
123

SPRINGER BRIEFS IN STATISTICS

Chiara Brombin
Luigi Salmaso
Lara Fontanella
Luigi Ippoliti
Caterina Fusilli

Parametric and 
Nonparametric 
Inference for 
Statistical Dynamic 
Shape Analysis 
with Applications



SpringerBriefs in Statistics

More information about this series at http://www.springer.com/series/8921

http://www.springer.com/series/8921




Chiara Brombin • Luigi Salmaso
Lara Fontanella • Luigi Ippoliti
Caterina Fusilli

Parametric and
Nonparametric Inference for
Statistical Dynamic Shape
Analysis with Applications

123



Chiara Brombin
Department of Psychology
Vita-Salute San Raffaele University
Milano, Milano, Italy

Lara Fontanella
Department of Legal and Social Sciences
University of Chieti-Pescara
Pescara, Italy

Caterina Fusilli
Bioinformatics Unit
Casa Sollievo della Sofferenza-Mendel
Rome, Italy

Luigi Salmaso
Department of Management

and Engineering
University of Padova
Padova, Italy

Luigi Ippoliti
Department of Economics
University of Chieti-Pescara
Pescara, Italy

ISSN 2191-544X ISSN 2191-5458 (electronic)
SpringerBriefs in Statistics
ISBN 978-3-319-26310-6 ISBN 978-3-319-26311-3 (eBook)
DOI 10.1007/978-3-319-26311-3

Library of Congress Control Number: 2015955726

Springer Cham Heidelberg New York Dordrecht London
© The Authors 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.
springer.com)

www.springer.com
www.springer.com


Preface

Statistical shape analysis relates to the geometrical study of random objects where
location, rotation and scale information can be removed.

The last 20 years have seen a considerable growth in interest in the statistical
theory of shape. This has been the result of a synthesis of various disciplines which
are interested in measuring, describing and comparing the shapes of objects.

Much work has been done for static or cross-sectional shape analysis, while
considerably less research has focused on dynamic or longitudinal shapes. Statistical
analysis of dynamic shapes is a problem with significant challenges due to the
difficulty in providing the qualitative and quantitative assessment of shape changes
over time, across subjects and, eventually, also over groups of subjects.

In this book, we consider specific inferential issues arising from the analysis of
dynamic shapes with the attempt to solve the problems at hand using probability
models and nonparametric tests. Models are simple to understand and interpret and
provide a useful tool to describe the global dynamics of the landmark configurations.
However, because of the non-Euclidean nature of shape spaces, distributions in
shape spaces are not straightforward to obtain. Here, we consider distributions in
the configuration space, with similarity transformations integrated out. This is a
simple approach that allows to define models on landmarks themselves giving rise
to derived distributions on shapes. The simplest model for a configuration is to
assume that the landmarks follow a multivariate Normal distribution about a mean
configuration. Various level of generality can also be assumed for the covariance
matrix allowing correlations between landmarks and different time points. In this
case, it turns out that the distribution which enables inference from configuration
onto the shape space is the offset-normal distribution for temporally correlated
shapes.

There are also cases of interest in which the use of a model appears problematic
and computationally difficult. For example, this is particularly true when the aim
of the analysis requires the identification of subsets of landmarks which best
describes the dynamics of a whole configuration. A selection of landmarks can
enable us to understand and gain information which may not be noticed with a
model including all landmarks. To understand whether landmark positions change
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vi Preface

significantly over time across subjects and over groups of subjects, we make use
of the NonParametric Combination (NPC) tests. The NPC methodology, which
allows to build powerful tests in a nonparametric framework, does not require strong
underlying assumptions as the traditional parametric competitors and allows to work
at a local level to highlight specific areas (domains) of a configuration in which we
may have systematic differences.

The book has a natural split into two parts, with the first three chapters covering
material on the offset-normal shape distribution and the remaining chapters covering
the theory of NonParametric Combination (NPC) tests. We have attempted to keep
each chapter as self-contained as possible, but some dependencies are of course
inevitable. The different chapters offer a collection of applications which are bound
together by the theme of this book. They refer to the analysis of the FG-NET (Face
and Gesture Recognition Research Network) database with facial expressions. For
these data set, it may be desirable to provide a description of the dynamics of
the expressions, or testing whether there is a difference between the dynamics of
two facial expressions or testing which of the landmarks are more informative in
explaining the pattern of an expression.

The book is organized as follows. Chapter 1 is the basic introductory chapter for
the rest of the book. It introduces the basic notation and commonly used registration
approaches of landmark data on a common coordinate system. In Chap. 2 we
assume that the shape data are generated from the induced shape distributions of
Gaussian configurations in which the similarity transformations are integrated out.
For this probability distribution, we discuss the expectation-maximization (EM)
algorithm for parameter estimation. This procedure gives essential results for a
likelihood-based approach to statistical inference in shape analysis and provides
the basis for making inference in a dynamic setting as described in Chap. 3. This
latter chapter, in fact, discusses the difficulties of extending results of Chap. 2 in a
dynamic framework. Specifically, it describes the offset-normal shape distributions
in a dynamic context and introduces the necessary adjustments of the general update
rules of the EM algorithm for general spatio-temporal covariance matrices. Also,
in order to represent the shape changes in time and classifying dynamic shapes, it
provides a discussion of the use of polynomial regression as well as mixture models.
In general, it is shown that the EM approach warrants consideration when modelling
the dynamics of shapes. However, unless some model simplifications are assumed,
the computational burden of the procedure can limit its use in real applications.

In Chap. 4, we introduce the NonParametric Combination (NPC) methodology
of a set of dependent partial tests in the specific context of shape analysis. The
basic underlying idea of the methodology is that complex multidimensional testing
problems may be reduced to a set of simpler subproblems, each provided with a
proper permutation solution. These subproblems can be jointly analysed in order
to capture the underlying dependency structure, without specifying the nature of
dependence relations among variables. NPC tests are distribution-free and, among
good general properties, they enjoy the finite-sample consistency property, thus
allowing to obtain efficient solutions for multivariate small sample problems, like
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those encountered in shape analysis applications. Solutions for two independent
sample problems is shown, along with suitable combination algorithm, and general
framework for dealing with longitudinal repeated-measures designs is examined.
Chapter 5 provides examples of applications of the methodology to the FG-NET
data: in particular solutions allowing to study differences between dynamics of
facial expressions or to identify landmarks that are more involved in the dynamics
will be presented. Finally an NPC solution for assessing shape asymmetry in
dynamic data is also presented.

Authors are very grateful to Alfred Kume and Fortunato Pesarin for useful
discussions and suggestions on the writing of this book.

Milano, Italy Chiara Brombin
Padova, Italy Luigi Salmaso
Pescara, Italy Lara Fontanella
Pescara, Italy Luigi Ippoliti
Rome, Italy Caterina Fusilli
July 2015
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Chapter 1
Basic Concepts and Definitions

Abstract The shape of an object is the geometrical information remaining after the
effects of changes in location, scale and orientation have been removed. Information
about the objects may come in different forms, for example as a set of landmarks or
as a continuous outline. In this chapter we consider landmark based representations
of shapes of two-dimensional objects. A common problem here is estimating a
mean shape of the group of objects, describing their differences, or assessing the
variability within each group.

One way to work with the shapes of different objects is to first register the
landmark data on some common coordinate system. Bookstein (Stat Sci 1:181–
242, 1986) and Kendall (Bull Lond Math Soc 16:81–121, 1984), each developed
coordinate systems for removing the similarity transformations. Alternatively,
Procrustes methods (Goodall, J R Stat Soc Ser B 53:285–339, 1991) may be used to
remove the similarity transformations. In this chapter we shall discuss these methods
by introducing basic concepts and definitions that will be used throughout the book.

Keywords Statistical shape analysis • Landmark coordinates • Registration
• Bookstein coordinates • Procrustes analysis

1.1 Landmark Coordinates and the Configuration Space

Shape analysis is considered a cross-disciplinary field characterized by flexible
theory and techniques and it has largely been developed through applications in
many fields. Relevant references and reviews on the topic include, for example,
Goodall (1991), Le and Kendall (1993), Kent (1994, 1995), Dryden and Mardia
(1993), Small (1988), Stoyan et al. (1995), Stoyan and Stoyan (1994) and Mardia
(1995), Small (1996), Mardia and Dryden (1989), Bookstein (1991), Lele and
Richtsmeier (2001), Slice (2005) and Weber and Bookstein (2011).

In many cases of interest the shape features of objects, or images, are frequently
explained by the position of a finite collection of points situated in two or three
dimensions. Such points are usually called landmarks, because, as the name

© The Authors 2016
C. Brombin et al., Parametric and Nonparametric Inference for Statistical
Dynamic Shape Analysis with Applications, SpringerBriefs in Statistics,
DOI 10.1007/978-3-319-26311-3_1
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4 1 Basic Concepts and Definitions

suggests, they serve as reference points for a partial geometric description of an
object. Landmarks are basically classified into the following three groups (Dryden
and Mardia 1998):

• Anatomical landmarks: these are points assigned by an expert that correspond
between organisms in some biologically meaningful way, e.g. the corner of an
eye or the meeting of two sutures on a skull.

• Mathematical landmarks: these are points located on an object according to some
mathematical or geometrical property of the figure, e.g. a high curvature point or
an extreme point.

• Pseudo-landmarks: these are constructed points on an object, located either
around the outline or in between anatomical or mathematical landmarks. Contin-
uous curves can be approximated by a large number of pseudo-landmarks along
the curve. Also, pseudo-landmarks are useful in matching surfaces, when points
can be located on a regular grid over each surface.

A set of landmarks is said to be labelled if the correspondence of landmarks
between different objects is known. That is, a given landmark on one object is known
to correspond to a specific landmark on another object. If the correspondences are
unknown, the landmarks are said to be unlabelled. Throughout this book we shall
work with a configuration of K labeled landmarks in a plane.

Definition (Dryden and Mardia 1998). A configuration is a set of landmarks on a
particular object. Assuming that the number of not-all-coincident landmarks under
study is K, the configuration matrix X� is the K � m matrix of Cartesian coordinates
of the K landmarks defined in m dimensions. The configuration space is the space
of all possible landmark coordinates.

Assuming m D 2, the configuration matrix is thus given by a set of Cartesian
coordinates .x�j ; y

�
j /, j D 1; : : : ;K, leading to a K � 2 matrix

X� D
 

x�1 x�2 : : : x�K
y�1 y�2 : : : y�K

!T

:

Note that not only is the case m D 2 of particular practical importance, but
the fact that we can identify R

2 with C means that the algebra and geometry of
complex numbers can be used to give a neat description of the shape space. Let
z�j D x�j Ciy�j ; j D 1; : : : ;K be the j�th landmark expressed in complex coordinates,

where i D p�1. Then,

Z� D x� C iy�

is the K � 1 complex vector of coordinates in the configuration space. Also, since

x�j D �j cos �j; y�j D �j sin �j j D 1; : : : ; k
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where �j D
r�

x�j

�2 C
�

y�j

�2
and �j D arctan

�
y�j =x�j

�
, it follows that

z�j D �j.cos �j C i sin �j/ D �je
i�j j D 1; : : : ; k

represents an equivalent representation in polar coordinates. Henceforth, we will
thus denote with X� the configuration matrix expressed in Cartesian coordinates
and with Z� the configuration of landmarks expressed in the corresponding complex
coordinate system.

1.2 Shape Space

The particular coordinates of the landmark configuration contain some arbitrary and
irrelevant information. Working with a raw configuration, in fact, is not convenient
since important information can be obscured by differences due to translation,
rotation and scaling effects. Hence, this leads us to the following definition.

Definition (Dryden and Mardia 1998). The shape of a configuration matrix X� is
all the geometrical information about X� that is invariant under Euclidean similarity
transformations.

The mathematical properties of the shape space for landmark configurations,
usually referred to as Kendall’s shape space, have been studied intensively. Com-
prehensive details of the subject are given, for example, in Kendall (1977), Small
(1996) and Dryden and Mardia (1998), and we mainly refer to them for known
results.

The Euclidean similarity transformation of a configuration matrix X� are the set
of translated, rotated and isotropically rescaled X�, i.e.

˚
'X�R C 1K�0 W ' 2 R

C;R 2 SO .m/ ;� 2 R
m
�

where ' is a scale parameter, R is a rotation matrix, � is a m-dimensional translation
vector and 1k is a K � 1 vector of ones.
We note that a rotation of a configuration is given by post-multiplication of the
matrix X� by a rotation matrix R which satisfies two conditions: RTR D RRT D Im

and jRj D C1, where j�j denotes the determinant. The set of all m � m rotation
matrices is known as the special orthogonal group SO .m/.

Under the action of the Euclidean similarity transformations we can thus define
the shape space, �K

m , as the orbit of the non-coincident K point set configurations
in R

m which are invariant under the location, rotation and isotropic scaling (Dryden
and Mardia 1998).

Performing similarity transformations leads to losing degrees of freedom and the
dimension of the shape space is given by M D Km � m �1� m.m�1/

2
: In fact, for Km



6 1 Basic Concepts and Definitions

coordinates, we lose m dimensions for location, one dimension for uniform scaling
and 1

2
m .m � 1/ for rotation; in particular, for m D 2, we have M D 2K � 4.

For a description of shapes in coordinate terms, consider the K � m matrix X�.
Location and scale effects are easy to eliminate directly.

Translation, for example, can be removed by pre-multiplying the data by the
centering matrix

QL D IK � 1KıT D

0
BBBBB@

0 0 0 : : : 0

�1 1 0 : : : 0
�1 0 1 : : : 0
:::
:::
:::
: : :

:::

�1 0 0 : : : 1

1
CCCCCA

where IK is the K � K identity matrix, 1K is a vector of ones of dimension K � 1

and ı D .1; 0; : : : ; 0/0 is a K � 1 vector. By removing the first row of QL, we define
the .K � 1/ � K matrix L and obtain the pre-form matrix (i.e. the configuration
which is invariant under location shifts of the raw configuration) as X D LX�.
Thus, standardizing with respect to location allows us to work in a preform space
of translated configurations denoted by X. Note however that location can also be
removed by pre-multiplying by the .K � 1/� K Helmert sub-matrix H (Dryden and
Mardia 1998) or by using the centering matrix

C D IK � 1

K
1K10

K :

The scale effect is related to the concept of size. A size measure, g
�
X�
�
, is any

positive real valued function of the configuration matrix X� such that

g
�
'X�

� D 'g
�
X�
�

for any positive scalar '. The size measure that is most commonly used in shape
analysis is the centroid size which is defined as

S
�
X�
� D ��CX�

��
F

D
vuut kX

jD1

mX
dD1

�
x�jd � NX�

d

�2
; X� 2 R

Km

where C is the centering matrix,
��X�

��
F

D
r

trace
�

X�TX�

�
is the Frobenius norm,

x�jd is the .j; d/th entry of X� and NX�
d is the arithmetic mean in the dth dimension, i.e.

NX�
d D 1

k

kX
jD1

x�jd:
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Scale effects can thus be removed by dividing by the Euclidean norm of X, i.e.
X=kXk, describing a pre-shape matrix which defines a point on the unit sphere in
R
.k�1/m. Hence, one route to obtaining shape coordinates, is first to remove the effect

of location and scale, giving pre-shape. However, in practice, it is possible to change
the order of the filtering operations. In fact, removing only rotation and location
involves working with the size-and-shape (i.e. the form) of X�. If size is removed
from the size-and-shape, then we obtain the shape of X� which is denoted as

ŒX� D ˚
'XR W ' 2 R

C;R 2 SO .m/
�
:

1.3 Coordinate Systems in Two Dimensions

1.3.1 Kendall’s Shape Coordinates

To define shape in terms of complex coordinates, let Z� denote K complex numbers
representing the configuration of raw landmarks in the plane. Then, we can remove
the effect of location by moving the sample mean Nz to the origin by a Helmert
transformation or, equivalently, by working with the shifted configuration, Z D
LZ� D .z2; : : : ; zK/

0. Next, we observe that the effects of scale and rotation
are removed by regarding .z2; : : : ; zK/

0 as equivalent to cZ D .cz2; : : : ; czK/
0 for

any non-zero complex number c. Thus we can represent the shape of Z� by the
equivalence class Œz2; : : : ; zK � of .z2; : : : ; zK/ under the above equivalence relation.
The set of such equivalence classes forms the .K � 2/�dimensional complex
projective space CP.K�2/ with the identification�K

2 D CP.K�2/. Hence, the .K � 2/
dimensional complex projective space CP.K�2/ can be considered as the unit sphere
in C

.K�1/, with Z equivalent to Zei� for all � . For example, in the case K D 3,
the mapping Z D .z2; z3/ ! z3=z2 identifies the complex projective line CP1

with the sphere S2 obtained by adding a point at infinity to the complex plane.
Thus, we can identify the space �3

2 of shapes of triangles in the plane with the
sphere S2. Note that, in general, for K points in R

2, the � D zj=z2; j D 3; : : : ;K;
where zj are the elements of Z, are referred to as Kendall’s shape coordinates.
The corresponding .2K � 4/ � 1 Cartesian coordinates vector of �u is defined as

u D
�
<.�3/; : : : ;<.�K/;=.�3/; : : : ;=.�K/

�0
.

On the shape space �K
2 several other coordinate systems are in use. In the

following, we shall mainly focus on Bookstein and Procrustes coordinates.

1.3.2 Bookstein Coordinates

One popular set of coordinates is represented by Bookstein’s shape coordinates
(Bookstein 1991). In general, for m D 2, translation is achieved by mapping the first
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point .x1; y1/ to the origin .0; 0/ using the transformation matrix L which generates
the coordinates of the remaining K � 1 vertices. This is a linear projection from
R
2K to R

2.K�1/. The choice of the landmark to be moved to the origin is arbitrary
and, in fact, the operation of translation can be done on any other landmark of the
configuration.
The pre-form configuration of X� is given by the .K � 1/ � 2 matrix

X D LX� D

0
BBB@

�1 1 0 : : : 0
�1 0 1 : : : 0
:::
:::
:::
: : :

:::

�1 0 0 : : : 1

1
CCCA

0
BBBB@

x�1 y�1
x�2 y�2
:::
:::

x�K y�K

1
CCCCA D

0
BBB@

x2 y2
x3 y3
:::
:::

xK yK

1
CCCA

where the j-th row of X is written as

xj D x�j � x�1; yj D y�j � y�1; j D 2; : : : ;K:

Elimination of the effects of scaling and rotation can be then achieved through the
following operation

X ! U D 'XR D 1

x22 C y22

0
BBB@

x2 y2
x3 y3
:::
:::

xK yK

1
CCCA
�

x2 �y2
y2 x2

	
D

0
BBB@
1 0

u3 v3
:::
:::

uK vK

1
CCCA

for which ' D 1=jRj and R D
�

x2 �y2
y2 x2

	
, with jRj D x22 C y22 and RR0 D R0R D

'�1I2: In general, we do not allow R to be a reflection. The matrix U represents the
shape coordinate matrix ŒX� of X, and the elements

uj D xjx2 C yjy2
x22 C y22

; vj D �xjy2 C yjx2
x22 C y22

; j D 3; : : : ;K

often collected in a .2K � 4/ � 1 vector u D
�

u3; : : : ; uK ; v3; : : : ; vK

�0
, are known

as reduced Bookstein coordinates. Instead, the first two landmarks denote the base
with respect to which the object is registered.

It is also possible to define the inverse transform from the shape to the preform
space. Since U D 'XR we have
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U ! X D '�1UR�1 D

0
BBB@
1 0

u3 v3
:::
:::

uK vK

1
CCCA
�

x2 y2
�y2 x2

	
D

0
BBB@

x2 y2
x3 y3
:::
:::

xK yK

1
CCCA

and therefore,

xj D ujx2 � vjy2; yj D ujy2 C vjx2; j D 3; : : : ;K:

1.3.3 Procrustes Coordinates

For most practical applications, the parameters describing the shapes for a sample
of homologous landmark configurations are estimated by a Procrustes superimpo-
sition. In this section we thus consider Procrustes shape coordinates to register the
data. These coordinates are directly related to Kendall pre-shape coordinates. For

convenience, consider two configurations with centred pre-shape coordinates L�.1/
and L�.2/, where L�.n/ D Z.n/=

��Z.n/
�� ; n D 1; 2. Following Dryden and Mardia

(1998), we can match L�.1/ to L�.2/ using complex linear regression, minimising the
difference between the two pre-shapes using Procrustes analysis arguments.

To measure distances between shapes we require a metric on �K
2 ; this gives

Kendall’s shape space the structure of a Riemannian manifold with Procrustes
distance as its metric (Dryden and Mardia 1998). The Procrustes distance, denoted

with �
�
Z.1/;Z.2/

�
, is the closest great circle distance between L�.1/ and L�.2/ on

the pre-shape sphere. Because shapes correspond to points on a hemisphere with
unit radius, � is also the angle, in radians, between vectors from the center of the
hemisphere to the two points being compared.

Alternative distances in shape space can also be used in principle (see Dryden and
Mardia 1998, Chap. 3). For example, the partial Procrustes distance, dP

�
Z.1/;Z.2/

�
,

can be obtained by matching the pre-shapes L�.1/ and L�.2/ of Z.1/ and Z.2/ as closely
as possible over rotations, but not scale. The partial Procrustes distance then can

be regarded as the chordal distance between the complex pre-shapes L�.1/ and L�.2/.
On the other hand, if the matching of the pre-shapes is obtained by minimizing

the distance between L�.1/ and L�.2/ over scale and rotation, then we have the full
Procrustes distance, dF

�
Z.1/;Z.2/

�
, which is the closest Euclidean distance between

Z.1/ and Z.2/.
Figure 1.1 shows a cross section of the pre-shape sphere illustrating the relation-

ship between dF , dP and � (Dryden and Mardia 1998). Indeed we have:

dF
�
Z.1/;Z.2/

� D sin � and dP
�
Z.1/;Z.2/

� D 2 sin .�=2/ :
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Fig. 1.1 Section of pre-shape
sphere, illustrating the
relationship between the
Procrustes distances dF , dP

and �

ρ/2

11

ρ

d
F

d
P
/2

The registration procedure can be extended to a set of N configurations in order
to find the Procrustes mean shape, �, and in turn the Procrustes shape coordinates.
Let us assume that the configurations Z�

.1/
;Z�

.2/
; : : : ;Z�

.N/
have been centered, so

that Z.1/; : : : ;Z.N/ is the set of configurations in the preform space. Estimation of
the mean shape is performed through the Generalized Procrustes analysis (GPA,
Dryden and Mardia 1998, p. 88). It can be shown that by using the full Procrustes
distances, the estimated mean shape, O�, is obtained by minimizing (over �) the sum
of square full Procrustes distances from each Z.n/ to an unknown unit size mean
configuration � (k�k D 1), i.e.

O� D arg inf
�

NX
nD1

d2F
�
Z.n/;�

�
:

For two-dimensional data (i.e. m D 2), an explicit eigenvector solution exists for O�,
since it can be found as the eigenvector corresponding to the largest eigenvalue of
the complex sum of squares and products matrix (Kent 1994)

S D
nX

lD1
L�.n/ L��.n/

where L��.n/
is the transpose of the complex conjugate of L�.n/. The eigenvector is

unique (up to a rotation) provided there is a single largest eigenvalue of S. For higher
dimensions an iterative procedure is required (see Dryden and Mardia 1998, p. 90).

Because all differences in location, scale, and orientation have been removed
by this procedure, any differences in coordinates of corresponding landmarks
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between configurations must be the result of differences in shape between those
configurations. The full Procrustes coordinates of Z.1/; : : : ;Z.N/ are then defined as

�
.n/
P D Z�.n/ O�Z.n/

Z�.n/Z.n/
D L��.n/ O� L�.n/ n D 1; : : : ;N

where �
.n/
P is the full Procrustes fit of Z.n/ onto O�. Note that the full Procrustes mean

shape can also be obtained as an arithmetic mean of the full Procrustes coordinates.
Hence, the Procrustes residuals, which are useful for investigating shape variability,
can be obtained as

�
.n/
R D �

.n/
P �

 
1

N

NX
nD1

�
.n/
P

!
n D 1; : : : ;N: (1.1)

Procrustes superimposition places configurations in a non-Euclidean shape
space and this makes statistical inference more difficult than in Euclidean spaces.
Because most statistical methods are predicated on Euclidean relationships between
variables, most analyses of shape data involve projecting data from this space into
a Euclidean space tangent to the shape space at a pole � . We recall that Kendall

the average shape, for example the Procrustes mean shape. Rotating and scaling
the pre-shapes to minimise the Euclidean distance to the pole, and then projecting
on to the tangent plane, gives Procrustes tangent coordinates. When variation in
shape is sufficiently small, it is thus possible to replace Kendall’s shape space with
a Euclidean approximation (Kent 1994).

Specifically, we can define departures of each data shape from O� in terms of full
Procrustes tangent coordinates as (Dryden and Mardia 1998)

�.n/v D O'e�i O� 
IK�1 � O� O��� L�.n/; �.n/v 2 T. O�/; n D 1; : : : ;N

where O' D k O�� L�.n/k, O� D Arg. O�� L�.n// and T. O�/ is the plane tangent at the pole O�.
Each tangent vector �.n/v lies in C

K and hence has 2K components. But due to several
linear constraints (i.e. ��.n/

v 1 D 0 prohibiting translation and ��.n/
v O� D 0 prohibiting

rotation and scaling) which prohibit directions of change which would only affect

the registration of L�.n/ but not its shape, there are only 2K � 4 degrees of freedom in
�.n/v , just as for Bookstein coordinates. Also, note that the Procrustes residuals given
in Eq. (1.1) are approximate tangent coordinates. Hence, if a shape is close to the
pole, then the differences between the choice of partial, full or Procrustes tangent
coordinates or Procrustes residuals will be very small.

In general, deciding how constructing the projection of shapes onto the tangent
plane includes deciding: (a) the space representing the source of the configurations
projected onto the tangent plane, (b) the rule to be used to determine the direction of

pre-shape space is a unit complex sphere. Then, the tangent plane to this sphere
at � is a linearised version of the shape space. The pole � usually corresponds to
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(0,0) (1,0)

1/2

P

Q

P' Q' RTangent Plane

ρ

Fig. 1.2 Stereographic and orthogonal projections onto the tangent plane. Point P represents a
triangle in Kendall’s shape space and Q is the same shape scaled to unit centroid size. Point R is a
stereographic projection of P and Q onto the tangent plane. Q0 and P0 are the orthogonal projections
of Q and P, respectively, onto the tangent plane

the projection and (c) an appropriate reference (pole) configuration to serve as the
tangent point.

The problem of replacing a curved space with a Euclidean approximation can
be illustrated for the special case of triangles. The outer hemisphere in Fig. 1.2
is the space constructed by aligning pre-shapes (with centroid size fixed at one)
to minimize the partial Procrustes distance. The inner sphere is Kendall’s shape
space, constructed by scaling the aligned target shapes to centroid size equal to
cos.�/. These two spaces share a common point, the reference shape �, because the
distance of the reference from itself is zero, so cos.�/ is one. Tangent to both of these
spaces, at the reference shape (i.e. the pole), is a Euclidean plane. One approach to
project to the new space is to choose the hemisphere of aligned pre-shapes as the
reference space so that the projections are along the radii of this hemisphere to the
tangent space. In this stereographic projection, the shape represented by points P
and Q (with centroid sizes equal to cos.�/ and one, respectively) map to the same
location (R) in the tangent space. The distance in the plane from the reference to R
is greater than the arc-length from the reference to P (the Procrustes distance); and
the discrepancy between these distances increases as � increases and the distance in
the tangent plane approaches infinity.

The other approach to projecting from one space onto another is to project
along lines that are orthogonal to the new space. Point P0 represents the orthogonal
projection of P onto the tangent plane, and this projection produces distances
from the reference in the tangent plane that are less than the Procrustes distance.
As in the stereographic projection, the magnitude of the discrepancy between the
distances increases as � increases, but in the orthogonal projections, distances in
the tangent plane asymptotically approach the maximum equal to the radius of the
shape space. In the stereographic projection it does not matter whether the projection
to the tangent plane is from the hemisphere of triangles in partial Procrustes
superimposition, or from the sphere of triangles in full Procrustes superimposition.
Both target configurations project to the same point in the tangent space. In the
orthogonal projection, it does matter whether the projection to the tangent plane is
from the outer or inner hemisphere. The projection from the hemisphere produces
distances in the tangent plane that depart less from the Procrustes distance (the arc
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length) and are closer to the partial Procrustes distance (the chord length). Projection
from the sphere produces distances that depart more from the Procrustes distance
and are closer to the full Procrustes distance. Furthermore, the projections from
the hemisphere of triangles in partial Procrustes superimposition have a higher
maximum distance from the reference (one instead of one-half), and approach it
more slowly. It can be shown that the differences between the Procrustes, partial
Procrustes and full Procrustes distances from the reference become negligible as �
approaches zero. Similarly, the differences among the stereographic and orthogonal
projections also become negligible as � approaches zero.
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Chapter 2
Shape Inference and the Offset-Normal
Distribution

Abstract In this chapter we work directly with the offset-normal shape distribution
as a probability model for statistical inference on a sample of landmark configura-
tions. This enables inference for induced Gaussian processes from configurations
onto the shape space. Following Kume and Welling (J Comput Graph Stat 19:702–
723, 2010), an Expectation Maximization (EM) algorithm for computing exact
maximum likelihood (ML) estimation of the involved parameters is discussed. The
chapter concludes with an application on facial expression analysis.

Keywords Offset-normal shape distribution • Shape analysis • EM Algorithm •
Facial expression analysis

2.1 Introduction

As shown in the previous chapter, in landmark based shape analysis, coordinate
information can be represented by a K � m configuration matrix, X�, where m D 2

in the planar case.
In statistical shape analysis, it is of interest the study of an iid sample of planar

configurations, X�.1/ ; : : : ;X�.N/ , generated by some distribution F.X�/ and observed
after each one of these is randomly rescaled, rotated, and translated. In other

words, our observed data consist of elements
n
'n

�
X�.n/ C 1K ˝ �0

n

�
Rn

o
nD1WN ,

where 'n > 0 is a rescaling factor, Rn is an element from SO.2/, the group of
rotations in the plane, and 1K ˝�0

n, with 1K a K-vector of ones and ˝ the Kronecker
product, represents the translation effect by a vector �n in the plane. Since, the
geometric characteristics of the landmark configuration are of primary interest and
the particular coordinate system contains some arbitrary and irrelevant information,
'n, �n, and Rn can be thought of as nuisance parameters. Therefore, statistical infer-
ence based on the underlying distribution F.X�/ needs to be invariant to location,

rotation, and scaling for each observed element, 'n

�
X�.n/ C 1K ˝ �0

n

�
Rn. This is

essentially an inference problem based on the shapes of planar configurations X�.n/.

© The Authors 2016
C. Brombin et al., Parametric and Nonparametric Inference for Statistical
Dynamic Shape Analysis with Applications, SpringerBriefs in Statistics,
DOI 10.1007/978-3-319-26311-3_2
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In this chapter we assume that the probability model is defined by following a
marginal approach (Dryden and Mardia 1998, p.109), in that we assume the shape
data are generated from the induced shape distributions of Gaussian configurations
X� in which the similarity transformations are integrated out. These models for two-
dimensional shape objects have been originally introduced by Dryden and Mardia
(1991) where the shape distribution of X� is obtained in closed form. The estimation
procedure for the model parameters is based on the Expectation Maximization
(EM) algorithm introduced by Kume and Welling (2010) and, for convenience, we
mainly refer to them for known results. This procedure gives essential results for
a likelihood-based approach for statistical inference in shape analysis and provides
the basis for making inference in a dynamic setting. Also, the algorithm is baseline
invariant and can be adjusted for missing data (Kume and Welling 2010).

This chapter is organized as follows. Section 2.2 provides a discussion of the
Gaussian distribution in the configuration space by considering different covariance
structures for the landmarks. Sections 2.3 and 2.4 lead to the specification of
the offset-normal shape distribution. In Sect. 2.5 we introduce the EM algorithm
establishing the relevant update rules for the model parameters. Section 2.6 finally
concludes the chapter with an application on the FG-NET (Face and Gesture
Recognition Research Network) database with facial expressions and emotions.

2.2 The Gaussian Distribution in the Configuration Space

Given the configuration X� 2 <K�2, we assume that the vector obtained by stacking
the columns of the configuration matrix on top of one another follows a general
2k-dimensional Gaussian distribution with a 2K-dimensional mean vector, ��, and
a 2K � 2K covariance matrix, ˙ �, that is

vec.X�/ D
�

x�

y�

	
� N2K

"
vec.��/ D

 
�
�
x

�
�
y

!
;˙ � D

 
˙ �

xx ˙ �
xy

˙ �
yx ˙ �

yy

!#

where vec.�/ is the vec operator and ˙ �
yx D ˙ �0

xy.
In statistical shape analysis, it is common to consider covariance structures

which are invariant with respect to rotation. The more general form of rota-
tional invariant covariance structure is represented by the complex covariance. Let
z� D x� C iy� 2 C

K be the complex vector in the configuration space. In order to
express in complex notation the covariance matrix, ˙ �, the following two different
matrices have to be considered:

• the covariance matrix

˙ �
z D EŒ.z� � ��

z /.z
� � ��

z /
�� D .˙ �

xx C ˙ �
yy/C i.˙ �

xy � ˙ �
yx/

where � represents the complex conjugate transpose;
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• and the pseudo-covariance (Neeser and Massey 1993) matrix,

Q̇ �
z D EŒ.z� � ��

z /.z
� � ��

z /
0� D .˙ �

xx � ˙ �
yy/C i.˙ �

xy C ˙ �
yx/:

This matrix is also known as the relation (Picinbono 1996) or the complementary
covariance matrix (Schreier and Scharf 2003; Adali et al. 2011).

To better understand the second order properties of a complex random vector,

consider first the vector vec.X� � ��/ D
�

x�
0

c y�
0

c

�0
, where x�c D x� � �

�
x and

y�c D y� � �
�
y are zero-mean real random vectors; therefore z�c D x�c C iy�c is a zero

mean complex random vector.
Then, consider the 2K-dimensional augmented complex vector & from z�c , which

is obtained through the transformation (Adali et al. 2011)

& D
 

z�c
Nz�c

!
D T

 
x�c
y�c

!
D 1p

2

 
x�c C iy�c
x�c � iy�c

!

where Nz�c represents the complex conjugate of z�c , and the unitary matrix T is given by

T D 1p
2

�
IK CiIK

IK �iIK

	
:

The 2K � 2K covariance matrix of the augmented vector & turns out to be

˙ � D EŒ&&�� D E

" 
z�c
Nz�c

!�
z�

�

c z�
0

c

�#
D
 

˙ �
z

Q̇ �
z

Q̇ ��

z ˙ ��

z

!
:

Besides ˙ �
z being positive definite and Q̇ �

z being symmetric, the Schur complement

˙ ��

z � Q̇ ��

z ˙ ��1

z
Q̇ �

z must be positive definite to ensure that ˙ � is positive definite
and, thus, a valid covariance matrix for &.

We can derive an equivalent formulation of ˙ � by applying the unitary transfor-
mation T onto the covariance matrix in the configuration space, i.e. ˙ � D T˙ �T�,
which gives

˙ � D 1

2

�
IK CiIK

IK �iIK

	 
˙ �

xx ˙ �
xy

˙ �
yx ˙ �

yy

!�
IK IK

CiIK �iIK

	

D 1

2

 
˙ �

xx C ˙ �
yy � i.˙ �

yx � ˙ �
xy/ ˙ �

xx � ˙ �
yy C i.˙ �

yx C ˙ �
xy/

˙ �
xx � ˙ �

yy � i.˙ �
yx C ˙ �

xy/ ˙ �
xx C ˙ �

yy � i.˙ �
yx � ˙ �

xy/

!
:
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Therefore, the K � K covariance matrix ˙ �
z D E

h
z�cz�

�

c

i
D
�
˙ �

xx C ˙ �
yy C i.˙ �

yx �
˙ �

xy/
�

alone is not sufficient to describe the second-order behavior of &. We also

need the K � K symmetric complementary covariance matrix Q̇ �
z D E

h
z�cz�

0

c

i
D�

˙ �
xx � ˙ �

yy C i.˙ �
yx C ˙ �

xy/
�

.

The blocks of the 2K � 2K real covariance matrix ˙ � are thus given by

˙ �
xx D 1

2
Re.˙ �

z C Q̇ �
z /, ˙ �

xy D 1
2
Im.�˙ �

z C Q̇ �
z /, ˙ �

yx D 1
2
Im.˙ �

z C Q̇ �
z /,

and ˙ �
yy D 1

2
Re.˙ �

z � Q̇ �
z /; and, in general, both the covariance and the pseudo-

covariance matrices are required for a complete second-order characterization of the

complex random vector. However, the pseudo-covariance matrix Q̇ �
z is very rarely

introduced in literature, and it is explicitly or implicitly assumed to be zero. This
characterizes second order circularity, which means that second-order statistics of
z� and ei�z� are the same for any angle � . A complex random vector, for which the
property of second order circularity holds, is called (strictly) proper (Neeser and

Massey 1993). Specifically, z� is proper if Q̇ �
z D ˙ �

xx � ˙ �
yy C i.˙ �0

xy C ˙ �
xy/ D 0

and this is verified if ˙ �
xx D ˙ �

yy and ˙ �
xy D �˙ �0

xy, i.e. ˙ �
xy must be a skew-

symmetric matrix. Therefore, the covariance matrix of a proper complex random
vector, which alone describes the second-order behavior of &, can be expressed as

˙ �
z D ˙ �

xx C ˙ �
yy C i.˙ �

yx � ˙ �
xy/ D 2

�
C�
1 C iC�

2

�
, where C�

1 D ˙ �
xx D ˙ �

yy

and C�
2 D ˙ �

yx D �˙ �
xy. Accordingly, the covariance matrix of the real vector

vec.X�/ D .Re.z�/0 Im.z�/0/0 D .x�
0

y�
0

/0 has the following structure

˙ � D
 

C�
1 �C�

2

C�
2 C�

1

!
:

The probability density function of a proper complex Gaussian vector, z� �
CN K.�

�
z ;˙

�
z /, is defined as

fCN .z�I ��
x ;˙

�
z / D 1

	K j˙ �
z jexp

�
�.z� � ��

z /
�˙ ��1

z .z� � ��
z /
�
: (2.1)

In fact, given a complex covariance structure, the relation between the quadratic
forms in real and complex notation is

.vec.X�/� vec.�/�/0˙ ��1

.vec.X�/� vec.�/�/ D 2.z� � ��
z /

�˙ ��1

z .z� � ��
z /:

Furthermore, since it can be shown that each eigenvalue, 
k, k D 1; : : : ;K, of ˙ �
z ,

corresponds to a pair of eigenvalues of ˙ �, it follows that j˙ �j D QK
kD1

�

k
2

�2
,

j˙ �
z j D QK

kD1 
k and j˙ �j D 2�2K j˙ �
z j2. Hence we have

.2	/K j˙ �j1=2 D .2	/K.2�2K j˙ �
z j2/1=2 D 	K j˙ �

z j:
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Proper complex zero-mean Gaussian vectors are also called circularly complex
Gaussian vectors because their pdf is rotationally invariant, that is it remains the
same if we rotate each component by some angle � , so that ei�z� has the same pdf
as z�. For a non centered random vector, the pdf is unchanged if we rotate each
component about its mean by some angle � .

Particular cases of the complex covariance structure are the cyclic Markov model
(Dryden and Mardia 1998, p.139) and the isotropic covariance case. The cyclic
Markov covariance structure is a particular case of the complex covariance model
and can be useful for modeling the covariance structure of landmark “regularly”
scattered on a closed outline. It is characterized by a block diagonal structure,
˙ � D �2I2 ˝ R1, where the entries of R1 are defined as

R1.k; l/ D # jk�lj C #K�jk�lj

1 � #K
1 � k; l � K and 0 � # < 1:

The isotropic covariance structure is also a particular case of the cyclic Markov
model for which R1 D IK ; therefore the covariance matrix is given by ˙ � D �2I2K .

2.3 The Gaussian Distribution in the Pre-form Space

For shape registration purposes, the information about location need to be removed
and, considering Bookstein coordinates introduced in Sect. 1.3.2, the preform of the
configuration X� is obtained by the matrix transformation X D LX�. Here L is
a .K � 1/ � K translation matrix constructed as .�1K�1; IK�1/, where IK�1 is the
identity matrix of dimension .K � 1/Ą � .K � 1/ and 1K�1 is a .K � 1/-dimensional
vector of ones.

Since this transformation represents a linear projection from <2K to <2K�1, the
pdf in the pre-form space is Gaussian with mean � D L�� and covariance matrix
˙ D .I2 ˝ L2/˙ �.I ˝ L0/. It thus follows that vec.X/ � N2K�2 .vec.�/;˙ /.

In complex notation, the landmark coordinates in the complex preform space are
given by z D Lz�, with z D x C iy. Accordingly, z � CN K�1.�z;˙ z/, where

�z D L�
�
z and ˙ z D L˙ �

z L0.

2.4 The Offset-Normal Shape Distribution

The shape space of centered configurations is obtained by removing the information
about rotation and scaling. Here, without loss of generality, we work with Bookstein
shape coordinates, U, which are based on the transformation



20 2 Shape Inference and the Offset-Normal Distribution

X ! U D 'XR D 1

x22 C y22

0
BBB@

x2 y2
x3 y3
:::
:::

xK yK

1
CCCA
�

x2 �y2
y2 x2

	
D

0
BBB@
1 0

u3 v3
:::
:::

uK vK

1
CCCA :

Given the pdf of landmark coordinates in the pre-form space

f .vec.X/I �;˙ / D 1

.2	/K�1j˙ j 12
exp

�
�1
2
Œvec.X/ � vec.�/�0

˙ �1Œvec.X/ � vec.�/�
�
; (2.2)

the distribution of the shape random variables, u D fuk; vkgkD3WK , is obtained by
integrating out the information on scale and rotation parameters.
Given the matrix

W D
�
1 u3 : : : uK 0 v3 : : : vK

0 �v3 : : : �vK 1 u3 : : : uK

	0

and the vector h D .x2 y2/0, representing the rotation and scale information in
the preform space, the vectorial form of the preform configuration can equivalently
be expressed as vec.X/ D Wh. Therefore, the joint distribution of .h;u/ can be
written as

f .h;uI �;˙ / D 1

.2	/K�1j˙ j 12
exp

(
�


Wh � vec.�/�0˙ �1ŒWh � vec.�/

�
2

)

jJ.X ! .h;u//j

where jJ.X ! .h;u//j D khk2.K�2/ is the Jacobian of the transformation
X ! .h;u/.

Setting � D �
W0˙ �1W

��1
, �D� W0˙ �1vec.�/, and gDvec.�/0˙ �1vec.�/�

�0� �1�, the joint distribution can be re-expressed in terms of the random vector of
rotation and scale parameters h

f .h;uI �;˙ / D exp.�g=2/

.2	/K�1j˙ j 12
exp

(
� .h � �/0� �1.h � �/

2

)
khk2.K�2/: (2.3)

Equation (2.3) can be simplified by considering the eigen-decomposition � D
� D� 0, where � is a 2 � 2 eigenvector matrix and D D diag.�21 ; �

2
2 / is the

diagonal matrix of the corresponding eigenvalues. In the new coordinate system,
the scale and rotation parameters and their mean vector are given by l D � 0h and
	 D � 0�, respectively. Accordingly, the quadratic form in Eq. (2.3) can be rewritten
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as .h � �/0� �1.h � �/ D .l � 	/0D�1.l � 	/ D .l1��1/2
�21

C .l2��2/2
�22

, and the jacobian

of the transformation expressed as khk2.K�2/ D .h0h/K�2 D .h0� � 0h/K�2 D
.l0l/K�2 D .l21 C l22/

K�2. The joint pdf of .l;u/ can now be formulated as

f .l;uI �;˙ / D exp.�g=2/

.2	/K�1j˙ j 12
exp

�
l1��1
�1

	2
exp

�
l2��2
�2

	2
.l21Cl22/

K�2

D j� j 12 exp.�g=2/

.2	/K�2j˙ j 12
fN .l1I �1; �1/fN .l2I �2; �2/

K�2X
jD0

 
K � 2

j

!
l2j
1 l2.K�2�j/
2

(2.4)

where we have used the binomial expansion .l21Cl22/
K�2DPK�2

jD0
�K�2

j

�
l2j
1 l2.K�2�j/
2 .

The marginal distribution of the shape variables can be obtained by integrating
out the scale and rotation parameters

f .uI �;˙ / D j� j 12 exp.�g=2/

.2	/K�2j˙ j 12
K�2X
jD0

 
K � 2

j

!Z
l2j
1 fN .l1I �1; �1/dl1

Z
l2.K�2�j/
2 fN .l2I �2; �2/dl2

D j� j 12 exp.�g=2/

.2	/K�2j˙ j 12
K�2X
jD0

 
K � 2

j

!
EŒl2j

1 j�1; �1�EŒl2.K�2�j/
2 j�2; �2�

(2.5)

where EŒlpj�; �� denotes the moments of the univariate Gaussian distribution with
parameters .�; �/. These moments are calculated as (see 3.462/4 and 8.972 in
Gradshteyn and Ryzhik 1980)

EŒlpj�; �� D
(
.2�2/qqŠL.�1=2/q

���2
2�2

�
if p D 2q

�.2�2/qqŠL.1=2/q

���2
2�2

�
if p D 2q C 1

(2.6)

where

L.˛/q .x/ D
qX

jD1

.1C ˛/q.�x/j

.1C ˛/jjŠ.q � j/Š

is the generalized Laguerre polynomial of order q.
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2.5 EM Algorithm for Estimating � and ˙

The Expectation-Maximization (EM) algorithm (Dempster et al. 1977) is a general
iterative procedure that attempts to find the maximum likelihood estimators of some
unknown parameters in the presence of “missing” or “hidden” data.

The EM algorithm for the estimation of the parameters of the offset-normal shape
distribution was first proposed by Kume and Welling (2010).

Given a random sample of N configurations, let X D fX.n/gnD1WN and U D
fu.n/gnD1WN denote the full data in the preform space and the observed data in
the shape space, respectively. Also, let l0.�;˙ jX / D PN

nD1 logfN .X.n/j�;˙ / be
the complete data log-likelihood and l.�;˙ jU / D PN

nD1 logf .u.n/j�;˙ / be the
shape data log-likelihood. Here, as discussed in the previous sections, vec.X.n// �
N2.K�1/.�;˙ /, and f .u.n/j�;˙ / is the induced pdf of shape variables u.n/.

As highlighted by Kume and Welling (2010), due to shape invariance with respect
to scaling and rotation of pre-forms, it is possible to estimate in terms of U only
those parameters which identify the equivalent class


 D ˚

'�R; s2.R0 ˝ IK�1/˙ .R ˝ IK�1/

� j' 2 <C;R 2 SO.2/
�
: (2.7)

Therefore, the proposed estimation method deals with only those parameters
which identify this equivalent class and not all those identifying the mean and the
covariance matrix in the configuration space. Hence, the target is to find the values
of � and ˙ , identifying equivalent classes, which maximize the log-likelihood
function l.�;˙ jU /.

Regarding the number of parameters to be estimated, we notice that, while in the
configuration space there are 2K parameters for the mean vector, and K.2K C 1/

parameters for the covariance matrix, in the preform space we have 2.K � 1/

parameters for the mean vector, and .K � 1/.2.K � 1/ C 1/ parameters for the
covariance matrix. Therefore, at most 2.K �1/C .K �1/.2K �1/ parameters could
be identified. Without loss of generality we can assume that the mean � is re-scaled
and rotated such that its first landmark is .1; 0/. So there are at most 2.K � 2/

parameters for the mean and .K � 1/.2K � 1/ D 2K2 � 3K C 1 for the covariance
matrix identifying 
 in the equivalence classes (2.7). While the parameters for the
shape of � are fully identifiable, Dryden and Mardia (1998, p. 138) expect that
only .K � 2/.2K � 3/ D 2K2 � 7K C 6 parameters are practically identifiable
for ˙ . However, certain conditions on ˙ avoid this identification problem. In
particular, the entries of a complex covariance structure, ˙ z D 2.C1CiC2/, are fully
identifiable up to some re-scaling constant. In fact, since C1 is symmetric and has
.K �1/K=2 parameters, while C2 is skew-symmetric and has .K � 1/K=2� .K �1/
parameters, ˙ z has .K � 1/2 D K2 � 2K C 1 parameters to be estimated.

Since it is simpler to maximize the complete data log-likelihood l0.�;˙ jX /,
rather than working with the shape data log-likelihood, l.�;˙ jU /, Kume and
Welling (2010) propose to exploit the EM algorithm which attempts to maximize
the complete data log-likelihood iteratively, by replacing l0.�;˙ jX / by its
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conditional expectation given the observed data U . This expectation, denoted as
Q�.r/;˙ .r/ .�;˙ /, is computed with respect to the distribution of the full data, given

the observed U , and is evaluated at the current parameter estimates, �.r/ and ˙ .r/.
Thus the EM algorithm consists of an estimation step (E-step) followed by a

maximization step (M-step) and these are defined as

• E-step: compute Q�.r/;˙ .r/ .�;˙ / D EX jU ;�.r/;˙ .r/ Œl0.�;˙ jX /�;

• M-step: find �.rC1/;˙ .rC1/ such that Q�.rC1/;˙ .rC1/ .�;˙ / � Q�.r/;˙ .r/ .�;˙ /.

Under the assumption of normality and given N independently, identically dis-
tributed random samples, the conditional expected log-likelihood is given by

Q�.r/;˙ .r/ .�;˙ / D
NX

nD1

Z
log
�
fN .X.n/j�;˙ /

�
dF.X.n/ju.n/;�.r/;˙ .r//; (2.8)

where dF.X.n/ju.n/;�.r/;˙ .r// is the conditional distribution of X.n/ given its shape
u.n/. The updated values can be calculated once we know how to maximize the
conditional expected log-likelihood. The computation of the E-step and the M-step
simplifies when the distribution of the full-data belongs to the exponential family.
In this case, the E-step reduces to computing the expectation of the complete data
sufficient statistics given the observed data at current parameter estimates. The
M-step involves maximizing the expected log-likelihood computed in the E-step. In
the exponential family case, maximizing the expected log-likelihood to obtain the
next iterate can be avoided. Instead, the conditional expectations of the sufficient
statistics computed in the E-step can be directly substituted for the sufficient
statistics that occur in the expressions obtained for the complete-data maximum
likelihood estimators, to obtain the next iterate. Hence, the two steps appear as
follows

M-step: the maximum of Q�.r//;˙ .r//.�;˙ / is achieved at

vec.�.rC1// D 1

N

NX
nD1

Z
vec.X.n//dF.X.n/ju.n/;�.r/;˙ .r//

˙ .rC1/ D 1

N

NX
nD1

Z
vec.X.n//vec.X.n//0dF.X.n/ju.n/;�.r/;˙ r/

�vec.�.rC1//vec.�.rC1///0

E-step: the complete data sufficient statistics, given the observed data and current
parameter estimates, can be computed as in Lemma 1 in Kume and Welling (2010),
that is Z

vec.X/dF.Xju;�;˙ / D W�

R
lf .l;uI �;˙ /dl

f .uI �;˙ /
(2.9)
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andZ
vec.X/vec.X/0dF.Xju;�;˙ / D W�

R
ll0f .l;uI �;˙ /dl

f .uI �;˙ /
� 0W0: (2.10)

Notice that for the pairs .a; b/ 2 f.1; 0/; .0; 1/; .2; 0/; .1; 1/; .0; 2/g, we have

R
la1l

b
2 f .l;uI �;˙ /dl
f .uI �;˙ /

D
PK�2

jD0
�K�2

j

�
EŒl2jCa

1 j�1; �1�EŒl2.K�2�j/Cb
2 j�2; �2�PK�2

jD0
�K�2

j

�
EŒl2j

1 j�1; �1�EŒl2.K�2�j/
2 j�2; �2�

(2.11)

where the expectations can be computed as shown in Eq. (2.6). Proofs of Eq. (2.11)
are provided in Appendix A.1.

2.5.1 EM for Complex Covariance

As discussed in the previous section, identifiability problems can be solved by
considering a complex structure for the covariance matrix. In fact, the proper
complex normal distribution is particularly important since the covariance matrix
parameters are fully identifiable. Furthermore, for a proper complex random vector,
the covariance structure remains invariant under rotations.

In the preform space, as shown in Sect. 2.3, the pdf of the .K � 1/-dimensional
complex vector z D x C iy, with mean �z D �x C i�y and complex covariance
˙ z D 2.C1 C iC2/, is given by

fCN

�
zI �z;˙ z

� D 1

	.K�1/ j˙ zj exp
n
� �z � �z

��
˙ �1

z

�
z � �z

�o
: (2.12)

For a complex coordinate system, removing the rotation and scaling parameters is
easy. In fact, the rotated configuration is obtained as � D z=z2, where �k D uk C ivk,
k D 2; : : : ;K, and z2 D x2 C iy2 represent the scale and rotation parameters. Given
the Jacobian kz2k2.K�2/ of the transformation z ! .z2; �/, the joint pdf can be
expressed as

fCN

�
�; z2I �z;˙ z

�D 1

	.K�1/ j˙ zj exp
n
� ��z2��z

��
˙ �1

z

�
�z2 � �z

�o kz2k2.K�2/ :
(2.13)

Setting �z D �
��˙ �1

z �
��1

,  D �z�
�˙ �1

z �z, and gz D ��
z ˙ �1

z �z � N��1
z ,

Eq. (2.13) can be rewritten as

fCN

�
�; z2I �z;˙ z

� D exp f�gzg
	.K�1/ j˙ zj exp

˚� .Nz2 � N/ ��1
z .z2 � /� kz2k2.K�2/
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which now expresses the pdf in terms of the scale and rotation parameters. Since
any subvector of a proper random vector is also proper (Neeser and Massey 1993),
the random variable z2 has a complex Gaussian distribution with mean  and
variance �z. Therefore the joint pdf of Eq. (2.13) can be also written as

fCN

�
�; z2I �z;˙ z

� D �z exp f�gzg
	.K�2/ j˙ zj kz2k2.K�2/ fCN .z2I ; �z/ : (2.14)

Kume and Welling (2010) show that the updated values �
.rC1/
z and ˙ .rC1/

z ,
obtained in the M-step of the EM algorithm, are

�.rC1/
z D 1

N

NX
nD1

Z
z.n/dF

�
z.n/j�.n/;�.r/

z ;˙
.r/
z

�
D

D 1

N

NX
nD1

�.n/

R
z2 kz2k2.K�2/ fCN

�
z2; �

.n/I �
.r/
z ;˙

.r/
z

�
dz2R kz2k2.K�2/ fCN

�
z2; �

.n/I �
.r/
z ;˙

.r/
z

�
dz2

(2.15)

and

˙ .rC1/
z D 1

N

NX
nD1

Z
z.n/z.n/�dF

�
z.n/j�.n/;�.r/

z ;˙
.r/
z

�
� �.rC1/

z �.rC1/�
z D

D 1

N

NX
nD1

�.n/�.n/�
R kz2k2.K�1/ fCN

�
z2; �

.n/I �
.r/
z ;˙

.r/
z

�
dz2R kz2k2.K�2/ fCN

�
z2; �

.n/I �
.r/
z ;˙

.r/
z

�
dz2

��.rC1/
z �.rC1/�

z (2.16)

with ratios calculated as

R
z2 kz2k2.K�2/ fCN

�
z2; �I �z;˙ z

�
dz2R kz2k2.K�2/ fCN

�
z2; �I �z;C

�
dz2

D ! .K � 1/

kk

0
@LK�1

�
� kk2 =�z

�
LK�2

�
� kk2 =�z

� � 1

1
A

(2.17)

and

R kz2k2.K�1/ fCN

�
z2; �I �z;˙ z

�
dz2R kz2k2.K�2/ fCN

�
z2; �I �z;˙ z

�
dz2

D �z .K � 1/
0
@LK�1

�
� kk2 =�z

�
LK�2

�
� kk2 =�z

�
1
A
(2.18)

where ! D e�i� , such that N!��˙ �1
z �z is a positive number. Proofs for Eqs. (2.17)

and (2.18) are provided in Appendix A.2.
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2.5.2 Cyclic Markov and Isotropic Covariances

Assume that the complex covariance follows the cyclic Markov model, i.e. C�
2 D 0

and C�
1 D �2R1. Since the estimation is based on identifying elements from the

equivalence class (2.7), we can assume �2 D 1=2 and the estimation of the mean
vector and the covariance parameter # can be estimated through a generalized EM
algorithm (McLachlan and Krishnan 1997).

More specifically, given an initial estimate of the correlation parameter #.r/, and

denoting with R�
1.k; l/ D #

jk�lj
.r/ C#K�jk�lj

.r/

1�#K
.r/

(see Sect. 2.2) the entries of R�
1, it is possible

to construct the covariance matrix in the pre-form space as ˙ .r/
z D LR�

1L
0, and

compute the updated estimate of the mean vector, �
.rC1/
z , as in Eq. (2.15). Then,

replacing �
.rC1/
z in the conditional log-likelihood,

Q
�
.r/
z ;˙

.r/
z

�
�rC1;˙ z

� D �N log j˙ zj �
NX

nD1

Z �
z.n/ � �.rC1/

z

��

˙ �1
z

�
z.n/ � �.rC1/

z

�
dF
�

z.n/j�.n/;�.r/
z ;˙

.r/
z

�

and noting that
�
z � �z

��
˙ �1

z

�
z � �z

� D tr
�
˙ �1

z

�
z � �z

� �
z � �z

���
, we thus

find the value of #rC1 which maximizes

Q
�
.r/
z ;˙

.r/
z

�
�rC1;˙ z

� D �N log j˙ zj � tr

(
˙ �1

z

"
NX

nD1

Z
z.n/

�

z.n/

dF
�

z.n/j�.n/;�.r/
z ;˙

.r/
z

�
� N�.rC1/�

z �.rC1/
z

io
:

Since the values of
R

z.n/
�

z.n/dF
�

z.n/j�.n/;�.r/
z ;˙

.r/
z

�
are obtained as in Eq. (2.16),

this is a simple univariate optimization problem which can be carried out
numerically.

If we consider an isotropic covariance structure, ˙ �
z D 2�2Ik, since this

corresponds to the assumption of uncorrelated landmarks, it is possible to set
�2 D 1=2, and it suffices for the EM algorithm now to calculate only �

.rC1/
z .

2.6 Data Analysis: The FG-NET Data

In this section we introduce the FG-NET (Face and Gesture Recognition Research
Network) database with facial expressions and emotions from the Technical Uni-
versity Munich (Wallhoff 2006). The data set has been generated in an attempt
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to assist researchers who investigate the effects of different facial expressions as
part of the European Union project. This is an image database containing face
images showing a number of subjects performing the six different expressions
defined by Ekman and Friesen (1971). Here, we mainly focus on happiness and
surprise expressions for which video sequences are available. The dynamics of the
two expressions is described by the changes in time of the landmark coordinates.
All acquired sequences in the FG-NET database are starting from the neutral state
passing into the emotional state. Depending on the expression, a single recorded
sequence can take up to several seconds. For each subject, a transcription of the
start, apex, and hold frame (i.e. up to which frame it is possible to see the emotion)
can be found with the metadata file made available by the Interactive System Group
(ISG, Technical University of Munich). Since, in average, about 20 frames separate
the start from the apex, only a few frames can be used to describe the dynamics
of the complete expression. In our case, we work with 7 frames chosen at equally
spaced intervals. For each individual, the first available time frame represents the
neutral expression which, in our analysis, was used as the reference configuration
to estimate the pole of the tangent projections. For each frame, we then consider
the material gathered from 16 different individuals and summarize the expressions
(at frame t D 1; 2; : : : ; 7) through a set of 34 landmarks manually placed on the face
of each subject.

The facial landmark configuration is shown in Fig. 2.1 where the selected
points are used to represent the eyebrows (10 landmarks), the eyelid margins
(16 landmarks) and the mouth region (8 landmarks).

By following the likelihood approach, we start with an experiment in which we
first estimate the mean shapes of the two expressions. Then, in order to test their
differences, we compare both happiness and surprise expressions under isotropic
and complex covariance structures. Notice that the analysis is developed under the
desired expression, that is we only focus here on the 7th frame. Also, to highlight
possible differences we work on the eyebrows, eyes and mouth regions, separately.
For these subregions, the baseline chosen for the Bookstein coordinates are fixed
at the following points: landmarks 1 and 6 for the eyebrows, the external corners
(i.e. landmarks 11 and 19) for the eyes and the left and right corners for the mouth
(i.e. landmarks 27 and 31).

Fig. 2.1 Facial landmark
configuration. The facial
expression is summarized by
34 landmarks. The numbering
scheme is consistent across
all the frames and
subject-configurations
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Fig. 2.2 Estimated mean
paths of the eyebrows for
happiness (top) and surprise
(bottom) expressions using
EM (dashed line) and
Procrustes (continuous line)
procedures

EM
Procustes

EM
Procustes

Results for the estimates of the mean paths for the complex case are shown in
Figs. 2.2, 2.3 and 2.4. The estimated means under isotropy are very similar and are
not shown here. The figures also show the GPA (Generalised Procrustes) estimate
of the mean paths which appear very similar to the EM estimate.

In order to evaluate statistical differences between facial expressions we consider
the values of the log-likelihoods for happiness and surprise. For the first expression
the EM algorithm gives the following values of the log-likelihood: 625:33 (eye-
brows), 1098:80 (eyelids) and 362:52 (mouth) for the isotropic case, and 783:22,
1548:70 and 468:98, for the complex covariance structure. Similarly, log-likelihood
values for surprise are: 671:37, 1142:90 and 329:53 for the isotropic covariances,
and 821:87, 1478:00 and 430:93 for the complex case.

Given the values of the likelihoods, differences between the expressions can be
tested through the Generalised likelihood ratio test. In fact, if we are interested to
test H0 W � 2 ˝0 versus H1 W � 2 ˝ , where ˝0 � ˝ , then for large samples and
under regularity conditions, the likelihood ratio test is defined to be

�2 log� D 2

 
sup
H1

log L.�/ � sup
H0

log L.�/

!

which rejects H0 for ‘large’ values.
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Fig. 2.3 Estimated mean
paths of the eyelids for
happiness (top) and surprise
(bottom) expressions using
EM (dashed line) and
Procrustes (continuous line)
procedures

EM
Procustes

EM
Procustes

For large samples and under H0, we thus have the result that �2 log� has an
approximate �2r distribution. The number of degrees of freedom, r, is equal to the
number of free parameters under H1 minus the number of free parameters under H0

(i.e. r D dim.˝/ � dim.˝0/). This result allows us to use the �2r tables for finding
rejection regions with a fixed value of ˛.

Hence, if we want to test whether the means of the two expressions differ from
each other only by some rotation we consider the hypothesis test

�
H0 W �h

z D �s
z mod .rot/

H1 W �h
z ¤ �s

z mod .rot/ ˙ h
z D ˙ s

z:

We also assume that the preforms of happiness and surprise configurations are
from complex normal distributions, that is CN d

�
�h

z ;˙
h
z

�
and CN d

�
�s

z;˙
s
z

�
,

where d D 9; 15; 7 are the pre-form dimensions for the eyebrows, eyelids and
mouth regions. The degrees of freedom for the eyebrows, eyelids and mouth are
computed as .2 � 10/� 2 � 1 D 17, .2 � 16/� 2 � 1 D 29 and .2 � 8/� 2 � 1 D 13

respectively. Also, by running the EM for the pooled samples, the log-likelihood
value at the MLE estimates is 1523:90, 2768:71 and 830:76 for the eyebrows,
eyelids and mouth, respectively. The likelihood values for the alternative hypothesis
can be obtained by running the EM separately for each group while keeping the
entries of ˙ h

z D ˙ s
z D ˙ z. We obtain the maximum log-likelihood values 750:32

(eyebrows), 1432:12 (eyelids) and 445:67 (mouth) for the group of happiness, while
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Fig. 2.4 Estimated mean
paths of the mouth for
happiness (top) and surprise
(bottom) expressions using
EM (dashed line) and
Procrustes (continuous line)
procedures

EM
Procustes

EM
Procustes

for the surprise we have 793:29 (eyebrows), 1362:80 (eyelids) and 410:09 (mouth).
Hence, �2 log� for the eyebrows is distributed as �217, for the eyelids we have a �229
and for the mouth the resulting distribution is a �213, which under H0 are 39:42, 52:4
and 50, respectively. Since P.�217 > 39:42/, P.�229 > 52:40/ and P.�213 > 50:00/

are almost zero, there is a strong evidence that modulo rotations, �h
z and �s

z are
different in all the constituent parts.
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Chapter 3
Dynamic Shape Analysis Through
the Offset-Normal Distribution

Abstract Statistical analysis of dynamic shapes is a problem with significant
challenges due to the difficulty in providing a description of the shape changes over
time, across subjects and over groups of subjects.

Recent attempts to study the shape change in time are based on the Procrustes
tangent coordinates or spherical splines in Kendall shape spaces (Kent et al. (2001)
Functional models of growth for landmark data. In: Proceedings in functional and
spatial data analysis. University Press, Leeds, pp 109–115; Kume et al. Biometrika
94:513–528, 2007; Fishbaugh et al. (2012) Analysis of longitudinal shape variability
via subject specific growth modeling. In: Ayache N, Delingette H, Golland P, Mori
K (eds) Medical image computing and computer-assisted intervention – MICCAI
2012. Lecture notes in computer science, vol 7510. Springer, Berlin, Heidelberg,
pp 731–738; Hinkle et al. (2012) International anthropometric study of facial
morphology in various ethnic groups/races. In: Computer Vision - ECCV. Lecture
Notes in Computer Science, vol 7574. pp 1–14; Fontanella et al. (2013) A functional
spatio-temporal model for geometric shape analysis. In: Torelli N, Pesarin F, Bar-
Hen A (eds) Advances in theoretical and applied statistics. Springer, Berlin, pp
75–86).

This chapter deals with the statistical analysis of a temporal sequence of
landmark data using the exact distribution theory for the shape of planar correlated
Gaussian configurations. Specifically, we extend the theory introduced in the second
chapter to a dynamic framework and discuss the use of the offset-normal distribution
for the description of time-varying shapes.

Modeling the temporal correlation structure of the dynamic process is a complex
task, in general. For two time points, Mardia and Walder (Biometrika 81:185–196,
1994) have shown that the density function of the offset-normal distribution has a
rather complicated form and have discussed the difficulty of extending their results
to t > 2. In the final part of the chapter we show that, in principle, it is possible to
calculate the closed form expression of the offset-normal distribution for a general
t, though its calculation can be computationally expensive.

This chapter is organized as follows. In Sect. 3.1 we describe the offset-normal
shape distribution in a dynamic context. In Sect. 3.2 we introduce the EM algorithm
for general spatio-temporal covariance matrices while Sect. 3.3 describes the neces-
sary adjustments of the general update rules under separability assumptions of the
spatio-temporal covariance structure. A discussion of the computational difficulties

© The Authors 2016
C. Brombin et al., Parametric and Nonparametric Inference for Statistical
Dynamic Shape Analysis with Applications, SpringerBriefs in Statistics,
DOI 10.1007/978-3-319-26311-3_3
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concerning the performance of the algorithm is also provided. Following Kume and
Welling (J Comput Graph Stat 19:702–723, 2010), in Sect. 3.4 we discuss the case
in which the temporal dynamics of the shape variables are only modeled through
a polynomial regression which captures the large-scale temporal variability of the
process. The fit of this regression model to happiness and surprise data are shown
in Sect. 3.4.1. For the same expressions, we also consider the problem of matching
symmetry and provide some comments in Sect. 3.5. Finally, Sect. 3.6 concludes the
chapter by discussing the use of mixture models for classification purposes in a
dynamic setting.

Keywords Statistical shape analysis • EM Algorithm • Time-varying shapes
• Polynomial shape regression • Moments of quadratic forms • Bilateral
Symmetry • Mixture models • Facial expressions

3.1 The Offset-Normal Distribution in a Dynamic Setting

Suppose that for planar shapes, landmark data are available at times t D 1; : : : ;T.
Since at time t, the landmark Cartesian coordinates are organized in the .K � 2/

configuration matrix X�
t D .x�t y�t /, the temporal sequence of the T configuration

matrices can be arranged in a K � 2T data matrix, X� D
h
X�
1 X�

2 : : : X�
T

i
.

The pre-form coordinates matrix is obtained by removing the translation effect at
each time t. This is achieved by pre-multiplying each configuration matrix X�

t , for
t D 1; : : : ;T, with the .K�1/�K matrix L. Therefore, the temporal sequence of pre-

form of configurations is X D LX� D
�

LX�
1 LX�

2 : : : LX�
T

�
D .X1 X2 : : : XT/ :

In order to work with shape variables, it is also necessary to remove the
information about scaling and rotation. By considering Bookstein coordinates, at
each time t we work with the transformation Ut ! 'tXtRt, where the scaling factor
and the rotation matrix are given by

't D .x22;t C y22;t/
�1; Rt D

�
x2t �y2t

y2t x2t

	
t D 1; : : : ;T

with x22;t C y22;t D jRtj. The transformation X ! U, thus gives the full set of shape
variables

.U1 U2 : : : UT/ D �
X1R�

1 X2R�
2 : : : XTR�

T

�
or, in matrix formulation, U D XR�, where R� D diag

�
R�
1 ;R

�
2 ; : : : ;R

�
T

�
is a 2T �

2T block-diagonal matrix and R�
t D 'tRt.
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In complex notation, the K � T matrix of the sequence of configurations is

denoted as Z� D
�

z�1 z�2 : : : z�T
�

D
�

x�1 C iy�1 x�2 C iy�2 : : : x�T C iy�T
�

, and the

coordinates in the pre-form space are given by Z D LZ�.
Then, at time t, scaling and rotation effects are filtered out by computing the ratio

�t D zt=z2;t, where �t D ut C ivt. In matrix form, the complete .K �1/�T matrix is

thus obtained as � D .�1 �2 : : : �T/ D .z1 z2 : : : zT/ diag
�

1
z2;1
; 1

z2;2
; : : : ; 1

z2;T

�
.

3.1.1 The Probability Density Function

Assume that, in the configuration space, for a temporal sequence of landmark

coordinates, the .2KT � 1/ vector vec.X�/ D
�

x�
0

1 y�
0

1 : : : x
�0

T y�
0

T

�0
is distributed

as N2KT
�
vec.��/;˙ �

�
, where vec.��/ D

�
vec.��0

1 / : : : vec.��0

T /
0
�

and

˙ � D

0
BBBBBB@

˙ �
x1x1 ˙ �

x1y1 : : : ˙ �
x1xT

˙ �
x1yT

˙ �
y1x1 ˙ �

y1y1 : : : ˙ �
y1xT

˙ �
y1yT

:::
:::

:::
:::

:::

˙ �
xT x1

˙ �
xT y1

: : : ˙ �
xT xT

˙ �
xT yT

˙ �
yT x1 ˙ �

yT y1 : : : ˙ �
yT xT

˙ �
yT yT

1
CCCCCCA

D

0
B@

˙
�
1 : : : ˙

�
1T

:::
:::

:::

˙
�
T1 : : : ˙

�
T

1
CA

where ˙ �
xtxt

,˙ �
ytyt

and ˙ �
xtyt

are K � K landmark covariance matrices computed at a

specific time point, t, while ˙ �
xtxt0

,˙ �
ytyt0

and ˙ �
xtyt0

are .K�K/ landmark covariance

matrices at two different times, t and t0. We have ˙ �
xtyt

D .˙ �
ytxt
/0, ˙ �

xtyt0
D .˙ �

yt0 xt
/0

and ˙ �
xtyt0

¤ ˙ �
xt0 yt

. In addition, ˙
�
t and ˙

�

tt0 are the autocovariance and cross-
covariance matrices for configurations Xt and Xt0 , respectively. Accordingly, in the
pre-form space, we have vec.X/ D vec.LX�/ � N2.K�1/T .vec.�/;˙ /, so that

f .vec.X/j�;˙ / D 1

.2	/.K�1/T j˙ j 12
exp

�
�1
2
Œvec.X/ � vec.�/�0

˙ �1 Œvec.X/ � vec.�/�
�

(3.1)

where vec.�/ D vec.L��/ D .I2T ˝ L/vec.��/ and ˙ D .I2T ˝ L/˙ �.I2T ˝ L0/:
As discussed in Chap. 2, the distribution of the shape variables, u D

fuk;t; vk;tgkD3WKItD1WT , can be obtained by integrating out the vector, h D�
h0
1 : : : h

0
T

� D .x2;1; y2;1; : : : ; x2;T ; y2;T/0, where the vector ht D .x2;t; y2;t/0 represents
the rotation and scaling information for the pre-form Xt.

Considering T configurations, we still consider the transformation vec.X/ D Wh
but now W D diag .W1; : : : ;WT/ is a 2T.K � 1/ � 2T block-diagonal matrix with
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Wt D
�
1 u3;t : : : uK;t 0 v3;t : : : vK;t

0 �v3;t : : : �vK;t 1 u3;t : : : uK;t

	0
; t D 1; : : : ;T:

Since the Jacobian of the transformation X ! .h;u/ is given by
QT

tD1 khtk2.K�2/ ,
the joint distribution of .h;u/ can be written as

f .h;uj�;˙ / D 1

.2	/.K�1/T j˙ j 12
exp

�
�1
2
ŒWh � vec.�/�0˙ �1ŒWh � vec.�/�



�
TY

tD1
khtk2.K�2/: (3.2)

Then, following Sect. 2.4, by defining the 2T �2T matrix, � D .W0˙ �1W/�1, and
the 2T-dimensional vector, � D � W0˙ �1vec.�/, the joint distribution (3.2) can
be rewritten as

f .h;uj�;˙ / D exp.�g=2/

.2	/.K�1/T j˙ j 12
� exp

(
� .h � �/0� �1.h � �/

2

)
TY

tD1
khtk2.K�2/

(3.3)

where g D vec.�/0˙ �1vec.�/� �0� �1�:
Finally, the off-set normal shape density function is obtained by integrating out h

f .uj�;˙ / D exp.�g=2/j� j 12
.2	/.K�2/T j˙ j 12

Z TY
tD1

khtk2.K�2/fN2T .hj�;� /dh

D exp.�g=2/j� j 12
.2	/.K�2/T j˙ j 12

Z TY
tD1
.h0Ath/K�2fN2T .hj�;� /dh

D exp.�g=2/j� j 12
.2	/.K�2/T j˙ j 12

E

"
TY

tD1
.h0Ath/K�2

#
(3.4)

where At D diag.02t�2; I2; 02T�2t/, with 0t a t � t null matrix and It the identity

matrix of dimension t. We notice that E
hQT

tD1.h0Ath/k�2
i

denotes the moments of a

product of quadratic forms of noncentral normal random variables, h � N2T.�;� /.
For the computation of these moments, we can use the following expansion

proposed by Kan (2008)

E

"
TY

tD1
.h0Ath/K�2

#
D 1

sŠ

s1X
v1D0

� � �
sTX

vT D0
.�1/

PT
tD1 vt

 
s1
v1

!
� � �
 

sT

vT

!
Qs.Bv/ (3.5)
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where Qs.Bv/ D E Œ.h0Bvh/s�, Bv D PT
tD1

� st
2

� vt
�

At, s D T.K � 2/ and st D
K � 2 ;8t. A solution for Qs.Bv/, can be found by following Lemma 2 of Magnus
(1986) which suggests the following expression

E


.h0Bvh/s

� D 2ssŠ
X
ı

sY
jD1

�
tr.Bv� /j C j�0.Bv� /j�1Bv�

�ıj

ıjŠ.2j/ıj
(3.6)

with the summation over all s-vector ı D .ı1; : : : ; ıs/, whose elements are
nonnegative integers satisfying

Ps
jD1 jıj D s. However, this expression requires

an algorithm to enumerate all the partitions of the integer s.
An expression for Qs.Bv/ that is computationally more efficient than Eq. (3.6) is

based on the recursive relation between moments and cumulants (see, for example,
Mathai and Provost 1992, Eq.3.2b.8) and is given by

E


.h0Bvh/s

� D sŠ2sds.Bv/ (3.7)

where

ds.Bv/ D 1

2s

sX
jD1



tr.Bv� /j C j�0.Bv� /j�1Bv�

�
ds�1.Bv/; d0.Bv/ D 1:

As noticed by Kan (2008), although Eq. (3.7) does not provide an explicit expression
for Qs.Bv/, it is easier to program than (3.6) and it also takes much less time to
compute.

When s D T.K � 2/ is large, in order to compute tr.Bv� /j C j�0.Bv� /j�1Bv�,
Kan (2008) suggests to perform an eigenvalue decomposition. If � is positive
definite, we can consider the Cholesky decomposition � D L� L0

� and the
eigenvalue decomposition L0

� BvL� D Pv�vP0
v, such that assuming there are

c � 2T nonzero eigenvalues we have that

tr.Bv� /j C j�0.Bv� /j�1Bv� D tr.�v/
j C j Q�0.�v/

j Q� D
cX

tD1
.1C j Q2t /
j

t

where Q� D P0
vL

�1
� �.

3.2 EM Algorithm for Estimating � and ˙

In this section we discuss the EM algorithm for a temporal sequence of shapes.
Assume that X D fX.n/gnD1WN and U D fu.n/gnD1WN denote the full data and

the observed (shape) data, respectively, for a random sample of N sequences of
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landmark configurations. By following the same lines of Chap. 2, the maximum of
the conditional log-likelihood (M-step), Q�.r/;˙ .r/ .�;˙ /, is achieved at

vec.�.rC1// D 1

N

NX
nD1

Z
vec.X.n//dF.X.n/ju.n/;�.r/;˙ .r//

˙ .rC1/ D 1

N

NX
nD1

Z
vec

�
X.n/

�
vec

�
X.n/

�
0

dF.X.n/ju.n/;�.r/;˙ .r//� vec.�rC1/vec.�rC1/
0;

and the expectations which establish the update rules for the parameters (E step) are
given by

Z
vec.X/dF.Xju;�;˙ / D W

R
<2T hf .h;uj�;˙ /dh

f .uj�.r/;˙ .r//
(3.8)

Z
vec.X/vec.X/0dF.Xju;�;˙ / D W

R
<2T hh0f .h;uj�;˙ /dh

f .uj�.r/;˙ .r//
W0: (3.9)

Given h � N2T.�;� /, in order to develop the EM algorithm, it is convenient to
write the quadratic form Qs.Bv/ of the induced pdf in Eq. (3.4) as (Mathai and
Provost 1992, p. 28):

Qs.Bv/ D E


.h0Bvh/s

� D E
n

.l C L�1

� �/0L0
� BvL� .l C L�1

� �/
�so

(3.10)

where L� is a lower triangular matrix with � D L� L0
� , l D L�1

� .h � �/, EŒl� D 0
and Cov.l/ D I2t.

Considering the eigen-decomposition L0
� BvL� D Pv�vP0

v , where Pv is the
matrix of eigenvectors and �v the diagonal matrix of the corresponding eigenvalues,
it follows

E


.h0Bvh/s

� D E
˚
Œ.lv C 	v/

0�v.lv C 	v/�
s
� D E

("
2TX

tD1

vt .lvt C �vt /

2

#s)

D
2TX

tD1

vt�

2
vt

(3.11)

where, �vt D lvt C �vt , with lvt and �vt being the elements of the 2T�dimensional
vectors, lv D P0

vl and 	v D P0
vL

�1
� �.



3.2 EM Algorithm for Estimating � and ˙ 39

Therefore, the marginal (off-set normal shape) pdf can be written as

f .uj�;˙ / D exp.�g=2/j� j 12
.2	/.K�2/T j˙ j 12

1

sŠ

s1X
v1D0

� � �
sTX

vT D0
.�1/

PT
tD1 vt

 
s1
v1

!
� � �
 

sT

vT

!

E

" 
2TX

tD1

vt�

2
vt

!s#
: (3.12)

The computation of the integer moments E
h�P2T

tD1 
vt�
2
vt

�si
can be obtained as

(Mathai and Provost 1992, p. 49)

E

" 
2TX

tD1

vt�

2
vt

!s#
D sŠ

X
p1C

� � �
X

Cp2T Ds



p1
v1 � � �
p2T

v2T

p1Š � � � p2T Š
EŒ�2p1

v1
� � � �2p2T

v2T
� (3.13)

where the summations are over all the partitions p1 C p2 C � � � C p2T D s.
Since the �vt ’s are independent Gaussian random variables with mean �vt and unit

variance (see Theorem 3.2b.1 Mathai and Provost 1992, p. 49), the marginal off-set
normal pdf is finally given by

f .uj�;˙ / D exp.�g=2/j� j 12
.2	/.K�2/T j˙ j 12

s1X
v1D0

� � �
sTX

vT D0
.�1/

PT
tD1 vt

 
s1
v1

!
� � �
 

sT

vT

!

X
p1C

� � �
X

Cp2TDs



p1
v1 � � �
p2T

v2T

p1Š � � � p2T Š
EŒ�2p1

v1
j�v1 ; 1� � � � EŒ�2p2T

v2T
j�v2T ; 1�: (3.14)

In Eq. (3.14), EŒ�2pt
vt � D EŒ�2pt

vt j�vt ; 1� denotes the moments of the univariate
Gaussian distribution with mean �vt and variance 1 and can be calculated as
discussed in Chap. 2—see Eq. (2.6)

EŒ�2pt
vt

j�vt ; 1� D 2pt ptŠ L�1=2
pt

 
��

2
vt

2

!
; t D 1; : : : ; 2T

where L˛q .�/ is the generalized Laguerre polynomial of order q.
The update rule for the mean in Eq. (3.8) also requires the solution of the integral

Z
hf .h;uj�;˙ /dh D exp.�g=2/j� j 12

.2	/.k�2/T j˙ j 12
Z

h
TY

tD1
.h0Ath/k�2fN2T .hj�;� /dh:
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Given h D L� Pvv and letting M D exp.�g=2/j� j 12
.2	/.K�2/T j˙ j 12

, it follows

Z
hf .h;uj�;˙ /dh D M

Z
1

sŠ

s1X
v1D0

� � �
sTX

vT D0
.�1/

PT
tD1 vt

 
s1
v1

!
� � �
 

sT

vT

!
.h0Bvh/shfN2T .hj�;� /dh

D M
1

sŠ

s1X
v1D0

� � �
sTX

vT D0
.�1/

PT
tD1 vt

 
s1
v1

!
� � �
 

sT

vT

!

Z
.0
v�vv/

sL� PvvfN2T .vj	v; I/dv D

D ML�
s1X

v1D0
� � �

sTX
vT D0

.�1/
PT

tD1 vt

 
s1
v1

!
� � �
 

sT

vT

!

Pv
X
p1C

� � �
X

Cp2T Ds



p1
v1 � � �
p2T

v2T

p1Š � � � p2T Š
E


.�2p1
v1

� � � �2p2T
v2T

/v
�
:

The jth entry of E
h
.�
2p1
v1 � � � �2p2T

v2T /v

i
is EŒ�2p1

v1 j�v1 ; 1� � � � EŒ�
2pjC1
vj j�vj ; 1� � � �

EŒ�2p2T
v2T j�v2T ; 1� where EŒ�2pt

vt j�vt ; 1� D 2pt ptŠL
�1=2

pt

�
� �2vt

2

�
and EŒ�2ptC1

vt j�vt ; 1� D
�vt2

pt ptŠL
1=2

pt

�
� �2vt

2

�
.

In addition, the update rule for the covariance matrix in Eq. (3.9) requires the
solution of the integral

Z
hh0f .h;uj�;˙ /dh D exp.�g=2/j� j 12

.2	/.k�2/T j˙ j 12
Z

hh0
TY

tD1
.h0Ath/k�2fN2T .hj�;� /dh

where the expectation can be computed as

Z
hh0f .h; uj�;˙ /dh D M

Z
1

sŠ

s1X
v1D0

� � �
sTX

vT D0

.�1/PT
tD1 vt

 
s1
v1

!
� � �
 

sT

vT

!
.h0Bvh/shh0fN2T .hj�;� /dh

D ML�

s1X
v1D0

� � �
sTX

vT D0

.�1/PT
tD1 vt

 
s1
v1

!
� � �
 

sT

vT

!

Pv
X
p1C

� � � X
Cp2T Ds



p1
v1 � � �
p2T

v2T

p1Š � � � p2T Š
E


.�2p1
v1

� � � �2p2T
v2T

/v
0

v

�
P0

vL0

� :
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Notice that the .jth; jth/ entry of the matrix E
h
.�
2p1
v1 � � � �2p2T

v2T /v
0
v

i
is given

by EŒ�2p1
v1 j�v1 ; 1� � � � EŒ�

2pjC2
vj j�vj ; 1� � � � EŒ�2p2T

v2T j�v2T ; 1�, while the .lth; jth/ entry is

EŒ�2p1
v1 j�v1 ; 1� � � � EŒ�2plC1

vl j�vl ; 1� � � � EŒ�
2pjC1
vj j�vj ; 1� � � � EŒ�2p2T

v2T j�v2T ; 1�.

3.3 Separable Covariance Structure

Many of the statistical problems linked to the modeling of spatial-temporal depen-
dence structures, can be overcome by using separable processes. In shape analysis,
a major advantage of using a separable structure is that the covariance matrix can be
decomposed (by means of a Kronecker product) into purely landmark and temporal
components. This, dramatically reduces the number of parameters in the covariance
matrix, facilitates computational procedures and also allows for the specification of
commonly used temporal processes.

Assume that the 2TK � 2TK covariance matrix, ˙ �, can be expressed as ˙ � D
˙ T ˝ ˙

�
S, where ˙ T is a T � T covariance matrix between temporal observations

and ˙
�
S is a 2K � 2K covariance matrix between landmark coordinates in the

configuration space.
The covariance matrix in the pre-form space, ˙ D .I2T ˝ L/˙ �.I2T ˝ L0/, is

given by ˙ D .I2T ˝ L/.˙ T ˝ ˙
�
S/.I2T ˝ L0/ D ˙ T ˝ Œ.I2 ˝ L/˙ �

S.I2 ˝ L0/� D
˙ T ˝ ˙ S. Therefore, vec.X/ � N2T.K�1/.vec.�/;˙ T ˝ ˙ S/ has pdf

f .vec.X/j�;˙ T ˝ ˙ S/

D M � exp

�
�1
2
Œvec.X/ � vec.�/�0.˙ �1

T ˝ ˙ �1
S /Œvec.X/ � vec.�/�


(3.15)

where M D 

.2	/.K�1/T j˙ T j 2.K�1/

2 j˙ Sj T
2

��1
.

The 2.K � 1/ � T matrix QX D Œvec.X1/ vec.X2/ : : : vec.XT/� thus fol-
lows a matrix normal distribution, QX � N2.K�1/;T.�;˙ S;˙ T/, where � D
Œvec.�1/ vec.�2/ : : : vec.�T/�, ˙ S is the covariance among the rows of X
(landmark coordinates in the pre-form space) and ˙ T is the covariance among the
columns (temporal instants).

Given the induced shape distribution

f .uj�;˙ T ˝ ˙ S/ D exp.�g=2/j� j1=2
.2	/.K�2/T j˙ T j 2.K�1/

2 j˙ Sj T
2

Z TY
tD1

khtk2.K�2/fN .hj�;� /dh

(3.16)

the covariance matrix � , under the separability assumption, can be expressed
in terms of the temporal and the spatial correlation structures as � D
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�
W0.˙ �1

T ˝ ˙ �1
S /W

��1
or equivalently as � D �

˙ �1
T 	 � �1

S

��1
where 	

represent the Katri-Rao product (Khatri and Rao 1968) between the inverse
of the temporal covariance matrix and the inverse of the 2T � 2T matrix

� S D �
W0.UT ˝ ˙ �1

S /W
��1

, with UT D 1t ˝ 10
t.

3.3.1 EM for the Offset Shape Distribution of a Matrix-Variate
Normal Distribution

Considering the complete data X D fX.n/gnD1WN , in the preform space, and the rear-
rangement QX.n/ D �

vec.X.n/
1 / : : : vec.X.n/

T /
�
, where QX.n/ � N2.K�1/;T.�;˙ S;˙ T/,

8n, the ML estimators for ˙ S and ˙ T , such that ˙ D ˙ T ˝ ˙ S, are given by
(Dutilleul 1999)

Ȯ S D 1

NT

NX
nD1
. QX.n/ � O�/ Ȯ �1

T . QX.n/ � O�/0

D 1

NT

NX
nD1

QX.n/ Ȯ �1
T

QX.n/0 � 1

T
O� Ȯ �1

T O�0 (3.17)

Ȯ
T D 1

N.2K � 2/

NX
nD1
. QX.n/ � O�/0 Ȯ �1

S . QX.n/ � O�/

D 1

N.2K � 2/

NX
nD1

QX.n/0 Ȯ �1
S

QX.n/ � 1

2K � 2 O�0
˙ �1

S O� (3.18)

where O� D 1
N

PN
nD1 QX.n/.

In a ML framework (Mardia and Goodall 1993; Dutilleul 1999; Brown et al.
2001), these matrices are estimated iteratively as in a flip-flop algorithm (Lu and
Zimmerman 2005). As known, the solutions for ˙ S and ˙ T are uniquely defined
up to a scalar factor, but the estimate of the covariance matrix of the vectorial form
is uniquely defined.

Given the Cholesky decompositions Ȯ �1
T D LTL0

T and Ȯ �1
S D LSL0

S,
Eqs. (3.17) and (3.18) can be written as

Ȯ S D 1

NT

NX
nD1

TX
tD1

LAt.L0
T ˝I2K�2/vec.X.n//vec.X.n//0.LT ˝I2K�2/ LA0

t �
1

T
O� Ȯ �1

T O�0

(3.19)
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and

Ȯ T D 1

N.2K � 2/

NX
nD1

2K�2X
kD1

MAk.IT ˝ L0
S/vec.X.n//vec.X.n//0.IT ˝ LS/ MA0

k

� 1

2K � 2 O�0 Ȯ �1
S O� (3.20)

where LAt D e0
t ˝ I2K�2, with the T-dimensional vector et defined as et.t1/ D 1,

if t D t1, and zero otherwise. Analogously, MAk D IT ˝ e0
k, where the .2K � 2/-

dimensional vector ek is such that ek.k1/ D 1 if k D k1 and zero otherwise.
Hence, conditional on the shape data U D fu.n/gnD1WN , parameter estimation

can be performed through the EM algorithm, and the maximum of the conditional
log-likelihood (M-step) is achieved at

vec.�.rC1// D 1

N

NX
nD1

Z
vec.X.n//dF

�
X.n/ju.n/;�.r/;˙ .r/

�

˙
.rC1/
S D 1

NT

NX
nD1

TX
tD1

LPt

Z
vec.X.n//vec.X.n//0dF

�
X.n/ju.n/;�.r/;˙ .r/

� LP0
t C

� 1
T

�.rC1/�˙ .r/
T

��1
�.rC1/0

and

˙
.rC1/
T D 1

N.2K � 2/

NX
nD1

2K�2X
kD1

MPk

Z
vec.X.n//vec.X.n//0dF

�
X.n/ju.n/;�.r/;˙ .r/

� MP0
k C

� 1

2K � 2
�.rC1/0�˙ .r/

S

��1
�.rC1/

where LPt D LAt.L
.r/0

T ˝ I2K�2/ and MPk D LAk.IT ˝ L.r/
0

S /.
The expectations of the sufficient statistics, given the observed data at current

parameter estimates, �.r/ and ˙ .r/ D ˙
.r/
T ˝ ˙

.r/
S , can be computed considering

Eqs. (3.8) and (3.9).
With regard to the landmark dependence structure, as seen in the previous

chapter, we could assume a complex structure for ˙ S. For the temporal dependence,
the covariance matrix ˙ T could also be parameterized and a useful choice would
be, for example, to assume the existence of a temporal autoregressive structure.
However, even if we consider landmark isotropy, i.e. ˙ S D I2.K�1/, � D
.W0.˙ �1

T ˝ ˙ �1
S /W0/�1 does not come in the form of a diagonal matrix, and
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the joint distribution of h, fN2T .hj�;� /, cannot be factorized in the product of
its univariate marginal distributions. Hence, the estimation procedure does not
simplify and remains computationally demanding. At this stage, simplifications of
the procedure can only be achieved by assuming ˙ T as a multiple of the identity
matrix and by modeling the dynamics of the process through a parameterized mean
which captures the large-scale variability. In Sect. 3.4, we discuss the case in which
the shape changes over time are modeled through a polynomial regression (Kume
and Welling 2010).

3.3.2 Complex Landmark Covariance Structures

As shown in the previous chapter, second order circularity for the landmark
covariance is achieved by assuming a complex structure for ˙ S. Given the complex
coordinates in the preform space and a separable covariance structure, let Zt, for
each t, be a proper Gaussian complex random vector, such that the landmark
variability is entirely characterized by the complex landmark covariance matrix
˙ Sz D 2.C1;S C iC2;S/ (see, Sect. 2.2). Under the separability hypothesis, it is
straightforward to show that all the random configurations are jointly proper with
complex covariance matrix ˙ z D ˙ T ˝ ˙ Sz .

Given vec.Z/ � CN T.K�1/.vec.�z/;˙ T ˝ ˙ Sz/, in order to derive the offset
distribution of the shape coordinates, we consider the transformation vec.Z/ D � z,
where � D diag.�1 : : : �T/ is a T.K � 1/ � T block-diagonal matrix of shape
coordinates and z D .z2;1 : : : z2;T /0 is a T-dimensional vector of rotation and scale
parameters. The joint distribution of � and z is

f .�; zj�z;˙ z/ D exp

�.� z � vec.�z//

�˙ �1
z .� z � vec.�z//

�QT
tD1 kz2;tk2.K�2/

	T.K�1/j˙ zj

D exp.�gz/

	T.K�1/j˙ zj
TY

tD1
kz2;tk2.K�2/exp


�.z � n/�� �1
z .z � n/

�
(3.21)

where � z D .� �˙ �1
z � /�1, n D � z�

�˙ �1
z vec.�z/ and gz D vec.�z/

�˙ �1
z

vec.�z/� n�� �1
z n.

The covariance matrix of z can also be written as � z D
�
˙ �1

T ˇ � �1
Sz

��1
, where

ˇ is the Hadamard product and � �1
Sz

D � �.UT ˝ ˙ �1
Sz
/� .

Since any subvector of a proper random vector is also proper (Neeser and Massey
1993), the T-dimensional complex-valued random vector z has a proper complex
Gaussian distribution, z � CN T.n;� z/, where � z D 2.G1 C iG2/.
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Therefore the joint distribution, in Eq. (3.21), can be written as

f .�; zj�z;˙ z/ D exp.�gz/j� zj
	T.K�2/j˙ zj

TY
tD1
.z�Atz/

.K�2/fCN .zjn;� z/ (3.22)

where the .T � T/ matrix At D e0
tet D diag.et/ has just the A .t; t/ D 1 entry

different from zero.
The distribution of the shape variables is obtained by integrating out the rotation

and scale parameters

f .�jz;�z;˙ z/ D exp.�gz/j� zj
	T.K�2/j˙ zj

Z TY
tD1
.z�Atz/

.K�2/fCN .zjn;� z/dz D

D exp.�gz/j� zj
	T.K�2/j˙ zj E



.zHAtz/

.K�2/� (3.23)

3.3.3 A Simulation Study

In this section, we describe results from some simulations we have conducted to
investigate how the estimation procedure performs under the separable covariance
structure. The studies were designed to give an indication of the performance of
the EM algorithm, especially for different values of T and N. Specifically, the
simulations were carried out using K D 3 (i.e. a triangle), T D 4; 5; 6, N D
10; 20; 30 and ˙ T having elements from the covariance structure of a first order
autoregressive process with autoregressive parameter equal to 0:5. For simplicity,
we have assumed here an isotropic structure for ˙

�
S, with �2 D 1.

Although the small values for K, N and T, estimation results suggest that the
EM estimator performs reasonably well in terms of bias, standard errors and mean
squared errors. Table 3.1 gives the results of estimation from 50 simulations. Note
that the estimated mean shape of the triangle is given using Bookstein’s coordinates
and is thus represented by the pair of coordinates of the third landmark (i.e.�3;1 and
�3;2). Also, notice that conditional on the values of �, the autoregressive parameter
is estimated numerically by minimizing the negative likelihood.

Estimation of ˙ T , using Eq. (3.20), seems to be more difficult since, for the
chosen parametrization, a bias can still be observed at the extreme values chosen for
T and N. It also appears that the EM is not sensitive to the starting values, though
some convergence problems were encountered in a few cases.1

The studies are not intended to be exhaustive and the choice of K, T and N was
limited by the computational burden of the estimation procedure. To provide an idea

1Convergence problems appear to be more common by using a complex covariance structure
for ˙

�
S
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Table 3.1 The mean (and
standard errors) of the
parameter estimates from 50

simulations of a triangle with
first-order autoregressive
temporal structure

Parameters O�3;1 O�3;2 O�
T D 4;N D 10 �0:177

.0:667/
�1:318
.0:564/

0:509
.0:146/

T D 4;N D 20 �0:217
.0:373/

�1:308
.0:350/

0:542
.0:127/

T D 4;N D 30 �0:212
.0:296/

�1:428
.0:321/

0:52
.0:111/

T D 5;N D 10 �0:162
.0:544/

�1:414
.0:583/

0:468
.0:148/

T D 5;N D 20 �0:211
.0:485/

�1:519
.0:475/

0:499
.0:120/

T D 5;N D 30 �0:212
.0:321/

�1:388
.0:329/

0:521
.0:080/

T D 6;N D 10 �0:157
.0:486/

�1:236
.0:434/

0:448
.0:162/

T D 6;N D 20 �0:162
.0:412/

�1:456
.0:399/

0:514
.0:097/

T D 6;N D 30 �0:189
.0:288/

�1:396
.0:327/

0:511
.0:060/

The true parameters are �3;1 D �0:200, �3;2 D
�1:400 and � D 0:5

Table 3.2 CPU time (in
seconds) required to compute
the expectations in the E-step

K D 3 K D 4

T D 3 0.26 6.8

T D 4 3.56 389.0

T D 5 54.0 21780.0

T D 6 825.0 –

Results refer to a single iter-
ation of the EM algorithm,
assuming N D 1

of the computational difficulties of working with Laguerre polynomials, Table 3.2
shows the CPU time2 (in seconds) required to compute the expectations in Eqs. (3.8)
and (3.9). Notice that results are for a single iteration of the EM algorithm, assuming
N D 1, K D 3; 4 and T varying from 1 to 6. Table 3.2 suggests that is difficult
to work with Laguerre polynomials with K D 3 and T > 6 and that, despite an
explicit expression for Qs.Bv/ is available, this procedure is impractical for K > 3:

One possibility to overcome these difficulties is to rely on Monte Carlo Integration,
which is a simple and powerful technique for approximating complicated integrals
such as those of Eqs. (3.8) and (3.9). In this case we only need to generate a set of
random samples for the h0s from the normal distribution with mean � and covariance
matrix � , i.e. h � N2T.�;� /. A simulation suggests that the expectations from
Laguerre polynomials are reasonably approached by taking at least 5000 samples.
Though this procedure can still be a time-consuming process, the use of Monte
Carlo Integration would allow to work with configurations having K > 3:

2Results are obtained in Matlab with an Intel(R) Core(TM) i7-4558U CPU 2.80 GHz with 8 GB.



3.3 Separable Covariance Structure 47

3.3.4 Temporal Independence

The existence of temporal correlation makes the procedure computationally
demanding, limiting applications to a very small number of landmarks and temporal
instants. Simplifications of the procedure can be achieved by assuming temporal
independence.

Assuming ˙ T D IT , the covariance matrix of the vector of scale and rotation

parameters, � S D �
W0.UT ˝ ˙ �1

S /W
��1

, has a block-diagonal structure, � �1 D
IT 	 � �1

S D diag
�
� �1
1 ; : : : ;�

�1
T

�
, with � t D �

W0
t˙

�1
S Wt

��1
.

From Eq. (3.3), the joint distribution of the shape variables and the rotation and
scale parameters is now given by

f .h;uj�;˙ / D exp.�g=2/

.2	/.K�1/T j˙ Sj T
2

�
TY

tD1
exp

(
� .ht � �t/

0� �1
t .ht � �t/

2

)
khtk2.K�2/

D j� j 12 exp.�g=2/

.2	/.K�2/T j˙ Sj T
2

�
TY

tD1
khtk2.K�2/fN .htj�t;� t/ (3.24)

where j� j D QT
tD1 j� tj, and the marginal (off-set normal shape) pdf is

f .uj�;˙ / D j� j 12 exp.�g=2/

.2	/.K�2/T j˙ Sj T
2

�
TY

tD1

Z
khtk2.K�2/fN .htj�t;� t/dht D

D j� j 12 exp.�g=2/

.2	/.K�2/T j˙ Sj T
2

TY
tD1

E


.h0

tht/
K�2� : (3.25)

For each time t, the expected value E


.h0

tht/
K�2� can be computed as seen in

Sect. 2.4 and the EM update rules for the estimation of � and ˙ S are the same
as those given in Sect. 2.5.

If in addition we assume a complex landmark covariance structure, we have

� z D diag.�z;1; : : : ; �z;1/ with �z;t D
�
��

t ˙ �1
Sz

�t

��1
, and from equation (2.13),

it follows that the joint distribution can be written as

f
�
�; zj�z;˙ Sz

� D
TY

tD1
f
�
�t; z2;tj�z;t;˙ Sz

� D

D
QT

tD1 �z;t exp f�gz;tg
	T.K�2/ ˇ̌˙ Sz

ˇ̌T
TY

tD1
kz2;tk2.K�2/ fCN .z2;tjt; �z;t/

(3.26)
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where t D �z;t�
�
t ˙ �1

Sz
�z;t and gz;t D ��

z;t˙
�1
Sz

�z;t � Nt�
�1
z;t t. The offset-normal

distribution is thus obtained as

f
�
�j�z;˙ Sz

� D
QT

tD1 �z;t exp f�gz;tg
	T.K�2/ ˇ̌˙ Sz

ˇ̌T
TY

tD1

Z
kz2;tk2.K�2/ fCN .z2;tjt; �z;t/ D

D
QT

tD1 �z;t exp f�gz;tg
	T.K�2/ ˇ̌˙ Sz

ˇ̌T
TY

tD1
.K � 2/Š�K�2

z;t LK�2
�

�ktk2
�z;t

	
(3.27)

where LK�2.�/ is the Laguerre polynomial of order K � 2.

3.4 Offset Normal Distribution and Shape Polynomial
Regression for Complex Covariance Structure

In this section we discuss a particular model to study the shape change in time.
Specifically, we discuss a case in which the temporal dynamics of the shape
variables are only modeled through a polynomial regression which captures the
large-scale temporal variability of the process. It is thus assumed that ˙ T D IT

and ˙ S is complex.
Supposing vec.X�/ � N2KT

�
vec.��/;˙ �

�
, the mean of the process is param-

eterized by a polynomial function of order P, i.e. �
�
t D EŒX�

t � D PP
pD0 B�ptp,

with B�p D
�
ˇ.x/

�

p ˇ.y/
�

p

�
, and ˇ.x/

�

p and ˇ.y/
�

p K-dimensional vectors of regression

coefficients.
Therefore, we can write vec.X�/ � N2KT.D�ˇ�;˙ �/, where ˇ� D

vec
�

B�0 : : :B
�
P

�
is a 2K.P C 1/-dimensional vector of regression coefficients,

and the .2KT � 2K.P C 1// design matrix can be constructed as D� D .T ˝ I2K/,
with

T D

0
BBB@
1 t1 : : : tP

1

1 t2 : : : tP
2

:::
::: : : :

:::

1 tT : : : tP
T

1
CCCA :

Notice that we require here that T > P C 1. The coordinates in the preform
space can be obtained as vec.X/ D .I2T ˝ L/vec.X�/, and therefore vec.X/ �
N2.K�1/T.Dˇ;˙ /, with ˇ D .I2.PC1/ ˝ L/ˇ�, D D T ˝ I2.K�1/, and ˙ D .I2T ˝
L/˙ �.I2T ˝ L0/.

Given a random sample of N sequence of configurations, X D fX.n/g, since the
ML estimator of the regression parameters for the complete data is given by
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Ǒ D 1

N

NX
nD1

�
D0D

��1
D0vec.X.n//

the update rule in the maximization step is

ˇ.rC1/ D 1

N

NX
nD1

�
D0D

��1
D0
Z
vec.X.n//dF

�
X.n/ju.n/;Dˇ.r/;˙ .r/

�
: (3.28)

If we assume that the covariance has a Kronecker product form with tempo-
ral independence and that the configurations follow a proper complex Gaussian
distribution, we have vec.Z�/ � CN KT.D

�
z ˇ�z ; IT ˝ ˙

�
Sz
/, where the K.P C

1/-dimensional vector of complex regression coefficients is given by ˇ�z D
vec

�
ˇ
.x/�
0 C iˇ.y/�0 : : :ˇ

.x/�
P C iˇ.y/�P

�
, and the K � K.P C 1/ design matrix is

constructed as D�
z D .T ˝ IK/. Consequently the distribution in the preform space

is given by vec.Z/ � CN .K�1/T.Dzˇz; IT ˝ ˙ Sz/, with ˇz D .IPC1 ˝ L/ˇ�z ,

Dz D T ˝ IK�1, and ˙ Sz D L˙
�
Sz

L0.
Now, in the maximization step of the EM algorithm, the update rules for the

regression coefficients and the landmark covariance matrix are

ˇ.rC1/
z D 1

N

NX
nD1

QD.r/
z

Z
vec.Z.n//dF
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In the E-step of the algorithm, since vec.Z/ D � z and zt D � tz2;t, the
expectations of the sufficient statistics can be computed as
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Eq. (3.31) thus follows from Sect. 2.5.1.

3.4.1 Modeling the Dynamics of Facial Expressions
by Shape Regression

In this section we consider again the FG-NET data with the aim of using a
polynomial shape regression to modeling the dynamics of the facial expressions.
Differently from Sect. 2.6, we now work with all the 7 frames which have been
chosen to summarize the dynamics of the expressions. Considering a complex
covariance structure for ˙ S, we fit both first and second order polynomial regression
models. The standard AIC model selection criterion suggests that the model with
P D 2 has to be preferred and the estimated mean paths for happiness and surprise
expressions are shown in Fig. 3.1. The landmarks are represented by green dots
while red dots represent the starting point of the estimated paths. The full estimated
mean path is represented in blue.
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Fig. 3.1 Mean path estimates for happiness (top) and surprise (bottom) expressions

In general, it can be observed that happiness is characterized by a slight
narrowing of the eyelids and a raising of the lip corners describing an upward
curving of mouth and expansion on vertical and horizontal direction. On the
other hand, surprise appears more with a vertical expansion of the mouth. As for
happiness, the dynamics of the eyes, the eyelids and the eyebrows do not represent
specific features of the expression.

3.5 Matching Symmetry

In various fields there is considerable interest in measuring bilateral symmetry
of objects and in how to test the hypothesis of bilateral symmetry between left
and right sides. In this section, for computational reasons, we only consider the
problem of matching symmetry (Mardia et al. 2000) for which, given an object, we
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27

28
29

30

31

32

33

34

Fig. 3.2 Representation of the mouth region with the midline passing through the solos 29 and 33.
In this region there are also the following three paired landmarks: .27; 31/, .28; 30/ and .34; 32/

have separate landmark configurations for the left and right sides that are mirror
images of each other. For the FG-NET data, we constrain the analysis to the mouth
region where, as shown in Fig. 3.2, we distinguish three paired landmarks and two
solos which lie exactly on the midline of the mouth. In this case, for example, the
Happiness expression is said symmetric if the pattern observed on the left side of
the midline of the mouth is the same as the pattern observed on the right side. In
order to verify the presence of symmetry in the mouth region, we thus compare the
dynamics of the estimated mean paths of the triangle configurations represented by
the landmarks on the left and right sides of the midline.

Let X�.l/ and X�.r/ be the left and right triangle configurations. We first reflect
X�.r/ using the orthogonal matrix, H D diag.�1; 1/. Then, following Sect. 3.3.1,
we estimate both the mean � and the covariance matrices, ˙ S and ˙ T , for the left
and right samples.

To test whether these mean paths differ from each other only by some rotation,
as in Sect. 2.6, we may use the likelihood ratio test statistic with the hypothesis

(
H0 W �

.l/
z D �

.r/
z

H1 W �
.l/
z ¤ �

.r/
z ; ˙ .l/

z D ˙ .r/
z :

For the alternative hypothesis, the EM algorithm is applied to the left and right
sides separately while keeping the entries of the covariance matrices, ˙ .l/

z and
˙ .r/

z , equal to the estimated covariance matrix of the pooled sample. A schematic
representation of the estimated mean paths for the pooled, left and right samples,
is shown in Fig. 3.3. The estimated temporal covariance matrix suggests that, in
average, the correlation between two-consecutive time points is around 0:45.

The resulting log-likelihood values for the left and right configurations are equal
to 139:62 and 131:74, respectively. Instead, the log-likelihood for the pooled sample
is 272:99. Since �2 log� is distributed as �29 under the null hypothesis, the test

suggests that modulo rotations, �
.l/
z and �

.r/
z are not different and hence, in the
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Fig. 3.3 Bookstein shape coordinates of the mean paths estimated for left (continuous line) and
right (dashed line) triangle configurations. The dot-dashed path represents the dynamics of the
pooled sample. The paths are obtained by estimating the parameters of a Matrix-Variate Normal
distribution for the three paired landmarks within the mouth region

mouth region, the Happiness expression is symmetric in its dynamics. Of course
the test assumes that the left- and right-side samples should be independent and this
might not be true in practice.

Notice that here, for computational reasons, we have restricted the analysis to
only 3 landmarks. However, the NonParametric Combination (NPC) test is able to
work with the complete landmark configuration and can also consider the problem
of bilateral symmetry in terms of object symmetry (Mardia et al. 2000). As it will
be shown in Chap. 5, results from this analysis support those achieved here for the
mouth region.

3.6 Mixture Models for Classification

In many applications of data modeling finite mixtures of distributions (see, for
example, McLachlan and Peel 2000 and Everitt and Hand 1981) provide a sensible
model for a data at hand. Because of their flexibility and usefulness, they have
continued to receive increasing attention over the years.

In this section we discuss the use of a mixture of offset-normal shape distributions
for classification problems. In practice, for happiness and surprise expressions, we
only consider a two-component problem and, as in previous section, we concentrate
the analysis on the mouth region which is the part showing the most significant
temporal changes.

Assume that X�.1/ ; : : : ;X�.N/ is a sample from a mixture of G normal

distributions with density fN
�
X�
� D PG

gD1 	gfN ;g

�
X�j��

g;˙
�
g

�
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fN .X/ D PG
gD1 	gfN ;g

�
Xj�g;˙ g

�
and the induced distribution of shape

variables is given by a linear combination of offset-normal distributions, that is
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uj�g;˙ g

�
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The problem of estimating the parameters in a finite mixture has been studied
extensively in literature. The book by Everitt and Hand (1981) provides an excellent
overview of this topic and offers several methods for parameter estimation. In
general, model parameter estimates can be obtained by maximizing the log-
likelihood function for the entire set of N (independent) configurations, and the
EM algorithm is a standard tool in this framework. In statistical shape analysis,
considering a sample of configurations at a specific time, Kume and Welling (2010)
provide the relevant update rules of the EM algorithm for the parameters 	g, �g

and ˙ g. Here, these update rules are extended to a dynamic setting where, as in
Sect. 3.4, we assume that the mean can be parameterized by a polynomial function.
Furthermore we consider a separable covariance structure with independence in
time and a complex covariance structure for the landmarks. The update rules are
given below in complex notation.

Given the number G of mixture components, the estimated posterior probability
that an observed sequence of shapes, �.n/, belongs to the g-th term is given by
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We can use the estimated posterior probabilities to obtain a weighted update of

the parameters for each component. This gives the iterative EM update equations
for the mixing coefficients, the parameterized means and the covariance matrices:
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Table 3.3 Confusion matrices for the hap-
piness and surprise expressions with first
and second order polynomials for the mean
functions and complex covariance structure
for the landmarks

Happiness Surprise

P=1 Happiness 12 4
Surprise 0 16

P=2 Happiness 15 1
Surprise 2 14

Results on hypothesis testing performed in Sect. 2.6 provided some evidence
about significant differences between happiness and surprise expressions. Here, by
using first and second order polynomials for the mean functions and a complex
covariance structure for the landmarks, we use mixture models (assuming G D 2)
for classifying the two facial expressions. Table 3.3, which represents the confusion
matrices for the estimated models, shows that with a misclassification error of about
6:0%, obtained for the second order polynomial regression, the two expressions can
be easily distinguished.
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Chapter 4
Parametric and Non-parametric Testing
of Mean Shapes

Abstract This chapter deals with inferential aspects in shape analysis. At first we
review inferential methods known in the shape analysis literature, highlighting some
drawbacks of using Hotelling’s T2 test statistic. Then we present an extension of
the NonParametric Combination (NPC) methodology to compare shape configura-
tions of landmarks.

NPC tests represent an appealing alternative since they are distribution-free and
allow for quite efficient solutions when the number of cases is lower than the
number of variables (i.e., (semi)landmarks coordinates). This allows to obtain better
representations of shapes even in presence of small sample size. NPC methodology
enables to provide global as well as local evaluation of shapes: it is then possible to
establish whether in general two shapes are different and which landmark/subgroup
of landmarks mainly contributes to differentiate shapes under study. NPC tests enjoy
the finite-sample consistency property hence, in this nonparametric framework, it is
possible to obtain efficient solutions for multivariate small sample problems, like
those encountered in the shape analysis field. We finally present a NPC solution for
longitudinal data.

Keywords Multi-Aspect approach • NonParametric Combination methodology
• Permutation tests combination-based for repeated measures design

4.1 Inferential Procedures for the Analysis of Shapes

The statistical community has shown an increased interest in shape analysis in
the last decade and particular efforts have been addressed to the development of
powerful statistical methods based on models measuring the shape variation of
entire landmark configurations. Rohlf (2000) reviews the main tests used in the
field of shape analysis and compares the statistical power of various tests that have
been proposed to test for equality of shape in two populations. Even if his work
is limited to the simplest case of homogeneous, independent, spherical variation
at each landmark and the sampling experiments emphasize the case of triangular
shapes, it allows the practitioners to choose the method that has the highest statistical
power under a set of assumptions that are appropriate for the data. Through a

© The Authors 2016
C. Brombin et al., Parametric and Nonparametric Inference for Statistical
Dynamic Shape Analysis with Applications, SpringerBriefs in Statistics,
DOI 10.1007/978-3-319-26311-3_4
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simulation study, he found that Goodall’s F-test had the highest power followed by
T2-test using Kendall tangent space coordinates. Power for T2-tests using Bookstein
shape coordinates was good if the baseline was not the shortest side of the triangle.
The Rao and Suryawanshi shape variables had much lower power when triangles
were not close to being equilateral. With reference to interlandmark distance-based
approaches, power surfaces for the EDMA-I T statistic revealed very low power for
many shape comparisons including those between very different shapes. We remind
the reader that EDMA stands for Euclidean Distance Matrix Analysis. On the other
hand, power surface for the EDMA-II Z statistic depended strongly on the choice
of baseline used for size scaling (Rohlf 2000).

All the above mentioned tests are based on quite stringent assumptions. In
particular, the tests based on the T2 statistic (e.g. T2-tests using Bookstein, Kendall
tangent space coordinates, Rao and Suryawanshi shape variables, like Rao-d (1996)
and Rao-a (1998)) require independent samples, homogeneous covariance matrices
and shape coordinates distributed according to the multivariate normal distribution.
We remark that Hotelling’s T2 test statistic is derived under the assumption of
population multivariate normality and it may not be very powerful unless there
are a large number of observations available (Dryden and Mardia 1998). It is well
known in the literature that Hotelling’s T2 test is formulated to detect any departures
from the null hypothesis and therefore often lacks power to detect specific forms
of departures that may arise in practice, i.e. the T2 test fails to provide an easily
implemented one-sided (directional) hypothesis test (Blair et al. 1994).

Goodall’s F test requires a restrictive isotropic model and assumes that the
distributions of the squared Procrustes distances are approximately Chi-squared
distributed.

If we consider the methods based on interlandmark distances, EDMA-I T
assumes independent samples and the equality of the covariance matrices in the
two populations being compared (Lele and Cole 1996), while EDMA-II Z assumes
only independent samples and normally distributed variation at each landmark.

In order to complete the review on main tests used in shape analysis, we recall
the development and application of bootstrap methods in this field. In particular, we
mention the pivotal bootstrap methods for multisample problems with directional
data or shape data, proposed in the paper by Amaral et al. (2007). The basic
assumption here is that the distribution of the sample mean shape (or direction
or axis) is highly concentrated. This is substantially weaker assumption than is
entailed in tangent space inference (Dryden and Mardia 1998) where observations
are presumed highly concentrated.

Authors presented an extensive simulation study to investigate the performance
of the proposed 
min statistic (i.e., the smallest eigenvalue of a certain positive
matrix), Goodall, Hotelling, and James statistics. Simulation results showed that
bootstrap procedure performs better than parametric procedures in various situations
and may be used to analyze landmark-based shapes in 3 or more dimensions
(Dryden et al. 2008; Preston and Wood 2010, 2011).
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As pointed out in Good (2000), the assumption of equal covariance matrices
may be unreasonable especially under the alternative, the multinormal model in
the tangent space may be doubted and sometimes there are few individuals and
many landmarks, implying over-dimensioned spaces and loss of power for the
Hotelling’s T2 test. Hence when sample sizes are too small, or the number of
landmarks is too large, it is essentially inefficient to assume that observations are
normally distributed. An alternative procedure is to consider a permutation version
of the test (see Good 2000; Dryden and Mardia 1993; Bookstein 1997; Terriberry
et al. 2005). Permutation methods are distribution-free, allow us for quite efficient
solutions when the number of cases is less than the number of covariates and may
be tailored for sensitivity to specific treatment alternatives providing one-sided as
well as two-sided tests of hypotheses (Blair et al. 1994).

On the basis of these considerations, an extension of the NonParametric Combi-
nation (NPC) methodology has been proposed (Pesarin 2001; Pesarin and Salmaso
2010b; Brombin 2009; Brombin et al. 2008; Brombin and Salmaso 2009; Brombin
et al. 2009a,b; Alfieri et al. 2012).

In particular in Brombin and Salmaso (2009), an exhaustive simulation study
has been carried out to compare power behaviour of traditional tests proposed in
literature with that of the NPC tests. Actually, traditional Hotelling’s T2 test may
not be very powerful in presence of small samples (Dryden and Mardia, 1998, Blair
et al., 1994). For these reasons, a nonparametric permutation counterpart has been
proposed and it has been shown that the power of this test increases when increasing
the number of the analyzed variables, even when the number of analyzed variables
is larger than the permutation sample space.

On the basis of these results, throughout a simulation study, it has been illustrated
that power of multivariate NPC tests increases when increasing the number of the
processed variables provided that the noncentrality parameter increases, even when
the number of covariates is larger than the permutation sample space. This behavior
reflects the notion of finite-sample consistency for permutation tests combination-
based. Specifically, for a given and fixed number of subjects, when the number of
variables and the associated noncentrality parameter, induced by the test statistic,
both diverge, then the power function of multivariate NPC tests based on associative
statistics converges to one.

These results hold true even when considering functions of the noncentrality
parameter or in presence of random effects.

4.2 NPC Approach in Shape Analysis

4.2.1 Brief Description of the Nonparametric Methodology

The NonParametric Combination (NPC) methodology (Pesarin 2001; Pesarin and
Salmaso 2010b) is a conditional testing procedure that, under very mild and
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reasonable conditions, provided that exchangeability of data with respect to groups
is satisfied in the null hypothesis, is found to be consistent and unbiased (Celant
et al. 2000; Pesarin and Salmaso 2010a).

An extension of the NPC methodology to shape analysis was originally proposed
by Brombin (2009) and Brombin and Salmaso (2013).

NPC tests are relatively efficient and do not require strong underlying assump-
tions as the traditional parametric competitors or standard distribution-free methods
based on ranks, which are generally not conditional on sufficient statistics and
almost never show better unconditional power behaviour.

Actually, permutation tests are essentially exact in a nonparametric conditional
framework, where conditioning is on the pooled observed data set, which is
generally a set of sufficient statistics in the null hypothesis.

Provided the permutation principle applies, one major feature of the nonparamet-
ric combination of dependent tests is that attention must be paid to a set of partial
tests, each appropriate for the related sub-hypotheses. In general, the researcher is
not explicitly required to specify the dependence structure of response variables
since the underlying dependence structure is nonparametrically and implicitly
captured by the combining procedure. Moreover, in this framework conditional
inferential results may be extended to the unconditional ones (Pesarin 2002) and,
due to their nonparametric nature, NPC tests may be computed even when the
number of covariates exceeds the number of cases.

The NPC methodology consists of the following steps:

• a breaking down of the hypotheses into r, r > 1, sub-hypotheses, where for each
sub-hypothesis, a suitable partial permutation test statistic is available;

• a conditional simulation procedure which, by conditioning with respect to the
set of observed data, provides an estimate of the null multivariate permutation
distribution of the whole set of test statistics;

• a combination of the partial tests into a second-order statistic whose null
permutation distribution is estimated by using the same simulation results of the
previous step (Celant et al. 2000).

In the context of shape analysis, the breaking down of the hypotheses enables to
provide global as well as local evaluation of shapes: it is then possible to establish
whether in general two shapes are different and which landmarks, or subgroups of
landmarks (i.e. domains), mainly contribute to differentiate the shapes under study.

With K landmarks in m dimensions, by applying the NPC methodology, the
hypothesis testing problem is broken down into two stages, considering both
coordinates and landmark levels. Partial test statistics for one-sided hypotheses
can be formulated and a global test then follows by combining at the first stage
coordinates with respect to m and then with respect to K.

Hence, in two dimensions (i.e. m D 2), shape coordinates, give rise to the
sub-hypotheses of the problem and thus provide the basis for a set of partial tests
(namely, coordinate partial tests). By combining these partial tests, it is then possible
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to obtain a p-value for each landmark. Depending on the problem at hand, one could
focus on the coordinate level or on the landmark level (after combining coordinates)
and, finally, on the global test.

Using the NPC methodology a researcher is thus able to obtain not only a global
p-value, as in traditional tests, but also a p-value for each landmark. Partial tests
can provide marginal information for each specific landmark while jointly they can
provide information on the global hypothesis. In this way, if we find a significant
departure from the null hypothesis, one can investigate the nature of this departure
in detail.

It should be noted that proceeding in this way, multiplicity problems may arise
due to the large number of hypotheses to be tested on the same data. Hence
intermediate partial p-values need to be adjusted for multiplicity.

Among all the “good” properties of NPC tests, we mention the finite-sample
consistency (FSC) notion (Pesarin and Salmaso 2010a). For a given and fixed
number of subjects, when the number of variables (e.g., landmark coordinates) and
the associated noncentrality parameter, induced by the test statistic, both diverge,
then the power function of multivariate NPC tests based on associative statistics
converges to one.

Such findings look very useful to solve multivariate small sample problems,
often occurring in shape analysis. Most of traditional inferential methods in shape
analysis are parametric and they often require large sample size while, in practice,
researchers may have to work with fat data, where there are more variables than
observations.

Many complex multivariate problems, like those faced when dealing with data
of two- or three-dimensional shapes/objects, are difficult to handle outside the
conditional framework and in particular outside the nonparametric combination
(NPC) of dependent permutation tests method. As pointed out in Pesarin and
Salmaso (2010b), despite in the literature permutation tests are mostly derived by
means of heuristic arguments (Edgington and Onghena 2007; Good 2005), their
natural theoretical background must be referred to the principles of conditional
inference (Birnbaum 1962; Edwards 1972). Since within this framework it can
be proved that permutation tests are provided with suitable theoretical properties
(Pesarin and Salmaso 2010b, 2012), whenever permutation tests are correctly
applicable, their results may be extended, at least in a weak sense, to population
inferences (Pesarin 2002).

It is worth noting that within a parametric framework the extension from samples
to populations is possible only when the data set is randomly selected by well-
designed sampling procedures on well-defined population distributions, provided
that their nuisance parameters are completely removable (Pesarin 2002). When these
conditions fail, especially if selection-bias procedures are used for data collection
processes, in general most of the parametric inferential extensions are wrong or
misleading. On the contrary, the permutation-based inferential conclusions may be
always extended to the reference population even in case of selection-bias sampling
(Pesarin 2002).
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4.2.2 A Two Independent Sample Problem with
Landmark Data

Let us assume that several landmark data fX�gijs
g are collected on different individu-

als grouped into sensible groupings, where i D 1; : : : ; ng labels different individuals,
g D 1; : : : ;G labels the groups in which subject i belongs to, j D 1; : : : ;K labels
different landmarks, s D 1; : : : ;m labels different dimensions.

Without loss of generality, let us examine a two independent sample problem
(g D 1; 2, n1, n2) where objects are represented in the plane (m D 2).

Let fVgig denote the K � 2 (centered not Helmertized) matrix of Procrustes

tangent coordinates of the data fX�
gig.

In practice, denoting by .a�
1 ; : : : ; a

�
N/ a permutation of the labels .1; : : : ;N/,

fVgig� D fV�
gijs

D Vga�

i
js ; i D 1; : : : ; ng; g D 1; 2; j D 1; : : : ;K; s D 1; 2g is

the related permutation of Vgi , so that V�
1js

D fV�
1ijs

D V1a�

i
js ; i D 1; : : : ; n1; j D

1; : : : ;K; s D 1; 2g and V�
2js

D fV�
2ijs

D V2a�

i
js ; i D n1 C 1; : : : ;N; j D 1; : : : ;K; s D

1; 2g are the two permuted samples, respectively.
For simplicity, we may assume that the landmark coordinates in tangent space

behave according to the following model:

Vjsgi D �js C ıgjs C �js Zgijs ;

i D 1; : : : ; ng, g D 1; 2, j D 1; : : : ;K, s D 1; 2, where

– �js represents a population constant for the jsth variable (i.e. landmark coordi-
nate);

– ıgjs represents a group effect at level g on the jsth variable which, without loss of
generality, is assumed to be ı1js D 0, ı2js � .or �/ 0, 8.js/;

– �js represent population scale coefficients for variable js;
– Zgijs are random errors assumed to be exchangeable with respect to treatment

levels, independent with respect to units, with zero mean, E
�
Z
� D 0, and finite

second moment (Pesarin and Salmaso 2010b).

Hence landmark coordinates in the first group differ from those in the second
group by a ‘quantity’ ı, where ı represents a q-dimensional vector of effects, with
q D K � 2. Again, V�

gijs
, i D 1; : : : ; ng, g D 1; 2, j D 1; : : : ;K, s D 1; 2, indicates a

permutation of the original data.
Therefore the specific hypotheses may be expressed as

H0 W
q\

jsD1
fV1js

dD V2jsg vs. H1 W
q[
js

f.V1js C ı/
d
> V2jsg;

where
d
> stands for distribution (or stochastic) dominance.
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With To
js
.0/ and T�

js
.0/ we indicate respectively the observed and permutation

values of Tjs when ı D 0, i.e. under H0.
The assumptions regarding the set of partial tests T D fTjs ; j D 1; : : : ;K; s D

1; 2g necessary for nonparametric combination are:

1. All permutation partial test Tjs are marginally unbiased and significant for large
values, so that they are stochastically larger in H1 than in H0.

2. All permutation partial tests Tjs are consistent, that is,

PrfTjs � Tjs˛jH1jsg ! 1; 8˛ > 0; j D 1; : : : ;K; s D 1; 2;

as n tends to infinity, where Tjs˛ < C1 is the critical value of Tjs at level ˛. In
order to obtain global traditional consistency it suffices that at least one partial
test is consistent (Pesarin 2001; Pesarin and Salmaso 2010b).

Let 
js ; j D 1; : : : ;K; s D 1; 2 be the set of p-values associated with partial tests in
T, that are positively dependent in the alternative and this irrespective of dependence
relations among component variables in V .

In shape analysis field, j D 1; : : : ;K; s D 1; 2 represents the K landmarks in
two dimensions. In order to apply NPC methodology, usually the hypothesis testing
problem is broken down into two stages, considering both the coordinate and the
landmark level (and, if present, the domain level too). Hence, we formulate partial
test statistics for one-sided hypotheses and then we consider the global test T 00
obtained after combining at the first stage with respect to s, then with respect to
j (of course, this sequence may be reversed).

We wish to remark that in Brombin (2009); Brombin and Salmaso (2013), the
effect of Generalized Procrustes Analysis (GPA) superimposition on the power
of NonParametric Combination (NPC) tests has been investigated throughout a
simulation study. Actually, it has been shown that including GPA, NPC tests are
approximate, since GPA superimposition provides permutationally non-equivalent
transformations (Brombin 2009). Moreover, the probability distribution of trans-
formed data after GPA may be altered with respect to the initial distribution. Hence
GPA privileges the shape, but it may alter the dependency structures and, as a
result, the distribution producing permutationally non-equivalent tests within the
permutation testing framework In the extreme case, if we consider two shapes that
differ only for a scale factor (e.g. a big and a small circle), without GPA, inferential
results obtained using NPC tests lead us to accept the alternative hypothesis, i.e.
the two shapes are significantly different. On the other hand, after superimposition,
we just accept the null hypothesis, stating the equality of the two shapes. Hence,
inferential conclusions may be highly different.
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4.2.3 A Suitable Algorithm

We now illustrate the algorithm for calculating the multivariate test, in its simplest
version. Then we may add a multi-aspect procedure and adjust partial p-values for
multiplicity through closed testing procedure (Finos and Salmaso 2007; Brombin
2009; Brombin and Salmaso 2009).

� The first phase (coordinate level) of a procedure estimates the distribution of T
including the following steps:

1a. Calculate the vector of observed values of tests T W To D T.Vjs/.
1b. Consider a member g�, randomly drawn from the set G of all possible

permutations, and the values of vector statistics T� D T.V�
js
/, where V�

js
D

g�.Vjs/. In most situations, the data permutation V�
js

may be obtained at first
by considering a random permutation .a�

1 ; : : : ; a
�
n / of integers .1; : : : ; n/ and

then by assignment of related individual data vectors to the proper group;
thus, according to the unit-by-unit representation, V�

js
D fVjs.a

�
i /; i D

1; : : : ; nI n1; n2g.
1c. Carry out B independent repetitions of step (b). The set of Conditional Monte

Carlo (CMC) sampling results fT�
r ; r D 1; : : : ;Bg is thus a random sampling

from the permutation q-variate distribution of vector test statistics T.
1d. The q-variate EDF OFB.zjVjs/ D 


1
2

CP
r I.T�

r � z/
�
=.B C 1/, 8z 2

Rq, gives an estimate of the corresponding q-dimensional permutation
distribution F.zjVjs/ di T. Moreover,

OLjs.zjVjs/ D
"
1

2
C
X

r

I.T�
jsr � z/

#
=.B C 1/; j D 1; : : : ;K; s D 1; : : : ; d;

gives an estimate 8z 2 R1 of the marginal permutation significance level
functions Ljs.zjVjs/ D PrfT�

js
� zjVjsg; this OLjs.TjsojVjs/ D 
js . This gives an

estimate of the marginal p-value related to test Tjs .

At the end of this first phase, we get a p-value for each landmark coordinate,
hence in total Km, partial p-values.

If, for example, we analyze an object characterized by K D 4 landmarks
in the plane (m D 2), hence 
�

1 is the permutation p-value corresponding to
the first tangent coordinate representing the position of the first landmark in the
x direction, 
�

2 the permutation p-value corresponding to the second tangent
coordinate representing the position of the first landmark in the y direction,

�

3 the permutation p-value corresponding to the third tangent coordinate
representing the position of the second landmark in the x direction, 
�

4 is the
permutation p-value corresponding to the fourth tangent coordinate representing
the position of the second landmark in the y direction and so on (see Fig. 4.1).
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Fig. 4.1 Algorithm for
K D 4 two-dimensional
landmarks and two domains
combinations
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λ

′∗
1

λ
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λ
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λ
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4

NPC
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︷ ︸︸ ︷
ψ(λ

′∗
1 ,λ

′∗
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ψ(λ
′∗
3 ,λ

′∗
4 )
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︷ ︸︸ ︷
λ

′′∗
d1

λ
′′∗
d2

4thstep
global test
︷ ︸︸ ︷

T
′′′′∗

� The second phase (landmark level) of the algorithm includes the following steps.

2a. The q observed p-values are estimated from the data Vjs by 
js D OLjs.TjsojVjs/,
where Tjso D Tjs.Vjs/, j D 1; : : : ;K, s D 1; : : : ;m, represent the observed
values of partial tests and OLjs is the jsth marginal significance level function,
the latter being jointly estimated by the Conditional Monte Carlo (CMC)
sampling method on data set Vjs , in accordance with step (1d) above.

2b. The combined observed value of the second-order test is evaluated through
the same CMC results of the first phase, and is given by the combination of
sequential couples (or triplets) of landmark indexes (landmark coordinates)
as illustrated in Fig. 4.1. For example the observed statistic related to the first
landmark (in two-dimensional case), is given by

T
00

1o D  .
1; 
2/:

2c. The rth combined value of vector statistics (step (1d)) for the first landmark is
then calculated by

T
00�
1r D  .
�

1r; 

�
2r/;

where 
�
1r D OL1.T�

1rjVjs/, r D 1; : : : ;B.
Steps (2b) and (2c) will be repeated K times, in order to obtain a partial p-value
for each landmark

� The third phase (domain level) of the algorithm include the following steps.

3a. Let us assume that Z out of K landmarks, 1 � Z � K, constitute the
first domain (i.e. a subgroup of landmarks sharing anatomical, biological or
locational features); A out of K landmarks, 1 � A � K, constitute the second
domain and C out of K landmarks, 1 � C � K, constitute the third domain.
We have just defined three domains but, of course, we may define more than
three domains.

3b. The combined observed value of the third-order test is evaluated through the
same CMC results of the second phase, and is given by

T
000

Zo D  .

0

1; : : : ; 

0

Z/:

corresponding to the first domain,
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T
000

Ao D  .

0

1; : : : ; 

0

A/:

corresponding to the second domain, and

T
000

Co D  .

0

1; : : : ; 

0

C/:

corresponding to the third domain.
3c. The rth combined value of vector statistics is then calculated by

T
000�
Zr D  .


0�
1r ; : : : ; 


0�
Zr/;

where 

0�
zr D OLz.T

000�
zr jV/, z D 1; : : : ; z, r D 1; : : : ;B, is the permutation

p-value corresponding to landmarks belonging to the first domain;

T
000�
Ar D  .


0�
1r ; : : : ; 


0�
Ar/;

where 
�
ar D OLa.T

000�
ar jV/, a D 1; : : : ;A, r D 1; : : : ;B, is the permutation

p-value corresponding to landmarks belonging to the second domain;

T
000�
Cr D  .


0�
1r ; : : : ; 


0�
Cr/;

where 

0�
cr D OLc.T

000�
cr jV/, c D 1; : : : ;C, r D 1; : : : ;B, is the permutation

p-value corresponding landmarks belonging to the third domain;

Hence at the end of this step we obtain different p-values corresponding to
predefined domains. Figure 4.1 illustrates an example where we have defined
2 domains, namely d1 and d2, combining landmarks 1; 2 and landmarks 3; 4
respectively.

� The fourth and last phase provides the global p-value.

4a. The combined observed value of the global test is evaluated through the same
CMC results in the first phase, and is given by:

T
0000

o D  .

0�
1 ; 


0�
2 ; 


00�
Z ; : : : ; 


00�
A ; : : : ; 


00�
C /:

4b. The rth combined value of vector statistics (step (S.dk)) is then calculated by

T
0000�
r D  .


0�
1r ; 


0�
2r ; 


00�
Zr ; : : : ; 


00�
Ar ; : : : ; 


00�
Cr /:

4c. Hence, the p-value of the combined test T
0000

is estimated as



0000

 D P
r I.T

0000�
r � T

0000

o /=B:

4d. If 

0000

 � ˛, the global null hypothesis H0 is rejected at significance level ˛.
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This algorithm may be generalized to include multi-aspect (MA) evaluations
(Pesarin and Salmaso 2010b; Brombin and Salmaso 2013). As well known,
different tests of significance are appropriate to test different features of the same
null hypothesis (Fisher 1935). Actually a certain treatment or environment may
affect/influence not only location but also scale coefficients or other aspects: these
hypotheses may conveniently be examined through several test statistics, each one
sensitive to differences that affect a particular aspect of the two distributions.

To summarize, the MA procedure embodies three steps: combination.

• definition of the aspects of interest and selection of a suitable test statistic for
each aspect;

• organization of the aspects in a hierarchical structure;
• choice of a proper combining function to combine within and between aspects.

MA approach aims to supply a global evaluation on the basis set of partial tests,
allowing also for the vice versa. Partial and global tests are exact, unbiased and
consistent and MA is robust under very mild conditions (Salmaso and Solari 2005).

One of the main feature and advantage of the proposed approach is that using the
MA procedure and the information about domains we are able to obtain not only
a global p-value, like in traditional tests, but also a p-value for each of the defined
aspects or domains. Hence following our procedure it is possible to construct a
hierarchical tree, allowing for testing at different levels of the tree. On one hand
partial tests may provide marginal information for each specific aspect, on the other
they jointly provide information on the global hypothesis. In this way, if we find
a significant departure from H0, we can investigate the nature of this departure in
detail. Also, one can move from the top to the bottom of the tree and, for interpreting
results in a hierarchical way, from the bottom to the top. It is worth noting that
“intermediate” level p-values need to be adjusted for multiplicity.

4.3 General Framework for Longitudinal Data Analysis
in NPC Framework

Let us now assume that landmark data are available on different individuals at a
common set of times, taking the form of a 5-way array, fX�gijs

.t/g, where again
i D 1; : : : ;N labels different individuals, g D 1; � � � ;G labels the groups in which
subject i belongs to, j D 1; : : : ;K labels different landmarks, s D 1; : : : ;m indicates
different dimensions and t D 1; : : : ;T labels different times. As seen in previous
sections, it is possible to represent these data as a collection fX�gi.t/g of K � m
matrices. As well known, the direct analysis of databases of landmark locations
is not convenient because of the presence of nuisance parameters, such as position,
orientation and size. Generalized Procrustes Analysis (GPA) is usually performed
to eliminate non-shape variation in configurations of landmarks and to align the
specimens to a common coordinate system (Rohlf and Slice 1990). In light of
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these considerations, we use Procrustes tangent coordinates about a centered and
scaled mean configuration �, corresponding to the Generalised Procrustes estimate
(Dryden and Mardia 1998) based on all NT configurations, but the exact choice does
not matter (Kent et al. 2001).

For the purposes of this work, we shall ignore any differences between the
individual subjects. Furthermore, we also ignore changes in size and limit attention
only to changes in the shape of objects represented in the plane (i.e. we assume
m D 2).

We assume that the response variables behave according to the following model:

Vgijs.t/ D �js C �ijs.t/C ıgjs.t/C �js.t/.ıgjs.t// Zgijs.t/ (4.1)

where

– �js represents a population constant for the jsth variable (i.e. landmark coordi-
nate);

– �ijs.t/ represents a time effect on the jsth variable at time t and specific to the ith
individual;

– ıgjs.t/ represents a group-time effect at level g on the jsth variable;
– �js.t/.ıgjs.t// > 0 represent population scale coefficients for variable js at time t,

which are assumed to be invariant with respect to units but which may depend on
group levels through the effects ıgjs.t/, provided that, when ıgjs.t/ ¤ 0, stochastic

dominance relationships
˚
Vjjs.t/

� d
< (or

d
>)

˚
Vrjs.t/

�
, j ¤ r D 1; : : : ;G, are

satisfied;
– Zgijs.t/ are the error terms of a q-variate random vector, Z, which are assumed

to be exchangeable with respect to treatment levels, independent with respect
to units, with zero mean, E

�
Z
� D 0, and with unknown distribution P 2 P .

In particular, these errors may be temporally correlated and the temporal
dependence studied through any kind of monotonic regression (Pesarin and
Salmaso 2010b).

In this setting, different hypotheses may be of interest. Actually it is possible
to evaluate separately group effect and time effects, or to jointly evaluate changes
among groups and throughout times. In the first case, a time-to-time analysis is
performed and the problem reduces to perform a series of one-way MANOVA.
In the second case, the problem reduces to perform a series of tests for paired
samples to compare, within each group, times or, if appropriate/sensible, it may be
solved within a stochastic ordering framework (Basso and Salmaso 2011). Finally,
the latter case may be solved performing a two-way MANOVA and applying the
synchronized permutations as proposed in Basso et al. (2009).



References 71

References

Alfieri R, Bonnini S, Brombin C, Castoro C, Salmaso L (2012) Iterated combination-based paired
permutation tests to determine shape effects of chemotherapy in patients with esophageal
cancer. Stat Methods Med Res. doi:101177/0962280212461981. Article published online
before print

Amaral G, Dryden I, Wood A (2007) Pivotal bootstrap methods for k-sample problems in
directional statistics and shape analysis. J Am Stat Assoc 102:695–707

Basso D, Salmaso L (2011) A permutation test for umbrella alternatives. Stat Comput 21:45–54
Basso D, Pesarin F, Salmaso L, Solari A (2009) Permutation tests for stochastic ordering and

ANOVA: theory and applications in R. Springer, New York
Birnbaum A (1962) On the foundations of statistical inference. J Am Stat Assoc 57:269–326
Blair RC, Higgins JJ, Karniski W, Kromrey JD (1994) A study of multivariate permutation

tests which may replace Hotelling’s t2 test in prescribed circumstances. Multivar Behav Res
29:141–163

Bookstein FL (1997) Shape and the information in medical images: A decade of the morphometric
synthesis. Comput Vis Image Underst 66:97–118

Brombin C (2009) A nonparametric permutation approach to statistical shape analysis. Ph.D.
thesis. University of Padova, Padova, Italy

Brombin C, Salmaso L (2009) Multi-aspect permutation tests in shape analysis with small sample
size. Comput Stat Data Anal 53:3921–3931

Brombin C, Salmaso L (2013) Permutation tests for shape analysis. Springer briefs in statistics.
Springer, New York

Brombin C, Pesarin F, Salmaso L (2008) Dealing with more variables than sample sizes: an appli-
cation to shape analysis. In: Hunter DR, Richards DSP, Rosenberger JL (eds) Nonparametric
statistics and mixture models: a festschrift in honor of Thomas P. Hettmansperger. World
Scientific, Singapore, pp 28–44

Brombin C, Mo G, Zotti A, Giurisato M, Salmaso L, Cozzi B (2009a) A landmark analysis-based
approach to age and sex classification of the skull of the mediterranean monk seal (monachus
monachus) (hermann, 1779). Anat Histol Embryol 38:382–386

Brombin C, Salmaso L, Villanova C (2009b) Multivariate permutation shape analysis with
application to aortic valve morphology. In: Capasso V et al (eds) Stereology and image analysis.
Ecs10: proceeding of the 10th european conference of ISS, The MIRIAM project series, vol 4.
Esculapio Publishing Co., Bologna, Italy, pp 442–449

Celant G, Pesarin F, Salmaso L (2000) Two sample permutation tests for repeated measures with
missing values. J Appl Stat Sci 9:291–304

Dryden IL, Mardia KV (1993) Multivariate shape analysis. Sankhyā Ser A 55:460–480
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Chapter 5
Applications of NPC Methodology

Abstract In this Chapter, we show by means of a motivating example related to
the analysis of the FG-NET database, that NonParametric Combination (NPC) tests
can be effective tools when testing whether there is a difference between dynamics
of facial expressions or testing which of the landmarks are more informative in
explaining their dynamics. Moreover a NPC solution for assessing shape asymmetry
in dynamic shape data is presented.

Keywords Matching and object symmetry • NPC test for longitudinal data •
Paired landmark data • Testing object symmetry

5.1 Introduction

Modelling and carrying out inference on dynamic shapes is tricky and assessment
of within-subject or between-subjects changes over time is not an easy task.

As discussed in Durrleman et al. (2013), dynamic shape analysis differs sub-
stantially from the usual cross-sectional analysis and, in general, no consensus has
emerged about how to combine shape changes over time and shape changes across
subjects. Hence, there is still no single approach which can be considered uniformly
as being the most appropriate solution for these specific problems.

Most of the works proposed in the recent literature on dynamic shape analysis
focuses on the description of the time-varying deformation of the ambient space
in which the objects of interest lie. In many cases the interest is in proposing a
model with merely descriptive purposes. That is, we look for a model which enables
the description of a mean growth scenario representative of the population and the
variations of this scenario both in terms of shape changes and in terms of change
in growth speed. For a discussion on specific case studies we refer, for example,
to Durrleman et al. (2013); Fontanella et al. (2013); Fishbaugh et al. (2012); Kume
(2000); Kent et al. (2001), and Le and Kume (2000).

Without doubts, Linear Mixed Effects (LME) models (Laird and Ware 1982;
Pinheiro and Bates 2000) provide a flexible and powerful statistical framework for
the analysis of longitudinal data (see, for example, Fitzmaurice et al. 2011; Verbeke
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and Molenberghs 2000) allowing to analyze simultaneously multiple longitudinal
outcomes (Verbeke et al. 2010).

A joint model assumes a mixed model for each outcome such that univariate
models are combined through the specification of a joint multivariate distribution
for all random effects (Verbeke and Fieuws 2005). However, as the number of
outcomes increases, the dimensionality of the random-effects covariance matrix
becomes very large, thus leading to methodological and computational challenges.
The computational complexity of high-dimensional joint random-effects models
may be reduced by reducing the dimensionality of the problem.

Instead of estimating a full multivariate model, Barry and Bowman (2008)
proposed an approach involving fitting bivariate LME models to all the pairwise
combinations of individual tangent coordinates, and aggregating the results across
repeated parameter estimates. The methodology yields unbiased estimates with
robust standard errors reflecting the true sampling variability (Fieuws and Verbeke
2006).

Although appealing, the method is limited in the number of landmarks that
may be evaluated due to the computational problems. Moreover, comparison of
nested models is not straightforward. The Wald test, the likelihood ratio (LR) test
and the pseudolikelihood ratio (PLR) test have been shown to perform poorly and
have drawbacks when applied to either high-dimensional data or random effects
models (Barry and Bowman 2008; Barry 2008). Their statistics may be influenced
by directions of variation that are not important and this tends to get worse as the
number of outcome variables increases. Moreover, PLR test evaluates whether all
of the multiple copies of parameter estimates are equal to zero, rather than the
individual parameters. The alternative bootstrap-based test proposed by (Faraway
1997), while overcoming some of the above-mentioned problems, is extremely time
consuming, with both the pairwise full and submodels necessarily being fitted for
each simulation.

The running example of this Chapter refers to the study of facial expressions.
This is of much interest in medicine where facial expressions are related to the
clinical manifestation of several neuropsychiatric disorders and various mental
health problems, such as phobia, post-traumatic stress disorder, attention deficits,
and schizophrenia. The analysis of facial expressions has also great relevance in
Social Signal Processing (Vinciarelli et al. 2009) where of primary interest is the
ability to express and recognize social signals produced during social interactions
(e.g. agreement, politeness, empathy, friendliness, conflict, etc), coupled with the
ability to manage them in order to act wisely in human relations (Pantic et al. 2011).

Given these foundations from medical and behavioural sciences, many
researchers appraise facial expression analysis from a computer vision perspective
and attempt to create automated computational models for facial expression
classification. The problem we consider here is relatively simpler in that we limit
our analysis in capturing the appearance changes that occur during facial expression
formation in terms of the intensity where, for intensity, we mean the magnitude
of the change shown by the landmarks used to synthesize the facial activity. This
analysis can provide useful information on the dominant dynamic characteristics of
the expressions and can thus be important for further classification purposes.
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5.2 The Data

Suppose landmark data are available on different individuals at a common set of
times, taking the form of a 5-way array, fX�gijs

.t/g, where i D 1; : : : ;N labels
different individuals, g D 1; � � � ;G labels the groups in which subject i belongs to,
j D 1; : : : ;K labels different landmarks, s D 1; : : : ;m labels different dimensions
and t D 1; : : : ;T labels different times.

Sometimes it is convenient to represent these data as a collection fX�gi.t/g of K�m
matrices. However, instead of using raw data, generalized Procrustes analysis is
carried out to concentrate exclusively on differences in shapes and eliminate sources
of non-shape variability.

After GPA alignment, Procrustes residuals are used as an approximation of the
tangent coordinates.

For the purposes of the present analysis, we shall ignore any differences between
the individual subjects. Furthermore, we also ignore changes in size and limit
attention only to changes in the shape of objects represented in the plane (i.e. we
assume m D 2).

With reference to the FG-NET database, as in Chapter 2 (Section 2.6), we only
focus on happiness (H) and surprise (S) expressions. We consider video sequences
gathered from 16 different individuals and summarize the expressions through a
reduced set of 34 landmarks manually placed on the face of each subject. 7 equi-
spatially frames have been considered as representative of the dynamic of the
expression, from baseline to apex.

Facial landmark configuration has been already displayed in Chap. 2 (Sect. 2.6,
see Fig. 2.1).

The dynamics of the two expressions are described by the changes in time of the
landmark coordinates.

To make sure the observed variation in our data is sufficiently small, and
the distribution of points in the tangent space may be used as a satisfactory
approximation to their distribution in shape space, we have compared the Euclidean
distances between all pairs of points in tangent space against their Procrustes
distances in shape spaces. Although not shown here, the analysis highlights a strong
linear relationship with a slope very close to 1 confirming that the tangent space can
be satisfactorily used for these data.

The Procrustes residuals from this pole thus are approximate tangent coordinates
and, for each expression, they also represent departures of each data shape from the
neutral state.

Let fVgi.t/g denote the K � 2 (centered not Helmertized) matrix of Procrustes
tangent coordinates of the data fX�

gi.t/g. To provide an example of the dynamics
shown by the two expressions, we assume all N individuals are i.i.d. and we take a
sample average of the Procrustes coordinates to get averaged data. The dynamics
of these data, for the two expressions, are shown in Fig. 5.1 where, for each
landmark, the closed circle and the arrow represent the position at the initial and final
times, respectively. The happiness expression (left) is mainly characterized by the
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Fig. 5.1 Dynamics of averaged data for happiness and surprise expressions with patterns blown
up by a factor of 3 for clarity. For each landmark, the closed circle and the arrow represent the
position at the initial and final times, respectively

movements of the mouth since the eyes move only slightly. Specifically, we observe
a slight narrowing of the eyelids and a raising of the lip corners describing an
upward curving of mouth and expansion on vertical and horizontal direction. On the
other hand, surprise (right) appears with a vertical expansion of the mouth, widened
eyes and slightly raised eyelids and eyebrows. An asymmetry is also surprisingly
observed between the movement of the upper eyelids for the two eyes.

5.3 NPC Methodology for Longitudinal Data

In this section we describe the NPC methodology dealing with paired and longitu-
dinal data. In a general setting, it is assumed that a q-dimensional non-degenerate
variable is observed at T different time occasions for N individuals in two
experimental situations, corresponding to two groups.

With reference to our experimental study, there is thus complete information on
q D 68 Procrustes tangent coordinates (i.e., K=34 landmarks in m D 2 dimensions)
recorded at T D 7 different time occasions (i.e. frames), in a sample of N D 16

subjects performing both happy and surprise expressions.
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We assume that the response variables behave according to the following model:

Vgijs.t/ D �js C �ijs.t/C ıgjs.t/C �js.t/.ıgjs.t//Zgijs.t/ (5.1)

where

– g D 1; 2 and g D 1 denotes “Happiness” and g D 2 “Surprise”;
– �js represents a population constant for the jsth variable (i.e. landmark coordi-

nate);
– �ijs.t/ represents a time effect on the jsth variable at time t and specific to the ith

individual;
– ıgjs.t/ represents a group-time effect at level g on the jsth variable which, without

loss of generality, is assumed to be ı1js.t/ D 0, ı2js.t/ � .or �/ 0, 8.js; t/;
– �js.t/.ıgjs.t// > 0 represent population scale coefficients for variable js at time t,

which are assumed to be invariant with respect to units but which may depend
on group levels (i.e. expressions) through the effects ıgjs.t/, provided that, when

ı2js.t/ ¤ 0, stochastic dominance relationships
˚
V1js.t/

� d
< (or

d
>)
˚
V2js.t/

�
, are

satisfied;
– Zgijs.t/ are the error terms of a q-variate (where q D K � m and in our application

q D K �2 random vector, Z, which are assumed to be exchangeable with respect
to treatment levels, independent with respect to units, with zero mean, E

�
Z
� D

0, and with unknown distribution P 2 P . In particular, these errors may be
temporally correlated and the temporal dependence studied through any kind of
monotonic regression (Pesarin and Salmaso 2010).

Equation (5.1) provides a typical modelling framework for longitudinal data.
However, it is worth noting that, provided the exchangeability assumption holds
under H0, other model formulations are possible—see, for example, Pesarin and
Salmaso (2010).

Within the NPC approach, the data may be examined from various perspectives,
focusing on different features: one could be interested in evaluating a group
(expression) effect, a time effect or both. Hence the following hypothesis systems
are of interest.

(a) By considering the two expressions, we perform a one-sample paired data
analysis to test whether or not coordinates/landmarks, are equal in distribution
at each time point. In short, we are interested in evaluating a group (expression)
effect on coordinates/landmarks at each time (frame). At each time point, the
q-dimensional vector of test statistics, T�

ks
, is thus obtained as

T�
js
.t/ D

NX
iD1


 NV1i.t/ � NV2i.t/
� � S �

i ; i D 1; : : : ;N; t D 1; 2; : : : ;TI

where NVgi.t/ is the vec of the K�2matrix of Procrustes tangent coordinates Vgi.t/
and S �

i are the ˙ signs, common to all variables, i.e. random realizations of the
random variable 1 � 2Bn.1; 1=2/, where Bn.�; �/ is the Binomial distribution.
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Hence, the following partial hypotheses should be tested:

H0jst W
n
V1js.t/

dD V2js.t/
o
; js D 1; : : : ; q; t D 1; 2; : : : ;T;

then suitably combined to test the null hypothesis:

H0t W
8<
:

q\
jsD1

H0jst

9=
; ; t D 1; 2; : : : ;T

H0js W
(

T\
tD1

H0jst

)
; js D 1; 2; : : : ; q

against the partial alternatives

H1jst W
�

V1js.t/
d

<¤> V2js.t/


;

suitably combined in a global test, in which at least one null hypothesis is not true

H1t W
8<
:

q[
jsD1

H1jst

9=
; ; t D 1; 2; : : : ;T

H1js W
(

T[
tD1

H1jst

)
; js D 1; 2; : : : ; q:

To simplify the notation, we have discussed the procedure considering the whole
set of coordinates. However, as the main interest generally lies in landmarks,
once obtained partial tests for coordinates, one should combine the tests on single
landmark coordinates. Hence, as an intermediate step, once should consider the
combination w.r.t. the dimension m. The null and alternative hypothesis systems
becomes slightly more complicated and are written as

H0kt W
n
V1j1 .t/

dD V2j1 .t/
o\n

V1j2 .t/
dD V2j2 .t/

o
; j D 1; : : : ;K

H1kt W
�

V1j1 .t/
d

<¤> V2j1 .t/

 [�
V1j2 .t/

d
<¤> V2j2 .t/


:

The test statistics are in accordance with the rule-of-thumb that large is signifi-
cant (see Pesarin and Salmaso (2010)).

Results from the analysis, carried out at landmark level, are shown in Figs. 5.2
and 5.3, where partial and global p-values are represented through a heat map.
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Fig. 5.2 Heat map representation of p-values. Evaluating whether happy and surprised facial
expressions differ at landmark level within each time

The overall effect, after familywise error correction (FWE) and after combining
throughout times, is instead displayed, for each landmark, in Fig. 5.4.

Figure 5.2 shows that the dynamics of the two expressions become increasingly
evident with the progress of time. The difference between the expressions first
appears in the eye regions (i.e. eyebrows and eyelids). At time-frame 1, for example,
the p-values associated with the eye “domains” suggest that the differences between
most of the landmarks are significant. In particular, at time-frame 1, all landmarks
in the eyebrows are completely different between the expressions. Moreover, 75%
of the landmarks in the left eye and 62.5 % of the landmarks in the right eye are
significantly different. This percentage increases at time-frame 3 up to 87:5% and
continues to increase until the end of the process (time-frame 7). On the other hand,
at the beginning, only 25% of the landmarks in the mouth region are significantly
different, this percentage rapidly increases up to 75% in the second time frame and
continues to increase until the end of the process.
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Fig. 5.3 Heat map representation of global p-values, obtained combining times (a) or
landmarks (b)
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Fig. 5.4 Evaluating whether
happy and surprised facial
expressions are globally
different at landmark level.
Data points marked with a
solid circle refer to landmarks
with a significant p-value.
Overall “group” effect for
each landmark is shown, after
combining throughout times
and after FWE correction
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At the end of the process, happy and surprise expressions appear completely
different, with just two landmarks for which the test does not appear to be significant
before correction for multiplicity (see Fig. 5.2, last column).

After FWE correction, most of the p-values obtained after combining times are
significant with the exception of landmarks 3–4–8–11–18–19–26–29 (see Fig. 5.3a,
right column, and Fig. 5.4). Hence, globally, happy and surprised expressions are
significantly different as expected (see Fig. 5.3b).

Results from the same analysis carried out at coordinate levels are also shown
in Figs. 5.5 and 5.6. In general, considering all the frames, the difference in the
dynamics of the two expressions is mainly determined by the changes in the j1
(horizontal) coordinates.

This finding is supported by Fig. 5.1 which shows that in the mouth region the
dynamic of happy expression is mainly represented by a horizontal direction that
seems to prevail changes in vertical direction observed in the surprised expression.

(b) It is of interest to evaluate the time effect.

For each expression, differences between consecutive times have been evaluated,
thus obtaining the following test statistics: the q-dimensional vector of test statistics
T�

gjs;r
, r D 1; 2 : : : ;T � 1 is obtained by considering the test statistics for the two

expressions separately

T�
gjsr D

NX
iD1


 NVgi.r/ � NVgi.r C 1/
� � S �

i ; g D 1; 2; i D 1; : : : ;N:
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Fig. 5.5 Heat map representation of p-values. Evaluating whether happy and surprised facial
expressions differ at coordinate level within each time

Hence, the following partial hypotheses should be tested:

H0gjsr W
n
Vgjs.r/

dD Vgjs.r C 1/
o
; g D 1; 2; js D 1; : : : ; q; i D 1; : : : ;N;

then suitably combined to test the global null hypothesis:

H0g W
8<
:

q\
jsD1

"
T�1\
rD1

H0gjsr

#9=
; ; g D 1; 2;

H0gjs W
(

T�1\
rD1

H0gjsr

)
; g D 1; 2; js D 1; : : : ; q;

against the partial alternatives
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Fig. 5.6 Heat map representation of global p-values, obtained combining times (a) or coordi-
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H1gjsr W
�

Vgijs.r/
d

<¤> Vgijs.r C 1/


;

suitably combined in a global test, in which at least one null hypothesis is not true

H1g W
8<
:

q[
jsD1

"
T�1[
rD1

H0gjsr

#9=
; I H1gjs W

(
T�1[
rD1

H0gjsr

)
:

To simplify the notation, we have described the hypotheses at coordinate level.
However, once obtained partial tests for coordinates, one should combine the tests
on single landmark coordinates, thus obtaining a p-value for each landmark.

Results from the analysis carried out at landmark level for happiness and surprise
are shown in Figs. 5.7, 5.8 and 5.9, 5.10, respectively, where partial and global p-
values are represented through a heat map. The overall effects, after FWE correction,
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Fig. 5.9 Heat map representation of p-values. Evaluating time effect within surprised facial
expression at landmark level

are also shown in Figs. 5.11 and 5.12. Results from the same analysis, carried out at
coordinate levels are shown in Figs. 5.13, 5.14 and 5.15, 5.16.

In order to control the Familywise Error Rate and compute adjusted p-values,
a Closed Testing Procedure has been applied (for details see Pesarin and Salmaso
2010).

With reference to happiness, we found a significant global time effect. After FWE
correction, Fig. 5.8a, second column, and Fig. 5.11g suggest that most of the changes
occur in the mouth region. Happiness is thus mainly characterized by the movements
of the mouth, while moderate changes occur in he eye regions. Changes, for the most
part, occur between time 2 and 3 (when comparing time frame 3 with the previous
time frame 2), involving both mouth and eye regions.

Comparing the configuration at time 2 with the baseline, Fig. 5.7 (first column)
highlights changes in the 50% of the landmarks in the mouth region. When
comparing times 2 and 3, this percentage grows up to 100 %. Moreover, most of
the changes in the eye region (eyes and eyebrows) occurs between time frames 2
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Fig. 5.10 Heat map representation of global p-values, obtained combining times (a) or land-
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88 5 Applications of NPC Methodology

1

11

10

16 15 23

22

24

27
28 29 30 31

32
33

34

27
28 29 30 31

32
33

34

27
28 29 30 31

32
33

34

26
19

25

21 20
12 13

18 17

14

2
3

4

5

9
8 7

6

1

11

10

16 15 23

22

24 26
19

25

21 20
12 13

18 17

14

2
3

4

5

9
8 7

6

1

11

10

16 15 23

22

24 26
19

25

21 20
12 13

18 17

14

2
3

4

5

9
8 7

6

1

11

10

16 15 23

22

24

27
28 29 30 31

32
33

34

27
28 29 30 31

32
33

34

27
28 29 30 31

32
33

34

26
19

25

21 20
12 13

18 17

14

2
3

4

5

9
8 7

6

1

11

10

16 15 23

22

24

27
28 29 30 31

32
33

34

26
19

25

21 20
12 13

18 17

14

2
3

4

5

9
8 7

6

1

11

10

16 15 23

22

24 26
19

25

21 20
12 13

18 17

14

2
3

4

5

9
8 7

6

1

11

10

16 15 23

22

24 26
19

25

21 20
12 13

18 17

14

2
3

4

5

9
8 7

6

Time 2 vs. Time 1

Time 5 vs. Time 4 Time 6 vs. Time 5 Time 7 vs. Time 6

Time 3 vs. Time 2 Time 4 vs. Time 3

Overall time effect, after
FWE correction

a b c

d e f

g

Fig. 5.11 Evaluating time effect within happy facial expression at landmark level. For each
contrast, data points marked with a solid circle refer to landmarks with a significant p-value (a)–(f).
Overall time effect, for each landmark, after FWE correction is shown in (g)
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Fig. 5.12 Evaluating time effect within surprised facial expression at landmark level. For each
contrast, data points marked with a solid circle refer to landmarks with a significant p-value (a)–
(f). Overall time effect, for each landmark, after FWE correction is shown in (g)
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Fig. 5.13 Heat map representation of p-values. Evaluating time effect within happy facial
expression at coordinate level

and 3, and, to a lesser extent, between times 5 and 6. In the facial configurations,
landmarks with a significant p-values are represented as points marked with a solid
circle.

Analyzing the heat map in Fig. 5.13, and considering all contrasts, we note that
changes in the j2 coordinates occur more frequently in the left and right eyebrows,
in the left eye and in mouth region, while in the right eye horizontal changes slightly
prevail. In general, at coordinate levels, vertical movements are more frequent than
horizontal ones: more significant changes are observed in j2 coordinates.

These results are in agreement with those found by applying polynomial regres-
sion models (see Sect. 3.4.1), where major involvement of mouth in the generation
of happy facial expression was observed.

When considering surprised facial expression, after FWE correction, only one
landmark is significant (see Figs. 5.10a, second column, and Fig. 5.12g).

When comparing the configuration at time 2 with the baseline (Fig. 5.9, first
column), 87:5% of the landmarks in the mouth region, 40% of the landmarks in the
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Fig. 5.14 Heat map representation of global p-values, obtained combining times (a) or coordi-
nates (b)
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Fig. 5.15 Heat map representation of p-values. Evaluating time effect within surprised facial
expression at coordinate level

left eyebrow, 50 % of the landmarks in the right eye and 37.5 % of the landmarks
in the left eye respectively show a significant time effect. Percentage of significant
landmarks in the mouth region starts to decrease when comparing times 3 and 4
(only 25 % of the landmarks in the mouth region shows a significant time effect).
Most of the changes in the eye region occurs when comparing time frames 1 and 2,
to a lesser extent, times 2 and 3. Hence in general we may conclude that surprise
emotion and resulting facial expression is sudden and does not last long, since
most of the changes in facial expression occurs immediately, within the first 2 time
frames.
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Fig. 5.16 Heat map representation of global p-values, obtained combining times (a) or coordi-
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Analyzing the heat map in Fig. 5.15, and considering all contrasts, we note that
significant changes occur in the j2 coordinates in mouth region (mouth opening),
while in the right eyebrow and eye regions landmark coordinates are characterized
by significant horizontal changes.

Moreover, the analysis suggests that changes along the j2 coordinates occur
especially when considering contrasts of time frames 3–4 and 4–5, and changes
in the j1 coordinates are more frequent at the beginning (time-frames 1–2 and 2–3)
and at the end of the process (time-frames 6–7).

Once again, our results seems to confirm those found in Sect. 3.4.1, where
vertical mouth changes were found to prevail in the generation of surprised facial
expression. It must be noticed that the information provided by NPC test is more
specific and detailed at each time point, at each contrast, hence our evaluations are
referred to a discretized continuum process rather than to a continuum process, as
done with polynomial shape modeling.

It must be emphasized that here we have focused on changes between consecutive
times; however, different design matrices, which allow for all possible comparisons
or evaluation of contrasts against the baseline, may be specified.

5.4 Introduction on Paired Landmark Data

Paired data issues in shape analysis context are often related to the study of
symmetric structures. The most important type of symmetry in the organisation
of living organisms is bilateral symmetry. A 2D (or 3D) object is said to be
bilaterally symmetric if its mirror image about some line or some plane is the
same as the original form after relabelling some landmarks. This mirroring locus in
general is called the midplane. In a perfect bilaterally symmetric shape it is possible
to distinguish two types of landmarks: paired landmarks, that do not lie on the
midplane, but appear separately on left and right sides, and unpaired landmarks,
that lie on the midplane. In the analysis of bilaterally symmetric structures, it is
possible to identify two main types of symmetry: matching symmetry and object
symmetry. Object symmetry relates to the symmetry within a single object, such as
a human face, hence it considers parts with internal left-right symmetry. Matching
symmetry has been introduced in Chap. 3 (Sect. 3.5). As anticipated, in matching
symmetry two separate structures exist as mirror images of each other, one on each
body side, e.g., left and right hand (Klingenberg et al. 2002; Mardia et al. 2000).

In order to study matching symmetry, the landmark configurations from one side
are reflected, then all the configurations are superimposed by GPA to produce an
overall mean shape. Variations in the averages of the pairs of configurations embody
the symmetric variation among individuals. The deviations of each configuration
from the consensus provide an estimate of the asymmetry component.

For the analysis of object symmetry, the data set includes both the original
landmark configurations and their reflected copies with the paired landmarks
relabelled. A GPA is applied to all configurations to produce a single consensus,
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which is symmetric. The symmetric variation among individuals is measured from
the averages of the original configuration and its reflected (appropriately relabelled)
copy. Again the asymmetry is estimated by the deviations of each configuration
from the consensus (Savriama and Klingenberg 2006).

To evaluate object symmetry in the isotropic case, usually Procrustes ANOVA
and Goodall’s F tests are used. This method allows to identify and quantify different
sources of shape variation: variation among individuals and sides (the so-called
directional asymmetry), and variation due to an individual by side interaction
(namely fluctuating symmetry).

These asymmetries convey interesting information on the evolutionary history,
suggesting how symmetry is broken during development (Palmer 1996).

Directional asymmetry (also known as fixed asymmetry) emerges either when
one side is larger than the other on average, or the larger member of a bilateral pair
tends to be on the same side.

Fluctuating asymmetry is considered the most familiar of these asymmetries,
providing a surprisingly convenient measure of developmental precision: the more
precisely each side develops the greater the symmetry (Palmer and Strobeck 1997).

It bears information on environmental quality, stress, health or fitness. In the non-
isotropic case, we may use T2 Hotelling’s test and the approximation to Fisher’s F
distribution.

The same holds for matching symmetry. Obviously there is a difference in the
degrees of freedom of the tests. In the isotropic case we may preform ANOVA test,
while in the non-isotropic case we carry out Hotelling’s T2. As usual, when the
number of shape variables is greater than the most practical sample size, no formal
T2 can be computed and working under a permutation framework is recommended.
In particular it is possible to use a permutation test for which the pivotal role of
the Procrustes distance is retained but the distributional assumptions underlying
the F under H0 are relaxed. The reference distribution becomes a Monte Carlo
permutation distribution where what is permuted is the assignment of one of the
forms to the reflected state (Mardia et al. 2000).

In the nonparametric permutation framework, usually testing for symmetry
corresponds to test the null hypothesis that a certain q-dimensional variable V is
symmetric around 0, thus leading to solving problems for multivariate paired data
observations (Pesarin 1990; Pesarin and Salmaso 2010).

The same framework applied in Sect. 5.3 to evaluate differences between facial
expression at each time frame may be used to analyze object symmetry. Actually,
we firstly consider all the differences between right and left coordinates of each
landmark point. Then, once obtained partial p-values for the coordinates (coordinate
level), we combine these p-values in order to obtain information on landmarks
(landmark level). Finally we consider domains and aspects, if present, as well as
the global combination of partial p-values.
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5.5 Evaluating Symmetry Within Happy Facial Expression:
Object Symmetry

In order to evaluate object symmetry, we applied the same superimposition pro-
cedure used to compare happy and surprised facial expression, replacing surprised
data with reflected happy data and including a relabelling step. Even in this case, the
neutral expression, i.e., data available on the first time frame for each subject, was
used as the reference configuration to estimate the pole of the tangent projections.
Procrustes residuals from the pole, which are approximate tangent coordinates to
shape space, allow to represent, for each expression (happy and “reflected” happy),
departures of each data shape from the neutral state. Then NPC methodology was
applied to test symmetry for the following hypotheses

H0jst W
n
Vhjs.t/

dD Vhrefjs.t/
o
; js D 1; : : : ; q; t D 1; 2; : : : ;T;

then suitably combined to test the null hypothesis:

H0t W
8<
:

q\
jsD1

H0jst

9=
; ; t D 1; 2; : : : ;T

H0js W
(

T\
tD1

H0jst

)
; js D 1; 2; : : : ; q

against the partial alternatives

H1jst W
�

Vhjs.t/
d

<¤> Vhrefjs.t/


;

suitably combined in a global test, in which at least one null hypothesis is not true

H1t W
8<
:

q[
jsD1

H1jst

9=
; ; t D 1; 2; : : : ;T

H1js W
(

T[
tD1

H1jst

)
; js D 1; 2; : : : ; q:

where Vh and Vhref represent respectively data on happy and “reflected” happy
facial expression and the test statistics of interest is obtained as seen in Sect. 5.3 and
is defined as

T�
js
.t/ D

NX
iD1


 NVhi.t/ � NVhrefi.t/
� � S �

i ; i D 1; : : : ;N; t D 1; 2; : : : ;TI
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Fig. 5.17 Evaluating symmetry at landmark level. Overall effect is shown, after combining
throughout times, before (a) and after (b) after FWE correction (points marked with a solid circle
refer to landmarks with a significant p-value)

Results highlights that asymmetry prevails in the eye region (see Fig. 5.17) and
remains significant even after adjustment for multiplicity. Globally happy facial
expression is asymmetric.

Going into details, asymmetry in the eye regions is considerable for all the time
frames, with the exception of time-frame 3. Mouth asymmetry is found only at
time-frame 1 and time-frame 7 (the beginning and the end of the dynamic), with
only 3 out 8 landmarks in the mouth region being significant before correction for
multiplicity (see Figs. 5.18 and 5.19).

These results are in agreement with those presented in Sect. 3.5 suggesting that
in general the mouth region in the happy facial expression is symmetric in its
dynamics.

Examining results at coordinate levels (see Figs. 5.20 and 5.21), we may
conclude that asymmetry mostly affects j1 (horizontal) coordinates.

The key advantage of applying NPC methodology in assessing asymmetry is that
we are able to identify asymmetric part of the face, thus giving a different (since it
is given at landmark or coordinate level) and more precise evaluation of asymmetry
that provided by global tests in ANOVA analysis.
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Appendix A
Shape Inference and the Offset-Normal
Distribution

A.1 EM Algorithm for Estimating � and ˙

The conditional distribution of X given its shape u, by applying Bayes theorem, can
be written as

dF .Xju;�;˙ / D f .h;uI �;˙ / dh
f .uI �;˙ /

Given the transformation vec .X/ D Wh and considering the change of variable,
h D � l, such that l � N .	;D/ with D D diag.�1; �2/, we have:

R
Whf .h;uI �;˙ / dh

f .uI �;˙ /
D W�

R
lf .l;uI �;˙ /dl
f .uI �;˙ /R

Whh0W0f .h;uI �;˙ / dh
f .uI �;˙ /

D W�

R
ll0f .l;uI �;˙ /dl

f .uI �;˙ /
� 0W0:

As in Eq. (2.5) we thus have

f .uI �;˙ / D M
K�2X
jD0

 
K � 2

j

!
EŒl2j

1 j�1; �1�EŒl2.K�2�j/
2 j�2; �2�

where M D j� j 12 exp.�g=2/

.2	/K�2j˙ j 12
.
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For the update of the elements of the mean vector, we have to consider the
following integrals

Z
l1f .l; uI �;˙ /dl D M

K�2X
jD0

 
K � 2

j

!Z
l2jC1
1 fN .l1I �1; �1/dl1
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2 j�2; �2�:

Analogously, for the update rules of the covariance elements we have
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Notice that the term M D j� j1=2 expf�g=2g
.2	/K�2j˙ j1=2 is present in f .uI �;˙ /,

R
lf .l;uI �;˙ /dl

and
R

ll0f .l;uI �;˙ /dl, but it cancels out in the ratios (2.11) and so the required
expressions are obtained in terms of univariate Gaussian expectations—see,
Eq. (2.6).
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A.2 EM for Complex Covariance

Given the complex number z2 D x2 C iy2, the rotation and scale parameter vector,
h D .Re.z2/ I m.z2// D .x2 y2/0, has covariance matrix � D .W0˙ �1W/�1 (see
Sect. 2.4). It can be shown that if ˙ has a complex structure, � is a multiple of the
identity matrix, i.e. � D �z

2
I2. Let W be written as

W D
�

u �v
v u

	

and consider that the precision matrix Q D ˙ �1 is given by

˙ �1 D
�

Q1 Q2

�Q2 Q1

	

where the symmetric matrix Q1 D .C1 C C2C�1
1 C2/

�1 and the skew-symmetric
matrix Q2 D Q1C2C�1

1 are respectively the real and imaginary parts of the inverse
of the complex covariance in the pre-form space: Qz D ˙ �1

z D 1
2
.Q1 C iQ2/.

Therefore

� �1 D W0˙ �1W D
�

u0 v0

�v0 u0

	�
Q1 Q2

�Q2 Q1

	�
u �v
v u

	
D

D
�

u0Q1u � v0Q2u C u0Q2v C v0Q1v �u0Q1v C v0Q2v C u0Q2u C v0Q1u
�v0Q1u C u0Q2u � v0Q2v C u0Q1v v0Q1v C u0Q2v � v0Q2u C u0Q1u

	

D
�

u0Q1u C v0Q1v C 2u0Q2v 0

0 u0Q1u C v0Q1v C 2u0Q2v

	

In the solution we have exploited the properties of symmetric and skew-symmetric
matrices: u0Q1v D v0Q1u, u0Q2u D v0Q2v D 0 and u0Q2v D �v0Q2u:

It’s easy to show that

��1
z D ��˙ �1

z � D 1

2
.u C iv/�.Q1 C iQ2/.u C iv/ D 1

2
.u0Q1u C v0Q1v C 2u0Q2v/

and, therefore, � �1 D 2��1
z I2 and � D �z

2
I2:

As a result writing z2 D h1 C ih2,  D 1 C i2, �2 D �z=2, and considering that
h1 and h2 are independent, the real part of

Z
z2 kz2k2.K�2/ fCN

�
z2; �I �z;˙ z

�
dz2
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is nowZ
h1.h

2
1 C h22/

K�2fN .h; uI �;˙ / dh

D �2e�gz

	.K�2/j˙ zj
K�2X
kD0

 
K � 2

k

!Z
h1h

2k
1 fN .h1I 1; �/h2.K�2�k/

2 fN .h2I 2; �/dh D

D �2e�gz

	.K�2/j˙ zj
K�2X
kD0

 
K � 2

k

!
EŒh2kC1

1 j1; ��EŒh2.K�2�k/
2 j2; ��

Applying the addition formula given in 8.974/4 in Gradshteyn and Ryzhik (1980)

mX
jD0

L .˛/
j .x/L .ˇ/

m�j.y/ D L .˛CˇC1/
m .x C y/

and the relation between Laguerre polynomials and Hermite polynomials for
Gaussian moments, we have

K�2X
kD0

 
K � 2

k

!
EŒh2kC1

1 j1; ��Eh2.K�2�k/
2 j2; ��

D
K�2X
kD0

 
K � 2

k

!"
1.2�

2/kkŠL
.1=2/

k

 
� 21
2�2

!#"
.2�2/K�2�k.K � 2� k/ŠL

.�1=2/
K�2�k

 
� 22
2�2

!#

D .K � 2/Š.2�2/K�21

K�2X
kD0

L
.1=2/
k

 
� 21
2�2

!
L
.�1=2/
K�2�k

 
� 22
2�2

!

D .K � 2/Š�K�2
z 1L

.1/
K�2

 
� kk2

�z

!
:

Analogously, the imaginary part of
R

z2 kz2k2.K�2/ fCN

�
z2; �I �z;˙ z

�
dz2 is

Z
h2 khk2.K�2/ fN .h;uI �;˙ /dh

D �2e�gz

	.K�2/j˙ zj
K�2X
kD0

 
K � 2

k

!Z
h2k
1 fN .h1I 1; �/h2h2.K�2�k/

2 fN .h2I 2; �/dh

D �2e�gz

	.K�2/j˙ zj
K�2X
kD0

 
K � 2

k

!
EŒh2k

1 j1; ��EŒh2.K�2�k/C1
2 j2; ��
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where

K�2X
kD0

 
K � 2

k

!
EŒh2k

1 j1; ��EŒh2.K�2�k/C1
2 j2; ��

D
K�2X
kD0

 
K � 2

k

!
.2�2/kkŠL

.�1=2/
k

�
� 21
2�2

	
2.2�

2/K�2�k.K � 2� k/ŠL
.1=2/

K�2�k

�
� 22
2�2

	

D .K � 2/Š.2�2/K�22

K�2X
kD0

L
.�1=2/

k

�
� 21
2�2

	
L

.1=2/
K�2�k

�
� 22
2�2

	

D .K � 2/Š�K�2
z 2L

.1/
K�2

 
�kk2

�z

!
:

Recalling that z2 D h1 C ih2 and  D 1 C i2, we have
Z

z2 kz2k2.K�2/ fCN .z2; �I �z;˙ z/dz2

D �2e�gz

	.K�2/j˙ zj
Z

h1fN .h1I 1; �/fN .h2I 2; �/ khk2.K�2/ dh

Ci
�2e�gz

	.K�2/j˙ zj
Z

h2fN .h1I 1; �/fN .h2I 2; �/ khk2.K�2/ dh D

D �2e�gz

	.K�2/j˙ zj .K � 2/Š�K�2
z L

.1/
K�2

 
�kk2
2�2

!
.1 C i2/

D �ze�gz

2	.K�2/j˙ zj .K � 2/Š�K�2
z L

.1/
K�2

 
�kk2

�z

!
:

From 8.971/4 of Gradshteyn and Ryzhik (1980) for which

L
.1/

K�2.x/ D K � 1
x

.LK�2.x/� LK�1.x//

we haveZ
z2 kz2k2.K�2/ fCN .z2; �I �z;˙ z/dz2 D

D �ze�gz

2	.K�2/j˙ zj .K � 2/Š�K�2
z .K � 1/

 
� �z

kk2
!"

LK�2

 
�kk2

�z

!
� LK�1

 
�kk2

�z

!#
D

D �ze�gz

2	.K�2/j˙ zj .K � 1/Š!
�K�2

z

kk
"
LK�1

 
�kk2

�z

!
� LK�2

 
�kk2

�z

!#

where ! D �z= kk.
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Similarly, one can show that

Z
kz2k2.K�2/ fCN .z2; �I �z;˙ z/dz2

D �2e�gz

	.K�2/j˙ zj
K�2X
kD0

 
K � 2

k

!
EŒh2k

1 j1; ��EŒh2.K�2�k/
2 j2; ��

D �2e�gz

	.K�2/j˙ zj
K�2X
kD0

 
K � 2

k

!�
.2�2/kkŠL .�1=2/

k

�
� 21
2�2

	�

�
�
.2�2/K�2�k.K � 2 � k/ŠL .�1=2/

K�2�k

�
� 22
2�2

	�

D �2e�gz

	.K�2/j˙ zj
K�2X
kD0

.K � 2/Š
kŠ.K � 2 � k/Š

kŠ.K � 2 � k/Š

�.2�2/k.2�2/K�2�kL
.�1=2/

k

�
� 21
2�2

	
L

.�1=2/
K�2�k

�
� 22
2�2

	

D �2e�gz

	.K�2/j˙ zj .K � 2/Š.2�2/K�2LK�2

 
�kk2
2�2

!

D �ze�gz

2	.K�2/j˙ zj.K � 2/Š�K�2
z LK�2

 
�kk2
�z

!

andZ
kz2k2 kz2k2.K�2/ fCN .z2; �I �z;˙ z/dz2 D

Z
kz2k2.K�1/ fCN .z2; �I �z;˙ z/dz2

D �2e�gz

	.K�2/j˙ zj
K�1X
kD0

 
K � 1

k

!
EŒh2k

1 j1; ��EŒh2.K�1�k/
2 j2; ��

D �2e�gz

	.K�2/j˙ zj.K � 1/Š.2�2/K�1LK�1

 
�kk2
2�2

!

D �ze�gz

2	.K�1/j˙ zj .K � 1/Š�K�1
z LK�1

 
�kk2
�z

!
:

Eqs. (2.15) and (2.16) follow from these expressions with the term �ze�gz

2	.K�1/j˙ zj
canceling out. More specifically, for the update of the mean—Eq. (2.15)—we have
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R
z2 kz2k2.K�2/ fCN

�
z2; �

.n/I �
.r/
z ;˙

.r/
z

�
dz2R kz2k2.K�2/ fCN

�
z2; �

.n/I �
.r/
z ;˙

.r/
z

�
dz2

D
�ze�gz

2	.K�2/j˙ zj .K � 1/Š! �K�2
z
kk

h
LK�1

�
� kk2

�z

�
� LK�2

�
� kk2

�z

�i
�ze�gz

2	.K�2/j˙ zj .K � 2/Š�K�2
z LK�2

�
� kk2

�z

�

D !.K � 1/

kk

 
LK�1.kk2 =�z/

LK�2.kk2 =�z/
� 1

!

while for the update of the covariance—Eq. (2.16)—

R kz2k2 kz2k2.K�2/ fCN

�
z2; �

.n/I �
.r/
z ;˙

.r/
z

�
dz2R kz2k2.K�2/ fCN

�
z2; �

.n/I �
.r/
z ;˙

.r/
z

�
dz2

D
�ze�gz

2	.K�1/
j˙ zj

.K � 1/Š�K�1
z LK�1

�
�kk2

�z

	
�ze�gz

2	.K�2/
j˙ zj

.K � 2/Š�K�2
z LK�2

�
�kk2

�z

	

D �z .K � 1/

0
@LK�1

�
� kk2 =�z

�
LK�2

�
� kk2 =�z

�
1
A :
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C
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Hermite polynomials, 106
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skew-symmetric matrices, 105–106
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D
Dynamic shape analysis
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maximization (EM) algorithm)

offset-normal distribution, 34–35
probability density function, 35–37

E
Expectation-maximization (EM) algorithm

� and †, 103–104
covariance (see Covariance matrix)
data and current parameter, 23
Gaussian distribution, 39
integer moments, 39
offset-normal shape, 22
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Face and Gesture Recognition Research

Network (FG-NET)
configuration, 27
data set, 26–27
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Facial expression (happy) (cont.)
test statistics, 96
time-frame 1 and 7, 97

Facial expression analysis, 74. See also Facial
expression (happy)

Familywise error correction (FWE), 79
FG-NET. See Face and Gesture Recognition

Research Network (FG-NET)
Finite-sample consistency (FSC), 61
FWE. See Familywise error correction (FWE)

G
Gaussian distribution

in configuration space
circularly complex Gaussian, 19
covariance matrix, 16
Markov covariance structure, 19
pseudo-covariance, 17–18

pre-form space, 19

H
Heat map representation

combining times, 80
facial expressions, 80, 90, 98, 100
landmarks, 87
p-values, 79, 91, 92, 99, 101
time effect, 84

K
Kendall’s Shape coordinates, 7

L
Linear mixed effects (LME) models, 73–74

M
MA approach. See Multi-aspect (MA)

approach
Matching and object symmetry, 94, 95
Matching symmetry

bilateral, 51–52
Bookstein shape, 52–53
mouth region, 52

Mathematical landmarks, 4
Mixture models

applications, 53

confusion matrices, 55
EM algorithm, 54

Multi-aspect (MA) approach, 64, 67

N
Nonparametric combination (NPC)

methodology
covariance matrices, 61
dynamic shape analysis, 73
EDMA-I and EDMA-II, 60
interlandmark distances, 60
landmark data, 75–76
longitudinal data

analysis, 69–70
coordinates/landmarks, 77
data points, 81
domains, 79
facial expressions, 81
formulations, 77
global null hypothesis, 82
heat map (see Heat map

representation)
horizontal direction, 81
hypothesis systems, 77
null hypothesis, 78
partial hypotheses, 82
partial tests, 84
p-values, 83
tangent coordinates, 76
test statistics, 78
time effect, 81
variables, 77

medical and behavioural sciences,
74

multivariate model, 74
permutation sample space, 61
post-traumatic stress disorder, 74
simulation, 60
statistical community, 59
time-varying deformation, 73
T2 test statistic, 60
two-sided tests, 61
univariate models, 74

NPC methodology. See Nonparametric
combination (NPC) methodology

O
Offset-normal shape distribution

computational procedures, 41
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CPU time, 46
EM algorithm, 45
landmark covariance, 44–45
matrix-variate normal distribution, 42–43
polynomial regression, 48–51
probability model, 15
quadratic form, 20
scale and rotation parameters, 21
shape space, 19
statistical shape analysis, 14
temporal correlation, 47–48

P
Paired landmark data

directional asymmetry, 95
matching symmetry, 94
midplane, 94
non-isotropic case, 95
p-values, 95
symmetric variation, 94

Permutation tests combination-based for
repeated measures design, 59

PLR test. See Pseudolikelihood ratio (PLR)
test

Polynomial shape regression
EM algorithm, 49–50
FG-NET data, 50
mean path estimation, 50–51
parameters, 48

Probability density function
configuration space, 35
eigenvalue decomposition, 37
off-set normal shape density function, 36

Procrustes analysis
linear regression, 9
partial Procrustes distance, 9
pre-shape sphere, 9–10
registration procedure, 9
stereographic and orthogonal

projections, 13

tangent coordinates, 11–12
Pseudo-landmarks, 4
Pseudolikelihood ratio (PLR) test, 74

S
Shape analysis, 3

algorithm
advantage, 69
first phase, 66
fourth and last phase, 68
MA procedure, 69
multi-aspect procedure, 66
p-value, 66
scale coefficients, 69
second phase, 67
third phase, 67–68

fat data, 63
FSC, 63
hypotheses, 62
landmark level, 64–65
nuisance parameters, 63
permutation, 62
standard distribution-freemethods, 62
testing procedure, 61–62
two-/three-dimensional shapes/objects, 63

Shape space
centroid size, 6
mathematical properties, 5
pre-shape matrix, 7
special orthogonal group, 5

Statistical shape analysis, 15, 16, 54

T
Testing object symmetry

Goodall’s F tests, 94
human face, 94
landmark configurations, 94

Time-varying shapes, 33
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