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Preface

As the data size increases and the data structure becomes increasingly complex,
considering the nonlinearity, mixed measurement level data, simultaneous analysis
and computational efficiency, for example, become increasingly necessary.

Accordingly, we have been investigating data analysis and developing methods
related to the above problems: how to jointly analyze data that include not only
categorical variables but also numerical variables; matrix operations approaching
categorical data analyses; how to select a reasonable subset of variables from mixed
measurement level data; analyses based on the sparseness of data and simultaneous
estimations, such as a joint method with dimension reduction and clustering, which
have recently been investigated; and how to accelerate the computations involving
the alternating least squares (ALS) algorithm.

Although we have heretofore been investigating these topics separately, we
decided to include the above-mentioned methods/techniques in this series when we
started to write this Springer Brief Statistics series.

We present our research interests in two parts as follows:
The first part consists of two chapters that introduce the principles of nonlinear

principal component analysis (PCA). After a brief introduction of the ordinary
PCA, a PCA for categorical (nominal and ordinal) data is introduced as a nonlinear
PCA, in which the optimal scaling technique is used to quantify the categorical
variables. The ALS algorithm is the main algorithm used in this method. Next,
multiple correspondence analysis (MCA), which is a special case of nonlinear PCA,
is introduced, and ALS is also used in the computation. All formulations in these
methods are integrated in the same manner as the matrix operations. Since any
measurement level data can be treated consistently as numerical data and ALS is a
very powerful tool for estimations, these methods can be used in a variety of fields,
including biometrics, econometrics, psychometrics, and sociology.

The second part of the book consists of four chapters, which describe applica-
tions of the nonlinear PCA: variable selection for mixed measurement level data,
sparse MCA, reduced k-means clustering, and an acceleration of the ALS
algorithm. The variable selection methods used in PCA, which were originally
developed for numerical data, can be applied to any type of measurement level data

v



using nonlinear PCA. Sparseness and k-means clustering for nonlinear data, which
were proposed in recent studies, are extensions obtained using the same matrix
operations used in nonlinear PCA and MCA. Finally, an acceleration algorithm is
proposed to reduce the computational cost of ALS iteration in nonlinear multi-
variate methods.

This book demonstrates the usefulness of nonlinear PCA and MCA, which can
be applied to different measurement level data in a variety of fields and covers the
latest topics, including the extension of traditional statistical methods, newly pro-
posed nonlinear methods, and the computational efficiency of these methods.
The ALS algorithm is a key concept in all chapters, and optimal quantifications and
matrix operations are also key concepts in this book.

We sincerely hope that the concepts and applications presented herein will be of
use.

Okayama, Japan Yuichi Mori
June 2016 Masahiro Kuroda

Naomichi Makino
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The original version of the book was revised:
Typographical errors have been corrected.
The erratum to the book is available at
DOI 10.1007/978-981-10-0159-8_8.
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Chapter 1
Introduction

The principles of nonlinear principal component analysis (PCA) and multiple cor-
respondence analysis (MCA), which are useful methods for analyzing mixed mea-
surement level data, and related applications are introduced in this book.

Numerous studies have analyzed data that jointly include categorical (nominal
and ordinal) and numerical variables.

Typical methods for the traditional analyses of such data analyze categorical and
numerical variables independently, quantify categorical variables by translating them
to dummyvariables, and use categorical codes as numerical values. These approaches
are often not suitable for cases in which we wish to use all variables with a unified
scale in order to observe all data to the extent possible, e.g., in lower dimensions.

A good solution is quantification based on optimal scaling. Well-known meth-
ods include nonlinear PCA and MCA, which are introduced in the first part of the
book. Once we obtain optimal quantification methods for mixed measurement level
data, we can apply any of the traditional methods developed for numerical data to
mixed measurement level data, for example, to solve the variable selection problem
for mixed measurement level data. Moreover, we can propose some extensions to
nonlinear PCA and MCA, such as sparse analysis and k-means clustering for non-
linear data, which are based on recent studies and are obtained by the same matrix
operations used in nonlinear PCA and MCA. Finally, since effective methods for
linearly converging sequences have been developed in the numerical analysis field,
we wish to perform alternating least squares (ALS) computations that generate linear
convergent sequences more effectively using the results from the field of numerical
analysis. These extensions and applications will be illustrated in the second part of
the book.

Here, we present an outline of each chapter.
The first part of the book consists of two introductory chapters.
The first chapter (Chap.2) of Part I introduces nonlinear PCA. PCA is a popular

descriptive multivariate method for handling quantitative data and can be extended
to deal with mixed measurement level data. For extended PCA with such a mixture

© The Author(s) 2016
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2 1 Introduction

of quantitative and qualitative data, we require the quantification of qualitative data
to obtain optimal scaling data. PCA with optimal scaling is referred to as nonlinear
PCA. Nonlinear PCA, including optimal scaling, alternates between estimating the
parameters of PCA and quantifying qualitative data. The ALS algorithm is used
for nonlinear PCA and can find least squares solutions by minimizing two types of
loss functions: a low-rank approximation and a homogeneity analysis loss function
with restrictions. PRINCIPALS and PRINCALS are the ALS algorithms used for
the computation of nonlinear PCA.

The second chapter (Chap.3) of Part I introduces MCA as a special case of the
nonlinear PCA.MCA is awidely used technique for analyzing any type of categorical
data and aims to reduce large sets of variables into smaller sets of components that
summarize the information contained in the data. The purpose ofMCA is the same as
that of PCA, and MCA can be regarded as an adaptation to categorical data of PCA.
There are various approaches to formulating an MCA. We introduce a formulation
in which the quantified data matrix is approximated by a lower-rank matrix using
the quantification technique.

The second part of the book discusses applications of nonlinear PCA.
The first chapter (Chap.4) of Part II describes the variable selection in nonlinear

PCA.Anymeasurement levelmultivariate data can be uniformly treated as numerical
data in the context of PCA by the ALS with optimal scaling. This means that all
variables of the data can be analyzed as numerical variables, and, therefore, we
can solve the variable selection problem for mixed measurement level data using
any of the existing variable selection methods developed for numerical variables. In
this chapter, we discuss variable selection in nonlinear PCA. We select a subset of
variables that represents all variables to the extent possible using the criteria in the
modified PCA, which naturally includes the variable selection procedure.

The second chapter (Chap.5) of Part II illustrates sparse MCA. In MCA, an
estimated solution can be transformed into a simple structure in order to simplify the
interpretation. The rotation technique is widely used for this purpose. However, an
alternative approach, called sparse MCA, has also been proposed. One advantage of
sparse MCA is that, in contrast to unrotated or rotated ordinaryMCA loadings, some
loadings in sparse MCA can be exactly zero. A real data example demonstrates that
sparse MCA can provide simple solutions.

The third chapter (Chap.6) of Part II illustrates the joint dimension reduction
and clustering. Although cluster analysis is a technique that aims at dividing objects
into similar groups, it does not work properly when variables that do not reflect the
clustering structure are included in a dataset or when the number of variables is large.
One approach to mitigate this problem is to jointly perform clustering of objects and
dimension reduction of variables. In this chapter,we reviewa technique that combines
MCA and k-means clustering to obtain qualitative variables relationships.

In the fourth chapter (Chap. 7) of Part II, an acceleration algorithm of ALS is
proposed. As shown in Chap.2, the nonlinear PCA requires iterative computation
using the ALS algorithm (PRINCIPALS/PRINCALS) that alternates between opti-
mal scaling for quantifying qualitative data and analysis of the optimally scaled
data using the ordinary PCA approach. When applying nonlinear PCA to very large

http://dx.doi.org/10.1007/978-981-10-0159-8_3
http://dx.doi.org/10.1007/978-981-10-0159-8_4
http://dx.doi.org/10.1007/978-981-10-0159-8_5
http://dx.doi.org/10.1007/978-981-10-0159-8_6
http://dx.doi.org/10.1007/978-981-10-0159-8_7
http://dx.doi.org/10.1007/978-981-10-0159-8_2


1 Introduction 3

datasets of numerous nominal and ordinal variables, the ALS algorithm may require
many iterations and significant computation time to converge. One reason for the
slow convergence of the ALS algorithm is that its speed of convergence is linear. In
order to accelerate the convergence of the ALS algorithm, we propose a new iterative
algorithm using an idea (the vector ε algorithm) from the field of numerical analysis
to generate a faster linear convergent sequence.

This book demonstrates the usefulness of the nonlinear PCA and MCA, which
can be applied to different measurement level data in a variety of fields, and considers
the latest topics associated with these analyses, including the extension of the tradi-
tional statistical method, newly proposed nonlinear methods, and the computational
efficiency of these methods. The ALS algorithm is one of the key concepts in all
chapters, and optimal quantification and matrix operations are also key concepts in
this book.



Part I
Nonlinear Principal Component Analysis

The first part of this book consists of two chapters, which introduce the principle
concepts.

In the first chapter (Chap. 2), after a brief introduction of the ordinary principal
component analysis (PCA), a PCA for categorical data (nominal and ordinal data)
is introduced as nonlinear PCA, in which an optimal scaling technique is used to
quantify the categorical variables. The alternating least squares (ALS) algorithm is
one of the main algorithms of the proposed method.

In the second chapter (Chap. 3), multiple correspondence analysis, which is a
well-known method for categorical variables but is regarded here as a special case of
nonlinear PCA, is introduced. The ALS algorithm is also used in the computation. A
key point in the first part of this book is that all formulations used in these methods
are integrated in the same manner for matrix operations. Since any measurement
level data can be treated consistently as numerical data by the methods and ALS is
a very powerful tool for estimation, these methods are used in a variety of fields.

http://dx.doi.org/10.1007/978-981-10-0159-8_2
http://dx.doi.org/10.1007/978-981-10-0159-8_3


Chapter 2
Nonlinear Principal Component Analysis

Abstract Principal components analysis (PCA) is a commonly used descriptive
multivariate method for handling quantitative data and can be extended to deal with
mixed measurement level data. For the extended PCA with such a mixture of quan-
titative and qualitative data, we require the quantification of qualitative data in order
to obtain optimal scaling data. PCA with optimal scaling is referred to as nonlinear
PCA, (Gifi, Nonlinear Multivariate Analysis. Wiley, Chichester, 1990). Nonlinear
PCA including optimal scaling alternates between estimating the parameters of PCA
and quantifying qualitative data. The alternating least squares (ALS) algorithm is
used as the algorithm for nonlinear PCA and can find least squares solutions by
minimizing two types of loss functions: a low-rank approximation and homogene-
ity analysis with restrictions. PRINCIPALS of Young et al. (Principal components
of mixed measurement level multivariate data: an alternating least squares method
with optimal scaling features 43:279–281, 1978) and PRINCALS of Gifi (Nonlinear
Multivariate Analysis. Wiley, Chichester, 1990) are used for the computation.

Keywords Optimal scaling · Quantification · Alternating least squares algorithm ·
Low-rank approximation · Homogeneity analysis

2.1 Principal Component Analysis

LetY = (y1 y2 . . . yp) be a data matrix of n objects by p numerical variables and
each column of Y be standardized, i.e., y�

i 1n = 0 and y�
i yi/n = 1 for i = 1, . . . , p,

where 1n is an n × 1 vector of ones.
Principal component analysis (PCA) linearly transforms Y of p variables into a

substantially smaller set of uncorrelated variables that contains much of the infor-
mation of the original data set. Then PCA simplifies the description ofY and reveals
the structure of Y and the variables.

PCA postulates that Y is approximated by the bilinear form

Ŷ = ZA�, (2.1)

© The Author(s) 2016
Y. Mori et al., Nonlinear Principal Component Analysis and Its Applications,
JSS Research Series in Statistics, DOI 10.1007/978-981-10-0159-8_2
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8 2 Nonlinear Principal Component Analysis

where Z is an n × r matrix of n component scores on r (1 ≤ r ≤ p) components
and A is a p× r weight matrix that gives the coefficients of the linear combinations.
PCA is formulated in terms of the loss function

σ(Z,A) = tr(Y − Ŷ)�(Y − Ŷ) = tr(Y − ZA�)�(Y − ZA�). (2.2)

The minimum of the loss function (2.1) over Z and A is found by the eigen-
decomposition of Y�Y/n or the singular value decomposition of Y.

2.1.1 Eigen-Decomposition of Y�Y/n

Let S = Y�Y/n be a p × p symmetric matrix. Then we have the following relation
between the eigenvalues and eigenvectors of S:

Sai = λiai , a�
i ai = 1 and a�

i a j = 0 (i �= j) (2.3)

for i, j = 1, 2, . . . , p. We denote the p× pmatrix having p eigenvectors as columns
by A and the p × p matrix having p eigenvalues as its diagonal elements by Dp:

A = (a1 a2 . . . ap) and Dp = diag(λ1 λ2 . . . λp),

where λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0. The relation between the eigenvalues and eigen-
vectors given by Eq. (2.3) can be expressed by

SA = ADp, and A�A = Ip,

where Ip is a p × p identity matrix. We obtain A = (a1 a2 . . . ar ) by solving

SA = ADr

subject to A�A = Ir , and then compute Z = YA. Note that

Z�Z = A�Y�YA = nIp.

2.1.2 Singular Value Decomposition of Y

Let Y have rank l (l ≤ p). From the Eckart-Young decomposition theorem (Eckart
and Young 1936), Y has the following matrix decomposition

Y = UD1/2V�, (2.4)



2.1 Principal Component Analysis 9

where U, V and D have the following properties:

• U = (u1 u2 . . . ul) is an n×l matrix of left singular vectors satisfying u�
i ui = 1

and u�
i u j = 0, and U�U = Il .

• V = (v1 v2 . . . vl) is a p×l matrix of right singular vectors satisfying v�
i vi = 1

and v�
i v j = 0, and V�V = Il .

• D is a l × l diagonal matrix of eigenvalues of Y�Y or YY�.

We perform spectral decomposition of Y�Y:

Y�Y = λ1v1v�
1 + λ2v2v�

2 + · · · + λlvlv�
l , (2.5)

where λ1 ≥ λ2 ≥ · · · ≥ λl ≥ 0 are eigenvalues of Y�Y in descending order,
and v1, v2, . . . , vl are the corresponding normalized eigenvalues of length one. The
matrices V and D1/2 based on the decomposition (2.5) are defined as

V = (v1 v2 . . . vl), and D1/2 = diag(
√

λ1

√
λ2 . . .

√
λl).

From Eq. (2.4), we have

Z = ZA�A = YA = UD1/2.

Then the matrix U under restrictions u�
i ui = 1 and u�

i u j = 0 is given by

U =
(

1√
λ1

Yv1
1√
λ2

Yv2 · · · 1√
λl
Yvl

)
.

2.2 Quantification of Qualitative Data

Optimal scaling is a quantification technique that optimally assigns numerical values
to qualitative scales within the restrictions of the measurement characteristics of the
qualitative variables (Young 1981).

Let y j of Y be a qualitative vector with K j categories. To quantify y j , the vector
is coded by using an n × K j indicator matrix

G j = (g jik) =
⎛

⎜
⎝

g j11 . . . g j1K j

...
...

...

g jn1 . . . g jnK j

⎞

⎟
⎠ = (g j1 . . . g j K j ),

where

g jik =
{
1 if object i belongs to category k,
0 if object i belongs to some other category k ′( �= k).
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For example, given

Y = (y1 y2 y3) =

⎛

⎜
⎜
⎜
⎜
⎝

Blue Yes 4
Red No 3
Green Yes 1
Green No 2
Blue Yes 1

⎞

⎟
⎟
⎟
⎟
⎠

,

the indicator matrix of Y is

G = (G1 G2 G3) =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 1 1 0 0 0 0 1
1 0 0 0 1 0 0 1 0
0 1 0 1 0 1 0 0 0
0 1 0 0 1 0 1 0 0
0 0 1 1 0 1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

Thus we have

y1 = G1

⎛

⎝
Red
Green
Blue

⎞

⎠ , y2 = G2

(
Yes
No

)
, y3 = G3

⎛

⎜
⎜
⎝

1
2
3
4

⎞

⎟
⎟
⎠ .

Optimal scaling finds K j × 1 category quantifications q j under the restrictions
imposed by the measurement level of variable j and transforms y j into an optimally
scaled vector y∗

j = G jq j . There are different ways for quantifying observed data of
nominal, ordinal and numerical variables:

• Nominal scale data: The quantification is unrestricted. Objects i and h( �= i) in the
same category for variable j obtain the same quantification. Thus, if y ji = y jh
then y∗

j i = y∗
jh .• Ordinal scale data: The quantification is restricted to the order of categories. If

observed categories y ji and y jh for objects i and h in variable j have order y ji >

y jh then quantified categories have order y∗
j i ≥ y∗

jh .• Numerical data: The observed vector y j for variable j replaces y∗
j by standardizing

with zero mean and unit variance.

2.3 Nonlinear PCA

PCA assumes that data are quantitative and thus it is not directly applicable to quali-
tative data such as nominal and ordinal data. When PCA handles mixed quantitative
and qualitative data, the qualitative data must be quantified. In nonlinear PCA, the
qualitative data of nominal and ordinal variables are nonlinearly transformed into
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quantitative data. Thus, PCA with optimal scaling is called nonlinear PCA (Gifi
1990).

Nonlinear PCA reveals nonlinear relationships among variables with different
measurement levels and therefore presents a more flexible alternative to ordinary
PCA. Nonlinear PCA can find solutions by minimizing two types of loss functions; a
low-rank approximation of Y∗ extended to Eq. (2.2) and homogeneity analysis with
restrictions. We show the loss functions and provide the ALS algorithm used for
minimizing these loss functions.

2.3.1 Low-Rank Matrix Approximation

In the presence of qualitative variables in Y, the loss function (2.2) is expressed as

σL(Z,A,Y∗) = tr(Y∗ − Ŷ)�(Y∗ − Ŷ) = tr(Y∗ − ZA�)�(Y∗ − ZA�) (2.6)

and is minimized over Z, A and Y∗ under the restrictions

Y∗�1n = 0p and diag

[
Y∗�Y∗

n

]
= Ip, (2.7)

where 1n and 0p are vectors of ones and zeros of length n and p, respectively. Optimal
scaling for Y∗ can be performed separately and independently for each variable, and
then the loss function (2.6) can be rewritten as

σL(Z,A,Y∗) =
p∑

j=1

(y∗
j − Za�

j )
�(y∗

j − Za�
j ) =

p∑

j=1

σL j (Z, a j , y∗
j ). (2.8)

when minimizing independently each σL j (Z, a j , y∗
j ) under the measurement restric-

tions on variable j , we can minimize σ(Z,A,Y∗).

2.3.2 Homogeneity Analysis

Homogeneity analysis maximizes the homogeneity of several categorical variables
and quantifies the categories of each variable such that the homogeneity ismaximized
(Gifi 1990). Let Z be n × r object scores (component scores) and W j be K j × r
category quantifications of variable j ( j = 1, . . . , p). The loss function measuring
the departure from homogeneity is given by
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σH (Z,W) =
p∑

j=1

tr(Z − G jW j )
�(Z − G jW j )

=
p∑

j=1

σH j (Z,W j ) (2.9)

and is minimized over Z and W under the restrictions

Z�1n = 0r and Z�Z = nIr . (2.10)

The minimum of σH (Z,W) is obtained by separately minimizing each σH j (Z,W j ).
Gifi (1990) defines nonlinear PCA as homogeneity analysis imposing a rank-one

restriction whose form is

W j = q ja j , (2.11)

where q j is a K j × 1 vector of category quantifications and a j is a 1 × r vector
of weights (component loadings). Nominal variables on which restriction (2.11) is
imposed are called single nominal variables and variables without restrictions are
multiple nominal variables.

To minimize σH j (Z,W j ) under restriction (2.11), we first obtain the least squares
estimate W̃ j of W j . For a fixed W̃ j , σHj (Z,W j ) can be partitioned as

σHj (Z,W j ) = tr(Z − G jW j )
�(Z − G jW j )

= tr(Z − G jW̃)�(Z − G jW̃ j )

+tr(q ja j − W̃ j )
�(G�

j G j )(q ja j − W̃ j ). (2.12)

We then minimize the second term on the right hand side of Eq. (2.12) over q j and
a j under the restrictions imposed by the measurement level of variable j .

Each column vector of Y∗ under restriction (2.11) is computed by

y∗
j = G jq j .

Then Eq. (2.9) under restriction (2.10) is expressed as

σH (Z,W) =
p∑

i=1

tr(Z − G jW j )
�(Z − G jW j )

= np − 2
p∑

i=1

tr(a�
j y

∗�
j Z j ) +

p∑

i=1

tr(a�
j y

∗�
j y∗

ja j )

= np − 2tr(A�Y∗�Z) + tr(A�A).
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when expanding Eq. (2.6) under restriction (2.7), we also obtain

σL(Z,A,Y∗) = tr(Y∗ − ZA�)�(Y∗ − ZA�)�

= np − 2tr(A�Y∗�Z) + tr(AA�).

Thus, minimizing the loss function (2.9) is equivalent to minimizing the loss func-
tion (2.6) under restrictions (2.7) and (2.10).

2.3.3 Alternating Least Squares Algorithm for Nonlinear
PCA

The minimization of loss functions (2.6) and (2.9) has to take place with respect
to both parameters of Y∗ and (Z,A) and both of Z and W, although we can not
find simultaneously the solutions of these parameters. The alternating least squares
(ALS) algorithm is utilized to solve such minimization problem.

We describe the general procedure of the ALS algorithm. Let σ(θ1, θ2) be a loss
function and (θ1, θ2) be the parameter matrices of the function. We denote the t-th
estimate of θ as θ(t). Tominimize σ(θ1, θ2) over θ1 and θ2, theALS algorithm updates
the estimates of θ1 and θ2 by solving the least squares problem for each parameter:

θ
(t+1)
1 = argmin

θ1
σ(θ1, θ

(t)
2 ),

θ
(t+1)
2 = argmin

θ2
σ(θ

(t+1)
1 , θ2).

If each update of the ALS algorithm improves the value of the loss function and if
the function is bounded, the function will be locally minimized over the entire set of
parameters (Krijnen 2006).

We show the two ALS algorithms typically employed in nonlinear PCA; PRIN-
CIPALS (Young et al. 1978) and PRINCALS (Gifi 1990).

2.3.3.1 PRINCIPALS

PRINCIPALS developed by Young et al. (1978) is the ALS algorithm that minimizes
the loss function (2.8). PRINCIPALS accepts single nominal, ordinal and numerical
variables, and alternates between two estimation steps. The first step estimates the
model parameters Z and A for ordinary PCA, and the second obtains the estimate of
the data parameter Y∗ for optimally scaled data.

For the initialization of PRINCIPALS, the initial data Y∗(0) are determined under
the measurement restrictions for each variable and are then standardized to satisfy
restriction (2.7). The observed data Y may be used as Y∗(0) after standardizing each



14 2 Nonlinear Principal Component Analysis

columnofY under restriction (2.7).Given the initial dataY∗(0), PRINCIPALS iterates
the following two steps:

• Model estimation step: By solving the eigen-decomposition of Y∗(t)�Y∗(t)/n or
the singular value decomposition of Y∗(t), obtain A(t+1) and compute Z(t+1) =
Y∗(t)A(t+1). Update Ŷ(t+1) = Z(t+1)A(t+1)�.

• Optimal scaling step: Obtain Y∗(t+1) by separately estimating y∗
j for each variable

j . Compute q(t+1)
j for nominal variables as

q(t+1)
j = (G�

j G j )
−1G�

j ŷ
(t+1)
j .

Re-compute q(t+1)
j for ordinal variables using the monotone regression (Kruskal

1964). For nominal and ordinal variables, update y∗(t+1)
j = G jq

(t+1)
j and stan-

Table 2.1 Sleeping bag data from Prediger (1997)

Temperature Weight Price Material Quality rate

One kilo bag 7 940 149 Liteloft 3

Sund 3 1880 139 Hollow ber 1

Kompakt
basic

0 1280 249 MTI Loft 3

Finmark tour 0 1750 179 Hollow ber 1

Interlight Lyx 0 1900 239 Thermolite 1

Kompakt −3 1490 299 MTI Loft 2

Touch the
cloud

−3 1550 299 Liteloft 2

Cat’s meow −7 1450 339 Polarguard 3

Igloo super −7 2060 279 Terraloft 1

Donna −7 1850 349 MTI Loft 2

Tyin −15 2100 399 Ultraloft 2

Travellers
dream

3 970 379 Goose-downs 3

Yeti light 3 800 349 Goose-downs 3

Climber −3 1690 329 Duck-downs 2

Viking −3 1200 369 Goose-downs 3

Eiger −3 1500 419 Goose-downs 2

Climber light −7 1380 349 Goose-downs 3

Cobra −7 1460 449 Duck-downs 3

Cobra comfort −10 1820 549 Duck-downs 2

Fox re −10 1390 669 Goose-downs 3

Mont Blanc −15 1800 549 Goose-downs 3
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dardize y∗(t+1)
j . For numerical variables, standardize observed vector y j and set

y∗(t+1)
j = y j .

2.3.3.2 PRINCALS

PRINCALS is the ALS algorithm developed by Gifi (1990) and can handle multiple
nominal variables in addition to the single nominal, ordinal and numerical variables.
We denote the set of multiple variables by JM and the set of single variables having
single nominal andordinal scales andnumericalmeasurements byJS . FromEqs. (2.9)
and (2.12), the loss function to be minimized by PRINCALS is given by

σH (Z,W) =
∑

j∈JM
σH j (Z,W j ) +

∑

j∈JS
σH j (Z,W j ).

For the initialization of PRINCALS, we determine the initial values of Z andW.
ThematrixZ(0) is initialized with random numbers under restriction (2.10), andW(0)

j

is obtained as W(0)
j = (G�

j G j )
−1G�

j Z
(0). For each variable j ∈ JS , q

(0)
j is defined

as the first K j successive integers under the normalization restriction. The vector a j

is initialized as a(0)
j = Z(0)�G jq

(0)
j , and rescaled to unit length. Given these initial

values, PRINCALS iterates the following steps (Michailidis and de Leeuw 1998):

• Estimation of category quantifications: Compute W(t+1)
j for j = 1, . . . , p as

W(t+1)
j = (G�

j G j )
−1G�

j Z
(t).

Table 2.2 Quantification of
Material and Quality rate

Material

Duck-downs −0.168

Goose-downs −0.147

Hollow ber 0.473

Liteloft 0.046

MTI loft 0.014

Polarguard −0.005

Terraloft 0.313

Thermolite 0.390

Ultraloft −0.250

Quality rate

1 −0.450

2 0.106

3 0.106
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Table 2.3 Optimal scaled sleeping bag data

Temperature Weight Price Material Quality rate

One kilo bag 0.425 −0.324 −0.342 0.046 0.106

Sund 0.290 0.252 −0.388 0.473 −0.450

Kompakt
basic

0.155 −0.216 −0.202 0.014 0.106

Finmark tour 0.155 0.108 −0.295 0.473 −0.450

Interlight Lyx 0.155 0.288 −0.248 0.390 −0.450

Kompakt 0.019 −0.036 −0.109 0.014 0.106

Touch the
cloud

0.019 0.036 −0.109 0.046 0.106

Cat’s meow −0.116 −0.108 −0.016 −0.005 0.106

Igloo super −0.116 0.324 −0.155 0.313 −0.450

Donna −0.116 0.216 0.031 0.014 0.106

Tyin −0.387 0.360 0.171 −0.250 0.106

Travellers
dream

0.290 −0.288 0.124 −0.147 0.106

Yeti light 0.290 −0.360 0.031 −0.147 0.106

Climber 0.019 0.072 −0.062 −0.168 0.106

Viking 0.019 −0.252 0.078 −0.147 0.106

Eiger 0.019 0.000 0.217 −0.147 0.106

Climber light −0.116 −0.180 0.031 −0.147 0.106

Cobra −0.116 −0.072 0.264 −0.168 0.106

Cobra comfort −0.251 0.180 0.311 −0.168 0.106

Fox re −0.251 −0.144 0.357 −0.147 0.106

Mont Blanc −0.387 0.144 0.311 −0.147 0.106

– For the multiple variables in JM , setW
(t+1)
j to the estimate of multiple category

quantifications.
– For the single variables in JS , update a

(t+1)
j by

a(t+1)�
j = W(t+1)�

j (G�
j G j )q

(t)
j

/
q(t)�
j (G�

j G j )q
(t)
j

and compute q(t+1)
j for nominal variables by

q(t+1)
j = W(t+1)

j a(t+1)�
j

/
a(t+1)
j a(t+1)�

j .

Re-compute q(t+1)
j for ordinal variables using the monotone regression in a sim-

ilar manner as for PRINCIPALS. For numerical variables, standardize observed
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Table 2.4 Component scores

Z1 Z2

One kilo bag −0.104 0.185

Sund −0.208 −0.048

Kompakt basic −0.010 −0.084

Finmark tour −0.172 −0.120

Interlight Lyx −0.167 −0.040

Kompakt 0.019 −0.065

Touch the cloud 0.010 −0.044

Cat’s meow 0.024 −0.059

Igloo super −0.132 −0.036

Donna 0.006 0.056

Tyin 0.078 0.105

Travellers dream −0.006 0.224

Yeti light −0.014 0.194

Climber 0.042 0.003

Viking 0.078 −0.109

Eiger 0.080 −0.013

Climber light 0.053 −0.061

Cobra 0.079 −0.008

Cobra comfort 0.111 0.010

Fox re 0.136 −0.107

Mont Blanc 0.097 0.0182

Table 2.5 Factor loadings

Temperature Weight Price Material Quality rate

Z1 −0.330 −0.204 0.396 −0.411 0.377

Z2 0.179 0.348 0.045 −0.149 0.136

vector y j and compute q(t+1)
j = (G�

j G j )
−1G�

j y j . UpdateW
(t+1)
j = q(t+1)

j a(t+1)
j

for ordinal and numerical variables.

• Update of object scores: Compute Z(t+1) by

Z(t+1) = 1

p

p∑

j=1

G jW
(t+1)
j .

Column-wise center and orthonormalize Z(t+1).
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Fig. 2.3 Biplot of the first two principal components

2.4 Example: Sleeping Bags

We illustrate nonlinear PCA using sleeping bag data from Prediger (1997) given in
Table2.1. The data were collected on 21 sleeping bags with Temperature, Weight,
Price, Material and Quality Rate. Quality Rate is scaled from 1 to 3 such that the
higher value is the better one. The first three variables are numerical, Material is
nominal andQuality Rate is ordinal. The computation for quantifying qualitative data
and PCA is performed by the R package homals of De Leeuw andMair (2009) that
provides the ALS algorithm for homogeneity analysis. When imposing the rank-one
restrictions on Material and Quality Rate, homals is the same as PRINCALS. We
set r = 2 and obtain the following results.

Table2.2 reports the quantified values of Material and Quality Rate. Then Mate-
rial are quantified without order restriction due to the nominal variable, while the
quantification of Quality Rate is restricted to the order of categories. Figures2.1 and
2.2 are the plots of the category quantifications of Material and Quality Rate. These
figures graphically show the order restrictions for these variables. Table2.3 shows
optimal scaled sleeping bag data. The component scores and factor loadings are given
in Tables2.4 and 2.5, respectively. Figure2.3 is the biplot of the first two principal
components. We can interpret the data using ordinary PCA.
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Chapter 3
Multiple Correspondence Analysis

Abstract Multiple correspondence analysis (MCA) is a widely used technique to
analyze categorical data and aims to reduce large sets of variables into smaller sets
of components that summarize the information contained in the data. The purpose
of MCA is the same as that of principal component analysis (PCA), and MCA
can be regarded as an adaptation to the categorical data of PCA (Jolliffe, Principal
Component Analysis, 2002). There are various approaches to formulate an MCA.
We introduce a formulation in which the quantified data matrix is approximated
by a lower-rank matrix using the quantification technique proposed by Murakami
et al. (Non-metric principal component analysis for categorical variables with mul-
tiple quantifications, 1999).

Keywords Quantification · Low-rank approximation ·Rank-restriction of quantifi-
cation parameters · Orthogonal procrustes analysis

3.1 Introduction

In social, psychological, or behavioral studies, researchers frequently encounter a
large number of multivariate categorical variables. For example, in questionnaires,
participants are asked to choose one of several response alternatives for each set
of questions. Multiple correspondence analysis (MCA) is a widely used technique
for analyzing such categorical data and aims to reduce large sets of variables into
smaller sets of components that summarize the information contained in the data. The
purpose ofMCA is the same as that of principal component analysis (PCA), andMCA
can be regarded as an adaptation to categorical data of PCA (Jolliffe 2002). There
are various approaches by which to formulate MCA (e.g., Benzecri 1973, 1992; Gifi
1990; Hayashi 1952; Nishisato 2006), although these approaches have been shown to
give essentially equivalent solutions originating in different theoretical foundations
(Tenenhaus and Young 1985).

The original version of this chapter was revised: Typos were corrected throughout the chapter.
The erratum to this chapter is available at http://dx.doi.org/10.1007/978-981-10-0159-8_8.

© The Author(s) 2016
Y. Mori et al., Nonlinear Principal Component Analysis and Its Applications,
JSS Research Series in Statistics, DOI 10.1007/978-981-10-0159-8_3
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Similar to PCA, MCA can also be formulated as approximating a data matrix
by a lower-rank matrix using the quantification technique (Murakami et al. 1999;
Murakami 1999; Adachi andMurakami 2011). Quantification is a widely used statis-
tical technique for analyzing categorical variables, whereby the observed categorical
variables are transformed into quantitative scores such that the data analysis model
most closely matches the observations (Gifi 1990; Young 1981).

3.2 Formulation

If Ki denotes the number of categories in the i-th variable andGi denotes the n × Ki

indicator matrix, then GiQi represents the multiple quantification of i-th variable
where Qi (Ki -categories × Ri -dimensions) is the quantification parameter matrix
of the i-th variable. When the i-th variable is categorical, the observed variable is
transformed into quantitative scores by a quantification procedure. The loss function
is expressed as

p∑

i=1

‖GiQi − ZA�
i ‖2, (3.1)

is minimized over Z, Ai , and Qi (i = 1, . . . , p), and subject to the following con-
straints

n−1Z�Z = Ir , JZ = Z, (3.2)

1�
n GiQi = 0�

Ki
, n−1Q�

i G
�
i GiQi = IRi (3.3)

where J (n × n) is a centering matrix, Z (n × r ) is a component score matrix, and
Ai (Ri × r ) is a loading matrix, which are the corresponding model parameters of
the multidimensionally quantified i-th variable, 1n is an n-dimensional vector whose
elements are all ones and 0Ki is a Ki -dimensional vectorwhose elements are all zeros.
The component score matrix and the quantified data are assumed to be centered and
orthonormal in a column-wise manner.

The optimal solution is given by the singular value decomposition (SVD) of indi-
cator matrices of the observed variables. Denote G = [G1, . . . ,Gp], Di = G�

i Gi ,
D = b-diag(D1, . . . ,Dp),Wi = QiAi ,W = [W1, . . . ,Wp].W is called a category
score matrix in MCA. Here we define b-diag(•) as the operator of the block diagonal
matrix. Then, the loss function (3.1) can be rewritten as

‖JGD−1/2 − ZW�D1/2‖2. (3.4)

Let the SVD of JGD−1/2 = M�N�. The optimal solutions can be obtained as
Z = Mr andW = D−1/2Nr�r . The category score matrix is also expressed asW =
D−1G�JZ. The rank of Wi is at most the smaller of the number of components or



3.2 Formulation 23

categories minus one, because rank(JGiD−1
i ) = Ki − 1 and rank(Z) = r . Adachi

and Murakami (2011) have shown that the category score matrix W can be decom-
posed into the product of the quantification matrix and the loading matrix. Let us
denote the SVD of Wi = Ui�iV�

i . We can obtain the optimal solutions

Qi = Ui�i , (3.5)

Ai = �−1
i �iV�

i , (3.6)

if the nonsingular matrix �i (i = 1, . . . , p) that are satisfied with n−1��
i U

�
i DiUi

�i = IRi exist.�i canbeobtainedby the eigenvaluedecompositionofn−1U�
i DiUi =

Pi�
2
i P

�
i where Pi is the eigenvector matrix and � i is the diagonal matrix whose

diagonal elements are eigenvalues. Then, we have�i = Pi�
−1. Substituting�i into

the optimal solutions (3.5) and (3.6), the quantification parameter matrix and the
loading matrix are expressed as Qi = UiPi�

−1 and Ai = �P�
i �iV�

i , respectively.

3.3 Rank-Restricted MCA

In ordinaryMCA, the number of quantification dimensions is fixed tomin(Ki − 1, r)
for each variable, and the parameters can be uniquely determined. When the number
of dimensions is set in 1 ≤ Ri < min(Ki − 1, r), the solutions cannot be uniquely
determined and thus the parameters can be estimated by alternate iterations of the
operations that quantify the categorical variables and that obtain component score and
loadingmatrices. This type ofMCA is referred to as rank-restrictedMCA (Murakami
et al. 1999), which includes ordinary MCA as a special case. When all categorical
variables are unidimensionally quantified, the quantification parameters are assumed
to be 1�

n Giqi = 0�
Ki
, n−1q�

i G
�
i Giqi = 1.Note that the order-restrictions are imposed

to the quantification parameters as well as the rank-one restrictions in the ordinal
variables case, and that rank-restrictedMCA reduces to nonlinear PCA as mentioned
in Chap.2. In the case of numerical variables, standardized numerical variables also
satisfy the constraints above. In other words, standardization of numerical variables
is a restricted version of a single quantification (Ri = 1), in which the quantification
parameters are already known, and nonlinear PCA is equivalent to PCA when all
variables are numerical. The hierarchical relationships between MCA, NPCA, and
PCA are summarized in Table3.1.

Table 3.1 Relationships
between MCA, nonlinear
PCA, and PCA

Quantification PCA model

Non PCA

Single Nonlinear PCA

Multiple MCA

http://dx.doi.org/10.1007/978-981-10-0159-8_2
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3.4 Algorithm of Rank-Restricted MCA

We introduce an alternating least squares algorithm for rank-restricted MCA is
described as follow.

We reparametrize GiQi as

GiQi = Gi (G�
i Gi )

−1/2(G�
i Gi )

1/2Qi = �i�i ,

where �i = n1/2Gi (G�
i Gi )

−1/2 and �i = n−1/2(G�
i Gi )

1/2Qi . Substituting �i and
�i in the loss function (3.1), the problem reduces to minimizing

‖�i�i − ZA�
i ‖2, (3.7)

over each �i , subject to the constraints (3.3) for fixed model parameters. This mini-
mization can be viewed as an orthogonal Procrustes problem because �i is column-
orthonormal matrix where��

i �i = n−1Q�
i G

�
i GiQi = IRi . Let us define the SVD as

��
i ZA

�
i = K�L� withK�K = L�L = LL� = IRi , and let � be the Ri × Ri diag-

onal matrix whose diagonal elements are arranged in descending order. The optimal
�i is given by

�i = KL� (3.8)

(ten Berge 1993). Then we have

Qi = n1/2(G�
i Gi )

−1/2KL�. (3.9)

The rank of ��
i ZA

�
i is at most equal to the smaller of Ki − 1 or r . Consequently, the

dimension of quantification Ri is upper bounded by min(Ki − 1, r). The orthogonal
Procrustes problems expressed above are solved for each variable.

Next, we consider the optimization of Z. Recall the loss function (3.1)

p∑

i=1

‖GiQi − ZA�
i ‖2.

This loss function is minimized over Z subject to n−1Z�Z = Ir for givenQi andAi .
This minimization can also be viewed as an orthogonal Procrustes problem and the
optimal solution of Z is given by the SVD of

∑
GiQiAi .

After updating the component score matrix Z, the quantification matrix Qi Ai is
obtained by solving the regression problems

Ai = n−1Q�
i G

�
i Z (3.10)
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for each variable. This alternating procedure is continued until the differences
between the values of the loss function (3.1) in the current and previous steps is
less than ε.

The rank-restricted MCA algorithm is summarized as follows:

Step 1: Initial values are chosen for Ai , Z, and Ai . Take arbitrary matrix Qi which
satisfies the constraints (3.3). Values for Z can be chosen randomly, which
should satisfy the constraints. Then,Ai is given asA = n−1Q�

i G
�
i Z for each

variable.
Step 2: Update the quantification parameters by solving the orthogonal Procrustes

problems.
Step 3: Update the MCA model parameters by solving the orthogonal Procrustes

and regression problems.
Step 4: Finish if the differences between the values of the loss function (3.1) in the

current and previous steps is less than ε; otherwise, return to Step 2.

The proposed algorithmmonotonically decreases the loss function. Since the loss
function is bounded below, it converges to a solution that is at least a local optimum
(Young 1981).

To increase the chance of finding the global maximum, the algorithm should be
run several times, with different initial values.

3.5 Numerical Example

We demonstrate MCA using the sleeping bag data (Prediger 1997) already given
in Chap.2. The original dataset contains numerical variables, and MCA cannot be
applied to that type of dataset. Thus, we use three variables (Material, Quality Rate,
and Price), and categorize Price to “Cheap,” “not expensive,” and “expensive.” The
dataset we modified is described in Table3.2. For this demonstration, we report
the r = 2 rank-restricted MCA solution. We set the dimension of quantification for
Quality Rate and Price to be one, because they are considered as ordinal variables.
In contrast, Material is considered to be nominal variable, and thus, the dimension
of quantification is set to be min(K1 − 1, 2) = 2.

Tables3.3, 3.4 and 3.5 report the quantified values of Material, Quality Rate
and Price. Material is quantified without rank restriction due to being the nominal
variable. The component scores and factor loadings are given in Tables3.6 and 3.7,
respectively. The MC result can be interpreted in the same way as an PCA result.

http://dx.doi.org/10.1007/978-981-10-0159-8_2
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Table 3.2 Dataset (modified)

Bag Price Material Quality rate

One kilo bag Cheap Liteloft 3

Sund Cheap Hollow ber 1

Kompakt basic Cheap MTI Loft 3

Finmark tour Cheap Hollow ber 1

Interlight lyx Cheap Thermolite 1

Kompakt Not expensive MTI Loft 2

Touch the cloud Not expensive Liteloft 2

Cat’s meow Not expensive Polarguard 3

Igloo super Not expensive Terraloft 1

Donna Not expensive MTI Loft 2

Tyin Not expensive Ultraloft 2

Travellers dream Not expensive Goose-downs 3

Yeti light Not expensive Goose-downs 3

Climber Not expensive Duck-downs 2

Viking Not expensive Goose-downs 3

Eiger Expensive Goose-downs 2

Climber light Not expensive Goose-downs 3

Cobra Expensive Duck-downs 3

Cobra comfort Expensive Duck-downs 2

Fox re Expensive Goose-downs 3

Mont blanc Expensive Goose-downs 3

Table 3.3 Quantification matrix of Price

DIM1

Cheap 1.747

Expensive −0.913

Not expensive −0.379

Table 3.4 Quantification matrix of material

DIM1 DIM2

Duck-downs 0.673 0.548

Goose-downs 0.487 0.544

Hollow ber −2.177 −0.560

Liteloft 0.245 −1.631

MTI Loft 0.388 −1.134

Polarguard 0.384 0.236

Terraloft −1.608 2.799

Thermolite −2.177 −0.560

Ultraloft 0.675 −0.139
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Table 3.5 Quantification matrix of Quality rate

DIM1

1 2.04

2 −0.68

3 −0.34

Table 3.6 Component scores of MCA

Comp1 Comp2

One kilo bag −0.116 −1.990

Sund −2.143 −0.473

Kompakt basic −0.091 −1.634

Finmark tour −2.143 −0.473

Interlight Lyx −2.143 −0.473

Kompakt 0.615 −0.871

Touch the cloud 0.591 −1.226

Cat’s meow 0.378 0.218

Igloo super −1.577 2.801

Donna 0.615 −0.871

Tyin 0.664 −0.160

Travellers dream 0.399 0.436

Yeti light 0.399 0.436

Climber 0.617 0.350

Viking 0.399 0.436

Eiger 0.683 0.574

Climber light 0.399 0.436

Cobra 0.615 0.632

Cobra comfort 0.758 0.560

Fox re 0.540 0.646

Mont blanc 0.540 0.646

Table 3.7 Component loadings of MCA

Comp1 Comp2

Material (DIM1) 0.984 −0.035

Material (DIM2) 0.002 0.981

Quality rate 0.980 −0.183

Price 0.752 0.588
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Part II
Applications and Related Topics

The second part of this book consists of four chapters, which examine applications
of nonlinear principal component analysis (PCA). Four applications are introduced:
variable selection for mixedmeasurement level data, sparse multiple correspondence
analysis (MCA), reduced k-means clustering, and acceleration of alternating least
squares (ALS) computation. The variable selection methods in PCA, which was
originally developed for numerical data, can be applied to anymeasurement level data
by using nonlinear PCA. Sparseness and k-means clustering for nonlinear data,which
have been investigated in recent studies, are extensions obtained by the same matrix
operations used in nonlinear PCA and MCA. Finally, an acceleration algorithm is
proposed to reduce the computational cost of ALS iteration in nonlinear multivariate
methods.



Chapter 4
Variable Selection in Nonlinear Principal
Component Analysis

Abstract Chapter 2 shows that any measurement level multivariate data can be uni-
formly dealt with as numerical data in the context of principal component analysis
(PCA) by using the alternating least squares with optimal scaling. This means that
all variables in the data can be analyzed as numerical variables, and, therefore, we
can solve the variable selection problem for mixed measurement level data using any
existing variable selection method developed for numerical variables. In this chapter,
we discuss variable selection in nonlinear PCA. We select a subset of variables that
represents all variables as far as possible from mixed measurement level data using
criteria in the modified PCA, which naturally includes a variable selection procedure.

Keywords Modified PCA · Stepwise selection · Cumulative proportion ·
RV -coefficient

4.1 Introduction

In many data analysis situations, categorical (nominal and ordinal) and numerical data
are collected simultaneously. A typical approach for such mixed measurement level
data is to analyze categorical data and numerical data separately by a method specified
for each measurement level. For cases in which both data types are treated simulta-
neously, categorical variables are quantified by translating them to dummy variables
before the numerical analysis, or categorical codes in each item are used as numerical
variables in the analysis without any translation. However, these approaches are not
suitable for cases in which we wish to use all of the collected variables to observe
all data in lower dimensions and/or to select a subset of variables that represents all
variables to the extent possible.

As shown in Chap. 2 describing the basic concept of principal component analysis
(PCA) for mixed measurement level data, nonlinear PCA including optimal scaling
quantifies all categorical variables in the data as homogeneous numerical variables.
This means that we can handle all variables uniformly as numerical variables. In
other words, we can apply ordinary multivariate methods developed for numerical
data to the collected data.

© The Author(s) 2016
Y. Mori et al., Nonlinear Principal Component Analysis and Its Applications,
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Several studies have investigated variable selection in ordinary PCA for numerical
variables. Jolliffe (1972, 1973) considered principal component (PC) loadings to find
important variables. McCabe (1984) and Falguerolles and Jmel (1993) used a partial
covariance matrix to select a subset of variables that maintains the information on
all variables to the greatest extent possible. Robert and Escoufier (1976) and Bonifas
et al. (1984) used the RV -coefficient, and Krzanowski (1987a, b) used Procrustes
analysis to evaluate the similarity between the configuration of PCs computed based
on selected variables and that based on all variables. Tanaka and Mori (1997) dis-
cussed a method called modified PCA (M.PCA) that can be used to compute PCs
using only a select subset of variables that represents all of the variables, including
those not selected. Since M.PCA includes variable selection procedures in the analy-
sis, its criteria can be used directly to detect a reasonable subset of variables (e.g.,
Mori et al. 2006). Fueda et al. (2009) estimated PCs based on a subset of variables
and selected a reasonable subset of variables using the estimation technique. Fur-
thermore, PCA with sparse loadings, such as SCoTLASS by Zou et. al. (2004) and
sparse PCA by Jolliffe et al. (2003), can be used to identify sets of important vari-
ables. Group sparse PCA and sparse multiple correspondence analysis by Bernard
et al. (2012) also select groups of numerical variables and categorical variables. (Note
that the approach to categorical variables of Bernard et al. (2012) differs from our
approach, as described in Chap. 5.)

Among them, we focus on variable selection using the criteria in M.PCA (Tanaka
and Mori 1997) to select a subset of variables from mixed measurement level data
because M.PCA naturally includes variable selection in the PCA process and is easily
extended to nonlinear M.PCA. The concept and procedures for selecting a subset of
numerical variables using the criteria in M.PCA are summarized in Mori et al. (2006),
while the basic concept was introduced in Tanaka and Mori (1997). Moreover, the
selection procedures and computational environment were proposed in Mori et al.
(1998) and Mori et al. (2000), respectively. The initial concept for selecting a subset
of categorical variables using the criteria in M.PCA, which is the Type 1 selection
described in Sect. 4.3.2, was proposed in Mori et al. (1997). Computations were
performed in Kuroda et al. (2011) as an application of accelerated computation for
nonlinear PCA (acceleration is introduced in Chap. 7). Here, we formulate a variable
selection by applying the criteria in M.PCA to select a subset of variables from mixed
measurement level data.

4.2 Modified PCA for Mixed Measurement Level Data

4.2.1 An Overview of Modified PCA

M.PCA (Tanaka and Mori 1997) is intended to derive PCs that are computed using
only a selected subset but represent all of the variables, including those not selected.
Those PCs provide a multidimensional rating scale which has high validity and is easy

http://dx.doi.org/10.1007/978-981-10-0159-8_5
http://dx.doi.org/10.1007/978-981-10-0159-8_7
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to apply practically, although it is obtained from small numbers of variables. In order
to find such PCs we can borrow the concepts of Rao (1964)’s PCA of instrumental
variables and Robert and Escoufier (1976)’s RV -coefficient-based approach.

Suppose we obtain an n × p data matrix Y that consists of numerical variables.
Let Y be decomposed into an n × q submatrix Y1 and an n × (p − q) submatrix Y2

(1 ≤ q ≤ p). We denote the covariance matrix of Y = (Y1,Y2) as S =
(
S11 S12

S21 S22

)
,

where the subscript i ofS corresponds toYi .Y is represented as accurately as possible
by r PCs, where r is the number of PCs and the PCs are linear combinations of a
submatrix Y1, i.e., Z = Y1A (1 ≤ r ≤ q). In order to derive A = (a1, . . . , ar ), the
following Criterion 1 based on Rao (1964) and Criterion 2 based on Robert and
Escoufier (1976) can be used:

(Criterion 1) The prediction efficiency for Y is maximized using a linear predictor
in terms of Z.

(Criterion 2) The RV -coefficient between Y and Z is maximized.
The RV -coefficient is computed as

RV (Y,Z) = tr(ỸỸ�Z̃Z̃�)/{tr(ỸỸ�)·tr(Z̃Z̃�)}1/2,

where Ỹ and Z̃ are centered matrices of Y and Z, respectively.

The maximization criteria for the above (Criterion 1) and (Criterion 2) are given by
the proportion P

P =
r∑

j=1

λ j/tr(S), (4.1)

and the RV -coefficient

RV =
⎧
⎨

⎩

r∑

j=1

λ2
j/tr(S2)

⎫
⎬

⎭

1/2

, (4.2)

s respectively, where λ j is the j-th eigenvalue with the order of magnitude of the
eigenvalue problem (EVP)

[(S2
11 + S12S21) − λS11]a = 0. (4.3)

When the number of variables in Y1 is q, Y1 should be assigned by a subset of q
variables (Y2 by a subset of p − q remaining variables) that provides the largest
value of P by Eq. (4.1) for (Criterion 1) or the largest value of RV by Eq. (4.2) for
(Criterion 2), and the solution is obtained as a matrixA, the columns of which consist
of the eigenvectors associated with the largest r eigenvalues of EVP (4.3).

Obviously, these criteria can be used to select a reasonable subset of size q; in
other words, “variable selection using the criteria in M.PCA” is to find a subset of
size q by searching for one that has the largest value of the above criterion P or RV
among all possible subsets of size q.
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4.2.2 Modified PCA for Mixed Measurement Level Data

Since M.PCA is a method for numerical variables, categorical variables in the data
should be quantified in an appropriate manner. This means that we implement M.PCA
for categorical variables (nonlinear M.PCA) as in Sect. 2.1. Considering PRINCI-
PALS in Sect. 2.3.3.1, the implementation is easy because nonlinear M.PCA can be
formulated by replacing only the eigen-decomposition in Model estimation step of
PRINCIPALS in Sect. 2.3.3.1 by the EVP (4.3) to get the model parameters A and
Z for M.PCA (Mori et al. 1997).

Here, we rewrite the ALS algorithm of PRINCIPALS as follows: for given initial
data Y∗(0) = (Y∗(0)

1 , Y∗(0)
2 ) from original data Y, the following two steps are iterated

until convergence (i.e., θ∗ = tr(Y∗ − Ŷ)�(Y∗ − Ŷ) = tr(Y∗ − ZA�)�(Y∗ − ZA�)

is minimized):

• Model estimation step: From Y∗(t) = (Y∗(t)
1 , Y∗(t)

2 ), obtain A(t) by solving an
eigenvalue problem

[(S2
11 + S12S21) − λS11]a = 0.

Compute Z(t) from Z(t) = Y∗(t)
1 A(t).

• Optimal scaling step: Calculate Ŷ(t+1) = Z(t)A(t)�. Find Y∗(t+1) such that

Y∗(t+1) = arg min
Y∗(t)

tr(Y∗(t) − Ŷ(t+1))�(Y∗(t) − Ŷ(t+1))

for fixed Ŷ(t+1) under measurement restrictions on each of the variables. Since
Y∗(t+1) is obtained by separately estimating Y∗

j for each j ( j = 1, . . . , p), scale

Y∗(t+1) by columnwise centering and normalizing. Re-compute Y(t+1)
j by an addi-

tional transformation to keep the monotonicity restriction for ordinal variables and
skip this computation for numerical variables.

Y∗ = (Y∗
1, Y∗

2) obtained after convergence is an optimally scaled (quantified)
matrix of Y.

4.3 Variable Selection in Nonlinear Modified PCA

4.3.1 Four Selection Procedures

When the size of Y1 is q, the best subset of q variables selected by using a criterion
in M.PCA is one that provides the largest criterion value P or RV among all possible
pCq combinations of variables. Although finding such a subset among all possible
subsets is the best selection procedure, this procedure is usually impractical due to
the high computational cost of computing criterion values for all possible subsets.

http://dx.doi.org/10.1007/978-981-10-0159-8_2
http://dx.doi.org/10.1007/978-981-10-0159-8_2
http://dx.doi.org/10.1007/978-981-10-0159-8_2
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Therefore, as practical strategies, we can use one of four selection procedures (see,
e.g., Mori et al. 2006):

a. Backward elimination
b. Backward–forward stepwise selection
c. Forward selection
d. Forward–backward stepwise selection

in which only one variable is removed or added sequentially. These procedures allow
automatic selection of any number of variables.

Each procedure consists of two stages. The one below is the detailed flow repro-
duced from Mori et al. (2006), where V is the criterion value P or RV obtained by
assigning q variables to Y1:

a. Backward elimination

Stage A. Initial fixed-variable stage

A-1 Assign q variables to subset Y1, usually q := p.
A-2 Solve the EVP (4.3).
A-3 Look carefully at the eigenvalues, determine the number r of PCs to

be used.
A-4 Specify kernel variables that should always be involved in Y1, if

necessary. The number of kernel variables is less than q.

Stage B. Variable selection stage (Backward)

B-1 Remove one variables from among q variables in Y1, make a tempo-
rary subset of size q − 1, and compute V based on the subset. Repeat
this for each variable in Y1, then obtain q V s. Find the best subset of
size q − 1 that provides the largest V among q V s and remove the
corresponding variable from the present Y1. Put q := q − 1.

B-2 If the V or q is larger (or smaller) than the preassigned values, go to
B-1. Otherwise stop.

b. Backward–forward stepwise selection

Stage A. Initial fixed-variable stage

A-1 ∼ 4 Same as A-1 to 4 in Backward elimination.

Stage B. Variable selection stage (Backward–forward)

B-1 Put i := 1.
B-2 Remove one variable from among q variables in Y1, make a tempo-

rary subset of size q − 1, and compute V based on the subset. Repeat
this for each variable in Y1, then obtain q V s. Find the best subset
of size q − 1 that provides the largest V (denoted by Vi ) among q
V s and remove the corresponding variable from the present Y1. Set
q := q − 1.
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B-3 If the V or q is larger (or smaller) than preassigned values, go to B-4.
Otherwise stop.

B-4 Remove one variable from among q variables in Y1, make a tempo-
rary subset of size q − 1, and compute V based on the subset. Repeat
this for each variable in Y1, then, obtain q V s. Find the best subset
of size q − 1 that provides the largest V (denoted by Vi+1) among q
V s and remove the corresponding variable from the present Y1. Set
q := q − 1.

B-5 Add one variable from among p − q variables in Y2 to Y1, make a
temporary subset of size q + 1, and compute V based on the subset.
Repeat this for each variable, except for the variable removed from
Y1 and moved to Y2 in B-4, then obtain p − q − 1 V s. Find the best
subset of size q + 1 that provides the largest V (denoted by Vtemp)
among p − q − 1 V s.

B-6 If Vi < Vtemp, add the variable found in B-5 to Y1, set Vi := Vtemp,
q := q + 1 and i := i − 1, and go to B-5. Otherwise set i := i + 1
and go to B-3.

c. Forward selection

Stage A. Initial fixed-variable stage

A-1 ∼ 3 Same as A-1 to 3 in Backward elimination.
A-4 Redefine q as the number of kernel variables (here, q ≥ r ).

If you have kernel variables, assign them to Y1. If not, put
q := r , find the best subset of q variables that provides the
largest V among all possible subsets of size q and assign it
to Y1.

Stage B. Variable selection stage (Forward)
Basically, the opposite of Stage B in Backward elimination.

d. Forward–backward stepwise selection

Stage A. Initial fixed-variable stage

A-1 to 4 Same as A-1 to 4 in Forward selection.

Stage B. Variable selection stage (Forward–backward)
Basically, the opposites of Stage B in Backward–forward stepwise selec-
tion.

The criteria based on the subsets selected by the above procedures differ only
slightly from those based on the best subset among all possible ones. The stepwise-
type selections (b and d) can select better subsets than the single-type selections
(a and c) and the forward-type selections (c and d) tend to select better subsets than
the backward-type selections (a and b).
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Fig. 4.1 Three possible types of selection (this flow illustrates the case of backward-type selection)

4.3.2 Three Possible Types of Selection

The selection flows in Sect. 4.3.1 are for data y containing only numerical variables,
i.e., all variables in Y are numerical. For data Y containing categorical variables,
we have to implement quantification (optimal scaling with ALS; here, nonlinear
M.PCA) in the flow. There are three types of selection (Type 1, Type 2 and Type 3
shown below) according to where the quantification of mixed measurement level
data Y is implemented in the flow (Fig. 4.1).

For all selection types in common, q original variables are assigned to Y1 at A-1
and nonlinear M.PCA is applied to (Y1,Y2) at A-2. Then quantified (Y∗

1,Y
∗
2) is

obtained and the remaining A-3 and A-4 in Stage A are done for this quantified data.
In Type 1, no more quantification is carried out in Stage B, i.e., all processes in

Stage B are performed onY∗ which has been quantified in Stage A. The quantification
is performed only once through the Stage A and B. (See the left flow in Fig. 4.1.)

In Type 2, the quantification is carried out every time after the best subset of size q
is found at B-2 of the single-type selections, B-2, B-4, and B-5 of the stepwise-type
selections. That is, the quantified (Y∗

1,Y
∗
2) based on the best subset of size q found

in the previous selection is used to find the best subset of size q − 1 or q + 1 in the
next selection. (See the middle flow in Fig. 4.1.)
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InType 3, the quantification is carried out for every temporary (Y1, Y2) in Stage B,
i.e., nonlinear M.PCA is executed whenever temporary (Y1, Y2) is given to compute
its criterion value V in Stage B. (See the right flow in Fig. 4.1.)

A reasonable subset of size q is given as Y1 corresponding to the best subset Y∗
1

which is finally found at q when the selection procedure is terminated.

4.4 Numerical Examples

We use a data set of alate adelges (winged aphids) as a demonstration data, which
was originally analyzed by Jeffers (1967) using ordinary PCA. The data set consists
of 40 individuals and 19 variables. The variables are all numerical, which measure 19
physical sizes. Eigenvalues and their cumulative proportions of the data are 13.8379
(72.83%), 2.3635 (85.27%), 0.7480 (89.21%), . . ., then two PCs (r = 2) were used
in previous studies and are used here.

Here, we modify this data set to an artificial data set with mixed measurement
level variables as follows: we translate V18 (anal fold: exits or not) to nominal and
{V6, . . ., V10, V12, . . ., V14} to ordinal in five levels. Then, the obtained artificial
data set consists of 1 nominal, 8 ordinal, and 10 numerical variables (Table 4.1).

Since Jeffers (1967) found four clusters by observing the plot of PCs obtained by
ordinary PCA based on the correlation matrix of whole variables, we choose the RV -
coefficient as a selection criterion to detect a subset providing the close configuration
of PCs to the original configuration.

Figures 4.2 and 4.3 indicate biplots of PC scores and loadings obtained by applying
M.PCA to the original and artificial data, respectively. Figure 4.2 is the same plot
as the PC scores plot obtained by ordinary PCA because M.PCA provides the same
results as ordinary PCA when all variables (Y = Y1) are used. It is not our purpose
here to confirm whether similar results are obtained from two data sets but these plots
indicate that the same four clusters are observed, although the loadings are slightly
different because the features of some variables are changed from the original. This
indicates that nonlinear PCA (M.PCA) reproduces the original configuration well.

We apply Type 3 of Forward–backward stepwise selection to the artificial deta
set. The procedure identifies a reasonable subset for each q (q = p . . . r ) in turn.

Table 4.2 shows the selection results of (Y1,Y2) and RV -coefficients for every q.
The change of the RV -coefficients is shown in Fig. 4.4. (although the selection was
executed from q = r to p because of forward-type selection, the results in Table 4.2
and the change of criterion value in Fig. 4.4 are indicated from q = p to r .)

The results illustrate that the RV -coefficients change slightly when the number
of variables exceeds five. For example, when we delete five variables, the difference
between RV -coefficient of the original 19 variables (0.9910) and that of the selected
14 variables (0.9894) is very small (0.0016). When we delete 13 variables, the dif-
ference is 0.0112. In particular, the sequential difference is less than 0.001 until the
number of variables is nine.
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Fig. 4.5 Biplots of PC scores and loadings based on selected 14 variables

Here, we draw biplots of PC scores and loadings based on the selected 14 variables
{V1, V3, V4, V5, V6, V7, V9, V10, V11, V12, V13, V15, V16, V17} (Fig. 4.5) and 6
variables {V3, V7, V9, V11, V13, V18} (Fig. 4.6). Their RV -coefficients are 0.9894
and 0.9798, respectively. Comparing these plots and RV -coefficients with those of 19
original variables (Fig. 4.3, RV = 0.9910), it is observed that the selected variables
keep the configuration of PC scores based on the original 19 variables even though the
number of variables is one third of the original number of variables. This means that
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Fig. 4.6 Biplots of PC
scores and loadings based on
selected 6 variables

-4 -2 0 2 4 6

-4
-2

0
2

4
6

Biplot   { 3 7 9 11 13 18 }

1st

2n
d

12

345

67

8

9
10

11 31211415

16
17

18

19

202122

23

24
25 26

27
28

2930

31
3233

34

35

3637

383940

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Var 1

Var 2

Var 3

Var 4

Var 5

Var 6

the proposed selection can select variables that provide almost the same information
as the original PC scores in the context of nonlinear M.PCA.
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Chapter 5
Sparse Multiple Correspondence Analysis

Abstract In multiple correspondence analysis (MCA), an estimated solution can
be transformed into a simple structure in order to simplify the interpretation. The
rotation technique is widely used for this purpose. However, an alternative approach,
called sparse MCA, has also been proposed. One of the advantages of sparse MCA
is that, in contrast to unrotated or rotated ordinary MCA loadings, some loadings in
sparseMCA can be exactly zero. A real data example demonstrates that sparseMCA
can provide simple solutions.

Keywords Simple structure · Rotation · Penalty-free approach · Loading matrix

5.1 Introduction

In principal component analysis (PCA), the estimated solutions can be transformed
without changing the fitness of the loss function

‖Y − ZA�‖2 = ‖Y − ZS�S�−1
A�‖2, (5.1)

whereY is an observed data matrix (n-observations×p-variables),Z is a component
score matrix (n-observations× r-components), A is a loading matrix (p-variables×
r-components), and S is an arbitrary nonsingular matrix (p-variables× p-variables).
This non-uniqueness is referred to as rotational freedom or rotational indeterminacy.
Generally, using this property, the estimated loading matrix is transformed into a
desirable simple structure in order to simplify the interpretation, which is referred to
as rotation (e.g., Browne 2001). Thurstone (1947) provided five rules for a simple
structure:

1. Each row of the factor matrix should have at least one zero;
2. If there are r common factors, each column of the factor matrix should have at

least r zeros;
3. For every pair of columns of the factor matrix, there should be several variables,

the entries of which vanish in one column but not in the other;

© The Author(s) 2016
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4. For every pair of columns of the factor matrix, a large proportion of the variables
should have vanishing entries in both columnswhen there are four ormore factors;

5. For every pair of columns of the factormatrix, there should be only a small number
of variables with non-vanishing entries in both columns.

In other words, the simple structure should have a large number of zero ele-
ments, making the estimated solution easy to interpret by focusing only on the
variables with nonzero elements. If no identification condition is introduced to S,
an arbitrary nonsingular transformation can be applied to the solution. In order to
reduce this non-uniqueness, the constraints n−1S�S = Ir (orthogonal rotation) or
n−1diag(S�S�−1

) = Ir (oblique rotation) are usually imposed on S. In the psy-
chometrics literature, a number of rotation methods have been proposed. In these
studies, most of the objective functions are mathematically defined by Thurstone’s
concept and are optimized for exploring thematrices S that can transform the loading
matrix A into a simple structure (Browne 2001). The rotation technique is a com-
monly used method for obtaining a simple structure, but rotated solutions produce
numerous small non-zero loadings. The common practice in interpreting the rotated
loadings is to set all loadings having magnitudes lower than some threshold to zero.
Trendafilov and Adachi (2015) pointed out that the original concept of Thurstone’s
simple structure requires numerous exactly zero entries and cannot be obtained by
rotationmethods. Recently, in the PCA literature, an alternative method called sparse
PCAhas been proposed for overcoming the drawback of rotationmethodsmentioned
above (e.g., Trendafilov 2014; Zou et al. 2006). In contrast to unrotated or rotated
ordinary PCA loadings, some loadings in sparse PCA can be exactly zero. Note
that although the true simple structure can be obtained by sparse PCA, in contrast
to the rotation, the fitness of the loss function is changed. For obtaining the true
Thurstone’s simple structure in the MCA solution, we proposed a sparse MCA
method that follows the sparse PCA.

We introduce the rotation method in MCA in more detail and then discuss the
sparse MCA method. A real data example is provided in the last section.

5.2 Rotation

MCA also has the rotational freedom property, and the rotation of MCA solutions
has been dealt with in some studies (Adachi 2004; Kiers 1991; van de Velden and
Kiers 2003). However, there are some differences between the rotation in PCA and
MCA: the relation between the loadings and component scores are known for PCA,
A = n−1Z�Y, but this does not generally hold in MCA (Kiers 1991). Thus, the
discrimination measure matrix, which is defined as W = ∑

WiDiWi, is rotated
towards the simple structure. However, as mentioned in Sect. 5.1, the loading matrix
can be defined in the MCA formulation proposed by Murakami et al. (1999) in the
same manner as PCA. The quantification matrix can also be rotated as well as the
loading and component score matrices in MCA:



5.2 Rotation 49

p∑

i=1

‖GiQi − ZA�
i ‖2 =

p∑

i=1

‖GiQiTi − ZSS−1A�
i Ti‖2, (5.2)

whereGi (n×Ki) is an indicator matrix,Qi (Ki ×Ri) is a quantification matrix, and
Ti (Ri × Ri) is an orthonormal matrix (i = 1, . . . , p). Murakami (1999) modified
an orthomax criterion in three-way PCA for MCA solutions in which the loading
matrix is rotated towards the simple structure by pre- and post-multiplied rotation
matrices S and Ti (i = 1, . . . , p). In the algorithm, S and Ti (i = 1, . . . , p) are
alternately optimized; the pre-multiplied rotation matrix S is optimized given the
Ti (i = 1, . . . , p), and the post-multiplied matrices Ti (i = 1, . . . , p) is optimized
given the matrix S. It should be noted that the rotational freedom of the quantification
matrices in nonlinear PCA disapears because all dimensions of the quantifications
are set to be one.

5.3 Sparse MCA

In sparseMCA, there aremainly two approaches for obtaining the sparse solutions. In
one approach, the MCA objective function is combined with a penalty function that
penalizes the component weight matrix (Bernard et al. 2012). It should be mentioned
that the usage of term “loading matrix” in this article is different to that of Bernard
et al. (2012). The term “loading matrix” is used as the weights for the data matrix
in Bernard et al. (2012). However, we call the loading matrix as the weights for the
component score matrix and the component weight matrix as the weights for data
matrix in this article. In the other approach, the loading matrix is estimated under the
condition that the number of zeros are pre-specified, which is named pre-specified
sparsity approach in this chapter. We propose the latter sparse MCA approach in
this chapter because of the following two reasons. Firstly, the component weight
matrix is focused rather than the loading matrix in the penalty approach. However,
the loading matrix is practically used for interpretations of PCA or MCA solutions.
Secondly, one of the drawbacks of the penalty-based approach is sometimes difficult
to choose the appropriate value of the tuning parameter that defines the degree of the
sparsity. In contrast, users can control the degree of sparsity in the loading matrix in
the pre-specified sparsity approach.

The sparse MCA loss function is defined as

p∑

i=1

‖GiQi − ZA�
i ‖2, (5.3)

subject to card(A) = v and ordinary MCA constraints n−1Z�Z = Ir , JZ = Z,
1�
n GiQi = 0�

Ki
, and n−1Q�

i G
�
i GiQi = IRi . Here, J (n× n) is a centering matrix, and

card(•) = v means that the number of zero elements (sparsity) is equal to v.
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In the sparse PCA with pre-specifying sparsity approach, an efficient heuristic
algorithm called greedy search is proposed to find component loadings sequentially
with direct cardinality constraints (d’Aspremont et al. 2008;Moghaddamet al. 2006).
Recently, an alternative algorithm has been proposed by Adachi and Trendafilov
(2015), in which all component loadings are estimated with direct cardinality con-
straints. Adachi and Trendafilov (2015) pointed out that the simultaneous estimation
in sparse PCA is superior to obtaining each component sequentially by the recovery
of the true loading matrix. Thus, we adapted the Adachi and Trendafilov’s algorithm
and developed a simultaneous estimation method for sparse MCA.

The loss function (5.3) can be rewritten as

p∑

i=1

‖GiQi − ZBi + ZBi − ZAi‖2 =
p∑

i=1

‖GiQi − ZBi‖2 + n‖B − A‖2, (5.4)

where B = n−1 ∑
Q�

i G
�
i Z. The loss function (5.4) can be solved by alternately

performing three steps:

• Q-step: minimizing the loss function (5.4) over Q subject to 1�
n GiQi = 0�

Ki
, and

n−1Q�
i G

�
i GiQi = IRi ;

• Z-step:minimizing the loss function (5.4) overZ subject to JZ = Z and n−1Z�Z =
Ic;

• A-step: minimizing the loss function (5.4) over A subject to card(A) = v.

5.3.1 Q-Step

We first consider the Q-step, which is equivalent to the minimization of∑p
i=1 ‖GiQi − ZBi‖2, under the restrictions 1�

n GiQi = 0�
Ki
, and n−1Q�

i G
�
i GiQi =

IRi .
∑p

i=1 ‖GiQi − ZBi‖2 is expressed as∑p
i=1 ‖GiD

−1/2
i D1/2

i Qi − ZBi‖2. Thus, the
minimization for the quantification parameters reduces to the orthogonal Procrustes
problem and the optimal Qi can be obtained by the singular value decomposition
(SVD) of D−1/2

i G�
i ZB

� in the same manner as ordinary (rank-restricted) MCA in
Sect. 3.3.

5.3.2 Z-Step

In Z-step, minimizing the loss function (5.4) equals the minimization of∑p
i=1 ‖GiQi − ZBi‖2, under the restrictions n−1Z�Z = Ir , JZ = Z and can be

regarded as the orthogonal Procrustes problem. Hence, we can have the optimal Z
by the SVD of

∑
GiQiBi.

http://dx.doi.org/10.1007/978-981-10-0159-8_3
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5.3.3 A-Step

For updating A, we use the algorithm proposed by Adachi and Trendafilov (2015).
The term n‖B − A‖2 is only relevant to A in the loss function (5.4). Therefore,
minimizing (5.4) is equivalent to theminimization of n‖B−A‖2 subject to card(A) =
v. Let us denote f (A) = ‖B − A‖2. f (A) is expressed as

f (A) = ‖B − A‖2 =
∑

(i,j)∈O
b2ij +

∑

(i,j)∈Oc

(bij − aij)
2 ≥

∑

(i,j)∈O
b2ij, (5.5)

where O denotes the set of the q = Rr − v indexes (i, j)’s indicating the locations
where

∑p
i=1 Ri = R, the loadings aij are zero, and the compliment set Oc the c(i, j)s

for nonzero aij. The inequality (5.5) shows that the function f (A) attains its lower
limit

∑
(i,j)∈O b2ij when the non-zero loadings aij with (i, j) ∈ Oc are set to equal

to bij. Moreover, the limit
∑

(i,j)∈O b2ij is minimal, when O contains the indexes for
the q smallest b2ij among all squared elements of B. Hence, the optimal A can be
obtained by

aij =
{
0, iff b2ij ≤ b2(q)
bij, otherwise

(5.6)

where b2(q) is the q-th smallest value among all b2ij.

5.4 Real Data Example

The sparse MCA is illustrated using Japanese baseball data (Makino 2015) and
comparedwith the varimax-rotated solution of ordinaryMCA. This dataset describes
the scores of 62 batters in Japanese professional baseball in 2010, and we use the
following variables from the dataset: batting average, runs, doubles, home runs, runs
batted in, and strikeouts (Table5.1). We set the number of components to two and
the dimension of quantification to one for all variables, which can be interpreted
as expressing whether batters hit for average (table setters) or power (sluggers).
Figure5.1 illustrates the amount of variances for all possible zero cases. As shown in
Fig. 5.1, the values are sharply changedwhen card(A) = 7.Thus,weuse card(A) = 6
in this data analysis. The result of the loading matrix is reported in Table5.2 and the
rotated loading matrix of ordinary MCA solution is reported in Table5.3. Similar
loadings are obtained by sparse MCA and rotated MCA solution, but as you can see,
the sparse MCA solution achieves the true simple structure.
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Table 5.1 Japanese baseball data from Makino (2015)

Batting
average

Run Double Home run RBI Strike

2 2 2 1 1 1

2 2 1 1 1 1

2 2 2 2 2 1

2 2 2 2 2 1

2 2 2 2 2 1

2 2 2 1 1 1

2 2 2 2 2 2

2 1 2 1 1 1

2 2 1 2 2 2

2 2 2 1 1 1

2 2 2 2 2 2

2 2 2 2 2 1

2 2 2 2 2 2

2 1 1 1 1 1

2 2 1 2 2 2

1 1 1 1 1 1

1 1 1 1 1 2

1 1 2 1 1 1

1 1 1 1 1 1

1 1 1 2 1 1

1 1 1 1 1 1

1 2 2 2 2 2

1 2 2 2 2 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 2 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 2 2 2

1 2 2 2 2 2

1 1 2 2 2 2

2 2 2 1 1 2

2 2 1 1 1 1

(continued)
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Table 5.1 (continued)

Batting
average

Run Double Home run RBI Strike

2 2 2 1 2 1

2 1 1 2 2 2

2 2 2 2 2 2

2 2 2 1 1 1

2 2 2 1 1 1

2 1 1 1 1 2

2 2 2 2 2 2

2 2 2 1 2 2

2 2 2 1 2 1

2 2 2 1 1 2

2 2 2 1 1 1

2 2 1 1 1 1

1 2 2 1 1 1

1 2 2 1 2 2

1 2 2 2 2 2

1 1 1 1 1 2

1 1 2 1 2 1

1 1 2 2 2 2

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 1 1 1

1 1 1 2 2 2

1 1 1 1 1 2

1 1 1 1 1 2

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2
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Fig. 5.1 The plot of VAF for number of zeros

Table 5.2 Component loadings in sparse MCA

Component 1 Component 2

Batting average 0.82 0

Runs 0.93 0

Doubles 0.81 0

Home runs 0 0.85

Runs batted in 0 0.90

Strikeouts 0 0.76

Table 5.3 Rotated component loadings in ordinary MCA

Component 1 Component 2

Batting average 0.82 0.1

Runs 0.92 −0.1

Doubles 0.81 −0.15

Home runs 0.02 0.89

Runs batted in 0.22 0.90

Strikeouts −0.16 0.76
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5.5 Discussion

There are mainly two approaches to estimate the sparse MCA solutions: the penalty-
approach and pre-specifying sparsity approach. We introduced the latter approach to
a sparse MCA method. The proposed method can be regarded as a simple extension
of sparse PCAmethod proposed by Adachi and Trendafilov (2015). That is, when all
observed variables are numerical in the introduced method, it is equal to the sparse
PCA method proposed by Adachi and Trendafilov (2015). Thus, it can be extended
to the case that observed data are a mixture of qualitative and quantitative variables.

Although we advocate the sparse MCA method with the pre-specifying sparsity
approach, two problems are still present. First, the pre-specifying sparsity approach
cannot be applied to high-dimensional datasets or purely exploratory situations about
which the users do not have a hypothesis. The pre-specifying sparsity method is
suitable for small datasets or users who hope to have a loading matrix with a specific
number of zeros before the analysis. The penalty-based approach is appropriate for a
situation in which the proposed method cannot be applied. Considering applications,
a sparse MCA method with the penalty-based approach needs to be developed as
well as the proposed method. Second, it is difficult to determine the optimal degree
of sparsity. In this paper, we determined the number of zero elements by a screeplot
of the amount of variance with a fixed the number of components. The application
to large datasets and dimension setting of the degree of freedom, however, remains
a subject for further discussion.
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Chapter 6
Joint Dimension Reduction and Clustering

Abstract Cluster analysis is a technique that attempts to divide objects into similar
groups. As described in previous studies, cluster analysis works poorly when vari-
ables that do not reflect the clustering structure are present in the dataset or when the
number of variables is large. In order to tackle this problem, several methods have
been proposed that jointly perform clustering of objects and dimension reduction
of the variables. In this chapter, we review the technique whereby multiple corre-
spondence analysis and k-means clustering are combined in order to investigate the
relationships between qualitative variables.

Keywords Clustering · Dimension reduction · Tandem analysis · k-means

6.1 Introduction

Cluster analysis, which is sometimes simply called clustering, is a widely used tech-
nique that attempts to divide objects into homogeneous groups. As noted in previous
studies, cluster analysis does not work properly when variables that do not reflect the
clustering structure are included in the dataset, or when the number of variables is
large. In order to deal with this problem, researchers often perform dimension reduc-
tion of the variables using principal component analysis (PCA) ormultiple correspon-
dence analysis (MCA) before clustering the objects.However, clusteringmay still fail
because the first few components do not necessarily define the subspace that is most
informative about the cluster structure in the data (De Sorte and Carroll 1994). This
two-step procedure is called tandem analysis. Several authors have argued against
this approach and have instead proposed procedures in which dimension reduction
of the variables and clustering of the objects are conducted simultaneously. In the
case of numerical variables, a number of approaches have been developed for such
simultaneous analysis, including reduced k-means (De Sorte and Carroll 1994), fac-
torial k-means (Vichi and Kiers 2001), factor discriminant k-means (Rocci et al.
2011), and generalized reduced clustering (Yamamoto and Hwang 2014), in which
PCA is used to summarize the variables and k-means (MacQueen 1967) is used for
non-hierarchical clustering of the objects.

© The Author(s) 2016
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In the literature on qualitative variables, several methods have also been proposed.
Van Buuren and Heiser (1989) proposed a method for clustering and optimal scaling
of variables called GROUPALS, in which object scores are expressed as the product
of the cluster membership and the cluster centroid matrices. In other techniques,
Hwang et al. (2006) and Mitsuhiro and Yadohisa (2015) combined MCA and k-
means clustering for simultaneous analysis in which cluster centroids and variable
categories are jointly displayed in a low-dimensional space.

In this chapter, we focus on techniques that combine MCA and k-means for joint
dimension reduction and clustering of qualitative variables. Note that a method that
jointly performs dimension reduction and fuzzy clustering has also been proposed,
but this is not the focus of this chapter (see Hwang et al. 2010 for details).

6.2 Simultaneous Analysis with MCA and k-Means

6.2.1 Hwang, Dillon and Takane’s Method

LetGi be ann-objects× Ki -categoriesmatrix of dummy-coded categorical variables,
Wi be a Ki -categories × r -components matrix of weights, or category coordinate,
Z be an n-objects × r -components matrix of component score, U be an n-objects ×
t-clusters matrix of indicator variables, allocating objects into one of t clusters, and
� be an t-clusters × r -component matrix of the centroid of clusters. We also denote
α1 and α2 as non-negative scalar weights. In Hwang et al. (2006), the loss function
was defined as

α1

p∑

i=1

‖Z − GiWi‖2 + α2‖Z − U�‖2, (6.1)

and minimized over Z, �, Wi and U (i = 1, . . . , p), subject to Z�Z = Ir and α1 +
α2 = 1. Here p indicates the number of variables, and α1 and α2 are specified by
practitioners before the analysis. It is obvious that the loss function (6.1) reduces to
the standard homogeneity analysis criterion for MCA (Gifi 1990) if α1 = 1, and to
the standard k-means criterion if α2 = 1. Hwang et al. (2006) has discussed the role
of the values α1 and α2, designed to balance out the two terms forMCA and k-means,
when specifying α1 = α2 = 0.5. If the practitioners judges that classification is more
important than dimension reduction, the weights are set to α1 < α2, and vice versa.

An alternating least squares algorithmwasdeveloped tominimize the loss function
(6.1), which comprises three main steps. First, Z is updated for fixed Wi , U and �.
The loss function (6.1) is expanded as
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(α1 p + α2)c − tr

(

Z�
[

α1

p∑

i=1

PG + α2PU

]

Z

)

, (6.2)

wherePG = Gi (G�
i Gi )

−1G�
i is the projectionmatrix ofGi , andPU = U(U�U)−1U�

is the projectionmatrix ofU. Theminimization of the loss function (6.1) with respect
to Z is equivalent to the maximization of (6.2). This optimization can be achieved by
the eigenvalue decomposition of α1

∑p
i=1 PGi + α2PU (e.g., ten Berge 1993). Sec-

ond, U is updated for fixed Wi , Z and �. This amounts to minimizing the second
term of the loss function (6.1) over U, thus we use the ordinary k-means algorithm
to minimize this criterion. Finally,Wi and � are updated for fixed Z and U. We can
obtain Wi and � for solving the regression problem, because Wi is involved only
in the first term and � only in the second term of the loss function (6.1). Thus, their
updates are given by

Wi = (G�
i Gi )

−1G�
i Z, (6.3)

� = (U�U)−1U�Z. (6.4)

The algorithm is summarized as follows:

Step 1: Choose initial values for Z, and U. Then, Wi and � are given by Wi =
(G�

i Gi )
−1G�

i Z and � = (U�U)−1U�Z.
Step 2: Update the component score matrix Z by the eigenvalue decomposition of

α1
∑p

i=1 PGi + α2PU .
Step 3: Update the membership matrix U using the ordinary k-means algorithm.
Step 4: Update the category coordinate matricesWi for each variable and the cluster

centroid matrix � byWi = (G�
i Gi )

−1G�
i Z and � = (U�U)−1U�Z.

Step 5: Terminate if the difference between the values of the loss function (6.1) in
the current and previous steps is less than ε; otherwise, return to Step 2.

6.2.2 Mitsuoka and Yadohisa’s Method

Let Qi be a Ki -categories × Ri -dimensions matrix of quantification parameters,
J be an n-objects × n-objects of centering matrix, and Ai be a Ri -dimensions ×
r -components matrix of the loading matrix of the i th variable.

Then, the loss function of the Mitsuhiro and Yadohisa (2015) method is
expressed as

p∑

i=1

‖GiQi − ZA�
i ‖2 + ‖Z − U�‖2, (6.5)



60 6 Joint Dimension Reduction and Clustering

and minimized over Z, U, �, Ai and Qi (i = 1, . . . , p), subject to n−1Z�Z =
Ir , JZ = Z, 1�

n GiQi = 0�
Ki
, and n−1Q�

i G
�
i GiQi = IRi . Comparing the loss function

(6.5) with (6.1), the first terms that define the MCA criterion are different. MCA is
formulated by the homogeneity analysis criterion (Gifi 1990) in Hwang et al. (2006),
whereas in Mitsuhiro and Yadohisa (2015), MCA is formulated as approximating
a data matrix by a lower rank matrix using the quantification technique (Murakami
et al. 1999; Murakami 1999; Adachi and Murakami 2011). Please see Chap.2 for
details of the latter MCA formulation.

The parameters Z, U, �, Ai and Qi (i = 1, . . . , p) can be estimated by alter-
nately updating until convergence. In the first step, Qi is updated for fixed the other
parameters. Re-expressing the first term of the loss function (6.5) as

GiQi = Gi (G�
i Gi )

−1/2(G�
i Gi )

1/2Qi , (6.6)

= Bi�i , (6.7)

Qi can be updated by solving the orthogonal Procrustes problem for �i , becauseQi

is involved only in the first term and�i is a column-orthogonal matrix. In the second
step, Z is updated for fixed the other parameters. We can express this loss function
(6.5) as

const − tr([B�
QG

� + ��U�]J)Z, (6.8)

where const denotes a constant that is irrelevant to the parameters and BQ is the
block diagonal matrix of Qi (i = 1, . . . , p). The minimization of the loss function
(6.5) with respect to Z is equivalent to the maximization of (6.8). This optimization
can be achieved by the singular value decomposition of (B�

QG
� + ��U�)J (e.g.,

ten Berge 1993). In the third step, we update U for fixed the other parameters. This
amounts to minimizing the second term of the loss function (6.5) over U, and thus
we updateU by using the ordinary k-means algorithm. In the final step, we updateAi

and � for fixed Qi , Z, and U. We can update for Ai and � by solving the following
regression problems:

Ai = n−1Q�
i G

�
i Z, (6.9)

� = (U�U)−1U�Z, (6.10)

because Ai is involved only in the first term and � is only in the second term of the
loss function (6.5).

The algorithm is summarized as follows:

Step 1: Choose initial values for Z, Ai , Qi , U, and �. Take arbitrary matrices Qi ,
Z, and U which satisfies the constraints. Then, Ai and � are given as Ai =
n−1Q�

i G
�
i Z for each variable and � = (U�U)−1U�Z.

Step 2: Update the quantification parameters by solving the orthogonal Procrustes
problems.

http://dx.doi.org/10.1007/978-981-10-0159-8_2
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Step 3: Update the component score matrix Z by the singular value decomposition
of (B�

QG
� + ��U�)J.

Step 4: Update the membership matrix U using the ordinary k-means algorithm.
Step 5: Update the loading and cluster centroid matrices by Ai and �, given by

Ai = n−1Q�
i G

�
i Z for each variable and � = (U�U)−1U�Z.

Step 6: Terminate if the difference between the values of the loss function (6.5) in
the current and previous steps is less than ε; otherwise, return to Step 2.

When the optimal parameters Z, U, �, Ai and Qi (i = 1, . . . , p) have been
obtained, we have the category coordinate matrix Wi = QiAi for each variable.
Mitsuhiro and Yadohisa (2015) pointed out that unlike in Hwang et al. (2006), not
only the variable categories and cluster centroids are displayed but also the object
scores. This is because the object scores estimated as vector of ones that have no
meaning in the first dimension can be removed, and we can interpret the relationship
between objects and categories at each cluster and extract features from each clus-
ter. However, the abovementioned deficit can be removed in Hwang et al. (2006) as
discussed in the next section.

6.3 Differences Between Hwang, Dillon and Takane’s
Method and Mitsuoka and Yadohisa’s Method

Hwang et al. (2006) and Mitsuhiro and Yadohisa (2015) introduced joint dimen-
sion reduction and clustering methods for the qualitative variables. We discuss the
relationship between them in more detail in this section.

Relation
The loss function (6.1) and (6.5) are equivalent when α1 = α2 = 0.5 and JZ = Z
are imposed in (6.1).

The relationship can be shown by expanding the loss functions (6.1) and (6.5).
Under the constraints α1 = α2 = 0.5 and JZ = Z, the loss function (6.1) can be
expressed as

0.5

{
p∑

i=1

‖Z − GiWi‖2 + ‖Z − U�‖2
}

= 0.5

{

nrp − 2tr

(
p∑

i=1

F�GiWi

)

+ tr

(
p∑

i=1

W�
i G

�
i GiWi

)

+ ‖Z − U�‖2
}

,

(6.11)

and the loss function (6.5) as
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p∑

i=1

‖GiQi − ZA�
i ‖2 + ‖Z − U�‖2

= npR + −2tr

(
p∑

i=1

Z�GiQiA

)

+ n ∗ tr

(
p∑

i=1

A�
i A

)

+ ‖Z − U�‖2

= npR + −2tr

(
p∑

i=1

Z�GiQiA

)

+ tr

(
p∑

i=1

A�
i Q

�
i G

�
i GiQiA

)

+ ‖Z − U�‖2

= npR + −2tr

(
p∑

i=1

F�GiWi

)

+ tr

(
p∑

i=1

W�
i G

�
i GiWi

)

+ ‖Z − U�‖2,

(6.12)

where
∑

(Ri ) = R. As the scale 0.5 is irrelevant to the parameters in the loss func-
tion (6.11), Hwang et al. (2006) and Mitsuhiro and Yadohisa (2015) are essentially
equivalent. Adding the constraint JZ = Z discards the trivial solution in Hwang et al.
(2006).

The relationship above is also suggests that if wemodify the loss function (6.5) as

α1

p∑

i=1

‖GiQi − ZA�
i ‖2 + α2‖Z − U�‖2, (6.13)

with constraintsn−1Z�Z = Ir , JZ = Z, 1�
n GiQi = 0�

Ki
, n−1Q�

i G
�
i GiQi = IRi , and

α1 + α2 = 1, it is equivalent to the method of Hwang et al. (2006).

6.4 Real Data Example

Wedemonstrated joint dimension reduction and clusteringusingSouthKoreanunder-
wear data (Hwang et al. 2006). The Mitsuhiro and Yadohisa (2015) method was
used for this demonstration. In a survey, 664 South Korean consumers were asked
to provide responses to three multiple choice items: preferred brand of underwear (8
brands), attributes when purchasing a brand of underwear (15 attributes) and con-
sumer age (6 levels). The dataset can be obtained from cluster package in R (Markos
et al. 2015). We choose r = 2, t = 3 and the dimension of quantification is set to be
two for all variables following Hwang et al. (2006). The estimated result is shown in
Fig. 6.1, in which the variable categories, the object scores and cluster centroids are
displayed.
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Fig. 6.1 The plot of component scores, cluster centroids, and category coordinates
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Chapter 7
Acceleration of Convergence
of the Alternating Least Squares Algorithm
for Nonlinear Principal Component Analysis

Abstract Nonlinear principal component analysis (PCA) requires iterative compu-
tation using the alternating least squares (ALS) algorithm, which alternates between
optimal scaling for quantifying qualitative data and the analysis of optimally scaled
data using the ordinary PCA approach. PRINCIPALS of Young et al. (Psychome-
trika 43:279–281) (1978) and PRINCALS of Gifi (Nonlinear Multivariate Analysis.
Wiley, Chichester) (1990) are the ALS algorithms used for nonlinear PCA. When
applying nonlinear PCA to very large data sets of numerous nominal and ordinal
variables, the ALS algorithm may require many iterations and significant computa-
tion time to converge. One reason for the slow convergence of the ALS algorithm is
that the speed of convergence is linear. In order to accelerate the convergence of the
ALS algorithm, Kuroda et al. (Comput Stat Data Anal 55:143–153) (2011) devel-
oped a new iterative algorithm using the vector ε algorithm byWynn (Math Comput
16:301–322) (1962).

Keywords Alternating least squares algorithm · Vector ε algorithm

7.1 Brief Introduction to the ALS Algorithm for Nonlinear
PCA

Two versions of the alternating least squares (ALS) algorithm are used for the compu-
tation of nonlinear principal component analysis (PCA): PRINCIPALS Young et al.
(1978) and PRINCALS Gifi (1990). For mixed measurement level data Y given by
an n × p matrix, PRINCALS alternates between estimating Z and A in ordinary
PCA and updating Y∗ in quantifying Y, where Z is an n × r matrix of n component
scores on r (1 ≤ r ≤ p) components, A is a p × r matrix of p component loadings
on r components, and Y∗ is an n × p optimally scaled matrix of Y. PRINCALS
estimates category quantification matrix W and updates Z using W. Then, Y∗ and
A can be computed from W. These algorithms are derived in Chap.2.

The original version of this chapter was revised: Typos were corrected throughout the chapter.
The erratum to this chapter is available at http://dx.doi.org/10.1007/978-981-10-0159-8_8.
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Kuroda et al. (2011) derived an acceleratedALS algorithm for nonlinear PCA.The
proposed algorithm speeds up the convergence of the ALS sequence via the vector
ε (vε) algorithm by Wynn (1962). They demonstrated that the speed of convergence
of the acceleration algorithm is significantly faster than that of the ALS algorithm.
The vε accelerated ALS algorithm is referred to as the vε-ALS algorithm.

7.2 The Vector ε Algorithm

We introduce the vε algorithm of Wynn (1962) used in the acceleration of the ALS
algorithm. The vε algorithm is utilized to speed up the convergence of a slowly
convergent vector sequence and is very effective for linearly converging sequences.

Let x(t) denote a vector of dimensionality d that converges to a vector x(∞) as
t → ∞. Let the inverse [x]−1 of a vector x be defined by

[x]−1 = x
‖x‖2 ,

where ||x|| is the Euclidean norm of x.
In general, the vε algorithm for a sequence {x(t)}t≥0 starts with

ε(t,−1) = 0, ε(t,0) = x(t),

and then generates a vector ε(t,k+1) by

ε(t,k+1) = ε(t+1,k−1) + [
Δε(t,k)

]−1
, k = 0, 1, 2, . . . , (7.1)

where Δε(t,k) = ε(t+1,k) − ε(t,k). In order to obtain ε(t,k), we require to compute
ε(t,0), ε(t,1), . . . , ε(t,k−1) recursively. Then the computational cost of ε(t,k) for a larger
k is expensive. For practical implementation, we apply the vε algorithm for k = 1 to
accelerate the convergence of {x(t)}t≥0. We have, from Eq. (7.1),

ε(t,1) = ε(t+1,−1) + [
Δε(t,0)

]−1 = [
Δε(t,0)

]−1
,

ε(t,2) = ε(t+1,0) + [
Δε(t,1)

]−1
,

and then obtain

ε(t,2) = ε(t+1,0) +
[[

Δε(t+1,0)
]−1 − [

Δε(t,0)
]−1

]−1

= x(t+1) +
[[

Δx(t+1)
]−1 − [

Δx(t)
]−1

]−1
.

We denote ε(t,2) as ẋ(t).
Assume that {x(t)}t≥0 converges to a vector x(∞). Then, in many cases, {ẋ(t)}t≥0

generated by the vε algorithm converges to x(∞) faster than {x(t)}t≥0.
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Note that, at each iteration, the vε algorithm requires only O(d) arithmetic oper-
ations while the Newton-Raphson algorithm is achieved at O(d3) and thus the com-
putational cost is likely to increase as d becomes large.

7.3 Acceleration of Convergence of the ALS Algorithm
for Nonlinear PCA

We assume that {Y∗(t)}t≥0 generated by the ALS algorithm converges to a vec-
tor Y∗(∞). Then vε algorithm produces a faster convergent sequence {Ẏ∗(t)}t≥0 of
{Y∗(t)}t≥0 and enables the acceleration of convergence of the ALS algorithm. We
show the vε acceleration algorithm for PRINCIPALS and PRINCALS.

The vε acceleration for PRINCIPALS alternates the ALS and Acceleration steps:

The vε-ALS Algorithm: PRINCIPALS

• ALS step: Obtain Y∗(t+1) using PRINCIPALS:

– Model estimation step: By solving the eigen-decomposition ofY∗(t)�Y∗(t)/n or
the singular value decomposition of Y∗(t), obtain A(t+1) and compute Z(t+1) =
Y∗(t)A(t+1). Update Ŷ(t+1) = Z(t+1)A(t+1)�.

– Optimal scaling step: Obtain Y∗(t+1) by separately estimating y∗
j for each vari-

able j . Compute q(t+1)
j for nominal variables as

q(t+1)
j = (G�

j G j )
−1G�

j ŷ
(t+1)
j .

Re-compute q(t+1)
j for ordinal variables using the monotone regression (Kruskal

1964). For nominal and ordinal variables, update y∗(t+1)
j = G jq

(t+1)
j and stan-

dardize y∗(t+1)
j . For numerical variables, standardize observed vector y j and set

y∗(t+1)
j = y j .

• Acceleration step: Calculate Ẏ∗(t−1) from {Y∗(t−1),Y∗(t),Y∗(t+1)} using the vε
algorithm:

vecẎ∗(t−1) = vecY∗(t) +
[[

ΔvecY∗(t)
]−1 − [

ΔvecY∗(t−1)
]−1

]−1
,

where vecY∗ = (y∗�
1 y∗�

2 · · · y∗�
p )�, and check the convergence by

∥
∥∥vecΔẎ∗(t−2)

∥
∥∥
2

< δ,

where δ is a desired accuracy.

Because the vε-ALS algorithm is designed to generate {Ẏ∗(t)}t≥0 converging to
Y∗(∞), the estimate of Y∗ can be obtained from the final value of {Ẏ∗(t)}t≥0 after
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the termination of the algorithm. The estimates of Z and A can then be calculated
immediately from the estimate of Y∗ in the Model parameter estimation step of the
ALS step.

The vε-ALS algorithm generates {Ẏ∗(t−1)}t≥0 and {Y∗(t+1)}t≥0 independently and
does not use a vector Ẏ∗(t−1) as the estimate Y∗(t+1) in the next ALS step. Thus the
algorithm speeds up the convergence of {Y∗(t)}t≥0 without affecting the convergence
properties of the ordinary ALS algorithm.

We give the vε-ALS algorithm using PRINCALS as the ALS algorithm. The
acceleration algorithm speeds up the convergence of {Z(t)}t≥0 by generating the fast
converging sequence {Ż(t)}t≥0 of {Z(t)}t≥0.

The vε-ALS Algorithm: PRINCALS

• ALS step: Obtain Z(t+1) using PRINCALS:

– Estimation of category quantifications: Compute W(t+1)
j for j = 1, . . . , p as

W(t+1)
j = (G�

j G j )
−1G�

j Z
(t).

For themultiple variables inJM , setW
(t+1)
j to the estimate ofmultiple category

quantifications.
For the single variables in JS , update a

(t+1)
j by

a(t+1)�
j = W(t+1)�

j (G�
j G j )q

(t)
j

/
q(t)�
j (G�

j G j )q
(t)
j

and compute q(t+1)
j for nominal variables by

q(t+1)
j = W(t+1)

j a(t+1)�
j

/
a(t+1)
j a(t+1)�

j .

Re-compute q(t+1)
j for ordinal variables using the monotone regression in

a similar manner of PRINCIPALS. For numerical variables, standardize
observed vector y j and compute q(t+1)

j = (G�
j G j )

−1G�
j y j . UpdateW

(t+1)
j =

q(t+1)
j a(t+1)

j for ordinal and numerical variables.
– Update of object scores: Compute Z(t+1) by

Z(t+1) = 1

p

p∑

j=1

G jW
(t+1)
j .

Column-wise center and orthonormalize Z(t+1).

• Acceleration step: Calculate Ż(t−1) from {Z(t−1),Z(t),Z(t+1)} using the vε algo-
rithm:

vecŻ(t−1) = vecZ(t) +
[[

ΔvecZ(t)
]−1 − [

ΔvecZ(t−1)]−1
]−1

,
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where vecZ∗ = (z∗�
1 z∗�

2 · · · z∗�
r )�, and check the convergence by

∥
∥∥vecΔŻ(t−2)

∥
∥∥
2

< δ,

where δ is a desired accuracy.

The vε acceleration for PRINCALS can also accelerate the convergence of
{Z(t)}t≥0 preserving the properties of PRINCALS. When the algorithm terminates,
the estimate ofZ is the final value of {Z(t)}t≥0. From the Estimation of category quan-
tifications step, we can obtain the estimate of W and then find the optimal scaled
vector y∗ for variable j in JS using

y∗
j = G jq j ,

where q j is obtained from the estimate of W j .

7.4 Numerical Experiments

In order to demonstrate the advantage of the vε-ALS algorithm over the ordinal ALS
algorithm, we examine their performances in terms of the number of iterations and
CPU time (in seconds) required for convergence. All computations are performed
with the statistical package R (R Development Core Team 2013) running on a Core
i5 3.3GHz computer with 4 GB of memory. The consumed CPU times are measured
by the function proc.time.1 Here PRINCIPALS is used as the ALS algorithm
for nonlinear PCA. For all experiments, we set δ = 10−10 for convergence of the
vε-ALS algorithm and |θ∗(t+1) − θ∗(t)| < 10−10 for the ALS algorithm, where θ∗(t)

is the t-th update of θ∗ calculated from

θ∗(t) = ∥∥Y∗(t) − Z(t)A(t)�∥∥2
.

7.4.1 Convergence of the Vε-ALS Algorithm Using Real Data

We use the data of Table7.1 obtained from a teacher evaluation of 56 students and
the following 13 questions (Q1–Q13) with 5 levels each; the lowest evaluation level
is 1 and the highest 5.

1Times are typically available to 10 msec.
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Table 7.1 Teacher evaluation data

Student Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13

1 5 5 5 5 5 5 3 2 5 3 1 3 5

2 5 5 5 3 3 3 2 3 3 4 5 3 5

3 5 3 4 3 4 4 5 5 3 3 4 3 4

4 4 5 4 5 5 3 3 3 3 5 3 4 5

5 5 5 5 5 5 5 5 5 5 5 5 5 5

6 5 5 5 5 5 4 5 4 4 5 5 4 5

7 5 3 3 3 3 3 5 3 3 5 5 5 5

8 5 5 5 5 5 3 4 5 5 5 5 5 5

9 5 4 5 5 4 3 4 5 3 5 5 5 5

10 5 5 5 5 5 3 5 4 5 5 5 5 5

11 5 5 5 3 5 5 5 5 5 5 5 5 5

12 5 5 4 2 4 4 4 3 5 4 2 3 5

13 5 5 5 4 5 3 5 5 5 5 5 5 5

14 5 5 5 3 3 3 5 3 4 5 5 5 5

15 5 5 5 5 5 5 4 5 3 5 5 4 5

16 5 3 3 5 5 5 5 3 3 3 5 5 5

17 5 5 5 5 5 5 5 5 5 5 5 5 5

18 5 5 5 5 5 5 5 5 4 5 5 5 5

19 3 4 5 4 5 3 2 5 2 4 5 4 5

20 5 5 5 5 5 5 5 5 5 5 5 5 5

21 5 5 5 3 3 5 3 3 5 5 5 4 5

22 5 5 5 5 5 5 5 5 4 5 5 5 5

23 5 3 4 5 4 4 3 3 5 5 3 4 4

24 5 5 5 5 4 5 5 5 4 5 5 5 5

25 5 5 5 4 4 5 5 5 5 5 5 4 5

26 5 5 4 5 5 5 5 5 5 4 5 5 5

27 5 5 5 5 5 5 5 4 3 5 5 5 5

28 4 5 5 3 3 3 5 3 4 3 4 4 4

29 5 4 4 3 2 3 4 3 3 3 3 3 4

30 5 5 5 5 5 4 5 5 4 5 5 5 5

31 5 4 5 5 5 4 5 4 5 4 4 4 5

32 5 4 5 4 4 5 5 5 3 4 4 4 5

33 5 1 3 2 3 3 3 2 4 3 3 2 4

34 5 3 5 5 4 3 5 5 2 5 5 4 5

35 3 5 5 3 4 3 5 3 3 4 5 5 5

36 5 5 5 5 5 4 5 5 5 5 5 5 5

37 5 5 5 5 5 5 5 5 5 5 5 5 5

(continued)
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Table 7.1 (continued)

Student Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13

38 5 5 5 5 5 5 4 5 4 5 5 5 4

39 5 5 5 3 3 5 5 5 4 5 5 5 5

40 5 5 5 3 5 3 4 3 3 4 3 5 5

41 5 5 5 5 4 5 5 3 5 2 1 1 3

42 5 5 5 5 5 5 5 5 3 5 5 5 5

43 5 4 5 5 5 4 5 3 3 5 5 5 5

44 5 4 5 5 3 4 5 4 3 5 5 5 4

45 4 4 4 4 4 3 5 3 3 5 4 5 4

46 5 5 5 3 4 3 3 4 4 5 5 5 5

47 5 5 5 5 5 4 4 5 5 5 4 4 5

48 4 3 3 4 4 3 4 3 2 3 2 2 3

49 5 5 5 5 5 5 5 5 4 5 5 4 5

50 5 5 5 5 5 5 5 4 4 5 5 5 5

51 5 5 5 5 5 3 4 4 4 5 5 5 5

52 5 5 5 5 5 5 5 5 5 5 5 5 5

53 5 4 5 5 5 3 4 4 3 4 5 5 5

54 4 5 4 4 4 5 5 4 5 5 3 1 5

55 5 5 5 5 3 3 5 5 5 5 5 5 5

56 5 3 5 2 4 3 5 5 2 5 5 5 5

Q1: Loudness of the voice
Q2: Speed of the speaking
Q3: Clearness of the speaking
Q4: Size of the characters and figures on the blackboard
Q5: Carefulness and accuracy of the characters and figures on the blackboard
Q6: Accordance with the syllabus
Q7: Punctuality
Q8: Suitability of the textbook
Q9: Caution to whispers
Q10: Devised works to make contents easier to understand
Q11: Progress of the classwork
Q12: Consideration to students’ abilities
Q13: Eagerness

In the experiments, we set r = 3 and study the convergence behaviors of the ALS
and vε-ALS algorithms. For the data, the ALS and vε-ALS algorithms converge after
421 and 173 iterations, respectively. We examine the convergence behaviors of the
vε-ALSalgorithm. Figure7.1 illustrates the traces of {log10 ‖Y∗(t) − Y∗(∞)‖2}1≤t≤173

for the ALS algorithm and {log10 ‖Ẏ∗(t) − Y∗(∞)‖2}1≤t≤173 for the vε-ALS algorithm
till the convergence of the vε-ALS algorithm attains. The figure shows that, when
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Fig. 7.1 Convergence
behavior of the ALS and
vε-ALS algorithms till the
convergence of the vε-ALS
algorithm attains
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the sequence generated by the vε-ALS algorithm converges after 173 iterations with
δ = 10−10, the sequence of theALS algorithmdoes notmatch the four-digit precision
to Y∗(∞). The figures demonstrate that {Ẏ∗(t)}t≥0 converges to Y∗(∞) significantly
faster than {Y∗(t)}t≥0.

Next we measure the rates of convergence of the ALS and vε-ALS algorithms.
The rates of convergence of these algorithms are assessed as

τ = lim
t→∞ τ (t) = lim

t→∞
‖Y∗(t) − Y∗(t−1)‖

‖Y∗(t−1) − Y∗(t−2)‖ for the ALS algorithm,

τ̇ = lim
t→∞ τ̇ (t) = lim

t→∞
‖Ẏ∗(t) − Ẏ∗(t−1)‖

‖Ẏ∗(t−1) − Ẏ∗(t−2)‖ for the vε-ALS algorithm.

If the inequality 0 < τ̇ < τ < 1 holds, we can say that {Ẏ∗(t)}t≥0 converges faster
than {Y∗(t)}t≥0. Figure7.2 indicates that {Ẏ∗(t)}t≥0 converges faster than {Y∗(t)}t≥0

in comparison with τ and τ̇ . Next we investigate the speed of convergence of the
vε-ALS algorithm by

ρ̇ = lim
t→∞ ρ̇(t) = lim

t→∞
‖Ẏ∗(t) − Y∗(∞)‖

‖Y∗(t+2) − Y∗(∞)‖ = 0. (7.2)

From Brezinski and Zaglia (1991), if {Ẏ∗(t)}t≥0 converges to the same limit point
Y∗(∞) as {Y∗(t)}t≥0 and Eq. (7.2) holds, we say that {Ẏ∗(t)}t≥0 accelerates the con-
vergence of {Ẏ∗(t)}t≥0. Figure7.3 is the trace plot of {ρ̇(t)}1≤t≤173. The figure shows
that the vε-ALS algorithm accelerates the convergence of {Y∗(t)}t≥0. These figures
demonstrate that the vε-ALS algorithm significantly improves the rate of conver-
gence of the ALS algorithm.
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Fig. 7.2 Trace plots of
{τ (t)}1 ≤t≤173 and
{τ̇ (t)}1 ≤t≤173

0 50 100 150

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

The number of iterations

τ⋅

τ

Fig. 7.3 Trace plot of
{ρ̇(t)}1 ≤t≤173
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7.4.2 Speed of Convergence of the Vε-ALS Algorithm Using
Random Data

In this experiment, we study how much faster the vε-ALS algorithm converges than
the ALS algorithm. We apply these algorithms to a random data matrix of 200
observations on 40 nominal variables with 10 levels and estimate Z and A on 5 (=r )
principal components andY∗. We replicate the computation 1000 times and measure
the number of iterations and CPU time consumed.
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Table 7.2 The number of iterations and CPU time of the ALS and vε-ALS algorithms

The number of iterations CPU time

ALS vε-ALS ALS vε-ALS

Min. 106.0 40 3.12 1.480

1st Qu. 366.8 116 9.95 3.565

Median 514.0 164 13.82 4.895

Mean 676.0 219 18.09 6.406

3rd Qu. 751.2 244 20.01 7.090

Max. 10000.0 2754 262.19 76.370

Fig. 7.4 Boxplots of the
numbers of iterations and
CPU times of the ALS and
vε-ALS algorithms
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Table7.2 shows the summaries of the number of iterations and CPU time taken
by the ALS and vε-ALS algorithms. Figure7.4 shows the boxplots of the numbers of
iterations and CPU times of these algorithms. We see from the table and figure that
the ALS algorithm requires more iterations and takes a longer time than the vε-ALS
algorithm.

To compare the speed of convergence of the ALS and vε-ALS algorithms, we
calculate iteration and CPU time speed-ups. The iteration speed-up is defined as

The number of iterations of the ALS algorithm

The number of iterations of the vε-ALS algorithm
.

The CPU time speed-up is calculated similarly to the iteration speed-up. Table7.3
provides the speed-ups of the ALS and vε-ALS algorithms. We see from the first
and second columns in the table that the vε-ALS algorithm converges about 3 times
faster than the ALS algorithm in terms of the mean number of iterations and the
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Table 7.3 Iteration and CPU time speed-ups of the ALS and vε-ALS algorithms, and CPU time
ratio

Speed-up CPU time ratio

Iteration CPU time ALS/vε-ALS

Min. 1.194 1.131 0.7867

1st Qu. 2.702 2.442 0.8809

Median 3.187 2.826 0.9007

Mean 3.223 2.890 0.8985

3rd Qu. 3.687 3.290 0.9202

Max. 8.027 7.233 0.9594

Fig. 7.5 Scatterplots of the
iterations and CPU time
speed-ups by the number of
iterations of the ALS
algorithm
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mean CPU time. Figure7.5 shows the scatterplots of the iteration and CPU time
speed-ups by the number of iterations of the ALS algorithm. The figure shows that
the speed of convergence of the vε-ALS algorithm ismuch faster than that of theALS
algorithm whereas the ALS algorithm requires many iterations for convergence. We
can demonstrate this fact by drawing the boxplots of Fig. 7.6. Here, “less” (“more”)
means that the number of iterations of the ALS algorithm is less (more) than the
3rd quantile in Table7.2. We see from the figure that, for the larger number of
iterations of the ALS algorithm, the vε acceleration works well to greatly speed up
the convergence of {Y∗(t)}t≥0. The result indicates that the vε-ALS algorithm is more
useful whereas the ALS algorithm takes the larger number of iterations.

The computation time per iteration of the vε-ALS algorithm is longer than that
of the ALS algorithm due to computation of the Acceleration step. We calculate the
CPU time ratio of theALS algorithm to the vε-ALS algorithm. The ratio is defined by
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Fig. 7.6 Boxplots of the
iteration and CPU time
speed-ups: “less” (“more”)
means that the number of
iterations of the ALS
algorithm is less (more) than
the 3rd quantile in Table7.2
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CPU time of the ALS algorithm

the number of iterations of the ALS algorithm
/

CPU time of the vε-ALS algorithm

the number of iterations of the vε-ALS algorithm
.

The third column of Table7.3 is the summary of the CPU time ratio. The values in the
table mean that the computation time of the ALS step accounts for 79–96% of that of
the vε-ALS algorithm. This means that the computational cost of the vε acceleration
in the Acceleration step is less expensive than that of the ALS algorithm. Therefore
the vε acceleration enables a significant reduction of the number of iterations and
computation time with less computational effort.

Weconclude from these results that the advantage of the vε acceleration is obvious.

7.4.3 Application of the Vε-ALS Algorithm to Variable
Selection Problems

We consider variable selection problems for which the ALS algorithm requires a
large amount of computation time and evaluate the performance of the vε-ALS algo-
rithm. In the variable selection for providing a simple interpretation of principal
components, we find the best subset of variables consisting of q variables among
p original variables (1 ≤ q ≤ p). Modified PCA (M.PCA) proposed by Tanaka and
Mori (1997) derives principal components that are computed by a linear combination
of a subset of variables but can reproduce all variables very well. When applying
M.PCA to qualitative data, the ALS algorithm can be used for quantifying qualita-
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Table 7.4 The numbers of iterations and CPU times of the ALS and vε-ALS algorithms and their
speed-ups in application to variable selection for finding a subset of q variables

q ALS vε-ALS

Iteration CPU time Iteration CPU time

Backward elimination

20 2127 15.24 482 3.52

19 27,969 198.55 9499 71.08

18 17,066 121.34 6161 46.32

17 11,126 78.92 4768 35.86

16 12,481 87.91 4267 31.99

15 14,635 102.68 4421 32.96

14 11,585 81.13 3894 29.00

13 7930 55.52 2372 18.01

12 13,459 93.11 4442 32.62

11 8519 58.97 3415 25.18

10 8596 59.14 2433 18.16

9 12,077 82.53 3749 26.81

8 7409 50.75 2541 18.63

7 16,489 112.05 7026 50.08

6 28,333 191.91 19,695 138.63

5 36,108 243.76 11,840 83.54

4 402 3.02 131 1.35

Total 236,311 1636.53 91,136 663.74

Forward selection

4 981,970 6985.23 270,478 2293.83

5 74,997 510.21 37,295 265.42

6 40,815 280.08 14,145 101.17

7 45,555 312.92 28,373 202.73

8 29,540 203.41 23,081 165.84

9 10,170 70.56 3058 22.70

10 9448 65.81 3574 26.43

11 7459 51.95 2775 20.65

12 5675 39.62 2124 15.99

13 4091 28.83 1403 10.75

14 6160 43.37 1648 12.42

15 7356 51.84 1603 12.15

16 8982 63.24 1951 14.55

17 2895 20.43 1042 7.84

18 2802 19.72 847 6.39

19 2016 14.21 541 4.10

20 707 4.99 229 1.74

Total 1,240,638 8766.42 394,167 3184.70
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tive data, see Mori et al. (1997). Then Backward, Backward-forward, Forward and
Forward-backward selections are utilized as cost-saving stepwise variable selection
procedures. Chapter 4 presents these descriptions in detail.

We apply the ALS and vε-ALS algorithms to variable selection in M.PCA of
qualitative data using simulated data that consist of 100 observations of 20 nominal
variables with 10 levels.

Table7.4 shows the number of iterations and CPU time taken by Backward and
Forward selection procedures for finding a subset of q variables based on 4 (=r )
principal components. The last row in the table shows the total number of iterations
and total CPU time. The ALS algorithm finds the subsets after 236,311 iterations
in Backward elimination and 1,240,638 iterations in Forward selection. The vε-
ALS algorithm requires 91,136 and 394,167 iterations for these computations. The
total computation times of the ALS algorithm for these variable selection proce-
dures are 27.3min and 2.4h, respectively, while the vε-ALS algorithm takes only
11 and 53min for the convergence; hence, computation time can be reduced to
41%(=663.74/1636.53) and 36%(=3184.70/8766.42) of those of the ALS algo-
rithm. These results demonstrate that the vε acceleration step works well to acceler-
ate the convergence of the sequence from the ALS step and consequently results in
greatly decreased computation times in variable selection problems.
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