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To Sir David Cox



Preface

Model choice is a subject that involves artistic and individual components that
depend on the area of application, the amount of knowledge on the available
models, and one’s sense of aesthetics.

The first author’s interest in model choice began in the summer of 1973: after a
year of attending lectures at Imperial College, he made an appointment with his
supervisor to decide his thesis topic. They summarized the meeting in the notes
shown below. Although he did not pursue exactly the applications discussed at that
time, he developed other results and applications concerning separate or nonnested
model choice.

The beginning
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Being a Bayesian, the second author began to be interested in the choice of
models when solving a problem related to pollution in an industrial city in Brazil.
He applied Bayesian significance tests to the mixture of models proposed by Cox
instead of hypothesis tests and discrimination using Bayes factors.

Both authors have been following the advances in the subject, and this book is
the result of their attempts to do so.

The authors are grateful to the writers and researchers on the subject from whom
they have benefited and whom they have followed while writing this work, espe-
cially Mohammed Hashem Pesaran, and to Annibal P. SantAnna and Marlos
Augusto G. Viana, who offered many suggestions for and corrections of the
manuscript. The authors are also thankful for the many important contributions of
Maria Ivanilde S. Araujo, Edilson F. de Arruda, Cachimo C. Assane, Rodrigo
A. Collazo, Marcelo Lauretto, Brian A.R. de Melo, Fernando Poliano, and
Julio Stern. They also thank Marcelo Fragoso and Augusto C.G. Vieira for the
opportunity to complete their writing at Laboratório Nacional de Computação
Científica–LNCC in Petrópolis, Brazil. Evelyn Best and Veronika Rosteck of
Springer have been supportive and patient editors.

Petrópolis, Brazil Basilio de Bragança Pereira
February 2016 Carlos Alberto de Bragança Pereira
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Chapter 1
Preliminaries

Abstract In this chapter, the model choice problem is stated, and applications in
several areas are presented. The definition of separate or nonnested models is given.
The alternative approaches proposed by Cox (1961, 1962) for choosing among such
models are presented. General references to the subject are mentioned, as are areas
not covered in this book, namely, experimental design and discrepancy measures or
information measures.

Keywords Bayes factors · Discrepancy measures · Discrimination · Hypothesis
test · Likelihood ratio · Nonnested models · Separate models

1.1 Model Choice

In any scientific discipline, researchers constantly face the fundamental problem of
choosing among alternative statisticalmodels. In this context, the following questions
arise (Atkinson 1970a; Claeskens and Hjort 2008):

(i) Is there evidence that the models produce significantly different fits to the data?
(ii) Assuming that one model is true, what is the evidence provided by the data that

this model is really the true one?
(iii) If one model represents the currently maintained hypothesis, is there evidence

of a departure from it in the direction of anothermodel? If there is nomaintained
hypothesis, each model is on equal footing with every other model.

(iv) Models are approximations; therefore, it is more valuable to work with simpler
models that are almost as good. We should keep in mind G.E.P. Box’s maxim,
“All models are wrong, but some are useful”, and the “principle of parsimony”
as expressed in themodel formulation ofOckham’s razor, “entities should not be
multiplied without necessity”. Approximate models share certain features with
maps or dolls, for example. Maps fail to capture every detail of the landscape,
just as dolls for children fail to capture every detail of the beings they represent,
but both are useful. A surrealist view of this characteristic of models can be seen
in the Magritte painting “The Treachery of Images” (1928–1929), in which he

© The Author(s) 2016
B. de B. Pereira and C.A. de B. Pereira,
Model Choice in Nonnested Families, SpringerBriefs in Statistics,
DOI 10.1007/978-3-662-53736-7_1
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2 1 Preliminaries

painted a pipe and painted the following below it: “Ceci n’est pas une pipe”.
When asked about the image, he replied, “Just try to fill it with tobacco”.

(v) All modeling is rooted in an appropriate context and its related objectives.
Different schools of science may have different preferences. Breiman (2001)
discusses the two cultures of statistics: the data-modeling culture (statistics:
theory in search of data, or hypothesis-driven experiments Cox 2000) and the
algorithm-modeling culture (data mining: data in search of a question or theory,
or data-driven hypotheses Cox 2000). Thus, S. Karlin’s statement that “The
purpose of models is not to fit the data, but to sharpen the question” (Claeskens
and Hjort 2008, p. 2) contrasts with the black box view frequently adopted by
the second culture, which is that a model is acceptable as long it works for
prediction and classification. Different models may have different underlying
physical or biological interpretations, even if they fit the data more or less
equally well.

For the comparison of differentmodels, theNeyman-Pearson theory of hypothesis
testing or the Fisher theory of significance testingmay be used if themodels belong to
the same family of distributions and if the relevant comparisons involve hierarchical
(or nested) models.

However, special procedures are required if the models belong to families that are
separate or nonnested in the sense that an arbitrary member of one family cannot be
obtained as a limit of a model outside that family.

1.2 Types of Problems

Throughout this manuscript, Greek letters are used to denote unknown parameters.
Suppose that the models under consideration are specified by the hypotheses Hf and
Hg for densities f (y, α) and g(y, β), respectively. The problems to be investigated
in this book are illustrated using the following examples.

Example 1.1 Let Y1, . . . ,Yn be independent and identically distributed (iid) random
variables. Let Hf denote the hypothesis that their distribution function is lognormal
with unknown parameter values, and let Hg denote the hypothesis that their distribu-
tion function is Weibull. Dumonceaux et al. (1973), Dumonceaux and Antle (1973)
and Dumonceaux et al. (1973) have studied this problem.

Example 1.2 Let Y1, . . . ,Yn be independent distributed random variables such that

log Yi = μ +
m∑

r=1

zirΘr + log ui ,

where the zi are m fixed regressors, μ is the general mean, and Hf and Hg specify
alternative distributions for ui , as in Example 1.1. Pereira (1978, 1981b) has studied
this problem.
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Example 1.3 The Pickering/Plat debate on the nature of hypertension is a widely
published medical dispute. Plat claims that hypertension is a “disease” with under-
lying genetic determinants: one simply either has it or does not. He emphasizes that
the skewness of the distribution of blood pressure is due to the effect of a dominant
gene; thus, Plat espouses the hypothesis, denoted by Hf , that the blood pressure
distribution is a mixture of two normal distributions.

Pickering argues that the designation “hypertension” is arbitrary and that the
determinants of blood pressure are numerous and have small individual effects.

For Pickering, hypertension is not a disease but merely a label assigned to those
with pressure readings in the upper tail of the distribution; thus, Pickering espouses
the hypothesis, denoted by Hg , that the blood pressure distribution is a lognormal
distribution. Refer to Shork et al. (1990) for details.

Example 1.4 Consider two alternative sets of covariates x and z for a regression
problem and the alternative models

Hf : yi = α0 +
�1∑

r=1

xi jαr + ui f ,

Hg : yi = β0 +
�2∑

r=1

zirβr + uig,

where ui f and uig are (iid) random variables.
The problem of testing Hf against Hg has been addressed by Pesaran (1974) and

Pereira (1984) under the assumptions that ui follows a normal distribution and a
Weibull distribution, respectively. Refer to Pereira (1981b, 1984) for an interesting
result that emerges when there are alternative covariates and alternative distributions
(Example 1.2). Practical applications include the following:

(i) discrimination between Constant Elasticity of Substitution (CES) and Variable
Elasticity of Substitution (VES) production functions (Harvey 1977),

(ii) selection of level-differenced versus log-differenced stationarymodels (Pesaran
and Pesaran 1995),

(iii) discrimination between monetarist and structuralist economic models for the
Brazilian economy (Araujo and Pereira 2007), and

(iv) other empirical economic applications, as presented by McAleer (1995).

Example 1.5 The following alternative growth models have been considered for
predicting AIDS cases in Brazil:

H1 : log yt = α0 + α1t + α3Yt ,

H2 : log yt = β0 + β2Δ log Yt + β3 log yt−1,

H3 : log yt = δ0 + (δ1Yt + δ2Y
2
t + δ3Y3 log Yt ),
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where yt = ΔYt = Yt − Yt−1 and Yt denotes cases of AIDS. These models were
derived from those of Ord and Young (1988). The preferred model was found to be
H1, which includes the logistic, Gompertz and modified exponential growth models.
The logistic model was ultimately chosen based on the confidence interval estimates
(see Pereira and Migon 1989).

Example 1.6 Consider a time series Yt . If the hypothesis of white noise properties
is rejected, it might be interesting to test the following hypotheses:

Hf : yt = βyt−1 + ut against Hg : yt = εt − θεt−1,

where ut and εt are iid normal random variables with means zero and variances τ̃ 2
u

and τ̃ 2
ε , respectively. These hypotheses are partially nonnested (Walker 1967).

Example 1.7 Consider binary observations Y with a covariate X and the hypotheses
of a logistic or a probit model for these data, i.e.,

Hf : P(Yi = 1) = Φ(αxi ) =
∫ αxi

−∞
1√
2π

exp

{
−1

2
z2

}
dz,

Hg : P(yi = 1) = Λ(βxi ) = eβxi

1 + eβxi
.

Refer to Chambers and Cox (1967), Clarke and Signorino (1974), Morimune (1979),
Pesaran and Pesaran (1993), Silva (2001), Genius and Strazzera (2002), and Mon-
fardini (2003).

1.3 General Formulation

In this section, several methods first suggested by Cox in his original, fundamental
paper (Cox 1961; see also Cox (1962, 2013)) are presented. These methods form the
basis of most later developments on nonnested model choice. In fact, they comprise
the core of this book.

Let Y be a vector of observations, and let Hf and Hg denote the hypotheses that
the probability density function (p.d.f) of Y is f (y, α) or g(y, β), respectively, where
α and β are vectors of unknown parameters such that α ∈ Ωα and α ∈ Ωβ , where
Ωα and Ωβ are the parameter spaces. It is also assumed that the families are separate
in the sense defined above.

The formal definition of separate or nonnested models relies on the concept of
discrepancies, such as the Ghosh and Subramanyam (1975) metric,

d( f, g) = Eα{| f − g|}
=

∫
| f (y, α) − g(y, β)| f (y, α)dy, (1.1)
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or the Kullback–Leibler divergence used by Pesaran (1987),

I ( f, g) = Eα{log f − log g} = Eα{� f g}
=

∫

Ω f

log{ f (y, α)/g(y, β)} f (y, α)dy. (1.2)

Further possible metrics can be found in Linhart and Zucchini (1986).
Therefore, Hf and Hg are separate or nonnested if

inf
Ω f ,Ωg

d( f, g) > 0 or

inf
Ω f ,Ωg

I ( f, g) > 0.

Pesaran (1987) also definedpartially nonnested hypotheses, forwhich the infimum
is zero for some but not all of the parameters. Analogous expressions to (1.1) and
(1.2) are defined when the roles of Hf and Hg are interchanged.

Several methods exist for addressing such model choice problems. Let us first
consider a discrimination problem, where either Hf or Hg is true, and let us adopt
the Bayesian approach.

Let π f and πg , such that π f + πg = 1, be the prior probabilities of Hf and
Hg , respectively. π f (α) and πg(β) are the prior probabilities for the parameters
conditional on Hf and Hg , respectively. By Bayes’ Theorem, the posterior odds
ratio for Hf versus Hg is

π f
∫

f (y, α)π f (α)dα

πg
∫
g(y, β)πg(β)dβ

= π f

πg
B f g(y). (1.3)

The Bayes factor B fg(y) represents the weight of evidence provided by the data
for Hf over Hg .

An alternative suggestion by Cox (1961) accounts for the losses c f (α) and cg(β)

incurred as a result of incorrectly rejecting Hf when α is the true parameter value or
incorrectly rejecting Hg when β is the true parameter value, respectively. A decision
theory approach leads to the following decision rule:

π f

∫

Ωα

f (y, α)π f (α)c f (α)dα ≶ πg

∫

Ωβ

f (y, β)πg(β)cg(β)dβ. (1.4)

Referring to Lindley (1961), Cox (1961) also developed the following large-
sample approximation to (1.3) by expanding around the maximum likelihood values
α̂ and β̂:

f (y, α̂)

g(y, β̂)

π f

πg

(2π)d f/2π f (α̂)

(2π)dg/2πg(β̂)
,
I−1/2
α

I−1/2
β

, (1.5)
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where d f and dg are the numbers of dimensions of the parameters α and β and
Iα and Iβ are the information determinants for estimating α and β. For another
approximation, refer to Cox and Hinkley (1978, p. 162).

If the prior distributions are available, then the Bayesian approach provides a
general solution to the problem of discriminating between Hf and Hg . For the case
in which the priors are unavailable, Cox (1961) suggested the introduction of the
generalized Neyman–Pearson likelihood ratio

R fg = e�̂ f g =

⎧
⎪⎨

⎪⎩

sup
Ωα

f (y, α)

sup
Ωβ

g(y, β)

⎫
⎪⎬

⎪⎭
= f (y, α̂)

g(y, β̂)
(1.6)

as an alternative to (1.5), where R fg is the log-likelihood ratio. A third suggestion
was presented by Cox (1961) based on an examination of expression (1.6).

He noticed that an improper prior could not be used in (1.3), which is unspecified.
Cox (1961) went on to invoke the Obviously Arbitrary and Always Admissible

(OAAAA method), suggested by Bernard (1959). It consists of three steps: taking
a small number of points in Ωα and Ωβ , evaluating the corresponding likelihood
functions of these points under Hf and Hg , and computing the ratio of the average of
the likelihood functions under Hf over the average of the likelihood functions under
Hg . This corresponds to a Bayes solution with respect to the uniform prior over the
two sets of points of the considered hypotheses. In fact, this method leads to a ratio
of the mean likelihoods rather than a ratio of the maximum likelihoods, as in (1.6),
and it is also related to the Bayesian procedures presented in Sects. 3.2.5 and 3.3 of
Chap.3.

For the case in which � f g is treated as a random variable denoted by L f g , Cox
(1961) presented several interpretations of the use of (1.6). Direct utilization of (1.6)
is onlymeaningful if Hf and Hg specify simple hypotheses. In this case, it is sufficient
to take the observed value of (1.6) to measure the evidence in favor of Hf . The same
is not true if the numbers of parameters considered under Hf and Hg are different.
In this case, one can always expect a better fit to the data using the model with more
parameters when the other modeling aspects remain unchanged.

Considering the problem as one of significance testing, where the hypotheses
Hf and Hg are considered in an asymmetrical rather than a discrimination man-
ner, Hg represents the alternative for which a higher power is required. Cox (1961)
suggestions for this case are based on the distribution of the statistic

T f = {� f (α̂) − �g(β̂)} − Eα̂{� f (α̂) − �g(β̂)}, (1.7)

where α̂ and β̂ are the maximum likelihood estimators and � f (α) and �g(β) are the
log-likelihood functions under Hf and Hg , respectively. An analogous expression is
obtained for Tg .

An alternative formulation presented by Cox (1961) considers an exponential
mixture that includes the models corresponding to Hf and Hg as particular cases,

http://dx.doi.org/10.1007/978-3-662-53736-7_3
http://dx.doi.org/10.1007/978-3-662-53736-7_3
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where λ is a further unknown parameter:

f λ(y, α)g1−λ(y, β)∫
f λ(y, α)g1−λ(y, β)dy

. (1.8)

Here, the significances of Hf : λ = 1 and Hf : λ = 0 are tested.
Another comprehensive model is the linear mixture

λ f (y, α) + (1 − λ)g(y, β)∫ [λ f (y, α) + (1 − λ)g(y, β)]dy , (1.9)

mentioned by Atkinson (1970b) and first studied by Quandt (1974).
Finally, a distinction should be drawn between discrimination and hypothesis

testing. Discrimination begins with a given set of models, and the purpose is to select
one of the models under consideration. By contrast, hypothesis testing asks whether
there is statistically significant evidence of a departure from the null hypothesis in
the direction of one or more alternative hypotheses. Rejection of the null hypothesis
does not necessarily imply acceptance of any of the alternative hypotheses. In the
case of separate hypothesis testing, it is possible that all models considered may be
rejected or that all models may be accepted (not rejected).

1.4 Plan of the Book

Chapter2 introduces the frequentist approach to the problem of testing separate mod-
els. A derivation of the Cox test is given. Alternative procedures are presented. The
exponential mixture and its various econometric extensions are illustrated. False and
nearestmodels and the related pseudo-maximum likelihood estimators are discussed.
A comparison among alternative methods is briefly discussed in some cases.

Chapter3 presents the Bayesian approach to the problem of discriminating among
separate models. The limitations of Bayes factors are described, and alternative mod-
ified Bayes factors to resolve these limitations are presented. Bayesian significance
testing is also presented.

Finally, Chap. 4 addresses the pure likelihood and support approaches as applied
to certain data. Bootstrap and simulation approaches are also discussed.

Throughout the chapters, real-world examples and simulation results are presented
and discussed to illustrate conceptual aspects.

Major areas that are not covered in this book include experimental design for
the discrimination of alternative models and methods based on discrepancy and
information measures, such as the Akaike Information Criterion (AIC), the Bayesian
Information Criterion (BIC), and the Minimum Description Length (MDL), among
others. Each of these topics is a subject of an entire book in itself.

http://dx.doi.org/10.1007/978-3-662-53736-7_2
http://dx.doi.org/10.1007/978-3-662-53736-7_3
http://dx.doi.org/10.1007/978-3-662-53736-7_4
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1.5 Bibliographic Notes

The relevance of the topic of this book and its influence on later developments in
statistics have recently been revisited by Cox (2013).

A brief history of the further work of Cox is provided in Araujo et al. (2005).
Reviews and references of general interest can be found in Pereira (1977a), Pereira
(1981d), Pereira (2005) and Pereira (2010). For regularity conditions for the Cox
test, refer to White (1982) and also Pereira (1977b, 1981a).

In the 1980s, econometricians took great interest in this subject, which has been
reviewed frequently: seeMacKinnon (1983), McAleer and Pesaran (1986), McAleer
(1987, 1995), Gourieroux and Monfort (1994), Szroeter (1999), Pesaran and Weeks
(2001) and Pesaran and Ulloa (2008).

Bayesian statisticians in the 1990s developed alternative Bayes factors to over-
come the difficulties related to the standard Bayes factor. Also of interest in the
Bayesian context is the work of Poirer (1997) on the choice between two models
when a third model is present in the background.

Finally, several references on areas not covered in this book are as follows: Alber-
ton et al. (2011), for a recent study on experimental design, and Linhart and Zucchini
(1986), Sakamoto et al. (1986), Burnham and Anderson (2002), Anderson (2008),
Claeskens and Hjort (2008), Konishi and Kitagawa (2010), Rissanen (1989, 2010)
and Wallace (2005), for discussions of discrepancy and information methods.
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Chapter 2
Frequentist Methods

Abstract This chapter presents frequentist statistical methods. Hypothesis tests,
namely, the Cox test and alternatives, are described. An interpretation of the test
results is provided. Applications to the exponential, gamma, Weibull, and lognormal
distributions are presented. Misspecification and the efficiencies of false regression
models are studied.Certain properties of someof theprocedures in termsof power and
consistency are presented, both analytically and based on simulations. References to
recent applications of the Cox test are mentioned, as is the relation of the pioneering
work on the efficiency of false models to recent works on misspecification and what
is known as the “Sandwich” formula for estimation of covariance.

Keywords Alternative hypothesis · Asymptotic power · Comprehensive models ·
Cox test ·Exponential models · False models ·Gammamodels ·Gradient test ·Log-
normal models · Neyman–Pearson likelihood ratio · Null hypothesis · Probability
limit · Rao score test · Simulations · Wald test · Weibull models

2.1 Introduction

In Chap.1 the key concepts related to choosing among separate models were dis-
cussed. The present chapter discusses frequentist solutions for solving this problem.
Alternative tests are presented, along with some of their properties. The concepts of
false models, pseudomaximum likelihood and misspecification are also discussed.

2.2 The Cox Test

2.2.1 Preliminaries

Let y = (y1, . . . , yn) be independent observations drawn from some unknown distri-
bution F . Suppose that the null hypothesis Hf : F ∈ F f is to be tested, where F f is a
family of probability distributions with density f (y, α) and α is an unknown vector
parameter. Let a high power be required for the alternative hypothesis Hg : F ∈ Fg ,

© The Author(s) 2016
B. de B. Pereira and C.A. de B. Pereira,
Model Choice in Nonnested Families, SpringerBriefs in Statistics,
DOI 10.1007/978-3-662-53736-7_2
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where Fg is another family of probability distributions with density g(y, β); here, β
is an unknown vector parameter and f (y, α) and g(y, β) are separate or nonnested
models, as defined in Chap.1.

The asymptotic test developed by Cox (1961, 1962) is based on a modification of
the Neyman–Pearson maximum likelihood ratio. If Hf is the null hypothesis, then
the considered test statistic is

T f g = � f (α̂) − �g(β̂) − Eα̂

{
� f (α̂) − �g(β̂)

}
, (2.1)

as defined in Sect. 1.3. The following alternative interpretations and forms can also
be used to compute this statistic, neither of which affects the null distribution under
the null hypothesis (see Kent 1986 and his discussion of Cox 2013):

T f g = � f (α̂) − �g(β̂) − Eα̂

{
� f (α) − �g(βα)

}
,

T f g = � f (α̂) − �g(β̂) − n plim
n→∞

[
n−1

{
� f (α̂) − �g(β̂)

}]

α=α̂
,

(2.2)

where � f (α̂) and �g(β̂) are the maximized log-likelihoods under Hf and Hg , respec-
tively; α̂ and β̂ denote themaximum likelihood estimators; βα is the probability limit,
as n −→ ∞, of β̂ under Hf ; plim represents convergence in probability; and the
subscript α indicates that the means are calculated under Hf .

Because β̂
p−→ βα , we have

Eα

[
∂

∂β
�g(βα)

]
= 0. (2.3)

Example 2.1 (Cox 1961; Jackson 1968) The null hypothesis HL is that the distri-
bution is lognormal, and the alternative is that the distribution is exponential; that
is,

HL : fL(y, α1, α2) = y(2πα2)
−1/2 exp

{−(log y − α1)
2/2α2

}
, α = (α1, α2),

HE : fE (y, β) = exp(−y/β)/β.

(2.4)
The maximum likelihood estimator is β̂ = ȳ. Under HL ,

β̂
p−→ βα = exp

{
α1 + 1

2
α2

}
and

�g(βα) = �E (β(α1,α2)) = ln
[
exp

{
−(y/eα1+ 1

2 α2)
}/

eα1+ 1
2 α2

]

= −y
/
eα1+ 1

2 α2 − α1 − 1

2
α2

and

http://dx.doi.org/10.1007/978-3-662-53736-7_1
http://dx.doi.org/10.1007/978-3-662-53736-7_1
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∂

∂α1
�E (β(α1,α2)) = y

/
eα1+ 1

2 α2 − 1,

∂

∂α2
�E (β(α1,α2)) = y

/
eα1+ 1

2 α2 − 1/2.

Therefore,

Eα

{
∂

∂α
�E (β(α1,α2))

}
= (0, 0).

2.2.2 Remarks on the Distribution of Tf g

A heuristic general explanation of the distribution of the test statistic is presented
below. A complete proof of the distributional properties and general regularity con-
ditions for the Cox test are given in White (1982).

Expanding � f (α̂), �g(βα), Eα̂

{
� f (α)

}
and Eα̂

{
�g(βα)

}
around α and �g(β̂)

around β, we obtain

� f (α̂) ∼= � f (α), � f (β̂) ∼= �g(β),

Eα̂

{
� f (α)

} ∼= Eα

{
� f (α)

}+ (α̂ − α)
′
Eα

{
� f (α)

∂� f (α)

∂α

}

and

Eα̂

{
�g(βα)

} = Eα

{
�g(βα)

}+ (α̂ − α)
′
Eα

{
�g(βα)

∂� f (α)

∂α

}
.

Applying these results to Eq. (2.2), we obtain

T f g = � f (α) − �g(βα) − Eα

{
� f (α) − �g(βα)

}

−(α̂ − α)′Eα

{(
� f (α) − �g(βα)

) ∂� f (α)

∂α

}
. (2.5)

By writing Z = � f (α)−�g(β)− Eα

{
� f (α) − �g(βα)

}
and using the fact that the

asymptotic distribution of
√
n(α̂ − α) is the same as that of

√
nI−1(α)

∂� f (α)

∂α
, where

I (α) = Eα

{
∂� f (α)

∂α

}2
, it follows that the variance is

Vα(T f g) = Vα

(
� f (α) − �g(βα)

)+ Eα

{
Z

∂� f (α)

∂α

}′
I−1(α)V

(
∂� f (α)

∂α

)
I−1(α)

× Eα

{
Z

∂� f (α)

∂α

}
− 2Eα

{
Z

∂� f (α)

∂α

}′
I (α)−1E

{
Z

∂� f (α)

∂α

}

= Vα(Z) + Cov′
{
Z

∂� f (α)

∂α

}
I (α)−1Cov

{
Z

∂� f (α)

∂α

}
. (2.6)
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Therefore, T f g is the sum of the deviations of � f (α) − �g(β) from its regression
on ∂� f (α)/∂(α). Its order is

√
n in probability, whereas the other terms are of order

one in probability.
Expression (2.6) can be written as

Vα(T f g) = Vα

(
� f (α) − �g(βα)

)− C ′
α I

−1(α)Cα, (2.7)

where Cα = ∂
∂α
Eα

{
� f (α) − �g(β)

}
and I (α) is the information matrix of α.

It also follows that (Cox 1961)

Cov(α̂) = − 1
n Eα

(
∂2� f (α)

∂α∂α

)−1
,

Cov(α̂, β̂) = 1
n Eα

(
∂2� f (α)

∂α∂α

)−1 (
∂βα

∂α

)
,

Cov(β̂) = 1
n

{
Eα

(
∂2�g(βα)

∂β∂β

)−1
Eα

(
∂βα

∂β

)′ (
∂�g(βα)

∂β

)
Eα

(
∂2�g(βα)

∂β∂β

)}
.

(2.8)

T f g is the sum of independent and identically distributed (iid) random variables
withmean zero; therefore, quite generally, a strong central limit effect can be expected
to apply, unless, of course, the individual components have amarkedly badly behaved
distribution.

2.2.3 The Test Procedure

When Hg is the null hypothesis and Hf is the alternative hypothesis, analogous

results are obtained for a statistic Tg f . Because C∗
f g = T f g

{
V (T f g)

}−1/2
and

C∗
g f = Tg f

{
V (Tg f )

}−1/2
under Hf and Hg , respectively, are approximately standard

normal variates, two-tailed tests can be performed. For example, if C∗
f g is signifi-

cantly negative, there is evidence of a departure from Hf in the direction of Hg . If
C∗

f g is significantly positive, there is evidence of a departure from Hf in the direction
opposite to Hg . The possible outcomes when both tests are performed are shown in
Table2.1. The decision-related terms “accept” and “reject” are used for simplicity.
Rejection of both hypotheses suggests that it is necessary to look elsewhere for an
appropriate model. Acceptance of both implies that there is no evidence that allows
one to choose between the two models. Possible acceptance suggests that further
testing is required, because although one model is not rejected, the other is rejected
in favor of alternatives in a direction opposite to that of the model that is not rejected.

Example 2.2 (Example 2.1 cont.) Under HL from (2.3), the estimator β̂ converges
in probability to βα = exp(α1 + α2/2), that is, βα is the mean of the lognormal
distribution. Further, expressions (2.5) and (2.6) become
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Table 2.1 Possible outcomes of hypothesis tests for a pair of separate families

Cg f C f g

Significantly negative Not significant Significantly positive

Significantly negative Reject both Accept H f Reject both

Not significant Accept Hg Accept both Possible acceptance
of Hg

Significantly positive Reject both Possible acceptance
of H f

Reject both

TLE = n log(β̂/β̂α̂), VL(TLE ) = n

(
eα2 − 1 − α2 − α2

2

2

)
, (2.9)

where βα̂ = exp(α̂1 + α̂2/2).
Suppose that HL and HE change roles, such that the null distribution is exponential

and the alternative is lognormal. Under HE , from (2.3), the estimators α̂1 and α̂2

converge in probability to α1β = ψ(1) + ln β and α2β = ψ ′(1), respectively, that
is, α1β and α2β are the mean and variance of the logarithm of a random variable
with an exponential distribution, where ψ(x) = d lnΓ (x)/dx , etc. For HE , we
asymptotically obtain

TEL = n
(
α̂1 − α1β̂ + 1/2 ln(α̂2/α2β̂ )

)
, (2.10)

VE (TEL) = n
{
ψ ′(1) − 1/2 + ψ ′′(1)/ψ ′(1) + ψ ′′′(1)/4{ψ ′(1)}2} = 0.2834n.

Example 2.3 (Pereira 1978, 1979) The hypotheses considered are that the distribu-
tions are lognormal, Weibull or gamma in nature:

HL : fL(y, α1, α2) = y(2πα2)
−1/2 exp

{−(log y − α1)
2/2α2

}
, α = (α1, α2),

HW : fW (y, β1, β2) = β2/y (y/β1)
β2 exp

{−(y/β1)
β2
}
, β = (β1, β2), (2.11)

HG : fG(y, γ1, γ2) = (y/γ1)
γ2 /yΓ (γ2) exp {−y2/γ1} , γ = (γ1, γ2).

(i) First, suppose that the null hypothesis is HL and that the alternative is HW .
From (2.2), (2.3) and (2.5), we obtain, respectively,

β1α = exp{α1 + √
α2/2}, β2α = α

−1/2
2 ,

TLW = n
{
β̂2 ln β̂1 − β2α̂ ln β1α̂ − ln β̂2 + ln β2α̂ − α̂1(β̂2 − β2α̂)

}
,

VL(TLW ) = 0.2183n.

(2.12)

When HL and HW change roles, such that the null hypothesis is HW and the
alternative is HL , we have
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α1β̂ = −0.5772/β2 + logβ1; α2β = 1.6449/β2
2 ,

TWL = n
{
β̂2(α̂1 − α1β̂ ) + 1

2 ln(α̂2/α2β̂ )
}

,

VW (TWL) = 0.2834n.

(2.13)

(ii) Suppose that the null hypothesis is HL and the alternative is HG ; then, we have

γ1α = exp {α1 + α2/2} , ln γ2α − ψ(γ2α) = ln γ1α − α1 = α2/2,

TLG = n
{
lnΓ (γ̂2) − γ̂2Γ (γ̂2) + γ̂2 − lnΓ (γ2α̂) − γ2α̂ψ(γ2α̂) − γ2α̂

}
, (2.14)

VL (TLG) = nγ 2
2α

[
exp(α2) − 1 − α2 − α2

2

2

]
,

where γ2α̂ is unique.

When HL and HG change roles, such that the null hypothesis is HG and the
alternative is HL , we have

α1γ = ψ(γ2) − ln (γ2/γ1) , α2γ = ψ ′(γ2),

TGL = n
2 ln(α̂2/α2γ̂ ),

VG(TGL) = n
{

ψ ′′′(γ2)
4{ψ ′(γ2)}2 − γ2{ψ ′′(γ2)}2

4{ψ ′(γ2)}2{γ2ψ ′(γ2)−1} + 1/2
}

.

(2.15)

(iii) Finally, consider the case in which the null hypothesis HG is the gamma
distribution and the alternative HW is the Weibull distribution. Note that HG

and HW are partially nonnested because for β2 = γ2 = 1, we specify the
exponential distribution.
In this case,

ψ(β2γ̂ + γ2) − 1
β2γ̂

= ψ(γ2), ln β1γ = ln
(

γ1
γ2

)
+ β−1

2γ ln Γ (β2γ +γ2)

Γ (γ2)
,

TGW = n
[
ln
(

β2γ̂

β̂2

)
− (β2γ̂ ln β1γ̂ − β̂2 ln β̂1)

+{β2γ̂ − β̂2}
{
ψ(γ̂2) − ln

(
γ̂2
γ̂1

)} ]
,

VG(TGW ) = n
[

Γ (2β2γ +γ2)Γ (γ2)

{Γ (β2γ +γ2)}2
+ 1

{γ2ψ ′(γ2)−1}β2
2γ

{
3β2

2γ − γ2 − β4
2γ ψ ′(γ2) − γ2ψ

′(γ2)β2
2γ

} ]
,

(2.16)

where β1γ and β2γ are unique. When HW is the null hypothesis and HG is the
alternative, we have
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γ1β = β1Γ
(
1 + 1

β2

)
, ln γ2β − ψ(γ2β) = lnΓ

(
1 + 1

β2

)
− ψ(1)

β2
,

TWG = n
[
γ̂2β

{
ψ(γ2β̂ ) − 1

}
− lnΓ (γ2β̂ ) − β̂2

{
ψ(γ2β̂ ) − ln

(
γ2β̂
γ̂1

)}

−
(
γ̂2
{
ψ(γ̂2) − 1

}− lnΓ (γ̂2) − β̂2

{
ψ(γ̂2) − ln

(
γ̂2
γ̂1

)} )]
,

VW (TWG) = n

[ (
β2−γ2β

β2

)2
ψ ′(1) + γ 2

2β

Γ
(
1+ 2

β2

)

{
Γ
(
1+ 1

β2

)}2 − γ 2
2β − 1

+2
(
γ2β − γ2β

β2

) {
ψ
(
1 + 1

β2

)
− ψ(1)

}

− 1
ψ ′(1)

{
1 − γ2β

β2

{
ψ
(
1 + 1

β2

)
− ψ(1)

}}2 ]
.

(2.17)

Example 2.4 (Pereira 1978) We consider the model defined by

log yi = μ +
m∑

r=1

zirθr + log ui , (2.18)

where the zir are the fixed values of them regressors,μ is the unknown general mean,
the θr are the unknown regression coefficients, and the ui are iid random variables
with density f (u, λ), where f is a specified function and λ is an unknown scale or
shape parameter.

As usual, it is assumed without loss of generality that

n∑

i=1

zir = 0 (r = 1, . . . ,m). (2.19)

It is also assumed, to permit the application of asymptotic theory, that if
zi = (zi1, . . . , zim) and Z is an n × m matrix with rows zi , then

lim
n→∞ n−1

n∑

i=1

z′
i zi = lim

n→∞ n−1Z ′Z is a bounded positive definite matrix.

Four particular cases are considered, defined by the form of the density of ui as
follows:

(a) Hypothesis HL , a lognormal regression model, where log ui is distributed as
N (0, λ).

(b) Hypothesis HW , a Weibull regression model, where ui is distributed in standard
Weibull form with parameter λ, that is, with density λvλ−1 exp(−vλ), equivalent
to v = vλ with the standard exponential distribution with density e−v.

(c) Hypothesis HG , a gamma regression model, where ui is distributed as λ−1G(λ);
here, G(λ) denotes a random variable with the standard gamma distribution
shape parameter λ, with density vλ−1e−v/Γ (λ).

(d) Hypothesis HE , an exponential regression model, where ui has a standard expo-
nential distribution; this is a special case of (b) and (c) with λ = 1.

For comparisons of two hypotheses, different symbols are required for the set of
unknown parameters

{
μ, λ, θ ′ = (θ1, . . . , θm)

}
(omitting λ in (d)). This set will be
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denoted by α = (
α1, α2, a′) for HL , β = (

β1, β2, b′) for HW , γ = (
γ1, γ2, c′) for

HG and β = (
β, d ′) for HE . If (2.18) is assumed, then the information matrices

I (μ, λ, θ) for the models are block diagonal with blocks I (μ, λ) and I (θ) (Cox and
Hinkley 1978).

The following results are obtained (Pereira 1978):

1. The estimates of the regression coefficients always converge to the true regression
coefficients. For example, if HL is the null hypothesis and HW is the alternative,

then the estimator b̂
p−→ bα = a. Section2.5 investigates Vα(b̂) compared with

Vα(â).
2. For all tests, the final expressions for the Cox test are equal to those from (2.9)

through (2.16), presented in Examples 2.1 and 2.2. In these cases, the limits in
probability are as follows (see Pereira 1978).

True model L, false model W:

β1α = α1 +
(α2

2

)− 1
2
, β2α =

(
1√
α2

)
, bL = a.

True model W, false model L:

α1β = β1 + ψ(1)

β2
, α2β = ψ ′(1)

β2
2

, aW = b.

True model L, false model G:

γ1α = α1 + α2

2
, ln γ2α − ψ(γ2α) = α2

2
, dL = a.

True model G, false model L:

α1γ = ψ(γ2) − log γ2 − γ1, α2G = ψ ′(γ2), aG = c

True model G, false model W:

β1γ = γ1 − ln γ2 + β−1
2γ ln

{
Γ (β2γ )

Γ (γ2)

}
, ψ(β2γ + γ2) − β−1

2γ = ψ(γ2), bG = c.

True model W, false model G:

γ1β = β1 + lnΓ

(
1 + 1

β2

)
, ln γ2β − ψ(γ2β) = lnΓ

(
1 + 1

β2

)
− ψ(1)

β2
, cw = b.

Example 2.5 (Example 1.4 cont.) Rewriting the models from Example 1.4 in matrix
notation, we obtain

http://dx.doi.org/10.1007/978-3-662-53736-7_1
http://dx.doi.org/10.1007/978-3-662-53736-7_1
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Hf : y = Xα + u f ,

Hg : y = Zβ + ug.
(2.20)

Pesaran (1974) considered the case inwhich u f ∼ N (0, σ 2
f In) and ug ∼ N (0, σ 2

g In).

Assuming that lim
n→∞

1

n
X ′X = ∑

x ′x , limn→∞
1

n
Z ′Z = ∑

z′z and lim
n→∞

1

n
X ′Z = ∑

x ′z exist

and are finite, that
∑

x ′x and
∑

z′z are non-singular and that
∑

x ′z 	= 0, the Cox test
of Hf against Hg is

βα = (
Z ′Z

)−1
(Z ′X)α, σ 2

gα = σ 2
f + α′X ′MzXα,

T f g = n
2 ln

σ̂ 2
f

σgα̂
,

V (T f g) = σ̂ 2
f

σ 4
gα̂

α̂′X ′MzMxMzX α̂,

(2.21)

where Mx = I − X ′(X ′X)−1X and Mz = I − Z ′(Z ′Z)−1 (Pesaran 1974).
Pesaran and Deaton (1978) extended this test to nonlinear systems of equations,

and Timm and Al-Subaihi (2001) also extended it to seemingly unrelated regression
models. Araujo et al. (2005) extended it to systems of linear equations.

Pereira (1984) derived the Cox test for a similar problem

Hf : ln yi = α1 + xa + ln u f ,

Hg : ln yi = β1 + zb + ln ug,
(2.22)

where u f ∼ W (α2) and ug ∼ W (β2) are random variables with standard Weibull
distributions with parameters α2 and β2, respectively.

Under the same assumptions regarding X ′X , X Z , and Z ′Z , we have

β1α = α1 + 1
β2α

lnΓ (K ), β2α = [ψ(k) − ψ(1)]−1 α2, ba = (Z ′Z)−1(Z ′X)a,

T f g = (α̂2 − β2α̂)

n∑

i=1

ln yi + n(α̂2 − β2α̂)

{
α̂1 + ψ ′(1)

α̂2

}

− n ln

(
β̂2
β2α̂

)
+ n(β̂1β̂2 − β1α̂β2α̂),

(2.23)

where k = 1 + β2α/α2. Finally, an interesting result follows if the hypotheses in
(2.22) are any two distributions (a) to (d) fromExample 2.3. For instance, if u f has an
exponential distribution and ug has a lognormal one, then the tests will have the same
expressions as in (2.9) through (2.17) plus an additional equation corresponding to
the limit in probability. In this case, this term is bL = (Z ′Z)−1Z−1a, and there are
analogous terms for the other cases (Pereira 1978, 1981b, 1984).



20 2 Frequentist Methods

Example 2.6 (Pereira 1981b) The results of Example 2.3 were applied to survival
data for 93 malignant tumor patients collected in the Brain Tumour Study conducted
by M.D. Anderson Hospital and the Tumour Institute. The complete description
of the data set is presented in Pereira (1976). All patients received surgery and
were randomized with regard to whether they received a chemotherapeutic agent
(Mithramycin) or conventional care (Control) during the recovery period. The tumors
were classified by their principal position in the brain. The other variables recorded
were age, duration of symptoms (headache, personality change, motor deficit, etc.),
sex, and level of radiation (see Walker et al. 1969). For each patient, a vector of
covariates z = (z1, . . . , z10) was defined, where z1, z2, z3, z4 and z5 represented age,
duration of symptoms, sex, treatment and radiation, respectively. The remaining
variates z6, z7, z8, z9, and z10 were indicators of the positions of the cancer cells,
with one variate corresponding to each of the frontal, temporal, parietal, and occipital
lobes and the deep BG/T region.

In the search for a suitable model, the simplest models were examined first.
The exponential and lognormal regression models yielded statistic values of TLE =
−2.813, indicating a departure from HL in the direction of HE , and TEL = −2.909,
indicating a departure from HE in the direction of HL . This suggests that neither
model fits the data well. Subsequently, departures from HE in the directions of HG

and HW were tested. Because these hypotheses are not separate, asymptotic nor-
mal distributions of the maximum likelihood estimators of the shape parameters of
the gamma and Weibull regression models were used, or, equivalently, the asymp-
totic χ2 distribution of the maximum likelihood ratio. The results are summarized
in Table2.2 and show that the null hypothesis of an exponential regression model is
rejected under the assumption of either a Weibull or a gamma model. Note that the
null hypothesis HE is rejected more strongly by the Weibull test.

Next, HL was tested against HG and HW . All test results and other values of
interest are shown in Table2.3. The test statistic TLG = −3.119 rejects HL in favor
of HG , and the test statistic TLG = −1.016 suggests reasonable agreement with
HG . For HW , the results were TLW = −3.699, rejecting HL , and TWL = 0.137,
suggesting good agreement with HW . Again, HL is rejected more strongly when
compared with HW .

Given the results of the tests carried out above, the remaining twopossibleworking
hypotheses are HG and HW . As seen in Table2.3, the test statistic TGW = −2.436
points to a departure from HG in the direction of HW , and the test statistic TWG =

Table 2.2 Testing for an exponential regression model

Alternative MLE Likelihood ratio

Normal deviate Significance level −2 log λ Significance level

Gamma 3.982 0.000035 26.765 <0.00001

Weibull 5.084 <0.00001 31.367 <0.00001
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Table 2.3 Results of all tests of separate families of hypotheses

Test Normal deviate Significance level Estimates of probability limits

TLE −2.813 0.00248 δ̂1L = 5.196

TEL −2.909 0.00191 α̂1E = 4.557, α̂2E = 1.645

TLG −3.119 0.00090 γ̂1L = 5.196, γ̂2L = 1.777

TGL −1.016 0.15386 α̂1G = 4.890, α̂2G = 0.533

TLW −3.699 0.00011 β̂1L = 5.281, β̂2L = 1.277

TWL 0.137 0.44433 α̂1W = 4.906, α̂2W = 0.570

TGW −2.436 0.00734 β̂1G = 5.244, β̂2G = 1.560

TWG 0.967 0.16602 γ̂1W = 5.132, γ̂2W = 2.367

α̂1 = 4.8896 β̂1 = 5.2461 γ̂1 = δ̂1 = 5.1338

α̂2 = 0.6137 β̂2 = 1.6989 γ̂2 = 2.1999

0.967 suggests good agreement of the hypothesis HW with these data. Therefore, the
Weibull regression model should be used for further analysis of the data.

The models can thus be ranked in order of preference as dictated by test results
as follows: the Weibull regression model is ranked first, followed by the gamma,
lognormal and exponential regression models. This is also the ordering indicated
by the maxima of the log-likelihood functions, which are �̂W = −554.81, �̂G =
−557.06, �̂L = −563.94 and �̂E = −570.44.

Finally, the results obtained for Example 2.3 show that all estimators of the regres-
sion coefficients are consistent, independent of distributional assumptions. Therefore,
the efficiencies of the estimators of the regression coefficients when an incorrect
model is used compared with the case of the correct model can be investigated. It
will be shown in Sect. 2.5 that when the correct model is a Weibull regression model
with β2 = 1.669, these efficiencies are 0.61 for the lognormal regression model and
0.95 for the gamma and exponential regression models.

2.3 A Test Based on a Compound Model

Silva (2001) embedded the models specified by Hf : f (y, α) and Hg : g(y, β) in
the general model

hc(y, ρ, λ, α, β) = [λ f ρ(y, α) + (1 − λ)gρ(y, β)]
1
ρ

∫
[λ f ρ(y, α) + (1 − λ)gρ(y, β)]

1
ρ dy

. (2.24)
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If ρ = 1, Eq. (2.24) becomes

hl(y, λ, α, β) = λ f1(y, α) + (1 − λ)g(y, β). (2.25)

Taking the limit as ρ → 0, Eq. (2.24) becomes

he(y, λ, α, β) = f λ
1 (y, α)g1−λ(y, β)∫
f λ
1 (y, α)g1−λ(y, β)dy

. (2.26)

Silva obtained the Rao score function for the general distribution (2.24).
Thus far, we have been interested in testing Hf against Hg . Now, we will address

expressions (2.25) and (2.26), in turn.
Let us first consider the test of λ = 1 in Cox’s exponential compound model

(2.26), developed by Atkinson (1970).
It has been shown (Pesaran 1981; Antle and Bain 1969; Silva 2001) that a test of

λ = 1 can be obtained using the Rao score test procedure.
The log-likelihood function of the compound model is

�(λ, α, β) = λ� f (α) + (1 − α)�g(β) −
∫ [

�λ
f (α)�1−λ

g (β)
]
dy. (2.27)

Two possible tests can be considered (Pesaran 1981):

(i) The parameters α0 and β0 are known.
In this case,

∂

∂λ
�λ(λ) = � f (α0)−�g(β0)− E f

{
� f (α0) − �g(β0)

} = � f g − E(� f g). (2.28)

Therefore, the Rao score test statistic is

RS(α0, β0) =
(
� f g − E(� f g)

)2

V (� f g)
, (2.29)

and this is related to the statistics discussed in Atkinson (1969, 1970) for choos-
ing among prediction formulas.

(ii) The parameters α0 and β0 are known.
Under the null hypothesis Hf : λ = 1, the information matrix corresponding to
the parameters (λ, α, β) is singular because β is non-identifiable. Adding the
information provided by the null hypothesis and working with a smaller order
information matrix, the log-likelihood function becomes (Dastoor 1985)

�λ(λ, α) = λ� f (α)− (1−λ)� f (β̂)− log

{∫
f λ(y, β)g1−λ(y, β̂)dy

}
, (2.30)
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because β̂ −→ βα , by assumption. Consequently, the score vector is

⎡

⎣
∂�λ

∂λ
(λ, α)

∂�λ

∂α
(λ, α)

⎤

⎦ =
⎡

⎢⎣
�0(α̂) − �1(β̂) − Eα

[
�0(α) − �1(β̂)

]

α=α̂

0

⎤

⎥⎦

≈
⎡

⎣
�0(c) − �1(β̂) − Eα [�0(α) − �1(β)]α=α

0

⎤

⎦ (2.31)

=
⎡

⎣
T f g

0

⎤

⎦ ,

and the Rao score test statistic is

RS =
[

T f g

V (T f g)

]2
, (2.32)

which is exactly the square of the Cox test statistic.
The Atkinson (1970) test statistic is obtained similarly by replacing β̂ by βα̂ .
Cox’s and Atkinson’s test statistics have the same estimated variance (Pereira
1977a).

We now consider the linear compound model (2.5). Using the linear compound
model estimated based on the maximum likelihood, Quandt (1974) suggested the
following procedures:

• Let λ̂ and σ̂ 2
λ denote the maximum likelihood estimate for λ and the asymptotic

variance of λ̂, respectively. The hypothesis Hf is rejected if the interval (λ̂ −
z pσ̂λ, λ̂ + z pσ̂λ) does not overlap 1.0 for z, which is the corresponding normal
variate for a level of significance p. The hypothesis Hg is rejected if it does not
overlap 0.0. Both hypotheses are rejected if the interval overlaps neither 1.0 nor
0.0. Finally, neither hypothesis should be rejected if the interval overlaps both 1.0
and 0.0.

• Consider the log-likelihood ratios RL f and RLg:

RL f = � f (y, α̂) − �l(λ̂, α̂, β̂),

RLg = �g(y, β̂) − �l(λ̂, α̂, β̂).
(2.33)

A large value of (−2)× either likelihood ratio leads to the rejection of the corre-
sponding hypothesis.

The difficulties with regard to numerical methods that Quandt faced when obtain-
ing the maximum likelihood estimates of the parameters and the corresponding
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asymptotic covariance matrix are greatly reduced by the Expectation–Maximization
(EM) algorithm. For these results, see Oakes (1999) and Lanot (2002).

Example 2.7 (Pereira 1976, 1977a, 1981a) Consider the distributions and notations
of Examples 2.1 and 2.2: the lognormal, Weibull, gamma and exponential distribu-
tions. The Atkinson test statistics for these cases are as follows:

(i)

TLE (A) = n

[
β̂

βα̂

− 1

]
,

(ii)

TEL(A) = n

{
α̂1 − α1β̂ + 1

2α2β̂

[
α̂2 − α2β̂ + (α̂1 − α1β̂ )2

]}
,

(iii)

TLW (A) =
n∑

i=1

[
yi

β1α̂

]β2α̂

,

(iv)

TWL(A) = n

[
β̂2(α̂1 − α1β̂ ) + 1

2α2β̂

(α̂2 − α2β̂ ) + (α̂1 − α1β̂ )2

]
,

(v)

TLG(A) = nγ2α̂

[
γ̂1

γ1α̂
− 1

]
,

(vi)

TGL(A) = n

[
α̂2

α2γ̂
− 1

]
,

(vii)

TGW (A) =
{

n∑

i=1

[
yi

β1γ̂

]β2γ̂

− n

}
,

(viii)

TWG(A) = n

{
(β̂2 − γ2β̂ )

[
ψ(γ̂2) − ln

(
γ̂2

γ̂1

)
− ψ(γ2β̂ )

]}

+n

{
(β̂2 − γ2β̂ )

[
ln

(
γ2β̂

γ1β̂

)
+ (γ̂2 − γ2β̂ )

]}
.
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Example 2.8 (Example 2.5 cont.) Consider again the hypotheses H f : y = Xα+u f ,
where u f ∼ N (0, σ 2

f In), and Hg : y = Zβ + ug , where ug ∼ N (0, σ 2
g In). An

exponential compound model that includes these two models, after integration and
simplification, becomes

Hλ : y =
{
λσ 2

σ 2
f

}
yα +

{
(1 − λ)σ 2

σ 2
g

}
zβ + u

= ξ xα + (1 − ξ)zβ + u
= xγ1 + zγ2 + u,

(2.34)

where u ∼ N (0, σ 2 I ) and σ 2 = σ 2
f σ

2
g

{λσ 2
g +(1−λ)σ 2

f } .
Now, let us return our attention to the problem of testing Hf against Hg by testing

λ = 1.
Because γ1 and γ2 are estimable, we can choose between themodels by examining

their t-statistics, but we cannot identify (λ, α, β, σ 2
f , σ

2
g ) separately.

Alternatively, the Rao score statistic can be applied as in (2.29) to overcome
the difficulty of the nonexistence of β under Hf . During the 1980s, econometricians
developed a number of practical alternatives by replacing the parameterβ of the alter-
native hypothesis in (2.34) with some reasonable estimator, such as β̂, the maximum
likelihood estimator of β under H, or βα̂ , a consistent estimate of the probability limit
of β̂ defined in (2.22). In these cases, the resulting equations respectively become

y = ξ xα + (1 − ξ)zβ̂ + u,

y = ξ xα + (1 − ξ)zβα̂ + u.
(2.35)

The t-tests thus obtained are called the J test of Davidson and MacKinnon (1981,
1982) and the JA test of Fisher and McAleer (1981), respectively.

Alternative estimates for nonlinear extensions are discussed further in Pesaran
(1982), Fisher (1983) and McAleer (1995).

Extensions to simultaneous equations are presented in Pesaran (1982) and David-
son and MacKinnon (1983), with divergent results related to their applicability.
Pesaran suggests that only the Cox test can be extended to the multivariate case
without unreasonable assumptions.

McAleer (1995) also presents a classificatory review of the empirical nonnested
models and tests described in this example.

Example 2.9 (Quandt 1974) Three procedures were considered for testing alterna-
tive econometric equations: Pesaran’s procedure developed for the Cox test (Pesaran
1974), Cox’s exponential compound procedure (Atkinson 1970), and Cox’s linear
compound procedure (Quandt 1974). The hypotheses specified were

Hf : yt = α1 + α2yt−1 + α3Mt−1 + α3Nt + ut , ut ∼ N (0, σ 2
u ),

Hg : yt = β1 pt + β2yt−1 + β3Mt−1 + β4Nt + vt , vt ∼ N (0, σ 2
v ),

(2.36)
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Table 2.4 Test procedures

Test results Decision

Linear compound λ̂ = 800 σ̂λ = 0.088 Reject both

−2 × likelihood ratio −2RL f = 23.18 −2RLg = 13.32 Reject both

Cox C f g = 0.106 Cg f = −1.077 Accept both

Exponential compound t f = 1.035 tg = 0.107 Accept both

where yt is the per capita disposable income, Mt is the total per capita deposit and the
currency outside of banks, It is the gross per capita investment, Gt is the per capita
government expenditure on goods and services, pt is the cost of living index, Tt is
the per capita GNP minus yt , and Nt = (It + Gt − Tt ). Quandt (1974) applied his
procedure using data available in the literature. The results are presented in Table 2.4.
They suggest that the consumption function is a hybrid of the equations expressed
in Hf and Hg .

2.4 Alternative Tests

2.4.1 Test for Multiple Hypotheses

Sawyer (1984) introduced a statistic to test a currently held set of hypotheses against
a series of M alternatives. This test avoids the problems that arise when several
hypotheses are under consideration and binary comparisons of them are made, that
is, comparisons of two hypotheses at a time.

Without loss of generality, we consider only three hypotheses: Hf , Hg , and Hh .
The test relies on the results of the Cox test. Suppose that the null hypothesis is Hf ,
and consider the vector of Cox test statistics:

T ′
f = (T f g, T f h). (2.37)

T f is asymptotically normally distributed as a bivariate (M-1=2) normal distribution
with a vector mean of zero and a covariance of

∑ = σi j , j = g, h, given by

σi j = Cov f (T f g, T f h) − Cov f

(
z
∂� f (α)

∂α

)′
I−1(α)Cov

(
z
∂� f (α)

∂α

)
, (2.38)

as obtained using expression (2.5).
The multiple test for testing Hf against the separate alternatives Hg and Hh is

T ′
f

(∑)−1
T f , (2.39)
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which is asymptotically distributed as a χ2
2 (χ2

M−1) random variable. Values that
exceed the critical value indicate the rejection of Hf . The maximum likelihood
estimators of α provide consistent estimator of

∑
.

Sawyer showed that this test is equivalent to theRao score (or Lagrangemultiplier)
test for λ f = 1 and λg = λh = 0 in the exponential mixture model:

f (y, α, β, γ ) = k(α, β, γ ) f λ f (y, α)gλg (y, β)hλh (y, γ ), (2.40)

where λ′
i ≥ 0 and λ f + λg + λh = 1. With �λ denoting the log-likelihood for this

model and λ′ = (λg, λh), the resulting test statistic is

(
∂lλ
∂λ

)′
I ′′(λ)

(
∂lλ
∂λ

)

evaluated at λ = 0. I ′′(λ) is the sub-matrix corresponding to λ in the information
matrix corresponding to the model in (2.40).

Example 2.10 (Sawyer 1984) Consider the hypotheses

Hf : f (y, β) = β−1 exp
(
− y

β

)
,

Hg : g(y, α1, α2) = y−1(2πα)− 1
2 exp

{
− (log y−α1)

2

2α2

}
,

Hh : h(y, p, γ ) = y−1
(

y
γ

)p
exp

(
− y

γ

)
, p 	= 1 known.

(2.41)

The terms required for the test statistic are obtained from Cox (1961, p. 117)

T f g = (α̂1 − α1β̂ ) + 1
2 log

(
α̂

ψ ′(1)

)
,

T f h = −(p − 1)(γ̂ − γβ̂),

σgg = VE (TEL) = 0.2833
n ,

σhh = VE
(
TEGp

) = (p − 1)2 (ψ ′(1)−1)
n = (p−1)20.6449

n ,

σgh = CE (T f g, T f h) = (p − 1)

{
1−ψ ′(1)− ψ ′′(1)

2ψ ′(1)
}

n

= (p−1)0.0858
n .

(2.42)

The test statistic is

T f = (
T f g T f h

)
⎛

⎝
σgg σgh

σgh σhh

⎞

⎠
−1⎛

⎝
T f g

T f h

⎞

⎠ . (2.43)

For regression models, Davidson andMacKinnon (1981) recommend the use of the J
test (and its alternatives) to test for the true hypothesis against several alternatives at
once. To test H1 (y = xα +u f ) against (M −1) alternative models (y = z jβ j + vg j )
using the J test, one simply estimates
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y =
⎛

⎝1 −
M∑

j=1, j 	=m

⎞

⎠ xα +
M−1∑

j=1

γ j z j β̂ j + v (2.44)

and performs a likelihood ratio test of the requirement that all γ j ( j 	= m) are zero.
Hagemann (2012) used (2.44) to test the validity of a model m in the presence of

several alternatives by means of a Wald test Jm for Hm : γ j = 0, j = 1, . . . , M, j 	=
m. He then argued that “if one of the models under consideration is the correct
model, then its Jm statistic has a χ2

M−1 distribution and the statistics of the other
models diverge; if, instead, the correct model is not among the M models, then all
statistics will diverge. Thus, only the model with the smallest J statistic can possibly
be the correctmodel andwe reject the hypothesis that the correctmodel is one of those
M considered when the smallest J statistic is large.” This motivates the following
alternative MJ test to traditional sequential testing:

1. For each m (m = 1, . . . , M), perform regression (2.44) and compute Jm ; define

MJ = min{Jm,m = 1, . . . , M}. (2.45)

2. Reject all models m (m = 1, . . . , M) if MJ > χ1−α,M−1, where χ1−α,M−1 is the
1 − α quantile of the χ2

M−1 distribution.

Hagemann (2012) not only proved these results but also noted that they can be
extended to nonlinear models and models with heteroscedastic and autocorrelated
errors. Additionally, the related tests (JA, Cox, Atkinson, etc.) can be extended in an
analogous manner.

Example 2.11 (Cribari-Neto and Lucena 2015) These authors extended the results
of Hagemann to beta regression with alternative nonlinear forms of the regressors.

The beta regression of Ferrari and Cribari-Neto (2004) considers a beta density:

h(y, μ, φ) = Γ (φ)

Γ (μφ)Γ ((1 − μ)φ)
yμφ−1(1 − y)(1−μ)φ−1, (2.46)

where y ∈ (0, 1), μ ∈ (0, 1) and φ > 0. Thus, E(y) = μ and Var(y) = μ(1 −
μ)
/
(1 + φ).
For a sample of independent beta variables with mean μt and precision φ, the

beta regression considers a linear predictor ηt that is related to the mean μt through
a link function

g(μt ) = ηt =
k∑

i=1

xtiβi = xtβ, (2.47)

where β is a vector of unknown parameters and xt is a vector of observations on k
regressors.

Cribari-Neto and Lucena (2015) considered five nonnested models with different
link functions in the submodels of the mean, namely, logit, probit, log-log, com-
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plementary log-log and Cauchy functions, and with a varying precision parameter
φt .

The data used (32 observations) considered the yield, namely, the proportion of
crude oil converted into gasoline after distillation and fractionation, as the variable
of interest. Two explanatory variables were used:

• temp: X10—the temperature in degrees Fahrenheit at which all of the gasoline
vaporized, and

• batch: (X1, . . . , X9)—a factor indicating ten different batches of conditions con-
sidered in the experiment.

The models were as follows:

m1 : log
(

μt

1 − μt

)
= η1(Xtβ), log(φt ) = γ0 + γ1Xt,10,

m2 :Φ−1(μt ) = η2(Xtβ), φt = φ,

m3 : − log {− log(μt )} = η3(Xtβ), φt = φ, (2.48)

m4 : − log {− log(1 − μt )} = η4(Xtβ), log(φt ) = γ0 + γ1Xt,10,

m5 : tan{φt (μt − 0.5)} = η5(Xtβ), log(φt ) = γ0 + γ1Xt,10,

where L(Xtβ) = β0 +
10∑

j=1

β j Xt j .

The J and MJ tests and the likelihood ratio and Wald tests were performed. The J
test p-values for each pair of nonnested models are reported in Table2.5.

The MJ p-values were 0.0094 and 0.0023 (LR and Wald statistics, respectively).
Therefore, the authors concluded that the correct model was among the candidate
models. Because the smallest J statistic was that of the log-log model, this model
was selected.

The authors also confirmed this choice using other statistics and criteria and also
presented Monte Carlo simulations of these tests and their bootstrap versions.

2.4.2 Test Based on Nondirectional Divergence

Consider the directed divergence known as the Kullback–Leibler information crite-
rion (KLIC):

Iα( f, g) = ∫ {
� f (α) − �g(β)

}
f (y, α)dy = 1

n Eα

{
� f (α) − �g(β)

}

and
Iβ(g, f ) = ∫ {

�g(β) − � f (α)
}
g(y, β)dy = 1

n Eβ

{
�g(β) − � f (α)

}
.

(2.49)

A nondirectional divergence between Hf and Hg is given by
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Table 2.5 J test p-values obtained using the LR and Wald statistics for the five competing models

Model LR Wald

Logit versus probit 1.715 × 10−5 2.637 × 10−8

Logit versus log-log 1.828 × 10−5 2.657 × 10−8

Logit versus compl. log-log 0.0004 1.667 × 10−5

Logit versus Cauchit 0.0023 0.0003

Probit versus logit 0.0016 0.0007

Probit versus log-log 0.0040 0.0001

Probit versus compl. log-log 0.0026 0.0013

Probit versus Cauchit 0.0089 0.0061

Log-log versus logit 0.4869 0.4863

Log-log versus probit 0.2634 0.2596

Log-log versus compl. log-log 0.5505 0.5501

Log-log versus Cauchit 0.7583 0.7584

Compl. log-log versus logit 1.629 × 10−5 8.207 × 10−9

Compl. log-log versus probit 8.581 × 10−7 3.25 × 10−12

Compl. log-log versuslog-log 1.496 × 10−6 9.013 × 10−12

Compl. log-log versusCauchit 0.0030 6.319 × 10−6

Cauchit versus logit 5.4 × 10−8 2.028 × 10−12

Cauchit versus probit 6.01 × 10−9 2.527 × 10−15

Cauchit versus log-log 1.6 × 10−10 <2.2 × 10−16

Cauchit versus compl. log-log 2.193 × 10−7 6.624 × 10−11

J ( f, g) = ∫ { f (y, α) − g(y, β)} ln f (y,α)

g(y,β)
dy

= Iα( f, g) − Iβ(g, f ).
(2.50)

This can be estimated by

Ĵ ( f, g) = Îα̂( f, g) + Îβ̂ (g, f )

= 1
n

[
Eα̂

{
� f (α̂) − �g(β̂)

}]
+ 1

n

[
Eβ̂

{
�g(β̂) − � f (α̂)

}]

= 1
n

[
p lim
n→∞

{
� f (α̂) − �g(βα̂)

}]

α̂
+ 1

n

[
p lim
n→∞

{
�g(β̂) − � f (αβ̂)

}]

β̂
.

(2.51)
Sawyer (1983) proposed the following asymmetric test statistic for testing two

separate hypotheses, Hf against Hg:

S f (α̂) = Eβ̂

{
� f (α̂) − �g(β̂)

}
− Eα̂

[
Eβ̂

{
� f (α̂) − �g(β̂)

}]

= n
[
Iβ̂ ( f, g) − Eα̂ Iβ̂ ( f, g)

]
. (2.52)

Under Hf , S f (α̂) has a mean of zero, and under Hf , it has a negative mean.
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The analogous statistic

Sg(β̂) = Eα̂

{
�g(β̂) − � f (α̂)

}
− Eβ̂

[
Eα̂

{
�g(β̂) − � f (α̂)

}]

= n
[
Iα̂(g, f ) − Eβ̂ Iα̂(g, f )

]
(2.53)

is used to detect departures from the null hypothesis Hg against the alternative Hf .
Sawyer also showed that

Vα

{
S f (α̂)

} = η′
β

{
Vα(β̂) −

(
∂βα

∂α

)′
I (α)

∂βα

∂α

}
ηβ, (2.54)

where η′
β = Covg

{
∂� f (α)

∂α
, �g f (αβ, β)

}
.

Obtaining the expressions for this test statistic and its variance is a more time-
consuming task than the corresponding procedures for the tests presented in the
previous section. Moreover, the application of this test is not feasible in some cases.
For example, when the null hypothesis Hf : f (y, α) is lognormal and the alternative
Hg: g(y, β) is exponential or Weibull in form, S f (α) = 0 (Rojas et al. 2008. See
also Cox 1961, p. 119).

Example 2.12 (Rojas 2001) Consider the hypothesis testing of Hf (lognormal)
against Hg (gamma) as in (2.12). We have

Eα̂

[
� f (α̂)

] = −n
[
ln(2πψ ′(γ̂2)) − ψ(γ̂2) − ln

(
γ̂1
γ̂2

)
− 1

2

]
,

Eα̂

[
�g(γ̂ )

] = −n
[
ln
(

γ̂1
γ̂2

)
+ lnΓ (γ̂2) − (γ̂2 − 1)

{
ψ ′(γ̂2) − ln

(
γ̂1
γ̂2

)}
,

+γ̂2
]

Eα̂

[
� f (α̂) − �g(γ̂ )

] = −n
[
ln(2πψ ′(γ̂2)) + 1

2 + γ̂2ψ(γ̂2) − γ̂2 − lnΓ (γ̂2)
]
,

(2.55)
and thus,

S f (α̂) = n

2
ln

{
ψ ′(γ2α̂)

ψ ′(γ2)

}
+ n

[
γ2α̂ψ(γ2α̂) − γ̂2ψ(γ̂2)

]

= +n ln

{
Γ (γ̂2)

Γ (γ2α̂)

}
+ n

(
γ̂2 − γ2α̂

)
. (2.56)

When Hg is the null hypothesis and Hg is the alternative, we obtain

Sg(β̂) = n
[
ln
{

Γ (γ2αγ̂ )

Γ (γ2α̂ )

}
+ γ2αγ̂

(
ln γ2αγ̂ + α2γ̂

2

)]

= −γ2α̂

(
ln γ2α̂ + α̂2

2

)
− (γ2αγ̂ − 1)α1γ̂ + (γ2α̂ − 1)α̂1

= +γ2αγ̂ − γ2α̂ + ln
{

α2γ̂

α̂2

}
+ γ1γ̂ − α̂1.

(2.57)
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2.4.3 Test of the Nearest Alternative

Considering the measure of closeness (1.2), the Kullback–Leibler divergence or
information criterion (KLIC) is

I ( f, g) =
∫ {

� f (α) − �g(β)
}
f (y, α)dy.

Under Assumption 2.3,

Eα

[
∂

∂β
�g(βα)

]
= 0.

Thus, it follows that βα minimizes the KLIC.
Let us use a sample y = (y1, . . . , yn), where the yi are iid random variables, to test

the null hypothesis Hf : f (y, α) against the alternative hypothesis Hg : g(y, β), and
let us assume that the parameter vector β has a higher dimension than the parameter α
of the null hypothesis. Shen (1982) proposed the use of the usual likelihood ratio test
of the hypothesis H0 : g(y, βα) against the alternative H1 : g(y, β), where g(y, βα)

is the nearest alternative in g(y, β) that is close to f (y, β).

Example 2.13 (Shen 1982) Consider the hypotheses
Hf : exponential (β) and Hg: lognormal (α1, α2).
From Example 2.1, we have

α1β = ln β + ψ(1), α2β = ψ ′(1).

Under the null hypothesis, the lognormal likelihood function is proportional to

−1

2
logψ ′(1) −

∑
(log yi − logβ − ψ(1))2

2ψ ′(1)

and is maximized by taking β = exp
{
1
n

∑
ln yi − ψ(1)

}
. The likelihood ratio is

therefore

LR =
{
ψ ′(1)

}− n
n exp

{−∑(ln yi−n−1∑ ln yi )2

2ψ ′(1)

}

(α̂2)
− n

2 exp
(− n

2

) . (2.58)

2.4.4 Test Based on the Moment Generating Function

Epps et al. (1982) derived a test for separate families of distributions based on the
empirical generating function M(t) = n−1∑ ety j . They considered μ(t) = E

(
etY
)

and supposed that μ(t) exists and is equal to μ f (t, α). Under Hf : μ f (t, α), we
have

http://dx.doi.org/10.1007/978-3-662-53736-7_1
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Eα {M(t)} = E
{

M(t)
Hf

}
= μ f (t, α),

Vα {M(t)} = n−1
{
μ f (2t, α) − μ2

f (t, α)
}

,
(2.59)

where
{
M(t) − μ f (t, α)

}√
n is asymptotically normal for any t such that 0 <

Vα {M(t)} < ∞. The authors extended this result for the testing of separate families
of distributions when α is estimated using the maximum likelihood approach and by
choosing t so as to maximize the power of the test of the separate families against
the specified alternative Hg : g(y, β).

Under the regularity conditions for maximum likelihood estimation,

Z f (t, α̂) = √
n
M(t) − μ f (t, α̂)

σ f (t, α̂)
(2.60)

converges in distribution to N (0, 1) for any t such that 0 < σ 2
f (t, α) < ∞, where

σ 2
f (t, α) =

{
μ f (2t, α) − μ2

f (t, α) −
(

∂μ f (t, α)

∂α

)′
I (α)

(
∂μ f (t, α)

∂α

)}
. (2.61)

To consider the choice of the critical region and the power of the test, let us assume
that α̂ → αβ under Hg : μg(t, β). Then, under Hg, M(t) − μ f (t, α̂) converges in
probability to μg(t, β) − μ f (t.αβ), and its asymptotic variance is

√
nσ 2

g (t, β) = √
n
{
μg(2t, β) − μ2

g(t, β)

−2
(

∂μ f (t,αβ )

∂α

)′
I (β)

(
Eβ

{
etY ∂ ln f (y,αβ )

∂α

})

−
(
I (β)

∂μ f (t,αβ )

∂α

)′
I (β)Eβ

{(
∂ ln f (y,αβ )

∂α

)′ (
∂ ln f (y,αβ )

∂α

)}}
.

(2.62)

This result is obtained from the results given in (2.8) Cox (1961).
Therefore, under Hg , the test statistic Z f (t, α̂) in (2.60) is asymptotically distrib-

uted as N {k1(t), k2(t)}, where

k1(t) = √
n
μg(t, β) − μ f (t, αβ)

σ f (t, αβ)
, (2.63a)

k2(t) = σg(t, β)

σ 2
f (t, αβ)

. (2.63b)

For a fixed large n, the power is maximized by choosing t to minimize

π(αβ̂, t) = k2(t)
− 1

2
{
z p − |β1(t)|

}
, (2.64)

where z p is the ordinate of the normal variate.
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Example 2.14 (Epps et al. 1982) To test an exponential model versus a lognormal
model, we can equivalently test the hypothesis that X = log Y is log-exponential
(Hf ) against the hypothesis of a normal distribution.

In this case, testing Hf : μ f (t, β) = β tΓ (t + 1) against Hg : μg(t, α1, α2) =
exp

(
α1t + 1

2α2t2
)
implies that the test statistic is

Z f (t, β) = √
n

MX (t) − (Ȳ )tΓ (t + 1)

(Ȳ )t
{
Γ (2t + 1) + (1 + t2)Γ 2(t + 1)

} (−1 < t = 0, 1),

and under Hg , βα = exp
(
α1 + 1

2α2
)
.

σ 2
f (t, βα) = β2t

α

{
Γ (2t + 1) − (1 + t2)Γ 2(t + 1)

}

σ 2
g (t, α) = β2t

α et (t−1)α2
{
exp(t2α2 − 1)

}

= −β2t
α 2tΓ (t + 1)

{
e

1
2 (t+1)tα2 − e

1
2 t (t−1)α2

}

= β2t
α t2Γ 2(t + 1)(eα2 − 1).

(2.65)

For further details and results, see Epps et al. (1982).

2.4.5 Two Further Tests

Here, we briefly discuss several other tests for separate families of hypotheses.
First, the Vuong (1989) procedure for discriminating separate hypotheses Hf and

Hg considers the null hypothesis

H0 : Eα

[
� f (α) − �g(β)

] = 0 (both models are equivalent)
against

Hf : Eα

[
� f (α) − �g(β)

]
> 0 (Hf is superior to Hg)

or
Hg : Eα

[
� f (α) − �g(β)

]
< 0 (Hg is superior to Hf ).

(2.66)

The test statistic proposed by Vuong is

• an unadjusted likelihood ratio statistic

√
n
� f (α̂) − �g(β̂)

v̂n
, (2.67)

where

v̂n =
⎡

⎣1

n

n∑

i=1

{
ln

f (yi , α̂)

g(yi , β̂)

}2
−
{
1

n

n∑

i=1

ln
f (yi , α̂)

g(yi , β̂)

}2
⎤

⎦

1
2

,
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or
• an adjusted likelihood ratio statistic

√
n
[{

� f (α̂) − �g(β̂)
}

− ξ( f, g)
]

(2.68)

with a correction in the denominator v̂n , where ξ( f, g) is a correction factor
that depends on the characteristics of the models, such as their numbers of
parameters. Examples of correction factors include ξ( f, g) = p−q and p−q

2 ln n,
where p and q are the numbers of parameters of f (y, α) and g(y, β), respectively.

Vuong’s hypotheses generalize the discussion of Hottelling (1940) regarding
the hypothesis that two alternative predictors in linear regression are equally effective
(Cox 2013). In the context of separate models, geometric interpretation and further
generalizations of Hottelling’s prediction problem are discussed in Efron (1984).

Smith (1992) proposed another test statistic for nonnested regression
models estimated using the generalized method of moment (GMM). For Y =
(yt , yt−1, . . . , y1, y0), where y0 represents the initial condition of the process, he
considered two hypotheses:

Hf : E f [ f (yt , α)] = 0,
Hg : Eg [g(yt , β)] = 0,

(2.69)

where f (yt , α) and g(yt , β) are k f and kg continuous differentiable vector functions
of the p f and pg vectors of parameters α and β, respectively, such that k f > p f and
kg > pg (here, f and g are not densities).

To test the null hypothesis Hf against the alternative hypothesis Hg , Smith pro-
posed the test statistic below based on some results of GMM estimation (Kent 1986):

Γ̂ − Γ̃ , (2.70)

where Γ̂ is a function of f (yt , α̂) and g(yt , β̂) and Γ̃ is the probability limit of
Γ̂ under the hypothesis Hf . Here, α̂ and β̂ are the GMM estimators of α and β,
respectively, and βα is the probability limit of the GMM estimator β̂ under Hf . The
procedure is a GMM analog of Cox’s MLE procedure.

Simulation results comparing the performance of this test with the Cox test have
been presented by Arkonac and Higgins (1995).

Using the general concept of (2.69), Otsu et al. (2012) proposed a test employing
the generalized empirical likelihood (GEL), which includes the GMM as a special
case. Monte Carlo experiments have also been presented for the test of the logistic
model as the null model against the Gumbel and Burr models.
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2.5 Efficiencies of False Separate Models

2.5.1 Introduction

The consequences of using an incorrect model are investigated in this section. A
recent discussion of Cox’s original paper illustrates the importance of this topic. Cox
(2013) stated,

Mathematically the most fruitful part of the paper is a side issue: the study of the distribution
of a maximum likelihood estimate when the model fitted and the data-generating model are
not the same. What is now called the sandwich formula arises in a number of quite different
contexts.

The participants in that discussion emphasized the relation between these ideas and
later developments such as robustness, misspecification and encompassing.

The results of Kent (1982) concerning the use of a false model in the Holy Trinity
of tests—the likelihood ratio (Wilks 1938), Wald (1943) and Rao (1947) tests—are
very important. Kent’s results can also possibly be extended to the asymptotically
equivalent test of Terrel (2002). It is remarkable that Terrel’s simple equivalent test
was developed only recently.

2.5.2 Efficiency of a false regression model

In this discussion, we are interested only in the regression coefficients and the proper-
ties of their estimators. For the models treated in Example 2.3 and the corresponding
probability limits, the estimators of the m regression coefficients are asymptotically
consistent, independent of distributional assumptions. Therefore, the asymptotic vari-
ances are of primary interest for the comparison of the estimators obtained from
alternative models.

Suppose that the true hypothesis is Hf , that the model specified by Hg is used,
and that α∗ and β∗ are the components of α and β, respectively, that correspond to
m > 1 regression coefficients.

The efficiency of a false model is measured in terms of the ratio of determinants,

effα(β̂∗) = |Vα(α̂∗)|1/m
|Vα(β̂∗)|1/m (m ≥ 1), (2.71)

and provides insight into the results obtained using that false model.
It is also useful to find the element that corresponds to

V ∗
α

(
β∗) = n−1p lim

f

[
n
{
Eβ(Gβ∗′

β∗)
}−1
]

β=β̂
, (2.72)
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the probability limit under Hf of the false estimator for the covariance matrix of β̂∗,
which is used when it is not known that the model is wrong.

Finally, we note a general simplification of our models that is brought about by
the parameterization (2.19) of the zi . With the notation of Example 2.3, it can easily
be shown (Cox and Hinkley 1968) that for log-linear models, the matrices

Eα

(
∂ ln f (y,α)

∂α

)
, Eα

(
∂2 ln g(y,βα)

∂β ′∂β

)
and Eα

(
∂ ln g(y,β)

∂β

∂ ln g(y,β)

∂β

)

all take the general form [
A 0
0 B

]
.

The submatrices A are square matrices of the expected values of the derivatives
corresponding to the general mean and the shape or scale of log yi . The submatrices
B arematrices corresponding to the regression coefficients, which can obtained using
the results outlined in Appendix A and in Example 2.3 Consequently, it is necessary
only to determine these submatrices in order to evaluate (2.71) and (2.72).

(i) Lognormal regression model

Suppose that the true model is HL . The asymptotic covariance matrix of â is
then VL(â) ∼ (Z ′Z)−1α2. The consequences of using other models are dis-
cussed below.

If the Weibull regression model is falsely assumed, then we have

EL(�W,b′b) = −Z ′Z/α2, EL(�W,b�W,b) = Z ′Z(e − 1)/α2;

thus, (2.71) and (2.72) imply that

V ∗
L (b̂) ∼ (Z ′Z)−1α2, VL(b̂) ∼ (Z ′Z)−1(e − 1)α2,

and effL(b̂) = (e − 1)−1 = 0.58. Thus, VL(b̂ j ) is 72% higher than its stated
estimate V ∗

L (b̂ j ).

If the gamma regression model is falsely assumed, then we have

EL(�G,c′c) = −Z ′Zγ 2L , EL(�G,c�G,c′) = Z ′Z (eα2 − 1) γ 2
2L;

therefore, V ∗
L (ĉ) ∼ (Z ′Z)−1γ −1

2L , VL(ĉ) ∼ (Z ′Z)−1 (eα2 − 1), and effL(ĉ) =
α2/ (eα2 − 1).
The efficiency rapidly decreases as α2 increases. Thus, for α2 = 0.2, 1.0, and
2.0, the efficiencies are 0.9, 0.58, and 0.27, respectively. Furthermore, effL(ĉ)
approaches 1 as α2 → 0. This is because as α2 tends to zero, the lognormal
distribution approaches a normal distribution. For a normal distribution with
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mean exp(zα), the maximum likelihood equation for α is the same as that for
the gamma regression model.

(ii) Weibull regression model

Suppose that the true model is HW . The asymptotic covariance matrix of b̂ is
VW (b̂) ∼ (Z ′Z)−1/β2

2 .

If the lognormal regression model is falsely assumed, then we have

EW (�L ,a′a) = −Z ′Zβ2
2/ψ

′(1), EW (�L ,a�L ,a′) = Z ′Zβ2
2/ψ

′(1);

therefore,

V ∗
W (â) ∼ (Z ′Z)−1ψ ′(1)/β2

2 , VW (â) ∼ (Z ′Z)−1ψ ′(1)/β2
2 ,

and effW (â) = ψ ′(1)−1 = 0.61, where ψ(x) = d logΓ (x)/dx . Here, V ∗
W (â)

shows that a correct estimate of the variance of â j , the least squares estimator
of b j , is stated.

If the gamma regression model is falsely assumed, then we have EW (�G,c′c)
′ =

−Z ′Zγ2W and EW (�G,c�G,c′) = Z ′Zγ 2
2Wη2; therefore, V ∗

W (ĉ) ∼ (Z ′Z)−1/γ2W ,
VW (ĉ) ∼ (Z ′Z)−1η2, and

effW (ĉ) = (β2η)−2,

where η2 = Γ (2β−1
2 + 1)/Γ 2(β−1

2 + 1) − 1 is the square of the coefficient
of variation of a Weibull distribution with shape parameter β2. Table2.6 lists
the efficiency and other values of interest. The efficiency is high for β2 near 1,
as expected, and it decreases for β2 far from 1. These results for γ2W , η2 and
V ∗
W (ĉ) suggest that an underestimate or an overestimate of VW (ĉ) is obtained

when β2 < 1 or when β2 > 1, respectively.
(iii) Gamma regression model

Suppose that the true model is HG . Then, the asymptotic covariance matrix of
ĉ is VG(ĉ) ∼ (Z ′Z)−1/γ2.

If the lognormal regression model is falsely assumed, then we have

EG(�L ,a′a) = −Z ′Z/ψ ′(γ2), EG(�L ,a�L ,a′) = Z ′Z/ψ ′(γ2);

therefore, V ∗
G(â) ∼ (Z ′Z)−1ψ ′(γ2), VG(â) ∼ (Z ′Z)−1ψ ′(γ2), and

effG(â) = {
γ2ψ

′(γ2)
}−1

.
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Table 2.6 Efficiency of the gamma regression model when Hw is true

β2 0.4 0.6 0.8 1.2 2.0 5.0

γ2W 0.266 0.468 0.712 1.333 3.131 16.612

η2 9.865 3.091 1.589 0.699 0.273 0.052

eff 0.63 0.90 0.98 0.99 0.92 0.76

The efficiency approaches 1 as γ2 increases. This is because as γ2 increases, the
gamma distribution approaches a lognormal distribution. When γ2 decreases to
zero, the efficiency also tends to zero. For further values, see Cox and Hinkley
(1968). In this situation, V ∗

G(â) shows that a correct estimate of the variance of
â j , the least squares estimator of c j , is stated.

If the Weibull regression model is falsely assumed, then we have

EG(�W,b′b) = −Z ′Zβ2
2G, EG(�W,b�W,b′) = Z ′Zβ2

2Gη2;

therefore, V ∗
G ∼ (Z ′Z)−1/β2

2G , VG(ĉ) ∼ (Z ′Z)−1(η/β2G)2, and

effW (b̂) = (β2G/η)2/γ2,

where η2 = Γ (2β2G + γ2)Γ (γ2)/Γ
2(β2G + γ2) − 1

is the square of the coefficient of variation of V β2G , where V is a gamma distri-
bution with shape parameter γ2.

Table2.7 presents the efficiency and other values of interest. As expected, the
efficiency is high for γ2 near 1 and decreases for γ2 far from 1. These results for
η2 and V ∗

G(b̂) suggest that VG(b̂) is overestimated if γ2 < 1 and underestimated
if γ2 > 1.

(iv) Special case: Exponential regression model
The results for the exponential regression model can be inferred from the pre-
vious results. It is easy to see that the maximum likelihood estimators for the
parameters of the exponential regression model are the same as those for the
gamma regression model given γ2. Therefore, when the exponential regression
model is a falsemodel, the results are the same as those for the gamma regression
model, omitting the shape factor γ2. When the exponential regression model is
the true model, the results can be obtained from those presented for the gamma
and Weibull models with β2 = γ2 = 1.
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Table 2.7 Efficiency of the Weibull regression when HG is true

β2 0.4 0.6 0.8 1.2 2.0 5.0

γ2G 0.534 0.718 0.870 1.115 1.482 2.370

η2 0.807 0.892 0.951 1.039 1.142 1.304

eff 0.89 0.96 0.99 0.997 0.96 0.86

2.6 Properties and Comparisons

2.6.1 Asymptotic Power

When studying the asymptotic power function of consistent tests, the type I error is
held fixed but the alternative hypothesis is allowed to approach the null hypothesis.
When the hypotheses are nested (say Hf is nested within Hg), there is no difficulty.
Pesaran (1984) also used this approach for the case in which the hypotheses Hf and
Hg are partially nonnested.

In the case of nonnested hypotheses, however, this approach is not possible by def-
inition, and an alternative method proposed by Pesaran (1984) is to use the Bahadur
approach, in which the alternative hypothesis fixed is held fixed but the type I error
is allowed to tend to zero as the sample size increases. The significance levels of the
tests for a fixed power are compared against a specific alternative.

Let α̂n denote the asymptotic significance level of a test. Bahadur calls the quantity

lim
n→∞

(
−2

n
ln α̂n

)
(2.73)

the asymptotic or “approximate slope” of the test, and a test is considered asymptot-
ically efficient relative to another if its approximate slope is greater.

Pesaran (1984) extended Bahadur’s result to the case of separate hypotheses. He
established that if a test statistic Z2 asymptotically possesses a centralχ2

(n) distribution
under the null hypothesis Hf , then

lim
n→∞

(
−2

n
ln α̂n

)
= p lim

n→∞
{
n−1Z2|Hg

}
. (2.74)

Example 2.15 (Pesaran 1984) Consider a test of the null hypothesis HE against the
alternative HL . Using expression (2.9) from Example 2.1 and item (i) from Example
2.7, Cox’s and Atkinson’s test statistics under HL are, respectively,

ZLE (C) =
√
n
(
ln β̂−α̂1−α̂2/2

)

√
eα̂2−1−α̂2− 1

2 α̂2
2

,

ZLE (A) =
√
n[α̂1 exp(−α̂1−α̂2)−1]√

eα̂2−1−α̂2− 1
2 α̂2

2

.
(2.75)
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Meanwhile, under the alternative HE ,
α1

p−→ ψ(1)+ln β,α2
p−→ ψ ′(1) and β̂ → β (ψ(1) = −0.5772, ψ ′(1) = 1.6449).

Upon substituting these results into expression (2.74), the slope of the Cox test is
0.0509 and that of the Atkinson test is 0.040, which implies that the Cox test is 27%
(0.0509/0.040) more asymptotically efficient than the Atkinson test.

Suppose that the roles of HL and HE are reversed, that is, HE is the null hypothesis
and HL is the alternative hypothesis; then, using Eq. (2.10) from Example 2.1 and
item (ii) from Example 2.6, Cox’s and Atkinson’s test statistics are, respectively,

ZEL(C) = (
n

0.2834

) 1
2

{
α̂1 − ψ(1) + ln β̂ + 1

2 ln α̂2 − 1
2 lnψ ′(1)

}
,

ZEL(A) = (
n

0.2834

) 1
2
{
α̂1 − ψ(1) − ln β̂

+ 1
2ψ

′(1)
[
α̂2 − ψ ′(1) + (α̂1 − ψ(1) − ln β̂)2

] }
.

(2.76)

Under HL , β̂
p−→ exp

{
α1 + α2

2

}
, α̂1

p−→ α1, and α̂ → α2.
Substituting these results into (2.74), we obtain the following as n → ∞:

p lim
(
n−1Z2

EL(C |HL)
) = 0.882(α2 − ln α2 − 0.6567)2,

p lim
(
n−1Z2

EL(A|HL)
) = (0.1427α2

2 − 0.6978α2 + 0.3352)2.
(2.77)

The Bahadur asymptotic efficiency of the two tests varies with the parameter α2.
The Cox test is always more efficient than the Atkinson test, because the Atkinson
test is only consistent for values of α2 inside the interval (0.5401, 4.3484), as shown
in Pereira (1977b). Note that (Pesaran 1984) statement that the Atkinson test is
inconsistent only for values of β = 0.54 and β = 4.35 is incorrect.

Now, we will obtain the power results for Shen’s test presented in Sect. 2.4.4.
To calculate the approximate slope of the test, namely, the limit of (2.58) under
Hg: lognormal, we note that as α̂1 → α1 and α̂2 → α2 from (2.74), we obtain the
expression

lim
n→∞

1

n

[
α2

ψ ′(1)
exp

{
ψ ′(1) − α2

ψ ′(1)

}] n
2

= 0. (2.78)

For α2 ≥ 0, the expression inside the brackets is always less than 1. Therefore, the
Cox test is also more efficient in this case.

2.6.2 Monte Carlo Comparison and Behavior

Empirical results regarding a comparison of the Cox and Atkinson tests and the
adequacy of asymptotic results for finite samples are discussed in this section. A
general pattern observed in the simulation results is described. Only simulations
of the lognormal and Weibull distributions are presented because the maximum
likelihood ratio is independent of the parameters in these cases.
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Table 2.8 Null distributions of TLW (C) and TLW (A)

n TLW (·) μ1{TLW (·)|HL } μ2{TLW (·)|HL } γ1{TLW (·)|HL } β2{TLW (·)|HL }
20 C −0.261 0.502 0.090 3.387

A −0.118 0.503 1.665 8.366

50 C −0.232 0.686 0.167 3.131

A −0.103 0.723 1.433 8.033

100 C −0.198 0.758 0.329 3.197

A −0.092 0.818 1.186 5.602

150 C −0.163 0.789 0.298 2.867

A −0.072 0.832 0.880 4.000

200 C −0.142 0.805 0.355 3.368

A −0.058 0.882 1.088 5.511

Results from 1000 trials

Table 2.9 Distributions of TLW (C) and TLW (A) under the alternative HW

n TLW (·) μ1{TLW (·)|HW } μ2{TLW (·)|HW } γ1{TLW (·)|HW } β2{TLW (·)|HW }
20 C −1.387 0.720 −0.492 3.459

A −0.913 0.215 0.510 3.776

50 C −2.419 1.003 −0.562 3.950

A −1.638 0.266 0.155 3.519

100 C −3.584 1.148 −0.371 3.406

A −2.445 0.297 0.126 3.502

150 C −4.436 1.256 −0.283 3.391

A −3.038 0.324 −0.116 3.415

200 C −5.119 1.257 0.395 3.344

A −3.522 0.323 0.099 3.162

Results from 1000 trials

The results of Pereira (1981a) are presented in Tables 2.8, 2.9, 2.10, 2.11, 2.12,
2.13, 2.14 and 2.15. It can be seen from these results that the Atkinson test statistic
approaches its asymptotic mean and variance faster than does the Cox test statistic,
whereas the reverse occurs for the third and fourth moments.

The samepatternwasobservedby (Pereira 1976, 1977a, 1981a) for tests involving
pairwise comparisons of the lognormal, gamma, Weibull and exponential distribu-
tions. In fact, this is a general result, which will be discussed in the next section.

Our simulation results agree with those of Jackson (1968) and Jackson (1969).
Some pioneering simulations related to these previous works are those of Dumon-

ceaux and Antle (1973), and Dumonceaux et al. (1973a).
Rojas (2001) presented several short simulations to check the approach to the

asymptotic distribution of the test presented in Sect. 2.4.3 and also to check the
probability of correct selection using Lindsey’s procedure presented in Sect. 4.2.

Additional simulation results can be found in Pereira (2005, 2010) and the refer-
ences therein.

http://dx.doi.org/10.1007/978-3-662-53736-7_4
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Table 2.10 Null distributions of TWL (C) and TWL (A)

n TWL (·) μ1{TWL (·)|HW } μ2{TWL (·)|HW } γ1{TWL (·)|HW } β2{TWL (·)|HW }
20 C −0.224 0.555 0.492 3.459

A −0.084 0.665 1.777 7.723

50 C −0.094 0.918 0.512 3.480

A −0.043 0.089 1.406 6.059

100 C −0.078 0.884 0.371 3.406

A 0.011 0.957 0.984 4.481

150 C −0.055 0.967 0.283 3.391

A 0.023 1.018 0.824 4.335

200 C −0.067 0.968 0.395 3.344

A −0.001 1.016 0.815 4.111

Results from 1000 trials

Table 2.11 Distributions of TWL (C) and TWL (A) under the alternative HL

n TWL (·) μ1{TWL (·)|HL } μ2{TWL (·)|HL } γ1{TWL (·)|HL } β2{TWL (·)|HL }
20 C −1.213 0.387 −0.090 3.387

A −0.858 0.122 1.380 6.072

50 C −2.076 0.528 −0.167 3.131

A −1.451 0.118 0.857 3.625

100 C −3.050 0.584 −0.329 3.197

A −2.120 0.104 0.581 3.379

150 C −3.806 0.608 −0.298 2.867

A −2.631 0.098 0.407 3.027

200 C −4.433 0.670 0.546 4.164

A −3.049 0.097 0.470 3.137

Results from 1000 trials

Table 2.12 Null: lognormal; alternative:Weibull. Tests: TLW (C) and TLW (A). Power at t = −1.64
and t = −1.28

n TLW (·) Power function

SL = 0.05 SL = 0.10

20 C 0.344 0.506

A 0.045 0.217

50 C 0.771 0.887

A 0.511 0.756

100 C 0.974 0.986

A 0.940 0.977

150 C 0.994 0.997

A 0.989 0.996

200 C 1.000 1.000

A 1.000 1.000

Results from 1000 trials
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Table 2.13 Null: lognormal; alternative: Weibull. Tests: TLW (C) and TLW (A). One-sided signifi-
cance levels at t = −1.64 and t = −1.28

n TLW (·) Significance level

SL = 0.05 SL = 0.10

20 C 0.022 0.071

A 0.000 0.010

50 C 0.043 0.106

A 0.001 0.042

100 C 0.040 0.093

A 0.008 0.051

150 C 0.032 0.096

A 0.009 0.053

200 C 0.041 0.101

A 0.016 0.067

Results from 1000 trials

Table 2.14 Null:Weibull; alternative: lognormal. Tests: TWL (C) and TWL (A). Power at t = −1.64
and t = −1.28

n TWL (·) Power function

SL = 0.05 SL = 0.10

20 C 0.231 0.447

A 0.000 0.057

50 C 0.738 0.860

A 0.330 0.751

100 C 0.973 0.996

A 0.925 0.986

150 C 0.999 1.000

A 0.996 1.000

200 C 1.000 1.000

A 1.000 1.000

Results from 1000 trials

2.6.3 Test Consistency and Finite-Sample Results

A test of a hypothesis Hf against a class of alternatives Hg is said to be consistent
if, when any member of Hg holds, the probability of rejecting Hf tends to one as the
sample size tends to infinity.

As mentioned in Sect. 2.6.1, the Atkinson test statistic T f g is not consistent when
Hf is the exponential distribution and is tested against Hg , the lognormal distribu-
tion. Pereira (1977a) has shown that whereas the Cox test is always consistent, the
Atkinson test may be inconsistent and therefore should be used only after verify-
ing its consistency under the alternative hypothesis of interest. Fisher and McAleer
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Table 2.15 Null: Weibull; alternative: lognormal. Tests: TWL (C) and TWL (A). One-sided signifi-
cance levels at t = −1.64 and t = −1.28

n TWL (·) Significance Level

SL = 0.05 SL = 0.10

20 C 0.016 0.062

A 0.000 0.000

50 C 0.023 0.078

A 0.003 0.025

100 C 0.034 0.084

A 0.015 0.047

150 C 0.045 0.087

A 0.020 0.060

200 C 0.043 0.103

A 0.020 0.076

Results from 1000 trials

(1981) have shown that for the testing of alternative regression models, the Atkinson
test is consistent.

The small sample studies mentioned in Sect. 2.6.2 indicate a regular pattern in the
comparison of the Cox and Atkinson tests.

To consider the behavior of the lower moments, the test statistics can be written
as follows:

T f (C) = � f (α̂) − �g(β̂) − Eα̂

{
� f (α̂) − �g(βα̂)

}
,

T f (A) = � f (α̂) − �g(βα̂) − Eα̂

{
� f (α̂) − �g(βα̂)

}
.

(2.79)

As noted by Atkinson (1970, p. 335), when α is estimated, both statistics will be
biased, but T f g(A) will be less biased. It thus follows that in the Cox and Atkinson
tests, it is expected that the asymptotic variance will be approached more rapidly
for T f g(A) than for T f g(C) because in theory, the variance is calculated as if both
statistics are unbiased.

Let us now consider the approach to normality of the distributions of T f g(C) and
T f g(A). This behavior is related to the third- and fourth-order central moments. The
test statistics can also be written as

T f g(C) = � f (α̂) − �g(β̂) − Eα̂

{
� f (α) − �g(βα)

}
,

T f g(A) = � f (α̂) − �g(βα̂) − Eα̂

{
� f (α) − �g(βα)

}
,

(2.80)

where � f (α) = log L f (α, y), �g(β) = log Lg(β, y) and Eα denotes the expectation
value under Hf . The statistics given in (2.80) can be approximated by expanding
Eα̂

{
� f (α)

}
and Eα̂

{
�g(β)

}
around α, � f (α) around α̂ and �g(βα) around β̂, and βα̂

to obtain
T f g(C) = T f g +Un,

T f (A) = T f g +Un + (βα − βα̂)
∂�g(β)

∂β
,

(2.81)
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where T f g (Cox 1962, Eq. (2.80)) is the sum of the deviations of log f (yi , α) −
log g(yi , βα) from its regression on ∂ log f (yi , α)/∂α and is of order

√
n in proba-

bility, whereas the other terms are of order one in probability.
T f g is a sum of iid random variables of zero mean, and therefore, a generally

strong central limit effect can be expected to apply, unless, of course, the individual
components have amarkedly badly behaveddistribution. The properties ofUn depend
on the particular application, but Un will often approach its limiting form quite
rapidly. In any case, it affects both T f g(A) and T f g(C). The last term of T f g(A) in
(2.81), at least in some applications, may follow a markedly non-normal distribution
in samples of moderate size, and it is the poor behavior of this term that accounts for
the slower convergence of the distribution of T f g(A). In particular, for some of the
distributions investigated by Pereira (1976, 1977a, 1978), ∂�g(βα̂) requires a large
sample size to become relatively small.

Under the null hypothesis, the C statistics should be preferable in terms of skew-
ness and kurtosis. Therefore, from a practical point of view, the C statistics are gen-
erally recommended because corrections for lower order moments are considerably
more easily obtained.

Example 2.16 (Pereira 1976, 1978) For the test presented in Sect. 2.6.2 of the log-
normal distribution against the Weibull distribution, the term

(βα − βα̂)
∂�g(β)

∂β
, (2.82)

which differentiates the Atkinson test from the Cox test, takes a different form for
each test as follows:

(i) For TLW (A), one of the terms in expression (2.82) is

∂

∂β1
�W (β1α̂, β2α̂) = β2α̂

β1α̂

n∑

i=1

{(
yi

β
β2α̂

1α̂

)
− 1

}
. (2.83)

From the properties of the lognormal distribution, y
β2α̂
i

β
β2α̂
1α̂

has a lognormal distribu-

tion with α1 = −1/2 and α2 = 1. Therefore, when α2 is large, the sample mean
is an inefficient estimator of the mean of the lognormal distribution because a
large sample size is required to make (2.83) negligible.

(ii) For TWL(C), the terms of (2.82) become

∂

∂α1
�L(α1β̂ , α2β̂ ) = 1

α2β̂

n∑

i=1

(log yi − α1β̂ ), (2.84)

∂

∂α2
�L(α1β̂ , α2β̂ ) = − n

2α2β̂

+ 1

2α2
2β̂

n∑

i=1

(log yi − α1β̂ )2. (2.85)
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It is known that for the extreme value distribution, the efficiency of the method
of moments in relation to the maximum likelihood method in estimating the loca-
tion parameter is approximately 95%, and for the scale parameter, this efficiency
is approximately 55%. Therefore, at least (2.85) will require a large sample size to
become negligible.

2.7 Bibliographic Notes

The original work on the efficiency of incorrect models was performed by Cox and
Hinkley (1968). That paper focused on the efficiency of least squares estimates in
relation to the Pearson Type VII and gamma distributions. Gould and Lawless (1988)
presented general results on the consistency and efficiency of regression coefficient
estimates in location–scale models. Cox (2013) and discussants noted that these
results are related and pioneered the recent work on misspecification and what is
known as the “Sandwich” formula for covariance matrices.

Procedures for censored data have been addressed by Slud (1983), Fine (2002)
and Dey and Kundu (2012a). Kundu and associates have also applied Cox’s results to
binary comparisons, multiple tests and bivariate distributions; see Gupta and Kundu
(2004),Kundu (2005),Kundu andRaqab (2007),Dey andKund (2009, 2012a, 2012b)
and references in their previous works.

The application of Cox’s results for testing normality versus lognormality was
studied by Kotz (1973). Recent works and references to applications involving the
testing of linear versus log-linear regression models include those of Ermini and
Hendry (2008) and Kobayashi and McAleer (1999); see also Ericsson (1982).
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Chapter 3
Bayesian Methods

Abstract Bayesian methods of model discrimination are discussed in this chapter.
Alternative Bayes factors are presented for when improper priors are used and the
usual Bayes factor cannot be specified. The concepts of imaginary training sam-
ple and minimal training samples and of partial, fractional, intrinsic and posterior
Bayes factors are defined. Applications of these concepts to alternative (exponential,
gamma, Weibull and lognormal) distributions and to systems of linear regressions
are presented. Simulation results are used to compare the alternative Bayes factors.
The Full Bayesian Significance Test (FBST) is also presented, with applications to
a linear mixture model.

Keywords Alternative Bayes factors · Discrimination · Exponential distribution ·
FBSTprocedure ·Gammadistribution · Improper prior ·Linearmixture ·Lognormal
distribution · Predictive distribution · Weibull distribution

3.1 Introduction

In this chapter, the Bayesian approach to discriminating among separate models is
studied.

To illustrate the Bayesian method for discriminating among separate models,
consider the following (Fig. 3.1):

Example 3.1 (Pereira and Polpo 2014) Let Yn = y1, ..., yn be a set of points selected
in the real plane as follows:

Our objective is to choose in which of two geometric figures, a circle or a square,
these points are observed. To simplify the choice problem, we consider that both
figures are centered at (0, 0). Hence, the two likelihoods that correspond to the circle
and square are, respectively,

Lc(Yn) ∝ I(all points with booth coordinates < α)/πnα2n, α ≥ D,

Ls(Yn) ∝ I(all points with booth coordinates < β)/4nβ2n, β ≥ M,

© The Author(s) 2016
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Fig. 3.1 Sample of 40 points in the plane

where α is the radius of the circle, 2β is the side length of the square, D is the largest
of the distances from a point to the center of the circle, and M is the maximum value
of the maximum of the two absolute values of the coordinates of each point.

The probability priors for the circle and square models are πc and πs , respectively,
such that πc + πs = 1, and the priors for the parameters are πc(α) and πs(β),
respectively.

As a simplification, we consider these priors as being proportional toα−2 and β−2,
respectively, on the interval from 0.01 to infinity. Clearly, it would not be practical
to consider zero as the lower limit because at least two sample points were obtained.
The posterior odds ratio from (1.3) is

πc

πs
BCS(Yn) = πc

πs

(
4

π

)n (M

D

)2n+1

.

As the observed points are on the same surface, we consider πc = πs = 1/2; con-
sequently, the posterior odds ratio is the Bayes factor. Through the Bayes estimation
of α and β, we obtain the estimated circle and square for the two sets of samples
described in Table3.1.

http://dx.doi.org/10.1007/978-3-662-53736-7_1
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Table 3.1 The two samples used for estimating the circle and square

Sample 1 Sample 2

x1 y1 D1 M1 x2 y2 D2 M2

−0.181 −0.620 0.646 0.620 0.905 0.646 1.112 0.905

−0.434 −0.325 0.542 0.434 −0.501 −0.688 0.851 0.688

−0.087 −0.786 0.791 0.786 −0.058 −0.098 0.114 0.098

0.339 0.595 0.685 0.595 −0.161 −0.587 0.609 0.587

0.369 −0.347 0.506 0.369 −0.114 0.250 0.275 0.250

0.361 −0.265 0.448 0.361 −0.627 −0.488 0.795 0.627

0.188 −0.621 0.649 0.621 −0.334 −0.493 0.595 0.493

0.688 0.357 0.775 0.688 −0.822 −0.821 1.162 0.822

−0.166 −0.223 0.278 0.223 −0.100 0.408 0.420 0.408

−0.691 0.591 0.909 0.691 −0.805 0.384 0.892 0.805

−0.022 0.853 0.853 0.853 −0.514 −0.415 0.661 0.514

−0.502 0.858 0.994 0.858 −0.993 −0.370 1.059 0.993

−0.521 0.309 0.606 0.521 0.904 0.027 0.904 0.904

0.685 −0.123 0.696 0.685 −0.810 0.650 1.038 0.810

−0.410 0.783 0.884 0.783 −0.036 0.166 0.170 0.166

0.052 0.648 0.650 0.648 −0.600 −0.254 0.651 0.600

−0.802 −0.243 0.838 0.802 0.551 −0.408 0.685 0.551

−0.001 −0.621 0.621 0.621 −0.459 −0.623 0.774 0.623

−0.145 0.492 0.513 0.492 −0.492 0.438 0.659 0.492

−0.067 0.320 0.326 0.320 0.710 −0.845 1.103 0.845

−0.295 −0.293 0.416 0.295 0.336 0.612 0.698 0.612

−0.745 −0.213 0.774 0.745 −0.482 −0.694 0.845 0.694

0.749 0.161 0.767 0.749 −0.072 0.050 0.088 0.072

0.428 0.539 0.688 0.539 0.336 0.806 0.873 0.806

0.867 0.349 0.935 0.867 −0.638 0.546 0.840 0.638

0.401 −0.392 0.561 0.401 0.479 −0.293 0.561 0.479

0.337 −0.469 0.578 0.469 −0.330 −0.412 0.528 0.412

−0.527 0.842 0.994 0.842 −0.638 −0.118 0.649 0.638

0.663 0.330 0.741 0.663 0.776 −0.834 1.139 0.834

−0.348 0.805 0.877 0.805 0.935 0.722 1.181 0.935

0.220 0.053 0.226 0.220 0.432 −0.279 0.515 0.432

0.523 −0.658 0.840 0.658 0.661 −0.112 0.671 0.661

−0.161 −0.017 0.162 0.161 −0.601 −0.993 1.161 0.993

0.578 0.260 0.634 0.578 −0.826 −0.075 0.830 0.826

−0.244 0.031 0.246 0.244 0.981 0.772 1.248 0.981

0.817 −0.558 0.989 0.817 −0.122 −0.306 0.330 0.306

(continued)
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Table 3.1 (continued)

Sample 1 Sample 2

x1 y1 D1 M1 x2 y2 D2 M2

0.914 0.034 0.915 0.914 −0.550 −0.187 0.581 0.550

0.804 −0.576 0.989 0.804 −0.244 −0.390 0.460 0.390

0.371 −0.899 0.972 0.899 0.573 0.537 0.786 0.573

−0.189 −0.068 0.201 0.189 −0.820 0.577 1.002 0.820

Maximum 0.994 0.914 Maximum 1.248 0.993

Area 3.102 3.341 Area 4.895 3.945

LnOdds 15.674 LnOdds −7.819

Fig. 3.2 Examples of samples with alternative choices: a the better choice is the circle; b the better
choice is the square

The logarithm of the posterior odds ratio for sample 1 (Fig. 3.2a) is 15.674, indi-
cating that the posterior probability of the circle is close to one, larger than the
posterior probability of the square. The evidence from the data thus indicates that
the candidate of choice is the circle, which has the smaller area. For sample 2, shown
in Fig. 3.2b, the logarithm of the posterior odds ratio is −7.819, indicating that the
better candidate is now the square.

Example 3.2 (Melo 2016) The gamma and lognormal distributions are two of the
distributions that are most commonly used for positive random variables. Let us
consider aBayesianmethod for the linearmixture of these distributions.As suggested
by Cox (1961), we can examine the estimates of the parameter mixture to decide on
one of the models. From expressions (2.11) and (2.25), we can write

hl(y, p, α1, α2, δ1, δ2) = p fG(y, δ1, δ2) + (1 − p) fL(y, α1, α2).

http://dx.doi.org/10.1007/978-3-662-53736-7_2
http://dx.doi.org/10.1007/978-3-662-53736-7_2
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Let us now consider μ and σ 2 to be the true mean and variance, respectively, of
the population. Therefore, for the lognormal distribution,

μ = E(y, α1, α2) = eα1+α2/2 and σ 2 = V (y, α1, α2) = (eα1 − 1)e2α1+α2 ,

and for the gamma distribution,

μ = E(y, δ1, δ2) = δ1δ2 and σ 2 = V (y, δ1, δ2) = δ21δ
2
2 .

Hence, there is a relationship between the parameters of the two models as
described by μ and σ 2. The model parameters are now as follows: the connect-
ing parameters are μ and σ 2, with p corresponding to the mixture. Initially, there
were five parameters; now, there are only three parameters to be estimated.

Melo (2016) considered the following prior: the distributions for both μ and σ 2,
the connecting parameters, are independent gamma distributions, both with a mean
of one and a variance of 100. The prior for p is a beta prior with parameters (1, 1),
the uniform distribution. For data on the survival times of 247 patients with cardiac
insufficiency from a hospital in São Paulo, using the MCMC algorithm, the gamma
distribution was found to be the preferred model, as shown in Table3.2.

Figure3.3 illustrates the fitting of the gamma-lognormal mixture, as estimated
from the MCMC results, and the Kaplan–Meier estimates.

In general, applications of expressions (1.3)–(1.5) have two main limitations.
First, the prior knowledge expressed by priors π f and π f (α) and by priors πg and
πg(β)must be coherent, as in Example 3.2. For instance, if the parameter spaces have
different dimensions, in general, there is no simple relation between the parameters.
Second, if the prior information is weak and an improper prior is applied, then the
usual Bayes factor is not well defined. This problem arises when using the usual
improper prior

π f (α) ∝ h f (α) = c f h f (α) and πg(β) ∝ hg(β) = cghg(β), (3.1)

where h f and hg denote functions whose integrals over the spaces of α and β diverge
and c f and cg are unspecified normalizing constants.

Table 3.2 Mixture model—Bayes estimates

Parameter Estimate SD LB 95% UB 95%

p-Gamma 0.53 0.24 0.15 0.98

μ 13.59 1.06 11.60 15.72

σ 2 117.44 42.08 56.78 196.54

http://dx.doi.org/10.1007/978-3-662-53736-7_1
http://dx.doi.org/10.1007/978-3-662-53736-7_1
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Fig. 3.3 Survival function estimated using the gamma-lognormal mixture and Kaplan–Meier esti-
mates representing the observed data

If improper prior distributions are assigned to both models and we assume that
π f = πg , then the posterior odds ratio (1.3) is

π f

πg
B f g(y) = B fg(y) = q f (y)

qg(y)
=
∫

f (y, α)π f (α)dα∫
g(y, β)πg(β)dβ

= c f
∫

f (y, α)h f (α)dα

cg
∫
g(y, β)hg(β)dβ

. (3.2)

The Bayes factor, which depends on c f /cg , is unspecified;
∫

f (y, α)h f (α)dα and∫
g(y, β)hg(β)dβ are the predictive distributions under f and g, respectively, say

m f and mg .
In the following Sect. 3.2, improper prior distributions are assumed, and to over-

come the resulting difficulties, modified Bayes factors are described. Only basic
definitions and examples are presented. Section3.3 then presents the newly devel-
oped Full Bayesian SignificanceTest and its application to a linearmixture ofmodels.
References for discussions on and the properties of these procedures are briefly noted
in Sect. 3.4.

http://dx.doi.org/10.1007/978-3-662-53736-7_1
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3.2 Modified Bayes Factors

3.2.1 Imaginary Training Sample

To eliminate the indeterminacy of the Bayes factor with improper priors, Smith and
Spiegelhalter (1980), and Spiegelhalter and Smith (1982) imagined a set of data y0
for which a particular value is assigned to B fg(y0), and so c f /cg are determined.
Aitchinson (1978) and Pericchi (1984) also used these ideas to investigate some
misleading behaviors of posterior probabilities. These procedures are related to the
assignment of a certain kind of prior information and imply the rejection of the use
of improper priors. Further critiques are presented in O’Hagan (1995).

3.2.2 Partial Bayes Factor (PBF)

An early solution to the indeterminacy of c f /cg was presented by Lempers (1971),
who set aside part of the data to be combined with an improper prior distribution to
produce a proper posterior distribution, which was then used to compute the Bayes
factor from the remainder of the data.

Rust and Schmittlein (1985) also used the idea of training samples. In their
Bayesian cross-validated likelihood method, the first subset of the sample is used to
estimate the parameters, and Bayes’ Theorem is then applied with these estimates to
the second part of the sample.

A formal study of this idea of training samples appears in O’Hagan (1995). Con-
sider the partitioning y = (x, z) of the sample. From subsample x , one can obtain the
proper posterior distributions π f (α|x) and πg(β|x). With these as prior distributions,
the remaining data z are then used to compute a Bayes factor:

Bp
f g(z|x) = q f (z|x)

qg(z|x) =
∫

π f (α|x) f (z, α|x)dα∫
πg(β|x)g(z, β|x)dβ . (3.3)

Noticing that

q f (z|x) = q f (z.x)

q f (x)
= q f (y)

q f (x)
(3.4)

and π f (α) = c f h f (α), it follows that c f can be removed.
The same is true for cg .
It follows from (3.4) and the analogous relation for qg(z|x) that

Bp
f g(y) = B fg(x)B fg(z|x). (3.5)

Bp
f g(z|x) is referred to as a partial Bayes factor (PBF).
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3.2.3 Fractional Bayes Factor (FBF)

Let y = (x, z) be a sample of size n, and let x be a subsample of size m. To
avoid the arbitrariness of choosing a particular subsample or to consider all possible
subsamples of a given size,O’Hagan (1995) developed a simplified formof the partial
Bayes factor. Let b = m/n. If both n and m are large, then the likelihoods f (x, α)

and g(x, β) based only on the training sample x approximate the full likelihoods
f (y, α) and g(y, β), respectively, both raised to the power b.
By analogy to Eqs. (3.3) and (3.4), the fractional Bayes factor (FBF) is defined as

Bb
f g(y) = q f (b, y)/qg(b, y), (3.6)

where

q f (b, y) =
∫

π f (α) f (y, α)dα∫
π f { f (y, α)}bdα

and qg(b, y) =
∫

πg(α)g(y, α)dβ∫
πg{g(y, β)}bdβ . (3.7)

If π f (α) = c f h f (α) and πg(β) = cghg(β), then the indeterminate constants c f and
cg cancel out. O’Hagan (1995) showed that the FBF is consistent, provided that b
shrinks to zero as n grows.

3.2.4 Intrinsic Bayes Factor (IBF)

In proposing another modified Bayes factor, Berger and Pericchi (1996) first defined
a minimal training sample: x in the sample partition y = (x, z) is minimal if the
posteriors for α and β are proper and there is no subset of x that entails a proper
posterior. There are usually many, say R, partitions that feature a minimal training
sample. The intrinsic Bayes factor (IBF) of Berger and Pericchi is the geometric or
arithmeticmean or themedian of the partial Bayes factors

{
Bp

f g(zr |xr ); r = 1, ..., R
}

obtained from these R minimal training samples.
The geometric IBF is

BIG(y) =
{

R∏

r=1

Bp
f g(zr |xr )

}1/R

, (3.8)

the arithmetic IBF is

BI A(y) = 1

R

R∑

r=1

B fg(zr |xr ), (3.9)
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and the median IBF is

BIM(y) = med{B fg(zr |xr ); r = 1, ..., R}. (3.10)

Because all these versions are based on the PBF, the indeterminacy due to c f /cg
disappears.

3.2.5 Posterior Bayes Factor (POBF)

Aitkin (1991) proposed the posterior Bayes factor (POBF), which compares the
posterior means of the likelihood functions under Hf and Hg . More formally, the
posterior densities under Hf and Hg are, respectively,

π f (α|y) = f (y, α)π f (α)∫
f (y, α)π f (α)dα

and πg(β|y) = g(y, β)πg(β)∫
f (y, β)πg(β)dβ

. (3.11)

The posterior means of the likelihood functions are, respectively,

qPO
f (y) =

∫
f (y, α)π f (α|y)dα =

∫ { f (y, α)}2 π f (α)dα∫
f (y, α)π f (α)dα

and

qPO
g (y) =

∫
g(y, β)πg(β|y)dβ =

∫ {g(y, β)}2 πg(β)dβ∫
f (y, β)πg(β)dβ

. (3.12)

The POBF is defined as

BPO
f g (y) = qPO

f (y)/qPO
g (y). (3.13)

3.2.6 Applications

Before we present some examples of the use of the modified Bayes factors, it is
important to present Jeffreys’ rule (Kass and Raftery 1995), which provides the
background for interpreting the Bayes factors (Table 3.3).

Example 3.3 (Araujo and Pereira 2007) Consider a single random sample y =
(y1, ..., yn). Threemodels are considered for the data y: LN−lognormal LN (μ, σ ),
W − Weibull W (β1, β2) and G − Gamma G(r, λ).
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Table 3.3 Jeffreys’ rule for Bayes factors

2 ln B f g B f g Evidence against Hg

0–2 1–3 Not worth more than a bare
mention

2–6 3–20 Substantial

6–10 20–150 Strong

>10 >150 Decisive

Table 3.4 Distribution specifications

Densities

pL (y|μ, σ) = 1
y
√
2πσ

exp
[ −1
2σ 2 (ln(y) − μ)2

]
, σ > 0, −∞ < μ < ∞, y > 0

pW (y|β1, β2) = β2

β
β2
1

yβ2−1 exp

[
−
(

y
β1

)β2
]

, β1 > 0, β2 > 0, y > 0

pG(y|r, λ) = λr

Γ (r) y
r−1e−λy, r, λ, y > 0

Likelihoods

LL (μ, σ ; y) = 1
∏n

i=i yi
(√

2πσ
)n exp

[
−1
2σ 2

n∑

i=1

(ln(yi ) − μ)2

]

LW (β1, β2; y) = βn
2

β
nβ2
1

∏n
i=1 y

β2−1
i exp

[
− 1

β
β2
1

n∑

i=1

yβ2
i

]
, y > 0

LG(r, λ; y) = λnr

[Γ (r)]n
∏n

i=1 y
r−1
i exp

{
−λ

n∑

i=1

yi

}

Priors

π(μ, σ) ∝ 1
σ

π(β1, β2) ∝ 1
β1β2

π(r, λ) ∝ 1
λ
√
r

Predictives

mL (y) = Γ ( n−1
2 )

(
∏n

i=i yi )π(n−1)/22

√
n
[∑n

i=1(ln(yi )−yL)
2
]n−1

, where ȳ1 = 1
n

n∑

i=1

ln yi

mW (y) = (n − 1)! ∫∞
0

βn−2
2(∑n

i=1 y
β2
i

)n
(∏n

i=1 y
β2−1
i

)
dβ2

mG(y) = 1∏n
i=1 yi

∫∞
0

[ ∏n
i=1 yi

(
∑n

i=1 yi )
n

]r
Γ (nr)

[Γ (r)]n
√
r
dr

Tables3.4 and 3.5 present the formulae for computing the modified Bayes factors.
The final expressions for the modified Bayes factors are obtained from these tables.
For example, to discriminate between LN (μ, σ ) and W (β1, β2), we can calculate
the FBF and POBF:
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Table 3.5 Expressions for the modified Bayes factors

Minimal Sample Predictive

mqL (x (l)) = 1

2xi x j

∣∣∣∣ln
(

xi
x j

)∣∣∣∣

mW (x (l)) = ∫∞
0

(xi x j )
β2−1

(
x

β2
i +x

β2
j

)2 dβ2 = 1
2xi x j ln(xi /x j )

mG
(
x (l)
) = 1

xi x j

∫∞
0

[
xi x j

(xi+x j )2

]r
Γ (2r)

[Γ (r)]2
√
r
dr

Denominator of qi (b, y) of the PBF

f racL = ∫∞
0

∫∞
−∞ [LL (y)]b 1

σ
dμdσ = Γ ( bn−1

2 )

2
√
nb(

∏n
i=i yi )

b
π(bn−1)/2

√[
b
∑n

i=1(log(yi )−yL)
2
]bn−1

f racW = ∫∞
0

∫∞
0 [LW (y)]b 1

β1β2
dβ2dβ1 = (nb − 1)! ∫∞

0
βnb−2
2(

b
∑n

i=1 y
β2
i

)nb
[∏n

i=1 y
b(β2−1)
i

]
dβ2

f racG = ∫∞
0

∫∞
0

λbnr

[Γ (r)]bn
[∏n

i=1 yi
]b(r−1)

e−bλ
∑n

i=1 yi 1
λ
√
r
dλdr

= ∫∞
0

(
∏n

i=1 yi )
b(r−1)

[Γ (r)]bn
√
r

Γ (bnr)

(
∑n

i=1 yi )
bnr dr

Numerator of qPO
i (y) of the BF (mean posterior likelihood)

mLpost (y) = ∫∞
0

∫∞
−∞ [LL (y)]2 1

σ
dμdσ = Γ ( 2n−1

2 )

(
∏n

i=i yi )
2
π(2n−1)/22

√
2n

√[
2
∑n

i=1(ln(yi )−yL)
2
]2n−1

mWpost (y) = ∫∞
0

∫∞
0 [LW (y)]2 1

β1β2
dβ2dβ1 = (2n − 1)! ∫∞

0
β2n−2
2(

2
∑n

i=1 y
β2
i

)2n
[∏n

i=1 y
2β2−2
i

]
dβ2

mGpost = ∫∞
0

∫∞
0

λ2nr

[Γ (r)]2n
[∏n

i=1 yi
]2(r−1)

e−2λ
∑n

i=1 yi 1
λ
√
r
dλdr

= ∫∞
0

[
∏n

i=1 yi ]
2(r−1)

[Γ (r)]2n
√
r

∫∞
0 λ2nr−1e−2λ

∑n
i=1 yi dλdr = ∫∞

0
(
∏n

i=1 yi )
2(r−1)

[Γ (r)]2n
√
r

Γ (2nr)

(
∑n

i=1 yi )
2nr dr

FBF = B(b)
LW (y) =

(
mL (y)
fracL

)/(
mW (y)
fracW

)

and

POBF = BPO
LW (y) =

(
mLPOS(y)
mL (y)

)/(
mWPOS(y)
mW (y)

)
.

(3.14)

The IBF is obtained by computing the predictive distribution from the data z
(y without yi , y j ) via numerical integration, with priors mL(x	) and mW (x	) and
likelihoods LL(μ, σ, zL) and LW (μ, σ, zW ). The IBF is obtained using all possible
yi and y j (i �= j).

Example 3.4 Araujo (1998), Araujo and Pereira (2007b) generated simulation
results for the alternative modified Bayes factors to discriminate L versus W ,
L versus G, and G versus W as well as for the exponential distribution E(λ). A
total of 100 samples were used for each size n. A typical result for the lognormal
versus Weibull distributions can be seen in Fig. 3.4 and Tables3.6 and 3.7.



62 3 Bayesian Methods

Fig. 3.4 Weibull versus lognormal

Table 3.6 Bayes factor LW, Data: L(0,1)

Factor min median max mean sd 2 ln FB
> 2 (%)

2 ln FB
< 0 (%)

n = 20 FBI −2.085 1.290 6.511 1.28 1.438 57 16

FBP −2.263 1.305 6.758 1.291 1.505 57 16

FBF −2.003 1.198 6.125 1.187 1.358 56 16

n = 40 FBI −6.194 2.878 13.220 3.033 2.496 84 7

FBP −6.414 2.892 13.440 3.046 2.550 84 7

FBF −6.061 2.776 12.830 2.925 2.427 84 7

n = 60 FBI −4.703 5.051 15.170 4.940 3.325 90 8

FBP −4.841 5.075 15.310 4.953 3.370 89 8

FBF −4.649 14.86 4.823 4.823 3.264 89 8

They concluded that apart from the difficulties presented in the discussion pro-
vided by Aitkin (1991), the POBF should not be recommended because of the com-
putational problems of instability and precision that arise with increasing n.

The behaviors of the IBF and FBF are similar, and the FBF requires less compu-
tational effort.

Note that because the lognormal and Weibull densities are in the location-scale
form, the Bayes factors BWL and BLW are invariant with respect to the parameter
values.
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Table 3.7 Bayes factor WL, Data: W(1, 1)

Factor min median max mean sd 2 ln FB
> 2 (%)

2 ln FB
< 0 (%)

n = 20 FBI −4.012 1.051 5.769 1.128 1.715 51 26

FBP −4.294 0.990 5.994 1.078 1.809 50 31

FBF −3.765 1.1016 5.494 1.091 1.624 51 26

n = 40 FBI −4.572 2.454 13.890 2.606 2.820 74 18

FBP −4.597 2.562 14.33 2.728 2.894 75 18

FBF −4.413 2.412 13.570 2.564 2.747 73 18

n = 60 FBI −3.978 3.973 14.940 4.132 3.625 79 12

FBP −3.927 4.115 15.230 4.285 3.670 81 11

FBF −3.882 3.930 14.710 4.088 3.564 79 12

Example 3.5 (Araujo et al. 2005, 2007) This example extends the results of Aitkin
(1991), O’Hagan (1995) andBerger and Pericchi (1996) to the context ofmultivariate
regressions.

Consider two separate multivariate linear regression models H0 : Y = XB0 +U0

and H1 : Y = Z B1 + U1, where Y is an n × m matrix of regressands, X and Z are,
respectively, n× p and n×q matrices of regressors, and B0 and B1 are, respectively,
p ×m and q ×m matrices of parameters. The error termsU0 andU1 have rows that
are iid as normal random vectors with mean zero and identity covariance matricesΣ0

and Σ1, respectively. We also assume that X and Z are of full rank, with n ≥ m + p
and n ≥ m + q. It thus follows that U0 ∼ N (0, In ⊗ Σ0) and U1 ∼ N (0, In ⊗ Σ1),
whereas Y ∼ N (XB0, In ⊗ Σ0) under H0 and Y ∼ N (Z B1, In ⊗ Σ1) under H1.

The matrices of regressors X and Z are fixed and nonnested in the sense that it is
not possible to obtain the columns of X from the columns of Z , and vice versa. We
further assume that the matrices ΣX ′X ≡ limn→∞ 1

n X
′X and ΣZ ′Z ≡ limn→∞ 1

n Z
′Z

are nonsingular and that ΣX ′Z ≡ limn→∞ 1
n X

′Z is a nonzero matrix. These assump-

tions ensure that the maximum likelihood estimators B̂0 = (X ′X)−1X ′Y and
B̂1 = (Z ′Z)−1Z ′Y are consistent under H0 and H1, respectively.

The posterior odds ratio for H0 against H1 is (π0/π1) B01. Suppose that one uses
improper priors for the parameters such that π0(α0) and π1(α1) are proportional to
the constants K0 and K1, respectively. Then, the Bayes factor B01 is proportional
to K0/K1 and is not well defined. For the multivariate regression models, Jeffreys’
diffuse prior is given by

π0(α0) = π0(B0) π0(Σ0) = K0 |Σ0|− m+1
2 , (3.15)

leading to the following predictive distribution under the null hypothesis

q0(Y ) = π
m(2n−2p−m+1)

4 K0 |X ′X |−m/2 |S0|− n−p
2

m∏

s=1

Γ

(
n − p − s + 1

2

)
, (3.16)
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where S0 ≡
(
Y − X B̂0

)′ (
Y − X B̂0

)
. A similar expression holds for the alternative

model Y = Z B1 +U1. The resulting Bayes factor is

B01(Y ) = πm(p−q)/2 K0

K1

( |Z ′Z |
|X ′X |

)m/2 |S1|(n−q)/2

|S0|(n−p)/2

m∏

s=1

Γ
(
n−p−s−1

2

)

Γ
(
n−q−s−1

2

) , (3.17)

where S1 ≡ (Y − Z B̂1)
′(Y − Z B̂1). It is clear from (3.17) that the Bayes factor is

not well defined because it depends on the unknown ratio K0/K1.
From (3.16) and (3.17), it is now possible to derive the alternative Bayes factors.

For instance, the POBF BP
01(Y ) of Aitkin (1991) is found from the ratio between

qP
0 (Y ) = (2

√
π)−mn |S0|−n/2

m∏

s=1

Γ
(
2n−p−s+1

2

)

Γ
(
n−p−s+1

2

)

and

qP
1 (Y ) = (2

√
π)−mn |S1|−n/2

m∏

s=1

Γ
(
2n−q−s+1

2

)

Γ
(
n−q−s+1

2

) .

It therefore follows that

BP
01(Y ) =

( |S1|
|S0|

)n/2 m∏

s=1

Γ
(
2n−p−s+1

2

)
Γ
(
n−q−s+1

2

)

Γ
(
2n−q−s+1

2

)
Γ
(
n−p−s+1

2

) . (3.18)

The arithmetic IBF of Berger and Pericchi (1996) becomes

BI A
01 (Y ) = 1

R

R∑

r=1

B01(Y )

B01(Y(r))
= B01(Y )

1

R

R∑

r=1

B10(Y(r)),

where Y(r) is a minimal training sample with design matrices X(r) and Z(r) under
H0 and H1, respectively. By definition, Y(r) is a matrix such that both X ′

(r)X(r) and
Z ′

(r)Z(r) are nonsingular. It is of n̄ × m dimensions, where n̄ = �(m + 1)/2 +
max(p, q) and �· returns the smallest integer greater than its argument. From (3.17),
it follows that
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BI A
01 (Y ) =

( |Z ′Z |
|X ′X |

)m/2 |S1| n−q
2

|S0| n−p
2

m∏

s=1

Γ
(
n−p−s+1

2

)
Γ
(
n̄−q−s+1

2

)

Γ
(
n−q−s+1

2

)
Γ
(
n̄−p−s+1

2

)

× 1

R

R∑

r=1

( |X ′
(r)X(r)|

|Z ′
(r)Z(r)|

)m/2 |S0(r)|(n̄−p)/2

|S1(r)|(n̄−q)/2
, (3.19)

where Sj (r) is analogous to Sj for the r -th minimal training set ( j = 0, 1).
Finally, the FBF of O’Hagan (1995) is found from the ratio between

q [b]
0 (Y ) = πmn(1−b)/2bmnb/2 |S0|−n(1−b)/2

m∏

s=1

Γ
(
n−p−s+1

2

)

Γ
(
nb−p−s+1

2

)

and

q [b]
1 (Y ) = πmn(1−b)/2bmnb/2 |S1|−n(1−b)/2

m∏

s=1

Γ
(
n−q−s+1

2

)

Γ
(
nb−q−s+1

2

) . (3.20)

Thus, it holds that

B[b])
01 (Y ) =

( |S1|
|S0|

)n(1−b)/2 m∏

s=1

Γ
(
n−p−s+1

2

)
Γ
(
nb−q−s+1

2

)

Γ
(
n−q−s+1

2

)
Γ
(
nb−p−s+1

2

) . (3.21)

Example 3.6 (Araujo and Pereira 2001a) Inflation in Brazil in the post-war period
has been discussed by Barbosa (1983). There are two main schools of thought on
inflation during the 1950s.Monetarists consider the exaggerated growth of themoney
supply to be the main cause of inflation. Structuralists argue that inflation was gen-
erated within the economic system through changes in relative prices resulting from
economic growth. In this sense, inflation would originate from monetary policy,
which is passive and accommodates the variations in the nominal income of the
economy. Schematically, we can represent these two perspectives in the following
ways:

Monetarism
Def ici t Spending =⇒ Money growth =⇒ I n f lation

Structuralism
Shortage of key goods =⇒ I n f lation ⇐= Struggles between social groups
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Table 3.8 Matrices of least-squares estimates

Monetarism: B̂0 Structuralism: B̂1

pt ht pt ht
pt−1 0.3232 0.1429 pt−1 0.8262 0.092

ht−1 −0.2886 0.7570 ht−1 −0.1872 0.7728

μt 0.8674 −0.1526 Sm,t 0.0716 −0.0158

Dȳt −1.5073 0.2955 DZt 0.0043 −0.0003

1 −0.3974 −1.1388

The models can be written as follows:

MONETARISM

[ pt ht ] = [
pt−1 ht−1 μt−1 Dȳt

]

⎡

⎢⎢⎣

α1 − βα2 1
−βα1 α1

β −1
βα1 α1

⎤

⎥⎥⎦φ + ε, (3.22)

where 1949 ≤ t ≤ 1980; φ = 1/[α1 − β(1− α2)]; Dȳt = Dyt + ht + ht−1; and for
year t , pt = in f lation rate, ht = idle capacity, μt = rate money of growth,
Dȳt = potential product rate of growth, and Dyt = real product rate of
growth.

STRUCTURALISM

[ pt ht ] = [
pt−1 ht−1 Sm,t DZt 1

]

⎡

⎢⎢⎢⎢⎣

β11 + γ12 γ12β11 + β21

β12 + γ12 γ12β12 + 1
β13 β13γ21

γ12β23 β23

β10 + γ12β20 β20 + β10

⎤

⎥⎥⎥⎥⎦
ϕ + ε, (3.23)

where ϕ = 1/[1 − γ12γ21] and for year t , Sm,t = minimum wage, DZt =
budget de f ici t , pt = in f lation rate, and ht = idle capacity.

Table3.8 presents the parameter estimates for the models B̂0 = (X ′X)−1X ′Y and
B̂1 = (Z ′Z)−1Z ′Y :

From the results of Exercise 3, the modified Bayes factors are as follows:

(a) FBF:

B[b]
mon×est (Y ) =

( |Sest |
|Smon|

)11,5
Γ (14)Γ (2)Γ (13, 5)Γ (1, 5)

Γ (13, 5)Γ (2, 5)Γ (13)Γ (2)

with 2 log B[b]
mon×est (Y ) = 7, 121.
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(b) POBF:

BP
mon×est (Y ) =

( |Sest |
|Smon|

)16
Γ (30)Γ (13, 5)Γ (29, 5)Γ (13)

Γ (29, 5)Γ (14)Γ (29)Γ (13, 5)

with 2 log BP
mon×est (Y ) = 5, 028.

(c) From the time series data, we have 26 training samples and n̄ such that the
matrices Z

′
(e) and Z(e) are nonsingular (n̄ = 7).

BI A
mon×est (Y ) = |Z ′

est Zest ||Sest |13,5Γ (14)Γ (2)Γ (13, 5)Γ (1, 5)

|Z ′
mon Zmon||Smon|14Γ (13, 5)Γ (2, 5)Γ (13)Γ (2)

× 1

24

24∑

l=1

|Z ′
mon(l)Zmon(l)||Smon(l)|2,5
|Z ′

est (l)Zest (l)||Sest (l)|2

with 2 log BI A
mon×est (Y ) = 27, 172.

For themodels described, the threemodified Bayes factors indicate that themone-
tarist model is the preferred explanation of inflation and idle capacity in the Brazilian
post-war period.

3.3 Full Bayesian Significance Test (FBST)

The FBST of Pereira and Stern (1999), which is reviewed in Pereira et al. (2008),
is a Bayesian version of significance testing as considered by Cox (1977) and
Kempthorne (1976). The frequentist method of significance testing is a procedure for
measuring the consistency of a set of data with the null hypothesis. The basis of the
test is an ordering of the sample space according to increasing inconsistency with the
hypothesis. The index used to measure this inconsistency is the calibrated p-value.
By contrast, the basis for the Bayesian method is an index known as the e-value
(where e stands for evidence), which measures the inconsistency of the hypothesis
using several parameter points together with the posterior densities.

First, let us consider a real parameter ω, a point in the parameter space Ω ⊂ �,
and an observation y of the random variable Y . A frequentist looks for the set I ∈ �
of sample points that are at least as inconsistent with the hypothesis as y is. A
Bayesian looks for the tangential set T ∈ Ω (Pereira et al. 2008), which is a set of
parameter points that are more consistent with the observed y than the hypothesis is.
An example of a sharp hypothesis in a parameter space of the real line is of the type
H : ω = ω0. The evidence value in favor of H for a frequentist is the usual p-value,
P(Y ∈ I |ω0), whereas for a Bayesian, the evidence in favor of H is the e-value,
ev = 1 − Pr(ω ∈ T |y).
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In the general case of multiple parameters, Ω ⊂ �k , let the posterior distribu-
tion for ω given y be denoted by q(ω|y) ∝ π(ω)L(y, ω), where π(ω) is the prior
probability density of ω and L(y, ω) is the likelihood function. In this case, a sharp
hypothesis is of the type H : ω ∈ ΩH ⊂ Ω , where ΩH is a subspace of smaller
dimension than Ω . Letting supH denote the supremum of ΩH , we define the general
Bayesian evidence and the tangential set as follows:

q∗ = supHq(ω|y) and T = {ω : q(ω|y) > q∗}. (3.24)

The Bayesian evidence value against H is the posterior probability of T,

ev = Pr(ω ∈ T |y) =
∫

T
q(ω|y)dω; consequently, ev = 1 − ev. (3.25)

It is important to note that evidence that favors H is not evidence against the
alternative A because it is not a sharp hypothesis. This interpretation also holds for
p-values in the frequentist paradigm. As in Pereira et al. (2008), we would like to
point out that this Bayesian significance index uses only the posterior distribution,
with no need for additional artifacts such as the inclusion of positive prior probabil-
ities for the hypotheses or the elimination of nuisance parameters. In fact, it is not
recommended to consider the construction of tangential sets inmarginal distributions
of the parameters of evidence.We should not abandon the original parameter space in
its full dimensionality, without any complication due to the dimensionality of either
the parameter or sample spaces. If we believe that there is no need for the use of prior
information and that the integral of the likelihood is finite, then the normalized likeli-
hood can serve as the posterior probability density: the measure of consistency of the
hypothesis with the observed data is subject to no interference from prior knowledge.
The computation of the e-values does not require asymptotic methods, and the only
technical tools needed are numerical optimization and integration methods.

Example 3.7 (Example 3.2 cont.) For the hypothesis H : p = 0, corresponding
to rejection of the gamma model, we obtain an e-value of 0.002, which favors the
gamma model. However, for the hypothesis H : p = 1, we obtain an e-value of 0.8,
which corresponds to not rejecting H with a corresponding p-value of 0.2. These
p-values follow from Diniz et al. (2012). We conclude this section with a test of
H : p = 0.5, which yields a p-value of 0.99 with a corresponding p-value of 0.77 in
favor of the mixture (see Table 3.9 and Fig. 3.3).

Table 3.9 Hypothesis testing
for the mixture parameters of
the gamma and lognormal
models

Hypothesis e-value p-value

p = 0 0.002 0.00004

p = 1 0.80 0.20

p = 0.5 0.99 0.77
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Fig. 3.5 Comparison of theWeibull and GLW survival estimates, with the Kaplan–Meier estimates
representing the observed data

Example 3.8 The authors applied the following linear mixture of the models in
(2.11),

h(y, θ) = h(y, p, α, β, γ ) = p1 fG(y, γ ) + p2 fL(y, α) + (1 − p1 − p2) fW (y, β),

to the data from the 247 patients of Example 3.2. The same kind of priors and the
same relationships among the model parameters (population mean and variance)
were used, as well as a Dirichlet prior for the mixture parameters (p1, p2, p3), with
p1+ p2+ p3 = 1. In this case, the p-values evaluated based on the Bayesian evidence
indicate that neither the lognormal and gammamodels should be considered because
the null hypotheses H : p1 = 0 and H : p2 = 0 are not rejected (see Table3.11).
Consequently, among the three models, the Weibull model is the one that should be
considered. From Table3.11 and Fig. 3.5, it appears reasonable to disregard both the
lognormal and gammamodels; theWeibull model by itself produces a good estimate
of the survival function (Tables3.10 and 3.12).

3.4 Bibliographic Notes

A comparison of the alternative Bayes factors from a more theoretical and funda-
mental point of view has not been attempted in this book. For such discussions on
the POBF, refer to Aitkin (1992, 1993), Aitkin et al. (2005), and Lindley (1993). The

http://dx.doi.org/10.1007/978-3-662-53736-7_2
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Table 3.10 Estimates of the gamma-lognormal-Weibull (GLW) mixture model

Parameter Estimate SD LB 95% UB 95%

p1-gamma 0.25 0.19 0.00 0.61

p2-lognormal 0.30 0.20 0.00 0.68

p3-Weibull 0.45 0.22 0.04 0.85

μ 12.81 0.98 11.14 14.80

σ 2 83.47 37.15 41.14 146.04

Table 3.11 Hypothesis
testing for the mixture
parameters of the GLW
mixture model

Hypothesis e-value p-value

p1 = 0 0.81 0.13

p2 = 0 0.80 0.12

p3 = 0 0.15 0.00

Table 3.12 Estimates of the
Weibull model

Parameter Estimate SD LB 95% UB 95%

μ 12.40 0.69 11.15 13.82

σ 2 58.70 11.53 39.11 81.74

FBF and IBF were the focus of papers by O’Hagan (1997) and Berger and Mortera
(1999) as well as a series of papers by Berger and Pericchi and by De Santis and
Spezzaferri; all of these works are referenced in the review papers of Berger and
Pericchi (2001) and Pericchi (2005). A general expression for deriving these Bayes
factors is given by Gelfand and Dey (1994). Further simulation results on the FBF,
IBF, and POBF were presented in the unpublished thesis of Araujo (1998). Another
use of the Bayes factor is to order the sample space in any dimension and then use
this order to define new standard p-values; see Pereira andWechsler (1993), Pericchi
and Pereira (2016).

Regarding the FBST, it was originally developed to test sharp hypotheses in both
sample and parametric spaces of any dimensions. However, it can also be used for
non-sharp hypotheses. We understand a sharp hypothesis to be a hypothesis that
is defined in a subspace of a smaller dimensionality than the original parameter
space. Madruga et al. (2001) proved the Bayesianity of the FBST and that, with
suitable modification, the FBST becomes invariant under parametric transformations
(see Madruga et al. 2003). This is not to be confused with the work of Box and
Tiao (1965) on credible intervals, which only compared fixed credibility intervals
with the hypothesis under study, looking for the intersection of the hypothesis with
the credible region of a fixed credibility interval: there are an infinite number of
hypotheses intersecting such regions. West and Harrison (1997, Sect. 17.3.5) and
Basu (1996) also attempted to define such a test but only considered real-line spaces
and did not correct for invariance under parametric transformations. The FBST is
somewhat related to Barnard’s OAAAA method, presented in Sect. 1.3. For papers
that discuss the FBST and a probability value analogous to the frequentist concept

http://dx.doi.org/10.1007/978-3-662-53736-7_1
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of power, see Rogatko et al. (2002), Stern and Zacks (2002), Lauretto et al. (2007)
and Isbicki et al. (2011). A paper demonstrating an additional functionality of this
Bayesian test is that by Lauretto et al. (2003), inwhich the Behrens–Fisher problem is
treated as a simple application of a general solution tomany questions onmultivariate
normality.
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Chapter 4
Support and Simulation Methods

Abstract This chapter addresses the pure likelihood approach to model choice. The
concepts of normalized, adjusted, relative, and profile likelihood are introduced. A
relative likelihood approach for discriminating separate models is presented using
an example. The concepts of computer simulations, the Monte Carlo method, Monte
Carlo simulations, and bootstrapping are described. Linear and nonlinear regres-
sion models in the literature are used as illustrations. An example is presented to
demonstrate the use of a likelihood dominance criterion (LDC) for model choice.

Keywords Adjusted likelihood · Bootstrap · Fisher approach · Generalized linear
models · Histogram · Likelihood law · Likelihood dominance criterion · Neyman–
Pearson approach · Normalized likelihood · Profile likelihood · Relative likelihood

4.1 Introduction

This chapter describes direct applications of the likelihood function as a measure of
support for a model compared with an alternative separate model. The model with
the greater support is the preferred model.

Finally, to overcome the difficulties encountered in obtaining analytical expres-
sions for tests of separate hypotheses, this chapter also presents several simulation-
based alternatives.

4.2 Likelihood Inference

The likelihood functionplays a central role in parametric inferencebecause it contains
all information on the observed data. Although the likelihood figures prominently
in all antagonistic Fisherian, Neyman–Pearson, and Bayesian views, it is not their
main objective.

© The Author(s) 2016
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Bayesians and frequentists may disagree with the views presented here. These
views are close to Fisher’s ideas presented in his last and controversial book, Fisher
(1956).

Several approaches to statistical tests exist (see Pereira and Pereira 2005): the
Fisherian significance test, the Neyman–Pearson hypothesis test, and the FBST pro-
cedure (Sect. 3.3). Another approach to hypothesis testing is stated in terms of the
Pure Likelihood Law. Edwards (1992) called it the Method of Support. The like-
lihood function, L , introduces an ordering of preferences of all possible parameter
points. Note that this ordering remains the same when any proportional function is
considered. This means that we can divide L by any constant, such as the integral or
maximum of the likelihood function: the former is the Normalized Likelihood, the
Bayesian way, and the latter is the Relative Likelihood (RL). These modified likeli-
hoods are defined whenever the corresponding constants exist. This section ends by
stating a rule to be used by Pure Likelihood followers:

“Pure Likelihood Law”: If the relative likelihoods (RL) of hypotheses Hf and Hg

satisfy RL(Hf ) > (<)RL(Hg), then we say that Hf is more (less) plausible than
Hg . The strength of the evidence provided by the data y in favor of Hf against Hg

is measured in terms of the likelihood ratio (LR).

LR(Hf , Hg) = RL(Hf )/RL(Hg). (4.1)

Example 4.1 (Lindsey 1974a) Let independent observations (y1, ..., yn) be sum-

marized in a histogram with k bins with frequency n j in bin j (n =
k∑

j

n j ) and

theoretical proportion (probability) p j . The best estimate of p j is

p̂ j = n j/

k∑

j

n j = n j/n. (4.2)

The probability of the observed data given the estimated proportions p̂ j is pro-
portional to

LM P̂ =
∏

j

p̂
n j

j , (4.3)

the likelihood of the multinomial model. For a proposed distribution for the data, the
predicted proportion of observations falling into interval j , given the data, will be as
follows:

• for discrete Y ,
p̃ j = P(y j , θ̂ ), (4.4)

• for continuous Y ,

http://dx.doi.org/10.1007/978-3-662-53736-7_3
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p̃ j =
∫ b

a
f (y j , θ̂ )dy ≈ f (y j , θ̂ )Δy j , (4.5)

where P and f are a probability and a density function, respectively; θ̂ is an
estimate of the unknown parameter θ ; a = y j − 1

2Δy j ; and b = y j + 1
2Δy j .

The resulting likelihood functions are

L(θ̂) =
k∏

j=1

p̃
n j

j = ( p̃ j =
∏

j,k

P(y j , θ̂ ) discrete, (4.6)

L(θ̂) =
k∏

j=1

f (y j , θ̂ )Δy j continuous. (4.7)

The plausibility or the support of the theoretical distributions (P or f ) compared
with the most plausible one is

RL =
k∏

j=1

( p̃ j/ p̂ j )
n j . (4.8)

For a Cox (1962) comparison of the Poisson and geometric distributions for 30
observations generated from a Poisson model, Lindsey (1974a) obtained

p̃P = exp(−θ̂ )θ̂ y/y!,
p̃G = θ̂ y/(1 + θ̂ )1+y .

(4.9)

log RL p = −0.609 and log RLG = −3.548, which favor the Poisson model. In
addition, Lindsey (1974b) presented an extension for regression models.

Example 4.2 (Pollack and Wales 1991) Consider a comprehensive model Hc that
includes models Hf and Hg . Let k j be the number of parameters in Hj ( j =
f, g and c).
Let �1, �2, and �c denote the log-likelihoods corresponding to the three hypotheses

Hj , and letC(v) be the value of a chi-squared distribution with v degrees of freedom
at some fixed significance level.

Under the likelihood ratio test, the hypothesis Hi will not be rejected when tested
against Hc if 2(�c − �i ) < C(kc − ki ).
Here, only the two outcomes

(a) reject Hf and accept Hg and
(b) reject Hg and accept Hf

of the four possible outcomes listed in Sect. 2.2.3 are considered. The following pro-
cedure eliminates the necessity of estimating or even specifying a particular com-
prehensive model if only outcomes (a) and (b) are of interest.

http://dx.doi.org/10.1007/978-3-662-53736-7_2
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Suppose that the models specified by Hf and Hg are estimated and defined by the
corresponding “adjusted likelihood values” Vi = �i +C(kc − ki )/2. There are three
possible cases.

First, suppose that Vg > V f , and consider an imaginary experiment in which a
particular comprehensive model with Rc parameters and its associated likelihood �c
is estimated. The value of �c lies in one of three regions:

• if �c < V f , both Hf and Hg are accepted;
• if � f < �c < �g , Hf is rejected and Hg is accepted;
• if �c > lg , both Hf and Hg are rejected.

Thus, if Vg > V f , then there is no value of �c for which Hf is accepted and Hg is
rejected.

Second, suppose that V f > Vg . A similar argument shows that there is no value
of �c for which Hg is accepted and Hf is rejected.

Finally, suppose that V f = Vg . In this case, there are only two possibilities:

• if 2�c is less than V f = Vg , both Hf and Hg are accepted;
• if 2�c is greater than V f = Vg , both Hf and Hg are rejected in favor of Hc.

Thus, when V f = Vg , there is no value of �c that would lead to accepting one
hypothesis and rejecting the other.

Pollack and Wales (1991) called this procedure the “likelihood dominance cri-
terion” (LDC) and suggested the following criteria (assuming that k f < kg and
kc = k f + kg + 1):

(i) The LDC prefers Hf to Hg if �g − � f < [C(k f + 1) − C(kg + 1)]/2.
(ii) The LDC is indecisive between Hf and Hg if

[C(kg + 1) − C(k f + 1)]/2 < � f − �g < [C(kg − k f + 1) − C(1)]/2.
(iii) The LDC prefers Hg to Hf if � f − �g > [C(kg − k f + 1) − C(1)]/2.
The C values depend not only on k f and kg but also on the significance level cho-
sen. The suggested value kc = k f + kg + 1 arises from the exponential and linear
combination of Hf and Hg from previous chapters.

Their paper ends with an application in the domain of consumer demand analysis,
comparing the quadratic expenditure system and generalized translog models.

Example 4.3 (Cole 1975) Ventilatory function is a measure of the amount of air
that an individual can breathe and is used for screening against chronic respiratory
disease. Two indices used to quantify it are forced ventilatory volume (FEV) and
force vital capacity (FVC), both derived from the volume of air in liters expired in
a single forced expiration following a full inspiration. Both indices are larger in tall
individuals and decline with age.

A reanalysis of nine studies of ventilatory function from all over the world involv-
ing more than 11000 men and women was conducted to select one of the following
models:
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1 : FEV = a + b.age + c.height,

2 : FEV = a + c.height + d.age.height, (4.10)

3 : FEV = c.heightm + d.age.heightm .

If the parameter vector for model j is θ j , then all models have the following form:

FEV = f (age, height, θ j ) + ε j , j = 1, 2, 3, (4.11)

where the ε j are assumed to follow N (0, σ 2
j ) distributions. For a sample of size n and

apart from an arbitrary constant, the likelihood (or support, according to Edwards
1992 and as adopted by Cole 1975) is

S(θ j ) = �(θ̂ j ) = −n

2
ln σ 2

j − 1

2σ 2
j

∑
{FEV − E(FEV )}2. (4.12)

Cole (1975) chose the appropriate model by comparing the values of S(θ j ) for all
three models. A value of m = 2 was obtained by analyzing the profile likelihood:

S3(m) = argmax
c,d

S(c, d,m).

4.3 Simulations and Bootstrap

4.3.1 Simulations

Models are approximations of systems or processes and represent their key charac-
teristics. Simulations emulate the operation of the system.

A mathematical model consists of algorithms and equations used to represent a
structure that will reproduce the behavior of the system being modeled.

A computer simulation consists of the running of these equations and algorithms
using high-speed computer power as a substitute for analytical calculations.

Monte Carlo methods or stochastic simulations are a class of computational algo-
rithms that rely on random sampling to obtain numerical results. They are usually
applied when it is impossible to obtain a closed-form expression or it is infeasible to
apply a deterministic algorithm.

Sawilosky (2003) distinguishes between simulations, the Monte Carlo Method,
and Monte Carlo simulations. A simulation is a fictional representation of reality,
a numerical technique for conducting experiments. The Monte Carlo method is a
stochastic technique for solving a deterministic problem, either a mathematical or
a physical one. Monte Carlo simulations use repeated samples to determine the
properties of a certain phenomenon.
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4.3.2 Bootstrap

Bootstrapping refers to a metaphor for a self-sustained process that proceeds without
external assistance. The term comes from the story “The Surprising Adventures of
Baron Munchausen”, in which the Baron pulls himself out of a swamp by his hair.
The concept of bootstrapping arose from a variant of this tale.

In statistics , bootstrapping refers to one type of resamplingmethod (others include
Jackknife, Cross-validation, and Permutation Tests) that allows the estimation of the
distribution of a statistic and measures the accuracy of the estimates. It is used to
compute standard errors, confidence intervals, hypothesis and significance tests, and
bias corrections.

It is especially useful, for example, when the statistic of interest is complicated,
when the sample size of the study is small, or for the specification of a desired sample
size based on pilot studies.

For observed data drawn from a random sample of size n, bootstrap yields a
number B of resamples of the data set (with replacement), each with the same size
n.

Inferences from the data (e.g., standard errors, confidence intervals, and statistical
tests) can be obtained in the following ways:

(a) Nonparametric bootstrapping, based on the distribution F̂ : Instead of making
inferences from the behavior of samples from F , the data-generating distribution,
B samples are obtained from F̂ , the empirical distribution function.

(b) Parametric bootstrapping: A model is fitted to the data, usually using the max-
imum likelihood method, and B random samples are generated from this fitted
model.

4.3.3 Applications

Example 4.4 (Williams 1970) Two regression models for the observed enzyme con-
centration y at time t are as follows:

(i) Segmented model f :

yi = f (α, ti ) + ε f i α = (α0, α1, α2, α3, T1, T2), (4.13)

where

f (α, t) = α0 + α1t f or t ≤ T1
= α0 + α1t + α2(t − T1) f or T1 ≤ t ≤ T2
= α0 + α1T1 + α2(T2 − T1) + α3(t − T2) f or T2 ≤ t
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and the ε f i are independently distributed with the form N (0, σ 2
f ).

(ii) Smooth model g:

yi = g(β, ti ) + εgi β = (β0, β1, β2), (4.14)

where g(β, ti ) = β0 + β1eβ3t and εgi are independently distributed with the
form N (0, σ 2

g ).

The models were derived from two alternative theories regarding the synthesis of
enzymes during the cell cycle.

Because one of the models presents discontinuities in its derivatives at unknown
points T1 and T2, some difficulties arise in fitting and discriminating between alter-
native models.

Williams (1970) overcame these difficulties using a search procedure for the
maximum likelihood estimation of the parameters of the segmented model and a
simulation (parametric bootstrapping) to discriminate between the models. He used
a discrimination criterion called the ratio of the maximized likelihood, λ:

λ = residual sum of squares about the fitted segmented model

residual sum of squares about the fitted smooth model
(4.15)

The likelihood of the segmented model is not differentiable with respect to all
parameters; therefore, the Cox procedure (Sect. 2.2) cannot be applied. Instead, the
simulation procedure described below was used.

Assuming that each model in turn is the true model, B samples of enzyme con-
centrations with size n are generated from f (α̂, ti ) + ε f i and g(β̂, ti ) + εgi , where
ε f i and εgi are variates with N (0, σ̂ 2

f ) and N (0, σ̂ 2
g ) distributions, respectively. The

variances σ̂ 2
f and σ̂ 2

g are obtained by dividing the residual sum of squares in the orig-
inal sample by n − 6 and n − 3, respectively. Thus, B observations are drawn from
each of two distributions 
 f and 
g of λ f and λg , respectively. The observation λ0,
namely, the value of λ obtained by fitting both regression models to the data, is to be
allocated to one of the two distributions.

Letm f ,mg , s f , and sg denote themeans and standard deviations of theλ f i andλgi ,
respectively. Let d f = max{m f + 2s f ,max λ f i } and dg = min{mg − 2sg,min λgi }.
Williams (1970) regarded λ0 as a possible observation from 
 f if λ0 < d f and
as a possible observation from 
g if λ0 > dg . Therefore, there are four possible
conclusions:

• if λ0 < d f , λ0 < dg , the segmented model is chosen;
• if λ0 > d f , λ0 > dg , the smooth model is chosen;
• if λ0 > d f , λ0 < dg , both models are rejected; and
• if λ0 < d f , λ0 > dg , no discrimination between the two models is possible.

In one of his experiments, with B = 10, Williams (1970) ultimately obtained
λ0 = 0.532, σ̂ f = 5.33 and σ̂g = 7.14. The 10 values of λ f i and λgi were as follows:

http://dx.doi.org/10.1007/978-3-662-53736-7_2
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λ f : 0.549, 0.426, 0.437, 0.344, 0.508, 0.551, 0.461, 0.490, 0.423, 0.536;

λg: 1.213, 1.227, 1.269, 1.183, 1.264, 1.000, 0.998, 1.044, 0.951, 1.031.

The calculated value of λ was 0.532. Because this value lies within the range of
λ f i and well outside the range of λgi , the segmented model f was chosen.

Example 4.5 (Wahrendorf et al. 1987) Consider two models in the class of gen-
eralized linear models (see McCullagh and Nelder 1989): M1, with r1 parame-
ters, and M2, with r2 parameters that are a subset of the parameters of model M1

such that r2 < r1. Let �(M1) and �(M2) be the maximized likelihood functions
of models M1 and M2, respectively. Under the null hypothesis H0: the additional
r1 − r2 parameters of model M1 are all zero, and the likelihood ratio statistic is
LR(M2, M1) = −2 log{�(M2)/ l(M1)} ∼ χ2

r1−r2 , i.e., it follows a central chi-squared
distribution with r1 − r2 degrees of freedom.

Under the alternative hypothesis H1: at least one of the additional parameters is
nonzero, LR(M2, M1) = χ(δ), i.e., it follows a noncentral chi-squared distribution
with a noncentrality parameter δ. Therefore, the null hypothesis can also be expressed
as δ = 0.

Consider two models f and g with r parameters in common and r f and rg addi-
tional parameters, respectively. The model with only the r common parameters is
denoted by M fg .

If not all r f (rg) parameters of models f (g) are zero, L(M fg, f ) ∼ χ2(δ f ) (sim-
ilarly L(M fg, g) ∼ χ2(δg)).

Consider the case in which r f = rg . The improvements in fit (over model M fg)

offered by model f or model g can be compared by testing the hypothesis δ f =
δg against δ f �= δg . If r f �= rg , then the interpretation of the difference in the
noncentrality parameters is ambiguous.

Wahrendorf et al. (1987) showed that δ̂ f = δ̂g if and only if LR( f, F) =
LR(g, F), where F is a full model with all r + r f + rg parameters. These like-
lihood ratios are the deviances of a generalized linear model.

Note that LR( f, F) and LR(g, F) are not independent. Thus, to test whether
two nonnested models with equal degrees of freedom fit the data equally well is
equivalent to testing δ f = δg or LR( f, F) = LR(g, F). The null distribution of
these statistics is the distribution of the difference of two dependent χ2 distributions
with equal degrees of freedom.

To perform the test above, we need to calculate the sample distribution of the test
under the null hypothesis. Because this would be difficult to accomplish analytically,
the authors used the bootstrap technique to estimate the sample distribution of the
difference of the deviances given the observations.

This author applied the above procedure to two sets of data as follows:

(a) Thenonparametric bootstrap approachwas used in carcinogenesis dose-response
experiments to choose among alternative Cox regression models (Cox 1972)
that were fitted to the survival times of groups of mice treated with different
doses of an initiator and a promoter used in a standard fashion. The times of
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occurrences of papillomas were monitored and used as endpoints in a censored
failure time analysis. The hazard functionwasλ(t) = λ0eθ z , and themodelswere
f : z f = (dose,

√
dose), g : zg = (dose, log dose), and M fg : zM = (dose).

Upon performing a bootstrap experiment with B = 1000, the histogram and
confidence intervals, to perform hypothesis and significance tests, and to carry
out bias corrections, for the differences of the deviances indicated that model g
was not better than model f .

(b) A parametric bootstrap approach to choose between additive or multiplicative
models was used on data regarding deaths from coronary heart disease among
British male doctors. The number of deaths was considered to be a Poisson
random variate. For the division of the data according to 5 age categories and the
presence or absence of a smoking habit, the models were as follows for the death
rates λ jk in age groups j ( j = 1, ..., 5) for nonsmokers (k = 0) and smokers
(k = 1), with covariates z = 0 and z = 1, respectively:

(i) Multiplicative:

f : λ jk = λ j0 exp(αβ) = exp(α j + αz), (4.16)

where λ j0 is an age-specific rate λ j0.

(ii) Additive:
g : λ jk = β j + βz . (4.17)

Bootstrap samples were generated using the observed values as parameters of
independent Poisson distributions. The multiplicative and additive models were
fitted to each bootstrap sample, and their respective deviances were computed.
For the B = 1000 bootstrap samples, the distribution of the differences of
the deviances between the multiplicative and additive models was found to be
symmetric, with a mean of 9.97 and standard deviation of 7.75. The bootstrap
confidence intervals for the deviance differences may be attributed to chance;
that is, model g is not better than model f .

Example 4.6 (Schork and Schork 1989, Example1.3 cont.) The basic bootstrap
method described by the authors is the same as that presented in Example4.1. Here,
Hf : f (y, α) is a lognormal density, and Hg : g(y, β) is a mixture of two normal
densities. For a sample (y1, ..., yn),

λ̂ =
n∑

i=1

log g(yi , β̂/ f (yi , α̂). (4.18)

The following procedure illustrates the basicmotivation behind a parametric boot-
strap test. To test Hf , generate B samples of size n from the density f (y, α̂), and
for each sample, estimate α̂∗, β̂∗, and λ̂∗. Critical values for the nonartificial λ̂ can
be obtained from the order statistics of artificial λ̂∗s.

http://dx.doi.org/10.1007/978-3-662-53736-7_1
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This procedure was used by (Schork and Schork 1989) to test alternative genetic
hypotheses. The Pickering/Plat debate described in Example1.1 is discussed in
Schork et al. (1990). The data consisted of systolic and diastolic blood pressure
values collected from 941 white male subjects participating in a random blood pres-
sure trial at Michigan State University. The data were adjusted for the effects of
age, height, and weight. The differences in the log-likelihoods were 23.53 for sys-
tolic pressure and 4.46 for diastolic pressure. The critical values of the parametric
bootstrap test at a 5% level of significance were 2.75 and 3.02. Therefore, the lognor-
mal distribution was rejected, and there found to be a greater potential for a normal
mixture, corresponding to the genetic hypothesis for hypertension. Note that this
analysis of the blood distribution is not intended as an exhaustive resolution to the
issues raised in the Pickering/Plat debate.

Example 4.7 (Nevill and Holder 1994) Maximum oxygen uptake (V O2(max)) is
a measure of an individual’s capacity to deliver oxygen to and use oxygen in an
exercised muscle. It is considered an important single indicator of cardiovascular
fitness. It is known that several factors affect V O2(max), such as body size, age,
gender, and the amount of exercise that the individual performs.

Analyzing data on 1732 subjects from the Allied Dunbar National Fitness Survey
(ADNFS), (Nevill and Holder 1994) adapted and generalized the FEVmodel of Cole
(1975) presented in Example4.3 as follows:

FEV = heightk(c + d.age) + ε,

V O2(max) = weightk(c + d.age) + ε.
(4.19)

They also incorporated dichotomous variables of gender (z) and vigorous exercise
(v) by allowing parameters k and c to vary. The model was thus as follows:

V O2(max) = weightk0+k1z+k2v+k3zv{c0 + c1z + c2v+
c3zv + (d0 + d1z + d2v + d3zv)age} + ε.

(4.20)

The authors also considered the following multiplicative model, which they believed
to be more plausible:

V O2(max) = weightk exp(c + d.age)ε. (4.21)

Incorporating gender and vigorous exercise results into the log-linear model yielded

log V O2(max) = (k0 + k1z + k2v + k3zv) logweight + c0 + c1z + c2v+
c3zv + (d0 + d1z + d2v + d3zv)age + ε.

(4.22)
Because of the noted heteroscedasticity of the data, the authors proceeded to esti-

mate the models by assuming normality for the error terms, using weighted regres-
sion, and minimizing

http://dx.doi.org/10.1007/978-3-662-53736-7_1
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1
n

∑
wi (yi − f (x, α))2,

1
n

∑
wi (ln yi − g(x, β))2,

(4.23)

for the nonlinear and log-linear models, respectively.
Finally, using the bootstrap approach of the previous examples, they chose the log-

linear model. It was also noted that the residuals from the nonlinear model deviated
considerably from normality.

Example 4.8 (Cribari-Neto and Lucena 2015, Example2.11 cont.)
The authors performed bootstrap versions of the likelihood ratio and Wald tests

to test the five models in (2.48). Their procedure was as follows:

(i) Estimate all models mi (mi �= m f ), obtain the η̂i (i �= f ), include them
as additional covariates in model m f , and estimate the resulting augmented
model.

(ii) Compute the J statistic.
(iii) Generate a bootstrap sample of the response y∗

f from model m f .
(iv) Estimate the augmented model using y∗

f as the response and compute J ∗.
(v) Repeat (i i i) and (iv) B times, where B is a large positive integer.
(vi) Compute T1−α , the 1 − α quantile of the B bootstrap statistics (J ∗

1 , ..., J ∗
B).

(vii) Reject m f if J > T1−α .

For testing m j �= mi , proceed similarly.
For the bootstrap MJ statistic, they proceeded as follows:

(i) Calculate the MJ statistic as described above.
(ii) Generate a bootstrap sample of the response y∗

i as above.
(iii) Calculate the MJ bootstrap statistics, MJ ∗.
(iv) Repeat (i i) and (i i i) B times.
(v) Compute T1−α , the 1−α quantile of the B bootstrap statistics (MJ ∗

1 , ..., MJ ∗
B).

(vi) Reject the null hypothesis that the true model belongs to the set of candidate
models if MJ > T1−α .

The decision rule can also be expressed in terms of the bootstrap p-value, which
is given by p∗, the proportion of times that the bootstrap statistic, say MJ ∗

b (b =
1, ..., B), is smaller than the selected nominal level.

The J and MJ tests were performed by the authors for both the likelihood ratio
and Wald tests and their bootstrap versions. The p-values of the J tests for pairwise
nonnested models are reported in Table4.1.

The MJ bootstrap values were 0.4366 and 0.2867 for the likelihood ratio and
Wald bootstraps, respectively. Therefore, the correct model was concluded to be
among the candidate models, and because the smallest J statistic was that of the
log–log model, this model was selected based on the MJ test.

http://dx.doi.org/10.1007/978-3-662-53736-7_2
http://dx.doi.org/10.1007/978-3-662-53736-7_2
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Table 4.1 p-values for the J test obtained using the likelihood ratio (LR) and Wald statistics for
the five competing models; the bootstrap p-values are also reported

Model LR LRboot Wald Waldboot

Logit versus
probit

1.715 × 10−5 0.0060 2.637 × 10−8 0.0050

Logit versus
log–log

1.828 × 10−5 0.0040 2.657 × 10−8 0.0110

Logit versus
compl. log–log

0.0004 0.0190 1.667 × 10−5 0.0025

Logit versus
Cauchit

0.0023 0.06190 0.0003 0.0639

Probit versus
logit

0.0016 0.0150 0.0007 0.0140

Probit versus
log–log

0.0040 0.0070 0.0001 0.0040

Probit versus
compl. log–log

0.0026 0.0190 0.0013 0.0160

Probit versus
Cauchit

0.0089 0.0470 0.0061 0.0499

Log–log versus
logit

0.4869 0.6074 0.4863 0.5614

Log–log versus
probit

0.2634 0.3646 0.2596 0.3926

Log–log versus
compl. log–log

0.5505 0.6414 0.5501 0.6234

Log–log versus
Cauchit

0.7583 0.8092 0.7584 0.8232

Compl. log–log
versus logit

1.629 × 10−5 0.0060 8.207 × 10−9 0.0090

Compl. log–log
versus probit

8.581 × 10−7 0.0030 3.25 × 10−12 0.0010

Compl. log–log
versus log–log

1.496 × 10−6 0.0010 9.013 × 10−12 0.0010

Compl. log–log
versus Cauchit

0.0030 0.0460 6.319 × 10−6 0.0260

Cauchit versus
logit

5.4 × 10−8 0.0080 2.028 × 10−12 0.0010

Cauchit versus
probit

6.01 × 10−9 0.0020 2.527 × 10−15 0.0010

Cauchit versus
log–log

1.6 × 10−10 0.0200 <2.2 × 10−16 0.0010

Cauchit versus
compl. log–log

2.193 × 10−7 0.0240 6.624 × 10−11 0.0010
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4.4 Bibliographic Notes

There has been a recent revival of interest in the likelihood inferencemethod of Fisher
(1956). Readable accounts can be found in Edwards (1992), Kalbfleisch (2011), King
(1998), Lindsey (1986), Pawitan (2001), Royall (1999), and Sprott (2000). For the
application of this method in clinical medicine, refer to Pereira and Pereira (2005),
and time series in Barnard et al. (1962).

The reasoning underlying the support method also serves as the foundation for
the OAAAA method of Barnard, introduced in Sect. 1.3, and the FBST, introduced
in Sect. 3.3. In an unpublished thesis, Rojas (2001) used simulations to determine
the probability of correct selection using the support method for the exponential,
Weibull, gamma, and lognormal distributions.

In Jackson (1967, 1968), Pereira (1976, 1981) and Loh (1985), simulation results
were used to study the significance levels of accuracy, power properties, and conver-
gence to normality of statistical procedures for testing separate hypotheses.

More recently, simulations have been used as computer-intensive methods of
testing these hypotheses, and the examples presented in this chapter are representative
of such efforts.

Results in bootstrap theory suggest that the use of asymptotically pivotal quantities
(APQs), namely, random variables whose asymptotic distributions do not depend on
any parameters, leads to procedures with a higher level of accuracy. The Cox statistic
introduced in Chap.2 is an APQ.

Schork (1993), Pesaran and Pesaran (1993, 1995), and Coulibaly and Brorsen
(1999) presented alternative bootstrap APQs as approximations to the Cox statistic
when it is difficult to obtain the expression for the Cox test.

These authors used a descriptive statistic (or nonparametric estimate) of the log-
likelihood difference and its expectation under hypotheses Hf and Hg . Usually, a
two-step procedure is applied to estimate the probability limit of the alternativemodel
under the null model, that is, βα and αβ under Hf and Hg , respectively.

Such simulations should be constrained to values near the original sample esti-
mates α̂ (or β̂) and βα̂ (or αβ̂), as also suggested by Cox (2013).

Further references on the use of bootstrapping for J -type tests of separate hypothe-
ses are presented in Cribari-Neto and Lucena (2015).
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Appendix A
Maximum Likelihood Estimation (MLE)

The results of the maximum likelihood estimation (MLE) of the lognormal, Weibull,
gamma and exponential distributions, and regression models are presented; specifi-
cally, these results include the log-likelihood functions, the estimation equations, and
the Fisher’s information matrices. The notation is the same as that used in Examples
2.1, 2.2, and 2.3.

A.1 Lognormal Models

(i) Distribution
The corresponding density function is denoted by fL(y;α1, α2).

�L(α1, α2; y) = −n

2
logα2 − n log

√
2π −

n∑

i=1

log yi − 1

2α2

n∑

i=1

(log yi − α1)
2,

α̂1 =

n∑

i=1

log yi

n
, α̂2 =

n∑

i=1

(log yi − α̂i )
2

n
, (A.1)

I (α1, α2) = n

⎡

⎣
1/α2 0

0 1/(2α2
2)

⎤

⎦ .

(ii) Regression
The corresponding density function is denoted by fL(yi ;α1, α2, a

˜
′).
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�L (α1, α2, a˜
′; y

˜
) = −n

2
logα2 − n log

√
2π −

n∑

i=1

log yi

− 1

2α2

n∑

i=1

(log yi − α1 − zi
˜
a
˜
)2,
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n
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˜
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˜
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− Z
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˜
− α̂
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l − Z

˜
â
˜
),

I (α1, α2, a˜
′) =

⎡

⎣
I (α1, α2) 0

0 1
α2

Z ′Z

⎤

⎦ . (A.2)

A.2 Weibull Models

(i) Distribution
The corresponding density function is denoted by fW (y;β1, β2).

�W (β1, β2; y
˜
) = n logβ2 − nβ2 logβ1 + (β2 − 1)

n∑

i=1

log yi −
n∑

i=1

(
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β1

)β2

,

β̂
β̂2
1 =
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yβ̂1
i

n
, β̂2 =

⎡

⎢⎢⎢⎢⎣

n∑

i=1

yβ̂2
i log yi
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i

−
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log yi

n

⎤
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, (A.3)
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(ii) Regression
The corresponding density function is denoted by fW (yi ;β1, β2, b

˜
′).

�W (β1, β2, b
˜

′; y
˜
) = n logβ2 − nβ1β2 + (β2 − 1)
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A.3 Gamma Models

(i) Distribution
The corresponding density function is denoted by fG(yi ; γ1, γ2).

�G(γ1, γ2; y
˜
) = −n logΓ (γ2) + nγ2 log

γ2

γ1
+ (γ2 − 1)
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i=1

log yi − γ2

γ1
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n
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log yi

n
, (A.5)
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(ii) Regression
The corresponding density function is denoted by fG(yi ; γ1, γ2, g

˜
).
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˜
) = −n logΓ (γ2) + nγ2 log γ2 − nγ1γ2 + (γ2 − 1)
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A.4 Exponential Models

Exponential models are special cases of Weibull (β2 = 1) and gamma (γ2 = 1)
models; therefore, the corresponding results can be obtained from the results for
either of these.

(i) Distribution
The corresponding density function is denoted by fE (yi ; δ).

�E (δ, y
˜
) = −n log δ − 1

δ

n∑

i=1

yi ,

δ̂ =

n∑

i=1

yi

n
, (A.7)

I (δ) = n

δ2
.

(ii) Regression
The corresponding density function is denoted by fE (y, δ, d

˜
′).
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A.5 Location-Scale Models

Finally, there is a further property of the maximum likelihood estimator that is also
used frequently, which is useful for identifying the crucial parameters for tests based
on the maximum likelihood ratio and, consequently, for determining the parameters
to be varied in simulation studies.

The previously discussedmodels can also bewritten in the forms presented below:

1

σ
f (

x − α

σ
; q) or f (x − α; σ, q). (A.9)



Appendix A: Maximum Likelihood Estimation (MLE) 91

It can be shown that for models of these forms, the distribution of the maximum
likelihood ratio depends only on q or (σ, q), respectively. If the models are in the
location-scale form 1

σ
f ( x−α

σ
), then the maximum likelihood ratio distribution is

independent of the parameters (Antle and Bain 1969).

Reference

Antle, C.E., Bain, L.J.: A property of maximum likelihood estimators of location and scale para-
meters. SIAM Review 11, 251–253 (1969)
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