8 74400

This resulted in 178 universities in the 1992 study and
173 universities in the 1993 study. Table 20.1 shows
exemplary records for 6 of the universities.

Druzdzel and Glymour (1999) used Tetrad II
(Scheines et al., 1994) to learn causal influences from
the data. Tetrad II uses the constraint-based method
to learn DAG models and allows the user to specify
a “temporal” ordering of the variables. If variable Y
precedes X in this order, the algorithm assumes that
there can be no path from X to Y. It is called a tempo-
ral ordering because in applications to causality, if Y
precedesX in time, we would assume thatX could not
cause Y. Druzdzel and Glymour (1999) specified the
following temporal ordering for the variables in this
study:

1st: spnd, sfrat, salar
2nd: rejr, acpt
3rd: tstsc, tp10
4th: grad

Their reasons for this ordering are as follows: They
believed that the average spending per student (spnd),
the student/teacher ratio (sfrat), and faculty salary
(salar) are determined based on budget considerations
and are not influenced by any of the other five variables.
They noted that rejection rate (rejr) and the fraction of
students who accept the institution’s admission offer
(acpt) precede the average test scores (tstsc) and class
standing (tp10) in time because the values of these
latter two variables are only obtained from matriculat-
ing students. Finally, they assumed that graduate rate
(grad) does not cause any of the other variables.

Tetrad II allows the user to enter a significance level.
A significance level of α means that the probability
of rejecting a conditional independency hypothesis,
when it is true, is α. Therefore, the smaller the
value α, the less likely we are to reject a condi-
tional independency, and therefore the sparser our
resultant graph. Figure 20.10 shows the graphs that
Druzdzel and Glymour (1999) learned from U.S. News

and World Report’s 1992 database using significance
levels of .2, .1, .05, and .01. In those graphs, an edge
X → Y indicates that either X has a causal influence
on Y orX and Y have a hidden common cause, an edge
X↔ Y indicates thatX and Y have a hidden common
cause, and an edgeX�Y indicates thatX has a causal
influence on Y .

Although different graphs were obtained at different
levels of significance, all the graphs in Figure 20.10
show that the average standardized test score (tstsc)
has a direct causal influence on graduation rate (grad),
and no other variable has a direct causal influence on
grad. The results for the 1993 database were not as
overwhelming, but they too indicated tstsc to be the
only direct causal influence on grad.

To test whether the causal structure may be different
for top research universities, Druzdzel and Glymour
(1999) repeated the study using only the top 50 uni-
versities according to the ranking of U.S. News and
World Report. The results were similar to those for the
complete databases.

These results indicate that, although factors such
as spending per student and faculty salary may have
an influence on graduation rates, they do this only
indirectly by affecting the standardized test scores of
matriculating students. If the results correctly model
reality, retention rates can be improved by bringing in
students with higher test scores in any way whatsoever.
Indeed, in 1994, Carnegie Mellon changed its financial
aid policies to assign a portion of its scholarship fund
on the basis of academic merit. Druzdzel and Glymour
(1999) note that this resulted in an increase in the
average test scores of matriculating freshman classes
and an increase in freshman retention.

Before closing, we note that the notion that the
average test score has a causal influence on graduation
rate does not fit into common notions of causation such
as the one concerning manipulation (see Neapolitan,
2003). For example, if we manipulated a university’s
average test score by accessing the testing agency’s
database and changing the scores of the university’s
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Figure 20.10 The Graphs Tetrad II Learned From U.S. News and World Report’s 1992 Database
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students to much higher values, we would not expect
the university’s graduation rate to increase. Rather, this
study indicates that test score is a near-perfect indicator
of some other variable, which we can call graduation
potential.

20.5.3. A Cautionary Note

Next we present another example concerning learn-
ing causes from data obtained from a survey, which
illustrates problems one can encounter when using
such data to infer causation.

Scarville, Button, Edwards, Lancaster, and Elig
(1999) provide a database obtained from a survey
in 1996 of experiences of racial harassment and dis-
crimination of military personnel in the U.S. Armed
Forces. Surveys were distributed to 73,496 members
of the U.S. Army, Navy, Marine Corps, Air Force, and
Coast Guard. The survey sample was selected using
a nonproportional stratified random sample to ensure
adequate representation of all subgroups. Usable
surveys were received from 39,855 service members
(54%). The survey consisted of 81 questions related
to experiences of racial harassment and discrimi-
nation and job attitudes. Respondents were asked
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to report incidents that had occurred during the
previous 12 months. The questionnaire asked par-
ticipants to indicate the occurrence of 57 different
types of racial/ethnic harassment or discrimination.
Incidents ranged from telling offensive jokes to phys-
ical violence and included harassment by military
personnel as well as the surrounding community.
Harassment experienced by family members was also
included.

We used Tetrad III to attempt learning causal influ-
ences from the database. For our analysis, 9,640
records (13%) were selected that had no missing data
on the variables of interest. The analysis was initially
based on eight variables. Similar to the situation dis-
cussed in the last subsection concerning university
retention rates, we found one causal relationship to
be present regardless of the significance level. That
is, we found that whether the individual held the mil-
itary responsible for the racial incident had a direct
causal influence on the race of the individual. Because
this result made no sense, we investigated which
variables were involved in Tetrad III learning this
causal influence. The five variables involved are the
following:

Variable What the Variable Represents

race Respondent’s race/ethnicity
yos Respondent’s years of military service
inc Whether the respondent experienced

a racial incident
rept Whether the incident was reported

to military personnel
resp Whether the respondent held the military

responsible for the incident

The variable race consisted of five categories:
White, Black, Hispanic, Asian or Pacific Islander,
and Native American or Alaskan Native. Respondents
who reported Hispanic ethnicity were classified as
Hispanic, regardless of race. Respondents were clas-
sified based on self-identification at the time of the
survey. Missing data were replaced with data from
administrative records. The variable yos was classified
into four categories: 6 years or less, 7 to 11 years, 12
to 19 years, and 20 years or more. The variable inc was
coded dichotomously to indicate whether any type of
harassment was reported on the survey. The variable
rept indicates responses to a single question concern-
ing whether the incident was reported to military and/or
civilian authorities. This variable was coded 1 if an
incident had been reported to military officials. Indi-
viduals who experienced no incident, did not report

Figure 20.11 The Graph Tetrad III Learned From the
Racial Harassment Survey at the .01
Significance Level

yos

rept

inc resp race

the incident, or only reported the incident to civilian
officials were coded 0. The variable resp indicates
responses to a single question concerning whether the
respondent believed the military to be responsible for
an incident of harassment. This variable was coded 1 if
the respondent indicated that the military was respon-
sible for some or all of a reported incident. If the
respondent indicated no incident, unknown respon-
sibility, or that the military was not responsible, the
variable was coded 0.

We reran the experiment using only these five
variables, and again at all levels of significance, we
found that resp had a direct causal influence on race.
In all cases, this causal influence was learned because
rept and yos were found to be probabilistically inde-
pendent, and there was no edge between race and inc.
That is, the causal connection between race and inc is
mediated by other variables. Figure 20.11 shows the
graph obtained at the .01 significance level. The edges
yos → inc and rept → inc are directed toward inc
because yos and rept were found to be independent.
The edge yos → inc resulted in the edge inc → resp
being directed the way it was, which in turn resulted in
resp→ race being directed the way it was. If there had
been an edge between inc and race, the edge between
resp and race would not have been directed.

It seems suspicious that no direct causal connection
between race and inc was found. Recall, however,
that these are the probabilistic relationships among
the responses; they are not necessarily the probabilis-
tic relationships among the actual events. There is a
problem with using responses on surveys to repre-
sent occurrences in nature because subjects may not
respond accurately. This is called response bias. Let’s
assume that race is recorded accurately. The actual
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Figure 20.12 Possible Causal Relationships Among
Race, Incidence of Harassment, and
Saying That There Is an Incident of
Harassment

says_
inc

race inc

causal relationship between race, inc, and says inc
may be as shown in Figure 20.12. By inc, we now mean
whether there really was an incident, and by says inc,
we mean the survey response. It could be that races
that experienced higher rates of harassment were less
likely to report the incident, and the causal influence of
race on says inc through inc was negated by the direct
influence of race on inc. The previous conjecture is
substantiated by another study. Stangor, Swim, Van
Allen, and Sechrist (2002) examined the willingness
of people to attribute a negative outcome to discrim-
ination when there was evidence that the outcome
might be influenced by bias. They found that minority
members were more likely to attribute the outcome
to discrimination when responses were recorded pri-
vately but less likely to report discrimination when
they had to express their opinion publicly and there
was a member of the nonminority group present. This
suggests that although minorities are more likely to
perceive the situation as due to discrimination, they are
less likely to report it publicly. Although the survey
of military personnel was intended to be confiden-
tial, minority members in the military may have felt
uncomfortable reporting incidents of discrimination.

As noted in the previous subsection, Tetrad II (and
III) allows the user to enter a temporal ordering. So
we could have put race first in such an ordering to
avoid it being an effect of another variable. However,
one should do this with caution. The fact that the data
strongly support that race is an effect indicates there
is something wrong with the data, which means we
should be dubious of drawing any conclusions from
the data. In the present example, Tetrad III actually
informed us that we could not draw causal conclusions
from the data when we make race a root. That is, when
we made race a root, Tetrad III concluded that there

is no consistent orientation of the edge between race
and resp.
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Chapter 21

The Null Ritual

What You Always Wanted to Know About

Significance Testing but Were Afraid to Ask

Gerd Gigerenzer

Stefan Krauss

Oliver Vitouch

No scientific worker has a fixed level of significance
at which from year to year, and in all circumstances,
he rejects hypotheses; he rather gives his mind to each
particular case in the light of his evidence and his ideas.

—Ronald A. Fisher (1956, p. 42)

It is tempting, if the only tool you have is a hammer, to
treat everything as if it were a nail.

—A. H. Maslow (1966, pp. 15-16)

One of us once had a student who ran an experi-
ment for his thesis. Let us call him Pogo. Pogo
had an experimental group and a control group

and found that the means of both groups were exactly
the same. He believed it would be unscientific to simply
state this result; he was anxious to do a significance test.
The result of the test was that the two means did not
differ significantly, which Pogo reported in his thesis.

In 1962, Jacob Cohen reported that the experiments
published in a major psychology journal had, on

AUTHORS’ NOTE: We are grateful to David Kaplan and Stanley Mulaik for helpful comments and to Katharina Petrasch for her
support with journal analyses.

average, only a 50-50 chance of detecting a
medium-sized effect if there was one. That is, the
statistical power was as low as 50%. This result was
widely cited, but did it change researchers’ practice?
Sedlmeier and Gigerenzer (1989) checked the studies
in the same journal, 24 years later, a time period
that should allow for change. Yet only 2 out of 64
researchers mentioned power, and it was never esti-
mated. Unnoticed, the average power had decreased
(researchers now used alpha adjustment, which shrinks
power). Thus, if there had been an effect of a medium
size, the researchers would have had a better chance
of finding it by throwing a coin rather than conducting
their experiments. When we checked the years 2000
to 2002, with some 220 empirical articles, we finally
found 9 researchers who computed the power of their
tests. Forty years after Cohen, there is a first sign of
change.

Editors of major journals such as A. W. Melton
(1962) made null hypothesis testing a necessary

391
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condition for the acceptance of papers and made small
p-values the hallmark of excellent experimentation.
The Skinnerians found themselves forced to start a
new journal, the Journal of the Experimental Analysis
of Behavior, to publish their kind of experiments
(Skinner, 1984, p. 138). Similarly, one reason for
launching the Journal of Mathematical Psychology
was to escape the editors’ pressure to routinely per-
form null hypothesis testing. One of its founders,
R. D. Luce (1988), called this practice a “wrongheaded
view about what constituted scientific progress” and
“mindless hypothesis testing in lieu of doing good
research: measuring effects, constructing substantive
theories of some depth, and developing probabil-
ity models and statistical procedures suited to these
theories” (p. 582).

The student, the researchers, and the editors had
engaged in a statistical ritual rather than statistical
thinking. Pogo believed that one always ought to per-
form a null hypothesis test, without exception. The
researchers did not notice how small their statistical
power was, nor did they seem to care: Power is not
part of the null ritual that dominates experimental
psychology. The essence of the ritual is the following:

1. Set up a statistical null hypothesis of “no mean
difference” or “zero correlation.” Don’t specify
the predictions of your research hypothesis or of
any alternative substantive hypotheses.

2. Use 5% as a convention for rejecting the null. If
significant, accept your research hypothesis.

3. Always perform this procedure.

The null ritual has sophisticated aspects we will not
cover here, such as alpha adjustment and ANOVA pro-
cedures, but these do not change its essence. Typically,
it is presented without naming its originators, as statis-
tics per se. Some suggest that it was authorized by the
eminent statistician Sir Ronald A. Fisher, owing to the
emphasis on null hypothesis testing (not to be con-
fused with the null ritual) in his 1935 book. However,
Fisher would have rejected all three ingredients of this
procedure. First, null does not refer to a zero mean
difference or correlation but to the hypothesis to be
“nullified,” which could postulate a correlation of .3,
for instance. Second, as the epigram illustrates, by
1956, Fisher thought that using a routine 5% level
of significance indicated lack of statistical thinking.
Third, for Fisher, null hypothesis testing was the most
primitive type in a hierarchy of statistical analyses and
should be used only for problems about which we have
very little knowledge or none at all (Gigerenzer et al.,
1989, chap. 3). Statistics offers a toolbox of methods,

not just a single hammer. In many (if not most) cases,
descriptive statistics and exploratory data analysis are
all one needs. As we will see soon, the null ritual origi-
nated neither from Fisher nor from any other renowned
statistician and does not exist in statistics proper. It was
instead fabricated in the minds of statistical textbook
writers in psychology and education.

Rituals seem to be indispensable for the self-
definition of social groups and for transitions in life,
and there is nothing wrong about them. However, they
should be the subject rather than the procedure of social
sciences. Elements of social rituals include (a) the
repetition of the same action, (b) a focus on special
numbers or colors, (c) fears about serious sanctions for
rule violations, and (d) wishful thinking and delusions
that virtually eliminate critical thinking (Dulaney &
Fiske, 1994). The null ritual has each of these four
characteristics: a repetitive sequence, a fixation on
the 5% level, fear of sanctions by editors or advisers,
and wishful thinking about the outcome (the p-value)
combined with a lack of courage to ask questions.

Pogo’s counterpart in this chapter is a curious student
who wants to understand the ritual rather than mind-
lessly perform it. She has the courage to raise questions
that seem naive at first glance and that others do not
care or dare to ask.

21.1. Question 1: What Does

a Significant Result Mean?

What a simple question! Who would not know the
answer? After all, psychology students spend months
sitting through statistics courses, learning about null
hypothesis tests (significance tests) and their featured
product, the p-value. Just to be sure, consider the
following problem (Haller & Krauss, 2002; Oakes,
1986):

Suppose you have a treatment that you suspect may
alter performance on a certain task. You compare the
means of your control and experimental groups (say,
20 subjects in each sample). Furthermore, suppose you
use a simple independent means t-test and your result
is significant (t = 2.7, df = 18, p = .01). Please mark
each of the statements below as “true” or “false.” False
means that the statement does not follow logically from
the above premises. Also note that several or none of
the statements may be correct.

1. You have absolutely disproved the null hypoth-
esis (i.e., there is no difference between the
population means). � True False �
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2. You have found the probability of the null
hypothesis being true. � True False �

3. You have absolutely proved your experimental
hypothesis (that there is a difference between the
population means). � True False �

4. You can deduce the probability of the experimen-
tal hypothesis being true. � True False �

5. You know, if you decide to reject the null
hypothesis, the probability that you are making
the wrong decision. � True False �

6. You have a reliable experimental finding in the
sense that if, hypothetically, the experiment
were repeated a great number of times, you
would obtain a significant result on 99% of
occasions. � True False �

Which statements are true? If you want to avoid the
I-knew-it-all-along feeling, please answer the six ques-
tions yourself before continuing to read. When you are
done, consider what a p-value actually is: A p-value is
the probability of the observed data (or of more extreme
data points), given that the null hypothesis H0 is true,
defined in symbols as p(D|H0).This definition can be
rephrased in a more technical form by introducing the
statistical model underlying the analysis (Gigerenzer
et al., 1989, chap. 3). Let us now see which of the six
answers are correct:

Statements 1 and 3: Statement 1 is easily detected
as being false. A significance test can never disprove
the null hypothesis. Significance tests provide prob-
abilities, not definite proofs. For the same reason,
Statement 3, which implies that a significant result
could prove the experimental hypothesis, is false.
Statements 1 and 3 are instances of the illusion of
certainty (Gigerenzer, 2002).

Statements 2 and 4: Recall that a p-value is a
probability of data, not of a hypothesis. Despite wish-
ful thinking, p(D|H0) is not the same as p(H0|D),
and a significance test does not and cannot provide
a probability for a hypothesis. One cannot conclude
from a p-value that a hypothesis has a probability of 1
(Statements 1 and 3) or that it has any other probability
(Statements 2 and 4). Therefore, Statements 2 and 4
are false. The statistical toolbox, of course, contains
tools that allow estimating probabilities of hypotheses,
such as Bayesian statistics (see below). However, null
hypothesis testing does not.

Statement 5: The “probability that you are making
the wrong decision” is again a probability of a hypoth-
esis. This is because if one rejects the null hypothesis,

the only possibility of making a wrong decision is if
the null hypothesis is true. In other words, a closer look
at Statement 5 reveals that it is about the probability
that you will make the wrong decision, that is, that H0

is true. Thus, it makes essentially the same claim as
Statement 2 does, and both are incorrect.

Statement 6: Statement 6 amounts to the replica-
tion fallacy. Recall that a p-value is the probability of
the observed data (or of more extreme data points),
given that the null hypothesis is true. Statement 6,
however, is about the probability of “significant” data
per se, not about the probability of data if the null
hypothesis were true. The error in Statement 6 is that
p = 1% is taken to imply that such significant data
would reappear in 99% of the repetitions. Statement 6
could be made only if one knew that the null hypothesis
was true. In formal terms, p(D|H0) is confused with
1 − p(D). The replication fallacy is shared by many,
including the editors of top journals. For instance, the
former editor of the Journal of Experimental Psycho-
logy, A. W. Melton (1962), wrote in his editorial, “The
level of significance measures the confidence that the
results of the experiment would be repeatable under
the conditions described” (p. 553). A nice fantasy,
but false.

To sum up, all six statements are incorrect. Note
that all six err in the same direction of wishful think-
ing: They overestimate what one can conclude from a
p-value.

21.1.1. Students’ and Teachers’ Delusions

We posed the question with the six multiple-choice
answers to 44 students of psychology, 39 lecturers and
professors of psychology, and 30 statistics teachers,
who included professors of psychology, lecturers,
and teaching assistants. All students had successfully
passed one or more statistics courses in which sig-
nificance testing was taught. Furthermore, each of the
teachers confirmed that he or she taught null hypothe-
sis testing. To get a quasi-representative sample, we
drew the participants from six German universities
(Haller & Krauss, 2002).

How many students and teachers noticed that all of
the statements were wrong? As Figure 21.1 shows,
none of the students did. Every student endorsed one
or more of the illusions about the meaning of a p-
value. One might think that these students lack the
right genes for statistical thinking and are stubbornly
resistant to education. A glance at the performance of
their teachers, however, indicates that wishful thinking
might not be entirely their fault. Ninety percent of the
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Figure 21.1 The Amount of Delusions About the
Meaning of “p = .01”
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NOTE: The percentages refer to the participants in each group
who endorsed one or more of the six false statements (based on
Haller & Krauss, 2002).

professors and lecturers also had illusions, a proportion
almost as high as among their students. Most surpris-
ingly, 80% of the statistics teachers shared illusions
with their students. Thus, the students’ errors might
be a direct consequence of their teachers’ wishful
thinking. Note that one does not need to be a brilliant
mathematician to answer the question, “What does a
significant result mean?” One only needs to understand
that a p-value is the probability of the data (or more
extreme data), given that the H0 is true.

If students “inherited” the illusions from their teach-
ers, where did the teachers acquire them? The illusions
were right there in the first textbooks introducing
psychologists to null hypothesis testing more than
60 years ago. Guilford’s Fundamental Statistics in
Psychology and Education, first published in 1942,
was probably the most widely read textbook in the
1940s and 1950s. Guilford suggested that hypoth-
esis testing would reveal the probability that the
null hypothesis is true. “If the result comes out one
way, the hypothesis is probably correct, if it comes
out another way, the hypothesis is probably wrong”
(p. 156). Guilford’s logic was not consistently mis-
leading but wavered back and forth between correct
and incorrect statements, as well as ambiguous ones
that can be read like Rorschach inkblots. He used
phrases such as “we obtained directly the proba-
bilities that the null hypothesis was plausible” and

“the probability of extreme deviations from chance”
interchangeably for referring to the same thing: the
level of significance. Guilford is no exception. He
marked the beginning of a genre of statistical texts that
vacillate between the researchers’ desire for probabil-
ities of hypotheses and what significance testing can
actually provide. Early authors promoting the illusion
that the level of significance would specify the prob-
ability of hypothesis include Anastasi (1958, p. 11),
Ferguson (1959, p. 133), and Lindquist (1940, p. 14).
But the belief has persisted over decades: for instance,
in Miller and Buckhout (1973; statistical appendix by
Brown, p. 523), Nunally (1975, pp. 194–196), and
in the examples collected by Bakan (1966), Pollard
and Richardson (1987), Gigerenzer (1993), Nickerson
(2000), and Mulaik, Raju, and Harshman (1997).

Which of the illusions were most often endorsed,
and which relatively seldom? Table 21.1 shows that
Statements 1 and 3 were most frequently detected as
being false. These claim certainty rather than prob-
ability. Still, up to a third of the students and an
embarrassing 10% to 15% of the group of teachers
held this illusion of certainty. Statements 4, 5, and
6 lead the hit list of the most widespread illusions.
These errors are about equally prominent in all groups,
a collective fantasy that seems to travel by cultural
transmission from teacher to student. The last column
shows that these three illusions were also prevalent
among British academic psychologists who answered
the same question (Oakes, 1986). Just as in the case
of statistical power cited in the introduction, in which
little learning was observed after 24 years, knowledge
about what a significant result means does not seem to
have improved since Oakes. Yet a persistent blind spot
for power and a lack of comprehension of significance
are consistent with the null ritual.

Statements 2 and 4, which put forward the same type
of error, were given different endorsements. When a
statement concerns the probability of the experimental
hypothesis, it is much more accepted by students and
teachers as a valid conclusion than one that concerns
the probability of the null hypothesis. The same pattern
can be seen for British psychologists (see Table 21.1).
Why are researchers and students more likely to believe
that the level of significance determines the probability
of H1 rather than that of H0? A possible reason is that
the researchers’ focus is on the experimental hypothe-
sis H1 and that the desire to find the probability of H1

drives the phenomenon.
Did the students produce more illusions than their

teachers? Surprisingly, the difference was only slight.
On average, students endorsed 2.5 illusions, their
professors and lecturers who did not teach statistics
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Table 21.1 Percentages of False Answers (i.e., Statements Marked as True) in the Three Groups of Figure 21.1

Germany 2000 United
Kingdom 1986

Professors and Professors and
Psychology Lecturers: Not Lecturers: Professors

Statement (Abbreviated) Students Teaching Statistics Teaching Statistics and Lecturers

1. H0 is absolutely disproved 34 15 10 1
2. Probability of H0 is found 32 26 17 36
3. H1 is absolutely proved 20 13 10 6
4. Probability of H1 is found 59 33 33 66
5. Probability of wrong decision 68 67 73 86
6. Probability of replication 41 49 37 60

NOTE: For comparison, the results of Oakes’s (1986) study with academic psychologists in the United Kingdom are shown in the right column.

approved of 2.0 illusions, and those who taught
significance testing endorsed 1.9 illusions.

Could it be that these collective illusions are specific
to German psychologists and students? No, the evi-
dence points to a global phenomenon. As men-
tioned above, Oakes (1986) reported that 97% of
British academic psychologists produced at least one
illusion. Using a similar test question, Falk and
Greenbaum (1995) found comparable results for Israeli
students, despite having taken measures for debi-
asing students. Falk and Greenbaum had explicitly
added the right alternative (“None of the statements
is correct”), whereas we had merely pointed out that
more than one or none of the statements might be
correct. As a further measure, they had made their
students read Bakan’s (1966) classic article, which
explicitly warns against wrong conclusions. Never-
theless, only 13% of their participants opted for the
right alternative. Falk and Greenbaum concluded that
“unless strong measures in teaching statistics are taken,
the chances of overcoming this misconception appear
low at present” (p. 93). Warning and reading by
itself does not seem to foster much insight. So what
to do?

21.2. Question 2: How Can

Students Get Rid of Illusions?

The collective illusions about the meaning of a
significant result are embarrassing to our profes-
sion. This state of affairs is particularly painful
because psychologists—unlike natural scientists—
heavily use significance testing yet do not understand
what its product, the p-value, means. Is there a
cure?

Yes. The cure is to open the statistical toolbox. In
statistical textbooks written by psychologists and edu-
cational researchers, significance testing is typically
presented as if it were an all-purpose tool. In statistics
proper, however, an entire toolbox exists, of which
null hypothesis testing is only one tool among many.
As a therapy, even a small glance into the contents of
the toolbox can be sufficient. One quick way to over-
come some of the illusions is to introduce students to
Bayes’s rule.

Bayes’s rule deals with the probability of hypothe-
ses, and by introducing it alongside null hypothesis
testing, one can easily see what the strengths and
limits of each tool are. Unfortunately, Bayes’s rule
is rarely mentioned in statistical textbooks for psy-
chologists. Hays (1963) had a chapter on Bayesian
statistics in the second edition of his widely read
textbook but dropped it in the subsequent editions.
As he explained to one of us (GG), he dropped
the chapter upon pressure from his publisher to pro-
duce a statistical cookbook that did not hint at the
existence of alternative tools for statistical inference.
Furthermore, he believed that many researchers are not
interested in statistical thinking in the first place but
solely in getting their papers published (Gigerenzer,
2000).

Here is a short comparative look at two tools:

1. Null hypothesis testing computes the probability
p(D|H0). The form of conditional probabilities
makes it clear that with null hypothesis testing,
(a) only statements concerning the probability
of data D can be obtained, and (b) the null
hypothesis H0 functions as the reference point
for the conditional statement. In other words, any
correct answer to the question of what a signif-
icant result means must include the conditional
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phrase “. . . given H0 is true” or an equivalent
expression.

2. Bayes’s rule computes the probability p(H1|D).
In the simple case of two hypotheses, H1 and
H2, which are mutually exclusive and exhaustive,
Bayes’s rule is the following:

p(H1|D) = p(H1)p(D|H1)

p(H1)p(D|H1)+ p(H2)p(D|H2)
.

For instance, consider HIV screening for people
who are in no known risk group (Gigerenzer, 2002).
In this population, the a priori probability p(H1) of
being infected by HIV is about 1 in 10,000, or .0001.
The probability p(D|H1) that the test is positive (D)
if the person is infected is .999, and the probability
p(D|H2) that the test is positive if the person is not
infected is .0001. What is the probability p(H1|D)
that a person with a positive HIV test actually has the
virus? Inserting these values into Bayes’s rule results in
p(H1|D) = .5. Unlike null hypothesis testing, Bayes’s
rule can actually provide a probability of a hypothesis.

Now let us approach the same problem with null
hypothesis testing. The null is that the person is not
infected. The observation is a positive test, and the
probability of a positive test given that the null is true
is p = .0001, which is the exact level of significance.
Therefore, the null hypothesis of no infection is
rejected with high confidence, and the alternative
hypothesis that the person is infected is accepted.
However, as the Bayesian calculation showed, given
a positive test, the probability of an HIV infection is
only .5. HIV screening illustrates how one can reach
quite different conclusions with null hypothesis testing
or Bayes’s rule. It also clarifies some of the possibilities
and limits of both tools. The single most important
limit of null hypothesis testing is that there is only one
statistical hypothesis—the null, which does not allow
for comparative hypotheses testing. Bayes’s rule, in
contrast, compares the probabilities of the data under
two (or more) hypotheses and also uses prior proba-
bility information. Only when one knows extremely
little about a topic (so that one cannot even specify
the predictions of competing hypotheses) might a null
hypothesis test be appropriate.

A student who has understood the fact that the prod-
ucts of null hypothesis testing and Bayes’s rule are
p(D|H0) and p(H1|D), respectively, will note that
the Statements 1 through 5 are all about probabilities
of hypotheses and therefore cannot be answered with
significance testing. Statement 6, in contrast, is about
the probability of further significant results, that is,
about probabilities of data rather than hypotheses. That
this statement is wrong can be seen from the fact that

it does not include the conditional phrase “ . . . if H0 is
true.”

Note that the above two-step course does not
require in-depth instruction in Bayesian statistics
(see Edwards, Lindman, & Savage, 1963; Howson &
Urbach, 1989). This minimal course can be readily
extended to a few more tools, for instance, by adding
Neyman-Pearson testing, which computes the like-
lihood ratio p(D|H1)/p(D|H2). Psychologists know
Neyman-Person testing in the form of signal detection
theory, a cognitive theory that has been inspired by
the statistical tool (Gigerenzer & Murray, 1987). The
products of the three tools can be easily compared:

(a) p(D|H0) is obtained from null hypothesis
testing.

(b) p(D|H1)/p(D|H2) is obtained from Neyman-
Pearson hypotheses testing.

(c) p(H1|D) is obtained by Bayes’s rule.

For null hypothesis testing, only the likelihood
p(D|H0)matters; for Neyman-Pearson, the likelihood
ratio matters; and for Bayes, the posterior probability
matters. By opening the statistical toolbox and com-
paring tools, one can easily understand what each tool
delivers and what it does not. For the next question,
the fundamental difference between null hypothesis
testing and other statistical tools such as Bayes’s rule
and Neyman-Pearson testing is that in null hypothesis
testing, only one hypothesis—-the null—-is precisely
stated. With this technique, one is not able to compare
two or more hypotheses in a symmetric or “fair” way
and might draw wrong conclusions from the data.

21.3. Question 3: Can

the Null Ritual Hurt?

But it’s just a little ritual. It may be a bit silly, but it can’t
hurt, can it? Yes, it can. Consider a study in which the
authors had two precisely formulated hypotheses, but
instead of specifying the predictions of both hypothe-
ses for their experimental design, they performed the
null ritual. The question was how young children judge
the area of rectangles, and the two hypotheses were
the following: Children add height plus width, or
children multiply height times width (Anderson &
Cuneo, 1978). In one experiment, 5- to 6-year-old
children rated the joint area of two rectangles (not
an easy task). The reason for having them rate the
area of two rectangles rather than one was to disen-
tangle the integration rule (adding vs. multiplying)
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from the response function (linear vs. logarithmic).
Suffice to say that the idea for the experiment was
ingenious. The Height + Width rule was identified
with the null hypothesis of no linear interaction in
a two-factorial analysis of variance. The prediction
of the second hypothesis, the Height × Width rule,
was never specified, as it never is with null hypothesis
testing. The authors found that the “curves are nearly
parallel and the interaction did not approach signifi-
cance,F(4, 56) = 1.20” (p. 352). They concluded that
this and similar results would support the Height +
Width rule and disconfirm the multiplying rule. In
Anderson’s (1981) words, “Five-year-olds judge area
of rectangles by an adding, Height + Width rule”
(p. 33).

Testing a null, however, is a weak argument if one
has some ideas about the subject matter, as Ander-
son and Cuneo (1978) did. So let us derive the
actual predictions of both of their hypotheses for their
experimental design (for details, see Gigerenzer &
Murray, 1987). Figure 21.2 shows the prediction of
the Height + Width rule and that of the Height ×
Width rule. There were eight pairs of rectangles, shown
by the two curves. Note that the middle segment (the
parallel lines) does not differentiate between the two
hypotheses, as the left and the right segments do.
Thus, only these two segments are relevant. Here, the
Height + Width rule predicts parallel curves, whereas
the Height × Width rule predicts converging curves
(from left to right). One can see that the data (top panel)
actually show the pattern predicted by the multiplying
rule and that the curves converge even more than pre-
dicted. If either of the two hypotheses is supported by
the data, then it is the multiplying rule (this was sup-
ported by subsequent experimental research in which
the predictions of half a dozen hypotheses were tested;
see Gigerenzer & Richter, 1990). Nevertheless, the
null ritual misled the researchers into concluding that
the data would support the Height + Width rule.

Why was the considerable deviation from the
prediction of the Height + Width rule not statisti-
cally significant? One reason was the large amount
of error in the data: Asking young children to rate the
joint area of two rectangles produced highly unreliable
responses. This contributed to the low power of the
statistical tests, which was consistently below 10%
(Gigerenzer & Richter, 1990)! That is, the experi-
ments were set up so that the chance of accepting the
Height × Width rule if it is true was less than 1 in 10.

But doesn’t the alternative hypothesis always predict
a significant result? As Figure 21.2 illustrates, this is
not the case. Even if the data had coincided exactly with
the prediction of the multiplying rule, the result would

Figure 21.2 How to Draw the Wrong Conclusions by
Using Null Hypothesis Testing
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NOTE: Anderson and Cuneo (1978) asked which of two
hypotheses, Height + Width or Height × Width, describes
young children’s judgments of the joint area of rectangle pairs.
Following null hypothesis testing, they identified the Height +
Width rule with nonsignificance of the linear interaction in
an analysis of variance and the Height × Width rule with
a significant interaction. The result was not significant; the
Height × Width rule was rejected and the Height + Width rule
accepted. When one instead specifies the predictions of both
hypotheses (Gigerenzer & Murray, 1987), the Height + Width
rule predicts the parallel curves, and the Height × Width rule
predicts the converging curves. One can see that the data are
actually closer to the pattern predicted by the Height × Width
rule (see text).

not have been significant (because the even larger devi-
ation of the actual data was not significant either). In
general, a hypothesis predicts a value or a curve but not
significance or nonsignificance. The latter is the joint
product of several factors that have little to do with the
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hypothesis, including the number of participants, the
error in the data, and the statistical power.

This example is not meant as a critique of spe-
cific authors but as an illustration of how routine null
hypothesis testing can hurt. It teaches two aspects
of statistical thinking that are alien to the null ritual.
First, it is important to specify the predictions of more
than one hypothesis. In the present case, descrip-
tive statistics and mere eyeballing would have been
better than the null ritual and analysis of variance.
Second, good statistical thinking is concerned with
minimizing the real error in the data, and this is
more important than a small p-value. In the present
case, a small error can be achieved by asking chil-
dren for paired comparisons—which of two rectangles
(chocolate bars) is larger? Unlike ratings, compar-
ative judgments generate highly reliable responses,
clear individual differences, and allow researchers to
test hypotheses that cannot be easily expressed in the
“main-effect plus interaction” language of analysis of
variance (Gigerenzer & Richter, 1990).

21.4. Question 4: Is the Level

of Significance the Same

Thing as Alpha?

Let us introduce Dr. Publish-Perish. He is the average
researcher, a devoted consumer of statistical methods.
His superego tells him that he ought to set the level
of significance before an experiment is performed. A
level of 1% would be impressive, wouldn’t it? Yes,
but . . . there is a dilemma. He fears that the p-value
calculated from the data could turn out slightly higher,
such as 1.1%, and he would then have to report a
nonsignificant result. He does not want to take that
risk. Then there is the option of setting the level at a
less impressive 5%. But what if the p-value turned
out to be smaller than 1% or even .1%? Then he
would regret his decision deeply because he would
have to report this result as p < .05. He does not
like that either. So he thinks the only choice left is
to cheat a little and disobey his superego. He waits
until he has seen the data, rounds the p-value up to
the next conventional level, and reports that the result
is significant at p < .001, .01, or .05, whatever is
next. That smells of deception, and his superego leaves
him with feelings of guilt. But what should he do
when everyone else seems to play this little cheating
game?

Dr. Publish-Perish does not know that his moral
dilemma is caused by a mere confusion, a product of

textbook writers who failed to distinguish the three
main interpretations of the level of significance and
mixed them all up.

21.4.1. Interpretation 1: Mere Convention

So far, we have mentioned only in passing the sta-
tisticians who have created and shaped the ideas we
are talking about. Similarly, most statistical textbooks
for psychology and education are generally mute about
these eminent people and their ideas, which is remark-
able for a field where authors are cited compulsively,
and no shortage of competing theories exists.

The first person to introduce is Sir Ronald A.
Fisher (1890–1962), one of the most influential
statisticians ever, who also made first-rate contribu-
tions to genetics and was knighted for his achieve-
ments. Fisher spent most of his career at University
College, London, where he held the chair of eugen-
ics. His publications include three books on statis-
tics. For psychology, the most influential of these
was the second one, The Design of Experiments,
first published in 1935. In the Design, Fisher sug-
gested that we think of the level of significance as
a convention: “It is usual and convenient for exper-
imenters to take 5 per cent as a standard level of
significance, in the sense that they are prepared to
ignore all results which fail to reach this standard”
(p. 13). Fisher’s assertion that 5% (in some cases,
1%) is a convention to be adopted by all experi-
menters and in all experiments, whereas nonsignificant
results are to be ignored, became part of the null rit-
ual. For instance, the 1974 Publication Manual of
the American Psychological Association instructed
experimenters to make mechanical decisions using a
conventional level of significance:

Caution: Do not infer trends from data that fail by
a small margin to meet the usual levels of signifi-
cance. Such results are best interpreted as caused by
chance and are best reported as such. Treat the result
section like an income tax return. Take what’s coming
to you, but no more. (p. 19; this passage was deleted in
the 3rd edition [American Psychological Association,
1983])

In a recent defense of what he calls NHSTP (null
hypothesis significance testing procedure), Chow
(1998) still proclaims that null hypothesis tests should
be interpreted mechanically, using the conventional
5% level of significance. This view reminds us of a
maxim regarding the critical ratio, the predecessor of
the significance level: “A critical ratio of three, or no
Ph.D.”
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21.4.2. Interpretation 2: Alpha

The second eminent person we would like to intro-
duce is the Polish mathematician Jerzy Neyman, who
worked with Egon S. Pearson (the son of Karl Pearson)
at University College in London and later, when the
tensions between Fisher and himself grew too heated,
moved to Berkeley, California. Neyman and Pearson
criticized Fisher’s null hypothesis testing for several
reasons, including that no alternative hypothesis is
specified, which in turn does not allow computation of
the probability β of wrongly rejecting the alternative
hypothesis (Type II error) or of the power of the test
(1 – β) (Gigerenzer et al., 1989, chap. 3). In Neyman-
Pearson theory, the meaning of a level of significance
such as 3% is the following: If the hypothesis H1 is
correct, and the experiment is repeated many times,
the experimenter will wrongly reject H1 in 3% of the
cases. Rejecting the hypothesis H1 if it is correct is
called a Type I error, and the probability of reject-
ing H1 if it is correct is called alpha (α). Neyman
and Pearson insisted that one must specify the level
of significance before the experiment to be able to
interpret it as α. The same holds for β, which is the
rate of rejecting the alternative hypothesis H2 if it is
correct (Type II error). Here we get the second classical
interpretation of the level of significance: the error rate
α, which is determined before the experiment, albeit
not by mere convention but by cost-benefit calculations
that strike a balance between α, β, and sample size
n (Cohen, 1994).

21.4.3. Interpretation 3:
The Exact Level of Significance

Fisher had second thoughts about his proposal of a
conventional level and stated these most clearly in the
mid-1950s. In his last book, Statistical Methods and
Scientific Inference (1956, p. 42), Fisher rejected the
use of a conventional level of significance and ridiculed
this practice as “absurdly academic” (see epigram).
Fisher’s primary target, however, was the interpreta-
tion of the level of significance as α, which he rejected
as unscientific. In science, Fisher argued, unlike in
industrial quality control, one does not repeat the same
experiment again and again, as is assumed in Neyman
and Pearson’s interpretation of the level of significance
as an error rate in the long run. What researchers should
do instead, according to Fisher’s second thoughts, is
publish the exact level of significance, say, p = .02
(not p < .05), and communicate this result to their
fellow researchers.

Thus, the phrase level of significance has three
meanings:

1. the conventional level of significance, a common
standard for all researchers (early Fisher);

2. the α level, that is, the relative frequency of
wrongly rejecting a hypothesis in the long run
if it is true, to be decided jointly with β and the
sample size before the experiment and indepen-
dently of the data (Neyman & Pearson);

3. the exact level of significance, calculated from
the data after the experiment (late Fisher).

The basic difference is this: For Fisher, the exact
level of significance is a property of the data, that
is, a relation between a body of data and a theory;
for Neyman and Pearson, α is a property of the
test, not of the data. Level of significance and α are
not the same thing. The practical consequences are
straightforward:

1. Conventional level: You specify only one statis-
tical hypothesis, the null. You always use the 5% level
and report whether the result is significant or not; that
is, you report p < .05 or p > .05, just like in the null
ritual. If the result is significant, you reject the null;
otherwise, you do not draw any conclusion. There is
no way to confirm the null hypothesis. The decision is
asymmetric.

2. Alpha level: You specify two statistical hypothe-
ses, H1 and H2, to be able to calculate the desired
balance between α, β, and the sample size n. If the
result is significant (i.e., if it falls within the alpha
region), the decision is to reject H1 and to act as if
H2 were true; otherwise, the decision is to reject H2

and to act as if H1 were true. (We ignore here, for
simplicity, the option of a region of indecision.) For
instance, if α = β = .10, then it does not matter
whether the exact level of significance is .06 or .001.
The level of significance has no influence on α. Unlike
in null hypothesis testing with a conventional level, the
decision is symmetric.

3. Exact level of significance: You calculate the exact
level of significance from the data. You report, say,
p = .051 or p = .048. You do not use statements of
the type “p < .05” but report the exact (or rounded)
value. There is no decision involved. You communicate
information; you do not make yes-no decisions.

These three interpretations of the level of
significance are conflated in most textbooks used in
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psychology and education. This confusion is a direct
consequence of the sour fact that these textbooks do
not teach the toolbox and competing statistical theo-
ries but instead only one apparently monolithic form
of “statistics”—a mishmash that does not exist in
statistics proper (Gigerenzer, 1993, 2000).

Now let us go back to Dr. Publish-Perish and his
moral conflict. His superego demands that he specify
the level of significance before the experiment. We now
understand that this doctrine is part of the Neyman-
Pearson theory. His ego personifies Fisher’s theory of
calculating the exact level of significance from the data
but is conflated with Fisher’s earlier idea of making
a yes-no decision based on a conventional level of
significance. The conflict between his superego and his
ego is the source of his guilt feelings, but he does not
know that. Never having heard that there are different
theories, he has a vague feeling of shame for doing
something wrong. Dr. Publish-Perish does not follow
any of the three different conceptions. Unknowingly,
he tries to satisfy all of them and ends up presenting an
exact level of significance as if it were an alpha level,
yet first rounding it up to one of the conventional levels
of significance, p < .05, p < .01, or p < .001. The
result is not α, nor an exact level of significance, nor a
conventional level. It is an emotional and intellectual
confusion.

21.5. Question 5: What

Emotional Structure

Sustains the Null Ritual?

Dr. Publish-Perish is likely to share some of the
illusions demonstrated in the first section. Recall
that most of these illusions involve the confusion of
the level of significance with the probability of a
hypothesis. Yet every person of average intelligence
can understand the difference between p(D|H) and
p(H |D), suggesting that the issue is not an intellectual
but a social and emotional one. Following Gigerenzer
(1993; see also Acree, 1978), we will continue to use
the Freudian language of unconscious conflicts as an
analogy to analyze why intelligent people surrender
to statistical rituals rather than engage in statistical
thinking.

The Neyman-Pearson theory serves as the superego
of Dr. Publish-Perish’s statistical thinking, demand-
ing in advance the specification of precise alternative
hypotheses, significance levels, and power to calcu-
late the sample size necessary, as well as teaching the
doctrine of repeated random sampling (Neyman, 1950,

Figure 21.3 A Freudian Analogy for the Unconscious
Conflicts in the Minds of Researchers

The Unconscious Conflict

Superego

(Neyman-Pearson)
Two or more hypotheses; alpha and beta determined

before the experiment; compute sample size; no
statements about the truth of hypotheses . . .

Ego

(Fisher)
Null hypothesis only; significance level computed after the
experiment; beta ignored; sample size by rule of thumb;

gets papers published but left with feelings of guilt

Id

(Bayes)
Desire for probabilities of hypotheses

1957). Moreover, the frequentist superego forbids the
interpretation of levels of significance as the degree
of confidence that a particular hypothesis is true or
false. Hypothesis testing, in its view, is about decision
making (i.e., acting as if a hypothesis were true or false)
but not about epistemic statements (i.e., believing in a
hypothesis).

The Fisherian theory of significance testing func-
tions as the ego. The ego gets things done in the
laboratory and papers published. The ego determines
the level of significance after the experiment, and it
does not specify power or calculate the sample size
necessary. The ego avoids precise predictions from its
research hypothesis and instead claims support for it
by rejecting a null hypothesis. The ego makes abun-
dant epistemic statements about particular results and
hypotheses. But it is left with feelings of guilt and
shame for having violated the rules.

The Bayesian posterior probabilities form the id of
this hybrid logic. These probabilities of hypotheses
are censored by both the frequentist superego and the
pragmatic ego. However, they are exactly what the
Bayesian id wants, and it gets its way by wishful think-
ing and blocking the intellect from understanding what
a level of significance really is.

The Freudian analogy (see Figure 21.3) illustrates
the unconscious conflicts in the minds of the aver-
age student, researcher, and editor and provides a
way to understanding why many psychologists cling
to null hypothesis testing like a ritual and why they
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do not seem to want to understand what they easily
could. The analogy brings the anxiety and guilt, the
compulsive behavior, and the intellectual blindness
associated with the hybrid logic into the foreground.
It is as if the raging personal and intellectual conflicts
between Fisher and Neyman and Pearson, as well as
between these frequentists and the Bayesians, were
projected into an “intra-psychic” conflict in the minds
of researchers. In Freudian theory, ritual is a way of
resolving unconscious conflict.

Textbook writers, in turn, have tried to resolve
the conscious conflict between statisticians by col-
lective silence. You will rarely find a textbook for
psychologists that points out even a few issues in the
heated debate about what is good hypotheses testing,
which is covered in detail in Gigerenzer et al. (1989,
chaps. 3, 6). The textbook method of denial includes
omitting the names of the parents of the various
ideas—that is, Fisher, Neyman, and Pearson—except
in connection with trivialities such as an acknowledg-
ment for permission to reproduce tables. One of the
few exceptions is Hays (1963), who mentioned in one
sentence in the second edition that statistical theory
made cumulative progress from Fisher to Neyman and
Pearson, although he did not hint at their differing
ideas or conflicts. In the third edition, however, this
sentence was deleted, and Hays fell back to common
standards. When one of us (GG) asked him why he
deleted this sentence, he gave the same reason as for
having removed the chapter on Bayesian statistics: The
publisher wanted a single-recipe cookbook, not names
of statisticians whose theories might conflict. The fear
seems to be that a statistical toolbox would not sell as
well as one truth or one hammer.

Many textbook writers in psychology continue to
spread confusion about statistical theories, even after
they have learned otherwise. For instance, in response
to Gigerenzer (1993), Chow (1998) acknowledges that
different logics of statistical inference exist. But a few
lines later, he falls back into the “it’s-all-the-same”
fable when he asserts, “To K. Pearson, R. Fisher,
J. Neyman, and E. S. Pearson, NHSTP was what the
empirical research was all about” (p. xi). Calling the
heroes of the past to justify the null ritual (to which
NHSTP seems to amount) is bewildering. Each of
these statisticians would have rejected NHSTP. Ney-
man and Pearson spent their careers arguing against
null hypothesis testing, against a magical 5% level,
and for the concept of Type II error (which Chow
declares not germane to NHSTP). Chow’s confusion is
not an exception. NHSTP is the symptom of the uncon-
scious conflict illustrated in Figure 21.3. Laying open
the conflicts between major approaches rather than

denying them would be a first step to understanding
the underlying issues, a prerequisite for statistical
thinking.

21.6. Question 6: Who Keeps

Psychologists Performing

the Null Ritual?

Ask graduate students, and they likely point to their
advisers. The students do not want problems with their
thesis. When we meet them again as post-docs, the
answer is that they need a job. After getting their first
job, they still feel restricted because there is a tenure
decision in a couple of years. When they are safe as
associate or full professors, it is still not their fault
because they believe the editors of the major journals
will not publish their papers without the null ritual.
There is always someone else to blame, rather than
one’s own lack of having the courage to know. But fears
about punishment for rule violations are not entirely
unfounded. For instance, Melton (1962) insisted on the
null ritual and also made it clear in his editorial that he
wants to see p < .01, not just p < .05. The reasons he
gave were two of the illusions listed in Section 21.1.
He misleadingly asserted that the lower the p-value,
the higher the confidence that the alternative hypoth-
esis is true and the higher the probability that a
replication will find a significant result. Nothing
beyond p-values is mentioned in the editorial: Pre-
cise hypotheses, good descriptive statistics, confidence
intervals, effect sizes, and power do not appear in his
statement about good research. Thus, the null ritual
seems to be enforced by editors.

The story of a recent editor, however, reveals that the
truth is not as simple as that. In his “On the Tyranny
of Hypothesis Testing in the Social Sciences,” Geof-
frey Loftus (1991) reviewed The Empire of Chance
(Gigerenzer et al., 1989), which presented one of
the first analyses of how psychologists mishmashed
ideas of Fisher and also Neyman and Pearson into one
hybrid logic. When Loftus (1993) became the editor of
Memory & Cognition, he made it clear in his editorial
that he did not want authors to submit papers in which
p-, t-, or F -values are mindlessly being calculated
and reported. Rather, he asked researchers to keep it
simple and report figures with error bars, following
the proverb that “a picture is worth more than a
thousand p-values.” We admire Loftus for having
had the courage to take this step. Years after, one of
us (GG) asked Loftus about the success of his cru-
sade against thoughtless significance testing. Loftus
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bitterly complained that most researchers actually
refused the opportunity to escape the ritual. Even when
he asked in his editorial letter to get rid of dozens of
p-values, the authors insisted on keeping them in.
There is something deeply engrained in the minds of
many researchers that makes them repeat the same
action over and over again.

21.7. Question 7: How Can We

Advance Statistical Thinking?

There is no single recipe for promoting statistical
thinking, but there are several good heuristics. We
sketch a few of these, which the readers can use to
construct their own program or curriculum.

21.7.1. Hypotheses Is in the Plural

If there is one single severe problem with the null
ritual, then it is the fact that hypothesis is in the singu-
lar. Hypotheses testing should always be competitive;
that is, the predictions of several hypotheses should
be specified. Figure 21.2 gives an example of how the
predictions of two hypotheses can be specified graph-
ically. Rieskamp and Hoffrage (1999), for instance,
test eight competing hypotheses about how people
predict the profit of companies, and Gigerenzer and
Hoffrage (1995) test the predictions of six cognitive
strategies in problem solving. One advantage of multi-
ple hypotheses is the analysis of individual differences:
For instance, one can show that people systematically
follow different problem-solving strategies.

21.7.2. Minimize the True Error

Statistical thinking does not simply involve measur-
ing the error and inserting the value into the denomina-
tor of the t-ratio. Good statistical thinking is about how
to minimize the real error. By real error, we refer to the
true variability of measurements or observations, not
the variance divided by the square root of the number
of observations. W. S. Gosset, who published the
t-test in 1908 under the pseudonym “Student,” wrote,
“Obviously the important thing . . . is to have a low real
error, not to have a ‘significant’ result at a particular
station. The latter seems to me to be nearly valueless in
itself” (quoted in Pearson, 1939, p. 247). Methods
of minimizing the real error include proper choice
of task (e.g., paired comparison instead of rating)
(see Gigerenzer & Richter, 1990), proper choice of

experimental environment (e.g., testing participants
individually rather than in large classrooms), proper
motivation (e.g., by performance-contingent payment
rather than flat sums), instructions that are unambigu-
ous rather than vague, and the avoidance of unnec-
essary deception of participants about the purpose of
the experiment, which can lead to second-guessing
and increased variability of responses (Hertwig &
Ortmann, 2001).

21.7.3. Think of a Toolbox, Not of a Hammer

Recall that the problem of inductive inference has
no single best solution—-it has many good solutions.
Statistical thinking involves analyzing the problem at
hand and then selecting the best tool in the statistical
toolbox or even constructing such a tool. No tool is best
for all problems. For instance, there is no single best
method of representing a central tendency: Whether to
report the mean, the median, the mode, or all three of
these needs to be decided by the problem at hand. The
toolbox includes, among others, descriptive statistics,
methods of exploratory data analysis, confidence inter-
vals, Fisher’s null hypothesis testing, Neyman-Pearson
hypotheses testing, Wald’s sequential analysis, and
Bayesian statistics.

The concept of a toolbox has an important conse-
quence for teaching statistics. Stop teaching the null
ritual or what is called NHSTP (see, e.g., Chow, 1998;
Harlow, 1997). Teach statistics in the plural: the major
statistical tools together with good examples of prob-
lems they can solve. For instance, the logic of Fisher’s
(1956) null hypothesis testing can easily be made clear
in three steps:

1. Set up a statistical null hypothesis. The null need
not be a nil hypothesis (zero difference).

2. Report the exact level of significance (e.g.,
p = .011 or .051). Do not use a conventional
5% level (e.g., p < .05), and do not talk about
accepting or rejecting hypotheses.

3. Use this procedure only if you know very little
about the problem at hand.

Note that Fisher’s null hypothesis testing is, at each
step, unlike the null ritual (see introduction). One
can see that statistical power has no place in Fisher’s
framework—one needs a specified alternative hypo-
thesis to compute power. In the same way, one can
explain the logic of Neyman-Pearson hypotheses test-
ing, which we illustrate for the case of two hypotheses
and a binary decision criterion as follows:
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1. Set up two statistical hypotheses, H1 and H2,
and decide about α, β, and sample size before
the experiment, based on subjective cost-benefit
considerations. These define a rejection region
for each hypothesis.

2. If the data falls into the rejection region of
H1, accept H2; otherwise, accept H1. Note that
accepting a hypothesis does not imply that you
believe in it; it only means that you act as if it
were true.

3. The usefulness of the procedure is limited to
situations in which you have a disjunction of
hypotheses (e.g., either µ = 8 or µ = 10 is true)
and in which the scientific context can provide the
utilities that enter the choice of alpha and beta.

A typical application of Neyman-Pearson testing is
in quality control. Imagine a manufacturer of metal
plates that are used in medical instruments. She con-
siders a mean diameter of 8 mm (H1) as optimal and
10 mm (H2) as dangerous to the patients and hence
unacceptable. From past experience, she knows that
the random fluctuations of diameters are approxi-
mately normally distributed and that the standard
deviations do not depend on the mean. This allows
her to determine the sampling distributions of the mean
for both hypotheses. She considers accepting H1 while
H2 is true (Type II error) to be the most serious error
because it may cause harm to patients and to the firm’s
reputation. She sets its probability as β = 0.1% and
α = 10%. Now she calculates the required sample
size n of plates that must be sampled every day to
test the quality of the production. When she accepts
H2, she acts as if there were a malfunction and stops
production, but this does not mean that she believes that
H2 is true. She knows that she must expect a false alarm
in 1 out of 10 days in which there is no malfunction
(Gigerenzer et al., 1989, chap. 3).

The basic logic of other statistical tools can be taught
in the same way, and examples for their usefulness and
limits can be provided.

21.7.4. Know and Show Your Data

Descriptive statistics and exploratory data analysis
are typically more informative than the null ritual,
specifically in the presence of multiple hypotheses.
For instance, the plot of the three curves shown in
Figure 21.2 is more informative than the result of the
analysis of variance that the data do not deviate sig-
nificantly from the predictions of the null. Showing in

addition the individual data points around the means
of the data curve, or at least the error bars, would
be even more informative. Similarly, a scatter plot
showing the data points is more informative than a cor-
relation coefficient, for each scatter plot corresponds
to one correlation, whereas a correlation of .5, for
example, corresponds to many and strikingly different
scatter plots. Wilkinson and the Task Force on Statis-
tical Inference (1999) give examples for informative
graphs.

21.7.5. Keep It Simple

A statistical analysis should be transparent to its
author and the readership. Each statistical method con-
sists of a sequence of mathematical operations, and to
understand what the end product (factor scores, regres-
sion weights, nonsignificant interactions) means, one
needs to check the meaning of each operation at each
step. Transparency allows the reader to follow each
step and to understand or criticize the analysis. The
best vehicle for transparency is simplicity. If a point
can be made by a simple analysis, such as plotting
the means and standard deviations, one should stick
with it rather than using a less transparent method,
such as factor analysis or path analysis. The purpose
of a statistical analysis is not to impress others with a
complex method they do not fully understand. We have
witnessed painful talks whereby the audience actually
insisted on clarification, only to learn that the author
did not understand his fancy method either. Never
use a statistical method that is not entirely transparent
to you.

21.7.6. p-Values Want Company

If you wish to report a p-value, remember that
it conveys very limited information. Thus, report
p-values together with information about effect sizes,
or power, or confidence intervals. Recall that the null
hypothesis that defines the p-value need not be a
nil hypothesis (e.g., zero difference); any hypothesis
can be a null, and many different nulls can be tested
simultaneously (e.g., Gigerenzer & Richter, 1990).

21.8. Question 8: How Can

We Have More Fun With Statistics?

Many students experience statistics as dry, dull,
and dreary. It certainly need not be; real-world
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examples (as in Gigerenzer, 2002) can make statistical
thinking exciting. Here are several other ways of
turning students into statistics addicts, or at least of
making them think. The first heuristic is to draw a red
thread from the past to the present. We understand the
aspirations and fears of a person better if we know
his or her history. Knowing the history of a statistical
concept can create a similar feeling of intimacy.

21.8.1. Connecting to the Past

The first test of a null hypothesis was by John
Arbuthnot in 1710. His aim was to give an empirical
proof of divine providence, that is, of an active God.
Arbuthnot observed that “the external accidents to
which males are subject (who must seek their food
with danger) do make a great havock of them, and that
this loss exceeds far that of the other sex” (p. 188). To
repair this loss, he argued, God brings forth more males
than females, year after year. He tested this hypothesis
of divine purpose against the null hypothesis of mere
chance, using 82 years of birth records in London.
In every year, the number of male births was larger
than that of female births. Arbuthnot calculated the
“expectation” of these data if the hypothesis of blind
chance were true. In modern terms, the probability of
these data if the null hypothesis were true was

p(D|H0) = (1/2)82.

Because this probability was so small, he con-
cluded that it is divine providence, not chance, that
rules:

Scholium. From hence it follows, that Polygamy is
contrary to the Law of Nature and Justice, and to the
Propagation of the human Race; for where Males and
Females are in equal number, if one Man takes Twenty
Wifes, Nineteen Men must live in Celibacy, which is
repugnant to the Design of Nature; nor is it probable
that Twenty Women will be so well impregnated by one
Man as by Twenty. (qtd. in Gigerenzer & Murray, 1987,
pp. 4–5)

Arbuthnot’s proof of God highlights the limitations
of null hypothesis testing. The research hypothesis
(God’s divine intervention) is not stated in statisti-
cal terms. Nor is a substantial alternative hypothesis
stated in statistical terms (e.g., 3% of female newborns
are abandoned immediately after birth). Only the null
hypothesis (“chance”) is stated in statistical terms—
a nil hypothesis. A result that is unlikely if the null
were true (a low p-value) is taken as “proof” of the
unspecified research hypothesis.

Arbuthnot’s test was soon forgotten. The specific
techniques of null hypothesis testing, such as the t-test
(devised by Gosset in 1908) or theF -test (F for Fisher,
e.g., in analysis of variance), were first applied in the
context of agriculture. The examples in Fisher’s first
book on statistics (1925) smelled of manure, potatoes,
and pigs. In his second book (1935), Fisher had cleaned
out this odor, as well as much of the mathematics, so
that social scientists could bond with the new statistics.
The first applications of these tests in psychology were
mostly in parapsychology and education.

A striking change in research practice, which
was named the inference revolution in psychology
(Gigerenzer & Murray, 1987), happened from approx-
imately 1940 to 1955 in the United States. It led to the
institutionalization of the null ritual as the method of
scientific inference in university curricula, textbooks,
and the editorials of major journals. Before 1940, null
hypothesis testing using analysis of variance or the
t-test was practically nonexistent: Rucci and Tweney
(1980) found a total of only 17 articles published
from 1934 to 1940 that used it. By the early 1950s,
half of the psychology departments in leading U.S.
universities had made inferential statistics a graduate
program requirement (Rucci & Tweney, 1980). By
1955, more than 80% of the empirical articles in four
leading journals used null hypothesis testing (Sterling,
1959). Today, the figure is close to 100%. Despite
decades of critique of the null ritual, it is still prac-
ticed and defended by the majority of psychologists.
For instance, it is often argued that if we can strip
routine null hypothesis testing of the mental confusion
associated with it, something of limited but important
use is left: “deciding whether or not research data can
be explained in terms of chance influences” (Chow,
1998, p. 188). We are back to Arbuthnot: The focus is
on chance; to test substantive alternative hypotheses is
not an issue. Arbuthnot, it should be said to his defense,
was a step ahead—he did not recommend his procedure
as a routine.

Materials to connect with the past can be drawn
from two seminal books by Stephen Stigler (1986,
1999). His writing is so clear and entertaining that
it feels as though one had grown up with statistical
thinking. Danziger (1987), Gigerenzer (1987, 2000),
and Gigerenzer et al. (1989) tell the story of the
institutionalization of the null ritual in psychology.

21.8.2. Controversies and Polemics

Statistics has plenty of controversies. These stories
of conflict can provide highly motivating material
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for students, who learn that—unlike in their
textbooks—statistics is about real people and their
struggles with ideas and with one another. Because of
Fisher’s remarkable talent for polemics, his writings
can serve as a starting point. Here are a few highlights.

Fisher once congratulated the Reverend Thomas
Bayes for his insight to withhold his treatise from
publication (it was published posthumously in 1763/
1963). Why did Fisher say that? Bayes’s rule presup-
poses the availability of a prior probability distribution
over the possible hypotheses, and Fisher insisted that
such a distribution is only meaningful when it can be
verified by sampling from a population. Such distri-
butional data are available in the case of HIV testing
(see Question 2) but obviously uncommon for scien-
tific hypotheses. Fisher believed that the Bayesians
are wrong in assuming that all uncertainties can be
expressed in terms of probabilities (see Gigerenzer et
al., 1989, pp. 92–93).

Bayes’s rule and subjective probabilities were not
the only target for Fisher. He branded Neyman’s posi-
tion as “childish” and “horrifying [for] the intellectual
freedom of the west.” Indeed, he likened Neyman to

Russians [who] are made familiar with the ideal that
research in pure science can and should be geared
to technological performance, in the comprehensive
organized effort of a five-year plan for the nation . . .
[whereas] in the U.S. also the great importance of orga-
nized technology has I think made it easy to confuse
the process appropriate for drawing correct conclu-
sions, with those aimed rather at, let us say, speeding
production, or saving money. (Fisher, 1955, p. 70)

Why did Fisher link the Neyman-Pearson theory to
Stalin’s 5-year plans? Why did Fisher also compare
them to the Americans, who confuse the process of
gaining knowledge with speeding up production and
saving money? It is probably not an accident that
Neyman was born in Russia and, at the time of Fisher’s
comment, had moved to the United States. What Fisher
believed was that cost-benefit calculations, Type I error
rates, Type II error rates, and accept-reject decisions
had nothing to do with gaining knowledge but instead
with technology and making money, as in quality
control in industry. Researchers do not accept or reject
hypotheses; rather, they communicate the exact level
of significance to fellow researchers, so that others
can freely make up their minds. In Fisher’s eyes, free
communication was a sign of the freedom of the West,
whereas being told a decision was a sign of commu-
nism. For him, the concepts of α, β, and power (1 – β)
have nothing to do with testing scientific hypotheses.

They are defined as long-run frequencies of errors in
repeated experiments, whereas in science, there are no
experiments repeated again and again.

Fisher (1956) drew a bold line between his null
hypothesis tests and Neyman-Pearson’s tests, which he
ridiculed as originating from “the phantasy of circles
[i.e., mathematicians] rather remote from scientific
research” (p. 100). Neyman, for his part, responded
that some of Fisher’s tests “are in a mathematically
specifiable sense ‘worse than useless”’ (Hacking,
1965, p. 99). What did Neyman have in mind with this
verdict? Neyman had estimated the power of some of
Fisher’s tests, including the famous Lady-tea-tasting
experiment in Fisher (1935), and found that the power
was sometimes smaller than α.

Polemics can motivate students to ask questions and
to understand the competing ideas underlying the tools
in the toolbox. For useful material, see Fisher (1955,
1956), Gigerenzer (1993), Gigerenzer et al. (1989,
chap. 3), Hacking (1965), and Neyman (1950).

21.8.3. Playing Detective

Aside from motivating examples, history, and
polemics, a further way to engage students is to chal-
lenge them to find the errors of others. For instance,
assign your students the task of looking up the section
on the logic of hypothesis testing in textbooks for statis-
tics in psychology and checking for wishful thinking,
as in Table 21.1. Table 21.2 shows the result for a
widely read textbook whose author, as usual, did not
spell out the differences between Fisher, Neyman and
Pearson, and the Bayesians but mixed them all up.
The price for this was confusion and wishful think-
ing about the omnipotence of the level of significance.
Table 21.2 shows quotes from three pages of the text-
book, in which the author tries to explain to the reader
what a level of significance means. For instance, the
first three assertions are unintelligible or plainly wrong
and suggest that a level of significance would provide
information about the probability of hypotheses, and
the fourth amounts to the replication fallacy.

Over the years, textbooks writers in psychology have
learned to avoid obvious errors but still continue to
teach the null ritual. For instance, the 16th edition
of a very influential textbook, Gerrig and Zimbardo’s
(2002) Psychology and Life, contains sections on
“inferential statistics” and “becoming a wise consumer
of statistics” (pp. 37–46), which are pure guidelines for
the null ritual. The ritual is portrayed as statistics per se
and named the “backbone of psychological research”
(p. 46). Our detective student will find that the names
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Table 21.2 What Does “Significant at the 5% Level”
Mean?

• “If the probability is low, the null hypothesis is improbable”
• “The improbability of observed results being due to error”
• “The probability that an observed difference is real”
• “The statistical confidence . . . with odds of 95 out of 100

that the observed difference will hold up in investigations”
• Degree to which experimental results are taken “seriously”
• “The danger of accepting a statistical result as real when it is

actually due only to error”
• Degree of “faith [that] can be placed in the reality of the

finding”
• “The investigator can have 95 percent confidence that the

sample mean actually differs from the population mean”
• “All of these are different ways to say the same thing”

SOURCE: Nunally (1975).
NOTE: Within three pages of text, the author of a widely read textbook
explained to the reader that “level of significance” means all of the above
(Nunally, 1975, pp. 194–196). Smart students will be confused, but they
may misattribute their confusion to their own lack of understanding.

of Fisher, Bayes, Neyman, and Pearson are not
mentioned, nor are concepts such as power, effect size,
or confidence intervals. She may also stumble upon
the prevailing oracular language: “Inferential statistics
indicate the probability that the particular sample of
scores obtained are actually related to whatever you
are attempting to measure or whether they could have
occurred by chance” (p. 44). Yet in the midst of un-
intelligible and nonsensical explanations such as these
appear moments of deep insight: “Statistics can also
be used poorly or deceptively, misleading those who
do not understand them” (p. 46).

21.9. Question 9: What If There

Were No Significance Tests?

This question has been asked in a series of articles
in Harlow, Mulaik, and Steiger (1997) and in similar
debates, which are summarized in the superb review
by Nickerson (2000). However, there are actually two
different questions: What if there were no null hypo-
thesis testing (significance testing), as advocated by
Fisher? What if there were no null ritual (or NHSTP)?

If eminent psychologists have anything in common,
it is their distaste for mindless null hypothesis
testing—which contrasts with the taste of the masses.
You will not catch Jean Piaget testing a null hypothe-
sis. Piaget worked out his logical theory of cognitive
development, Wolfgang Köhler the Gestalt laws of
perception, I. P. Pavlov the principles of classical
conditioning, B. F. Skinner those of operant con-
ditioning, and Sir Frederick Bartlett his theory of
remembering and schemata—all without rejecting a

null hypothesis. Moreover, F. Bartlett, R. Duncan
Luce, Herbert A. Simon, B. F. Skinner, and S. S.
Stevens explicitly protested in their writings against
the null ritual (Gigerenzer, 1987, 1993; Gigerenzer &
Murray, 1987).

So what if there were no null ritual or NHST? Noth-
ing would be lost, except confusion, anxiety, and a
platform for lazy theoretical thinking. Much could be
gained, such as knowledge about different statistical
tools, training in statistical thinking, and a motivation
to deduce precise predictions from one’s hypotheses.
Should we ban the null ritual? Certainly—it is a matter
of intellectual integrity. Every researcher should have
the courage not to surrender to the ritual, and every edi-
tor, textbook writer, and adviser should feel obliged to
promote statistical thinking and reject mindless rituals.

What if there were no null hypothesis testing, as
advocated by Fisher? Not much would be lost, except
in situations in which we know very little, where a
p-value by itself can contribute something. Note that
this question is a different one: Fisher’s null hypothesis
testing is one tool in the statistical toolbox, not a ritual.
Should we ban null hypothesis testing? No, there is
no reason to do so; it is just one small tool among
many. What we need is to educate the next generation
to dare to think and free themselves from compulsive
hand-washing, anxiety, and feelings of guilt.
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Chapter 22

On Exogeneity

David Kaplan

22.1. Introduction

When using linear statistical models to estimate
substantive relationships, a distinction is made be-
tween endogenous variables and exogenous variables.
Alternative names for these variables are dependent
and independent, or criterion and predictor. In the case
of multiple linear regression, one variable is desig-
nated as the endogenous variable, and the remaining
variables are designated as exogenous. In multivariate
regression, a set of endogenous variables is chosen and
related to one or more exogenous variables. In the case
of structural equation modeling, there is typically a set
of endogenous variables that are related to each other
and also related to a set of exogenous variables.

More often than not, the choice of endogenous and
exogenous variables is guided by the research question
of interest, with little consideration given to statistical
consequences of that choice. Moreover, an inspec-
tion of standard textbooks in the social and behavioral
sciences reveals confusing definitions of endogenous
and exogenous variables. For example, Cohen and
Cohen (1983) write,

Exogenous variables are measured variables that are
not caused by any other variable in the model except
(possibly) other exogenous variables. They have essen-
tially the same meaning as independent variables in

AUTHOR’S NOTE: This research was supported by a fellowship from the American Educational Research Association, which receives
funds for its “AERA Grants Program” from the National Science Foundation, the National Center for Education Statistics, and the
Office of Educational Research and Improvement (U.S. Department of Education) under NSF Grant # REC-9980573. Opinions reflect
those of the author and do not necessarily reflect those of the granting agencies. The author is grateful to Professor Aris Spanos for
valuable comments on an earlier draft of this chapter.

ordinary regression analysis except that they explicitly
include the assumption that they are not causally
dependent on the endogenous variables in the model.
Endogenous variables are, in part, effects of exogenous
variables and do not have a causal effect on them.
(p. 375)

In another example, Bollen (1989) writes,

The terms exogenous and endogenous are model
specific. It may be that an exogenous variable in one
model is endogenous in another. Or, a variable shown
as exogenous, in reality, may be influenced by a variable
in the model. Regardless of these possibilities, the
convention is to refer to variables as exogenous or
endogenous based on their representation in a particular
model. (p. 12)

And finally, from an econometric perspective,
Wonnacott and Wonnacott (1979) write with regard
to treating income (denoted as I in their definition) as
an exogenous variable,

An important distinction must be made between two
kinds of variables in our system. By assumption, I is
an exogenous variable. Since its value is determined
from outside the system, it will often be referred to as
predetermined; however it should be recognized that a
predetermined variable may be either fixed or random.
The essential point is that its values are determined
elsewhere. (pp. 257–258)

409
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The above definitions of exogenous variables
are typical of those found in most social science
statistics textbooks.1 Nevertheless, these and other
similar definitions are problematic for a number of rea-
sons. First, these definitions do not articulate precisely
what it means to say that exogenous variables are not
dependent on the endogenous variables in the model.
For example, with the Cohen and Cohen (1983) defi-
nition, if an exogenous variable is possibly dependent
on other exogenous variables, then these “dependent”
exogenous variables are actually endogenous, and
what is being described by this definition is a system
of structural equations. Second, Bollen’s (1989) def-
inition, although accurately describing the standard
convention, seems to confuse a variable’s representa-
tion in a model with exogeneity. However, the location
of a variable in a model does not necessarily render the
variable exogenous. In other words, Bollen’s definition
implies that simply stating that a variable is exoge-
nous makes it so. Moreover, Bollen defines exogeneity
with respect to a model and not with respect to the
statistical structure of the data used to test the model.
Third, in the Wonnacott and Wonnacott (1979) defini-
tion, the notion of “outside the system” is never really
developed. Implied by these different definitions is a
confusion between theoretical exogeneity versus sta-
tistical exogeneity and the consequences for the former
when the latter does not hold.

From our discussion so far, it is clear that these
common definitions of exogeneity do not provide a
complete picture of the subtleties or seriousness of the
problem. A more complete study of the problem of
exogeneity comes from the work of Richard (1982) and
his colleagues within the domain of econometrics. This
chapter, therefore, provides a didactic introduction to
the econometric notion of exogeneity as it pertains to
linear regression with a brief discussion of the problem
with respect to structural equation modeling, multi-
level modeling, and growth curve modeling. It is
the goal of this chapter to highlight the seriousness
of examining exogeneity assumptions carefully when
specifying statistical models—particularly if models
are to be used for prediction or the evaluation of poli-
cies or interventions. Attention will focus primarily on
the concept of weak exogeneity and informal methods
for testing whether weak exogeneity holds. The more
restrictive concept of strong exogeneity will be simi-
larly introduced along with the notion of Granger non-
causality, which will require incorporating a dynamic
component into the simple linear regression model.

1. It is also quite common to find that textbooks avoid a definition of
exogenous variables altogether.

Super exogeneity will be introduced along with related
concepts of parameter constancy and invariance.
Methods for testing strong and super exogeneity will
be outlined. Weak, strong, and super exogeneity will
be linked to the uses of a statistical model for inference,
forecasting, and policy analysis, respectively.

The organization of this chapter is as follows. In
Section 22.2, the general problem of exogeneity is
introduced. In Section 22.3, the concept of weak
exogeneity will be defined in the case of simple linear
regression. Here, the auxiliary concepts of parameters
of interest and variation freeness will be introduced.
This section will also discuss exogeneity in the context
of structural equation modeling. In Section 22.4, we
will consider the conditions under which weak exo-
geneity can be assumed to hold, as well as conditions
where it is likely to be violated. We will also consider
three indirect but related tests of weak exogeneity. In
Section 22.5, we will introduce a temporal component
to the model that will lead to the concept of Granger
noncausality and, in turn, to strong exogeneity. We
will discuss these concepts as they pertain to the use
of statistical models for prediction. In Section 22.6,
we will consider the problem of super exogeneity
and the concepts of parameter constancy and invari-
ance. We will consider these concepts in light of their
implications for evaluating interventions or policies.
Finally, Section 22.7 will conclude with a discussion
of the implications of the exogeneity assumption for
the standard practice of statistical modeling, briefly
touching on the implications of the exogeneity assump-
tion for two other popular statistical methodologies in
the social and behavioral sciences. Throughout this
chapter, concepts will be grounded in substantive prob-
lems within the field of education and education policy.

22.2. The Problem of Exogeneity

It was noted in Section 22.1 that definitions of
exogenous and endogenous variables encountered in
standard social science statistics textbooks are often
confusing. In this section, we consider the problem of
defining exogeneity more carefully, relying on work
in econometric theory. A collection of seminal papers
on the problem of exogeneity can be found in Ericsson
and Irons (1994), and a brief discussion of the problem
was introduced to the structural equation modeling
literature by Kaplan (2000).

To begin, it is typical to invoke the heuristic
that an exogenous variable is one whose cause is
determined from “outside the system under investiga-
tion.” This heuristic is implied in the Wonnacott and
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Wonnacott (1979) definition of an exogenous variable
given above. Usually, the notion of a variable being
generated from “outside the system” is another way
of stating that there is zero covariance between the
regressor and the disturbance term. However, such a
heuristic is problematic upon close inspection because
it does not explicitly define what “outside the system”
actually means.

As a way of demonstrating the problem with
this heuristic, consider the counterexample given by
Hendry (1995) of a fixed-regressor model. To provide
a substantive motivation for these ideas, consider the
problem of estimating the relationship between read-
ing proficiency in young children as a function of
parental reading activities (e.g., how often each week
parents read to their children). We may represent this
relationship by the simple model

yt = βxt + ut , (1)

where y represents reading proficiency, x represents
the parental reading activities, β is the regression
coefficient, and u is the disturbance term, which is
assumed to be NID(0, σ 2

u ). The subscript t denotes
the particular time point of measurement—a distinc-
tion that might be needed with the analysis of panel
data.

Typically, parental reading activities are treated as
fixed. That is, at time t, levels of parental involve-
ment in reading are assumed to be set and remain
the same from that point on. If this assumption were
true, then conditional estimation of reading proficiency
given parental involvement in reading activities would
be valid. However, it is probably not the case in
practice that parental reading activities are fixed but
rather are likely to be a function of past parental
reading activities. That is, perhaps the mechanism
that generates parental reading activities at time t

is better represented by a first-order autoregressive
model,

xt = γ xt−1 + vt , (2)

where we will assume that |γ | < 1, ensuring a stable
autoregressive process. Even if it were the case that
the model in equation (2) generated parental reading
activities prior to generating reading proficiency, that
is still not a sufficient condition to render parental read-
ing activities exogenous in this example. The reason is
that such a condition does not preclude current distur-
bances in equation (1) to be related to past disturbances
in equation (2)—namely,

ut = ϕνt−1 + εt . (3)

If equation (3) holds for ϕ=/ 0, then

E(xt , ut ) = E[(γ xt−1 + νt )(ϕνt−1 + εt )]
= γ ϕσ 2

v , (4)

and, therefore, xt is correlated with ut and hence is not
exogenous.

This simple counterexample serves to illustrate
the subtleties of the problem of exogeneity. Despite
treating parental reading activities as a fixed regres-
sor and assuming that it is generated “from outside
the system,” the fact is that the true mechanism
that generates current values of the regressor yields
a model in which the regressor is correlated with
the disturbance term, suggesting that it is generated
from inside the system as far as the model is con-
cerned. Therefore a rigorous definition of exogeneity
is required that does not depend on the particular
model under study but rather is based on the true
structure of the system under investigation (Hendry,
1995).

22.3. Weak Exogeneity

Having shown that the concept of exogeneity is more
subtle than standard definitions imply, we can begin
our formal discussion of the problem by introducing
the concept of weak exogeneity, which will serve to
set the groundwork for subsequent discussions of other
forms of exogeneity. To fix ideas, consider a matrix of
variables denoted as z of order N × r , where N is the
sample size and r is the number of variables. Under
the assumption of independent observations, the joint
distribution of z is given as

f (z|θ) = f (z1, z2, . . . , zN |θ) =
N∏
i=1

f (zi |θ), (5)

where θ is a vector of parameters of the joint
distribution of z. Most statistical modeling requires
a partitioning of z into endogenous variables to be
modeled and exogenous variables that are assumed
to account for the variation and covariation in the
endogenous variables. Denote by y the N × p matrix
of endogenous variables and denote by x an N × q
matrix of exogenous variables where r = p + q. We
can rewrite equation (1) in terms of the conditional
distribution of y given x and the marginal distribution
of x. That is, equation (1) can be related
to the conditional distribution in the following
decomposition:

f (y, x|θ) = f (y|x,ω1)f (x,ω2), (6)
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where ω1 are the parameters associated with the
conditional distribution of y given x, and ω2 are the
parameters associated with the marginal distribution
of x. The parameter spaces of ω1 and ω2 are denoted
as �1 and �2, respectively.

It is clear that factoring the joint distribution in
equation (5) into the product of the conditional dis-
tribution and marginal distribution in equation (6)
presents no loss of information. However, stan-
dard statistical modeling almost always focuses on
the conditional distribution in equation (6). Indeed,
the conditional distribution is often referred to as the
regression function. That being the case, then focus-
ing on the conditional distribution assumes that the
marginal distribution can be taken as given (Ericsson,
1994). The issue of exogeneity concerns the implica-
tions of this assumption for the parameters of interest.

22.3.1. Variation Freeness

Another important concept as it relates to the
problem of exogeneity is that of variation freeness.
Specifically, variation freeness means that for any
value of ω2 in �2,ω1 can take on any value in �1 and
vice versa (Spanos, 1986). In other words, it is assumed
that the pair (ω1,ω2) belong to the product of their
respective parameter spaces—namely, (�1 × �2)—
and that the parameter space �1 is not restricted by ω2

and vice versa. Thus, knowing the value of a param-
eter in the marginal model provides no information
regarding the range of values that a parameter in the
conditional model can take. Alternatively, restricting
ω2 in any way that ensures that ω2 is in �2 does not
restrict ω1 in any way that does not allow it to take all
possible values in �1.

As an example of variation freeness, consider a
simple regression model with one endogenous variable
y and one exogenous variable x. The parameters
of interest of the conditional distribution are ω1 ≡
(β0, β1, σ

2
u ), and the parameters of the marginal distri-

bution are ω2 ≡ (µx, σ 2
x ). Furthermore, note thatβ1 =

σxy/σ
2
x , where σxy denotes the covariance of x and y.

Following Ericsson (1994), if σxy varies proportionally
withσ 2

x , thenσ 2
x , which is in ω2, carries no information

relevant for the estimation of β1 = σxy/σ
2
x , which is

in ω1. Therefore, ω1 and ω2 are variation free. An
example in which variation freeness could be violated
is in cases where a parameter in the conditional model
is constrained to be equal to a parameter in the marginal
model—however, such cases are rare in the social and
behavioral sciences. Below we will show an exam-
ple in which the condition of variation freeness does
not hold.

22.3.2. Parameters of Interest

Variation freeness does not guarantee that one can
ignore the marginal model when interest centers on the
parameters of the conditional model. As in Ericsson
(1994), if interest centers on estimating the conditional
and marginal means, then both the conditional and
marginal models are needed.2 This requires us to focus
the issue of variation freeness on the parameters of
interest—namely, those parameters that are a function
of the parameters of the conditional model only. More
formally, the parameters of interest � are a function
of ω1; that is, � = g(ω1).

22.3.3. A Definition of Weak Exogeneity

The above concepts of factorization, parameters of
interest, and variation freeness lead to a definition
of weak exogeneity. Specifically, following Richard
(1982; see also Ericsson, 1994; Spanos, 1986), a
variable x is weakly exogenous for the parameters
of interest (say, �) if and only if there exists a
reparameterization of θ as ω with ω = (ω1,ω2),
such that

(i) � = g(ω1)—that is, � is a function of ω1

only—and
(ii) ω1 and ω2 are variation free—that is,

(ω1,ω2) ∈ �1 ×�2.

22.3.4. Weak Exogeneity
and the Problem of Nominal Regressors3

It is quite common in the social and behavioral
sciences for models to contain regressor variables
whose scales are nominal. Examples of such variables
include demographic features of individuals such as
gender or race. In other cases, nominal variables
may represent orthogonal components of an exper-
imental design, such as assignment to a treatment
or control group. In both cases, the regressors are
fixed, nonstochastic constants to be contrasted with
stochastic random variables such as socioeconomic
status or the amount of parental reading activities. In
both cases, data are often submitted to some regres-
sion analysis software package for estimation. In
the case of experimental design variables, data are

2. In point of fact, however, one can “recover” the marginal mean of x
from the constant in a regression.

3. The author is grateful to Professor Aris Spanos for clarifying this issue.
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often submitted to an analysis-of-variance (ANOVA)
package. Experimental design textbooks often include
a discussion of how ANOVA can be viewed as a spe-
cial case of the “linear regression” model (see, e.g.,
Kirk, 1995). The similarity of ANOVA and the linear
regression model generates a problem with respect to
our discussion of exogeneity. Specifically, given our
discussion of exogeneity to this point, a fair ques-
tion may be to what extent nominal variables, such
as gender, race, or experimental design arrangements,
are “exogenous” for statistical estimation. In what
sense are these variables generated from “outside the
system”?

That the question of the “exogeneity” of nominal
regressors is raised at all is suggestive of a conflation
of ideas typically represented in statistical textbooks
in the social sciences—specifically, the merging of the
so-called Gauss linear model and the linear regression
model (Spanos, 1999). Indeed, the similarity of the
notation of both models contributes to the confusion.

Briefly, the origins of the Gauss linear model came
about as an attempt to explain lawful relationships in
planetary orbits using less than perfectly accurate mea-
suring instruments. In that context, the Gauss linear
model represented an “experimental design” situation
in which the xs were fixed, nonstochastic constants
albeit subject to observational error. Only the outcome
variable y was considered to be a random variable.
Indeed, according to Spanos (1999), the original
linear model, as proposed by Legendre (1805), did
not rest on any formal probabilistic arguments what-
soever. Rather, probabilistic arguments regarding the
structure of the errors were added by Gauss and
Laplace to justify the statistical optimality of the
least squares approach to parameter estimation.
Specifically, if it could be assumed that the errors
were normal, independent, and identically distributed,
then the least squares approach attained certain opti-
mal properties. Later, Fisher applied the Gauss linear
model to experimental designs and added the idea of
randomization.

What is important for our discussion is that the
Gauss linear model was not explicitly rooted in prob-
abilistic notions of random variables, leading, in turn,
to notions of conditional versus marginal distributions.
It was Galton, with assistance from Karl Pearson, who
later proposed the linear regression model, unaware
that it was in any way related to the Gauss linear model.
The hope was to use the rigorous “lawlike” modeling
ideas of Gauss to support Galton’s emerging theories
of heredity and eugenics (Spanos, 1999). However, it
was G. U. Yule (1897) who demonstrated that the same
method of least squares used to estimate the Gauss

linear model could also be used to estimate Galton’s
linear regression model (Mulaik, 1985). In this case,
y and x were assumed to be jointly normal random
variables, andβx was defined as the conditional expec-
tation of y given x, where x is the realization of a
stochastic random variable X.

Defining the conditional expectation requires being
able to factor the joint distribution into the conditional
and marginal distributions, and this requires stochastic
random regressors (Spanos, 1999). Therefore, from
the standpoint of our discussion of exogeneity, nomi-
nal regressors such as race, gender, or experimental
design variables do not lead to any conceptual dif-
ficulty. When such variables are of interest, one has
specified a Gauss linear model. The notion of the con-
ditional distribution does not enter into the discussion
because factoring the joint distribution into the con-
ditional and marginal distributions is only possible in
the case of stochastic random regressors. In the context
of the linear regression model, however, nonstochastic
variables enter the conditional mean via the marginal
means of the stochastic variables; that is, the constant
term is a function of the nonstochastic variables and is
therefore not constant.4

22.3.5. An Extension
to Structural Equation Modeling

It may be of interest to examine how the problem
of weak exogeneity extends to structural equation
modeling. We focus on structural equation modeling
because it had its origins primarily in econometrics (see
Kaplan, 2000, for a brief history), and certain aspects
of its development are relevant to our discussion of
exogeneity. We consider the problem of exogeneity
with reference to other methodologies in Section 22.7.

To examine the relevance of weak exogeneity for
structural equation models, we should revisit the dis-
tinction between the structural form and the reduced-
form specifications of a structural equation model. The
structural form of the general structural equation model
is denoted as (e.g., Jöreskog, 1973)

y = α+ By+ �x + ζ, (7)

4. To see this, consider the addition of a nonstochastic variable (say,
gender) to a regression model with other stochastic regressors. Het-
erogeneity in the mean of y and the mean of x induced by gender
can be modeled as µy = a(gender), and µx = d(gender), where a
and d are parameters. Expressed in terms of the regression function,
µy = β0 + β1µx . After substitution, a(gender) = β0 + β1d(gender),
from which we obtain β0 = (a − β1d)gender. Thus, the constant term is
a function of a nonstochastic variable.



414 • SECTION VI / FOUNDATIONAL ISSUES

where y is a vector of endogenous variables, α is
a vector of structural intercepts, B is a matrix of
coefficients relating endogenous variables to each
other, � is a matrix relating endogenous variables
to exogenous variables, x is a vector of exogenous
variables, and ζ is a vector of disturbance terms. In
structural equation modeling, the structural param-
eters of interest are θ = (α,B,�,�), where � is the
covariance matrix of the disturbance terms.

As noted above, equation (7) represents the struc-
tural form of the model. The specification of fixed or
freed elements in B and/or � denotes a priori restric-
tions, presumably reflecting an underlying hypothesis
regarding the mechanism that yields values of y. The
standard approach to structural equation modeling
requires that certain assumptions be met for application
of standard estimation procedures such as maximum
likelihood. Specifically, it is generally assumed that the
conditional distribution of the endogenous variables,
given the exogenous variables, is multivariate normally
distributed. Violations of this assumption can, in prin-
ciple, be addressed via alternative estimation methods
that explicitly capture the nonnormality of the data,
such as Browne’s asymptotic distribution-free estima-
tor (Browne, 1984) or Muthén’s weighted least squares
estimator for categorical data (Muthén, 1984). If this
or other assumptions are violated, then the standard
likelihood ratio chi-square test, estimates, and stan-
dard errors will be incorrect. A fuller discussion of
the assumptions of structural equation modeling can
be found in Kaplan (2000).

With regard to the assumption of exogeneity, a
perusal of extant textbooks and substantive literature
on structural equation modeling suggests that the exo-
geneity of the predictor variables, as defined above,
is not formally addressed—an exception being Kaplan
(2000). Indeed, the extant literature reveals that only
theoretical considerations are given when delimiting
a variable as “exogenous.”5Assessing exogeneity in
terms of the statistical structure of the data requires that
we revisit the reduced-form specification of a structural
equation model.

22.3.6. The Reduced-Form
Specification Revisited

In classic econometric treatments of structural
equation modeling, the reduced form plays a cen-
tral role in establishing the identification of struc-
tural parameters. The reduced-form specification of

5. See, for example, Bollen’s (1989) definition discussed earlier.

a structural model is derived from rewriting the
structural form so that the endogenous variables
are on one side of the equation, and the exogenous
variables are on the other side. Specifically, consider-
ing equation (7), we have

y = α+ By+ �x + ζ,

= (I− B)−1α+ (I− B)−1�x + (I− B)−1ζ,

= �0 +�1x + ζ∗, (8)

where it is assumed that (I – B) is non-singular. In
equation (8), �0 is the vector of reduced-form
intercepts, �1 is the matrix of reduced-form slope
coefficients, and ζ∗ is the vector of reduced-form
disturbances, where Var(ζ∗) = �∗. Establishing the
identification of the structural parameters requires
determining if they can be solved uniquely from the
reduced-form parameters (Fisher, 1966). An inspec-
tion of equation (8) reveals that the reduced form
is nothing more than the multivariate general linear
model. From here, equation (8) can be used to assess
weak exogeneity. Specifically, from the context of the
reduced form of the model, the parameters of the con-
ditional model are ω1 ≡ (�0,�1,�

∗), and the param-
eters of the marginal model are ω2 ≡ (µx,�x), where
µx is the mean vector of x, and �x is the covariance
matrix of x.

22.4. Assessing Weak Exogeneity

Recall that weak exogeneity concerns the extent to
which the parameters of the marginal distribution of
the exogenous variables are related to the param-
eters of the conditional distribution. In this section
we consider three inextricably related ways in which
the assumption of weak exogeneity can be violated:
(a) violation of the joint normality of variables; (b) vio-
lation of the linearity assumption; and (c) violation of
the assumption of homoskedastic errors.

22.4.1. Assessing Joint Normality

For simplicity, consider once again the simple linear
regression model discussed in Section 22.2. It is known
that within the class of elliptically symmetric multi-
variate distributions, the bivariate normal distribution
possesses a conditional variance (skedasticity) that can
be shown not to depend on the exogenous variables
(Spanos, 1999). To see this, consider the bivariate
normal distribution for two random variables y and x.
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The conditional and marginal densities of the bivariate
normal distribution can be written respectively as

(y|x) ∼= N((β0 + β1x), σ
2
u ),

x ∼= N [µx, σ
2
x ],

β0 = µy − β1µx, β1 = σxy

σ 2
x

,

σ 2
u = σ 2

y −
(
σxy

σ 2
x

)2

, (9)

where β0 + β1µx is the conditional mean of y given
x, σ 2

u is the conditional variance of y given x, µx is the
marginal mean of x, and σ 2

x is the marginal variance
of x. Let

θ = (µx, µy, σ 2
x , σ

2
y , σxy),

ω1 = (β0, β1, σ
2
u ),

ω2 = (µx, σ 2
x ). (10)

Note that for the bivariate normal distribution (and, by
extension, the multivariate normal distribution), x is
weakly exogenous for the estimation of the parameters
in ω1 because the parameters of the marginal distribu-
tion contained in the set ω2 do not appear in the set of
the parameters for the conditional distribution ω1. In
other words, the choice of values of the parameters in
ω2 does not restrict in any way the range of values that
the parameters in ω1 can take.

The bivariate normal distribution, as noted above,
belongs to the class of elliptically symmetric distri-
butions. Other distributions in this family include the
Student’s t , the logistic, and the Pearson Type III distri-
butions. To demonstrate the problem with violating the
assumption of bivariate normality, we can consider the
case in which the joint distribution can be characterized
by a bivariate Student’s t-distribution (i.e., symmetric
but leptokurtic). The conditional and marginal den-
sities under the bivariate Student’s t can be written
as (see Spanos, 1999)

(y|x) ∼= St

(
(β0 + β1x),

νσ 2
u

ν − 1

{
1+ 1

νσ 2
x

[x − µx]2

}
ν + 1

)
,

x ∼= St[µx, σ
2
x ; ν], (11)

where ν are the degrees of freedom. Let

θ = (µx, µy, σ 2
x , σ

2
y , σxy),

ω1 = (β0, β1, µx, σ
2
x , σ

2
u ),

ω2 = (µx, σ 2
x ). (12)

Notice that the parameters of the marginal distribution
ω2 appear with the parameters of conditional dis-
tributions ω1. Thus, by definition, x is not weakly
exogenous for the estimation of the parameters in ω1.

From this discussion, it is clear that one simple
test of exogeneity is to assess the assumption of joint
normality of y and x by using, say, Mardia’s coefficient
of multivariate skewness and kurtosis (Mardia, 1970).
If the joint distribution is something other than normal,
then parameter estimation must occur under the correct
distributional form, and hence proper inferences may
require estimation of the parameters of the marginal
distribution as well as the conditional distribution.
Because it is probably the case that joint normality does
not hold in practice, this last point is extremely critical
for the standard approach to statistical modeling in the
behavioral sciences and will be taken up in more detail
in Section 22.7.

22.4.2. Assessing the Assumption of Linearity

Joint normality of y and x is clearly central to estab-
lishing weak exogeneity. A consequence of the joint
normality assumption is that the regression function
E(y|x, θ) = β0 + β ′1x is linear in x (Spanos, 1986).
This follows from two properties of the normal distri-
bution: (a) that a linear transformation of a normally
distributed random variable is normal and (b) that a
subset of normally distributed random variables is nor-
mal (Spanos, 1986). Therefore, deviations from linear-
ity indirectly point to violations of normality and hence
to violations of the weak exogeneity of x. Nonlinear
relationships that cannot be transformed into linear
relationships through well-behaved transformations
will result in biased and inconsistent estimates of the
parameters of the regression model. Assessing linear-
ity can be accomplished through informal inspection
of plots or more formally by using Kolmogorov-Gabor
polynomials or the RESET method, both described in
Spanos (1986). Should linearity be rejected, it may be
possible to address the problem through normalizing
transformations on y and/or x.

22.4.3. Assessing the Assumption
of Homoskedastic Errors

The assumption of the joint normality of y and x
also implies the assumption of homoskedastic errors.
This is because, from the properties of the normal
distribution, the conditional variance (skedasticity)
function Var(y|x) = σ 2

y − σ 2
xy/σ

2
x is free of x, where

σ 2
xy is the squared covariance of y and x. Thus,
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heteroskedasticity calls into question the assumption of
weak exogeneity of x because it implies a relationship
between the parameters of the marginal distribution
and the conditional distribution. In addition, ordinary
least squares estimation that ignores heteroskedasticity
will result in unbiased but inefficient estimates of the
regression coefficients. Most software packages con-
tain easy-to-use options for obtaining residual scatter
plots to assess the assumption of homoskedasticity. A
direct test of the hypothesis of homoskedasticity was
proposed by White (1980) and is available in many
statistical software packages. Assessing the assump-
tion of homoskedasticity in the context of structural
equation modeling and multilevel modeling intro-
duces additional complexities that will be addressed
in Section 22.7.

22.5. Granger Noncausality

and Strong Exogeneity

Our discussion of weak exogeneity in Section 22.3 did
not specify a temporal structure for the data. Although
the concept of weak exogeneity can be motivated by
using models with lagged variables (Ericsson, 1994),
it is not necessary to do so. The concept of weak exo-
geneity is applicable to cross-sectional data as well as
to temporal data. However, to introduce the concepts of
Granger noncausality and strong exogeneity, we must
expand our models to account for the dynamic structure
of the phenomenon under study. These extensions have
important consequences for the statistical analysis of
panel data when one wishes to properly model dynamic
relationships and to use these models for forecasting
or prediction.

To begin, consider an extension of our substantive
problem of estimating the relationship between read-
ing proficiency and parental involvement in reading
activities. Let zt be the vector of variables yt and xt .
The basic problem now is that there is a dependence
of current values of z on past values of z, denoted
as zt−1 with elements yt−1 and xt−1. Therefore, the
decomposition in equation (5) is no longer valid given
the true dynamic structure of the process. Instead,
we now need to condition on the past history of the
process—namely,

f (zt |zt−1;Θ). (13)

The conditioning in equation (13) leads to a decompo-
sition represented as a first-order vector autoregressive
model of the form

zt = πzt−1 + εt , (14)

from which it follows that

yt = β1xt + β2xt−1 + β3yt−1 + ut , (15)

xt = π1xt−1 + π2yt−1 + νt . (16)

From our substantive perspective, equation (15)
models current reading scores as a function of current
and past parental involvement as well as past reading
scores. Equation (16) models current parental involve-
ment as a function of past parental involvement and
past reading scores.

The above specification in equations (15) and (16)
makes sense substantively insofar as feedback from
previous reading scores might influence the amount of
current parental involvement in reading activities. In
other words, parents may notice improvement in their
child’s reading proficiency and feel reinforced for their
reading activities. The question here, however, con-
cerns whether parental involvement can be considered
exogenous to reading proficiency and be used to predict
future reading proficiency. In this case, we observe that
weak exogeneity is not sufficient for the conditional
model to be used to develop predictions of y because,
as in our counterexample in Section 22.2, past values
of y predict current values of x unless π2 = 0. The
condition that π2 = 0 yields the condition of Granger
noncausality (Granger, 1969). Granger noncausality
essentially means that only lagged values of x enter
into equation (15).

Weak exogeneity along with Granger noncausality
yields the condition of strong exogeneity. The condi-
tion of strong exogeneity allows xt (parental reading
activities) to be treated as fixed at time t for the predic-
tion of future values of y (reading proficiency) using
the model in equation (15). Should Granger noncausal-
ity not hold (i.e., π2=/ 0), then valid prediction of
future values of y would require the joint analysis
of the conditional model in equation (15) and the
marginal model in equation (16). In other words, the
feedback inherent in the model when π2=/ 0 would
have to be taken into account when interest centers on
prediction.

22.5.1. Testing Strong Exogeneity
and Granger Noncausality

Testing for strong exogeneity is relatively straight-
forward. First, it should be noted again that strong exo-
geneity requires weak exogeneity. Thus, if weak
exogeneity does not hold, then neither does strong
exogeneity. However, strong exogeneity also requires
Granger noncausality. Thus, should y Granger cause
x, then strong exogeneity does not hold. The simple
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test for Granger noncausality is given in equation (16),
where the null hypothesis of Granger noncausality is
given by π2 = 0.6

22.6. Super Exogeneity

An important application of statistical models in the
social and behavioral sciences is in the evaluation
of interventions or policies related to the exogenous
variables. For example, consider the question of the
relationship between per pupil class time spent using
Internet technology and classroom-level academic
achievement. If interest centers on achievement as
a function of time spent using Internet technology,
then it is assumed that the parameters of the achieve-
ment equation (the conditional model) are invariant to
changes in the parameters of the marginal distribution
of classroom Internet access time.

One set of policies related to classroom Internet
connections and access time may have to do with
the so called e-rate. The e-rate initiative was put
forth during the Clinton administration as a means
of providing discounted telecommunication services
to schools and libraries. A specific goal of the pro-
gram was to ameliorate the so-called “digital divide”
that separates suburban middle- to upper-middle-class
schools from lower-middle-class and inner-city poor
schools with respect to access to technology in the
classroom. Changes in e-rate policy should, if suc-
cessful, induce shifts in the distribution of classroom
Internet connections. The question is whether a shift
in the parameters of the marginal distribution of class-
room Internet connections changes the fundamental
relationship between the number of classroom Internet
connections and classroom achievement.

Formally, invariance concerns the extent to which
the parameters of the conditional distribution do not
change when there are changes in the parameters of
the marginal distribution. As pointed out by Ericsson
(1994), invariance is not to be confused with varia-
tion freeness, as discussed under the topic of weak
exogeneity. Using the e-rate example, let ω1 be the
parameters of the conditional model describing the
relationship between classroom achievement and time
spent on classroom Internet activities, and let ω2 be
the parameters of the marginal distribution of time
spent on Internet activities. Following Engle and

6. Clearly, this hypothesis will not hold exactly. Issues of power and the
size of the alternative hypothesis π2=/ 0 become relevant as they pertain
to the accuracy of forecasts when Granger noncausality does not hold.

Hendry (1993), assume for simplicity that two scalar
parameters are related via the function

ω1t = ϕω2t , (17)

where ϕ is an unknown scalar. Variation freeness sug-
gests that over the period where ω2 is constant, there
is no information in ω2 that is helpful in the estima-
tion of ω1. However, it can be seen that ω1 is not
invariant to changes inω2—that is, shifts in the param-
eters of the marginal distribution over some period
of time lead to shifts in the parameters of the con-
ditional distribution. By contrast, invariance implies
that

ω1 = ϕtω2t , ∀t. (18)

In terms of our substantive example, equation (18)
implies that changes in the parameters of the marginal
distribution of classroom time spent on Internet activ-
ities due to, say, e-rate policy changes do not change
its relationship to academic achievement. Invariance
of these parameters, combined with the assumption
of weak exogeneity, yields the condition of super
exogeneity.7

22.6.1. Testing Super Exogeneity

There are two common tests for super exogene-
ity (Ericsson, 1994), but note that super exogeneity
also requires that the assumption of weak exogene-
ity holds. Thus, if weak exogeneity is shown not
to hold, then super exogeneity is refuted. The first
of the two common tests for super exogeneity is to
establish the constancy of ω1 (the parameters of the
conditional model) and the nonconstancy of ω2 (the
parameters of the marginal model). Parameter con-
stancy simply means that the parameters of interest
take on the same value over time. Parameter con-
stancy is to be contrasted with invariance as discussed
above, which refers to parameters that do not change
as a function of changes in a policy or changes due to
interventions.

Continuing, if the parameters of the conditional
model remain constant regardless of the nonconstancy
of the parameters of the marginal model, then super
exogeneity holds. Methods for establishing constancy
have been given by Chow (1960). Briefly, the Chow
test requires deciding on a possible breakpoint of inter-
est over the period of the analysis based on substantive
considerations. Once that breakpoint is decided, then

7. Strong exogeneity is not a precondition for super exogeneity (see
Hendry, 1995).
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a regression model for the series prior to and after the
breakpoint is specified. Letβ1 andβ1 andσ 2

u1
andσ 2

u2
be

the regression coefficients and disturbance variances
for the models before and after the breakpoint, respec-
tively. The Chow test is essentially an F -type test of
the form

CH =
(

RSST − RSS1 − RSS2

RSS1 + RSS2

)(
T − 2k

k

)
, (19)

where T is the number of time periods, k is the
number of regressors, and RSST ,RSS1, and RSS2 are
the residual sum of squares for the total sample period,
subperiod 1, and subperiod 2, respectively. The test
in equation (19) can be used to test H0 : β1 = β2

and σ 2
u1
= σ 2

u2
and is distributed under H0 as CH ≈

F(k, T − 2k). Limitations with the Chow test have
been discussed in Spanos (1986).

The second test extends beyond the first in the fol-
lowing way. Here, the goal is to model the marginal
process in such a way as to render it empirically
constant over time (Ericsson, 1994). This can be
accomplished by adding dummy variables that account
for “seasonal” changes or interventions occurring over
time in the marginal process. This exercise amounts
to changing or intervening with the marginal process.
Once these additional variables are shown to render
the marginal model constant, they are then added to
the conditional model. If the variables that rendered the
marginal model constant are found to be nonsignificant
in the conditional model, then this demonstrates the
invariance of the conditional model to changes in the
process of the marginal model (Engle & Hendry, 1993;
Ericsson, 1994).

Returning to the e-rate example, consider the simple
model that relates the number of Internet connections
to academic achievement. Here we wish to test super
exogeneity because we would like to use the measure
of Internet connections as a policy variable for fore-
casting changes in academic achievement as a function
of changes in the number of Internet connections over
time. To begin, we must test for the weak exogeneity
of the number of Internet connections because weak
exogeneity is necessary for super exogeneity to hold.
Next, we would use, for example, a Chow test to estab-
lish the constancy of the conditional model parameters
of interest to the nonconstancy of the marginal param-
eters. This is then followed by developing a model for
the change in the number of Internet connections over
time, by adding variables that describe this change.
These could be dummy variables that measure points
in time in which the e-rate policy was enacted or
other variables that would describe how the average
number of Internet connections in the classroom would

have changed over time. These variables are then
added to the model relating achievement to the number
of Internet connections. Should these new variables
be nonsignificant in the conditional model, then this
demonstrates how the parameters relating achievement
to the number of Internet connections are invariant to
changes in the parameters of the marginal model.

22.6.2. An Aside: Inverted
Regression and Super Exogeneity

Consider the hypothetical situation in which an
investigator wishes to regress science achievement
scores on attitudes toward science, both measured on
a sample of eighth-grade students using the model in
equation (1). Suppose further that both sets of scores
are reliable and valid and that, for the sake of this exam-
ple, the attitude measure is super exogenous for the
achievement equation. This implies that the measure
of attitudes toward science satisfies the assumption of
weak exogeneity and that the parameters of interest are
constant and invariant to changes in the marginal dis-
tribution of attitudes toward science. Now, suppose the
investigator wishes to change the question and estimate
the regression of attitudes toward science on science
achievement scores. In this case, it would be a simple
matter of inverting the regression coefficient, obtaining
1/β as the inverted regression coefficient. The question
is whether the inverted model still retains the property
of super exogeneity.

To answer this question, we need to consider the
density function for the inverted model. Following
Ericsson (1994), let the bivariate density for the
inverted regression model of two random variables x
and y be defined as

(xt |yt ) ≈ N [(c + δyt , τ 2)],

yt ≈ N(µy, σ 2
y ), (20)

where δ = σxy/σ
2
y , c = µx − πµy , and τ 2 = σ 2

x −
σ 2

xy/σy . The model in equation (20) can be expressed
in model form as

xt = c + δyt + ν2t ν2t ≈ N(0, τ 2),

yt = µy + εyt εyt ≈ N(0, σ 2
y ), (21)

where the usual regression assumptions hold for this
model. When equation (20) is written in line with
the factorization of density functions, the result is the
form

F(zt |θ) = Fx|y(xt |yt ,ϕ1)Fy(yt |ϕ2), (22)
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where ϕ ≡ (ϕ ′1, ϕ′2) = h(θ), a one-to-one function. To
see the problem with inverted regression, we need to
recognize that there is a one-to-one mapping between
the parameters of the un-inverted model ω from
Section 22.3 and the inverted model. Specifically, we
note that because β = σxy/σ

2
x and σ 2

u = σ 2
y − σ 2

xy/σ
2
x ,

then after some algebra, it can be shown that

δ = βσ 2
x

τ 2 + β2σ 2
x

. (23)

It can be seen from equation (23) that δ=/ 1/β unless
σ 2
u = 0. Moreover, from Ericsson (1994), we note

that if xt is super exogenous for β and σ 2
u , then even

if β is constant, δ will vary due to variation in the
marginal process of xt via the parameter σ 2

x . In other
words, super exogeneity is violated because the param-
eters of the inverted model are nonconstant even when
the parameters of the uninverted model are constant
(Ericsson, 1994, p. 18).

22.6.3. Super Exogeneity,
the Lucas Critique, and Their Relevance
for the Social and Behavioral Sciences

Super exogeneity plays an important philosophi-
cal role in economics and economic policy analysis.
Specifically, super exogeneity protects economic
policy analysis from the so-called “Lucas critique.” It
is beyond the scope of this chapter to delve into the
history and details of the Lucas critique. Suffice to
say that the Lucas critique concerns the use of econo-
metric models for policy analysis because econometric
models contain information that changes as a func-
tion of changes in the very phenomenon under study.
The following quote of Lucas (1976) illustrates the
problem:

Given that the structure of an econometric model con-
sists of optimal decision rules for economic agents,
and that optimal decision rules vary systematically with
changes in the structure of the series relevant to the
decision maker, it follows that any change in policy will
systematically alter the structure of econometric models.
(quoted in Hendry, 1995, p. 529)

In other words, “a model cannot be used for policy
if implementing the policy would change the model on
which that policy was based, since then the outcome of
the policy would not be what the model had predicted”
(Hendry, 1995, p. 172).

The types of models considered in econometric
policy analysis differ in important ways from those

considered in the other social and behavioral sciences.
For example, typical models used in, say, sociology
or education do not consist of specific representations
of the optimal decision behavior of “agents” and so
do not lend themselves to the exact problem described
by the Lucas critique. Also, models used in the social
and behavioral sciences do not specify “technical”
equations of the output of the system under inves-
tigation. Nevertheless, because the Lucas critique
fundamentally suggests a denial of the property of
invariance (Hendry, 1995), it may still be relevant
to models used for policy analysis in domains other
than economics. For instance, returning to the example
of the e-rate and its role in educational achievement,
the Lucas critique would claim that the parameters
representing the relationship between Internet connec-
tions and educational achievement are not invariant to
changes in the marginal process induced by the e-rate
policy. However, tests of super exogeneity outlined
above are tests of the Lucas critique, and so it is pos-
sible to empirically evaluate the seriousness of this
problem for policy analysis.

22.7. Summary and Implications

Close examination of typical social and behavioral
science definitions of exogenous variables shows that
they are fraught with ambiguities. Yet, exogeneity is
clearly of such vital importance to applied statistical
modeling that a much more rigorous conceptualiza-
tion of the problem is required, including guidance
as to methods of testing exogeneity. The purpose
of this chapter was to provide a didactic introduc-
tion to econometric notions of exogeneity, motivating
these concepts from the standpoint of simple linear
regression and its extension to structural equation mod-
eling. The problem of exogeneity, as developed in the
econometrics literature, provides a depth of conceptu-
alization and rigor that is argued in this chapter to be
of value to the other social and behavioral sciences.

To summarize, each form of exogeneity relates to
a particular use of a statistical model. Table 22.1
reviews the different forms of exogeneity, their spe-
cific requirements, and informal tests. To review, weak
exogeneity relates to the use of a model for purposes of
inference. It concerns the extent to which the param-
eters of the marginal distribution of the exogenous
variable can be ignored when focusing on the condi-
tional distribution of the endogenous variable given the
exogenous variable. Should weak exogeneity not hold,
then estimation must account for both the marginal
and conditional distributions. Strong exogeneity
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Table 22.1 Summary of Different Forms of Exogeneity

Form of Exogeneity Implications for Assumptions Informal/Formal Tests

Weak exogeneity Inference Multivariate
normality of the
joint distribution;
homoskedasticity;
linearity

Mardia’s measures;
homoskedasticity and
linearity tests

Strong exogeneity Forecasting and
prediction

Weak exogeneity
and Granger
noncausality

Weak exogeneity
tests; test of
coefficient on lagged
endogenous variable
(see equation (16))

Super exogeneity Policy analysis Weak exogeneity,
parameter
constancy, and
parameter
invariance

Chow test;
nonsignificance in
conditional model of
variables that describe
policy changes in the
marginal model

supplements the requirement of weak exogeneity with
the notion of Granger noncausality so that exogenous
variables can be treated as fixed for purposes of fore-
casting and prediction. Should Granger noncausality
not hold, then prediction and forecasting must account
for the dynamic structure underlying the exogenous
variables. Super exogeneity requires weak exogeneity
to hold and concerns the invariance of the parameters of
the conditional distribution given real-world changes
in the parameters of the marginal distribution. If an
intervention or policy leads to changes in the distribu-
tion of the marginal process but does not change the
relationship described by the conditional model, then
the exogenous variable is super exogenous for policy
or intervention analysis.

22.7.1. Implications for
Standard Statistical Practice

The impact of the exogeneity assumption on stan-
dard statistical practice in the social and behavioral
sciences is profound. To begin, it is clear that the
exogeneity problem is not unique to linear regression
and structural equation models. Indeed, the problem is
present in all statistical models in which a distinction is
made between exogenous and endogenous variables,
resulting in a partitioning of the joint distribution into
the conditional and marginal distributions.

It is worth considering briefly how the problem of
exogeneity might arise in other statistical models. Here
we consider multilevel modeling (including growth
curve modeling), a methodology that is enjoying

widespread popularity in the social and behavioral
sciences (see, e.g., Raudenbush & Bryk, 2002).
Multilevel modeling is a powerful analytic method-
ology for the study of hierarchically organized social
systems such as schools or businesses. In education,
for example, multilevel modeling has yielded a much
greater understanding of the organizational structure
of schools as they support student learning. In this
methodology, the so-called “Level 1” variables con-
stitute endogenous outcomes such as student achieve-
ment that can be modeled as a function of student-level
exogenous variables. Parameters of the Level 1 model
include the intercept and the slope(s) that are allowed
to vary over so-called “Level 2” units such as class-
rooms. Classroom level variation in the Level 1 co-
efficients can be modeled as a function of classroom
exogenous variables such as measures of the amount
of teacher training in specific subject matter skills.
Variation over Level 3 units such as schools is also
possible, and school-level variables can be included to
explain this component of variation.

Future research should examine the problem of
exogeneity in multilevel models. Suffice to say here
that exogeneity enters into multilevel models at each
level of the system. Statistical theory underlying
multilevel modeling shows that these models have
built-in heteroskedasticity problems that are resolved
by specialized estimation methods. Yet, what remains
to be determined is if the parameters of interest in
multilevel models can be shown to be variation free
with respect to the parameters of the student-level and
school-level exogenous variables. Because multilevel
models are used to supplement important discussions
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of education policy, assessing the weak exogeneity of
policy-relevant variables is crucial.

A special case of multilevel modeling is growth
curve modeling, a methodology that is also enjoying
tremendous popularity in the social sciences and
directly accounts for the dynamic features of panel
data. In such models, the Level 1 endogenous variable
is an outcome such as a reading proficiency score
for a particular student measured over multiple occa-
sions. This score is modeled as a function of a time
dimension such as grade level, as well as possibly
time-varying covariates such as parent involvement in
reading activities. The parameters of the Level 1 model
constitute the initial level and rate of change, and these
are allowed to vary randomly over individuals, who
are in turn modeled as a function of time-invariant
exogenous variables such as race/ethnicity, gender, or
perhaps experience in an early childhood intervention
program. Variation in average initial level and rate of
change can also be modeled as a function of Level 3
units such as classrooms or schools. The power of
this methodology is that it allows one to study indi-
vidual and group contributions to individual growth
over time.

The problem of exogeneity enters growth curve
models in a variety of ways. First, repeated mea-
sures on individuals can be a function of time-invariant
variables. For example, in estimating growth in read-
ing proficiency in the younger grades, time-invariant
variables might include the IQ of the children (assumed
to be stable over time), the income of the parents,
and so on. Again, these variables are assumed to be
exogenous.

Second, the repeated outcomes can be modeled
as a function of time-varying covariates. Each time-
varying covariate is presumed to be exogenous to its
respective outcomes and is used to help explain, for
example, seasonal trends in the data. However, time-
varying variables can also be allowed to have a lagged
effect on later outcomes. For example, a time-varying
covariate such as parental reading activities at time t
can be specified to influence reading achievement at
time t as well as reading achievement at time t + 1.
This represents the introduction of a lagged exoge-
nous variable into the full-growth curve model, and
so issues of strong exogeneity and Granger noncausal-
ity may be of relevance. In other words, the Level 1
model that characterizes achievement at time t as a
function of time-varying covariates assumes that the
time-varying covariate at time t is not a function of
achievement at time t − 1. If this assumption does not
hold, then the time-varying covariate is not strongly
exogenous.

In addition to the fact that exogeneity represents an
issue in a wide range of statistical models, it must also
be recognized that most statistical software packages
estimate the parameters of statistical models under
the untested assumption that weak exogeneity holds.
In other words, software packages that engage in
conditional estimation (e.g., conditional maximum
likelihood), conditional on the set of exogenous
variables, do so assuming that there is no information
in the marginal process that is relevant for the estima-
tion of the conditional parameters. However, as noted
above, weak exogeneity is only valid if the joint distri-
bution of the variables is multivariate normal—a heroic
assumption at best. Therefore, it is likely in practice
that estimates derived under conditional estimation are
incorrect. The only situation in which this is not a
problem is in estimation of the Gauss linear model with
nonstochastic regressors. Future research and software
development should explore methods of estimation
that account for the parameters of the marginal dis-
tribution along with the conditional distribution for a
given specification of the form of the joint distribution
of the data.

In the context of simple linear regression, infor-
mal testing of weak exogeneity via assessing joint
normality and homoskedasticity is relatively straight-
forward. Indeed, most standard statistical software
packages provide various direct and indirect tests of
these assumptions. In the context of structural equation
modeling, however, although considerable attention
has been paid to the normality assumption (see, e.g.,
Kaplan, 2000, for a review), scant attention has
been paid to assessing assumptions of linearity and
homoskedasticity. This may be due to the fact that text-
book treatments of structural equation modeling moti-
vate the methodology from the viewpoint of the struc-
tural form of the model, and therefore it is not directly
obvious how homoskedasticity could be assessed.
However, if attention turns to the reduced form of
the model as described in equation (8), then standard
methods for assessing the normality assumption—
including homoskedasticity and linearity—would be
relatively easy to implement. Therefore, users of
structural equation modeling should be encouraged
to study plots and other diagnostics associated
with the multivariate linear model to assess weak
exogeneity.

The issue raised here is not so much how to
assess weak exogeneity but rather how to proceed if
the assumption of weak exogeneity does not hold.
Recognition of the seriousness of the exogeneity
assumption should lead to fruitful research that focuses
on estimation methods under alternative specifications
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of the joint distribution of the data. In attempting
to characterize the joint distribution of the data, all
means of data exploration should be encouraged. There
should be no concern about “finding a model in the
data” because the joint distribution of the data is
theory free8 (Spanos, 1986). Theory information only
becomes a problem when there is a factoring of the
joint distribution into the conditional and marginal
distributions insofar as that is the point in the mod-
eling process, in which a substantive distinction is
made between endogenous and exogenous variables
and where parameters of interest are defined (see
Spanos, 1999).

The implications of the strong exogeneity assump-
tion for statistical practice are relevant if models are
used for prediction and forecasting. In this case, weak
exogeneity is still a necessary requirement, but in
addition, it is imperative that Granger noncausality
be established. Similarly, implications of the super-
exogeneity assumption are relevant when models are
used for policy or intervention evaluations. Super
exogeneity also forces us to consider the require-
ment of parameter constancy and invariance—issues
that have not received as much attention in the social
and behavioral sciences as they should. Focusing on
parameter constancy and invariance also forces us
to consider whether there exist invariants in social
and behavioral processes. Moreover, as pointed out
by Ericsson (1994), parameter constancy is a central
assumption of most estimation methods and hence is
of vital importance to statistics generally.

22.7.2. Concluding Remarks

Our discussion throughout this chapter leads to the
recognition that exogeneity is an adjective describing
an assumed characteristic of a variable that is being
chosen for theoretical reasons to be an exogenous
variable. Weak exogeneity is the necessary condi-
tion underlying all forms of exogeneity, and hence
this assumption is fundamental and requires empiri-
cal confirmation to ensure valid inferences. Additional
assumptions are required to yield valid predictions or
evaluations of policies or interventions.

Exogeneity resides at the nexus of the actual data-
generating process (DGP) and the statistical model
used to understand that process. In the simplest

8. The exception being that theory enters into the choice of the variable
set as well as methods of measurement. These issues are not trivial but
are not central to our discussion of the role of theory as it pertains to the
separation of variables into endogenous and exogenous variables.

terms, the actual DGP is the real-life mechanism that
generated the observed data. It is the reference point
for both the theory and the statistical model. In the
former case, the theory is put forth to explain the
reality under investigation—for example, the organi-
zational structure of schooling that generates student
achievement. In the latter case, the statistical model
is designed to capture the statistical features of that
aspect of the actual DGP that we choose to study and
measure (Spanos, 1986; see also Kaplan, 2000).

In addition to the role that exogeneity plays with
regard to fundamental distinctions between theory,
the DGP, and statistical models, exogeneity raises a
number of other important philosophical questions that
are central to the practice of statistical modeling in the
social and behavioral sciences. One issue, for example,
concerns the proper place of data mining as a premod-
eling strategy. We find that when attention focuses on
characterizing the joint distribution of the data, then
data mining has a central role to play. Another issue
arising from our study of exogeneity concerns the
dynamic reality of the phenomenon under investiga-
tion. Granger noncausality and strong exogeneity force
us to consider exogenous variables as possibly being
responsive to their own dynamic structure and that
this must be correctly modeled to obtain accurate esti-
mates for prediction and forecasting. Super exogeneity
reminds us that our models are sensitive to real-life
changes in the process under investigation. Finally,
serious consideration of the problem of exogeneity
forces us to reexamine statistical textbooks in the social
and behavioral sciences to clarify ambiguous concepts
and historical developments. It is hoped that reflecting
on the importance of the exogeneity assumption will
lead to a critical assessment of the methods of statistical
modeling in the social and behavioral sciences.
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Chapter 23

Objectivity in Science

and Structural

Equation Modeling

Stanley A. Mulaik

23.1. Introduction

Objectivity is a core concept of science. To show what
it means, how that comes to be, and how it plays out
in science in general and in methodological practices
such as structural equation modeling, in particular, is
the aim of this chapter. Objectivity is the noun that
refers to the state of being objective. Objective, in
turn, is simply an adjective formed from the noun
object with the suffix -ive, meaning “of or pertaining
to.” So objectivity has something to do with objects.
More specifically, Merriam-Webster’s Collegiate
Dictionary (1993) defines objective as “of, relating to,
or being an object, phenomenon, or condition in the
realm of sensible experience independent of individ-
ual thought and perceptible by all observers : having
reality independent of the mind.” It further lists an
additional related meaning, which has methodolog-
ical implications: “expressing or dealing with facts
or conditions as perceived without distortion by per-
sonal feelings, prejudices, or interpretations.” In this
respect, objective is often contrasted with subjective,
which Webster’s cites as “relating to or being experi-
ence or knowledge as conditioned by personal mental
characteristics or states . . . , peculiar to a particular
individual . . . , modified or affected by personal views,

experience, or background.” So, subject and object
are often viewed as inextricably linked in a relation
of dialectical opposition, each to the other. Objec-
tive is frequently identified with knowledge of what
is real and “external,” independent of the mind or the
observer. Subjective is identified with distortions in
knowledge that are produced by and perhaps unique
to the knower, the knower’s perspective, thought
processes, methods of observation, or motives. Illu-
sions are subjective interpretations of what is presented
in external reality. Another aspect of objectivity is
that it has a social component, inter-subjectivity, that
is, agreement between observers as to what is per-
ceived. In some accounts of objectivity, agreement is
the only basis for objectivity, and so objectivity is but
a social concept and has no psychological basis. Other
accounts stress certain perceptual features of objectiv-
ity, the perception of invariants across different points
of view.

23.2. Early Developments

in the Concept of Objectivity

Now these concepts of objectivity did not arise all
at once. And many were not directly connected
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to a concept of an object but stood on their own.
Inter-subjectivity, for example, is a principle that is
seen in the requirement of the Paris Académie des
Sciences of 1699 that experiments be performed before
an assembled company or, at the minimum, several
academicians (Daston, 1994).

Inter-subjectivity may already have been a principle
recognized in English law in the 17th century, when
ordinary citizens were given the right to trial by a jury
of peers. Replicability of experiments was also auto-
matically required by these scientific academies and
societies but often was difficult to achieve (Daston,
1994). Because bitter personal rivalries and bick-
ering became rampant among 17th-century English
and French scientists, threatening the ability of these
societies to function, rules of decorum and imperson-
ality and impartiality were imposed on their members
(Daston, 1994). But again, no conscious linkage of this
requirement to a concept of an object is made.

In fact, knowledge of objects given by the senses
was suspect and subject to illusions in the view
of the 17th-century French scientist, mathemati-
cian, and philosopher René Decartes (1596–1650). It
was always logically possible, Descartes (1637/1901,
1641/1901) held, that what appears to him (and
others) is an illusory reality constructed by some evil
demon. So he sought certain knowledge in what he
could clearly and distinctly apprehend in immediate
intuition without doubt. This led him to propose a
method for finding certain and incorrigible knowledge
in philosophy and reliable knowledge in matters of
experience. His study of geometry had led him to
the method that the ancient Greek geometer Pappas
recommended for the solution of problems in geom-
etry: the method of analysis and synthesis. Analysis
meant separating or breaking up a whole into its parts,
whereas synthesis meant combining parts or elements
into a whole. Descartes saw the method as basic for
solving any problem: First break the problem down
(analysis) into its component truths and ideas, breaking
these down further, if need be, into more and more
elementary truths until one arrives at fundamental,
elemental truths. Then reverse the process by bring-
ing together (synthesis) the various component truths
until one completely reconstructs the thing to be under-
stood or proven while apprehending at each step how
the components are combined to achieve larger and
larger wholes. He believed that the mind functions in
terms of these two principles. He called the mental
activity of analysis intuition, for it sought to visual-
ize the components of a thing or problem in terms
of clear and distinct ideas that were self-evidently
true. The activity of synthesis was deduction—not

strictly or necessarily deduction, as in syllogistic logic,
but a leading of the mind from elementary truths to
compositions of them in greater wholes. The body of
an animal may be understood by dissecting it first into
its component organs, which one would see clearly
and distinctly, and then seeing how they are combined
together into the body as a whole and how they might
function with respect to one another. The other aspect
of his method was procedural doubt: Doubt everything
and anything until you know intuitively that something
is self-evidently true. By his method in philosophy,
he claimed to have identified certain innate ideas that
were indubitable and not derived from experience,
such as causality, the infinite, negation, and number.
Decartes is known as one of the first “foundationalists”
in modern philosophy. He sought incorrigible truths
and knowledge by seeking to base knowledge on an
undoubtable self-evident foundation, such as what he
could directly and immediately discern both clearly
and distinctly as true and indubitable. Reason could
then proceed from indubitable first principles. Ratio-
nalism was born. However, Descartes’s method of
solving problems by analysis and synthesis became, in
some form, a fundamental methodological principle in
all philosophy, science, and intellectual discourse that
was to follow (Mulaik, 1987; Schouls, 1980). But hav-
ing introduced the idea that what is given to the knower
by the senses may be illusory and not backed up by any
reality, he made it possible for British philosophers to
conceive of a mind that knows only its own thoughts
or the sense impressions of which it is directly aware.

John Locke (1632–1704) was the first of these
British philosophers, who were known as the British
empiricists. Influenced by Descartes’s method of
analysis and synthesis, Locke (1694/1962) rejected
Descartes’s idea of innate ideas and sought to ground
certain knowledge on that which is given immediately
and directly in experience or in reflection. The mind is
like a blank slate (a tabula rasa) on which experience
is written. All ideas arise in experience. This led to
an analysis of experience into fundamental, simple
ideas, such as cold and warmth, hardness and soft-
ness, solidity, space, figure, and motion. These are
known as being clear and distinct from one another.
He believed that an external reality caused these to
appear to the mind. The order, frequency, and manner
in which simple ideas were given to the mind either
via the senses or reflection determined how they were
combined (synthesized) into complex ideas. External
reality drove the formation of complex ideas from
simple ideas. He critically examined the concept of
substance, traditionally regarded as that to which prop-
erties such as color and weight adhered, declaring that
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a substance is but a certain complex of simple ideas
coexisting together, but nothing stands under them as
substance per se.

Already Locke laid the groundwork for the skeptical
empiricists who were to follow, who were to be forever
skeptical of things such as objects, substances, neces-
sary relations of cause and effect, external reality, and
even the self.

George Berkeley (1685–1753) rejected (Berkeley,
1710/1901, 1713/1901) the need to postulate an exter-
nal reality behind the sense impressions as superfluous.
The only reality was the mind and its contents. But he
continued the empiricist program begun by Locke. The
problem for empiricism was to account for how the
mind constructed complex ideas from the simple ideas
of experience. This was accomplished by postulating
the existence of the associative processes of the mind.

At the hands of David Hume (1711–1776), empiri-
cism was pushed to its ultimate logical limits. Hume
argued (1739/1968, 1748/1977) that the mind experi-
ences lively and vivid simple perceptual impressions
such as colors and sounds arriving in certain spatial
and temporal configurations or order. These, in turn,
are registered as simple ideas, which are fainter and
less vivid. The mind was driven, he said, by the
impressions given to it to synthesize complex ideas
from simple ideas by means of the associative pro-
cesses of (a) resemblance, (b) contiguity, and (c) cause
and effect. Similar sets of impressions tended to be
joined into kinds. Similar impressions that co-occurred
in the same spatial configurations contiguous to one
another became our ideas of certain kinds of things
in space. The regular succession of certain kinds of
impressions gave rise to the ideas of cause and effect.
But echoing Locke’s skeptical analysis of substance,
Hume said that however much he sought to know by
direct experience what connects these impressions into
kinds, objects, substances, and causes and effects, he
could not detect anything. There was nothing in experi-
ence (the only reality) behind an object or a causal
connection other than a habitual expectation of a con-
tiguous collage of impressions or a regular succession
of them. There was no logical necessity for the regular
succession or the contiguous collage of impressions
to occur in the future either, for he could conceive
logically of their not occurring. So, empiricism that
had developed the idea of reasoning by induction—that
is, generalizing from particulars of experience—could
reach no necessary and incorrigible conclusions from
experience. There were no necessary connections. In
fact, when introspecting his own mind, Hume said that
all he ever encountered were the impressions of his
senses and ideas, but no self, no knower that possesses

them. With that, Hume dispensed with a mind that
thinks or contains the impressions and ideas, as well
as the idea of an external reality with necessary causal
connections. British empiricism had collapsed into an
absurd skepticism.

23.3. Kant Formulates the Modern

Conception of Objectivity

It is against the backdrop of Descartes’s rationalism
and British empiricism’s rejection, among other
things, of necessary ideas, external objects, substance,
causal connections, and the self that Immanuel Kant
(1724–1804) developed his critical philosophy and a
new conception of objectivity grounded in the judg-
ments of objects (Kant, 1787/1996). He accepted the
fact that rationalism’s attempt to understand the world
deductively from self-evident, innate ideas had failed.
On the other hand, although empiricism was able
to generate new knowledge via experience, the jus-
tification of that knowledge was scandalized by the
skeptical conclusions that seemed to be an inevitable
consequence of its assumptions. Kant accepted the
legitimacy of concepts such as substance, identity,
cause and effect, and number as not derived from
experience. These were a priori categories, that is,
not derived a posteriori from experience. They were
the forms by which experience was synthesized in the
mind. But unlike the associative processes of British
empiricism, the mind’s ordering and organizing of
material from the senses was spontaneous and not
determined by the senses. Echoing Aristotle, Kant
argued that the mind provided the forms a priori and the
senses the matter or substance a posteriori of experi-
ence. Without the senses, no object would be given
to the mind, and without the a priori categories of the
mind, no object could be thought. “Thoughts with-
out content are empty; intuitions without concepts are
blind” (Kant, 1787/1996, A52, B76). The problem,
however, was to justify the use of the categories in the
face of Humean skepticism. Kant rejected, however,
Locke’s attempt to give them legitimacy by tracing
them “physiologically” in experience to external things
so that they were properties of things as the things are
in themselves.

23.4. Deductions of Legitimacy

The question of legitimacy is never something that
is resolved simply on the basis of experience. This
is especially so in this case because the argument is
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Table 23.1 Kant’s Table of Categories

1. Quantity 2. Quality 3. Relation 4. Modality

Unity Reality Inherence and subsistence Possibility-Impossibility
(substantia et accidens)

Plurality Negation Causality and dependence Existence-Nonexistence
(cause and effect)

Allness (totality) Limitation Community (interaction Necessity-Contingency
between agent and patient)

that these are concepts that do not originate in what is
given to the senses. Furthermore, legitimacy concerns
a norm and a community or sovereign that grants the
norm. Their legitimacy, therefore, demanded a differ-
ent “deduction,” but Kant did not mean a syllogistic
argument. He referred to deductions as forms of legal
argument to establish rights. A deduction in the law
courts of his time was not a syllogistic argument but
a laying out of the legal basis by which a right can
be acquired via various intermediary transfers of that
right, originating with the sovereign power to grant that
right (Henrich, 1989). The facts of the case, which
depended on experience, only concerned the who,
what, where, and when of how the right was claimed
to have been acquired. These were not presented in
or as a part of the deduction but separately. And who
was the sovereign to grant the rights of legitimacy to
these concepts that do not originate in experience—
what Kant called a priori or transcendental concepts? It
would be the intellectual community—although Kant
does not explicitly say this, which is why his deduc-
tions seem obscure. Kant’s transcendental deductions
of the a priori categories follow the strategy of clearly
describing how they are used throughout the thought of
objects but are limited just to the function of providing
forms to experience in thought and are unable to pro-
vide knowledge by logical deductions independent of
experience, as the rationalists believed. Hence the title
of his great book, the Critique of Pure Reason. Kant
shows the a priori categories to be an indispensable
part of reasoning about objects of experience but, at
the same time, limited to this function and incapable
of giving incorrigible and certain knowledge indepen-
dent of experience and only corrigible and provisional
knowledge from experience. As a result, the contro-
versial role played by the a priori ideas or categories in
deductive metaphysical speculation is denied and the
skeptic’s hostility to them defused. Their legitimacy is
thus self-evident because they are part of everyone’s
thought, including the skeptic’s, and the community
has a right to sanction the forms of thought acceptable

to it because these are the forms of thought of everyone
(see Mulaik, 1994a, 1994b).

23.4.1. Kant’s A Priori Categories

Turning now to Kant’s conception of object, we will
focus briefly on those categories that he declared were
intrinsically involved in the thinking of objects and that
are currently useful in elucidating a contemporary con-
ception of objectivity. I will use them to illustrate the
ideas of synthesis. Kant provided a table of categories
that he said were root categories of that aspect of the
mind involved in discursive thought, the understand-
ing. These categories were a priori categories of pure
synthesis for putting presentations to the mind given
in sensible intuition into combinations. I reproduce a
variant of this table in Table 23.1.

Each of the entries in Table 23.1 represents a form
of synthesis. Unfortunately, Kant sidestepped offering
detailed definitions of each, saying that to do so would
divert from his purpose. However, Kant notes that they
were not gathered together haphazardly but developed
systematically.

One is to note, he said, that the four classes could be
joined into two divisions:

The concepts in the first two classes [quantity and
quality] are directed to objects of intuition both pure
[mental] and empirical; those in the second division
[relation and modality] are directed to the existence of
these objects (these objects being referred either to each
other or to the understanding). (Kant, 1787/1996, B110)

Those concepts in the first division, furthermore, are
not listed with “correlates” (i.e., associated concepts),
whereas those in the second are. But a most intriguing
observation is why the categories under each class
come in threes. The answer is that, given the first
category in each class, it must be accompanied by a
category that represents its contradiction or something
that contrasts with it, which is the second category in



Chapter 23 / Objectivity in Science and Structural Equation Modeling • 429

the class. The third category, then, is a concept that is
a synthesis of the first two categories.

This fact, however, must by no means lead us to think
that the third category is a mere derivative concept,
rather than a root concept, of pure understanding. For
combining the first and second, categories, in order to
produce the third concept, requires that the understand-
ing perform a special act that is not the same as the act
it performs in the case of the first and second concepts.
(Kant, 1787/1996, CPR B111)

This is the schema made famous by Hegel and later
Marx of first a thesis, then an antithesis, followed by a
synthesis of the first two.

23.4.1.1. Class of Quantity

To elucidate, consider that under quantity, we first
find unity, which represents the compression or syn-
thesis of numerous things in perception into a unity, to
be treated by the mind as a unitary concept and counted
as one. For example, numerous observations from dif-
ferent points of view may be synthesized conceptually
into observations of a single thing. In contrast with
the operation of unity, one may only be able to syn-
thesize observations into a number of distinct unities,
and hence one has not one unity but a plurality. This
corresponds to seeing things clearly and distinctly as
different from one another but principally in terms of
their quantity. But then, by a third movement of the
mind, one may take a plurality of synthesized uni-
ties and think of them as a totality of unities, as an
exhaustive set, a new unity.

23.4.1.2. Class of Quality

Again, under quality, we may make a judgment that
what we intuit is real. Its contradiction or negation is
that something is not real. Now a synthesis of these
two concepts, which contains them both, would be the
concept of limitation. Something is limited in its reality
as sensed, in space, in time, or both.

23.4.1.3. Class of Modality

The next two classes of categories concern the
existence of objects, either as they are with respect
to one another or with respect to their consideration
in the understanding. I will skip over the categories of
relation for the moment to deal more thoroughly with
them after we consider modality. Modality concerns

judgments of existence as entertained in thought. We
may consider that the existence of a thing is possible or
impossible. That may contrast with a definite judgment
that the thing actually exists or does not exist, which
rules out the tentativeness of considering the existence
as possible or impossible. The concept of something’s
necessary existence is that its existence is guaranteed
by its possibility.

23.4.2. Class of Relation

23.4.2.1. Inherence

Let us turn now to the third class, relation. This is
of considerable interest to us in scientific work and
statistics. The first category is inherence. The meaning
of the term may not be immediately recognized, but the
concept is something we deal with every day, and the
operation is enshrined in syntax of language. Webster’s
defines inherence as the relationship of a quality to
an object or substance (Merriam-Webster’s Collegiate
Dictionary, 1993). That is likely still a bit abstract. But
it is a relationship that you use all the time. If you say,
“Jane Doe is 62 inches tall,” you are using the relation
of inherence: Jane Doe is the object, and she has the
quality of being 62 inches tall. By saying that she has
this quality, we join the quality to Jane Doe. Inherence
is the relationship that connects qualities or attributes
to things. Our language uses this relationship all the
time in forming noun phrases and verbal phrases (see
Figure 23.1).

In “The green giant lifts the little boy,” green is an
attribute of giant, little is an attribute of boy, and lifts
is a verb that modifies the noun phrase green giant in
a sentence, whereas little boy is a noun phrase object
of the verb lifts that qualifies lifts. A sentence is just
a synthesis, a putting together of noun phrases and
verbal phrases. Each of the inverted Vs represents a
putting together, a synthesis, some of which bring
about a relation of inherence of an object (subject) with
a quality. The synthesis of green/giant, little/boy, and
giant/lifts shows cases of inherence. Of course, adjec-
tives represent currently static qualities of the object,
whereas verbs represent currently dynamic qualities of
the object.

If we describe someone as having the attribute of
“blonde,” we do not refer to something that is con-
stantly changing before our eyes. To be “blonde”
cannot be something varying over the time of observa-
tion; otherwise, what will we attribute to the object for
that time? Someone can be blonde today and brunette
tomorrow if that person dyes his or her hair. So an
attribute is assigned on a given occasion or instant.
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Figure 23.1 A Sentence Diagram Illustrating the
Joining of Predicates to Things

giant green
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lifts boy little
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S

 

Figure 23.2 Schematic Diagram of the Inherence of
Attribute att(B) in Object B

B att(B )

Some of these attributes endure over long durations
and become almost “essential” to the person.

We illustrate schematically the concept of inherence
in Figure 23.2. Here we have an object B and an
attribute att(B). They are joined (synthesized) so that
B has the attribute att(B), and the synthesis is repre-
sented by the inverted V in the diagram.

23.4.2.2. Inherence and Variables

Let us digress from Kant for a moment to con-
sider the implications of inherence for the formation
of variables. The idea of a variable is built from the
idea of inherence. For example, at any given time,
the attribute of “hair color” will vary across individ-
uals, with “blonde” being just one of the values of
this variable, along with “brunette,” “redhead,” “brown
haired,” and so on. A variable is a set of values, only to
one of which can an object ever be assigned at any one
time. (“Blonde,” “brunette,” “redhead,” and “brown
haired” are all values of hair color, and we only assign

Figure 23.3 Mapping of a Set of Persons to a Set
Containing the Values of a Variable

John

Alice 

David 

Mary

Lester

Bob 

Huey

Abagail 

Blonde

brunette

red-head

brown-haired

Objects (Persons) Variable Attributes

a person to one of these at any one time in saying
what color hair the person has.) “Value” designates an
attribute in a set of attributes that define a variable.
So, what we are describing is a mapping from a set of
objects (in this case, persons) to a set of attribute-values
(hair color).

In Figure 23.3, each arrow represents an inherence
relation. What makes the set of attributes a variable
is the constraint that each object can be assigned to
only one value of the set of attribute-values. This
constraint does not prevent an object from being
assigned to different attribute-values on more than one
variable. But the constraint allows us to sort out what
attributes go together in a set as values of a variable:
They are attributes only to one of which an object may
be assigned at any one time. Now, some variables
have just a finite number of possible values, such as
“sex,” with “male,” “female,” “undecided” as its val-
ues. Other variables may have a countably infinite
number of values (representing a discrete variable),
whereas others may have an uncountably infinite
number of possible values (like continuous quantities).
But two variables can have the same set of possible
values and still be distinct because of the manner in
which their values are assigned across a collection of
individual objects (persons). This leads to what some
philosophers call an extensional definition of a variable
as the set of assignments of objects to its values. A
variable is defined by how its values are extended
across a set of objects. Two variables with the same
set of possible values differ if, for the same set of
objects, the objects are assigned to the values of the
variables in different ways. So, two variables,A andB,
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Figure 23.4 Spreadsheet Showing Assignment of Values of Variables to Persons

representing responses to different questions, may take
on the possible values of {1, 2, 3, 4, 5}, representing
responses on a 5-point rating scale, but they differ if
variable A (response to Question A) is assigned dif-
ferent values than variable B (response to Question B)
across a set of rating subjects:

A B

John 1 3
Alice 2 5
Mary 3 1
Bob 4 2
Lester 5 4

In this case, the act of checking off a response to a
rating scale is the act of assigning a value of the variable
to the subject. John checks 1 on variable A, but he
checks 3 on variable B. Alice checks 2 on variable A,
but she checks 5 on variable B, and so on.

In multivariate statistics, we assume we have obser-
vations of the values of several variables for each
subject. A convenient way to represent observations
and the values of variables is in a spreadsheet format
(see Figure 23.4).

The rows of the table in Figure 23.4 correspond to
subjects (objects) and the columns the variables. Along
any given row, we may read off the values that the
subject has on each respective variable.

Now, multivariate statistics studies relationships
between many variables. For example, we may com-
pute either the covariance or correlation between a
pair of variables. We may seek the mean of each
variable and place them in a row at the bottom of
the table. We can also compute the variance of scores
within each column and put each of the variances in a
row at the bottom of the table. We can test whether

different groups of subjects have the same means
on several variables. We can compute a regression
equation for predicting one variable from a number
of other variables. We can also compute linear combi-
nations of variables and get correlations between these,
as in canonical correlation.

In statistics, the variables are presumed to be at
least numeric, and often when they are not, they can
be coded numerically and preferably should represent
quantities. Quantities are things such as the number of
answers correct in a test of many questions, tempera-
ture, weight, height, and length. Sometimes, we like
to think that we can measure psychological attributes
quantitatively, as with an IQ score, a score to measure
how strong a person’s preference is toward something,
or a score to represent a measure of how much a
subject knows about something. But establishing that
one truly has a quantity requires satisfying certain
axioms (Michell, 1990), which is not easy to do with
psychological variables. But we will not go into that
here.

A big problem for graduate students is to learn to
think of what quantity a variable measures. It should
be thought of as unidimensional. Very often, the liter-
ature of social psychology and industrial psychology
names variables in ways that make it very difficult to
understand what precisely is the quantity measured.
Often, what is put forth as a variable is not a variable
but a process, a relationship, a substance, or something
that would require several variables to describe. The
theorist needs to be more specific in identifying the
quantity that varies. Recently, I came across a study
in which the researcher wanted to measure “leader-
follower exchange.” What is the quantity implied by
that name? I asked. There are numerous variables
one could focus on in exchanges between leaders and
followers: How many orders does the leader give to
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the follower? To what degree does the subordinate
feel he or she has freedom to decide what to do? To
what extent does the subordinate say negative things
about his or her supervisor? To what extent does the
subordinate say negative things about the boss’s orders
directly to the boss? To what extent does the follower
like the leader? (Notice the use of “to what degree,”
“to what extent,” and “how many” in these sentences.
They force you to think in terms of unidimensional
quantities when thinking of the variable measured.)
When you learn to cut through the obscurity of social
psychological and industrial psychological jargon to
focus on specific quantities, you will be in a better
position to think of what may be causes of these quan-
tities, for the causes will also have to be represented by
variables. This will help you better to select possible
predictors of quantitative dependent variables. If I had
my way, I would never let a student use a word or
phrase to name a theoretical variable that does not
include, at the beginning of the phrase, one of the fol-
lowing phrases: “the extent to which . . . ,” “the number
of . . . ,” “the quantity of . . . ,” “the degree to which
. . . ,” “the amount of . . . ,” “the score on . . . ,” or a
similar phrase.

23.4.2.3. Cause and Effect

Returning now to Kant’s class of categories of rela-
tion, we see that his second category under this class
is causality and dependence. It is important not to lose
sight of its connection with the first category of inher-
ence. The second category must contradict or introduce
something that contrasts with the first category. The
way we will do it to achieve the concept of causation
is to consider a first object with its inherent attribute
and introduce another object with its inherent attribute
and say that the first object’s attribute is conditioned
on, dependent on, or determined by the second object’s
attribute. In Figure 23.5, we schematically represent a
cause-effect relationship as Kant envisaged it between
the attributes of two objects, A and B. The attribute
att(A) of objectA is shown to be a cause of the attribute
att(B) of object B by use of an arrow to show causal
connection and direction. (Inverted Vs still represent
relations of inherence.) Now it is quite possible for
objects A and B to be the same object so that one of
the attributes of the object determines another attribute
of the object. Kant’s conception of causality explicitly
requires that causes always be thought of in connection
with objects, for it is the objects that bear the attributes
that are causally connected. An implication of this in
scientific studies is that if one has a conception of a

Figure 23.5 Schematic Diagram Illustrating That an
Attribute att(A) of Object A Is a Cause
of the Attribute att(B) of Object B

A att(A)

B att(B )

causal connection between variables, one must always
apply it to objects that conform to that conception.
We study the causal connection across a collection
of objects (research subjects) and, in that way, see
how different values of the causal variable tied to dif-
ferent objects determine different values of the effect
variable. But we must have reason to believe that all
of the objects (subjects) studied are homogeneous in
some way in their attributes, conforming to the same
functional relation between the causal and the effect
variables. Otherwise, if attributes are connected dif-
ferently across different pairs of objects—that is, by
different functional relations, say—then one does not
have the same causal connection between each pair
of objects, and the functional relation that one finds
may not really exist among the objects. This is the
problem of selecting objects to study that are causally
homogeneous.

Kant’s category of causation lays down a common
feature found in a variety of conceptions of causation.
Causal relations concern how the attribute of an object
is conditioned on, determined by, or dependent on
some other attribute, often in another object. Lakoff
and Johnson (1999) argue that causation is a radial
concept, a concept with a central core but numer-
ous divergent features that serve to make a variety
of causal concepts. Kant’s category can be seen as a
bare-bones schema that would fit well as the common
core of most conceptions of causation. But causation
has been thought of in numerous ways, according to
Lakoff and Johnson. It has been thought of as a force
that changes the attributes of an object, as a making
of things, as a progeneration whereby what one is
depends on one’s ancestors, as a necessary temporal
precedence, as functional relationship, as a determina-
tion of the probability with which values of a variable
occur (Mulaik, 1995), as reasons and explanations
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for things, or sometimes as just a correlation between
things (Pearson, 1911). Many of these different ways
of thinking of causation involve metaphors, all of
which have the core structure seen in Kant’s category
of causation.

23.4.2.4. Community

Kant’s category of community concerns visualizing
a community or collection of objects whose attributes
are reciprocally determined. One moves up from the
level of just considering a causal connection that goes
in just one direction from one object to another to
consider a whole system of objects whose attributes
are mutually and reciprocally determined by all the
objects in the system.

We illustrate schematically the idea of community
in Figure 23.6.

The concept of community was a conceptual
advance because it introduced the notion of a system
as a whole. To see the implications of this concept,
consider that behaviorism posed the problem of under-
standing behavior as that of establishing a causal
relation from the environment to the organism. Such a
focus may be too narrow if the organism brings distinct
properties that moderate its behavior uniquely, which
then changes the environment, which in turn modifies
subsequent behavior as well, which in turn changes the
environment again, ad infinitum. Organism and envi-
ronment need to be studied as a reciprocally interacting
system.

The categories of relation are perhaps the most
comprehensible and still useful contribution of Kant’s
account of the categories. They provide a perspicuous
framework for understanding the conceptual inter-
connections among the relations involving objects
and their attributes as used in science. From these
concepts, one can construct the abstract idea of a
variable and a conceptual blend involving objects and
variable attributes by a mapping of objects to values
of variables, and from there, one can consider func-
tional relations between the properties of objects as
causal relations. For a version of causality as a func-
tional relation applied to probabilistic causality, see
Mulaik (1986).

Kant also claimed that one could obtain derivative
synthetic a priori concepts by combining the various
categories with themselves and/or with a priori modes
of the sensibility, but he did not illustrate this claim
in the Critique of Pure Reason. But he envisioned
that complex a priori concepts could be generated
in this way. Thus, the material of sensible intuition

Figure 23.6 Schematic Representation of Kant’s
Conception of Community, Which
Concerns How the Attributes of a
Community of Objects, A,B, and C,
Are Reciprocally Determined

A att(A)

B att(B)

att(C ) C 

could be organized and synthesized in complex ways
in thought.

23.4.3. Concept of Object
Unifies According to a Rule

So much now for Kant’s categories. We need to
consider how additional ideas of Kant further shaped
the concept of objectivity, for they greatly influenced
the elaboration of that concept among German philoso-
phers and scientists in the 19th century (Megill, 1994).
In this same period, 19th-century British empiricists
generally had great difficulty in making sense of Kant
and his notions of objectivity and subjectivity, for they
were inclined to believe that all knowledge is basically
subjective to begin with and that objects were only
habitually anticipated configurations of sense impres-
sions. This tended to be true as British empiricism
evolved into logical positivism and logical empiricism
in the first 60 years of the 20th century. In the mean-
time, workbench scientists were developing their own
methods and ideas of objectivity.

Kant, as has been said, believed that the cate-
gories were combined further into complex concepts
for synthesizing the information acquired from the
senses. He argued that indeed what is given to us by
the senses in “appearances” is subjective. Although we
may want to think of an external object “x” behind the
appearances, it is nothing to us but just our idea of
an object stripped of all its attributes (i.e., an a priori
idea). What is something to us are the appearances,
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and it is by means of the a priori syntheses of the
appearances that we must fabricate objects for us. And
the first rule of a concept of an object is that it is a
concept that unites synthetically (through the knower’s
active thought) many appearances according to some
particular prior rule of synthesis. The rule must be pre-
sumed to be universally valid and necessary. (Not that
empirical concepts will turn out to be universally valid
and necessary but that objective concepts be asserted
as such.) Kant, however, is exceedingly frustrating
because just as one thinks that he is about to state the
idea of asserting and testing a hypothesis to establish
the objectivity of the hypothesis, against future data,
he says nothing of this. For Kant, it is sufficient that
the manifold appearances are united according to a
prior rule. The idea of testing hypotheses probably
occurred to various scientists prior to Kant, such as
Spallanzani, who conducted controlled experiments to
test and refute the hypothesis of spontaneous genera-
tion in the latter third of the 1700s, but the idea did
not enter into a theory of ideal scientific method until a
19th-century British Kantian and historian of science,
William Whewell (1966), introduced the idea of
consilience—that one could evaluate an induced theory
by showing that it is supported by other data not used
in its formation.

23.4.4. Inter-subjectivity

However, Kant introduces one last element of the
idea of objectivity toward the end of the Critique of
Pure Reason. If a judgment of an object is found only
in a single subject, then that is only “persuasion” and
is an illusion, for it has only private validity. “Truth,
however,” Kant said,

rests on agreement with the object; consequently, in
regard to the object the judgments of every under-
standing [across a number of individuals] must be in
agreement. . . . Thus, whether assent is conviction [of
the truth] or mere persuasion, its touchstone externally
is the possibility of communicating the assent and of
finding it to be valid for every human being’s reason. For
then there is at least a presumption that the agreement
of all the judgments, despite the difference among the
subjects, will rest on the common basis, viz., the object,
and that hence the judgments will all agree with the
object and will thereby prove the truth of the [joint]
judgment. (Kant, 1787/1996, A820 821, B848–849)

However, he claims that inter-subjective agreement is
not an absolute determination of truth but simply a
way of detecting possible private validity. He presumes

that all humans have the same cognitive apparatus that
functions with the same a priori categories and that this
makes agreement possible.

23.5. The Cognitive

Science of Objectivity

Philosophers are interested in rationally and critically
understanding the nature of the world, how we humans
know what we know, and how we are to live the good
life. Historically, they have tended to ground their
reasonings on what to them appeared to be self-evident
truths and to avoid empirical studies or borrowing too
heavily from the sciences. To do so, they believed,
would in many cases rest their deliberations on the
presumptions of scientists, which the philosophers felt
should be subject to critical philosophical analysis and
not the foundation of such an analysis. But in the
latter half of the 20th century, philosophers tended
increasingly to question the idea of incorrigible foun-
dations for thought and knowledge and to rest content
to work with sound but fallible knowledge given by
the sciences. Because thinking is itself a central object
of philosophical thought, it is understandable, then,
that philosophers turned to psychologists, neuroscien-
tists, linguists, and cognitive scientists to help them
better understand the nature of thinking. So, we saw
philosophers of science, such as Ronald Giere (1988),
advocating a cognitive approach to understanding the
way scientists think and do science. But in the suc-
ceeding decade, there suddenly burst upon the scene a
group of linguists, literary theorists, and philosophers
with training in mathematics and cognitive science
who claimed to also be cognitive scientists, saying that
they are now doing not only the cognitive science of
ethics (Johnson, 1993), the cognitive science of mathe-
matics (Lakoff & Nuñez, 2000), the cognitive science
of language (Fauconnier, 1994, 1997; Fauconnier &
Turner, 2002; Lakoff, 1987), the cognitive science of
literature and poetry (Lakoff & Turner, 1989; Turner,
1996), the cognitive science of politics (Lakoff, 1996),
and the cognitive science of social science (Turner,
2001) but also the cognitive science of philosophy itself
(Lakoff & Johnson, 1999). And they challenged funda-
mental assumptions and beliefs in each of these fields.
They have not yet written the book on the cognitive
science of science, but it is something we can expect,
and ultimately it seems that it is inevitable that there
will be a cognitive science of cognitive science.

The basic message of this new school is that cogni-
tive science has achieved a level of sophistication and
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Figure 23.7 The Location-Event Structure Metaphor as a Mapping
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a set of analytic tools that allows us now to use the
methods and findings from that science to illuminate
the thinking processes of human beings in each of
these basic fields of human activity. And what they
find is that many of the theories and beliefs about the
way people think that are held by those working in
those fields are wrong. For example, many scientists
believe that most scientific and mathematical thought
is literal and that metaphor is simply a linguistic thing
involving flowery language and only for poets and
writers. Wrong. Most thinking, especially abstract
thinking, even in the sciences, is metaphoric, whereas
literal thinking is confined to the concrete, immediate,
here and now (Lakoff & Johnson, 1999). Furthermore,
metaphor is not about language—although it is shown
in language—but about thinking. Another belief is that
thought is disembodied, computational, symbolic, and
formal. Wrong. Thought is embodied.

Conceptual structure arises from our sensorimotor
experience and the neural structures that give rise to it.
The very notion of “structure” in our conceptual system
is characterized by such things as image schemas and
motor schemas. . . . Mental structures are intrinsically

meaningful by virtue of their connections to our bodies
and our embodied experience. They cannot be char-
acterized adequately by meaningless symbols. . . . Our
brains are structured so as to project activation patterns
from sensorimotor areas to higher cortical areas. These
constitute what we have called primary metaphors. Pro-
jections of this kind allow us to conceptualize abstract
concepts on the basis of inferential patterns used in sen-
sorimotor processes that are directly tied to the body.
(Lakoff & Johnson, 1999, p. 77)

23.5.1. Metaphor

Metaphor is a basic analytic concept used by Lakoff
to understand people’s reasoning. He and his students
and colleagues have cataloged hundreds of metaphors,
many of which repeatedly turn up in different situa-
tions. Lakoff and Johnson (1999) define metaphor as
a (partial) mapping from a source domain to a tar-
get domain so that inference patterns of the source
domain may be applied to the target domain. For
example, a commonly used metaphoric structure is
the location-event structure metaphor used to think
about events and causes. The source domain for the
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metaphor is the domain of motion of objects in
space. The target domain is the domain of events.
A number of metaphoric concepts follow from this
metaphor.

For example, states are treated as bounded locations
in space: “I’m in a funk.” “He’s on the edge of disaster.”
“We are not out of danger.” The prepositions are spatial
indications of location with respect to the location in
question, which represents a state.

Lakoff and Johnson (1999) argue that most meta-
phors are taken from the image and motor schemas
of embodied perception and action. Being in and
out of a region is a primary body experience that
we easily visualize. So, abstract states such as a
“funk,” “disaster,” and “danger” can be represented
by the spatial metaphor of a location, and one’s being
in such a state can be thought of as being in the
location.

Changes are movements: “I’m going into a depres-
sion.” “It went from hot to cold in an hour.” “I think
we are moving closer to success.”

Means are paths: “If you follow these rules, you will
be on the road to success.”

Purposive action is movement along a path toward a
goal: “Let’s get this show on the road!” “We’ve been
working very hard toward bringing you the products
you need.” “We are moving ahead with our program in
this way and expect to reach our goals within a week.”

Difficulties are impediments to movement: “We’ve
gotten mired down in details in working toward our
goal.”

Stopping purposive action is blocking movement
along the path to the goal: “If it were not for the accoun-
tants who blocked access to the funds, we would have
been able to reach our quota.” “We need to close off
all avenues to their getting their funds and weapons.”

Long-term activities are journeys: “A love relation-
ship is a journey through life.” “We’ve reached a
crossroad in our marriage.” “It’s been a long, bumpy
road, but our marriage has survived.”

Much of Lakoff and Johnson’s (1999) analyses
are deconstructive but not destructive. By expos-
ing the metaphoric structures in metaphysical, math-
ematical, and political thought, they expose the
conceptualization to critique. The critique is not
that the concepts are merely metaphor. Metaphor is
unavoidable in abstract thought. Rather, metaphors
for understanding something are not unique—often
more than one metaphor might be applicable and
necessary to achieve full understanding—and further-
more may not represent important aspects of the
target domain so that erroneous inferences may be
made.

23.5.2. Conceptual Blending

Lakoff and Johnson (1999) work with exposing
the metaphors in everyday and abstract thought,
whereas Fauconnier and Turner (2002) study more
complex forms of what they call “conceptual blend-
ing.” Metaphor is an intermediate form of conceptual
blending. By mapping elements of a source domain to
a target domain, the metaphor allows one to transfer
inference patterns from the source domain to the cor-
responding elements of the target domain. The result is
that the target domain becomes a new blended domain
operating with the selected inferences from the source
domain. But Fauconnier and Turner consider that one
may have two input domains—which they call mental
spaces—and select certain elements from each of the
two domains to include in a new domain. Inference
patterns from the original input spaces may also be
transferred to the new domain to operate on the corre-
sponding elements. Metaphoric mappings from select
elements in each domain to some in the other may also
bring some of the elements from one domain under
the inference patterns of the other domain. Emergent
structure will arise with new rules to allow the elements
from the two inputs to function together. For exam-
ple, blends occur throughout mathematics. A vector
space is a blend of elements and axioms of an abelian
group with elements and axioms of a field, together
with emergent structure in new axioms to govern how
the elements of the group function with elements of
the field. Additional elaborations of the vector-space
blend can involve additional axioms for some of the
elements, such as axioms for a scalar product to be
applied to the elements of the group, which results in
a unitary vector space.

Fauconnier and Turner’s (2002) method is to analyze
a conceptual blend into its input spaces and then reverse
the process to show how the blend was achieved.
(This is analysis and synthesis again.) They have done
this with numerous cases and have developed a stan-
dard way of diagramming the mental spaces, mapping
aspects of each to the other spaces, and creating a
formation of the blends to make the process perspic-
uous. However, it would divert us from our purpose
to develop all of that here. It will be important, in
any case, to recognize that metaphor and conceptual
blending are all forms of cognitive synthesis. And what
these cognitive scientists are doing is reminiscent of
Kant’s program to reveal the synthetic operations by
which the mind thinks. In fact, some of their blending
operations have counterparts in Kant’s categories. But
whereas Kant located his a priori operations of syn-
thesis in the understanding, the faculty of discursive
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Figure 23.8 Graph Showing Two Distinct Curves That Pass Through the Same Data Points
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NOTE: Two or more curves can be constructed to fit a given set of data points (black dots). The curves unite the points according to
rules but are not unique. The squares represent additional data not used in fitting the curves and may be used to test whether any of the
curves that fit to the original points also fit the new points.

thought, Lakoff and Johnson (1999) and Fauconnier
and Turner (2002) locate (relatively) a priori structures
in embodied perception and motor activity.

23.5.3. An Object as a Concept That
Unites Observations According to a Rule

We now need to return to the development of the
concept of objectivity where Kant left it. But we will
seek to use some of the methods developed by Lakoff
and Johnson (1999) and Fauconnier and Turner (2002)
to show how objectivity arises out of schemas of object
perception. Recall how, for Kant, an objective concept
was a concept that united numerous intuitions or per-
cepts into a unity according to a rule. But that rule, as
we shall demonstrate, may not be the only one that will

do this. Consider the graph in Figure 23.8, in which
the plotted round dots correspond to a set of data.

Now each of the curves in the diagram was con-
structed using a sixth-degree polynomial equation,
with different constraints on the coefficients of the
equation introduced to identify a solution. As many
parameters as points to fit were freed and estimated in
such a way as to make the curves each fit the data points.
In other words, each curve represented a different
saturated model. In fact, an endless number of sixth-
degree polynomial curves can be found to fit these
five points. If we regard each curve as a way of unit-
ing the points according to a rule, we see that there
is no unique rule by which this could be done. If
each of several persons has a different rule with dif-
ferent but saturated equations and different sets of
just-identifying constraints, the rules are no longer
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objective but subjective by being linked to particular
persons with corresponding constraints.

But suppose we obtain additional data points that are
not used in formulating the curves but that we believe
represent data generated by the same process. If we
plot these points as squares in the diagram, we can
see if either of the curves we originally formulated fits
these additional points as well. We began with 5 points
and estimated five parameters, ending up with both
curves fitting the points perfectly, of necessity, because
the points were used in determining the curves. With
5 additional points, however, we now have 10 points
in all and use only 5 of them to formulate a curve. But
we have 5 additional points against which to test our
curves. We see, in this case, that one of the curves
in Figure 23.8 also fits the additional points, whereas
the other curve does not. It would seem that with more
and more additional points fitting one of the curves, the
support for one of the curves against that of the other
becomes overwhelming. However, it is quite possible
that neither of the curves will fit the additional points,
but we now have a paradigm case for establishing
objective concepts.

23.5.4. Objectivity Implies Hypothesis Testing

Kant’s idea that we regard a rule (e.g., a curve) that
unites diverse intuitions (think “data points”) as univer-
sally valid implies that additional intuitions (percepts)
assumed to be produced by the same object should
conform to the same rule also. It is not that they nec-
essarily will. No inductive generalizations based on
experience necessarily hold against additional experi-
ence. But thinking by concepts is thinking by means of
necessary relations. Seeking to reconcile with experi-
ence the necessity with which we think of things
occurring according to rules is what establishing objec-
tive knowledge is about. This is the basis for hypothesis
testing. A hypothesis asserts a universal, invariant rule,
and the rule is tested by seeing if it unites or con-
forms to data not used in the formulation of the rule.
If the rule is upheld by the test, that gives a provi-
sional objectivity to the rule. The rule is provisional
because additional data presumed under the same rule
may not conform to the rule. Concepts of experi-
ence thus are “objectively valid.” They do not possess
“absolute truth.” Objectivity is not about absolute
truth. It is about a way in which we validate concepts
against experience, and the validity is only provisional.
Much confusion and metaphysical debate arises out of
thinking that theories and hypotheses are “true” in an
absolute sense. One is projecting “truth” from formal

logic and mathematics onto experience because we
use logic and mathematics to reason about experience.
But mathematics and logic are but metaphors for deal-
ing with apparent regularities in experience. Treating
experience with formal logic and mathematics is a con-
ceptual blend, with the inference patterns of logic and
mathematics projected onto our experiences. Or one
may imagine as did the philosopher-mathematician
Peirce that science at any point may have only pro-
visional knowledge but is still converging to a final
truth in the distant future as an absolute limit by
means of self-corrections (Peirce, 1931–1958). But
again, this projects a concept of a final limit from
mathematics onto experience, and yet we have no nec-
essary reason to believe that science will not go on
forever revising its results with newer and more encom-
passing concepts as humans encounter ever newer
experiences.

23.5.5. The Metaphor of
Science as Knowledge of Objects

But we still have not established why Kant’s con-
ception of objective knowledge as knowledge that
integrates experience according to rules is so intu-
itively compelling. To provide a reason, I will now
draw upon the cognitive science of objectivity. I have
already mentioned that Lakoff, Johnson, Fauconnier,
and Turner argue that most metaphors are taken from
the primary experiences of embodied perception and
action. So, what we need is to provide objectivity with
a metaphor for objective knowledge in science that is
intuitively compelling because it arises out of embod-
ied object perception. “Science is the knowledge of
objects” is the metaphor.

Now, some might object to saying that this is a
metaphor because historically science has, at least in
the physical sciences, always been about objects. But
if we speak here only about objects that we directly
perceive, that is false. Electrons, photons, and quarks
of physical science are physical objects, but they are
not directly perceived but are conceived by integrat-
ing a great many perceptual experiences. And turning
to the social and behavioral sciences, we have
numerous concepts that we treat as objective that do
not refer to things directly perceived but are conceptual
integrations of many observations (e.g., “inner locus
of control,” “intelligence,” and “extroversion”). So,
to ascribe objective status to these concepts, we do
not rely just on directly perceiving these things but
on using these concepts to unite in thought numerous
percepts, often reconstructed from memory. But we
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achieve objective status for them, in part, by hypothesis
testing.

The account here of objectivity as a metaphor taken
from object perception was originally developed in
Mulaik (1995) and draws heavily on it: Most of the
members of the conceptual integration school posit
a philosophy of “embodied realism,” which is that
humans experience things as embodied beings. As
embodied beings, they move around in a world of
other bodies and perceive the world directly as con-
sisting of extended, textured, surfaced objects and
substances. They react to the world in ways that the
human species has evolved to effectively, if not opti-
mally, survive. They are able to directly perceive
things like animals, from the size of mites to the
size of mammoths, but they cannot directly perceive
microbes or viruses, nor can they directly perceive a
mountain as a whole, except at a distance, and can-
not perceive planets around distant stars, which are
only points of light in the night sky, with the naked
eye. They do not perceive the earth as round. Nor
do they perceive their own perceptual and cognitive
processes directly. Much of what they perceive and
think involves neural syntheses and integrations that
occur quite outside of conscious awareness. So, human
cognition is limited and at a scale somewhat com-
parable to human size. Observational aides, such as
microscopes and telescopes, only serve to bring things
up to human scale. And what are seen through such
devices are often described metaphorically in terms of
things familiar to humans at the human scale, such
as Leeuwenhoek’s characterization of protozoa and
microbes, seen through his water-drop microscope,
as “animalcules” (little animals) or Schleiden and
Schwann’s “cells” (small rooms or enclosures), seen
through the microscope in the tissues of plants and
animals.

23.5.5.1. Gibson’s Theory of Perception

It is natural, then, that Lakoff (1987) recognizes that
many of his views about embodied realism and cogni-
tion go together well with the views of J. J. Gibson
(1966, 1979, 1982), the psychologist of perception
who argued that humans directly perceive the world
as extended, textured, surfaced objects as opposed to
constructing them in conscious awareness from more
fundamental categories in awareness. Now, a funda-
mental concept of Gibson is that we only perceive
when the stimulus information presented varies. Our
perceptual apparatus is tuned to resonate to variation in
the stimulus information, and with no variation, there is

no perception. So, surfaces are detected by variations
in the texture conveyed by the stimulus information.
Object perception also depends in part on a moving
observer, so that it perceives a continually changing
flow and movement in the perceptual array resulting
from its movements. Objects and surfaces are “invari-
ants,” in contrast to the changing “perceptual flow”
observed by the organism as it actively moves about
within its environment. According to Mace’s (1986)
account of Gibson’s theory, these invariants corre-
spond to “stable features of the environment” (p. 144),
which are simply objects. But of utmost importance
to my account was Gibson’s idea that perception is not
simply about detecting invariant objects in the external
environment but rather also about detecting the effects
of its own actions and movements in the environment
because of regular forms of change in the perceptual
array that result from bodily movement, which vary
independently of fixed objects. Turning one’s head or
moving to other positions changes the perceptual array
in regular ways, such as objects moving unchanged
to the side and even out of vision as one turns one’s
head, whereas looming out occurs with points on the
surfaces of things moving along radiating lines from
a point as the observer moves toward it or points on
the surfaces of things converging to a point on the
horizon as the observer moves away from it. Moving
to a position that presents a different angle of view of
an object changes the appearance of the object, but the
appearance will nevertheless retain certain topologi-
cally invariant features, such as the order of spatially
contiguous points on the surface, even if perceived
distances between points change. Thus, perception
could be subdivided into exteroception, the percep-
tion of invariant objects in the perceptual field, and
proprioception, the perception of regular changes in
the perceptual field produced by the observer’s actions
and movements, which provides the observer with
information about itself.

Turner (1996) has a similar account:

Suppose we see a baby shaking a rattle. Sequentially we
can focus on the smile, the nose, the jerky movement of
the shoulder, the frozen elbow, the hand, the rattle. Our
focus changes, but we feel that, regardless, we continue
to look at the same story: The child is playing with the
rattle. We are able to unify all of these perceptions, all of
these different foci. The mental spaces corresponding to
the different foci will all have a child, a rattle, a rattling
motion, and so on, and we connect these elements in
each space to their counterparts in other spaces. We
conceive of these various spaces as all attached to a
single story. (p. 117)
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Figure 23.9 Metaphoric Mapping of Subject-Object Schema From Perceptual to Scientific Domain
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Next he says,

Now imagine that we walk around to the other side of the
baby. Our visual experience may change substantially.
It is even possible that we will see none of what we
saw before, strictly speaking. Yet our new view will
not seem entirely new. The space of the new viewpoint
will have a baby, a shoulder, a hand, a rattle, a rattling
motion, and so on, and we will connect these elements
to their counterparts in the spaces of other viewpoints
and other foci, allowing us to think of the different small
spatial stories we see as one story, viewed from different
viewpoints and with different foci. (p. 117)

What we achieve is a conceptual blend of all these
viewpoints and foci, with their linked corresponding
elements providing invariant features of objects.

23.5.5.2. The Subject-Object
Schema of Perception as Metaphor

The division of perception into exteroception and
proprioception, which seems present from birth and
is a constant feature of perception, provides the
fundamental schema that I shall call the subject-object
schema. It is this schema that we use metaphorically to
judge when we have objective and subjective concepts
in science. Now, it will be important to note that the
use of the subject-object schema as metaphor is applied
to conceptual integrations of information gathered at
widely spaced points in time and space and recalled
from memory or recording devices, whereas percep-
tion involves attentional integration of information
gathered over very short intervals in time on the order

of 50 to 200 milliseconds (Blumenthal, 1977). This is
what makes this schema a metaphor when applied in
the formation of abstract objective concepts because
it is applied to a different domain than the attentional
domain of perception.

The subject-object schema has the following ele-
ments: a subject, an object, an object as invariant
in perception across different points of view, and a
subject as the source of regular changes in perception
independent of objects. The schema can be projected
onto features of a scientific setting. The subject is the
researcher, the object is an invariant property observed
across many observations, and artifacts in the research
setting are effects of the observational methods or
apparatus on what is observed and are linked to the
subject. In Figure 23.9, we show how the schema of
subject/object is mapped to the scientific domain.

For example, consider the case of cold fusion. In
1989, Stanley Pons and Martin Fleischmann, two
professors at the University of Utah with credible
reputations in chemistry, claimed they had discovered
an electrochemical process whereby nuclear fusion
could take place at modest temperatures and pressures
and yield energy in excess of that introduced into the
system. In fact, one claimed he produced the effect
in his kitchen using ordinary utensils as well as under
more controlled conditions in the lab. The claims, if
true, would have revolutionized the energy industry.
No one suspected fraud, but the physics establishment
suspected bad experimental technique and demanded
immediate replication. Numerous experiments were
conducted with usually failure to find the claimed
results of fusion, and some laboratories that thought
they had replicated the findings later discovered
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experimental artifacts in their experiments that negated
their findings. Later experiments in other laboratories
were conducted to see if already known processes other
than fusion could have produced the results of Pons and
Fleischmann, and some believe they had. Other labo-
ratories, however, continued to study the phenomenon,
and some believed that some kind of new nuclear effect
was generating energy although it might not be fusion.
However, mainstream physics came to reject the idea
of cold fusion (Goodstein, 1994; Platt, 1998).

In the cold fusion case, the requirement for replica-
tion and invariance in different laboratories and with
different methods and instruments corresponded to
the idea of an object as an invariant in the percep-
tual domain, independent of effects of the observer.
Research artifacts due to a researcher’s methods of
instrumentation, observation, and execution of the
experiment corresponded to effects of the observer’s
acts and motion on the perceptual array. The researcher
corresponds to the subject, and the objective phe-
nomenon in the scientific domain corresponds to the
object in the perceptual domain.

The need to test a hypothesis with data other than
that used in its formulation arises out of the need to
establish that the invariant claimed by the hypothe-
sis is independent of the theorist, just as objects are
regarded as independent of the actions, perspective,
and motions of the observer as the observer moves in
the environment because they are invariants unaffected
by the changes due to the actions of the observer. When
one formulates a hypothesis, often one only has a bare
framework for the hypothesis and uses observations of
the phenomenon to be understood by the hypothesis
to adjust the hypothesis to fit the phenomenon. But
that ties the good fit to the phenomenon to the theorist
who made the adjustments in his or her theory to get
the fit. A test of independence for the invariance is not
possible in the case of those adjustments because the
final form of the hypothesis will necessarily fit those
aspects of the phenomenon to which it was adjusted.
To be a test, a test must have the logical possibility
to fail the test. Thus, observations—especially under
somewhat different conditions—that are not used in
formulating the hypothesis must be used to test the
hypothesis.

Closely associated with the need to test hypotheses
against data not used in their formulation is the idea
that theories and models are corrigible and defeasible
with future experience. This draws upon experiences
humans have of seeing something that looks like
something they have encountered before and then
seeing it from a different angle and discovering that
what they see is not what they have seen before. Almost

everyone has had the experience of coming across a
person in a crowd from behind who looked just like
a person he or she knew, only to discover as the
person turned that the face was not the face of the
person known. Our knowledge of objects is acquired
piecemeal, from different perspectives, gradually over
time, and expectations we have based on the past can
be disconfirmed by current or future experience. So,
objective knowledge, as experienced everyday, is cor-
rigible, and that should guide us to expect scientific
knowledge to be corrigible.

23.6. Objectivity, Degrees

of Freedom, and Parsimony

In formulating hypothetical mathematical models to
represent some phenomenon, often the researcher
begins with a framework like that of a general struc-
tural equation model. Certain measured variables are
regarded as indicators of certain latent exogenous
variables, whereas other measured variables are
regarded as indicators of certain latent endogenous
variables. In providing a hypothetical causal structure
between the latent variables and the observed indicator
variables and between the various latent variables, the
researcher then fixes certain path coefficients to some
prespecified value. Fixing a path coefficient to zero
means that one hypothesizes that a certain variable is
not a cause of another variable. Fixing a path coeffi-
cient to a nonzero value means that one expects that
a unit change in the causal variable will produce a
change proportional to the value of the fixed coefficient
in the affected variable. Freeing a path coefficient,
however, contrary to what many believe, is not the
same as asserting that there is a causal relation between
the respective variables. The computer programs that
estimate the free coefficient will adjust the free param-
eter and other free parameters until a best fit is found
for the model to the data conditional on the fixed
and constrained parameters of the model, which are
carried along unchanged in the computations. A free
parameter could turn out to be any value, including
zero. So, freeing a parameter is not the same as assert-
ing something about it in one’s hypothesis but rather
is an assertion of ignorance. One does not know a
value to specify for the parameter. So, one’s model
is incomplete, and one needs to estimate unspecified
parameters to get a model-based reproduction of the
data to see if it fits the actual data. Freeing a parameter
is adjusting one’s hypothesis so that it fits the data as
best as possible conditional on any further constraints
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imposed on the parameters of the model. Thus, if there
is to be any lack of fit, it will be due to the constrained
parameters and not the free parameters. Thus, good fit
for the model as a whole should be interpreted only in
terms of reflecting a test of just the constraints on the
model and not about the free parameters.

Now many models in science often have so many
elements and connections between them that more
parameters than elements in the data exist in the
models. If theory does not already specify values for
these parameters, then they must be estimated to get a
model that is scaled to the data. Take, for example, a
structural equation model that models the covariance
matrix between some observed variables as functions
of parameters relating the observed variables to latent
variables and/or to functional or correlational relations
between latent variables. Each element of the covari-
ance matrix is thus a function of some of the parameters
of the structural equation model. Thus, if the number of
unknown parameters of the structural equation model
exceeds the number of observed variances and covari-
ances, it will not be possible to solve the equations
relating observed variances and covariances to the
model parameters for values of the unknown param-
eters. Thus, a necessary (but not sufficient) condition
for being able to solve for these parameters is that the
number of free parameters to estimate does not exceed
the number of distinct observed parameters, which
are the variances and covariances among the observed
variables. There are p(p+ 1)/2 distinct variances and
covariances for the observed variables. Corresponding
covariances for the same pair of variables on either side
of the principal diagonal of the covariance matrix are
not distinct, so only one of each such pair is a distinct
parameter. Determining that one has fixed appropri-
ately a sufficient number of parameters in the model to
allow the remaining free parameters to be determined
by distinct elements of the variance-covariance matrix,
regardless of their values, is known as the problem of
identification. If a model is identified and the number
of parameters to estimate equals the number of distinct
elements, such a model is said to be just-identified.
Just-identified models always fit their data perfectly.
For example, in the problem of finding a curve to fit
the five points in Figure 23.8, we found a curve for a
sixth-degree polynomial that has seven coefficients:

y = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6

= a0 + a1 + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6

Two of the parameters of the polynomial were fixed
to certain values, leaving free only five parameters to
be determined from values of the coordinates of the five

points. With five knowns (the coordinates of the points)
and five unknowns in the free parameters of the poly-
nomials, the result was a just-identified equation that
fit the points perfectly. Just-identified equations and
just-identified models are not useful from the point of
view of model testing because they always fit perfectly
as a mathematical necessity. Furthermore, the con-
straints on parameters that achieve just-identification
cannot be tested because the models fit perfectly. They
are like a priori concepts that make the models pos-
sible. They are neither true nor false and are more a
convention for how one will represent the data. For
a test with the model to be possible, it will require
introducing constraints on additional parameters.

If additional parameters of the polynomial equation
are fixed to prespecified values, then it may not be
possible for the remaining parameters to be solved for
such that a curve passes through the points. Rather
than exact fit, one may require only least squares
fit. When additional parameters are specified beyond
those making the model just-identified, the model
becomes overidentified. The model tests the overiden-
tifying constraints in the context of the just-identifying
constraints. However, which are over-identifying and
which are just-identifying constraints may no longer
be uniquely defined. Different subsets of the con-
straints may be selected to serve as just-identifying
constraints and the remaining constraints evaluated in
terms of them. If each of two overidentified models
cannot free up its constraints to find a common set of
just-identifying constraints for both models, then the
models may not be comparable because they are based
on different conventions and/or untestable assumptions
(with respect to the data).

Overidentified models are required to do scien-
tific work because it is only with them that lack of
fit becomes logically possible, allowing one to test
models by means of assessing lack of fit to the data.
But it is important to keep in mind what is tested:
the overidentifying constraints in the context of some
additional constraints that make identification possi-
ble. The whole model is not specified unless all of its
parameters are specified; hence, the whole model is
not tested. Lack of fit should only be addressed to the
overidentified constraints.

Models can be compared in the degree to which
they are testable. In Mulaik (2001), I proposed the
degrees of freedom of a model as a measure of the
disconfirmability of a model. I showed that for models
that estimated parameters, the degrees of freedom of
the model was the number of dimensions in which the
reproduced data based on the model was free to differ
from the observed data. The degrees of freedom of
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a model are the differences in number between the
number of distinct data points to fit and the number
of free parameters. In other words, given p observed
variables, for a structural equation model designed
to fit p(p + 1)/2 distinct variances and covariances,
estimating m parameters yields for the degrees of
freedom df = p(p + 1)/2 − m. The fewer param-
eters estimated relative to the number of data points
to fit, the more degrees of freedom. The fewness
of parameters estimated is known as the degree of
parsimony of the model, so degrees of freedom and
parsimony are related concepts. As degrees of freedom
increases, the number of free parameters decreases,
and the model becomes more parsimonious. Parsimo-
nious models have been advocated as the ideal for
centuries. But it was Karl Popper (1934/1961) who
argued that more parsimonious models are more fal-
sifiable, thus giving a rationale for why parsimonious
models are preferable. However, he was not able to
work this out in detail to show why parsimonious
models were more falsifiable. My account (Mulaik,
2001) shows that this is so because models that estimate
fewer parameters are free to differ from the data in more
dimensions.

Because model testing is a part of establishing the
objectivity of specified aspects of a hypothesis, degrees
of freedom, which measure the degree to which a
model can be tested, are also a part of assessing the
objectivity of a model. Given two models of the same
phenomena that fit the data equally well, the model
with more degrees of freedom is to be preferred.

23.7. Objectivity

and Multiple Indicators

If at least four observed variables are indicators of a
latent variable, and one can show that a single common
factor model is consistent with them, then that supports
the objectivity of the latent common factor.

If a set of four or more variables has a covariance
matrix that satisfies a single common factor model,
then this establishes an invariant across them. A por-
tion of each indicator’s variation is proportional to the
variation of a common latent variable. The variation of
the common factor is the invariant across the indicators
because each indicator displays it, although in muted or
amplified form, depending on the factor loading. Each
indicator’s relationship to the latent common factor
is analogous to seeing the same object from different
points of view. There are features unique to each point
of view as well as something invariant.

Figure 23.10 A Single Common Factor Can Gain
Objective Support From Four or More
Indicators

At least four indicators are required to establish
the objectivity because then a test that the indicators
have a common factor is possible. One can apply
Spearman’s tetrad difference test to the correlations
among the indicators (Anderson & Gerbing, 1988;
Glymour, Scheines, Spirtes, & Kelly, 1987; Hart &
Spearman, 1913; Mulaik & Millsap, 2000). This
test is as follows. One tests the following hypothe-
ses: If the four variables, x1, x2, x3, and x4, have a
common factor, then the correlations between the four
variables should all be nonzero and satisfy the equa-
tions ρ21ρ34 − ρ23ρ14 = 0, ρ24ρ13 − ρ21ρ34 = 0, and
ρ24ρ13−ρ23ρ14 = 0, where ρij denotes the correlation
between variables i and j . Or one can evaluate the fit
of a single common factor to them using a structural
equations modeling program.

Some have thought that three indicators and a causal
path from the latent variable to another latent variable
that also has three indicators would be sufficient to
establish that there is a common factor among the three
indicators. It does, but it does not establish that the
factor common to them is necessarily the factor you
think it is. What it establishes is just that there is a
factor common to the three indicators and the indi-
cator of another latent variable. Mulaik and Millsap
(2000) considered a case in which using only three
indicators per latent variable would make it impossible
to discover that an apparent causal effect between a
hypothesized latent variable and another latent variable
does not apply. Figure 23.11 is adapted from Figure 1
in Mulaik and Millsap (2000).
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Figure 23.11 A Presumed Causal Model With Only Three Indicators and the Model That Generates the Data

η

V1 V2 V3 V4 V5 V6

a. Presumed Model

ζ

V1 V2 V3 V4 V5 V6V7

µ

b. Actual Generating Model

η

ξ

ξ

In Figure 23.11a, one presumes that ξ is a cause
of η One is able to test whether V1, V2, and V3
have a common factor by testing them jointly along
with any one of the indicators of η using Hart and
Spearman’s (1913) tetrad difference test. However, if
the data were actually generated, as in Figure 23.11b,
then we could tell that something is wrong by introduc-
ing one other variable, V7, that is both an immediate
and fourth indicator of ξ . In this case, we see that
V1, V2, and V3 are immediate indicators of another
common factor, ξ , which is itself a confluence of ξ and
another methodological factor, µwhich is also a cause
of η. In fact, ξ is not a cause of η. Neither is ζ . To
be sure, ξ is a common factor of V1, V2, and V3 as
well as of V7. But V7 will be uncorrelated with any
of the indicators of η, which would not be the case if
ξ were a cause of η and V7. Whereas in the model in
Figure 23.11a, any indicators including V1, V2, V3,
and any one of the indicators of η would pass a tetrad
difference test for a single common factor, that would
not be the case for any three indicators of ξ and an
indicator of η in the model in Figure 23.11b. Any four

tests involving V7, two other indicators of ξ (say, V1
and V2), and an indicator of η (say, V5) would not
pass the tetrad difference test. So, including a fourth
indicator of ξ , chosen carefully to be sure that it does
not use the same method of measurement as V1, V2,
and V3, would increase the possibility of discovering
something wrong with the model. In fact, including
four or more indicators chosen under the belief that
they measure the same latent variable with different
methods improves the chances of rejecting the model,
if unanticipated other causes are present, by increasing
considerably the degrees of freedom or the number of
tests that could be performed.

23.8. Conclusions

We have seen that objectivity concerns more than
inter-subjective agreement between observers or main-
taining an impersonal and unprejudiced attitude. It
concerns various concepts of what constitutes an
object, such as “an object is a thing bearing properties”
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(inherence). Causality also involves objects because
it concerns how attributes of objects are dependent on
other attributes, often of other objects. We showed how
this schema is used to develop concepts of a variable.
Objects, we furthermore learned, can be conceived as
reciprocally interacting systems in which the attributes
of each object mutually affect those of other objects
in the system. We also considered Kant’s contribu-
tion to the development of the modern notions of
objectivity—namely, his idea that an object is a con-
cept regarded as universally valid that unites diverse
intuitions according to a rule. This did not imply that
empirical concepts are incorrigible but that one acts in
reasoning with concepts as if the concept that applies to
experiences in the present and the past will also neces-
sarily apply to them in the future. But such expectations
can be overturned with further experience. We consid-
ered how a modern school of linguists, philosophers,
and literary theorists who also function as cognitive
scientists argue that human thought routinely involves
numerous forms of synthesis, the most common of
which are metaphoric concepts that take metaphors
from a source domain of embodied perception and
coordinated action. Metaphors are mappings (in fact,
most syntheses can be understood in terms of map-
pings) from one domain of experience to another so that
inferences in the source domain can be transferred to
the target domain. We noted that no one metaphor may
allow us to fully understand a given phenomenon and
that often several metaphors are required to achieve an
accurate understanding. However, metaphors are only
of intermediate complexity as conceptual syntheses
go. More complex syntheses or conceptual integra-
tions allow for the merger of elements from several
input spaces into what are known as “conceptual
blends.”

We then considered that Kant’s notion of an object
is compelling as a concept that unites diverse intu-
itions according to a rule because it corresponds to
fundamental features of embodied perception and
action with respect to objects. We then adapted
J. J. Gibson’s notions of exteroception (perception
of external objects as invariants in the perceptual
flow) and proprioception (knowledge of an organ-
ism’s actions and movements, taken from the regular
changes it produces in the perceptual flow) to serve as a
metaphor for scientific knowledge as the knowledge of
objects. Science seeks knowledge of invariants across
numerous observations taken at widely spaced points
in time and space, and this corresponds to the way
perception yields objects as invariants across sensory
inputs spaced close together in space and time on the
order of up to 200 milliseconds.

Science tests assertions of invariants specified as
hypotheses against data not used in the formulation
of the hypotheses, so that if the hypothesis is upheld,
it can be asserted that it was independent of the one
who asserted the hypothesis and thus is an objective
result. Science also demands replications of results to
gain the different points of view of different labora-
tories, researchers, instruments, and indicators, which
again corresponds to establishing invariants in percep-
tion as the organism moves to new positions. We also
noted how methodological and conceptual artifacts in
science correspond to subjective effects of the per-
ceiver due to the perceiver’s own actions. We then
considered further how hypothesis testing yields con-
clusions that are provisionally independent of the
researcher. Then, penultimately, we considered how
degrees of freedom measure the disconfirmability of an
incompletely specified hypothesis. And finally, we also
considered how using multiple indicators strengthens
the objectivity of a latent variable and also provides
more ways and degrees of freedom for testing a
hypothesis.
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24.1. Introduction

A principal aim of many sciences is to model causal
systems well enough to provide insight into their
structures and mechanisms and to provide reliable
predictions about the effects of policy interventions. To
succeed in either of these aims, in general, one must
specify a model at least approximately correctly. In
the social and behavioral sciences, causal models are
often described within any of a variety of statistical
formalisms: categorical data models, logistic regres-
sion models, linear regression models, factor analysis
models, principal components models, structural
equation models, and so on. In practice, these models
are obtained by a variety of methods: experimentation,
investigator’s convictions, uncontested background
knowledge, automated search procedures such as step-
wise regression and factor analysis, and any of a
wide range of ad hoc model selection procedures. To
understand the assumptions built into these and other
classes of models, as well as their limitations, one

AUTHORS’ NOTE: We thank S. Mulaik for many helpful comments and references.

must have a clear understanding of the connection
between causal hypotheses and probabilistic or sta-
tistical hypotheses. And to understand the limitations
of models produced by common methods, one should
understand the theoretical limitations on all causal
inference procedures.

In the past two decades, researchers from computer
science, statistics, various social sciences, and philos-
ophy have generalized methods, models, and concepts
related to causal inference that were rooted in struc-
tural equation modeling. We will outline and illustrate
the results of this research and address the following
questions:

1. What is the difference between a causal model
and a statistical model? What uses can be made
of causal models that cannot be made of statistical
models? (Section 24.2)

2. What assumptions relating causality to probabil-
ity should we make? (Section 24.3)

447
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3. What are the theoretical limits on causal
inference? We examine the answer to this
question under a variety of different assumptions
about background knowledge. (Section 24.4)

4. What are some reliable methods of causal infer-
ence? (We answer the question when it is
assumed that there are no latent causes in Section
24.4.3 and when the possibility of latent causes
is allowed in Section 24.5.)

5. Are the methods of causal inference commonly
employed in various social sciences reliable?
(Section 24.6)

We focus especially on two issues: (a) how, given
possibly incomplete causal and statistical information,
to predict the effects of interventions or policies and
(b) how, and to what extent, causal information can be
obtained from experimental and nonexperimental data
under a variety of assumptions about the underlying
processes.

24.2. Causal Models

and Statistical Models

24.2.1. The Meaning of Direct Cause

Direct cause is one of a family of causal phrases
(including intervention, manipulation, direct effect,
etc.) that are easily inter-definable but not easily
definable in noncausal terms. A variety of different
definitions of causal concepts in terms of noncausal
concepts have been proposed, but they are typically
both complicated and controversial. We take a different
approach here, using the concept of direct cause as
an undefined primitive relationship between random
variables and introducing generally (but often only
implicitly) accepted axioms relating direct causes to
probability distributions. Although in much of the
philosophical literature, causation is taken to be a
relation among events rather than variables, taking
causation as a relation among variables fits much more
closely with a variety of statistical models and methods
of statistical inference. (Viewing causation as a rela-
tion among variables is also the approach taken in
James, Mulaik, & Brett, 1982; Mulaik, 1986; Simon,
1953.) The advantage of the axiomatic approach is that
the acceptability of these axioms does not necessarily
depend on any particular definition of causality. This
will allow us to discuss principles of causal inference
that are acceptable to a variety of schools of thought
about the meaning of causality (just as there are at least

some principles of probabilistic inference that do not
depend on the definition of probability). Philosophical
discussions of the meaning and nature of causation
are found in Cartwright (1989, 1999), Eells (1991),
Hausman (1998), Shafer (1996), Sosa and Tooley
(1993), and Pearl (2000).

24.2.2. Conditioning and Manipulating

Two fundamentally different operations map proba-
bility distributions1 into other probability distributions.
The first is conditioning, which corresponds roughly
to mapping a probability distribution into a new dis-
tribution in response to finding out more information
about the state of the world (or seeing). The second is
manipulating, which corresponds roughly to mapping
a probability distribution into a new probability distri-
bution in response to changing the state of the world
in a specified way (or doing, in the terminology of
Pearl, 2000).2 To illustrate the difference, we consider
a simple example in which our pretheoretic intuitions
about causation are uncontroversial; in subsequent sec-
tions, we will consider more interesting and realistic
examples. Consider a population of flashlights, each
of which has working batteries and light bulbs, and a
switch that turns the light on when the switch is in the
on position and turns the light off when the switch is in
the off position. Each unit (flashlight) in the population
has some properties (the switch position and whether
or not the light is on). The properties are represented
by the random variables Switch and Light. Switch can
take on the values on or off, and Light can take on the
values on or off. Although in this example, the random
variables are binary to simplify the illustration, all of
the concepts also apply to discrete variables with more
than two categories and to continuous variables. The
random variables have a joint distribution in the popu-
lation. Suppose that in this case, the joint distribution
is the following:

P(Switch = on, Light = on) = 1/2

P(Switch = on, Light = off ) = 0,

P (Switch = off, Light = on) = 0

P(Switch = off, Light = off ) = 1/2.

1. We are deliberately ambiguous about the interpretation of probability
here. The remarks here do not depend on whether a frequentist, propensity,
or personalist interpretation of probability is assumed.

2. For more on the difference between conditioning and manipulating, see
Rubin (1977); Spirtes, Glymour, and Scheines (2000); and Pearl (2000).
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24.2.2.1. Conditioning

Much of statistics is devoted to finding efficient
methods of estimating conditional distributions. Given
a randomly chosen flashlight, the probability that the
bulb is on is 1/2. However, if someone observes that a
flashlight has a switch in the off position but does not
directly observe whether the light is off, the probabil-
ity of the light being off, conditional on the switch
being off, is just the probability of the light being
off in the subpopulation in which the switch is off ;
that is, P(Light = off |Switch = off ) = P(Light =
off, Switch = off )/P(Switch = off ) = 1. So condi-
tioning on an event maps the joint distribution of the
variables into a new probability distribution. Similarly,
the probability of the switch being off, conditional on
the light being off, is just the probability of the switch
being off in the subpopulation in which the light is
off ; that is, P(Switch = off |Light = off ) =
P(Light = off, Switch = off )/P(Light = off ) = 1.
An important feature of conditioning is that each con-
ditional distribution is completely determined by the
joint distribution (except when conditioning on an
event that has probability 0).

24.2.2.2. Manipulating

Manipulating, like conditioning, maps a joint
probability distribution into another joint distribution.3

In contrast to conditioning, a manipulated probability
distribution is not usually a distribution in a subpopu-
lation of an existing population but is a distribution in
a (possibly hypothetical) population formed by exter-
nally forcing a value on a variable in the system.
Imagine that instead of seeing that a switch was off,
we successfully manipulate the switch to off. It fol-
lows from the assumed structure and function of the
flashlights that the probability of the light being off
is 1. (Here, we are relying on pretheoretic intuitions
about the example to derive the correct values for
the manipulated probabilities [e.g., that working flash-
lights are on when the switch is on]. In later sections,
we will describe formal methods by which the manip-
ulated probabilities can be calculated.) We will adapt
the notation of Lauritzen (2001) and denote the post-
manipulation probability of the light being off as
P(Light = off ‖Switch = off ), using a double bar “‖”

3. An early exposition of the view that the value of an effect is a proba-
bilistic function of the value of a cause is presented in Mulaik (1986), who
also discussed local independence in the context of chains of variables
forming a Markov process.

for manipulation, as distinguished from the single bar
“|” of conditioning.4 Note that in this case, P(Light =
off ‖Switch = off ) = P(Light = off |Switch = off ).
Analogously to the notation for conditioning, one can
also put a set of variables V on the left side of the
manipulation double bar, which represents the joint
probability of V after manipulating the variables on
the right side of the manipulating double bar.5

Suppose now that instead of manipulating Switch
to off, we were to manipulate Light to off. Of course,
the resulting probability distribution depends on how
we manipulated Light to off. If we were to manip-
ulate Light to off by unscrewing the light bulb, the
probability that Switch is off is 1/2, the same as the
probability that it was off prior to our manipulation.
In that case, the manipulation is said to be an “ideal
manipulation” of Light because an external cause was
introduced (the unscrewing of the light bulb) that was a
direct cause of Light and was not a direct cause of any
other variable in the system. Under the assumptions
described in Section 24.3, any ideal manipulation of
a given variable to the same value will yield the same
(probability distribution) over outcomes.

On the other hand, if we manipulated Light to off
by pressing the Switch to off, then of course the proba-
bility that Switch is off after the manipulation is equal
to 1. This, however, would not be an ideal manipulation
of Light because the external cause was a direct cause
of a variable in the system other than Light (namely,
a direct cause of Switch). In general, the theory of
predicting the effects of direct manipulations that we
will describe assumes that the direct manipulations
are successfully carried out and that they are ideal
manipulations of variables in the system.

In the case where we perform an ideal manipula-
tion of the light bulb to off (e.g., by unscrewing it),
the manipulated probability does not equal the condi-
tional probability; that is, P(Switch = off ‖Light =
off ) = 1/2 =/ P(Switch = off |Light = off ) = 1. This
illustrates two key features of manipulations. The first
is that in some cases, the manipulated probability is
equal to the conditional probability (e.g., P(Light =

4.What time period after the manipulation does the postmanipulation dis-
tribution refer to? In this case, long enough for the system to reach an equi-
librium. In cases where there is no equilibrium or some other time period
is referred to, the relevant variables should be indexed by time explicitly.

5. We use capitalized boldface to represent sets of variables, capitalized
italics to represent variables, lowercase boldface to represent values of
sets of variables, and lowercase italics to represent values of variables.
If V = {Switch,Light} and v = {Switch = off,Light = on}, then P(v)
represents P(Switch = off,Light = on). There are a number of different
alternative notations to the “‖” in Spirtes et al. (2000) and Pearl (2000).
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off ‖Switch = off ) = P(Light = off |Switch = off )),
and in other cases, the manipulated probability is not
equal to the conditional probability (e.g., P(Switch =
off ‖Light = off ) =/ P(Switch = off |Light = off )). In
this example, conditioning on Light = off raised the
probability of Switch = off, but manipulating Light
to off did not change the probability of Switch = off.
In general, if conditioning on the value of a variable
X raises the probability of a given event, manipulating
X to the same value may raise, lower, or leave the
same the probability of a given event. Similarly, if
conditioning on a given value of a variable lowers or
leaves the probability of a given even the same, the
corresponding manipulated probability may be higher,
lower, or the same, depending on the domain.

The second key feature of manipulations is that even
though Light = on if and only if Switch = on in the
original population, the joint distributions that resulted
from manipulating the values of Switch and Light were
different. In contrast to conditioning, the results of
manipulating depend on more than the joint probabil-
ity distribution. The “more than the joint probability
distribution,” which the results of a manipulation of a
specified variable depend on, is the causal relationships
between variables. The reason that manipulating the
switch position changed the status of the light is that
the switch position is a cause of the status of the light;
the reason that manipulating the light condition did not
change the switch position is that the status of the light
is not a cause of the switch position. Thus, discover-
ing (at least implicitly) the causal relations between
variables is a necessary step to correctly inferring the
results of manipulations.

24.2.2.3. Other Kinds of Manipulations

Manipulating a variable to a particular value (e.g.,
Switch = off ) is a special case of more general kinds
of manipulations. For example, instead of assigning
a value to a variable, a probability distribution can
be assigned to a variable X. This is what occurs
in randomized experiments. Suppose that we ran-
domize the probability distribution of Switch to a
distribution P ′, where P ′(Switch = on) = 1/4, and
P ′(Switch = off ) = 3/4. In that case, we denote the
manipulated probability of Light = on as P(Light =
on ‖P ′(Switch)); that is, a probability distribution
appears on the right-hand side of the manipulation
double bar. (The notation P(Light = off ‖Switch =
off) is the special case where P ′(Switch = off ) = 1.)

More generally, given a set of variables V and
manipulation of a set of variables M ⊆ V to a dis-
tribution P ′(M), the joint distribution of V after the

manipulation is denoted P (V‖P ′(M)). From P(V‖
P ′(M)), it is possible to form marginal distributions
and conditional distributions among the variables in V
in the usual way. Thus,P(X = x|Y = y‖P ′(Z)) refers
to the probability of X in the subpopulation where
Y = y, after first manipulating the distribution of Z to
P ′(Z).

To simplify the discussion, we will not consider
manipulations that assign a conditional probability dis-
tribution to a variable (e.g., P ′(Light = off |Switch =
on) = 1/2 and P ′(Light = on|Switch = on) = 0)),
rather than assigning a marginal distribution to that
variable. Also, when multiple manipulations are per-
formed, we will assume for simplicity that in the joint
manipulated distribution, the manipulated variables
are independent.

24.2.3. Bayesian Networks:
Causal and Statistical Interpretations

Bayesian networks are a kind of causal/statistical
model that provides a convenient framework for rep-
resenting and calculating the results of conditioning
and manipulating. Bayesian networks also provide
a convenient framework for discussing the relation-
ship between causal relations and probability distri-
butions. Bayesian networks are graphical models that
generalize recursive structural equation models with-
out correlated errors6 (described in more detail in
Section 24.2.4); they have both a statistical and a causal
interpretation. We will describe the statistical interpre-
tation first, then the causal interpretation, and finally
the relationship between the two interpretations. Pearl
(1988), Neapolitan (1990), Cowell (1999), and Jensen
(2001) provide introductions to Bayesian networks.
Lauritzen (2001), Pearl (2000), and Spirtes, Glymour,
and Scheines (2000, chap. 3) describe the relation
between the causal and statistical interpretations.

24.2.3.1. Statistical Interpretation

A Bayesian network consists of two parts: a directed
acyclic graph (DAG) and a set of free parameters that
map the graph onto a probability distribution via a
rule that we will describe below. We will illustrate
Bayesian networks using data from Sewell and Shah
(1968), who studied five variables from a sample of

6. There are more general kinds of graphical models of which Bayesian
networks are a special case that also have causal interpretations, but for
the sake of simplicity, we postpone discussions of such models until later.
See Whittaker (1990), Lauritzen (1996), Edwards (2000), and Spirtes
et al. (2000).
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10,318 Wisconsin high school seniors.7 The variables
and their values are as follows:

SEX [male = 0, female = 1]
IQ = intelligence quotient [lowest = 0, highest = 3]
CP = college plans [yes = 0, no = 1]
PE = parental encouragement [low = 0, high = 1]
SES = socioeconomic status [lowest = 0, highest = 3]

The graph part of the Bayesian network that we will
describe for the Sewell and Shah (1968) data is shown
in Figure 24.1. We will explain the motivation behind
hypothesizing the DAG in Section 24.4.3.

The following informal definitions describe various
features of a directed graph.8 A directed graph con-
sists of a set of vertices and a set of directed edges,
where each edge is an ordered pair of vertices. Let G
be the directed graph in Figure 24.1. In G, the ver-
tices are {IQ, SES,PE,CP, SEX}, and the edges are
{SES → IQ, IQ → PE, SEX → PE, IQ → CP,
SES → PE, SES → CP,PE → CP}. In G, SES is
a parent of IQ, IQ is a child of SES, and SES and IQ
are adjacent because there is an edge SES→ IQ inG.
Parents(G, V ) denotes the set of parents of a vertex
V in directed graph G. A path in a directed graph is
a sequence of adjacent edges (i.e., edges that share
a common endpoint). A directed path in a directed
graph is a sequence of adjacent edges all pointing in
the same direction. For example, in G, IQ → PE →
CP is a directed path from IQ to CP. In contrast,
SES → PE ← SEX is a path but not a directed path
in G because the two edges do not point in the same
direction. CP is a descendant of SEX (and SEX is an
ancestor of CP) because there is a directed path from
SEX to CP; in addition, by convention, each vertex
is a descendant (and ancestor) of itself. A directed
graph is acyclic when there is no directed path from
any vertex to itself: In that case, the graph is a directed
acyclic graph, or DAG for short. Table 24.1 shows
these relationships for the DAG in Figure 24.1.

A DAG G over a set of variables V represents any
joint distribution that can be factored according to the
following rule:

P(v) =
∏
v∈v

P(v|parents(G, V )). (1)

In the case of continuous distributions, the proba-
bilities in equation (1) can be replaced with density

7. Examples of the analysis of the Sewell and Shah (1968) data using
Bayesian networks are given in Spirtes et al. (2000) and Heckerman
(1998).

8. More formal definitions can be found in Spirtes et al. (2000) and Pearl
(2000).

Figure 24.1 Model of Causes of College Plans
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functions. For example, the DAG G of Figure 24.1
represents any joint probability distribution that can
be factored according to the following formula:

P(iq, sex, ses, pe, cp) = P(iq | ses)× P(sex)

× P(ses)× P(pe | ses, iq, sex)

× P(cp | pe, ses, iq), (2)

where if iq is one of the values of IQ, P(iq) is an
abbreviation of P(IQ = iq).

Equation (2) associates a set of probability distribu-
tions with the DAG in Figure 24.1; the ordered pair
consisting of the DAG and the associated set of dis-
tributions is a statistical model. We would like to be
able to refer to particular distributions in the statistical
model by labeling each distribution in the model with
a finite set of real numbers known as the values of the
free parameters of the model. There are 128 different
possible combinations of values of SEX, IQ, SES, PE,
and CP. One way to refer to a particular joint distri-
bution would be to list 128 real numbers, where each
real number is the value of P (iq, sex, ses, pe, cp) for
some combination of values of SEX, IQ, SES, PE, and
CP. (However, because the sum over all of the values
of the variables of P (IQ, SEX, SES, PE, CP) equals 1,
only 127 numbers are really needed; the value of the
128th state is simply equal to 1 minus the sum of the
first 127 numbers.) This would be one reasonable way
to refer to any joint distribution P (IQ, SEX, SES, PE,
CP). However, not every joint distribution P (IQ, SEX,
SES, PE, CP) obeys the factorization of equation (2). If
we want to refer only to joint distributions that factor
according to equation (2), this is a poor method for
two reasons. First, we are not guaranteed that the
distribution referred to in this way can be factored
according to equation (2). Second, we are using many
more numbers than are actually needed to refer to just
members of the set of probability distributions that can
be factored according to equation (2).

A different method of referring to probability dis-
tributions that factor according to equation (2) uses
equation (2) itself to map lists of numbers into proba-
bility distributions. For example, instead of specifying
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Table 24.1 Relationships Between Vertices in Figure 24.1

Vertex Children Parents Descendants Ancestors

SES {PE, CP, IQ} ∅ {PE, CP, IQ, SES} {SES}
SEX {PE} ∅ {PE, CP, SEX} {SEX}
IQ {PE, CP} {SES} {PE, CP, IQ} {IQ, SES}
PE {CP} {SES, SEX, IQ} {CP, PE} {SES, SEX, IQ, PE}
CP ∅ {SES, PE, IQ} {CP} {SES, PE, IQ, SEX, CP}

a particular value for P(SEX = 0, IQ = 1, SES = 2,
PE = 1,CP = 0) directly, we could simply spec-
ify values for P(IQ = 1|SES = 2), P(SEX = 0),
P(SES = 2), P(PE = 1|SES = 2, IQ = 1, SEX = 0),
and P(CP = 0|PE = 1, SES = 2, IQ = 1). To
choose some arbitrary values for the purposes of illus-
tration, P(IQ = 1|SES = 2) = .2, P(SEX = 0) = .5,
P(SES = 2) = .1, P (PE = 1|SES = 2, IQ = 1,
SEX = 0) = .3, and P(CP = 0|PE = 1, SES = 2,
IQ = 1) = .4. In that case, by equation (2),
P(SEX = 0, IQ = 1, SES = 2,PE = 1, CP = 0) =
.2× .5× .1× .3× .4 = .0012. By assigning numbers
to P(iq), P (sex), P (ses|iq), P (pe|ses, iq, sex), and
P(cp|pe, ses, iq) for all values of SEX, IQ, SES, PE,
and CP, the value ofP(IQ, SEX, SES, PE, CP) is deter-
mined for all values of SEX, IQ, SES, PE, and CP, and
the joint distribution over P(IQ, SEX, SES, PE, CP)
is uniquely determined. Once again, however, this
list would contain some redundant members. For
example, once a value has been assigned to
P(SEX = 0), P(SEX = 1), is determined to be
1 − P(SEX = 0). When all redundancies of this
kind are removed, the resulting list contains 80
real numbers. If, for each vertex V, P (V |parents
(G, V )) is a probability distribution, the resulting
joint distribution is guaranteed to factor according to
equation (2). The fact that the statistical model with
DAG G has fewer free parameters than the number of
free parameters needed to refer to an arbitrary joint dis-
tribution over SEX, IQ, SES, PE, and CP entails that the
distributions that G represents can be more efficiently
estimated, stored in a smaller space, and used to more
quickly calculate conditional probabilities. The quan-
tities P(iq), P (sex), P (ses|iq), P (pe|ses, iq, sex), and
P(cp|pe, ses, iq) for all values of IQ, SEX, SES, PE,
and CP (with the exception of the redundant quantities)
are called the free parameters of the statistical model
with DAG G.

By definition, a DAG G represents a probability
distribution P if and only if P factors according to
the DAG (equation (2)). Let I(X, Y|Z)P mean that X
is independent of Y conditional on Z in distribution
P—that is, P(x|y, z) = P(x|z)—for all values y and
z such that P(y, z) > 0. By convention, I(X,∅|Z)P

is trivially true, and I(X,Y|∅)P denotes unconditional
independence of X and Y. (The empty set here denotes
an empty set of random variables, not a null event.
Also, if a set contains a single variable, such as {IQ},
we will sometimes leave out the set brackets.)

The factorization of P according to G is equivalent
to each variable X in the DAG being independent of
all the variables that are neither parents nor descen-
dants of X in G, conditional on all of the parents
of X in G. Applying this rule to the example of the
DAG in Figure 24.1 for any probability distribution
that factors according toG (i.e., satisfies equation (2)),
the following conditional independence relations hold
in P :

I ({IQ}, {SEX}|{SES})P I ({SEX}, {IQ, SES}|∅)P ,
I ({SES}, {SEX}|∅)P I ({PE},∅|{SES, IQ, SEX})P ,
I ({CP}, {SEX}|{PE, SES, IQ})P (3)

These conditional independence relations hold,
regardless of what values are assigned to the free
parameters associated with DAG G; we say that
G entails the conditional independence relations.
However, just because a conditional independence
relation is not entailed by a DAG does not mean that it
does not hold in any assignment of values to the free
parameters: It just means that it does not hold in every
assignment of values to the free parameters.

The conditional independence relations listed in (3)
entail other conditional independence relations, for
example, I ({SEX}, {SES}|{IQ})P . There is an eas-
ily computable, purely graphical relationship, named
d-separation, such that if a DAG G with vertex set
V represents a probability distribution P (V), X is
d-separated from Y conditional on Z in G if and only
if G entails that X is independent of Y conditional
on Z in P (V). (See Pearl, 1988. The most complete
reference with detailed proofs is Lauritzen, Dawid,
Larsen, & Leimer, 1990. Scheines, 2003, is a Web
site that contains a tutorial on d-separation.)

There are a number of equivalent formulations of the
d-separation relation. The following definition is based
on the intuition that only certain kinds of paths, which
we shall call active paths, can pass information from
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X to Y, conditional on Z, and that a path is active only
when every vertex on the path is active (i.e., capable
of passing along information conditional on Z). Then,
two variables, X and Y, are d-separated conditional
on Z when there are no active paths between them
conditional on Z; that is, there are no paths that can pass
information fromX to Y conditional on Z. (The proofs
of theorems about d-separation do not rely on any
intuitions about passing information but rely solely on
properties of conditional independence.) A vertexXi
is a collider on a path U in G if and only if there are
edges Xi−1 → Xi ← Xi+1 on U in G; otherwise, it
is a noncollider. Note that the endpoints of a path are
always noncolliders on the path. A vertex on a path
U is active conditional on a set of variables Z if and
only if either it is not a collider on U and is not in
Z or it is a collider on U and has a descendant in Z.
(Note that whether or not a vertex is active is relative
to a particular path and a particular conditioning set.)
A path U is active conditional on a set of variables Z
if and only if every vertex on U is active conditional
on Z. If X, Y, and Z are disjoint subsets of variables
inG,X and Y are d-connected conditional on Z if and
only if there is an active path conditional on Z between
someX ∈ X and some Y ∈ Y; otherwise, X and Y are
d-separated conditional on Z.

To illustrate these concepts, consider the DAG in
Figure 24.1. It is easy to show that if a pair of variables
are adjacent in a DAG, then they are d-connected con-
ditional on any subset of the other variables. However,
SES and SEX are not adjacent, and they are d-separated
conditional on {IQ} and are also d-separated condi-
tional on ∅; IQ and SEX are not adjacent, and they are
d-separated conditional on {SES} and also d-separated
conditional on ∅; and SEX and CP are not adjacent,
and they are d-separated conditional on {PE, SES, IQ}.

Some of the consequences of the definition are fairly
intuitive, but others are much less so. For example,
it is intuitively obvious that the DAG of Figure 24.1
entails that SEX and IQ are unconditionally indepen-
dent because there is no directed path between them,
and there is no third variable that has directed paths to
both of them. And the d-separation relation entails that
SEX and IQ are unconditionally independent because
they are d-separated conditional on the empty set;
every path between SEX and IQ contains a collider,
and no collider has a descendant in the empty set.

However, the condition that a vertex is active on a
path conditional on Z, if it is a collider on the path and
has a descendant in Z, is neither obvious nor intuitive
in many instances. For example, SEX and IQ are not
entailed to be independent conditional on {PE} because
on the path SEX → PE ← IQ, SEX and IQ are non-
colliders that are not in {PE}, and PE is a collider that

has a descendant (itself) in {PE}; hence, SEX and IQ
are d-connected conditional on {PE}.

24.2.3.2. Bayesian Networks:
Causal Interpretation

Note that the concept of “direct cause” is rela-
tive to a set of variables. Intuitively, if relative to
{SEX, IQ, SES,PE,CP}, SEX is a direct cause of PE,
and PE is a direct cause of CP, but SEX is not a direct
cause of PE, then SEX is an indirect but not a direct
cause of CP. Now consider a smaller set of variables
such as {SEX,CP}, where the variables that record the
details of the mechanism by which SEX is a cause of
CP (i.e., by affecting PE) have been omitted. Relative
to {SEX,CP}, SEX is a direct cause of CP.9

The graphical part of a Bayesian network can be
given a causal interpretation. A set of random variables
S is causally sufficient if S does not omit any variables
that are direct causes (relative to S) of any pair of
variables in S. Under the causal interpretation of a
graph, a graph with a causally sufficient set of variables
S represents the causal relations in a population N
if there is a directed edge from A to B in the graph
if and only if A is a direct cause of B relative to S
for the population N. For example, under the causal
interpretation of the DAG in Figure 24.1, there is a
directed edge from IQ to CP if and only if IQ is a direct
(relative to the set of variables in the DAG) cause of
CP for the population. If the DAG in Figure 24.1 is
a correct description of a causal system, then the set
of variables {SEX, PE, CP} is not causally sufficient
because the set does not contain either IQ or SES,
each of which is a direct cause of a pair of variables
in the set. On the other hand, {SEX, CP} is a causally
sufficient set of variables because none of the other
variables is a direct cause of both SEX and CP.

A causal model for a population N is a pair con-
sisting of a causal graph over a causally sufficient set
of variables V representing the causal relations in N
and P (V). The graphical part of a causal model M
is denoted by G(M). The kind of causation that we
are describing in this chapter is causation between
variables (or kinds of events, e.g., Switch and Light),
not between individual events (e.g., the event of a
particular flashlight having a Switch value on and the
event of the same flashlight having the Light value
on). Because the causal relation is between variables
and not between events, it is possible that each of two

9. There is some controversy about whether SEX can be a cause of any-
thing, in part because it is hard to imagine manipulating SEX. Very little
of what follows depends on whether SEX should be considered a cause,
and we will not consider any manipulations of SEX.
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Figure 24.2 Model of Causes of Mathematical Marks
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variables can cause each other. For example, pedaling
a bicycle can cause the wheel to spin, and (on some
kinds of bicycles) spinning the wheel can cause the
pedal to move. Thus, it is possible that a causal graph
may be cyclic. The theory of cyclic causal graphs is
important in econometrics, biology, and other subjects
and is discussed in Section 24.5.2.4.2, but it is also
considerably more difficult and less developed than
the theory of acyclic causal graphs. For the rest of this
chapter, we assume that all causal graphs are acyclic,
unless we explicitly say otherwise.10

24.2.4. Structural Equation Models

Following Bentler (1985), the variables in a struc-
tural equation model (SEM) can be divided into two
sets, the “error terms” and the substantive variables.
The error terms are latent (which means only that their
values are not recorded in the data), and some of the
substantive variables may be latent as well. An SEM
consists of a set of structural equations, one for each
substantive variable, and the distributions of the error
terms; together, these determine the joint distribution
of the substantive variables. The structural equation for
a substantive variableXi is an equation withXi on the
left-hand side of the equation and the direct causes of
Xi plus an error term εi on the right-hand side of the
equation. The equations may take any mathematical

10. Glymour and Cooper (1999) provide a collection of articles that
also covers many issues about causal inference with graphical models.
The Web site www.ai.mit.edu/∼murphyk/Bayes/bnsoft.html describes the
most popular software packages for graphical modeling. Robins (1986),
and Van der Laan and Robins (2003) describe a nongraphical approach
to causal inference based on Rubin’s (1977) counterfactual approach to
causal inference.

form, although linear equations are most common.
Kaplan (2000) and Bollen (1989) provide introduc-
tions to the theory of structural equation models. Many
methodological issues relating to the construction and
testing of structural equation models can be found at
“SEMNET” at www.gsu.edu/∼mkteer/semnet.html.11

Figure 24.2 contains an example of a latent variable
SEM. The original data set came from Mardia, Kent,
and Bibby (1979).12 The test scores for 88 students
in five subjects (Mechanics, Vector Algebra, Algebra,
Analysis, and Statistics) are the measured variables.
The latent substantive variables are Algebra Skill,
Vector Algebra Skill, and Real Analysis Skill. The
distribution of the test scores is approximately mul-
tivariate Normal. In model M of Figure 24.2, the free
parameters are the linear coefficients a, b, c, and d,
as well as the variances and means of the error terms
εM, εV , εAl, εAn, εS,δAl, δAn, and δV . (The coefficients
in the structural equations for Mechanics, Algebra,
and Statistics have been fixed at 1 to ensure identi-
fiability, which is explained below.) Note that in the
equations, we have used an assignment operator “:=”
rather than the more traditional equals sign “=” to
emphasize that the quantity on the right-hand side of
the equation is not just equal to the random variable on

11. There are a number of statistical packages devoted to estimating
and testing structural equation models. These include the commer-
cial packages EQS (www.mvsoft.com), LISREL (www.ssicentral.com/
lisrel/mainlis.htm), and CALIS, which is part of SAS (www.sas.com).
EQS and LISREL also contain some search algorithms for modifying a
given causal model. The statistical package R (www.r-project.org) also
contains a “sem” package for estimating and testing structural equation
models.

12.Analyses of these data are discussed in Whittaker (1990) and in Spirtes
et al. (2000, chap. 6). Edwards (2000) points out some anomalous features
of the data, indicating that they may have been preprocessed.
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the left-hand side of the equation but also causes the
random variable on the left-hand side of the equation.
Thus, as Lauritzen (2001) suggests, it is more appro-
priate to call these structural assignment models rather
than structural equation models.

Bayesian networks specify a joint distribution over
variables with the aid of a DAG, whereas SEMs specify
a value for each variable via equations. Superficially,
they appear to be quite different, but they are not. An
SEM contains information about both the joint prob-
ability distribution over the substantive variables and
the causal relations between the substantive variables.
The joint distribution of the error terms, together
with the equations, determines the joint distribution
of the substantive variables. In addition, each SEM is
associated with a graph (called a path diagram) that
represents the causal structure of the model and the
form of the equations, where there is a directed edge
from X to Y (X→ Y ) if X is a direct cause of Y, and
there is a bi-directed edge between the error terms εX
and εY if and only if the covariance between the error
terms is nonzero. In path diagrams, latent substantive
variables are often enclosed in ovals. A DAG is a spe-
cial case of a path diagram (without cycles or correlated
errors). If the path diagram is a DAG, then an SEM is
a special case of a Bayesian network, and it can be
shown that the joint distribution factors according to
equation (1), even when the equations are nonlinear.
Any probability distribution represented by the DAG in
Figure 24.2 satisfies the following factorization condi-
tion described by equation (1), where f is the density:

f (mechanics, vector, algebra, analysis, statistics)
= f (mechanics|vector algebra skill)
× f (vector|vector algebra skill) × f (algebra|
algebra skill) × f (analysis|real analysis skill)
× f (statistics|real analysis skill) × f (vector
algebra skill|algebra skill) × f (real analysis
skill|algebra skill) × f (algebra skill).

Kiiveri and Speed (1982) first pointed out the con-
nection between structural equation models and the
factorization equation. If the path diagram is cyclic
or contains correlated errors, the factorization condi-
tion does not in general hold, but other properties of
graphical models do still hold in general of SEMs, as
explained in Section 24.5.2.4.2.

24.3. Causality and Probability

To reliably draw causal conclusions from the frequen-
cies of the values of random variables in a sample,
we will need to employ some assumptions that relate

causal relations to probability distributions. In this
section, we will describe and discuss several such
assumptions.

24.3.1. The Causal Markov Assumption

We have described both a causal and statistical
interpretation of graphs. What is the relationship
between these two interpretations? We make the fol-
lowing assumption (equivalent to an assumption stated
informally in Kiiveri & Speed, 1982):

Causal Markov assumption (factorization). For
a causally sufficient set of variables V in a population
N , if an acyclic causal graph G represents the causal
relations among V inN , thenG also represents P(V);
that is,

P(v) =
∏
v∈v

P(v|parents(G, V )). (4)

In the example of the causal DAG in Figure 24.1,
the causal Markov assumption implies

P(sex, iq, ses, pe, cp)

= P(iq|ses)× P(sex)× P(ses)

× P(pe|ses, iq, sex)× P(cp|pe, ses, iq). (5)

An equivalent way of stating the causal Markov
assumption in terms of conditional independence
relations is the following.

Causal Markov assumption (independence). For
a causally sufficient set of variables V in a population
N , if an acyclic causal graph G represents the causal
relations among V in N , each vertex X in V is inde-
pendent of the set of vertices that are neither parents
nor descendants of X in G, conditional on the parents
of X in G.

In the example of the causal DAG in Figure 24.1, the
independence version of the causal Markov assump-
tion implies that the conditional independence rela-
tions listed in equation (3) of Section 24.2.3.1 hold in
the probability distribution P in population N .

The causal Markov assumption is implicit in much
of the practice of structural equation modeling (without
cycles or correlated errors). In an SEM with Gaussian
error terms, X is independent of Y conditional on Z
if and only if for each X ∈ X and Y ∈ Y, the partial
correlation of X and Y given Z (denoted ρ(X, Y |Z)) is
equal to zero. Thus, causal analysis of linear Gaussian
SEMs depends on the analysis of vanishing partial
correlations and their consequences. Simon’s (1954)
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famous analysis of “spurious correlation” is precisely
an application of the causal Markov assumption to
explain correlated errors. The examples that Bollen
(1989) gives of why a disturbance term for a variable
Xmight be correlated with one of the causes ofX other
than sampling problems are all due to causal relations
between the disturbance term and other causes of X.
In the context of linear or nonlinear structural equa-
tion models, the assumption that causally unconnected
error terms are independent entails the full causal
Markov assumption. Spirtes et al. (2000, chap. 3)
discuss the causal Markov assumption, as well as con-
ditions under which it should not be assumed (e.g.,
if the correct causal graph is cyclic, then a different
version of the assumption should be made).

The causal Markov assumption implies that there is
a procedure for calculating the effects of manipulations
of variables in Bayesian networks and SEMs. The ideas
are explained in the next two subsections.

24.3.2. Calculating the Effects
of Manipulations in Bayesian Networks

In a Bayesian network with causal DAGG, the effect
of an ideal manipulation can be calculated according
to the following rule. If the distribution prior to the
manipulation is P (v), and the distribution after the
manipulation is P (v‖P ′(S)), then

P(v‖P ′(s)) = P ′(s)×
∏
v∈v\s

P(v|parents(G, V )),

where v is a set of values of variables in V, s is a set
of values of variables in S, parents(G,V ) is a set of
values of variables in Parents(G,V ), and v\s is a set
of values for variables that are in V but not in S.13

(A proof is given in Spirtes et al., 2000, chap. 3.) That
is, in the original factorization of P (V), one simply
replaces ∏

s∈s

P(s|parents(G, S)),

withP ′(s), where S is the set of manipulated variables.
The manipulation operation depends on what the cor-
rect causal graph is because for each S ∈ S,G appears
in the term P(s|parents(G, S)). Also, because the
value of S in the manipulation does not causally depend
on the values of the parents of S, the postmanipu-
lation DAG that represents the causal structure does
not contain any edges into S. (More general kinds of
manipulations do not have this latter property.)

13. For example, if v = {Switch = on, Light = off }, and s = {Light =
off }, then v\s = {Switch = on}.

To return to the flashlight example, the
premanipulation causal DAG is Switch → Light, and
the premanipulation distribution is

P(Switch = on, Light = on) = P(Switch = on)
× P(Light = on|Switch = on) = 1/2× 1 = 1/2,

P (Switch = off, Light = on) = P(Switch = off )

× P(Light = on|Switch = off ) = 1/2× 0 = 0,

P (Switch = on, Light = off ) = P(Switch = on)

× P(Light = off |Switch = on) = 1/2× 0 = 0,

P (Switch = off, Light = off ) = P(Switch = off )

× P(Light = off |Switch = off ) = 1/2× 1 = 1/2.

Suppose that Light is manipulated to the distribution
P ′(Light = off ) = 1. Then the postmanipulation dis-
tribution P(switch, light ‖P ′(Light)) is found by sub-
stituting P ′(light) for P (light|switch) for each value
light of Light and each value switch of Switch:

P(Switch = on, Light = on‖P ′(Light)) = P(Switch

= on)× P ′(Light = on) = 1/2× 0 = 0,

P (Switch = off, Light = on‖P ′(Light)) = P(Switch

= off )× P ′(Light = on) = 1/2× 0 = 0,

P (Switch = on, Light = off ‖P ′(Light)) = P(Switch

= on)× P ′(Light = off ) = 1/2× 1 = 1/2,

P (Switch = off, Light = off ‖P ′(Light)) = P(Switch

= off )× P ′(Light = off ) = 1/2× 1 = 1/2.

In the postmanipulation distribution, Switch does not
cause Light, and Light and Switch are independent.
Hence, the postmanipulation graph that represents the
postmanipulation distribution is formed by breaking
all of the edges into Light and has no edge from Switch
to Light. Although Switch and Light are symmetric
in the premanipulation distribution P (Light = light,
Switch = switch), the effects of manipulating them
are asymmetric because Light and Switch are not sym-
metric in the causal DAG. Manipulations in Bayesian
networks are described in Spirtes et al. (2000, chaps.
3, 7), Pearl (2000), and Lauritzen (2001).

Spirtes et al. (2000, chap. 3) describe a represen-
tation of manipulations that explicitly includes a new
cause of Light in the postmanipulation causal graph.
The new cause is the exogenous Policy variable that has
the value off in the premanipulation population and
on in the postmanipulation population. This alterna-
tive representation shows that one of the assumptions
that makes a manipulation “ideal” is that the cause of
Light in the postmanipulation distribution (the Policy
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Figure 24.3 Three Types of Causal Graphs

Switch→ Light Switch Light Switch Light← Policy

Premanipulation Graph Postmanipulation Graph Postmanipulation Graph
With Explicit Policy Variable

variable) is an exogenous variable that is a direct
cause only of Light and hence is independent of all
of the nondescendants of Light (by the causal Markov
assumption).

The theory of manipulations presented here answers
questions only about the effects of ideal manipulations.
In some cases, someone implementing a policy may
intend that an action be an ideal manipulation when
in reality it is not. However, whether any particular
action that is taken to manipulate a variable is ideal is
not part of the theory but has to be answered outside
of the theory.

24.3.3. Manipulations in SEMs

In SEMs, there is a different but equivalent rep-
resentation of a manipulation. Suppose we were to
manipulate the scores of all of the students by giving
them the answers to the questions on the Analysis test
before they take it. Applying the analysis of manip-
ulations given in Strotz and Wold (1960), the effect
of an ideal manipulation of the Analysis test score on
the joint distribution can be calculated by replacing
the structural equation for Analysis with a new struc-
tural equation that represents its manipulated value
(or, more generally, the manipulated distribution of
Analysis). In this example, the structural equation
Analysis := b × Real Analysis Skill + εAn would be
replaced by the equation Analysis := 100. The
postmanipulation distribution is just the distribution
entailed by the distribution of the error terms together
with the new set of structural equations. The model
that results from the manipulation of Analysis has a
path diagram of the manipulated population formed by
breaking all of the edges into the manipulated variable.
In this example, the edge from Real Analysis Skill to
Analysis would be removed.

In both SEMs and causal Bayesian networks, a dis-
tinction can be drawn between the direct effect of one
variable on another and the total effect of one variable
on another. The total effect of A on B measures the
change in B given a manipulation that makes a unit
change in A. In the example of Figure 24.2, the total
effect of Algebra Skill on Vector is given by a × c,
the product of the coefficient a associated with the

edge from Vector Algebra Skill and the coefficient c
associated with the edge from Algebra Skill to Vector
Algebra Skill. In linear SEMs, the direct effect of A
on B is a measure of how much B changes given a
manipulation that makes a unit change in A, whereas
all variables other thanA andB are manipulated to hold
their current values fixed. The direct effect ofA onB is
given by the coefficient associated with the edge from
A to B, or zero if there is no such edge. For example,
the direct effect of Vector Algebra Skill on Vector is
a, and the direct effect of Algebra Skill on Vector is
zero. In nonlinear systems, such as Bayesian networks,
there is no single number that summarizes the effects
of manipulations: The difference between P(B) and
P(B‖A) can depend on both the value of B and the
value of A, and even if it does not, the effect cannot
be summarized by a single number. Manipulations in
SEMs are described in Strotz and Wold (1960), Spirtes
et al. (2000, chap. 3), Pearl (2000), and Lauritzen
(2001).

24.3.4. Causal Faithfulness Assumptions

The causal Markov assumption states that causal
graphs entail conditional independence relations, but
it says nothing about what conditional independence
relations entail about causal graphs. Observing inde-
pendence between Switch and Light does not entail,
by the causal Markov assumption alone, that Switch
does not cause Light or Light does not cause Switch.
It has been shown that in an SEM, given just the
causal Markov assumption and allowing for the pos-
sibility of unmeasured common causes of measured
variables, any direct effect ofAonB is compatible with
any covariance matrix among the measured variables
(Robins, Scheines, Spirtes, & Wasserman, 2003).
Hence, to draw conclusions about direct effects from
observational data, some additional assumptions must
be made. We will examine three such assumptions of
increasing strength in this section.

If a probability distribution P (V) is represented by
a DAG G, then P is faithful to G if and only if every
conditional independence relation that holds in P (V)
is entailed (by d-separation) by G—that is, holds for
all values of the free parameters and not just some
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Figure 24.4 Distribution is Unfaithful to DAG When
β1 = −β2 × β3

Tax Rate

GDP Tax Revenues

β1
β2

β3

values of the free parameters. (In Pearl, 2000, this is
called stability.) Otherwise, P (V) is unfaithful to G.
(In linear Gaussian SEMs, this is equivalent to P (V)
being faithful to the path diagram of G if and only
if every zero partial correlation that holds in P (V)
is entailed by d-separation by G.) In the rest of the
section, we will discuss faithfulness in SEMs because
the application to SEMs is somewhat simpler than the
application to Bayesian networks. Some form of the
assumption of faithfulness is used in every science and
amounts to no more than the belief that an improba-
ble and unstable cancellation of parameters does not
hide real causal influences. When a theory cannot
explain an empirical regularity, except by invoking a
special parameterization, most scientists are uneasy
with the theory and look for an alternative. Figure 24.4
shows an example of how an unfaithful distribution can
arise. For example, suppose the DAG in Figure 24.4
represents the causal relations among standardized
variables Tax Rate, GDP, and Tax Revenues. In this
case, there are no vanishing partial correlation con-
straints entailed for all values of the free parameters.
But ρ(Tax Rate, Tax Revenues) = β1 + (β2 × β3), so
if β1 = −(β2 × β3), then Tax Rate and Tax Revenues
are uncorrelated, even though the DAG does not entail
that they are uncorrelated (i.e., there is a path that
d-connects Tax Rate and Tax Revenues conditional on
the empty set, namely, the edge from Tax Rate to Tax
Revenues). The SEM postulates a direct effect of Tax
Rate on Tax Revenues (β1) and a canceling indirect
effect through the GDP(β2× β3). The parameter con-
straint indicates that these effects exactly offset each
other, leaving no total effect whatsoever.

It is clear from this example that unfaithful distri-
butions greatly complicate causal inference. Because
Tax Rate and Tax Revenues are completely uncorre-
lated, the alternative incorrect model Tax Rate→GDP
← Tax Revenue would tend to have a better good-
ness of fit statistic (because it is simpler and fits the
sample correlation matrix almost as well). The vio-
lation of faithfulness described in the example only
occurs for very special values of the parameters, that
is, β1 = −(β2 × β3). In general, the probability of the
set of free parameter values for any DAG that lead to

unfaithful distributions is zero, for any “smooth” prior
probability distribution14 (e.g., Normal, exponential,
etc.) over the free parameters. This motivates the fol-
lowing Bayesian assumption. (The methods for and
consequences of assigning prior probabilities to causal
graphs and parameters to perform Bayesian inferences
are described in more detail in Section 24.4. Although
we state these assumptions for SEMs for convenience,
there are more general versions of these assumptions
that apply to Bayesian networks more generally.)

Causal faithfulness prior assumption. Suppose
that there is a populationN with distributionP(V) and
a DAG G that represents the causal relations in N . If
X and Y are d-connected conditional on Z in G (i.e.,
G does not entail that ρ(X, Y |Z) = 0 for all values
of the free parameters), then the set of free parameter
values for which ρ(X, Y |Z) = 0 has prior probability
zero.

This assumption is implicitly made by any Bayesian
who has a prior over the parameters taken from the
usual families of distributions. Of course, this argu-
ment is not relevant to those who reject Bayesian
arguments or to Bayesians who place a prior over the
parameters that are not “smooth” and assign a nonzero
probability to violations of faithfulness.

A stronger version of the causal faithfulness prior
assumption that does not require acceptance of the
existence of prior probability distributions is the
following.15

Causal faithfulness assumption (SEMs). Suppose
that there is a populationN with distributionP(V) and
a DAG G that represents the causal relations in N . If
X and Y are d-connected conditional on Z in G (i.e.,
G does not entail that ρ(X, Y |Z) = 0 for all values of
the free parameters), then ρ(X, Y |Z)=/ 0.

The causal faithfulness assumption is a kind of
simplicity assumption. If a distribution P is faithful
to a SEM M1 without latent variables or correlated
errors, and P also results from assigning values to the
free parameters of another SEM M2 to which P is not
faithful, then M1 has fewer free parameters than M2.

The faithfulness assumption limits the SEMs con-
sidered to those SEMs in which population constraints
are entailed by graphical structure, rather than by par-
ticular values of the parameters. Causal faithfulness

14. That is, it is absolutely continuous with respect to the Lebesgue
measure.

15. This is a stronger assumption because it eliminates all parameters that
lead to violations of faithfulness from the sample space, instead of simply
leaving them in the sample space and assigning them prior probability
zero.
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should not be assumed when there are deterministic
relationships among the substantive variables or equal-
ity constraints on free parameters because either of
these can lead to violations of the assumption.

An equivalent formulation of the causal faithfulness
assumption states that if ρ(X, Y |Z) = 0, then the true
causal graph contains no d-connecting path between
X and Y conditional on Z. The causal faithfulness
assumption, as stated, has implications only for cases
in which a partial correlation is exactly zero. It is com-
patible with a partial correlation being arbitrarily small,
whereas an edge coefficient (which is the strength of
a d-connecting path consisting of a single edge) is
arbitrarily large. The following stronger version of the
causal faithfulness assumption eliminates this latter
possibility. Let the strength of a d-connecting path be
the product of the edge coefficients in the path times the
product of the edges in paths from colliders to members
of the conditioning set.

Strong causal faithfulness assumption (SEMs).
Suppose that there is a population N with distribu-
tion P(V) and a DAG G that represents the causal
relations in N . If ρ(X, Y |Z) is small, then there is no
strong d-connecting path betweenX and Y conditional
on Z.

This statement could be made precise in several
ways. One way in which it could be made pre-
cise is to assume that the strength of a d-connecting
path between X and Y conditional on Z is no more
than some constant k times ρ(X, Y |Z). So the strong
causal faithfulness assumption is really a family of
assumptions, indexed by k.

Unlike the causal faithfulness assumption, viola-
tions of the strong causal faithfulness assumption are
not probability zero for every “smooth” prior over
the parameters. However, common modeling practices
suggest that modelers often implicitly assume some
version of a strong causal faithfulness assumption. For
example, it is often the case that in causal modeling in
various domains, a large number of measured variables
V are reduced by regressing some variable of interest
Y on the other variables and eliminating from con-
sideration those variables that have small regression
coefficients. Because (for standardized variables) a
small regression coefficient of Y when X is regressed
on all variables in V (except for X itself) entails that
ρ(X, Y |V\{X, Y }) is small, this amounts to assuming
that a small partial correlation is evidence for a small
linear coefficient ofX in the structural equation for Y .

The various forms of the causal faithfulness assump-
tion are described and discussed in Spirtes et al.
(2000). We will not further discuss the plausibility

of the assumptions here, but we will trace out the
consequences of each of these assumptions.

24.4. Model Estimation, Causal

Inference and Consistency

One goal of causal inference is to infer the correct
causal structure, that is, the correct causal graph or
some set of graphs containing the correct causal graph.
We will refer to this as graphical model estimation.
A second goal is to infer the effect of a manipulation,
which typically is a function of the graphical model and
the values of its free parameters. This is an estimation
of (functions of ) the free parameters. The estimation
of graphical models and the estimation of parameters
in graphical models are customarily treated as entirely
different problems, but formally, they are essentially
the same problem: to use data to gain approximate
information from among a vast space of possibilities
consistent with prior knowledge. Techniques of graph-
ical model estimation closely parallel approaches to
parameter estimation. The first virtue of a “point” esti-
mation procedure of any kind is that, in the long run,
it certainly converges to the true value of whatever
feature—parameter value or graphical model—is to
be estimated. We distinguish three such “consistency”
properties of estimators.

24.4.1. The Classical Framework

In the classical framework, an estimator θ̂n is a func-
tion that maps samples of size n into real numbers.
An estimator is a pointwise consistent estimator of a
quantity θ (e.g., the average effect of a manipulation of
X on Y ) if, for each possible value of θ , in the limit as
the sample size approaches infinity, the probability of
the distance between the estimator and the true value of
θ being greater than any fixed finite value approaches
zero. More formally, letOn be a sample of size n of the
observed variables O, �(G) be the set of probability
distributions that arise from assigning legal values to
the free parameters of DAGG,� be some set of DAGs,
and θ(P,G) be some causal parameter of interest (that
is a function of the distributionP and the DAGG). Let
�� = {(P,G) :G ∈ �,P ∈ �(G)} (i.e., the set of all
DAG-legal parameter pairs) and d[θ̂n(On), θ(P,G)]
be the distance between θ̂n(On) and θ(P,G). An esti-
mator θ̂ is pointwise consistent if, for all (P,G) ∈ ��,
for every ε > 0, P n(d[θ̂n(On), θ(P,G)] > ε) → 0;
that is, the probability of the distance between the
estimate and the true parameter being greater than any



460 • SECTION VI / FOUNDATIONAL ISSUES

fixed size ε greater than 0 approaches 0 as the sample
size increases.

However, pointwise consistency is only a guarantee
about what happens in the large sample limit, not at any
finite sample size. Pointwise consistency is compatible
with there being, at each sample size, some value of
the causal parameter such that the probability of the
estimator being far from the true value is high. Sup-
pose that one were interested in answering questions
of the following kind: What sample size is needed
to guarantee that, regardless of the true value of the
causal quantity, it is “improbable” that the estimator
is “far” from the truth? Improbable and far are vague
terms, but they can be made precise. Improbable can
be made precise by choosing a positive real ε, such
that any probability less than ε is improbable. Far can
be made precise by choosing a positive real δ such
that any distance greater than δ is “far.” Then, the
question can be rephrased as follows: What sample
size is needed to guarantee that, regardless of the true
value of the causal quantity, the highest probability that
an estimator is more than δ away from the truth is less
than ε? Given only pointwise consistency, the answer
may be “infinite.” However, a stronger form of consis-
tency, uniform consistency, guarantees that answers to
questions of the form given above are always finite for
any given ε and δ greater than zero. More formally, an
estimator θ̂ is uniform consistent if, for every ε, δ > 0,
there exists a sample size N , such that for all sample
sizes n > N, sup(P,G)∈�G P

n(d[θ̂n(On), θ(P,G)] >
δ) < ε.16 There is no difficulty in extending these
concepts to cover vectors of real numbers as well, as
long as the distance between vectors is well defined.

24.4.2. The Bayesian Framework

In the Bayesian framework, one method of point
estimation of a quantity θ proceeds by

1. assigning a prior probability to each causal graph,
2. assigning joint prior probabilities to the param-

eters conditional on a given causal graph,
3. calculating the posterior probability of θ (which

we assume to be a function of the posterior prob-
abilities of the graphs and the graph parameter
values),

4. turning the posterior probability over the average
effect of the manipulation into a point estimate
by returning the value of θ that has the highest
posterior probability.

16. See Bickel and Doksum (2001).

Note that such an estimator is a function not only
of the data but also of the prior probabilities and can
have a weaker sense of consistency than pointwise
consistency. If the set of causal models (graph-
probability distribution pairs) for which the estimator
converges in probability to the correct value has a prior
probability of 1, then we will say that it is Bayes
consistent (with respect to the given set of priors).
Because a pointwise consistent estimator converges in
probability to the correct value for all causal models in
the sample space, pointwise consistency entails Bayes
consistency.

We will explain under what conditions there are—
and are not—estimation procedures with these consis-
tency properties and also describe some open issues.
We are concerned with three kinds of estimation:
values of parameters in a model given the model,
graphical models given background knowledge, and
effects of manipulations on specific variables, that is,
P(x‖P ′(Y)). In all the examples we discuss, we will
make the causal Markov assumption. We also assume
that there is a causally sufficient set of variables V that
is jointly Normal or contains all discrete variables. In
both the multivariate Normal and discrete cases, the
quantity to be estimated, P(X‖P ′(Y)), is parameter-
ized by a finite vector of real numbers. We do not
always assume that all variables in V are observed.
We will assume that the causal graph is acyclic unless
explicitly stated otherwise. We also assume that there
are no correlated errors, unless explicitly stated oth-
erwise (this case will be discussed further in the
section on latent variables). Unless otherwise noted,
we assume the samples are independent and identically
distributed. Some weakening of these data assump-
tions is possible without changing the basic results that
follow.

24.4.3. Causal Inference Assuming the
Measured Variables Are Causally Sufficient

First, we consider the case in which there is a
causally sufficient set of variables V that are all
measured.

24.4.3.1. Known Causal Graph

There are uniform consistent estimators of the free
parameters of a causal model for multivariate Normal
or discrete DAG models. In the case of multivariate
Normal distributions, a uniform consistent maximum
likelihood estimate of the edge coefficients can be
obtained by regressing each variable on its parents in
the causal DAG. In the case of discrete DAG models,
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a uniform consistent maximum likelihood estimate of
the parameters P(v|parents(G, V )) can be obtained
by using the relative frequency of v conditional on
parents(G, V ).

As we saw in Sections 24.3.2 and 24.3.3, P(x‖
P ′(Y)) is a function of the parameters. It follows that
there are uniform consistent estimates of P(x‖P ′(Y)).
(To avoid some complications, we assume in the
case of discrete variables that P ′(Y) does not assign
a nonzero probability to any value of Y that has
probability 0 in the unmanipulated population.)

24.4.3.2. Unknown Causal Graph

Given the causal Markov assumption, but none of
the causal faithfulness assumptions, there are no
Bayes, pointwise, or uniform consistent estimators of
the direction of edges for any true, unknown causal
graph, as long as the variables are dependent. This is
because any (multivariate Normal or discrete) distribu-
tion can be represented by some submodel of a DAG
in which every pair of vertices are adjacent, regardless
of the orientation of the edges.

However, given any of the causal faithfulness
assumptions, in many cases, some orientations of
edges are incompatible with the distributionP (V), and
considerably more information about the causal struc-
ture, and hence about effects of ideal manipulations,
can be reliably derived from samples from P (V). This
is explained in the next several subsections.

24.4.3.3. Distribution Equivalence

Consider the college plans example. There are a
variety of ways of scoring how well such a discrete
model fits a sample, which include p(χ2), and the
BIC or Bayesian information criterion17 (Bollen &
Long, 1993). The BIC assigns a score that rewards
a model for assigning a high likelihood to the data
(under the maximum likelihood estimate of the values
of the free parameters) and penalizes a model for being
complex (which, for causal DAG models without latent
variables, can be measured in terms of the number of
free parameters in the model). The BIC is also a good

17. The Bayesian information criterion (BIC) for a directed acyclic graph
(DAG) is defined as logP(D|θ̂G,G)−(d/2) logN,whereD is the sample
data,G is a DAG, θ̂G is the vector of maximum likelihood estimates of the
parameters for DAG G, N is the sample size, and d is the dimensionality
of the model, which in DAGs without latent variables is simply the number
of free parameters in the model. Because P(G|D) ∝ P(D|G)P (G), if
P(G) is the same for each DAG, the BIC score approximation forP(D|G)
can be used as a score for approximating P(G|D).

approximation to the posterior probability in the large
sample limit.

However, to evaluate how well the data support
this causal model, we need to know whether there
are other causal models compatible with background
knowledge that fit the data equally well. In this case,
for each of the DAGs in Figure 24.5 and for any data
set D, the two models fit the data equally well and
receive the same score (e.g., p(χ2) or BIC scores).
Informally,G1 andG2 are O-distribution equivalent if
any marginal probability distribution over the observed
variables O generated by an assignment of values to the
free parameters of graphG1 can also be generated by an
assignment of values to the free parameters of graphG2

and vice versa.18 IfG1 andG2 have no latent variables,
then we will simply say thatG1 andG2 are distribution
equivalent. If two distribution equivalent models are
equally compatible with background knowledge and
have the same degrees of freedom, the data do not
help choose between them, so it is important to be
able to find the complete set of path diagrams that are
distribution equivalent to a given path diagram. (The
two models in Figure 24.5 have the same degrees of
freedom.)

As we will illustrate below, it is often far from obvi-
ous what constitutes the complete set of DAGs or path
diagrams that are distribution equivalent to a given
DAG or path diagram, particularly when there are
latent variables, cycles, or correlated errors. We will
call such a complete set an O-distribution equivalence
class. (Again, if we consider only models without
latent variables, we will call such a complete set a
distribution equivalence class.) If it is the complete set
of graphs without correlated errors or directed cycles
(i.e., DAGs that are O-distribution equivalent), we will
call it a simple O-distribution equivalence class.

24.4.3.4. Features Common to a Simple
Distribution Equivalence Class

An important question that arises with respect to
simple distribution equivalence classes is whether it is
possible to extract the features that the set of simple
distribution-equivalent path diagrams has in common.

18. For technical reasons, a more formal definition requires a slight com-
plication.G is a subgraph ofG′ whenG andG′ have the same vertices, and
G has a (not necessarily proper) subset of the edges inG′.G1 andG2 are
O-distribution equivalent if, for every model M such that G(M) = G1,
there is a modelM ′ withG(M ′) that is a subgraph ofG2, and the marginal
over O of P(M ′) equals the marginal over O of P(M), and for every
model M ′ such that G(M ′) = G2, there is a model M with G(M) that is
a subgraph of G1, and the marginal over O of P(M) equals the marginal
over O of P(M ′).
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Figure 24.5 An Example of a Simple Distribution Equivalence Class
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For example, each of the graphs in Figure 24.5 has
the same adjacencies. The edge between IQ and SES
points in different directions in the two graphs in
Figure 24.5. However, PE → CP is the same in
both members of the simple distribution equivalence
class. This is informative because even though the data
do not help choose between members of the simple
distribution equivalence class, insofar as the data are
evidence for the disjunction of the members in the
simple distribution equivalence class, it is evidence
for the orientation PE→ CP. In Section 24.4.3.6, we
describe how to extract all of the features common to a
simple distribution equivalence class of path diagrams.

24.4.3.5. Distribution Equivalence
for Path Diagrams Without Correlated
Errors or Directed Cycles

Recall from Section 24.2.3.2 that a causal model
is an ordered pair consisting of a causal graph and a
probability distribution. If, for causal model M, there
is another causal modelM ′with a different causal graph
but the same number of degrees of freedom and the
same marginal distribution over the measured variables
inM, then p(χ2) forM ′ equals p(χ2) forM, and they
have the same BIC scores. Such models are guaranteed
to exist if there are models that have the same number
of degrees of freedom and contain graphs that are dis-
tribution equivalent to each other. Theorem 1 (Spirtes
et al., 2000, chap. 4; Verma & Pearl, 1990) shows how
distribution equivalence can be calculated quickly. X
is an unshielded collider in a DAG G if and only if
G contains edges A→ X← B, and A is not adjacent
to B in G.

Theorem 1. For multivariate Normal distributions
or discrete distributions, two causal models with
directed acyclic causal graphs but no correlated errors
are distribution equivalent if and only if they contain
the same vertices, the same adjacencies, and the same
unshielded colliders.

See also Stetzl (1986), Lee and Hershberger
(1990), and MacCallum, Wegener, Uchino, and
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Fabrigar (1993) for discussions of model equivalence
in structural equation models.

24.4.3.6. Extracting Features Common
to a Simple Distribution Equivalence Class

Theorem 1 is also the basis of a representation
(called a pattern in Verma & Pearl, 1990) of an entire
simple distribution equivalence class. The pattern that
represents the set of DAGs in Figure 24.5 is shown in
Figure 24.6.

A pattern has the same adjacencies as the DAGs in
the simple distribution equivalence class that it rep-
resents. In addition, an edge is oriented as X → Z

in the pattern if and only if it is oriented as X → Z

in every DAG in the simple distribution equivalence
class and as X − 2 otherwise. Meek (1995), Chick-
ering (1995), and Andersson, Madigan, and Perlman
(1995) show how to quickly generate a pattern that
represents the simple equivalence class of a DAG from
the DAG. Section 24.4.3.9.4 discusses the problem of
constructing a causal pattern from sample data.

24.4.3.7. Calculating the Effects
of Manipulations From a Pattern

The rules that specify which effects of manipulations
can be calculated from a pattern and how to calculate
them, as well as which effects of manipulations cannot
be calculated from a pattern, are described in Spirtes
et al. (2000, chap. 7). Here we give some examples
without proof.
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Suppose that it is known that the pattern in
Figure 24.6 is the true causal pattern (i.e., the true
causal DAG is a member of the simple distribu-
tion equivalence class represented by that pattern).
The pattern represents the set of DAGs in Fig-
ure 24.5. The DAG in Figure 24.5b predicts that
P(iq‖P ′(SES)) = P (iq) because IQ is not an effect of
SES in that DAG. However, the DAG in Figure 24.5a
predicts that P(iq‖P ′(SES)) =/ P (iq) because IQ is
an effect of SES in Figure 24.5a. Hence, knowing only
that the true causal DAG is represented by the pattern
in Figure 24.6 does not determine a unique answer for
the value ofP (iq‖P ′(SES)), and there are no consistent
estimators (of any kind) of P (iq‖P ′(SES)).

In contrast, both of the DAGs in Figure 24.5 pre-
dict that P(pe|ses, iq‖P ′(IQ)) = P(pe|ses, iq), where
P (pe|ses,iq‖P ′(IQ)) denotes the probability of pe con-
ditional on ses and iq, after IQ has been manipulated to
P ′(IQ). It follows that if it is known that the true causal
pattern is the pattern in Figure 24.6, there are uniform
consistent estimators of P (pe|ses, iq‖P ′(IQ)).

Finally, there are conditional distributions that do
change under manipulation but that can be calculated
from quantities that do not change under manipulation.
If it is known that the true causal pattern is the pattern
in Figure 24.6, there are uniform consistent estimators
of P (cp|pe‖P ′(PE)).

P(cp|pe‖P ′(PE)) =
∑

IQ, SES

P(cp|pe, ses, iq)

× P(iq|ses)× P(ses). (6)

Given the Sewell and Shah (1968) data, and assuming
that the pattern in Figure 24.6 is the correct pattern,
the following are estimates of P (cp|pe‖P ′(PE)):

P(CP = 0|PE = 0‖P ′(PE)) = .095

P(CP = 1|PE = 0‖P ′(PE)) = .905,

P (CP = 0|PE = 1‖P ′(PE)) = .484

P(CP = 1PE = 1‖P ′(PE)) = .516.

24.4.3.8. Consistent Estimators
of the Effects of Manipulations

Suppose that neither the true causal pattern nor
the true causal DAG is given, that the only given
data are samples from a jointly Normal probability
distribution or discrete variables, and that the set of
variables is known to be causally sufficient. Under
what assumptions and conditions are there Bayes,
pointwise, or uniform consistent estimators of the
effects of manipulations?

If En is an estimator of some quantity Q, then
under their standard definitions, Bayes, pointwise, and
uniform consistency of En require that as the sample
size n increases, En approaches Q, regardless of the
true value of Q. Under this definition, there are no
consistent estimators of any kind of effects of any
manipulation, even given the strong causal faithfulness
assumption. However, given the causal faithfulness
prior assumption, the causal faithfulness assumption,
or the strong causal faithfulness assumption, there are
slightly weakened senses of Bayes, pointwise, and
uniform consistency, respectively, under which there
are consistent estimators of the effects of some manipu-
lations. In the weakened sense, an estimator can return
“don’t know” as well as a numerical estimate, and a
“don’t know” estimate is considered to be zero dis-
tance from the truth. For an estimator to be nontrivial,
there must be some values ofQ for which, with proba-
bility 1, in the large sample limit the estimator does not
return “don’t know.” From now on, we will use Bayes
consistent estimator, pointwise consistent estimator,
and uniform consistent estimator in this weakened
sense.

Suppose that we are given a causally sufficient set of
multivariate Normally distributed or discrete variables
V and the causal Markov assumption but not any
version of the causal faithfulness assumption. If the
time order is known, and there are no deterministic
relations among the variables, then there are uniform
consistent estimators of any manipulation. If the time
order is not known, then for any X and Y that are
dependent, regardless of what the true probability
distribution P(V) is, there are no Bayes, pointwise,
or uniform consistent estimators of P(y‖P ′(X)). This
is because there is always a DAG compatible with the
causal Markov assumption in which X is a cause of
Y and another DAG in which X is not a cause of Y .

Table 24.2 summarizes the results reviewed above.
In all cases, it is assumed that the causal Markov
assumption is true, that there are no deterministic
relations among variables, and that all distributions are
multivariate Normal or all variables are discrete. Some
combinations of conditions are missing because the
strong causal faithfulness assumption entails the causal
faithfulness assumption, which entails the causal faith-
fulness prior assumption. The first four columns
are combinations of assumptions that are possible,
and the last three columns give the consequences of
those assumptions. The “⇐” symbol marks entail-
ment relations among the assumptions and the results.
Not surprisingly, the stronger the version of causal
faithfulness that is assumed, the stronger the sense of
consistency that can be achieved.
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Table 24.2 Existence of Estimator Under Different Assumptions: Nonlatent Case

Assumptions Existence Results

Causal Existence Existence Existence
Faithfulness Causal Strong Causal of Bayes of Pointwise of Uniform

Time Order Prior ⇐ Faithfulness ⇐ Faithfulness Consistent ⇐ Consistent ⇐ Consistent

No No No No No No No
No Yes No No Yes No No
No Yes Yes No Yes Yes No
No Yes Yes Yes Yes Yes Yes
Yes No No No Yes Yes Yes

We will describe the construction of consistent
estimators of manipulations in Section 24.4.3.9.5.
Even given the strong causal faithfulness assumption,
because all of the DAGs represented by a given pat-
tern are distribution equivalent, only the correct causal
pattern can be pointwise consistently estimated in the
large sample limit. So any consistent estimator of the
effects of manipulations is sometimes going to return
“don’t know.” In general, consistent estimators return
numerical estimates (as opposed to “don’t know”)
whenever the value of the manipulation is a function
of the true causal pattern (as opposed to the true causal
DAG) and the true distribution (as described in Section
24.4.3.7). The results in Table 24.2 about the causal
faithfulness assumption are proved in Robins et al.
(2003), and the results about a version of the strong
causal faithfulness assumption are proved in Spirtes
et al. (2000, chap. 12) and Zhang and Spirtes (2003).

In general, the consistency of the estimators
described in this chapter applies only to a limited class
of models (represented by directed acyclic graphs) and
a limited class of distributional families (multivariate
Normal or discrete). In addition, they do not always use
all available background knowledge (e.g., parameter
equality constraints). How well an estimator performs
on actual data depends on at least five factors:

1. the correctness of the background knowledge
input to the algorithm,

2. whether the causal Markov assumption holds,
3. which of the strong causal faithfulness assump-

tions (indexed by k) holds,
4. whether the distributional assumptions made by

the statistical tests of conditional independence
hold,

5. the power of the conditional independence tests
used by the estimators.

Each of these assumptions may be incorrect in
particular cases. Hence, the output of the estimators

described in this chapter should be subjected to
further tests wherever possible. However, the problem
is made even more difficult because even under the
strong causal faithfulness assumption, for computa-
tional reasons, it is not known how to probabilistically
bound the size of errors. It is possible to perform a
“bootstrap” test of the stability of the output of an
estimation algorithm by running it multiple times on
samples drawn with replacement from the original
sample. However, although this can show that the
output is stable, it does not show that the output is
close to the truth because the probability distribution
might be unfaithful, or very close to unfaithful, to the
true causal graph. We recommend, as well, running
search procedures on simulated data of the same size
as the actual data, generated from a variety of initially
plausible models. The results can give an indication of
the probable accuracy of the search procedure and its
sensitivity to search parameters and to the complexity
of the data-generating process. Of course, if the actual
data are generated by a radically different structure,
or if the actual underlying probability distribution or
sampling characteristics do not agree with those in
the simulations, these indications may be misleading.
Also, it should be kept in mind that even when a model
suggested by an estimator fits the data very well, it is
possible that there are other models that will also fit the
data well and are equally compatible with background
knowledge, particularly when the sample size is small.

24.4.3.9. Consistent
Estimation of Causal Models

In this section, we discuss some of the methodologi-
cal implications of the results presented in the previous
sections for estimation of models (or, in more common
terminology, model selection or model search). The
proper methodology depends on whether one is inter-
ested in constructing statistical models (used for cal-
culating conditional probabilities) or in constructing
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causal models (used for calculating manipulations
of the true causal pattern). Throughout we will use
the college plans data as an example. Analogous
methodological conclusions can be drawn for SEMs.
At this point, we will not consider the issues of how
the variables in the college plans data set were con-
structed or impose any constraints on the models drawn
from background knowledge. Such further considera-
tions could be incorporated into the search algorithms
discussed below and could alter their output.

The estimation of statistical models and of causal
DAGs or patterns calls for very different method-
ologies because a good statistical model could be a
very bad causal model. (For example, two DAGs rep-
resented by the same pattern may be equally good
statistical models, but only one of them is a good causal
model.)

The problem is that constructing estimators of causal
DAGs or patterns is very difficult for several reasons.
Even if latent variables are excluded, the space of
DAGs (or patterns) is enormous: The number of differ-
ent models grows super-exponentially with the number
of variables. Of course, background knowledge, such
as time order, can vastly reduce the space. Neverthe-
less, even given background knowledge, the number
of a priori plausible alternatives is often orders of
magnitude too large to search by hand.

24.4.3.9.1. Estimation of statistical models.
Suppose that a model of the college plans data is to
be used to predict the value of CP from the other
observed variables. One way to do this is to esti-
mate P(cp|sex, iq, ses, pe) and choose the value of
CP with the highest probability. The relative fre-
quency of CP conditional on sex, iq, ses, and pe in
a random sample is a uniform consistent estimator
of P(cp|sex, iq, ses, pe). If the sample size is large,
then the relative frequency will be a good estimator
of P(cp|sex, iq, ses, pe); however, if the sample size
is small, then it typically will not be a good estima-
tor because the number of sample points with fixed
given values for SEX, IQ, SES, and PE will be small
or possibly zero, and the estimator will have very
high variance and a high mean squared error. (If the
variables were continuous, the analogous operation
would be to regress CP on SEX, IQ, SES, and PE.)
A number of machine learning techniques, including
variable selection algorithms, neural networks, support
vector machines, decision trees, and nonlinear multi-
ple regression, can be applied to obtain a prediction
rule (see Mitchell, 1997). Once the statistical model
is constructed, it can be evaluated in several different
ways. For example, the sample can be initially divided

into a training set and a test set. Then the model can be
constructed on a training set, and the mean squared
error of predictions can be calculated on the test set.
There are also a variety of other cross-validation tech-
niques that can be used to evaluate models. If several
different models are constructed, the one with the
smallest mean squared error on the test set can be
chosen. Note that it does not matter if there are several
different statistical models that predict CP equally
well: In that case, any of them can be used because
the goal is not to identify causes of CP but only to
predict its value. If the goal is to predict CP from PE
alone, then the sample size is large enough that the
relative frequency of CP conditional on PE is a good
estimator of P(cp|pe).

24.4.3.9.2. Bayesian estimation of causal DAGs.
In the ideal Bayesian framework, a prior probability is
assigned over the space of causal DAGs and over the
values of the free parameters of each DAG, and then the
posterior probability of each DAG is calculated from
the data. To turn this into a point estimate of a causal
DAG, we can output the causal DAG with the highest
posterior probability. In practice, it requires too much
computation to calculate posterior probabilities, and
we settle for calculating ratios of posterior probabilities
of alternative DAGs. (There is no reason in principle
why a theory of Bayesian estimation of causal patterns
could not also be developed.)

Under the family of priors (“BDe priors”) described
in Heckerman (1998) (that satisfy the causal faith-
fulness prior assumption), asymptotically with proba-
bility 1, the posterior of the true causal DAG will not
be smaller than the posterior of any other DAG. If
every DAG has a nonzero prior probability, to be Bayes
consistent, a point estimator based on choosing the
DAG with the highest probability has to output “don’t
know” unless the DAG with the highest probability is
the sole member of a simple distributional equivalence
class. That is because under the family of BDe priors,
different DAGs represented by the same pattern will
typically all have nonzero posterior probabilities, even
in the limit.

There are a number of computational difficulties
associated with calculating posterior probabilities over
either the space of causal DAGs or the space of causal
patterns. Because there are a huge number of possi-
ble DAGs, it is a nontrivial problem to assign priors
to each causal DAG and to the parameters for each
causal DAG. Heckerman (1998) discusses techniques
by which this can be accomplished. A collection of
articles about learning graphical models, including the
Bayesian approach, is given in Jordan (1998).
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Figure 24.7 Bayesian Search Output (Assuming No Latent Common Causes)
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It is computationally impossible in practice to
calculate the posterior probability for a single causal
DAG, let alone all causal DAGs. However, techniques
have been developed to quickly calculate the ratio of
posterior probabilities of any two DAGs. As an approx-
imation of a Bayesian solution, then, it is possible to
search among the space of DAGs (or the space of
patterns) and output the DAGs (or patterns) with the
highest posterior probabilities. (A variation of this is
performing a search over the space of DAGs but turning
each of the DAGs output into the pattern that represents
the DAG as a final step, to determine whether the point
estimate of the effect of a manipulation is Bayes con-
sistent.) A wide variety of searches from the machine
learning literature have been proposed as search algo-
rithms for locating the DAGs with the highest posterior
probabilities. These include simple hill climbing (at
each stage choosing the DAG with the highest poste-
rior probability from among all of the DAGs that can
be obtained from the current best candidate DAG by
a single modification), genetic algorithms, simulated
annealing, and so on (for a summary, see Spirtes et al.,
2000, chap. 12).

As an example, consider again the college plans data.
Under the assumption of no latent common causes,
with SEX and SES having no parents and CP having
no children, and under a variety of different priors, the
two DAGs with the highest prior probability (which
differ in the direction of the edge between PE and
IQ) that were found are shown in Figure 24.7a, b.
The DAG in Figure 24.7b is the same as the DAG
in Figure 24.5a. The DAG in Figure 24.7a, however,
has a posterior probability that is on the order of 1010

times more probable than the DAG in Figure 24.7b.
This is because although the DAG in Figure 24.7b
fits the data better, the DAG in Figure 24.7a is much
simpler, having only 68 free parameters. (The large
number of free parameters is due to the fact that the
variables are discrete, and hence the free parameters
are not the covariance matrix and the means, as in
a multivariate Normal distribution, but the probability

of each variable conditional on its parents. See Section
24.2.3.1.)

An interesting unresolved question is what the
results of a score-based search would be if further
constraints were imposed on the parameters (e.g., if
the probability of CP conditional on PE, SES, and IQ
were obtained from a logistic regression).

24.4.3.9.3. Score-based estimation of causal
DAGs or patterns. For computational reasons, the
full Bayesian solution of calculating the posterior
probability of each DAG or the posterior probability
of the effect of a manipulation cannot be carried out.
The approximate Bayesian solution in effect uses the
posterior probability as a way of assigning scores to
DAGs, which can then be incorporated into a proce-
dure that searches for the DAGs (or patterns) with the
highest score. There are a variety of other scores that
(assuming the causal faithfulness assumption) have the
property that, in the large sample limit with probability
1, the true DAG will have a score that is not exceeded
by any other DAG. See Heckerman (1998) and Bollen
and Long (1993), who describe a number of differ-
ent approaches to scoring models. As in the case of
Bayesian inference, a variety of searches using these
scores can be performed. Instead of outputting a DAG
as the result of a score-based search, a pattern could
be output by turning the DAG with the highest score
into the pattern that represents it.19 Chickering and
Meek (2002) describe a pointwise consistent score-
based search over the space of patterns for the correct
causal pattern. In the worst case, it is too computation-
ally intensive to carry out, but if the true graph is sparse,
it can be carried out for at least dozens of variables.

19.Buntine (1996) provides an overview of different approaches to search
over Bayesian networks. There are also many articles on this subject in
the Proceeding of the Conference on Uncertainty in Artificial Intelligence
(www.auai.org) and the Proceedings of the International Workshop on
Artificial Intelligence and Statistics.
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24.4.3.9.4. Constraint-based estimation of causal
patterns. The PC algorithm is another example of a
pointwise consistent estimator of causal patterns. It
takes as input a covariance matrix or discrete data
counts, distributional assumptions, optional back-
ground knowledge (e.g., time order), and a significance
level, and outputs a pattern. The significance level
cannot be interpreted as the probability of Type I error
for the pattern output but merely as a parameter of the
search. From simulation studies, it appears that it is
best to set the significance level quite high for small
sample sizes (e.g., .15 or .2 for sample size 100) and
quite low for large sample sizes (e.g., .01 or .001 for
sample size 10,000), with larger samples required for
discrete models. The search proceeds by performing
a sequence of conditional independence tests. (The
name constraint based comes from the testing of con-
straints entailed by a pattern—in this case, conditional
independence constraints.) The length of time that the
algorithm takes to run depends on how many parents
each variable has. In the worst case (where some
variable has all the other variables as parents), the
time it takes to perform the search grows exponentially
as the number of variables grows. However, in some
cases, where each variable has relatively few parents,
it can perform searches on 100 measured variables or
more. How large a set of causal models is represented
by the output asymptotically depends on what the true
causal DAG is. The output of the search is a pointwise
consistent estimate of the true causal pattern under the
causal Markov and causal faithfulness assumptions (if
the significance level of the tests performed approaches
zero as the sample size approaches infinity). However,
it has been shown that there are no uniform consistent
estimators of causal patterns under any of the causal
faithfulness assumptions described in Section 24.3.4
(although there are uniform consistent estimates of
the effects of manipulations under the strong causal
faithfulness assumption).

One advantage of a constraint-based search algo-
rithm is that it does not require any estimation of the
free parameters of a model.20 One disadvantage of
a constraint-based algorithm is that it outputs only a
single pattern and gives no indication of whether other
patterns explain the data almost as well as the output
pattern but represent very different casual graphs. A
partial answer to this problem is to run the algorithm

20. In some methodologies, in which the goal is to infer the correct causal
graph or some set containing the correct causal graphs, the parameters are
considered a kind of nuisance parameter that are needed to test the fit of a
model but not of interest in themselves. See Mulaik and Millsap (2000).

with different significance levels or to perform a
bootstrap test of the output. In addition, the fit of one
of the models represented by the pattern can be tested
in the usual way, using a chi-square test. Such a test
can be done either on the same data used in the search
or preferably on data that were not input to the search
algorithm.

The output of the PC algorithm on the college plans
data (on significance levels ranging from .001 to .05)
is the pattern in Figure 24.6. A bootstrap test of the PC
algorithm (with significance level .001) produced the
same model as in Figure 24.6 on 8 out of 10 samples.
On the other 2 samples, the edge between PE and CP
was not oriented.

The pattern output by the PC algorithm represents
the second most probable DAG found in Heckerman
(1998), and given the restrictions assumed by
Heckerman, this DAG is the only DAG represented
by the pattern.

Although the set of causal models represented by
the pattern in Figure 24.6 were the best models without
latent variables found by the PC algorithm, it can be
shown that the set of conditional independence rela-
tions judged to hold in the population by performing
conditional independence tests are not faithful to any
causal model without latent variables. We will discuss
relaxing the “no latent variable assumption” imposed
by the PC algorithm in Section 24.5.2.21

24.4.3.9.5. From estimators of causal models
to estimators of the effects of manipulations. The
overall strategy for consistently estimating the effects
of a manipulation are illustrated in the following
example of how to estimate P(cp|pe‖P ′(PE)):

1. Use the data and some search algorithm to esti-
mate the true causal pattern. For example, under
the causal faithfulness assumption, the PC algo-
rithm is a pointwise consistent estimator of causal
patterns and outputs the pattern in Figure 24.6.

2. If the effect of the manipulation is not uniquely
determined by the pattern (as described in

21. Other applications of constraint-based causal inference algorithms
are described in Glymour and Cooper (1999) and Spirtes et al. (2000).
Biological applications are described in Shipley (2000). Some applica-
tions to econometrics are described in Swanson and Granger (1997), and
the concept of causality in economics is described in Hoover (2001).
HUGIN (www.hugin.com) is a commercial program that contains an
implementation of a modification of the PC algorithm. TETRAD IV
(www.phil.cmu.edu/projects/tetrad) is a free program that contains a
number of search algorithms, including the PC and FCI algorithms
(described in Section 24.5.2.1).
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Section 24.4.3.7), output “don’t know.” In this
case, P(cp|pe‖P ′(PE)) is uniquely determined
from the pattern.

3. Find a DAG that the pattern represents. In this
case, for example, the pattern in Figure 24.6
represents the DAG in Figure 24.5a.

4. Consistently estimate the free parameters of
the DAG. In this example, there are maximum
likelihood estimates of the values of the free
parameters that are uniformly consistent.

5. Use the estimate of the pattern and the esti-
mate of the values of the free parameters to
estimate P (cp|pe‖P ′(PE)) using equation (6) of
Section 24.4.3.7.

Under the strong causal faithfulness assumption,
this procedure is a uniform consistent estimator of
the effects of a manipulation despite the fact that the
estimator of the true causal pattern is not uniformly
consistent. (Informally, there are no uniform consistent
estimators of causal patterns because of the difficulty
of distinguishing between a causal model G and a
causal model G′ that is formed by adding arbitrarily
weak edges to the DAG in G. The DAGs in G and
G′ are far apart in the sense that they contain DAGs
that are represented by patterns that contain different
edges; however, in terms of predicting the effects of
manipulations, they are quite close to each other, as
long as the extra edges are weak.)

One analogous method of estimation uses a
Bayesian search algorithm to estimate the true causal
DAG, rather than the PC algorithm to estimate the
true causal pattern. In Heckerman (1998), the DAG
with the highest posterior probability that was found is
the one in Figure 24.7a (and there are no other DAGs
in the simple distributional equivalence class that are
compatible with the background assumptions made by
Heckerman). It follows from the DAG in Figure 24.7a
that

P(cp|pe‖P ′(PE)) =
∑
SES

P(cp|pe, ses)× P(ses).

The following are the estimates forP(cp|pe‖P ′(PE))
given the Sewell and Shah (1968) data, using maxi-
mum likelihood estimates of the free parameters of the
DAG in Figure 24.7a:

P(CP = 0|PE = 0‖P ′(PE )) = .080

P(CP = 1|PE = 0‖P ′(PE )) = .920,

P (CP = 0|PE = 1‖P ′(PE )) = .516

P(CP = 1PE = 1‖P ′(PE )) = .484.

These estimates are close to the ones derived from
using the PC algorithm.

24.5. Latent Variable Models

For the parametric families of distributions that we
have considered, it is not necessary to introduce latent
variables into a model to be able to construct uni-
form consistent estimators of conditional probabilities.
Introducing a latent variable into a model may aid in the
construction of consistent estimators that have smaller
mean squared error on small samples. This is particu-
larly true of discrete variable models, in which models
such as one that has a DAG with one latent variable
that is a parent of every measured variable (sometimes
called a latent class model) has often proved useful in
making predictions.

However, when a model is to be used to predict the
effects of manipulations, then the introduction of latent
variables into a graph is not merely useful for the sake
of constructing low-variance estimators but can also be
essential for constructing consistent estimators. Unfor-
tunately, as described in this section, latent variables
causal models, as opposed to causal models in which
the measured variables are causally sufficient, face a
number of extra problems that complicate estimation
of the effects of manipulations.

24.5.1. Known Causal Graph

In some cases, the parameters of a DAG model
with latent variables can still be consistently esti-
mated despite the presence of latent variables. There
are a number of algorithms for such estimations,
including instrumental variables estimators, and iter-
ative algorithms that attempt to maximize the like-
lihood. If the model parameters can be estimated,
then because the effects of manipulations are functions
of the model parameters, the effects of manipula-
tions can also be consistently estimated. However,
consistently estimating the model parameters of a
latent variable model presents a number of significant
difficulties.

1. It is not always the case that the model parameters
are functions of the distribution over the measured
variables. This is true of most factor-analytic models,
for example. In that case, the model parameters are
said to be “underidentified.” For parametric families of
distributions, whether or not a causal parameter is
underidentified is essentially an algebraic problem.
Unfortunately, known algorithms for determining
whether a causal parameter is underidentified are
too computationally expensive to be run on more
than a few variables. There are a number of com-
putationally feasible known necessary conditions for
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Figure 24.8 The Backdoor Criterion
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underidentification and a number of computationally
feasible known sufficient conditions for underidenti-
fication (see Becker, Merckens, & Wansbeek, 1994;
Bollen, 1989; Geiger & Meek, 1999).

2. Even when the model parameters are identifi-
able, the family of marginal distributions (over the
observed variables) associated with a DAG with latent
variables lacks many desirable statistical properties
possessed by the family of distributions associated
with a DAG without measured variables. For example,
for SEMs with Normally distributed variables, there
are no known general proofs of the asymptotic exis-
tence of maximum likelihood estimators of the model
parameters (see Geiger, Heckerman, King, & Meek,
1999).

3. The estimation of model parameters is often done
by iterative algorithms, which are computationally
expensive, suffer from convergence problems, and can
get stuck in local maxima (see Bollen, 1989).

There are also cases in which not all of the
model parameters are identifiable, but the effects of
some manipulations are identifiable (see Pearl, 2000;
Pearl & Robins, 1995). A simple example is given by
application of “the backdoor criterion” (Pearl, 2000)
to the model in Figure 24.8, where X, Y, and Z are
binary and measured, andL is ternary and unmeasured.
In that case, the model parameters are unidentifiable.
However, it can be shown that if P ′(y = 0) = 1,

P(z|y‖P ′(Y )) =
∑
X

P (z|x, y)P (x).

Whether the effect of a given manipulation is
identifiable for some parametric families of distribu-
tions is an algebraic question. However, the known
general algorithms for calculating the solutions are
too computationally expensive to be applied to models
with more than a few variables. Special cases, which
are computationally feasible, are given in Pearl (2000).

24.5.2. Unknown Causal Graph

We consider under what conditions and assump-
tions there are consistent estimators of the effects of

manipulations when the measured set of variables may
not be causally sufficient.

24.5.2.1. Distribution and Conditional
Independence Equivalence

It is possible that two directed graphs entail the same
set of conditional independence relations over a set
of measured variables but are not O-distributionally
equivalent, as long as at least one of them contains
a latent variable, a correlated error, or a cycle.
For example, the DAG in Figure 24.2 entails no
conditional independence relations among only the
measured variables O= {Mechanics, Vector, Algebra,
Analysis, Statistics}; all of the conditional indepen-
dence relations that it entails involve conditioning on
some latent variable. Any DAG G′ with the same
measured variables, but no latent variables, and in
which every pair of measured variables are adja-
cent also entails no conditional independence rela-
tions among the measured variables. Hence, the
DAG in Figure 24.2 and G′ entail the same set
of conditional independence relations among the
measured variables (i.e., the empty set). However
they are not O-distribution equivalent because the
DAG in Figure 24.2 entails the nonconditional
independence constraint ρ(Mechanics, Analysis) ×
ρ(Vector, Statistics) − ρ/(Mechanics, Statistics) ×
ρ(Vector, Analysis) = 0 for all values of its free
parameters, whereas G′ does not entail the constraint
for all values of its free parameters. (Spearman, 1904,
described these “vanishing tetrad constraints,” and
Glymour, Scheines, Spirtes, & Kelly, 1987, describe
an algorithm that shows how to deduce such constraints
from graphical structure.)

Although it is theoretically possible to determine
when two SEMs or two Bayesian networks with latent
variables are O-distributionally equivalent or to find
features common to an O-distributional equivalence
class, in practice, algorithms are not computation-
ally feasible (Geiger & Meek, 1999) for models with
more than a few variables. In addition, if an unlimited
number of latent variables are allowed, the number of
DAGs that are O-distributionally equivalent may be
infinite. This implies that the strategy that was used
to estimate the effects of manipulations when there
were no latent variables cannot be carried forward
unchanged to the case in which there may be latent
variables.

We will describe two strategies to deal with the
difficulty in identifying O-distribution equivalence
classes.
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The first strategy is to perform searches over a
special class of graphical models, multiple indicator
models, which simplifies the search process. This is
described in Section 24.5.2.4.1.

The second strategy, described in this section, is
not as informative as the computationally infeasible
strategy of searching for O-distribution equivalence
classes but is nevertheless correct.

If O represents the set of measured variables in
graphs G1 and G2, then G1 and G2 are O-conditional
independence equivalent if and only if they entail the
same set of conditional independence relations among
the variables in O (i.e., they have the same d-separation
relations). It is often far from obvious what constitutes
a complete set of graphs O-conditional independence
equivalent to a given graph (Spirtes & Richard-
son, 1997; Spirtes, Richardson, Meek, Scheines, &
Glymour, 1998). We will call such a complete set
an O-conditional independence equivalence class.
If it is the complete set of graphs without corre-
lated errors or directed cycles (i.e., DAGs that are
O-conditional independence equivalent), we will call
it a simple O-conditional independence equivalence
class.

A simple O-conditional independence equivalence
class contains an infinite number of DAGs because
there is no limit to the number of latent variables that
may appear in a DAG.

24.5.2.2. Constraint-Based Search Algorithms

There are algorithms (e.g., PC) that give a pointwise
consistent estimate of the simple conditional indepen-
dence (and distributional) equivalence class of a DAG
without latent variables by outputting a pattern that
represents all of the features that the DAGs in the
equivalence class have in common. Similarly, there is
an algorithm (the FCI algorithm) that outputs a point-
wise consistent estimate of the simple O-conditional
independence equivalence class of the true causal
DAG (assuming the causal Markov and causal faith-
fulness principles), in the form of a graphical structure
called a partial ancestral graph that represents some
of the features that the DAGs in the equivalence class
have in common. The FCI algorithm takes as input
a sample, distributional assumptions, optional back-
ground knowledge (e.g., time order), and a significance
level and outputs a partial ancestral graph. Because
the algorithm uses only tests of conditional indepen-
dence among sets of observed variables, it avoids
the computational problems involved in calculating
posterior probabilities or scores for latent variable
models.

Just as the pattern can be used to predict the effects of
some manipulations, a partial ancestral graph can also
be used to predict the effects of some distributions.
Instead of calculating the effects of manipulations
for which every member of the simple O-distribution
equivalence class agrees, we can calculate the effects
only of those manipulations for which every member
of the simple O-conditional independence equivalence
agrees. This will typically predict the effects of fewer
manipulations than could be predicted given the simple
O-distributional equivalence class (because a larger set
of graphs has to make the same prediction), but the
predictions made will still be correct.

Applying the FCI algorithm to the Sewell and Shah
(1968) data yields output that predicts that P(CP =
0|PE = 0‖P ′(PE)) = P(CP = 0|PE = 0) and the
following estimates:

P(CP = 0|PE = 0‖P ′(PE)) = .063

P(CP = 1|PE = 0‖P ′(PE)) = .937,

P (CP = 0|PE = 1‖P ′(PE)) = .572

P(CP = 1PE = 1‖P ′(PE)) = .428.

Again, these estimates are close to the estimates
given by the output of the PC algorithm and the output
of the Bayesian search algorithm. A bootstrap test of
the output run at significance level .001 yielded the
same results on 8 out of 10 samples. In the other
2 samples, the algorithm could not calculate the effect
of the manipulation.

However, when the FCI algorithm is applied
to the mathematical marks data set, the output,
although a pointwise consistent estimate of the simple
O-conditional equivalence class containing the true
causal DAG, is not informative because it is not pos-
sible to predict the effects of any manipulation from
the output; also the running time of the algorithm that
constructs it is exponential in the number of variables.
(The sample size for the mathematics marks data is
quite small [88], and the actual output is from a set
of conditional independence relations that would be
entailed by the DAG in Figure 24.2 if Algebra were a
very good measure of Algebra Skill.) We will discuss
modifications of the FCI algorithm that make it use-
ful for inferences about latent variable models such as
those in Figure 24.2 in Section 24.5.2.4.1.

24.5.2.3. Bayesian and Score-Based
Searches for Latent Variable Models

Score-based searches of latent variable models and
Bayesian searches of latent variable models face sim-
ilar difficulties. The search space is infinite, and a
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Table 24.3 Existence of Estimator Under a Variety of Assumptions: Latent Case

Assumptions Existence Results

Causal Existence Existence Existence of
Faithfulness Causal Strong Causal of Bayes of Pointwise Uniform

Time Order Prior ⇐ Faithfulness ⇐ Faithfulness Consistent ⇐ Consistent ⇐ Consistent

No No No No No No No
No Yes No No Yes No No
No Yes Yes No Yes Yes No
No Yes Yes Yes Yes Yes No
Yes No No No No No No

good strategy for deciding which parts of the space to
search is not known. In principle, there is no problem in
calculating the posterior probability of a latent variable
model or its BIC score, but it is typically computation-
ally infeasible. However, Heckerman (1998) describes
some methods of approximation that are computation-
ally feasible and applies them to several different latent
variable models of the college plans data set (finding a
latent variable model that is much more probable than
any nonlatent variable model) (see also Rusakov &
Geiger, 2003). Even for multivariate Normal or
discrete latent variable models, the existence of maxi-
mum likelihood estimates in the large sample limit has
not been demonstrated.

24.5.2.4. Bayes, Pointwise,
and Uniform Consistent Estimators

Suppose that the only given data are samples from
discrete variable or a multivariate Normal probability
distribution and that the set of variables is not known
to be causally sufficient. Under what assumptions and
conditions are there pointwise or uniform consistent
estimators of manipulations that are functions of the
sample when the causal DAG is not given? The answers
are provided in Table 24.3. Note that the only two lines
that have changed from Table 24.2 are the last two lines,
in which neither a known time order nor the strong
causal faithfulness assumption entails the existence of
uniform consistent estimators.

In each case, when the possibility of latent common
causes is allowed, there are more cases in which the
consistent estimators return “don’t know” than if it is
assumed that there are no latent common causes (see
Robins et al., 2003; Spirtes et al., 2000, chap. 12;
Zhang & Spirtes, 2003).

Whether there are other reasonable assumptions
under which there exist uniform consistent estimators
of the effects of manipulations when latent variables
are not ruled out by background knowledge, as well as

whether there are analogous results for other classes
of distributions and various assumptions about back-
ground knowledge, are open questions.

24.5.2.4.1. Multiple-indicator models. The model
shown in Figure 24.2 is an example of a multiple-
indicator model. Multiple-indicator models can be
divided into two parts. The causal relationships
between the latent variables are called the structural
model. The rest of the model is called the measure-
ment model. The structural model is Vector Algebra
Skill← Algebra Skill→ Real Analysis Skill, and the
measurement model consists of the graph with all of
the other edges. Typically, the structural model is the
part of the model that is of interest.22

There are several strategies for using multiple-
indicator models to make causal inferences that first
attempt to find the correct measurement model,
through a combination of background knowledge and
search, and then use the measurement model to search
for the correct structural model. Mulaik and Mill-
sap (2000) describe a four-step process for testing
multiple-indicator models. Anderson and Gerbing
(1982) and Spirtes et al. (2000, chap. 10) describe
methods for constructing measurement models that
assume that it is known which measured variables
(indicators) measure which latent variable and then
detect those indicators that affect each other, or are
affected by more than one latent variable. If the number
of latents is not known, or it is not known which
measured variables are indicators of which latents,
it might be hoped that factor analysis could be used
to create a correct measurement model. However,
Glymour (1997) describes some simulation experi-
ments in which factor analysis does not do well at

22. Sullivan and Feldman (1979) provide an introduction to multiple-
indicator models. Lawley and Maxwell (1971) describe factor analysis in
detail. Bartholomew and Knott (1999) provide an introduction to a variety
of different kinds of latent variable models.
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constructing measurement models or even at
identifying the number of latent variables. See also
the discussion in Mulaik and Millsap (2000) about
problems with using factor analysis for choosing the
number of latent variables, as well as Mulaik (1972)
for the foundations of factor analysis.

If the measurement model is known, then it can be
used to perform searches for the structural model in
several different ways. For example, the measurement
model can be used to perform tests of conditional
independence among the latent variables. For exam-
ple, to test whether ρ(Vector Algebra Skill, Real
Analysis Skill |Algebra Skill) = 0, a chi-square test
comparing the model in Figure 24.2 with the model
that differs only by the addition of an edge between
Vector Algebra Skill and Real Analysis Skill can be
performed. If the difference between the two models is
not significant, then the partial correlation is judged to
be zero. Thus, given the measurement models, the FCI
or PC algorithm can be applied directly to estimate the
structural model. At a significance level of .2, the PC
algorithm produces the pattern Vector Algebra Skill—
Algebra Skill—Real Analysis Skill, which is the pattern
that represents the structure model part of the model
shown in Figure 24.2.

24.5.2.4.2. Distribution and conditional
independence equivalence for path diagrams with
correlated errors or directed cycles. The represen-
tation of feedback using cyclic graphs, as well as the
theory of inference to cyclic graphs from data, is not as
well developed as for DAGs, except in special cases.
There are general algorithms for testing distribution
equivalence for multivariate Normal graphical models
with correlated errors or directed cycles, but the known
algorithms are generally computationally infeasible
for more than a few variables (Geiger & Meek, 1999).
For multivariate Normal variables, Spirtes (1995) and
Koster (1996) proved that all of the conditional inde-
pendence relations entailed by a graph with correlated
errors and cycles are captured by the (natural extension
of) the d-separation relation to cyclic graphs, and Pearl
and Dechter (1996) and Neal (2000) proved an anal-
ogous result for discrete variables. However, Spirtes
proved that given nonlinear relationships among con-
tinuous variables, it is possible for X to be d-separated
from Y conditional on Z but for X and Y to be
dependent conditional on Z. There are computationally
feasible algorithms for testing conditional indepen-
dence equivalence for multivariate Normal graphical
models with (a) correlated errors or (b) directed cycles
but no latent variables. There are extensions of the
PC algorithm to multivariate Normal graphs with

cycles (Richardson, 1996), but there is no known
algorithm for inferring graphs with both cycles and
latent variables. Lauritzen and Richardson (2002) dis-
cuss the representation of feedback using not cyclic
graphs but an extension of DAGs called chain graphs.

24.6. Some Common

Errors in Model Specification

In this section, we examine the soundness of several
practices in the social sciences sometimes used to draw
causal inferences.

24.6.1. The Formation of Scales

It is a common practice when attempting to discover
the causal relations between latent variables to take all
of the indicators of a given latent variable and average
them together to form a “scale” (although this prac-
tice is also sometimes warned against; see, e.g., the
discussion on SEMNET). This practice is often called
parceling in the structural equation modeling litera-
ture. The scale variable is then substituted for the latent
variable in the analysis. The practice is codified in
the formal theory of measurement as conjoint additive
measurement, and the following simulated example
shows why this practice does not yield reliable infor-
mation about the causal relationships between latent
variables.

For the hypothetical model in Figure 24.9, hereafter
the “true model,” 2,000 pseudo-random data points
were generated. (The numbers next to the edges are the
linear coefficients associated with the edge.) All exoge-
nous variable error terms are independent standard
Normal variables.

Suppose the question under investigation is the effect
of Lead on Cognition, controlling for the Home envi-
ronment. Given the true model, the correct answer
is 0; that is, Lead has no direct effect on Cognition
according to this model. Consider first the ideal case
in which we suppose that we can directly and per-
fectly measure Home, Lead, and Cognition. To test
the effect of Lead on Cognition, we might regress
Cognition on Lead and Home. Finding that the linear
coefficient on Lead is −.00575, which is insignificant
(t = −.26, p = .797), we correctly conclude that
Lead’s effect is insignificant.

Second, consider the case in which Lead and Cogni-
tion were directly measured but Home was measured
with a scale that averaged X1, X2, and X3, the indi-
cators of Home in the true model: Homescale =
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Figure 24.9 Simulated Lead Study
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(X1 + X2 + X3)/3. Further suppose we estimate the
effect of Lead on Cognition by regressing Cognition
on Lead and controlling for Home with the Home-
scale variable. We find that the coefficient on Lead is
now −.178, which is significant at p = .000, and we
incorrectly conclude that Lead’s effect on Cognition
is deleterious.

Third, consider the case in which Lead, Cognition,
and Home were all measured with scales: Homescale =
(X1 +X2 +X3)/3,Leadscale = (X4 +X5 +X6)/3,
and Cogscale = (X7 + X8 + X9)/3. Suppose we
estimate the effect of Lead on Cognition by regress-
ing Cogscale on Homescale and Leadscale. This
gives a coefficient on Leadscale of −.109, which
is still highly significant at p = .000, so we
would again incorrectly conclude that Lead’s effect is
deleterious.

Finally, consider a strategy in which we build a
scale for Home as we did above; that is, Homescale =
(X1 +X2 +X3)/3. Then, in the DAG in Figure 24.9,
we remove the variables X1, X2, and X3 and replace
Home with Homescale. In one important respect, the
result is worse. In this case, the regression coefficient of
Lead on Cognition, controlling for the home environ-
ment (Homescale), is −0.137, which is highly signif-
icant at t = −5.271 and thus substantively in error as
an estimate of the structural coefficient. However, the
model that replaces Home with Homescale as a whole
fits quite well (χ2 = 14.57, df = 12, p = .265),
and all the distributional assumptions are satisfied,
so nothing in the statistical treatment of this case
would indicate that we have misspecified the model,
even though the estimate of the influence of Lead is
quite incorrect. Note, however, that the correct partial
ancestral graph for the latent variables models (which
contains undirected edges between each pair of Lead,
Homescale, and Cognition) would correctly indicate

Figure 24.10 The Problem of Confounding

βV(X)+αγV(Z )

V(X)
X = E (Y |X )

Ζ

X Y

α γ

β

that no causal conclusion about the effect of Lead on
Cognition could be drawn.

24.6.2. Regression

It is common knowledge among practicing social
scientists that for the coefficient ofX in the regression
of Y on X to be interpretable as the direct effect of
X on Y, there should be no “confounding” variable Z
that is a cause of both X and Y (see Figure 24.10).

The coefficient from the regression of Y onX alone
will be a consistent estimator only if either α or γ
is equal to zero. Furthermore, observe that the bias
term αγV (Z)/V (X) (where V (Z) is the variance
of Z) may be either positive or negative and of arbi-
trary magnitude. However, the coefficient of X in the
regression of Y on X and Z is a consistent estimator
of β because Cov(X, Y |Z)/V (X|Z) = β. The danger
presented by failing to include confounding variables
is well understood by social scientists. Indeed, it is
often used as the justification for considering a long
“laundry list” of “potential confounders” for inclusion
in a given regression equation. What is perhaps less
well understood is that including a variable that is not
a confounder can also lead to biased estimates of the
structural coefficient. In the following example,Zmay
temporally precede both X and Y .
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Figure 24.11 Estimates Biased by Including More
Variables
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In the DAG depicted in Figure 24.11, note that
X and Y are unconfounded. Two unmeasured con-
founders, T1 and T2 (of X and Z, and Y and Z,
respectively), are uncorrelated with one another. It can
be shown that the coefficient of X in the regression of
Y on X and Z is not a consistent estimate of β (unless
ρ(X,Z) = 0 or ρ(Y,Z) = 0) and may even have a
completely different sign. In the case where β = 0,
the coefficient ofX in the regression of Y onX will be
zero in the population but will become nonzero once
Z is included.

Statistical folklore often appears to suggest that it
is better to include rather than exclude a variable
from a regression (barring statistical problems such
as small sample size). If the goal of a model is to
predict the value of an unmeasured variable, rather
than the result of a manipulation, this is sound advice
(ignoring for the moment such statistical problems as
small sample size or collinearity). However, if the
purpose of a model is to describe causal relations or
to predict the effects of a manipulation, this is not a
theoretically sound practice. The notion that adding
more variables is always advisable is perhaps given
support by reference to “controlling for Z,” with the
implication being that controlling for Z eliminates
a source of bias; in fact, though, it can add to the
bias. The conclusion to be drawn from these exam-
ples is that there is no sense in which one is “playing
safe” by including rather than excluding “potential
confounders”; if they turn out not to be potential con-
founders, then this could change a consistent estimate
into an inconsistent estimate. Of course, this does not
mean that, on average, one is not better off regress-
ing on more variables than fewer: Whether or not
this is the case depends on the distribution of the
parameters in the domain. Greenland (2003) argues
on the basis of simulations of simple epidemiological
models that in the domain of epidemiology, on average
(apart from sampling problems), the bias reduction
caused by conditioning on more variables is generally
greater than the bias introduced by conditioning on
more variables.

The situation is also made somewhat worse by the
use of misleading definitions of confounder: Some-
times, a confounder is said to be a variable that
is strongly correlated with both X and Y or even
a variable whose inclusion changes the coefficient
of X in the regression. Because, for sufficiently large
ρ(X,Z) or ρ(Y,Z), Z in Figure 24.11 would qualify
as a confounder under either of these definitions, it fol-
lows that under either definition, including “confound-
ing variables” in a regression may make a hitherto
consistent estimator inconsistent.

If Y is regressed on a set of variables W, including
X, we can ask the following: In which SEMs will
the partial regression coefficient of X be a consistent
estimate of the structural coefficient β associated with
the X→ Y edge? The coefficient of X is a consistent
estimator of β if W does not contain any descendant
of Y in G, and X is d-separated from Y given W
in the DAG formed by deleting the X → Y edge
from G.23 If this condition does not hold, then for
almost all instantiations of the parameters in the SEM,
the coefficient ofXwill fail to be a consistent estimator
of β. It follows directly from this that (almost surely) β
cannot be estimated consistently via any regression
equation if either there is an edge X ↔ Y (i.e., εX
and εY are correlated) or if X is a descendant of Y (so
that the path diagram is cyclic).

24.6.3. LISREL and Related
Beam Search Procedures

Many editions of the LISREL program and similar
programs (e.g., EQS) contain automated procedures
for modifying an initial model to find an alternative
that provides a better fit to the data. These proce-
dures have several difficulties. If the causal graph of
the initial model is not a subgraph of the true causal
graph, they cannot give correct results. Because they
rely on computationally demanding iterative fits of suc-
cessive models, the procedure uses implicit heuristics
(e.g., freeing at each stage only the single parameter
that results in most improved fit)—a procedure known
in computer science as one-step look ahead or beam
search—and is often unsound. Not surprisingly, there-
fore, no proofs of their asymptotic correctness are
available. Extensive simulation studies (Spirtes et al.,
2000, chap. 11) have shown the procedures to be un-
reliable on large, finite samples obtained from known

23. This criterion is similar to Pearl’s (1993) back-door criterion, except
that the back-door criterion was proposed as a means of estimating the
total effect of X on Y .
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Gaussian SEMs. (The program manuals also suggest
that the output of such searches may be unreliable and
should be treated only as suggestions.)

24.6.4. Aggregation

In many subjects, including the social sciences,
causal models are developed for variables that are
aggregated over many units. Income averages, IQ aver-
ages, and so on are examples. The models developed
for such variables may sometimes be used as models
of causal relations at the individual level (e.g., that
higher IQs cause higher incomes). Except in spe-
cial cases, such inferences are fallacious. Conditional
independence relations among aggregated variables
may not indicate conditional independence relations
among variables at the unit level or vice versa. Proofs of
sufficient and necessary conditions for such inferences
to be valid are given in Chu, Glymour, Scheines,
and Spirtes (2003). (This is related to the “ecological
fallacy,” under which it is assumed that correlations at
the aggregate level are the same as correlations among
individuals.)
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Multiple-choice data, 4, 9

blood pressure/migraines/age example,
10-12, 11 (figure), 11-13 (tables), 13 (figure)

forced classification for, 20
principles of, 9-10

Multiple-correspondence analysis (MCA), 8, 52, 65-66
Multiple-indicator, multiple-cause (MIMIC)

modeling, 318
algebraic relations in, 320
analysis of covariance applications and, 324
basic model, extensions of, 324
design flexibility and, 332
development of, 321-322, 322 (figure)
error rates in, 332
latent covariates, two-group example

and, 325, 325 (figure)
notation of, 319-320
selection of, 332-333
two-group example of, 322-323, 323 (table), 325
See also Structured means modeling (SMM)

Multiple-rater model, 165
k-statistic and, 165
likelihood function and, 166-169, 169 (figure)
prior distributions, model parameters and, 169-170,

170 (figure)
score analysis application, 171, 171 (table),

172 (figure)
Multiplicative decomposition, 29
Multisite studies. See Site studies
Multivariate analysis (MVA), 4, 51, 54, 215

monotonic/nonmonotonic splines and, 54
nominal transformation, multiple nominal

quantifications and, 54
time-series data and, 337
Wald test, 312-313
See also Categorical data analysis; Exogeneity

Multivariate analysis of variance (MANOVA), 220, 319,
331, 332

National Assessment of Educational Progress, 245
National Council on Measurement in Education, 113
National Council of State Boards of Nursing, 117
National Council of Teachers of Mathematics (NCTM)

Standards, 270
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National Education Longitudinal Study
(NELS) of 1988, 236

National Identity Study, 55, 59, 63, 65
Nested structures, 261, 272-273, 273 (table)
Neyman-Pearson testing, 396, 399, 400, 402, 405
No Child Left Behind Act of 2001, 107
NOHARM software, 100
Nonlinear biplots, 4
Nonlinear principal components analysis, 60

indicator matrices in, 60
joint objective function and, 60-61
ordinal/numerical transformations and, 62-63
quantification, vector coordinates and, 61-63,

62 (figure)
unordered vector coordinates, centroids and, 61-62
See also CATPCA software; Principal components

analysis (PCA)
Nonlinear relationships, 3
Null hypothesis significance testing procedure (NHSTP),

398, 401, 402
Null hypothesis testing, 391-392, 395-396

absence of, 406
conventional level of significance and, 398
emotional elements in, 400-401
limitations of, 404
misunderstanding of, 394, 394 (figure)
persistence of, 401-402
results interpretation and, 396-398, 397 (figure)
significance testing procedure and, 398, 401, 402

Objectivity, 425, 444-445
associative mental processes and, 427
categorization in, 428-429, 428 (table)
cause-effect relationship and, 432-433, 432 (figure)
cognitive science of, 434-441
community concept and, 433, 433 (figure)
conceptual blending and, 436-437
conceptual development of, 425-427
consilience concept and, 434
degrees of freedom/parsimony, model testing and,

441-443
hypothesis testing and, 438, 441
inherence concept and, 429-432, 430 (figures)
inter-subjectivity and, 426, 434
legitimacy, deductions of, 427-434
location-event structure metaphor and, 435-436,

435 (figure)
modality, class of, 429
modern Kantian conception of, 427
multiple indicators and, 443-444, 443-444 (figures)
object concept, rules of synthesis and, 433-434, 437-

438, 437 (figure)
perception theory and, 439-441
quality, class of, 429
quantity, class of, 429
rationalism, incorrigible truth/knowledge and, 426
relation, class of, 429-433
science metaphor, knowledge of objects, 438-441

skeptical empiricism and, 426-427
structural equation model and, 441-442
subject-object schema, perception as metaphor,

440-441, 440 (figure)
variables, inherence and, 430-432, 430-431 (figures)

Optimal scaling. See Dual scaling; Multidimensional
scaling; Principal components analysis (PCA)

Ordinal regression models, 151
Bayesian analysis, noninformative prior and, 157-160,

159 (table), 160-161 (figures)
cumulative probabilities, model interpretation and,

153-154
deviance statistic and, 155-156
essay score prediction, grammar attributes

and, 160-164, 162-165 (figures), 162-163 (tables)
maximum likelihood analysis and, 156-157,

157 (table), 158-159 (figures), 159 (table)
multiple-rater model, 166-171, 169-170 (figures), 171

(table), 172 (figure)
multiple raters, data from, 164-166, 167-168 (figures),

171-174
ordinal data, latent variables and, 151-154,

152 (figure)
ordinal probit model, 153-154
parameter constraints, prior models and, 154-155
regression functions, multirater data and, 171-174
residual analysis, goodness of fit and, 155-156
student grades example, 156-164, 157 (table)

Ordinary least squares (OLS) estimates, 223, 254
Transition Mathematics curriculum data

and, 262-264, 263 (table)
See also Hierarchical linear models (HLMs)

Ordinary least squares (OLS) residuals, 268
Organizational units. See Site studies
OVERALS software, 67

Paired-comparison data, 4, 18
party plans example, 18-19, 19-20 (figures),

19 (tables)
principles of, 18
See also Comparison data

Parallel analysis, 305-306
Pearson chi-square statistic, 140
Perception theory, 439-441
Personality assessment, 85
Points-of-view (POV) model, 37
Population differences. See Latent variable analysis;

Multiple-indicator, multiple-cause (MIMIC)
modeling; Structured means modeling (SMM)

PREDSCAL program, 35
Preferential choice data, 66
PRINCALS software, 66
Principal components analysis (PCA), 3, 4, 10, 22, 49

alternative techniques in, 50-51
biplots/triplots and, 53-54
centroid model and, 52-53
clustering, forced classification and, 53
discrimination measure and, 52
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goodness of fit and, 55
graphical representation in, 51-53
monotonic/nonmonotonic splines and, 54
multivariate analysis and, 54-55
nominal transformation, multiple nominal

quantifications and, 54
nonlinear optimal scaling process and, 49-50, 54-55
nonlinear principal components analysis and, 60-63
normalization options and, 53
vector model and, 52
See also CATPCA software

Principal hyperspace, 4
Principle of equivalent partitioning (PEP), 20
Principle of internal consistency (PIC), 20
Probabilistic modeling, 28-29, 153-154, 371

Bayes’s theorem and, 374-376
collective in, 371-372
games of chance and, 374
indifference principle and, 372
mathematical probability theory and, 373-374
physical probability and, 372, 375-376
relative frequency approach to, 371-374, 376
sampling techniques and, 372-374
subjective probabilities and, 374
See also Bayesian networks; Causal inference;

Learning DAG models
Proportional hazards model, 153
Proportional odds model, 153
Proximity relations, 26, 28-36
Psychometric models, 73-74, 85, 86
P -technique factor analysis, 336, 337, 342

Q-sort data, 66-67
Quantitative research synthesis. See Meta-analysis
Quasi-experiments. See Site studies

Random-coefficient models, 215
Random-effect models, 215
Random regression models, 215
Rank-order data, 4, 14-15

binning function and, 64
ipsative property and, 15
municipal services example, 15-17, 16-17 (tables),

18 (figure)
principles of, 15

Rating scales, 67
Rationalism. See Objectivity
Reading Recovery intervention, 260, 261
Reciprocal averaging, 4
Reduced-rank model, 38
Regression analysis, 3, 44, 143

analysis of variance and, 324
Cox regression, 201
hazard model and, 203
latent class regression models, 191-195, 192 (figure),

193-194 (tables)
linear regression model, 413
logistic regression, 144

random regression models, 215
See also Ordinal regression models

Relational differences, 36-37
generalized Euclidean model and, 38
identity model and, 37
individual spaces analysis and, 37
points-of-view model and, 37
reduced-rank model and, 38
weighted Euclidean model and, 37-38

Relational systems, 25
empirical/geometric relations, 26-27
proximity/dominance relations, 26
relational differences, description strategies, 36-38
uni/bipolar relations, 26
See also Multidimensional scaling

Reliability:
correlational errors and, 79-80
Cronbach’s alpha and, 79
estimators of, 79-81
factor analysis methods and, 80
generalizability and, 75, 79, 83
hypothesis testing and, 81
maximization of, composite scores and, 81-82
precision in scores, estimates of, 82
reliability coefficients, 78-79
sample size and, 82
score consistency and, 77
scoring frameworks, error estimates and, 83-84
signal-to-noise ratio problem and, 317-318
structural equation models and, 80-81
test score precision, local estimates of, 82
test scores, measurement uncertainty and, 78-79
See also Measurement data modeling; Validity

Research synthesis. See Meta-analysis
Residuals analysis, 155-156

bivariate residuals, direct effects and, 183-185,
183-184 (tables)

program implementation and, 268, 268 (figure)
variance component estimation, 296

Risk profile. See Discrete-time survival analysis
Robbins-Monro sequential design process, 120
Rule-space methodology, 85

SAS PROC MIXED program, 289-291, 290 (table)
Scaling. See Dual scaling (DS); Multidimensional

scaling (MDS)
School effectiveness research, 235-236

achievement growth models and, 246-251, 248 (table)
achievement models, 240-246, 242 (table)
categorical outcome models and, 252-253, 253 (table)
challenges in, 254-255
conceptual model of schooling, 237-239,

238 (figure)
data selection in, 239-240
dependent variables in, 237
effects magnitudes results and, 251, 251 (figure),

252 (table)
hierarchical generalized linear models and, 252
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identification of effective schools, 253-254,
254 (tables)

independent variables in, 237-239
missing data and, 240
multilevel growth models, 246-251
multilevel latent growth curves, 250-251
multilevel models in, 240-253
public vs. private schools and, 236
sample selection in, 239-240
sampling bias and, 240
school inputs-outputs relationship and, 242-243
school processes and, 239
school resources and, 238
school typology, effectiveness and, 245-246, 249-250,

250 (table), 256 (appendix)
structural characteristics of schools and, 238-239, 241
student achievement, school selection and, 243-244
student characteristics and, 238, 244-246
student learning, school influence and, 247-249,

248-249 (tables)
See also Site studies

School Mathematics Project, 261
Scree plots, 304-305, 305 (figure)
Self-Consciousness Scale, 309-310
Shepard’s universal law of generalization, 29-30, 32
Shock factor analysis (SFA) model, 337
SIBTEST statistic, 110, 111
Signal detection theory, 396
Significance testing, 391-392

absence of, 406
alpha level of significance, 399
Bayesian statistics and, 395, 396, 405
challenges in, 405-406, 406 (figure)
competitive hypotheses in, 402
controversies/polemics and, 404-405
conventional level of significance, 398, 399
descriptive statistics/exploratory data analysis, 403
emotional elements in, 400-401
error in, 397-398, 399, 402
exact level of significance, 399
historical practice in, 404
inductive inference, solutions for, 402-403, 404
levels of significance and, 398-400
misunderstanding of, 393-395, 394 (figure),

395 (table)
Neyman-Pearson testing, 396, 399, 400, 402, 405
null hypothesis testing and, 395-398, 397 (figure),

401, 402-403, 404
null ritual and, 392, 396, 400-402, 404
p-values and, 393, 398, 403
significant results, definition of, 392-395
statistical mindset and, 402-406
transparency and, 403

Simultaneous linear regressions, 4
Singular value decomposition (SVD) theory, 4
Site studies, 259-260

across-sites effects variability, 264-266, 265 (table)
alignment differences and, 275

blocking/within-treatment type nesting designs,
comparison of, 277

confounding variables and, 268, 275
covariates and, 261, 266-268, 267 (table)
design differences, program effects and, 269
hierarchical models and, 260
implementation data, collection/use of, 276
Integrated Mathematics Assessment/SUPPORT

program data, 270-275
longitudinal program data, 278
model adequacy, assessment of, 277
multisite study design, 260-261, 277
nested structures, contextual effects and, 261,

272-273, 273 (table)
ordinary least squares analysis, 262-264, 263 (table)
program beneficiaries, identification of, 268-269
program effects, heterogeneity in, 260
residuals analysis and, 268, 268 (figure)
site characteristics effects and, 269-270, 276
standard errors and, 275
student performance measures, 273-274
teacher practice, problem-solving outcomes

and, 274-275
time-series data and, 261, 278
Transition Mathematics curriculum data, 261-270
treatment sequence studies, 278-279
within-class model, grand-mean centering

and, 271-272
SK (skewness and kurtosis) tests, 356-357
Software:

BILOG program, 100
categorical data analysis and, 148
CATPCA program, 50, 53, 55-67
CATREG program, 67
CORRESPONDENCE program, 67
DETECT program, 99, 100, 102-104
DIMTEST program, 97-98, 100, 101-104
DUAL3 program, 8, 9, 16
hierarchical linear model analysis, 231, 289-291
LISREL program, 474
MULTILOG program, 100
NOHARM program, 100
OVERALS program, 67
PREFSCAL program, 35
PRINCALS program, 66
SAS PROC MIXED program, 289-291,

290 (table)
simulation-based assessment software, 85
TESTGRAF program, 100

Sorting data, 12
nation grouping example, 12-14, 14 (tables),

15 (figure)
principles of, 12

Space calculations, 21
Spearman-Brown extrapolation, 79
Standardized mean difference, 282
Standardized tests, 94, 107

See also Differential item functioning analysis
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Statistical analysis. See Categorical data analysis;
Exogeneity; Null hypothesis testing;

Significance testing
Structural equation models (SEM), 74, 78

algebraic relations in, 320
group differences, tests of, 331-332
latent variable analysis and, 347-348, 347 (figure)
measurement error noise and, 318-319
notation of, 319-320
reliability coefficient, estimation of, 80-81
variable systems and, 319, 331
See also Causal inference; Exogeneity;

Multiple-indicator, multiple-cause (MIMIC)
modeling; Objectivity; Structured means
modeling (SMM)

Structured means modeling (SMM), 318
basic model, extension of, 330-331
data-model fit and, 329
development of, 325-329, 326 (figure), 328 (figures)
error rates in, 332
estimation process and, 328-329
invariance assumption in, 327, 328 (figure)
latent covariates and, 325, 325 (figure), 331,

331 (figure)
model-implied means relations in, 327-328,

328 (figure)
model and implied relations for, 326-327, 326 (figure)
selection of, 332-333
standardized effect size and, 329
statistical significance and, 329
two-group example of, 329-330, 331

Supervised learning, 53
SUPPORT program, 270-271

alignment differences, confounding variables
and, 275

nested designs, contextual effects and, 272-273,
273 (table)

standard errors and, 275
student performance, 273-274
teacher practice, problem-solving outcomes

and, 274-275
within-class model, grand-mean centering

and, 271-272
Survival analysis. See Categorical data analysis;

Discrete-time survival analysis

Task Force on Statistical Inference, 138, 403
Test data. See Measurement data modeling; Reliability;

Validity
Test equity. See Differential item functioning analysis
TESTGRAF software, 100
Test modeling, 93-94

algorithm/flowchart for, 100, 100 (figure)
conditional covariances and, 96-97
data analyses results, 101-104, 102 (tables),

103 (figure)
DETECT statistical tool, 98-99
DIMTEST statistical tool, 97-98

essential dimensionality and, 95
illustration of, 100-101, 101 (figures), 102 (table)
local independence, dimensionality and, 93, 94-95
multidimensional structure, geometrical

representation of, 95-97, 96 (figures)
number-correct score and, 95
simple structure and, 96
test data dimensional structure, assessment of, 97-99

Time-series data, 261, 278, 337, 342
Toronto group, 4
Transition Mathematics (TM) curriculum

data, 261-262
across-sites effects variability, 264-266, 265 (table)
confounding variables, quasi-experimental settings

and, 268
design differences, program effects and, 269
ordinary least square analysis, 262-264, 263 (table)
reading variable, role of, 266-268, 267 (table)
residuals analysis and, 268, 268 (figure)
site characteristics effects and, 269-270
student beneficiaries, 268-269

t-tests, 321, 325, 326
Two-stage models, 215

Unfolding concept, 33-34
breakfast data example, 40-43, 42-43 (figures)
citations frequencies example and, 34-35, 36 (figure)
constraints and, 44
degeneration, penalty approach and, 35-36
independent main effects, data correction and, 34,

35 (table)
square table and, 34

Unipolar relations, 26
Universal law of generalization, 29-30, 32
University of Chicago School Mathematics

Project, 261

Validity, 84
cognitive models and, 84-86
dependency data structures and, 86
explanatory cognitive models and, 86
generalizability and, 75
inference appropriateness and, 77, 84
sample size and, 85

Variables:
aggregated variables, 475
continuous variables, 3
emergent variables, 319
endogenous vs. exogenous variables, 409-410
latent variables, 76-77, 78, 319
supplementary variables, 59
See also Dual scaling (DS); Exogeneity

Variance accounted for (VAF), 53, 55, 56
Variance component models, 215
Vector model, 52, 59, 60-61

Wald test, 312-313
White-noise factor score (WNFS) model, 337
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